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M. Habib AMMARI Directeur de Thèse
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tu as fait pour moi. Je n’oublierai jamais ta gentillesse, ta disponibilité, ton enthousiasme toujours intact.
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Jing, Loc Nguyen, Pierre Millien, Laure Giovangigli, Laurent Seppecher), mais également des travaux avec

l’équipe de l’IRCCyN (Frédéric Boyer et Vincent Lebastard : merci pour l’accueil et la confiance que vous

m’avez accordée pour la manipulation du robot !), ou encore l’équipe Data au DI (Stéphane Mallat, Laurent
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Lannes, Thomas Alazard, Jérémie Szeftel, Anne-Laure Dalibard, Laure Saint-Raymond, Gilles Stoltz,

Bénédicte Haas, Laure Dumaz, Nicolas Curien, Thierry Bodineau, Tony Ly, Olivier Benoist. Enfin, merci
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Résumé

Le sujet de cette thèse est la modélisation mathématique d’un sens particulier chez certaines espèces de

poissons, dites faiblement électriques. Ces poissons, qui vivent principalement dans les eaux douces en

Afrique et en Amérique du Sud, émettent un champ électrique de très faible intensité afin de se repérer

dans l’espace. En effet, lorsqu’un objet se trouve à proximité, la déformation qu’il induit sur le champ est

enregistrée à la surface de leur peau, puis analysée afin de l’identifier. En d’autres termes, ces poissons

font face à la résolution d’un problème inverse ; ce type de sujet occupe la communauté de l’analyse des

équations aux dérivées partielles depuis les années 80. La principale difficulté est le caractère mal-posé de

ces problèmes : non-existence, non-unicité, ou instabilité.

Des études comportementales ont montré que ces poissons sont capables de distinguer la localisation,

la taille, la forme ainsi que les paramètres électriques (permittivité et conductivité) des objets qui les

entourent. A l’heure actuelle, les méthodes de reconstruction d’anomalies ne permettent pas d’extraire

autant d’information. L’enjeu est donc de taille, tant d’un point de vue théorique (prouver l’existence,

l’unicité et la stabilité du problème) que pratique, avec des applications médicales, industrielles voire

environnementales.

Nous proposons ainsi un modèle mathématique permettant de calculer le champ électrique émis par un

poisson, et la déformation induite par la présence d’un ou plusieurs objets. Nous avons ensuite développé

des algorithmes permettant de localiser un objet, compte tenu du caractère multi-fréquentiel des mesures.

Enfin, en utilisant de plus le mouvement du poisson, nous avons montré qu’il est alors possible de différencier

des objets de formes différentes.

Ces algorithmes permettent ainsi de montrer la faisabilité physique de l’électro-localisation. Ils ouvrent

également la voie à des applications de détection, d’identification et de classification, notamment grâce à

une approche théorique permettant la généralisation à d’autres systèmes d’imagerie.
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Abstract

The aim of this thesis is to build a mathematical model for a particular sense in certain species of fish,

called weakly electric. These fishes, living in the rivers of Africa and South America, emit an electric field

with a very low intensity. It allows them to orientate in their surrounding space. Indeed, when an object is

situated in its vincinity, the induced distorsion is recorded at the surface of their skin, and then analyzed

in order to be identified. In other words, these fishes are dealing with an inverse problem ; this subject has

raised interest in the field of partial differential equations analysis since the 80’s. The main difficulty is the

ill-posedness character of these problems: non-existence, non-uniqueness, or instability.

Behavioral studies have shown that these fishes are able to distinguish the location, the size, the shape

and the electrical parameters (conductivity and permittivity) of objects around them. Up to now, it is not

possible to extract such information with the usual reconstruction method. The challenge is then huge,

both from a theoretical point of view (prove existence, unicity and stability of the problem) and from a

practical point of view, with applications in medical sciences, industrial imaging, or environmental issues.

We propose here a mathematical model that allows to compute the electric field emitted by the fish,

and the difference induced by the presence of one or several objects. We have then developped algorithms

of localization, using the multi-frequency aspect of the measurements. Finally, using the information

contained in the movement of the fish, we have shown that it is possible to differentiate between two

objects with different shapes.

These algorithms shows the physical feasibility of active electrolocation. They open the door to de-

tection, identification, and classification applications. A theoretical approach gives easily the clue for

generalization to other imaging systems.
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CHAPTER1

Introduction and overview

Several species of fish share an uncommon sense, making them able to probe their surrounding environment

thanks to a self-generated electric field. Very much like bats, which use a sonar to orient themselves, these

fishes are equipped with some sort of radar. Indeed, they are able to create an electric potential thanks to

a special organ, which is then recorded by specific sensors located at the surface of their skin. This allows

them to perceive the distorsion created by the presence of a target, which gives them access to the size,

the shape, and the material of this object. This ability is called active electrolocation and was discovered

by Hans Lissmann and Ken Machin in 1958 [77].

Since this finding, a huge amount of work has been done in order to understand this sense. However,

a quantitative model is lacking to explain the physics that underly within this low-frequency imaging

technique. In this perspective, it is interesting to investigate what are the equations involved, the relevant

parameters, and the phenomena that could furnish a satisfying explanation.

From a mathematical point of view, this problem is promising since it gives an example of an inverse

problem solved by the fish. Hence, the study of its behaviors could lead us to invent numerical algorithms

that could avoid the ill-posedness of such problems. Biomimetism and bio-inspired technologies are then

not very far from this approach.

In this chapter, we will first focus on the electric fishes (section 1.1), and then we will present the main

outline of the work presented in this thesis (section 1.2).

1.1 State of the Art

This section presents, in a non-exhaustive way, what is known about electric fishes. The interested reader

should refer to [37, 84], two remarkable reviews on the subject from which the following lines have taken

their sources.

1.1.1 Discovery of the Electric Sense: a Brief History

The relations between man and electric fishes teach us how the study of these latters improved scientific

knowledge, from the invention of the first electric battery to the finding of acetylcholin. This section

7



8 CHAPTER 1. INTRODUCTION AND OVERVIEW

Figure 1.1: The Narmer Palette (left), and a zoom on the serekh (box containing the name) situated on
the top (right) The fish that is represented is probably Malapterurus electricus [34, 60].

intends to summarize this long scientific journey, showing that - starting with electrolocation - mysteries

to be uncovered still hold. It relies heavily on [52, 84]; the first reference is a must-read which is accessible

for any public.

Bioelectrogenesis One of the most ancient trace of knowledge of these fishes can be found on the Narmer

Palette, depicting King Narmer (Early Dynastic Period, 31st century BC) whose name is composed by the

two symbols n’r (catfish) and mr (chisel), see Figure 1.1.

The electric shocks were then also used in medicine, as being analgesic; this practice seems to have

endured during Ancient Greece.

The link between those shocks and thunders had been a mystery since, until the 18th century, helped

by the Leyden jar. Officialy, John Walsh is rewarded for this discovery (receiving the Copley Medal of The

Royal Society in 1775). However, a lot of people had recognized the electrical nature of the discharges of

the electric eel, the torpedo or the electric catfish: Hunter (1773), van s’Gravesande (1754), van der Lott

(1762), Bancroft (1769), Bajon (1774), Williamson (1775) and Cavendish (1776). A surprizing fact tells us

that the first electric battery (built by Volta in 1800) was designed to be an electric organ; more details

will be given on that point in subsection 1.1.2.

At the end of the 19th century, weakly electric fishes are discovered. In the perspective of the freshly

established theory of evolution by Darwin, the question of the use of such a low signal is raised. Indeed, a

few millivolts is no use for harming a prey.

At the beginning of the 20th, Fledberg and Fessard study the electric organ of the Torpedo in order to

demonstrate that acetylcholine is a neurotransmitter [51].

Electroreception John Walsh and his contemporaries - Ingenhousz (1782), Schilling (1772) and Faraday

(1839) - remarked that these fishes “feel” electricity. Electroreceptor organs were discovered by Lorenzini in

1678 but the link between emission and reception is not made; Du Bois-Reymond and Müller went to reject

it. It is only in 1958 that Lissmann and Mahcin showed that these organs were part of a complex electrop-

erception system, allowing these fishes not only to probe their environnement, but also to communicate

between them.
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1.1.2 Weakly Electric Fish

Taxonomy and living conditions

There are dozens of weakly electric species, classified in various families. These families all belong to two

different orders: Gymnotiforms in South America and Mormyriforms in Africa (see Figure 1.2).

Figure 1.2: Classification and geographic distribution of the different species of weakly electric fish. The
species of interest are in the lower circle and the other ones use their electric organ in an aggressive or
defensive manner. Taken from [84].

These fishes hunt at night and sleep during the day. They live in muddy rivers, therefore the turbidity

of the water is very high. However, as we will see in chapter 2, only conductivity will have an importance

on electrolocation. This latter is considered to be homogenized because of the little size of the particles

suspended in the water.

The shape and size of these fishes vary considerably from one species to another. Two types are distin-

guished according to the electric signal emitted: pulse-type species and wave-type species (see Figure 1.3).

Emitting and receiving the electric field

This section will explain the physical, chemical and biological mechanisms involved during electrogenesis

and electroreception.

Whatever the type of specie (wave or pulse), the emission relies on the same principle and is due to

a specific organ which is generally situated in the tail; the first paragraph will provide more details. The

reception is operated by receptors spreading on the surface of the skin; further explanation will be given

later on.

The electric organ Apart from the family Apteronotidae (in the Gymnotiforms order), the Electric Organ

(denoted EO below) emitting the electric discharges derives from muscular tissues - it is called myogenic
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Figure 1.3: Differences between two species: one is pulse-type (top) and the other is wave-type. For each
fish, its electric discharge is represented in time scale. Taken from [54].

organ - built in superimposed disks (cf Figure 1.4). These disks are in fact big cells (0.75 mm in Brachy-

hypopomus pinnicaudatus [98]) called electrocytes. Their number ranges from hundreds (in Mormyrids) to

several millions in strongly electric species.

Figure 1.4: A Brachyhypopomus pinnicaudatus electrocyte. Taken from [98].

An Electric Organ Discharge (denoted EOD below) is as follows: first, the brain sends an impulse that

goes through a pacemaker in the spinal cord. This pacemaker is connected to every electrocyte by a spinal

nerve. Each nerve depolarizes the caudal (i.e. posterior) part of the cell, which causes the opening of the

ionic canals situated on the membrane (they are uniquely sensible to voltage difference between the interior
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Figure 1.5: An electromotor neuron. The axon connects the body of the neuron (in the center) to the
muscular tissues (on the right). Taken from [93].

and the exterior of the cell). It follows a ionic flux (see A, B, C and D in Figure 1.4) that makes the electric

current. It should be noted that the great similarity with a battery is historic: indeed, Volta built its first

pile in 1800 according to his observations of the eel’s organ [107] and named it Artificial Electric Organ.

However, in Apteronotidae species the EO derives from neural tissues and therefore is said to be

neurogenic. In this case, the organ is composed of several presynaptic axons of electromotor nerves (see

Figure 1.5) that are not connected at their end. When the brain sends a signal in these neurons, the sum

of all the small currents makes the discharge.

Depending on the species, this organ occupies a small part of the body (for example in Mormyrids it is

located in the caudal peduncle) or an extended one (for example almost the entire trunk in Gymnarchus

niloticus).

Electroreceptors There are thousands of pores - sizing around a millimeter - on its scaleless skin. In each of

them can be found an electroreceptor used to measure the voltage difference between the exterior medium

and the inside of the fish’s body. A receptor is formed by a cavity filled by a conducting material (liquid

or fibers): when a potential difference is applied a current appears in this material, which is measured by

sensitive cells (see Figure 1.6). Then this information is transmitted to the brain via afferent neurons.

Two types of receptors are distinguished according to their shape: ampullary receptors and tuberous

ones. The shape is not the only difference, since the ampullary receptors measure low frequency signals

(from 1 to 10 Hz) and the others are sensitive to high frequencies (from a hundred of Hertz to 1 kHz).

Moreover, the laters can be either sensitive to the amplitude of the signal (in this case they are called AM

for Amplitude-Modulating units) or to the frequency (here they are called RT for Rapid Timing units).

Figure 1.6: Two types of electroreceptors: an ampullary receptor on the left (this shape is common to
Mormyrids and Gymnotiforms) and a tuberous one on the right (this shape of organ is from Gymnotiforms).
Sensitive cells are indicated by “sc” and the afferent neurons are noted “n”. Taken from [84].
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However the repartition on the skin depends on the species, there are similarities in each order. Indeed,

it is rather uniform in Gymnotiforms (though the density is higher near the head) and it is concentrated

on the back and on the ventral part of the body in Mormyriforms (see Figure 1.7).

Figure 1.7: Location of the receptors according to the order: A. albifrons is a Gymnotiform (each dot
represents an ampullary organ - the tuberous ones show the same repartition but are simply in a higher
number) and G. petersii belongs to the Mormyrifoms order (the receptors are situated in the shaded area).
Taken from [84].

1.1.3 Electrolocation

These fishes live in turbid water, mostly at night, and hunt small preys - like insects or small fishes [2, 88].

The vision is useless in these conditions and they rely mainly on their electric sense. Two behaviors are to

be described in this section: passive electro-location and active electro-location.

Passive electro-location

This type of detection is not exclusive to weakly electric fish: for example sharks and rays also use it [1, 64].

From the point of view of evolution, it seems to be anterior to active electro-location [76]. It is based on

the detection of the low frequencies of the electric field emitted by external sources (physical, chemical or

biological [64]). Experimentally, it can be observed when the fish is in the field of an electric dipole [58]: it

tends to align its body with the streamlines and to follow it until the source (see Figure 1.8). Consequently,

this behavior does not involve a complex analysis of the electric field and the fish does not seem to know

by advance where is the dipole. Since it is well understood, we will not study it.

Figure 1.8: Behavior of G. carapo in the presence of a dipole, with two different geometries. Full lines
correspond to pathway followed by the fish during an essay (N is the number of essays) and doted lines
are stremlines of the electric field. Taken from [48].
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Active electro-location

Active electro-location is far more complex because the fish seems to know away from the object its location

and its properties. It has long been known that weakly electric fishes react strongly when a metallic rod

enters the aquarium ∗. But it took centuries to understand why: in 1958, Hans Lissmann finally connected

this fact with their emission of a weak electric field and concluded that they possess an “electric sense”.

This sense has a range of about one or two body length. Behavioral studies showed that these fishes are able

to determine the distance (Figure 1.9A), the size, the shape (Figure 1.9B) and the material (via resistivity

and capacitance) of an object [109, 108, 112].

Figure 1.9: (A) Experimental evidence of distance measurement by a Gnathonemus petersii. On the left:
experimental setup. The fish is forced to enter one of two gates where objects S+ and S− are placed.
These objects only differ by their distance D with respect to the gate. If the first one is chosen, the fish is
rewarded (by feeding) and if not, the fish is punished (by disturbing it). On the right is plotted the rate of
correct choice as a function of D. The objects S+ and S− are metallic sphere with a volume of 33.5 cm3.
(Taken from [112]).
(B) Experimental evidence of shape discrimination by individuals of the same specie. The experimental
setup is the same, except that the difference between the objects is now their shape: one is a metallic cube
whereas the other is a metallic cylinder. (Taken from [110]).

The physical principle of electro-location has been known since its discovery by Lissmann in 1958 [77]:

the electric field’s amplitude and frequency are modified when there is an element in the surrounding with

conductivity and capacitance - respectively - different from that of the water. This modification is then

felt by tuberous receptors all over the skin and the fish analyzes this data. However, no one knows an

algorithm that can translate this data into information on the object.

It should be noticed that when the fish probes its environment, is exhibits an intense activity [71].

Moreover, the swimming patterns are quite uncommon. For example, Gymnotiforms do not have caudal

nor dorsal fin so swimming depends entirely on their anal fin; the result is that they can swim either forward

or backward without difficulty. The strategy used during exploration has been called Probing Motor Acts

by Toerring and Belbenoit [102]: see Figure 1.10.

During the exploration, pulse-type species control the EOD rate by stabilizing the frequency (see Figure

1.11). In both types, an amplitude enhancement is also observed. A special care will be made on these

strategies when modelling the problem.

∗In fact it has been known since the 18th century, when electrogenesis was discovered [84].



14 CHAPTER 1. INTRODUCTION AND OVERVIEW

Figure 1.10: PMA: behavior exhibited by mormyrids (Marcusenius cyprinoides and Gnathonemus petersii)
when introducing a metallic - or plastic - object (showed by the black dot). 1. chin probing 2a. lateral
“va-et-vient” 2b. radial “va-et-vient” 3. lateral probing 4. tangential probing 5. stationary probing. Taken
from [103].

Figure 1.11: EOD rate as a function of the fish’s activity. Taken from [103].

Modelling the electric field

Electro-location has been quantitatively investigated since it is known: in their article, Lissmann and

Machin tried an analytical approach by calculating the distortion of a dipole’s electric field caused by an

infinite cylinder [77]. This section will give a brief state-of-the-art of the progress that has been made since

then. First, we will focus on analytical results, and various numerical approaches of the electric field will

follow.

Formulas have been established to compute the effect of a scatterer in the fish’s field by several authors:

Lissmann and Machin in 1958 [77], Bacher in 1983 [31] and Rasnow in 1996 [90]. All of them rely on the

fact that a sphere placed in a uniform electric field “creates” another field equivalent to a dipole’s one.

Let us see in detail what are these formulas. In the first article, an infinite cylinder with conductivity σ is

illuminated in a medium of conductivity σ0 by a dipole M . In the plane, the equivalent dipole M ′ of the

cylinder is given by the following expression (with the notation of Figure 1.12):



1.1. STATE OF THE ART 15

Figure 1.12: Model used by Lissmann and Machin. An infinite cylinder of radius a is in the neighborhood
of a dipole formed by two sources +q and −q which are separated by a distance l. Taken from [77].

M ′

M
= a2

(
σ0 − σ
σ0 + σ

)
1

r1r2
(1.1)

In 1983, Bacher remarks that this formula cannot explain the phase difference observed when the electric

permittivity of the target does not equal the water’s permittivity [31]. This phase difference is important

since it is measured by RT units receptors (see section 1.1.2). He proposes then to take this into account

in the equations by considering a non-stationary electric field, but does not give a formula similar to (1.1).

Rasnow resolves this problem in 1996 by considering a harmonic regime for the background electric field:

in the presence of a sphere of radius a, conductivity σ1 and permittivity ε1, a uniform harmonic electric

field E0 with frequency ω is modified in this way:

δu(r) = E0 · r
(a
r

)3 (σ1 + iωε1)− (σ0 + iωε0)

2 (σ1 + iωε1) + (σ0 + iωε0)
, (1.2)

where the indices 0 refers to the ambient medium. As we will see in chapter 2, it corresponds to the first

order approximation of the potential u that verifies the equation −∇ · (σ + iωε)∇u = 0 where σ (resp. ε)

is equal to σ1 (resp. ε1) in the sphere and σ0 (resp. ε0) in the exterior. Let us remark that the factor

in formula (1.2) is opposed to the one in (1.1) because the vector r does not point at the same direction,

and the factor 2 in the denominator is due to the fact that we are now in the whole space and not only in

the plane (see section 2.4.1, Proposition 2.4.1). Even if the model has been improved, it is only correct in

an ideal case: the target is a sphere and the field is supposed to be uniform. It is not reasonable because

for example the latter assumption is not true around the tail [29, 28]. The next section will show how the

tools developed recently in mathematical imaging can handle it.

Numerical approaches have also been made since the 70’s: in 1975, Heiligenberg proposes a finite

differences scheme to calculate the field created by the fish [57]. In 1980, Hoshimiya et al. use finite

elements to solve this problem [59]. The geometry of the fish is simplified by an ellipse and is divided
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Figure 1.13: Optimal repartition of the ratio between skin resistivity ρs and body conductivity ρf along
the head-tail axis. Taken from [59].

into two areas: the thin skin with low conductivity and the inside of the body. Their aim is to optimize

conductivity values to approximate as well as possible the experimentally measured field. The result is

that the optimal conductivity is non-uniform, being higher in the tail region (see Figure 1.13).

A lot of improvement has been made since this study (see for example [30, 78, 82, 92]). It is now

well-accepted that the skin conductivity is not uniform (higher in the head) but remains low with regards

to the water conductivity, and that the body conductivity is high. According to Migliaro et al. [82], the

first fact increases the sensitivity of the skin by enhancing the voltage difference and the second extends

and makes uniform the potential near the skin (which is indeed experimentally measured [87]). The relative

error between measures and simulations is around 10%.

Another promising technique is the use of the boundary elements method performed by Assad in 1997

[27]. Indeed the important feature is the electric potential on the skin (because it is the input for the fish),

so a BEM approach allows us to concentrate the equations on it. Moreover, the speed of calculation is

enhanced because the number of nodes is dramatically reduced. The equation considered is here ∆u = 0

on the exterior of the body with Robin boundary conditions on the skin [115]:

u− ξ ∂u
∂n

= ψ, (1.3)

where ψ is the potential inside the body and ξ = h (σ0/σs) (h being the skin thickness, σs the skin

conductivity and σ0 the water conductivity) is the effective skin thickness. In the next section we will show

the validity of this model, which allows us to easily simulate the PMA(see Figure 1.14).

Let us notice that there are other kinds of simulations, based on a more empirical approach, determining

an equivalent electric circuit [36, 39] or an equivalent multipole [42].

To conclude this section, we have seen that weakly electric fish are able to collect data issued from their

self-generated electric field, and to analyze them in order to determine features of scatterers around them.

So far, numerical studies have been made to compute this electric field but with a lot of differences in their

approaches. Our goal here is to analyze quantitatively the equations in order to have a precise forward

problem.

1.2 Overview of the Thesis

1.2.1 Interests and Potential Applications

Even if neuroethology of weakly electric fish is well developped [37], knowing the neural mechanisms

of active electrolocation is far beyond the scope of mathematical modeling. Instead, we should restrict
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Figure 1.14: BEM simulation of the field with an object, the fish’s body being curved. Isopotentials are
depicted by lines (1 mV between each one) and the normalized arrows indicate streamlines. Taken from
[29].

ourselves to a more accessible question. For example, knowing what could be the physical mechanisms is

of major importance for several reasons.

The first one is of course biological. Indeed, it is a sixth sense unknown by a majority of species; its

study unravel marvelous mysteries of Nature.

Bio-inspired engineering is the major motivation for such investigation. As a matter of fact, autonomous

water navigation is the closest application of study [62]. Indeed, it would have numerous applications, for

example for naval mines or UXO (UneXplored Ordnances) detection, oceans and lakes monitoring, etc.

But it would have also other applications, going from medical to geophysical imaging. In fact, as it will be

shown in chapter 2, we are in the context of Electrical Impedance Tomography. Since it is knwon for poor

resolution, the performance of our fishes (see section 1.1.3) are quite impressive. Imitating their strategies

would surely made improvements for this field.

And, last but not least, mathematical sciences would benefit for such knowledge, since it is an inverse

problem. Indeed, given the current distribution over the skin, the problem is to recover the conductivity

distribution in the surrounding space. Due to the ill-posedness character of this type of problems, it is

intriguing to see how much information is the fish able to recover. Thus, modelling this “electric sense”

(called active electrolocation) is likely to give us insights in this regard.

Hence, this will be the central question of the thesis: how can we explain physically the process of active

electrolocation ? How it is possible to locate and differentiate different objects situated near the fish ?

1.2.2 Organization of the Thesis

We propose to answer these questions by means of numerical analysis of the equations involved in the

description of the self-generated electric field.

In chapter 2, we derive these equations and reduce them to a simplified model, taking advantage of the

highly resistive skin and highly conductive body. A dipolar expansion of the transdermal potential is also

computed when a small target is present.
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In chapter 3, an algorithm of localization is designed. It uses the fact that the fish emits several

frequencies; thus, we can locate a target even if the fish is static.

In chapters 4-6, we develop new tools for extracting the relevant geometrical and physical features of

the target. Since it was not performed before, they are described in a more general framework. In chapter 4

the problem of extraction is derived and analyzed. In chapter 5, it is used for shape identification from a

pre-computed dictionary. Finally, in chapter 6, it is used for tracking a mobile target.

In chapter 7, we gather all these tools in order to explain how discriminating objects of different shapes

could be possible. The key points are the multi-frequency aspect of the electric field, and the movement of

the fish, thus giving sense to the PMA described in subsection 1.1.3.

The chronological order of research has been kept on purpose, taking the risk of having to repeat the

notation of chapters 2-3 when returning to the physical model in chapter 7. Indeed, since the first two

chapters represent modeling and localization, whereas chapters 4-7 deal with shape recognition, this order

appears to be more natural.



CHAPTER2

Mathematical Model

The results of this chapter are published in [4].

Abstract

In this chapter, we provide a mathematical model for the electrolocation problem. We first investigate

the forward admittivity equation and derive the approximate boundary conditions on the skin of the

fish. Then we provide a dipole approximation for small targets away from the fish. Finally, numerical

simulations are performed in order to illustrate these results.

2.1 Introduction

Mathematically speaking, the electrolocation process is an inverse problem for the electric field created by

the fish. Indeed, given the current distribution over the skin, the problem is to recover the conductivity

distribution in the surrounding space. Hence, in order to lead a quantitative investigation of this process,

we have to model the electric field precisely. The aim of this chapter is to do so for the particular case of

the electrolocation of an object around the fish.

Two problems arise: the direct problem, i.e., the equations involved and their boundary conditions.

Here, we will make precise the model of Assad [27, 116]. As already mentioned in section 1.1.3, if u denotes

the scalar potential field, it involves the equation ∆u = 0 on the exterior of the body, and Robin boundary

conditions on the skin :

u− ξ ∂u
∂ν

= ψ, (2.1)

where ψ is the potential inside the body and ξ = h(σ0/σs) (h being the skin thickness and σs (resp. σ0)

the skin (resp. water) conductivity) is the effective skin thickness.

The second problem is to image a target. In this perspective, we generalize formula (1.2) to the case

of a non-uniform background electric field, taking into account the distortion induced by the body of the

fish, and with any shape of the target. This approximation will be then very useful in chapter 3 and, in

some way, re-interpreted in chapters 4 and 7.

19
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This chapter is organized as follows. In section 2.2, the physical model is set up and the equations

governing the electric field are introduced and their basic properties analyzed. Using layer potential tech-

niques, the boundary condition (2.1) is rigorously recovered in section 2.3. In subsection 2.4, asymptotic

expansions will be carried out for the electric field in the presence of a small and distant target. Finally,

numerical simulations of the electric field - with or without a target - are performed in section 2.5. Due to

the presence of a hyper-singular operator, a particular attention is paid to the numerical scheme for solving

the direct problem.

2.2 Physical modeling

The aim of this section is to formulate the forward problem. The electromagnetic formulation is introduced

in subsection 2.2.1. The model equations are non-dimensionalized in subsection 2.2.2 and the different

scales identified. Subsection 2.2.3 is devoted to the problem setup. Existence, uniqueness and a useful

representation formula for the solution of the model equations are proved in subsection 2.2.4.

2.2.1 Electromagnetic formulation

In this subsection, we derive the equations governing the electric field. A formal explanation of the elec-

troquasistatic (or EQS) formulation is given.

The electroquasistatic (or EQS) formulation is a low-frequency limit for the Maxwell system in three

dimensions [104]. In the frequency domain, the latter is given by





∇ · εE = ρ,

∇ · B = 0,

∇× E = −iωB,

∇× B

µ
= j + iωεE,

(2.2)

where E is the electric field, B is the magnetic induction field, ρ and j are the free charges and currents, ω

is the frequency, µ is the magnetic permeability, and ε is the electric permittivity. Moreover, in a medium

of conductivity σ, Ohm’s law connects the electric field to the induced current density (ji = σE) so the

total current density can be decomposed as:

j = σE + js,

where js is a source of current (in our model, it comes from the electric organ). Then, taking the divergence

of the last line in (2.2), we have:

∇ · (σ + iεω)E = −∇ · js. (2.3)

The EQS approximation consists of considering the electric field as irrotational because the magnetic field

variation is negligible. A sufficient condition for that is given by [104]:

Lmax

λmin
≪ 1, (2.4)

where Lmax is the maximal length of the problem and λmin the minimal wavelength. Here, we can take

Lmax = 1m because the range of electrolocation does not exceed two body lengths [84]. In the water, the

minimal wavelength is given by

λmin =
1

ωmax
√
µε
,
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where µ ≈ µ0, ε ≈ 80ε0 and ωmax is the maximal frequency emitted by the fish, which is of the order of

10kHz. Thus, the fraction in (2.4) is of order 10−4, so the EQS approximation is very well suited for our

situation.

Going back to the equation of the electric field (2.3), we can now use the fact that E is irrotational to

state that it is derived from a scalar potential field u. This finally leads us to the following equation:

∇ · (σ + iεω)∇u = −∇ · js. (2.5)

To conclude, taking into account the slow variation of the electric field leads us to consider an admittivity

equation (the admittivity being σ + iωε) instead of a conductivity equation (i.e. with σ only). However,

for the rest of this section, the imaginary part of this admittivity will be neglected; indeed measurements

on a Gnathonemus petersii showed that the capacitance (i.e. ωε∗) of the skin, the body, and the water are

very small compared to their respective conductivity [39, 94]. Thus, this EQS approximation will be used

only in the presence of a target: it will be detected by the phase shift induced by its capacitance.

2.2.2 Non-dimensionalization

In this subsection, the setup of the problem is non-dimensionalized. The first step consists in identifying the

different scales of the model problem. The electric potential u, the variables x and ω, and the parameters

σ and js can be written as follows:

u = V0u
′, x = Lx′, ω = ω0ω

′, σ = σ0k, js =
I0
L2
j′s,

where V0 is the voltage produced by an electric organ discharge (EOD), L is the length of the fish, ω0 is the

fundamental frequency of the EOD, σ0 is the conductivity of the surrounding water and I0 is the current

intensity inside the electric organ. Moreover, anticipating the next subsection, the conductivity of the body

and the skin play an important role in the shape of the electric field. Thus, in the list of parameters we

add the conductivity of the body σb, the thickness of the skin δs and its surface conductivity Σ. The orders

of magnitude of these parameters are found in Table 2.1.

