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Abstract

The subject of this thesis is the hydrodynamics of thin (sheet-like) and

slender (filamentary) bodies of viscous fluid immersed in a second fluid

with a different viscosity. We focus on two examples: the subduction

of oceanic lithosphere; and the buckling of viscous threads injected into

diverging microchannels. Despite the very different physical scales of the

two phenomena, both have a characteristic Reynolds number Re� 1.

For the case of a thin subducting sheet, we propose a new hybrid

boundary integral-thin sheet method (BITS) that combines an asymp-

totic thin-sheet formulation for the sheet with a boundary-integral rep-

resentation of the outer flow. At present the model is limited to two

dimensions, i.e. the sheet extends infinitely in the trench-parallel direc-

tion. The BITS equations are solved using a method based on discrete

differential geometry developed by Audoly et al. (2013). The new BITS

method is validated by comparing its predictions with those of a full two-

dimensional boundary-element code. To model subduction using BITS,

we suppose that the sheet initially comprises a long horizontal part (the

‘plate’) connected to a short bent part (the ‘slab’) whose negative buoy-

ancy drives the subduction. We first perform a suite of instantaneous

flow solutions for different values of the length of the slab, its inclina-

tion, and the viscosity ratio between the sheet and the ambient fluid.

As an output parameter, we focus on the vertical sinking speed V of the
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slab’s leading end. Scaling analysis suggests that the normalized sinking

speed V/VStokes = fct(St), where VStokes is the slab’s characteristic Stokes

sinking speed and St is the sheet’s ‘flexural stiffness’. The scaling anal-

ysis is confirmed by the fact that the numerical predictions of V/VStokes

collapse onto a single master curve as a function of St. The curve has

two limits: a limit St ≤ 1 for which the sinking speed is controlled by

the viscosity of the ambient mantle, and a limit St � 1 in which it is

controlled by the viscosity of the sheet itself (bending resistance). We

then proceed to obtain time-dependent solutions for the evolution of the

sheet’s shape and thickness. For moderate viscosity ratios (≈ 100), the

sheet thins substantially as it sinks, but not enough to lead to the ‘slab

breakoff’ that is observed in several subduction zones on Earth. We pro-

pose that slab breakoff may be modelled using a modified BITS model

with a non-Newtonian rheology; work on this is ongoing.

Next, the parallel code BLUE for multi-phase flows is used to simu-

late three-dimensional viscous folding in diverging microchannels. The

code BLUE, developed by S. Shin and thesis co-supervisors D. Juric

and J. Chergui, treats the free interface with a parallel Lagrangian front

tracking method. Inspired by T. Cubaud’s experiments, the calcula-

tion domain is a micro rectangle of dimensions 2 mm×0.25 mm×5 mm.

The more viscous liquid L1 with viscosity η1 is injected into the chan-

nel from the center inlet at a volumetric rate Q1, and the less viscous

liquid L2 with viscosity η2 from two side inlets at a total volumetric

rate Q2. Liquid L1 takes the form of a thin filament due to hydrody-

namic focusing in the long channel that leads to the deverging region.

Given the long computation time, we were limited to a parameter study

comprising five simulations in which the flow rate ratio, the viscosity

ratio, the Reynolds number, and the shape of the channel were varied

relative to a reference model. The thread becomes unstable to a folding

instability after its entry into the main chamber, due to the longitudinal
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compressive stress applied to it by the diverging flow of liquid L2. The

initial folding axis can be either parallel or perpendicular to the narrow

dimension of the chamber. In the former case, the folding slowly trans-

forms via twisting to perpendicular folding , or may disappear totally.

The direction of folding onset is determined by the velocity profile and

the elliptical shape of the thread cross section in the channel that feeds

the diverging part of the cell. Due to the high viscosity contrast and

very low Reynolds numbers involved, direct numerical simulations of

this two-phase flow are very challenging and to our knowledge these are

the first three-dimensional direct parallel numerical simulations of vis-

cous threads in microchannels. However, since the computational time

for these simulations is quite long, especially for such viscous threads,

the simulations present only the early time onset of the buckling insta-

bility of the threads, thus long-time comparisons with experiments for

quantities such as folding amplitude and frequency are limited.





Résumé

Cette thèse concerne la simulation numérique d’écoulement de nappes

et de filamenteux de fluides visqueux en présence d’une seconde phase

fluide non-miscible dont la viscosité est différente. Deux exemples sont

présentés. Celui de la subduction de la lithosphère océanique ainsi que

celui du flambage de filaments visqueux dans un micro-canal divergent.

En dépit des très différentes échelles physiques des deux phénomènes,

ces deux écoulements sont en particulier caractérisés par un nombre de

Reynolds relativement bas (Re� 1).

Dans le premier cas, une nouvelle méthode hybride dite BITS (Bound-

ary Integral & Thin Sheet) est proposée : elle, combine une formulation

asymptotique de la nappe mince avec une représentation intégrale aux

frontières de l’écoulement extérieur. Actuellement, le modèle est limité

à deux dimensions, à savoir la nappe se prolonge à l’infini dans la di-

rection de la tranchée parallèle. Les équations de BITS sont résolues

en utilisant une méthode basée sur la gométrie différentielle discrète,

développée par Audoly et al. (2013). Nous validerons les résultats de la

nouvelle méthode BITS avec ceux obtenus et confirmés par une méthode

bi-dimensionnelle dite d’éléments aux frontières (Ribe, 2010). Afin de

modéliser le phénomène de subduction, nous supposons dans la méthode

BITS, que la nappe est composée d’une longue partie horizontale reliée

à une partie coudée plus courte (le ‘slab’) dont la flottabilité négative
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entrâıne la subduction. Les solutions instationnaires sont obtenues avec

différentes valeurs de la longueur et l’inclinaison de la partie coudée (le

‘slab’), et en faisant varier le rapport de viscosité entre la nappe et le

fluide ambiant. L’un des paramètres de sortie sur lequel nous nous con-

centrons est la vitesse d’immersion verticale V à l’extrémité du slab.

L’analyse des échelles suggère que la vitesse normalisée V/VStokes est

une fonction de St, où VStokes est la vitesse caractéristique du slab et

St est la rigidité en flexion de la nappe. L’analyse des échelles indique

une bonne concordance avec les prédictions numériques que nous avons

obtenues. La courbe V/VStokes = fct(St) présente deux limites : une

limite St ≤ 1 pour laquelle la subduction est contrôlée par la viscosité

du manteau ambiant, et une limite St � 1 où elle est contrôlée par la

viscosité de la nappe (résistance à la flexion). Nous déterminons des

solutions pour l’évolution de la forme et l’épaisseur de la nappe en fonc-

tion du temps. A des nombres de Reynolds modérés (∼ 100), la nappe

s’amincit considérablement pendant son écoulement sans pour autant

atteindre sa rupture tel que cela est observé dans différentes régions de

subduction terrestre. Nous proposons que la rupture de la nappe puisse

être modélisée à l’aide de la méthode BITS, en tenant compte d’une

rhéologie non-newtonienne; les travaux à ce sujet étant en cours.

Dans le second cas, nous avons utilisé le code BLUE pour réaliser cinq

simulations numériques 3D diphasiques d’écoulements visqueux dans

une configuration de flambage en micro-canal divergent. Le code BLUE,

développé par S. Shin et deux co-directeurs de la thèse D. Juric et J.

Chergui, traite l’interface libre avec une méthode parallèle de front-

tracking. Inspiré par des expériences de T. Cubaud, le domaine de calcul

est un micro rectangle de dimensions 2 mm×0, 25 mm×5 mm. Le liq-

uide le plus visqueux L1 avec une viscosité η1, est injecté au centre de

l’entrée du canal à un débit volumique Q1. Le liquide le moins visqueux

L2 de une viscosité η2, est injecté à partir de deux entrées latérales à
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un débit volumique total Q2. Le liquide L1 prend la forme d’un fil-

ament mince dans le long du canal qui mène au région divergent en

raison du ‘focusing’ hydrodynamique. Compte tenu de la longue durée

de calculs, nous étions limités à une étude paramétrique comprenant

cinq simulations. L’écoulement dépend de plusieurs paramètres dont le

rapport des débits volumétriques, le rapport des viscosités, le nombre

de Reynolds et l’angle du micro-canal divergent. Il apparâıt de cette

étude que le filament présente une instabilité du type flambage en rai-

son de la contrainte de compression longitudinale qui lui est appliquée

par le flux divergent du liquide L2. L’axe principal de flambage peut

être alors parallèle ou perpendiculaire à la direction étroite de la cham-

bre. Dans le cas parallèle, le flambage tend lentement vers un flambage

perpendiculaire au moyen d’une torsion ou peut totalement disparâıtre.

La direction d’apparition du flambage est déterminée par le profil de

vitesse et la forme elliptique de la section transversale du filament, dans

le canal qui alimente la partie divergente. En raison du grand rapport des

viscosités et des bas nombres de Reynolds, les simulations numériques

de cet écoulement diphasique sont très difficiles. A notre connaissance,

ce sont les premières simulations numériques tridimensionnelles directes

parallèles de filaments visqueux dans des micro-canaux. Toutefois, le

temps de calculs étant très long, surtout pour de tels liquides visqueux,

les simulations présentent seulement le début de l’instabilité de flambage

des filaments. Ainsi, les comparaisons avec des expériences (Cubaud and

Mason, 2006a) pour des grandeurs telles que l’amplitude et la fréquence

de flambage restent limitées.
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Chapter 1

Introduction

Thin and slender bodies immersed in fluids occur widely in nature and

technology. In biology, microscopic organisms such as bacteria and sper-

matozoa propel themselves in viscous fluid by waving long slender flag-

ellae (Toppaladoddi and Balmforth, 2014). In construction, metal rein-

forcing rods are immersed in liquid concrete before it hardens. Undersea

telephone and fiber optics cables make rapid communication possible.

Finally, in the chemical and food industries, one often encounters sus-

pensions of small rod-like or plate-like particles (Tornberg and Shelley,

2004).

In all the above examples, the immersed body is solid or elastic. But

there are other cases in which the immersed body is itself a viscous fluid.

In these situations, the viscosity of the body plays a role analogous to

that of elasticity in the case of solid bodies. However, immersed thin

and slender fluid bodies have been much less studied than their elastic

counterparts.

This thesis focuses on two examples of immersed thin or slender fluid

bodies. The first is the subduction of oceanic lithosphere, a crucial part

of the Earth’s plate tectonic cycle. In this case the lithosphere can
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2 1.1. FREE SUBDUCTION

be regarded as a thin viscous sheet immersed in the substantially less

viscous mantle. The typical thickness of the lithosphere is 50-80 km,

and the typical depth of subduction is in the range 660-2900 km, so that

the subducted portion of the lithosphere (the so-called ‘slab’) is strictly

speaking a ‘thin’ body with one characteristic dimension much smaller

than the other two. The second case we study is the buckling of viscous

threads in diverging microchannels. In this case the immersed body is

‘slender’, because it has two characteristic dimensions that are much

smaller than the third. But despite the very different geometries and

physical scales of the two phenomena, both are characterized by a small

Reynolds number Re � 1. Inertia is therefore negligible, and the flow

in both cases is ‘Stokes’ or ‘creeping’ flow.

1.1 Free subduction

Subduction, the free sinking of dense (oceanic) lithosphere into the

Earth’s mantle, is shown schematically in Fig. 1.1. Subduction is an

essential feature of the planet’s plate tectonics, because the negative

buoyancy of the slabs drives mantle convection. Subduction also gen-

erates most of the great earthquakes and the explosive volcanoes on

Earth, and is the main process responsible for recycling oceanic crust

and volatile species like H2O and CO2.

Because of its geophysical importance, subduction has been the ob-

ject of numerous studies aiming to understand its physical mechanisms.

Perhaps the simplest reasonable model comprises a single dense and

highly viscous sheet (density ρ + δρ, viscosity η2 and initial thickness

h0) that sinks into a mantle with density ρ and viscosity η1 � η2. Ex-

perimentally, this model has been studied with different pairs of ma-

terials representing the plate and mantle: rubber and water (Jacoby,
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Figure 1.1: The subduction of oceanic lithosphere into the Earth’s man-

tle

1973), solid and molten paraffin (Jacoby, 1976), very viscous and less

viscous corn syrup (Kincaid and Olson, 1987), and silicone putty and

honey or glucose syrup (Funiciello et al., 2003a, 2006, 2008; Schellart,

2004b,a, 2008; Schellart et al., 2010; Faccenna et al., 2007). In these

experiments, one edge of the flat sheet on the surface of the low vis-

cosity fluid is pushed down to create a short slab, which initiates the

subduction. A schematic view of Funiciello and co-workers’ experiments

is shown in Fig. 1.2 (Funiciello et al., 2006). The evolving shape of the

sheet is observed with video cameras, and the velocity field of the sur-

rounding fluid using either Particle Image Velocimetry (PIV) (Kincaid

and Griffiths, 2003) or Feature Tracking (FT) (Funiciello et al., 2006).

But obtaining good quantitive measurements in this way is laborious.

Subduction has also been studied extensively using numerical tech-

niques. There are three different approaches. The first is to solve

the governing equations using full continuum descriptions of both the
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Figure 1.2: Laboratory setup used for studying subduction by Funiciello

and co-workers (Funiciello et al., 2006). The lithosphere is simulated by

means of a silicone plate of density ρl, viscosity ηl, width w, thickness

h, and length L. The mantle is simulated by means of glucose syrup of

density ρm, viscosity ηm, and thickness H = 0.11 m. Experiments are

monitored over their entire duration using two video cameras to record

lateral and top views perpendicular to two illuminated planes.
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sheet and the surrounding fluid. The solutions can be either steady-

state (Conrad and Hager, 1999), quasi-static (Piromallo et al., 2006), or

fully time-dependent. In this last category, some simulations are two-

dimensional (Enns et al., 2005; Manea and Gurnis, 2007; Di Giuseppe

et al., 2008; Schmeling et al., 2008; Capitanio et al., 2009) and others

are in three dimensions (Morra et al., 2006, 2009; Stegman et al., 2006,

2010a,b; Schellart et al., 2007; Capitanio and Morra, 2012; Manea et al.,

2012). These numerical simulations capture well the self-consistent in-

teraction between the sheet and the surrounding fluid. But they are

computationally expensive and the treatment of the point (or line) where

the sheet separates from the upper surface is difficult (Schmeling et al.,

2008).

The second numerical approach is to describe the dynamics of the

sheet and/or the surrounding mantle in a parametrized way, so that

an explicit determination of the flow is not necessary. One can, for

example, represent the viscous stresses exerted by the external fluid by

a prescribed distribution of dashpots (Funiciello et al., 2003b) or by drag

coefficients obtained from analytical solutions of the Stokes equations for

idealized geometries (Capitanio et al., 2007, 2009; Goes et al., 2008). At

the opposite extreme, Conrad and Hager (2001) combine a parametrized

representation of the sheet’s deformation with an explicit calculation of

the surrounding flow. There are even a few models in which the flows in

both the sheet and the surrounding fluid are parametrized (Buffett and

Rowley, 2006). All these methods are computationally efficient, but the

lack of full fluid-mechanical self-consistency is a serious drawback.

