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Abstract

Minimally invasive surgery in gastrointestinal (GI) endoscopy has evolved from being a
diagnostic tool to a therapeutic solution. It is common that GI procedures involve periodic
monitoring or surveillance of the internal anatomy. Specifically in oesophageal procedures
(the target of this thesis), surveillance interventions involve obtaining biopsies at different
regions along the oesophagus. The tracking and relocalization of these biopsy sites “inter-
operatively” poses a significant challenge for providing targeted treatments.

This thesis, clarifies the concept of relocalization, and analyses the need for a platform to
aide GI endoscopy. Then, based on the understanding of the clinical context in oesophageal
procedures; a novel framework to use electromagnetic tracking system is proposed, which
is used to perform a “recording” of an intervention. This framework and the recording is
then used to provide a guided navigation to the GI expert, during a follow-up surveillance
endoscopy; for accurate re-positioning of the endoscope at previously targeted sites. This
is achieved using inter-operative video synchronization, and the various steps involved in
achieving this are described in this thesis.

Following the description of system design and the methodology, a careful analysis of
noise affecting the system is performed. Using a Gaussian noise model, quantitative evalua-
tion of the system is performed with synthetic and real (porcine) data. The results indicate
that the relocalization was achieved with an uncertainty in depth inside the oesophagus
of ±10mm, which was considered acceptable for the GI expert. Additionally, qualitative
experiments were performed using data from pigs, to simulate the real task of biopsy site
relocalization, which was evaluated by 10 GI experts. The results of these experiments
showed an improvement in biopsy site relocalization rate from 47.5% to 94%, thus clearly
demonstrating the benefits of the proposed system towards assisted guidance. Furthermore,
an incremental improvement in inter-operative video synchronization is proposed, that uses
additional information obtained during the course of the intervention. Synthetic experiments
indicated, inclusion of this additional information reduced the error in video synchronization
by ∼ 50%.

This framework, was then extended by proposing a constrained inter-operative image
matching, for further improvement in quality of video synchronization. Within this context,
the effect of, the choice of feature descriptors and colour-space, filtering of uninformative
frames and the endoscopic modality in use, are investigated and shown that further
improvement is achieved in image synchronization to [92%, 87%] from [73%, 76%] for
both narrow band imaging and white-light endoscopic modalities.
This research work has been implemented in a software (at IHU and IRCAD, Strasbourg),
allowing us to validate our results in clinical conditions. This work was supported by IHU
Strasbourg, through a grant# ANR-01AHU-02.

Keywords: Gastro-Intestinal Endoscopy, Inter-operative relocalization, Electro-
magnetic tracking
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Résumé:

La chirurgie mini-invasive en endoscopie gastro-intestinale a évolué d’un outil de
diagnostic à une solution thérapeutique. En règle générale, les procédures gastro-intestinales
impliquent un contrôle ou une surveillance périodique de l’anatomie interne. Dans le
contexte des interventions de l’œsophage, les exploration de de surveillance implique la
réalisation de multiples biopsies régulièrement le long de l’œsophage. Ainsi, les défis
les plus importants auxquels il faut faire face au cours de ces procédures sont le suivi et
la relocalisation inter-opératoires de ces sites de biopsies (pour un même patient opéré
plusieurs fois). L’objectif de cette thèse est de proposer une solution informatisée afin de
guider le gastroentérologue pendant de telles procédures.

Cette thèse précise tout d’abord le concept de relocalisation et analyse la nécessité
d’une plate-forme pour aider l’endoscopie gastro-intestinale. Ensuite, après une analyse des
procédures de l’œsophage et de leurs besoins, nous proposons un cadre novateur utilisant
un système de suivi électromagnétique pour réaliser des enregistrements d’intervention de
l’œsophage, couplant la vidéo à la profondeur de l’endoscope inséré. Ces enregistrements
sont utilisés pour fournir une navigation aux gastroentérologues pendant des procédures
de surveillances afin de repositionner l’endoscope de façon précise sur des sites de biopsie
préalablement ciblés. Cette navigation consiste en une synchronisation vidéo entre la vue
endoscopique courante et celles des surveillances endoscopiques précédentes enregistrées.

Une première version de notre système est présentée, associée à une analyse rigoureuse
des bruits affectant le système. Cette évaluation incrémentale est réalisée sur des données
d’abord synthétiques puis réelles recueillies sur des cochons. Les résultats montrent que
la relocalisation est obtenue avec une précision de l’ordre de ±10mm, considérée comme
largement acceptable par les experts. En outre, une expérience qualitative a été conçue à
partir de données provenant de cochons pour simuler une tâche réelle de relocalisation de
site de biopsie, et a été évaluée par 10 gastroentérologues. Celle-ci a clairement démontré
l’avantage du système de guidage assisté en améliorant le taux de prélèvement de sites de
biopsie de 47,5% à 94%. Une seconde version est alors proposée, utilisant la trajectoire 3D
complète de l’œsophage acquise pendant l’intervention pour synchroniser les vidéos. Cette
version permet d’éviter les erreurs importantes dues à des facteurs humains et permet de
réduire l’erreur globale du système qui est améliorée d’environ 50%.

Ce cadre est finalement étendue afin d’améliorer encore la précision de la relocalisation
à partir d’une sélection optimale de l’image vidéo pré-enregistrée dont le point de vue est le
plus proche de celui de l’image endoscopique courante. Dans ce contexte d’appariement
d’images, l’influence du choix des descripteurs, de l’espace de couleurs, de la présence
d’une étape de filtrage d’images peu informatives et de la modalité d’images (lumière
blanche ou NBI) sont examinés et démontrent qu’une amélioration encore plus significative
peut être obtenue pour la synchronisation des images.
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1.1 A Historical Perspective

Since its inception in early 1800’s minimally invasive surgery (MIS) has become the de-
facto standard today. It reduces the operative trauma for the patient and has significantly
improved postoperative recovery. The earliest descriptions of endoscopic examinations
from the era of Hippocrates described the use of rigid tubes supported by natural lighting
to examine the insides of the patient to perform diagnosis. In 1805 Phillipe Bozzini
developed an instrument for inspecting the bladder and rectum with candle light reflected
by mirrors which kick-started a new era in endoscopic diagnosis. The introduction of rigid
telescopic instruments and improvement in artificial lighting using an incandescent light
bulb (developed by Edison), revolutionized endoscopic diagnosis. But, it was Boisseau
du Rocher, in 1889, who introduced a separate channel in a telescopic instrument, that
established the potential for modern endoscopy and endoscopic surgery was realised. The
journey to flexible instrumentation began in 1881 when Johann Von Mickulicz, designed an
instrument that could be angled at 30 degrees towards its lower third section. However it
was not until 1936 that Wolf and Schindler developed the first semi-flexible gastroscope
which ultimately initiated the field of flexible endoscopy.

Until the 1950’s, a key area in endoscopic technology, the choice of an ideal light
source was lacking. Endoscopic illumination was provided by a small tungsten filament
lamp positioned at the tip of the viewing instrument which was subsequently augmented
by the use of telescopic lenses. This arrangement, however, was less than satisfactory as it
provided poor illumination and introduced significant colour distortion. Heinrich Lamm
had demonstrated in 1930 that fine threads of glass fibres could be bundled together to act
as a conduit for a light source, and that the bundle could be flexed or bent without losing
its transmission capabilities. However, it remains a mystery why this idea languished for
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nearly 25 years, until 1954. Thus, changes in the light source from the distal electric bulb
to the external light unit and Heinrich‘s light-conducting fibreglass technology eliminated
these problems. The first gastrocamera was envisioned by Lange and Meltzing in 1898.
62 years later, the first prototype of the modern day gastroscope was developed at the
University of Michigan, School of Medicine by Basil Hirschowitz, Wilbur Peters, and
Lawrence Curtis. This initiated the modern era of endoscopy which has evolved from
looking through a rigid tube to viewing a high definition image of the anatomy using
a flexible scope on a digital screen. With the invention of flexible instrumentation, the
access to the internal organs with minimal or no external incisions, while negotiating the
natural curves of the human anatomy, paved the way for modern diagnostic and therapeutic
endoscopy; thereby establishing the field of Gastrointestinal (GI) endoscopy. We refer
the reader to [Sliker 2014, Menciassi 2014] which provides a review of flexible and other
instrumentation currently in use or under clinical evaluation for screening, diagnosis and
treatment in the GI tract.

1.2 Endoluminal Endoscopy

The development of flexible endoscopes with fibre-optics has allowed therapeutic procedures
to be performed throughout the GI tract. GI endoscopy is a non-invasive procedure that
allows a endoscopist to look at the lining of the oesophagus, stomach, biliary system,
pancreas, small and large intestine, rectum and anus, using a thin flexible viewing tool called
an endoscope shown in Figure 1.1.

Figure 1.1: Karl Storz Gastroscope.

In GI endoscopy, the tip of the scope is inserted through the mouth or the anus to view
internal structure. Over the years, GI endoscopy has evolved from being a purely diagnostic
tool for endoscopists to a minimally (or non-) invasive surgical tool. The advancements in
high-definition imaging in laparoscopy has been extended to endoluminal gastric surgery.
The word endoluminal literally means “within the lumen” and is synonymous with incision-
less, transluminal and natural orifice transluminal endoscopic surgery. Operations performed
within the lumen of the GI tract using an endoscope, include simple procedures such as
foreign body removal, dilation of strictures, and excision of polyps, first performed through
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rigid endoscopes in the early 20th century. Endoluminal procedures have since combined
the techniques of flexible GI endoscopy with MIS to provide therapeutic treatment of
diseases such as gastro-oesophageal reflux disease (GORD), morbid obesity, ablation of
pre-malignant tissue etc. Endoluminal approaches are also being used in conjunction with
laparoscopy to drain pseudocytes and necrosis of the pancreas and to excise stromal tumours.
Likewise, a new generation endoluminal surgical techniques such as, transanal endoscopic
microsurgery, transgastric endoscopic surgery etc., are being investigated. The use of
endoscopic ultrasound has enabled assessment of nature and depth of penetration of lesions
in the GI tract. With needle biopsy and other techniques its utility has been extended to areas
outside the GI tract, bridging the gap between laparoscopic and endoscopic techniques.

In the upper GI tract, oesophageal varices are routinely treated with banding, injection
therapy, or both, in most cases obviating the need for emergency surgery. Diagnosis and
treatment of oesophagitis, gastritis, chronic inflammation, GORD, and Barrett’s oesophagus
are being routinely performed using endoluminal procedures. Treatments for Barrett’s,
a pre-malignant condition that can lead to oesophageal cancer is being closely studied
under different imaging methods (Appendix A). Figure 1.2 illustrates the oesophagus
under three different endoscopic modalities. For therapy of Barrett’s mucosa, ablation
and excision of the suspicious tissue are routinely performed. However, initial evidence
([Wang 2008a, Fitzgerald 2014]) suggests that regular screening and biopsies have improved

the median survival rate. For colonic endoscopy as well, aggressive resection of polyps and

regular surveillance has decreased the need for surgery [Karlen 1998]. Thus, the need for

routine surveillance using different imaging modalities has become integrated into most
healthcare systems.

(a) (b) (c)

Figure 1.2: (a) Endoscopic view under standard white-light imaging. (b) Endoscopic view
under Narrow band imaging. (c) Histopathology of an extracted tissue sample Source: http:
//pathology2.jhu.edu/beweb/fig1.htm. All images are from the human oesophagus.

1.3 Gastrointestinal cancer

GI cancer refers to malignant conditions of the GI tract and accessory organs of digestion,
including the oesophagus, stomach, biliary system, pancreas, small and large intestine,
rectum and anus. The symptoms relate to the affected organ and can include obstruction
(leading to difficulty in swallowing or defecating), abnormal bleeding or other associated

http://pathology2.jhu.edu/beweb/fig1.htm
http://pathology2.jhu.edu/beweb/fig1.htm
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problems. The diagnosis usually requires endoscopy to allow, biopsy of the suspicious
tissue. The treatment depends on the location of the tumour, as well as the type of cancer
cell and whether it has invaded other tissues or spread elsewhere, which then determines the
prognosis. Such procedures often lead to regular surveillance to be performed on patients,
which motivate the need for additional navigational aides. Surveillance of pre-malignant
conditions, refers to endoscopic follow-up of individuals who are at an increased risk for
malignancy or in whom a neoplastic lesion has been identified and removed [Hirota 2006,
Laine 2015].

1.4 Guidance in Endoluminal Interventions

Flexible endoscopic interventions are often impeded by the difficulty to orient in the endo-
scopic view. This is due to the small field of view, the inhomogeneous illumination and the
deformation of organs in the presence of complex movements. This presents difficulties for
the orientation and localization of target structures. The rationale for a guidance platform
is to be able to provide the endoscopist with adequate visual feedback about the location
and orientation of the endoscope in order to improve instrument navigation and facilitate in
the recognition of anatomical structures. It has been proven to have statistically significant
benefits in enabling smooth navigation and increased confidence during the procedure
[Córdova 2013, Fernández-Esparrach 2010, Azagury 2012].

Several methods for navigation in laparoscopic procedures have been presented in the
literature; Baumhauer et al. [Baumhauer 2008] reviews some of these methods. A more
recent review of methodologies in urological procedures is presented in [Rassweiler 2014].
Most of these techniques use registration between an alternate intra-operative imaging such
as intra-operative ultrasound or CT in combination with an existing pre-operative model. The
most significant challenges for navigation in endoluminal endoscopy are; (a) Pre-operative
imaging is seldom available; and is usually not sufficiently discriminative to identify the sus-
picious tissue structure that the GI experts require. (b) In cases where pre-operative imaging
is performed, the deformation in the GI tract during the surgery, relative to the condition
at the stage of pre-operative imaging, makes localization quite challenging. (c) Tracking
of flexible instrumentation, which is necessary to combine with any pre-operative data, if
present. (d) Furthermore, the use of a flexible scope prevents application of traditionally
used optical tracking techniques. There are several commercially available navigation
systems in laparoscopic surgery, for example, BrainLab for neurosurgery, CAScination for
hepatic surgery, PercuNav for interventional radiology and HipSextantTM for orthopaedic,
to name a few.

For flexible endoscopy, alternate tracking platform have been employed; in [Mori 2007,
Leong 2012, Grand 2011] the authors have used registration with pre-operative CT using
an electromagnetic tracker for guidance in bronchoscopy. It has also been developed into
a commercial product SPiNView® by Veran technologies. Olympus has pioneered the
inclusion of electromagnetic sensors in the colonoscope called ScopeGuide®. However,
their device is limited to providing guidance to avoid loops during the procedure and it’s use
has been restricted to clinical studies thus far. But, there exists no commercially available
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navigation platform for GI procedures.
Owing to the fact that many endoluminal interventions follow dedicated guidelines,

calling for systematic surveillance and biopsy; navigation in this context can be differentiated
as, “Intra-operative” (during a single surgical intervention) and “Inter-operative” (between
two surveillance interventions). Besides the traditional navigational guidance, two very
important paradigms exist in inter-operative methods; (1) Biopsy site re-localization: to
reposition the endoscope at a previously biopsied site, during a follow-up endoscopy;
(2) Temporal differential surveillance: to perform a comparative assessment of tissue
evolution between two surveillance endoscopies for an informed diagnosis. A detailed
description is provided in Section 2.3. The challenge in the inter-operative methodologies
require the tackling of both the above mentioned navigational issues in the presence of
important clinical hurdles (Section 2.5), whereas, intra-operative methods deal only with
biopsy site re-localization. These two paradigms form the chief aspects of navigational
guidance for endoluminal procedures. Providing a solution in this context is one of the
motivations for this thesis.

1.5 Objectives of the thesis

This section identifies the main goals proposed to be achieved in this thesis. The next section
then provides the connection between these objectives and the organization of the thesis by
chapter.

1. To provide an initial proposition for a navigation system for endoluminal surgery,
without using a pre-operative model. The proposed solution uses an electromagnetic
tracking system. The characteristics of the approach are its ease of set up and
integration with the clinical environment. Additionally, the approach must be invariant
to the endoscopic modality employed during the procedure.

2. Development of an interface to suit the GI clinical workflow and enable a clear
understanding for its users. This is significant, because, in order to fit into the clinical
workflow, the information provided must utilize the existing tools in GI procedures.

3. Performing a complete quantitative and qualitative analysis of the system, to provide
a conservative margin of error in live cases that is quantifiable for the user.

4. Exploring the extent to which the image based relocalization approaches presented in
the literature, are applicable for endoluminal procedures and to justify the need for an
EM based solution. Then, extending the initial proposition from item (1) in order to
perform a constrained image based navigation.

1.6 Manuscript Organization

• Chapter 2 begins with a study of the clinical conditions in upper and lower GI pro-
cedures, that use surveillance based methodologies for long-term treatments. By
analysing the various scenarios, the rationale for relocalization is identified. Further
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review of the literature, revealed two solutions to the relocalization problem. Studying
the specifics of these solution methodologies, determined the various challenges
encountered and the shortcomings of the existing methods for solving them. This
motivated the need for proposing an alternate approach to relocalization based on
the electromagnetic tracking system (EMTS), which is presented in Chapter 3. Fur-
thermore, discussions with clinicians and a careful analysis of the problem domain,
identified, two important paradigms of relocalization from a technical standpoint.
These, in turn provided the guidelines for development of the desired software inter-
face to be presented to the clinicians.

• Chapter 3 realises the conceptual model presented in 2; describing the various ele-
ments of the system design and set up for using an EMTS. It introduces the notion of
“recording an intervention”, to be used in the proposed framework and builds the re-
quired mathematical notation for the rest of the thesis. Broadly speaking, the proposed
methodology, aims to provide inter-operative video synchronization between two
surveillance procedures performed at different times on the patient. In this context,
the application of inter-operative registration is explained and a approach using three
landmarks is presented. Using the two paradigms of relocalization introduced in
Chapter 2, this chapter, then describes the design of, a first version of the software
interface to be presented to the clinician during an intervention.

• Chapter 4 performs the evaluation of the proposed system described in Chapter 3.
The purpose of these evaluations is to assess the performance of the system both
quantitatively and qualitatively. This chapter begins with a careful analysis of the
various sources of uncertainty in the system, followed by a series of experiments
to empirically measure them. These measurements were used to generate synthetic
data-sets for the first set of quantitative evaluations. A second set of experimental
evaluations were performed on interventions using pigs. Both these experiments
compute the error in average depth during relocalization inside the oesophagus, as
the reported metric to measure the system’s performance. Then, a set of experiments
to quantify the subjective assessment of the clinical experts using the proposed
conceptual and software framework is presented. The experiments in this chapter
demonstrated benefit to the end user.

• Chapter 4 computed the error in relocalization caused by uncertainties in the system.
In extreme cases, due to human factors or otherwise, large error values were ob-
served. This motivated the need for an improvement in the inter-operative registration
approach, which is the focus of Chapter 5. The approach in this chapter extends
the 3-point inter-operative registration, discussed in Chapter 3 to use the complete
oesophagus trajectory, and then comparing the results to demonstrate an improvement
in performance, even in extreme cases.

• Chapter 6 extends the methodology presented in until Chapter 5, in which the relocal-
ization was performed by video synchronization; only used the information obtained
from the EMTS. This chapter highlights that such a video synchronization, may not
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always provide a qualitative visual match from a GI expert’s point of view. This
could be due to a difference in view-point of the synchronized image or due to an
image being uninformative. To alleviate this, the available image information must
be utilized. Hence, this chapter reviews the application of computer vision concepts
in the GI endoscopy literature for scene understanding and matching; in order to
identify a few key methods that would be compared in 7 for an image based video
synchronization.

• Chapter 7 follows the discussion in Chapter 6 and introduces the concept of “view-
point” selection, using inter-operative image matching. Broadly, a constrained scene
matching framework, extending the work-flow presented in Chapter 3 is proposed.
It draws on the techniques selected in Chapter 6 to firstly, propose an alternate
approach to detection of uninformative frames and secondly, provide a view-point
match for inter-operative relocalization. Experiments conducted using images from
interventions recorded on 7 patients indicated that, the constrained image-based
match provided a significant improvement in video synchronization’s qualitative
visual match score.

• Chapter 8 summarizes the thesis, followed by an analysis of perspectives on the
proposed framework and a discussion on the possible extensions for future research.





Chapter 2

Analysis and Problem Statement
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The previous chapter indicated the lack of a commercially available guidance platform
for endoluminal endoscopy and highlighted the importance of regular screening in GI
endoscopy. This chapter further describes the clinical context for a navigational system to
aide in such surveillance procedures. Specifically, the focus here is on two pathological
conditions: (1) Oesophageal adenocarcinoma and; (2) Colorectal cancer. The context for
surveillance endoscopy is explained; describing the need for a navigational platform that
can provide inter-operative relocalization.

Sections 2.1 and 2.2 present the various pathological conditions in GI endoscopy that
demand periodic surveillance. Section 2.3 discusses the rationale for relocalization in such
procedures. Section 2.4 reviews the state of the art and Section 2.5 presents the primary
challenges in the context of “inter”-operative relocalization. Then, in Section 2.6, there is a
presentation on the use of electromagnetic tracking in clinical applications and finally there
is a brief overview of the proposed approach, based on the problem analysis.

2.1 Oesophageal Adenocarcinoma

There are two primary types of oesophageal cancers: squamous cell cancer and oesophageal
adenocarcinoma (OAC). Squamous cell cancer occurs most commonly in people who smoke
cigarettes and drink alcohol excessively. Whereas, OAC occurs most commonly in people
with gastro-oesophageal reflux disease (GORD). The latter condition has seen an increase in
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frequency in the last two decades. GORD is a benign complication caused when the stomach
acid escapes into the lower part of the oesophagus. When this disorder becomes a chronic
condition, it can lead to changes in the oesophageal lining, causing the tissue to resemble the
intestinal lining. This pathological condition is termed as Barrett’s oesophagus (BO). The
British society of gastroenterology provides a working definition of BO [Fitzgerald 2014]:

BO is defined as an oesophagus in which any portion of the normal distal squa-

mous epithelial lining has been replaced by metaplastic columnar epithelium,

which is clearly visible endoscopically (≥ 1cm) above the gastro-oesophageal

junction and confirmed histopathologically from oesophageal biopsies.

Several studies have indicated a direct link of BO with OAC. OAC appears to arise from
the Barrett’s mucosa through progressive degrees of dysplasia [Conteduca 2012, Evans 2012]
observed in the cells of the lower oesophagus as shown in Figure 2.1. The possibility of
being able to perform staging of the precancerous tissue, provides room for early diagnosis
and targeted treatments, avoiding emergency surgical interventions such as oesophagectomy.

Figure 2.1: Progression of dysplasia in the oesophagus. The observation of many stages
provides room for early detection and treatment.

The presence of BO is associated with increased risk of developing OAC. Adeno-
carcinoma in BO develops in a sequence of changes, from non-dysplastic (metaplastic)
columnar epithelium, through intermediate-grade, low-grade and then high-grade dysplasia
(precancerous change detected microscopically) and finally into OAC. This makes early
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Figure 2.2: Seattle protocol based quadrant biopsies.

detection and treatment a possibility through surveillance. The guidelines [Wang 2008b]
prescribe different levels of surveillance intervals depending on the degree of dysplasia, with
a minimum of two surveillance endoscopies with biopsy per year. According to the Seattle
protocol [Levine 1993, Levine 2000] a typical surveillance procedure involves taking four
quadrant biopsies every 2 cms towards the distal end of the oesophagus and in suspicious
regions. The biopsied tissue is sent to the pathology for evaluation. For most treatment
procedures involving high-grade dysplasia, a 3-month follow-up for 1 year and an yearly
follow-up thereafter is recommended. With the introduction of new imaging modalities
(Appendix A), in-vivo evaluation of the tissue is now possible.

