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Abstract

R঎ଗ জঞখ঎ଗ ঎গ এছঊগঌ̧ঊ঒জ

Cette thèse aborde deux sujets de recherche dans le cadre du même projet. La première voie
de recherche, expliquée en détail au chapitre 3, est une approche de modélisation relative w
la dynamique de confiance dans une société en réseau. La seconde voie de recherche, décrite
au chapitre 4, est une approche expérimentale visant w étudier les décisions humaines lors de
l’échange d’un actif avec une croissancemoyenne positive par période dans un environnement
de laboratoire contrôlé.

Un des liens communs entre ces deux thèmes est l’action collective, qui joue un rôle déter-
minant dans de nombreux phénomènes, par exemple la dynamique de la panique, les faillites
et par conséquent le risque systémique. C’est pourquoi, j’espère que ce travail contribuera w
l’étude des phénomènes d’actions collectives, en particulier dans la finance quantitative, où
les conclusions spécifiques du modèle de confiance et l’expérience de trading en laboratoire
mentionés ci-dessus pourront être utilisées dans leur état actuel.

Mots-clés : réseaux, complexité, confiance, laboratoire, trading.

Aঋজঝছঊঌঝ ঒গ Eগঐক঒জ঑

This thesis reports on two different research topics belonging to the same project. The first
research avenue, which is thoroughly explained in chapter 3, is a modelling approach to the
dynamics of trust in a networked society. The second, whose description can be found in
chapter 4, is an experimental approach to study human decisions when people trade an asset
with a positive average growth per period in a controlled laboratory environment.

One of the common links between these two topics is collective action, which is a key player
in a number of phenomena, for example in the dynamics of panic, bankruptcies and, con-
sequently, systemic risk. Therefore, the author hopes that this work will contribute to the
study of collective action phenomena, especially in the field of quantitative finance, in which
it is more likely that the specific findings from the above mentioned trust model and trading
experiment can be used in their present form.

Keywords: networks, complexity, trust, experiment, trading.
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1
Introduction en français

1.1 Uগ঎ গঘঞট঎কক঎ ছ঎ଗ ঙঘগজ঎

Commençons par citer Jean-Claude Trichet, Président de la Banque Centrale Européenne

(BCE) entre 2003 et 2011, lors d’une allocution du 18 novembre 2010 :

Wμen tμe crνss came, tμe serνos lνmνtatνons of exνstνnλ economνc and nancνal׹ models

νmmedνately became apparent. Arbνtraλe broke down νn many market seλments, s markets

froze and market partνcνpants were λrνpped by panνc. Macro models faνled to predνct tμe

̂



crνss and seemed νncapable of explaνnνnλ wμat ws μappenνnλ to tμe economy νn a convνncνnλ

manner. As a polνcy-maker durνnλ tμe crνss, I found tμe avaνlable models of lνmνted μelp. In

fact, I would λo furtμer: νn tμe face of tμe crνss, we felt abandoned by conventνonal tools [108].

Dans un souci de prévention, ou du moins dans un souci d’atténuation de la prochaine

crise, il est essentiel d’élaborer d’autres approches et d’autres outils pour mieux comprendre

la dynamique de l’économie dans son ensemble et en particulier la dynamique du système fi-

nancier. Faisant écho w cet appel de Jean-ClaudeTrichet, cette thèse porte sur les phénomènes

collectifs déstabilisateurs dans les systèmes socio-économiques. Bien que les phénomènes col-

lectifs jouent un rôle considérable dans la dynamique des économies et desmarchés financiers,

ils sont omis dans la plupart des modèles et des outils classiques w la disposition des praticiens

et des autorités de contrôle.

Les résultats de cette thèse se basent sur deux approches distinctes bien que reliées, w savoir

les modèles d’agents et les expériences de trading en laboratoire.

1.2 Aঙঙছঘঌ঑঎ ঎ଗ ঌঘগঘখ঒qঞ঎ জঝঊগ঍ঊছ঍

Bien que les modèles économiques standard soient largement utilisés par les praticiens et

les décideurs politiques, ils présentent des limites indéniables [̂̂, 80]. Premièrement, les

modèles économétriques reposent entièrement sur des données historiques. C’est pourquoi,

ils ne peuvent pas faire la lumière sur des conditions inédites. Deuxièmement, les modèles

d’équilibre général stochastiques dynamiques (EGSD) doivent être résolus de manière ana-

lytique. Pour cette raison, ils exigent des suppositions extrêmement restrictives et sont forte-

ment agrégés. Ces limitations sont d’autant plusmarquées que cesmodèles sont linéaires pour

des raisons de commodité analytique. Ainsi, ils ne peuvent pas décrire les phénomènes procy-

cliques. En effet, par définition, les modèles linéaires ne peuvent pas capturer des conclusions
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non linéaires qui caractérisent de tels phénomènes. Par conséquent, si des cycles conjoncturels

et de crédit sont occasionnés par des fluctuations non linéaires endogènes de l’économie, les

modèles linéaires standard en économie ne pourront jamaismodéliser ces cycles avec précision

[̂̂, 80, 101].

Parmi les hypothèses hautement restrictives qui caractérisent lesmodèles classiques en économie

et en finance, l’une des plus notables est celle qui considère que les agents prennent des déci-

sions parfaitement rationnelles et peuvent donc être représentés par un seul agent. Ces mod-

èles de rationalité conduisent w des prévisions en contradiction avec la réalité [̀0], en parti-

culier en période de stress, lorsque la confiance globale est généralement faible et lorsque les

individus sont hypersensibles aux événements défavorables. Les données empiriques issues

de l’économie comportementale montrent que les individus sont très souvent irrationnels

[2̀] et que leur comportement est très hétérogène [́8]. Par exemple, les individus sont dis-

proportionnellement influencés par la crainte du regret [8̀], propices aux biais cognitifs [̀́]

et souvent trop influencés par des suggestions externes (ancrage) [̂3]. En outre, les études

indiquent que la plupart des individus font également l’objet d’une tendance au statu quo

[̂4]. Pour finir, il existe une grande quantité de preuves pour affirmer que les individus sont

trop confiants de manière uniforme et irrationnelle [14, 3̂, 38].

Outre la parfaite rationalité et w l’agrégation des agents, les modèles classiques ne prennent

pas en considération le réseau complexe d’interactions et les mécanismes de rétroaction pro-

pres aux marchés financiers et aux économies. Qui plus est, l’hypothèse de la linéarité des

interactions entrave également ces modèles classiques dès leur conception. Dans ce contexte,

[18] déclare que lesmodèles économiques standard n’ont pas réussi w décrire la crise financière

et économique car ils ne prennent pas en compte les « dark corners », qui expliquent le dys-

fonctionnement économique. Il explique comment de petites secousses peuvent ébranler les

systèmes non linéaires, produire des effets considérables et se solder par des crises.
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1.3 Eঝঊঝ ঍঎ ক’ঊছঝ

Depuis le début des années 90, les chercheurs ont de plus en plus recours w des méthodes

bien établies en physique statistique pour expliquer les phénomènes provenant de systèmes

complexes w grande échelle, qui comprennent souvent une rétroaction non linéaire et des

phénomènes collectifs [1, 19]. Par exemple, la dynamique des avalanches observée dans cer-

tains systèmes complexes a été soigneusement étudiée dans [103], tandis que [90] a ajouté

plusieurs applications w la dynamique sociale collective. L’économie en général et la finance

de marché en particulier sont des domaines propices aux phénomènes procycliques, que les

modèles linéaires standard ont du mal w traiter car ils ne prennent pas en compte les con-

séquencesmacroscopiques éventuelles de l’hétérogénéité dans comportementdes agents, comme

expliqué dans [̂̂, ̂9, 80] et plus récemment face w la crise financière globale, comme décrit

dans [29]. En outre, les marchés financiers offrent des données w différentes fréquences aux

scientifiques et praticiens, ce qui facilite une comparaison entre théorie et données réelles [22].

Contrairement auxmodèles économiques et financiers classiques, lesmodèles w agents décrivent

les systèmes complexes comme un réseau d’agents en relation, qui adoptent une approche as-

cendante. Il n’existe aucune présomption concernant l’équilibre global ou l’optimisation in-

dividuelle. C’est pourquoi, contrairement w l’agent représentatif unique, les modèles w agents

permettent demieux comprendre comment les phénomènesmacroscopiques complexes sur-

gissent w partir du comportement de plus petits composants du système, d’après le modèle

inspiré par Schelling dans [100]. De plus, cette approche peut prendre en considération les

données historiques et les conclusions issues de l’économie comportementale via des expéri-

mentations humaines, qui ont été conçues pour cerner le mode de décision de vrais individus

dans un contexte économique donné. En réalité, ce processus d’étalonnage est la source du

pouvoir prévisionnel desmodèles w agents, aux dépens de la rigueur analytique, sensiblement
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réduite par rapport aux modèles linéaires simplifiés, dotés d’un seul agent représentatif.

Le degré de complexité et le nombre de paramètres dépendent des phénomènes que le

modèle w agents vise w décrire et reproduire. Il est essentiel de déterminer les relations in-

formelles dans un modèle basé sur des agents afin d’en garantir une parfaite compréhension.

Bien que cette tyche soit très simple dans unmodèle w un ou deux paramètres et variables, elle

est nettement plus complexe pour desmodèles de dimensions supérieures. En fait, il convient

de signaler qu’un modèle stylisé avec quelques paramètres peut être extrêmement difficile w

analyser. End’autres termes, il est généralement préférable de commencer par un simplemod-

èle contenant l’essentiel des mécanismes sous-jacents, puis d’en augmenter la complexité et le

nombre de paramètres uniquement après avoir compris parfaitement la version initiale du

modèle. De cette façon, il est plus aisé d’assurer le suivi du modèle basé sur plusieurs agents,

de bien comprendre ses propriétés dynamiques et de faciliter le choix de stratégies pour at-

ténuer le sur-ajustement lors de l’étalonnage. Dans cet esprit, [8] et [2̂] sont deux exemples

clés de modèles w agents, simples et hautement stylisés, qui traitent le problème de la ratio-

nalité et du raisonnement inductif dans le contexte d’un jeu de minorités. En revanche, [11]

et [41] sont des exemples de modèles w agents, extrêmement complexes, dotés de plusieurs

paramètres, variables et fonctions de rétroaction, pour obtenir des prévisions quantitatives

réalistes avec des finalités pratiques.

La crise financière et économique a égalementprouvéque lesmodèles standard, bienqu’adaptés

en période d’essor, sont totalement inappropriés pour prévoir des crises profondes. Elle a

souligné lanécessité dedéfinir unenouvelle approchepour cerner la dynamiquede l’économie

et elle a transformé la mentalité des économistes et des décideurs politiques. Durant son dis-

cours d’ouverture w la Conférence des banques centrales organisée par la BCE, en novembre

2010, le président de la BCE Jean-Claude Trichet a déclaré :

Tμe atomνstνc, optνmνzνnλ aλents underlyνnλ exνstνnλ models do not capture beμavνour dur-
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νnλ a crνss perνod. We need to deal better wνtμ μeteroλeneνty across aλents and tμe νnteractνon

amonλ tμose μeteroλeneos aλents. We need to entertaνn alternatνve motνvatνons for economνc

cμoνcs. Beμavνoural economνcs draws on psycμoloy to explaνn decνsνons made νn crνss cνr-

cumstancs. Aλent-based modellνnλ dνspenss wνtμ tμe optνmνzatνon assumptνon and allows for

more complex νnteractνons between aλents. Sucμ approacμs are wortμy of our attentνon [108].

Certaines discussions récentes ainsi que des études de dernière génération sur les économies

complexes sont [̂8] et [́9], tandis que [19]porte sur les applicationsdesmodèles dephysique

statistique aux phénomènes socio‑économiques. [81] et [̂1] analysent des modèles w agents

financiers, tandis que [3] examine les contributions et les sondages. [48] met l’accent sur

l’importance de la modélisation w agents dans le domaine de l’économie et [49] souligne

le rôle des modèles w agents dans les décisions politiques. De plus, [43] et [39] discutent

de l’application des modèles w agents dans l’analyse politique. Ainsi [84] et [̀1] analysent

l’implication des nouvelles réglementations proposées dans le cadre de l’accord Basel III : le

nouveau ratio de levier et les mécanismes de résolutions bancaires. Comme mentionné ci-

dessus, l’un des problèmes lié auxmodèles w agents avec des équations dynamiques complexes

repose sur la difficulté w distinguer les causes et les effets. Pour cette raison, ces modèles finis-

sent par être utilisés comme des boîtes noires dans de nombreux cas.

Dans ce contexte, [́1] exploite les simples modèles stylisés de systèmes complexes pour

identifier les types dephénomènes reproduisibles par lesmodèles w agentsmacroéconomiques.

Dans cet article, Gualdi et al. utilisent des méthodes de physique statistique pour trouver les

points critiques de transition d’un modèle w agents par le biais du diagramme de phase dans

l’espace de paramètres et pour détecter les points de bascule qui occasionnent les transitions

critiques.

Il s’agit de commencer par comprendre les fluctuations soudaines observées dans lemodèle

basé sur les agents proposé par [41]. La conclusion principale est l’existence (dans un modèle
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stylisé simple) d’une transition de phase entre une « économie favorable », où le taux de

chômage est bas, et une « économie défavorable », où le taux de chômage est élevé. En règle

générale, cette transition est déclenchée par une asymétrie entre le taux de recrutement et le

taux de licenciement dans les entreprises. Le niveau de chômage reste stable jusqu’au point

de bascule, au-delw duquel l’économie s’effondre brutalement. Si les paramètres sont choisis

pour que le système fasse l’objet d’une transition, toute fluctuation minime est amplifiée car

le système fluctue entre ces deux équilibres. Plusieurs extensions du modèle sont analysées,

notamment avec un seuil de faillite, limitant ainsi le niveau maximal du ratio endettement-

ventes dans les entreprises. Ceci se solde par un riche diagramme de phases avec une région

correspondant aux crises endogènes aiguës, au cours desquelles le taux de chômage monte en

flèche avant le redressement de l’économie. L’effet de politiques monétaires simples, visant w

contenir la hausse du chômage et w prévenir la crise, fait également l’objet d’une analyse.

L’étalonnage des règles décisionnelles individuelles représente un autre aspect crucial des

modèles w agents. Commementionné ci-dessus, les anticipations rationnelles ne sont pas une

approximation acceptable de la réalité, en particulier en temps de stress financier. Les expéri-

ences en laboratoire avec des sujets humains fournissent des bases empiriques indispensables

pour créer et étalonner desmodèles w agents, où la compréhension du comportement humain

réel est essentielle pour former des prévisions. Uneméthode clé de la macroéconomie expéri-

mentale est l’étude en laboratoire des comportements collectifs pour analyser en simultané

les règles décisionnelles micro-économiques, leurs interactions et le comportement macroé-

conomique agrégé.

En particulier, [9] a exploité les études en laboratoire pour savoir comment les entreprises

définissent leurs prix et quantités dans un contexte de concurrencemonopolistique standard,

comme le modèle macroéconomique basé sur les agents dans [41]. Leur dispositif reproduit

un marché dans lequel les entreprises décident w plusieurs reprises du prix et de la quantité
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pour une denrée périssable. Les sujets doivent prendre des décisions relatives w la produc-

tion et w la tarification compte tenu des informations sur les profits, l’excès de la demande,

l’excès de l’offre et le niveau du prix agrégé. Ils confirment que l’hétérogénéité est une car-

actéristique stable au sein des groupes d’individus, avec environ 4́% d’adeptes du marché,

28% d’ajusteurs de profits et 2́% d’ajusteurs de la demande. En outre, les prix et les quan-

tités convergent vers un équilibre concurrentiel monopolistique et les sujets se comportent

en fonction d’heuristiques d’apprentissage adaptatif.

1.4 P঑঎ଗ গঘখ঎ଖ গ঎জ ঌঘকক঎ঌঝ঒এজ ঍঎ଗ জঝঊঋ঒ক঒জঊঝ঎ঞছজ

Cette thèse aborde deux sujets de recherche dans le cadre du même projet. La première voie

de recherche, expliquée en détail au chapitre 3, est une approche de modélisation relative w

la dynamique de confiance dans une société en réseau. La seconde voie de recherche, décrite

au chapitre 4, est une approche expérimentale visant w étudier les décisions humaines lors de

l’échanged’un actif avecune croissancemoyennepositiveparpériodedansun environnement

de laboratoire contrôlé.

La confiance est un phénomène collectif et auto-prophétique qui suggère des analogies

avec les transitions de phase. Le chapitre 3 aborde les propriétés d’un modèle de réseau car-

actérisé par des échanges mutuels entre les liens et la fiabilité. Les liens du réseau peuvent

représenter une relation commerciale entre deux entités alors que la fiabilité est définie pour

chaque nœud dans le réseau en tant que variable réelle. Dans ce modèle stochastique, il

est plus probable que deux agents entrent en relation si leur fiabilité est comparable, par

exemple en cas d’homophilie, comme dans [30, 4̂, 8̂, 89, 9̂]. De plus, la fiabilité d’un

nœud augmente de manière non linéaire avec la fiabilité des autres nœuds associés. Pour

finir, une rétroaction positive amplifie les mouvements descendants, qui peuvent se solder
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par une chute soudaine et catastrophique de la confiance collective. Il s’agit de reproduire

le fait empirique que des événements brusques défavorables ont tendance w être plus dras-

tiques que des événements brusques favorables, occasionnant ainsi le « skew » de volatilité,

où les options bénéficiant des chutes du marché coûtent plus que les options bénéficiant des

hausses du marché [44]. Les simulations numériques et l’approximation de champ-moyen

révèlent l’existence de régions étendues de l’espace de paramètres pour ce modèle, où deux

états d’équilibre coexistent : un réseau bien connecté où la confiance globale est élevée et

un réseau mal connecté où la confiance globale est faible. Dans ces régions de coexistence,

des sauts spontanés peuvent se produire de l’état bien connecté w l’état mal connecté, ce qui

correspond w une chute brutale de la confiance non occasionnée par une catastrophe externe

majeure. Dans des systèmes de grande taille, les crises spontanées sont remplacées par une

dépendance historique : que le système soit dans un état ou dans un autre, le tout dépend

essentiellement des conditions initiales. Pour finir, il existe également une phase où les agents

sont bien connectés mais ne se font pas confiance mutuellement.

L’approche expérimentale, décrite au chapitre 4, repose sur une experience de trading, où

les sujets échangent un seul actif sur unmarché artificiel. En l’absence d’échange, il est indiqué

aux participants que le prix de l’actif augmentera en moyenne de 2% par période. Bien que

les participants soient conscients de cette croissance moyenne, ils savent également que les

fluctuations sont aléatoires avec un impact sur les prix. Ainsi, le prix est entraîné w la hausse

en cas d’achat et il est entraîné w la baisse en cas de vente. C’est pourquoi, lorsque le prix varie

w l’écran, il est impossible de savoir s’il s’agit d’une fluctuation aléatoire ou si quelqu’un a ef-

fectué un échange avec une incidence sur le prix. Pour simplifier cette expérience, les sujets

ne peuvent pas spéculer ou vendre w découvert, p. ex. ils sont soit sur le marché (détenteurs

d’actions) soit en dehors (détenteurs de trésorerie) w tout moment. Sans transaction, les su-

jets devraient gagner au dela de ́00%. Compte tenu de l’impact du marché, plus le taux
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d’activité est élevé et plus le gain global des négociants est faible. Initialement, les sujets ont

effectué tellement de transactions qu’ils ont atteint un gainmoyen de 0.̂̀% w peine. Lorsque

cette expérience est renouvelée, les négociations ont nettement diminué et le taux moyen de

gain s’élève w 92%. Les sujets sont regroupés dans plusieurs catégories, où desméthodes statis-

tiques visant w réduire le taux de fausses découvertes (FDR) sont appliquées w leurs actions

et w leurs positions sur le marché. En outre, les agents sont réfractaires aux risques, comme

l’illustre une expérience parallèle basée sur des choix de loterie. En règle générale, une aver-

sion accrue aux risques correspond w un taux réduit des activités et des richesses finales plus

élevées. Pour finir, les anticipations de prix des négociants dépendent des investissements et

des échanges. Bien que leurs actions ne soient pas rationnelles, elles sont parfaitement co-

hérentes avec leurs anticipations.