A third approach is to use the boundary element method (BEM).

This semianalytical method is based on the boundary-integral represen-

tation of Stokes flow, whereby the flow in a volume of fluid is represented

by weighted integrals of the velocity and stress over the boundaries of

the volume. A two-dimensional model of this kind was studied by Ribe
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(2010), and extended to three dimensions by Li and Ribe (2012). There

have also been several BEM studies of subduction in spherical geometry

(Morra et al., 2009; Capitanio and Morra, 2012). The advantages of

BEM method are several: a total absence of unwanted wall effects, re-

duction of the dimensionality of the problem by one (from 3-D to 2-D or

2-D to 1-D), and the possibility of using Green’s functions that satisfy

identically the boundary conditions on horizontal boundaries. Disad-

vantages include a lack of flexibility, as well as the dense character of

the matrix describing the interaction of each boundary node with every

other.

The above-mentioned experimental and numerical studies have yielded

much insight into free subduction driven by negative buoyancy, in which

the dense and highly viscous sheet drives flow in the ambient fluid and

is in turn deformed by it. Many features of subduction in the geolog-

ical record can be expained by these results, such as the correlation

between trench and plate velocities (Stegman et al., 2006; Funiciello

et al., 2008), the shapes of trenches and island arcs (Morra et al., 2006;

Schellart et al., 2007), and the factors controlling the mode or style

of subduction (Bellahsen et al., 2005; Schellart, 2008; Stegman et al.,

2010a; Ribe, 2010). Concerning the last point, laboratory experiments

have revealed that subduction can occur in several distinct modes, in-

cluding trench-retreating, folding, trench-advancing, and strong trench

retreating when the viscosity ratio γ = η2/η1 is very large (Bellahsen

et al., 2005; Di Giuseppe et al., 2008; Schellart, 2008; Stegman et al.,

2010a). Photographs of these modes are shown in Fig. 1.3. Based on

laboratory experiments, Schellart (2008) proposed a regime diagram for

the four modes mentioned above as as a function of the viscosity ratio

γ and the ratio D/H of the layer depth to the sheet thickness, as shown

in Fig. 1.4. Li and Ribe (2012) showed that the mode of subduction is

selected by the angle at which the slab first impinges on the bottom of
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the experimental tank, which corresponds to a depth of 660 km in the

Earth. These authors further identified a key dimensionless parameter,

the ‘bending stiffness’

St =
η2

η1

(
h

lb

)3

, (1.1)

which determines whether the subduction rate is controlled by the vis-

cosity of the ambient fluid (St ∼ O(1)) or by the viscosity of the sheet

itself (St � 1). In (1.1), lb is the ‘bending length’, i.e. the length

of the portion of the sheet (the slab plus the seaward flexural bulge)

where deformation occurs primarily by bending as opposed to stretch-

ing/shortening.

 = 3.6dripping

3600   weak
retreating

3600folding

3600advancing

350000
   strong
retreating

viscosity
contrast

Figure 1.3: Modes of free subduction observed in analogue laboratory

experiments. The photographs in the left-hand column were taken before

the sheet’s leading end reached the bottom of the experimental tank, and

those in the right-hand column some time after. The viscosity contrast

γ for each experiment is indicated at far right. Photographs courtesy of

F.Funiciello.

In the BEM models of Ribe (2010) and Li and Ribe (2012), the theory

of thin viscous sheets (see below) is used a posteriori as an interpretative
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Figure 1.4: Phase diagram of the modes of free subduction as a func-

tion of the viscosity ratio γ and the ratio D/h of the layer depth to the

sheet thickness. Fields: trench retreating, folding and trench advancing

modes, adapted from Fig. 13 of Schellart (2008). Dots: subduction

mode observed in numerical BEM solutions of Li and Ribe (2012). AF

(advancing trench with folding) is a new mode not (yet) seen in labora-

tory experiments.
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tool. In this thesis, we pursue an alternate route by developing a new

approach in which thin-sheet theory is built in from the start. We call

the hybrid model that results the ‘BITS’ (Boundary-integral/thin sheet)

model. Unlike the full BEM models, the BITS approach can be used

for either Newtonian or non-Newtonian sheets. The Newtonian case is

discussed in Chapter 3 of this thesis, and work on the non-Newtonian

case is ongoing.

1.2 Buckling instabilities in microchannels

The folding of viscous threads in diverging microchannels has recently

attracted much attention due to the need to mix two fluids with very

different viscosities. The dynamics of viscous multiphase flows at small

scales is important in industrial technology (oil recovery, biodiesel pro-

duction, etc.). Microfluidic devices are well suited for studying precisely

controlled flow geometries and finely manipulating the fluid, and can be

used to produce individual bubbles, droplets and complex soft materials

(Utada et al., 2005; Cubaud et al., 2005; Meleson et al., 2004). The

effective mixing is of great importance in these various microfluidic ap-

plications. But microfluidic flows are usually laminar, so liquid streams

are parallel and different fluids can only mix by diffusion. The time scale

associated with diffusion, td = h2/D, where h is the characteristic length

scale and D is the diffusion coefficient between the liquids, is typically

much larger than the time scale associated with convection, tc = h/U ,

where U is the characteristic flow velocity. Therefore, diffusion alone is

an extremely inefficient mixing method.

There are different innovative strategies to enhance mixing in mi-

crofluidics, which can be classified as either active or passive methods.

In active methods an external forcing is imposed by e.g. rotary pumps
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(Chou et al., 2001), forced oscillatory transverse flows (Bottausci et al.,

2004) or electric or magnetic fields (Paik et al., 2003a,b; Pollack et al.,

2002; Paik et al., 2003b; Kang et al., 2007a,b; Rida and Gijs, 2004). Pas-

sive methods rely on a particular design of the microchannel, including

patterned surface relief (Chen et al., 2009; Bringer et al., 2004; Stroock

et al., 2002a,b). However, industrial and biological fluids usually exhibit

widely different viscosities and the relative motions between the fluids

are complex. In this thesis we study one promising method, wherein

periodic folding of viscous threads injected into microchannels enhances

mixing by greatly increasing the specific surface area of the fluid/fluid

interface.

The buckling (folding or coiling) of slender viscous threads is familiar

to anyone who has ever poured honey or molten chocolate onto toast.

Taylor (1969) investigated the viscous buckling problem and suggested

that the instability requires an axial compressive stress, like the more

familiar ‘Euler’ buckling of a compressed elastic rod. Since then, viscous

buckling has been studied by numerous authors using experimental, the-

oretical, and numerical approaches (Cruickshank and Munson, 1982b,a,

1983; Cruickshank, 1988; Griffiths and Turner, 1988; Tchavdarov et al.,

1993; Mahadevan et al., 1998; Skorobogatiy and Mahadevan, 2000; Tome

and Mckee, 1999; Ribe, 2004; Ribe et al., 2006; Maleki et al., 2004; Habibi

et al., 2014). The primary result of this work is that buckling can occur

in four distinct modes (viscous, gravitational, inertio-gravitational, and

inertial) depending on the force that balances the viscous resistance to

bending as a function of fall height.

With the exception of Griffiths and Turner (1988), all the studies

cited above consider ‘non-immersed’ folding/coiling that occurs when

the influence of the external fluid (typically air in experiments) is negli-

gible. Recently, Cubaud and Mason (2006a) have studied the immersed

buckling that occurs when two fluids with different viscosities are in-
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jected into a diverging microchannel. Their experimental setup with

h = 100µm is shown in Fig. 1.5. The thread is produced by hydro-

dynamic focusing of a viscous fluid flow by a less viscous fluid injected

from the sides. Silicone oils with different viscosities were used to obtain

different viscosity ratios. Fig. 1.6 shows the viscous folding for different

divergence angles and flow rate ratios. On the basis of their experimen-

tal results, Cubaud and Mason (2006a) proposed that f ∼ γ̇, where f

is the folding frequency and γ̇ = U1/(h/2) is the characteristic shear

rate. The thread of radius R1 can be assumed to flow at nearly constant

velocity, U1 = Q1/(πR
2
1) , like a solid plug, inside a sheath of the less

viscous liquid, similar to the flow in a circular channel. In this case,

U1 represents the maximum velocity of the surrounding liquid. Down-

stream, the thread and surrounding liquid enter the diverging channel

creating a decelerating extensional flow in Fig. 1.5. Extensional viscous

stresses cause the thread to bend and fold, rather than dilate, in order

to minimize dissipation and conserve mass. As the thread folds, it re-

duces its velocity and mixes with the outer liquid. In addition to folding,

many other potentially useful flow phenomena are obtained, including

oscillatory folding, folding modified by strong diffusion, heterogeneous

folding, and subfolding (Cubaud and Mason, 2006b).

To our knowledge, the only existing numerical study of immersed

buckling is Chung et al. (2010), who performed numerical and exper-

imental studies on viscous folding in diverging microchannels similar

to those of Cubaud and Mason (2006a). However, it is important to

note that the numerical simulations of Chung et al. (2010) are two-

dimensional, unlike their or Cubaud’s experiments which are fully three-

dimensional. Chung et al. (2010) obtained a regime diagram for the flow

pattern observed (stable, folding, or chaotic) as a function of the flow

rate ratio, the viscosity ratio, and the channel shape, as shown in Fig.

1.7. In addition to the divergence angles α = π/2 and α = π, Chung
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Figure 1.5: Schematic diagram of Cubaud’s experimental setup. (a)

Diverging microchannel module (height, h = 100µm). Simultaneous in-

jection of liquid 1 (more viscous) and liquid 2 (less viscous) produces

a thread of liquid 1 in the square channel. The thread enters a diverg-

ing channel with opening angle α. (b) Flow profiles during the folding

instability (side view). Arrows indicate velocities.
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et al. (2010) also performed simulations for a channel with walls of hy-

perbolic shape, to obtain a more uniform compressive stress along the

channel’s centerline. The hyperbolic channel generated folding flows

with smaller frequency and amplitude, as well as a delay of onset of the

folding. From their numerical results, Chung et al. (2010) obtained a

power-law relation f ∼ γ̇1.68, which is quite different from Cubaud and

Mason’s law f ∼ γ̇.

Figure 1.6: Viscous folding of a thread in diverging microchannels for

different channel angles and flow rate ratios. The viscosities are fixed at

η1 = 500cP and η2 = 6cP (χ = 83). (a)-(d) The thread flow rate is fixed

at Q1 = 5µ l/min. (a) φ = Q1/Q2 = 0.4, α = π/2. (b) φ = 0.2, α = π/2.

(c) φ = 0.4, α = π. (d) φ = 0.2, α = π. (e) φ = 0.03 (Q1 = 1µl/min),

α = π/2. (f) φ = 0.02 (Q1 = 1µl/min), α = π (Figure from (Cubaud

and Mason, 2006a)).

The different power-law relations obtained by Chung et al. (2010)

and Cubaud and Mason (2006a) may be due to the different dimen-

sionalities of the simulations and the experiments, suggesting that fully

three-dimensional simulations are justified. To this end, we will use
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the parallel code BLUE for multiphase flow based on the front track-

ing method (developed by Shin, Chergui, and Juric (2014)) to simulate

three-dimensional viscous folding in diverging microchannels.
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Figure 1.7: Regime diagram for two-dimensional flow patterns in diverg-

ing channels as functions of the flow ratio φ, the viscosity ratio χ, and

the channel shape (Chung et al., 2010). Channel A has opening angle

α = 180◦, channel B has α = 90◦, and channel C has walls of hyperbolic

shape.





Chapter 2

Thin Newtonian sheets: The

discrete approach

In this chapter we build a numerical model for the subduction of a thin

viscous sheet. The model has four parts: the thin-sheet theory, a La-

grangian description of the sheet’s geometry and kinematics; a boundary

integral representation for the flow inside and outside the sheet; and a

discrete (as opposed to smooth) formulation of the thin viscous sheet

equations simplified from Audoly et al. (2013)’s discrete approach for

thin viscous threads.

2.1 Thin-sheet theory: essential concepts

Because our subduction model involves a thin viscous sheet, we sum-

marize here the essential concepts of thin-sheet theory (Ribe, 2001) in

Fig. 2.1. At each point on the sheet, let d1 be the tangent vector to

the sheet’s midsurface, d2 the unit normal to the midsurface, and d3

the unit vector pointing out of the page. The Cartesian coordinates of

the midsurface are x0(s), and those of an arbitrary point on the sheet

17
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H0 η2, ρ2 midsurface

d2

d1

U

Figure 2.1: A viscous thin sheet

are x(s, z) ≡ x0(s) + zd2, (−H/2 ≤ z ≤ H/2), where H is the sheets

thickness. Let the inclination of the midsurface to the horizontal be θ(s),

and the curvature of the midsurface be K(s) ≡ ∂θ/∂s. The balance of

forces and moments on an element of the sheet requires

N ′ + ρgh+ F = 0, M ′ + d1 ×N = 0, (2.1)

where F is the traction applied by the outer fluid and the prime denotes

differentation with respect to s. The stress resultant N ≡ N1d1 +N2d2

and the bending moment M ≡Md3 are

N =

∫ H/2

−H/2
σ · d1 dz, M =

∫ H/2

−H/2
zd1 × σdz. (2.2)

Let the velocity of the sheet’s midsurface be

U = Ud1 +Wd2. (2.3)

The equations that describe the low Reynolds number flow of a

curved two-dimensional sheet are

∂u

∂s
+

∂

∂z
(hw) = 0, (2.4)

∂σss
∂s

+
∂

∂z
(hσzs) + σzs

∂h

∂z
= 0, (2.5)

∂

∂z
(hσzz) +

∂σzs
∂s
− σss

∂h

∂z
= 0, (2.6)
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where σij is the stress tensor and h = 1 − zK.The components of the

stress tensor are related to the velocity by

σss = −p+
2η2

h

(∂u
∂s
−Kw

)
, (2.7)

σzz = −p+ 2η2
∂w

∂z
, (2.8)

σzs = η2

[1

h

∂w

∂s
+ h

∂

∂z

(u
h

)]
. (2.9)

Now because the sheet is thin, the components σsz, σzz are small

compared to the remaining component σss. We can therefore set

σsz = σzz = 0. (2.10)

From the equations (2.8), (2.9)and (2.10),

h
∂

∂z

(u
h

)
= −1

h

∂w

∂s
, p = 2η2

∂w

∂z
. (2.11)

According to the continuity equation,

∂w

∂z
= −1

h

(∂u
∂s
−Kw

)
≈ −1

h

(∂u
∂s
−KW

)
(2.12)

Considering the sheet is very thin, it is assumed that the velocity w

varies little along the z-direction, i.e. ∂w/∂s = ∂W/∂s. Thus, the first

equation in (2.11) becomes

h
∂

∂z

(u
h

)
= −1

h

∂W

∂s
. (2.13)

By integration of the equation (2.13), the velocity u is therefore

u = − 1

K

∂W

∂s
+ C2h. (2.14)

When z = 0, the equation (2.14) gives the velocity on the midsurface

U(s) = −K−1∂W/∂s+C2, so we can obtain C2 = −U(s) +K−1∂W/∂s.

