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Graphene presents a two-dimensional system whose charge carriers are subjected to a disordered potential created by random charge impurities trapped in the substrate. This impurity potential induces an inhomogeneous carrier concentration. On the other hand, the ability of single-layered graphene to screen this potential strongly depends on the charge carrier density. Thus the effect of the resulting charge disorder can be tuned with the backgate which manifests also in the transport properties of the device. By combining Scanning tunneling microscopy and spectroscopy with in-situ transport at dilution temperature, we probe a system of single-layered graphene on SiO 2 . Local density of states maps on graphene, acquired at various carrier concentrations show gradual increase of spatial extent and amplitude of inhomogeneities as the Dirac point is approached. While the variations of the spatial extent of the fluctuations with back-gate show very good agreement with predictions, the observed amplitude of inhomogeneities show a larger than expected increase at low densities. We explain this as a result of the local gating effect exerted by the tip on graphene which amplifies any change in the intrinsic doping at low carrier concentrations. This is the first experiment bridging the gap between microscopic disorder and macroscopic transport properties of a graphene device.

Résumé

Le graphène héberge un gaz d'électrons bi-dimensionnel, sujet à un potentiel électrostatique désordonné dû aux impuretés de charge dans le substrat. Ce potentiel désordonné induit des inhomogénéités de la densité de porteurs de charge dans le graphène. Par ailleurs, l'écrantage dans le graphène mono-feuillet de ce potentiel dépend lui-même de la densité de porteurs de charge. L'effet du désordre de charge peut donc être modulé avec un potentiel de grille global, ce qui se manifeste en particulier dans la transconductance de dispositifs à base de graphène.

Nous combinons des mesures par Microscopie/Spectroscopie à effet tunnel avec des mesures de transport in situ sur des dispositifs à base de mono-feuillets de graphène sur SiO 2 , à basse température. Les cartes de la densité locale d'états du graphène, à diverses tensions de grille, mettent en évidence l'augmentation progressive des dimensions latérales ainsi que de l'amplitude des inhomogénéités au voisinage du point de Dirac. Alors que la dépendance en grille de la taille des inhomogénéités est en bon accord avec les prédictions, leur amplitude est plus forte qu'attendue au point de Dirac. Nous expliquons ce désaccord en prenant en compte l'effet de grille local produit par la pointe elle-même, qui a pour effet d'amplifier expérimentalement toute variation de la densité de porteurs de charge lorsque celle-ci elle faible. Cette expérience est ainsi la première mesure qui relie quantitativement les propriétés de désordre de charge à l'échelle microscopique aux propriétés de transport macroscopiques d'un dispositif à base de graphène.
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In the very end, I would like to thank my parents and my dear twin, Srimoyee, without whose unending love and support, none of this would have been possible. Whatever I am today, Introduction GRAPHENE today defines a field in itself. The breakthrough achieved by Andre Geim and Konstantin Novoselov in 2004 [START_REF] Kostya S Novoselov | Electric field effect in atomically thin carbon films[END_REF] to isolate a single, atomically thin layer of graphene from stacks of graphite, had triggered an avalanche of scientific activity which today has reached a phenomenal magnitude unique in the history of science. It has been more than a decade since then but the field continues to evolve with scale of research growing with every passing year.

The reason behind all this attention is simply because graphene is truly exceptional. Everything about graphene: its thickness, extreme toughness, high flexibility, superior thermal conductivity, extremely high mobility...is fascinating. What is especially interesting is its honeycomb lattice structure that gives rise to a linear dispersion, thus rendering a Dirac-like, relativistic nature to its charge carriers. This allows the study of quantum relativistic electrodynamics (QED) in table top experiments which has stimulated many important fundamental research such as the study of half integer Quantum Hall effect [START_REF] Gusynin | Unconventional Integer Quantum Hall Effect in Graphene[END_REF] and Klein tunneling [START_REF] Katsnelson | Chiral tunnelling and the Klein paradox in graphene[END_REF], to name a few.

However, there is more to real graphene than this theoretical idealization of a single sheet of carbon, having a carrier density that is perfectly controlled by a backgate. Graphene sheets that are used to fabricate devices are usually placed on insulating substrates such as SiO 2 /Si which contains random charge impurities trapped inside or on the surface. Hence under any practical situation, charge carriers in graphene are subjected to a disordered impurity potential. The response of the charge carriers in graphene to this potential depends on its screening properties.

The impurity potential induces an inhomogeneous carrier concentration in graphene which in turn has the effect of screening out this potential in a completely self-consistent manner. At high carrier densities, screening is strong and the impurity potential is efficiently screened. But at low carrier concentrations, due to the weak screening response, the underlying disorder breaks up the system into electron-hole puddles. It is, therefore, the interplay of this disorder and screening that eventually determines the carrier dynamics in the end device. Transport theories based on this model of random charge impurities [?] were successful in solving the initial puzzle surrounding the absence of a universal minimum conductivity as had been predicted theoretically [4,5].