Quantity Order of magnitude Reference

V0 10 mV [29, 99]

L 10 cm [84]

ω0 1 kHz [84]

σ0 100 µS·cm−1 [79]

I0 1 mA [32]

σb 1 S·m−1 [94]

Σ 100 µS·cm−2 [39]

δs 100 µm [117]

Table 2.1: Orders of magnitude of the physical quantities involved. These are only scales and not the exact
values measured in the cited references. Here S is Siemens (1S = 1A/1V ).

These n = 8 quantities involve r = 4 fundamental units of the SI system, so according to the

Buckingham-Pi theorem, we need n − r = 4 nondimensional quantities to describe the model problem.

The first one can be found by rewriting the equation (2.5) in terms of the nondimensional quantities

(x′, k, u′, j′s):

∇x′ · k∇x′u′ = − I0
σ0V0L

∇ · j′s. (2.6)

∗It is also called susceptance when it does not come from capacitive effects only, as it is the case here.



22 CHAPTER 2. MATHEMATICAL MODEL
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Figure 2.1: Setup of the problem. The conductivities are non-dimensionalized so that σ0 = 1. The body Ωb,
with boundary Γb and conductivity kb, is the interior of the ellipse. The skin Ωs, with exterior boundary
Γs and conductivity ks, is represented in blue. The sources Js are given by the two dots.

The multiplicative term in the right-hand side of the previous equation is not important as the equation

is linear. The three other nondimensional quantities come from the parameters of the skin and the body

of the fish:

kb :=
σb
σ0
∼ 102, ks :=

hΣ

σ0
∼ 10−2, h :=

δs
L
∼ 10−3.

In other words, in nondimensional units, kb (resp. ks) is the body (resp. skin) conductivity and h is the

skin thickness.

To conclude, omitting the prime symbol for the sake of clarity and denoting by kbJs the source term in

equation (2.6), the governing PDE is the following

∇ · k∇u = kbJs, (2.7)

where k is piecewise constant, being equal to 1 in the water, kb inside the body of the fish and ks in the

skin. These domains will be specified in the next subsection.

For the sake of simplicity, from now on, we only consider the model equations in two dimensions.

2.2.3 Problem setup

The setup is as follows: the body occupies a fixed smooth open set Ωb and the skin with constant thickness

is denoted by Ωs. The source of the electric field is a sum of Dirac functions:

Js =
m∑

j=1

αjδx(j)
s
, (2.8)

where, for 1 ≤ j ≤ m, x
(j)
s ∈ Ωb and Js satisfies the charge neutrality condition

m∑

j=1

αj = 0. (2.9)

Although condition (2.9) is the physical condition in our model, we will show how to modify the derivations

and the results of the paper in the general case. An illustration is given in Figure 7.3.
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Our main purpose is to investigate the behavior of the solution of (2.7) with

k(x) =





ks if x ∈ Ωs,

kb if x ∈ Ωb,

1 otherwise,

(2.10)

where ks 6= 1 and kb 6= ks. Let ξ be the effective thickness given by [116]:

ξ :=
h

ks
. (2.11)

In order to make the dependence of the solution on h and kb clear (ξ being fixed), let us denote such

a solution by uh,kb . Adding a far field condition (essential for uniqueness, see subsection 2.2.4), it is the

solution of {
∇ · k∇uh,kb = kbJs, x ∈ R

2,

|uh,kb| = O(|x|−1), |x| → ∞ uniformly in x̂,
(2.12)

where x̂ := x/ |x| and k(x) is given by (2.10).

In the next subsection, we analyze equation (2.12) and show that there exists a unique solution that

can be represented as the sum of a harmonic function and two single-layer potentials.

2.2.4 Existence, uniqueness, and representation of the electric potential

We first prove the uniqueness of the solutions of (2.12) and then we derive a representation formula, which

will give us the existence of the solution. For the moment, h and kb are fixed, but we suppose that:

ks < 1 < kb. (2.13)

Uniqueness

The uniqueness comes from the second line of (2.12) [20]. Indeed, let v = u1−u2, where u1 and u2 are two

solutions of (2.12) and let us show that v = 0. From (2.13) we get, for R sufficiently large (so that the ball

with center 0 and radius R encompasses Ωs):

ˆ

|x|<R
|∇v|2 ≤ 1

ks

ˆ

|x|<R
k(x) |∇v|2 =

1

ks

ˆ

|x|=R
v
∂v

∂ν
= − 1

ks

ˆ

|x|>R
|∇v|2 ≤ 0.

Here we have used the fact that ∇v ∈ L2(R2 \Ωs), which holds as a consequence of the far field condition.

A unique continuation argument shows that |∇v|2 = 0 in R
2 and thus v is constant. Then, using the fact

that v → 0 as |x| → ∞, we have v = 0.

Existence and representation

The existence is given by a representation formula decomposing the solution into a source part and a

refraction part. This refraction part implies layer potentials on the boundaries of the body and the skin.

Let us define them explicitly and give some well-known results. First, let us introduce the following

boundaries:

Γb := ∂Ωb and Γs := ∂Ωs \ Γb,

and assume that they are of class C1,η for some η > 0. In the following, the index β stands for the subscript

b or s. The single- and double-layer potentials on Γβ are operators that map any ϕ ∈ L2(Γβ) to Sβϕ and
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Dβϕ, respectively, where

Sβ := SΓβ
with (SΓϕ)(x) :=

ˆ

Γ
G(x− s)ϕ(s)ds,

Dβ := DΓβ
with (DΓϕ)(x) :=

ˆ

Γ

∂G

∂νs
(x− s)ϕ(s)ds,

(2.14)

where G is the fundamental solution of the Laplacian in R
2:

G(x) :=
1

2π
ln |x|, x 6= 0. (2.15)

For ϕ ∈ L2(Γβ), the functions Sβϕ and Dβϕ are harmonic functions in R
2 \ Γβ; their singularities hold on

Γβ. To describe these singularities, we define, for a function w defined in R
2 \ Γβ and x ∈ Γβ:

w(x)|± := lim
t→0

w(x± tν(x)),

∂w

∂ν
(x)

∣∣∣∣
±

:= lim
t→0
∇w(x± tν(x)) · ν(x).

Across the boundary Γβ, the following trace relations hold [20]:

Sβϕ|+ = Sβϕ|− ,
∂Sβϕ
∂ν

∣∣∣∣
±

=

(
±1

2
I +K∗

β

)
ϕ,

Dβϕ|± =

(
∓1

2
I +Kβ

)
ϕ,

∂Dβϕ

∂ν

∣∣∣∣
+

=
∂Dβϕ

∂ν

∣∣∣∣
−

.

(2.16)

Here, for a C1,η-boundary Γβ, the operator Kβ and its L2-adjoint K∗
β are given by

Kβ := KΓβ
with (KΓβ

ϕ)(x) :=
1

2π

ˆ

Γβ

〈(s − x), ν(s)〉
|x− s|2

ϕ(s)ds , x ∈ Γβ,

K∗
β := K∗

Γβ
with (K∗

Γβ
ϕ)(x) :=

1

2π

ˆ

Γβ

〈(s − x), ν(x)〉
|x− s|2

ϕ(s)ds , x ∈ Γβ,

(2.17)

where 〈, 〉 denotes the scalar product in R
2. From (2.16) it follows that the following jump formulas hold:

∂Sβϕ
∂ν

∣∣∣∣
+

− ∂Sβϕ
∂ν

∣∣∣∣
−

= ϕ and Dβϕ|+ − Dβϕ|− = −ϕ.

The following invertibility result is useful [50, 68, 105].

Theorem 2.2.1. Suppose that Γβ is C1,η for some η > 0. Then the operator λI − K∗
β is invertible on

L2
0(Γβ) := {ϕ ∈ L2(Γβ) :

´

Γβ
ϕ = 0} if |λ| ≥ 1/2, and for λ ∈ (−∞,−1/2] ∪ (1/2,+∞), λI − K∗

β is

invertible on L2(Γβ).

Let us remark here that, when ∂Ω is connected, it is admitted to use the simplified notations SΩ, DΩ

and KΩ [23].

With these essentials tools, we can now prove the following decomposition formula in the same spirit

as in [66]:
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Lemma 2.2.2. The solution of problem (2.12), with Js given by (2.8), can be written as

u(x) = ps(x) + (Ssϕ̃s)(x) + (Sbϕb)(x), (2.18)

where

ps(x) =

m∑

j=1

αjG(x− x(j)s ), (2.19)

and the pair (ϕ̃s, ϕb) ∈ L2(Γs)× L2(Γb) is uniquely determined by the system





(λsI −K∗
s)ϕ̃s −

∂Sbϕb

∂ν
=
∂ps
∂ν

, x ∈ Γs,

(λbI −K∗
b )ϕb −

∂Ssϕ̃s

∂ν
=
∂ps
∂ν

, x ∈ Γb.

(2.20)

Here, λb and λs are given by

λs :=
ks + 1

2(ks − 1)
and λb :=

ks + kb
2(ks − kb)

. (2.21)

Moreover, the decomposition (2.18) of u into a source part ps and a refraction part Ssϕ̃s + Sbϕb is unique.

Proof. The system (2.12) is equivalent to the following transmission problem [3]:





∆u = Js, x ∈ R
2 \ (Γb ∪ Γs),

u|+ − u|− = 0, x ∈ Γb ∪ Γs,

ks
∂u

∂ν

∣∣∣∣
+

− kb
∂u

∂ν

∣∣∣∣
−

= 0, x ∈ Γb,

∂u

∂ν

∣∣∣∣
+

− ks
∂u

∂ν

∣∣∣∣
−

= 0, x ∈ Γs,

|u| = O(|x|−1), |x| → ∞, uniformly in x̂.

(2.22)

The existence of a solution (ϕ̃s, ϕb) to (2.20) comes from the fact that |λs|, |λb| ∈ (1/2,+∞) and Theorem

2.2.1. On the other hand, the functions Ssϕ̃s and Sbϕb are harmonic in Ωb, and according to the definition

of ps, we have ∆u = Js in Ωb. In Ωs and R
2 \Ωs ∪Ωb, all these functions are harmonic so we have ∆u = 0.

The trace relations on Γb and Γs are then given by the singularities (2.16) of Ss and Sb (see [20]) since ps
is smooth away from the points x

(j)
s . Finally, all these functions are controlled by |x|−1 when |x| → ∞. In

this way, the existence of a solution to (2.12) is proved.

To prove the uniqueness of the decomposition, let us take ϕ̃s
′ and ϕ′

b such that

ps + Ssϕ̃s + Sbϕb = ps + Ssϕ̃s
′ + Sbϕ′

b.

Because of the location of the singularities, the function Ss(ϕ̃s− ϕ̃s
′) = Sb(ϕ′

b−ϕb) is harmonic in Ωs ∪Ωb,

which gives by the jump formula for the normal derivative of Sb on Γb that ϕb = ϕ′
b. Finally, applying the

jump formula for the normal derivative of Ss on Γs, we have ϕ̃s = ϕ̃s
′. �

2.3 Thin resistive skin and highly conductive body asymptotic

In this section, we derive the appropriate boundary conditions associated with the presence of a very thin

and very resistive skin. Robin boundary conditions will be found after an asymptotic analysis of the layer

potentials involved.

We assume that Ωs is described as:

Ωs :=
{
x+ tν(x), x ∈ ∂Ωb, 0 < t < h

}
,
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where ν is the outward normal unit vector and consider the following asymptotic regime:

ks =
h

ξ
, ξ is fixed, h→ 0, and kb →∞ (so ks → 0), (2.23)

where ξ is the effective thickness. We compute the first-order asymptotic u0,∞ of uh,kb as h → 0 and

kb → +∞ and see that it is the solution of the following system:





∆u0,∞ = Js, x ∈ Ωb,

∆u0,∞ = 0, x ∈ R
2 \ Ωb,

u0,∞|+ − u0,∞|− = ξ
∂u0,∞
∂ν

∣∣∣∣
+

, x ∈ ∂Ωb,

∂u0,∞
∂ν

∣∣∣∣
−

= 0, x ∈ ∂Ωb,

|u0,∞| = O(|x|−1), |x| → ∞, uniformly in x̂.

(2.24)

Here, the subscripts + and − represent the limit from outside and inside Ωb, respectively. Note that in the

limiting model (2.24), the role of Js is to fix the potential u0,∞
∣∣
−

on ∂Ωb.

For the system (2.24), Lemma 2.2.2 yields the following result.

Lemma 2.3.1. Assume that (2.9) holds. The solution of problem (2.24) can be written as

u(x) = ps(x)− 1

ξ
(Sbϕ)(x) + (Dbϕ)(x), (2.25)

where ξ is defined by (2.11), ps is given by (2.19), and ϕ ∈ L2
0(Γb) := {φ ∈ L2(Γb) :

´

Γb
φ = 0} is given by

the following integral equation:

1

ξ

(
1

2
I −K∗

b

)
ϕ+

∂Dbϕ

∂ν
= −∂ps

∂ν
, x ∈ Γb. (2.26)

The decomposition (2.25) of u into a source part and a refraction part is unique.

The proof of this lemma involves exactly the same arguments as in the previous one: jump formulas

applied to the operators.

The decomposition formulas (2.18) and (2.25) will be essential in the next part to derive an asymptotic

expansion of uh,kb as h→ 0 and kb →∞. To be more precise, we prove the following theorem:

Theorem 2.3.2. There exists a constant C independent of h and kb such that the following inequality

holds for h and 1/kb small enough:

‖uh,kb − u0,∞‖L∞(R2) ≤ C
(
h+

1

kb

)
, (2.27)

where uh,kb and u0,∞ are the solutions of (2.12) and (2.24), respectively.

For doing so, we will perform asymptotic analysis of the layer potentials introduced in the representation

formula (2.25) as h → 0 and kb → +∞ and show that the limiting function is the solution of (2.24). We

will adapt the work done by Zribi in his thesis [118] and by Zribi and Khelifi in [69]. We will use the

decomposition formula for uh,kb and compute asymptotic expansions of the refraction part. The limiting

solution will then be u0,∞. This latter is well defined if the limits h→ 0 and kb →∞ are independent, so

we must seek the two following limits:

lim
kb→∞

lim
h→0

uh,kb and lim
h→0

lim
kb→∞

uh,kb ,
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and show that they are the same. Zribi [118, chapter 3] studied the case when kb remains fixed, with

non-uniform thickness of the skin Ωs; the limit u0,1 is the solution of the system:





∆u0,1 = Js, x ∈ Ωb,

∆u0,1 = 0, x ∈ R
2 \Ωb,

u0,1|+ − u0,1|− = −ξ ∂u0,1
∂ν

∣∣∣∣
+

, x ∈ ∂Ωb,

∂u0,1
∂ν

∣∣∣∣
+

− kb
∂u0,1
∂ν

∣∣∣∣
−

= 0, x ∈ Ωb,

|u0,1| = O(|x|−1), |x| → ∞, uniformly in x̂.

(2.28)

Here, we will follow the same outline for the proof: first we will remind the asymptotic expansions of the

operators involved in (2.20), and then we will match the asymptotic expansions for ϕ̃s and ϕb.

2.3.1 Asymptotic expansions of the operators

In the decomposition formula (2.18), ps is independent of h and kb; we just have to analyze the dependence

of ϕ̃s and ϕb. Remark that from (2.20)

• the dependence on kb is carried only by λb since Sb and K∗
b depend only on the shape of Ωb;

• the dependence on h is carried by λs, Ss, K∗
s and ∂/∂ν(x) for x ∈ Γs.

In this subsection, we will focus on the asymptotic expansions of the operators (the limits of λs and λb
are obvious). They have been performed in [25, 118]; in order to apply this proof, we first need some

assumptions.

Suppose Γb is defined in the following way:

Γb := g (∂B) ,

where g is a C3,η diffeomorphism of the unit sphere ∂B := ∂B(0, 1) for some η > 0. Moreover, we suppose

that the function Xg : [0, 2π]→ R
2 defined by

Xg = g

((
cos t

sin t

))
,

is such that
∣∣X ′

g(t)
∣∣ = 1 for all t ∈ [0, 2π]. Thus, Xg is a C2,η arclength counterclockwise parametrization

of Γb. Then the outward unit normal to Ωb, ν(x) at x = Xg(t), is given by

ν(x) = R−π
2
X ′

g(t),

where R−π
2

is the rotation by −π/2. The tangential vector T (x) at x = Xg(t) is defined by

T (x) = X ′
g(t),

and X ′
g(t)⊥X ′′

g (t). The curvature τ(x) at x = Xg(t) is defined by

X ′′
g (t) = τ(x)ν(x).

Let Ψh be the diffeomorphism from Γb onto Γs given by

Ψh(x) = x+ hν(x). (2.29)

With these assumptions, the following regularity result holds [72]:
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Theorem 2.3.3. Let η > 0. Let, for a Lipschitz function g ∈ C0,1
(
∂B,R2

)
,

l∂B [g] := inf
x 6=y∈∂B

∣∣∣∣
g(x)− g(y)

x− y

∣∣∣∣ .

Introduce the set A∂B of admissible diffeomorphisms of the unit sphere:

A∂B :=
{
g ∈ C1(∂B,R2), l∂B[g] > 0

}
.

Then, for any integer m > 0, the operators S and D defined on
(
Cm,η(∂B,R2) ∩ A∂B

)
× Cm−1,η(∂B)

(
(
Cm,η(∂B,R2) ∩ A∂B

)
× Cm,η(∂B), respectively) to Cm,η(∂B) by

S[g, ϕ](x) :=Sg(∂B)(ϕ ◦ g−1) ◦ g(x), x ∈ ∂B,
D[g, ϕ](x) :=Dg(∂B)(ϕ ◦ g−1) ◦ g(x), x ∈ ∂B,

are real analytic in joint variables g and ϕ.

Moreover, we have explicit formulas for the derivatives with respect to the variable g [72].

Then, we have the following asymptotic expansions [25, 118]:

Proposition 2.3.4. Let ϕ ∈ C1,η(Γb) and ψ̃ ∈ C1,η(Γs) for some η > 0. Then, we have the following

asymptotic expansions for x ∈ Γb:

(
K∗

sψ̃
)
◦Ψh(x) = K∗

bψ(x) + hK(1)
b ψ(x) +O(h2),

∂Sbϕ
∂ν

◦Ψh(x) =

(
1

2
I +K∗

b

)
ϕ(x) + hRbϕ(x) +O(h1+η),

∂Ssψ̃
∂ν

(x) =

(
−1

2
I +K∗

b

)
ψ(x) + hLbψ(x) +O(h1+η),

(2.30)

where ψ := ψ̃ ◦Ψh, Ψh being defined by (2.29), and

K(1)
b ψ(x) = τ(x)K∗

bψ(x) −K∗
b (τψ)(x) − d2Sbψ

dt2
(x) +

∂Dbψ

∂ν
(x),

Rbϕ(x) = τ(x)

(
1

2
I +K∗

b

)
ϕ(x) − d2Sbϕ

dt2
(x),

Lbψ(x) =

(
1

2
I −K∗

b

)
(τψ)(x) +

∂Dbψ

∂ν
(x),

(2.31)

where d/dt is the tangential derivative in the direction of T (x) = X ′
g ◦X−1

g (x).

Note that, according to Theorem 2.3.3, the constants in the O(h1+η) terms depend on ‖g‖C3,η .

Moreover, since the thickness of Ωs is uniform, we have ν ◦Ψh(x) = ν(x), and a Taylor expansion of ps
gives, for x ∈ Γb:

∂ps
∂ν
◦Ψh(x) =

∂ps
∂ν

(x) + hν(x) ·
[
D2ps(x)ν(x)

]
+O(h2), (2.32)

where D2ps denotes the Hessian of ps.

2.3.2 Asymptotic expansions on the layers

In order to prove Theorem 2.3.2, we will first show the convergence on the layers (see next lemma). Then,

in the next subsection, we will extend the domain of validity by application of the maximum principle.

The following lemma holds.
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Lemma 2.3.5. There exist constants C and C ′ independent of h and kb such that the following inequalities

hold for h and 1/kb small enough:

‖uh,kb − u0,∞‖L∞(Γb)
≤ C

(
h+

1

kb

)
,

‖uh,kb − u0,∞‖L∞(Γs)
≤C ′

(
h+

1

kb

)
,

(2.33)

where uh,kb and u0,∞ are solutions of (2.12) and (2.24), respectively.

Proof. Only the first limit will be shown, the second one being very similar. For this purpose, we must

show that the limits h → 0 and kb → ∞ are independent, i.e., they commute. First, let us compute the

limit of uh,kb when h → 0, and then the limit kb → ∞ (which will be much easier). Then, we will invert

this process.

This first limit is the main problem in [118, chapter 3], except that, in that study, kb = 1 and the

thickness of Ωs is non-uniform. According to theorem 2.3.3, the formulas in [72], and by composition with

the regular diffeomorphism Ψh from Γs to Γb, we have
∥∥∥∥Ssϕ̃s − Sbϕs − h

[(
−1

2
I +Kb

)
ϕs − Sb(τϕs)

]∥∥∥∥
C2,η(Γb)

≤ Ch2,

where ϕs := ϕ̃s ◦ Ψh. Hence, with the help of the decomposition formula (2.18), we have the following

asymptotic expansion uniformly on Γb:

uh,kb(x) = ps(x) + Sb(ϕb + ϕs)(x) + h

[(
−1

2
I +Kb

)
ϕs(x)− Sb(τϕs)

]
(x) +O(h2), (2.34)

We now look for expansions of the functions ϕs and ϕb when h→ 0 that will be re-injected in this equation.

Using Proposition 2.3.4 and (2.20), these functions are solutions of the following system:





ks
ks − 1

ϕs −
(

1

2
I +K∗

b

)
(ϕs + ϕb) + h

[
−K(1)

b ϕs −Rbϕb

]
+O(h1+η) =

∂ps
∂ν

+ h
[
ν ·D2psν

]
+O(h2),

ks
ks − kb

ϕb +

(
−1

2
I +K∗

b

)
(ϕs + ϕb) + hLbϕs +O(h1+η) = −∂ps

∂ν
.

(2.35)

Let us define the formal asymptotic expansions:




ϕs =
1

h
ϕ(−1)
s + ϕ(0)

s + hϕ(1)
s + . . . ,

ϕb =
1

h
ϕ
(−1)
b + ϕ

(0)
b + hϕ

(1)
b + . . . .

Aiming to have the 0-order term in the expansion (2.34), here we seek for the terms of order −1 and 0. By

substitution into (2.35) and identification of the leading-order terms in the first line, we get:
(

1

2
I +K∗

b

)(
ϕ(−1)
s + ϕ

(−1)
b

)
= 0,

so that, by Theorem 2.2.1, we have:

ϕ(−1)
s + ϕ

(−1)
b = 0. (2.36)

Let us now look at the 0-order terms; summing the two lines of (2.35), we get:

1

ξ

(
ϕ(−1)
s +

1

kb
ϕ
(−1)
b

)
+ (ϕ(0)

s + ϕ
(0)
b ) +

[
K(1)

b ϕ(−1)
s +Rbϕ

(−1)
b − Lbϕ(−1)

s

]
= 0,
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which gives, with the help of (2.31) and (2.36),

ϕ(0)
s + ϕ

(0)
b =

[(
1

kb
− 1

)
1

ξ
+ τ

]
ϕ(−1)
s . (2.37)

This quantity is what we need in (2.34); thus, only ϕ
(−1)
s remains to be found. This can be done by

matching 0-order terms in the first line of (2.35) and using the definitions of K(1)
b and Rb given by (2.31):

1

ξ
ϕ(−1)
s +

1

ξ

(
1

kb
− 1

)(
1

2
I +K∗

b

)
ϕ(−1)
s +

∂Dbϕ
(−1)
s

∂ν
= −∂ps

∂ν
. (2.38)

Finally, the expansion (2.34) yields:

uh,kb(x) = ps(x) +

[
1

ξ

(
1

kb
− 1

)
Ss +

(
−1

2
I +Kb

)]
ϕ(−1)
s (x) +O(h). (2.39)

This leading-order term (denoted u0,kb) verifies (2.28) according to (2.38) and jump formulas (2.16).

The asymptotic kb →∞ does not add further difficulty. Indeed, let us define the following asymptotic:

ϕ(−1)
s = ϕ(−1,0)

s +
1

kb
ϕ(−1,1)
s + . . . .

By substitution into equation (2.38) and identification of the leading-order terms, we get:

1

ξ

(
1

2
I −K∗

b

)
ϕ(−1,0)
s +

∂Dbϕ
(−1,0)
s

∂ν
= −∂ps

∂ν
,

and then the expansion (2.39) becomes:

uh,kb(x) = ps(x)− 1

ξ
Ssϕ(−1,0)

s (x) +

(
−1

2
I +Kb

)
ϕ(−1,0)
s (x) +O (h) , (2.40)

which is (2.25) applied on Γb according to the jump formula of Db (2.16). Hence, according to lemma 2.3.1,

the first-order asymptotic of uh,kb is u0,∞.

Let us now show that the limits h → 0 and kb → ∞ commute: unlike in the previous subsection, we

will first perform the limit kb →∞ and then the limit h→ 0. Given the fact that

λb = −1

2
+O

(
1

kb

)
,

the definition of ϕ̃s and ϕb in (2.20) will be affected only in the second line. Indeed, with the following

expansions: 



ϕ̃s = ϕ̃(0)
s +

1

kb
ϕ̃(1)
s + . . . ,

ϕb = ϕ
(0)
b +

1

kb
ϕ
(1)
b + . . . ,

this second line becomes, at the leading order:
(
−1

2
I +K∗

b

)
(ϕ(0)

s + ϕ
(0)
b ) + hLbϕ(0)

s +O(h1+η) = −∂ps
∂ν

,

where ϕ
(0)
s := ϕ̃s

(0) ◦Ψh. With the expansion:





ϕ(0)
s =

1

h
ϕ(0,−1)
s + ϕ(0,0)

s + hϕ(0,1)
s + . . . ,

ϕ
(0)
b =

1

h
ϕ
(0,−1)
b + ϕ

(0,0)
b + hϕ

(0,1)
b + . . . ,
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the identifications (2.36), (2.37), and (2.38) respectively become:

ϕ(0,−1)
s + ϕ

(0,−1)
b = 0, (2.41)

ϕ(0,0)
s + ϕ

(0,0)
b =

[
τ − 1

ξ

]
ϕ(0,−1)
s , (2.42)

1

ξ

(
1

2
I −K∗

b

)
ϕ(0,−1)
s +

∂Dbϕ
(0,−1)
s

∂ν
= −∂ps

∂ν
. (2.43)

Finally, recalling that the expansion of uh,kb in (2.34) is conductivity-independent, we obtain the same

expansion (2.40). �

2.3.3 Proof of Theorem 2.3.2

With the estimates (2.33) on the layers Γb and Γs, we are now ready to prove the estimate (2.27) on the

whole space applying the maximum principle.

For the sets Ωb and Ωs, it is straightforward: the function uh,kb − u0,∞ is harmonic in these bounded

domains, so the maximum is reached on the boundaries [101]. And, since this maximum is dominated by

h and 1/kb, we have:

‖uh,kb − u0,∞‖L∞(Ω̄b∪Ωs)
≤ C

(
h+

1

kb

)
.

For the exterior domain, we cannot apply directly the maximum principle since this domain is unbounded.

However, the conditions at infinity in the systems (2.12) and (2.24) allow us to have a similar control.

Indeed, this condition tells us that

‖uh,kb − u0,∞‖L∞(B(0,R)) = O(R−1). (2.44)

We take:

ε :=
1

2
‖uh,kb − u0,∞‖L∞(Ω̄b∪Ωs)

,

and choose R0 such that, for R ≥ R0, the right-hand side of (2.44) is bounded by ε. Then, we have:

‖uh,kb − u0,∞‖L∞(R2\B(0,R0))
≤ ε.

Now, only the bounded domain B(0, R0) \
(
Ωb ∪ Ωs

)
remains, where we can apply the maximum principle.

Thus, Theorem 2.3.2 is proved.

2.3.4 Final formulation and notation

In the previous subsections, we have performed a multi-scale analysis of the problem to identify the effective

equations with boundary conditions. In order to make things clear, let us summarize the results and simplify

the notation.

The electric potential emitted by the fish is the solution of the complex-conductivity equation (2.7)

with boundary conditions given by the system (2.24). It is easy to see that in the case of an inhomogeneity

outside the body, these boundary conditions will not be changed because the asymptotics are done with

the layer potentials of the domains defining the fish.
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Hence, we conclude this section by summing up the results: omitting all the subscripts, the electric

potential u is the solution of the system





∆u = Js, x ∈ Ω,

∇ · (1 + (k − 1 + iεω)χD)∇u = 0, x ∈ R
2 \ Ω,

u
∣∣
+
− u
∣∣
−
− ξ ∂u

∂ν

∣∣∣∣
+

= 0, x ∈ Γ,

∂u

∂ν

∣∣∣∣
−

= 0, x ∈ Γ,

|u| = O(|x|−1), |x| → ∞, uniformly in x̂,

(2.45)

where Γ := ∂Ω, χD is the characteristic function of the target D, k + iεω is the conductivity inside D, ω

is the frequency, and k and ε are positive constants. Here, we have assumed that
∑m

j=1 αj = 0.

2.3.5 The case of non-neutral charges in the body

We conclude this section by listing the modifications to our results and formulas in the case where the

neutral charge condition (2.9) does not hold.