Thus, the velocity u is approximately

u = U − z(∆d2 + ωd1), (2.15)
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where

∆ =
∂U

∂s
−KW, ω =

∂W

∂s
+KU, (2.16)

are the stretching rate and rotation rate of the midsurface, respectively.

The constitutive relations for N1 and M are

N1 = 4ηH∆, (2.17)

M = −1

3
ηH3ω′. (2.18)

There is no constitutive relations for N2, which is small and must be

determined by solving the equilibrium equations.

2.2 Lagrangian description of a thin sheet

It is convenient to express the variables of a thin sheet in a Lagrangian

framework. Let t be the time, and S be the Lagrangian coordinate

along the midsurface at the initial time t = 0. For any variable f(S, t),

its spatial derivative is denoted by a prime,

f ′ =
∂f(S, t)

∂S
, (2.19)

and its time derivative by a dot,

ḟ(S, t) =
∂f(S, t)

∂t
. (2.20)

Let the midsurface of the sheet be X(S, t). The material tangent

T (S, t) is defined by

T (S, t) = X ′(S, t). (2.21)

The norm of T (S, t) measures the amount of stretching of the centerline

with respect to the reference configuration, and is used to define the unit
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tangent t of the centerline as

l(S, t) = |T (S, t)|, (2.22)

t(S, t) =
T (S, t)

l(S, t)
. (2.23)

Then the Lagrangian axial stretching strain rate d is defined by

d(S, t) =
∂l(S, t)

∂t
. (2.24)

In the Lagrangian framework the velocity U is the time derivative

of position:

U(S, t) =
∂X(S, t)

∂t
. (2.25)

A kinematic relation between the stretching strain rate d(S, t) and the

velocity U(S, t) is:

d(S, t) =
∂l(S, t)

∂t
=

1

2l

∂(l2)

∂t
=

1

2l

∂(T 2)

∂t

=
1

l
T · ∂T

∂t
= t(S, t) · ∂U(S, t)

∂S
. (2.26)

To describe the bending of the sheet, an orthonormal triad of vectors

d1(S, t), d2(S, t), d3(S, t) is introduced. The unit tangent vector t is

identified with d1(S, t), d2(S, t) is the unit normal vector, and d3(S, t)

is a unit vector perpendicular to the sheet. The rate of change of the

vectors di are
∂di(S, t)

∂t
= ω(S, t)× di(S, t) (2.27)

where ω is the Darboux vector (angular velocity vector). Similarly, there

is a second Darboux vector with respect to the space derivative:

∂di(S, t)

∂S
= π(S, t)× di(S, t) (2.28)
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The relation between ω and π is known as the Maurer-Cartan identity:

∂ω(S, t)

∂S
=
∂π(S, t)

∂t
− ω(S, t)× π(S, t) (2.29)

The rotational strain rate can be written in terms of the first Darboux

vector ω as

e(S, t) =
∂ω(S, t)

∂S
(2.30)

The vector e describes the rates of rotational deformation by bending

and twisting. For the 2-D sheet, there is no twisting but only bending

around the vector d3, i.e. the axis a3 (always a3 = d3 in this case):

ω(S, t) = ωa3, e(S, t) = ea3 (2.31)

eb(S, t) = e(S, t) =
∂ω(S, t)

∂S
(2.32)

where eb is the bending strain rate.

Also, a simple explicit expression for the angular velocity for a 2-D

sheet can be obtained:

ω(S, t) = t(S, t)× ṫ(S, t) (2.33)

Equation (2.33) involves the time derivative of the unit tangent vec-

tor which can be derived from the permutation of derivatives with re-

spect to t and S:

Ṫ =
∂

∂t

(∂X
∂S

)
=

∂

∂S

(∂X
∂t

)
= U ′. (2.34)

At the same time, according to equation (2.23) we have Ṫ = lṫ + l̇t,

whence the following relation is found:

lṫ+ l̇t = U ′ (2.35)

Expanding the cross product with t, the angular velocity for a 2-D sheet

becomes

ω = t× ṫ =
1

l
t× (lṫ) =

1

l
t× (lṫ+ l̇t) =

1

l
t×U ′ (2.36)
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In the Lagrangian framework, the internal viscous stress in the sheet

can be described by a Rayleigh dissipation potential, Torby (1984). This

potential has three contributions, corresponding to the stretching, bend-

ing and twisting modes of deformation. The utility of the Rayleigh po-

tential D is that the net viscous force can be obtained by differentiation

with respect to the velocity. Thus the resultant of the internal viscous

stress on the midsurface is

P (S, t) = − ∂D(S, t)

∂U(S, t)
. (2.37)

Note that the quantity P is the net resultant per unit length dS in the

Lagrangian configuration. The expression of the dissipation potential in

terms of the above kinematic variables will be derived in the following

chapter for Newtonian fluid.

The forces acting on the sheet are the internal viscous forces, gravity,

and the tractions applied by the outer fluid. Finally, the force balance

per unit length dS for a thin viscous sheet in the Lagrangian description

is

P + glhδρ+ f+
1 + f−1 = 0, (2.38)

where f±1 are the tractions exerted on the surfaces z = ±h/2 by the

external fluid and g is the gravitational acceleration.

2.3 Boundary-integral equation for an im-

mersed fluid sheet

Let V1 and V2 be the volumes occupied by fluids 1 and 2, respectively,

and let C be the interface between them. The general integral represen-
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FLUID SHEET

tations for the flows in fluids 1 and 2 are (Ladyzhenskaya (1963)):

− 1

η1

∫
C

f 1(y)·J(y − x)d`(y)

+

∫
C

u1(y)·K(y − x)·n(y)d`(y) = χ1(x)u1(x), (2.39)

1

η2

∫
C

f 2(y)·J(y − x)d`(y)

−
∫
C

u2(y)·K(y − x)·n(y)d`(y) = χ2(x)u2(x), (2.40)

where J and K are the velocity and stress Green functions for Stokes

flow satisfing the relevant boundary conditions which will be discussed

in more detail in the next chapter. Let χ1(x) = 1, 1/2 or 0 if x is in V1,

right on the contour, or in V2, respectively, and define χ2(x) similarly

with the subscripts 1 and 2 interchanged. The unit normal vector n is

directed out of fluid 2 and into fluid 1.

On the contour C, the velocity is continuous while the modified nor-

mal stress undergoes a jump proportional to the difference of the densi-

ties of the two fluids. Symbolically,

u1 = u2, (2.41)

f 2(y) = f 1(y) + δρ(g·y)n. (2.42)

Now add (2.39) and (2.40) and use the matching condition (2.41) to

obtain

χ1(x)u1(x) + χ2(x)u2(x) =

∫
C

(
f 2

η2

− f 1

η1

)
·J(y − x)d`. (2.43)

Then apply (2.42) to obtain

χ1(x)u1(x) + χ2(x)u2(x)

=
1− γ
η2

∫
C

f 1·J(y − x)d`+
δρ

η2

∫
C

(g·y)n·J(y − x)d`. (2.44)
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Evaluate on the midsurface x = X to obtain

U(X) =
1− γ
η2

∫
C

f 1·J(y−X)d`+
δρ

η2

∫
C

(g·y)n·J(y−X)d`. (2.45)

To simplify the first integral in (2.45), we note that in the limit ε→ 0

the kernel J(y −X) on both the upper and lower surfaces of the sheet

is approximately equal to its value J(y−X) on the sheet’s midsurface.

Ignoring the small regions of size O(h) near the ends of the sheet, we

may write∫
C

f 1·J(y − x)d` ≈
∫
C+

f+·J(y −X)d`+

∫
C−

f−·J(y −X)d`

≈
∫
M

(
f+ + f−

)
·J(Y −X)d`

≈
∫ L

0

[
f+(R) + f−(R)

]
·J(X(R)−X)dR

= −
∫ L

0

[P + lhδρg] ·J(X(R)−X)dR

(2.46)

where R is a dummy Lagrangian variable of integration along the mid-

surface and the thin-sheet force balance (2.38) has been used in the last

step.

To simplify the second integral in (2.45), we convert it to a surface

integral using the divergence theorem and expand the derivative under

the integral sign to obtain∫
C

(g·y)n·J(y −X)d` =

∫
S

g·J(y −X)dA

+

∫
S

(g·y)∇·J(y −X)dA. (2.47)

In the thin-sheet limit ε → 0, the second integral on the right side of

(2.47) is asymptotically small relative to the first, which moreover can
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be approximated as an integral along the midsurface over a distribution

of Stokeslets with density lhg per unit length dR. We therefore obtain∫
C

(g·y)n·J(y −X)d` ≈
∫
M

hg·J(Y −X)d`

≈
∫ L

0

lhg·J(X(R)−X)dR. (2.48)

Substituting (2.46) and (2.48) into (2.45), we obtain a hybrid boundary-

integral/thin-sheet (’BITS’) equation

U(S) =
1

η2

∫ L

0

[γglhδρ+ (γ − 1)P (R)] ·J(X(R)−X(S))dR (2.49)

Now we can nondimensionalize all the equations using the initial

plate thickness H0 as the length scale, H2
0gδρ/η1 as the velocity scale,

and η1/H0gδρ as the time scale. The dimensionless form of the integral

equation (2.49) is

U(S) =
γ − 1

γ

∫ L/H0

0

P (R)·J(X(R)−X(S))dR

+

∫ L/H0

0

l(R)h(R)e2·J(X(R)−X(S))dR (2.50)

It is noted that in the equation (2.50) the first integral vanishes when

the two fluids have the same viscosity, in which case the flow is just

the sum of Stokeslets distributed along the sheet’s midsurface. When

γ > 1, the first integral takes account of the viscous forces acting on

cross-sections of the sheet.

2.4 The discrete viscous thin sheet model

In this section, discrete forms of the smooth equations discussed above

are introduced, using concepts from discrete differential geometry devel-

oped by Audoly et al. (2013).
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X0

T 0
X1

T 1

X2

X i

T i

X i+1

Xn−1

T n−1

Xn

T n

Xn+1

li

Figure 2.2: Discrete representation of the sheet’s centerline as a polygo-

nal curve with n+2 vertices and n+1 edges. Subscripts and superscripts

denote variables that are defined on vertices and edges, respectively.

The first step is to represent the sheet’s midsurface by a collec-

tion of discrete vertices and connecting edges, as shown in Fig. 2.2.

The positions of the (n + 2) vertices are X0(t),X1(t), . . . ,Xn+1(t).

The material tangent T becomes the segments between the vertices

T 0(t),T 1(t), . . . ,T n(t),

T i(t) = X i+1(t)−X i(t). (2.51)

Here and henceforth, subscripts and superscripts denote variables that

are defined on vertices and edges, respectively.

The discrete segment length and unit tangent analogous to equations

(2.22) and (2.23) are

li(t) = |T i(t)|, (2.52)

ti(t) =
T i(t)

li(t)
. (2.53)

The velocities of the vertices are the time derivatives of the positions, or

U i(t) =
∂X i(t)

∂t
. (2.54)

In terms of the discrete variables, the discrete axial stretching strain

rate for the segment T i is

di(t) =
dli(t)

dt
= ti(t) ·

(
U i+1(t)−U i(t)

)
. (2.55)
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Comparing with equation (2.26) in smooth case, we see that di(t) is the

integrated strain rate on the segment T i.

Similarly, the discrete analogue of (2.32) and (2.36)is the following

expression for the discrete bending strain rate on an interior vertex X i

(1 ≤ i ≤ n):

ebi(t) = ωi(t)− ωi−1(t), (2.56)

ωi(t) = ti(t)× U i+1(t)−U i(t)

li(t)
. (2.57)

Also, the discrete bending strain rate ebi is an integrated form of the

smooth bending strain rate eb(S, t). Note that the bending strain rate

on vertex X i involves the vertices X i−1, X i and X i+1. So when the

bending strain rates on the vertices X0 and Xn+1 at the ends are cal-

culated, extra vertices outsides the sheet are necessary. These extra

vertices are called ghost vertices, and are shown in Fig. 2.2. For the

vertex X0 at the left end, we have:

∂X(S)

∂S
=
−3X0 + 4X1 −X2

2∆S
+O(∆S)2

=
X1 −X−1

2∆S
+O(∆S)2. (2.58)

In equation (2.58), the first form is a one-sided difference approximation

and the second form is the usual second-order centered approximation

involving the ghost vertex. Thus, from the equation (2.58), the position

of the ghost vertex at the left end is obtained:

X−1 = 3X0 − 3X1 +X2. (2.59)

By the same method, the velocity on the left-end ghost vertex is

U−1 = 3U 0 − 3U 1 +U 2. (2.60)
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Similar equations hold for the ghost vertex at the sheet’s right end. With

the ghost vertex X−1 and its velocity U−1, the quantities t−1, li−1,ω−1

on the ghost segment T−1 are given as for the interior segments and

then we can get the bending strain rate eb0 on vertex X0 by substituting

ω−1 into the equation (2.56).

Now, other geometrical quantities and the modulus involved in the

dissipation potential will be discretized. Each segment T i carries an

area Ai. This quantity is based on the initial segment length and thick-

ness, and is conserved during a simulation in the Lagrangian framework.

Thus, the thickness of each segment is:

H i(t) =
Ai

li(t)
. (2.61)

The length l̃i on a given interior vertex is necessary later, and is defined

as the average length of adjoining segments:

l̃i(t) =
li−1(t) + li(t)

2
(1 < i < n). (2.62)

The tilde symbol means the variable based on a vertex is calculated from

the average values on adjoining segments. Similarly, the area on a given

vertex X i can be obtained as

Ã0 =
A0

2
, Ãi =

Ai−1 + Ai

2
, Ãn+1 =

An

2
. (2.63)

By analogy with equation (2.37), the discrete net internal viscous

resultant acting on the vertex X i is given by

P i(t) = − ∂D(t)

∂U i(t)
. (2.64)

Here, the net viscous resultant P i is the integral of the quantity P in

the smooth setting.
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For convenience, all the positions and velocities on vertices are rep-

resented in the form of a matrix with the size 1× 3(n+ 2):

X(t) =
(
X0(t),X1(t), . . . ,Xn+1(t)

)
, (2.65)

U(t) =
(
U 0(t),U 1(t), . . . ,Un+1(t)

)
. (2.66)

So the expressions of the strain rates and the angular velocity vector

depending can be rewritten with X and U in matrix form. Moreover,

they are linear with respect to the velocity U , whence

di(t) = Lis(X,U) = U · Lis(X), (2.67)

ebi(t) = Lbi(X,U) = U · Lb
i
(X), (2.68)

ωi(t) =W i(X,U) = U · W i(X). (2.69)

The size of the stretching strain rate matrix Lis(X) is 3(n+ 2)× 1. The

sizes of the bending strain rate matrix Lb
i
(X) and the angular velocity

matrix W i(X) are both 3(n+ 2)× 3.

Since the stretching strain rate di(t) only depends on the velocities

U i and U i+1 according to equation (2.55), the matrix Lis(X) is sparse

and has the form:

Lis(X) =

 0

L̂
i

s(X)

0

 , L̂
i

s(X) = (−ti, ti)T . (2.70)

Here the matrix L̂
i

s(X), with the size 6 × 1, is the non-zero submatrix

in the matrix Lis(X) corresponding to the velocities U i and U i+1.