J’espère que les futurs modèles w agents étalonnés avec des données réelles deviendront des

outils standard pour l’analyse des scénarios et les prévisions afin de soutenir les décisions poli-

tiques dans les domaines de l’économie et des finances. De plus, il serait optimal si les futurs

modèles et outils prenaient en considération les conclusions des expérimentations relatives w

la nature humaine, notamment en matière de rationalité et de prise de décision dans des scé-

narios réels. Comme avec la plupart des innovations scientifiques, par exemple avec les prévi-

sions météorologiques [28, 34, ̀8], il faut s’armer de patience pour que des techniques puis-

santes puissent évoluer, s’imposer en tant que normes et faire une différence dans le monde

réel. Quoi qu’il en soit, ce délai ne doit pas nous désespérer. Au contraire, il doit nous pousser

w redoubler d’efforts afin de mieux comprendre l’économie, qui est essentielle au bon fonc-

tionnement de la société.

Un des liens communs entre ces deux thèmes est l’action collective, qui joue un rôle déter-

minant dans de nombreux phénomènes, par exemple la dynamique de la panique, les faillites

et par conséquent le risque systémique [1̀, 1́]. C’est pourquoi, j’espère que ce travail con-
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tribuera w l’étude des phénomènes d’actions collectives, en particulier dans la finance quanti-

tative, où les conclusions spécifiques du modèle de confiance décrit ci-dessus et l’expérience

de trading en laboratoire pourront être utilisées dans leur état actuel.
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2
Introduction

2.1 A গ঎ঠ ঊগজঠ঎ছ

In thewords of Jean-ClaudeTrichet, the President of the EuropeanCentral Bank (ECB) from

2003 to 2011:

Wμen tμe crνss came, tμe serνos lνmνtatνons of exνstνnλ economνc and nancνal׹ models

νmmedνately became apparent. Arbνtraλe broke down νn many market seλments, s markets

froze and market partνcνpants were λrνpped by panνc. Macro models faνled to predνct tμe
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crνss and seemed νncapable of explaνnνnλ wμat ws μappenνnλ to tμe economy νn a convνncνnλ

manner. As a polνcy-maker durνnλ tμe crνss, I found tμe avaνlable models of lνmνted μelp. In

fact, I would λo furtμer: νn tμe face of tμe crνss, we felt abandoned by conventνonal tools [108].

In order to prevent or at least mitigate the next crisis, it is therefore paramount that we

develop alternative approaches and tools to better understand the dynamics of the economy

as a whole and the financial system in particular.

Following the call of Jean-ClaudeTrichet, this thesis looks into collective destabilizing phe-

nomena in socio-economic systems. Although collective phenomena play a significant role

in the dynamics of economies and financial markets, they are often ignored in most conven-

tional models and tools available to practitioners and supervisory authorities. The results

presented in this thesis, as in state of the art studies, stem from two different yet connected

perspectives: agent-based modelling and trading experiments.

2.2 Sঝঊগ঍ঊছ঍ ঎ঌঘগঘখ঒ঌজ ঊঙঙছঘঊঌ঑

Although they are widely used by practitioners and policy makers, standard models in eco-

nomics have strong limitations [̂̂, 80]. On the one hand, econometric models are based

entirely on historical data, therefore they cannot provide insight into completely new con-

ditions. On the other hand, dynamic stochastic general equilibrium models are to be solved

analytically and for this very reason they require highly restrictive assumptions and are highly

aggregated. It is especially limiting that, for reasons of analytic tractability, these models are

linear. Therefore, they cannot describe procyclical phenomena because, by definition, linear

models cannot capture the nonlinear feedbacks which characterize such phenomena. Conse-

quently, if business and credit cycles are caused by endogenous nonlinear oscillations of the

economy, standard linear models in economics will never be able to accurately model these
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cycles [̂̂, 80, 101].

Amongst the highly restrictive assumptions which characterize traditional models in eco-

nomics and finance, one of themost notable is the assumption that agents are perfectly ratio-

nal decision makers which can be linearly aggregated into a single representative agent. Such

models of rationality lead to models of expectation formation which do not match what we

observe in the real world [̀0], especially in times of stress, when overall trust is typically low

and people tend to be over-sensitive to negative events. This disagreement between theory

and facts is to be expected, given the assumptions of these traditional models, which are not

observed in reality. In fact, empirical evidence from the field of behavioural economics shows

that people very often stray away from rationality [2̀] and that their behaviour is markedly

heterogeneous [́8]. For example, people are disproportionally influenced by the fear of feel-

ing regret [8̀], are prone to cognitive dissonance [̀́] and are often overly influenced by

outside suggestion (anchoring) [̂3]. Furthermore, experiments show that most people also

suffer from status quo bias [̂4]. Finally, there is a large amount of evidence that people are

consistently and irrationally overconfident [14, 3̂, 38].

In addition to full rationality and aggregating agents, traditional models do not take into

account the complex network of interactions and feedback mechanisms typical of financial

markets and economies. Furthermore, the above mentioned assumption of linearity in in-

teractions also hampers these traditional models right at their very conception. From this

perspective, [18] states that standard economic models have failed to describe the financial-

economic crisis because these models did not pay attention to tμe dark corners wμere tμe

economy can malfunctνon badly. He emphasizes how small shocks to nonlinear systems can

have large effects and lead to crises.
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2.3 Sঝঊঝ঎ ঘএ ঝ঑঎ ঊছঝ

Since the early 1990s researchers have been resortingmore andmore towell-establishedmeth-

ods in statistical physics to explainphenomena arising from large-scale complex systems,which

often includenonlinear feedbacks and collectivephenomena [1, 19]. For example, the avalanche

dynamics observed in certain complex systems has been thoroughly studied in [103], while

[90] brought up a few applications to collective social dynamics.

Economics in general, and finance in particular, are fields rich in pro-cyclical phenomena.

These phenomena are not easily addressed by standard linear models, which do not account

for the macroscopic consequences of agent-level heterogeneity, as explained in [̂̂, ̂9, 80]

and, more recently and in the face of the global financial crisis, in [29]. In addition, finance

is a field in which data from a wide range of frequencies is increasingly available to scientists

and practitioners, allowing for systematic comparison between theories and real data [22].

Contrary to conventional models in economics and finance, agent-based models describe

complex systems as a network of interacting agents using a bottom-up approach. There are

no a prνorν assumptions with regards to global equilibria or individual optimization. There-

fore, contrary to the single representative agent framework, agent-based models allow for a

detailedunderstandingof howcomplexmacroscopic phenomena emerge from thebehaviour

of the smaller elements of the system, verymuch in the spirit introducedby Schelling in [100].

Moreover, this approach can take into account bothhistorical data and findings from the field

of behavioural economics through human experiments, which are designed to understand

how real people make decisions in an economic context. In fact, this calibration process is

precisely where the predictive power of agent-basedmodels stems from, at the expense of an-

alytic tractability, which is significantly reduced compared to simplified, linear models with

a single representative agent.
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The degree of complexity and the number of parameters of a particular agent-basedmodel

depend on the features it is expected to describe and reproduce. In order to fully understand

an agent-based model, it is crucial to establish what the causal relationships in the model are.

Although this might be a trivial task in a simple model with one or two parameters and vari-

ables, it grows significantly harder for more complex, higher-dimensional models. In fact, it

is worth noting that even a stylized model with a few parameters may be incredibly hard to

analyse. This means that it is usually a sound idea to start off with a simple model containing

the essence of the underlying mechanisms, and increase the model complexity and the num-

ber of variables and parameters only after the initial version of the model is fully understood.

This way, it is easier to keep track of what is causing what in the agent-basedmodel, which al-

lows for a proper understanding of the dynamical properties of themodel andmakes it easier

to adopt strategies thatmitigate overfitting at the calibration stage. In this spirit, [8] and [2̂]

are two notable examples of simple and highly stylized agent-based models, which tackle the

issue of bounded rationality and inductive reasoning in the context of a minority game. On

the other hand, [11] and [41] are examples of very complex agent-based models, with several

parameters, variables and feedback functions, which aim at realistic quantitative predictions

with practical applications.

The financial-economic crisis brought additional evidence that standardmodels, while ad-

equate for the good times, are utterly inadequate for predicting major crises. It has high-

lighted the need for an alternative approach to understand the dynamics of the economy and

it changed theway of thinking of economists andpolicymakers. In the opening address to the

ECB Central Banking Conference, November 2010, then president of the ECB Jean-Claude

Trichet said:

Tμe atomνstνc, optνmνzνnλ aλents underlyνnλ exνstνnλ models do not capture beμavνour dur-

νnλ a crνss perνod. We need to deal better wνtμ μeteroλeneνty across aλents and tμe νnteractνon
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amonλ tμose μeteroλeneos aλents. We need to entertaνn alternatνve motνvatνons for economνc

cμoνcs. Beμavνoural economνcs draws on psycμoloy to explaνn decνsνons made νn crνss cνr-

cumstancs. Aλent-based modellνnλ dνspenss wνtμ tμe optνmνzatνon assumptνon and allows for

more complex νnteractνons between aλents. Sucμ approacμs are wortμy of our attentνon [108].

Following the above call of Jean-Claude Trichet, then president of the ECB, the Complex-

ity Research Initiative for Systemic Instabilities (CRISIS), in which I took part, was set up in

2010. It consisted in a multi-disciplinary group of universities, private firms and policymak-

ers whose goal was to build an agent-based model of the European economy and financial

system based on how people and institutions behave in the real world [̀4].

Recent discussions and up to date surveys of complexity economics are [̂8] and [́9],

while [19] discusses applications of statistical physics models to socio-economic phenomena.

In addition, [81] and [̂1] survey financial agent-based models, while [3] reviews further con-

tributions and surveys. Moreover, [48] stresses the importance of agent-based modelling for

economics and [49] focuses on the role of agent-basedmodels in policy decisionmaking. Fur-

thermore, [43] and [39] discuss the application of agent-based models in policy analysis. In

particular, [84] and [̀1] analyse the implication of new regulations proposed under the Basel

III agreement: the new leverage ratio and the banks resolution mechanisms.

Asmentioned above, one of the problems with agent-basedmodels withmany agents and

complex dynamical equations is the difficulty to distinguish cause from effect. Due to this

issue, such agent-based models turn out to be used as black boxes in many cases.

With this in mind, [́1] uses simple stylizedmodels of complex systems to explore the pos-

sible types of phenomena that macroeconomic agent-based models can reproduce. In this

paper, Gualdi et al. use methods from the field of statistical physics to characterize an agent-

basedmodel through its phase diagram in theparameter space and todetect the tippingpoints

that cause critical transitions.
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Their starting point is to understand the sudden fluctuations observed in the agent-based

model put forward by [41] and their major finding is the existence, in a simple stylized frame-

work, of a phase transition between a “good economy”, where unemployment is low, and

a “bad economy”, where unemployment is high. This transition is typically induced by an

asymmetry between the rate of hiring and the rate of firing of the companies. The unem-

ployment level remains small until a tipping point, beyond which the economy suddenly

collapses. If the parameters are such that the system is close to this transition, any small fluc-

tuation is amplified as the system jumps between the two equilibria. A number of extensions

of themodel are explored, e.g. with bankruptcy threshold, limiting the firmsmaximum level

of debt-to-sales ratio. This leads to a rich phase diagramwith a region corresponding to acute

endogenous crises, during which the unemployment rate shoots up before the economy can

recover. The effect of simplemonetary policies that attempt to contain rising unemployment

and prevent crises are also explored.

Another crucial aspect of agent-basedmodels is the calibration of individual decision rules.

As stated above, rational expectations are not a good approximation of reality, especially in

times of financial stress. Laboratory experiments with human subjects provide the empirical

guidance needed to construct and calibrate agent-based models in which the understanding

of real human behaviour is vital to predictions. A key feature of experimental macroeco-

nomics is the laboratory study of group behaviour, to investigate simultaneously individual

decision rules at the micro level, their interactions and the aggregate macro behaviour.

In particular, [9] used laboratory experiments to study how firms set prices and quantities

in a standard monopolistic competition setting, such as the macro agent-based model pro-

posed in [41]. Their set-up considers experimental markets in which firms decide repeatedly

both on price and quantity of a perishable good. Subjects are asked to make both produc-

tion and pricing decisions given different information sets on individual profits, excess de-
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mand and excess supply, and on the aggregate price level. They confirm that persistent het-

erogeneity is a characteristic feature within groups of individuals, with about 4́% of market

followers, 28% profit-adjusters and 2́% demand adjusters. Moreover, prices and quanti-

ties converge to the monopolistic competitive equilibrium and subjects behave according to

adaptive learning heuristics.

2.4 Cঘকক঎ঌঝ঒ট঎ ঍঎জঝঊঋ঒ক঒ণ঒গঐ ঙ঑঎গঘখ঎গঊ

This thesis reports on two different research topics belonging to the same project. The first

research avenue, which is thoroughly explained in chapter 3, is a modelling approach to the

dynamics of trust in a networked society. The second, whose description can be found in

chapter 4, is an experimental approach to study human decisions when people trade an asset

with a positive average growth per period in a controlled laboratory environment.

Trust is a collective, self-fulfilling phenomenon that suggests analogies with phase tran-

sitions. Chapter 3 looks into the properties of a network model in which there is a mutual

feedbackbetween links and trustworthiness. Links in thenetwork can represent, for example,

a business relationship between two entities, while trustworthiness is defined for each node

in the network as a real-valued variable. In this stochasticmodel, two agents aremore likely to

link if they havemore similar trustworthiness, i.e. there is homophily as in [30, 4̂, 8̂, 89, 9̂].

In addition, the trustworthiness of a node increases nonlinearly with the trustworthiness of

the other nodes it is connected to. Finally, there is a positive feedback loop that amplifies

downward movements, which can lead to a sudden and catastrophic drop of collective trust.

This aims to reproduce the empirical fact that sudden negative events tend to be more dras-

tic than sudden positive events, causing the so called “volatility skew,” in which options that

benefit from market drops cost more than options that benefit from market rises [44]. Nu-
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merical simulations andmean-field analytic arguments reveal that, for thismodel, there are ex-

tended regions of the parameter spacewhere two equilibrium states coexist: a well-connected

network where global confidence is high, and a poorly connected network where global con-

fidence is low. In these coexistence regions, spontaneous jumps from thewell-connected state

to the poorly connected state canoccur, corresponding to a sudden collapse of trust that is not

caused by any major external catastrophe. In large systems, spontaneous crises are replaced

by μνstory dependence: whether the system is found in one state or in the other essentially de-

pends on initial conditions. Finally, there is also a phase in which agents are well connected

yet distrustful.

The experimental approach described in chapter 4 consists of a trading experiment in

which subjects trade a single asset in an artificialmarket. In the absence of trading, the price of

the asset is guaranteed to grow 2% per period on average. Although the participants are well

aware of this average growth, they also know that there are random fluctuations and price

impact, i.e., the price is pushed upwhenever they decide to buy and the price is pushed down

whenever they decide to sell. Therefore, when a change in price shows up on the screen, it

is not possible for them to know if it is a random fluctuation or the result of someone in

the room executing a trade and impacting price in the process. In order to keep the exper-

iment simple, subjects are not able to hedge or short-sell, i.e., they are either in the market

(holding shares) or out of the market (holding cash) at each point in time. Without trading,

the subjects would make a net profit larger than ́00%. Due to market impact, the higher

their activity, the smaller the overall gain of the traders. At first, subjects traded so much

that they achieved a meagre 0.̂̀% average gain. When the experiment is repeated, trading

activity is much decreased and traders earn 92% on average. Traders cluster into different cat-

egories when false discovery rate statistical methods are applied to their actions and market

positions. In addition, agents are shown to be risk averse through a parallel experiment based
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on lottery choices. Moreover, in general, a higher risk aversion corresponds to a lower activity

rate and a higher final wealth. Finally, traders’ price expectations depend onwhether they are

invested or not, and on their trading actions. Although this is not rational, their actions are

fully consistent with their expectations.

It is the hope of the author that in the future agent-based models calibrated with real data

become standard tools in scenario analysis and forecasting to support policy making in the

fields of economics and finance. Furthermore, it would be optimal if futuremodels and tools

took into account findings from experiments in regards to human nature, especially con-

cerning the issues of rationality and decision making in real-life scenarios. As it happened

in the past with most scientific innovations, for example in the field of weather forecasting

[28, 34, ̀8], it can take a while before powerful techniques can evolve, become the norm and

make a difference in the real world. In any case, this should not cause us to lose hope but

rather motivate us to redouble our efforts to better understanding the economy, which is,

after all, essential to the understanding of society as we know it.

Oneof the common links between these two topics is collective action,which is a keyplayer

in a number of phenomena, for example in the dynamics of panic, bankruptcies and, conse-

quently, systemic risk [1̀, 1́]. Therefore, the author hopes that this work will contribute to

the study of collective action phenomena, especially in the field of quantitative finance, in

which it is more likely that the specific findings from the above described trust model and

trading experiment can be used in their present form.
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3
Sudden trust collapse in networked societies

The contents of this chapter are the result of joint work with Jean-Philippe Bouchaud and

Damien Challet [3̀].

3.1 Iগঝছঘ঍ঞঌঝ঒ঘগ

In the wake of the 2008 crisis, President BarackObama declared: Our workers are no less pro-

ductνve tμan wμen tμs crνss beλan. Our mνnds are no less νnventνve, our λoods and servνcs no

less needed tμan tμey were last week, or last montμ, or last year [93]. So what had happened
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Figure 3.1: TED spread, three-month LIBOR and three-month T-bill interest rate (Jul. 2006 – Jul.2009). The TED spread

is the difference between the three-month LIBOR and the three-month T-bill interest rate. Taking into account that T-

bills are considered risk-free, an increase in the TED spread is an indicator of higher perceived credit risk in the overall

economy. In 10th October 2008, in the wake of the bankruptcy of Lehman Brothers, the TED spread reached 4.̀̂%,

several times above the long term average of 0.30%!

that made the world so different from a few months before? No war or physical catastrophe

had occurred that would have destroyed tangible assets, infrastructures or knowledge. As

implied by President Obama’s comment, the damage seems to have been, at least partially,

self-inflicted by a sudden collapse of trust that led to a “freeze” of the interbank lending net-

work (evidenced by soaring interbank rates, see Fig. 3.1) and, nearly immediately afterwards,

to a collapse of confidence of all economic actors – investors, firms, households interrupted

projects and reduced consumption, driving the economy to a grinding halt.* Thebewildering

aspect of such a crisis (aswell asmanyprevious ones) is the speed atwhich financialmarkets, or

the economy as awhole, can shift froma relatively efficient state to a completely dysfunctional

one. Whereas most “real” economic factors (technology, workforce, R&D) usually change

relatively slowly, trust or subjective expectations seem to have no inertia, no anchor to their

past values, and can swing from high to low in a matter of days, hours or even minutes.

Trust is critical in determining the prosperity of human societies and to secure a well-
*Those who were in New York at the end of Sept. 2008 will remember the sight of completely empty retail

stores and the stories of people emptying their bank accounts and going home with cash in plastic bags.
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functioning economy and orderly financial markets. Moreover, trust is a collective asset that

allows efficient coordination and cooperation, and tremendously accelerates business. It al-

lows for the emergence of genuinely collective figments, such as money and other social con-

ventions. Fiat money is a perfect example: a piece of paper can only be valuable if everybody

believes that it will not be worthless tomorrow, and if everybody does, bank notes indeed

become valuable.