First, the far field condition in (2.12) should be replaced with
∣∣∣∣∣∣
uh,kb − (

m∑

j=1

αj)
(λb + 1/2)(λs + 1/2)

2π(λb − 1/2)(λs − 1/2)
log |x|

∣∣∣∣∣∣
= O(|x|−1), |x| → ∞ uniformly in x̂, (2.46)

where the parameters λs and λb are given by (2.21). In order to check this far field condition, recall that

Kb(1) = Ks(1) = 1/2. From

ˆ

Γb

∂Sbϕb

∂ν

∣∣∣∣
+

=

ˆ

Γb

ϕb,

ˆ

Γs

∂Ssϕ̃s

∂ν

∣∣∣∣
−

= 0,

ˆ

Γs

∂ps
∂ν

=

ˆ

Γb

∂ps
∂ν

=
m∑

j=1

αj ,

by integrating the two equations in (2.20) on Γs and Γb, respectively, we find that

ˆ

Γs

ϕ̃s = (
m∑

j=1

αj)
(λb + 1/2)

(λs − 1/2)(λb − 1/2)
and

ˆ

Γb

ϕb =

∑m
j=1 αj

λb − 1/2
,

and therefore, from the representation formula (2.18) it follows that
∣∣∣∣∣∣
uh,kb − (

m∑

j=1

αj)
(λb + 1/2)(λs + 1/2)

2π(λb − 1/2)(λs − 1/2)
log |x|

∣∣∣∣∣∣
= O(|x|−1), |x| → ∞ uniformly in x̂.

Note that in the limit h → 0 and kb →∞, it follows from (2.21) that λb → −1/2, λs → −1/2, and hence,

the far field condition above yields

|u0,∞| = O(|x|−1), |x| → ∞ uniformly in x̂, (2.47)

as stated in (2.24).

Moreover, in the case of non-neutral charges in the body, Lemma 2.2.2 holds, where the solution of

(2.22) verifies the far field condition
∣∣∣∣∣∣
u− (

m∑

j=1

αj)
(λb + 1/2)(λs + 1/2)

2π(λb − 1/2)(λs − 1/2)
log |x|

∣∣∣∣∣∣
= O(|x|−1), |x| → ∞ uniformly in x̂.
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Analogously, Lemma 2.3.1 holds. However, (2.26) should be replaced with

1

ξ

(
1

2
I −K∗

b

)
ϕ+

∂Dbϕ

∂ν
= −∂ps

∂ν
+

1

|Γb|
m∑

j=1

αj , x ∈ Γb.

Note that since
ˆ

Γb

∂ps
∂ν

=

m∑

j=1

αj,

the far field condition (2.47) is satisfied for the limiting solution u0,∞ in the non-neutral case.

On the other hand, if the assumption (2.9) does not hold, then the boundary condition on ∂u0,∞/∂ν
∣∣
−

should be replaced with

∂u0,∞
∂ν

∣∣∣∣
−

=
1

|∂Ωb|
m∑

j=1

αj.

Analogously, we should replace in (2.45) the boundary condition ∂u/∂ν
∣∣
−

= 0 on Γ with

∂u

∂ν

∣∣
−

=
1

|Γ|
m∑

j=1

αj.

From now on, we restrict ourselves to the case
∑m

j=1 αj = 0. Note that taking two points z1 and z2 ∈ Ω

close enough and α1 = −α2 6= 0 yields an approximation of a dipole at (z1 + z2)/2 of moment |α1| and

direction orthogonal to (z1 − z2).

2.3.6 Multi-frequency measurements

Let us suppose that the electric current produced by the electric organ, (i.e., the source term Js in equation

(2.45)) is time periodic and separable, that is

Js(x, t) = Js(x)h(t),

where Js is a sum of Dirac functions and h(t) is periodic with fundamental frequency ω0. Hence, we set

h(t) =

Nf∑

f=1

hfe
inω0t, (2.48)

so that all frequencies involved are less than Nfω0, assuming that we remain in the low-frequency regime,

see [84]. According to the previous section, the electric potential u is then given by

u(x, t) =

Nf∑

f=1

hfufe
inω0t, (2.49)

where uf , for f = 1, . . . , Nf , is solution of the following system





∆uf = Js, x ∈ Ω,

∇ · (1 + (k − 1 + iεfω0)χD)∇uf = 0, x ∈ R
2 \ Ω,

uf
∣∣
+
− uf

∣∣
−
− ξ ∂uf

∂ν

∣∣∣∣
+

= 0, x ∈ Γ,

∂uf
∂ν

∣∣∣∣
−

= 0, x ∈ Γ,

|uf | = O(|x|−1), |x| → ∞, uniformly in x̂,

(2.50)
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2.4 Perturbation Induced by the Presence of a Target

In this section, we derive useful formulas in order to simplify the data. For the sake of simplicity, only one

target D will be considered. However, we will see in section 2.5 that it can be easily extended to the case

of several inclusions.

2.4.1 A Dipolar Expansion in the Presence of a Target

The first formula, given in Proposition 2.4.1, is often called a dipolar expansion; indeed, in the presence of

a small inhomogeneity, the perturbation of the electric potential looks like the electric potential of a dipole

[19, 40]. More precisely, using exactly the same arguments as in [19, Chapter 4] and in [17] we have the

following result.

Proposition 2.4.1. Let us denote U the static background solution, i.e., the electric potential without any

target which does not depend on the frequency. To be more precise, it is the solution of (2.50) with a

constant conductivity equal to 1 outside the body Ω.

If D := z + δB with dist(z,Γ)≫ 1, δ ≪ 1 and B is an open set, then we have, for x ∈ ∂Ω,

∂(uf − U)

∂ν

∣∣∣∣
+

(x) ≃ δ2∇U(z)TM(λf , B)∇z

(
∂GR

∂νx

∣∣∣∣
+

)
(x, z), (2.51)

where T denotes the transpose, kf = k + iεω0f is the admittivity of the target at the frequency fω0,

M(λf , B) = (Mαβ(λf , B))α,β=1,2 is the first-order polarization tensor associated to B with admittivity kf
[20]:

Mαβ(λf , B) :=

ˆ

∂B
(λf I −K∗

B)−1(να)yβ ds(y), λf :=
kf + 1

2(kf − 1)
, α, β = 1, 2,

and GR is the Green function associated to Robin boundary conditions, which is defined for z ∈ R
2 \Ω by





∆xGR(x, z) = δz(x), x ∈ R
2 \Ω,

GR|+ − ξ
∂GR

∂νx

∣∣∣∣
+

= 0, x ∈ Γ,

∣∣∣∣GR +
1

2π
log |x|

∣∣∣∣ = O(|x|−1), |x| → ∞, uniformly in x̂.

(2.52)

Proof. Let

Hf = −SΓ(
∂uf
∂ν

∣∣
+

) +DΓ(uf
∣∣
+

).

We have

uf − U = −(kf − 1)

ˆ

D
∇uf · ∇GR,

and on the other hand,

uf −Hf = −(kf − 1)

ˆ

D
∇uf · ∇G.

From the transmission condition

∂uf
∂ν

∣∣
+
− kf

∂uf
∂ν

∣∣
−

= 0 on ∂D,

it follows that

uf − U =

ˆ

∂D
(λfI −K∗

∂D)−1(
∂Hf

∂ν
)GR. (2.53)

Since

‖∇Hf −∇U‖L∞(D) ≤ Cδ2,
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for some constant C, provided that dist(D, ∂Ω) ≫ δ, see [19, Proposition 4.6], a scaling of the integral

in (2.53) together with a Taylor expansion of GR gives the desired asymptotic expansion. Note that the

approximation in (2.51) is uniform in x and kf [20]. �

2.4.2 Post-processing

Now, we will carry on a second formula in order to simplify this equation. Indeed, the Green function

associated to Robin boundary conditions is tedious to compute. Instead, we will post-process the data

thanks to the following lemma which generalizes Lemma 2.15 in [19].

Lemma 2.4.2. Let G denote the fundamental solution defined by (2.15). For z ∈ R
2 \ Ω and x ∈ Γ, let

Gz(x) = G(x− z) and GR,z(x) = GR(x− z). Then
(

1

2
I −K∗

Γ − ξ
∂DΓ

∂ν

)(
∂GR,z

∂νx

)
(x) =

∂Gz

∂νx
(x).

Proof. Employing the same argument as in Lemma 2.3.1 yields

GR,z = Gz +
1

ξ
(SΓϕ) +DΓϕ− SΓ(

∂Gz

∂ν
)− ξDΓ(

∂Gz

∂ν
),

where ϕ = ξ
∂GR,z

∂ν

∣∣
+

. Therefore, taking the normal derivative of the above identity and using the trace

relations (2.16) give the result. ✷

2.5 Numerical simulations

This section is devoted to the computation of the electric field around the fish.

2.5.1 Direct Solver

The case without target

The electric field U generated by the fish is the function u0,∞ treated in section 2.2. Let us recall that it

is the solution of the following system:




∆U = Js, x ∈ Ω,

∆U = 0, x ∈ R
2 \ Ω,

U
∣∣
+
− U

∣∣
−
− ξ ∂U

∂ν

∣∣∣∣
+

= 0, x ∈ Γ,

∂U

∂ν

∣∣∣∣
−

= 0, x ∈ Γ,

|U | = O(|x|−1), |x| → ∞, uniformly in x̂.

(2.54)

Numerical simulations will be done using a boundary element method (BEM). Indeed, we need accuracy

on the skin of the fish, and the jumps at the boundaries are too difficult to handle with a finite element

method. Moreover, it reduces the number of discretization points, resulting in a much faster algorithm.

This BEM simulation relies on the representation formula for U in terms of the layer potentials. From

Lemma 2.3.1, we have U = ps + SΓψ + DΓϕ, where ∆ps = Js in the whole space, and the potentials are

solutions of the system: 



ϕ = −ξψ, x ∈ Γ,
(
I

2
−K∗

Γ + ξ
∂DΓ

∂ν

)
ψ =

∂ps
∂ν

, x ∈ Γ.
(2.55)
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Note that we have changed a little bit the notation, in order to be able to test the case ξ = 0. On

smooth domains, the operator K∗
Γ is easy to handle because its kernel has integrable singularity, whereas

the operator ∂DΓ/∂ν is an hypersingular operator. Thus, one has to perform a integration by parts in order

to regularize it: for two smooth functions v1 and v2, we have (for example from [86, Theorem 1] and [97,

Theorem 6.15]):

ˆ

Γ

∂DΓv1
∂ν

· v2 =

ˆ

Γ

ˆ

Γ
G(x− y)curlΓv1(x) · curlΓv2(y) ds(x) ds(y), (2.56)

where curlΓ is the surface rotational, defined in the following way in dimension 2. First, let us define the

vector:

curlΓṽ =




∂ṽ

∂x2

− ∂ṽ

∂x1


 ,

where ṽ is an extension of v into a neighborhood of Γ, i.e., ṽ(x) = v (P(x)) with the local projection P
onto Γ. Then curlΓ is defined by

curlΓv(x) := ν(x) · curlΓṽ(x).

In our context, this can be made much easier. Recalling the notation of subsection 2.3, we have

Γ =

{
x = X(t) =

(
X1(t)

X2(t)

)
, t ∈ [0, 2π]

}
.

Thus we have, for x ∈ Γ,

curlΓv(x) = ν1(x)
∂ṽ

∂x2
(x)− ν2(x)

∂ṽ

∂x1
(x)

= X ′
2(t)

∂v

∂x2
(X(t)) +X ′

1(t)
∂v

∂x1
(X(t)), t = X−1(x),

=
d

dt
[v(X(t))] .

Hence, denoting by v′ the curvilinear derivative of v on Γ, formula (2.56) becomes

ˆ

Γ

∂DΓv1
∂ν

· v2 =

ˆ

Γ
SΓv′1 · v′2.

This enables us to derive a BEM formulation of the system (2.55); however one has to perform it with P1

elements instead of simple P0 elements in the case of ξ = 0.

The discretization of (2.55) is classical [97]. We do have to penalize equation (2.55) to deal with the far

field condition by adding the term:
∣∣
ˆ

Γ
ψ
∣∣2. The effect of the penalty term is to fix an additive constant.

It is worth mentioning that this boundary element formulation can be extended to the three-dimensional

case (see [86]).
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The case with a target

In this subsection, we derive the modification induced on the system (2.55) in the presence of a target

D ⋐ R
2 \ Ω of admittivity k. The system (2.54) becomes:





∆u = Js, x ∈ Ω,

∆u = 0, x ∈ R
2 \
(
Ω ∪ ∂D

)
,

u
∣∣
+
− u
∣∣
−
− ξ ∂u

∂ν

∣∣∣∣
+

= 0, x ∈ Γ,

∂u

∂ν

∣∣∣∣
−

= 0, x ∈ Γ,

u
∣∣
+
− u
∣∣
−

= 0, x ∈ ∂D,
∂u

∂ν

∣∣∣∣
+

− k ∂u
∂ν

∣∣∣∣
−

= 0, x ∈ ∂D,

|u| = O(|x|−1), |x| → ∞, uniformly in x̂.

(2.57)

Thus, u can be written as

u(x) = ps(x) + SΓψ(x) +DΓϕ(x) + S∂Dφ(x). (2.58)

The absence of D∂D is justified by the continuity across the boundary of D. From the jump formulas

(2.16), the conditions on the boundaries Γ and ∂D given in (2.57) leads us to the following system:





ϕ = −ξψ, x ∈ Γ,
(
I

2
−K∗

Γ + ξ
∂DΓ

∂ν

)
ψ − ∂

∂ν
(S∂Dφ)|Γ =

∂ps
∂ν

∣∣∣∣
Γ

, x ∈ Γ,

− ∂

∂ν
(SΓψ)|∂D − ξ

∂

∂ν
(DΓψ)|∂D + (λI −K∗

∂D)φ =
∂ps
∂ν

∣∣∣∣
∂D

, x ∈ ∂D,

(2.59)

where

λ :=
k + 1

2(k − 1)
.

System (2.59) can be rewritten as follows:

M

(
ψ

φ

)
=




∂ps
∂ν

∣∣∣∣
Γ

∂ps
∂ν

∣∣∣∣
∂D


 ,

with

M :=




(
I

2
−K∗

Γ + ξ
∂DΓ

∂ν

) (
− ∂S∂D

∂ν

∣∣∣∣
Γ

)

−
(
∂SΓ
∂ν

∣∣∣∣
∂D

+ ξ
∂DΓ

∂ν

∣∣∣∣
∂D

)
(λI −K∗

∂D)


 .

The BEM formulation is then also classical, because the only difficulty is due to the hypersingular operator

in the upper left term. Hence, we discretize ψ ∈ L2
0(Γ) with P1 elements and φ ∈ L2

0(∂D) with P0 elements.
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In the case of several objects Dj , j = 1 . . . N , the above system becomes:

M




ψ

φ1

...

φN




=




∂ps
∂ν

∣∣∣∣
Γ

∂ps
∂ν

∣∣∣∣
∂D1

...

∂ps
∂ν

∣∣∣∣
∂DN




,

with

M :=




(
I

2
−K∗

Γ + ξ
∂DΓ

∂ν

) (
− ∂S∂D1

∂ν

∣∣∣∣
Γ

)
. . .

(
− ∂S∂DN

∂ν

∣∣∣∣
Γ

)

(
− ∂SΓ

∂ν

∣∣∣∣
∂D1

+ ξ
∂DΓ

∂ν

∣∣∣∣
∂D1

)
(
λ1I −K∗

∂D1

)
. . .

(
− ∂S∂DN

∂ν

∣∣∣∣
∂D1

)

...
...

...
...

(
− ∂SΓ

∂ν

∣∣∣∣
∂DN

+ ξ
∂DΓ

∂ν

∣∣∣∣
∂DN

) (
− ∂S∂D1

∂ν

∣∣∣
∂DN

)
. . .

(
λNI −K∗

∂DN

)




,

and the field is given by a slight modification of 2.58, namely:

u(x) = ps(x) + SΓψ(x) +DΓϕ(x) +

N∑

j=1

S∂Dj
φj(x). (2.60)

2.5.2 Results

We present here the results of the simulation, using the methods described above. We approximate the

shape of the fish by an ellipse with semi-axes of lengths 1 and 0.3; the electric organ is a dipole in the x1-

direction of moment 1, placed at z0 = (0.7, 0) and the impedance is ξ = 0.1. A ball of infinite conductivity

(more precisely, with σ = 1010 and ε = 0) and radius r = 0.05 is located at (1.5 cos(π/3), 1.5 sin(π/3)).

Figure 2.2(b) shows the isopotentials. In Figure 2.2(c) it can be seen that the isopotentials avoid the

target since it is of infinite conductivity. In Figure 2.2(d), we have perform the same simulation, with a

star-shaped domain.

In Figure 2.3, we have placed two disks of conductivity 3 and 5, at the points (cos(π/3), sin(π/3))

and (0, sin(π/3)), respectively. The electric field u is plotted in Figure 2.3(a), the difference u − U in

Figure 2.3(b), and finally the field of the equivalent dipole in Figure 2.3(c). This latter is given by the

formula shown in Proposition 2.4.1.

2.6 Conclusion

In this chapter, we have proposed a complex conductivity model for the electric field emitted by the

fish. We have rigorously derived the boundary conditions to be used, and the leading order terms of the

transdermial currents when an object is located in the vincinity of the fish. Finally, we have performed

numerical simulations.

In the next chapter, we will use the approximation formulas derived in section 2.4 in order to localize

the target.
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Figure 2.2: Isopotentials for the cases described.
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CHAPTER3

A Space-Frequency Localization Algorithm

The results of this chapter are published in [4].

Abstract

Based on the dipole approximation shown in the previous chapter, we obtain here a non-iterative

location search algorithm using multi-frequency measurements. We present numerical experiments to

illustrate the performance and the stability of the algorithm. In the case of disk- and ellipse-shaped

targets, we provide a method to reconstruct separately the conductivity, the permittivity, and the size

of the targets from multi-frequency measurements.

3.1 Introduction

For the inverse problem, little is known in the complex admittivity case [33]. Here, we take advantage of

the smallness of the targets to use the framework of small volume asymptotic expansions (see section 2.4.1)

for target location and characterization [19, 20]. However, since the electric current is generated by only

one emitter at the tail of the fish (the electric organ) and measured by many receptors on the skin, standard

non-iterative algorithms such as MUSIC (standing for MUltiple Signal Classification) cannot be applied

for location search. In standard MUSIC, the data (called multistatic response matrix) form a matrix and

its singular value decomposition leads to an efficient imaging function by projecting the Green function of

the medium onto the significant image space [13, 16, 22, 35, 41, 43, 70]. Here, roughly speaking, one has

only a column of the response matrix. However, using the fact that the electric current produced by the

electric organ is time-harmonic with a known fundamental frequency, we extend MUSIC approach to multi-

frequency measurements by constructing an efficient and robust multi-frequency MUSIC imaging function.

We perform numerical simulations in order to validate both the direct model and the multi-frequency

MUSIC algorithm. We also illustrate the robustness with respect to measurement noise and the sensitivity

with respect to the number of frequencies, the number of sensors, and the distance to the target of the

location search algorithm. Finally, in the case of disk- and ellipse-shaped targets, we provide a method to

reconstruct separately the conductivity, the permittivity, and the size of the targets from multi-frequency

41
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measurements. We mention that this is possible only because of multi-frequency measurements which

yield polarization tensors with complex admittivty. It is well-known that polarization tensors for vanishing

capacitance (i.e. real-valued admittivity) cannot separate the size from material properties of the target

[20]. We also mention that the use of different values for the frequencies is more crucial for the material

and size reconstruction procedure than for the location step. In fact, in the presence of measurement noise,

location with Nf realizations with one frequency is comparable to the one with Nf different frequency

values.

3.2 Detection algorithm for multi-frequency measurements

Scholz described in [96] a way to recover the location of a target from multi-frequency measurements. The

paper focuses on an application in electrical impedance tomography (EIT) for breast cancer detection; the

algorithm was called “Space-Frequency MUSIC”. Indeed, it is based on the so-called MUSIC algorithm,

which is a standard tool in signal theory for the identification of several signals with an additive noise

[95, 49]. It has then been applied to identify small conductivity inhomogeneities in [15, 22, 35]. In this

section, we apply a similar approach for our model.

In this section, we develop an algorithm to recover (from a single measurement) the location of a small

object located far away from the fish. This algorithm is based on multi-frequency measurements defined

in subsection 3.2.1, and the algorithm will be explained in detail in subsection 3.2.2.

3.2.1 Response matrix

The electroreceptors of the fish measure the electric current at the surface of the skin [84]. Hence, from

a single measurement, we can construct the Space-Frequency Response (SFR) matrix V, whose terms are

given by

Vrf =

(
∂uf
∂ν

∣∣∣∣
+

− ∂U

∂ν

∣∣∣∣
+

)
(xr), for 1 ≤ f ≤ Nf and 1 ≤ r ≤ Nr,

where (xr)1≤r≤Nr
are points on the boundary Γ and U is the static background solution, i.e., the electric

potential without any target which does not depend on f . It is the solution of (2.50) with a constant

conductivity equal to 1 outside the body Ω.

Recalling from section 2.4, after a calculation of
∂uf

∂ν

∣∣∣
+
− ∂U

∂ν

∣∣
+

on Γ, we will apply the post-processing

operator given in Lemma 2.4.2. The modified matrix will still be denoted A.

Thus, the location of the target D is going to be recovered from the knowledge of the following data

Vrf =

(
1

2
I −K∗

Γ − ξ
∂DΓ

∂ν

)(
∂uf
∂ν

∣∣∣∣
+

− ∂U

∂ν

∣∣∣∣
+

)
(xr), 1 ≤ r ≤ Nr, 1 ≤ f ≤ Nf , (3.1)

which is approximately equal to

Vrf ≃ δ2∇U(z)TM(λf , B)∇z

(
∂G

∂νx

∣∣∣∣
+

)
(xr, z), (3.2)

when the characteristic size of the target δ is small. It is worth mentioning that the polarization tensor

M(λf , B) is symmetric (but not Hermitian) [20].

3.2.2 A location search algorithm

As we can see in formula (3.2), the rows of the SFR matrix are - to leading-order - linear combinations of

the derivatives of ∂G/∂νx. Moreover, one has to distinguish whether the target is a disk or not. Indeed,
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in dimension 2 and in the case of an ellipse whose semi-axes are on the xi-axis and of length a and b, the

polarization tensor M(λ,B), for k ∈ C, takes the form [83]

M(λ,B) = (k − 1)|B|
(

a+b
a+kb 0

0 a+b
b+ka

)
.

Hence, the polarization tensor is proportional to the identity matrix if and only if a = b, i.e., B is a disk;

this result remains true in dimension 3 [20]. This changes dramatically the range of A: if B is a disk, the

response matrix has rank 1 and if it is an ellipse, it has rank 2.

For the sake of simplicity, let us suppose that B is the unit disk. The identification process will be based

on the following fact

Lemma 3.2.1. The following map

Λ : R
2 \ Ω→ L2(Γ)

z 7→ ∇U(z)T∇z
∂G
∂νx

(·, z),
is one-to-one.

Proof.

Suppose that z and z′ are points on R
2 \Ω such that Λ(z) = Λ(z′) := ϕ. Let us define the two following

functions
vz : R

2 \ Ω ∪ {z} → R

x 7→ ∇U(z)T∇zG(x, z),

vz′ : R
2 \ Ω ∪ {z′} → R

x 7→ ∇U(z′)T∇z′G(x, z′).

Thus, these two functions both solve the following boundary value problem




∆v = 0, x ∈ R
2 \Ω ∪ {z} ∪ {z′},

∂v

∂ν
= ϕ, x ∈ Γ,

v → 0 |x| → ∞, uniformly in x̂.

Hence, by the uniqueness of the solution for this problem, we have

∇U(z) · ∇zG(x, z) = ∇U(z′) · ∇z′G(x, z′), for all x ∈ R
2 \ Ω ∪ {z} ∪ {z′}.

Relying on the singularity of G(·, z) at the point z, this is only possible if z = z′.

�

However, we do not have access to the complete function (because there is only a finite number of

electroreceptors on the body), and the formula for Λ is only an approximation, based on (3.2). The

location of the target will then be approximated as follows. In the following we suppose for the sake of

simplicity that x1, . . . , xL are equi-distributed on Γ.

Proposition 3.2.2 (Space-Frequency MUSIC). Define the vector

g̃(z) :=

(
∇U(z) · ∇z

(
∂G

∂νx

)
(x1, z), . . . ,∇U(z) · ∇z

(
∂G

∂νx

)
(xNr , z)

)T

, (3.3)

and its normalized version g = g̃/|g̃|. Then, in the limit Nr → +∞ and δ → 0, the following imaging

functional will have a large peak at z:

I(zs) :=
1

|(I − P )g(zs)|
, (3.4)

where P is the orthogonal projection onto the first singular vector of the SFR matrix A.
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Proof.

First of all, let us rewrite (just for this proof) the projection PNr

δ and the illumination vector gNr ,

in order to take into account the dependence with respect to Nr. When Nr goes to infinity, quadrature

formulas show us that

|(I − PNr

δ )gNr (zs)|RNr →
∣∣∣∣∣(I − Pδ)

Λ(zs)

|Λ(zs)|L2(Γ)

∣∣∣∣∣
L2(Γ)

.

Here, Pδ is the projection onto the first singular vector of the operator Aδ, acting on the space of functions

that have the form (2.48)

Aδ : L2[0, 2π/ω0] → L2[0, 2π/ω0]× L2(Γ)

h =

Nf∑

f=1

hre
ifω0t 7→

(
1

2
I −K∗

Γ − ξ
∂DΓ

∂ν

)(
∂u

∂ν

∣∣∣∣
+

− ∂U

∂ν

∣∣∣∣
+

)
,

where u is given by (2.49) and U is the background solution ( i.e., the solution of (2.50) with χD = 0).

In the limit δ → 0, Aδ is approximated by the operator A : h 7→ Λ(z)h, which is obviously of rank one.

By theory of perturbation [67], one has therefore

∣∣∣∣∣(I − Pδ)
Λ(zs)

|Λ(zs)|L2(Γ)

∣∣∣∣∣
L2(Γ)

→
∣∣∣∣∣(I − P )

Λ(zs)

|Λ(zs)|L2(Γ)

∣∣∣∣∣
L2(Γ)

, δ → 0,

where P is the projector onto the first significant singular vector of A. Then, from Lemma 3.2.1, this

functional is zero if and only if zs = z.

�

Moreover, in order to have a general algorithm which is robust with respect to the background solution,

we will plot the following imaging functional:

I(zs) := max

(
1∑2

i=1

∣∣(I − P )gEi (zs)
∣∣ ,

1∑2
i=1

∣∣(I − P )gDi (zs)
∣∣

)
, (3.5)

where gD = (gD1 , g
D
2 )T is defined in Proposition 3.2.2 and gEi (zs), for i = 1, 2, is the normalization of the

following vector

g̃Ei (z) =

(
ei · ∇z

(
∂G

∂νx

)
(x1, z), . . . , ei · ∇z

(
∂G

∂νx

)
(xNr , z)

)T

,

with (e1, e2) being an orthonormal basis of R
2. Numerical localization results for targets with different

shapes will be given in section 3.3.

3.3 Numerical simulations

In this section, numerical results are presented in order to illustrate the multi-frequency location search

algorithm introduced in the previous section. The computed electric field in the presence of the target,

computed in 2.5 is the input of our location search algorithm that is performed here.

3.3.1 Target location

In this subsection, we show numerical target location results using the multi-frequency imaging function

(3.5). With the same parameters used for Figure 2.2(b) for the fish, but with a small target of electric

parameters σ = 2 and ε = 1 and fundamental frequency ω0 = 1, we obtain the imaging functional plotted
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in Figure 3.1 (a). We use 10 frequencies equidistributed from ω0 to 10ω0. In Figure 3.1 (b) and (c), we

have tested other shapes for the target.
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Figure 3.1: Detection (left) of the target with the SF-MUSIC algorithm, for different target shapes (right).
Here, the number of used frequencies is 10, equidistributed from ω0 to 10ω0, and there are 64 equidistant
sensors on the fish.

For multiple targets, we only have developped the algorithm for disks, and we suppose that we know

in advance their number, see Figure 3.2. We can see in Figure 3.2(b) that if the disks are too close, we

cannot distinguish them.
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The generalization for other shapes would involve first to count the number of objects, by counting the

number of significant singular values [19]. Then, we would have to check for each singular value - or each

pair of singular values for non-isotropic objects - if it corresponds to an abject or not. An example of such

algorithm can be found in [85], where it has been called Recursively Applied and Projected (RAP) MUSIC.

(a) t = (−0.5, 0) (b) t = (−0.25, 0)

Figure 3.2: Detection of two disks, the first one being the same as in 3.1(a), with conductivity σ = 5 and
permittivity ε = 2. The second one has the same radius, and is translated by the vector t indicated below
each figure. It has conductivity σ = 3 and permittivity ε = 1. Their centers are indicated by a square

Let us notice that, in the absence of noise, the number of used frequencies does not change significantly

the image. Indeed, we can see in Figure 3.3(a)(a) that we can recover the location of the target with only

one frequency for a single disk. For several disks, one needs the same number of frequencies as the number

of disks, see Figure 3.3(b) and Figure 3.3(c).

(a)

(b) (c)

Figure 3.3: Target detection in the absence of noise. (a)The target is the disk in Figure 3.1(a), with only
one frequency ω0 = 1. (b) The two disks of Figure 3.2(a), with only one frequency ω0 = 1. (c) The two
disks of Figure 3.2(a), with two frequencies ω0 = 1 and ω0 = 2. In all these experiments, the number of
sensors stay the same.
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Stability estimates with respect to measurement noise

Let us now consider the effect of measurement noise on the performance of the location search algorithm.

We add to the entries of the SFR matrix A defined in (3.2) independent Gaussian random variables of

mean 0 and standard deviation

√
ζ max

r,f

∣∣∣∣
(
∂uf
∂ν

∣∣∣∣
+

− ∂U

∂ν

∣∣∣∣
+

)
(xr)

∣∣∣∣ .

The parameter ζ is the relative strength of the noise, and will be given in percentage.

In Figure 3.4, one can see that even with 1% of noise level, we cannot discriminate two disks that are

well separated. Hence, we will focus in this subsection on the stability for only one object.

Figure 3.4: Target detection for the two disks of Figure 3.2(a) with 1% noise.