2.2 Colorectal Cancer

All colorectal cancers (CRC) develop from dysplastic precursor lesions. This is true either
in the presence of a predisposing factor such as in inflammatory bowel diseases (IBD) or
lack thereof, with lesions occurring sporadically. The fact that there is a pre-malignant
phase in CRC, allows a window of opportunity for early detection and cure through planned
surveillance. Macroscopically the shape of lesions observed in the colon have been classified
as follows [Laine 2015, Inoue 2003];

1. Visible dysplasia: Dysplasia identified on targeted biopsies from a lesion visualized
during colonoscopy.

(a) Polypoid: Lesion protruding from the mucosa into the lumen ≥2.5 mm Figure
(a) and (b).

i. Pedunculated: Lesion attached to the mucosa by a stalk

ii. Sessile: Lesion not attached to the mucosa by a stalk: entire base is con-
tiguous with the mucosa
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(b) Non-polypoid: Lesion with little (<2.5 mm) or no protrusion above the mucosa
Figure (c)-(f).

i. Superficial elevated: Lesion with protrusion but <2.5 mm above the lumen
(less than the height of the closed cup of a biopsy forceps)

ii. Flat: Lesion without protrusion above the mucosa.

iii. Depressed: Lesion with at least a portion depressed below the level of the
mucosa.

(c) General descriptors

i. Ulcerated: Ulceration (fibrinous-appearing base with depth) within the
lesion.

ii. Borders

A. Distinct border: Lesion’s border is discrete and can be distinguished
from surrounding mucosa.

B. Indistinct border: Lesion’s border is not discrete and cannot be distin-
guished from surrounding mucosa.

2. Invisible dysplasia: Dysplasia identified on random (non-targeted) biopsies of colon
mucosa without a visible lesion.

(a) (b) (c) (d) (e) (f)

Figure 2.3: Macroscopic classification of lesions in the colon: (a) Polypoid pedunculated,
(b) Polypoid sessile, (c) Non-polypoid flat, (d) Non-polypoid depressed, (e) and (f) Non-
polypoid Elevated. Source: [Soetikno 2008].

In some CRC where the dysplastic precursor lesion is of polypoid type; polypectomy is
performed and the CRC risk is localized. In contrast, for patients with long standing IBD,
dysplasia can be polypoid or flat, localized or multi-focal and, once found, marks the colon
at high risk for CRC [Rembacken 2000, Soetikno 2008]. In addition, these types of lesions
are significantly more difficult to identify, which makes the surveillance procedures, tissue
characterization and disease evolution in IBD more challenging. The typical surveillance
protocol involves endoscopic mucosal resection (EMR) of the suspicious regions and
biopsies in the surrounding mucosa along with biopsies every 10 cm. The guidelines
[Lieberman 2012, Lutgens 2008] prescribe repetition of surveillance endoscopy at least
once every 1-3 years in moderate to high risk patients.
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2.3 Rationale for Relocalization

Broadly, the relocalization in endoscopic procedures can be classified as; (1) “Intra”-

operative (IAO) relocalization methods focus on tracking and mapping the biopsy sites,
as they move in and out of the field-of-view of the endoscope frame, during a single
intervention. This is to enable the GI expert a global view of all the biopsy locations during
a single procedure. (2) “Inter”-operative (IRO) methods, on the other hand, aim to provide
guided navigation between two surveillance endoscopies. Relocalization in surveillance
endoscopies can be considered to serve two main purposes; which are discussed in the
following subsections.

2.3.1 Biopsy Site Relocalization

This is the process of finding the biopsy sites either during the same intervention or those
from an earlier diagnostic endoscopy, which were identified as suspicious during patholog-
ical analysis. Although the use of advanced imaging techniques has improved detection
of suspicious regions; during a follow-up inspection, the GI specialist may be required to
locate the previously biopsied or surveyed locations precisely with limited prior knowledge.
Typically, the GI specialist uses the scale markings on the endoscope, to return the scope to
previously surveyed region. For oesophageal procedures this distance is measured from the
mouth (in trans-oral) and nasal opening (for transnasal endoscopy). In colorectal procedures
the distance is marked from the anus. This information can be highly unreliable, especially
when relocating previous biopsy sites and while using microscopic imaging devices such
as CLE or OCT. Due to the lack of deterministic tools for providing such inter-operative
relocalization, the GI specialist has to survey or biopsy a large mucosal region in the ab-
sence of clear markers on the tissue, which prevents targeted treatments. In both upper
and lower GI procedures, relocalization is performed based on the clinician’s experience,
prior anatomic description and identification of tissue scaring. In colorectal procedures an
additional marker using tattoo ink injection can be performed [Cho 2007]. However, this
approach has its disadvantages; (1) Ink fades over time after several months; (2) Tattooing
is an invasive procedure and damages the tissue; and (3) It is used mainly post-EMR and
not a recommended guideline for all surveillance procedures.

2.3.2 Temporal Differential Surveillance

Visualizing the temporal changes in the tissue structure of the oesophagus or the colon
is a significant challenge. Even in the presence of sufficient anatomical information (or
tattoos), allowing localization during follow-up surveillance procedures, the clinician does
not have access to an approach to visually compare the temporal changes in the tissue
structure. This limits the clinician’s ability to effectively track the disease evolution, which
is an important goal for surveillance endoscopies. It is especially significant since, there
is a considerable misdiagnosis owing to the lack of clear understanding of diseased tissue
appearance [Wang 2013b, Lieberman 2012]. In addition, the anatomic location of the
diseased tissue may be significantly correlated with risk of cancer [Triantafillidis 2009];
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making it important to augment the current endoscopic procedures with knowledge from
previously conducted surveillance endoscopies.

From the medical application view-point, this thesis aims to introduce a new framework
for “inter”-operative relocalization for flexible endoscopy. From the discussions in Sections
2.1 and 2.2 it is clear that many GI protocols involve regular surveillance. Thus, there is a
need to provide additional tools for navigational guidance in these procedures. In addition,
inter-operative relocalization for endoscopic procedures should aide the endoscopist not only
in biopsy site relocalization (BSR), but also in providing temporal differential surveillance
(TDS) defined earlier in this section. This manuscript focuses on the relocalization in
oesophageal interventions. The oesophagus was chosen as the target organ since; (1) It
is relatively fixed on both ends and hence, does not exhibit strong deformation unlike the
colon; (2) and the external anatomical landmarks can be used for providing inter-operative
registration which will be discussed in Section 2.6. (3) In addition, the clinical protocols
for oesophageal surveillance are fairly well laid out as opposed to colonoscopic procedures,
which are subject to change based on the disease condition and experience of the GI
specialist.

2.4 Current solutions

Following the identification of the two important paradigms of relocalization in surveillance
procedures this section presents the state-of-the-art on the techniques published in literature
for two types of tasks depending on when the relocalization is actually performed.

2.4.1 Intra-Operative relocalization

The IAO based approaches as defined earlier in Section 2.3 focus on detecting, tracking
and localizing biopsy sites during a single procedure. Primarily, these approaches focus
on BSR. One of the first methods in IAO relocalization, was published by Allain et al.

[Allain 2009, Allain 2010]. In their approach, the authors proposed to compute feature points
in scale-space around the biopsy location and then extracted descriptors for these points using
scale invariant feature transform (SIFT) for the two endoscopic views to be matched. Then
employing the epipolar constraint, a fundamental matrix was computed between the two
views, that mapped the biopsy site to facilitate re-targeting. In [Allain 2012] a framework
for characterizing and propagation of the uncertainty in the localization of the biopsy
points was presented. Mountney et al. [Mountney 2007] performed a review of various
feature descriptors applied to deformable tissue tracking and in [Mountney 2006] proposed
an Extended Kalman filter (EKF) framework for simultaneous localization and mapping
(SLAM) based method for feature tracking in deformable scene, such as in laparoscopic
surgery. This EKF framework was then extended in [Mountney 2009] for maintaining
a global map of biopsy sites for endoluminal procedures, intra-operatively. The authors
presented an evaluation of the EKF-SLAM on phantom models of stomach and oesophagus.
Giannarou et al. [Giannarou 2009] presented an affine-invariant anisotropic region detector
robust to soft tissue deformations. This was used by [Atasoy 2009] along with SIFT
descriptors. The feature matching problem was then modelled as a global optimization of
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an Markov Random Field (MRF) labelling. Recently, Ye et al. [Ye 2013, Ye 2014, Ye 2016]
addressed the biopsy site re-targeting in three stages. First using the Tracking-Learning-
Detection (TLD) method proposed by Kalal et al. [Kalal 2012]. TLD was used for
tracking multiple regions around the selected biopsy site. Under the assumption that the
regional tissue deformations can be approximated using local affine transformations, a local
homography between matched region centres was estimated. In this way multiple regions
around the biopsy sites are tracked, which were then used for homography estimation and
mapping the biopsy sites. Wang et al. [Wang 2014a] proposed to learn a graph (atlas)
from a sequence of images from several gastroscopic interventions. Considering that the
stomach’s deformation is not large between similar frames, the nodes of the learnt graph
atlas were connected by an estimated rigid transformation. Thus, the mapping of the biopsy
sites from a single (reference) frame to subsequent frames for any given intervention was
reduced to a graph search problem. First, for the reference frame and the moving frame their
corresponding matching nodes in the graph were computed. Using Dijkstra‘s algorithm,
the shortest path between these matched nodes was obtained. Hence, the transformation
between the reference frame and moving frame was obtained as the associated combination
of rigid transforms along the shortest path between the corresponding matched nodes of the
graph.

2.4.2 Inter-Operative relocalization

In contrast, the IRO methods attempt to provide localization between interventions. In
[Atasoy 2011, Atasoy 2012b], Atasoy et al. proposed to formulate the relocalization as
a image-manifold learning process. The method involved, building an adjacency graph
between the images of a surveillance intervention. Normalized cross-correlation was
used as the similarity measure between image frames to compute the adjacency graph.
Then using laplacian eigenmaps decomposition that was initially proposed in [He 2005],
a linear projection matrix was computed. This approximation for projection on to the
manifold was used to compute the low-dimensional representation for all the images in the
intervention. Then, two separate methodologies for performing inter-operative relocalization
was proposed using scene association. In [Atasoy 2012b], the scene association is performed
by computing the nearest neighbour directly over the low-dimensional representation from
an earlier surveillance endoscopy. However, in [Atasoy 2011] a two-run surveillance
endoscopy was suggested, in which a dummy surveillance is initially performed, that is
then used for scene association with the actual surveillance. The authors claimed that the
modified approach in [Atasoy 2011] allowed for scene association in presence of significant
structural changes in the tissue.

[Liu 2014] proposed the use of electromagnetic tracking system (EMTS) for local-
izing the biopsy sites in the stomach. They construct a 3D model of the stomach using
SLAM and map the biopsy points tracked using the EMTS on to the 3D model. The inter-
operative registration was performed by selecting five reference points manually, during
each intervention.

For colonoscopic procedures, the need to provide navigational assistance is substantial.
One of the earliest approaches involved a combination of 3D reconstruction from pre-
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operative CT with endoscopic video known as virtual colonoscopy. The chief aspect of this
involved the computation of optical flow to estimate the ego-motion of the colonoscope. Ego-
motion or visual odometry involves first, extracting features from the image and computing
optical flow fields. Then, using the flow fields, the camera motion would be estimated. In
[Puerto-Souza 2014] the authors presented a comparison of two ego-motion estimation
schemes, supervised and unsupervised. Supervised methods, as shown in [Bell 2013] require
training data to be available in the form of optical-flow measurements and corresponding
camera motion data. Unsupervised approaches, however, used image correspondences
between video frames and multiple-view geometry to estimate endoscope motion, as was
shown in [Liu 2008].

Pre-operative CT scans are uncommon in routine GI endoscopies, as they are not cost
effective. Intra-operative X-rays are sometimes used for guidance, to areas in the GI tract that
are difficult to access, but they do not provide sufficient information for 3D reconstruction.
Theoretically, the first endoscopy can be used to compute a 3D model of the target lumen,
which can be used in the follow-up surveillance procedures. But, the video based 3D
reconstruction in GI procedures is still an open are for research.

2.5 Challenges

This section presents some of the problems associated with the existing methods in the
literature and the various challenges encountered in clinical settings of endoluminal
surgeries which ultimately motivated the direction of the proposed methodology of this
thesis. There are several hurdles involved in both of the relocalization schemes discussed in
Section 2.4. An exhaustive list of these challenges that were identified during the course of
this research is provided below.

Uninformative (UI) Frames: A typical endoscopic exploration lasts for several minutes and
may suffer from large number of uninformative frames, as shown in Figure 2.4. Relocaliza-
tion method requires the robustness to UI frames during the procedure. It should be noted
that seldom are the images completely informative or UI. The presence of fluid in part of
the image or contraction, in only a section of the tissue can give us a frame that is usable but
that which is not completely UI. This is addressed in detail in Chapter 7. It should be noted
that the presence of UI frames affects both IAO and IRO relocalization.

Endoscope and tissue motion: An obvious challenge in IAO relocalization is to accounting
for tissue deformation while tracking and mapping the biopsy sites. Scene recognition in
endoscopic videos is a challenging task, not only due to the tissue movement but also due to
the motion of the endoscope, causing a change in view-point.

Evolution of tissue structure: Surveillance procedures in BO are performed at an interval of
at least 3-6 months. One of the most important constraints as a result of this is the evolution
of the tissue structure due to progression of the disease. There has been no study conducted
thus far, which unequivocally demonstrates the deterministic nature of the image-based
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(a) (b) (c) (d) (e)

(f) Blurred (g) Contact (h) Motion-Blur (i) Contraction (j) Fluid

Figure 2.4: (a)-(e): Informative frames. (f)-(j) Uninformative frames.

methods described in Section 2.4. However, an IRO relocalization must be robust to these
changes in scene understanding. Chapter 6 presents a complete survey of image analysis
methods applied to detection, classification and tracking in GI endoscopy.

Localization of the endoscope: For manual IRO relocalization, the endoscopist uses
markings on the outer sheath of the endoscope to re-position. This can be affected by the
patient position on the table (decubitus lateral or supine) and also by the position and
orientation of the neck, which introduces an additional source of uncertainty.

Large search area: With the introduction of new imaging devices (Appendix A), in-vivo

visualization of the tissue has improved. With devices such as the confocal microscope
and the optical coherence tomography, it is now possible to make an initial diagnosis
before sending tissue to the pathologist. However, the area of exploration using these
devices is in the micro metric range and the area of a typical biopsy is ≈ 0.25 ∼ 4mm2;
whereas, the search area extends over a region of ≈ 450mm2. In presence of uncertainty in
the localization of the endoscope, this area can be larger. This is closely linked with the
view-point problem mentioned earlier. However, owing to a good IRO relocalization, IAO
methodologies can be applied to map the regions of interest to reduce this search area.

Orientation difference: An aspect which has not been clearly identified in IRO literature has
been to account for the orientation difference during relocalization. When IRO relocalization
is performed using video synchronization, the synchronized frames need not be at the same
orientation as the endoscope inside the lumen. Clinically, the visual disparity does not
provide an ideal view for comparison to the GI expert and is an important point that needs to
be clearly addressed. From a technical standpoint, the approaches discussed in Section 2.4.2,
rely heavily on, either the development of orientation invariant global image description or
the estimation of this difference through matched features; which would be hindered by the
challenges discussed previously.
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2.5.1 EMTS in Clinical Applications

The approach presented in this thesis is inspired by the need to be independent of the
assumptions about, the evolution of tissue structure, rotation invariance of descriptor etc. in
image-based methodologies; that were described in the previous section. Moreover, with
the development of different endoscopic modalities, it is essential that the IRO framework
integrates with all of them, without the need for significant modifications. To this effect, an
EMTS based approach for tracking the endoscope in the lumen is proposed here. An EMTS
based method offer a distinct advantage over the optical tracking methods in situations
where line-of-sight is an issue and where flexible instruments are in play such as in the GI
endoscopy. Additionally, multiple EM sensors can be integrated together without significant
increase in the endoscope dimensions. There are several commercial EMTS available
for medical applications: Ascension trakSTAR/driveBAY®, Northern Digital Inc (NBI)
Aurora®, Polhemus Fastrak® and Calypso (Figure 2.5); are a few. EMTS is the only tracker
that enables real-time tracking of objects without the line-of-sight restrictions. This has
permitted its extensive use in MIS applications to provide navigation to reach deep-seated
anatomy.

Broadly, the application of EMTS in clinical procedures can be classified as, (a) In-

terventional radiology: Typically, such procedures are percutaneous. They involve either
obtaining biopsies for diagnosis or ablative procedures for therapeutic treatment. Such as
in, [Grand 2011], the authors performed a clinical evaluation of the EMTS guided lung
biopsies on 60 patients under CT imaging and in [Franz 2012], where a modified ultra-
sound probe fitted with a compact EMFE for navigation and guidance is proposed, also
for percutaneous procedures. (b) Catheter interventions: These are procedures that use
the human circulatory system for guiding the instrument. Tracking of electrophysiological
catheters in cardiological interventions allows the creation of high-resolution spatial maps
of the electrical activity of the heart [Linte 2012, Manstad-Hulaas 2012]. (c) Endoscopic:
In pulmonary and GI procedures, researchers have considered tracking the tip of the scope
using an EMTS to provide accurate localization. This approach has been applied to bron-
choscopy by [Mori 2007, Leong 2012, Grand 2011]. For GI endoscopy, Olympus has
designed a colonoscope (ScopeGuide®) with multiple embedded EM sensors that would
track the position of the tip, and additionally provide the shape of a proximal section of the
scope. (d) Laparoscopic: EMTS has been used in tracking of absolute and relative poses
of laparoscopic ultrasound and video for procedures involving kidney, liver, gall bladder,
lymph nodes etc. In [Jolles 2004] the authors employed EM tracking to perform computer
assisted total hip arthroplasty to improve accuracy of cup placement. EMTS has been used
for navigation in neuroendoscopy [Suess 2001, Peng 2002] as well. (e) Miscellaneous:
There are several other clinical applications where EMTS has been tested for guidance, such
as in the placement of feeding tubes [October 2009, Krenitsky 2011].

Franz et al. [Franz 2014] have provided a comprehensive overview of the application of
EMTS in clinical scenarios. They provide a detailed review of the commercially available
devices and cite various clinical evidence presented in literature, validating the methodolo-
gies. Further research is under-way to design new devices such as the one presented by
[Lucarini 2013] that use wireless capsule endoscope with an EMTS for localization.
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Figure 2.5: Commercial Electromagnetic trackers: (a) Northern Digital Inc Aurora® [NDI ],
(b) Calypso EM tracker [Varian ], (c) Cortrack [Corpack-Medical ], (d) Fastrack by Polhemus
[Polhemus ], (e) Ascension TrackSTAR and driveBAY [Ascension-tech ].

This thesis does not study the GI endoscopic workspace for assessment of adaptability
of EMTS in GI endoscopy. However, it relies on several such studies already conducted on
phantom models and in-vivo in clinical environment. A few of the most significant studies
have been listed here; [Wilson 2006, Frantz 2003, Fischer 2005, Wang 2013a, Lugez 2015,
Cleary 2005, Peters 2008, Yaniv 2009, Krücker 2007, Franz 2014]. It should be noted
that, apart from environment, the complex work-flow of the surgical procedure introduces
additional sources of noise in the usage of EMTS. Since the use of EMTS in the clinical
environment varies depending on the kind of intervention, no fixed evaluation methodology
can be employed. Although some of the above mentioned methods can be employed for
distortion correction, it is out of scope of this work to incorporate these models.

During endoscopic procedures it was observed that the following devices were employed
routinely,

(1) Endoscope: Plastic or Non-ferromagnetic outer sheath with some electronic components
and very low current devices.

(2) Biopsy catheter: also typically with a plastic sheath with a small gauge wire connecting
to biopsy forceps. These are used in between the procedure and will not stay in place to
continuously affect tracking.

(3) Radio frequency ablation probes and Coagulation forceps: These are high current
devices and can affect the tracking. However typically when using these device the
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tracking would generally not be employed and in case it is required to use tracking, the
positioning would be completed using the navigation before using them.

Hence, for the purposes of this application, since the workspace for oesophageal procedures
is limited to about 25× 10× 10 cm3. This is well within the prescribed bounds of the EMFE
specifications, and the distortions introduced during the procedure, can be neglected without
significant loss of quality. Thus no distortion correction measures have been employed here,
however, a complete assessment of it’s effect with other instrumentation in the operating
room must be definitely studied in the future.

2.6 Problem Analysis and Proposed Solution

Let us consider that the intervention performed a few months prior was termed as the
“diagnostic endoscopy” (DE). During the DE procedure several biopsies are taken and
samples sent for histopathological analysis. Depending on the outcome of their analysis,
the patient is asked to return for a repeat intervention. This follow-up is termed as the
“surveillance endoscopy” (SE). Broadly speaking, the proposed approach aims to achieve
video synchronization between the SE, with image frames recorded during the DE or
between two successive SE procedures. This is conceptually inspired, in part, by the
method presented in [Atasoy 2012a]. However, their approach is constrained by the implicit
assumptions made for image-based methodologies, which were discussed in Section 2.5.

To perform video synchronization of two interventions, a correspondence between the
images of these interventions must be made. Over the length of the lumen in the oesophagus,
the tissue texture, is quite uniform and visually does not exhibit strong variation. Thus, using
the image matches to synchronize frames leads to a strong uncertainty and low confidence
in obtaining the right match. To overcome this, the proposed framework includes an EM
sensor that is inserted in the endoscopic channel to track its position in the oesophagus. A
synchronized capture of the pose of the embedded EM sensor and the endoscopic image
frame is performed, to generate a database. So, each captured image has a corresponding
3D pose associated with it.

Considering an ideal scenario, if the DE and SE were performed in succession, without
disturbing the patient and the EMTS set up in the operating room, a 3D position corre-
spondence from the EM sensor trajectory, would directly lead to video synchronization of
SE with DE. However, since typical surveillance interventions are performed 3-6 months
apart, to establish such a correspondence, registration of the EMTS reference frames for the
two interventions must be performed. One approach that was presented in [Vemuri 2013],
involved using the gastro-oesophageal junction (GOJ) as an anatomical landmark, along
with the trajectory of EM sensor in the oesophagus to perform registration.

However, this approach poses difficulties in clinical settings. It requires the expert to
necessarily reach the GOJ first before receiving any guidance. This however is not always
possible; in case of oesophagus stenosis due to a tumour, for instance. It is also a constraint
that since the clinician may come across lesions before reaching the GOJ, and may prefer to
treat them immediately. Additionally, the combined variation in head and neck orientation
introduces an uncertainty that is difficult to model. In fact, the patient is not always laying in
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a supine position and can be set in the lateral decubitus position, depending on the surgical
conditions making the orientation compensation for estimating the 6-DOF registration from
the 3D endoscope trajectory alone unreliable. Hence, an alternative method using two
additional sensors attached to the sternum of the patient is considered, with details provided
in Chapter 3. It will be explained how, the three sensor set up is used to perform IRO
registration.

Two important paradigms of relocalization, were identified in Section 2.3. The impor-
tance of this distinction between BSR and TDS, when providing a software framework
for relocalization, cannot be understated; and this has not been clearly delineated in the
literature. For BSR, the guidance platform requires identification and tagging of the biopsy
sites during DE, thus providing relocalization to specific points in the oesophagus during SE
interventions. Whereas, for TDS, the GI expert must be provided with the synchronization
of the complete endoscopic intervention from DE (that may or may not contain any specific
tags for biopsy sites). It is important to note that the interface difference though subtle adds
substantial value to the expert under varying clinical conditions and will also be discussed
further in the following chapter.
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This chapter is based on work published in [Vemuri 2013, Vemuri 2015b].