Similarly, in view of equations (2.56) and (2.57), the matrix Lb
i
(X)
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and W i(X) can be represented in the sparse matrix form

W i(X) =

 0

Ŵ
i
(X)

0

 ,

Ŵ
i
(X) =

1

li



0 −ti[3] ti[2]

ti[3] 0 −ti[1]

−ti[2] ti[1] 0

0 ti[3] −ti[2]

−ti[3] 0 ti[1]

ti[2] −ti[1] 0


, (2.71)

Lb
i
(X) =

 0

L̂
b

i
(X)

0

 =W i(X)−W i−1(X),

L̂
b

i
(X) = Ŵ

i
(X)− Ŵ

i−1
(X). (2.72)

The 6 × 3 non-zero submatrix Ŵ
i
(X) corresponds to the velocities U i

and U i+1. With the quantities on ghost vertices, the angular velocity



32 2.4. THE DISCRETE VISCOUS THIN SHEET MODEL

matrix outside the sheet can be evaluated as:

Ŵ
−1

=
1

l−1



0 −2t−1[3] 2t−1[2]

2t−1[3] 0 −2t−1[1]

−2t−1[2] 2t−1[1] 0

0 3t−1[3] −3t−1[2]

−3t−1[3] 0 3t−1[1]

3t−1[2] −3t−1[1] 0

0 −t−1[3] t−1[2]

t−1[3] 0 −t−1[1]

−t−1[2] t−1[1] 0


,

Ŵ
n+1

=
1

ln+1



0 tn+1[3] −tn+1[2]

−tn+1[3] 0 tn+1[1]

tn+1[2] −tn+1[1] 0

0 −3tn+1[3] 3tn+1[2]

3tn+1[3] 0 −3tn+1[1]

−3tn+1[2] 3tn+1[1] 0

0 2tn+1[3] −2tn+1[2]

−2tn+1[3] 0 2tn+1[1]

2tn+1[2] −2tn+1[1] 0


(2.73)

From the velocity on ghost vertices (2.60), Ŵ
−1

and Ŵ
n+1

are seen to

depend on (U 0,U 1,U 2) and (Un−1,Un,Un+1) respectively. Thus, the

submatrix L̂
b

i
(X) involving three vertices (i−1, i, i+1) has the size 9×3;

the submatrices at the end vertices L̂
b

0
(X) and L̂

b

n+1
(X) with the same

size 9× 3 are one-side representations.

Now, the discrete internal viscous forces are arranged in matrix form

P and then related to the dissipation and velocity matrices according to

equation (2.64):

P =
(
P 0(t),P 1(t), . . . ,P n+1(t)

)
= −∂D(t)

∂U
(2.74)
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Thus, the discrete representation of the BITS equation (2.50) is:

U i =
γ − 1

γ

n+1∑
j=0

(P j · J ij) +
n+1∑
j=0

( ˜(lH)je2 · J ij
)

=
γ − 1

γ

n+1∑
j=0

(P j · J ij) +
n+1∑
j=0

(Ãje2 · J ij) (2.75)

where the Green function J ij = J(Xj −X i). Rewriting the discrete

integral equation (2.75) in matrix form and substituting the net internal

force (2.74), we obtain

U · δ
i
− γ − 1

γ
P · J i = A · J

i
(2.76)

where, δ
i

= (0, 0, . . . , I, . . . , 0)T , J
i

= (J i1,J i2, . . . ,J i(n+1))
T and A =

(Ã1e2, Ã2e2, . . . , Ãn+1e2).

Equation (2.76) is based on the vertex X i. Expanding it to all

vertices yields the final matrix equation

U − γ − 1

γ
P · J = A · J (2.77)

where J = (J
1
, J

2
, . . . , J

n+1
). By solving the matrix equation (2.77),

the velocities on all vertices can be obtained.





Chapter 3

Subduction of a Newtonian

sheet

In this chapter we study the subduction of a thin sheet with Newtonian

rheology, as shown in Fig. 3.1. The sheet has viscosity η2 and density

ρ2, and sinks freely into a horizontally infinite layer of fluid with viscos-

ity η1 ≡ η2/γ and density ρ1 ≡ ρ2 − δρ. The flow domain is bounded

above by an impermeable free-slip (zero shear stress) surface x2 = 0,

and extends infinitely in the e2-direction. The model domain is two-

dimensional, i.e. the sheet extends infinitely in the direction normal to

the plane of the figure. The coordinates parallel to and normal to the

sheet’s midsurface are s and z, respectively. In Lagrangian description,

the coordinate parallel to the midsurface can be presented as s(S, t) and

there is a relationship s′(S, t) = l(S, t). The distance from the sheet

surface to the free-slip surface is d, forming a ‘lubrication layer’. Ac-

cording to a standard result from lubrication theory, normal stresses

greatly exceed shear stresses within the lubrication layer. The plate is

thus free to move horizontally, but its sinking is impeded by a strong

upward directed normal stress whose value throughout the plates inte-

35
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3.1. BENDING AND STRETCHING DISSIPATION POTENTIALS

OF A NEWTONIAN SHEET

rior (away from the ends of the lubrication layer) is Hgδr (Ribe, 2010).

The lubrication layer can therefore be regarded simply as a mechanism

for maintaining the plate in a state of perfect local isostatic equilib-

rium while allowing it to move freely in response to the pull of a freely

deforming slab.

impermeable free-slip surface e1

e2

d

H0 η2, ρ2 midsurface

S = 0

S = L

d2

d1

U

η1, ρ1

viscosity ratio:γ = η2/η1

Figure 3.1: A thin sheet of viscous fluid immersed in a second fluid with

a different viscosity.

3.1 Bending and stretching dissipation po-

tentials of a Newtonian sheet

In the section 2.1, the essential thin-sheet theory has been presented.

The velocity on the sheet can expressed by the velocity on the midsur-

face:

u = −z∂W
∂s

+ Uh. (3.1)

where h = 1 − zK. The remaining non-zero component of the stress

tensor is defined as

σss =
4η2

h

(
− z∂

2W

∂s2
+ h

∂U

∂s
−KW

)
=

4η2

h
(∆− z∂ω

∂s
), (3.2)

where ∆ is the stretching rate, and ∂ω
∂s

is the bending rate.
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The (rate of) dissipation potential per unit length of the sheet is

φ(s) =
1

2

∫ H/2

H/2

essσssdz ≈
1

2

[
4η2H∆2 +

η2H
3

3
(K∆− ∂ω/∂s)2

]
. (3.3)

The first term in equation (3.3) is the stretching dissipation potential

and the second term is the bending dissipation potential:

φs(s) =
1

2
· 4η2H∆2, (3.4)

φb(s) =
1

2

η2H
3

3
(K∆− ∂ω/∂s)2 =

1

2

η2H
3

3
K̇2. (3.5)

∂ω/∂s − K∆ is the curling rate on the midsurface, defined as the the

rate of change of the midsurface curvature K̇. The bending dissipation

potential (3.5) suggests that the curling rate is a direct measure of the

internal stresses that resist the bending of the sheet.

By analog to the theory of elasticity, the stretching dissipation po-

tential can be written in the form φs = D∆2/2, where the stretching

modulus D is

D = 4η2H. (3.6)

Similarly, the bending dissipation potential can be defined as φb =

B(K̇)2/2. Thus, the bending modulus B is

B =
η2H

3

3
. (3.7)

Now we can transform the dissipation potential expression into the

Lagrangian description, whereupon the stretching rate ∆ becomes d(S, t)

and the bending rate K̇ becomes eb(S, t). The Rayleigh dissipation
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potential of the whole sheet is

D(t) = Ds(t) +Db(t), (3.8)

Ds(t) =

∫ L

0

D(S, t)

2l(S, t)

(
d(S, t)

)2
dS, (3.9)

Db(t) =

∫ L

0

B(S, t)

2l(S, t)

(
eb(S, t)

)2
dS. (3.10)

Here D(S, t) and B(S, t) are the Lagrangian stretching and bending

moduli:

D(S, t) = 4η2H(S, t), B(S, t) = 4η2I(S, t), (3.11)

where I(S, t) =
(
H(S, t)

)3
/12 is the moment of inertia about an axis in

the midsurface and in the d3 direction.

3.2 Numerical implementation

Based on the discrete geometrical quantities defined in 2.4, the discrete

stretching and bending modulus Di(t) and Bi(t) are respectively:

Di(t) = 4ηi2(t)H i(t)/li, (3.12)

Bi(t) = 4
˜(η2I

l

)
i
(t). (3.13)

In (3.13)
(̃
η2I
l

)
i

is defined on a vertex as the average of the ones on

adjoining segments:

˜(η2I

l

)
0

=
η0

2I
0

l0
,

˜(η2I

l

)
i

=
1

2

(ηi−1
2 I i−1

li−1
+
ηi2I

i

li

)
,˜(η2I

l

)
n+1

=
ηn2 I

n

ln
, (3.14)

I i =
(H i)3

12
, (3.15)
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where I i is the discrete moment of inertia. The dissipation potential can

therefore be discretized as:

Ds(t) =
1

2

∑
0≤i≤n

Di(t)
(
di(t)

)2
(3.16)

Db(t) =
1

2

∑
1≤i≤n

Bi(t)
(
ebi(t)

)2
(3.17)

The dissipation potential is a quadratic function of the velocity U .

It can therefore be represented by a symmetric matrix

D(t) =
1

2
U · D · U, (3.18)

D = D
s

+D
b
. (3.19)

Explicit expressions for these contributions can be found by substituting

the matrix representations (2.67)-(2.72) into the expressions (3.16) and

(3.17) for the discrete dissipation potential:

D
s

=
∑

0≤i≤n

Di
s

=
∑

0≤i≤n

Di(t)Lis ⊗ Lis,

Db =
∑

1≤i≤n

Db
i

=
∑

1≤i≤n

Bi(t)Lbi ·
(
Lb
i

)T
, (3.20)

Di
s

= Di(t)

0 0 0

0 D̂
i

s
0

0 0 0

 , Db
i

= Bi(t)

0 0 0

0 D̂
b

i
0

0 0 0

 , (3.21)

D̂
i

s
= L̂

i

s ⊗ L̂
i

s, D̂
b

i
= L̂

b

i
·
(
L̂
b

i

)T
. (3.22)

Since the potential contributions are in the sum of these sparse matrices

Di
s

and Db
i
on each vertex or segment, the discrete stretching and bending

potential matrices D
s

and Db are both band-diagonal. According to

equations (2.70) and (3.22), the sparse matrix Di
s

has a 6 × 6 non-zero
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submatrix corresponding to the velocities U i and U i+1. By contrast,

the bending potential Db
i

has a 9× 9 non-zero submatrix corresponding

to velocities at X i−1,X i,X i+1. The band structure of the potential

matrices is shown in Fig. 3.2.

According to the equations (2.37) and (3.18), the matrix form of the

viscous force P can be simplified to

P = −∂D(t)

∂U
= −U · D (3.23)

Substuting the equation (3.23) into the discrete boundary integral thin

sheet equation (2.77), we obtain the matrix equation for a Newtonian

sheet:

U · (I +
γ − 1

γ
D · J) = A · J (3.24)

3.3 The Green’s function for sheet sub-

duction

For the geometry of Fig. 3.1, the free-slip surface (mirror symmetry)

condition at x2 = 0 can be automatically satisfied by adding to the

infinite-fluid Green’s function the corresponding Green’s function for the

image point located above the free surface. The resulting symmetrized

form of J no longer has a logarithmic singularity at r →∞, indicating

that the presence of the boundary has resolved Stokes’s paradox. The

Green’s function J ij = J(Xj−X i) that satisfies the free-slip boundary

conditions is

J(Xj −X i) = Jαβ(Xj −X i)

= J
(0)
αβ (Xj −X i) + (−1)β+1J

(0)
αβ (Xj +X i), (3.25)

J
(0)
αβ (r) =

1

4π

(
− δαβ ln r +

rαrβ
r2

)
(3.26)
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where X i is the position of the point force, −X i is the position of the

image point force, r = |r|, and J
(0)
αβ is the Green’s function for an infinite

fluid.

In the discrete method, the value of the Green’s function on the ver-

tex is taken to be the average one near the node. The singular character

of (3.25) when i = j makes the equation (3.24) difficult to evaluate nu-

merically. So to get the average Green’s function near the singular point

X i, the integral of the function J(X−X i) is calculated near the vertex

X i in the range [X i−1,X i+1], and then the average value is obtained:

J(X i −X i) =

∫Xi+1

Xi−1
J(X −X i)dX

(li−1 + li)
. (3.27)

The integral is calculated using Gaussian quadrature, which avoids the

singular point if the order of the quadrature is even.

An alternative method for handling the singularity is by using the

regularized Stokeslet of Cortez (2001). Whereas the normal Stokeslet

represents the flow due to a true point force, the regularized Stokeslet

corresponds to the flow due to a force distributed over the interior of a

small circle of radius ε according to

f(x− x′) =
3ε3

2πR5
f 0 (3.28)

where R =
√
r2 + ε2. A simple calculation shows that total (integrated

over all space) magnitude of the force is f 0.

The explicit form of J
(0)
αβ (r) is given by eqn. (10) of Cortez (2001),

and is

J
(0)
αβ (r) =

1

4π

[
−δαβ ln(R + ε) +

R + 2ε

R(R + ε)

(
εδαβ +

rαrβ
R + ε

)]
(3.29)

Inspection shows that (3.29) reduces to (3.26) in the limit ε → 0. The

regularized Green’s function that satisfies the free-slip boundary condi-

tions on x2 = 0 is obtained by substituting (3.29) into (3.25).
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3.4 Numerical solutions and analysis

First it is necessary to validate our boundary-integral/thin-sheet method

(BITS) by comparing to the results of full boundary element method

(BEM) calculations. The BEM code that we use is that of Ribe (2010).

As a first test case, we consider a simple vertical sheet whose geometry

is shown by the solid line in Fig. 3.3.

impermeable free-slip surface e1

e2
d

Figure 3.3: Geometry of the vertical (solid line) and horizontal (dashed

line) sheets used to test the numerical BITS code.

3.4.1 Vertical sheet

By symmetry, a 2-D vertical sheet has only a single (vertical) component

of velocity U(s). As a test case, we use a sheet of length L = 20H0 whose
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Figure 3.4: Velocity solutions for a vertical sheet at different viscosity

ratios γ (BITS: solid line BEM: dashed line) with a length L = 20H0

and a distance d = 10H0 below the free surface
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upper extremity is a distance d = 10H0 below the free surface (Fig. 3.3).

Fig. 3.4 shows U(s) predicted by BITS for different viscosity ratios

γ (solid lines) together with full BEM solutions (dashed lines). The

agreement is reasonable, with errors up to 14%. In judging these results,

it is important to remember that BITS is only accurate to O(H0/L),

which is 0.05 in our test case. In each of the solutions for γ ≤ 102, the

slope changes sign somewhere on the sheet, indicating that the upper

portion is in extension (U ′(S) > 0) and the lower portion in compression

(U ′(S) < 0). Finally, for the largest viscosity ratio γ = 10000, the sheet

behaves rigidly.