Scanning tunneling microscopy and spectroscopy (STM/STS) offers, by far, the most sophisticated local probe technique to investigate such electronic inhomogeneities with atomic scale precision. STM/STS investigations on exfoliated graphene on SiO 2 have already shown the ex-1 Contents istence of the predicted doping inhomogeneities [START_REF] Zhang | Origin of spatial charge inhomogeneity in graphene[END_REF]. Such inhomogeneities showed no correlation with the topography, thus validating the concept of random charge impurities in the substrate as the probable origin of such a disorder. Further, these impurity induced inhomogeneities were shown to act as scattering centers that generated quasiparticle interferences (QPIs) which could be modulated by the voltage bias applied to the sample as well as the backgate. However, the important questions that remained unanswered were how the backgate would influence the induced inhomogeneities themselves, which are expected to change both in amplitude and lateral extent given the carrier dependent screening in graphene, and to what degree the local properties of the graphene device quantitatively match the macroscopic transport properties.

In this thesis, I have combined Scanning probe microscopy with in-situ transport to perform a complete investigation of the field effect in exfoliated, single-layered graphene on SiO 2 /Si substrate at dilution temperatures. Charge carrier conductivity measured in transport gives the macroscopic properties of the device as well as allows us to quantitatively predict the amplitude and lateral scale of inhomogeneities using the theoretical model of scattering from random charge impurities. Whether these predictions are correct or not is verified by directly measuring the local density of states (LDOS) at different backgate, using STS. The metallic tip is found to play a surprisingly major role in influencing the measurements. Apart from graphene on an insulating substrate, charge disorder has also been investigated on graphene on a metallic substrate (iridium).

In the following sections, a brief outline of the different chapters have been presented.

Resist Free Device Nanofabrication

In this chapter, two different resist-free fabrication processes have been presented, specifically designed for creating nano-structures with thermally evaporated niobium that also ensure scanning probe compatibility. The reason for choosing niobium is that one of the initially planned targets was to investigate the superconducting proximity effect in graphene. Niobium formed the best choice for the superconducting material of the contacts because of its high superconducting transition temperature. The two different processes are shown in Figure 1. The first process involves a bilayer metal mask (Figure (a)) that substitute the role played by the organic resist in conventional lithography. To test the performance of this technique, we implemented it in the fabrication of long, thin Nb lines and Nb-Au-Nb DC proximity SQUIDs (Figure (b)). This process was published in [START_REF] Samaddar | Niobiumbased superconducting nano-device fabrication using all-metal suspended masks[END_REF] and is still intensively used in the group. The second method involves the mechanical masking of an exfoliated graphene flake with a 4 µm tungsten wire, as shown in (c). This process has been extensively used in this work, for placing two isolated electrical contacts on graphene. 

Theory of Disorder and Screening in Graphene

In this chapter, we discuss the theory required for understanding how the amplitude and lateral scale of doping inhomogeneities, induced in graphene by the disordered impurity potential, evolve as a function of the average carrier concentration controlled by the backgate. The carrier dynamics in graphene, determined by the interplay of disorder and screening, are discussed at high, intermediate and low carrier density regimes. This allows us to relate the local correlation functions of the screened disorder potential with parameters that are readily obtained from transport measurements.

The Cryogenic Scanning Probe Microscope

In this chapter, we introduce our experimental setup which is a Scanning probe microscope capable of operating down to dilution temperatures at magnetic fields upto 2 T. We first discuss the different microscopic techniques that can be implemented in this setup and has been thoroughly used throughout the course of this thesis. This is followed by the description of the key components of the setup i.e. the microscope itself, associated electronics and the inverted dilution fridge or Sionludi on which the microscope is installed. The scanning probe is introduced next with detailed description of its working principle, the way it is implemented in our setup and the change in its properties while cooling down from room to base temperature. Finally, we demonstrate important instances where the option to combine different microscopic techniques in our setup clearly proves to be a strong advantage.