This chapter describes the system framework and methodology of the proposed approach
to provide Inter-operative (IRO) video synchronization, using an electromagnetic tracking
system (EMTS). The goal is to provide a seamless integration of the hardware into the
endoscopy suite with minimal additional time for set up. As was briefly described in Section
2.6, the endoscopic intervention is recorded, it is thus important, to clearly identify the
various elements of such a recording, to provide a consistent mathematical structure to
the problem. For the interventions to be synchronized; diagnostic endoscopy (DE) and
surveillance endoscopy (SE), are performed several weeks or months apart, to provide video
synchronization, a global registration between the EMTS reference frames for SE and DE,
must be performed. Additionally, the synchronized frames could have been captured at
different orientations of the endoscope camera w.r.t a reference plane, such as the patient
table. This can happen due to two factors; (a) orientation of the patient (decubitus lateral or
supine); (b) orientation of the endoscope (sensor) in the oesophagus at the synchronized
frames. . This can lead to ambiguity in visual correlation of the scenes for the GI expert.
Thus, an approach to reliably estimate this orientation difference must also be provided.

Section 3.1 describes the components of the system set up and highlights the need for, the
two supplementary sensors that were initially discussed in Section 2.6. Section 3.2 outlines
the description of the various elements recorded during an intervention and lists the notation
that would be used in the rest of the thesis. Section 3.3 depicts the inter-operative registration
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performed for registering the data collected during SE and DE, followed by the approach
to perform video synchronization between these interventions. Section 3.4, discusses the
various approaches to estimate the orientation difference between the synchronized frames.
It also presents the clinical work-flow constraints that were considered before proposing
an approach. Finally, Section 3.5 combines these methodologies into a software interface
and elaborates the subtle differences in the presentation of this information to the GI expert
from the standpoint of BSR and TDS.

3.1 System Setup

The system consists of a Northern Digital Inc (NDI) Aurora® EMTS with three 6-DOF
EM sensors, a titanium arm and a dual channel Karl Storz flexible endoscope as shown in
Figure 3.1(g), while Figure 3.1(e) shows the video interface system. The NDI Aurora EMTS
consists of an electromagnetic field emitter (EMFE) Figure 3.1(b), EM sensors in Figure
3.1(a) and tracker control interface (EMCI) shown in Figure 3.1(c). The Aurora EMFE is
available in two different forms Figure 2.5 (a). The first is a box type emitter, that can be
mounted onto the non-ferromagnetic arm, as illustrated in Figure 3.1(d). The second type
is a flat-bed device which can be placed on top of the operating table such that the patient
lies on top of it. The proposed approach is independent of the type of the device, however
the former device was employed; since it presented the ease of initial integration into the
operating room. The range of the box type EMFE is a cubic region of volume 50 x 50 x 50
cm3. An EM sensor is a copper wire shielded in a rubber sheath of 2mm (diameter). The
EMCI is connected to the EMFE and EM sensors. The EMTS reference frame as established
by the manufacturer, is located on the surface EMFE that generates the EM field. When
an EM sensor is placed in the working volume of EMFE, the EMCI computes its complete
pose (6-DOF) with respect to EMFE. The EMCI can simultaneously track up to 4 (6-DOF)
sensors placed in the working volume of the EMFE. The 6-DOF information provided by
the EMCI is of the form of a 7D vector, comprising of the three position values and four
elements of a quaternion for the orientation in EMTS reference. The EMFE has a blind spot
∼ 5cm from its surface, hence the operating region is suitably adjusted.

Of the three EM sensors, one is inserted into the channel of the endoscope and fixed at
the tip as shown in Figure 3.1(f). The two remaining sensors are used as external anatomical
landmarks on the patient. There are several possible locations for placement of the sensors.
However, two important constraints must be imposed to suit the clinical requirements.
Firstly, that the sensors exhibit minimal movement during the breathing cycle. Secondly,
that the identification of their locations is easily reproducible by the GI expert between two
interventions. Based on these criteria, the jugular notch (or Suprasternal notch) was used as
the primary landmark. Anatomically it is located at the superior border of the manubrium of
the sternum and is between the clavicular heads. Externally it is visible as a large dip at the
base of the neck. It is a stable landmark that stays stationary during a breathing cycle or
when the patient position is changed. Most importantly, it is unaffected by the movement of
the neck during the procedure. The third sensor is placed on the sternum ∼ 10 cm below the
jugular notch. As will be described later in Section 3.3, only the direction which this sensor



3.2. Data Acquisition 25

Figure 3.1: (a) Titanium arm to mount the EMFE; (b) Storz video acquisition interface; (c)
NBI Aurora® EMFE; (d) Storz dual-channel gastroscope; (e) 3 Aurora 6DOF cable tools,
the EM sensors; (f) the EMCI for interfacing the EMTS with the computer.

is placed is important; its exact position from the jugular notch sensor does not affect the
registration.

3.2 Data Acquisition

To perform a recording of an intervention, a simultaneous capture of the video frame from
the endoscope and the corresponding position tracked using the EM sensor in the channel
was performed (shown in Figure 3.3). Practically, this was accomplished by maintaining
a global time-line. The frame-position pair that were closest in this time-line were stored
in the database. It should be noted that the accuracy of the EMTS falls when tracking fast
moving objects. Hence, any data captured from the EMTS above a certain velocity threshold
(10mm/sec, as was suggested in [Frantz 2003]) was discarded.

3.2.1 Notation

Defining I as the recording of an intervention, which is a collection of the following four
items;

1. The trajectory of the endoscopic sensor in the oesophagus T = {PE
i
∈ R3; RE

i
∈

S O(3), i ∈ [1,N]} for N points recorded on the oesophagus trajectory, where; PE
i
=

position and RE
i
= orientation as generated by the EM sensor.
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Figure 3.2: System setup: Placement of sensors, patient position and other device setup in
the operating room.

Figure 3.3: Synchronized capture of data. For each captured endoscopic frame a 6-dof pose
is recorded for the EM sensor placed in the channel of the dual-channel endoscope.

2. A collection of sensor positions for the external landmarks on the Jugular notch (LA)
and the sternum (LB) for each corresponding position (PE

i
) of the endoscopic sensor;

LA,B = {P
A
i
, PB

i
∈ R3; RA

i
,RB

i
∈ S O(3), i ∈ [1,N]}.



3.3. Inter-Operative Registration: Basic Model Using 3-points 27

3. Set of images recorded I = [I1, ...IN] in the oesophagus at each position of the
endoscopic sensor.

4. Tag for the entry, k ∈ [1,N] in T and LA,B, which corresponds to the shortest distance
of the segment PE

i
PA

i
for i ∈ [1,N]. As we move along the oesophagus, the distance

of the point PE
i

from PA
i

first decreases monotonically and then increases. The index k

marks the position at which this distance is a minimum. k identifies a reference plane
(D) formed by the three sensorsD = {PE

k
, PA

k
, PB

k
; ∈ R3} as show in Figure 3.2. The

entry k is computed at the beginning of the procedure. For notational simplicity the
suffix k can be dropped and the closest point is labelled as C. Thus, the reference plane
is represented asD = {PC ,PA,PB; ∈ R3}. D is used for inter-operative registration as
will be explained in the next section.

3.3 Inter-Operative Registration: Basic Model Using 3-points

Considering I1 as the SE and I2 as the DE; the goal is to synchronize the video frames
recorded during I2 with the live intervention I1. In order to achieve this, the reference
frames of the EMTS of I1 and I2 must be registered. This is accomplished by performing a
rigid registration betweenD1 andD2. However, there is an uncertainty in the positioning of
PB

l
and computation of PC

l
for the formation of the plane Dl, l = [1, 2]. Hence instead of

performing a direct point-to-point registration, a patient specific reference frame is computed
using the planeDl at the reference point (PA

l
) as defined below;

Tl ≡ [PA
l ; nl

1 =
̂PA

l
PB

l
; nl

2 = nl
1 ×
̂PA

l
PC

l
] (3.1)

This representation is used to perform a rigid registration (I1 with I2; T ∈ S E(3)). The
registration is performed on-line during the procedure and there are no additional steps
to initialize the video synchronization. T is computed only once, at the beginning of the
procedure. Any significant movement of the patient can be noted from change in Dl; in
such a case k is recomputed and registration would be performed again.

Figure 3.4: Formation of the reference frame for an intervention Il.
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3.3.1 Video Synchronization

After the registration of the reference frames of the patient in I1 with I2, a spatial corre-
spondence between the sensor position in live from T1 ∈ I1 is made with T2 ∈ I2, by
a search for the closest neighbour (in Euclidean space). Let the function for finding the
closest neighbour be denoted by f . Due to small movement of the endoscope tip (yaw and
pitch motion) along the cross-section of the oesophagus, the trajectories are not completely
smooth. If only the Euclidean distance was used in computing the nearest neighbour, it
would lead to false matches along the oesophagus due to the situation observed in Figure
3.6. Globally, the trajectory of the endoscope in the oesophagus is sufficiently linear along
nl

1, computed in Eq. (3.1). Hence to alleviate the false matches during synchronization,

the search space is constrained along nl
1 (= 4mm chosen empirically) using T pro jected

l
as in

Equation 3.2 and as shown in Figure 3.6.

T
pro jected

l
= 〈Tl,nl

1〉 l ∈ [1, 2] (3.2)

Figure 3.5 presents an example result of the synchronization performed on pigs.

3.4 Orientation Difference Estimation

Following the synchronization of frames from (pre-recorded) DE with (live) SE, the image
orientation or the rotation of the camera view-up, about the image centre w.r.t a fixed
plane, such as the operating table could be different for the synchronized frames. The two
factors that could lead to such a situation were explained earlier. Presence of an orientation
difference between the synchronized frames makes it difficult for the GI expert to clearly
identify differences (or similarities) in them. Typically this can be corrected by defining
the ground plane, such as the operating table. It can be computed at the beginning of an
intervention by sweeping, for instance, an EM sensor on the table plane before the procedure
starts. However, there are two clinical work-flow issues that were encountered,

1. This would add an additional step before the procedure which was not acceptable
to our clinicians because, in a typical GI procedure, the patient is wheeled in on the
operating table after which he/she gets into the position before being anaesthetized,
following which the EMFE device is mounted (which means the calibration should
be performed again). Such pre-calibration is viable only if the EMFE is integrated in
the OP table, which is feasible, but still limited by the following point.

2. If a pre-calibration step was performed, it would be dependent on the position of
the patient w.r.t to this reference plane. If that changes (which can happen during a
procedure), the calibration would have to performed again.

Following the IRO registration and synchronization; considering a match for the uth

point {PE
u,1RE

u,1} ∈ I1 and vth point {PE
v,2

RE
v,2} ∈ I2, was obtained. An estimation of the

correction in orientation of image I2
v ∈ I2 w.r.t image I1

u ∈ I1, must be made. Now, using
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Figure 3.5: The figure shows results from interventions performed on pigs. The 1st column
shows the frames from the video frames from a SE, the 2nd column shows the closest match
found from a DE obtained using the video synchronization presented in Section 3.3.1. The
marking made on these images are to highlight the locations that were used by the GI expert
for comparing the matches.

RE
u,1 and R̃E

v,2 (corrected with T from Section 3.3), the residual orientation can be computed
as,
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Figure 3.6: False match using Euclidean distance. The bold green dotted line indicates the
closest matched point using Euclidean distance. However, the actual match is the bold blue
line, which is much further away.

R = (RE
u,1
−1

) R̃E
v,2 (3.3)

The image orientation correction can then be estimated from the roll angle (θc) by
decomposing R into Euler angle formulation. However, this decomposition is not stable
because the estimation of θc depends on the complete decomposition into yaw-pitch-roll.
During an intervention, the endoscope can perform yaw and pitch motion, which would
affect the estimated roll angle, in case of a direct estimation from R. Ideally the effect of
yaw-pitch combination must be dissociated from the estimation of the roll angle (θc). To
achieve this the following approach described below was proposed.

Considering the component vectors of the orientation, RE
u,1 = (nu

x , nu
y , nu

z ) and R̃E
v,2 =

(nv
x , nv

y , nv
z), to effectively estimate the rotation about nu

z by reducing the effects due

to angle between nu
z and nv

z , the projections nv,pro j
x and nv,pro j

y on the nu
xnu

y plane were
computed, as shown in Figure 3.7. Then the roll angle was computed as, θc = (α + β)/2,
about nu

z , as the angles required to align vectors (nv,pro j
x , nv,pro j

y ) with (nu
x, nu

y); where, α
and β are the two independent estimates of θc for the x and y component vectors respectively.
This estimation provides the orientation difference between the endoscope position in live
I1 (SE) and the corresponding match computed in the previously recorded I2 (DE).
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Figure 3.7: Figure showing the approach to obtain roll angle about the endoscope axis
by negating the effects of yaw and pitch motions. We use this for orientation correction
between the two interventions. Note that the orientation difference between nm

z and nl
z have

been exaggerated to explain the point.

3.5 Application Interface

Section 2.3 presented two approaches in which the IRO relocalization can be applicable
in a clinical settings. The subtle differences in the requirements between BSR and TDS,
motivated two separate interfaces that are explained in the following sections, in a form that
fits the GI procedure work-flow. We recall that I1 as the SE and I2 as the DE.

3.5.1 BSR Interface

Biopsy site relocalization or BSR, involves repositioning the endoscope during SE, at the
location of biopsy performed in DE. To achieve BSR, the location of biopsy site must be
tagged in the DE recording. This tag includes, the frame number of the recorded image, its
corresponding 6-DOF EM sensor information and the pixel position of biopsy in the frame.
Tagging, could be performed manually, during the procedure or off-line while reviewing the
recording. This thesis does not present methods to perform automatic tagging of biopsy sites
or identification of abnormalities. [Ye 2013, Mountney 2009, Allain 2012] have presented
methods for automatic detection of optical biopsies, which can be employed in this scenario.
It should be noted that to achieve BSR, only the frames which contain the biopsy would be
necessary.

Figure 3.8 presents a view of the application available to the clinician during the
procedure. There are four parts to this interface;

(a) 3D-View: It depicts the current 3D position of the EM sensors during the live intervention
I1 and the trajectory recorded during DE, I2. The recording for DE intervention
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contains biopsy sites, which are shown as white spheres in the Figure 3.8(a).

(b) Live View: This is shown in Figure 3.8(b), it shows the live endoscopic image {Im ∈ I1 :
I1 ∈ I1} that is seen by the GI expert during the SE.

(c) Synchronized View: This frame shows the image {Il ∈ I2 : I2 ∈ I2} that is synchronized
with the live view. For BSR, since only the images containing biopsy are utilized, the
video synchronization provides the closest corresponding image on the EM trajectory,
that contains the biopsy tag. This view also consists of, a 3D arrow overlaid on the
matching image that indicates the direction in which to move the endoscope to reach
this biopsy site. ’↑’ indicates the biopsy site is further inside the oesophagus, ’↓’ that the
site can be reached by retracting the endoscope. In addition the distance in millimetres,
to this biopsy site, is also shown at the bottom left of this frame. A virtual marker is
drawn on the matched image to indicate the position of biopsy site. This information is
presented in Figure 3.8(c).

(d) Biopsy Map View: A map of biopsies that were recorded during I2 is provided in the
interface as illustrated in Figure 3.8(d). This map is based on a standard format of
reporting used by GI experts to document the biopsies taken during a procedure. It is
an important aspect of the interface since it facilitates plotting the biopsy points in a
context clearly understood by a clinician. The map tells the GI expert, the approximate
depth of the biopsy in the oesophagus and its orientation w.r.t a reference on the patient.
This map also shows the live pose of the endoscope during I1. The following section
describes in details the construction of this map and the approach to incorporating the
orientation information in it.

3.5.1.1 Biopsy Map Construction

The biopsy map consists of concentric circles, with each annuli depicting regions of depth
of 5cms inside the oesophagus. The circle in the centre is the z-line (gastro-oesophageal
junction or GOJ). During a DE, I2, each biopsy point is first mapped onto the corresponding
annulus. During the course of procedure, when the GI expert navigates to the GOJ, this
information is used to compute the annulus position. The orientation of the biopsy point in
the annulus, denoted by θl

map, is estimated as the roll angle between the patient’s reference
frameD2 and the reference frame of the EM sensor at the biopsy site. The approach similar
to one presented earlier in Section 3.4 is employed, in which, the EM sensor reference
frame is projected onto the patient’s reference frame at D2. Figure 3.8(d) illustrates the
final outcome. Observe that the smaller black circles (marked 1-4) indicate biopsy sites
performed during I2.

Now during SE, since the two interventions have been registered; to map the live position
of the endoscope, the location of GOJ from I2 is used. If a biopsy site exists in this region
that is closest to the live endoscope position (within a radius of 25mm), it is highlighted
by a change in colour. Also, since, D1 and D2 are perfectly aligned, the live orientation
θm

map is estimated in the same way using D1, as was described earlier. Assuming that the
closest biopsy site is the required target to be reached, the orientation difference between the
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synchronized frames becomes, θc =
∣∣∣θl

map − θ
m
map

∣∣∣. As the GI expert rotates the endoscope
inside the lumen, θc → 0 and the live view Im

1 is aligned to fit the matched view Il
2.
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Figure 3.8: The Biopsy site relocalization application view presented to the GI expert. (a)
Frame indicating the 3D view containing the trajectory of the sensor in the oesophagus.
(b) Live video frame from the endoscope. (c) The corresponding matched image from a
previous intervention. (d) Displays the map of biopsy sites from intervention I2 in dark
black circles and the current position and orientation of the endoscope in the oesophagus by
bright green circle.

3.5.2 TDS Interface

Temporal differential surveillance or TDS, on the other hand, involves performing a compar-
ative assessment of tissue evolution between DE and SE for an informed diagnosis. The
goal is to provide the GI expert with the option to do complete review of the anatomy, to
observe temporal changes in the tissue all along the oesophagus (in this particular case).
In such situation, no special tagging is necessary. The decision of determining the tissue
structural changes is deferred to the GI expert’s judgement.

The recording for TDS involves capturing all the frames during the intervention. Video
synchronization is performed following the approach presented in Section 3.3, with every
frame in I1 matched to its closest neighbour in 3D oesophagus trajectory to frames in I2.
The same four views are provided for TDS that were identified for BSR, with the following
differences; (a) the 3D-View does not include any tagged biopsy sites; (b) the Synchronized

View, does not have any arrow or distance measure indicators to guide to a specific location
in the oesophagus; (c) the Biopsy Map View also does not contain the locations of the biopsy
sites. For TDS, instead of matching the orientation to a biopsy site, the view-up indicated
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in the map points to the orientation of the synchronized frame and the green dot shows the
orientation of the live-view w.r.t the synchronized frame. This was calculated in the Section
3.5.1.1 and denoted by θc.

4

1

2

3

(b)

(d)

View-up

Live

(c)(c)
Synchronized

Frame
Live View

External LandmarksCurrent Endoscope 

Position

(a)

Figure 3.9: The temporal differential surveillance application view presented to the GI expert.
(a) Frame indicating the 3D view containing the trajectory of the sensor in the oesophagus.
(b) Live video frame from the endoscope. (c) The corresponding synchronized image from
a previous intervention. (d) Displays indicates the orientation difference calculated between
the live image and the synchronized frame from I2 using a bright green marker which
rotates as the value of θc changes.

3.6 Conclusion

This chapter has provided a complete overview of the proposed framework to provide IRO
relocalization using EMTS as part of the solution. The method discussed is independent
of the image information captured during the intervention and can be applied to any of
the imaging modalities reported in Appendix A. The proposed system provides a generic
guidance platform that is usable in any flexible endoscopic procedures, that require relocal-
ization. The system set-up is quite straightforward, it works in real-time (trajectory matching
∼ 100Hz), can be used with minimal change to the operating room protocol. Moreover,
because the system set up and methodology allows the data to be reusable, the recordings
can be shared between GI specialists without loss of information. Since, the proposed
method does not rely on the quality of images, it is robust to the typical endoscopic image
artefacts for IRO comparison. The IRO registration framework presented here uses a basic
model using a reference frame and a point. Figure 3.10 summarizes the work-flow presented
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in this chapter by indicating the various components discussed.

Figure 3.10: This figure summarizes the approach presented in this chapter as a flowchart.

The following chapter will present a complete evaluation of this system framework.
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This chapter is based on work published in [Vemuri 2015b].

Chapter 3 presented a new approach to inter-operative relocalization problem. The
characteristic of the proposed method over existing ones is the integration of an EM sensor
at the flexible endoscope tip, so that the endoscopic camera depth inside the oesophagus
is obtained in real-time during surveillance endoscopy (SE), allowing one to retrieve and
display an image from a previous diagnostic endoscopy (DE) or another SE, at the same
depth. The application of this concept, to two relocalization scenarios of BSR and TDS was
presented.

To be clinically applicable, it is important to study and evaluate the performance of the
proposed system. Hence, in this chapter a set of quantitative and qualitative experiments are
proposed. To begin with, the system is carefully analysed to identify the various sources of
error. Using a Gaussian model, synthetic data is generated to analyse the maximum bounds
for the synchronization error. Then using real-data from interventions on pigs and an optical
tracking system to provide ground-truth, further evaluation is conducted. An error metric
is chosen in a way that is easily comprehensible for the GI expert under clinical setting.
The goal of quantitative evaluation is to correlate the effect of the identified sources of
uncertainty, to the computed error metric. This would establish for the GI expert, the crucial
aspects of the system set up. Finally, to quantify the subjective assessment of clinicians, a
third set of experiments were designed using data from pigs to simulate a real task of biopsy
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site relocalization (BSR). It evaluates from a clinical standpoint if the proposed system
provides improvement for BSR.

This chapter is organized as follows; Section 4.1 analyses and presents an exhaustive list
of sources of uncertainty in the system. Section 4.2 proposes two sets of quantitative evalua-
tions to assess the system performance. It also quantifies the error metrics understandable
by a GI expert. Then in Section 4.3 a subjective assessment of the system with application
to BSR is presented. The experimental results are quantified which indicate a substantial
improvement to the relocalization rate.

4.1 Analysis of Error Sources

To generate realistic synthetic data, it is essential to identify the various sources of error in
the application domain. Careful analysis revealed five main sources of uncertainty in the
proposed system;

(a) In the placement of landmarks (external and internal), which corresponds to the uncer-
tainty in the estimation ofD = {PC ,PA,PB ∈ R3}

(b) Deformation in the patient during the intervention and between two interventions. This
can occur due to change in the posture in which the patient is laying on the table
(decubitus lateral or supine) and also due to the change in the positioning of the neck.

(c) Deformation due to breathing. Typically under general anaesthesia, the breathing is
steady. However, under rare conditions, heavy breathing there can cause extension of
the oesophagus up to 1-2 cms.

(d) Tracking errors due to EMTS, could be as a result of error in calibration of EMFE or
due to distortion caused by instrumentation in the working volume.

(e) Since the endoscope is smaller in diameter than the oesophagus lumen, there is a
positional uncertainty of the endoscope tip in the cross section of the oesophagus.

After analysing the sources of error, this section presents two experiments to empirically
measure these uncertainties which are modelled as Gaussian. The modelling of errors (a)
and (e), are discussed in Section 4.1.1 and Section 4.1.2 respectively. The effect of (b)
would not be significant since the oesophagus does not exhibit longitudinal elongation.
However a more significant effect would be due to the change in the position of the neck.
This however, would not influence the proposed approach, since it does not rely on the
complete oesophagus trajectory. The effect due to breathing (c), is non-linear along the
oesophagus length and is maximum closest to the GI junction. However, this error was
not modelled in the present work; but could be easily incorporated as will be discussed
in Section 4.4. The error (d) due to EMTS tracking has been explored extensively in
[Frantz 2003, Fischer 2005, Yaniv 2009, Wang 2013a] to characterize the distribution of
error in the working volume. However, the effect on the tracking by EMTS is dependent
on the environment and varies non-linearly in the working volume. Here, the volume of
interest of the EMTS is small ( 25 x 10 x 10 cm3) compared to its maximum tracking
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volume. Therefore, the effect of distortions in EM field would be minimal and hence, has
been neglected in the current study. For the synthetic evaluations, errors described by (b),
(c) and (d), have not been modelled. These however, have been implicitly considered in
the real-data and thus, their effect has been studied in combination with (a) during in-vivo

evaluations. Due to the way the ground-truth was defined in Section 4.2.1, the effect of
uncertainty (e) has not be included in the final error computation. However, it would not
significantly impact the analysis, since it only affects the view-point in the oesophagus.