The BITS results in Fig. 3.4 were obtained using Gaussian quadra-

ture to avoid the singular point. We now compare them with results

obtained using regularized Stokeslets of different radii ε (Fig. 3.5). It is

clear the that predictions converge to the Gaussian quadrature result as

ε→ 0.

Fig. 3.6 shows the effect of discretization number on the velocities

of the vertical sheet. The geometry of the sheet is as shown in Fig. 3.3,

and the viscosity contrast is γ = 100. Fig. 3.6a shows the results of

the integral average method, and Fig. 3.6b shows the predictions of the

regularized Stokeslet method. Both methods show good convergence,

and δS = 0.02H0 appears to be a reasonable choice.

3.4.2 Horizontal sheet

We now turn to the case of a horizontal sheet, the geometry of which is

shown by the dashed line in Fig. 3.3. Fig. 3.7 shows the velocity vectors

along the sheet for γ = 10 (Fig. 3.7(a)) and γ = 105 (Fig. 3.7(b)). In

Fig. 3.7(a) the deformation is dominated by bending, and stretching is

minor. In Fig. 3.7(b), the sheet behaves rigidly on account of the very

large viscosity ratio.
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Figure 3.5: Vertical velocity v/(H2
0gδρ/η1) predicted by BITS for the

vertical sheet shown in Fig. 3.3 at γ = 1 and γ = 100, using the

Gaussian quadrature average method and regularized Stokeslets with

different values of ε.
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Figure 3.6: Vertical velocities of a vertical sheet with L = 20H0, d =

10H0, γ = 100 and different discretization numbers. (a) Predictions

using the integral average method. (b) predictions using the regularized

Stokeslet method.
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Figure 3.7: Velocity fields predicted by BITS for a sinking horizontal

sheet with two different viscosity ratios γ.
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Fig. 3.8 compares the vertical (e2-direction) velocities of the sinking

sheet predicted by the BITS (blue) and BEM (red) models, for four

different viscosity ratios. Note that the velocities predicted by BITS are

on the sheet’s midsurface, whereas those predicted by BEM are on both

the upper and lower surfaces. The BITS predictions agree well with

those of BEM, the errors being comparable to those already seen for the

vertical sheet. The errors are largest near the ends of the sheet, which

is expected because the BITS model assumptions break down near the

ends.

All the calculations above were for a horizontal sheet far away from

the free surface (d = 20H0). When the distance is small (d < H0),

greater resolution is required for accurate solutions. This is evident in

Fig. 3.9 (L = 20H0, γ = 10000) and Fig. 3.10 (L = 40H0, γ = 10000).

From Fig. 3.9(b), it is clear that the results are not reliable when n is

small, especially for n = 100. But Fig. 3.9 and Fig. 3.10 show that

the results converge with increasing resolution and that δS = 0.02H0

is generally good enough for the BITS calculations. Moreover, for the

horizontal sheet, the regularized Stokeslet is no longer compatible with

the discrete method, in which the Green’s function on the vertex is

considered as the average value around the vertex. The Green’s function

value at the quasi-singular point changes with different radius ε of the

regularized Stokeslet, so it is not suitable to be used as the average value

nearby which is necessary in the discrete approach. That means the

average Green’s function varies at singular point with the radius ε, and

the numerical solution failed to converge as ε decreased. Accordingly,

the Gaussian quadrature average method will be used in all the following

calculations.
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Figure 3.8: The sinking velocity predicted by the BITS and BEM models

for a horizontal sheet whose geometry is shown in Fig. 3.3. Results are

shown for four different viscosity ratios γ.
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Figure 3.9: Sinking velocities of a horizontal sheet with L = 20H0 and

γ = 10000 as a function of discretization number, for two values of the

lubrication layer thickness d.
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Figure 3.10: Sinking velocities of a horizontal sheet with L = 40H0 and

γ = 10000 as a function of discretization number, for two values of the

lubrication layer thickness d.
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3.4.3 Subduction of a bent sheet

Now that the BITS method is validated, we apply it to a simple model

of geophysical subduction, in which one end of the sheet is pushed down

into the ambient fluid with the slab length ls and the system is allowed

to evolve freely (Fig. 3.1). Fig. 3.11 shows the instantaneous velocity

field of a sheet with L = 40H0 and d = H0 for different initial bending

angles θ. The two subfigures are calculated with different discretization

numbers. It appears that δS = 0.02H0 is sufficient for our calculations,

so this resolution will be used in all the cases that follow.

The effect of varying the thickness d of the lubrication layer is shown

in Fig. 3.12. Comparing this with Fig. 3.11(a), we see that the smaller

distance d decreases the sheet’s subduction velocity. Moreover, when

the distance d is very small, a finer discretization is required to keep the

calculation accurate. Fig. 3.13 shows the instantaneous velocity field of

a longer (L = 60H0) sheet with all other parameters the same as before.

Comparing these velocity fields with those for L = 40H0, we see that the

bending moment at the ends is nearly independent of the sheet length.

Note that weak bending occurs at the left end of the sheet even though

that end has not been pushed down into the ambient fluid.

The intensity of the bending can be quantified by the curling rate K̇.

In the discrete approach, the curling rate K̇ transforms to the bending

rate eb in Lagrangian description. The curling rate (bending rate) ebi
on the midsurface is plotted in Fig. 3.14 for a sheet with L = 40H0,

d = 0.5H0, and γ = 100. This figure shows that bending is confined to

two boundary layers near the ends of the sheet, separated by a broad

central region where no bending occurs. To interpret the above results

physically, we need to identify the length scale that characterizes the

principal bending region at the right end of the sheet. Referring to

Fig. 3.14, we define the bending length lb as the distance from the end
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Figure 3.11: Instantaneous velocity field of a sheet with L = 40H0,

γ = 1000 and d = H0, for two different resolutions.
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Figure 3.12: Instantaneous velocity field of a sheet with L = 40H0,

γ = 1000, and δS = 0.02H0 for two values of the lubrication layer

thickness.
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Figure 3.13: Instantaneous velocity field of a sheet with L = 60H0,

γ = 1000, and δS = 0.02H0 for two values of the lubrication layer

thickness.
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of the slab to the point seaward of the trench where the curling rate

vanishes. Next, consider the balance of forces acting on the bending

portion of the sheet, i.e. the portion of length lb. Let V be the vertical

sinking speed of the leading end of the slab. The traction (normal plus

shear) applied to the bending portion by the outer fluid ∼ η1V/lb, which

when integrated over the length of the bending portion (= lb) gives

a total force Fext ∼ η1V . The internal traction that resists bending

∼ η2H
3V/l4b (Ribe, 2001), which corresponds to a total force Fint ∼

η2H
3V/l3b . Finally, because the negative buoyancy of the horizontal

part of the sheet is compensated by normal stresses in the lubrication

layer, the effective buoyancy force Fb ∼ Hlgδρ is due entirely to the slab

of length l. In the limit of negligible bending resistance, the balance

Fb ∼ Fext implies that V scales as the Stokes sinking speed

V ∼ Hlgδρ

η1

= VStokes. (3.30)

Moreover, the ratio of the internal and external viscous forces is

Fint

Fext

∼ γ
(H
lb

)3

= St. (3.31)

The quantity St is a dimensionless measure of the ‘stiffness’ of a sub-

ducting sheet (Ribe, 2010), and determines whether the sinking speed is

controlled by the mantle viscosity (St ≤ 1) or by the viscosity of the sheet

itself (St� 1). Fig. 3.15 shows a plot of the dimensionless sinking speed

V/VStokes versus St for the results obtained with L = 60H0, d = 0.2H0

and different values of γ and ls/H0. For each value of θ0, the numerical

predictions of V collapse onto a single master curve with two limits: a

‘Stokes’ limit St < 0.1, and a ‘flexural’ limit St > 3. In the Stokes limit,

the sinking speed is controlled entirely by the viscosity η1 of the outer

fluid, whereas it is controlled by the inner viscosity η2 in the flexural

limit.
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Figure 3.14: The curling rate of a bent sheet with L = 40H0, γ = 100

and d = 0.5H0

The solutions discussed above were all instantaneous solutions valid

at a moment when the sheet had a given geometry. We now turn to time-

dependent simulations. The evolution of the sheet’s shape is governed

by the two differential equations For given right-hand sides of the above

equations, the velocity is advanced in time using a simple Euler scheme,

viz.,

Xnew = X +U · dt, (3.32)

and the thickness of the sheet is calculated in the discrete approach (see

(2.61)). Repeating this procedure, we obtain the time evolution of the

sheet’s shape. Fig. 3.16 shows subduction of a sheet with L = 40H0

and γ = 1000 from t = 0 to t = 35τ0, where τ0 = η1/gδρH0 is the time

scale used to nondimensionalize the equations. And Fig. 3.15 shows

subduction of a sheet with L = 40H0 and γ = 100 from t = 0 to

t = 35τ0. The weak subduction of the trailing edge of the sheet has
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Figure 3.15: Dimensionless sinking speed V/VStokes of the slab as a func-

tion of the sheet stiffness St, for three different values of the dip θ0.

Solutions with L = 60H0 and d = 0.2H0 are shown for different values

of γ and ls/H0. Blue: ls/H0 = 4, red: ls/H0 = 6, green: ls/H0 = 8.
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been suppressed by straightening out the end of the sheet after each

time step, using the algorithm of Li and Ribe (2012), appendix B.
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Figure 3.16: Shape (a) and thickness (b) of a sheet with L = 40H0 ,

d = 0.2H0, θ0 = 30◦ and γ = 1000 at different times from 0 to 35τ0.
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Figure 3.17: Shape (a) and thickness (b) of a sheet with L = 40H0 ,

d = 0.2H0, θ0 = 30◦ and γ = 100 at different times from 0 to 35τ0.





Chapter 4

Parallel code for three

dimensional multiphase flow

In this chapter, we briefly present the new parallel solver BLUE for

fully three-dimensional multiphase flows developed by Shin, Chergui,

and Juric (2014). The solver runs on a variety of computer architectures

from laptops to supercomputers and on 131072 threads or more (limited

only by the availability of threads). The code is wholly written by the

authors in Fortran 2003 and uses a domain decomposition strategy for

parallelization with MPI.

4.1 Mathematical formulation

Here, we will describe the basic solution procedure for the Navier-Stokes

equations with a brief explanation of the interface method. The govern-

ing equations for transport of an incompressible two-phase flow can be

65
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expressed by a single field formulation as follows:

∇ · u = 0, (4.1)

ρ
(∂u
∂t

+ u · ∇u
)

= −∇P+ρg +∇ · µ(∇u+∇uT ) + F . (4.2)

where u is the velocity, P is the pressure, g is the gravitational accel-

eration, and F is the local surface tension force at the interface. F can

be described by the hybrid formulation

F = σκH∇I, (4.3)

where σ is the surface tension coefficient, I is the indicator function

which is zero in one phase and unity in the other phase. Numerically I

is resolved with a sharp but smooth transition across 3 to 4 grid cells.

κH is twice the mean interface curvature field calculated on the Eulerian

grid using:

κH =
F L ·G
σG ·G

, (4.4)

where

F L =

∫
Γ(t)

σκfnfδf (x− xf )ds, (4.5)

G =

∫
Γ(t)

nfδf (x− xf )ds. (4.6)

Here xf is a parametrization of the interface Γ(t), and δ(t) is a Dirac

distribution that is non-zero only when x = xf . nf is the unit normal

vector to the interface and ds is the length of the interface element.

κf is again twice the mean interface curvature, but obtained from the

Lagrangian interface structure. The geometric information, unit normal

nf and length of the interface element ds in G, F are computed directly

from the Lagrangian interface and then distributed onto an Eulerian grid

using the discrete delta function.
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The indicator function I is essentially a numerical Heaviside function

and is generated using a vector distance function computed directly from

the tracked interface. I is found by solving the Poisson equation

∇2I = ∇ ·
∫

Γ(t)

nfδ(x− xf )ds. (4.7)

The details following Peskin’s (Peskin, 1977) well known immersed

boundary approach and a description of our procedure for calculating

the force F and constructing the function field G and indicator function

I can be found in Shin and Juric (2002); Shin et al. (2005); Shin and

Juric (2007); Shin (2007); Shin and Juric (2009a,b); Shin et al. (2011).

The Lagrangian elements of the interface are advected by integrating

dxf
dt

= V (4.8)

with a second order Runge-Kutta method where the interface velocity

V is interpolated from the Eulerian velocity. Material properties such as

density or viscosity are defined in the entire domain with the indicator

function as I(x, t). For example:

b(x, t) = b1 + (b2 − b1)I(x, t), (4.9)

where the subscripts 1 and 2 stand for the respective phases.

4.2 Numerical method

This section is organized as follows. At first, we describe the level con-

tour interface reconstruction method (LCRM) dealing with the interface

in multiphase flows in 4.2.1. Then, we show how to realise the level con-

tour interface reconstruction method (LCRM) for parallel processing in

4.2.2. Finally in 4.2.3, we briefly describe the the complete solution

procedure in this parallel code for three dimensional multiphase flows.
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4.2.1 Interface treatment

Due to the complex dynamics of interface motion, it is extremely dif-

ficult to formulate an accurate and general numerical scheme for mul-

tiphase flow simulations, especially in three-dimensions. Among the

variety of numerical techniques and grid structures for handling flows in

the presence of interfaces are those which use a stationary underlying

Eulerian/Cartesian grid for the primary velocity-pressure variables with

an additional technique for interface treatment. The latter can be either

on the same Eulerian grid (thus capturing the interface) or based on a

supplemental overlying moving grid (which tracks the interface), and

both have become popular due to their relative simplicity and efficiency.

Variants and hybrids of these basic Front Tracking or Front Capturing

methods are widely used in multiphase applications. The basic idea in

Front Tracking is that one tracks the motion of the interface explicitly

using a separate discretized representation of the interface which moves

with it. In Front Capturing one uses an additional field variable such as

a volume function (VOF) or distance function (Level Set) to follow the

interface motion implicitly.

Nowadays, hybrid methods which retain only the desirable charac-

teristics of both Front Tracking and Front Capturing approaches have

become popular (Sussman and Puckett, 2000; Coyajee and Boersma,

2009; Enright et al., 2002; Aulisa et al., 2003). We shall use one such hy-

brid method, the Level Contour Reconstruction Method (LCRM). The

LCRM retains the usual features of classic Front Tracking: to represent

the interface with a triangular surface element mesh, to calculate the

surface tension and advect it. A major advantage of the LCRM, com-

pared with standard Front Tracking, is that all the interfacial elements

are implicitly instead of logically connected. The LCRM periodically

reconstructs the interface elements using a computed distance function
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field, a field such as the one used by the Level Set method, thus allowing

an automatic treatment of interface element restructuring and topology

changes without the need for logical connectivity between interface el-

ements as was necessary in the original Front Tracking method. It is

important to note that this distance function field plays no role what-

soever in the actual advection of the interface as it centrally does in the

original Level Set method. We never need to solve an advection equa-

tion for the distance function. The LCRM thereby avoids the need for

special corrective procedures to conserve mass such as Level Set reini-

tialization. An additional important benefit of the LCRM approach is

that all operations are local to an individual triangular element inde-

pendent of other elements. This principle of locality renders the LCRM

particularly attractive for parallel computing since it carries over to dis-

tributed processing on local subdomains and thus its implementation on

distributed processors is rather straightforward.