Decoupled Graphene on a Metallic Substrate

In this chapter, we investigate the local properties of a system of graphene on iridium [GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF]], prepared ex-situ by chemical vapour deposition (CVD). At first, the important topographic features on the GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] surface are introduced: i.e. the graphene itself, the regions devoid of graphene and the graphene wrinkles. Each of these features are characterized in detail by scanning probe microscopy. Next, we study a freshly prepared sample that has faced exposure to ambient conditions for a very small duration of time. This helps us to particularly understand the dynamics of the intercalation processes at work when exposed to ambient conditions and elucidates the role of the wrinkles, in particular, as pathways for such intercalation (Figure 2(a),(b)) [START_REF] Kimouche | Modulating charge density and inelastic optical response in graphene by atmospheric pressure localized intercalation through wrinkles[END_REF]. Finally, we investigate the state of charge disorder in graphene that has been completely decoupled from the substrate due to sufficient exposure to ambient conditions. We find a strong correlation of this disorder with the topographic corrugations in STM (Figure 2(b)) which we relate to the presence of the intercalated molecular species between graphene and the metal substrate [START_REF] Martin | Disorder and screening in decoupled graphene on a metallic substrate[END_REF]. 

Disorder and Screening in Graphene Devices

In this chapter, we present a detailed investigation of the field effect in a single-layered graphene device by combining in-situ transport with scanning probe microscopy at dilution temperatures.

Contents

The chapter has been broadly divided into three sections. In the first section, the transport measurements have been presented and analyzed using the theoretical understanding gained in Chapter 2. The next section deals with the investigation of the field effect locally using two different techniques: Kelvin probe force microscopy (KPFM) and STS. The role of the metallic tip as a local gate has been discussed in detail to interpret the differential tunneling conductance spectrum in graphene and its response to the backgate (Figure 3(c)).

Finally, in the last section, we image the doping inhomogeneities in graphene by performing both point to point tunneling spectroscopy as well as mapping the tunneling conductance G t at optimally chosen bias voltages. By performing this measurement at different backgate voltages, we track the evolution of this disordered landscape with the average carrier concentration induced by the backgate. This is followed by a detailed analysis of the G t (x, y) maps to extract the local correlations at different backgate voltages. This allows us to directly compare the experimentally measured correlations to what is predicted from the average properties extracted from transport.

Here, once again, the role of the metallic tip as a local gate is invoked for a better understanding of the measurements. 

Why avoid resist ?

Most of the nanofabrication done today involve the use of organic resists. Combined with the superior technology of a lithography system currently available, they allow one to pattern nanostructures with resolution as high as 5 nm and incredible precision. But not all nanofabrication is possible by following this standard route. As we will see below, for certain applications and for handling certain specific but extremely important materials, it becomes essential to take a detour. 

Nanostructures with Niobium for Scanning Probe

A strong motivation for this thesis has been to study superconducting proximity effect in Superconductor (S)-Normal(N)-Superconductor(S) junctions with the help of Scanning probe microscopy. As a choice for the superconducting material, niobium topped the list primarily because it offered the highest T c (∼ 9.2 K for bulk Nb) among elemental superconductors. This would imply a superconducting gap of about 1.3 meV (∆(T = 0 K) = 1.764 k B T c ) which in turn leads to a higher proximity-induced gap on the normal part thus increasing the chances of it falling well above the energy resolution of the scanning probe microscope. Also Nb is rather immune to the problem of aging making it a more suitable candidate over other higher T c superconductors like lead or vanadium.

However, preparing nanostructures with niobium is not so straightforward. Niobium is a refractory metal with melting point of 2469 • C. Therefore during electron beam deposition of niobium, extremely high temperatures are reached causing direct heating of the sample by radiation. The sample temperature can easily exceed 235 • C which is the transition temperature for the frequently used e-beam resist PMMA as is shown in Figure 1.1 [START_REF] Dubos | Thermostable trilayer resist for niobium lift-off[END_REF]. This can not only damage the resist but cause the resist mask to become unstable and collapse. Outgassing of the resist will lead to contamination of the niobium as well. It is well known that the T c of niobium is extremely susceptible to contamination [START_REF] Varmazis | Metallurgy of Superconducting Materials: Treatise on Materials Science and Technology[END_REF] [START_REF] Ohnishi | Improvement of superconductive properties of mesoscopic Nb wires by Ti passivation layers[END_REF]. Only in the special condition that the niobium target is more than 40 cm away from the sample in the deposition chamber [START_REF] Kim | Fabrication of mesoscopic superconducting Nb wires using conventional electron-beam lithographic techniques[END_REF], can such a situation be avoided but this is often very difficult to realize in most setups. One way out of this problem could be to use a different technique of metal deposition like sputtering as it does not involve heating of the metal. This is a popular choice for most cases as it succeeds in producing high quality niobium films with its T c preserved. [START_REF] Bao | Lithography-free fabrication of high quality substratesupported and freestanding graphene devices[END_REF].

But this was still not sufficient for our purpose. Sputtering is known to produce highly diffused edges at the interface. For the purpose of local investigation of the proximity effect, it is crucial to have a well defined interface with the bulk superconducting gap persisting up to the very edge and no diffusion of superconducting atoms in the normal part. E-beam deposition clearly scores in this respect over sputtering. Hence, keeping all these requirements in mind, the need of the hour was to come up with a fabrication technique that would avoid any organic resist at the stage of e-beam deposition of niobium.