4.1.1 Measurement of Uncertainty inD

The registration of two interventions I1 (SE) and I2 (DE) relies on the registration of their
corresponding reference planesD1 andD2. The uncertainty inD is modelled by measuring
the uncertainty in the positioning of the landmarks at, a) Jugular notch (PA) b) landmark on
the sternum (PB) and c) the closest point on oesophageal trajectory to PA (PC). Since the
external landmark are placed independent of each other, they can be modelled independently
as a normal distribution N(0,Σ). However, the position of the landmark, PC depends on
the sensor at LA and must be verified if its uncertainty is uncorrelated with that of PA. The
experiments for measuring this distribution were sub-divided in two independent steps.

First, for the external landmarks an empirical study was conducted on 18 test subjects.
Each subject was positioned on the surgical table once, in the decubitus lateral position and
the external sensors on the jugular notch and sternum were repositioned 12-15 times by a
GI expert. To average the measurements for all subjects, a third fixed sensor was attached
relative to the sensor at the jugular notch so as to create a platform (as shown in Figure
4.1), that was perpendicular to the subject’s chest, thus, forming a frame of reference at
the jugular notch for the patient. All the sensor positions were then transformed to this
reference frame and the positional uncertainty (ΣPA ,ΣPB) on the landmarks was measured at
this reference frame, for each of the subjects.

In the second step, experiments were conducted on a phantom model of the oesophagus.
After placing the external landmarks, the closest point was estimated on the oesophagus
trajectory in 108 trials. The points were transformed to the reference frame at the jugular
notch so that the computed covariance matrix (ΣPC ) was independent of the position of the
EMFE w.r.t the patient. The process was repeated by repositioning the sensor at the jugular
notch and the sternum sensor. A similar uncertainty matrix was observed in each case, which
led to the conclusion that the uncertainty in the point PC was independent of uncertainty in
PA and PB. The empirically estimated uncertainties are shown below in Equation 4.1;

ΣPA =



8.5 −1.4 −2.43
−1.4 7 −1.3
−2.43 −1.3 12.5

 ΣPB =



14 −6.7 −4.23
−6.7 13.759 5.8
−4.23 5.8 94.5



ΣPC =



26 −1.7 −1.68
−1.7 25 −1.19
−1.68 −1.19 109

 (4.1)

The values of the matrices presented above are in millimetres.
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Figure 4.1: (Left) Using the second sensor at the jugular notch for providing a reference
frame when measuring uncertainty inD. (Right) oesophagus and stomach phantom, used
for measuring uncertainty in the oesophagus cross-section.

4.1.2 Measuring Uncertainty in the Endoscope Tip

An additional source of uncertainty identified in Section 4.1 was the position of the tip of
the endoscope inside the cross-section of the oesophagus. 100 back and forth trajectories
were recorded and 10 regions each of thickness 2 mm, were selected to compute the
uncertainty of points in the chosen cross-sections. The uncertainty of points in this region
was then modelled as a normal distributionN(0,ΣCS). The experiment was conducted on an
oesophagus phantom shown in Figure 4.1.

The estimated uncertainty matrix is; ΣCS =



25.7 −1.52 0
−1.52 22.3 0

0 0 0


The values of the matrix presented above are in millimetres. The above matrix is of

rank-2, since we are interested in measuring the uncertainty in positioning the endoscope in
a cross-section of the oesophagus in a plane that is perpendicular to the direction of nl

1 (the
direction of increasing oesophageal depth).

4.2 Quantitative Evaluation

The quantitative evaluation of the system is performed in two phases; synthetic data eval-
uation and analysis on data collected on pigs in-vivo. Firstly, the empirically estimated
uncertainties in the previous section are used to generate synthetic data as shown in Section
4.2.1. Section 4.2.2 presents the approach to compute the error that is meaningful in the
GI endoscopic context. This error definition is used in evaluations discussed in the rest of
this and the following chapter. Section 4.2.4 describes the steps involved in the quantitative
evaluation on interventions on pigs. In this section it is explained how an optical tracking
system (OTS) is employed to establish the necessary ground-truth.
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Figure 4.2: This figure summarizes the uncertainties computed empirically forD in Section
4.1.1 and cross-sectional uncertainty in Section 4.1.2.

4.2.1 Generation of Synthetic Data

Using the phantom model shown in Figure 4.1, a recording I1 was performed, as explained
earlier in Section 3.2. To generate synthetic data (I2) at a new position, a known trans-
form TGT was applied; that was generated using a random rotation vector and translation
(±1000mm limits) in x, y and z direction to I1. Then, using the estimated uncertainties
N(0,ΣPA), N(0,ΣPB) and N(0,ΣCS ), a noisy version Ĩ2 was created. Let,

[ P̃A
2 = TGT PA

2 +N(0,ΣPA),

P̃B
2 = TGT PB

2 +N(0,ΣPB),

T̃2 = TGTT1 +N(0,ΣCS ) ] ∈ Ĩ2 (4.2)

be the noisy versions of the external landmark positions and the oesophageal trajectory. Now
using P̃A

2 , the new closest point (P̂C
2 ) on the oesophageal trajectory T̃2 was computed. Then,

P̃C
2 = P̂C

2 +N(0,ΣPC ), a noisy version of PC
2 was generated. Finally, for Ĩ2 the new reference

plane D̃2 = {P̃C
2 , P̃

A
2 , P̃

B
2 ; ∈ R3} was obtained. To eliminate any bias in the registration using

D1 and D̃2; Gaussian noise was applied toD1 in the same way as described above to obtain
D̃1. Using this synthetic data, f : T1 → T̃2 is bijective ( f defined in Section 3.3.1), which
provides the necessary ground-truth to estimate the error in synchronization. Seven I1,
interventions were recorded, which were transformed using 30 different TGT . For each
I2 generated by transforming I1, 1500 Ĩ2 samples were generated. Thus, for each base
trajectory I1, 45000 synthetic trajectory matches were computed.
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4.2.2 Error Measurement

To measure the error, the value that is important from a clinician’s viewpoint is the dis-
crepancy in the final synchronization of images. Computing a metric to measure similarity
between matched frames from I1 and Ĩ2 would not yield much information since in real
cases the tissue in the oesophagus may undergo a change due to natural oesophagus muscular
contractions and tissue structural changes due to disease propagation. Error is computed
as the mismatch along the depth of the oesophagus trajectory. As shown in the Figure 4.3,
since T exhibits linearity along n1 (that was computed in Equation 3.1), the 3D Euclidean
position error was projected on to n1, as in Equation 3.2, to obtain the depth error along
the oesophagus, by normalizing the position in the oesophagus in the range [0=Beginning
of the oesophagus, 1=Close to the gastro-oesophageal junction], to obtain uniformity in
different oesophageal interventions.

Figure 4.3: This figure shows the approach to error estimation when the reference planes
are aligned with the world reference frame. The error in-effect becomes the error in depth
inside the oesophagus.

4.2.3 Results

Each I1 is matched with the Ĩ2 synthetic samples generated. From the error measurement
illustrated in Figure 4.4, a consistent bias in the trajectory due to a mismatch along n1 can
be observed. This bias remains fairly constant along the trajectory and was observed to be
on an average in the range (5-6 mm). Practically, this is due to the translational part of the
registration error. The rotational error is small and has a negligible influence on the depth
estimation, whereas translational error along Z has a direct influence on depth estimation, and
mainly depends on the (simulated) error in positioning the landmarks at the jugular notch PA,
the variance of which, along nl

1 was computed as 12.5mm2 in Equation 4.1. When adding
variance on both P̃A

1 and P̃A
2 , a standard deviation of 5mm is obtained, which corresponds

to the reported registration error. Hence, a single point could be studied to understand the
trend of registration error along the trajectory, for the 315000 synthetic samples generated,
for understanding the distribution of error. It can be observed from Figure 4.5 that the error
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Figure 4.4: Absolute value of error along the oesophagus length for each of the 7 I1 trajec-
tories, matched with their corresponding 45000 synthetic Ĩ2 trajectories. A constant offset
was observed which is a result of the error in the translational component of registration.

is within 16 mm in 96 percentile of the cases. The synchronization error observed is within
acceptable limits since in effect it finally corresponds to a manageable variation in image
matches inside the oesophagus Figure 4.6. A ±2cm length in the oesophagus is visible in a
single frame of the endoscope. In the worst case, GI expert would be at the centre of this
region and may have passed the real matched location; which can be easily retrieved by
going back and forth around during the live SE. In Figure 4.4 we observed a decrease on
either ends of the error curve. This is due to the fact that towards the end of the trajectory,
the error due to mismatch decreases, as can be observed from εa, εb and εc in Figure 4.3.
The maximum error observed is about 4.9 cms, corresponds to the largest observed error
in 315000 matches. The error condition illustrated in Figure 4.7 is an unlikely situation to
occur in reality. As it can be seen, the error in P̃C

2 and P̃B
2 are unrealistically large. This

may happen only in situations where the patient is breathing heavily. However, in most
procedures the patients are placed under general anaesthesia and the breathing is very steady.
Hence, this effect would not be encountered in a real scenario.

4.2.4 Evaluation on Real Data

The second phase of quantitative evaluation experiments were performed on data collected
on pigs. To the original set up for data acquisition, discussed in Section 3.1, an optical
tracking system (OTS) was included to provide the necessary ground-truth for recording the
pose of the EMFE. An optical marker M1 was fixed on the EMFE, as shown in Figure 4.8.

This section is organised as follows; firstly the co-calibration of OTS and EMTS is
performed to ultimately estimate the matrix T

M1
EM

, which is referred to as the hand-eye matrix
in robotics literature. The calibration is divided into independent estimation of rotation
and translation. Secondly, using the additional information from the OTS, a description
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Figure 4.5: Error at a single point on the oesophagus length for 315000 synthetic trajectories.

~20mm

Figure 4.6: Approximate distance measure inside the oesophagus translated to displacement
in image space.

of the methodology to establish the ground-truth for the collected data is presented. This
information is then used to compute the error as described in Section 4.2.2.

4.2.4.1 Hand-Eye Calibration

To perform the hand-eye calibration an optical marker M1 is fixed on the EMFE for which
the hand-eye transform T M1

EM
is to be estimated. Mathematically the hand-eye calibration

involves solving the equation AT
M1
EM
= T

M1
EM

B [Shiu 1989]. Where A ∈ S E(3) is the
relative motion of the EMFE and B ∈ S E(3) represents the relative motion of the marker
M1 attached to EMFE. Several approaches have been presented in literature to solve this
[Tsai 1988, Chou 1991, Daniilidis 1999, Barreto 2009]

As explained in [Malti 2010], a simultaneous estimation (of rotation and translation) is



4.2. Quantitative Evaluation 45

-160

-140

-120

-150

-100

-50

0

50

100
100

50

-50
-

0

150

Computed Match

Registered trajectory

Original trajectory

Original Trajectory

with noise

Ground-Truth Match

Query Point

(Noisy)

(Original)

(Post Registration)

Unlikely situations

in real case

Figure 4.7: Case of maximum error of ≈ 4.9 cm. It can be seen that P̃C
2 and P̃B
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that encountered in a real scenario. In this particular simulated case, the error in P̃C
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it to be tending into the patient body and the noise in P̃B

2 causing it to be further away from
the oesophageal trajectory. A registration using these points leads to an error in rotation
along an axis perpendicular to the planeD1 through PA. The final registration causes the
two trajectories to be crossed, leading to larger errors as we move into the oesophagus.

usually error prone. Motivated by their approach, an alternative is proposed by subdividing
the estimation of the T

M1
EM
∈ S E(3) transform in two separate steps. First, for estimating the

R ∈ S O(3) and the second data set for computing the translation t ∈ IR3. Figure 4.8 shows
the set up for performing this calibration. A non-ferromagnetic flat metal strip was used to
fix an EM sensor on one end and an optical marker on the other end.

Estimation of Rotation: For estimation of rotation, the metal strip was translated along
a straight line and, the motion of the EM sensor and the optical marker were captured in
their respective reference frames. From the recorded point clouds, a linear least-squares fit
for lines is computed, that is used to obtain the unit vectors v̂EM, v̂OT ∈ IR3. Then using the
approach presented in [Somani 1987], where each point represents the coordinates of a unit
vector in IR3; an estimation R̂ to align the two sets of vectors was performed. This can be
computed by solving the criterion Equation 4.3 using the approach presented in Appendix
B.

R̂ = argmin
R

N∑

i=1

‖v̂OT
i × (Rv̂EM

i )‖ (4.3)

Estimation of Translation: The platform with the sensor and marker, was mounted onto
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a turn-table as shown in Figure 4.8. This allows both the EM sensor and the optical marker
to rotate about a fixed axis and point in space. Using the arc formed by the EM sensor and
optical marker, a circle ∈ IR3 is estimated by first, least squares fit for the point cloud onto a
2D plane and solving the general equation of the circle in this plane, to obtain the centres
(CEM,COT ) and the corresponding radii of the two circles. Using these, the translation was
then estimated as, t = COT − RCEM. This estimation provided the co-calibration matrix
T OT

EM
. The hand-eye matrix T

M1
EM

was then estimated using T
M1
EM
= T OT

EM
(T OT

M1 )−1. Calibration
was performed using 11 data-sets and averaged to obtain a final hand-eye calibration matrix
T

M1
EMavg

.

v̂OT
i

T OT
EM

M1

EM

T OT
M2

T OT
M1

M2

S 1

OT

S 1

M2

v̂EM
i

T EM
S 1

T
M1
EM

Translation Estimation

Rotation
Estimation

CEMCOT

Figure 4.8: Calibration set up, M1 and M2 are optical markers. S1 is an electromagnetic
sensor. The calibration is performed in two steps; line segments for estimating rotation and
circle for estimation of translation.

4.2.4.2 Establishing Ground-Truth for Real Data

Now the next step to the quantitative evaluation on real data is to establish the ground-truth
by following the steps outlined below;

Step-1 Record trajectory I1 as described in Section 3.2 for the first position of EMFE at
EM1.
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Step-2 Move the EMFE to a new position EM2. Remove and reposition the sensors at
landmarks LA and LB.

Step-3 At EM2 perform a new recording Itmp

2 , which is used to compute the closest point
on the oesophageal trajectory to estimate the reference plane,D2. For this recording
I

tmp

2 , only the reference planeD2 is retained and the rest of the recording discarded.

Step-4 Compute the ground-truth transform from the optical tracker as, X = T
M1
EM

T
M11
M12

T EM
M1

.

Step-5 Using the registration approach presented in Section 3.3 obtain X̂ from registration
D1 → D2.

Step-6 Compute I2 = XI1, which represents the ground-truth.

T OT
EM1

M11

S 11

T
M1
EM1

M12

T OT
M11

EM2
EM1

T
M12
M11

T OT
M12

X

T1

D1

D2

X̂

Figure 4.9: This figure corresponds to discussion presented in reference-to-ground-truth-
real-section. The transformation is applied to the trajectories, T2 = XT1.

To compute the matching error both the trajectories I2 and Î2 = X̂I1 were used and
the matching, f : T2 → T̂2 is again bijective. The synchronization error projected along the
oesophagus trajectory was obtained as in the synthetic case.

4.2.4.3 Results

In the experimental set up, an Atracsys InfiniTrack™ OTS, was employed. The EMTS
and OTS were both configured on a Linux machine (i7 3.2 GHz octa-core processor)
for synchronized capture using a Blackmagic Decklink Intensity pro acquisition card. 8
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recordings were performed (with an average of 200 points in T ) for separate positions of
the EMFE and the pig. Each recorded trajectory was registered and matched with the rest
7 recorded trajectories as described in Section 4.2.4.2. The final matching error along the
oesophagus trajectory is shown in Figures 4.10 and 4.11. The figures indicate that the error
results are comparable with those observed in the synthetic case. It thus indicates that our
model is a reasonable choice and the empirical values of the uncertainties are relevant. A
similar error phenomenon at the beginning and end of the trajectory was observed, as was
previously explained in Section 4.2.2. In 96 percentile of the cases the error computed was
in the range [10.9mm, 13.47mm], which is within reasonable limits as explained in Section
4.2.3.
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Figure 4.10: Each curve represents the mean error along the oesophagus for a trajectory,
when synchronized with 7 other recorded trajectories. The above figure shows the result for
8 such trajectory synchronizations.

4.3 Qualitative Evaluation

This section describes the final set of experiments proposed for qualitative analysis of the
system when applied to BSR relocalization. The evaluation was conducted to compare
the performance of the proposed system against the classical approach currently being
clinically followed. In the classical approach, a GI expert prints a picture of the locations
where the biopsies were performed and notes the corresponding approximate length of
the endoscope inside the oesophagus. For a follow-up procedure, the biopsy site are
approximately relocalized using the endoscope length.

Here, a comparison is drawn between the performance of the proposed system against the
classical approach using 10 gastroenterologists. The evaluation was conducted a posteriori
on data collected from pigs. In order to simulate real conditions, two sets of recordings were
performed in the pig’s oesophagus. The first set of recordings (S1) were performed with
no coagulation markings on the oesophagus tissue. Then, the clinician used a coagulation
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Figure 4.11: Error distribution along the oesophagus trajectory for all 56 trajectory matches
for interventions on pig. This figure consolidates the results of the errors in Figure. 4.10

device to make 12 markings (tags) along the oesophagus lining. The markings corresponded
to a typical four quadrant biopsy performed in any real diagnostic intervention. A second
set of recordings (S2) were performed on the oesophagus tagged with coagulation markings.
Between each recording of S1 and S2 all the sensors were removed and replaced and the
EMFE was repositioned at a new location. For the actual experimental evaluation, each
of the recordings from the first set S1 were used as simulated live interventions, which
would be matched with each of the recordings from S2. Using a test environment built
specifically for qualitative assessment, evaluation data was presented in two phases. The
test environment presented the evaluator with a video sequence from an intervention in
S1, which was navigated using a keyboard interface, to go back and forth on the recorded
images.

In the first phase, the evaluator was provided with a printed picture of all the biopsy lo-
cations taken from S2 with their approximate length inside the oesophagus. As the sequence
was being navigated the approximate distance inside the oesophagus was also presented on
the screen. It corresponded to the length of the endoscope inside the oesophagus, which
was shown as the approximated depth recorded using the EMTS. In the second evaluation
phase, the proposed EMTS based system was used to provide a guided navigation. As the
evaluator navigated the sequence of images from an intervention in S1, a corresponding
matched image was presented from an intervention in S2 as shown in Figure 4.12.

In each phase, the evaluator was asked to select an ROI in the images from S1 where
he/she felt confident about the possible location of the biopsy sites simulated by coagulation
markings, by reviewing the images from S2. To establish the ground-truth, the expert who
performed the original procedures, tagged the ROI in all the image sequences from S1;
where the coagulation markings were made within few minutes after the completion of the
original data collection, by closely reviewing the images from the sequences in S2. By
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Figure 4.12: Interface for qualitative evaluation. Right image corresponds to the simulated
live view. Left image corresponds to the image matched using the EM position. The blue
rectangle is the marking made by the evaluator on the estimated location of the biopsy point
in the simulated live view. The navigation between each frame is done using a keyboard.
The evaluator has to mark on only a single image where he/she expects the coagulation
markings were made in the matched view.

comparing the tags made by the evaluators against ground-truth, the relocalization accuracy
was computed as the number of tags successfully identified by the clinician in 3 separate
trajectory matches between sets S1 and S2. To avoid any bias, both phases of the evaluation
were conducted on different days.

4.3.1 Results

Table 4.1 provides the results of qualitative evaluation of the proposed navigation system by
10 GI experts. As can be seen from the last two rows of the table, the rate of relocalization
accuracy improved for each of the individual experts. It is evident that the proposed system
and approach clearly improves the localized targeting in the oesophagus over the classical
unguided methodology. The GI experts were instructed to mark all the regions which they
could not find with sufficient confidence as “Not Found". Clinically, a “Not Found" marking
would lead to sampling a larger portion of the oesophagus during the SE. It is typically better
if the GI expert marks a region as “Not Found" than localize at an incorrect position in the
oesophagus. Two important goals under clinical settings need to be achieved, to increase the
confidence of the GI expert for IRO relocalization. First, by reducing the number of regions
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that are marked as “Not Found”. Second, to reduce the number of incorrectly relocalized
regions. This poses a greater challenge, because, ideally this number should be zero. It
can be seen from Table 4.1, that, using the classical approach the number of region marked
as “Not Found” were 34 which reduced to 4 using the guided navigation. The number of
incorrectly matched locations decreased from 55 to 3.

In this experiment True positive was identified as a region that was marked as a biopsy
site and was observed as one by the ground-truth. A False positive is, in this case a non-
biopsy site that was marked as a biopsy site. The other conditions in the confusion matrix
are not applicable here, since only the simulated biopsy sites were asked to be identified,
as in any realistic situation. Based on this evaluation criteria, the overall accuracy for
relocalization improved from 47.5% in the classical scenario to 94% using the EMTS based
relocalization and the rate of recall improved from 63.3% to 97%.

4.4 Discussion

Thus far this chapter identified various errors affecting the system performance of the
proposed framework in Chapter 3. The uncertainty was modelled as a Gaussian distribution.
Three separate experiments were conducted to test the performance of the proposed system.
The first experiment, identified the sources of uncertainty in the system; and determined the
extent of noise empirically from the data recorded on 18 test subjects. This was then used to
generate synthetic (but realistic) data. To report the performance, error was characterized to
be the difference in depth (in millimetres) in the oesophagus between a matched image from
DE and simulated live SE.

In the second experiment, data was collected from surveillance interventions on pigs.
Ground-truth was established by using an OTS to record the position of the EMFE between
two surveillance interventions. In the final experiment, an actual procedure was replicated
offline and presented to the GI expert. For doing this, intervention data on pigs was used,
but with biopsy sites simulated by using coagulation forceps. The experts were presented
with the recording of an image from I1 (SE) and I2 (DE). This experiment demonstrated
the clinical relevance of the proposed framework for IRO relocalization. The subjective
assessment was quantified into a confusion matrix, which indicated improvement of the
relocalization performance by reduction in the number of incorrectly localized regions.

Overall, the evaluation experiments provided satisfactory results for GI experts. The
error of magnitude of up to 49 mm was observed in the synthetic experiments. However,
such large errors correspond to the Gaussian tail, which is not expected in practical scenarios
(Figure 4.5 and 4.7). Indeed, it is highly unlikely that the GI expert would position both the
external EM sensors on the patient’s skin with an error above 10 mm. Certainly, the Gaussian
should be truncated to reflect more precisely the true noise on the EM sensor positioning. It
is thus expected that the maximum error that will be encountered should remain less than
15 mm. This expectation is well confirmed by the second set of experiments involving
in-vivo data on pigs and realistic sensor positioning error. It was observed that maximum
error average on 7 data-sets was less than 14 mm (Figure 4.11), which corresponds to an
acceptable visual discrepancy by the GI experts.
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Table 4.1: The above table provides the details of the biopsy sites as marked by 10 clinical
experts (columns). The rows marked B1-B12 indicate the biopsy sites. Each cell (in rows
B1-B12) provides the error in depth (in cms) for identifying a biopsy site by the expert for
the classical approach. The label NF implies the biopsy site was “Not Found" by the expert.
For the synchronization approach only the biopsy sites incorrectly identified or marked NF
have been presented here. The % values indicate the accuracy.