Figure 3.5 shows that increasing the number of frequencies stabilizes the image. The image on the left

in Figure 3.5 corresponds to the same configuration as in Figure 3.3(a), but with 10% of noise.

Figure 3.6 shows the performance of the imaging algorithms for a target of a noncircular shape.

More quantitatively, we have computed the empirical root mean square location error (between the

exact location of the target and the maximum of the imaging functional), for Nr = 250 realizations. The

root mean square location error is defined by
√

E(|zest − z|2) with E standing for the expectation (mean

value) and zest (resp. z) being the estimated location (resp. the exact one).

Here, the same target as in Figure 3.3(a) is considered. Results are shown in Figure 3.7.

A natural question is whether taking different values for the frequencies plays a role in the multi-

frequency imaging procedure. In order to answer this question, we construct an SFR matrix using the

same frequency for all the columns and compare the resulting image with the one obtained using different

Figure 3.5: Influence of the number of used frequencies on the stability. Here, the same target as in Figure
3.3(a) is imaged with 10% of noise and only one frequency ω0 = 1 (left), 100 frequencies equidistributed
from ω0 to 100ω0 (right), with 64 sensors. The disks plot the exact position, and the squares plot the
location of the maximum of the imaging functional.
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Figure 3.6: The same target as in Figure 3.1(c) is imaged with only one frequency ω0 = 1 and without
noise (left), with 10% of noise (right). The disks plot the exact position, and the squares plot the location
of the maximum of the imaging functional.
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Figure 3.7: Influence of the number of frequencies on the root mean square location error for 250 realizations.
Here, the horizontal axis is for the measurement noise level in percentage and the vertical axis is for the
root mean square location error.

frequencies (one for each column). In Figure 3.8, we use the data obtained by 100 trials (making mea-

surements 100 times using the same frequency ω0) for 10% of noise, 64 sensors, and a single frequency

ω0 = 1. Here, the entries of each of the 100 columns are corrupted (independently) with 10% of noise.

Figure 3.8 shows that the values of the frequencies do not play a crucial role in the location procedure. In

fact, the location result is similar to the one in Figure 3.5. However, from a practical point of view, using

simultaneously Nf different frequencies yields a faster robust location procedure than repeating Nf times

the data acquisition procedure with the same frequency. In subsection 3.3.2, we also identify the more

fundamental role of the values of the frequencies in the characterization procedure.

The number of sensors is also crucial in the stability of the algorithm. Figure 3.9 compares the root

mean square location error with 100 frequencies equidistributed from ω0 to 100ω0 for 64 and 8 sensors for

different measurement noise levels.

The same type of statistics is possible for the detection as function of the distance between the fish

from the target. In Figure 3.10, we have plotted the root mean square location errors, with 15 frequencies

equidistributed from ω0 to 15ω0 and 5% of noise, for disks with radius 0.05 placed at (t cos(π/3), t sin(π/3))
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Figure 3.8: Influence of the values of used frequencies on the stability. Imaging using the data obtained by
100 trials with 10% of noise, 64 sensors, and frequency ω0 = 1: Left: the same target as in Figure 3.1(a);
Right: the same target as in Figure 3.1(c). The disks plot the exact position, and the squares plot the
location of the maximum of the imaging functional.
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Figure 3.9: Influence of the number of sensors on the root mean square location error for 250 trials. Here,
the horizontal axis is for the noise level in percentage and the vertical axis is for the root mean square
location error.
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Figure 3.10: Influence of the distance to the fish on the mean square location error for 250 trials. Here,
the horizontal axis is for the distance to the fish and the vertical axis is for the root mean square location
error.

for t = 1, 1.5, 2, 2.5, and 3.

3.3.2 Target characterization

Once the target is located, one can use (3.2) to estimate the electromagnetic parameters and the size of the

target. Assume that the target is a disk of radius δ, placed at z. From (3.2) it follows that δ2(kf−1)/(kf +1)

can be estimated for 1 ≤ f ≤ Nf from the measurement matrix A. Here, kf = k + iεω0f with ω0 being

known. Let τest
r be the estimated values of δ2(kf − 1)/(kf + 1) from A. To characterize the target and

approximate its size, one minimizes the following quadratic misfit functional:

∑

1≤f≤Nf

∣∣∣∣
δ2(kf − 1)

kf + 1
− τest

r

∣∣∣∣
2

, (3.6)

over k, ε, and δ.

Table 3.1 gives the result of the optimization algorithm for a disk-shaped target with center center

(1.5 cos(π/3), 1.5 sin(π/3)) and radius δtrue. The electromagnetic parameters are (σtrue, εtrue). The initial

guess is δinit = 0.01, σinit = 1, εinit = 1. The data is collected for 100 frequencies equidistributed from ω0 to

100ω0. The reconstructed results are accurate.

δtrue σtrue εtrue δest σest εest

0.05 5 1 0.0506 4.9882 1.0004

0.05 4 1 0.0506 3.9993 0.9998

0.05 5 2 0.0506 4.9868 2.0017

0.06 5 1 0.0607 4.9878 1.0003

0.04 3 2 0.0404 2.9614 1.9806

Table 3.1: Target characterization by minimizing the quadratic misfit functional (3.6) using data collected
for 100 frequencies equidistributed from ω0 to 100ω0. Here, true: true values, est: estimated values. The
initial values are δinit = 0.01, σinit = 1, εinit = 1.
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When the target is an ellipse, the measurement matrix A may not be sufficient to characterize the

electromagnetic parameters and the size of the target. At least two different positions of the fish (or

equivalently two different locations of the target in the fish frame of reference) are needed in order to

generate non-parallel dipole directions ∇U/|∇U | at the location z of the target and consequently lead to

the extraction of the polarization tensor M(λf ,D) of the ellipse-shaped target D. Consider two target

locations z1 and z2 in the fish frame of reference. Multi-frequency measurements lead to two SFR matrices,

V
(1)
rf and V

(2)
rf with 1 ≤ r ≤ Nr and 1 ≤ f ≤ Nf . Define the following linear application from the set M of

complex symmetric 2× 2 matrices to C
2N

F : M 7→




∇U(z1)
TM∇z

(
∂G
∂νx

∣∣∣
+

)
(x1, z1)

...

∇U(z1)TM∇z

(
∂G
∂νx

∣∣∣
+

)
(xNr , z1)

∇U(z2)
TM∇z

(
∂G
∂νx

∣∣∣
+

)
(x1, z2)

...

∇U(z2)TM∇z

(
∂G
∂νx

∣∣∣
+

)
(xNr , z2)




.

For a fixed f , we define the data

bf :=




V
(1)
1f
...

V
(1)
Nrf

V
(2)
1f
...

V
(2)
Nrf




.

By a least-squares method, we recover an estimation of the polarization tensor M(λf ,D):

Mest
f := arg min

M∈M
‖F (M)− bf‖ .

Again, once M(λf ,D) is estimated, a minimization approach yields correct parameter and size values.

Since for any f , the eigenvectors of the matrix M(λf ,D) are the ellipse axes, denoting τest
f,1 and τest

f,2 the

estimated complex eigenvalues of M(λf ,D), one minimizes the following quadratic misfit functional

∑

1≤f≤Nf

∣∣∣∣
ab(kf − 1)(a + b)

akf + b
− τest

f,1

∣∣∣∣
2

+

∣∣∣∣
ab(kf − 1)(a + b)

bkf + a
− τest

f,2

∣∣∣∣
2

,

over a, b, k, and ε, in order to reconstruct the semi-axis lengths a and b and the material parameters k and

ε of the ellipse-shaped target D.

If Nf is large enough, then semi-analytical formulas to estimate the semi-axis lengths a, b and the

material parameters k, ε hold. Since

τest
Nf ,1
≈ πa(a+ b), τest

Nf ,2
≈ πb(a+ b),

one can estimate a and b as follows:

aest =
τest
Nf ,1√

π
(
τest
Nf ,1

+ τest
Nf ,2

) , best =
τest
Nf ,2√

π
(
τest
Nf ,1

+ τest
Nf ,2

) . (3.7)
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Table 3.2 gives estimations of a and b. The target is centered at z1 = 1.5(cos(π/3), sin(π/3)) and the fish

moves in the horizontal axis so that z2 = (1.5 cos(π/3) − 1, 1.5 sin(π/3)). The material parameters of the

target are k = 2 and ε = 1. The data is collected for 10 frequencies equidistributed from ω0 to 10ω0. The

reconstructed results are accurate.

atrue btrue aest best

0.04 0.04 0.0390 0.0405

0.05 0.05 0.0497 0.0516

0.05 0.06 0.0586 0.0608

0.03 0.06 0.0313 0.0567

0.06 0.05 0.0406 0.0487

0.01 0.03 0.0108 0.0273

Table 3.2: Estimations of the semi-axis lengths of ellipse-shaped targets using (3.7).

Moreover, once the geometric parameters a and b are estimated, it is straightforward to recover k and

ε. Introduce

µ
(1)
f :=

τest
Nf ,1

πab(a+ b)
=

kf − 1

a+ kf b
.

From

kf = k + iεfω0 =
1 + aµ

(1)
f

1− bµ(1)f

,

one can estimate k and ε as the real and imaginary parts of kf . However, as shown in Figure 3.11, one

can see that the error on the real part is growing with the frequency. Therefore, in order to increase the

robustness of the material parameter estimations, we estimate k using the lowest frequencies (for example

the first three) and ε using all the frequencies:

kest :=
1

3

3∑

f=1

ℜ


1 + aestµ

(1)
f

1− bestµ(1)f


 , εest :=

1

Nf

Nf∑

f=1

1

ω0f
ℑ


1 + aestµ

(1)
f

1− bestµ(1)f


 . (3.8)

Table 3.3 gives the material estimations using formula (3.8) for a disk and an ellipse. Once again

the results are accurate. Nevertheless, for high contrasts between the real and imaginary parts of the

admittivity the results of reconstruction are less satisfactory (see also Figure 3.11).

ktrue εtrue kest εest

2 1 1.9167 1.0661
disk 3 2 2.8481 2.0516

5 1 5.8884 1.4668

2 1 1.7943 1.0473
ellipse 3 2 2.7208 2.0415

5 1 6.0886 1.5828

Table 3.3: Estimations of the material parameters based on formula (3.8). The disk has radius 0, 05 and
the ellipse has semi-axis lengths 0, 025 and 0, 1 and orientation angle π/3. Both targets are placed at
z1 = 1.5(cos(π/3), sin(π/3)) and then at z2 = (1.5 cos(π/3) − 1, 1.5 sin(π/3)), and are illuminated with 10
frequencies equidistributed from ω0 to 10ω0 (with ω0 = 1).
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Figure 3.11: Conductivity, kest, and capacitance, fω0ε
est, of the reconstructed conductivity (respectively

represented by squares and circles) for a disk-shaped target as functions of f ( i.e., the frequency). Here,
ω0 = 1 and the target is with (true) material parameters k = 2 and ε = 1, radius 0, 05, and placed
at z1 = 1.5(cos(π/3), sin(π/3)) and then at z2 = (1.5 cos(π/3) − 1, 1.5 sin(π/3)). The solid lines are the
theoretical values.

3.4 Concluding remarks

In this chapter, we have proposed a non-iterative location search algorithm based on multi-frequency mea-

surements. We have presented some numerical results which are promising. We have seen that increasing

the number of frequencies (with not necessary different values) improves the stability. In fact, using multi-

frequency measurements increases the signal-to-noise ratio. On the other hand, using different frequencies

yields a faster robust location algorithm than repeating the data acquisition procedure with the same fre-

quency. We have also proposed a procedure to reconstruct the electromagnetic parameters and the size

of disk- and ellipse-shaped targets. This has been possible only because of multi-frequency measurements

corresponding here to different frequency values. The use of multi-frequency measurements is fundamental

in the characterization procedure. It has been known that polarization tensor for real admittivities (i.e. for

vanishing capacitance) cannot separate the size from material properties of the target [20].

For arbitrary-shaped targets, many important questions remain. In particular, it would be interesting

to know how much parameter and size information one can extract from its polarization tensors for different

admittivities. A numerical answer will be provided in chapter 7, but theoretical questions remain [65]. It

is also worth mentioning that limiting our asymptotic expansions with respect to the target size to the

first-order term (the dipole approximation) does not give us the shape of the target. Hence, in the next

chapters we will investigate how much information can be acquired in the near field by approaching the

fish next to the target and developing the asymptotic expansions with high-order generalized polarization

tensors [19].

It is worth mentioning that in three dimensions the model problem and the detection algorithm derived

in this chapter is exactly the same as in Proposition 3.2.2, see [19].





CHAPTER4

Extraction of Generalized Polarization

Tensors

The results of this chapter have been submitted in [5] and [7].

Abstract

In order to recognize the shape of a target, we will need to develop tools that are not available in

the literature. This will not only help us for the electrolocation problem, but it will also advance the

more general field of mathematical imaging and numerical inverse problems. Hence, in chapters 4-6, we

will take away from the electrolocation problem to go to a canonical setting in electro-sensing.

In this chapter, we will develop tools to extract, from multi-static measurements, physically relevant

features called Generalized Polarization Tensors (GPTs). The system has the remarkable property that

low order generalized polarization tensors are not affected by the error caused by the instability of higher

orders in the presence of measurement noise. This will later enables us to identify an object thanks to

a dictionary (chapter 5) and tracking it when moving (chapter 6). We will study the full-view and

partial-aperture problems, since they will be important for later application on active electrolocation

(chapter 7).

4.1 Introduction

With each domain and material parameter, an infinite number of tensors, called the Generalized Polariza-

tion Tensors (GPTs), is associated. The concept of GPTs was introduced in [17, 19]. The GPTs contain

significant information on the shape of the domain [18]. It occurs in several interesting contexts, in par-

ticular, in low-frequency scattering [46, 19], asymptotic models of dilute composites (see [83] and [26]),

in invisibility cloaking in the quasi-static regime [24] and in potential theory related to certain questions

arising in hydrodynamics [89].

In fact, the GPTs are the basic building blocks for the asymptotic expansions of the boundary voltage

perturbations due to the presence of small conductivity inclusions inside a conductor [53, 40, 17]. In other

55



56 CHAPTER 4. EXTRACTION OF GENERALIZED POLARIZATION TENSORS

words, the dipole approximation computed in section 2.4 is the first order approximation of a more general

expansion involving these GPTs that will be expressed here.

The GPTs can be accurately obtained from multistatic measurements by solving a linear system. We

provide here a stability analysis for the reconstruction of the GPTs in the presence of measurement noise

and with respect to the aperture angle formed by the sources/receptors array. This will quantify the

ill-posedness of the imaging problem.

The chapter is organized as follows. In section 4.2, we introduce a particular linear combination of

the GPTs to obtain what we call the contracted GPTs (CGPTs) [24]. In Section 4.3, we investigate the

reconstruction of contracted GPTs, defined in (4.14)–(4.17) below, from the multistatic response matrix

of a conductivity problem. We also consider the effect of the presence of measurement noise in the MSR

(subsection 4.3.2) and aperture (subsection 4.3.3) on the reconstruction of the CGPTs. Given a signal-to-

noise ratio, we determine the statistical stability in the reconstruction of the CGPTs, and show that such

inverse problem is exponentially unstable. This is the well-known ill-posedness of the inverse conductivity

problem. Numerical results are summarized in section 4.4.

4.2 Structure of the Multistatic Response Matrix

Here we propose to reconstruct CGPTs from the multistatic response (MSR) matrix, which measures the

change in potential field due to a conductivity inclusion. In this section, we present the toy model for MSR

and write it in terms of the CGPTs associated to the conductivity inclusion.

In order to take into account the similarity between the EIT setting and the electrolocation problem, the

notations will be quite the same as in chapter 2. We consider a two dimensional conductivity medium with

uniform conductivity equal to one, except in an inclusion where the conductivity is k > 1; we denote by λ

the contrast of this inclusion, that is, λ = (k+1)/(2(k−1)). To this point, let us remark that for application

to the electrolocation problem, we will need k ∈ C. This problem will be tackled in chapter 7, but for the

moment we will restrict ourselves to the real case, since in this case we have much more properties (such

as symmetry for example [20]). Let D = z + δB = {x = z + δy | y ∈ B} model the conductivity inclusion.

Here, B is some C2 and bounded domain in R
2 whose typical length scale is of order one; z is a point in

R
2 and is taken here to be an estimation of the location of the inclusion; δ is the typical length scale of

the inclusion. We refer to [19] for efficient location search algorithms and to [10] for correcting the effect

of measurement noise on the localization procedure.

The MSR matrix is constructed as follows. Let {xr}Nr

r=1 and {xs}Ns

s=1 model a set of electric potential

point detectors and electric point sources. We assume in this chapter that the two sets of locations coincide

and Nr = Ns = N (see an example in Figure 4.1). The MSR matrix V is an N -by-N matrix whose

rs-element is the difference of electric potentials with and without the conductivity inclusions:

Vrs = us(xr)−Gs(xr), r, s = 1, . . . , N. (4.1)

Here, Gs(x) = G(x− xs) and G(x) = 1
2π log |x| is the fundamental solution of the Laplace equation in R

2,

and us(x) is the solution to the transmission problem




∇ · (1 + (k − 1)χD)∇us(x) = δxs(x), x ∈ R
2\∂D,

us(x)
∣∣
+

= us(x)
∣∣
−
, x ∈ ∂D,

νx · (∇us)
∣∣
+

= kνx · (∇us)
∣∣
−
, x ∈ ∂D,

us(x)−Gs(x) = O(|x|−1), |x− xs| → ∞.

(4.2)

In the second and third equations above, the notation φ
∣∣
±

(x) denotes the limit limt↓0 φ(x ± tνx), where

x ∈ ∂D and νx is the outward unit normal of ∂D at x.
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Figure 4.1: An example of configuration for MSR data simulation. Here, the unknown shape is a rotated
letter “T”. N = 51 sources/receivers marked by “x” are equally placed on a circle of radius R = 20 centered
at z0 = [−73, 73] which is marked by “*”.

Let us remark that the system (4.2) is closely related to system (2.45) of chapter 2. Indeed, here us is

the electric potential coming from a point source at xs whereas in system (2.45), u is the electric potential

given by the sum of Dirac masses (or the dipole) denoted Js. Hence, the difference is here that we have

several sources ; as mentioned in section 3.1, this was the major difficulty in chapter 3.

4.2.1 The asymptotic expansion of the perturbed potential field

As modeled above, the MSR matrix characterizes the perturbed potential field us(xr) − Gs(xr). In this

section we recall, from [19], the asymptotic expansion of this perturbation and that generalize those in

chapter 2.

First, let us explicit the layer potential operators (define section 2.2.4) with these new notations. Let

SD be the single layer potential associated with D, that is,

SD[φ](x) :=

ˆ

∂D
G(x− y)φ(y)ds(y), x ∈ R

2, (4.3)

and let KD : L2(∂D)→ L2(∂D) denote the Poincaré-Neumann operator

KD[φ](x) :=
1

2π

ˆ

∂D

〈y − x, νy〉
|x− y|2 φ(y)ds(y), x ∈ ∂D. (4.4)
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Here νy is the unit normal vector along the boundary at y. Relation 2.16 gives us SD[φ]
∣∣
−

= SD[φ]
∣∣
+

and

the jump condition
∂

∂ν
SD[φ]

∣∣∣
±

=

(
±1

2
I +K∗

D

)
[φ], (4.5)

where K∗
D is the adjoint operator of KD ; it has a similar expression as (4.4) with the numerator of the

integrand replaced by 〈x− y, νx〉. Using (4.5), we verify that Gs(x) + SD[φs] with φs ∈ L2(∂D) solving

(λI −K∗
D) [φs] =

∂Gs

∂ν

∣∣∣
∂D
, (4.6)

is a solution to the transmission problem (4.2). In fact, this solution is unique and we conclude that

us(x)−Gs(x) = SD[φs] =

ˆ

∂D
G(x− y)(λI −K∗

D)−1

[
∂Gs

∂ν

∣∣∣
∂D

]
(y)ds(y). (4.7)

To verify the formal derivation above, we refer the reader to Section 2.4 of [19].

Throughout this section, we use Greek letters to denote double indices: α = (α1, α2) ∈ N
2, α! = α1!α2!,

|α| = α1 + α2, xα = xα1
1 xα2

2 , and ∂α = ∂α1
1 ∂α2

2 , with ∂j = ∂/∂xj .

We assume that the inclusion D and the point z is away from the sources. As a result, the functions

G(xr − y) and Gs(y) are smooth for y ∈ D, and the perturbed field (4.7) is well defined. For y ∈ ∂D and

z away from x, the K-th order Taylor expansion formula with remainder eK states

G(x− y) = G(x− z − (y − z)) =
K∑

|α|=0

(−1)|α|

α!
∂αG(x− z)(y − z)α + eK . (4.8)

Substitution of this expansion into (4.7) yields the following expansion of Vrs plus an error term denoted

by Ers:

Vrs =
K∑

|α|,|β|=1

(−1)|α|

α!β!
∂αG(xr − z)Qαβ(z)∂βG(z − xs) + Ers,

with

Qαβ(z) =

ˆ

∂D
(y − z)α(λI −K∗

D)−1

[
∂

∂ν
(· − z)β

]
(y)ds(y).

The zeroth order term with β = 0 vanishes because the differentiation ∂/∂ν; the zeroth order term corre-

sponding to α = 0 vanishes because (λI −K∗
D)−1 maps a zero mean value function on ∂D to another zero

mean value function.

For a generic conductivity inclusion D with the contrast factor λ, the GPT of order αβ associated with

the inclusion is defined by [20]

Mαβ(λ,D) :=

ˆ

∂D
yβ(λI −K∗

D)−1[
∂

∂ν
yα] ds(y). (4.9)

Using the change of variable y− z 7→ ỹ, the integral term Qαβ(z) inside the expansion of Vrs above can

be written as

Qαβ(z) =

ˆ

∂(δB)
ỹα(λI −K∗

δB)−1[
∂

∂ν
ỹβ] ds(ỹ), (4.10)

which is independant of z. Moreover, by the definition of GPT, this term is Mβα(λ, δB). As a result, we

have

Vrs =

K∑

|α|,|β|=1

1

α!β!
∂αG(z − xs)Mαβ(λ, δB)∂βG(z − xr) + Ers, (4.11)
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where Ers is the truncation error resulted from the finite expansion. Note also that we have switched the

indices α and β.

The MSR matrix V consisting of us(xr) −Gs(xr) depends only on the inclusion (λ,D). However, the

GPTs involved in the representation (4.11) depend on the (non-unique) characterization (z, δB) of D. We

note that the remainder eK and the truncation error Ers can be evaluated; see Appendix A.1. Moreover,

since the sensors and the receivers coincide, the MSR matrix is symmetric; see (A.2).

4.2.2 Expansion for MSR using contracted GPT

In this section, we further simplify the expression of MSR using the notion of contracted GPT (CGPT),

which has been introduced in [24]. Using CGPT, we can write the MSR matrix V as a product of a CGPT

matrix with coefficient matrices, which is a very convenient form for inversion.

Let Pm(x) be the complex valued polynomial

Pm(x) = (x1 + ix2)m :=
∑

|α|=m

amα x
α + i

∑

|β|=m

bmβ x
β. (4.12)

Using polar coordinate x = reiθ, the above coefficients amα and bmβ can also be characterized by

∑

|α|=m

amα x
α = rm cosmθ, and

∑

|α|=m

bmα x
β = rm sinmθ. (4.13)

For a generic conductivity inclusion D with contrast λ, the associated GPT Mαβ(λ,D) is defined as in

(4.9). The associated CGPT is the following combination of GPTs using the coefficients in (4.12):

M cc
mn =

∑

|α|=m

∑

|β|=n

amα a
n
βMαβ, (4.14)

M cs
mn =

∑

|α|=m

∑

|β|=n

amα b
n
βMαβ, (4.15)

M sc
mn =

∑

|α|=m

∑

|β|=n

bmα a
n
βMαβ, (4.16)

M ss
mn =

∑

|α|=m

∑

|β|=n

bmα b
n
βMαβ. (4.17)

Using the complex coordinate x = rxe
iθx , we have (see Appendix A.2) that

(−1)|α|

α!
∂αG(x) =

−1

2π|α|

[
a|α|α

cos |α|θx
r
|α|
x

+ b|α|α

sin |α|θx
r
|α|
x

]
. (4.18)

Recall that {xr}Nr=1 and {xs}Ns=1 denote the locations of the receivers and electric sources. Define Rr and

θr so that the complex representation of xr − z is Rre
iθr with z being the location of the target. Similarly

define Rs and θs. Substituting formula (4.18) into the expression (4.11) of the MSR, we get

Vrs =
K∑

|α|=1,|β|=1

a
|α|
α cos |α|θs + b

|α|
α sin |α|θs

2π|α|R|α|
s

Mαβ(λ, δB)
a
|β|
β cos |β|θr + b

|β|
β sin |β|θr

2π|β|R|β|
r

+ Ers

=
K∑

m,n=1

(
cosmθs
2πmRm

s

sinmθs
2πmRm

s

)

︸ ︷︷ ︸
Asm

(
M cc

mn M cs
mn

M sc
mn M ss

mn

)

︸ ︷︷ ︸
Mmn

(
cosnθr
sinnθr

)
1

2πnRn
r︸ ︷︷ ︸

(Arn)T

+Ers.
(4.19)
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Here, the short-hand notations Mmn and Asm represent the two-by-two and one-by-two matrices respec-

tively, and (Arn)T is the transpose. As m,n run from one to K, which is the truncation order of CGPT,

and r, s run from one to N , which is the number of receivers (sources), these matrices build up the 2K×2K

CGPT block matrix M and the N × 2K coefficient matrix A as follows:

M =




M11 M12 · · · M1K

M21 M22 · · · M2K

· · · · · · . . . · · ·
MK1 MK2 · · · MKK




;A =




A11 A12 · · · A1K

A21 A22 · · · A2K

· · · · · · . . . · · ·
AN1 AN2 · · · ANK



. (4.20)

Note that, when K = 1, the notation M coincides with the definition given in proposition 2.4.1.

Using these notations, the MSR matrix V can be written as

V = AMAT + E, (4.21)

where AT denotes the transpose of A and the matrix E = (Ers) represents the truncation error. We

precise again that the CGPT above is for the “shifted” inclusion δB. We note also that the dimension of

V depends on the number of sources/receivers but does not depend on the expansion order K in (4.11).

Due to the symmetry of harmonic combination of GPTs [20], the matrix M is symmetric. Since V is

symmetric as shown in (A.2), the truncation error E is also symmetric.

4.3 Reconstruction of CGPTs and Stability Analysis

The first step in the target identification procedure is to reconstruct CGPTs from the MSR matrix V,

which has expression (4.21). Define the linear operator L : R2K×2K → R
N×N by

L(M) := AMAT . (4.22)

We reconstruct CGPTs as the least squares solution of the above linear system, i.e.,

Mest = min
Mtest⊥ker(L)

‖V − L(Mtest)‖F , (4.23)

where ker(L) denotes the kernel of L and ‖ · ‖F denotes the Frobenius norm of matrices [73]. In general

we take N large enough so that 2K < N . When A has full rank 2K, L is rank preserving and ker(L) is

trivial; in that case, the admissible set above can be replaced by R
2K×2K and

Mest = (ATA)−1ATVA(ATA)−1.

From the structure of the matrix A in (4.20) and the expression of the MSR matrix, we observe that

the contribution of a CGPT decays as its order grows. Consequently, one does not expect the inverse

procedure to be stable for higher order CGPTs. The remainder of this section is devoted to such stability

analysis.

4.3.1 Analytical formula in the concentric setting

To simplify the analysis, we assume that the receivers (sources) are evenly distributed along a circle of

radius R centered at z. That is, θr = 2πr/N , r = 1, 2, . . . , N , and Rr = R. In this setting, we have

A = CD, where C is an N × 2K matrix constructed from the block Crm = (cosmθr sinmθr) and D is
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2K × 2K diagonal matrix:

C =




C11 C12 · · · C1K

C21 C22 · · · C2K

· · · · · · . . . · · ·
CN1 CN2 · · · CNK




;D =
1

2π




I2/R

I2/(2R
2)

. . .

I2/(KR
K)



. (4.24)

Here I2 is the 2×2 identity matrix. We note that C and D account for the angular and radial coefficients in

the expansion of MSR, respectively. The matrix C satisfies the following important property; see Appendix

A.3.

Proposition 4.3.1. Suppose that 2K < N holds. Then

CTC =
N

2
I2K . (4.25)

Henceforth, we assume that the number of receivers is large enough so that 2K < N . In this setting,

the least squares problem (4.23) admits an analytical expression as follows.

Lemma 4.3.2. In the above concentric setting with sufficiently many receivers, i.e., 2K < N , the least

squares estimation (4.23) is given by

Mest = (
2

N
)2D−1CTVCD−1. (4.26)

Proof. Firstly, (4.25) implies that A has full rank, so ker(L) = {0}. Moreover,

(ATA)−1 =
2

N
D−2.

Hence,

Mest = (
2

N
)2D−2DCTVCDD−2,

which yields (4.26). ✷

Furthermore, the reconstruction problem is exponentially ill-posed. To be more precise, we first rewrite

Mest =  L†(V), with  L† being the pseudo-inverse of  L provided in this case by lemma 4.3.2 :

 L†(V) =
4

N2
D−1C⊤VCD−1. (4.27)

Hence, the following result holds.

Proposition 4.3.3. Let eab be the 2K × 2K matrix whose elements are all zero but the (a, b)th element is

equal to 1. In the circular and full-view setting with N ≥ 2K, the (a, b)-th singular value of the operator

L, for a, b = 1, . . . , 2K, is

λab = N/(8π2⌈a/2⌉⌈b/2⌉ρ⌈a/2⌉+⌈b/2⌉), (4.28)

with the matrix eab as the right singular vector, and fab = λ−1
ab L(eab) as the left singular vector. In

particular, the condition number of the operator L is K2ρ2(K−1).