Scanning probe compatible Graphene devices

In a widely studied two-dimensional system like graphene, where the surface constitutes the bulk, cleanliness of the surface is a serious issue to address during fabrication. Contamination of the graphene can fundamentally alter the properties of the end device limiting its mobility and hence leading to inferior device quality.

One important limitation associated with the use of organic resist is the difficulty in achieving a perfect lift-off. This is especially true in the case of graphene where the e-beam resist PMMA shows a strong affinity towards the carbon molecules leading to surface contamination. This is nicely demonstrated in Figure 1.2 by Bao et al. [START_REF] Bao | Lithography-free fabrication of high quality substratesupported and freestanding graphene devices[END_REF]. The contamination of the surface by PMMA residues is clearly visible in the AFM image on the right inset as opposed to the image on the left inset of the same graphene flake that has not been exposed to PMMA. The state of cleanliness of the surface has a significant impact on the transport properties of the graphene as is evident from plots (b) and (c) of Figure 1.2 which shows a higher mobility and less intrinsic doping on the clean graphene compared to the dirty case .

This limitation is indeed an invincible obstacle for a surface scientist interested in probing the local properties of such a system. A clean sample surface is a very important pre-requisite in scanning probe microscopy. Insulating resist residues on the graphene surface can give rise to unstable scanning conditions in scanning tunneling microscopy for example, leading to a tip-crash or in other words damage of the probe. Ineviatably, this will lead to erroneous, irreproducible and incomprehensible results.

Cleaning the surface of residual resist debris after contacting the graphene is therefore of paramount importance. However, this continues to be a constant struggle for experimentalists working with graphene. Several techniques have been deviced for cleaning like annealing in a controlled environment, rinsing in organic reagents like acetic acid, chloroform, etc, using the AFM tip in contact mode to sweep away the contaminants. But none of the methods are really full proof and moreover they can give rise to additional complications.

In this case the best strategy is therefore to avoid any resist in the first place, if possible.

The Bilayer Metal Mask

To tackle the problem stated in section 1.1.1, there are several ways one might consider. A list of the different techniques adopted by different groups over the years is briefly outlined below.

1. Sputtering a thin film of niobium first and then patterning it by dry reactive ion etching as demonstrated in [START_REF] Angers | Proximity dc squids in the long-junction limit[END_REF] for the fabrication of long DC proximity SQUIDs. However this process is rather customized for a given system and is incompatible for connecting niobium to fragile materials such as graphene, carbon nanotubes or thin sheets of topological insulators.

2. Replacing the conventional resist mask by a bilayer structure that remains thermally stable, undamaged and does not outgass at the high temperatures created in the evaporation chamber during niobium deposition. Dubos et al. [START_REF] Dubos | Thermostable trilayer resist for niobium lift-off[END_REF] had used a bilayer consisting of a thermostable polymer (Poly Phenylene Ether Sulfone or PES) of high thermal and chemical stability as the base layer and silicon as the upper layer to fabricate Nb-Cu-Nb Josephson junctions.The use of these particular resists is nevertheless cumbersome; for instance, the ambient hygrometry has to be controlled during resist spinning. have been developed by Hoss et al. [START_REF] Hoss | Nonorganic evaporation mask for superconducting nanodevices[END_REF] [START_REF] Hoss | UHV compatible nanostructuring technique for mesoscopic hybrid devices: application to superconductor/ferromagnet Josephson contacts[END_REF]. But in this case it is impossible to lift-off the mask after fabrication and hence is unsuitable for our purpose.

4. Using a metallic bilayer mask. As early as 1978, R. E. Howard [START_REF] Howard | A refractory lift-off process with applications to high-Tc superconducting circuits[END_REF], had experimented with a Nb stencil mask with a Copper sublayer whereas in [START_REF] Hsj Van Der Zant | The superconducting transition of 2-D Josephson-junction arrays in a small perpendicular magnetic field[END_REF] a lithography process based on an aluminium (Al)/chromium (Cr) bilayer was implemented to make arrays of micron sized Josephson junctions with Nb as the superconductor .

We choose the last route of using a completely metallic bilayer mask. In the following sections we demonstrate our own technique of fabricating nanostructures with high quality niobium films using a bilayer mask of molybdenum (Mo)/aluminium (Al).