The third set of experiments clearly indicated the benefit to the medical community.
They corresponded closely to the clinical work-flow, and measured the extent to which
the system could help in the task of relocalization of biopsy sites. This experiment also
demonstrated that an approximate depth information (like the markings on the endoscope
shaft) is clearly not sufficient for relocalization. This was observed from the results in
Table. 4.1, that the experts could not retrieve simulated biopsies with the same accuracy, in
comparison to guided navigation discussed in Chapter 3.
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Synthetic experiments were organized to be as close as possible to the realistic scenario,
in terms of noise affecting the process. However, the possible deformation due to breathing
or due to patient repositioning on the table was not modelled. We believe the latter should
have little influence on the system accuracy, since an analysis of the thoracic CT of the same
patient indicated no variation in the oesophagus’s relative shape and position. However, this
should be rigorously assessed; but a first comparison on several patients showed this trend.

The case of a patient taking long and deep breaths, which would result in a large shift
(1 cm or more [Yaremko 2008]) in the relative position of the gastro-oesophageal junction
should not be neglected. Practically however, in GI endoscopy, the patient is always under
general anaesthesia and the breathing is regulated. Thus, we believe that the elongation of
the oesophagus at its distal end would be negligible. Further experiments on patients are
nevertheless necessary, to assess this phenomenon. However, since the proposed approach
uses external sensors on the sternum; by studying the relative displacement of the sensor at
B (Lb), a dynamic model of the oesophagus length, as a function of the relative position of
the sensor PB

i
can be proposed, as in [Hostettler 2007].

The accuracy of EM apparatus can degrade in presence of distortion due to ferromagnetic
equipment. However, in the current application, the equipment is compatible with the EMTS
and no EM tracking errors were observed during a procedure. Additionally, due to the
limited working volume, the extremities of the EMFE workspace are never reached, hence
the EMFE accuracy should remain within 1 mm, as specified by the manufacturer. However,
in some cases when the patient’s size is large, it would be necessary to provide a robust
approach to correcting errors in the EM tracker [Luo 2014, Reichl 2013].

Although the video synchronization based navigational system is already very useful
for the GI experts; a few issues still need to be addressed to reach a complete automated
navigational help.

(a) Oesophagus model: A typical surveillance procedure includes a few densely captured
regions (corresponding to biopsy sites) and many sparsely populated regions recorded
in T . A patient specific model, that would include a smooth trajectory representing the
central line in the oesophagus and corresponding frames with clear lumen visibility,
is necessary to eliminate redundant data and provide seamless video synchronization.
This could be further used to generate patient specific virtual models for training using
simulators. The generation of the oesophagus model will be discussed in Section 5.1.

(b) Improving registration: In addition to using the three landmarks for registration as
discussed so far in this chapter; incorporating a patient specific oesophagus model could
aide as a secondary approach to registration in the presence of errors due to placement of
sensor at LA and LB. This is also necessary for patients who are bulky, when placement
of the secondary sensor accurately can be difficult. Additionally, the sensor LB can
be eliminated from the set up when using the oesophagus trajectory for registration.
However, this would cause an additional delay in the registration, due to the need for
acquiring more points on oesophagus trajectory. Along with an approach to form an
oesophagus model, a more generalized registration using the complete trajectory will
be presented in Chapter 5.
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(c) Scene matching: The navigational guidance discussed thus far presents a matched
image, only in terms of the depth in the oesophagus. However, such an image may not
contain the right view point corresponding to the live-view. Additionally the matched
image could be uninformative. Choosing the image from I2 ∈ I2 in the vicinity of the
match obtained using the EM tracker, such that, the image best matches the live view in
terms of its visual content; is an important aspect that needs to be tackled. A complete
understanding of the visual information affecting the GI procedures will be presented in
Chapter 7.
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It was suggested in the previous chapter that the 3-point approach can introduce error in
registration due to the approximate placement of external sensors at LA and LB. The error
in LA reflects in the translational component along the oesophagus depth and in case of LB,
it takes effect as an error in rotation affecting the alignment of oesophagus trajectories, T
between DE and SE recordings as was shown in Figure 4.7. Such an error is unlikely to occur
normally during a procedure, however, it can be attributed to error in placement of sensors
due to human factors or caused by the displacement of the sensors between the time of their
placement and the patient settling into the right position before intervention. Such a situation
must be detected and appropriate correction must be presented to avoid critical misguidance
during the procedure. In this chapter, an extension to the 3-point registration approach
introduced in Chapter 3 is presented, which uses the complete oesophagus trajectory. A
typical GI endoscopic intervention, contains regions of continuous motion in the lumen and
those containing the highly dense regions of biopsy as shown in Figure 5.1. As was noted in
Section 4.4, generation of a patient specific oesophagus model would aide in providing a
smooth trajectory inside the oesophagus. Using a patient specific model, jumps in video
after synchronization can be avoided and a jitter-free video synchronization can be provided.

This chapter is organized as follows. Section 5.1 presents an algorithm for the for-
mulation of an oesophagus model that is based on point cloud decimation. Section 5.2
reviews the literature on point cloud registration which is used in Section 5.3 to present
the methods selected for comparative evaluation against the 3-Point registration approach
(from Section 3.3). The experiments are described in Section 5.4, indicating that using the
complete oesophagus trajectory improves the overall accuracy of the system by almost 50%
and handles the worst case error scenarios that were encountered during the evaluation in
Chapter 4.
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Figure 5.1: Depicting regions of continuous motion and clustered point clouds representing
locations of biopsy sites.

5.1 Formulation of Model of Oesophagus Trajectory

This section presents a simple approach to formulate an oesophagus model. An important
criteria while formulating this model, is to subsample the points such that, they represent
uniform non-overlapping subsets of the original trajectory. This is necessary to provide
consistent subsampled versions from each new intervention performed on the same patient.
Although, the oesophagus is relatively rigid and fixed at both ends; in noisy versions of the
original trajectory, back and forth movements during endoscopy and contractions in the
oesophageal muscles, introduce deviations which should be smoothed before registration.

Algorithm-1 describes the approach to sub-sample the trajectory. An appropriate value
for r (radius of point decimation) must be selected based on the knowledge that between
swallows (the automatic muscle contractions to smoothly pass the food), the oesophagus
is collapsed, but the lumen can distend to approximately 20 mm in the anterior-posterior
dimension and up to 30 mm laterally to accommodate a swallowed bolus [Kuo 2006]. In
case of a diseased oesophagus, for example, in case of oesophageal stenosis, the diameter
can shrink to less than 13 mm, at which point swallowing solid food becomes almost
impossible. Since the gastroscope has a longitudinal slender shape and there is intermittent
insufflation during endoscopy, an appropriate choice of lumen diameter would be between
18-20 mm.

With the knowledge that the oesophageal trajectory is convex, the line segment joining
the endpoints of the trajectory, can be decimated to obtain a first down-sampled version.
Then using the chosen value of r, firstly a stable centroid of points within the radius r is
established as an initialization of a control point. With each new control point initialized, its
position is optimized under the constraint that its distance from the previous point is 2 × r.
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Figure 5.2 shows the results of the intermediate steps of the oesophagus model generation.
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Figure 5.2: (a) (b) (c) Intermediate steps for the methodology presented in Algorithm 1.

5.2 Registration of Point Clouds

Registering 3D point clouds is an important task in a variety of applications such as,
computer vision, biometrics [Zhang 2009], 3D model construction from multi-directional
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Algorithm 1 Modelling Oesophagus Trajectory

Require: T (Oesophagus trajectory point cloud). r = Radius for final constrained decima-
tion.

1: function FitCurve(T , r)
2: C ← ∅ ⊲ Initialize control points
3: n + 1 =number of anchor points.
4: Compute c0 and cn anchor points as extremities of T .
5: Generate ck = (n − 2) equispaced linear points between c0 and cn.
6: Assign C = [c0, ..., cn].
7: C ← nearest neighbour in T ∀ C.
8: C ← mean of associated nearest points in T for each C.
9: Eliminate anchor points C not linked to their mean.

10: Redistribute points using linear interpolation.
11: ν← ∅ and i = 0 ⊲ Initialize constrained control points.
12: while size_of (C)>0 do
13: Append C(0) to C
14: while ε > 1e − 3 do ⊲ Loop to initialize control point.
15: κ ← C(i)
16: γ ← ‖C(i) − C‖2

17: Ω = C(γ <= r ∗ r)
18: C(i)← median(Ω)
19: ε = ‖C(i) − κ‖2

20: x0 ← C(i) ⊲ Initial condition for optimization.
21: if i > 0 then ⊲ Optimize current point to be placed at distance 2*r.
22: Ω = C(γ <= 4 ∗ r ∗ r).
23: C = C − (C ∩Ω)
24: Solve:

arg min
x

N∑

i=1

‖x −Ω‖2

sub ject to : ‖x − C(i − 1)‖2 = 4 × r × r

25: ν(i) = x.

26: i← i + 1
27: return ν.
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range-based images [Armesto 2010], computer-assisted medical applications [Cash 2007],
etc. The goal of registration of point clouds is to be able to provide an assignment of
correspondences between two sets of points and to recover the transformation that maps
one point cloud to the other. For the registration of oesophagus trajectories modelled using
the approach presented in the previous section, we are interested in a rigid registration
framework. Several methods have been proposed in the literature to tackle this problem.
Starting from simple deterministic methods such as Principal Component Analysis (PCA)
and Singular Value Decomposition (SVD), to more recent methods such as the Iterative
Closest Point (ICP) and probabilistic approaches such as the Coherent Point Drift (CPD).

Rigid registration of two point clouds, can be formulated by defining a cost function,
that represents the matching error between corresponding point clouds. This cost function is
then minimized using various optimization techniques. If the Euclidean distance between
corresponding points in each point cloud is minimized, this can then be simplified to a
linear least-squares minimization problem by representing each point using homogeneous
coordinates as in Equation B.1. The closed form solution can be obtained using PCA
and SVD based methods as described in Appendix B. Whereas, the PCA and SVD based
approaches directly solve the least-square problem, assuming perfect data; Besl and Mc.
Kay [Besl 1992] and Chen and Madioni [Chen 1991] introduced a method that iteratively
discards outliers in order to improve upon the estimate of rotation and translation at each
step (as illustrated in the flowchart in Figure 5.3). Several variants of this method have been
proposed in literature but [Besl 1992] came to be termed as the standard ICP algorithm.
Rusinkiewicz and Levoy [Rusinkiewicz 2001] classified the various ICP algorithms based
on the following sub-tasks;

Figure 5.3: Standard ICP scheme.

1. Selection of points from the two point clouds to be registered, is usually performed to
speed-up the algorithm and/or to eliminate outliers.

2. Matching of the selected subset for the two point-sets. The original ICP algorithm by
Besl and McKay [Besl 1992], employed the euclidean distance metric for establishing
point correspondences. Several other variants have been proposed, for example those
using mahalanobis distance [Granger 2006, Maier-Hein 2012].

3. Weighting the corresponding matches appropriately. Several authors have also in-
vestigated assigning weights to point pairs, in order to improve the robustness of
the algorithm. The proposed methods range from assigning weights based on the
interpoint distance [Godin 1994] or weighting based on the noise characteristics as in
[Rusinkiewicz 2001]. However, the weighting is generally performed using scalar
values or along certain directions of a common coordinate system [Kaneko 2003].
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4. Outliers have a large effect on least-squares minimization based methods. Several
approaches have been proposed to detect and reject pairs iteratively that could have a
negative effect on the registration. Among others, rejection of the worst percent of
matched pairs [Pulli 1999, Chetverikov 2005], excluding pairs with distance above a
certain threshold [Rusinkiewicz 2001], have been proposed.

5. Error metric and its minimization: Commonly, the sum of squared distances be-
tween correspondences is minimized, using one of the few closed form solutions
for determining the rigid transformation, that minimizes this error; for example as
described in [Horn 1987]. Alternatively, point-to-point metrics or point-to-plane
metrics have been proposed [Rusu 2010, Low 2004, Chen 1991]; as shown in Figure
5.4. In [Granger 2006] authors proposed to formulate ICP as maximum likelihood
problem and use expectation-maximization to solve for optimal transform. Several
other variants have also been presented in literature; an overview of these can be
found in [Maier-Hein 2012, Granger 2006, Bellekens 2014].
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Figure 5.4: (Left): ICP alignment point to point, (right): ICP alignment point to plane.

5.3 Registration Methods Considered for Comparison

Based on the criteria described in the previous section, the selection of points from the point
clouds recorded during gastroscopy, is performed using the method described in Section
5.1. The euclidean distance metric is selected here for ICP based registration. It should be
noted that, with a model of uncertainty on each control point on the trajectory, Mahalanobis
distance can also be employed. However, this has not been considered here, but can be
easily extended using statistical information obtained from several interventions recorded
on the same patient under varied control scenarios.

In the following section, an evaluation of the performance of rigid registration, using the
standard ICP and three other methods; against the 3-point approach presented in Section 3.3,
is performed. The first of these approaches is a RANSAC based standard ICP, that attempts
to iteratively filter outliers from the decimated oesophagus trajectory, during registration.
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The second approach in consideration here (was proposed in [Stewart 2003]); is a variant
of ICP, that formulates the standard ICP objective function as an iterative re-weighted least
squares problem, which is very similar to the weighting of point pairs; however, the weights
are estimated using a robust M-estimation criterion (termed as IRL-ICP). Consider the
points pi i ∈ [1,N] are to be registered with model points X, the least squares formulation
can be modified as follows;

min
R,t

N∑

i=1

̺(d(Rpi + t, X)) (5.1)

Where, d is the distance operator; in the standard ICP it is the L2 norm and ̺ is the
robust criterion function. If ψ(r) = ̺′(r) is the derivative of ̺ then, a robust criterion function
must satisfy the following properties;

1. ̺(r) is an even function and C1 continuous on R, and ̺(r) = 0,

2. ̺(r) is monotonically increasing on [0,∞), and

3. ψ(r)/r is monotonically decreasing and bounded above on (0,∞).

The weight function for the given ̺(r) can be defined as,

w(r) =



ψ(r)
r

if r , 0,

lim
r→0

ψ(r)
r
= ψ′(0) if r = 0.

(5.2)

In [Bergström 2014] the authors compare three robust criterion functions namely, Hu-
ber’s, Cauchy’s and Beaton-Turkey’s bi-weighted functions. Turkey’s and Cauchy’s methods
exhibits the strongest protection against influence of outliers, however, have the tendency to
create local minima. Here, the Huber’s criterion function was considered for the evaluation,
because it does not suffer from the same situation. However in this particular case, with the
use of an oesophagus model, the number of sample points in consideration, are very few
and the possibility of reaching a local minima is very low.

The third is a probabilistic approach, introduced by Myronenko and Song [Myro-
nenko 2010], to register two point clouds and was termed as the Coherent Point Drift (CPD)
algorithm. For both rigid and non-rigid point sets, they formulated the alignment of two
point clouds as a probability density estimation problem. They fit the Gaussian mixture
model (GMM) centroids (representing the first point cloud) to the data (the second point
cloud) by maximizing the likelihood and forcing the GMM centroids to move coherently as
a group to preserve the topological structure of the point sets.

In summary, the following section, evaluates of the performance for rigid registration
of the complete oesophagus trajectory, with standard ICP and ICP with RANSAC to filter
outliers, robust ICP proposed by [Bergström 2014] and CPD; against the 3-point approach.
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5.4 Comparative Evaluation of Registration

The approach presented in Section 4.2.1 was followed for generating synthetic sample
trajectories. Figure 5.5 presents a few sample synthetic trajectories used for evaluating
the registration. Figure 5.6 presents the modelling of these synthetic trajectories using the
proposed decimation algorithm. Four trajectories recorded on two pigs and 1800 synthetic
datasets were generated from each. Inter-operative registration was then performed using the
four additional methods described in the previous section. The results of the registration were
compared by computing the video synchronization error that was described in Section 4.2.2.
This was then compared with the error statistics computed using the 3-point registration.

Figures 5.7, 5.8, 5.9, and 5.10 show the plot of the mean and standard deviation of
error along the trajectory. The results of synchronization error have been presented in
Table 5.1, and highlights the important results for comparison. In general, using the
oesophagus trajectory in addition to the 3-point registration does improve the accuracy
of video synchronization. Specially, the RANSAC-ICP, IRL-ICP and CPD algorithms
provide the best registration accuracies, by eliminating outliers effectively. The results from
Dataset-4 however, shows only a marginal decrease in error from the 3-point approach,
which requires further investigation.

Specifically, the methods reduces the synchronization error due to placement of sensor
at the jugular notch by half. Additionally, using the complete oesophagus information
reduces the error in the 99.7 percentile cases, which is where errors as large as 4.9 cms were
observed (Section 4.2.3).
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Figure 5.5: 15 Noisy sample trajectories generated using the Gaussian noise model presented
earlier in the chapter are plotted along with the original recorded trajectory.
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Figure 5.6: Original and 15 noisy sample trajectories modelled using method presented in
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5.5 Conclusion

The results obtained in this chapter are significant, since they provide an incremental im-
provement to the methodology presented in Chapter 3. It addresses some of the problems
that were discussed in Chapter 5 during the evaluation of the 3-point registration method-
ology. The presented approach, still fits the clinical work-flow without the need for any
additional steps. All these corrections are necessary for qualitative certification of the system
for introduction into the clinical routine. However, as was discussed in Section 5.3 the
use of uncertainty based distance metric such as the Mahalanobis should also be verified.
However, from a practical standpoint we believe that this approach would not further reduce
the synchronization error.

This initial result obtained in this analysis, warrants further investigation using inter-
vention data obtained on human subjects to verify this observation. From the qualitative
experiments performed in Chapter 4, the 3-point registration methodology is a reasonable
choice for the oesophageal procedures. It allows the process to be simplified without ad-
ditional overhead in the work flow of the clinical routine. This should be verified for the
complete oesophagus trajectory based registration as well.

Figure 5.11 updates the work-flow presented in Chapter 3 with the registration refinement
using oesophageal trajectory.



64 Chapter 5. Inter-operative Registration: Using Complete Oesophagus Trajectory

Mean 95.45 percentile 99.7 percentile

Dataset-1

3-Point [4.15, 5.12] [10.65, 13.22] [13.90, 17.27]
ICP [2.30, 3.26] [6.40, 9.36] [8.45, 12.41]
RANSAC-ICP [2.10, 3.05] [6.87, 7.36] [8.78, 9.99]
IRLS-ICP [1.95, 2.85] [5.59, 8.55] [7.41, 11.40]
CPD [2.01, 2.69] [5.63, 8.19] [7.44, 10.94]

Dataset-2

3-Point [4.23, 5.18] [10.45, 13.32] [13.56, 17.39]
ICP [2.61, 3.45] [6.01, 9.47] [7.71, 12.48]
RANSAC-ICP [2.39, 3.11] [5.99, 8.41] [7.79, 11.06]
IRLS-ICP [2.35, 2.91] [5.85, 9.11] [7.60, 12.21]
CPD [2.40, 2.61] [5.70, 7.01] [7.35, 9.21]

Dataset-3

3-Point [3.20, 4.70] [7.82, 12.20] [10.13, 15.95]
ICP [2.41, 3.74] [5.83, 10.08] [7.54, 13.25]
RANSAC-ICP [2.35, 3.15] [5.35, 8.53] [6.85, 11.22]
IRLS-ICP [2.25, 2.83] [6.25, 8.93] [8.25, 11.98]
CPD [2.31, 2.55] [5.89, 6.97] [7.68, 9.18]

Dataset-4

3-Point [2.35, 2.65] [5.37, 6.95] [6.88, 9.10]
ICP [2.90, 4.35] [5.80, 9.95] [7.25, 12.75]
RANSAC-ICP [2.25, 3.15] [5.27, 7.99] [6.78, 10.41]
IRLS-ICP [2.40, 2.80] [5.70, 8.10] [7.35, 10.75]
CPD [2.49, 2.60] [5.39, 6.36] [6.84, 8.24]

Table 5.1: The table shows the error statistics of quantitative evaluation for four datasets
recorded on two pigs. All values are in millimetres. The analysis was conducted by
generating synthetic data using the noise model presented in Section 4.2.1. Column-1 shows
the mean error, columns-2 and 3 show the 95 and 99 percentile errors along the trajectory.
Each cell in the table includes a [minimum,maximum] value of the respective errors along
the trajectory.
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Figure 5.7: Figure shows the mean (top) and standard deviation (bottom) for analysis on
Dataset-1 using the four registration methods.
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Figure 5.8: Figure shows the mean (top) and standard deviation (bottom) for analysis on
Dataset-2 using the four registration methods.
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Figure 5.9: Figure shows the mean (top) and standard deviation (bottom) for analysis on
Dataset-3 using the four registration methods.
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Figure 5.10: Figure shows the mean (top) and standard deviation (bottom) for analysis on
Dataset-4 using the four registration methods.
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Figure 5.11: This figure summarizes the registration refinement step presented in this chapter
as a flowchart.
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Endoscopic Image Analysis
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This chapter is based on work under review in a journal.

Chapter 3 presented a first approach to inter-operative video synchronization using only
an EMTS with EM markers, for GI endoscopy. The oesophagus was chosen as the first
target clinical application since, relocalization is a clinically relevant here. This chapter also
described how the 3D position obtained from the EM sensor could be used to determine the
nearest neighbour (EMNN) and obtain video synchronization. Between, the pre-recorded
diagnostic endoscopy (DE) and the live Surveillance endoscopy (SE), this selected image
provides a localized view in the oesophagus during DE, corresponding to the current location
of the endoscope during the SE. However, complete reliance on an only EM based video
synchronization has some drawbacks, which can be classified as follows;

1. Depth error: In Chapter 4 it was established that the influence of uncertainty in the
placement external markers effectively resulted in a final depth matching error along
the oesophagus, of ±10mm for a 95% confidence interval. The alternate registration
presented in Chapter 5 showed that this error can be further reduced. However,
there could still be a depth error that may be corrected, using the endoscope image
information.

2. Lateral error: Within the localized region using EMTS the synchronized image
obtained from EMNN does not necessarily provide the best view-point from GI
expert’s perspective as shown in the Figures 6.1(b)-6.1(f). This could be attributed to
two factors; (a) orientation of endoscope in the lumen and (b) position of endoscope
in the lumen cross-section.
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3. Uninformative (UI) frames: Additionally, the EMNN could be an UI frame, as shown
in Figure 6.1(g)-6.1(k).

It is thus important to provide an intelligent selection of the best matching view using
the images from the neighbourhood of EMNN. To accomplish this, GI endoscope scene
analysis and matching must be performed.

Video-endoscopic image analysis is an important approach for extracting relevant
information from the surgical view. From a technical standpoint, this problem description is
similar to scene analysis problems, which is an important and challenging task in various
application domains, including computer vision, biomedical imaging, biometry, vehicle
and robotic navigation, industrial visual inspection, and remote sensing [Lazebnik 2006,
Zhou 2003, Datta 2008, Filliat 2007, Grasa 2014]. It provides a stepping stone towards
reasoning with the world around us. This chapter thus, provides a review of literature,
towards the application of scene understanding, classification and matching in GI endoscopy.
The techniques presented in this chapter provide the necessary background to motivate the
choice of algorithms, that are eventually employed in Chapter 7.

(a) (b) (c) (d) (e) (f)

(g) Blurred (h) Contact (i) Motion-Blur (j) Contraction (k) Fluid

Figure 6.1: (a): Query, (b)-(f): Five best EMNN frames matches with scores: [0, 1, 0, 2, 1]
as assigned by the expert section. 7.3. (g)-(k) present the sample UI frames.