Here we briefly describe the basic concept behind the LCRM and

recent major improvements which include the use of high order inter-

polation, a vector valued distance function and tetra-marching in the

interface reconstruction procedure. A more detailed description of these

new features can be found in S. Shin and D. Juric(Shin and Juric, 2002;

Shin et al., 2005; Shin and Juric, 2007; Shin, 2007; Shin and Juric,

2009a,b; Shin et al., 2011). The LCRM reconstructs the Lagrangian

triangular interface elements by drawing constant contour surfaces of a

distance function field as in Fig. 4.1 (shown for two-dimensions). Lines

of constant contour can be drawn on the level contour field of the scalar

distance function φ, at each reconstruction cell. These lines in each

reconstruction cell share common end points and thus form implicitly

connected surface elements across neighboring Eulerian grid cells. In

the three dimensional case, a rectangular grid cell (Fig. 4.2(a)) will be

divided into five tetrahedral reconstruction cells as in Fig. 4.2(b). For
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Phase 1 (φ > 0)

Phase 2 (φ < 0)

φf = 0.5

Ii,j

Ii,j+1

Ii+1,j

Ii+1,j+1

φf = 0.5

Figure 4.1: Level contour reconstruction in a 2D calculation. Interfaces

are reconstructed by linear approximation of the φf = 0.5 contour in

each grid cell. The two endpoints of this contour line form the endpoints

of one new interface element. Adjacent elements are physically linked

but not logically connected.

each tetrahedral reconstruction cell, the interface reconstruction will be

performed on cell faces similar to the 2D procedure above. After locat-

ing contour lines on the four faces of a tetrahedral reconstruction cell,

the edges of contour faces can be obtained. Using the reconstructed

edge lines, we can generate triangular elements as in Fig. 4.2(c). Since

identical reconstructed edge lines are shared by neighboring reconstruc-

tion cells, all interface elements are implicitly connected without any

logical connectivity. In order to ensure continuous reconstructed faces

for the entire simulation domain, a tetra-marching orientation for the

reconstructing tetrahedral cells is used as in Fig. 4.2(d).
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Figure 4.2: Procedure for LCRM in three-dimensions: (a) Eulerian grid

structure (b) grid subdivision for tetrahedral reconstruction cell (c) in-

terface element reconstruction in a tetrahedral cell (d) tetra-marching

procedure for continuous interface interconnection.

4.2.2 Extended interface for parallel processing

In order to take advantage of the increased speed of modern high per-

formance computing resources, numerical methods for multiphase flows,

the treatment of interfaces and Navier-Stokes solvers must be adapted

to multi-thread distributed processing and memory architecture.

Domain decomposition whereby the physical simulation domain (Fig.

4.3(a)) is subdivided into subdomains (Fig. 4.3(b)) each associated with
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a dedicated processing thread is relatively straightforward to implement

for Eulerian/Cartesian meshes. Field variable data exchange takes place

across neighboring subdomains via a boundary buffer zone. But with

the existence of a moving Lagrangian interface grid as in the LCRM we

need to apply an extended interface concept which uses additional buffer

cells to store and exchange interface data necessary to the LCRM. As

illustrated in Fig. 4.4, a subdomain is defined with two types of buffer

zone: (1) a buffer zone for exchange of boundary data as before and

(2) a new buffer zone for an extended interface which contains interface

elements that extend beyond the physical subdomain boundary. There

is an important difference in the way that some of the data is handled in

these two buffer zones. In the boundary buffer zone, data is exchanged to

adjacent subdomains in order to provide necessary boundary information

overlap for the field variable solutions.

In the extended interface buffer zone, each subdomain independently

uses the Lagrangian interface information that is stored locally in its

subdomain/buffer to perform interface operations and periodically ap-

ply the interface reconstruction procedure. The key advantage of the

extended interface buffer is that interface operations are kept local to a

subdomain and its buffer. Thus each subdomain/buffer handles track-

ing and operations on the Lagrangian interface elements (such as surface

tension calculation) independently of the other subdomains. Since it is

the boundary condition buffer that provides necessary field data such as

the velocity field necessary for the Lagrangian element advection in the

extended interface buffer and likewise for adjacent subdomain/buffers,

the interface elements in the overlapping interface buffer zones will fol-

low the same path independently. (This feature, which eases the task of

parallelization greatly, can be viewed as having been inherited from the

original LCRM philosophy of keeping operations local to an interface

element or in this case local to a subdomain.) Finally since the inter-
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(a)

(b)

commu-
nication

commu-
nication

communicationcommunication

Figure 4.3: Domain decomposition concept for distributed processing.
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face must be reconstructed periodically, distance function values are also

communicated in the extended interface buffer to adjacent subdomains

in order to ensure interface connectivity across subdomains.

4.2.3 Solution procedure in parallel computing

The code structure consists essentially of two main modules: (1) a mod-

ule for solution of the incompressible Navier-Stokes equations and (2)

a module for the interface solution including tracking the phase front,

initialization and reconstruction of the interface when necessary. The

parallelization of the code is based on an algebraic domain decompo-

sition technique. The code is written in Fortran 2003 and communi-

cations are managed by data exchange across adjacent subdomains via

the Message Passing Interface (MPI) protocol. The Navier-Stokes solver

computes the primary variables of velocity u and pressure P on a fixed

and uniform Eulerian mesh by means of Chorin’s projection method

(Chorin, 1968). Depending on the physical problem, numerical stability

requirements and user preferences, the user has a choice of explicit or

implicit time integration to either first or second-order. For the spa-

tial discretization we use the well-known staggered mesh, MAC method

(Harlow et al., 1965). The pressure and the distance function are lo-

cated at cell centers while the components of velocity are located at cell

faces. All spatial derivatives are approximated by standard second-order

centered differences.

Another important issue in parallel computing for incompressible

flow, in addition to the interface treatment, is solving the elliptic Pois-

son equation for the pressure. The projection method leads to a Pois-

son problem for the pressure which, for two-phase discontinuous density

flows, is non-separable:

∇ ·
(∇P
ρ

)
= S, (4.10)
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Figure 4.4: Extended interface concept using buffer zone for distributed

processing with the LCRM.
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where the density field ρ is discontinuous since ρ = ρ1 in phase 1 and

ρ = ρ2 in phase 2. The source term S is a function of the non-projected

velocities and interfacial tension.

For single phase flow, the Poisson problem is separable and the con-

ventional multigrid approach (Briggs et al., 2000), especially for dis-

tributed computing, has become quite attractive due to its near ideal

efficiency compared with other iterative gradient based methods. How-

ever, in two-phase flows with large density differences between fluids, the

conventional multigrid technique becomes less efficient and often fails to

converge. Thus one of the most challenging issues, besides modeling the

dynamics of the interface between the two fluid phases, is the efficient

solution of the pressure equation for high density ratio.

In the BLUE code a modified parallel 3D V-cycle multigrid solver

based on the work of Kwak and Lee (Kwak and Lee, 2003) has been

developed. The solver incorporates a parallel multigrid procedure whose

restriction and prolongation operators are not associated with each other,

contrary to common usage. This method has been successfully imple-

mented to solve 3D elliptic equations where coefficients can be highly

discontinuous. The procedure can handle large density discontinuities

up to density ratios of O(105). The key features of the modified multigrid

implementation can be summarized as follows:

1) Cell-centered second-order finite difference approximation of equa-

tion 4.10.

2) Harmonic approximation of the discontinuous coefficient 1/ρ.

3) Linear interpolation of the residual during the restriction process.

4) Cell flux conservation of the error on coarse grids during the pro-

longation process.

5) Parallel Red-Black SOR technique to relax the linear systems on

fine grids.

6) Solution of the error using a parallel GMRES algorithm on the
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coarsest grid.

In the following chapter we will investigate viscous folding in di-

verging microchannels with the parallel solver BLUE for fully three-

dimensional two-phase flows.





Chapter 5

Simulation of viscous folding

in diverging microchannels

In this chapter we use the parallel multi-phase flow code BLUE to per-

form a numerical study of viscous folding in diverging microchannels.

Due to the high viscosity contrast and very low Reynolds numbers in-

volved, direct numerical simulations are very challenging and to our

knowledge these are the first three-dimensional direct parallel numerical

simulations of viscous threads in micro channels.

Viscous folding is observed in daily life, for example, when we pour

honey, molten chocolate, or shampoo onto a flat surface. It has been

extensively studied since the pioneering work of Taylor (1969), who rec-

ognized that a longitudinal compressive stress is a necessary condition for

the folding instability. In recent years, the folding of viscous threads in

diverging microchannels has been systematically investigated by Cubaud

and Mason (2006a). Their purpose was to devise a strategy to enhance

mixing by using viscous folding to increase the specific surface area of

an interface between two fluids. Motivated by their work, we perform

numerical simulations of microfluidic viscous folding as a function of the

79
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flow rate ratio and the viscosity ratio between the two fluids, as well as

the divergence angle of the channel.

Liquid L1

Q1

Q2

2

Q2

2

Liquid L2

w

Lf α/2

z

y

x

Figure 5.1: The calculation domain of the microchannel. The width of

the inlets and the microchannel is w = 0.25 mm and the length of the

focusing microchannel is Lf .

Fig. 5.1 shows the computational domain, which is similar to that

used by Cubaud and Mason (Cubaud and Mason, 2006a). The geometry

is composed of two subdomains: the flow-focusing part and the flow-

diverging part. The more viscous liquid L1 with viscosity η1 is injected

into the channel from the center inlet at a volumetric rate Q1, and the

less viscous liquid L2 with viscosity η2 from two side inlets at a total

volumetric rate Q2. The dimensions of the simulation domain are 2 mm

×0.25 mm ×5mm. The width of the inlets and the microchannel is

w = 0.25 mm. We use an open boundary condition on the outlet.
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Some important dimensionless numbers are defined as follows:

χ =
η1

η2

, (5.1)

φ =
Q1

Q2

, (5.2)

Re1 =
ρ1LV1

η1

, (5.3)

Re2 =
ρ2LV2

η2

, (5.4)

Ca1 =
γV̄

η1

, (5.5)

Ca2 =
γV̄

η2

. (5.6)

The characteristic length scale L = 0.5w, and the characteristic ve-

locities in Reynolds numbers V1 and V2 are the average velocities and

can be calculated from the volume flow flux and geometry parame-

ters V1 = Q1/w
2 and V2 = 0.5Q2/w

2. The capillary numbers are

calculated in the long focusing channel, the characteristic velocity is

V̄ = (Q1 +Q2)/w2. Furthermore, we designed different channel geome-

tries with two different diverging angles α = π and α = π/2 for the main

chamber.

A reference simulation (case 1 ) is chosen and its detailed parameters

and dimensionless numbers are shown in the Table 5.1.

In our parameter study, five simulations are performed. The di-

mensionless quantities for these cases are given in Table 5.2. In all

5 simulations the capillary number Ca1 is kept constant at 330.64, the

surface tension force is small compared to the viscous force for the liquid

L1. All the simulations are implemented using 64 (4× 2× 8) computa-

tional cores (subdomains) in parallel, and for each subdomain we use a

64 × 32 × 64 mesh resolution. Thus the global mesh resolution for the

domain is 256× 64× 512.
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Variables Units Values

ρ kg/mm3 0.8× 10−6

η1 kg/mm/s 4864.28× 10−6

η2 kg/mm/s 2.24× 10−6

Q1 mm3/s 0.83333

Q2 mm3/s 10

γ kg/s2 2.55× 10−3

Re1 2.74× 10−4

Re2 3.57

Ca1 330.64

Ca2 0.15

φ 1/12

χ 2174

α π/2

Table 5.1: Dimensional and nondimensional parameters for the simula-

tion case 1 with χ = 2174, φ = 1/12 and α = π/2.

As a first qualitative demonstration of our model and the parallel

code BLUE, a simulation at one half of this resolution is carried out.

The velocity field for the case 2 is presented in Fig. 5.2. Starting from

the upstream injection point, liquid L1 begins to focus and detach from

the upper and lower walls, becomes a thin thread and then folds in the

diverging region. All of the subsequent simulations shown and analysed

in the following sections use the full mesh resolution of 256× 64× 512.

Due to the high viscosity contrast and very low Reynolds number, each

simulation took about 6 months of computing time on 64 cores of the

parallel machine Ada (IBM x3750-M4) at the IDRIS computing center

in Orsay, France (approximately 270 000 core hours per simulation).
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cases Re1 φ χ α

1 (reference) 2.74× 10−4 1/12 2174 π/2

2 1.64× 10−3 1/12 2174 π/2

3 2.74× 10−4 1/12 1000 π/2

4 2.74× 10−4 1/5 2174 π/2

5 2.74× 10−4 1/12 2174 π

Table 5.2: Dimensional and nondimensional parameters for the 5 simu-

lations

5.1 Thread formation

Recent advances in microfluidic technology have led to the emergence

of micro total analysis systems (µ-TAS) or lab-on-a-chip (LOC) devices

designed for biochemistry, biophysics and medical fields, including bio-

logical and chemical assays, drug delivery, drug screening for example

(Whitesides and Stroock, 2001; Stone et al., 2004; Vilkner et al., 2004;

Squires and Quake, 2005; Atencia and Beebe, 2005). The hydrodynamic

focusing technique provides an effective means of controlling the passage

of chemical reagent or bio-samples through microfluidic channels and has

given rise to many studies aimed at understanding its physical mecha-

nisms. Various flow-geometry relationships have been studied to create

different effects, including the influence of the channel aspect ratio (Lee

et al., 2006), the injection geometry for detaching the central stream

from the walls (Simonnet and Groisman, 2005; Chang et al., 2007), the

fluid driving mechanisms (Stiles et al., 2005) and the effect of small and

moderate viscosity contrasts between the fluids (Wu and Nguyen, 2005).

In our simulations, the threads are also produced by hydrodynamic

focusing. The liquid L1 is injected from a central channel, and liquid L2

that ensheath the liquid L1 are introduced from side channels. Down-

stream from the junction, the fluids flow side by side, and the width
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Figure 5.2: Velocity field on the channel midsurface with Re1 = 1.64×
10−3, χ = 2174, φ = 1/12 and α = π/2 (case 2) using a low resolution

128× 32× 256.

and location of the stream can be controlled through the injection flow

rates. The more viscous liquid L1 passes the junction and begins to

detach from the top and bottom walls. The contact lines of different

simulations are shown as the thin lines in Fig. 5.3. The irregular shapes

on the thread near the inlet are due to graphical artefacts. The con-

tact line has a ‘V’-like shape which is strongly stretched at the bottom.

The hydrodynamic focusing depends on the viscosity ratio, the flow rate

ratio and the Reynolds numbers. By contrast, the divergence angle α

at the downstream part has almost no effect on the focusing, as shown

in Fig. 5.3(a) and Fig. 5.3(d). When the viscosity ratio χ is low, the

contact line becomes a true ‘V’ shape (Fig. 5.3(c)). The smaller flow

flux rate φ and larger Reynolds number Re2 lengthen the ‘V’ shape, i.e.

the liquid L1 takes longer to detach from the walls and form the thread.