The fact that trust is (as we view it) a collective, self-fulfilling phenomenon suggests analo-

gies with phase transition phenomena, where collective properties emerge that cannot exist

at the individual level, like magnetism, superfluidity, etc. Magnets, for example, arise because

the spin of each atom acquires a favoured orientation, imposed by the favoured orientation

of neighbouring atoms. This occurs when the interaction between spins becomes strong

enough. Clearly, trust emergence is similar, and follows from positive feedback loops such

as I trust you because μe trusts you because I trust you. The most important aspect of the

analogy with phase transition is the possible coexistence of very different equilibrium states,

which leads to dis-equilibrium phenomena like μνstory dependence or “hysteresis”, when the

system is trapped in one equilibrium while another is more favourable, and discontinuities,

when the system jumps from one state to the other. This is an interesting scenario as it opens

a path to explain the sudden swings of trust that seem to underpinmany economic, financial

or political crises.

Several models for trust collapse have been studied along these lines in the past few years,

see e.g. [2, 4, ̀, 1́, 1̂, 19, 23, 24, 31, 32, ̀2, ̀3, ́3, ́́, 9́, 104] and references therein. The

common crucial feature is the coexistence of two (or more) equilibrium states in a region of

the parameter space, and therefore the possibility of a sudden jump between a favourable,

high-confidence state to an unfavourable, low-confidence state. In these models, the jump

is not induced by a major catastrophe (that would replace the favourable equilibrium by an
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unfavourable one) but rather by some anecdotal random fluctuation, which can induce a

transition toward an already pre-exνstνnλ low-confidence equilibrium.

Here, we introduce and study a highly stylized model for the build-up and collapse of

collective trust in a dynamically evolving network, which generically displays a first order

transition with possible coexistence of different equilibria. The nodes of the network can

represent individuals, firms, banks, etc. Each node is assigned a real number that measures its

(perceived) trustworthiness.

Thepresenceof anundirected linkbetween twonodes indicates an established relationship

of some kind (business, loan, collaboration, etc.) resulting from some common rational ben-

efit, but only possible if the perceived trustworthiness of the partner is high enough. Links are

thus created or destroyed depending on the trustworthiness of the nodes and their dynam-

ics; conversely, the trustworthiness of a node depends on that of its neighbours. The network

and the trustworthiness therefore co-evolve and, depending on the precise specification of the

model (see below), this leads to a rich dynamics with crises where the network disintegrates

and the collective trust collapses. We solve our model within a mean-field approximation

and find, as anticipated, that there is a region of parameters where different equilibria indeed

coexist.

Our model and results are in several ways similar to those obtained by M. Marsili and as-

sociates in two very inspiring papers [4́, 88]. They also study the coupled dynamics of links

and nodes and find generic phase coexistence and hysteresis. One new aspect of our work is

to consider that the speed of cμanλe of trustworthiness is itself a piece of information which

agents strongly react to, in particular when it is negative – in a “panic feeds panic” spirit.

Our mean-field analysis describes the phenomena induced by this effect and predicts phases

which had not been considered before, such as a connected yet distrustful phase. In a sense,

our model is a stylized version of [4, ̀] that removes all the specifics of the interbank lending
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network, and a generalized version of [4́], where some ingredients specific to the dynamics

of trustworthiness are introduced, leading to new effects. The possible coexistence of differ-

ent states has also been noted in the context of epidemic propagation on networkswhichmay

be rewired so as to avoid infected nodes. In this case, infected network situations may indeed

coexist with healthy networks [9̀]. This is similar to our model, where agents/firms/banks

tend to cut their links with degraded nodes.

3.2 T঑঎ খঘ঍঎ক

3.2.1 Tছঞজঝঠঘছঝ঑঒গ঎জজ ঘএ ঝ঑঎ গঘ঍঎জ

The nodes in the network are agents which can represent individuals, companies, banks or

other institutions. We make the strong assumption that the perceνved trustworthiness of a

node ν, which determines its propensity to link with other nodes, can be summarized by the

value of a real number −∞ < μi < +∞. That real number may depend on a variety of

factors, which can be deemed either objective or subjective depending on their underlying

nature. The balance sheet of a bank or the health of a business are examples of objective or

“intrinsic” factors. Subjective factors come into play, for instance, when one needs to assess

how trustworthy the counterparties or business partners of ν are. Clearly, if the debtors of ν

are close to bankruptcy, they endanger the balance sheet of ν itself – this mechanism is at the

core of many recent models of bankruptcy cascades such as [1́, 24, 32, 33, ̀3, 8́, 104]. But

one can imagine different, less mechanical channels of propagation. A good example for our

purpose is reputation risk. In fact, if node ξ is caught up in a scandal while making business

with ν, other partners of ν might become wary that ν is also involved and decide to end their

business with ν, unless ν reacts immediately and severs its own link with ξ.

Another important factor is the speed of variation of the trustworthiness itself. Imagine a
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highly respected bank or institution ν that rapidly loses many of its partners. This will be in-

terpreted as worrying news by the remaining partners who, as a precautionary measure, will

be tempted to cut their relation aswell, even if the trustworthiness of ν is still high. This “bank

run” or “panic” type of feedback loop can be amplified by the existence of a CDS (Credit De-

fault Swap) market, which is supposed to price the default probability of firms and banks

(and countries) and thus a proxy for μi. The very fact that the price of the CDS increases (and

thus the perceived default probability) can trigger a crash-type dynamics. These avalanches

of sell-offs when the perceived risk increases are often observed in financial markets as a con-

sequence of a highly conservativemanagement of “Black Swan” events – that, ironically, may

result from these risk management policies!

Mathematically, we thereforewrite the trustworthinessμi of eachnode ν as the sumof three

terms:

μi = μi,0 + fμ∗ki tanh
(
μi

μ∗

)
+ d · min (0, δμi) , (3.1)

where f, μ∗, d are positive constants, ki is the degree of node ν, μi = (
∑

j∈Vi
μj)/ki is the

average trustworthiness of the nodes ξ ∈ Vi that are connected to ν (with μi ≡ 0 if ki = 0),

and δμi is the variation of μi over the last time step.

The first term μi,0 is the intrinsic trustworthiness of node ν, assumed here to be time-

independent, IID random variables with mean m and variance σ2. More specifically we will

choose μi,0 to be uniformly distributed in the interval [0, 2], corresponding to a positivemean

m = 1 and σ2 = 1
3 .

The second termdescribes howmuch of the trustworthiness of the peers of ν is bequeathed

to ν. When μi is much smaller than a characteristic value μ∗, expanding tanh(x) for small
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arguments gives the following contribution:

fμ∗ki tanh
(
μi

μ∗

)
≈ f
∑

j∈Vi

μj, (3.2)

whichmeans that a fraction f of the total trustworthiness of the business partners of ν is trans-

ferred to ν itself. The tanh function imposes a saturation: for large average trustworthiness,

node ν only receives a quantity fμ∗ki that grows with the number of neighbours but not with

the value of μi.

Finally, the third term accounts for the dependence of the current trustworthiness on its

speed of cμanλe. In particular, δμi increases with the difference between the current and pre-

vious trustworthiness values, while the minimum operator implies that only negative recent

changes are considered. Therefore, the coefficientd tunes the amplification of negative events

and introduces an asymmetry between positive and negative trustworthiness variations. In a

sense, it measures the susceptibility of a population to panic. For simplicity, we shall refer to

d as “panic factor”. The exact definition of δμi can be found in appendix A.1.

How real is our notion of perceived trustworthiness μi? How could it be measured, for

example? Asmentioned above, one clear example are the CDSs of companies, which directly

price the default probability as seen by market participants. Another possibility is to gauge

the trustworthiness of individuals and firms through surveys, as discussed in [̀̀], echoing a

concern expressed by Putnam [98]: sνnce trust s so central to tμe tμeory of socνal capνtal, νt

would be desνrable to μave stronλ beμavνoural νndνcators of trends νn socνal trust or mνsantμropy.

I μave dνscovered no sucμ beμavνoural measurs. Even if there is still a lot to be done in order to

devise faithful, quantitative indicators of trustworthiness in general, it is highly plausible that

the final answer will not be a single real variable as we assume, but a more complex, higher

dimensional object. Nevertheless, we believe that the results obtained below, in particular
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those pertaining to the co-existence of different equilibria where collective trust is present or

absent, will survive in more elaborate models of trustworthiness.

3.2.2 N঎ঝঠঘছঔ ঍ঢগঊখ঒ঌজ

We now specify how links in the network are created or broken depending on the trustwor-

thiness of the nodes. Since the latter depends itself on the degree of the nodes and on its dy-

namics, we end upwith amodel of coupled trustworthiness/network dynamics which shows

interesting properties, much as in [4́].

At each time step, we choose a pair of nodes at random, say (ν, ξ), characterized by their

trustworthiness μi and μj. The total number of nodes is constant in time and equal to N.

The global average (over all nodes) of μi, which characterizes the overall confidence level in

the network, is denoted by μ =
∑

i μi/N.

L঒গঔ ঌছ঎ঊঝ঒ঘগ

If there are no links between ν and ξ, the probability Π+
ij that they decide to do business to-

gether is

Π+
ij =

r
N

zij
1 + zij

, (3.3)

where 0 < r < N is the a priori propensity to enter into a business relation (the factor 1/N

is discussed below) and zij ≥ 0 is a modulating factor that depends on the trustworthiness μi

and μj as follows:

zij = exp
(
αμ− β|μi − μj|

)
, (3.4)

whereα, β are two positive parameters. Therefore, a small value of z implies a small probabil-

ity of link formation. The term αμ attempts to capture the idea that a trustful society eases

the creation of new collaborations or business relations, i.e. that a rνsνnλ tνde lνts all boats.

3̀



This is the essential virtue of trust that we discussed in the introduction: it acts as a catalyst

to exchange and activity, an effect that we attempt to model through α. It is quite clear that

together with Eq. (3.1) above, this term can lead to a virtuous circle – more confidence leads

to a more connected society which in turn leads to more confidence.

The second term−β|μi − μj| decreases z and is consequently detrimental to link creation.

This attempts to account for “homophily”, i.e. the intuitive fact that two entities with very

similar credit level are more likely to conduct business together than less comparable peers

[30, 4̂, 8̂, 89, 9̂].

Instead of coupling zij to the overall confidence level μ, one could have imagined to use

only the “local” trustworthiness μi + μj. We have in fact investigated a generalized model in

which

zij = exp
[
αμ+ α′(μi + μj − 2μ)− β|μi − μj|

]
, (3.̀)

where the α′ term captures deviations from the global average. We have found numerically

that the new α′ term does not change much the phenomenology of the model. This will be

confirmed by the mean-field approximation below. We will thus set henceforth α′ = 0.

L঒গঔ ঍঎জঝছঞঌঝ঒ঘগ

If there is a link between the chosen pair (ν, ξ), it is destroyed with probability

Π−

ij =
1

1 + zij
∈ [0, 1], (3.́)

which tends to unity when z ≪ 1, i.e. when average confidence is very negative, or when

homophily is strong (β ≫ 1), both being detrimental to maintaining relationships. The

specific choice for Π±
ij , and the factorN−1 in front of Π+

ij , can be understood by calculating

the probability Pij that the link between ν and ξ exists in the stationary state. Assuming zij to
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be time independent, Pij is the solution of

Π+
ij (1 − Pij)− Π−

ij Pij = 0 =⇒ Pij =
rzij

rzij +N ≈
r≪N

rzij
N . (3.̂)

Therefore, when r, z are both of order unity, the probability that a link exists is of order 1/N

and the typical degree of a node is itself of order zr = O(1). This is the scaling needed in

order to have a non trivial dynamics in the limitN → ∞.

3.3 Nঞখ঎ছ঒ঌঊক ছ঎জঞকঝজ

We have numerically investigated this model in detail for various values of its six parameters:

f, μ∗, d for trustworthiness and α, β, r for link creation/destruction. Some initial conditions

for the μ’s and for the state of the network also need to be specified to run the dynamics. It

turns out that as soon asN is somewhat large (i.e. N ⪆ ̀0), and for some regions inparameter

space, the dynamics of the model becomes μνstory dependent, in the sense that starting from

an empty network (no links at all) or a full network (all links are present) leads to completely

different stationary states – at least over time scales that can be reached in simulations and

hence in reality as well (if our model captures anything of reality).

The most important parameters of our model appear to be the homophily parameter β

and the panic factor d. This will be justified within our mean-field approximation below: as

long as the confidence parameter α is not vanishingly small and r is large enough, the phe-

nomenology of the model is mostly determined by β and d. We have therefore plotted the

phase diagram of the model in the (d, β) plane, and the results are shown in Fig. 3.2. We

represent the average density of links L̃ = ⟨k⟩/N of the network in a color code, starting

from an empty network at t = 0 (Fig. 3.2a) or from a densely connected network (Fig. 3.2b).

Similar patterns appearwhen one represents the average confidence μ instead. One observes a
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clear boundary line βc(d) separating two distinct phases: one in which the network is sparse

in the stationary state, corresponding to a low average confidence μ, and another in which

the network is dense, corresponding to a high average confidence μ. However, this boundary

line shifts to significantly higher values when one starts from an already dense network. In

other words, there is a large crescent region in phase space where the two outcomes (sparse or

dense) are possible, and where the initial condition determines the fate of the network. An-

other way to illustrate this is to show the evolution of the density of links and of the average

trustworthiness μ as a function of d as one cycles along the line d = 2β as in Fig. 3.3a and Fig.

3.3b.

For small N (but still large enough to be of practical interest, say N ≲ 100) the system

can in fact alternate between these two states, leading to interesting endogenous crises – i.e.

large swings between high confidence and low confidence that are not due to any particu-

lar event, but are the result of the noisy evolution of a system for which two very different

equilibrium states coexist – see Fig. 3.̀. As N grows larger and larger, the probability to

jump from one state to another becomes exponentially small, a typical behaviour of physi-

cal systems undergoing a first order phase transition (see below for a discussion of this point

within a mean-field approximation). However, interesting dynamics will follow from the

time-variation of parameters. A suggestive numerical experiment is to let the average valuem

of the intrinsic trustworthiness μi,0 slowly evolve with time, in order to model a progressive

shift of the objective state of the economy. When the system is in the coexistence region, one

observes a succession of booms and crises, corresponding to jumps between the two under-

lying equilibrium states – see Fig. 3.4a and Fig. 3.4b.

An analytic description of the dynamics of crisis and recovery can be performed, in par-

ticular when β = 0 and close to the complete instability limit d = 4, which is derived in

appendix A.2. We now turn to a mean-field approximation that accounts relatively well for

38



0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3
0.0

0.5

1.0

1.5

2.0

d

β

(a) Initial conditions: L̃(t = 0) = 0. When d = 0, the

network is mostly dense forβ ⪅ 1.̀0. Ifd increases, the

maximumβwhich allows for the dense state decreases.

When d ⪆ 2, crash phenomena start to take place and

L̃ in the dense state is lower than before. Asd → 4, the

dense state eventually becomes unreachable.
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(b) Initial conditions: L̃(t = 0) = 0.9. The region

of the parameter space where the dense state is not the

preferred stationary state is smaller than in Fig. 3.2a

and the absolute sparse state (L̃ ≈ 0) is not clearly

visible. Further numerical calculations indicate that we

would observe the absolute sparse state with these ini-

tial conditions beyond β ≈ 10.

Figure 3.2: Average density of links L̃ for varying d and β and for two different initial conditions (sparse and dense).

N = 200,α = 1, f = 1, μ∗ = ̀, r = 1, 100 runs and after 105 time steps. Regardless of the initial condition, there are

two distinct regions in the parameter space, which correspond to two different stationary states, with a sharp transition

in between. The red area in the plot corresponds to a dense network (L̃ ≈ 1) and the blue area corresponds to a sparse

network (L̃ ≈ 0).

our numerical observations.

3.4 A খ঎ঊগ-এ঒঎ক঍ ঊগঊকঢজ঒জ

3.4.1 Wঊছখ-ঞঙ: Eছ঍ঘ̈জ-R঎ଗ গঢ঒

Let us start by adopting a kinetic viewof the standardErdös-Rényi networkwithNnodes. At

each time step t, a link is randomly chosen among the N(N−1)
2 ≈ N2

2 possible links. Following

the same notation as before, the probability to create a link isΠ+ = r
N

z
1+z , where, for the time

being, r and z are constants. If the link is already present, the probability that it is destroyed is

Π− = 1
1+z . We introduce the time-dependent degree distribution P(k, t), i.e. the probability
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Figure 3.3: Path along d = 2β for N = ̀0, 100, 200, α = 1, f = 1, μ∗ = ̀, r = 1, 100 runs and 106 time steps per

point. The average density of links L̃ is shown on the left. The direction along the hysteresis path, in which L̃ ranges from

0 to 1, is represented by black arrows. The plot of the average trustworthiness μ scaled by fμ∗N, which we call μ̃, is on

the right. When d is small and the number of links of the network approaches 1
2N(N− 1), i.e. L̃ → 1, μ̃ = h̄

fh∗N → 1.
When d → 4, μ̃ → −∞ and L̃ → 0. The change from one state to the other occurs discontinuously, as observed in

first order phase transitions.
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Figure 3.4: Path alongɉ = m · fμ∗N forN = ̀0, 100, 200,α = 1, f = 1, μ∗ = ̀, r = 1, d = 2, β = 2, 100 runs and

106 time steps per point. m is the (time-dependent) common shift added to the original intrinsic trustworthiness of each

node μi,0. The direction along the hysteresis path, in which L̃ ranges from 0 to 1, is represented by black arrows. When

we start atɉ = 1, the network is dense and L̃ ≈ 1. If we continuously decreaseɉ the network disintegrates (L̃ ≈ 0)

whenɉ ⪅ −1. Then, if we increaseɉ the network will switch back to the dense state (L̃ ≈ 1) only whenɉ ⪆ 0. The

coexistence of two different equilibria allows the system to be trapped in one of these states even if the other is more

favourable. Besides, we observe discontinuities when the system jumps from one state to the other.
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Figure 3.5: μ̃ and L̃ (single run) forN = 100,α = 1, f = 1, μ∗ = ̀, d = 3.9, β = 0 and r = 1. L̃(t = 0) = 0 and the

function log is defined as log(x) = sign(x).log(|x| + 1). We confirm that the system keeps switching between two

distinct equilibria: one consisting in a dense network (L̃ ≈ 1) and the other in a sparse network (L̃ ≈ 0). The dense state

is typically characterized by positive average trustworthiness μ̃ which grows steadily in time towards the asymptotic

value. On the other hand, the average trustworthiness μ̃ in the sparse state tends to be negative and oscillates wildly.

The transitions from the sparse state to the dense state are smooth and steady, while the transitions from the dense

state to the sparse state, which are triggered by random fluctuations that break links and cause cascade phenomena, are

quick and abrupt.

41



that a randomly chosen node has exactly k outgoing links at time t. The probability that this

node changes from k → k+ 1 in the next time step t+ 1 is

W+(k) = 2
N2 (N− k) rz

N(1 + z) , (3.8)

while the probability to change from k → k− 1 in the next time step is

W−(k) = 2
N2

k
(1 + z) . (3.9)

Making time a continuous variable leads to the following Master equation for P(k, t):

∂P(k, t)
∂t =

2
N2(1 + z)

[
rzN− k+ 1

N P(k− 1, t)

+ (k+ 1)P(k+ 1, t)−
(
rzN− k

N + k
)
P(k, t)

]
. (3.10)

By inspection, one finds that P0(k) = Ck
Nqk(1 − q)N−k is a stationary solution of Eq. (3.10),

as it should be, provided

q = zr
zr+N . (3.11)

The average degree ⟨k⟩ and the corresponding variance are then given by:

⟨k⟩ = Nq = Nzr
zr+N ≈

N→∞
zr (3.12)

⟨k2⟩ − ⟨k⟩2 = Nq(1 − q) (3.13)

The following sections extend the above calculation to the case where z self-consistently

depends on the trustworthiness of the nodes.
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3.4.2 Cঘঞঙক঒গঐ ঠ঒ঝ঑ ঝ঑঎ ঊট঎ছঊঐ঎ ঝছঞজঝঠঘছঝ঑঒গ঎জজ μ

We now consider the baseline case where z = eαh, with α > 0 and μ the average trustwor-

thiness of the population. For the time being, we discard all homophily effects or feedback

loops (i.e. β = d = 0).