Proof. Using the fact that C⊤C = N
2 I, we have, for any square matrices U and V,

〈L(U), L(V)〉 =
N2

4
〈DUD,DVD〉 , (4.29)

where 〈·, ·〉 is the termwise inner product. Since D is diagonal and invertible, we conclude that the ma-

trix eab is a right singular vector of L associated to the singular value ‖L(eab)‖F = ‖DeabD‖FN/2 =
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N/(8π2⌈a/2⌉⌈b/2⌉ρ⌈a/2⌉+⌈b/2⌉). ✷ As a simple consequence, we have L†(W)ab = λ−1
ab 〈W, fab〉. When K

is sufficiently large, the truncation error E is O(ρ−K−2) and can be neglected if compared to W [5], and

then by the property of white noise

√
E(((Mest)ab − (M)ab)

2) .
√

E(
(
L†(W)2ab

)
) = λ−1

ab σnoise,

which is the result already established in [5]. Hence, it follows from (4.28) that the reconstruction of high

order CGPTs is an ill-posed problem. Nonetheless the system has the remarkable property that low order

CGPTs are not affected by the error caused by the instability of higher orders as the following proposition

shows.

Proposition 4.3.4. Let MK denote the CGPTs of order up to K, and let LK be the corresponding linear

operator in (4.19). Then, for any order K1 ≤ K2 < N/2, the submatrix of L†
K2

(V) formed by the first 2K1

columns and rows is identical to the minimal norm solution L†
K1

(V).

Proof. Let the N × 2K matrix JK be the row concatenation of the 2K × 2K identity matrix I2K and a

zero matrix. We have J⊤
KJK = I2K and J⊤

K1
L†
K2

(V)JK1 is the submatrix of L†
K2

(V) formed by the first

2K1 columns and rows. Let DK and CK be the matrices defined in (4.24). Because of (4.27), we have

J⊤
K1
L†
K2

(V)JK1 =
4

N2
J⊤
K1

D−1
K2

C⊤
K2

VCK2D
−1
K2

JK1 .

One can easily see that

CK2D
−1
K2

JK1 = CK1D
−1
K1
.

Thus, we have

J⊤
K1
L†
K2

(V)JK1 = L†
K1

(V).

✷ Numerically, L† can be implemented through either the formula (4.27) or the Conjugated Gradient

(CG) method using (4.23). Simulations in section 4.4 confirm that in typical situations, say, with K = 5

and 10% noise, the reconstructed CGPT is sufficiently accurate for a task such as identification of a target

in a dictionary (performed then in chapter 5), or tracking (chapter 6).

4.3.2 Measurement noise and stability analysis

We develop in this subsection a stability analysis for the least squares reconstruction of CGPT from the

MSR matrix, in the setting of concentric receivers (sources).

Counting some additive measurement noise, we modify the expression of MSR to

V = CDMDCT + E + ζW. (4.30)

Here, E is the truncation error due to the finite order K in expansion (4.11), W is an N ×N real valued

random matrix with independent and identically Gaussian entries with mean zero and unit variance, and

ζ is a small positive number modeling the standard deviation of the noise.

Recall that the unknown M consists of CGPTs of order up to K of the relative domain δB = D − z,
where δ denote the typical length scale of the domain D. The receivers and sources are located along a

circle of radius R centered at z. Let ρ = δ/R be the ratio between the two scales, and it is assumed to be

smaller than one. Due to the scaling property of CGPT (see (5.3), shown in the next chapter), the entries

of the CGPT block Mmn(δB) is δm+nMmn(B). Consequently, the size of V itself is of order ρ2, which is

the order of the first term in the expansion (4.19). The truncation error E is of order ρK+2; see Appendix

A.1.
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According to the above analysis, we assume that the size of the noise satisfies

NρK+2 ≪ ζ ≪ ρ2. (4.31)

This is the regime where the measurement noise is much smaller than the signal but much larger than

the truncation error. The presence of N in (4.31) will be clear later; see remark 4.3.6. We define the

signal-to-noise ratio (SNR) to be

SNR =
ρ2

ζ
.

We will investigate the error made by the least squares estimation of the CGPT matrix, in particular the

manner of its growth with respect to the order of the CGPTs. Given a SNR and a tolerance number τ0,

we can define the resolving order m0 to be

m0 = min

{
1 ≤ m ≤ K :

√
E‖Mest

mm −Mmm‖2F
‖Mmm‖2F

≤ τ0
}
. (4.32)

We are interested in the growth of m0 with respect to SNR.

We have used the notation Mmn, m,n = 1, . . . ,K, to denote the building block of the CGPT matrix

M in (4.20). In the following, we also use the notation (M)jk, j, k = 1, . . . , 2K, to denote the real valued

entries of the CGPT matrix.

Theorem 4.3.5. Assume that the condition of Lemma 4.3.2 holds; assume also that the additive noise is

in the regime (4.31), Then for j, k so that (M)jk is non-zero, the relative error in its reconstructed CGPT

satisfies √
E|(Mest)jk − (M)jk|2

|(M)jk|2
≤ C ζ

N
ρ−⌈j/2⌉−⌈k/2⌉

⌈
j

2

⌉⌈
k

2

⌉
. (4.33)

Here, the symbol ⌈l⌉ is the smallest natural number larger than or equal to l. For vanishing (M)jk, the error√
E|(Mest)jk − (M)jk|2 can be bounded by the right-hand side above with ρ replaced by R−1. In particular,

the resolving order m0 satisfies

(m0ρ
1−m0)2 ≃ τ0SNR, (4.34)

where τ0 is the tolerance number.

Proof. From the analytical formula of the least squares reconstruction (4.26) and the expression of V

(4.30), we see that for each fixed j, k = 1, . . . , 2K,

(Mest −M)jk =
22ζ

N2
(D−1CTWCD−1)jk +

22

N2
(D−1CTECD−1)jk.

Let us denote these two terms by Ijk1 and Ijk2 respectively. For the first term, define W̃ to be

(
√

2/NC)TW(
√

2/NC), which is an N ×N random matrix. Due to the orthogonality (4.25), W̃ remains

to have mean zero Gaussian entries with unit variance. Because D is diagonal, we have for each j, k =

1, . . . , 2K,

E(Ijk1)2 =
22σ2noise
N2

(Djj)
−2

E|W̃jk|2(Dkk)−2 =
26π4σ2noise

N2
R2(⌈j/2⌉+⌈k/2⌉)

⌈
j

2

⌉2 ⌈k
2

⌉2
.

Note that ⌈j/2⌉⌈k/2⌉ is the order of CGPT element (M)jk; see (4.20). It is known that (M)jk(δB) =

δ⌈j/2⌉+⌈k/2⌉(M)jk(B). When this term is non-zero, it is of order δ⌈j/2⌉+⌈k/2⌉. This fact and the above

control of Ijk1 show that
√

E|Ijk1|2/|(M)jk|2 satisfies the estimate in (4.33).
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For the second term, since E is symmetric, it has the decomposition E = PT EP, where P is an

N × N orthonormal matrix, and E is an N × N diagonal matrix consisting of eigenvalues of E. Then

(
√

2/NC)TE(
√

2/NC) can be written as QTEQ where Q =
√

2/NPC is an N × 2K matrix satisfying

QTQ = I2K . Then the calculation for Ijk1 shows that

(Ijk2)2 =
26π4

N2
R2(⌈j/2⌉+⌈k/2⌉)

⌈
j

2

⌉2 ⌈k
2

⌉2( N∑

l=1

EllQT
jlQlk

)2

.

Since E is of order ρK+2 as shown in (A.1), the sum is of order NρK+2. Therefore, we have
√

E|Ijk2|2 ≤ CρK+2−⌈j/2⌉−⌈k/2⌉⌈j
2
⌉⌈k

2
⌉.

Since we assumed that (4.31) holds, this error is dominated by the one due to the noise. Hence, (4.33) is

proved.

For diagonal blocks Mmm, their Frobenius norms do not vanish and (4.32) is well defined. In particular,

(4.33) applied to the case j, k = 2m − 1, 2m, shows that the relative error made in the block Mmm is of

order ζm2ρ−2m. Using the definition of SNR, we verify (4.34). ✷

Remark 4.3.6. If E has only several (of order one) non-zero eigenvalues, then the preceding calculation

shows that (Ijk2)2 ≤ Cρ2(K+2) and condition (4.31) can be replaced with ρK+2 ≪ ζ ≪ ρ2.

4.3.3 CGPT reconstruction in the limited-view setting

In this section we study the stability of CGPTs reconstruction problem in the case 0 < γ < 2π, always

under the condition that N > 2K, i.e., the number of sources/receivers is two times larger than the highest

order of CGPTs to be reconstructed. Unlike in the full-view case, here C is no longer orthogonal in general,

nonetheless one can still establish the SVD of L similarly as in Proposition 4.3.3.

Proposition 4.3.7. Consider the concentric and limited-view setting with N ≥ 2K, and suppose that C

is of maximal rank. Let {µn} be the n-th largest eigenvalue of the matrix DC⊤CD and let {vn} be the

associated orthonormal eigenvector. Then the (a, b)-th singular value of the operator L is λab =
√
µaµb,

with the associated left singular vector the matrix gab = vav
⊤
b . In particular, the condition number of the

operator L is

cond(L) = cond(DC⊤CD) ≤ cond(C)2K2ρ2(K−1), (4.35)

with cond(C) being the condition number of the matrix C.

Proof. We first note that for any matrices U,V we have:

〈L(U), L(V)〉 = 〈U, (DC⊤CD)V(DC⊤CD)〉.

Taking gab = vav
⊤
b , and ga′b′ = va′v

⊤
b′ , we get

〈L(gab), L(ga′b′)〉 = µa′〈vav⊤b , va′v⊤b′ (DC⊤CD)〉 = µa′µb′〈vav⊤b , va′v⊤b′ 〉
= δaa′δbb′µaµb,

where δaa′ is the Kronecker’s symbol, which implies that ‖L(gab)‖F =
√
µaµb is the (a, b)-th singular value

of L. If we denote by ρmax(·) and ρmin(·) the maximal and the minimal singular values of a matrix, then

ρmax(DC⊤CD) = ρmax(CD)2 ≤ ρmax(C)2ρmax(D)2,

ρmin(DC⊤CD) = ρmin(CD)2 ≥ ρmin(C)2ρmin(D)2,

and the condition number of L is therefore bounded by cond(C)2K2ρ2(K−1). ✷
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Injectivity of C

We denote by VK the vector space of functions of the form

f(θ) =

K∑

k=−K

cke
ikθ, (4.36)

with ck ∈ C, and V 0
K the subspace of VK such that c0 = 0. Functions of V 0

K can be written as

f(θ) =

K∑

k=1

αk cos(kθ) + βk sin(kθ), (4.37)

with αk, βk ∈ C. Observe that taking discrete samples of (4.37) at θs = γs/N is nothing but applying the

matrix C on a coefficient vector (α1, β1 . . . αK , βK). We have the following result.

Proposition 4.3.8. For any N ≥ 2K, the matrix C is of maximal rank.

Proof. Multiplying f ∈ V 0
K in (4.36) by eiKθ, and using the fact that c0 = 0, we have

eiKθf(θ) =

K−1∑

k=0

ck−Ke
ikθ +

2K∑

k=K+1

ck−Ke
ikθ

=
K−1∑

k=0

ck−Ke
ikθ +

2K−1∑

k=K

eiθck+1−Ke
ikθ =

2K−1∑

k=0

c̃ke
ikθ, (4.38)

where c̃k = ck−K for k = 0, . . . ,K − 1, and c̃k = eiθck+1−K for k = K, . . . , 2K − 1. The N vectors vs :=

(eikθs)k=0...2K−1 are linearly independent since they are the first 2K ≤ N rows of a N ×N Vandermonde

matrix. Therefore, f(θs) = 0 for s = 1 . . . N implies that c̃k = 0 for all k = 0, . . . , 2K − 1, which means

that C is of maximal rank. ✷

Consequently, for arbitrary range 0 < γ ≤ 2π, a sufficient condition to uniquely determine the CGPTs

of order up to K is to have N ≥ 2K sources/receivers.

Explicit left inverse of C

We denote by DK(θ) the Dirichlet kernel of order K:

DK(θ) =

K∑

k=−K

eikθ =
sin((K + 1/2)θ)

sin(θ/2)
. (4.39)

We state without proof the following well known result about VK [119].

Lemma 4.3.9. The functions {DK(θ − 2πn
2K+1)}n=0,...,2K is an orthogonal basis of VK . For any f, g ∈ VK ,

the following identity holds:

1

2π

ˆ 2π

0
f(θ)g∗(θ)dθ =

1

2K + 1

2K+1∑

n=1

f

(
2πn

2K + 1

)
g

(
2πn

2K + 1

)
, (4.40)

where ∗ denotes the complex conjugate. In particular, we have for n = 0, . . . , 2K

1

2π

ˆ 2π

0
f(θ)DK

(
θ − 2πn

2K + 1

)
dθ = f

(
2πn

2K + 1

)
. (4.41)



66 CHAPTER 4. EXTRACTION OF GENERALIZED POLARIZATION TENSORS

Lemma 4.3.10. Given a set of N > 2K different points 0 < θ1 < . . . < θN ≤ 2π, there exist interpolation

kernels hs ∈ V⌊N/2⌋ for s = 1 . . . N , such that:

f(θ) =
N∑

s=1

f(θs)hs(θ) for any f ∈ VK . (4.42)

Proof. When the number of points N is odd, it is well known [119] that hs takes the form

hs(θ) =
N∏

t=1,t6=s

sin
(
θ−θt
2

)

sin
(
θs−θt

2

) . (4.43)

When N is even, by a result established in [81]

hs(θ) = cos

(
θ − θs

2

) N∏

t=1,t6=s

sin
(
θ−θt
2

)

sin
(
θs−θt

2

) . (4.44)

It is easy to see that in both cases hs belongs to V⌊N/2⌋. ✷

Now we can find explicitly a left inverse for C.

Proposition 4.3.11. Under the same condition as in Lemma 4.3.10, we denote by hs the interpolation

kernel and define the matrix C̃ = (C̃ks)k,s as

C̃2k−1,s =
1

π

ˆ 2π

0
hs(θ) cos(kθ)dθ, C̃2k,s =

1

π

ˆ 2π

0
hs(θ) sin(kθ)dθ. (4.45)

Then C̃C = I. In particular, if N is odd, the matrix C̃ can be calculated as

C̃2k−1,s =
2

N

N∑

n=1

hs

(
2πn

N

)
cos

(
2πkn

N

)
, C̃2k,s =

2

N

N∑

n=1

hs

(
2πn

N

)
sin

(
2πkn

N

)
. (4.46)

Proof. Given v = (α1, β1 . . . αK , βK) ∈ C
2K , and f the associated function defined by (4.37), we have

(Cv)n = f(θn) for n = 1, . . . , N . Using (4.42) and (4.45), we find that

(C̃Cv)2k−1 =
1

π

ˆ 2π

0
f(θ) cos(kθ)dθ = αk, (4.47)

(C̃Cv)2k =
1

π

ˆ 2π

0
f(θ) sin(kθ)dθ = βk, (4.48)

and therefore, C̃Cv = v. Observe that hs(θ), cos(kθ), and sin(kθ) all belong to V⌊N/2⌋, so when N is odd,

we easily deduce (4.46) using (4.40). ✷

Remark 4.3.1. In general, the left inverse C̃ in (4.45) is not the pseudo-inverse of C, and by definition, we

have C† = C̃ if CC̃ is symmetric. If PV 0
K

(hs) is the orthogonal projection of hn onto V 0
K , i.e.,

PV 0
K

(hs)(θ) =

K∑

k=1

C̃2k−1,s cos(kθ) + C̃2k,s sin(kθ), (4.49)

then, PV 0
K

(hs)(θt) = (CC̃)st. Therefore, C̃ is the pseudo-inverse of C if and only if the interpolation kernel

hs satisfies:

PV 0
K

(hs)(θt) = PV 0
K

(ht)(θs), for s, t = 1 . . . N. (4.50)
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Remark 4.3.12. Proposition 4.3.11 can be used in the noiseless limited-view case to reconstruct the CGPT

matrix M from the MSR measurements V. In fact, from (4.22) it immediately follows that

M = D−1C̃VC̃⊤D−1.

This shows that in the noiseless case, the limited-view aspect has no effect on the reconstruction of the

GPTs, and consequently on the location and orientation tracking. In the presence of noise, the effect,

as will be shown in the next subsection, is dramatic. A small amount of measurement noise significantly

changes the performance of our algorithm unless the arrays of receivers and transmitters offer a directional

diversity, see Figure 6.3.

Ill-posedness in the limited-view setting

We undertake a numerical study to illustrate the ill-posedness of the linear system (4.30) in the case of

limited-view data. Figure 4.2 shows the distribution of eigenvalues of the matrix C⊤C and DC⊤CD at

different values of γ with N = 101 and K = 50. In Figure 4.3, we calculate the condition number of C⊤C

and L (which is equal to that of DC⊤CD by (4.35)) for different orders K. From these results, we see

clearly the effect of the limited-view aspect. First, the tail of tiny eigenvalues in Figure 4.2.(a) suggests

that the matrix C⊤C is numerically singular, despite the fact that C is of maximal rank. Secondly, both

C⊤C and L rapidly become extremely ill-conditioned as K increases, so the maximum resolving order of

CGPTs is very limited. Furthermore, this limit is intrinsic to the angle of view and cannot be improved

by increasing the number of sources/receivers, see Figure 4.3 (c) and (d).
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Figure 4.2: Distribution of eigenvalues (in log scale) of the matrix C⊤C (a) and DC⊤CD (b). N = 101
sources are equally spaced between [0, γ) on a circle of radius ρ = 1.2, and K = 50. Each curve corresponds
to a different value of γ. The matrix C⊤C and DC⊤CD are calculated from these parameters and their
eigenvalues are sorted in decreasing order.

4.4 Numerical Results

In this section we present a variety of numerical results on the theoretical framework discussed in this

chapter with noisy MSR measurements. Given a shape D0 of characteristic size δ, the procedure of our

numerical experiment can be summarized as follows:
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(d) Condition number of L

Figure 4.3: Condition numbers (in log scale) of the matrix C⊤C (a) and the operator L (b) for different
orders K between [1, 50]. As in Figure 4.2, N = 101 sources are equally spaced between [0, γ) on a circle
of radius ρ = 1.2. Figure(c) and (d) are the same experiment as Figure(a) and (b) but with N = 1001.

1. Data simulation. N sources (and also receivers) are equally distributed on a circle of radius R, which

is centered at an arbitrary point z0 ∈ D0 and includes D0, see Figure 4.4. The MSR matrix is

obtained by evaluating numerically its integral expression (4.7) then adding a white noise of variance

ζ2. For simplicity, here we suppose that the reference point z0 ∈ D0 can be estimated by means of

algorithms such as MUSIC (standing for MUltiple SIgnal Classification) [10, 20].

2. Reconstruction of the CGPTs of D = D0 − z0 using formula (4.26) or the least squares algorithm

(4.23).

We emphasize that the reconstructed CGPTs of shape D depend on the reference point z0. We fix the

conductivity parameter k = 4/3 throughout this section.

4.4.1 Reconstruction of CGPTs

The theoretical analysis presented in section 4.3 suggests the following two steps method for the recon-

struction of CGPTs. First we apply (4.26) (or equivalently solve the least squares problem (4.23)) by fixing



4.4. NUMERICAL RESULTS 69

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.4: An example of the configuration for MSR data simulation. The unknown shape is an ellipse
whose long and short axes are 2 and 1, respectively. N = 51 sources/receivers (marked by “x”) are equally
placed on a circle of radius R = 2 centered at z0 = [0, 0] (marked by “*”).

the truncation order K as in (4.31):

K ≤ min

(
log(ζ/N)

log ρ
− 2, N/2

)
. (4.51)

Then, we keep only the first m0 orders in the reconstructed CGPTs, with m0 being the resolving order

deduced from estimation (4.34):

m0 =
log ζ − log τ0

2 log ρ
, (4.52)

and τ0 ≤ 1 is the tolerance number introduced in (4.32). In all our numerical experiments we set the noise

level ζ to:

ζ = (Vmax −Vmin)σ0, (4.53)

with a positive constant σ0 and Vmax and Vmin being the maximal and the minimal coefficient in the

MSR matrix V. Using the configuration given in Figure 4.4 and for various noise level, we reconstruct the

CGPTs of the ellipse up to a truncation order K which is determined as in (4.51). For each k ≤ K, the

relative error of the first k-th order reconstructed CGPTs is evaluated by comparing with their theoretical

value ([20, Proposition 4.7]). The results are shown in Figure 4.5. In Figure 4.6 we plot the resolving

order m0 given by (4.52) and the relative error of the reconstruction within this order, for σ0 in the range

[10−3, 1].

4.4.2 Partial View Setting

The analysis performed in subsection 4.3.3 suggests that the least-squares problem (4.23) is not adapted

to the CGPT reconstruction in a limited-view setting. Actually, the truncation error or the noise of

measurement will be amplified by the tiny singular values of L, and yields extremely instable reconstruction

of high-order CGPTs, e.g., K ≥ 2. Instead, we use Thikhonov regularization and propose to solve

min
M

‖L(M)−V‖2F + µ‖M‖2F , (4.54)

with µ > 0 a small regularization constant. It is well known that the effect of the regularization term is to

truncate those singular values of L smaller than µ, which consequently stabilizes the solution. The optimal
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(a) σ0 = 0.01, m0 = 6
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(b) σ0 = 0.1, m0 = 4
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(c) σ0 = 0.5, m0 = 3
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(d) σ0 = 1.0, m0 = 2

Figure 4.5: Relative error of the reconstructed CGPTs. For each noise level, we repeat the experiment 100
times (corresponding to 100 realizations of the noise) and the reconstruction is taken as their mean value.
The horizontal solid line in each figure indicates the resolving order m0 given by (4.52) with the tolerance
number τ0 = 10−1.

choice of µ depends on the noise level, and here we determine it from the range [10−6, 10−1] by comparing

the solution of (4.54) with the true CGPTs.

Here we reconstruct the CGPTs of an ellipse with the parameter N = 101,K = 50, and γ varying

between 0 and 2π. The major and minor axis of the ellipse are 1 and 0.5 respectively. In Figure 4.7 we

show the error of the first 2 order CGPTs reconstructed through (4.54) and (4.23) at three different noise

levels. It can be seen that, for small γ, the error obtained by (4.54) is substantially smaller.

4.5 Conclusion

In this chapter, we have proposed a general framework for extraction of GPTs from multi-static measure-

ments. From a least-squares formulation, we are able to extract those tensors from multi-static measure-

ments. We have analyzed the stbility of our algorithms with respect to measurement noise, in the cases of

full-view and partial-view setting.
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Figure 4.6: The resolving order m0, for σ0 ∈ [10−3, 1], τ0 = 10−1, and the relative error of the reconstruction
within this order. As in Figure 4.5, we repeat the experiment 100 times and the reconstruction is taken as
their mean value. The large variations of the relative error in (b) for σ0 > 10−1 indicate the instability of
the reconstruction for very noisy data.
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Figure 4.7: Error of reconstructed CGPT of an ellipse compared with true CGPT values at different noise
levels. We solve (4.54) and (4.23) with N = 101,K = 50, and compare the first two orders with the true
CGPT. The x-axis is the angle of view γ. Figure(a): results of (4.54), Figure(b): results of (4.23).





CHAPTER5

Dictionary Matching

The results of this chapter have been submitted in [5].

Abstract

The aim of this chapter is to provide a fast and efficient procedure for (real-time) target identifi-

cation in imaging based on matching on a dictionary of precomputed generalized polarization tensors.

The approach is based on some important properties of the GPTs and new invariants. A new shape

representation is given and numerically tested in the presence of measurement noise. The stability and

resolution of the proposed identification algorithm is numerically quantified.

5.1 Introduction

An important use of the concept of GPT is for imaging diametrically small inclusions from boundary

measurements. Based on the multipolar expansion computed in section 4.2.1, efficient algorithms to deter-

mine the location and some geometric features of the inclusions have been proposed in previous works (see

[19, 20] and the references therein for recent developments of this theory).

In [25], a recursive optimal control scheme to recover fine shape details of a given domain using GPTs

is proposed. In [12], it is shown that high-frequency oscillations of the boundary of a domain are only

contained in its high-order GPTs. Moreover, by developing a level set version of the recursive optimization

scheme, it is also shown that the GPTs can capture the topology of the domain. An efficient algorithm for

computing the GPTs has been presented in [38].

The aim of this chapter is to show that the GPTs can be used for shape identification from imaging data.

Based on the results of chapter 4, we design a fast algorithm which identifies a target using a dictionary of

precomputed GPTs data. Suppose that we have a dictionary which is a collection of standard shapes (for

example alphabetic letters or flowers). Our aim is to identify from imaging data a shape which is obtained

from one element of the dictionary after some rotation, scaling and translation. We design a dictionary

matching procedure which operates directly in the GPTs data. Our procedure is based on some important

properties of the GPTs and new invariants. We test the robustness of our procedure with respect to a

73



74 CHAPTER 5. DICTIONARY MATCHING

measurement noise in the imaging data. Our approach is quite natural since it uses geometric quantities

obtained from the imaging data by simply inverting a linear system. Moreover, there is an infinite number

of invariants associated with the GPTs. Furthermore, for a given dictionary, the GPT-based representation

may lead to better distinguishibility between the dictionary elements.

Over the last decades, a considerable amount of work has been devoted to nonlinear optimization

techniques for solving the imaging problem; see, for instance, [55, 100, 106] and the references therein.

More recently, new regularized optimal control formulations for target imaging have been proposed in

[9, 11]. As far as we know, our approach in this chapter provides for the first time an alternative approach

to solving the full inverse problem for target identification and characterization. It opens a way for real-time

target identification and tracking algorithms in wave imaging.

The chapter is organized as follows. In section 5.2 it is shown that the CGPTs have some nice properties,

such as simple rotation and translation formulas and simple relation with shape symmetry. In section 5.3

we derive two algorithms for shape identification based on those relations. Section 5.4 presents a variety of

numerical results for the target identification problem and shows the viability of the proposed procedure.

5.2 Complex CGPTs under Rigid Motions and Scaling

As we will see later, a complex combination of CGPTs is most convenient when we consider the transforms

of CGPTs under dilatation and rigid motions, i.e., shift and rotation. Therefore, for a double index mn,

with m,n = 1, 2, . . ., we introduce the following complex combination of CGPTs:

N (1)
mn(λ,D) = (M cc

mn −M ss
mn) + i(M cs

mn +M sc
mn),

N (2)
mn(λ,D) = (M cc

mn +M ss
mn) + i(M cs

mn −M sc
mn).

(5.1)

Then, from (4.9), we observe that

N (1)
mn(λ,D) =

ˆ

∂D
Pn(y)(λI −K∗

D)−1[〈ν,∇Pm〉](y) ds(y),

N (2)
mn(λ,D) =

ˆ

∂D
Pn(y)(λI −K∗

D)−1[〈ν,∇Pm〉](y) ds(y),

where Pn and Pm are defined by (4.12). In order to simplify the notation, we drop λ in the following and

write simply N
(1)
mn(D), N

(2)
mn(D).

We consider the translation, the rotation and the dilatation of the domain D by introducing the following

notation:

• Shift: TzD = {x + z, for x ∈ D}, for z ∈ R
2;

• Rotation: RθD = {eiθx, for x ∈ D}, for θ ∈ [0, 2π);

• Scaling: sD = {sx, for x ∈ D}, for s > 0.

Proposition 5.2.1. For all integers m,n, and geometric parameters θ, s, and z, the following holds:

N (1)
mn(RθD) = ei(m+n)θN (1)

mn(D), N (2)
mn(RθD) = ei(n−m)θN (2)

mn(D), (5.2)

N (1)
mn(sD) = sm+nN (1)

mn(D), N (2)
mn(sD) = sm+nN (2)

mn(D), (5.3)

N (1)
mn(TzD) =

m∑

l=1

n∑

k=1

Cz
mlN

(1)
lk (D)Cz

nk, N (2)
mn(TzD) =

m∑

l=1

n∑

k=1

Cz
mlN

(2)
lk (D)Cz

nk, (5.4)
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where Cz is a lower triangle matrix with the m,n-th entry given by

Cz
mn =

(
m

n

)
zm−n, (5.5)

and Cz denotes its conjugate. Here, we identify z = (z1, z2) with z = z1 + iz2.

An ingredient that we will need in the proof is the following chain rule between the gradient of a

function and its push forward under transformation. In fact, for any diffeomorphism T from R
2 to R

2 and

any scalar-valued differentiable map f on R
2, we have

d(f ◦ T )
∣∣
x
(h) =

(
df
∣∣
T (x)
◦ dT

∣∣
x

)
(h), (5.6)

for any tangent vector h ∈ R
2, with dT being the differential of T .

Proof of Proposition 5.2.1. We will follow proofs of similar relations that can be found in [12]. Let us

first show (5.2) for the rotated domain Dθ := RθD. For a function ϕ(y), y ∈ ∂D, we define a function

ϕθ(yθ), yθ := Rθy ∈ ∂Dθ by

ϕθ(yθ) = ϕ ◦R−θ(yθ) = ϕ(y).

It is proved in [12] that λI −K∗
D is invariant under the rotation map, that is,

(λI −K∗
Dθ

)[ϕθ](yθ) = (λI −K∗
D)[ϕ](y). (5.7)

We also check that Pm(Rθy) = eimθPm(y).

We will focus on the relation for N
(1)
mn, the other one can be proved in the same way. By definition, we

have

N (1)
mn(D) =

ˆ

∂D
Pn(y)ϕD,m(y)ds(y),

N (1)
mn(Dθ) =

ˆ

∂Dθ

Pn(yθ)ϕDθ ,m(yθ)ds(yθ),
(5.8)

where
ϕD,m(y) = (λI −K∗

D)−1[〈ν,∇Pm〉](y),

ϕDθ ,m(yθ) = (λI −K∗
Dθ

)−1[〈ν,∇Pm〉](yθ).