Fig. 5.4 shows cross sections across the channel width and the chan-
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(a) case 1

(b) case 2

(c) case 3
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(d) case 4

(e) case 5

Figure 5.3: Formation of viscous threads by hydrodynamic focusing and

contact line detachment (thin lines) from the channel walls. The irreg-

ular shapes on the thread near the inlet are due to graphical artefacts.
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nel depth of the three-dimensional velocity fields of hydrodynamic focus-

ing (case 2). The liquid jet L1 detaches from the walls, becomes thinner,

and then forms a thread. Moreover, the flow of the liquid L1 in the long

microchannel is a plug flow and ensheathed by liquid L2.

To analyse the focusing process more clearly, four cross sections

across the depth at different positions z = 2.2 mm, z = 2.5 mm, z = 3

mm, z = 4 mm are shown in Fig. 5.5. The liquid L1 flows at an almost

uniform velocity (plug flow) at the beginning of hydrodynamic focusing

and is accelerated by the side flow. The thread becomes thinner (from

Fig. 5.5(a) to Fig. 5.5(c)) and then is nearly stable (from Fig. 5.5(c)

to Fig. 5.5(d)). Similarly, from z = 4 mm to z = 2.2 mm, the velocity

contour changes dramatically at first, then slowly and at last becomes

almost stable. Furthermore, the cross section of the thread is an ellipse

rather than a circle. The minor axis of the thread ε1 and the major axis

of the thread ε2 along the flow direction up to the diverging point are

plotted in Fig. 5.6. From Fig. 5.6, the stable minor axis and major axis

of the thread are ε1 = 0.0565 and ε2 = 0.103 . Also, we find that liquid

L1 detaches completely from the walls at the distance z = 4.2 mm. The

minor axis and major axis of the thread as well as the ratios ε1/w, ε2/w

and ε1/ε2 for all 5 cases are listed in Table 5.3.

cases ε1 ε2 ε1/w ε2/w ε1/ε2 εs/w

1 (base case) 0.0573 0.0836 0.2292 0.3344 0.69 0.06

2 0.0565 0.103 0.226 0.412 0.55 0.073

3 0.0578 0.057 0.2312 0.228 1.01 0.041

4 0.088 0.111 0.352 0.444 0.793 0.123

5 0.064 0.088 0.256 0.352 0.73 0.0707

Table 5.3: The stable ε1, ε2, ε1/w, ε2/w and ε1/ε2 for all 5 cases

The velocity profile for the annular flow in a circular tube can be di-
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(a) cross section across the channel depth

(b) cross section across the channel width

Figure 5.4: Three-dimensional velocity fields of hydrodynamic focusing

with Re1 = 1.64 × 10−3, φ = 1/12, χ = 2174, α = π/2 (case 2) show-

ing cross section across the channel width and cross section across the

channel depth. The black line is the thread interface.
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(a) z = 4 mm (b) z = 3 mm

(c) z = 2.5 mm (d) z = 2.2 mm

Figure 5.5: The velocity contour of cross sections across the depth at

different positions z = 2.2 mm, z = 2.5 mm, z = 3 mm, z = 4 mm for

case 2 (Re1 = 1.64× 10−3, φ = 1/12, χ = 2174, α = π/2), the black line

is the thread interface.
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Figure 5.6: The minor axis ε1 and major axis ε2 of the thread along the

flow direction for case 2 (Re1 = 1.64 × 10−3, φ = 1/12, χ = 2174, α =

π/2)
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rectly calculated from the Stokes equations (Joseph and Renardy, 1993).

Its dimensionless form is:

u1 =
1

χ
(c2 − r2) + 1− c2, for 0 ≤ r ≤ c, (5.7)

u2 = 1− r2, for c ≤ r ≤ 1, (5.8)

where the radial coordinate r and the core radius c are normalized by

R, and ui = Vi(4η2)/[(∇P )R2] is the dimensionless velocity in region

i, ∇P is the pressure gradient, and Vi is the velocity in region i. The

relationship between c and the flow rate ratio φ = Q1/Q2 of each liquid

is calculated by integrating equations (5.7) and (5.8) across the area of

each region, yielding:

φ =
c4(χ−1 − 2) + 2c2

(1− c2)2
. (5.9)

In the regime associated with small threads c � 1 and large viscosity

ratios χ� 1, a simple scaling for the thread can be found: c ∼ (φ/2)0.5.

Although this analysis is only valid for a circular tube, it gives a simple

estimate for the behavior of core annular flows as a function of the

viscosity contrast. For the case of a square microchannel of width w, c =

εc/w for comparing circular diameter and square cross section instead

of c = εc/R is used to show the relation between c and φ. Here in our

simulations the thread cross section is an ellipse, both ε1/w and ε2/w

are compared with the prediction εc/w based on circular cross section

assumption. Cubaud’s experiments (Cubaud and Mason, 2006a) suggest

that the thread minor-axis (diameter) ε1/w was independent of χ and

followed ε1/w ∼ φ0.6. In Cubaud’s experiments they took photos from

above with a high speed camera, so that only the minor-axis (diameter)

ε1 of the thread could be measured (Thus it is not clear whether the

thread cross section was circular or not). In Fig. 5.7, the estimating lines

εc/w ∼ (φ/2)0.5, ε1/w ∼ φ0.6 and values ε1/w, ε2/w from our simulations
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are presented. When φ is small, the two power-law predictions are close.

The slope of ε1/w from our simulation results agree well with both power-

law relationships ε1/w ∼ φ0.6 and εc/w ∼ (φ/2)0.5. But for the major

axis ε2 of the thread, it seems more complicated: ε2/w depends on not

only the flow rate ratio φ but also other parameters such as the viscosity

ratio χ. With the same φ, the lower viscosity ratio χ decreases the semi

major axis and the thread cross section looks more circular.

10−2 10−1 100
10−1

100

φ

ε/
w

εc/w ∼ (φ/2)0.5

ε1/w ∼ φ0.6

ε1/w
ε2/w

Figure 5.7: Downstream evolution of core diameter ε/w versus flow rate

ratio φ for a thread in plug flow in a square microchannel. The red

and blue lines are the power-law predictions, the circle marks are our

simulation results.

Lee et al. (2006) analyzed theoretically the hydrodynamic focusing

effect inside rectangular microchannels. According to their study, the

relationship between ε/w and φ is

ε

w
=

φ

λ(φ+ 1)
, (5.10)
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λ is a parameter depending on the aspect ratio of the rectangular mi-

crochannel Λ and the width of the focused stream ε. Two particular

cases exist for pressure-driven flow in rectangular channels. The first

case involves an aspect ratio of Λ → ∞. In this case, a parabolic ve-

locity profile is formed across the channel width and is independent of

the position across the channel height. Under these conditions, λ = 1.5,

assuming ε/w � 1. The second case involves an aspect ratio Λ→ 0. In

this case, a parabolic velocity profile is formed across the channel height

and is independent of the position across the channel width, λ = 1.0.

It is noted that in the study of Lee et al. (Lee et al., 2006) the sample

liquid L1 didn’t detach from the top and bottom walls. Once the liquid

L1 detaches from the walls, its width will become larger due to surface

tension. To compare our results with Lee’s study, the equivalent widths

εs are calculated ( a rectangle εs × w with the same area) and εs/w is

listed in Table 5.3. In our simulations, the aspect ratio of the microchan-

nel is Λ = 1 between these two particular cases. In Fig. 5.8, the two

limiting relations and the results of our simulations are plotted. It is

apparent that a good agreement exists between the two sets of results.

5.2 Folding instability

The thread produced by hydrodynamic focusing continues to flow in the

diverging region and a folding instability appears as shown in Fig. 5.2.

The velocity profile before the diverging point has an important effect on

the folding instability. According to the discussion above, the velocity

field becomes almost stable near the diverging point. So we can fix the

cross section at the position z = 2.5 mm to compare the velocity profiles

of different cases.

Fig. 5.9 shows the flow patterns at different times for the reference
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Figure 5.8: Evolution of core diameter ε/w versus flow rate ratio φ for

a thread in plug flow in a square microchannel.

case 1 with Re1 = 2.74×10−4, φ = 1/12, χ = 2174, α = π/2. The thread

begins to fold about an axis in the y-direction in Fig. 5.9(b), and then

the folding plane rotates in Fig. 5.9(c). The folding slowly transforms

from the y-direction to the x-direction. In Fig. 5.9(d) the new folds

appear mainly in the x-direction. The velocity profiles along the mid-

line (x-direction) of the cross section at z = 2.5 mm are shown in Fig.

5.10.

The plots at different times in Fig. 5.10 suggest that the velocity

profile changes slightly at the onset of the buckling instability and then

become stable again. (The plug flow velocity of liquid L1 increases

slightly when the buckling starts.) Although similar figures for the other

four cases are not shown here, the same trend exists for all five cases.

In other simulation cases, the flow patterns are different from the

base simulation case 1. For simulation case 2 (Re1 = 1.64 × 10−3, φ =
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(a) t = 0.178s

(b) t = 0.198s
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(c) t = 0.213s

(d) t = 0.228s

Figure 5.9: The flow patterns at different times for case 1 with Re1 =

2.74× 10−4, φ = 1/12, χ = 2174, α = π/2.
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Figure 5.10: The velocities along the middle line of the cross section at

z = 2.5 mm at different times corresponding to the flow patterns in Fig.

5.9.
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1/12, χ = 2174, α = π/2), as shown in Fig. 5.11(a), the thread begins to

fold in the x-direction. The folding frequency and amplitude then vary

slightly after the thread exits the computation domain in Fig. 5.11(b),

and finally, the folding frequency and amplitude become stable in Fig.

5.11(d) and 5.11(e). It is noted that the folding only happens in the

x-direction.

In case 3 with Re1 = 2.74 × 10−4, φ = 1/12, χ = 1000, α = π/2, the

onset of folding appears in the y-direction in Fig. 5.12(b). For this case,

there are not only folding instability but also strong shrinking when the

thread suffers the compressible stress. The thread is squeezed, so that

the thread becomes fatter and the folding wavelength decreases as the

thread flows downstream (from Fig. 5.12(b) to 5.12(c)). Consequently,

the amplitude of newly appearing folds decreases to 0 slowly and its

wavelength becomes larger. Finally, the folding phenomenon disappears

and the thread is completely straight.

When Re1 = 2.74 × 10−4, φ = 1/12, χ = 2174, α = π in case 5, the

folding instability occurs in the y-direction then twists towards the x-

direction in Fig. 5.13. This is similar to the phenomenon in reference

case 1, transition from folding in the y-plane to the x-plane.

It is assumed that the different patterns of folding or buckling de-

pend on the velocity profile and the thread shape on the cross section.

As discussed above the velocity profile is stable after the onset of buck-

ling, the velocity contours and the interface between the thread L1 and

surrounding fluid at z = 2.5 mm are presented in Fig. 5.14. The veloc-

ities along the mid-line (depth, y-direction) and the center line (width,

x-direction) are plotted in Fig. 5.15. The folding is induced by the vis-

cous compressional stress. The velocity of the flow in the long focusing

channel and near the diverging point is nearly in the z-direction, i.e.
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(a) t = 0.066s

(b) t = 0.079s

(c) t = 0.085s
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(d) t = 0.106s

(e) t = 0.146s

Figure 5.11: The flow patterns at different times for case 2 with Re1 =

1.64× 10−4, φ = 1/12, χ = 2174, α = π/2.
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(a) t = 0.123s

(b) t = 0.144s

(c) t = 0.181s
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(d) t = 0.219s

(e) t = 0.239s

Figure 5.12: The flow patterns at different times for case 3 with Re1 =

2.74× 10−4, φ = 1/12, χ = 1000, α = π/2.
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(a) t = 0.173s

(b) t = 0.193s
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(c) t = 0.215s

(d) t = 0.224s

Figure 5.13: The flow patterns at different times for case 5 with Re1 =

2.74× 10−4, φ = 1/12, χ = 1000, α = π
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u = (0, 0, uz). Thus the non-zero components in the viscous stress are

σxz =
1

2
ηi
∂uz
∂x

, (5.11)

σyz =
1

2
ηi
∂uz
∂y

, (5.12)

σzz = −p+ ηi
∂uz
∂z

, (5.13)

where ηi is the viscosity of liquid L1 or L2. On the cross section of the

thread the viscous stress is longitudinal stress , σxz = σyz = 0 due to the

plug flow. In Chung’s study (Chung et al., 2010), the longitudinal stress

is defined as 2ηiuz/0.5w along the centerline. In their Fig. 4(d) (Chung

et al., 2010), the longitudinal stress is highly compressional. Here, our

simulations are 3-dimensional, the longitudinal stress is proportional to

the derivatives ∂uz/∂z. The derivatives ∂uz/∂z of the velocity uz with

respect to z along the thread are shown in Fig. 5.16, it is clear the

longitudinal stress is compressional in the diverging region, especially

near the diverging point.

On the thread interface, the viscous force per unit area by liquid

L2 can be obtained by σ · n, where n is the unit normal vector to the

interface. Since the major axis and minor axis become stable near the

diverging point, the unit normal vector is in the x-y plane n = (nx, ny, 0).

Thus, the viscous force per unit area on the interface is

f in = σ · n = (0, 0, σxznx + σyzny) =
1

2
η2(0, 0,

∂uz
∂n

). (5.14)

The viscous force on the interface is proportional to the normal deriva-

tive ∂uz/∂n. Then the bending moment on the cross section of the

thread induced by the viscous force on the interface can be calculated,



106 5.2. FOLDING INSTABILITY

it has two components

ωx =
1

2
η2

∫
C

∂uz
∂n

(y(s)− yc)ds, (5.15)

ωy =
1

2
η2

∫
C

∂uz
∂n

(x(s)− xc)ds. (5.16)

Where the integrals are done along the bounding line of cross section

C, xc, yc are the coordinates of the center on the cross section. Here the

bending moment is presented by the integral part, i.e. Mx = 2ωx/η2

and My = 2ωy/η2. For case 1 with Re1 = 2.74 × 10−4, φ = 1/12, χ =

2174, α = π/2, the bending moments of the thread Mx and My on the

cross section at z = 1.7 mm are plotted from the onset of the folding

instability in Fig. 5.17. At first the moment Mx dominates, the cross

section rotates about the x-axis resulting in folding in the y-direction.

And then the moment My increases, the folding slowly transforms via

twisting to folding in the x-direction. When the ratio ε1/ε2 of the thread

is much less than 1 the moment Mx is always very small compared to

My, so that the folding only appears in the x-direction. This is just what

we observe in simulation case 2 (similar bending moments over time are

presented in Fig. 5.18).
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(a) case 1 (b) case 2

(c) case 3 (d) case 4

(e) case 5

Figure 5.14: The velocity contour and thread shape (black line) at z =

2.5 mm before the diverging point for the 5 cases
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Figure 5.15: The velocities along the center line (solid line) and mid-line

(dashed line) on the cross section at z = 2.5 mm for different cases.