Fabrication

As explained before, the main objective for choosing this direction of fabrication was to ensure a thermally stable mask at the time of niobium deposition that would not outgass and could easily withstand high temperatures (> 500 • C) produced inside the chamber during e-beam deposition of niobium. To facilitate an easy lift-off in the last stage with minimum damage to the edges of the deposited nanostructures, a bilayered structure with an overhanging top layer with respect to the bottom layer is preferred. Since the top layer of the metallic mask is required to acquire the pattern from the PMMA mask above, metals like Mo, Si, Nb which are dry-etched by SF 6 in an anisotropic manner are suitable candidates. Anisotropic nature of the etch is important to ensure that the metal is etched much faster longitudinally than laterally which is important to preserve the dimensions of the designed structures. The prime requirement of the etchant is that it should have a significantly larger etch rate for the top metal than the PMMA for a successful pattern transfer. As for the choice of the bottom layer, we would need a metal that is easily soluble in one of the solvents available and accessible in the clean rooms. The chosen solvent must act on this layer isotropically to give rise to undercuts as desired.

For the top layer, we experimented with Mo and Si. Both satisfied the requirement of forming a thermally stable, robust and easily patterned upper layer. However, with Si, a problem was encountered in the final lift-off stage. During lift-off, once the Si overlayer collapsed on the SiO 2 substrate underneath, it was impossible to remove it even by strong ultrasonication. Aluminium was our choice for the bottom layer since Al nanostructures are isotropically etched by the readily available basic solutions of MF-26A or MF-319 (2.35 % solutions of tetramethyl ammonium hydroxide in water, pH ≈ 13) to create well controlled undercuts. Once again these solvents preferentially act on the exposed Al regions leaving the regions protected by the Mo intact.

Here it should be noted that this basic developer is unable to completely remove thin films of Al spread over continuous, large areas but if this same area is fragmented with numerous hole like structures, it becomes possible to achieve a clean removal. Including regularly spaced holes in the initial lithographic pattern, as shown in Figure 1.4, clearly helped in lifting off the Al/Mo(200 nm/40 nm) bilayer mask in just 45 minutes without which it was impossible. The reaction mechanism for dissolution of Al seems to be increased when the surrounding structures force the solution to act on tiny areas rather than a bulk surface. This was found to make the etch rate somewhat sample design dependent. Hence the etch duration needs to be optimized each time a new design is tried out. A good starting point is about 90 s for 200 nm thick Al.

Having a good control over the Al etch is crucial as an under-etch would not be favourable for the final niobium structure during lift-off whereas an over-etch would produce huge undercuts that would lead to the collapse of the upper Mo layer.

The different steps involved in this process have been summarized below. This is accompanied by optical images in Figure 1. 4 showing the different steps using an Al/Si mask although eventually Mo was preferred due to reasons stated above. The parameters stated are taken after a successful fabrication process but might require minor changes for adapting the process to different systems as was discussed above. top layer.

2. Spin-coating of organic resist PMMA 4 % (PolyMethyl-MethAcrylate) at 3000 rpm, 3000 rpm/s for 30 s. This ensured a resist thickness of ∼ 350 nm. This is followed by baking at 

Long Nb lines

As a first test, we have prepared narrow lines of niobium using the technique described above.

In these samples, a 10 nm Ti layer was deposited in situ prior to deposition of 26 nm Nb, to improve adhesion and mimic the frequently used approach to contact a superconductor to novel low-dimensional materials. The presence of Ti however contributes to reducing the T c of the wires due to inverse proximity effect. Atomic force microscopy (AFM) inspection of the Nb We have performed transport measurements on these samples in a variable temperature (2˘300 K) cryostat, using a dc four-probe configuration. Figure 1.6(a) shows the optical microscope image of the sample consisting of long Ti/Nb lines (L = 30 µm) of different widths. To measure the four probe resistance of a particular line, a biasing current I bias = 5 µA was driven from sample pad 1 to 6 via the thin lines while the voltage was measured between pads on the two sides of the respective line. Hence, the resistance recorded for a particular line actually includes contribution from the adjoining broader structures. However, this does not necessarily pose a problem because, as we will see below, these broader structures undergo superconducting transitions at slightly higher temperatures and hence the resistance recorded after that corresponds to the resistance of the particular line alone.

The temperature dependence of the resistance R of the three narrowest lines of widths W = 400 nm, 700 nm and 1 µm have been shown in While the critical temperature T c of the 400 nm wide line is considerably reduced, it is hardly affected for widths above 700 nm.

The V (I) characteristics (Figure 1.6(c)) at 4.2 K show a marked resistive transition and some hysteresis. The latter is due to Joule heating in the Nb line once in the normal state, which elevates the local electronic temperature compared to the bath temperature [START_REF] Courtois | Origin of hysteresis in a proximity Josephson junction[END_REF]. As a result the critical current is reduced giving rise to hysteresis. Thermal hysteresis is enhanced in narrower structures due to higher Joule heating which in turn is a consequence of the higher normal state resistance of the narrower lines. The critical current density is about

J c ≈ 2 × 10 10 A/m -2 .
R vs magnetic field B of the 400 nm and 700 nm lines have been shown in Figure 1.6(d).