Note that the last function differs from ϕθ
D,m. By the change of variables yθ = Rθy in the first expression

of (5.8), we obtain

N (1)
mn(D) =

ˆ

∂Dθ

Pn(R−θyθ)ϕD,m(R−θyθ)ds(yθ)

= e−inθ

ˆ

∂Dθ

Pn(yθ)ϕ
θ
D,m(yθ)ds(yθ).

From (5.7), we have

(λI −K∗
Dθ

)[ϕθ
D,m](yθ) = (λI −K∗

D)[ϕD,m](y)

= 〈νy,∇Pm(y)〉.

Moreover, Pm(y) = e−imθPm(yθ) so that, by applying the chain rule (5.6) with f = Pm, T = Rθ, x = y

and h = νy, we can conclude that

〈νy,∇Pm(y)〉 = e−imθ〈Rθνy,∇Pm(yθ)〉
= e−imθ〈νyθ ,∇Pm(yθ)〉.

Therefore, ϕθ
D,m = e−imθϕDθ ,m, and we conclude that N

(1)
mn(Dθ) = ei(m+n)θN

(1)
mn(D).



76 CHAPTER 5. DICTIONARY MATCHING

The second identity in (5.2) results from the same computation as above (the minus sign comes form the

conjugate in the definition of N(2)), and the two equations in (5.3) are proved in the same way, replacing

the transformed function ϕθ by

ϕs(sy) = ϕ(y).

Thus, only (5.4) remains. Since the difference between these two comes from the conjugation, we will

focus only on the first identity in (5.4). The strategy will be once again the following: for a function

ϕ(y), y ∈ ∂D, we define a function ϕz(yz), yz = y + z ∈ ∂Dz, with Dz := TzD, by

ϕz(yz) = ϕ ◦ T−z(yz) = ϕ(y),

which also verifies an invariance relation similar to (5.7)

(λI −K∗
Dz

)[ϕz ](yz) = (λI −K∗
D)[ϕ](y). (5.9)

Moreover, for every integer q ∈ N one has the following

Pq(yz) = (y + z)q =

q∑

r=0

(
q

r

)
yrzq−r. (5.10)

Equations (5.8) become

N (1)
mn(D) =

ˆ

∂D
Pn(y)ϕD,m(y)ds(y),

N (1)
mn(Dz) =

ˆ

∂Dz

Pn(yz)ϕDz ,m(yz)ds(yz),

where
ϕD,m(y) = (λI −K∗

D)−1[〈ν,∇Pm〉](y),

ϕDz ,m(yz) = (λI −K∗
Dz

)−1[〈ν,∇Pm〉](yz).

Thus, combining (5.9) and (5.10) leads us to

(λI −K∗
Dz

)[ϕDz ,m](yz) = 〈νyz ,∇Pm(yz)〉

= 〈νy,
m∑

l=1

(
m

l

)
zm−l∇Pl(y)〉

=

m∑

l=1

(
m

l

)
zm−l(λI −K∗

D)[ϕD,l](y)

=

m∑

l=1

(
m

l

)
zm−l(λI −K∗

Dz
)[ϕz

D,l](yz),

so that we have

ϕDz ,m(y) =
m∑

l=1

(
m

l

)
zm−lϕz

D,l(yz).

Hence, returning to the definition of N
(1)
mn(Dz) with the substitution yz ↔ y, we obtain

N (1)
mn(Dz) =

m∑

l=1

(
m

l

)
zm−l

ˆ

∂Dz

Pn(yz)ϕ
z
D,l(yz)ds(yz),

=
m∑

l=1

n∑

k=1

(
m

l

)(
n

k

)
zm−lzn−kN

(1)
lk (D),

which is the desired result. Note that the index k begins with k = 1 because
´

∂Dz
ϕz
D,l = 0. This completes

the proof. ✷
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5.2.1 Some properties of complex CGPTs

We define the complex CGPT matrices by N(1) := (N
(1)
mn)m,n and N(2) := (N

(2)
mn)m,n. We set w = seiθ and

introduce the diagonal matrix Gw with the m-th diagonal entry given by smeimθ. Proposition 5.2.1 implies

immediately that

N(1)(TzsRθD) = CzGwN(1)(D)Gw(Cz)T , (5.11)

N(2)(TzsRθD) = CzGwN(2)(D)Gw(Cz)T , (5.12)

where Cz is defined by (5.5). Relations (5.11) and (5.12) still hold for the truncated CGPTs of finite order,

due to the triangular shape of the matrix Cz. Using the symmetry of the CGPTs ([20, Theorem 4.11]) and

the positivity of the GPTs as proved in [20], we easily establish the following result.

Proposition 5.2.2. The complex CGPT matrix N(1) is symmetric: (N(1))T = N(1), and N(2) is Hermi-

tian: (N(2))H = N(2). Consequently, the diagonal elements of N(2) are strictly positive if λ > 0 and strictly

negative if λ < 0.

Furthermore, the CGPTs of rotation invariant shapes have special structures:

Proposition 5.2.3. Suppose that D is invariant under rotation of angle 2π/p for some integer p ≥ 2, i.e.,

R2π/pD = D, then

N (1)
mn(D) = 0 if p does not divide (m + n), (5.13)

N (2)
mn(D) = 0 if p does not divide (m− n). (5.14)

Proof. Suppose that p does not divide (m + n), and define r := 2π(n + m)/p mod 2π. Then by the

rotation symmetry of D and the symmetry property of the CGPTs, we have

N (1)
mn(D) = N (1)

mn(R2π/pD) = ei(m+n)2π/pN (1)
mn(D) = eirN (1)

mn(D).

Since r < 2π and r 6= 0, we conclude that N
(1)
mn(D) = 0. The proof of (5.14) is similar. ✷

5.3 Shape Identification by the CGPTs

We call a dictionary D a collection of standard shapes, which are centered at the origin and with char-

acteristic sizes of order 1. Given the CGPTs of an unknown shape D, and assuming that D is obtained

from a certain element B ∈ D by applying some unknown rotation θ, scaling s and translation z, i.e. ,

D = TzsRθB, our objective is to recognize B from D. For doing so, one may proceed by first reconstructing

the shape D using its CGPTs through some optimization procedures as proposed in [25], and then match

the reconstructed shape with D. However, such a method may be time-consuming and the recognition

efficiency depends on the shape reconstruction algorithm.

We propose in subsections 5.3.1 and 5.3.2 two shape identification algorithms using the CGPTs. The

first one matches the CGPTs of data with that of the dictionary element by estimating the transform

parameters, while the second one is based on a transform invariant shape descriptor obtained from the

CGPTs. The second approach is computationally more efficient. Both of them operate directly in the data

domain which consists of CGPTs and avoid the need for reconstructing the shape D. The heart of our
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approach is some basic algebraic equations between the CGPTs of D and B that can be deduced easily

from (5.11) and (5.12). Particularly, the first four equations read:

N
(1)
11 (D) = w2N

(1)
11 (B), (5.15)

N
(1)
12 (D) = 2N

(1)
11 (D)z + w3N

(1)
12 (B), (5.16)

N
(2)
11 (D) = s2N

(2)
11 (B), (5.17)

N
(2)
12 (D) = 2N

(2)
11 (D)z + s2wN

(2)
12 (B), (5.18)

where w = seiθ.

5.3.1 CGPTs matching

Determination of transform parameters

Suppose that the complex CGPT matrices N(1)(B),N(2)(B) of the true shape B are given. Then, from

(5.17), we obtain that

s =

√
N

(2)
11 (D)/N

(2)
11 (B). (5.19)

Case 1: Rotational symmetric shape. If the shape B has rotational symmetry, i.e. , R2π/pB = B for some

p ≥ 2, then from Proposition 5.2.3 we have N
(2)
12 (B) = 0 and the translation parameter z is uniquely

determined from (5.18) by

z =
N

(2)
12 (D)

2N
(2)
11 (D)

. (5.20)

On the contrary, the rotation parameter θ (or eiθ) can only be determined up to a multiple of 2π/p, from

CGPTs of order ⌈p/2⌉ at least. Although explicit expressions of eipθ can be deduced from (5.15) - (5.18)

(or higher order equations if necessary), we propose to recover eipθ by solving the least squares problem:

min
θ

(
‖N(1)(TzsRθB)−N(1)(D)‖2F + ‖N(2)(TzsRθB)−N(2)(D)‖2F

)
. (5.21)

Here, s and z are given by (5.19) and (5.20) respectively, and N(1)(D) and N(2)(D) are the truncated

complex CGPTs matrices of dimension ⌈p/2⌉ × ⌈p/2⌉.

Case 2: Non rotational symmetric shape. Consider a non rotational symmetric shape B which satisfies the

assumption:

N
(1)
11 (B) 6= 0 and det

(
N

(1)
11 (B) N

(2)
11 (B)

N
(1)
12 (B) N

(2)
12 (B)

)
6= 0. (5.22)

From (5.16) and (5.18), it follows that we can uniquely determine the translation z and the rotation

parameter w = eiθ from CGPTs of orders one and two by solving the following linear system:

N
(1)
12 (D)/N

(1)
11 (D) = 2z + wN

(1)
12 (B)/N

(1)
11 (B),

N
(2)
12 (D)/N

(2)
11 (D) = 2z + wN

(2)
12 (B)/N

(2)
11 (B). (5.23)
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Debiasing by least squares solutions

In practice (for both the rotational symmetric and non rotational symmetric cases), the value of the

parameters z, s and θ provided by the analytical formulas and numerical procedures above may be inexact,

due to the noise in the data and the ill-conditioned character of the linear system (6.3). Let z∗, s∗, θ∗ be

the true transform parameters, which can be considered as perturbations around the estimations z, s, θ

obtained above:

z∗ = z + δz, s
∗ = sδs, and θ∗ = θ + δθ, (5.24)

for δz, δθ small and δs close to 1. To find these perturbations, we solve a nonlinear least squares problem:

min
z′,s′,θ′

(
‖N(1)(Tz′s

′Rθ′B)−N(1)(D)‖2F + ‖N(2)(Tz′s
′Rθ′B)−N(2)(D)‖2F

)
, (5.25)

with (z, s, θ) as an initial guess. Here, the order of the CGPTs in (5.25) is taken to be 2 in the non rotational

case and max(2, [p/2]) in the rotational symmetric case. Thanks to the relations (5.11) and (5.12), one

can calculate explicitly the derivatives of the objective function, therefore can solve (5.25) by means of

standard gradient-based optimization methods.

First algorithm for shape identification

For each dictionary element, we determine the transform parameters as above, then measure the similarity

of the complex CGPT matrices using the Frobenius norm, and choose the most similar element as the

identified shape. Intuitively, the true dictionary element will give the correct transform parameters hence

the most similar CGPTs. This procedure is described in Algorithm 1.

Algorithm 1 Shape identification based on CGPT matching

Input: the first k-th order CGPTs N(1)(D),N(2)(D) of an unknown shape D
for Bn ∈ D do

1. Estimation of z, s, θ using the procedures described in subsections 5.3.1 and 5.3.1;
2. D̃ ← R−θs

−1T−zD, and calculate N(1)(D̃) and N(2)(D̃);
3. E(1) ← N(1)(Bn)−N(1)(D̃), and E(2) ← N(2)(Bn)−N(2)(D̃);
4. en ← (‖E(1)‖2F + ‖E(2)‖2F )1/2/(‖N(1)(Bn)‖2F + ‖N(2)(Bn)‖2F )1/2;
5. n← n+ 1;

end for

Output: the true dictionary element n∗ ← argminnen.

5.3.2 Transform invariant shape descriptors

From (5.17) and (5.18) we deduce the following identity:

N
(2)
12 (D)

2N
(2)
11 (D)

= z + seiθ
N

(2)
12 (B)

2N
(2)
11 (B)

, (5.26)

which is well defined since N
(2)
11 6= 0 thanks to the Proposition 5.2.2. Identity (5.26) shows a very simple

relationship between
N

(2)
12 (B)

2N
(2)
11 (B)

and
N

(2)
12 (D)

2N
(2)
11 (D)

for D = TzsRθB. .

Let u =
N

(2)
12 (D)

2N
(2)
11 (D)

. We first define the following quantities which are translation invariant:

T (1)(D) = N(1)(T−uD) = C−uN(1)(D)(C−u)T , (5.27)

T (2)(D) = N(2)(T−uD) = C−uN(2)(D)(C−u)T , (5.28)
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with the matrix C−u being the same as in Proposition 5.2.1. From T (1)(D) = (T (1)
mm(D))m,n and T (2)(D) =

(T (2)
mm(D))m,n, we define, for any indices m,n, the scaling invariant quantities:

S(1)mn(D) =
T (1)
mn (D)

(
T (2)
mm(D)T (2)

nn (D)
)1/2 , S

(2)
mn(D) =

T (2)
mn (D)

(
T (2)
mm(D)T (2)

nn (D)
)1/2 . (5.29)

Finally, we introduce the CGPT-based shape descriptors I(1) = (I(1)mn)m,n and I(2) = (I(2)mn)m,n:

I(1)mn(D) = |S(1)mn(D)|, I(2)mn(D) = |S(2)mn(D)|, (5.30)

where | · | denotes the modulus of a complex number. Constructed in this way, I(1) and I(2) are clearly

invariant under translation, rotation, and scaling.

It is worth emphasizing the symmetry property, I(1)mn = I(1)nm,I(2)mn = I(2)nm, and the fact that I(2)mm = 1 for

any m.

Second algorithm for shape identification

Thanks to the transform invariance of the new shape descriptors, there is no need now for calculating

the transform parameters, and the similarity between a dictionary element and the unknown shape can

be directly measured from I(1) and I(2). As in Algorithm 1, we use the Frobenius norm as the distance

between two shape descriptors and compare with all the elements of the dictionary. We propose a simplified

method for shape identification, as described in Algorithm 2.

Algorithm 2 Shape identification based on transform invariant descriptors

Input: the first k-th order shape descriptors I(1)(D),I(2)(D) of an unknown shape D
for Bn ∈ D do

1. en ←
(
‖I(1)(Bn)− I(1)(D)‖2F + ‖I(2)(Bn)− I(2)(D)‖2F

)1/2
;

2. n← n+ 1;
end for

Output: the true dictionary element n∗ ← argminnen.

5.4 Numerical Experiments

In this section, we will present the results of identification that were theoretically shown in the previous

sections.

The identification process will be as follows (note that the first two are the same as in section 4.4).

1. Data simulation (see setting in Figure 5.1)

2. Reconstruction of the CGPTs of D = D0 − z0 using formula (4.26) or the least squares algorithm

(4.23).

3. For a given dictionary D, apply Algorithm 1 (or Algorithm 2) using the CGPTs of D and identify

the true shape from D.

As in chapter 4, the conductivity parameter is fixed to k = 4/3.

Unless specified, in the following we suppose that the unknown shape of the target D0 is an exact copy

of some element from the dictionary, up to a rigid transform and dilatation. As examples, we consider a

dictionary of flowers and a dictionary of Roman letters. The aim is to identify the target D0 from imaging

data if it belongs to one of the dictionaries.
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Figure 5.1: An example of the configuration for MSR data simulation. The unknown shape is an ellipse
whose long and short axes are 2 and 1, respectively. N = 51 sources/receivers (marked by “x”) are equally
placed on a circle of radius R = 2 centered at z0 = [0, 0] (marked by “*”).

5.4.1 Matching on a dictionary of flowers

We start by considering a simple dictionary of rotation invariant “flowers”, on which the shape identification

algorithm can be greatly simplified. The boundary of the p-th flower Bp is defined as a small perturbation

of the standard disk:

∂Bp(ξ) = x(ξ)(1 + η cos(pξ)), x(ξ) =

(
cos ξ

sin ξ

)
, (5.31)

where p ≥ 2 is the number of petals and η > 0 is a small constant. According to Proposition 5.2.3, N
(1)
mn(Bp)

is zero if p does not divide m+n. For an unknown shape D = TzsRθBp, the translation parameter is given

by z =
N

(2)
12 (D)

2N
(2)
11 (D)

. Moreover, simple calculations show that I(1)(D) and N(1)(Bp) have exactly the same zero

patterns.

Therefore, we can find the true number of petals by searching the first nonzero anti-diagonal entry in

I(1)(D).

We fix η = 0.3 (the amplitude of the perturbation introduced in (5.31)) and δ/R = 0.5. The unknown

shape D0 is obtained by applying the transform parameters z = [16.3,−46.7], s = 7.5, θ = 2.69 on Bp,

and the reference point for data acquisition is z0 = [15,−45.5]. The results for two flowers of 5 and 7

petals are shown in Figure 5.2, where we plot the mean absolute value of the anti-diagonal entries mn, for

m + n = l, l = 2, . . . , 11, in I(1)(D) by varying the noise level σ0. One can clearly distinguish the peak

which indicates the true number of petals for σ0 up to 10−2.

Stability. Let us consider now the model (5.31) with a general C1 function h(ξ) in place of cos(pξ). It was

proven in [12] that:

N (1)
mn(Bp) = 2πη

mn

λ2
ĥm+n +O(η2). (5.32)

Therefore as long as the perturbation h(ξ) is close to cos(pξ), the significant nonzero coefficients in I(1)(D)

will concentrate on the same anti-diagonals. We confirm this observation by applying the same procedure
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(a) p = 5
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(b) p = 7

Figure 5.2: Mean values of the anti-diagonal entries of I(1) for the flowers of 5 and 7 petals at different
noise levels.

above on a flower with one damaged petal:

∂Bp(ξ) =




x(ξ)f(ξ, t) for ξ ∈ [0, 2π/p),

x(ξ)(1 + η cos(pξ)) for ξ ∈ [2π/p, 2π).
(5.33)

Here, f(·, t) : R 7→ R is a polynomial of order 6, constructed such that ∂Bp is C2-smooth, and t ∈ (0, 1) is

the percentage of the damage; see Figure 5.3. In Figure 5.4 we plot the mean value of the anti-diagonal

entries at different noise levels. Compared to Figure 5.2, we see that the effect of the damage in the

petal dominates the measurement noise. Nonetheless, the peak indicating the true number of petals is still

visible.
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(a) t = 0.5

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b) t = 0.8

Figure 5.3: Flowers with one damaged petal. The following parameters are used in (5.33): p = 7, η = 0.3,
t = 0.5 for (a) and t = 0.8 for (b).

5.4.2 Dictionary of letters

Next we consider here a dictionary consisting of 26 Roman capital letters without rotational symmetry.

The shapes are defined in such a way that the holes inside the letters are filled, see Figure 5.10. We set
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(b) t = 0.8

Figure 5.4: Mean value of the anti-diagonal entries of I(1) for the flowers of Figure 5.3 at different noise
levels. The peaks indicate the number of petals.

δ/R = 0.5, s = 2.47, θ = 6.08, z = [33.35, 73.84] and the center of mass of the target at [33.40, 73.86].

Performance of Algorithm 1. First we test Algorithm 1 on the letter “P”. For the noiseless case (σ0 = 0),

the values of en defined in Algorithm 1 are plotted in Figure 5.5 (a) and (b). These results suggest that the

high order CGPTs can better distinguish similar shapes such as “P” and “R”, since they contain more high

frequency information [12]. Nonetheless, the advantage of using high order CGPTs drops quickly when the

data are contaminated by noise, and low order CGPTs provide more stable results in this situation, see

Figure 5.5 (c) and (d).

By repeating the same procedure as above, we apply Algorithm 1 on all letters at noise levels σ0 = 0

and σ0 = 0.1, and show the result in Figure 5.6 (a) and (c). At the coordinate (m,n), the unknown shape

is the m-th letter and the color represents the relative error (in logarithmic scale) of the CGPTs when

compared with the n-th standard letter of the dictionary.

Stability. In real world applications we would like to have Algorithm 1 work also on shapes which are not

exact copies of the dictionary, such as handwriting letters (in the case of the present dictionary). In the

case of electrolocation, this is motivated by the fact that the targets for the fish do not share exactly the

same shape. Figure 5.11 shows the letters obtained by perturbing and smoothing the dictionary elements.

With these letters as unknown shapes, we repeat the experiment of Figure 5.6 (a) and (c) by applying

Algorithm 1 on the standard dictionary and show the results in Figure 5.6 (b) and (d). Comparing with

the results of Figure 5.6 (a) and (c), we see that Algorithm 1 remains quite stable, despite of some slight

degradations.

Performance of Algorithm 2. In the case of noiseless data, Algorithm 2 provides correct results with low

computational cost. Here we repeat the experiment in Figure 5.5 (a) and (c) using Algorithm 2, and plot

the error en defined in Algorithm 2 in Figure 5.7. Nonetheless, when data are noisy, Algorithm 1 performs

significantly better than Algorithm 2, as shown by Figure 5.8 where we compare the two algorithms for

identifying letter “P” at various noise levels. Thanks to the debiasing step (5.25), Algorithm 1 is much

more robust with respect to noise than Algorithm 2, in which there is no debiasing and the invariance of

the shape descriptors I(1) and I(2) may be severely affected by noise (see Figure 5.8).
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(a) σ0 = 0, order ≤ 2
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(b) σ0 = 0, order ≤ 5
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(c) σ0 = 0.1, order ≤ 2
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(d) σ0 = 0.1, order ≤ 5

Figure 5.5: The identification of the letter “P” using the first 2, and 5 orders CGPTs at noise levels σ0 = 0
and σ0 = 0.1. The bar represents the relative error en between the CGPTs of the n-th letter and that of
the data, as defined in Algorithm 1, and the shortest one in each figure corresponds to the identified letter.
For (c) and (d), the experiment has been repeated for 100 times, using independent draws of white noise,
and the results are the mean values of all experiments.

Performance of Algorithm 2 with partial aperture We also studied the influence of a limited angle of view

on the matching of dictionary, with the two following configurations. In the first configuration, N = 51

sources/receivers are equally distributed between [0, π), see Figure 5.9(a). In the second configuration, we

divide the sources/receivers into 5 groups placed in a nonuniform way on [0, 2π), and each group covers

only an angle range of 0.2π, see Figure 5.9(b). As we can see in Figures 5.9(c) and 5.9(c), it is not possible

to recover the shape, even without noise. Thus, we will not study the effect of noise. Let us remark that

this will be a obstacle in applying these algorithm for electrolocation. We will see in chapter 7 that we can

avoid this problem using multi-frequency measurements.

5.5 Conclusion

In this chapter, we have designed two fast algorithms which identify a target using a dictionary of pre-

computed GPTs data. The first algorithm matches the computed GPTs (as specified in chapter 4) to
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(d) σ0 = 0.1, order = 1, Perturbed letters

Figure 5.6: Algorithm 1 applied on the all 26 letters using the standard dictionary (Figure 5.10) at noise
level σ0 = 0 (first column) and σ0 = 0.1 (second column), with the color indicating the relative error en in
logarithmic scale. The unknown shapes in the first row are exact copies of the standard dictionary, and in
the second row are those of Figure 5.11. In (a) all letters are correctly identified, while in (b) letters ’E’ is
identified as ’H’. For the noisy case, the experiment has been repeated 100 times, using independent draws
of white noise, and the results in (c) and (d) are the mean values of all experiments, where only the first
order CGPT is taken into account. 22 and 21 letters are correctly identified in (c) and (d), respectively.
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Figure 5.7: Algorithm 2 applied on the all 26 letters using the standard dictionary (Figure 5.10) at noise
level σ0 = 0. The unknown shapes in (a) are exact copies of the standard dictionary, while in (b) are those
of Figure 5.11. The color indicates the error en in logarithmic scale. All letters are correctly identified in
both (a) and (b).
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Figure 5.8: Comparison of Algorithm 2 and Algorithm 1 on identification of the standard letter “P”. At
each noise level, the experiment has been repeated 1000 times, using independent draws of white noise.
For each algorithm, the curve represents the percentage of experiments where the letter “P” is correctly
identified.
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(d) Results for second configuration

Figure 5.9: Two configurations were considered in the study of limited aperture.

precomputed ones (the dictionary elements) by finding rotation, scaling, and translation parameters and

therefore, identifies the true target shape. The second algorithm is based on new invariants for the CGPTs.

We have provided new shape descriptors which are invariant under translation, rotation, and scaling. The

stability (in the presence of additive noise in multistatic measurements) and the resolution issues for both

algorithms have been numerically investigated. The second algorithm is computationally much cheaper

than the first one. However, it is more sensitive to measurement noise in the imaging data. To the best

of our knowledge, our procedure is the first approach for real-time target identification in imaging using

dictionary matching. It shows that GPT-based representations are an appropriate and natural tool for

imaging. Our approach can be extended to electromagnetic and elastic imaging as well [21, 14]. In [8],

shape desciptors in R
3 were derived, allowing us to extend our approach to 3D problems.
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Figure 5.10: Dictionary of standard letters.
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Figure 5.11: Non standard letters obtained by perturbing and smoothing those in Figure 5.10.





CHAPTER6

Tracking of a Mobile Target

The results of this chapter have been submitted in [7]

Abstract

In this chapter we apply an extended Kalman filter to track both the location and the orientation

of a mobile target from the multistatic response measurements described in chapter 4. We also analyze

the effect of the limited-view aspect on the stability and the efficiency of our tracking approach.

6.1 Introduction

In this chapter we apply an extended Kalman filter to track both the location and the orientation of a

mobile target directly from MSR measurements.

The Extended Kalman Filter (EKF) is a generalization of the Kalman Filter (KF) to nonlinear dynam-

ical systems. It is robust with respect to noise and computationally inexpensive, therefore is well suited

for real-time applications such as tracking [114].

Target tracking is an important task in sonar and radar imaging, security technologies, autonomous

vehicle, and robotics. The use of Kalman-type filtering for target tracking is quite standard, see, for

instance, [44, 45, 47, 56, 61, 113].

However, to the best of our knowledge, this is the first time where tracking of the orientation of a target

is provided. Moreover, we analyze the ill-posed character of both the location and orientation tracking in

the case of limited-view data. In practice, it is quite realistic to have the sources/receivers cover only a

limited angle of view. In this case, the reconstruction of the GPTs becomes more ill-posed than in the

full-view case.

It is the aim of this chapter to provide a fast algorithm for tracking both the location and the orientation

of a mobile target, in the toy model described in chapter 4.

The chapter is organized as follows. In section 6.2 we present a GPT-based location and orientation

tracking algorithm using an extended Kalman filter and show the numerical results in the full-view setting.

The chapter ends with a few concluding remarks. A brief review of the extended Kalman filter is given in

appendix B.1.
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6.2 Tracking of a mobile target

In this section, we describe the setting of the tracking problem, and define in detail the algorithm that will

be used.

6.2.1 Time dependent data acquisition

Except for the few modifications below, we keep the notations that have been used throughout chapters 4-5.

At the instant t ≥ 0, we denote by zt = [xt, yt]
⊤ ∈ R

2 the location and θt ∈ [0, 2π) the orientation of a

target Dt.

Dt = zt +RθtD, (6.1)

where Rθt is the rotation by θt. Let Mt be the CGPT of Dt, and MD be the CGPT of D. Then the

equation (4.30) becomes

Vt = L(Mt) + Et + Wt, (6.2)

where Et is the truncation error, and Wt the measurement noise at time t.

The objective of tracking is to estimate the target’s location zt and orientation θt from the MSR data

stream Vt. We emphasize that these informations are contained in the first two orders CGPTs as shown

in chapter 5. Precisely, let ∆xt = xt − xt−1, ∆yt = yt − yt−1 and ∆θt = θt − θt−1, then equations in

proposition 5.2.1 become :

N
(1)
12 (Dt)/N

(1)
11 (Dt) = 2(∆xt + i∆yt) + ei∆θtN

(1)
12 (Dt−1)/N

(1)
11 (Dt−1),

N
(2)
12 (Dt)/N

(2)
11 (Dt) = 2(∆xt + i∆yt) + ei∆θtN

(2)
12 (Dt−1)/N

(2)
11 (Dt−1).

(6.3)

Hence when the linear system (6.3) is solvable, one can estimate zt, θt by solving and accumulating ∆xt,∆yt
and ∆θt. However, such an algorithm will propagate the error over time, since the noise presented in data

is not properly taken into account here.

In the following we develop a CGPT-based tracking algorithm using the Extended Kalman Filter, which

handles correctly the noise. We recall first the definition of complex CGPT, with which a simple relation

between Mt and MD can be established.

6.2.2 Time relationship between CGPTs

Let u = (1, i)⊤. The complex CGPTs N(1),N(2) defined in (5.1) then verify :

N (1)
mn = (M cc

mn −M ss
mn) + i(M cs

mn +M sc
mn) = u⊤Mmnu,

N (2)
mn = (M cc

mn +M ss
mn) + i(M cs

mn −M sc
mn) = uHMmnu,

where Mmn is the 2× 2 matrix defined by

Mmn =

(
M cc

mn M cs
mn

M sc
mn M ss

mn

)
,

and H denotes the Hermitian transpose. Therefore, we have

N(1) = U⊤MU and N(2) = UHMU, (6.4)
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where the matrix U of dimension 2K ×K over the complex fields is defined by

U =




u 0 . . . 0

0 u . . . 0
...

. . .
...

0 . . . 0 u



, (6.5)

and M is the matrix whose (m,n) block is given by Mmn.