Figure 5.16: The derivatives ∂vz/∂z of the velocity vz on the thread

interface before onset of folding at t = 0.178s for case 1 with Re1 =

2.74× 10−4, φ = 12, χ = 2174, α = π/2.
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Figure 5.17: The bending moment at z = 1.7 mm for case 1 with Re1 =

2.74 × 10−4, φ = 1/12, χ = 2174, α = π/2 when the folding instability

occurs.
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Figure 5.18: The bending moment at z = 1.7 mm for case 2 with Re1 =

1.64 × 10−3, φ = 1/12, χ = 2173, α = π/2 when the folding instability

occurs.
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Conclusion

6.1 Summary of results obtained

In this thesis, we have investigated the hydrodynamics of thin (sheet-

like) and slender (filamentary) bodies of viscous fluid immersed in a

second fluid. The viscosity ratio of the two fluids could be very large,

up to more than 1000. Two examples were studied: the subduction

of oceanic lithosphere on Earth, and viscous folding in diverging mi-

crochannels. Though their physical scales are very different, there is a

common characteristic Reynolds number Re� 1 for both cases. Thus

inertia can be neglected in the dynamics.

To model the subduction of oceanic lithosphere, we studied the two-

dimensional subduction of a thin viscous sheet in a half-space of an-

other fluid, bounded above by an impermeable free-slip surface (i.e., a

plane of mirror symmetry). By combining the force balance for the thin

sheet with a boundary integral representation of the outer flow, a hy-

brid boundary integral-thin sheet method (BITS) is built in the form

of an integral equation for the velocities on the sheet’s midsurface. To

solve this equation, a discrete approach is implemented by adapting a

111
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discrete model for thin viscous threads developed by B. Audoly and co-

workers Audoly et al. (2013). In the discrete approach, all the variables

are represented in a Lagrangian framework and the Rayleigh dissipation

potential (Torby, 1984) is introduced to describe the internal viscous

stress in the sheet. An asymptotic thin-sheet formulation is used to de-

rive the expressions of both stretching and bending dissipation potentials

during subduction. Finally, the integral equation is rewritten as a ma-

trix equation for the velocities on the discrete vertices along the sheet’s

midsurface. Given the sheet’s geometry, the instantaneous (quasi-static)

velocity on the midsurface is obtained by solving the matrix equation.

To validate BITS, we first compared our predictions for a vertical

sheet with the results of a full boundary-element method (BEM), and

found reasonable agreement consistent with the errors introduced by

the thin-sheet approximation. To handle the weakly singular kernel in

the BITS equation, we used both an integral average procedure and

the method of regularized Stokeslets (Cortez, 2001). For the vertical

sheet, both methods work well, and the predictions with the regularized

Stokeslet agree with those obtained using the integral average when the

characteristic radius of the regularized Stokeslet tends to zero. We also

analyzed the effect of the discretization on the vertical sheet solution,

finding that BITS shows good convergence as the number of elements

increases. We then considered a horizontal sheet, and found that the

BITS method performed well compared to the BEM solutions. However,

when the sheet’s distance from the free surface is small, higher resolution

is required to obtain accurate solutions. Moreover, the solutions failed

to converge using the regularized Stokeslet approach, and so we used

the integral average approach for the remainder of this study.

After validating the BITS method, we used it to study the instan-

taneous subduction of a bent sheet comprising a long horizontal part

(the ‘plate’) and a shorter part (the ‘slab’) bent downward into the am-



Chapter 6: Conclusion 113

bient fluid. A suite of instantaneous flow solutions for different values

of the length of the slab, its inclination, and the distance d of the plate

from the free surface were first obtained. The numerical solutions show

that the smaller d decreases the sheet’s subduction velocity and requires

a finer discretization. Moreover, the bending moment at the ends is

nearly independent of the sheet length. A simple scaling analysis of a

subducting sheet suggests that V/VStokes = fct(St), where V is the (ver-

tical) sinking speed of the slab, VStokes is the slab’s characteristic Stokes

sinking speed, and St is the sheet’s ‘flexural stiffness’. We confirm this

prediction by showing that numerical solutions of BITS obtained for dif-

ferent slab lengths and viscosity ratios collapse onto a master curve for

each assumed value of the inclination. The curves have two limits: a

limit St ≤ 1 for which the sinking speed is controlled by the viscosity of

the ambient mantle, and a limit St� 1 in which it is controlled by the

viscosity of the sheet itself (bending resistance). Finally, we performed

time-dependent simulations for the evolution of the sheet’s shape and

thickness. For moderate viscosity ratios (≈ 200-1000), the sheet thins

somewhat as it sinks, but not enough to lead to the ‘slab breakoff’ that is

observed in several subduction zones on Earth (see ‘Future perspectives’

below).

In the second example, the parallel code BLUE for multi-phase flows

was used to simulate three-dimensional viscous folding in diverging mi-

crochannels. The code BLUE, developed by S. Shin and thesis co-

supervisors D. Juric and J. Chergui, treats the free interface with a

parallel Lagrangian front tracking method. Inspired by T. Cubaud’s

experiments (Cubaud and Mason, 2006a), the calculation domain is a

micro rectangle of dimensions 2 mm ×0.25 mm×5 mm. The more vis-

cous liquid L1 with viscosity η1 is injected into the channel from the

center inlet at a volumetric rate Q1, and the less viscous liquid L2 with

viscosity η2 from two side inlets at a total volumetric rate Q2. Liquid
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L1 takes the form of a thin filament due to hydrodynamic focusing in

the long channel that leads to the main chamber. This thread, flowing

into the main chamber becomes unstable to a folding instability due to

the longitudinal compressive stress applied to it by the diverging flow

of liquid L2. Given the long computation times for such a low Reynolds

number flow, we were limited to a parameter study comprising five sim-

ulations in which the flow rate ratio, the viscosity ratio, the Reynolds

number, and the shape of the channel were varied relative to a reference

model.

The hydrodynamic focusing technique provides an effective means

of controlling the passage of chemical reagent or bio-samples through

microfluidic channels and has given rise to many studies aimed at un-

derstanding its physical mechanisms. In our simulations, The contact

line where liquid L1 detaches from the channel walls forms a ’V’-shape

and depends on the viscosity ratio, the flow rate ratio and the Reynolds

number. The divergence angle α of the main chamber has almost no

effect on the focusing. The thread of liquid L1 in the long microchannel

is a plug flow, ensheathed by liquid L2. The shape and velocity of the

thread vary dramatically at first, then evolve slowly and finally achieve a

nearly stable state, which implies that the hydrodynamic focusing phase

is complete. Moreover, the cross section of the thread is elliptical rather

than circular. The minor and major axes of the thread, ε1 and ε2 re-

spectively are measured for the five simulations. There is a power law

relation between the dimensionless minor axis ε1/w and the flow ratio φ

and our results are in good agreement with experimental and theoreti-

cal predictions of other researchers. For the major axis ε2, the situation

is more complicated. The lower viscosity ratio χ decreases the major

axis and the thread cross section appears more circular. Additionally,

the interfacial tension plays important role in the thread formation after

the liquid L1 detaches from walls.
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Unlike the previous two-dimensional simulations of Chung et al.

(2010), our simulations are fully three-dimensional and thus do not con-

strain the axis along which the folding instability could occur. We find

that the initial folding axis can be either parallel or perpendicular to

the narrow dimension of the chamber. In the former case, the fold-

ing slowly transforms via twisting to perpendicular folding, or the folds

may disappear altogether. The direction of folding onset is determined

by the velocity profile and ellipticity of the thread cross section in the

channel that feeds the main microfluidic chamber. The bending moment

on the thread cross section, calculated from the velocity profile and the

ellipticity, clearly account for the folding direction. When the ratio of

semi-major to semi-minor axes is sufficiently large, the folding always

occurs perpendicular to the narrow dimension of the chamber.

Due to the high viscosity contrast and very low Reynolds numbers

involved, direct numerical simulations of this two-phase flow are very

challenging and to our knowledge these are the first three-dimensional

direct parallel numerical simulations of viscous threads in microchannels.

However, since the computational time for these simulations is quite

long, especially for such viscous threads, the simulations present only the

early time onset of the buckling instability of the threads, thus long-time

comparisons with experiments for quantities such as folding amplitude

and frequency are limited.

6.2 Future perspectives

• In the coming year we intend to pursue an extended version of the

BITS model in which the rheology of the sheet is non-Newtonian.

Unlike the full boundary-element method (BEM), in which each

fluid must have a uniform Newtonian viscosity, BITS can incorpo-
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rate nonlinear rheology because the flow inside the sheet has a sim-

ple form corresponding to stretching plus bending. Our principal

motivation for developing a nonlinear BITS model is the geophys-

ical phenomenon of ‘slab detachment’, in which the subducting

oceanic lithosphere breaks off in the Earth’s upper mantle (e.g.,

in the Mediterranean region). Slab detachment is inferred from

seismic tomography, and is indicated by the presence of anoma-

lously hot material where the cold sinking slab would otherwise

be. In terms of fluid mechanics, slab detachment corresponds to a

necking or tearing instability, and the breakoff itself corresponds

to a finite-time singularity. Unsurprisingly, our Newtonian BITS

calculations displayed only moderate (a few percent) slab thinning

at depths corresponding to the Earth’s upper mantle. However, we

speculate that non-Newtonian (shear thinning) rheology will lead

to enhanced localized thinning and catastrophic breakoff. Our goal

will be to understand the fine structure of this instability and to

determine the conditions under which it can occur (since it evi-

dently does not occur in all terrestrial subduction zones.)

• To understand the viscous buckling instability in diverging mi-

crochannels better, more simulations with a larger range of vis-

cosity ratio χ, Reynolds number Re2, flow rate ratio φ and with

different channel geometries will be implemented. In T. Cubaud’s

experiments, there are many kinds of buckling instability patterns:

stable, folding, subfolding and heterogeneous deposition to name

a few. In our three dimensional simulations, the folding is not con-

strained to occur along one axis. With further simulations, a phase

diagram of flow pattern as a function of the above parameters χ,

Re1 and φ can be obtained and the effect of these parameters on

the folding frequency can be studied (when the folding instability
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occurs). In the future, we can perform more complicated simula-

tions where, for example, the flow rates of less viscous fluid entering

from the two side inlets are unequal and thus will enable simu-

lations of hydrodynamic focusing and buckling instability under

asymmetric conditions. Moreover, the diverging microchannel can

be extended to a diverging-converging microchannel. We can also

study the hydrodynamic focusing in a micro geometry which con-

sists of four microchannels with square section of identical width

h forming a cross channel. Over a wide range of fluid properties

and flow parameters different flow patterns such as threads, jet-

ting or dripping have been observed. These studies will provide a

basis for studying flow behavior with viscous industrial, complex

fluids in microfluidic systems and biological fluids. Understanding

the hydrodynamics of two phase flows with large viscosity ratios

is helpful in precisely manipulating soft materials composed of re-

active solvents and solutes in micro- and nano-devices.
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Titre : Hydrodynamique de fluides élancés à bas nombres de Reynolds 

Mots clés : bas nombre de Reynolds, fluide élancé, subduction, micro-canal divergent, flambage 
visqueux

Résumé :  Cette  thèse  concerne  la  simulation
numérique  d’écoulement  de  nappes  et/ou  de
filamenteux  de  fluides  visqueux  en  présence
d’une seconde phase fluide non-miscible dont la
viscosité  est  différente.  Deux  exemples  sont
présentés.  Celui  de  la  subduction  de  la
lithosphère  océanique  ainsi  que  celui  du
flambage de filaments visqueux dans un micro-
canal divergent. Ces deux écoulements sont en
particulier  caractérisés  par  un  nombre  de
Reynolds relativement bas (Re<<1).
Dans le premier cas, une méthode hybride dite
BITS  (Boundary  Integral  &  Thin  Sheet)  est
proposée dont nous validerons les résultats avec
ceux obtenus et confirmés par une méthode dite
d’éléments  aux  frontières.  Les  solutions
instationnaires  et  dépendantes  du  temps  sont
obtenues avec la méthode BITS. L’analyse des
échelles de vitesse normalisées par la fonction
de  rigidité  en  flexion  indique  une  bonne
concordance  avec  les  prédictions  numériques
que nous avons obtenues. A des nombre de 

Reynolds  modérés  (~100),  la  nappe  s’amincit
considérablement pendant son écoulement sans
pour autant atteindre sa rupture tel que cela est
observé dans différentes régions de subduction
terrestre.
Dans le second cas, nous avons utilisé le code
BLUE pour réaliser simulations numériques 3D
diphasiques  d’écoulements  visqueux  dans  une
configuration  de  flambage  en  micro-canal
divergent.  L’écoulement  dépend  de  plusieurs
paramètres  dont  le  rapport  des  débits
volumétriques,  le  rapport  des  viscosités,  le
nombre de Reynolds et l'angle du micro-canal
divergent.  Il  apparaît  de  cette  étude  que  le
filament  présente  une  instabilité  du  type
flambage  en  raison  de  la  contrainte  de
compression. L’axe principal de flambage peut
être  alors  parallèle  ou  perpendiculaire  à  la
direction  étroite  de  la  chambre.  Dans  le  cas
parallèle,  le  flambage  tend  lentement  vers  un
flambage  perpendiculaire  au  moyen  d’une
torsion ou peut totalement disparaître.

Title : Low Reynolds number hydrodynamics of immersed thin and slender bodies

Keywords : low Reynolds number, thin sheet, subduction, diverging microchannel, viscous folding

Abstract :  The hydrodynamics of thin (sheet-
like)  and  slender  (filamentary)  bodies  of
viscous fluid immersed in a second fluid with a
different viscosity is studied. Here we focuses
on  two  examples:  the  subduction  of  oceanic
lithosphere and the buckling of viscous threads
in  diverging  microchannels,  both  have  a
characteristic Reynolds number Re<<1. 
A  hybrid  boundary  integral  &  thin  sheet
method (BITS) is build for the subduction of
2D  immersed  sheet.  After  the  validation  by
comparing  with  the  results  of  full  boundary
elements method, both instantaneous and time-
dependent  solutions  are  done  to  analyze  the
subduction  with  BITS  method.  The  scaling
analysis of the normalized sinking speed as a
function  of  the  sheet's  'flexural  stiffness'  is
confirmed by our numerical predictions. For 

moderate  viscosity  ratios  (~100),  the  sheet
thins substantially as it sinks, but not enough to
lead to the ‘slab breakoff’ that is observed in
several subduction zones on Earth. 
Next, the parallel code BLUE for multi-phases
flows  is  used  to  simulate  the  3D  viscous
folding  in  diverging  microchannels.  We
performed a  parameter  study comprising  five
simulations  in  which  the  flow  rate  ratio,  the
viscosity ratio,  the Reynolds number,  and the
shape of the channel were varied relative to a
reference model. The thread becomes unstable
to a folding instability due to the longitudinal
compressive stress. The initial folding axis can
be either parallel or perpendicular to the narrow
dimension of the chamber. In the former case,
the  folding  slowly transforms  via  twisting  to
perpendicular folding, or may disappear totally.
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