Since niobium is a type II superconductor, the bulk metal has two critical fields, the lower field H c1 ≈ 290 mT at which point magnetic flux penetration into the superconductor is initiated resulting in appearance of a finite resistance and an upper critical field H c2 which can be as high as 2 T or more beyond which the normal state resistance of the film is restored [START_REF] Rosenblum | The Dependence of the Upper Critical Field of Niobium on Temperature and Resistivity[END_REF]. In the case of the two narrowest Ti/Nb lines, H c2 ∼ 2.5 T. The lower critical field, as marked by the sharp transition in resistance from R < 1 Ω to 10 Ω is about 205 mT for the 400 nm line. However, for the case of 700 nm line, H c1 is difficult to identify. 

Nb-Au-Nb Proximity SQUIDs

We have further fabricated Nb-Au-Nb proximity SQUIDs (Figure 1.7(a)) using a two-step lithography process. We first patterned two long parallel lines of gold with a sticking layer of Ti, 1 µm wide and 30 nm thick, by conventional e-beam lithographic techniques. The metallic mask method described above is then used to pattern Nb proximity junctions on top of these. We deposited a 50 nm thick Nb layer without any sticking layer this time. Over the proximity junction, the metal mask is free hanging, as to form junctions as short as 200 nm. The device parameters of the three tested devices, labeled A, B and C, are summarized in table 1 

.1. SQUID L (nm) W (µm) R N (Ω) ρ N (µΩcm) D (cm 2 /s) L th I c (µA) c (

The Bilayer Metal Mask

In a hybrid Josephson junction made of a normal metal bridging two superconducting electrodes, as in the Au line between two Nb electrodes here, the length scale for inducing superconductivity in the normal metal is set by the normal metal thermal length given by

L T = D 2πk B T (1.2.1)
Here, D is the electronic diffusion coefficient in the normal metal. L T is estimated to be about 180 nm at 135 mK while the junction lengths L are in the range 200˘400 nm.

Transport properties of the Nb-Au-Nb proximity SQUIDs were measured using a four-probe dc current bias scheme inside a dilution refrigerator. Each electrical lead to the samples was thoroughly filtered by individual 2 m long lossy coaxial lines thermalized at the cryostat base temperature. As proximity Josephson junctions have a vanishing capacitance, they are over-damped [START_REF] Tinkham | Introduction to superconductivity[END_REF].

The V (I) characteristic is thus expected to follow :

V = R n I 2 -I 2 c f or |I| > |I c | (1.2.2)
The measured V (I) characteristics showed a rather good agreement to this equation, see 

I r ≤ I c .
This hysteresis is known to be of thermal origin [START_REF] Courtois | Origin of hysteresis in a proximity Josephson junction[END_REF]: the Joule heat dissipated in the normal metal elevates the electronic temperature with respect to the phonon temperature as the electron-phonon coupling is the bottleneck for the electron thermalization to the bath.

Retrapping happens when the bias current becomes of the order of the critical current at the current electronic temperature.

Our samples are in the long junction limit defined as a normal metal length larger than the superconductor coherence length: L ξ s ≈ 30 nm. In this case, the relevant energy scale for the superconducting proximity effect is the Thouless energy

c = D L 2 (1.2.3)
which is much smaller than the energy gap ∆. The evolution of critical current with temperature in a normal metal weak link at arbitrary temperatures can be understood by solving the Usadel equations. At low temperatures and in the long junction limit (∆/ c → ∞), the numerical solution to the Usadel equation can be approximated by [START_REF] Dubos | Josephson critical current in a long mesoscopic SNS junction[END_REF] The estimate of c agrees well with the value found from geometrical arguments, see table 1.1.

The minor discrepancy can be understood as an effective junction length L = D/ c = 257 nm, slightly longer than the geometrical value [START_REF] Dubos | Josephson critical current in a long mesoscopic SNS junction[END_REF]. The reduced value of η reflects a lower than ideal I c , which is attributed to imperfect transmission at the Nb-Au interface. Argon plasma of the Au structures prior to Nb deposition should lead to improved contact transparencies.

Furthur Developments

This novel technique of nanofabrication using a bilayer metal mask has been significantly improved by the next graduate student in the lab [START_REF] De | High-critical current Nb based proximity Josephson junctions[END_REF]. By optimizing this process furthur so as to incorporate the possibility of angled evaporation of metals, this process could be successfully im- The next goal would be to implement this process to fabricate superior quality Superconducting interfaces on graphene but this remains to be realized by future students. 