We first assume that the average intrinsic trustworthiness μi,0 has a zero mean, m = 0.

This is an interesting situation since it does not break the μ → −μ symmetry, i.e. collective

trust or distrust are a priori equally probable outcomes. Averaging Eq. (3.1) over all nodes and

using a mean field argument, i.e neglecting all fluctuations making all μi different, we find

μ = fμ∗⟨k⟩ tanh
(

μ
μ∗

)
. (3.14)

This approximation is certainly justified in the dense limit ⟨k⟩ ≫ 1, but breaks down for

small ⟨k⟩, in particular when ⟨k⟩ < 1. In this latter case the network does not percolate and,

in the absence of a giant component, no collective behaviour is possible. In this case, the only

solution to Eq. (3.14) is μ ≈ 0.

Suppose for simplicity that f⟨k⟩ is somewhat larger than unity (say ̀ or more). Then, it

follows that | tanh( h
h∗ )| ≈ 1 and Eq. (3.14) has two possible solutions: μ ≈ ±fμ∗⟨k⟩.† Now

we can plug these solutions in Eq. (3.12), which yields a second self-consistent equation:

⟨k⟩ = Nr
r+Nexp (∓ϕ⟨k⟩) , where ϕ ≡ αfμ∗. (3.1̀)

†For f⟨k⟩ > 1 but not so large, the qualitative discussion below remains valid, up to prefactors of order
unity.
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T঑঎ ঙঘজ঒ঝ঒ট঎ ঝছঞজঝ জ঎কএ-ঌঘগজ঒জঝ঎গঝ জঘকঞঝ঒ঘগজ

Let us focus first on the case where a posνtνve averaλe trustworthiness appears, corresponding

to the minus sign in the exponential in Eq. (3.1̀). Assume first that ϕ⟨k⟩ ≫ logN. Then,

the second term in the denominator is completely negligible and ⟨k⟩ ≈ N, which obeys the

above hypothesis provided ϕ ≡ αfμ∗ > logN/N, which we will assume in the following.

This corresponds to a self-sustained “euphoric state”where thenetwork is full and confidence

at its peak. This solution always exists unless ϕ is vanishingly small: in the absence of the

detrimental effects studied below, a dense network should appear due to the positive feedback

term that favours link formation when confidence rises.

A second, sparse but percolating (i.e. with a giant component) solution can also exist. To

see that this is the case, assume now that z = O(1). Then, Eq. (3.1̀) leads to ⟨k⟩ = zr, where

z = exp (ϕzr) . (3.1́)

This self-consistent equation depends on the product ϕr:

• When ϕr > e = 2.̂1.., there is no solution to this equation. Only the dense network

solution described above exists.

• When ϕr < e = 2.̂1.., on the other hand, there are 2 solutions z< and z>, one sta-

ble corresponding to a sparse, but trustful network, and a dynamically unstable one,

which is nevertheless interesting since the associated value for ⟨k⟩∗ = z>·r is the critical

value above which a sparse network is unstable and flows towards the fully connected

solution above. Said differently, if the spontaneous fluctuations around the stable so-

lution ⟨k⟩ = z<r are not strong enough to reach ⟨k⟩∗ with appreciable probability,

the sparse network will appear dynamically stable. This is indeed the case when ϕ is
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small enough.

A গ঎ঐঊঝ঒ট঎ ঝছঞজঝ জ঎কএ-ঌঘগজ঒জঝ঎গঝ জঘকঞঝ঒ঘগ

An important question at this point is whether this model also allows for the existence of

sustained negative average trustworthiness values μ < 0, i.e. a connected, but suspicious

society. This would correspond to the positive sign in the exponential in Eq. (3.1̀). In this

case, the solution for largeN is:

yexp (ϕy) = r, y = ⟨k⟩. (3.1̂)

When ϕr ≪ 1, the solution of Eq. (3.1̂) is ⟨k⟩ ≈ r, therefore when r > 1 the solution with

negative μ is indeed self-consistent. Hence a self-sustained state of distrust in a sparse net-

work (but with a giant component) is possible when a) ϕ is small enough (i.e. distrust is not

too detrimental to link formation) and b) r sufficiently large (i.e. agents meet often enough

so that links are created even if the two parties are mutually suspicious). This corresponds,

pictorially, to a “wary” society in which distrustful relationships are the norm.

On the other hand, if ϕr ≫ 1, we have

⟨k⟩ ≈ 1
ϕ [log(ϕr) +O(log log(ϕr))] . (3.18)

Equation (3.18) shows that as ϕ grows, ⟨k⟩ decreases until the giant component disappears

(when ⟨k⟩ < 1) and the solution with μ < 0 is no longer viable. For large r, this occurs for a

certain valueϕc ∼ log r+O(log log r). We have checked numerically that this “wary society”

phase indeed exists in our model and is not an artifact of the mean-field approximation.
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Sঞখখঊছঢ

Summarizing, for ϕ = O(1) and r > 1 there are tμree viable solutions, one correspond-

ing to very dense networks and positive self-sustained collective trust, and the two other to

sparse networks (but still percolating, ⟨k⟩ > 1), one with positive and one with negative self-

sustained trust. These latter two solutions however disappear as ϕ increases, beyond ∼ e/r

for the former and∼ log r for the latter.

The above analysis assumed that the average intrinsic trustworthiness is m = 0. When

m > 0, the self consistent equation becomes:

μ = m+ fμ∗⟨k⟩ tanh
(

μ
μ∗

)
. (3.19)

Clearly, this equation now selects the dense, positive confidence solution as soon as αm is not

vanishingly small. This is the situation we have considered in our simulations.

3.4.3 Cঘঞঙক঒গঐ ঠ঒ঝ঑ জঙ঎঎঍ ঘএ ঝছঞজঝ ঍঎ঐছঊ঍ঊঝ঒ঘগ

We now study the influence of the panic parameter d on the trustworthiness in Eq. (3.1), i.e.

the positive feedback effect that may trigger a link breaking avalanche when an increase of

perceived risk takes place. We set the homophily term β to zero for the time being and look

into the general case in the next section.

As awarm-up exercise, let us compute the evolutionof ⟨k⟩t =
∑

k kP(k, t) fromEq. (3.10).

Multiplying by k and summing over k yields

d
dt⟨k⟩t =

2
(1 + z)N2 [zrN− (zr+ 1)⟨k⟩t] . (3.20)
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At equilibrium, with d
dt⟨k⟩t = 0, we trivially recover the result in Eq. (3.12):

⟨k⟩eq =
Nzr

N+ zr .

For small deviations from equilibrium, ⟨k⟩t is described by an Ornstein-Uhlenbeck process

that can be fully characterized from the knowledge of the variance of k.

Now, in our model with feedback we assume that all events contributing to lowering the

degree of the nodes will lead to a decrease of trustworthiness. Restricted to events lowering

the degree, this contribution can be written as

d
dt⟨(Δk)−⟩ =

2
(1 + z)N2ΣkkP(k, t) =

2⟨k⟩t
(1 + z)N2 . (3.21)

After T = N2

2 time steps, which is the average time it takes to attempt to change the status of

each link once, the total contribution to degree decrease is

⟨(Δk)−⟩ ≈
⟨k⟩
1 + z . (3.22)

Again in a mean-field spirit, the resulting expression for z is

z = exp
(
αμ− d⟨(Δk)−⟩

)
, (3.23)

meaning that the stronger the activity that decreases connectivity, the smaller the value of z

and hence the larger the probability of breaking further links. There is also a second contri-

bution to min(0, δμ) arising from the time fluctuations of μ itself, but it is much smaller in

the equilibrium region we are focusing on.
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Hence, we find a set of self-consistent equations valid when f⟨k⟩ ≫ 1 and μ > 0:

z = exp
[
⟨k⟩
(
ϕ− 2d 1

1 + z

)]
(3.24)

⟨k⟩ =
Nzr

N+ zr . (3.2̀)

Let us study the possible solutions to Eq. (3.24) and Eq. (3.2̀). Suppose first thatN ≪ rz.

In this case, we have from Eq. (3.2̀) that ⟨k⟩ ≈ N. The self-consistent Eq. (3.24) then leads

to

z ≈ exp (ϕN) ,

which is indeed such that N ≪ rz provided that ϕ ≫ log(N)
N . This solution corresponds to

such dense a network that the downwards degree fluctuations cannot destabilize it, at least

locally.

However, there might coexist a second solution, even for values of ϕ where it would not

exist for d = 0. Suppose now that z = O(1) and ⟨k⟩ ≈ rz, whichwe assume to be larger than

1 to allow for non-zero collective trust μ > 0 to exist and be locally stable. The self-consistent

equation now reads

z = exp
(
ϕrz− 2d rz

1 + z

)
. (3.2́)

It is clear that there is no solution to Eq. (3.2́) when d is small andϕr > e. However, there is

a critical value of d, denoted by d∗, above which Eq. (3.2́) has two solutions: z< < 1, which

is stable at least for d not too large, and z> > 1, which is unstable. This is illustrated in Fig.

3.́. As d increases further, z< becomes smaller and smaller and at one point becomes itself

unstable, leading to limit cycle dynamics. This small z< solution however corresponds to a

completely disconnected network.

The existence of a second, sparse solution for large enough d corresponds well to our nu-
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Figure 3.6: Graphical representation of Eq. (3.26) for d = 0 and d = 3 and ϕ = 2, r = 1. For d = 0 (red line) the

function f(z) := exp
(
ϕrz− 2d rz

1+z

)
− z has no zeros, which means that z = O(1) and ⟨k⟩ ≈ rz are not compatible

conditions in this case. However, for large enough d, for example d = 3 (blue line), two solutions emerge: z< < 1 and

z> > 1. The former is dynamically stable, while the latter is unstable and characterizes the critical transition path from

the dense solution towards the sparse solution.

merical observations: the network attempts to connect but trustworthiness is small and can-

not grow because it is killed by spontaneous negative fluctuations.

The intermediate, unstable solution z> is also interesting as it again characterizes the critical

transition path from the dense solution towards the sparse solution (and vice versa). For large

d, one finds z> ≈ 2d/ϕ, corresponding to a characteristic average degree k> ≈ 2dr/ϕ. When

k> is much smaller thanN, the dense solution has an exponentially small (inN) probability

of spontaneous destabilisation. However, as k> increases towards N, fluctuation induced

crash events become more and more frequent, as shown in Fig. 3.̀.

3.4.4 Hঘখঘঙ঑঒কঢ

We finally turn to the influence of homophily, i.e. theβ term in the definition of z in Eq. (3.4).

Here we assume, as in [4́], that the network is at all times an Erdös-Rényi network with a
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time dependent density of links qt = ⟨k⟩t/N. We also assume, as above, that the network

is well-formed, with f⟨k⟩t somewhat larger than unity so that one can assume that for most

nodes, the following approximation holds:

μi ≈ μi,0 + fμ∗ki. (3.2̂)

Once again, two cases should be considered. One corresponds to dense networks in which

⟨k⟩ ∼ N. In this case, fluctuations of node degree are at most of order
√
N. In fact, the

homophily term leads to cliques of connected nodes with a relatively homogeneous degree,

so we expect these fluctuations to be much smaller than
√
N. Therefore, one can estimate z

as

log z ≈ αN− β
√
N, (3.28)

which shows that unless α is very small, the highly connected phase is not destabilized by

homophily.

In the case of sparse but percolating networks with ⟨k⟩ > 1, the dispersion of trustwor-

thiness that prevents links from forming has two distinct origins. One is the intrinsic het-

erogeneity of the nodes, measured by the root mean square σ of the fields μi,0. The second

is the degree heterogeneity which, for an Erdös-Rényi network with qt = O(N−1), is given

by
√Nqt =

√
⟨k⟩t. Using ⟨k⟩t = zr, valid in the sparse phase, one finally ends up with the

following schematic estimate of the homophily term:

β|μi − μj| −→ β
√
cσ2 + c′zr, (3.29)

where c, c′ are numerical constants of order unity. This leads to a new self-consistent equation
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for the link activity z in the sparse phase:

z = exp
(
ϕrz− β

√
cσ2 + c′zr

)
. (3.30)

It is graphically clear that this equation behaves much in the same way as Eq. (3.2́): for small

β andϕr > e, no solution exists except for dense networks. But as β increases, two non-trivial

solutions, z< and z> appear, corresponding to a sparse solution that is not able to connect

because of the strong repulsionbetweendifferent nodes. This corresponds to the sparse phase

observed in the phase diagram of the model for large β, see Fig. 3.2.

3.̀ Cঘগঌকঞজ঒ঘগ

Wehave introduced, in the spirit of [4́, 88], a highly stylizedmodel for the asymmetric build-

up and collapse of collective trust in a networkwhere the links and the trustworthiness of the

nodes dynamically co-evolve. Thebasic assumptionof ourmodel is thatwhereas trustworthi-

ness begets trustworthiness (meaning that a higher level of trustworthiness ismore favourable

to link formation), trustworthiness heterogeneities, both across nodes and in time, are detri-

mental to the network. In particular, panic also begets panic, in the sense that sudden drops

of trust may lead to link breaking (or “sell-offs” in the context of financial markets) that

further decreases trustworthiness. We have shown, using both numerical simulations and

mean-field analytic arguments, that there are extended regions of parameter space where two

equilibrium states coexist: one corresponds to a favourable, well connected network with

a high level of confidence, and the second is an unfavourable, poorly connected and low-

confidence state. In these coexistence regions, sudden spontaneous jumps between the two

states can occur. These transitions are not induced by any major catastrophe that would re-

place a favourable equilibrium by an unfavourable one, but rather by random fluctuations
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that trigger the switch between two already exνstνnλ equνlνbrνa. When the system becomes

large, however, these jumps become less and less frequent, unless an external parameter is

changed – corresponding, for example, to ameasure of the overall economic activity that sets

the average trustworthiness level. For large systems, the phenomenon of spontaneous crises is

replaced by the notion of strong μνstory dependence: whether the system is found in one state

or in the other essentially depends on initial conditions: ergodicity is dynamically broken.

Our stylizedmodel only aims at this stage toprovide a generic (but certainly oversimplified)

conceptual framework to understand how financial markets, or the economy as a whole, can

shift so rapidly from a relatively efficient state to chaos, when nothing “material” has changed

at all, when our mνnds are no less νnventνve, our λoods and servνcs no less needed tμan tμey were

last week, as noted by PresidentObama. Ourmodel illustratesKeynes remark: a conventνonal

valuatνon wμνcμ s establνsμed s tμe outcome of tμe mass psycμoloy of a larλe number of

νλnorant νndνvνduals s lνable to cμanλe vνolently s tμe result of a sudden uctuatνon׺ of opνnνon

due to factors wμνcμ do not really make mucμ dν׸erence [̂́]. A theoretical challenge is of

course to take our framework seriously and think about how such amodel could be calibrated

with real data, for example using interbank loan networks (see e.g. [1́]), CDS data or survey

results as in [̀̀]. An obvious goal would be to obtain early warning signals for potential trust

collapse and crises [10̂] that could, in some cases, look like precursor avalanches or “crackling

noise” (see [103], and for a recent review on this theme, [19]).
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4
Do investors trade too much?

A laboratory experiment.

The contents of this chapter are the result of jointworkwithDomenicoMassaro, Jean-Philippe

Bouchaud, Damien Challet and Cars Hommes [3́].
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4.1 Iগঝছঘ঍ঞঌঝ঒ঘগ ঊগ঍ ঊ঒খ ঘএ ঝ঑঎ জঝঞ঍ঢ

Financial bubbles and crises are potent reminders of how far investors’ behaviourmay deviate

fromperfect rationality. Manybehaviourbiases arenowwell documented, such aspropensity

for trend following (or extrapolative expectations [̀9]), overconfidence, herding and panic,

disposition bias (cutting gains too early and losses too late), home bias, etc [14]. One of the

best established biases is the tendency to trade too much. Because of transaction costs (fees

and price impact), the more active traders usually perform worse on average [94]. This is

usually related to overconfidence or “animal spirits”, i.e., as Keynes put it, a spontaneos urλe

to actνon ratμer tμan νnactνon. For example, somewhat expectedly, men tend to trade much

more than women [13].

Another reason is that it is usually difficult to separate wheat from chaff, i.e. signal from

noise. Mistakingnoise for signal inevitably leads to excess trading. In fact, finding the optimal

frequency at which a noisy signal should be traded in the presence of transaction costs and

market impact is a highly non-trivial problem in general.

Artificialmarket experiments nowhave a rather longhistory. Theyhave repeatedlydemon-

strated that bubbles arise deceptively easily through trading even when the traders know the

fundamental price of an asset [10́]. More recently, the authors of Ref. [̂0] found a variety

of transient behaviours ranging from rapid convergence of the price to its fundamental value,

to oscillations and bubbles. These patterns can be explained by adaptive learning behaviour

based on simple price extrapolation rules (trend following, mean reverting/anchoring, etc.),

rather than rational expectations.

The present study belongs to the above tradition of artificial markets, where subjects are

given clear information about what they should do to optimize their profits, and then left to

trade a noisy signal on their own device. Although the rationally optimal strategy is clearly to
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buy and hold the (fictitious) asset, we observe that our subjects in fact start trading wantonly,

which is both individually and collectively detrimental. When the experiment is immediately

repeated with the same subjects, we see a significant improvement of the collective perfor-

mance, which is however still substantially lower than the (optimal) buy-and-hold strategy.

The clear-cut conclusion of our experiment is that our investors do indeed trade too much,

but that they improve to some extent when given a second chance.

Because we have run many sessions of our experiment, each with a rather large number of

agents, several statistical properties of the price time series and of the behaviour of our eco-

nomic agents could be studied. For example, although our subjects are physically separated

and cannot communicate, we have seen that a significant amount of synchronisation takes

place in the decision process, that can therefore only bemediated by the price trajectory itself.

This resonateswithwhat happens in real financialmarkets, where price changes themselves

appear to be interpreted as news, leading to self-reflexivity and potentially unstable feedback

loops. In fact, our experimental setting was such that panic and crashes were possible but

these did not happen. In fact, synchronisation appeared to be stronger for buy trades than

for sell trades, and no cascades or “fire sales” effects could be detected. Although this came as

a sort of disappointment (though not related to any shadenfreude on our part), we believe

that we understand why our market turned out to be hyperactive and volatile, but stable.

This suggests more experiments, with different parameter values, to see whether panic-prone

markets can be artificially simulated.

One particularly interesting feature of our artificial market is that we model price impact,

i.e. the fact that the very action of agentsmodifies the price trajectory. This is now believed to

be a crucial aspect of real financial markets, which may lead to feedback loops andmarket in-

stabilities [20, 24, 31, 82, 83]. What is particularly interesting in our experiment is that excess

trading significantly impacts the price trajectory and is strongly detrimental to the wealth of
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our economic agents. In otherwords, unwarranted individual decisions can lead to a substan-

tial loss of collectivewelfare, whenmediated by themechanics of financialmarkets. Although

our setting is highly stylized, this suggests that a similar mechanismmay be at play in the real

economy as well. In fact, taking into account that in real financial markets, contrary to what

happens in our experiment, participants do not have access to clear information and to a

rationally optimal strategy, one would expect this detrimental mechanism to be even more

pronounced in real markets than in our simplified and controlled experimental set-up.