Typically, analysing a scene involves extraction of low-level salient information. There
are two parts to describing a scene; first, is recognizing a feature and the second is its
description. There is no exact definition for a feature and it depends on the type of application.
Generally a feature can be thought of as an “interesting” part of an image. This could be in
the form of edges, corners and interest points or regions-of-interest such as blobs; which will
be described in Section 6.1. Feature description, on the other hand, encompasses encoding
the information from a feature, so as to have a representation that is distinctive and yet,
repetitive enough to be applied to similar scenes. A descriptor could be in the form of, for
example, image pixels, colour, texture, gradient or any information extracted by applying
various mathematical operations to the selected image region. This will be detailed in
Section 6.2. Finally, using the scene description, machine learning models are utilized to
perform high-level abstraction and decision making; which are discussed in Section 6.3.
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Each section in this chapter is concluded by a brief discussion on their application in GI
endoscopic images.

6.1 Feature Detectors

Corners are among the first low-level features used for image analysis and in particular,
tracking [Gauglitz 2011, Moravec 1980]. Moravec’s work was further developed by Harris
and Stephens [Harris 1988] which became known as the Harris Corner Detector. This
formed the basis for the detectors proposed by Förstner [Förstner 1994] and Shi and Tomasi
[Shi 1994]. The framework was extended by Mikolajczyk and Schmid in [Mikolajczyk 2001]
to incorporate scale invariance to Harris detector. [Schmid 2000, Gauglitz 2011] present
evaluations of many feature detectors, specifically based on intensity and contour-based
approaches.

Blobs provide a complementary description of image structures in terms of regions.
Blob detectors may contain an interest point or corners which could be local extrema of
responses of certain filters or a centre of gravity. Thus, blob detectors may also be regarded
as interest point operators detecting areas in an image which are too smooth to be detected
by a corner detector. In particular, approaches aim to approximate the response to filters
such as the Laplacian of a Gaussian which, given an appropriate normalization, are scale
invariant when applied at multiple image scales as shown by Lindeberg [Lindeberg 2013].
Lowe extended this framework in [Lowe 1999, Lowe 2004] by approximating the local
extrema detection using image filtered with differences of Gaussian, which are separable
and hence faster to compute, than the Laplacian.

Endoscopic Applications: [Castaneda 2009] proposed to use SIFT features using nor-
malized SSD based monoSLAM for 3D reconstruction of the oesophagus. A combination
of, histograms of SIFT Flow Directions to describe the flow course; SIFT descriptors to
represent image intestine structure and; SIFT flow magnitude to quantify intestinal defor-
mation, was proposed in [Drozdzal 2010]. [Fan 2011, Fan 2010] proposed to use, affine
invariant version of SIFT detector and descriptor to estimate the epipolar geometry and
recover the 3D. [Spyrou 2015] provides a comparative assessment of various feature extrac-
tion methods for determining the position and orientation of a wireless capsule endoscopy.
[Ciuti 2012] employed Shi-Tomasi features and used them in shape from shading framework
for reconstruction.

Furthermore, detectors invariant to affine changes in the image have been proposed
[Mikolajczyk 2002, Schaffalitzky 2002]; and exhibit better repeatability for large distortions
[Lowe 2004, Mikolajczyk 2002]. However, they are typically expensive to compute as
evaluated in [Mikolajczyk 2005, Moreels 2007]. The methods presented in Section 2.4.1
for intra-operative relocalization have employed feature detectors, such as, SIFT or the
anisotropic region detector [Giannarou 2009]. It will be discussed in Chapter 7, that
these methods are applicable for inter-frame mapping on synchronized frames, to facilitate,
matching the regions of interest (ROI), such as those containing biopsy sites. Image pre-
processing has also been employed for segmenting the necessary ROI based on texture
similarity or using filtering techniques as discussed in [Arnold 2011, Bejakovic 2009,
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Figure 6.2: Taxonomy for feature descrip-
tor dimensions; (1) feature density as global,
regional, and sparse local; (2) shape and pat-
tern of pixels used to compute the descriptor,
these may include rectangles, circles, and
sparse sampling patterns; (3) spectra, which
includes the spectrum of information con-
tained in the feature itself. This figure is
reproduced from [Krig 2014] (page 192).
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Bernal 2014b]. In [Arnold 2011], specular highlights is addressed using a segmentation
method based on non-linear filtering and colour image thresholding followed by a fast in
painting method. [Bejakovic 2009] provides the framework for lesion segmentation with
application to Crohn’s disease. [Bernal 2014b] used specular highlights and blood vessels
segmentation for polyp detection and classification.

Feature detectors, although form an important pre-processing step, it is not always
possible to find suitable points or regions depending on the target image. Especially in
endoscopic scenes, where uniform texture can be found, salient points or regions are not
repeatable inter-operatively. Thus the use of feature detection is such clinical application is
limited.

6.2 Feature Descriptors

The step following feature detection is its description. An ideal descriptor is required, to
not only be distinctive, but also robust to geometric and photometric transformations. Such
invariance properties of the image representation are especially significant for endoscopic
interventions, due to the presence of curved structures which lead to specularities, fluids or
blood in the tract and due to the deformable nature of the tissue.

The simplest form of a descriptor is a vector of pixel values. Several literature reviews
have been published, providing classification of various feature descriptors based on the
target application. However, the review and classification presented in [Krig 2014], provided
the most apt approach for the discussion in this section to relate their application to endo-
scopic image data. Krig classifies the feature descriptor taxonomy using three important
characteristics, as shown in Figure 6.2; (1) Shape and pattern: How pixels are taken from
the image. (2) Density: The extent of image used to form the descriptor, by differentiating
them into local, regional and global descriptors. (3) Spectra: The scalar and vector quantities
used for the metrics, and a breakdown of the algorithms and computations used to formulate
them. Based on these criteria, descriptors can be classified into the following four families.
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6.2.1 Shape Descriptors

Some of the earliest descriptors presented in the literature have been oriented towards
abstracting the shape of objects in the scene as measured by their statistical metrics, such as
area, perimeter, centroid etc. Typically, shapes are extracted using morphological operations
on binary or grey scale images. Shape moments and metrics [Zhang 2004, Yang 2008],
image moments [Jan 2009] have been used for describing shapes. Polygon shape methods
are commonly used in medical and industrial applications, such as automated pathology for
cellular biology, and also for industrial inspection of parts.

Endoscopic applications: Shape features are useful for describing lesions, polyps and
dysplasia observed by the localized tissue texture changes. [Angermann 2015] proposed
using edges, followed by a Hough transform of the image before using GLCM for texture
features detection. [Eskandari 2012] used region-based Active Contour Method (ACM)
and geometric feature for automatic detection of polyps. In [Häfner 2015] a new texture
analysis framework using local fractal dimensions is employed by extending it to include
shape and gradient information. [Hämmerle-Uhl 2012] studied in the context of celiac
disease classification that, using distortion correction does not lead to significantly different
classification performance when using edge- and shape-related features. [Wang 2010]
employed geometric shape, saturation and intensity changes along the norm direction
(cross-section) of an edge to provide localization during wireless capsule endoscopy.

6.2.2 Spectra Descriptors

Spectra, simply put is a quantity that can be measured or computed, for example, light
intensity, colour, surface normals, local area gradients or statistical features, moments and
sorted information such as 2D or 3D histograms of any spectral type, such as histograms of
local gradient direction. There is no practical limit to the spectra that could be used with this
particular class of descriptors. Some of the most popular descriptors in this category were
evaluated by [Mikolajczyk 2005]. Perhaps the most famous of these is the Scale-Invariant
Feature Transform (SIFT) developed by Lowe in [Lowe 1999, Lowe 2004]. The method
achieves descriptor invariance to changes in scale and rotation, by operating in a local
reference frame relative to a dominant scale, and rotation that is computed from the image.
After the detection of a stable feature point, the descriptor is computed on a square grid
sampled around the key-point. Several variants of SIFT have been proposed in literature
such PCA-SIFT [Ke 2004], opponent-SIFT, C-SIFT and rg-SIFT [Brown 2011].

Endoscopic applications: Table 6.1 provides a (non-exhaustive) list of spectra descriptors
encountered in GI endoscopy for varied applications [Georgieva 2015, Drozdzal 2014,
Bell 2014]. In [Bernal 2012], the authors proposed a novel region descriptor built on the
concept of depth of valleys (DoV) image, which combines valley localization given by
a valleys detector with the intensity information provided by morphological gradient. A
Valley Orientation-Depth of Valleys Accumulation descriptor (VO-DOVA) is presented,
which consists of accumulating, by using a series of radial sectors, the maxima of the DoV
image. This descriptor were incorporated into a polyp detection scheme in order to classify
segmented regions into polyp or non-polypoid. In [Manivannan 2014], a variation called
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Root-SIFT and a multi-resolution local patterns descriptors were extracted from image
patches, for each colour channel for colon image classification.

6.2.3 Local Binary Descriptors

The family of descriptors in this category are features represented as binary bit vectors.
To compute the descriptors, image pixel point-pairs are compared in a pre-defined pattern
and the results are stored as binary values in a vector. Binary descriptors are very efficient
to compute, store, and match. Generally, local binary pattern methods have been shown
to achieve very good accuracy and robustness compared to other methods. Based on the
sampling patterns employed, different binary descriptors have been proposed. However,
since local binary patterns (LBP) form the basis for many variants in this category, a short
description is given here. The LBP in its original form was presented in [Ojala 1994] and
[Ojala 1996]. LBP has been found to be a powerful feature for texture classification. Below,
the variant presented in [Ojala 2002] is described, which involves the following steps;

Step-1 The region of interest is divided into cells as shown in Figure 6.3.

Step-2 Each pixel in a cell is compared with its 8 neighbours (ie. its left-top, left-middle,
left-bottom, right-top, etc.). Following a clockwise or counter-clockwise direction.

Step-3 A value “1” is output where the center pixel’s value is greater than its neighbour’s
value, else, a “0”. Finally giving an 8-digit binary number, which is converted to
decimal.

Step-4 Over each cell a histogram is obtained with the frequency of occurrence of numbers
computed in the previous step.

Step-5 The histogram is normalized. The histograms from each of the cells is concatenated,
giving a feature vector for the region of interest. This feature vector can now be
processed by a machine learning algorithm, such as the support vector machines
(SVM) for classification [Shan 2009].

Endoscopic applications: Several references have employed LBP and its variants for
disease detection and classification in GI tract, [Gadermayr 2015, Alexandre 2008, Amel-
ing 2009, Engelhardt 2010, Charisis 2013, Constantinescu 2015, Meng 2010].

6.2.4 Basis Space Descriptors

The fourth and final category of feature descriptors involves detection of alternative basis
space to describe image features. A set of vectors in a vector space V is called a basis,
or a set of basis vectors, if the vectors are linearly independent and every vector in the
vector space is a linear combination of this set [Halmos 1958]. Generally, a basis is a
linearly independent spanning set, and it is useful to transform a dataset from one basis
space to another to gain further insight, or to just process the data. Four important basis
space methodologies have been encountered in the reviewed literature on GI endoscopic
image analysis.
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Descriptor Comments

SIFT Scale Invariant feature transform (details in text), has been employed for
varied applications such as 3D reconstruction, biopsy point description,
motility descrition etc. [Castaneda 2009, Drozdzal 2010, Manivannan 2014,
Spyrou 2015].

SURF Speeded up Robust Features, presented by Bay et al. [Bay 2008] uses
the similar concept as SIFT however, for finding the dominant feature
orientation, they use HAAR-like feature responses around the detected
interest point. [Spyrou 2012, Iakovidis 2013] have employed it for capsule
endoscope tracking.

MPEG-7 The MPEG-7 is a visual Standard under development specifies content-
based descriptors that allow users to measure similarity in images or video
based on visual criteria. Specifically, MPEG-7 describes colour, texture,
object shape, global motion, or object motion features. It has been used
in [Bulat 2007, Coimbra 2006, Duda 2007] for various applications in GI
endoscopy.

HOG Histogram of oriented gradients [Dalal 2005] relies on computing local
region gradients over a dense grid of overlapping blocks, rather than at
interest points. [Iwahori 2015, Wang 2014c] have used HOG for polyp
detection.

PHOG Pyramid HOG [Bosch 2007] was designed for global or regional image
classification. PHOG combines regional HOG features with whole image
area features using spatial relationships between features spread across the
entire image in an octave grid region subdivision. This method has been
employed in [Bae 2015] for polyp detection.

DSIFT Dense SIFT as proposed in [Lazebnik 2006], uses an approximation over
gradients before computing the histogram to substantially improve the speed
with little or no loss of performance in applications. [Miyaki 2013] applied
it for identification of mucosal gastric cancer under magnifying endoscopy.

GLCM Gray level co-occurrence matrix is a histogram of co-occurring grayscale
values at a given offset over an image. This is used to extract various texture
features such as entropy, contrast, correlation, energy, homogeneity etc. as
presented in [Haralick 1973]

Table 6.1: Table presents the most commonly used spectra descriptors presented in literature.
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Figure 6.3: Steps involved in the computation of LBP feature vector.

1. Spatial Frequency Based Descriptors: Basis transforms, such as the Fast Fourier
Transform (FFT), Discrete Wavelet Transforms (DWT), Dual-tree Complex Wavelet
Transform (DT-CWT), Gabor Filters, Contourlet Transform, Contourlet Transforms
etc.; decompose an image into a set of basis vectors from which the image can be
synthesized or reconstructed. Viewing the set of basis vectors as a spectrum is a
valuable method for understanding image texture and for creating a signature. Two
broad approaches for texture retrieval in the spatial-frequency domain are generally
discussed in literature [Baaziz 2010]; energy-based approach and statistical modelling-
based approach.

Endoscopic Applications: In GI endoscopy the former has been widely used for
diseased tissue classification and on-line decision support. Variants of DT-CWT
are explored for automatic classification of endoscopic images using the Marsh
classification, in [Häfner 2010, Uhl 2011]. The feature vector was composed of
mean and standard deviations of the sub-bands from DT-CWT variant or Weibull
parameter of the sub-bands. Enhanced scale invariance was obtained by applying
DFT or DCT across the scale dimension of the feature vector. [Liu 2012] used, color
wavelet covariance as features for ulcer and blood detection. For polyp detection,
[Iakovidis 2005] employed colour wavelet covariance. [Kalpathy-Cramer 2009],
proposes using GLCM, colour histogram, GIST and Gabor, wavelet, Maximum
response (MR8), Leung-Malik (LM) filter bank, and the Schmid filter banks responses
as feature descriptors for image retrieval using a naive Bayes Nearest neighbour
classifier. In [Karkanis 2003], colour wavelet covariance based texture features are
extracted for abnormality detection in endoscopic images.

2. Feature Learning: This class includes a set of techniques that learn a feature: as a
transformation of raw image data or other features described earlier in this section.
Such an approach obviates the need for traditional hand-crafted features and allowing
a machine to learn them. Feature learning can be divided into two categories: (a) Su-

pervised Feature Learning: Attempts to learn features from labelled data. Supervised
dictionary learning and neural networks fall in this category. However, most applica-
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tions encountered in this survey belonged to the second category; (b) Unsupervised

Feature Learning: These approaches attempt to learn features from unlabeled data.
The goal is often to discover low-dimensional features that captures some structure
underlying the high-dimensional input data. When the feature learning is performed
in an unsupervised way, it enables a form of semisupervised learning where first,
features are learned from an unlabeled dataset, which are then employed to improve
performance in a supervised setting with labeled data. Approaches that are categorized
in this are , visual vocabularies, bag of words (or features), textons etc.

Manifold learning approaches, can also be categorized here. Methods such as, Princi-
pal component analysis (PCA), ISOMAP, Locally linear embeddings (LLE), Lapla-
cian eigenmaps (LE) etc., statistically estimate the topological space that is locally
Euclidean for the training data. In contrast to linear vector spaces, on a manifold
the Euclidean metric properties do not hold globally. Therefore, when measuring
the distance between data points lying on a manifold, the global structure of the
underlying manifold needs to be taken into account [Atasoy 2012a]. Non-linear
approaches attempt to reduce the dimensionality, while preserving the local structure
of the data.

Endoscopic Applications: [Tamaki 2013], explores local features (extracted by us-
ing sampling schemes such as Difference-of-Gaussian and grid sampling), BoW,
and provides extensive experiments on a variety of technical aspects for feature de-
scription to use with content based image retrieval systems. [Yuan 2015] presents
an improved bag of feature method to assist classification of polyps in WCE im-
ages. Several different descriptors are combined into the bag-of-words framework.
Various parameters are studied in the context of classification of polyps. [Fran-
cisco 2015] proposed using image patches in the BoW model for classification. In
[Manivannan 2013], authors present two schemes. The first, working on the full-
resolution image, the second on a multi-scale pyramid space. With this framework
any feature descriptor could be employed; but a multi-resolution LBP was tested.
[Gallo 2010, Nawarathna 2013, Riaz 2011] are examples of methods using textons as
feature descriptors. Manifold based approaches on the other hand have been exten-
sively used for feature compression and identifying the most discriminating features
for classification, such as in [Tjoa 2003, Berens 2005, Biswas 2014, Duda 2007, Ata-
soy 2012b]. They provide an elegant representation of the extracted features to extract
the underlying structure as in [Atasoy 2012b].

Last, but largely unexplored approach in GI endoscopy literature is using auto-
encoding to learn an over-complete representation of input data. An autoencoder is a
simple 3-layer neural network. Unsupervised learning using a single layer algorithm
could extract salient features, but because of the limited capacity of that layer, the
features can be seen as low-level features. It is conceivable that by stacking two
autoencoders, such that the second layer takes output of the first layer as input, could
extract slightly higher-level features. In this way, one could imagine that high-level
abstractions characterizing the input could emerge with each new stacked layer,
which could be more discriminating that the original feature-set. Autoencoders, have



78 Chapter 6. Endoscopic Image Analysis

sometimes been considered as simplified models of Deep belief networks. Such
methods have been employed in pre-trained models, such as CaffeNet [Jia 2014],
OverFeat [Sermanet 2013], DenseNet [Iandola 2014], Alexnet [Krizhevsky 2012],
Clarifai [Zeiler 2014] etc. for natural image scene classification. Deep learning
strategies should be ideally suited for obtaining application specific features in GI
endoscopy as they do away the need to build hand-crafted features.

6.3 Matching and Classification

The next step in the process is matching and/or classification using the feature representations
described in the previous section. The first and the most direct approach is by assigning
a meaning to an observed feature set, by comparing a pair of observations by a similarity
function. While searching for a correspondence for query image, represented by feature
P, with an image described by feature set Q, from among the elements of the database
of images; knowledge of the domain is expressed by formulating a similarity measure
S Q,P. Various similarity (distance) measures have been proposed in literature [Cha 2007,
Krig 2014, Yang 2006]; and their usage depends on the type of features. Alternatively,
for classification, the feature descriptors can be used to learn a structure from the data, to
determine to which category an incoming feature belongs.

1. Nearest Neighbour (NN) Classifier: Classification of unlabelled images is performed
based on the closest training samples in the feature space. Considering the descriptor-
label pairs, (X,Y) = {(X1,Y1), . . . , (Xn,Yn)}, such that, X ∈ Rd and Y ∈ {1, 2}. The
nearest neighbour over the distance metric defined by ‖ · ‖ on Rd is used to defined
the 1-NN or the k-NN classifiers. The nearest neighbour is the simplest classifier
and has been largely used in methods such as in [Kwitt 2008, Vecsei 2008, Hu 2015,
Mathew 2015, Rajan 2009].

2. Clustering: It is an unsupervised classification of patterns into clusters [Jain 1999].
Although a “cluster” cannot be precisely defined, a common denominator among
different models is the “grouping” of data objects. Clustering algorithms use knowl-
edge about the data, either implicitly or explicitly. Implicit knowledge is used in
(a) selecting a pattern representation scheme (e.g., from prior user experience to
select and encode features); (b) selection of the similarity measures; (c) choosing
the grouping scheme (i.e. specifying the k-means algorithm when the clusters are
known to be hyperspherical). Explicit knowledge, constraints or guides the clustering
process. [Abouelenien 2013, An 2005, Asari 2000, Chen 2015, Drozdzal 2015, Fran-
cisco 2015] are some examples in GI endoscopy.

3. Kernel Methods: Kernel methods derive their name from their usage of kernel (or
similarity) functions. These functions operate in a high-dimensional, implicit feature
space, without ever performing the actual mapping of the data in that space, but
rather by simply computing the inner products between the images of all pairs of
data in the feature space. This is often computationally cheaper to perform than
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the explicit computation of the coordinates, and is referred to as the “kernel trick”.
The most popular example of kernel machines is the support vector machine (SVM)
[Boser 1992]. The SVM is a learning machine for binary classification problems and
are the most commonly used classifiers in GI literature; [Abe 2015, Abouelenien 2013,
Zhou 2014, Rajan 2009, Mackiewicz 2006, Drozdzal 2015].

4. Decision Tree Classifiers: Decision trees are another example of supervised learning
approaches. Decision tree learning uses a data structure called as the decision tree
for building a predictive model that maps observations about an item to conclusions
about the item’s target value. Several variations of decision trees have been employed
in GI endoscopy literature, discussed in [Breiman 2001, Rokach 2005, Khan 1996,
Hai 2009, de Sousa 2008, Serpa-andrade 2014, Gallo 2012, Iwahori 2015, Li 2014,
Wang 2014b].

5. Artificial Neural Networks (ANN): They are an extension of probabilistic classifiers,
that are able to predict, given a sample input, a probability distribution over a set
of classes. ANN is a learning paradigm, inspired by the way biological nervous
systems process information. ANN are the second most commonly used approaches
in GI literature after SVMs; [Barbosa 2012, Boulougoura 2004, Bourbakis 2005,
Bulat 2007, Fu 2011, Karargyris 2009, Khun 2009, Li 2009].

6.4 Discussion and Conclusion

A wide range of methods have been employed in GI endoscopic literature for scene under-
standing and classification. In this thesis, we are specifically interested in understanding the
applications to oesophageal tissue classification. Although any of the methods described so
far in this chapter can be employed, however, the most important criteria in inter-operative
scene matching is invariant global image description under varying contrast and scene
lighting along with real-time speed of computation. In addition, the information extracted
must also include some geometric data to capture any specific shape features. Apart from
being globally invariant, the description must also include local information to allow partial
scene matching.

From the review, we have selected the following the evaluation described in the next
chapter.

• The review in the previous sections indicated that LBP and its variants are the best
performing descriptors for tissue texture description.

• We are interested in understanding if using the lumen shape as an additional feature
would aid endoscopic image matching hence an LBP descriptor combined with the
HOG is also considered for the comparison.

• Local ternary pattern descriptor (LTP), which is a variant of LBP, has been shown
to perform well under difficult lighting conditions. In endoscopic scenes where
illumination variation is a significant challenge, LTP was chosen as an alternate
approach.
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• SIFT is one of the best performing descriptors for natural scene classification. An
alternate approximation of the original SIFT, proposed by [Lazebnik 2006] where
descriptors are densely extracted using a flat rather than a Gaussian window on a
regular grid at certain step size has shown to perform well. It is relatively faster
than the original SIFT computation and thus considered to be an ideal choice in the
comparison.

• Inspired by the dense SIFT approach, a dense version of LBP is proposed in which
the cells are obtained as overlapping blocks, in contrast to the original approach by
[Ojala 2002].

• A Local Invariant Order Pattern (LIOP) descriptor proposed in [Wang 2011] is
considered that is a local image descriptor based on the concept of local order pattern.
Order pattern is the order obtained by sorting selected image samples by increasing
intensity. Considering in particular a pixel x and n neighbours x1, x2, . . . , xn. The
local order pattern at x is the permutation σ that sorts the neighbours by increasing
intensity I(xσ(1)) ≤ I(xσ(2)) ≤ . . . ≤ I(xσ(n)). Such a representation is invariant to
monotonic changes of the image intensity. However, this only describes a small
portion of an image patch and is not sufficiently distinctive. LIOP, on the other
hand collects local order patterns computed over the complete image to formulate a
representation, which is distinctive. Once the order patterns are obtained, they can be
pooled together into a histogram to form a descriptor.