The Mechanical Shadow Mask

As had already been discussed in subsection 1.1.2, the primary limitation of applying conventional lithography methods for contacting graphene involving organic resists is that it is impossible to recover uncontaminated graphene devoid of resist afterwards. Since a clean graphene surface is essential for studying it by STM and AFM, we devised another technique to achieve the same which is once again quite different from the technique presented in section 1.2. This method does not involve any lithography process but is simply based on the method of mechanical masking of the graphene flake.

Substrate Preparation and Graphene Exfoliation

The graphene in our devices is obtained by the process of mechanical exfoliation of Kish graphite by the popularly used scotch-tape method [START_REF] Ks Novoselov | Two-dimensional atomic crystals[END_REF], [START_REF] Kostya S Novoselov | Electric field effect in atomically thin carbon films[END_REF]. Although labour intensive, we found exfoliated graphene more suitable for our purpose rather than CVD grown graphene. This is because as far as sample quality in terms of surface cleanliness and large crystal domains is concerned, there is simply no other substitute for graphene prepared by mechanical exfoliation.

Graphene exfoliation is carried out on SiO 2 (285 nm)/Si substrate. The thickness of the oxide is crucial for detection of few layer graphene (FLG) flakes by an optical microscope [START_REF] Dsl Abergel | Visibility of graphene flakes on a dielectric substrate[END_REF], [START_REF] Blake | Making graphene visible[END_REF].

FLG is actually visible as a shadow in the optical microscope whose contrast increases with the number of layers. The shadow is produced by the interference between light waves reflected from the graphene and the Si/SiO 2 interface. For 300 nm oxide thickness, the optimal contrast is obtained for the green light.

The treatment of the substrate prior to exfoliation is very important as it is a major determining factor for the size and number of FLG flakes obtained. Moreover, cleaning the surface thoroughly ensures reduction of concentration of charged impurities which are known to have a significant influence on the electronic characteristics of the flakes [START_REF] Adam | A self-consistent theory for graphene transport[END_REF]. In order to ensure maximum removal of contaminants, the substrates were first ultrasonicated in a bath of acetone C for 5 minutes in 100 % O 2 flow leading to the formation of siloxane groups on the surface [START_REF] Nagashio | Electrical transport properties of graphene on SiO2 with specific surface structures[END_REF] for about 10 mins followed by IPA rinse and then in RBS solution (soap). This is followed by 5 minutes in oxygen plasma (50 W) which renders the surface hydrophilic. Figure 1.10 shows a schematic illustrating the substrate environment after each cleaning step. Organic contaminants or hydrocarbons that usually exist on the substrate are removed by oxygen plasma, exposing negatively charged silanol groups that possess great affinity towards C molecules [START_REF] Nagashio | Electrical transport properties of graphene on SiO2 with specific surface structures[END_REF]. The ensuing high surface-graphene interaction is expected to reduce the van der Waals interaction between the bottom and the second carbon layers thus increasing the chances of occurance of single-layered graphene (SLG) with large dimensions. To take maximum advantage of the hydrophilic nature of the substrate, exfoliation was done within an hour of plasma treatment.

It should be noted here that the above technique of substrate preparation by O 2 plasma treatment scores over other commonly used methods because of yielding substrates that have a higher affinity towards C molecules. In fact the graphene is so well 'stuck' to the substrate, that for people trying to prepare BN-Graphene-BN stacks, it is indeed a nuisance as it is impossible to detach the graphene from the substrate afterwards. But for our purpose, it is quite an advantage since as we will see in section 3.5.2, the SiO 2 /Si substrates that is required for our experiment is not flat but covered with a dense distribution of holes, crosses and markers ≈ 10 nm deep that have been patterned into the SiO 2 layer by deep UV lithography. This makes the adhesion of flakes on the substrate comparatively difficult. The inset in Figure 1.11 shows an optical image of an exfoliated flake on such a substrate. This is why the attractive nature of the substrate surface developed after O 2 plasma cleaning is important as it is able to somewhat redeem the situation. Other prevalent methods like annealing of the substrate or piranha cleaning (which causes reoxidation of the silanol groups forming siloxane), although are expected to give better quality flakes [START_REF] Nagashio | Electrical transport properties of graphene on SiO2 with specific surface structures[END_REF], could not be implemented on our substrates due to the significantly lower yield.

Optical Detection & Raman Spectroscopy

After exfoliation, the samples are scanned optically for single-layered graphene flakes (SLG)

although some experiments were also conducted on multilayers. The optical contrast already gives us a rough estimate about which flakes could be monolayers. It was seen that with green light, SLGs showed a contrast of about 8 -10 % while bilayers about 16 -20 % and so on.