The outline of this chapter is as follows. We first start in Sect. 4.2 by describing the exper-

imental motivation and set-up. The precise instructions given to our subjects are detailed in

Appendix B.1. Sect. 4.3 explains the rational benchmark to which we want to compare the

experimental results. We show in particular that rational agents should favour, in the present

situation, a buy-and-hold strategy. We then summarize our main results in Sect. 4.4, which

includes a refined statistical analysis of the behaviour of agents in 4.4.1. Section 4.̀ offers our

conclusions, open questions, and future experiments.

4.2 Eডঙ঎ছ঒খ঎গঝ খঘঝ঒টঊঝ঒ঘগ ঊগ঍ জ঎ঝ-ঞঙ

4.2.1 Qঞঊক঒ঝঊঝ঒ট঎ ঍঎জঌছ঒ঙঝ঒ঘগ

The basic idea of our experiment is to propose to subjects a simple investment “game” in

which they can use the cash they are given to invest in a fictitious asset that will – they are told

– increase in value at an average rate ofm = 2% per round, however with some fluctuations

of root mean square (RMS) s = 10% per round. The game may stop randomly at each time

step with probability p = 0.01. In other words, the game is expected to last around 100

time steps. If an amount w0 is invested in that asset at time t = 0, the wealth of the inactive
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investor will accrue to

wT = w0 exp
[
mT+ ɋs

√
T
]

(4.1)

at time T, where ɋ is a noise term with zero mean and unit variance. The numerical value of

the term in the exponential is therefore equal to 2±ɋ forT = 100, leading to amost probable

profit of e2 − 1 ≈ ́40%, and a probability to end up in the red of only approximately

3.̀%. As we shall show below, the fully rational decision is to buy and hold the asset until the

game ends; for the students participating in the experiment, the most probable gain would

represent roughly EUR 1́0, a very significant reward for spending two hours in the lab. In

other words, the financial motivation to “do the right thing” is voluntarily strong.*

In order to make the experiment more interesting, and trading even more unfavourable,

the asset price trajectory ismade to react to the subjects decisions, in away thatmimicsmarket

νmpact in real financial markets. The precise implementation is given below, but the idea is

that while a buying trade pushes the price up, a selling trade pushes the price down. It is

made perfectly clear to the subjects that this impact will amount for them as a cost, since

the transaction price of their trade will be the impacted price. This should therefore be a

strong incentive not to trade, since the corresponding transaction cost is approximately 3%,

i.e. comparable to the average profit per round.

However, market impact introduces an interesting twist, since subjects now have to guess

if the observed price fluctuations are due to the “natural” fluctuations (of RMS s) they are

warned about at the beginning of the game, or if they are due to the action of their fellow

subjects. This was meant to provide a potentially destabilizing channel, where mild sell-offs

could spiral into panic and crashes.
*Let us note in passing that if subjects had behaved rationally, our budget for this experiment would have

been exhausted after a few sessions, and we would have been forced to interrupt the experiment!
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4.2.2 Eডঙ঎ছ঒খ঎গঝঊক জ঎ঝ-ঞঙ

The interested reader should refer to Appendix B.1, in which we reproduce the detailed in-

structions given to the subjects at the experiment. Each session of the experiment is donewith

around 30 volunteers, most of them students at the University of Amsterdam (see [̂, 10, 12,

́8] for details on this and earlier similar experiments). Each subject is randomly assigned a

computer in the laboratory. Once the experiment starts, his screen displays a plot and table

of the past asset prices, together with the time evolution of his own wealth, measured in a

fictitious currency unit, and set to 100 at the start of the experiment. The exchange rate is 100

units of this fictitious currency to EUR 2̀.

During each session of the experiment, subjects have to decide every 30 seconds if they

want to hold cash or shares in the next period. If they have cash at period t, they can decide

either to use it all to buy shares or to stay out of themarket at period t+ 1. Conversely, if they

have shares at period t, they have to choose between selling them all for cash or staying in the

market at period t+ 1. Fractional orders are not allowed, therefore each player is either in the

market or out of the market at all times.

Physical barriers in the laboratory guarantee that there is no communication between sub-

jects during the experiment. In addition, each set of subjects sits 2 experiment sessions of ran-

domduration, so that learningmechanisms can be investigated. The duration of each session

is not pre-defined: at each time step the probability that the experiment stops is p = 0.01.

This indefinite horizon helps to mitigate behaviour bias towards the end of the session, as

explained in [́2]. For each set of subjects, the combined duration of the two sessions was ap-

proximately 1 hour. In fact, we in fact hand-picked exponential-distributed end-times such

that the session would not stop too early.† At the end of the experiment, each subject rolls a
†There were in fact 3 experiment sessions per set of subjects. However, the first session, whose sole purpose

was to get the subjects at ease with the software in use, was very short and these results were discarded in the
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dice to determine which of the two sessions will be used to calculate his take-home profits.

Regarding the initial conditions, we explored two different possibilities. We first studied

the case where each player starts the experiment holding 1 share worth 100 units of currency.

We realized that this lead to a strong “animal spirit” bias: preferring action to inaction, our

subjects started selling very early on for no good reason at all. While interesting in itself,

we rather decided to give each player 100 units of currency in cash in the beginning of the

experiment. This was done for most sessions and the results we will report below are all

initialized by giving our agents cash rather than shares.

In order to prevent fast-thinking subjects from getting bored and losing focus, we set up a

parallel experiment inwhich each subjectwas asked topredict the nominal price of the asset in

the next period after submitting his decision. At the end of the experiment, in order to com-

ply with theminimum average earnings stipulated by CREED‡ and tomeasure risk aversion,

subjects chose a number of lotteries from a given set and played one of their choices for free

(selected at random). Further details about these auxiliary tasks can be found in Appendix

B.1.

The crucial aspect of our experimental setting is the price update rule. As mentioned

above, wewant ourmarket to reproduce price impact, a crucial aspect of financialmarkets: as

an agent submits a (large) buying or selling order at time t, the price pt+1 at which the transac-

tion is going to be fully executed is (a) not known to him at time t and (b) adversely impacted

by the very order that is executed. The price dynamics of Eq. (4.9) is easilymodified to include

price impact (see Appendix B.1) and now reads

pt+1 = pt · exp (m+ sηt + It) , (4.2)

analysis.
‡The Center for Research in Experimental Economics and Political Decision, Faculty of Economics and

Econometrics, University of Amsterdam
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wherem = 2%, ηt is a noise term drawn from a Student’s t-distribution with 3 degrees of

freedom and unit variance, as commonly observed in financial markets [22][̀̂].§ Instead of

choosing a new realization of ηt for each run, we keep the very same noise time series in all

the experimental sessions, so as to be able to aggregate the results of different sessions.

In Eq. (4.2), s is a constant that sets the actual amplitude of the noisy contribution to the

evolution of the price (i.e. the price volatility) and is chosen to be s = 10%. These numbers

correspond roughly to the average return and the volatility of a stock index over a quarter.

Therefore, one time step in our experiment roughly corresponds to three months in a real

market, and 100 steps to 2̀ years. The last term It is the price impact caused by all the orders

submitted at time t, which we model as:

It =
Nt

N
Bt − St
Bt + St

, (4.3)

whereNt is the number of subjects who submitted an order at time t andN is the total num-

ber of subjects in a given session (i.e. the “depth” of ourmarket). Bt and St, in currency units,

are the total amount of buying orders and selling orders, respectively. Note that for a sin-

gle buying (or selling) order, the impact is given by 1/N, i.e. around 3% for a market with

30 participants (and less if the market involved more participants, as is reasonable). On the

other hand, if all the agents decide to buy (or sell) simultaneously, a price increase (decrease)

of approximately 1̂1% (́̀%) would ensue.

It is clear that if the subjects decided never to trade, one would have I(t) ≡ 0 and the price

at the end of the session would be given by Eq. (4.1), which would lead to a most probable

́40% increase inwealth. Aswe explain in the next section, the rational decision (individually
§Mathematically, the average of the exponential of a Student distribution is infinite, because of rare, but

extreme values of ηt. In order not to have to deal with this spurious problem, we impose a cut-off beyond
|η| = 10, with no material influence on the following discussion.
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and collectively) would be to buy and hold shares until the end of the game. Whatwe observe

instead is that our agents cannot help trading in and out of the market. The trading activity

is in fact so high in the first sessions that they barely break even, earning a meagre 0.̂̀%

on average. Remarkably, all groups learn to some extent and trade much less in the second

sessions, leading to a much better average earning of 92%.¶

4.3 Rঊঝ঒ঘগঊক B঎গঌ঑খঊছঔ

We now devote our attention to the adequate rational benchmark for this experiment, which

is a standard of comparison broadly used in Economics [91, 102, 10̀].

If the participants in our experiment were fully rational and assumed others to be rational

as well, then all the agents would act in the same way if faced with the same information. In

this scenario, there is no heterogeneity and we can limit our study to a single representative

agent.

It is worth remarking at this point that this experiment is a de facto risk-free opportunity,

in the sense that the subjects are paid at the end of the experiment if their net profit is positive

but do not owe any amount if their net profit ends up negative.

4.3.1 R঒জঔ-গ঎ঞঝছঊক ঊঐ঎গঝজ

Let thewealth of this agent bewt at time t. If we assume that the session ends at t = tF, purely

rational agents have two possible strategies. The first one is to stay out of themarket for t > 1

and hold cash until t = tF which yields an expected final wealth E (wtF) ≈ w0 · exp(−1)

if the subjects start with shares and collectively pull out of the market (i.e. I1 = −1) and

E (wtF) = w0 if they start with cash.
¶In practice the average payoutswere bigger because participants could not incur in losses, therefore negative

contributions did not play a role in the actual average payout.
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The second strategy consists in being fully invested in the market at t = 1 and hold the

shares until t = tF; this yields E (wtF) ≈ w0 · (1 + m + s2/2)tF regardless of the initial

condition. The average outcome of the first strategy is at best zero profit, while the second

strategy provides large average profits when the experiment session lasts for a long time.

Taking into account that these are the only two possible scenarios with a risk neutral pop-

ulation, it is obvious that the rational benchmark should be to enter or stay in the market at

t = 1 and hold the shares until the end of the experiment session. The longer the duration of

the experiment, the larger the expected profits.

4.3.2 Mঢঘঙ঒ঌ ছ঒জঔ-ঊট঎ছজ঒ঘগ

Holt et al. showed in [́̂] that risk aversion in individual traders increases with their level of

wealth and proposed the utility function

U(w) = 1 − exp (−αw1−r)

α , (4.4)

where α and r are positive parameters. [́4, ́̀] are other notable studies concerning themea-

surement of risk aversion in a laboratory with human subjects.

Based on the fact that the utility function in Eq. (4.4) is concave, one could be tempted to

consider that for high enough volatility s, myopic rational traders, i.e. traders who only look

one time step aheadwhenmaking their decisions, would choose collectively to step out of the

market as soon as their wealth reaches a certain level. However, they anticipate that if they all

decided to sell, the price of the asset would be negatively affected by the impact factor It on

top of the unknown noise term sηt. Consequently, it is clear that at any given time step, it is

always a better option to stay in the market and be affected by the noise factor alone, instead

of selling and being affected by both the noise factor and the negative impact factor.
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Figure 4.1: Average utility function of Eq. (4.4) for different scenarios with bounded rationality, volatility s = 0.1 (left)

and s = 1.0 (right) and varying level of wealthW(t). I = 0 refers to the scenario where all players stay in the market.

The colored regions correspond to 1-σ around the average utility; this gives insight on the possible behaviour of risk-

averse players.

We can however use Eq. (4.4) to study a few cases of bounded rationality within myopic

optimization. We can think of players who disregard the rules of the game and act upon

their instinct, i.e. just forget the noise term and sell their shares when their level of wealth

reaches a critical levelW∗. Another possibility is that one player tries to outsmart the others,

believing that he will be able to sell his shares while everyone else stays in the market. We

therefore compare, for a number of levels of wealth, the expected utility given by Eq. (4.4) in

the following anticipated scenarios: all players hold to their shares, all players sell their shares

taking into account their impact and the noise, all players sell their shares but forget about the

noise term, one player only sells his shares and forgets about the noise term. These scenarios

are compared in Fig. 4.1. The magnitude of the noise s defines most of the differences.

In Fig. 4.1 the solid lines represent the predictions for a population consisting of risk-

neutral agents only. We confirm in this graphic representation what we argued above, i.e.

these solid lines never intersect and it is always better to stay in the market (green solid line)

than to step out of it collectively (blue solid line). However, when we consider bounded ra-

tionality and myopic risk-averse traders, the conclusion may be different, in particular when
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strategies (in black) are triggered (corresponding, respectively, to the intersection point of the green/red dotted line

and green/blue dotted line in the previous figure).

the agents forget about the random fluctuations of themarket, which impact the price at each

time step.

We analyse the expected utility of an agent who forgets about the random fluctuations of

the market when he is the only one that sells (red dashed line) and when everyone sells (blue

dashed line).

In these scenarios, there will be a value of wealthW(t) above which, in the mind of these

boundedly rational agents, it pays off to sell whatever they are holding. This point depends

on the agent thinking either that he will be the only one selling or that everyone will, as well

as on the magnitude of the random fluctuations or noise s. These values are critical thresh-

olds which we represent as a function of s in Fig. 4.2 through numerical simulations. As we

would expect from the concavity of the utility function in Eq. (4.4), the value W∗ beyond

which boundedly rational agents of this sort would sell decreases as a function of swhen they

consider the possibility of everyone selling at the same time.

In summary, we showed that rational agents performing myopic optimization would col-

lectivelybuy andhold shares until the endof the experiment,while the assumptionofbounded

rationality allow for us to predict a critical valueW∗ beyondwhich traders would get nervous

and sell. This does not, however, account for variability amongst the agents, whichmost cer-
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tainly impacts the observed events in real markets and in our experiment.

4.4 R঎জঞকঝজ

4.4.1 Tছঊ঍঒গঐ ঊঌঝ঒ট঒ঝঢ

W঎ঊকঝ঑ ঊগ঍ ঊঌঝ঒ট঒ঝঢ

We observe that the behaviour of subjects in second sessions is consistently different from

their behaviour in first sessions, which is a result of learning. The Welch two-sample t-test

applied to the final wealth and average activity rate of each subject in first and second runs

statistically confirms this difference (p-value ≈ 2−16). Therefore, we merge all the first ses-

sions into one data set and all the second sessions into another data set. These aggregated

data sets lead to the price time series illustrated in Fig. 4.3, and immediately reveal that trad-

ing significantly weakens the upwards price trend: the average slope is divided by a factor of

approximately 2 in the first sessions and 1.̀ in the second sessions. The realized prices in Fig.

4.3 are proxies for themaximumearnings a subject would achieve if he used the buy-and-hold

strategy within his group. However, the realized price log returns remain highly correlated

with the “bare” price time series: the correlation coefficient is 0.8̀ in first sessions and 0.89

in second sessions. The higher values of the slope and of the correlation coefficient for the

second sessions are due to a lower trading activity.

The positions of the traders – in or out of the market – are mostly intermittent, which

implies excessive trading (Fig. 4.4). However, when the same subjects play for a second time,

we see that some of them actually learn the optimal strategy, which translates into “green cor-

ridors” in Fig. 4.4b. Therefore, the distribution of average trading activity changes when the

same set of people play the game for the second time, as shown in Fig. 4.̀a and in Fig. 4.̀b.

The number of people keeping trading to a minimum increases significantly in second ses-
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(a) First sessions, 198-18 subjects. The correlation
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turns in the absence of trading is 0.8̀.
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(b) Second sessions, 201-23 subjects. The correlation

between realized price log returns and price log re-

turns in the absence of trading is 0.89.

Figure 4.3: Average or typical price time series for first sessions and second sessions.

sions, where only a few “hopeless outliers” keep trading activity above 40%, i.e. they changed

their market positions inmore than 40% of the periods. In both cases, the final wealth of the

agents is strongly anti-correlated with average trading activity, which is expected since trad-

ing is costly. In fact, if a trader decides to buy shares at period t and to sell them at period

t + 1, he will, on average, end up with less cash than he started because of his own contribu-

tion to price impact. It is worth remarking that there is no price impact when the shares are

liquidated at the end of each experimental session. This way, for a large number of periods,

the average final wealth of a risk-neutral population would be approximately the same if the

agents were given shares instead of cash in the beginning of the session.

The average wealth of the subjects in first and second sessions is shown in Fig. 4.́ as a

function of time. We must not forget that the durations of the sessions were all different

because of the indefinite time horizon. Thus, the number of data points used in the averaging

process is not the same for each time t but a decreasing step function of t. This can be easily

understood through Fig. 4.4a and Fig. 4.4b. In particular, this means that the last point in
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Figure 4.4: Positions – in the market (green) or out of the market (red) – in first sessions (above) and in second sessions

(below). It is worth noting that not all the sessions lasted the same number of periods, hence the white space in both

figures for large t. In fact, for each case, only one session – the longest – lasted until the maximum time t displayed,

t = 8́ for first sessions (above) and t = 82 for second sessions (below).

Fig. 4.́a is not the average final wealth observed in first runs because all of the runs but one

stopped before that point. The same applies to the last point in Fig. 4.́b.

In what concerns the average components of wealth over time, there are also differences

between first sessions (Fig. 4.̂a) and second sessions (Fig. 4.̂b). In first sessions, where

overall trading activity is high (Fig. 4.̀a), the averagewealth does not follow the upward trend

one would expect in a set-up with “guaranteed” average growth of 2% per period. In fact,

players trade so much that they keep eroding their wealth when they sell and affording fewer

and fewer number of shares when they buy. This results in very low earnings at the end of the

session, as we had shown before in Fig. 4.́a. On the other hand, in second sessions, where

overall trading activity is much lower (Fig. 4.̀b), the average wealth does increase with time.
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(b) Second sessions: 201 subjects and 63-81 periods. The

average final wealth was 191.9̂ units of currency, the av-

erage activity rate was 12% and the correlation between

the two quantities was−0.̂3%.

Figure 4.5: Activity rate and final wealth in first sessions (left) and in second sessions (right).

Although the number of shares owned eventually decreases, this is due not only to excessive

trading but also to the fact that some subjects hope for a similar noise pattern in the price time

series, therefore they cash in their earnings before the end of the experiment and stay out of

the market from that point onwards. This is particularly visible in Fig. 4.̂b, when a surge

in price triggers selling orders over several periods which result in a higher average amount of

cash and, naturally, in a lower average number of shares. Although this is also visible in the

middle of the time series in first sessions (Fig. 4.̂a), the difference between the two cases is

thatmost of the resulting cash is eventually reinvested in the first sessions, while in the second

sessions this does not happen: cash holdings consistently increase after the initial investment

phase (Fig. 4.̂b).

As we showed in Sect. 4.3 the rational strategy in our experimental set-up would be to

collectively buy-and-hold and reap the benefits from the baseline average return of 2% per

period in the absence of trading. We see that the behaviour of the agents is very far from this
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(b) Second sessions, 201-23 subjects.

Figure 4.6: Average or typical wealth for first sessions and second sessions. The subjects fared much better in second

sessions, in which their average final wealth was approximately twice their initial endowment, than in first sessions, in

which the vast majority did not even break even.

benchmark, even in the second sessions, in spite of a significant decrease in activity. The av-

erage performance in second runs is indeed still far fromwhat it would have been if everyone

in the room used the optimal buy-and-hold strategy, i.e. despite the learning there is still ex-

cess trading activity which translates into collective pain – since even the virtuous agents are

adversely impacted by the selling activity of wanton agents.