To recover the CGPT M from the complex CGPTs N(1),N(2), we simply use the relations

M cc
mn =

1

2
ℜ(N (1)

mn +N (2)
mn), M cs

mn =
1

2
ℑ(N (1)

mn +N (2)
mn),

M sc
mn =

1

2
ℑ(N (1)

mn −N (2)
mn), M ss

mn =
1

2
ℜ(N (2)

mn −N (1)
mn),

(6.6)

where ℜ,ℑ are the real and imaginary part of a complex number, respectively. For two targets Dt,D

satisfying (6.1), equations (5.11) and (5.12) give us

N(1)(Dt) = F⊤
t N

(1)(D)Ft, (6.7a)

N(2)(Dt) = FH
t N(2)(D)Ft, (6.7b)

where Ft is a upper triangle matrix with the (m,n)-th entry given by

(Ft)mn =

(
n

m

)
(xt + iyt)

n−meimθt . (6.8)

Linear operator Tt:

Now one can find explicitly a linear operator Tt (the underlying scalar field is R) which depends only on

zt, θt, such that Mt = Tt(MD), and the equation (6.2) becomes

Vt = L(Tt(MD)) + Et + Wt. (6.9)

For doing so, we set Jt := UFt, where U is given by (6.5). Then, a straightforward computation using

(6.4), (6.6), and (6.7) shows that

Mcc(Dt) = ℜJ⊤
t MDℜJt, M

cs(Dt) = ℜJ⊤
t MDℑJt,

Msc(Dt) = ℑJ⊤
t MDℜJt, M

ss(Dt) = ℑJ⊤
t MDℑJt,

(6.10)

where Mcc(Dt),M
cs(Dt),M

sc(Dt),M
ss(Dt) are the matrices with coefficients (m,n) defined in (4.14)-

(4.14). Therefore, we get the operator Tt:

Tt(MD) = ℜU(ℜJ⊤
t MDℜJt)ℜU⊤ + ℜU(ℜJ⊤

t MDℑJt)ℑU⊤+

ℑU(ℑJ⊤
t MDℜJt)ℜU⊤ + ℑU(ℑJ⊤

t MDℑJt)ℑU⊤ = Mt. (6.11)

6.2.3 Tracking by the Extended Kalman Filter

The EKF is a generalization of the KF to nonlinear dynamical systems. Unlike KF which is an optimal

estimator for linear systems with Gaussian noise, EKF is no longer optimal, but it remains robust with

respect to noise and computationally inexpensive, therefore is well suited for real-time applications such

as tracking. We establish here the system state and the observation equations which are fundamental to

EKF, and refer readers to Appendix B.2 for its algorithmic details.



94 CHAPTER 6. TRACKING OF A MOBILE TARGET

System state observation equations

We assume that the position of the target is subjected to an external driving acceleration that has the

form of a white noise. In other words the velocity (V (τ))τ∈R+ of the target is given in terms of a two-

dimensional Brownian motion (Wa(τ))τ∈R+ and its position (Z(τ))τ∈R+ is given in terms of the integral of

this Brownian motion:

V (τ) = V0 + σaWa(τ), Z(τ) = Z0 +

ˆ τ

0
V (s)ds.

The orientation (Θ(τ))τ∈R+ of the target is subjected to random fluctuations and its angular velocity is

given in terms of an independent white noise, so that the orientation is given in terms of a one-dimensional

Brownian motion (Wθ(τ))τ∈R+ :

Θ(τ) = Θ0 + σθWθ(τ).

We observe the target at discrete times t∆τ , t ∈ N, with time step ∆τ . We denote zt = Z(t∆τ), vt =

V (t∆τ), and θt = Θ(t∆τ). They obey the recursive relations

vt = vt−1 + at, at = σa
(
Wa(t∆τ)−Wa((t− 1)∆τ)

)
,

zt = zt−1 + vt−1∆τ + bt, bt = σa

ˆ t∆τ

(t−1)∆τ
Wa(s)−Wa((t− 1)∆τ)ds,

θt = θt−1 + ct, ct = σθ
(
Wθ(t∆τ)−Wθ((t− 1)∆τ)

)
.

(6.12)

Since the increments of the Brownian motions are independent from each other, the vectors (Ut)t≥1 given

by

Ut =



at
bt
ct




are independent and identically distributed with the multivariate normal distribution with mean zero and

covariance matrix Σ given by

Σ = ∆τ




σ2aI2
σ2
a

2 ∆τI2 0
σ2
a

2 ∆τI2
σ2
a

3 ∆τ2I2 0

0 0 σ2θ


 (6.13)

The evolution of the state vector

Xt =



vt
zt
θt




takes the form

Xt = FXt−1 + Ut, F =




I2 0 0

∆τI2 I2 0

0 0 1


 (6.14)

The observation made at time t is the MSR matrix given by (6.9), where the system state Xt is

implicitly included in the operator Tt. We suppose that the truncation error Et is small compared to the

measurement noise so that it can be dropped in (6.9), and that the Gaussian white noise Wt of different

time are mutually independent. We emphasize that the velocity vector vt of the target does not contribute

to (6.9), which can be seen from (6.1). To highlight the dependence upon zt, θt, we introduce a function h

which is nonlinear in zt, θt, and takes MD as a parameter, such that

h(Xt;MD) = h(zt, θt;MD) = L(Tt(MD)). (6.15)
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Then together with (6.14) we get the following system state and observation equations:

Xt = FXt−1 + Ut, (6.16a)

Vt = h(Xt;MD) + Wt. (6.16b)

Note that (6.16a) is linear, so in order to apply EKF on (6.16), we only need to linearize (6.16b), or in

other words, to calculate the partial derivatives of h with respect to xt, yt, θt.

Linearization of the observation equation

Clearly, the operator L contains only the information concerning the acquisition system and does not

depend on xt, yt, θt. So by (6.15), we have

∂xth = L(∂xtTt(MD)), (6.17)

while the calculation for ∂xtTt is straightforward using (6.11). We have

∂xtTt(MD) =ℜU∂xt(ℜJ⊤
t MDℜJt)ℜU⊤ + ℜU∂xt(ℜJ⊤

t MDℑJt)ℑU⊤+

ℑU∂xt(ℑJ⊤
t MDℜJt)ℜU⊤ + ℑU∂xt(ℑJ⊤

t MDℑJt)ℑU⊤, (6.18)

where the derivatives are found by the chain rule:

∂xt(ℜJ⊤
t MDℜJt) = ℜ(∂xtJ

⊤
t )MDℜJt + ℜJ⊤

t MDℜ(∂xtJt),

∂xt(ℜJ⊤
t MDℑJt) = ℜ(∂xtJ

⊤
t )MDℑJt + ℜJ⊤

t MDℑ(∂xtJt),

∂xt(ℑJ⊤
t MDℜJt) = ℑ(∂xtJ

⊤
t )MDℜJt + ℑJ⊤

t MDℜ(∂xtJt),

∂xt(ℑJ⊤
t MDℑJt) = ℑ(∂xtJ

⊤
t )MDℑJt + ℑJ⊤

t MDℑ(∂xtJt),

and ∂xtJt = U∂xtFt. The (m,n)-th entry of the matrix ∂xtFt is given by

(∂xtFt)m,n =

(
n

m

)
(n−m)zn−m−1

t eimθt . (6.19)

The derivatives ∂ytTt(MD) and ∂θtTt(MD) are calculated in the same way.

6.3 Numerical results

In this section, we perform computation of such experiments of tracking. We treat both the problem of

full-view (subsection 6.3.1) and partial-view (subsection 6.3.2) settings.

6.3.1 Numerical experiments of tracking in the full-view setting

Here we show the performance of EKF in a full angle of view setting with the shape ’A’ as target D, which

has diameter 10 and is centered at the origin. The path (zt, θt) is simulated according to the model (6.12)

during a period of 10 seconds (∆τ = 0.01 second), with parameters σa = 2, σθ = 0.5, and the initial state

X0 = (v0, z0, θ0)
⊤ = (−1, 1, 5,−5, 3π/2)⊤ . We make sure that the target is always included inside the

measurement circle on which N = 20 sources/receivers are fixed, see Figure 6.1. The data stream Vt is

generated by first calculating the MSR matrix corresponding to each Dt, t ≥ 0 then adding a white noise.

Suppose that the CGPT of D is correctly determined by dictionary matching as described in chapter 5.

Then we use the first two orders CGPT MD of D in (6.16b), and take (0, 0, 10,−0.5, 0)⊤ as initial guess

of X0 for EKF.
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We add 10% and 20% of noise to data, and show the results of tracking in Figure 6.2 (a) (c) and (e).

We see that EKF can find the true system state, despite of the poor initial guess, and the tracking precision

decays as the measurement noise level gets higher. The same experiment with small target (of same shape)

of diameter 1 is repeated in Figure 6.2 (b) (d) and (f), where the tracking of position remains correct,

on the contrary, that of orientation fails when the noise level is high. Such a result is in accordance with

physical intuitions. In fact, the position of a small target can be easily localized in the far field, while its

orientation can be correctly determined only in the near field.
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40

 

 
True trajectory
Estimation

Figure 6.1: Trajectory of the letter ’A’ and the estimation by EKF. The initial position is (5,−5) while
the initial guess given to EKF is (10,−0.5). The crosses indicate the position of sources/receivers, while
the circle and the triangle indicate the starting and the final position of the target, respectively. In blue is
the true trajectory and in red the estimated one.

6.3.2 Tracking in the limited-view setting

The performance of the tracking algorithm can also be affected by the limited angle of view. We repeat the

experiment of subsection 6.3.1 with δ = 10, γ = π, and the same initial guess. In the first configuration,

N = 21 sources/receivers are equally distributed between [0, γ), see Figure 6.3 (a). The results of tracking

by EKF presented in Figure 6.4 (a), (c) and (e) show large deviations in the estimation of position, and

a totally wrong estimation of orientation. In the second configuration, we divide the sources/receivers

into 5 groups placed in a nonuniform way on [0, 2π), and each group covers only an angle range of 0.2π,

see Figure 6.3 (b). Although the total angular coverages are the same in both configurations, the second

one gives much better tracking results, as shown in Figure 6.4 (b), (d) and (f). These results clearly

demonstrates the importance of a large angle of view (or a directional diversity) for the tracking problem.

6.4 Conclusion

In this chapter we have provided a location and orientation tracking of a mobile target from MSR mea-

surements in the full- and limited-view settings. In the limited-view case, the effect of noise is severe on

the tracking. However, if the arrays of receivers and transmitters offer a good directional diversity, then

satisfactory results can be obtained. It would be interesting to generalize our algorithms for tracking mul-
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Figure 6.2: Results of tracking using the configuration of Figure 6.1 at different noise levels. First row:
coordinate in x-axis. Second row: coordinate in y-axis. Last row: orientation. In the first column the
target has size 10, while in the second column the target has size 1. The solid line always indicates the
true system state.
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Figure 6.3: Same experiment as in Figure 6.1, with a limited angle of view γ = π. In Figure(a)
sources/receivers are equally distributed between [0, γ), while in Figure(b) they are divided into 5 groups.

tiple targets. As a first step, a matching pursuit algorithm [80] would be appropriate for recognizing the

targets.
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Figure 6.4: Results of tracking using the configuration of Figure 6.3 at different noise levels. First row:
coordinate in x-axis. Second row: coordinate in y-axis. Last row: orientation. First and second column
correspond to the configuration in Figure 6.3 (a) and (b), respectively.





CHAPTER7

Shape Recognition and Classification in

Electro-Sensing

The results of this chapter have been submitted in [6].

Abstract

In this chapter, we apply the previous results to explain how weakly electric fish might identify and

classify a target, knowing by advance that the latter belongs to a certain collection of shapes. The electric

fish would first locate the target using a specific location search algorithm (see chapter 3). Then it could

extract, from the perturbations of the electric field, generalized (or high-order) polarization tensors of

the target (see chapter 4). Computing, from the extracted features, invariants under rigid motions and

scaling yields shape descriptors. Then, the fish might classify a target by comparing these invariants

with those of a set of learned shapes (chapter 5).

On the other hand, when measurements are taken at multiple frequencies, the fish might exploit the

shifts and use the spectral content of the generalized polarization tensors to dramatically improve the

stability with respect to measurement noise of the classification procedure in electro-sensing. Surprisingly,

it turns out that the first-order polarization tensor at multiple frequencies could be enough for the purpose

of classification.

A procedure to eliminate the background field in the case where the permittivity of the surrounding

medium can be neglected, and hence improve further the stability of the classification process, is also

discussed.

7.1 Introduction

In this chapter, we tackle the challenging problem of shape recognition and classification. Hence, we come

back to the model developped in chapter 2, which will be recalled in subsection 7.2.1. In order to explain

how the shape information is encoded in measured data, we first adapt the multipolar expansion found

in section 4.2.1 to the electrolocation problem. As stated before, this asymptotic expansion generalizes

Rasnow’s formula [91] in two directions: (i) it is a higher-order approximation of the effect of a nearby

101
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target and it is valid for an arbitrary shape and admittivity contrast and (ii) it takes also into account the

fish’s body. As it has been proved in chapter 2, by postprocessing the measured data using layer potentials

associated only to the fish’s body, one can reduce the multipolar formula to the one in free space, i.e.,

without the fish.

Then we show how to identify and classify a target, knowing by advance that the latter belongs to a dic-

tionary of pre-computed shapes. The shapes considered in this paper have been experimentally tested and

results reported in [110]. This idea comes naturally in mind when modeling behavioral experiments such as

in [109, 111, 112]. The pre-computed shapes would then be a model for the fish’s memory (trained to rec-

ognize specific shapes), and the experience of recognition presented here would simulate the discrimination

exercises that are then imposed to them.

We develop two algorithms for shape classification: one based on shape descriptors while the second

is based on spectral induced polarizations. We first extract, from the data, generalized (or high-order)

polarization tensors of the target (GPTs) as in chapter 4. Note that the shape features are encoded in

the high-order polarization tensors. The noise level in the reconstructed generalized polarization tensors

depends on the angle of view. Larger is the angle of view, more stable is the reconstruction (shown in

chapter 4). l1-regularization techniques could be used, as seen in section 4.3.3. Then we compute from

the extracted features invariants under rigid motions and scaling. Comparing these invariants with those

in a dictionary of pre-computed shapes (see chapter 5), we successfully classify the target. Since the

measurements are taken at multiple frequencies, we make use of the spectral content of the generalized

polarization tensor in order to dramatically improve the stability with respect to measurement noise of the

physics-based classification procedure. In fact, we show numerically that the first-order polarization tensor

at multiple frequencies is enough for the purpose of classification.

This chapter is organized as follows. In section 7.2, we adapt the extraction of GPTs defined in

chapter 4 to the physically relevant model for electrolocation derived in chapter 2. In section 7.3 we apply

the algorithm of dictionary matching (which was the purpose of chapter 5). Finally, we illustrate our

findings in section 7.4 with numerical experiments.

7.2 Feature extraction from induced current measurements

7.2.1 Electro-sensing model

Let us recall the nondimensionalized model of electro-sensing, detailed in chapter 2: the body of the fish is

Ω (of size of order 1), an open bounded set in R
d, d = 2, 3, of class C1,α, 0 < α < 1, with outward normal

unit vector ν. The electric organ is a dipole J placed at x0 ∈ Ω or a sum of point sources inside Ω satisfying

the neutrality condition. The non-dimensionalized model presented in chapter 2 lead us to consider that

the conductivity of the background medium is 1 and that its permittivity is vanishing. Consider a target

D = z+ δB, where δ ≪ 1 is the characteristic size of D, z is its location, and B a smooth bounded domain

containing the origin. We assume that D is of complex admittivity k = σ+ iεω, with ω being the operating

frequency in the range [1, 10] and σ and ε being respectively the conductivity and the permittivity of the

target. It has been also shown in chapter 2 that, in the presence of D, the electric field u generated by the
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fish is the solution of the following system:




∆u = J in Ω,

∇ · (1 + (k − 1)χD)∇u = 0 in R
d \Ω,

∂u

∂ν

∣∣∣∣
−

= 0 on ∂Ω,

u|+ − u|− = ξ
∂u

∂ν

∣∣∣∣
+

on ∂Ω

|u(x)| = O(|x|−d+1), |x| → ∞.

(7.1)

Here, χD is the characteristic function of D. Figure 7.1 shows isopotentials with and without a target

with zero permittivity but different conductivity from the surrounding medium. Note that if the target’s

admittivity depends on the frequency (i.e., if the permittivity is nonzero), then a phase shift in the electrical

potential is induced.
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Figure 7.1: Isopotentials without (a) and with (b) a target with σ = 5 and ε = 0.

In chapters 4 and 5, we have extracted the GPTs of a target by multistatic measurements using arrays

of sources and receptors. These GPTs were then arranged and compared to a dictionary of already known

shapes. This chapter aims at adapting this method to the electro-sensing problem. The same problem as

in chapter 3 holds : the fish carries only one source, its electric organ J . Hence, in subsection 7.2.3 we will

use the information given by its swimming patterns.

7.2.2 Asymptotic formalism

The first step is to compute the GPTs from the measurements. In this regard, the next result will be

useful. Except when mentioned, we will fix in this section the frequency ω, leading to a fixed complex

admittivity k. Recall that the Green’s function, defined in (2.15), is given by

G(x) =





1

2π
ln |x|, d = 2,

− 1

4π

1

|x| , d = 3.

As defined in (2.14) and(2.17), we denote the single and double layer potentials of a function φ ∈ L2(∂Ω)

as SΩ[φ] and DΩ[φ], and the Neumann-Poincaré operator for Ω is denoted K∗
Ω.

We still assume that the target is away from the fish, i.e., the distance between the fish and the target

is much larger than the target’s characteristic size but smaller than the range of the electrolocation which

does not exceed two fish’s body lengths. The following theorem adpats the multipolar expansion computed

in section 4.2.1 to our problem.
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Theorem 7.2.1. Let us define the function H : Rd → C by

H(x) = p(x) + SΩ
[
∂u

∂ν

∣∣∣∣
+

]
− ξDΩ

[
∂u

∂ν

∣∣∣∣
+

]
, (7.2)

where p is the field created by the dipole J , i.e., ∆p = J in R
d. Then, for every integer K ≥ 1, the following

expansion holds

u(x) = H(x) + δd−2
K∑

|α|=1

K−|α|+1∑

|β|=1

(−1)|β|δ|α|+|β|

α!β!
∂αH(z)Mαβ(λ,B)∂βG(x− z) +O(δd+K), (7.3)

uniformly for x ∈ ∂Ω.

Let us make a few remarks. First, the definition of the GPTs still holds for complex-valued λ. However,

some properties are lost by this change; thus one has to study them more carefully in this situation. Second,

the function H, which is computed from the boundary measurements, still depends on δ but this is not

important for our present study. Indeed, formula (7.3) could have been derived - as in (2.51) - with U , the

background solution in the absence of the target, instead of H and GR - the Green function associated to

Robin conditions on ∂Ω - instead of G, but it is much easier to compute ∂αH(z) and ∂βG(x − z) once z

is known. This leads us to the third remark: the location z is supposed to be known from the algorithm

developed in chapter 3. Note that electrolocation algorithm could be also based on the fish’s movement if

only one frequency is used [75].

We will follow the proof of [19, Theorem 4.8]. In a first step, let us show the following formula.

Lemma 7.2.2. For x ∈ R
d,

u(x) = H(x) + SD(λI −K∗
D)−1

[
∂H

∂ν

∣∣∣∣
∂D

]
(x), (7.4)

Proof. In section 2.5.1, it is shown that

u(x) = p(x) + SΩ[ψ](x) +DΩ[φ](x) + SD[φ](x),

see equation (2.58). Here the functions ψ, φ ∈ L2(∂Ω) and φ ∈ L2(∂D) verify the system (2.59) that we

recall here : 



φ = −ξψ on ∂Ω,
(
I

2
−K∗

Ω + ξ
∂DΩ

∂ν

)
[ψ] − ∂

∂ν
(SD[φ]) =

∂p

∂ν
on ∂Ω,

− ∂

∂ν
(SΩ[ψ]) + ξ

∂

∂ν
(DΩ[ψ]) + (λI −K∗

D)[φ] =
∂p

∂ν
on ∂D.

The third line gives us

φ = (λI −K∗
D)−1

[
∂H

∂ν

∣∣∣∣
∂D

]
,

and the jump formulas for the single and double layer potentials (2.16) give us

ψ =
∂u

∂ν

∣∣∣∣
+

and φ = −u|+ + u|−,

so that, from the boundary conditions of the system (7.1), we obtain p+SΩ[ψ]+DΩ[φ] = H and the lemma

is proved. ✷



7.2. FEATURE EXTRACTION FROM INDUCED CURRENT MEASUREMENTS 105

We can now prove Theorem 7.2.1, using the arguments in [19, pp. 72-73]. Starting with formula (7.4),

the proof relies on a Taylor expansion of H and the Green function involved in the single layer potential.

Indeed, denoting

HK(x) =

K∑

|α|=0

1

α!
∂αH(z)(x− z)α,

a Taylor expansion gives us ∥∥∥∥
∂H

∂ν
− ∂HK

∂ν

∥∥∥∥
L2(∂D)

≤ CδK |∂D|1/2 ,

and from [19, Formula (4.10)], we have for any h ∈ L2(∂D) such that
´

∂D h = 0:

∀x ∈ ∂Ω,
∣∣SD(λI −K∗

D)−1[h](x)
∣∣ ≤ Cδ |∂D|1/2 ‖h‖L2(∂D) .

Hence, using the fact that |∂D| = δd−1 |∂B|, we obtain

∥∥∥∥SD(λI −K∗
D)−1

[
∂H

∂ν
− ∂HK

∂ν

]∥∥∥∥
L∞(∂Ω)

≤ Cδ |∂D|1/2
∥∥∥∥
∂H

∂ν
− ∂HK

∂ν

∥∥∥∥
L2(∂D)

≤ Cδd+K .

Plugging this inequality into (7.4) enables us to write, for x ∈ ∂Ω,

u(x) = H(x) + SD(λI −K∗
D)−1

[
∂HK

∂ν

]
(x) +O(δd+K).

By a change of variables y′ = (y − z)/δ, denoting φα(y′) = (λI −K∗
B)−1[ν · ∇wα](y′) for y′ ∈ ∂B (where ν

is here the outward normal unit vector to ∂B), we have (see for example the arguments in [12, Section 3])

u(x)−H(x) =
K∑

|α|=0

1

α!
∂αH(z)δ|α|+d−2

ˆ

∂B
G(x− z − δy′)φα(y′)dσ(y) +O(δd+K).

We can now conclude by injecting a Taylor expansion of the Green function

G(x− z − δy) =

∞∑

|β|=0

(−δ)|β|
β!

∂βG(x− z)yβ,

in the integrand, giving

u(x)−H(x) = δd−2
K∑

|α|=0

K−|α|+1∑

|β|=0

(−1)|β|δ|α|+|β|

α!β!
∂αH(z)∂βG(x− z)

ˆ

∂B
yβφα(y)dσ(y) +O(δd+K).

The last term is Mαβ(λ,B) by definition, see (4.9); it then suffices to show that the terms with |α| = 0 or

|β| = 0 vanish, which is the case because
´

∂B φα = 0 and φα = 0 if |α| = 0. Thus, Theorem 7.2.1 is proved.

✷

7.2.3 Data acquisition and reduction

As mentioned above, we will take advantage of the fact that the fish is swimming, in order to cop with the

problem of having only one source. Let us suppose that the fish is moving, and let us take a sample of
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Ns ∈ N
∗ different positions (Ωs)1≤s≤Ns

. This gives us 2Ns different functions (us)1≤s≤Ns
and (Hs)1≤s≤Ns

,

leading us to the following data matrix

V := (Vrs)1≤s≤Ns,1≤r≤Nr
:=
(
us(x

(s)
r )−Hs(x

(s)
r )
)
1≤r≤Ns,1≤r≤Nr

, (7.5)

where (x
(s)
r ∈ ∂Ωs)1≤r≤Nr are the receptors of the fish being in the sth position. The choices of indices

emphasize then the fact that the different positions play the role of sources.

The goal of this subsection is to simplify this data set in order to extract the CGPTs (defined in (4.14)-

(4.17)). Indeed, from (7.3), one has

Vrs = δd−2
K∑

|α|=1

K−|α|+1∑

|β|=1

(−1)|β|
δ|α|+|β|

α!β!
∂αHs(z)Mαβ(λ,B)∂βG(x(s)r − z) +O(δd+K). (7.6)

As in chapter 4, we will express this formula in terms of CGPTs. From the definition of H, and with the

help of formula (4.18), one can prove the following lemma.

Lemma 7.2.3. Let the source Js be a dipole of moment ps placed at zs:

ps(x) = ps · ∇G(x− zs), (7.7)

Then, for any α ∈ N
2, there exist two real numbers A|α|,s,z and B|α|,s,z such that

1

α!
∂αHs(z) = A|α|,s,za

|α|
α +B|α|,s,zb

|α|
α .

Moreover, A|α|,s,z and B|α|,s,z can be expressed in the following way

Am,s,z =
(−1)m

2π
ps ·

(
φm+1(z − zs)
ψm+1(z − zs)

)

− 1

2πm

ˆ

∂Ω

∂us
∂ν

∣∣∣∣
+

(y)φm(y − z)dσ(y),

− ξ

2π

ˆ

∂Ω

(
φm+1(y − z)
ψm+1(y − z)

)
· νy

∂us
∂ν

∣∣∣∣
+

(y) dσ(y),

Bm,s,z =
(−1)m

2π
ps ·

(
ψm+1(z − zs)
−φm+1(z − zs)

)

− 1

2πm

ˆ

∂Ω

∂us
∂ν

∣∣∣∣
+

(y)ψm(y − z)dσ(y)

− ξ

2π

ˆ

∂Ω

(
ψm+1(y − z)
−φm+1(y − z)

)
· νy

∂us
∂ν

∣∣∣∣
+

(y) dσ(y),

where the functions φm and ψm are defined for x ∈ R
2, x = (rx, θx) in the polar coordinates, by

φm(x) =
cosmθx
rmx

, ψm(x)=
sinmθx
rmx

.

Proof. Let us fix α ∈ N
2 and define m = |α|. Let us recall the definition of H, given in (7.2)

Hs(x) = ps(x) + SΩs

[
∂us
∂ν

∣∣∣∣
+

]
− ξDΩs

[
∂us
∂ν

∣∣∣∣
+

]
,
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where ∆ps = fs in R
2. From (7.7) it follows that

∂αps(x) = ps · ∇∂αG(x− zs).

Hence, (4.18) yields

(−1)|α|

α!
∂αps(z) = amα

[ −1

2πm
ps · ∇φm(z − zs)

]

+bmα

[ −1

2πm
ps · ∇ψm(z − zs)

]
.

Moreover, we have

∇φm = −m
(
φm+1

ψm+1

)
, ∇ψm= −m

(
ψm+1

−φm+1

)
.

In the same manner, from

SΩs

[
∂us
∂ν

∣∣∣∣
+

]
(x) =

ˆ

∂Ωs

∂us(y)

∂ν

∣∣∣∣
+

G(y − x)dσ(y),

we can deduce
1

α!
∂αSΩs

[
∂us
∂ν

∣∣∣∣
+

]
(z)

=
1

α!

ˆ

∂Ωs

∂us
∂ν

∣∣∣∣
+

(y)(−1)|α|∂αG(y − z)dσ(y)

= amα

(
ˆ

∂Ωs

−1

2πm

∂us
∂ν

∣∣∣∣
+

(y)
cosmθy−z

rmy−z

dσ(y)

)

+bmα

(
ˆ

∂Ωs

−1

2πm

∂us
∂ν

∣∣∣∣
+

(y)
sinmθy−z

rmy−z

dσ(y)

)
.

Combining those two equations leads us to the desired result. ✷ From (7.6), the data matrix is then

expressed as follows

Qrs =
K+1∑

|α|+|β|=1

(
A|α|,s,za

|α|
α +B|α|,s,zb

|α|
α

)
×Mαβ(λ, δB)

−a|β|β cos |β| θ
x
(s)
r −z

− b|β|β sin |β| θ
x
(s)
r −z

2π |β| r|β|
x
(s)
r −z

+O(δK+2)

=

K+1∑

m+n=1

(
Am,s,z Bm,s,z

)

︸ ︷︷ ︸
Ssm

(
M cc

mn M cs
mn

M sc
mn M ss

mn

)

︸ ︷︷ ︸
Mmn

×
(

cosnθ
x
(s)
r −z

sinnθ
x
(s)
r −z

)
−1

2πnrn
x
(s)
r −z︸ ︷︷ ︸

G(s)
nr

+O(δK+2)︸ ︷︷ ︸
Ers

.

(7.8)

Thus, defining the following matrices

M =




M11 M12 · · · M1K

M21 M22 · · · M2K

· · · · · · . . . · · ·
MK1 MK2 · · · MKK



, E = (Ers)1≤r≤R,1≤s≤Ns

, (7.9)

the problem is to recover the matrix M knowing the matrix

V = L(M) + E, (7.10)

where L is the linear operator defined by (7.8). We shall underline the similarity between notations (4.20)-

(4.21) and (7.9)-(7.10).
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Therefore, the CGPTs of the target D can be reconstructed as in chapter 4 from the least-squares

solution of the above linear system, i.e.,

Mest = argmin
M⊥ker(L)

‖V − L(M)‖2F . (7.11)

Let us remark that, in the case of multifrequency measurements (ω1, . . . , ωNf
), we can reconstruct(

Mest,f
)
1≤f≤Nf

from
(
V(f)

)
1≤f≤Nf

analogously.

Let us note that the invariances developped in chapter 5 really make sense here, since the fish is moving.

It could also be related to the behavioral experiments that have shown that weakly electric fish categorize

targets according to their shapes but not according to sizes, locations, or orientations [110].

7.3 Recognition and classification

Depending on whether we consider multifrequency measurements or not, we will not identify the CGPTs

in the same way.

7.3.1 Fixed frequency setting: shape descriptor based classification

When only one frequency is available, we can act as if we were in a real complex-valued case and apply

directly the identification algorithm based on shape descriptors I(1)mn(D) and I(1)mn(D) defined in section 5.3.2.

Note that the definitions in (5.30) still hold for complex admittivities.

To be more precise, when the reconstruction order K is greater than 2, we compute the shape descriptors

of D from (7.9), and apply algorithm 2, page 80.

7.3.2 Multifrequency setting: Spectral induced polarization based classification

When multiple frequencies are involved, we can use the shape descriptors I(1)mn(D) and I(2)mn(D) at frequencies

ω1, . . . , ωF to enhance the stability of the classification. However, as it will be shown later, this does not

yield a very stable classification procedure.