Two aspects in the descriptor computation must be highlighted. First, using different
image scales to formulate the descriptors. This is useful since, at varying scales of the
image, the local information contained in the image decreases and only the global texture
will be encoded. Second, the choice of appropriate colour-space. It should be noted that, in
alternate imaging modalities, such as for SPIES, NBI or FICE (Appendix A), converting
images to Gray-Scale (GS) is not an ideal choice, since it does not provide a true mapping
of the wavelengths. In such cases, it is important to study the appropriate colour-space that
is stable for extraction of features. The choice of suitable colour-spaces is also important
to achieve invariance to illumination, contrast changes and specular highlights, which are
strongly observed in GI endoscopic images. Thus, the descriptors presented above, have
been computed in RGB, HSV, GS, normalized RGB (norm), log and opponent colour-spaces
(chosen appropriately for each descriptor).
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This chapter is based on work published in [Vemuri 2015a].

Thus far an inter-operative (IRO) video synchronization method using only the infor-
mation obtained from an EMTS was presented. In this framework, an EM sensor was
used inside the endoscope channel to track its position in the oesophagus, and two external
sensors provide the anatomical landmarks on the patient for IRO registration and video syn-
chronization for the (live) surveillance endoscopy (SE), with the (pre-recorded) diagnostic
endoscopy (DE). It was explained in Chapter 6 that, complete reliance on the EM based
match has certain drawbacks. Since we have a localized region within the oesophagus; the
image information can be used more reliably to perform IRO scene matching.

Before discussing the specifics of this approach, we revisit the task of IRO endoscopic
relocalization. On a broad level this can be subdivided into three stages:

1. Gross-localization (GL): In the discussion thus far, the EM based approach can be
considered as GL. Computing the nearest neighbour from the 3D position obtained
from EMTS, an approximate location of the endoscope in the oesophagus is obtained.
It is termed as GL, since it could be error prone due the reasons explained earlier in
Chapter 6. As shown in Figure 7.1, this is a biased match and a method to remove
this bias must be provided.

2. Fine-positioning (FP): Considering the neighbourhood of the gross-localized region,
an intelligent selection of the best matched position can be made. This could be based
on using the localized image search (Figure 7.2(a)) or using the EM sensor information
(Figure 7.2(b)) to determine the ideal direction of view in the oesophagus. This is
a refinement step and this chapter proposes a solution using the image information
available, that has been left unused until this step in the framework.
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Figure 7.1: The EMTS based match (ENNN) is a biased match since it does not consider
the vicinity of the EMNN which is at the same depth in the oesophagus, however depending
on the shape of the trajectory and the registration, the points shown around the EMNN (in
orange colour) do not get considered during gross-localization.

3. Inter-frame mapping (IFM): Finally, from the refined image match obtained from
fine-positioning, regions of interest (and tagged biopsy sites) can be mapped from the
matched image to the live frame for re-targeting. This thesis does not delve deeper
on this subject, however, it forms a part of prospective research direction that will be
discussed in Chapter 8.

This classification is essential in the context of IRO relocalization, since, it allows a
deeper understanding of the problem, to make the choice for appropriate computer vision
and machine learning concepts discussed in the previous chapter. The current state-of-
the-art methods in providing IRO relocalization attempt to solve the GL and FP problems
jointly. Such as, in [Atasoy 2012b] had proposed training locality preserving projections,
for low-dimensional embedding of images, from a single intervention for localization in
subsequent procedures. [Wang 2014a] proposed to learn a graph (atlas) from the sequence of
images from several gastroscopic interventions. However, among the challenges discussed in
Section 2.5, the evolution of tissue structure between procedures, poses the most significant
difficulty in IRO GI endoscope image analysis. Thus, it is clear that at each of the stages
presented above, specific issues need to be tackled.

This chapter, focuses on the FP problem which is closely related to scene understanding,
classification and recognition that has received considerable attention in computer vision
[Van De Sande 2010] and GI endoscopy as presented in the previous chapter. In the scope
of this work, however, the method proposed here uses the outcome of Chapter 3 to provide
further refinement in video synchronization.

In this chapter the following points are explored. Firstly, we establish the need for GL
using EMTS. As was identified in the previous chapter that presence of uninformative (UI)
frames can also be disruptive in the video synchronization. Hence, an approach to filtering
the UI frames is proposed. Finally, an evaluation of 6 descriptors in various colour-spaces,
for narrow band imaging (NBI) and white light (WL) endoscopic modalities (which are
commonly used in clinical practice) is performed, to prove the validity of the approach
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Figure 7.2: (a) The images recorded during diagnostic endoscopy, around the localized
EMNN point. (b) The EM sensor orientations around the localized EMNN point.

and demonstrate on multiple patient data that a relevant choice of parameters allows to
considerably improvement in the inter-operative scene matching.

Section 7.1 presents an outline of the proposed methodology. Then, extending the
discussion presented in Section 6.4; it adds further insight into the clinical conditions en-
countered and presents a brief summary of the proposed descriptors employed for evaluation.
Section 7.2 presents the approach for the removal of UI frames and studies the effect of
various parameters in the classification performance. Section 7.3 describes the process of
data collection and assignment of ground-truth for both scene recognition and UI frame
classification with their results. Section. 7.4 lists the important observations in this study.

7.1 Constrained Scene Matching

For the refinement of match using the nearest neighbour of the 3D EM sensor position
(EMNN), it is proposed here to consider the k-EMNN matches within a chosen search radius
as shown in Figure 7.3. This localized region should contain frames that are visually closest
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to the endoscopic live view, thus constraining the search space for localization. Within this
constrained space, the methods discussed in Chapter 6 can be employed. Here, the task of
FP can be identified as “view-point selection”.

Since the recorded video can be analysed in advance, a database containing the various
scene descriptors can be maintained, to compute the best matching viewpoint for the live
view. It should be noted that the value of k would vary depending on the number of points
within the chosen search radius from the closest EMNN match; since, it is related to the
density of points in T , in the vicinity of the EMNN match. Typically the biopsy sites or
location of particular interest have higher density of points as was shown in Figure 5.1. It
is important to note that, to obtain view-point selection, a corresponding matching frame
containing a similar view-point to the live view, may not necessarily be available. However,
it is important to be able to provide the “best available” matching view.

Figure 7.3: k-Nearest neighbour electromagnetic tracker matches. Firstly, the EMNN is
obtained using the 3D position match. Then within a radius r around this match, all the
points on the trajectory are considered as the k-EMNN matches.

Scene description for endoscopic frames involves several important considerations. The
review presented in the previous chapter highlights the different approaches and salient
features that have been used for endoscopic image classification in the literature. As with
most scene recognition problems, we are interested in performing a global match between
competing frames, the most important features in this context include; the shape of lumen,
descriptors capturing information from the blood vessels, invariant (local or global) texture,
colour and spectra description of the tissue and detection of abnormalities, such as lesions
and polyps, to localize based on regions of interest.

When the disease spreads over a period of time or between treatments (such as radio-
frequency ablation), reliance on image descriptors for capturing the tissue texture in various
forms is not feasible. In such cases, the lumen shape is an important characteristic. During
GI endoscopy, the insufflation is usually artificially monitored and regulated for patient
safety. Thus, assuming that the insufflation is similar between two procedures, regions
localized using the EMTS would have similar characteristics of the oesophagus muscle
contractions. This observation, pointed out by the GI expert, was qualitatively observed in
preliminary review on 4 patients.
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Some of the most robust descriptors for performing scene matching, have been presented
in Chapter 6. Following the trend observed in that review, Section 6.4 identified a set of 6
descriptors summarized in Table 7.1, that would be considered for a comparative evaluation
for view-point localization. Since, the GI expert is presented with an approach to match the
orientation (method described in Section 3.4) in the live view with a recording from the
previous intervention; rotation invariance in descriptors is not a necessity.

Table 7.1, briefly presents the various descriptors that were discussed in Section 6.4. As
was also analysed in Section 6.4, these descriptors have been computed in RGB, HSV, Gray-
Scale (GS), normalized RGB (norm), log and opponent colour-spaces (chosen appropriately
for each descriptor), to evaluate their performance. The Chi-squared distance was used as
the similarity measure, since the features are histogram based and the vector of scalars are
independent variables.

ID Descriptor

mLBP[Mäenpää 2003] Multi-scale Local Binary Patterns. At each level of the pyramid,
the image is divided into non-overlapping cells. An LBP fea-
ture vector is computed for each cell which was concatenated
into a large feature vector representing the image.

mHOG[Newell 2011] Multi-scale Histogram of Oriented Gradients. Approach simi-
lar to mLBP but with an HOG descriptor for each cell.

sw-mLBP Sliding window mLBP. Similar to mLBP, with each cell is a
region within a sliding window over the image.

mLTP[Tan 2010] Multi-scale Local Ternary Patterns.
mLBP+mHOG A combined mLBP and mHOG descriptor.
dSIFT[Lazebnik 2006] Dense scale invariant feature transform. A fast variant com-

puted on non-overlapping cells for each image.
mLIOP[Wang 2011] Multi-scale Local Intensity Order Pattern.

Table 7.1: Summary of feature descriptors evaluated in this study. For multi-scale approaches
a scale space image pyramid was constructed.

7.2 Uninformative Frame Removal

Several approaches have been proposed for removal of UI frames [Bashar 2010, Al-
izadeh 2015, Bernal 2014a]. However, most have focused on images from either colono-
scopic videos or those recorded using capsule endoscopy (CE). Typically, the UI frame
observed in colonoscopic videos is quite different, owing to the presence of faecal matter,
turbidity due to water jet spray and presence of bubbles. For CE, in addition to these, there
is no insufflation during the procedure, thus, the contractions of colon muscles are more
prominent, along with an unclean tract. Thus the methods presented for colonoscopy or
CE cannot be directly applied here. In [Atasoy 2012b], the authors proposed using locality
preserving projections using k-means clustering to identify UI segments with the recorded
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intervention. Thus, they do not propose labelling every image in the intervention. This is
however not the case in the current scenario.

In Chapter 6, LBP was identified as the most widely used and best performing descriptor
for tissue texture classification. Hence, here an approach using mLBP has been proposed.
Since, the alternate colour-spaces discussed earlier store redundant information about the
scene, here, only the GS version of the image has been considered. Since, the goal is
to capture the global texture variation. Furthermore, to further eliminate the descriptor
information redundancy, PCA was applied. PCA is an ideal choice to statistically decorrelate
and extract the most representative information from the descriptors; which can be performed
in an unsupervised manner. To achieve this, a randomly selected balanced subset of the
available data is used. From this subset, PCA basis vectors were computed and used them
for obtaining low-dimensional representation (PCA-LBP) for the complete descriptor set.
Figure 7.4 shows an example case of the first three components of the PCA-LBP descriptors,
where the basis vectors were computed using 10% (stratified sub-sampling) of the data.
Qualitatively, two clusters can be observed to emerge from these projections, leading us to
pursue employing these as an input to a classifier. The trade off for the percentage of data
needed to obtain the PCA basis vectors against the classifier performance, is studied later in
this chapter.

An RBF-kernel SVM classifier was trained on the PCA-LBP descriptors. SVM was
considered because, it can be trained on small data-sets, it is scalable on new data and an
RBF kernel function is well established method in capturing the non-linearities in data
efficiently. Their downside, however is that the training time is much longer as it is much
more computationally intensive. In the current application scenario, since the training of the
model (with the inclusion of new data) would be performed between the two procedures;
real-time performance is not an important criteria. The LibSVM package developed by
[Chang 2011] is the most well tested tool available. The training was performed in two
steps. Firstly, a leave-one-out (LOO) cross validation was performed for the best parameter
selection. In this context, for LOO cross-validation, data from k-1 interventions were used
for training, and the kth intervention for testing. There are two important parameters to be
analysed here,

(1) The percentage of data to use for computing the principal components (ν).

(2) The number of principal components (κ) to consider.

Their influence w.r.t the performance of the classifier is analysed in the next section. Figures
7.5 and 7.6 illustrate the computed decision boundary for the sample case that was described
earlier, considered here for κ = 2, for NBI and WL respectively.

7.3 Experiments and Results

Data from 7 human subjects was collected, with two surveillance procedures per subject.
An Olympus gastroscope was employed, that is capable of both WL and NBI modalities,
for recording the interventions. Seven diagnostic and surveillance interventions each,
were recorded, first using WL followed by NBI imaging. From each recorded diagnostic
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Figure 7.4: The first three dimensions of the projected feature vectors, NBI (top) and WL
(bottom), on to the trained basis vectors from PCA.
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intervention trajectory, 9 equally spaced query locations were selected to cover about 25
cm along the oesophagus length. For each selected query locations, k-EMNN matches
were obtained from the surveillance interventions, with increasing search radii (10 mm -
70 mm), as shown in the Figure 7.3. Hence, for 7 pairs of diagnostic endoscopies, a total
of 63 query locations (each for NBI and WL) were selected. The GI expert reviewed the
k-EMNN matches obtained for each of the search radii and scored the matched images,
2 - best match, 1 - partial match and 0 - incorrect match. Although these are subjective
scores, they help quantify the ideology and the approach to feature based matching in the
choice of a good view-point. For each query frame and k-EMNN frames, descriptors were
computed and matched using chi-squared distance metric. In this chapter, 36 descriptor-
colour-space combinations were compared. Variations of algorithms presented in the Vlfeat

([Vedaldi 2008]) have been used.
For training the classifier of UI frames, the GI expert reviewed the images from 10 NBI

and 8 WL surveillance interventions. A score of 2 for informative frame (IF), 1 for partially
informative (PIF) and 0 for UI frame were assigned. It was observed that the PCA-LBP
descriptor, was not sufficiently discriminative between IF and PIF, hence, the IF and PIF
classes were grouped into a single class. A total of 4236 NBI and 2643 WL frames were
tagged. The illustration below presents the various elements of the confusion matrix,

Predicted
Condition

True Condition
UI I

UI

True
Positive
(TP)

False
Positive
(FP)

I

False
Negative
(FN)

True
Negative
(TN)

The following metrics were then computed to analyse the performance of classifier;

F −Measure =
2T P

2T P + FP + FN
Precision =

T P

T P + FP
Recall =

T P

T P + FN

Positive Likelihood Ratio (PLR) =
T PR

FPR
=

(
T P

T P + FN

)/( FP

FP + T N

)

Negative Likelihood Rate (NLR) =
FNR

T NR
=

(
FN

T P + FN

)/( T N

FP + T N

)
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The PLR and NLR, are complementary indicators of the classifier performance combin-
ing sensitivity and specificity. Ideally, a large PLR value indicates a strong TP prediction
rate. Whereas, NLR in an ideal situation, would be small (0 < NLR ≪ 1). Figure 7.7(a), il-
lustrates the variation of the classifier performance w.r.t change in ν and κ. It should be noted
that the values plotted in these graphs are obtained from the LOO cross-validation described
in the previous section. For each graph different values of ν = [0.05, 0.10, 0.35, 0.55] were
used. Thus, the maximum number of estimated principal components (κ), is limited by the
data collected from the experiments for the specific modality (4236 for NBI and 2643 for
WL).

The following observations were made;

1. For NBI and WL, using κ = 5, PLR obtained was [14, 15], however, NLR is also
high [0.6, 0.5]. Which implies, that the FPR is small, but FNR is large indicating, low
confidence in identifying an IF. This observation is further confirmed from the low
F-Measure scores for κ = 5. Also the variance of the other metrics, is large. Clearly,
low values for κ, will not be able to sufficiently capture the required informativeness
of an image.

2. For κ = 50, · · · , 1000, the F-Measure=[0.89, 0.87], is relatively constant for NBI and
WL respectively. This indicates that including more information in the form of κ,
does not capture any additional pattern in the data.

3. Figure 7.8, illustrates the receiver operating curves (ROC) and the area under the
ROC curve. It also indicates that the proposed approach shows high probability of
identifying an UI frame randomly presented.

4. Larger values of ν also does not improve the information captured in the principal
components (κ). Thus, using only a small subset of data, the required set of κ basis
vectors can be trained.

For a sample case, with ν = 0.1 for obtaining the PCA basis vectors and κ = 100 principal
components were considered. Using these, the low-dimensional PCA-LBP descriptors
was computed to report the, precision and recall obtained for the test data as; NBI =
[95%, 89%] and WL = [96%, 88%]. The average scores for the EM based match for NBI
and WL improved from [0.97, 0.82] to [1.2, 1.2], after filtering the UI frames. Following
the evaluation of RBF-SVM UI frame classifier, a comparison of the scene matching was
performed using the various descriptor-colour space combinations presented earlier. For
the sake of completeness, Tables 7.2 and 7.3 reports the results for all the combinations
for NBI and WL respectively. It can be observed that the best matching score using the
constrained image based match improved to [1.7, 1.46] for NBI and WL. Figures 7.13
and 7.14 shows the best matches from EM and imaged based approach for NBI and WL
endoscope modalities, respectively. For these sample cases, the Table 7.4 describes why the
image-based match is better than the closest EMNN.
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Figure 7.5: 2D Decision Boundary for NBI, using κ = 2 principal components.
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Figure 7.6: 2D Decision Boundary WL, using κ = 2 principal components.

7.4 Discussion and Conclusion

This chapter extends the EM based IRO synchronization, presented in Chapter 3, to include
view-point localization. This is an important concept that has not previously been explored
in the literature. In this chapter, the relocalization task has been reclassified into three
stages. Various descriptors that were discussed in the literature were used for texture and
scene classification, and have been compared; then an alternative approach to UI frame
removal was proposed. Most importantly, the presented framework allows for a quantitative
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evaluation of IRO view-point matching, which is an important aspect of temporal differential
surveillance and by extension for SE. The following observations were made;

(i) The performance is better on NBI than on WL, because of the higher texture observable
in NBI modality.

(ii) Figure 7.9 depicts the general trend of decreasing average score with increasing search
radius, indicating the need for constraining the search space using GL, whereas in
[Atasoy 2012b] only temporal localization of frames was considered.

(iii) From Figures 7.10 and 7.11, it is clearly observable that filtering the UI frames reduces
the matches with worst score when using global descriptors. This is however more
observable in WL than in NBI. Additionally, it must be noted that the matches filtered
by UI frames are highly correlated with the accuracy of relocalization. If there is high
confidence in EM based localization, then theoretically, using matches obtained by
filtering of UI images (using a perfect classifier) would give the best possible viewpoint
match.

(iv) Using GS for NBI images is not meaningful as observed from Table 7.2, because it
is not a true mapping from RGB space. Thus, for alternate modalities, appropriate
colour spaces must be chosen, for robustness of descriptors.

(v) Tables 7.2 and 7.3 also shows that texture based descriptors such as LBP, LIOP and
LTP are much better suited in this scenario. Figure 7.12 shows the plot of the 96
percentile confidence interval for the average scores obtained using EM tracker, EM
tracker match filtered of UI frames and for global image match using LBP for NBI
and LIOP for WL. We observe that an image based match is significantly better than
an EM based match. Using UI frame filtering is, as explained earlier, correlated with
the EM based match and hence its performance is only conservatively better. If we
can strive for a perfect UI classifier, the EM based score can be definitely improved.

Along with the choice of illumination invariant colour-spaces such as hsv, norm and log;
variations of these must be explored further. The descriptor performance in scene matching
in GI endoscopy for SEs performed after many months, need to be studied, to understand
the effect of tissue structure changes on them: for example, the Barrett’s evolution or
post radio-frequency ablation, where oesophageal scene would change completely. In
such scenarios however, it is recommended to use the EM based matching, filtered of
the UI frames. The method presented in this chapter discussed about providing the “best
available” matching view. However such a view may not always exist in a DE. In Chapter
8, an alternative proposal is envisioned for synthetically generating a view-point using the
available informative images. Figure 7.15 provides the summary work-flow of the complete
approach updated by the constrained image-based refinement and off-line UI filtering step.
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(a)

(b)

Figure 7.7: The box plot for the variation of F-Measure for ν = [0.05, 0.1, 0.35, 0.55] and κ
principal components. (a) for NBI and (b) for WL imaging modalities.
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Figure 7.8: ROC curves for ν = [0.05, 0.1, 0.15] and κ = [5, 50, 100] with area under the
curve (AUC) shown in the legend. We observe here that for κ = 5, the AUC is lower than
for the rest of the values. This phenomenon is observed for WL and NBI.
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Figure 7.9: Average scores of descriptor and colour-space combinations that perform better
than the EMTS based matching. The graph plots over an increasing search radii (10mm to
70mm). NBI (a) and WL (b).
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Figure 7.10: Avg. scores on the left axis and % of images matched with score zero on the
right axis for all 36 of the descriptor-colorspace combinations. The x-axis is sorted by the
best avg. score. NBI (top) and WL (bottom).
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Figure 7.11: This figure shows the comparison of percentage of synchronized frames that
were assigned a score=0,1 or 2 by the clinician that were detected by the three approaches;
EM based match, UI filtered EM match and the best performing descriptor (mLBP, mLIOP)
for constrained image match for NBI (left) and WL (right).