Cঘকক঎ঌঝ঒ট঎ ঝছঊ঍঒গঐ খঘ঍঎জ – ঊঌঝ঒ট঒ঝঢ ঌঘছছ঎কঊঝ঒ঘগজ, ঙঊগ঒ঌ & ঎ঞঙ঑ঘছ঒ঊ

Our subjects surely trade too much, but can we describe in more detail why they trade and

how correlated their activity is? In fact, our initial intuition – which turned out to be quite

far from what actually happened — was that the agents would not trade at the beginning

of the game, letting the price rise from its initial value of 100 to quite high values, say 400,

before starting to worry that others might start selling, pushing the price back down and

potentially inducing a panic chain reaction. This would have translated into either a major

crash, or perhaps smaller downward corrections, but in any case a significant skewness in the

́9



0 20 40 60 80

0
50

10
0

15
0

20
0

25
0

0.
0

0.
1

0.
2

0.
3

0.
4

cu
rr

en
cy

 u
n

it
s

n
u

m
b

er
 o

f 
sh

ar
es

t

Wt

Ct

St

(a) First sessions, 198-18 subjects.

0 20 40 60 80

0
50

10
0

15
0

20
0

25
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

cu
rr

en
cy

 u
n

it
s

n
u

m
b

er
 o

f 
sh

ar
es

t

Wt

Ct

St

(b) Second sessions, 201-23 subjects.

Figure 4.7: Average wealthWt (black), average cash Ct (green) and average number of shares St (blue) in first sessions

(left) and in second sessions (right). While Wt is consistently eroded over time in first sessions due to excess trading

activity, it has a clear upward trend in second sessions, which can be explained by learning through experience.

distribution of returns – absent in principle from the bare price series which is constructed

to be perfectly symmetrical, since the noise ɋ in Eq. (4.2) is symmetric. In fact, as we will

see below, the empirical skewness of the particular realization of the noise turns out to be

negative, so the reference point that we shall be comparing to must be shifted.

We have thereforemeasured the relative skewness of the distribution of price changes, over

different time intervals τ = 1, 2, . . . . The idea is that a panic spiral would lead to a negative

skewness that becomes larger and larger whenmeasured on larger time intervals, before going

back down to zero after the typical correlation time of the domino effect. This is called the

“leverage effect” in financial markets, and is observed in particular on stock indices where the

negative skewness indeed grows as the time scale increases, before decreasing again, albeit very

slowly [21].

In order to reduce the measurement noise, it is convenient to measure the negative skew-

ness using two low-moment quantities. One is P(rτ > mτ) − 1/2, i.e. the probability

that the price variation on time scale τ exceeds its average value. If this quantity is positive,
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it means that large negative returns are more probable than large positive returns, so as to

compensate the number of positive returns larger than the mean. Another often used quan-

tity is the meanmt of the returns minus the median, normalised by the RMS of the returns

on the same time scale. Again, if the median exceeds the mean, the distribution is negatively

skewed. See [21, 99] for further details about these estimators of skewness. Both quantities

were found to give the same qualitative results, thus we chose to average these two definitions

of skewness and plot them as a function of τ, averaged over all first and second sessions.

The result is shown in Fig. 4.8. The blue dots correspond exactly to the time series of

bare prices because there is only one (collective) trade in the buy-and-hold strategy, right at

the first period, which we discard from the computation. Although the bare returns were

constructed using a Student’s t-distributionwith 3 degrees of freedom, which by definition is

not skewed, we see in Fig. 4.8 that the bare prices do not have zero skewness. This illustrates

the role of the noise, which givesway to different values of skewness for bare prices depending

on the number of periods of the session. We observe in Fig. 4.8 that the realized skewness of

trade impacted returns is typically larger (i.e. less negative) than bare returns, butwithout any

significant time dependence. This suggests that buying orders tend to be more synchronized

than selling orders, specially in the first sessions, but that neither buying nor selling orders

induce further buy/sell orders. In short, there is no destabilising feedback loop in the present

setting, which explains whywe never observed any crash in our experiments; if anything, buy

orders tend to be more collective than sell orders.

In order to detect more precisely the synchronisation of our agents, we construct the ac-

tivity correlation matrix A, defined as follows:

Aij =
1
T
∑

t
θi(t)θj(t)−

1
T
∑

t
θi(t)×

1
T
∑

t
θj(t), (4.̀)
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Figure4.8: Average skewness of price log returns as a function of timeτ in first sessions (red) and second sessions (green),

together with the skewness of log returns in the buy-and-hold strategy, i.e. in the absence of trading (blue).

where θi(t) is the activity of agent ν at time t, θi(t) = 0 if he is inactive, θi(t) = ±1 if he buys

or sells.

For each session, we diagonalize A and study the three largest eigenvalues, correspond-

ing to the more important principal components of the subjects’ activity. In order to detect

synchronisation, where a substantial fraction of agents tend to act in exactly the same way

across the experiment, we compute the dot products of these three eigenvectors v⃗1, v⃗2, v⃗3 and

the uniform vector e⃗ = (1, 1, . . . , 1)/
√
N. Then, we take the absolute value and average the

maximum over all runs. It may happen that the “synchronized” mode does not correspond

to the largest eigenvalue of A, while still being amongst the most important ones. The re-

sulting values are represented in Fig. 4.9 for the first and second sessions. The dashed lines

depict the cases where agents would act completely at random, which would lead to a value

of this overlap at approximately 0.3̀. We see that the experimental results are clearly larger

than the benchmark case: approximately 0.̀̂ for the first sessions and approximately 0.̀ for
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the second sessions (compared to a maximum value of 1 for a fully collective activity mode).

This method above allows us to make a quantitative analysis and statement about overall

synchronization in our experiment, be it through selling or buying orders, and we find that

there is indeed significant synchronisation. We now look into the separate cases of synchro-

nization for selling orders and for buying orders. In order to do this, we construct an activity

correlation matrix as in Eq. (4.̀) but change the definition of θi(t) accordingly. This way,

whenwe study the synchronization concerning only buying orders, as in Fig. 4.10a, we define

θi(t) = 0 if agent ν is inactive or sells and θi(t) = 1 if he buys. Likewise, in the case where we

look into synchronization over selling orders only, as in Fig. 4.10b, we set θi(t) = 0 if agent

ν is inactive or buys and θi(t) = −1 if he sells. We see in Fig. 4.10a and in Fig. 4.10b that

splitting the data set as explained does yield similar results: the experiment results are larger

than the benchmark for each case, being the difference more marked in first sessions than in

second sessions. Again, the synchronisation of buy orders appears to be, according to this

metric, stronger than that of sell orders.

We therefore conclude that even if our subjects cannot directly communicate with one

another, there is a significant synchronisation of their activity, in particular during the first

sessions and, as the skewness of the distribution reveals, for the buying activity. The mech-

anism for this synchronisation can only come from the common source of information that

the subjects all observe, namely the price time series itself.

Furthermore, we observe an asymmetry if we repeat the above method conditionally on

the sign of previous returns, in the sense that synchronisation is stronger for buying orders

conditional on negative previous returns and for selling orders conditional on positive previ-

ous returns. This indicates mean reversion, which is in line with our findings in subsection

4.4.3.
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Figure 4.9: Average maximum absolute value of the three dot products between the eigenvectors corresponding to the

three largest eigenvalues, and the unit vector. All orders are considered except for the first time step, in which we expect

a natural bias towards synchronization.
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Figure 4.10: Average maximum absolute value of the sum of the components of the eigenvectors corresponding to the

three largest eigenvalues. On the left we restrict ourselves to buying orders, while the result for selling orders is shown

on the right. The first time step is excluded from the data set because we expect a natural bias towards synchronization.
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Cকঞজঝ঎ছ঒গঐ

Fig. 4.̀ showsus, once again, that the average finalwealth in first sessions ismuch smaller than

in second sessions, which is tied to the higher average trading activity of the subjects when

they play the game for the first time. In second sessions, we observe a number of subjects

who kept trading activity very low, increasing their chances of a positive payout at the end of

the experiment. As we discussed in Sect. 4.4.1, this is an indication that the subjects learn. In

any case, there are always traders who keep trading at very high rates and lose money in the

process.

However, Fig. 4.̀ does not provide insight about common patterns in the behaviour of

the subjects. We know from Fig. 4.4 that at least in second runs a number of subjects use

the buy-and-hold strategy or similar, which corresponds to the green horizontal “corridors”

in the figure. Therefore, we apply clustering techniques and find groups of similar traders in

the data sets. Afterwards, we look into the trading activity and trading performance in each

cluster.

As in [110], we applied false discovery rate (FDR) methods to validate links between sub-

jects to the data set with composite data from first sessions and to the data set with composite

data from second sessions. The variable used to establish links (i.e. similarity) between sub-

jects was their position – in or out of the market – over time for each subject. The FDR

rejection threshold was 1%.

The number of subjects in each cluster is summarized in Tab. 4.1 for first sessions and

second sessions. The clusters identified in the second sessions are much larger than those

identified in first sessions, which is expected because the number of “intermittent” players in

the game was lower in second sessions.

We see in Fig. 4.12 that clusters with a lower average trading activity tend to have a higher
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Figure 4.11: Clusters for first and second sessions using the FDR algorithm of [110][109] with a threshold of 1% applied

to positions – in or out of the market – over time.

Cluster 1 2 3 4 ̀ ́ ̂

N 3 3 3 3 2 2 2
(a) First sessions

Cluster 1 2 3 4 ̀ ́ ̂

N ̀0 14 4 ́ 2 3 3
(b) Second sessions

Table 4.1: Number of subjects in each cluster identified through an FDR algorithm with a threshold of 1% applied to

positions – in or out of the market – over time.

average final wealth. A notable example is the cluster number 2 in Fig. 4.12b, which includes

14 subjects (see Fig. 4.11b) who kept trading to a minimum in second runs and maximized

their returns. Conversely, the cluster number ́ in Fig. 4.12a consists of 2 traders (see Fig.

4.11a) with very high average trading activity and, as a consequence, low final wealth.

4.4.2 Lঘঝঝ঎ছঢ ঊগ঍ ছ঒জঔ ঊট঎ছজ঒ঘগ

In order to assess the risk aversion of the subjects, we presented themwith a choice of lotteries

as in [́̂]. The subjects had to choose, for 10 pairs of lotteries, if they preferred the risky or

the safe bet. For each pair of lotteries, the average pay-off was not the same for both options

available (risky or safe). This way, a risk-neutral agent would simply calculate the average

pay-off for each lottery in the pair and choose the one yielding the highest average pay-off.

̂́



●

●

●

●

●

●

●

100

200

300

0.1 0.2 0.3

activity rate

fi
n

al
 w

ea
lt

h

(a) First sessions

●

●

●

●

●

●

●

80

120

160

200

240

0.0 0.1 0.2 0.3

activity rate

fi
n

al
 w

ea
lt

h

(b) Second sessions

Figure 4.12: Average trading activity and final wealth each cluster represented in Fig. 4.11.
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However, a risk-averse agentwould also factor in the probability ofwalking awaywith almost

nothing – one of the possible outcomes in the riskiest lotteries.

In fact, we observe that, for each pair of lotteries, the agents did not choose the risky option

whenever its expected pay-off was larger than that of the safe option. This shows that the

subjects were indeed risk-averse. If we order the lottery pairs according to the expected pay-

off of the risky lottery, we can rank the agents according to their risk aversion based on the

pay-off level beyond which they choose the risky bet instead of the safe bet. The higher this

level, the more risk-averse is the agent.

Besides, we also wanted to assess whether or not the risk aversion of the subjects depended

on the absolute values involved, as in [́̂], where the authors find a strongly concave utility

function. Therefore, we repeated the above with the exact same lottery choices but with all

the rewards multiplied by ̀.

We discarded from our data set the cases in which the subjects chose the safe lottery after

having previously chosen the risky option for a lower pay-off advantage.

The interested reader is referred to Appendix B.1, in which we included all the instruc-

tions handed to the subjects during the experiment, in particular the aforementioned lottery

choices.

In Fig. (4.13) and (4.14) we show the distribution of subjects according to their risk aver-

sion, both for low and high rewards. The blue vertical line shows where a risk neutral subject

would be, based on the expected pay-off differences alone. The fact that the majority of the

subjects – ̂́% for the low-pay-off and 89% for the highpay-off lotteries – have a risk aversion

larger than 4 indicates that the participants in our experiment were risk-averse. Moreover, if

we compare the two curves, red and green, we see that the subjects tend to safer choices when

the lottery pay-off is higher, which indicates that the risk aversion of our population not only

depends but increases with the pay-off level. This is corroborated by the Welch two-sample
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Figure 4.13: Risk aversion cumulative distribution function. The x-axis is the pay-off level beyond which agents choose

the risky bet. The higher this level, the more risk-averse is the agent.

t-test, which states that the mean risk aversion values for low pay-off and high pay-off are sta-

tistically different with a p-value of 1.̀e−06. These results are perfectly in line with what Holt

and associates found in [́̂].

Finally, we see in Fig. (4.1̀) that the activity rate decreases and the average final wealth

increases with the level of risk aversion, both in second runs (green and blue) and in first runs

(red and orange). This is confirmed in Fig. (4.1́), which shows the corresponding linear

regressions (using weights
√
N/σ) with 9̀% intervals of confidence.

Uঝ঒ক঒ঝঢ এঞগঌঝ঒ঘগ ঌঊক঒ঋছঊঝ঒ঘগ

As in [́̂], we use the lottery choices of the subjects to calibrate the utility function described

in Eq. (4.4). In short, we apply a maximum-likelihoodmethod to find the parameters which

maximize the probability that the observed lottery choices are dictated by Eq. (4.4).

In this spirit, the first step we take is to model the probability PR
i that a subject chooses the
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Figure 4.14: Risk aversion probability density estimation, normal kernel.
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Figure 4.15: Average final wealth and activity rate for each level of risk aversion, for first and second runs.
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Figure 4.16: Linear regressions with 9̀% intervals of confidence of the average final wealth and activity rate on risk

aversion, for first and second runs.

risky lottery out of the pair ν of lotteries. As in [́̂], we define

PR
i :=

E[UR
i ]

1
μ

E[UR
i ]

1
μ + E[US

i ]
1
μ
, (4.́)

where E[UR
i ] =

∑2
k=1 pkUR

k is the expected utility of the risky lottery and E[US
i ] is the ex-

pected utility of the safe lottery in the pair ν. Each lottery has two possible outcomes k = 1, 2,

each with probability pk and utilityUk given by Eq. (4.4), parameterized by two numbers α

and r. The parameter ɉ is a real number which allows one to consider a range of scenarios

between equiprobable choices (ɉ = +∞) and utility maximization (ɉ → 0). This corre-

sponds to the so called “logit rule” (see [19] or [́] for further details).

Secondly, we define the likelihood function

L(β, y) =
∏

i
(PR

i )
y
i · (1 − PR

i )
1−yi , (4.̂)

81



average confidence interval
α 0.10́ [0.08̀, 0.130]
r 0.34̀ [0.2́3, 0.443]
ɉ 0.114 [0.101, 0.133]

Table 4.2: Parameters of Eq. (4.6) obtained via maximum-likelihood estimation and correspondent 9̀% confidence in-

tervals. We applied the Nelder-Mead algorithm to maximize Eq. (4.8) and used the bias-corrected and accelerated (BCa)

bootstrap method for the 9̀% confidence intervals.

where yi are the observed choices for each lottery pair, i.e. yi = 0 if the subject chose the

safe lottery and yi = 1 if he chose the risky lottery from pair ν. In addition, β = [r, α,ɉ]

includes all the model parameters in Eq. (4.́).

This way, we have the log-likelihood function

log[L(β, y)] =
∑

i
yilog(PR

i ) + (1 − yi)log(1 − PR
i ). (4.8)

Finally, the last step is to find the model parameters that maximize Eq. (4.8). We apply

the Nelder-Mead algorithm [92] and use the bias-corrected and accelerated (BCa) bootstrap

method [4̀] for 9̀% confidence intervals. The results are summarized in Tab. 4.2. Quite

remarkably, the values of the a-dimensional parameters r and ɉ are found to be very close to

those reported in [́̂] for their lottery experiments (ɉ = 0.13, r = 0.2̂). In particular, r > 0

implies increasing relative risk aversion and decreasing absolute risk aversion.

4.4.3 Pছ঒ঌ঎ ঙছ঎঍঒ঌঝ঒ঘগজ

The fact that the subjects input their price predictions allows us to have a glimpse of their

frame of mind. In both runs, the subjects did not input anything in about ̂% of the time,

as price prediction was not a mandatory activity; in the following, we restrict our analysis to

the subjects that did report their predictions.

The discussion focuses on the predicted log returns, i.e. from subject ν’s price predictions
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p̂i(t+ 1), we compute the predicted log returns r̂i(t+ 1) = log[p̂i(t+ 1)/p(t)], for all subjects.

The average expectation in the first run is−0.01 and 0.02 in the second run. The percentage

of positive predicted returns is ̀4% in the first run, and ̀8% in the second run. Figure 4.1̂

illustrates the full empirical distribution functions of expectations for both runs. The starting

point for each the positive and negative distributions represents the fraction of positive and

negative expecations, thus the higher jump at r = 0 for the second run reflects the increase

in the fraction of positive expected returns.

We then check how the distributions of positive and negative expected returns are related

to the Student noise termgiven in input. This gives a first clue about the type of extrapolation

frompast returns that the agents use: if they use linear extrapolation rules, the power-law tails

of the Student distributions will be found again in the distributions of return expectations.

On the other hand, fear or greed may lead to non-linear extrapolations and thus will modify

either the tail exponent of these distributions, or even the nature of the tails.

The most obvious finding is that the actions of the agents increase the volatility of the

baseline signal (in dashed lines) as the empirical distribution functions are above the base-

line signal for both runs. The amplification of the noise for positive expectations are almost

the same in the two runs. The scale of negative expectations is however markedly different

in the two runs: it was much larger during the first run. Robust power-law tail fitting that

determines the most likely starting point of a power-law rmin and that yields the exponent

α yields parameters reports in Table 4.3. Quite remarkably, the parameters of the positive

and negative tails are simply swapped between the two runs: thus not only the scale of neg-

ative expectations changes, but the nature of largest positive and negative expectations also

changes. The fitted tail exponent is not far from 3, the one of the Student noise.

The fact that the subjects have fat tailed predictions means that they form their predic-

tions by learning past returns, which do contain fat tails because of the Student’s t-distributed
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rmin α
run 1 r > 0 0.21 3.̀
run 2 r > 0 0.10 2.̂
run 1 r < 0 0.13 2.́
run 2 r > 0 0.18 3.̀

Table 4.3: Fits of the power-law part of return expectations; rmin denotes the most likely starting point of the power-law.
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Figure 4.17: Reciprocal empirical cumulative distribution functions of negative (left) and positive (right) expected price

returns during the first and second runs (black and red lines, respectively). The baseline return distribution is plotted in

dashed lines. The jump at r = 0 indicates the respective fraction of positive and negative predictions.
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noise. One thus expects some relationship between predicted returns and past returns. This

is in line with the best established fact about real investors, which is the contrarian nature of

their trades: their net investment over a given period is anti-correlated with past price returns

[2́, ́0, ̂2, ̂̀]. In addition, previous experiments [̂0] have demonstrated that four simple

classes of linear predictors using past returns are usually enough to reproduce the observed

price dynamics.

This suggests to fit the return predictions with a simple linear relationship:

r̂i(t+ 1) = ω0 + ω1r(t), (4.9)

where ω0 and ω1 are two real fitting parameters.

Section 4.4.3 discusses ω0 while Sect. 4.4.3 is devoted to ω1.

Aট঎ছঊঐ঎ ঙছ঎঍঒ঌঝ঒ঘগজ (ω0)

Trades only tell about the consequence of the state of mind (i.e., the price expectation) of

traders when they are active. But traders (both in real life and in experiments) are in fact

inactive most of the time. As a consequence, trades alone are unlikely to be able to explain

why traders are inactive. Since we have both trades and subject price expectations, we are

able to give a consistent picture of activity and inactivity as a consequence of price return

expectations.