Here we rather focus on the first-order polarization tensor (PT), that is, the 2 × 2 complex matrix

M(λf ,D) associated with the target D and frequency f :

M(λf ,D) =

ˆ

∂D

(
λfI −K∗

D

)−1

[ν]y dσ(y), λf =
kf + 1

2(kf − 1)
,

for f = 1, . . . , Nf . We will show that they are sufficient to identify efficiently the targets. Note that it is

not possible to compute the shape descriptors I(1)mn(D) and I(2)mn(D) based only on first-order PT, because

they require at least second-order polarization tensors. This limits the use of shape descriptors in the

limited-view case where the reconstruction of higher-order GPTs is not accurate (see section 4.3.3).

Here we use the spectral content of the first-order PTs for recognition. We have the following proper-

ties [20].

Proposition 7.3.1. For any scaling δ > 0, rotation angle θ ∈ R and translation vector z ∈ R
2, let us

denote

D = z + δRθB := {x = z + δRθu, u ∈ B} ,

where

Rθ :=

(
cos θ − sin θ

sin θ cos θ

)
,
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is the rotation matrix of angle θ. Then,

M(λf ,D) = δ2RθM(λf , B)RT
θ . (7.12)

Hence, if we denote by τ
(f)
1 (D) and τ

(f)
2 (D) the singular values of M(λf ,D), we obtain

∀j ∈ {1, 2}, τ (f)j (D) = δ2τ
(f)
j (B).

This gives an idea for two algorithms:

1. The first one, matching the singular values of all the first-order PT (M(λf ,D))1≤f≤Nf
, would be

dependent of the characteristic scale δ of the targets in the dictionary;

2. The second one, independent of the scale of the target, would match the following quantities

µ
(f)
j =

τ
(f)
j

τ
(Nf )
j

, (7.13)

for j = 1, 2 and f = 1, . . . , Nf − 1.

Some comments are in order. First, the reason why we consider the first one, even if it is scale-dependent,

is because it is far more stable. Also, in some biological experiments, two targets of different scales are

considered as different [111]. A question raised was then: how is it possible to discriminate between a

nearby small target and an extended one situated far away? With the second algorithm, we have an

answer. The last remark concerns equation (7.13). We could have also considered other scale-dependent

ratios, such as

τ
(f)
j

τ
(1)
j

or
τ
(f)
j

∑Nf

f ′=1 τ
(f ′)
j

,

but since τ
(Nf )
j happens to be the largest one (the frequencies are sorted in increasing order), it is more

stable to consider (7.13). It is worth mentioning that if there exists an integer p > 2 such that R2π/pD = D,

then M(λf ,D) is proportional to identity (see subsection 5.3.1).

7.3.3 Background field elimination

We can also improve stability of reconstruction by eliminating the background field. Let us recall U(x) to

be the background electric field (i.e., the solution of (7.1) with k = 1). Let us also recall formula (3.2),

proved with proposition 2.4.1 and lemma 2.4.2 :

PΩ
(
∂uf
∂ν

∣∣∣∣
+

− ∂U

∂ν

∣∣∣∣
+

)
≈ ∇U(z)TM(λf ,D)∇z

(
∂G

∂νx

)
, (7.14)

where uf is u associated with the f th frequency, M(λf ,D) is the first-order polarization tensor at the f th

frequency, and PΩ is the (real-valued) postprocessing operator given by

PΩ :=
1

2
I −K∗

Ω − ξ
∂DΩ

∂ν
.

Hence, if the emitted signal U is real-valued, then taking the imaginary part leads us to

PΩ
[
ℑm

(
∂uf
∂ν

∣∣∣∣
+

)]
≈ ∇U(z)TℑmM(λf ,D)∇z

(
∂G

∂νx

)
. (7.15)
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Note that the restriction on U to be real is justified since the permittivities of water and the fish are

negligible [39, 94]. Now, from (7.15), we can extract ℑmM(λf ,D) by solving a least-squares problem

similar to (7.11). Then, we have the singular values of the imaginary part of M(λf ,D), which would be

sufficient for shape recognition and classification. The goal of this procedure is to get rid off the computation

of ∂U/∂ν in (7.14), which is supposed to be performed numerically in real-world applications, thus subject

to errors. Let us recall that the postprocessing operator PΩ makes the data independent of the shape of

the fish’s body.

Because of the following relation which follows from (7.12)

M(λf ,D) = O(δ2M(λf , B)),

taking the imaginary part would lead us to only compute ∇U(z) in (7.15) and hence, the error made here

would be modulated by a factor of order δ2.

7.4 Numerical illustrations

In this section, we illustrate the performance of the algorithms developed in the previous section. We use

the CGPTs obtained in order to classify the targets. We present an example with fixed frequency, and

another with multifrequency measurements. As it will be seen, the latter does not lead us to a significantly

more stable classification in the presence of noise or for limited aperture. The errors in the reconstruction

of the high-order polarization tensors due to measurement noise or the limited-view aspect deteriorate the

stability of the proposed algorithm. However, when, at multiple frequencies, only the first-order polarization

tensor is used, we arrive at a very robust and efficient classification procedure.

For the sake of clarity, and due to the large numbers of computations performed, the results are presented

separatedly, see section 7.5.

7.4.1 Setup and methods

We describe the dictionary as well as the measurement systems. We consider two different shapes for the

fish: ellipses and twisted ellipses. Note that this variety of shapes exists in nature. On the one hand,

twisted ellipses would represent electric eels (Electrophorus electricus), whereas on the other hand straight

ellipses would look like Apteronotids [84]. This simplified representation shows that the principle of our

algorithms can be generalized to any kind of fish’s shape (hence modeling, for example, electro-sensing for

Mormyrids as well). It also enhances the fact that, for bio-inspired engineering applications, the shape of

the robot is not determining. Moreover, as we will see later, our simplified representation is a good model

to tackle aperture issues.

Dictionary

The dictionary D that we consider here is composed by 8 different targets: a disk, an ellipse, the letter

’A’, the letter ’E’, a rectangle, a square, a triangle, and an ellipse with different electrical parameters (see

Figure 7.2). Indeed, all the other targets have conductivity σ = 2 and permittivity ε = 1 whereas the last

one has conductivity σ = 5 and permittivity ε = 2. Note that this is not the dictionaries used in chapter 5 ;

indeed, we want here to fit with real-world experiments done in [109, 110, 111]. Except when mentioned,

the characteristic size of the target will not matter, and will be fixed to be of order 1.

Measurements

In each numerical experiment, one target of the dictionary is placed at the origin, while the fish swims

around it. As it has been mentioned, we consider two different shapes for the fish’s body: ellipses and



7.4. NUMERICAL ILLUSTRATIONS 111

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−0.5 0 0.5
−0.5

0

0.5

−1 0 1
−1

−0.5

0

0.5

1

−0.5 0 0.5

−0.5

0

0.5

−0.5 0 0.5

−0.5

0

0.5

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

0.6

−1 0 1
−1

−0.5

0

0.5

1

Figure 7.2: The 8 elements of the dictionary. The dotted lines indicate a target with different electrical
parameters.

twisted ellipses. The measured data is built taking 20 positions of the fish around the target (see Figure 7.3).
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Figure 7.3: Two different kinds of experiences involve (on the top) a twisted-ellipse shape or (on the
bottom) ellipse shape. The real part of the electric field is plotted, for 3 (out of 20) positions that the fish
takes around the target (placed at the origin).

In Figure 7.4, a smaller aperture than the one in Figure 7.3 is considered.

The typical size of the target is δ = 0.3 while the fish is turning around a disk of radius R = 1; the

twisted ellipse’s semi-axes are a = 1.8 and b = 0.2 while the straight ellipse’s semi axis are a = 1 and

b = 0.2. The effective thickness of the skin is set at ξ = 0. The fish has 27 receptors uniformly distributed

on its skin, and the electric organ emits Nf = 10 frequencies, equally distributed from ω0 := 1 to Nfω0.
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Figure 7.4: A fish having the shape of a twisted ellipse with a smaller aperture than in Figure 7.3.

Classification

The recognition process is as follows. When measurements are acquired, we perform least-square recon-

struction of the (first- or second-order) CGPT of the targets. From this CGPT, we compute quantities of

interest q (i.e. Shape Descriptors or singular values or ratios of singular values). Then, for each element

n in the dictionary D, we compute ‖q − qn‖, where qn is the - pre-computed - quantity of interest for the

nth shape. This process is summarized in algorithm 3. This leads us to charts such as the ones presented

in Figures 7.5(a), 7.5(b), and 7.5(c).

Algorithm 3 Classification algorithm.

Input: the quantities of interest
(
q(f)

)
1≤f≤Nf

calculated from the measurement of an unknown shape D;

for Bn ∈ D do

en ←
∑

1≤f≤Nf
‖q(Bn)(f) − q(f)‖2 where

(
q(Bn)(f)

)
1≤f≤Nf

is the same type of quantities of interest

of the shape Bn;
n← n+ 1;

end for

Output: the true dictionary element n∗ ← argminnen.

Stability analysis

First, let us explain what kind of noise is considered. We will add a random matrix (with Gaussian entries)

to the data matrix V defined in (7.5). More precisely, we will consider

Ṽ := V + εW,

where W is a Ns × R matrix whose coefficients follow a Gaussian distribution with mean 0 and variance

1. The real number ε is the strength of the noise, and will be given in percentage of the fluctuations of V,

(i.e., maxs,rQsr −mins,rQsr). The recognition procedure remains the same.

Stability analysis was then carried out empirically: for each noise level, we performedNstabil independent

recognition process (with Nstabil being precised for each experiment), and computed the ratio of good

detection. The computation ends when we reach the threshold of 12.5% probability of detection that

corresponds to a uniform random choice of the object. This gives us Figures 7.6(a) to 7.8(b).
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7.4.2 Results and discussion

In this subsection, we compare the respective stability of our algorithms. Due to the large number of

situations and computations, only significant figures were plotted, giving the following classification of

recognition processes, according to their range of application.

Fixed frequency setting: shape descriptors

If only one frequency is accessible for the measurements, then the only algorithm possible is classification

based on shape descriptors. Indeed, first-order PTs are not enough to discriminate between objects [35].

However, the use of shape descriptors is limited to the twisted-ellipse case with nearly full aperture (see

Figures 7.5(b) and 7.5(c), where some targets are not recognized, such as the ellipse in Figure 7.5(b) or

the disk in Figure 7.5(c)). Moreover, its stability with respect to measurement noise is quite poor (see

Figure 7.6(a)).

Multifrequency setting: spectral content of PTs

In the case of multifrequency measurements, shape descriptors do not increase their stability enough com-

pared to singular values (see Figure 7.6(b)). Hence, it is better to use singular values of the PTs (see

Figures 7.7(c) to 7.7(b)). One can see that:

• considering all singular values (Figures 7.7(c) and 7.7(a)) is much more stable than considering ratios

of singular values (Figures 7.7(d) and 7.7(b));

• the aperture does not change very much the stability.

In this regard, the most stable algorithm is to recognize all singular values when the fish is a twisted ellipse

(Figure 7.7(c)), leading us to a probability of detection superior to 90% with noise level of 125%. This is

a huge gap when compared to the recognition process with shape descriptors, allowing only a few percents

of noise. Note that the noise level is computed with respect to the perturbation in the measurements V

given by (7.5), which is of order of the target volume, see (7.6). Hence, a noise level of 125% remains small

compared to the actual transdermal potential u.

Background field elimination

We can see in Figures 7.8(a) and 7.8(b) that taking the imaginary part of the measurements in order to avoid

the computation of the background field does not significantly decrease the stability of the reconstruction

based on spectral content. Since the reconstruction of CGPTs is very fast, the background field elimination

technique would yield to real-time imaging.

7.5 Figures

In this section, we numerically illustrate the main findings in this chapter and show the potential of electro-

sensing for shape recognition and classification (see pages 114-117).

7.6 Concluding remarks

In this chapter, we have successfully exhibited the physical mechanism underlying shape recognition and

classification in active electrolocation. We have shown that extracting generalized polarization tensors from

the data and comparing invariants with those of learned elements in a dictionary yields a classification
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(a) Twisted ellipse
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(b) Straight ellipse
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(c) Twisted ellipse with smaller aperture

Figure 7.5: Results of the matching with the dictionary (differences between shape descriptors). The red
bar represents the bar of the target being identified. In the x-coordinates, 1 stands for the disk, 2 for the
ellipse, 3 for the letter A, 4 for the letter E, 5 for the square, 6 for the rectangle, 7 for the triangle and 8
for the ellipse with different electrical parameters. In the y-coordinates, the distance between the shape
descriptor of the target - computed from measurements - and the shape descriptors of the dictionary.

procedure with a good performance in the full-view case and with moderate measurement noise level.

However, this shape descriptor based classification is instable in the limited-view case and for higher noise
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(a) One frequency (the smallest one) considered, Nstabil = 105.
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(b) All frequencies are considered, Nstabil = 5.104.

Figure 7.6: Stability of classification based on Shape Descriptors, when the fish is a twisted ellipse. The
threshold of 12.5% that corresponds to a randomly chosen target is represented in red dotted line.
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(a) Straight ellipse, all SVs.
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(b) Straight ellipse, ratios of SVs.
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(c) Twisted ellipse, all SVs.
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(d) Twisted ellipse, ratios of SVs.

Figure 7.7: Stability of classification based on singular values of PTs. When all SVs (singular values)
are considered, the characteristic size of the target is supposed to be known. Here, for all these figures,
Nstabil = 5.104
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(a) All singular values.
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(b) Ratios of singular values.

Figure 7.8: Classification with imaginary part of the PT, when the fish is a straight ellipse. Here, Nstabil =
105.

level. When measurements at multiple frequencies are used, the stability of our classification approach

is significantly improved by using phase shifts and keeping only the first-order polarization tensor. The

resulting spectral induced polarization based classification is very robust.





CHAPTER8

Conclusion and Perspectives

Let us summarize the work that has been done. From the mathematical model in chapter 2 and the

localization algorithm in chapter 3, we have decided to develop a way to extract the GPTs of a target

chapter 4, leading to identification (chapter 5) and tracking (chapter 6). This gives us tools to better

understand how weakly electric fishes could discriminate two objects of different shapes (chapter 7). The

research path taken has then shown to be applicable to other imaging process, making easier the bio-

inspiration process.

Our results open the door for the application of the extended Kalman filter developed in chapter 6 to

show the feasibility of a tracking of both location and orientation of a target from perturbations of the

electric field on the skin surface of the fish. It also remains to understand to what extent the spectral

induced polarization approach could help us retrieve the electric parameters of the target or locate and

recognize multiple targets.

The plan for future research would be to continue the study of imaging, in a broad sense. That means

not only computational inverse problems arising in industry or medical imaging, but also computer vision,

of artifical intelligence for robotics. Here are some projects in progress.

In the context of eletrolocation, a work in common has begun with F. Boyer from École des Mines

de Nantes, who is working on an electric robotic fish. He has designed with his team an electric sensor

that is able to navigate throught obstacles, but it does not recognize these objects (see [74] and references

therein). The aim of this collaboration would be to give detection and identification features to this robot.

In this regard, giving the robot a sense of learning (supervised or unsupervised) would be very inter-

seting. In a project involving S. Mallat [80] and his team we started to apply machine learning theory to

the classification of targets in electro-sensing.

119





Appendices

121





APPENDIXA

Several Technical Estimates

A.1 The truncation error in the MSR expansion

Recall the expansion of the element in the MSR matrix (4.11). We prove the following estimate of the

truncation error.

Proposition A.1.1. Let Ers be as in (4.11). Set ρ = δ/R, the ratio between the typical length scale of

the inclusion D and the distance of the receivers (sources) from the inclusion. Assume also that ρ is much

smaller than one. Then

|Ers| . ρK+2. (A.1)

Proof. From the Taylor expansion of multivariate functions ([?], Chapter 1), we verify that the truncation

error Ers can be written as

ˆ

∂D
eK(y;xr, z)(λI −K∗

D)−1

[
∂G(· − xs)

∂ν

]
(y)ds(y)

+

ˆ

∂D
GK(y;xr, z)(λI −K∗

D)−1

[
∂

∂ν
eK(·; z, xs)

]
(y)ds(y).

Here, GK(y;xr, z) and eK(y;xr, z) (and similarly eK(y; z, xs)) are given by

GK(y;xr, z) =

K∑

k=1

∑

|α|=k

(−1)|α|

α!
∂αG(xr − z)(y − z)α,

eK(y;xr, z) =
∑

|α|=K+1

( 1

α!

ˆ 1

0
(1− s)K∂αG(xr − z − s(y − z))ds

)
(y − z)α.

Due to the invariance relation (5.7), the operator (λI −K∗
D)−1, as an operator from the space L2(∂D)

to itself, is bounded uniformly with respect to the scaling of D. Consequently, the first term in Ers is

bounded by

C‖eK(·;xr, z)‖L∞(∂D)‖
∂G(· − xs)

∂ν
‖L2(∂D)|∂D|

1
2 ≤ C‖eK‖L∞(∂D)‖

∂G(· − xs)
∂ν

‖L∞(∂D)|∂D|.
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Assume that z ∈ D; the distance between D and the receivers (sources) is of order R. From the above

expression of eK , the explicit form of ∂αG in (4.18), and the fact that |y − z| ≤ Cδ for y ∈ D, we have

|eK(y;xr, z)| ≤ C


 ∑

|α|=K+1

1

α!
‖∂αGr(xr − ·)‖C(D)


 |y − z|K+1 ≤ C

(
δ

R

)K+1

.

Similarly, we have ‖∂νG(· − xs)‖L∞(∂D) ≤ CR−1. The measure |∂D| in dimension two is of order δ.

Substituting these estimates into the bound for the first term in Ers, we see that it is bounded by CρK+2.

The second term can be bounded from above by

C‖GK‖L∞(∂D)‖
∂eK(·; z, xs)

∂ν
‖L∞(∂D)|∂D|.

We have ‖GK(·;xr, z)‖L∞(∂D) ≤ Cρ, which is the order of the leading term. Further, from the explicit

form of eK , we verify that

‖∂eK(·; z, xs)
∂ν

‖L∞(∂D) ≤ C
(
‖G(· − xs)‖CK+2(D)δ

K+1 + ‖G(· − xs)‖CK+1(D)δ
K
)
≤ C δK

RK+1
.

As a result, the above upper bound for the second term in Ers is of order ρK+2 as well. This proves (A.1).

✷

Proposition A.1.2. The solution us(x) defined by the transmission problem (4.2) satisfies the symmetry

property

us(xr) = ur(xs). (A.2)

Proof. Let Ωρ
s be the the ball of radius ρ centered at xs, and Ωρ

r the ball of radius ρ centered at xr. Let

Ωρ be the domain BR\(Ωρ
r ∪Ωρ

s ∪D) where BR is a sufficiently large ball with radius R. Then we have

0 =

ˆ

Ωρ

(
us(x)∆ur(x)− ur(x)∆us(x)

)
dx =

ˆ

∂Ωρ

(
us(x)

∂ur
∂n

(x)− ur(x)
∂us
∂n

(x)

)
ds(x)

= −
ˆ

∂Ωρ
s

(
us(x)

∂ur
∂n

(x)− ur(x)
∂us
∂n

(x)

)
ds(x)−

ˆ

∂Ωρ
r

(
us(x)

∂ur
∂n

(x)− ur(x)
∂us
∂n

(x)

)
ds(x)

−
ˆ

∂D

(
us(x)

∂ur
∂n

(x)
∣∣∣
+
− ur(x)

∂us
∂n

(x)
∣∣∣
+

)
ds(x) +

ˆ

∂BR

(
us(x)

∂ur
∂n

(x)
∣∣∣
+
− ur(x)

∂us
∂n

(x)
∣∣∣
+

)
ds(x)

= Jρ
s + Jρ

r + JD + JR.

For JD, thanks to the jump conditions in (4.2), we have that

JD = κ

ˆ

∂D

(
ur(x)

∂us
∂n

(x)
∣∣∣
−
− us(x)

∂ur
∂n

(x)
∣∣∣
−

)
ds(x) = κ

ˆ

D

(
ur(x)∆us(x)− us(x)∆ur(x)

)
dx = 0.

The other two terms Jρ
s and Jρ

r can be treated similarly; hence we focus on the first item. We’ve shown

that us(x) = G(x− xs) + SD[φs]. In a neighborhood of Ωρ
s, we have

‖ur‖L∞ + ‖∇ur‖L∞ + ‖SD[φs]‖L∞ + ‖∇SD[φs]‖L∞ ≤ C.

Consequently, ∣∣∣∣
ˆ

∂Ωρ
s

us(x)
∂ur
∂n

(x)

∣∣∣∣ ≤ C
ˆ

∂Bρ(xs)
(1 + | log ρ|)ds(x) ≤ Cρ| log ρ|.

∣∣∣∣
ˆ

∂Ωρ
s

ur(x)

(
∂us
∂n

(x)− ∂G

∂n
(x− xs)

)∣∣∣∣ ds(x) ≤
∣∣∣∣
ˆ

∂Ωρ
s

ur(x)
∂SD[φs]

∂n
(x)ds(x)

∣∣∣∣ ≤ Cρ.



A.2. PROOF OF FORMULA (??) 125

These estimates imply that

lim
ρ→0

Jρ
s = lim

ρ→0

ˆ

∂Bρ(xs)
ur(xs + y)

∂G

∂n
(y)ds(y) = lim

ρ→0

1

2πρ

ˆ 2π

0
ρur(xs + ρθ)dθ = ur(xs).

The same analysis applied to Jρ
r shows that limρ→0 J

ρ
r = −us(xr).

To control JR, we recall the fact that SD[φ] decays as |x|−1 and ∇SD[φ] decays as |x|−2 for φ ∈ L2(∂D)

satisfying
´

∂D φds = 0; these estimates imply that the logarithmic part of us dominates. Therefore,

lim
R→∞

JR = lim
R→∞

ˆ

∂BR

log |x− xs|
〈νx, x− xr〉
|x− xr|2

− log |x− xr|
〈νx, x− xs〉
|x− xs|2

ds(x).

The integrand above can be written as

(
log
|x− xs|
|x− xr|

) 〈νx, x− xr〉
|x− xr|2

+ log |x− xr|
[〈νx, x− xr〉
|x− xr|2

− 〈νx, x− xs〉|x− xs|2
]
.

We verify that the first term is of order o( 1
R ); its contribution to the limiting integral is hence negligible.

The second term in the integrand can be further written as

log |x− xr|
[
〈νx, x− xr〉

(
1

|x− xr|2
− 1

|x− xs|2
)

+
〈νx, x− xr − (x− xs)〉

|x− xs|2
]
.

From

1

|x− xr|2
− 1

|x− xs|2
=
|xs|2 − |xr|2 + 2〈x, xr − xs〉

|x− xr|2|x− xs|2
,

we verify that the second term in the integrand is of order O(logR/R2); hence its contribution to the

limiting integral is also zero. To summarize, we have limR→∞ JR = 0.

From the above analysis, we take the limit ρ→ 0, R→∞ on the equality 0 = Jρ
s + Jρ

r + JD + JR and

conclude that (A.2) holds. ✷

A.2 Proof of formula (4.18)

Formula (4.18) is well-known. We include a proof for reader’s sake.

In order to prove (4.18), we need to find the derivative of the function log |x|. To this end, we consider

the Taylor expansion of the logarithmic function around the point x. The most convenient method for this

expansion is to view the space variables as complex numbers. For a small perturbation z of the point x

(x, z ∈ C), we calculate

log |x− z| − log |x| = 1

2
([log(x− z)− log x] + [log(x− z)− log x]) .

To expand the first item on the right-hand side of the above equality, we write it as log(1 − z
x), and since

| zx | < 1 we obtain the expansion

log(1− z

x
) = −

∞∑

j=1

1

j

( z
x

)j
= −

∞∑

j=1

1

j

(
rze

iθz

rxeiθx

)j

.
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Taking the conjugate, we obtain the expansion for log(x− z)− log x. Consequently, we have

log |x− z| − log |x| = −1

2

∞∑

j=1

1

j

[(
rze

iθz

rxeiθx

)j

+

(
rze

−iθz

rxe−iθx

)j
]

= −
∞∑

j=1

1

j

(
cos jθx

rjx
[rjz cos jθz] +

sin jθx

rjx
[rjz sin jθz]

)

= −
∞∑

j=1

1

j


cos jθx

rjx

∑

|α|=j

ajαz
α +

sin jθx

rjx

∑

|α|=j

bjαz
α


 .

In the last equality, we understood the variable z as real variable and used the representation (4.13).

Compare the last term of the above formula with the (real-variable) multivariate expansion of log |x− z| −
log |x|, we observe that

∑

|α|=j

(−1)j

α!
(∂αx log |x|)zα = −

∑

|α|=j

1

j

(
cos jθx

rjx
ajα +

sin jθx

rjx
bjα

)
zα.

For each double index α, we get (4.18).

A.3 Proof of formula (4.25)

The proof is a straightforward computation. The elements of the matrix CtC correspond to inner products

of columns of the matrix C, that is, the inner products of vectors formed by evaluating sin and cos functions

at (k1θ1, . . . , k1θN ) and at (k2θ1, . . . , k2θN ), where k1, k2 = 1, 2, . . . ,K, k1+k2 ≤ 2K < N , and θj = 2πj/N ,

j = 1, 2, . . . , N . When two cos vectors are chosen, the inner product becomes

N∑

j=1

cos k1θj cos k2θj =
1

4

N∑

j=1

(
ei

2π(k1+k2)j
N + e−i

2π(k1+k2)j
N + ei

2π(k1−k2)j
N + e−i

2π(k1−k2)j
N

)
.

Since k1 + k2 is an integer less than N , the first two sums always vanish because

N∑

j=1

ei
2π(k1+k2)j

N =
1− ei2π(k1+k2)

1− ei
2π(k1+k2)

N

= 0.

When k1 = k2, the last two sums contribute and the overall result is N/2. When k1 6= k2, the inner

products under estimation is zero according to the above observation.

The case of inner product with sin and sin or cos and cos vectors can be similarly analyzed, and it can

be easily seen that (4.25) holds.



APPENDIXB

Kalman Filters

B.1 Kalman Filter

The KF is a recursive method that uses a stream of noisy observations to produce an optimal estimator of

the underlying system state [63]. Consider the following time-discrete dynamical system (t ≥ 1):

Xt = FtXt−1 +Wt, (B.1)

Yt = HtXt + Vt. (B.2)

where

• Xt is the vector of system state;

• Yt is the vector of observation;

• Ft is the state transition matrix which is applied to the previous state Xt−1;

• Ht is the observation matrix which yields the (noise free) observation from a system state Xt;

• Wt ∼ N (0, Qt) is the process noise and Vt ∼ N (0, Rt) is the observation noise, with respectively Qt

and Rt the covariance matrix. These two noises are independent between them. Further, we assume

that, for t 6= τ , Wt and Wτ are also independent (the same holds for Vt and Vτ ).

Suppose that X0 is Gaussian. Then it follows that the process (Xt, Yt)t≥0 is Gaussian. The objective is to

estimate the system state Xt from the accumulated observations Y (2) := [Y1 . . . Yt].

The optimal estimator (in the least-squares sense) of the system state Xt given the observations Y (2)

is the conditional expectation

x̂t|t = E[Xt|Y (2)]. (B.3)

Since the joint vector (Xt, Y
(2)) is Gaussian, the conditional expectation x̂t|t is a linear combination of

Y (2), which can be written in terms of x̂t−1|t−1 and Yt only. The purpose of the KF is to calculate x̂t|t from

x̂t−1|t−1 and Yt.
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We summarize the algorithm in the following.

Initialization:

x̂0|0 = E[X0], P0|0 = cov(X0). (B.4)

Prediction:

x̂t|t−1 = Ftx̂t−1|t−1, (B.5)

Ỹt = Yt −Htx̂t|t−1, (B.6)

Pt|t−1 = FtPt−1|t−1F
T
t +Qt. (B.7)

Update:

St = HtPt|t−1H
T
t +Rt, (B.8)

Kt = Pt|t−1H
T
t S

−1
t , (B.9)

x̂t|t = x̂t|t−1 +KtỸt, (B.10)

Pt|t = (I −KtHt)Pt−1|t−1. (B.11)

To apply the KF algorithm the covariance matrices Qt, Rt must be known.

B.2 Extended Kalman Filter

Consider now a nonlinear dynamical system:

Xt = ft(Xt−1,Wt), (B.12)

Yt = ht(Xt, Vt), (B.13)

where Xt, Yt,Wt, Vt are the same as in the KF, while the functions ft, ht are nonlinear and differentiable.

Nothing can be said in general on the conditional distribution Xt|Y (2) due to the nonlinearity. The EKF

calculates an approximation of the conditional expectation (B.3) by an appropriate linearization of the state

transition and observation models, which makes the general scheme of KF still applicable [114]. However,

the resulting algorithm is no more optimal in the least-squares sense due to the approximation.

Let FX = ∂Xf(x̂t−1|t−1, 0), FW = ∂W f(x̂t−1|t−1, 0), the partial derivatives of f (with respect to the sys-

tem state and the process noise) evaluated at (x̂t−1|t−1, 0), and let HX = ∂Xh(x̂t|t−1, 0),HV = ∂V h(x̂t|t−1, 0)

be the partial derivatives of h (with respect to the system state and the observation noise) evaluated at

(x̂t|t−1, 0). The EKF algorithm is summarized below.

Initialization:

x̂0|0 = E[X0], P0|0 = cov(X0). (B.14)

Prediction:

x̂t|t−1 = f(x̂t−1|t−1, 0), (B.15)

Ỹt = Yt − h(x̂t|t−1, 0), (B.16)

Pt|t−1 = FXPt−1|t−1F
T
X + FWQtF

T
W . (B.17)

Update:

St = HXPt|t−1H
T
X +HVRtH

T
V , (B.18)

Kt = Pt|t−1H
T
XS

−1
t , (B.19)

x̂t|t = x̂t|t−1 +KtỸt, (B.20)

Pt|t = (I −KtHX)Pt−1|t−1. (B.21)
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