Figure 7.12: This figure shows the comparison between confidence intervals for the average
scores for matches obtained using EM based approach, UI filtered EM match and the best
performing descriptor (mLBP, mLIOP) for constrained image match.
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NBI

Descriptor ColorSpace MeanScore StdDev Percent Zeroes Percent Ones Percent Twos

mLBP hsv 1.7 0.619 8.33 13.33 78.33
mLBP rgb 1.7 0.619 8.33 13.33 78.33
mLBP norm 1.667 0.655 10 13.33 76.67
mLBP log 1.667 0.655 10 13.33 76.67
mLBP+mHOG hsv 1.65 0.685 11.67 11.67 76.67
mLBP+mHOG norm 1.633 0.688 11.67 13.33 75
mLBP+mHOG rgb 1.633 0.688 11.67 13.33 75
mLBP+mHOG log 1.633 0.688 11.67 13.33 75
mLBP OPP 1.617 0.691 11.67 15 73.33
LBPMod OPP 1.617 0.691 11.67 15 73.33
LBPMod hsv 1.6 0.718 13.33 13.33 73.33
mLBP gray 1.533 0.724 13.33 20 66.67
mLBP+mHOG gray 1.533 0.724 13.33 20 66.67
LIOP gray 1.517 0.748 15 18.33 66.67
LTP gray 1.483 0.77 16.67 18.33 65
LBPMod norm 1.467 0.791 18.33 16.67 65
LBPMod rgb 1.433 0.81 20 16.67 63.33
LBPMod log 1.433 0.81 20 16.67 63.33
LBPMod gray 1.417 0.766 16.67 25 58.33
LIOP norm 1.383 0.846 23.33 15 61.67
LIOP OPP 1.383 0.783 18.33 25 56.67
LIOP log 1.367 0.843 23.33 16.67 60
LIOP rgb 1.35 0.86 25 15 60
mHOG rgb 1.35 0.82 21.67 21.67 56.67
mHOG norm 1.35 0.799 20 25 55
mHOG OPP 1.333 0.837 23.33 20 56.67
mHOG log 1.333 0.795 20 26.67 53.33
dSIFT gray 1.317 0.854 25 18.33 56.67
mHOG hsv 1.317 0.833 23.33 21.67 55
LIOP hsv 1.283 0.865 26.67 18.33 55
dSIFT rgb 1.267 0.861 26.67 20 53.33
dSIFT hsv 1.267 0.821 23.33 26.67 50
dSIFT opponent 1.25 0.876 28.33 18.33 53.33
mHOG gray 1.25 0.856 26.67 21.67 51.67
mLBP+mHOG OPP 1.15 0.86 30 25 45
EM-Based N.A. 1.15 0.82 26.67 31.67 41.67
LTP rgb 1.067 0.861 33.33 26.67 40

Table 7.2: Average scores of descriptors colour-space combinations for NBI (filtered of UI
frames), sorted in the descending order of column 3 (mean score). Columns 5, 6 and 7 are
the % of cases where the matched image has a score of zero, one and two respectively.
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WL

Descriptor ColorSpace MeanScore StdDev Percent Zeroes Percent Ones Percent Twos

LIOP gray 1.455 0.715 12.73 29.09 58.18
LBPMod gray 1.4 0.784 18.18 23.64 58.18
mLBP norm 1.364 0.825 21.82 20 58.18
mLBP log 1.364 0.825 21.82 20 58.18
LTP gray 1.364 0.802 20 23.64 56.36
LIOP log 1.309 0.836 23.64 21.82 54.55
mLBP gray 1.309 0.814 21.82 25.45 52.73
mLBP+mHOG gray 1.309 0.814 21.82 25.45 52.73
mLBP hsv 1.291 0.875 27.27 16.36 56.36
mLBP rgb 1.291 0.854 25.45 20 54.55
mLBP OPP 1.291 0.832 23.64 23.64 52.73
LIOP rgb 1.273 0.87 27.27 18.18 54.55
LBPMod rgb 1.273 0.827 23.64 25.45 50.91
LBPMod log 1.273 0.827 23.64 25.45 50.91
LBPMod norm 1.255 0.821 23.64 27.27 49.09
mLBP+mHOG rgb 1.236 0.86 27.27 21.82 50.91
LBPMod hsv 1.218 0.896 30.91 16.36 52.73
mLBP+mHOG log 1.218 0.875 29.09 20 50.91
LIOP norm 1.2 0.89 30.91 18.18 50.91
mLBP+mHOG hsv 1.2 0.848 27.27 25.45 47.27
LIOP hsv 1.2 0.848 27.27 25.45 47.27
mHOG gray 1.2 0.803 23.64 32.73 43.64
LTP rgb 1.182 0.863 29.09 23.64 47.27
EM-Based N.A. 1.182 0.796 23.64 34.55 41.82
mHOG rgb 1.164 0.898 32.73 18.18 49.09
LBPMod OPP 1.164 0.856 29.09 25.45 45.45
dSIFT hsv 1.127 0.795 25.45 36.36 38.18
dSIFT OPP 1.109 0.786 25.45 38.18 36.36
mLBP+mHOG norm 1.091 0.867 32.73 25.45 41.82
LIOP OPP 1.073 0.836 30.91 30.91 38.18
dSIFT rgb 1.055 0.803 29.09 36.36 34.55
mLBP+mHOG OPP 1.036 0.881 36.36 23.64 40
mHOG log 1.036 0.86 34.55 27.27 38.18
mHOG norm 1.018 0.871 36.36 25.45 38.18
dSIFT gray 1.018 0.805 30.91 36.36 32.73
mHOG hsv 0.909 0.823 38.18 32.73 29.09
mHOG OPP 0.855 0.78 38.18 38.18 23.64

Table 7.3: Average scores of descriptors colour-space combinations for WL (filtered of UI
frames), sorted in the descending order of column 3 (mean score). Columns 5, 6 and 7 are
the % of cases where the matched image has a score of zero, one and two respectively.
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Figure 7.13: View-point match results for NBI Modality. Column-1 displays the query
frames. Column-2: present the closest EMNN match and Column-3, the best view-point
localized images from the available image set. Scores for matches for each row ordered by
their columns [2,3]. Row 1: [0,2], Row 2: [0,2], Row 3: [0,2], Row 4: [0,2], Row 5: [0,2],
Row 6: [1,2]



100 Chapter 7. Image classification and Fine Positioning

Figure 7.14: View-point match results for WL image Modality. Column-1 displays the query
frames. Column-2: present the closest EMNN match and Column-3, the best view-point
localized images from the available image set. Scores for matches for each row ordered by
their columns [2,3]. Row 1: [0,2], Row 2: [1,2], Row 3: [1,2], Row 4: [0,2], Row 4: [1,2],
Row 5: [1,2]
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NBI

Row# Comment

1 EM-based match is only partially informative and; therefore the IA-based match
is better.

2 The query frame shows the gastro-oesophageal junction, which is not clearly
visible in the EM-match but is shown in image-based match. This case is also a
classic example of the exact view-point not being available from the diagnostic
endoscopic recording. And the IA-based match selects the best available view
from the recorded data.

3 The EM-match is UI and the image based approach presents a good matching
view.

4 The EM-match has slight positioning error, also partially informative, hence,
the image-based match is better in this case.

5 The quality of selected image from the point of view of the visible texture, the
image-based match is better than the EM-match.

6 We see that there is a slight error in depth and also a large view-point difference.
This is a situation resulting due to the muscular contractions, which is somewhat
corrected by the image-based approach.

WL

1 The image-based match selects a more informative view-point from the GI
expert’s point-of-view.

2 The EM-match is UI which is corrected by the image-based approach.
3 The EM-match is partially informative and has poor contrast. Image-based

approach selects a better image in this scenario.
4 The image-based match selects a better view-point as compared to the EM-

match.
5 The EM-match is partially informative which is revised by the image-based

approach.
6 In this the EM-match and image-based selection, provides almost similar results,

but the quality of selected image, in terms of the visible texture is better in
image-based approach.

Table 7.4: Table explaining the matches presented in each row of the Figures 7.13 and 7.14.
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Figure 7.15: This figure summarizes the refinement step presented in this chapter as a
flowchart, which includes the off-line filtering of UI frames and the constrained global
image matching between synchronized frames and the k-EMNN matches.
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8.1 Summary

Theis thesis has presented a complete system for inter-operative relocalization for oe-
sophageal procedures, which can be extended to other GI interventions. During the course
of this thesis, the clinical constraints involved during a GI intervention were closely studied,
before proposing a solution that could be easily integrated into the routine clinical work-flow.
For the proposed system an assessment of noise affecting it was performed and used for
generating synthetic data, which was then used for quantitative evaluation of the system.
Then, on interventions recorded on pigs, using an optical tracking system as the benchmark
for inter-operative registration, in-vivo evaluation was performed. Both these experiments
provided consistent results and showed that the considered noise model closely followed the
real scenario. Then, a qualitative evaluation of the system was conducted by 10 clinical spe-
cialists, with varying degrees of expertise. The experiments demonstrated that the proposed
navigational guidance system provided an advantage to the clinical experts in GI endoscopy.
The 3-point registration framework that was presented, is currently the most efficient in
terms of the clinical work-flow. However, an alternate registration approach performed on
the oesophagus model was presented and showed that in cases of large error caused due
to human error, it improved the video synchronization accuracy. As will be discussed in
Section 8.3, this conceptual framework can be extended to other GI interventions.

The quantitative evaluations performed on the system defined thus far, showed a region
of uncertainty in relocalization using the EM based match. Additionally, the selection of
best image view-point match to the live endoscopic view was also essential to provide better
guidance during endoscopy. A constrained image based search near the EM based localized
region was proposed. In this context, a review of the various image analysis and machine
learning concepts applicable to GI endoscopy was presented. The approach involved, firstly,
for detection of uninformative frames in the intervention, an approach using LBP descriptors
combined with PCA, was proposed. It was shown to works well with low false positive
rates. Secondly, using concepts reviewed in literature, a comparison of different features
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was presented, for constrained oesophageal scene matching. Experiments conducted using
patient data, indicated a significant improvement in the subjective score provided by our GI
expert, for the synchronized frame, compared to using only an EM based match.

8.2 Contributions

I would like to highlight the following contributions made by this thesis.

1. Problem Analysis: Chapters 1 and 2, analysed the need for a navigational platform
in GI endoscopy. In this chapter, GI interventions were analysed to identify two
important paradigms of relocalization in surveillance endoscopy; (a) Biopsy site relo-
calization (BSR) and (b) Temporal differential surveillance (TDS). This distinction;
although subtle, has been left unidentified in the medical literature and depending
on the target application, the approach for addressing the problem or the presenta-
tion of a solution to the clinician, should vary. An analysis on these concepts in GI
endoscopy was introduced in [Vemuri 2015a] and is also under review in the article
[Vemuri 2016].

2. Novel Navigational Platform: One of the most significant challenges in GI endoscopy
has been the lack of a complete navigational platform, that does not modify the
existing clinical routines. One of these aspects, that was discussed in Chapter 2,
was the lack of pre-operative imaging in routine GI procedures. This limits the
choice of solutions available for the relocalization problem. In Chapter 3, a novel
approach is presented, that introduces an electromagnetic tracking system (EMTS)
in a GI endoscopic intervention to record data during the procedure and reuse in
future surveillance interventions for relocalization. This approach, thus effectively
pre-empts the need for any additional imaging and breaks away from the existing
paradigm of instrument localization using a 3D model, thus establishing an alternate
approach for flexible endoscopic navigation. The concept of using EMTS for inter-
operative relocalization was first presented in [Vemuri 2013] and later expanded on in
[Vemuri 2015b].

3. Integration with Clinical Work-flow: To achieve inter-operative relocalization, the
recorded 3D EM sensor data must be registered between two surveillance interven-
tions. Chapter 3 presents a 3-point registration methodology, that was motivated
by studying the work-flow of oesophageal procedures. Chapter 5, extended this
approach to use additional information of the oesophagus trajectory recorded during
the intervention to perform registration. Both the proposed methodologies do not
interfere with the existing clinical work-flow, thus allowing easier integration. Exper-
imental evaluation of the second approach showed that it effectively identified any
large errors due to human factor and corrected them with no significant overhead to
the system. Thus, depending on the state of the system, the second method could be
initiated without interference with the work-flow. The analysis and solution design
was presented earlier in [Vemuri 2013, Vemuri 2015b].
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4. View-point Selection OR Image based Localization: Chapter 7 further analyses the
inter-operative relocalization from a technical standpoint to identify, three intermediate
steps; (a) Gross-localization (b) Fine positioning or View-point selection and (c) Inter-
frame mapping. This classification is important because it influences the choice of
approach to be used at each stage. The gross-localization was tackled using EM-
based video synchronization in this thesis. However, subjectively selecting the “best”
view-point to match the live image is important for decision support, from clinician’s
perspective. This aspect of inter-operative relocalization has not been addressed in
literature and is presented in Chapter 7.

Some of the methods proposed in literature have approached the inter-operative
relocalization as a content based image retrieval problem. In this thesis, it has been
established, through experimental evaluation on patient data that, this in fact is not an
ideal approach. It is also experimentally demonstrated, that to perform image-based
matching in GI endoscopy, constraints provided by (methods such as,) EM-based
localization, would be essential to reduce false matches.

Using the conceptual model of constrained scene matching, Chapter 7 compares, 5
descriptors under two different endoscopic imaging modalities, NBI and WL. Due to
the use of different wavelengths in these modalities, the choice of suitable colour-space
has also been studied. The chapter presents results of this comparison, on surveillance
interventions performed on 7 patients. The concept of view-point localization and as
a extension the constrained image-based relocalization was originally presented in
[Vemuri 2015a].

5. Uninformative Frame Classification: Chapter 7 also explores an alternate (generic)
approach to classification of uninformative frames in endoscopy, using texture based
descriptors, such as LBP. It is shown that, removing redundant information from the
texture descriptors by performing dimensionality reduction, by for example, Principal
component analysis, can be effectively used for this classification. The proposed
approach is tested on Narrow band and White light imaging modalities, using image
data from 11 interventions of each modality. It is shown that the subjective scores of
the EM-based match can be improved, simply by filtering out uninformative images
from the sequence. The uninformative frame classification approach discussed in this
thesis was presented in [Vemuri 2015a].

6. System Evaluation Experiments: A detailed analysis of the various sources of uncer-
tainty in the system was performed in Chapter 4 and a series of experiments were
designed to measure them empirically. The values were used for generating synthetic
interventions, which were used along with the data obtained from interventions on
pigs for performing a complete quantitative evaluation of the proposed EM-based
system. In the context of relocalization, an appropriate error metrics to quantify the
system performance must be selected, which must not only be meaningful to the
scientific community, but also informative for the clinician, to take decisions in the
operating room. For oesophageal procedures, the mapping of 3D position error after
video synchronization, on to the vector formed by sternum sensors provided such a
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metric and corresponded to the depth error in the oesophagus. This metric was also
employed to quantify the subjective responses of 10 clinical experts during qualitative
evaluation of the system.

In a similar qualitative assessment of view-point selection, a new set of subjective
scores (Section 7.3) were assigned to quantify the system response from a GI expert’s
standpoint. Although, these scores may be biased, they provide a basis for quantifying
a GI expert’s interpretation of view-point. The complete evaluation experiments were
published in [Vemuri 2015b].

7. Software Interface: The work presented in this thesis was developed into a clinically
inspired software interface, designed with the gastroscopy work-flow in view. This
was presented in Section 3.5, with different interfaces for BSR and TDS. The software
integrated the 3D trajectory information, to show the GI expert a global view of the
operating region, depicting the current endoscopic position and the locations of the
biopsy sites from an earlier intervention. The software interface was presented in
[Vemuri 2015b].

Further discussions with the clinicians revealed that biopsy sites during an intervention
are plotted on a polar graph with the gastro-oesophageal junction at the centre. Such
a graph was then integrated into the software interface to provide a familiar view for
the GI experts.

8. Literature Review: Finally, while researching the various approaches to scene anal-
ysis and matching in GI endoscopy, it became essential to collect all the existing
literature to understand from algorithmic perspective, the applicability of various
feature detectors, descriptors and machine learning concepts to the GI endoscopic
vision community. The discussion presented in Chapter 6 provides the necessary
starting point in formulating a strategy for image analysis in GI macroscopic imaging
modalities.

8.3 Perspectives

The approach presented in this thesis has provided an initial solution for the problem of
inter-operative relocalization in flexible endoscopic procedures. There are many aspects
to this problem which still need to be addressed, which are discussed below. Furthermore,
extensions to other clinical applications in GI anatomy that can also be envisioned, are
presented here.

1. Since, during an endoscopic procedure, the patient is under general anaesthesia;
the breathing is stable and smooth. Using the movement of the external sensor at
LB during the breathing cycle, the elongation of the oesophagus can be modelled as
function of this variable. This could be modelled as a deformation which quadratically
decreases, when the distance to the stomach increases. In order to use the information
from the sensor at LB, its optimal position on the patient must be firstly studied.
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2. Using the endoscopic data to generate a 3D reconstruction is a widely researched
topic in GI community. A realistic reconstruction can be used to artificially generate
view-point closest to the matched view from DE, addressing the problem discussed
in Chapter 7. Additionally, they can be used for building realistic simulators, for
performing post-operative review or pre-operative surveillance planning for future
interventions. In Visentini et al. [Visentini-Scarzanella 2012], the authors present the
estimation of perspective SFS models for surfaces lit by a near point light source. A
combination of the EM sensor positions with the information from SFS reconstruction
can be used to obtain 3D view inside the GI tract. An alternative to SFS reconstruction
would be to use visual SLAM by integrating the EM sensor position for deeper
navigation in the gastric tract.

3. An important aspect of video synchronization is the need for selecting the best
matching frame with the correct view-point. In absence of the desired view-point,
choosing images that are lumen centric would be a more realistic option than using
global image matching as described in Chapter 7. In this context, an approach to
identify an incorrect match must be researched.

4. A combination of the methods described in Chapters 3 and 7 can be extended to
colonoscopy. The most important challenge for re-localization in colonoscopic proce-
dures is to counter the elastic nature of the colon. However, in a typical colonoscopic
intervention, the clinician inserts the scope all the way to the beginning of the colon
and retracts it slowly while cleaning and inspecting the surface. In such a situation,
the colon is almost completely extended. The problem can be approximated to that of
non-rigid curve matching or rigid registration in presence of uncertainty as described
in [Maier-Hein 2012, Granger 2006]. Using known anatomic landmarks (such as the
hepatic and splenic flexure) along the colon, gross-localization could be performed,
using the EMTS. Fine positioning can be obtained using the image information captur-
ing the colon shape and texture, that was proposed in Chapter 7. This would effectively
reduce the region of uncertainty for inter-operative re-localization in colonoscopy.
The proposal is illustrated in Figure 8.1. However, firstly, the repeatability in the
detection of the above mentioned (or other) anatomical landmarks must be studied on
several human subjects.

5. Using the inter-operative localization framework a top-down image database can
be built that would include the endoscopic images to microscopic imagery from
CLE or OCT along with the histopathological images of the biopsied tissues. Thus,
simplifying the storage and filing of patient records. To achieve this, a standardized
format (such as DICOM for radiological data), must be established. Then, a suitable
interface to navigate the recorded data can be developed for cross-platform access.

6. For colonoscopy, inter-modality relocalization is an important problem to be tackled.
Since, the invention of wireless capsule endoscopy (WCE), it has gained in popu-
larity for pre-operative diagnostic inspection. Although the volume of information
recorded using a WCE is rather large, several approaches have been proposed to



108 Chapter 8. Conclusion and Future Perspectives

Figure 8.1: The extension of the concept discussed in Chapters 3 and 7 is illustrated here for
the colon. The hepatic and splenic flexure are visible in the colonoscopic frames and can be
used as landmarks for trajectory registration. But, the variations in the tissue texture along
the colon can also be used as landmarks. The 3D EM based curve matching can be used
to provide the gross localization. The shaded areas indicate the regions of uncertainty for
searching the best match.

summarize them based on anatomy and presence of suspicious regions. Although,
this information is available pre-operatively to the GI expert, there is a large uncer-
tainty in the relocalization of any region of interest that was identified during capsule
endoscopy inspection. An extension of the system proposed in this thesis to perform
relocalization with WCE would be highly beneficial to the GI expert.

7. Although the video synchronization based navigational system is already very useful
for the GI experts; displaying in the live view, an augmented reality based view of
the previous biopsy positions can be considered as a final goal. To achieve this, an
important aspect that needs to be addressed is the inter-frame biopsy (or interest) site
mapping. Once the best view-point has been obtained, the next step involves mapping
the regions of interest such as, biopsy sites from the matched image to the live view, as
in [Atasoy 2009]. However, to obtain such inter-operative mapping an understanding
of the variation in tissue texture with time and the reliability of the key-point matching
approaches is necessary. The vasculature network along the oesophageal mucosa
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is visible only on some patients, and also depends on the imaging modality (NBI
™

by Olympus, FICE
™

by Fuji, SPIES
™

by Karl Storz and i-scan
™

by Pentax). The
visibility of this vascular structure changes due to contractions of the oesophagus
muscles. Additionally, it is yet unknown if the vascular network remains static or
changes over a period of time. In case of a Barrett’s oesophagus, it is well known that
the length of the Barrett’s evolves with time. Hence, patient data must be regularly
collected on a cohort to analyse the behaviour of the oesophagus mucosa, under
different endoscopic modalities, to evaluate the texture dependence on repeatability.





Appendix A

Endoscopic Imaging

Several imaging modalities have been developed over the last two decades to aide in better
visualization, characterization and demarcation of abnormal tissue from the normal mucosa
[Subramanian 2014, Neumann 2011, Kiesslich 2011].

• Methylene Blue Chromoendoscopy (MBC): It involves spraying a blue dye (in the
oesophagus or colon) and is used to improve identification of suspicious areas of
the mucosa. The methylene blue temporarily stains the mucosa, helping identify
areas of dysplasia and early cancers to help identify the best places to obtain biopsies.
Research studies have showed variable success using this technique to identify
dysplasia [Sharma 2001, Kiesslich 2003].

• Storz Professional Image Enhancement System (SPIES™): It is a platform developed
by Storz to provide varying degrees of improvement to the traditional endoscopic
image. Such as the SPIES CLARA™, which provides uniform illumination to every
part of the endoscopic system. The SPIES CHROMA™, intensifies image colour
contrast while retaining the natural colour perception. The SPIES SPECTRA™, to
filter out suitable spectra to clearly differentiate between tissues.

• Narrow band imaging (NBI): A method that uses special filters on the endoscope
to narrow the color spectrum of red, green, and blue light and increase the intensity
of the blue light. When NBI is combined with high magnification or high resolu-
tion endoscopy, the detailed pattern of the mucosa and blood vessels can be seen
[Gono 2004, Yoshida 2004]. Some studies have shown small, but significant benefit
to adding NBI to high resolution endoscopy for identifying high grade dysplasia and
early cancers.

• Autofluorescence imaging (AFI): It uses laser light during endoscopy to stimulate
the natural fluorescence of the oesophageal mucosa. The fluorescence is captured
and processed by a computer showing the difference between normal and abnormal
mucosa that can be seen during the endoscopic procedure. AFI has a may prove to be
an excellent method for scanning large areas of mucosa for neoplasia [Matsuda 2008,
Haringsma 2001]. The standard endoscopy image and autofluorescence image could
potentially allow the endoscopist to identify the most suspicious areas to biopsy.

• Confocol Laser Endosmicroscopy (CLE): A new method for examining mucosal
histology in real-time during an endoscopic procedure. The CLE is a standard probe
with a microscope built into the tip. It magnifies the mucosa 1000 times normal,
so microscopic pictures of cells can be obtained. Normal mucosal cells can be
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distinguished from dysplasia and cancers directly [Kiesslich 2006, Polglase 2005,
Kiesslich 2004]. In colorectal procedures a combination of MCB with CLE has
shown improved performance [Bae 2014].

• Optical Coherence Tomography (OCT): This modality relies on light scattering by
tissues [Bouma 2000, Sivak 2000].

• Fuji Intelligent Chromo Endoscopy (FICE): It is a software based spectral estimation
to produce spectral images, and select spectral images of given wavelengths, and
finally assign the chosen spectral images to the Red, Green, and Blue monitor
input channels. FICE can select various combinations of wavelengths from all the
light captured by the CCD and display a variety of different images [Chung 2010].
However, fewer studies have been reported on this modality.

• Capsule Endoscopy: Typically used for colonoscopic surveillance. It consists of a
camera fitted in a small capsule that is swallowed by the patient. The capsule traverses
through the GI tract while capturing images that are later reviewed by the clinician
before performing an endoscopy. It aides in identifying suspicious regions such as
polyps or dysplasia. It is generally used for pre-surveillance of colon [Iddan 2000].
Although its diagnostic value is variable, however, review of the acquired images
provides the GI expert with an idea of what to expect.

• High frequency endoscopic ultrasonography (EUS): has an important role in the
evaluation of benign and malignant gastrointestinal diseases. Echoendoscopes op-
erate from 5 to 20 MHz, permitting a spectrum of depth of penetration and image
resolution. Higher frequencies provide higher resolution but less penetration, while
lower frequencies provide higher penetration but lower resolution.

• HD Zoom Endoscopy.

• PENTAX Medical i-scan: It image processing (Surface, Contrast, and Tone Enhance-
ment) to provide digital image enhanced endoscopy (IEE). i-scan provides real-time
virtual chromoendoscopy for a detailed view of mucosal and vascular patterns.



Appendix B

Optimal Rotation and Translation
Between Corresponding 3D Points

The registration of 3D point sets (N ≥ 3) can be obtained by solving for R and t using the
least-squares formulation;

min
R,t

N∑

i=1

‖Pi
A − (RPi

B + t)‖2 (B.1)

There are a few ways to finding the optimal solution (REFS). One of the approaches
is to use Singular value decomposition (SVD). To find the optimal rotation, as shown in
[Huang 1986]; we first re-centre both the point-sets so that both centroids are at the origin,
which removes the translation component. Based on the correspondences, we can construct
the cross correlation matrix H between two centred point clouds as,

H =

N∑

i=1

(Pi
A − centroidA) (Pi

B − centroidB)
T

(B.2)

The optimal solution for the least squares problem can be defined by the rotation R as;

[U, S ,V] = svd(H) (B.3)

R = VUT (B.4)

The special reflectance case, when SVD will return a reflection of R matrix. This can
be addressed by checking determinant(R) < 0 and multiplying the third column of R by -1.
The translation from the target point cloud to the source can then be defined as;

t = centroidB − R centroidA (B.5)
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