The key is to compute return expectations conditionally on the actions of the subjects.

There are four possible actions: buying, selling, holding shares and holding cash. Figure 4.18

reports the conditional distributions of price return predictions, for both runs. The results

are qualitatively the same for both runs: the conditional distributions are clearly separated;

themain difference between the two runs is that the variance of expectations among the pop-
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ω0, 1nd run Sell Hold cash Hold shares
Buy 1.̀e-8 3.9e-3 1.2e-̀
Sell 3.8e-̀ 8.2e-̀

Hold cash 1.̀e-1

Table 4.4: p-values of Mann-Whitney tests between the average return predictions of all state pairs for first runs.

ω0, 2nd run Sell Hold cash Hold shares
Buy 2.1e-̂ 1.̀e-4 1.0e-̂
Sell ́.1e-̂ ̀.9e-̀

Hold cash ́.́e-́

Table 4.5: p-values of Mann-Whitney tests between the average return predictions of all state pairs for second runs.

ulation is much reduced during the second run.

Let us break down the results for each possible action.

1. When the subjects hold assets, their expectations are in line with the baseline return of

2%.

2. When the subjects hold cash, their expectations are significantly lower (essentially zero).

3. When the subjects make a transaction, however, their expectations of the next returns

are anti-correlated with their actions, i.e., they buy when they expect a negative price

return and vice versa.

Thus, the actions of the subjects are fully consistent with their expectations: they do not

invest when they do not perceive it as worthwhile and they keep their shares when they have

a positive expectation of future gains. Interpreting their expectations when they trade is less

straightforward, however. The fact that their actions are anti-correlated with their expecta-

tions means that they try to exploit a perceived price anomaly and thus either minimize their

price impact, obtain a rebate, or both.
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Figure 4.18: Conditional densities of average return predictionsω0 during the first runs (left plot) and second runs (right

plot) for the four types of decisions.

ω1, 1st run Sell Hold cash Hold shares
Buy 9.́e-2 2.3e-̀ 8.8e-10
Sell 3.̂e-2 1.̂e-4

Hold cash 2.9e-2

Table 4.6: p-values of Mann-Whitney tests between the linear coefficientw1 between all state pairs for first runs.

Pছ঎঍঒ঌঝ঒ঘগজ ঊগ঍ ঙঊজঝ ঙছ঒ঌ঎ ছ঎ঝঞছগজ (ω1)

Coefficient ω1 encodes the linear extrapolation of the past return on future returns. Figure

4.19 shows that during the first run, this coefficient was negative when the agents did not

act and zero when they did trade. The second run is different: the coefficients do not seem

to depend much on the state, the only clear difference is betwen holding cash and holding

shares.

The lack of influence of this coefficient is confirmed when one measures the average pre-

dicted return conditional on the action of the subjects, which gives results very close to ω0.

We could not find any dependence of ω0,1 on the lottery results.
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Figure 4.19: Conditional densities of average return predictionsω1 during the first runs (left plot) and second runs (right

plot) for the four types of decisions.

ω1, 2nd run Sell Hold cash Hold shares
Buy ́.2e-1 ̂.́e-1 4.1e-2
Sell ̀.́e-1 8.́e-2

Hold cash 2.9e-4

Table 4.7: p-values of Mann-Whitney tests between the linear coefficientw1 between all state pairs for second runs.
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4.̀ Cঘগঌকঞজ঒ঘগ

We presented the results of a trading experiment in which the pricing function favours early

investment in a risky asset and no posterior trading. As explained in Sect. 4.2 and in Sect.

4.3, the subjects would make an almost certain gain of over ́00% if all of them used the risk-

neutral, rational strategy, i.e. if they all bought shares in the first period and held them until

the end of the experiment.

However, market impact as defined in Eq. (4.3) acts de facto as a transaction cost which

erodes the earnings of the traders. When the subjects participate in the experiment for the

first time, their trading activity is so high that their profits average to almost zero! They are

however found to fare much better when they repeat the experiment as they earn 92% on av-

erage – which is still much below the performance of the simple risk-neutral rational strategy

outlined above. We therefore find that νnvestors do trade too mucμ, even in an environment

where trading is clearly detrimental and buy-and-hold is an almost certain winning strategy

(at variance with real markets where there is nothing like a guaranteed average return of 2%

per period).

At each period, we also ask the subjects to predict the next price of the asset. This provides

us with additional information about our controlled artificial market, i.e. we have access not

only to the decisions of each trader but also to their expectations. It is important to emphasize

that this informationwould not be available in broker data. In fact, knowing the expectation

behind each decision of each trader – including the decisions to do nothing – is one of the

advantages of human experiments compared to empirical analysis of real data. Using this

information, we confirm in Sect. 4.4.3 that the traders in our experiment have a contrarian

nature, which, together with the pattern of excessive trading, is one of the known features

of individual traders in real financial markets, as discussed in [40] and [2́]. We find it very
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interesting that we observe these known features in such a controlled environment.

As in [́̂], we also use lotteries at the end of the experiment to confirm that the subjects

are not risk-neutral but risk-averse. In addition, we observe that their relative risk aversion

increases with the pay-off level in a way that is quantitatively similar to the results reported

in [́̂]. When put in correspondance with the results of the trading experiment, we observe

that the activity rate decreases and the average final wealth increases with the level of risk

aversion of the subjects.

In addition, we use false discovery rate algorithms to show that the traders clustered in

terms of positions – in or out of the market – over time, despite the fact that they do not

communicate with each other during the experiment, which implies that the similarities in

trading patterns arise because certain traders react in the same way to the common price time

series. Unsurprisingly, the clusters identified in second sessions are much larger than those

in first sessions, while clusters corresponding to traders with a lower average trading activity

typically have a higher average final wealth.

We find through thedistributionofpredictions of price log returns that the subjects are not

rational but still act in a way which is fully consistent with their expectations. This happens

because their expectations depend on whether they are invested or not, as well as on their

trading actions.

Contrary to what happens in real financial markets, we have not observed any “leverage

effect” (i.e. an increase of volatility after down moves). Although there is a clear detrimental

collective behaviour in all the sessions of this experiment, we do not witness any big crash or

avalanche of selling orders that would result from a panic mode. As we discuss in Sect. 4.4.1,

the coordination amongst traders was actually slightly stronger when buying than when sell-

ing, resulting in a positive skewness of the returns. In order to induce crashes, the duration

of the experiment could be expanded while the time available for each decision could be re-
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duced. The former would increase the probability of a sudden event by increasing the num-

ber of trials and the amounts at stake, while the latter could contribute to higher stress levels

amongst subjects and increased sensitivity to price movements. However, we believe that a

more efficient path to generate panicwould be to reduce the “normal” volatility levelwhile in-

creasing the amplitude of “jumps” in the bare return time series. Within the current setting,

large fluctuations do not seem surprising enough to trigger panic among our participants.

Another idea, perhaps close to what happens in financial markets, would be to increase the

impact of sell orders and reduce the impact of buy orders when the price in high, mimicking

the fact that buyers are rarer when the price is high (on this point, see the recent results of

Donier et al. on the Bitcoin [42].)

Other natural extensions of this experiment would include the possibility of fraction or-

ders and hedging, as well as short selling. It is however essential to keep in mind that any

increase in experimental design complexity should by followed by an increase in the number

of collected experimental points. Otherwise, it will be difficult if not impossible to disentan-

gle cause and effect from stochastic noise in the experimental data.
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5
Conclusion and future work

This thesis explores two distinct yet related subjects pertaining to the larger topic of collective

destabilising phenomena in socio-economic systems.

In chapter 3 the focus is on a theoretical model of dynamics of trust in networked societies

inspired by the aftermath of the 2008 crisis, while chapter 4 discusses the results of a trad-

ing experiment which aims at a better understanding of how real people behave in a realistic

trading set-up.

The basic assumption of the model of dynamics of trust in networked societies is that link
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creation is boosted when trustworthiness is high and negatively impacted by trustworthiness

heterogeneity across nodes. As shown in chapter 3, there are regions of the parameter space

where two equilibria coexist: a sparse low-confidence network and a dense network where

trustworthiness abounds. It is worth remarking that the transitions between states are trig-

gered by small fluctuations in trustworthiness over time. In the case of a real network, the

actual parameters fitting the observed data could help understand and mitigate the mecha-

nisms through which the jumps between different equilibra occur. In the particular case of

an interbank market network, the calibration method could use CDS data or survey results

as a proxy for trustworthiness and interbank loans as the links between nodes. These data

can be found in databases of central banks across the world and supervisory authorities could

benefit from early warning signals for potential trust collapses and crisis, which would be a

natural extension and application of the work presented in chapter 3.

In the trading experiments explained in chapter 4 the most important conclusion is that

individual investors trade excessively and do not typically follow the risk-neutral, rational

strategy, even in an incredibly advantageous set-up that guarantees them an average return of

2% per period, for approximately 100 periods, in the absence of trading. One should stress

that no real financial market or product offers its participants a guaranteed 2% average return

per period over 100 consecutive periods. Unfortunately for the subjects, their actions turn a

potential ́00% average profit into a meagre 0.̂̀% average profit. In addition, the data col-

lected on price predictions indicates that the traders are contrarian, which is in line with the

best established fact about real investors. The application of false discovery rate algorithms

reveals that the traders cluster in terms of positions – in or out of the market – over time

because they react similarly to the same input (prices). As expected, two quantities which

vary significantly across clusters are the average final wealth and the average trading activity,

which are negatively correlated. Contrary to real financial markets, we do not witness any
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“leverage effect”. Moreover, we do not observe any big crash or avalanche of selling orders as

a consequence of panic. As suggested in chapter 4, lowering the volatility of external fluctua-

tions and imposing less frequent butmore severe downward shocks could trigger the cascade

events which we did not observe in this set of trading experiments. In addition, another fu-

ture avenue to explore would consist in making the price impact function depend on the

price of the asset, which is close to what happens in real financial markets. Finally, one could

also make the experiment more realistic by allowing for fractional orders, hedging and short

selling, which would however require a higher number of collected experimental points per

session.
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A
Sudden trust collapse in networked societies

A.1 Mঘ঍঎ক জঙ঎ঌ঒এ঒ঌঊঝ঒ঘগজ

The adjacency matrix at time t is denoted by Jij,t, while the trustworthiness of node ν at time

t is given by μi,t. N is the total number of nodes in the network and ki,t is the degree of node

ν at time t, i.e., ki,t =
∑

j Jij,t.

At each time step t, the links between nodes are updated first. Then, the new trustworthi-

ness of each node is computed.
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Therefore, the evolution of the system at each time step happens in two distinct steps as

follows.

1. Create, destroy, or leave sN, s ∈]0, 1], links untouched:

P(Jij,t = 0|Jij,t−1 = 1) =: Π+
ij =

1
1 + zij,t−1

(A.1)

P(Jij,t = 1|Jij,t−1 = 0) =: Π−

ij =
r
N

zij,t−1

1 + zij,t−1
, (A.2)

where

zij,t = exp

[
αμt + α′(μi,t + μj,t − 2μt)− β|μi,t − μj,t|

]
and r ∈ R

+. (A.3)

2. Update the trustworthiness values μi:

μi,t = μi,0 + fki,t tanh
(

1
cki,t

P̃i,t

)
+ d · min (0, δμi,t) , (A.4)

where:

δμi,t = μi,t−1 − μi,t−2 + f
[
ki,t tanh

(
1

fki,t P̃i,t

)
− ki,t−1 tanh

(
1

fki,t−1
Pi,t−1

)]
,

P̃i,t =
∑

j Jij,tμj,t−1,

Pi,t =
∑

j Jij,tμj,t,

and f, d ∈ R
+.
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Regarding the first step, it is worth remarking that limN→∞ Π+
ij · N2 ∝ N, which implies

that the number of new links per node remains finite even for largeN. zij,t is a measure of the

propensity of nodes ν and ξ to link or remain linked at time t, which we assume to increase

with μt and μi,t + μj,t − 2μt. On the other hand, we consider that zij,t is bigger if |μi,t − μj,t| is

smaller, i.e., that the likelihood of node ν linking with node ξ increases with the similarity of

their perceived trustworthiness in the community (homophily).

The term min (0, δμi,t), with its intrinsic asymmetry, is a proxy for the panic sentiment

mentioned in the main text. Besides, P̃i,t is the tentative cumulative trustworthiness of the

peers of node ν at time t, while Pi,t is the actual value.

We can view the parameter s as amere refresh rate in the algorithmbutwe can also interpret

it as a measure of overall communication intensity between nodes.

A.2 Pঊগ঒ঌ এঊঌঝঘছ d ঊগ঍ জঝঊঋ঒ক঒ঝঢ

Let us consider the case where node ν ends up without any links at time tL + 1. Moreover,

let us assume that zij,t is small enough for us to neglect new links involving node ν as per Eq.

(A.1). For the sake of simplicity, let us define τ := t − tL. In this notation, node ν has at

least one link at τ = 0 and becomes disconnected from the rest of the network at τ = 1.

Moreover, let us define μn := μi,τ+n and μinit := μi,0.

Then, we have from Eq. (A.4) that

μn = μinit + d(μn−1 − μn−2), n ≥ 2. (A.̀)

In this scenario, Eq. (A.̀) defines the fate of node ν, as it determines whether its trustwor-

thiness μi,t enters an infinite downfall or not.
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Equation (A.̀) can be re-written as

ɉn = Δɉn−2 + Ɋ, (A.́)

where:

Δ = d




d− 1 d

1 −1


 (A.̂)

ɉn =

[
μn μn−1

]T
(A.8)

Ɋn = μinit

[
d+ 1 1

]T
. (A.9)

After some computations, Eq. (A.́) becomes

ɉ2n+1 = Δn(ɉ1 − v) + v (A.10)

ɉ2n+2 = Δn(ɉ2 − v) + v, (A.11)

where v = μinit[ 1 1 ]T.

We can simplify Eq.(A.11) and Eq. (A.11) further to obtain:

μ2n+1 =
d
2q(μ1 − 2μ0 + μinit) (Ɉn

1 + Ɉn
2) +

1
2
(μ1 − μinit) (Ɉn

1 − Ɉn
2) + μinit (A.12)

μ2n+2 =
d
2q(μ1 − 2μ1 + μinit) (Ɉn

1 + Ɉn
2) +

1
2
(μ2 − μinit) (Ɉn

1 − Ɉn
2) + μinit, (A.13)

whereɈ1 =
1
2d(d−2+q) andɈ2 =

1
2d(d−2−q), with q = √d2 − 4d are the eigenvalues

of Δ in Eq. (A.́).

98



Therefore, under the assumptions we made in the beginning of this section, there are the

following possibilities regarding the fate of node ν:

1. If d > 4, Ɉ1,Ɉ2 ∈ R and |Ɉ1| = Ɉ1 > 4 > 1. Thus, the system is unstable and

μi,t will tend to infinitely large negative values after node ν becomes disconnected from

the network. Consequently, the probability of a new link involving node ν tends to 0

exponentially quickly. Moreover, limd→∞ Ɉ1 = ∞ and limd→∞ Ɉ2 = 1+.

2. If 0 < d < 1, Ɉ1 = Ɉ2 = d. Therefore |Ɉ1| < 1 and |Ɉ2| < 1. Thus, the system is

stable and μi,t will eventually return to values close to μi,0, which allow for the creation

of links between node ν and the rest of the network.

3. If 1 < d < 4, the evolution of μi,t would be unstable and unbounded for τ > 1

in the absence of the asymmetry in the panic factor defined in Eq. (A.4). However,

this asymmetry condition gives rise to a situation in which μi,t eventually returns to a

point close to μi,0, where link formation is possible. This happens when δμi,t becomes

non-negative, which implies d · min (0, δμi,t) = 0.

The eigenvalues Ɉ1 and Ɉ2 corresponding to the cases above are represented in Fig. A.1.

-1 0 1 2 3 4 5
-1.0

-0.5

0.0

0.5

1.0

ReHΛL

Im
HΛ
L

Figure A.1: Parametric representation ofɈ1 andɈ2 in the complex plane. The unstable case (d > 4) is depicted in green,

while the stable regime (0 < d < 1) is in red. The case with 1 < d < 4, in which there is instability but μi,t is bounded,

is in blue.

99



B
Detrimental collective effects in trading

experiments

B.1 Wছ঒ঝঝ঎গ কঊঋঘছঊঝঘছঢ খঊঝ঎ছ঒ঊকজ

B.1.1 Eডঙ঎ছ঒খ঎গঝঊক ঒গজঝছঞঌঝ঒ঘগজ ঊগ঍ qঞ঒ণ

In the following pages, the reader can find the exact instructions presented to the subjects in

the beginning of the experiment.
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Experimental Instructions 

1. Overview 

This is an experiment on economic decision making. If you follow the instructions 

carefully and make good decisions you may earn a considerable amount of money 

that will be paid to you in cash at the end of the experiment. The whole experiment 

is computerized, therefore you do not have to submit the paper on your desk. 

Instead, you can use it to make notes. There is a calculator on your desk. If necessary, 

you can use it during the experiment. Please do not talk with others for the duration 

of the experiment. If you have a question please raise your hand and one of the 

experimenters will answer your question in private. 

Today you will participate in one or more market ǲsequencesǳ, each consisting of a 
number of trading periods. There are two objects of interest in this experiment, 

shares and cash, the latter denominated in francs. In each period you can trade 

shares in a market with a computer program, called market maker, and the currency 

used in the market is francs. You pay francs when you buy shares and receive francs 

when you sell shares. In each period you will have the opportunity to participate in 

trading or take no action in the market. Details about how this is done are discussed 

below in section 3. All trading will be in terms of francs. The cash payment to you at 

the end of the experiment will be in euros. The conversion rate is 4 francs to 1 euro. 

2. Sequences of trading periods 

As mentioned, today's experiment consists of one or more sequences, with each 

sequence consisting of an uncertain number of periods. Each period lasts 20 seconds. 

In each period you have to decide if you want to buy shares, sell shares, or hold 

either your francs or shares, i.e., take no action in the market. The amounts of your 

shares and francs will be shown on your computer screen. At the beginning of each 

period a computer program will spin a virtual roulette wheel visualized on your 

screen colored in blue for a proportion of 99 percent and colored in pink for the 

remaining 1 percent. If the black pointer ends up in the blue region, the sequence 

will continue with a new, 20-seconds period. If, instead, the black pointer ends up in 

the pink region, the sequence will end and your franc balance and the amount of 

shares for the sequence will be final (see Figure 1). Thus, at the start of each period, 

there is a 1 percent chance that the period will be the last one played in the 

sequence, and a 99 percent chance that the sequence will continue with at least one 

more period. 

   

Figure 1. Left panel: experiment continues to next period. Right panel: experiment ends. 
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If less than 50 minutes have passed since the start of the first sequence, a new 

sequence will begin. You will start the new sequence just as you started the first 

sequence. If more than 50 minutes have passed since the beginning of the first 

sequence then the current sequence will be the last sequence played, meaning that 

the next time the roulette spin ends up with the black pointer in the pink region the 

sequence will end and the experiment will be over. 

If, by chance, the final sequence has not ended by the three-hour period for which 

you have been recruited, we will gradually increase the pink region in the roulette 

wheel until the chance that the sequence will continue equals 0.  

3. Market and trading rules 

The market works as follows. At the beginning of the experiment, each participant 

will be given an initial endowment of 100 francs. In each period shares can be traded 

with the market maker. In particular, in each period each participant is allowed to 

hold either only shares or only francs. Therefore, during each period you may 

choose to 

 Sell all your shares to the market maker in exchange for francs, if you are 

holding shares; 

 Buy shares from the market maker by investing all your francs, if you are 

holding francs; 

 Hold either your shares or francs, and take no action in the market. 

Therefore, you cannot buy additional shares if you are already holding shares. Vice 

versa, you cannot sell shares if you are holding francs.  

Trading within each period t occurs according to the following mechanism. First, at 

the beginning of each period t, the computer program spins the roulette wheel. 

Depending on the outcome of the roulette spin, we can distinguish two cases. 

CASE 1. Roulette spin ends up in the blue region: market continues to next period 

The price per unit of share in period t, denoted by Pt , is announced by the market 

maker and visualized on your computer screen. You can then decide whether to sell 

shares (if you are holding shares), buy shares (if you are holding francs), or hold 

either your shares or francs, and take no action in the market. In each period t, if you 

decide to sell or buy, your transaction will take place in the next period at price Pt+1. 

Therefore, if you decide to sell shares in period t, you will receive an amount of 

francs in period t+1 given by your amount of shares in period t times the price of 

shares in period t+1, which is: 

Francs in period t+1 = amount of shares in period t  × price of shares in period t+1 

If you decide to buy shares in period t, you will receive an amount of shares in 

period t+1 given by your amount of francs in period t divided by the price of shares 

in period t+1, which is: 

Shares in period t+1 = amount of francs in period t  / price of shares in period t+1 

If you decide to hold either your shares or your francs in period t, the amount of 

shares or francs that you own will simply carry over to the next period t+1.  
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Notice that shares need not to be bought or sold in integer units. For example, 

suppose that in period t you own 127.65 francs and you decide to buy shares. 

Suppose then that the unit price of shares announced in period t+1 turns out to be 

172.50. This means that you will receive 127.65/172.50 = 0.74 shares in period t+1.  

CASE 2. Roulette spin ends up in the pink region: experiment ends 

The market maker announces the price per unit of share in period t, denoted by Pt , 

and all the buying and selling orders placed in the previous period t-1 are executed 

at price Pt but it will not be possible to make any other decision to buy, sell or hold 

either shares or francs. Your final market earnings will then be computed as 

explained in section 4. 

The timing of trading is summarized in Figure 2 

 

 

Figure 2. Timing of trading 

How the price is determined 

At the end of each period t, the market maker will collect the buy and sell orders and 

use them to determine the price Pt+1 for the next period t+1. The percentage change 

between the price in period t+1 and the price in period t, also called return, is 

approximately given by the sum of the following components 

a) A constant positive term equal to 2% 

b) A ǲtrade impact factorǳ which depends upon the difference between the total 
amounts of buy and sell orders from the participants in the market. In 

particular: 

  

- The higher the amount of buy orders in one period, the higher the price in 

the next period. Therefore, each buy order has a positive impact on price. 

In particular, if you and all other participants in the market decide to buy 

shares at the same time, the trade impact factor will be +100%. 

- The higher the amount of sell orders in one period, the lower the price in 

the next period. Therefore, each sell order has a negative impact on price. 

In particular, if you and all other participants in the market decide to sell 

shares at the same time, the trade impact factor will be -100%. 
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 Therefore the trade impact factor can take a maximum value of +100% and 

 a minimum value of –100%. If all participants in the market decide to hold 

 their shares or francs, the trade impact factor is zero. 

c) Price shocks that can take positive and negative values with the same 

probability.  

Given that the percentage change of prices from one period to the other is 

approximately given by the sum of the terms listed above (a + b + c), in case of no 

trading activity by any participant, price grows on average by approximately 2% 

every period. Figure 3 reports examples of typical price patterns in markets without 

any trading activity at any period, i.e. if all participants held their shares until the 

end of the experiment. All numbers in Figure 3 are provided only to give EXAMPLES, 

they SUGGEST NOTHING about the duration and price realizations of the experiment 

you are about to start. 

 

Figure 3. Examples of price patterns without any trading at any period 
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4. Your earnings 

Net market earnings 

When a sequence is terminated, that is whenever the roulette spin ends up in pink 

region, your end-of-sequence balance will be computed.  

 If you are holding francs when the sequence is terminated, your amount of 

francs will determine your end-of-sequence balance. 

 If you are holding shares when the sequence is terminated, the market value 

(in francs) of your shares, given by the amount of your shares times their 

price in the end of the sequence, will determine your end-of-sequence 

balance. 

Your net market earnings will then be given by your end-of-sequence balance minus 

100 francs, corresponding to the initial endowment that you received at the 

beginning of the experiment: 

Net market earnings = end-of-sequence balance – initial endowment.  

Therefore your earnings from participating in the market will be given by your end-

of-sequence balance in francs minus your initial 100 francs endowment. 

Forecast earnings 

In addition to the money that you can earn from participating in the market, you can 

earn money by accurately forecasting, in each period t, the future price of shares in 

period t+1. You will earn a forecast prize of 0.10 Euro per period if your forecast of the shares’ price is within the interval 

[0.95 ×realized price,  1.05 ×realized price]. 

For example, if the realized price in period t  is pt = 100, you will earn the forecast 

prize if your forecast for pt is within the interval [95, 105]. If, for example, the 

realized price in period t  is pt = 200 you will earn the forecast prize if your forecast 

for pt is within the interval [190, 210]. 

Total earnings 

Your total earnings for participating in today's experiment will equal the net market 

earnings that you have at the end of the sequence plus any money that you receive 

for the forecast task. If your net market earnings are negative, or smaller than the 

show up fee of 7 Euro, then your earnings from participating in the market will be 

zero and you will only receive the show up fee of 7 Euro 

Earnings from trade = max(net market earnings, show up fee) 

plus the money you earned for the forecasting task.  

If you participate in more sequences, one of them will be randomly selected and 

your earnings will equal the total earnings in the selected sequence. As mentioned, 

the cash payment to you at the end of the experiments will be in Euro. The 

conversion rate is 4 francs to 1 Euro. 
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5. The computer screen 

Below is a sample screen for a fictitious player 1 at the start of period 1.  

 

Figure 1. Example of screenshot 

In every period, after the roulette spin, each player must perform two tasks: 

 Decide whether to buy shares, hold either shares or francs, or sell shares by 

clicking on the corresponding radio button, i.e., BUY, HOLD, SELL. As 

explained in section 3, you can decide to buy shares only if in that period you 

are holding francs, and to sell shares only if in that period you are holding 

shares. Therefore, in every period, the only active buttons on your screen 

will be the buttons corresponding to your available actions; 

 Enter a forecast of the shares’ price in the next period. Please use the dot 

symbol to separate decimals (example: 10.32). The box for ǲPlayer Actionsǳ is located in the bottom-left corner of the screen. After 

making your choices, you have to submit your decisions by clicking on the ǲSubmitǳ 
button.  

The box in the bottom-right corner of the screen named ǲPlayer Informationǳ reports 
the following information: 

 The amount of shares you own in the current period 

 The amount of francs you own in the current period 

 Your wealth (in francs) in the current period, given by your francs (if you 

are holding francs) or your shares times the current price (if you are holding 

shares) 

The rest of the screen allows you to track results from previous periods. The graph in the ǲMarket price evolutionǳ box on the upper-left corner of the screen reports a graphical representation of the shares’ price over time. The table contained in the ǲInformation tableǳ box on the upper-right corner of the screen displays additional 

information about the results in the experiment and it is supplemental to the graph 

in the left part of the screen. The first column of the table shows the time period. The 

most recent period is always at the top. The second and the third columns show 
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respectively the price of shares and the returns, which represent the percentage 

change in shares price between the current period and the previous. A positive 

return, say in period 10, means that the price increased from period 9 to period 10, 

while a negative return in period 10 means that the price decreased from period 9 to 

period 10. The fourth column reports your forecasts (made in the previous period) of 

the price in the current period. For example, in period 6 the number at the top of the 

fourth column will report the forecast you entered in period 5 for the price of the 

shares at period 6. The fifth and sixth columns report respectively your amounts of 

shares and francs. Finally, the seventh column of the table shows whether in each 

period you earned the forecast prize or not.   

The status bar at the bottom of the screen contains information about the status of 

the experiment and monitors how much time, out of the 20 seconds constituting the 

duration of each period, you have to take your decisions. If time is up before you 

make your choices, the computer program will select HOLD as default action, i.e., 

you will hold either your shares or francs, and use your previous period forecast.  
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6. Final Quiz 

It is important that you understand these instructions. Before continuing with the 

experiment, we ask that you consider the following scenarios and provide answers 

to the questions asked in the spaces provided. The numbers used in the quiz are 

merely illustrative; the actual numbers in the experiment may be quite different. You 

may find it useful to consult the instructions to answer some of these questions.  

 

Question 1: Suppose that a sequence has reached period 25. What is the chance that 

this sequence will continue with another period, namely period 26?                              . 

Would your answer be any different if we replaced 25 with 7 and 26 with 8? 

 Yes 

 No               

Question 2: Suppose that the sequence has reached period 12, the price announced 

for that period is P12 = 15 and you own 5.3 shares. If you decide to sell your shares, 

how many shares are you allowed to sell?                             . Suppose that you indeed 

decide to sell in period 12 and that the price announced in period 13 is P13 = 10. How 

many francs will you receive?                             . 

Question 3: Suppose that the sequence has reached period 5, the price announced 

for that period is P5 = 8 and you own 10 francs. If you decide to buy your shares, how 

many francs are you allowed to invest?                             . Suppose that you indeed 

decide to buy in period 5 and that the price announced in period 6 is P6 = 20. How 

many shares will you receive?                             . 

Question 4: Suppose that at the beginning of period t a price Pt = 200 is announced 

and then the roulette spin ends up in the pink region. Suppose that you have 1.5 

shares. What will be your net market earnings (in francs) at the end of the 

sequence?                             .   

Question 5: Suppose that when the experiment ends, i.e., the roulette spin ends up 

in the pink region, you have 100 francs. What will be your net market earnings (in 

francs) at the end of the sequence?                             .   

Question 6: Suppose that in period t you and all other participants decide to hold 

either your francs or shares and take no action in the market. Do you expect next period’s price Pt+1 to 

 Increase 

 Decrease 

 

 

 

[Turn sheet for final question] 
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Question 7: Consider the following scenarios 

a) In period t you and all other participants have shares. All of you decide to sell.  

b) In period t you and all other participants have shares. Only you decide to sell. Regarding scenario aȌ, do you expect next period’s price Pt+1 to 

 Increase 

 Decrease (ow big will the ǲtrade impact factorǳ ȋsee section ǲ(ow the price is determinedǳȌ be 
in scenario a)?                             .  Regarding scenario bȌ, do you expect the ǲ trade impact factorǳ to be: 

- Bigger than in scenario a) 

- Smaller than in scenario a) 

Moreover, do you expect: 

- Bigger Pt+1 in scenario a) than in scenario b) 

- Smaller Pt+1 in scenario a) than in scenario b) 
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B.1.2 Lঘঝঝ঎ছঢ

You will now face an additional task that will give you the chance to earn extra money, which 

will be added to what you already earned in today’s experiment.  

You will face two sequences (sequence 1 and sequence 2) of 10 decisions each. Details about 

the decisions that we ask you to make are described in the following sheets. 

After you make decisions for both sequence 1 and sequence 2, you will randomly select one 

of the two sequences by picking a ball from a jar containing balls numbered 1 and 2, and your 

choice will determine which sequence will be used to determine your payoff. Obviously 

Sequence 1 and sequence 2 have the same chance of being chosen. 

When you have completed all your decisions, and you are satisfied with those decisions 

please raise your hand and you will be called for payment. 

 

You may now read the instructions on the following sheets. 
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SEQUENCE 1 

You will face a sequence of 10 decisions. Each decision is a paired choice between two 

options labeled “Option A” and “Option B”. For each decision you must choose either Option 

A or Option B. After making your choice, please record it on the attached record sheet under 

the appropriate headings. 

 

The sequence of 10 decisions you will face are as follows: 

 

Decision Option A Option B 

1 Receive €4.00 1 in 10 chances OR 

Receive €3.20 9 in 10 chances 

Receive €7.70 1 in 10 chances OR 

Receive €0.20 9 in 10 chances 

2 Receive €4.00 2 in 10 chances OR 
Receive €3.20 8 in 10 chances 

Receive €7.70 2 in 10 chances OR  
Receive €0.20 8 in 10 chances 

3 Receive €4.00 3 in 10 chances OR 
Receive €3.20 7 in 10 chances 

Receive €7.70 3 in 10 chances OR  
Receive €0.20 7 in 10 chances 

4 Receive €4.00 4 in 10 chances OR 

Receive €3.20 6 in 10 chances 

Receive €7.70 4 in 10 chances OR 

Receive €0.20 6 in 10 chances 

5 Receive €4.00 5 in 10 chances OR 
Receive €3.20 5 in 10 chances 

Receive €7.70 5 in 10 chances OR  
Receive €0.20 5 in 10 chances 

6 Receive €4.00 6 in 10 chances OR 
Receive €3.20 4 in 10 chances 

Receive €7.70 6 in 10 chances OR  
Receive €0.20 4 in 10 chances 

7 Receive €4.00 7 in 10 chances OR 
Receive €3.20 3 in 10 chances 

Receive €7.70 7 in 10 chances OR  
Receive €0.20 3 in 10 chances 

8 Receive €4.00 8 in 10 chances OR 
Receive €3.20 2 in 10 chances 

Receive €7.70 8 in 10 chances OR  
Receive €0.20 2 in 10 chances 

9 Receive €4.00 9 in 10 chances OR 
Receive €3.20 1 in 10 chances 

Receive €7.70 9 in 10 chances OR  
Receive €0.20 1 in 10 chances 

10 Receive €4.00 10 in 10 chances OR 
Receive €3.20 0 in 10 chances 

Receive €7.70 10 in 10 chances OR  
Receive €0.20 0 in 10 chances 

 

After you have made all 10 decisions, you will be called in a separate room for payment and 

we will throw a ten-sided die (the faces are numbered from 1 to 10, and the “0” face of the die 
will serve as 10) twice, once to select one of the ten decisions to be used, and a second time to 

determine what your payoff is for the option you chose, A or B, for the particular decision 

selected. Even though you will make ten decisions, only ONE of these will end up affecting 

your earnings, but you will not know in advance which decision will be used. Obviously, each 

decision has an equal chance of being used to determine your earnings.   

 

Consider Decision 1. If you choose Option A, then you receive €4.00 if the throw of the ten-

sided die is 1, while you receive €3.20 if the throw is 2-10. If you choose Option B, then you 

receive €7.70 if the throw of the ten-sided die is 1, while you receive €0.20 if the throw is 2-

10. The other decisions are similar, except that as you move down the table, the chances of 

the higher payoff for each option increase. In fact, for Decision 10 in the bottom row, the die 

will not be needed since each option pays the highest payoff for sure, so your choice here is 

between €4.00 or €7.70.  
 

Please circle your choice for each of the 10 decisions on your record sheet. Notice that you 

may choose Option A for some decisions and Option B for others. 
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SEQUENCE 2 

You will face a sequence of 10 decisions. Each decision is a paired choice between two 

options labeled “Option A” and “Option B”. For each decision you must choose either Option 
A or Option B. After making your choice, please record it on the attached record sheet under 

the appropriate headings. 

 

The sequence of 10 decisions you will face are as follows: 

 

Decision Option A Option B 

1 Receive €20.00 1 in 10 chances OR 

Receive €16.00 9 in 10 chances 

Receive €38.50 1 in 10 chances OR 

Receive €1.00   9 in 10 chances 

2 Receive €20.00 2 in 10 chances OR 

Receive €16.00 8 in 10 chances 

Receive €38.50 2 in 10 chances OR  

Receive €1.00   8 in 10 chances 

3 Receive €20.00 3 in 10 chances OR 

Receive €16.00 7 in 10 chances 

Receive €38.50 3 in 10 chances OR  

Receive €1.00   7 in 10 chances 

4 Receive €20.00 4 in 10 chances OR 

Receive €16.00 6 in 10 chances 

Receive €38.50 4 in 10 chances OR 

Receive €1.00   6 in 10 chances 

5 Receive €20.00 5 in 10 chances OR 

Receive €16.00 5 in 10 chances 

Receive €38.50 5 in 10 chances OR  

Receive €1.00   5 in 10 chances 

6 Receive €20.00 6 in 10 chances OR 

Receive €16.00 4 in 10 chances 

Receive €38.50 6 in 10 chances OR  

Receive €1.00   4 in 10 chances 

7 Receive €20.00 7 in 10 chances OR 

Receive €16.00 3 in 10 chances 

Receive €38.50 7 in 10 chances OR  

Receive €1.00   3 in 10 chances 

8 Receive €20.00 8 in 10 chances OR 

Receive €16.00 2 in 10 chances 

Receive €38.50 8 in 10 chances OR  

Receive €1.00   2 in 10 chances 

9 Receive €20.00 9 in 10 chances OR 

Receive €16.00 1 in 10 chances 

Receive €38.50 9 in 10 chances OR  

Receive €1.00   1 in 10 chances 

10 Receive €20.00 10 in 10 chances OR 

Receive €16.00 0 in 10 chances 

Receive €38.50 10 in 10 chances OR  

Receive €1.00   0 in 10 chances 

 

After you have made all 10 decisions, you will be called in a separate room for payment and 

we will throw a ten-sided die (the faces are numbered from 1 to 10, and the “0” face of the die 
will serve as 10) twice, once to select one of the ten decisions to be used, and a second time to 

determine what your payoff is for the option you chose, A or B, for the particular decision 

selected. Even though you will make ten decisions, only ONE of these will end up affecting 

your earnings, but you will not know in advance which decision will be used. Obviously, each 

decision has an equal chance of being used to determine your earnings.   

 

Consider Decision 1. If you choose Option A, then you receive €20.00 if the throw of the ten-

sided die is 1, while you receive €16.00 if the throw is 2-10. If you choose Option B, then you 

receive €38.50 if the throw of the ten-sided die is 1, while you receive €1.00 if the throw is 2-

10. The other decisions are similar, except that as you move down the table, the chances of 

the higher payoff for each option increase. In fact, for Decision 10 in the bottom row, the die 

will not be needed since each option pays the highest payoff for sure, so your choice here is 

between €20.00 or €38.50.  

 

Please circle your choice for each of the 10 decisions on your record sheet. Notice that you 

may choose Option A for some decisions and Option B for others. 
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RECORD SHEET FOR SEQUENCE 1 

 

Decision 1 

Circle Option Choice 

 

A                  B 

 

Decision 2 

Circle Option Choice 

 

A                  B 

 

Decision 3 

Circle Option Choice 

 

A                  B 

 

Decision 4 

Circle Option Choice 

 

A                  B 

 

Decision 5 

Circle Option Choice 

 

A                  B 

 

Decision 6 

Circle Option Choice 

 

A                  B 

 

Decision 7 

Circle Option Choice 

 

A                  B 

 

Decision 8 

Circle Option Choice 

 

A                  B 

 

Decision 9 

Circle Option Choice 

 

A                  B 

 

Decision 10 

Circle Option Choice 

 

A                  B 

 

 

 

 

 

 

LAB COMPUTER ID:  
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RECORD SHEET FOR SEQUENCE 2 

 

Decision 1 

Circle Option Choice 

 

A                  B 

 

Decision 2 

Circle Option Choice 

 

A                  B 

 

Decision 3 

Circle Option Choice 

 

A                  B 

 

Decision 4 

Circle Option Choice 

 

A                  B 

 

Decision 5 

Circle Option Choice 

 

A                  B 

 

Decision 6 

Circle Option Choice 

 

A                  B 

 

Decision 7 

Circle Option Choice 

 

A                  B 

 

Decision 8 

Circle Option Choice 

 

A                  B 

 

Decision 9 

Circle Option Choice 

 

A                  B 

 

Decision 10 

Circle Option Choice 

 

A                  B 

 

 

 

 

 

 

LAB COMPUTER ID: 
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