After this pre-selection step, the suspected SLGs were put to test under a 514 nm laser light for analyzing the Raman Spectra of the reflected signal, which provides a definitive identification of monolayers [START_REF] Ferrari | Raman spectrum of graphene and graphene layers[END_REF]. The power of Raman spectroscopy as a probe for graphene physics is not merely limited to monolayer and bilayer identification. One can also have insights into the structure, doping and disorder of a particular flake with the help of this technique [START_REF] Yan | Electric field effect tuning of electron-phonon coupling in graphene[END_REF][32] [START_REF] Stampfer | Raman imaging of doping domains in graphene on SiO2[END_REF]. The position, broadening Since the Raman observations were conducted prior to metal deposition, we can conclude that the substrate environment has a significant influence in the overall properties of the flakes.

Surface Characterization by Atomic Force Microscopy

After selecting the monolayers from millions of flakes by a combination of optical means and Raman spectroscopy, the surface of each individual selected flake was characterized by Atomic Force Microscopy (AFM) in tapping mode. This was primarily done to ensure a clean surface free from glue from the tape, cracks, tears or any other kinds of contamination. For such a surface characterization, AFM is the perfect probe as it is both non-invasive and unlike SEM, noncontaminating. However, it is difficult to identify the precise number of layers by this technique.

For a monolayer which should theoretically have a thickness of 0.3 nm, the step height recorded can be upto about 1 nm while quite often they are hardly visible in the AFM topography as can be seen in the examples shown in Figure 1.12 (a) and (c). This ambiguity in step height detection happens because the topography in AFM is influenced by the nature of the tip-sample interaction which can be very different on the graphene compared to that on the surrounding substrate at a given tip-sample distance. Hence it serves as a very useful probe for the direct visualization of the condition of the graphene.

The three examples shown in this figure demonstrate the variety of contrasts that can be seen in the Phase signal ; from a decrease in phase over the graphene (SLG 1) to a relative increase (SLG 2) or sometimes to a spatial distribution of both (SLG 3). Figure 1.12 (e)-(j) tracks the evolution of the SLG 3 with consecutive scans from top to bottom. From a comparison of topography with Phase, it appears that regions on the flake which are closer to the substrate produce a higher phase change of the scanning cantilever probe or in other words have a higher influence on the cantilever than regions lying furthur away. Hence the phase image qualitatively produces a map of the spatial variations of the substrate-graphene distance. Moreover, what is even more interesting is that, this process of scanning the flakes with the probe in intermittent contact with the surface (tapping) can sometimes even induce changes in this distance as we see in the case of SLG 3.

Fabrication

After the finalization of the graphene flake to be contacted, it's time to implement the process of Mechanical Masking to pattern two contacts on it that are isolated electrically. This process has been demonstrated schematically in Figure 1.13. It involves positioning a thin tungsten (W) wire on top of the flake to partially mask it before placing it in the chamber for metal deposition.

The steps are enumerated below :

1. Clean (ultrasonicated in acetone/IPA) W wire strands (3 -4) of diameter 4 µm and length of about 500 -600 µm are placed on the sample substrate.

2. One of the wires is positioned on top of the selected graphene flake. This is done by pushing the W wire with a second thicker W wire (d ∼ 100 µm) fixed at the edge of a micromanipulator capable of precise movement in three dimensions as shown in Figure 1.13(b). The wires adhere to the substrate rather strongly due to van der Waal's interaction and do not detach even on flipping the substrate.

3.

A second metallic mask containing a rectangular window of size 0.3 mm × 2 mm is now carefully positioned on top of the flake in a way such that the flake position is adjusted to the center of the window.

4. After securely clamping the sample to the sample holder, with the mechanical mask on top, it is placed inside an ultra high vacuum chamber with pressure of about 10 -10 mbar for metal deposition.

5. The sample is then annealed at 150 • C for half an hour and kept in UHV overnight to allow sufficient time for outgassing.

6. This is followed by metal deposition consisting of a sticking layer of titanium (1.5 nm), niobium as the superconducting material (10 nm) and finally a thin layer of gold (2 nm) to protect against surface oxidation.

7. After deposition, the metal and the wire masks are manually removed. The wire can simply be removed with the help of once again a thicker W wire. It should be noted that, the length of the W wires should not be higher than ∼ 600 µm as otherwise the wires were found to be displaced. This was probably due to the fact that at the high temperatures to which the sample was subjected to, the adhesion of the wire to the substrate is weakened. Hence, this causes an upper bound to the length of the wire. At the same time, length should not be shorter than ∼ 400 µm keeping in mind the 300 µm width of the upper metallic (stainless steel) mask.

This process of contacting flakes was found to be rather efficient with a high success rate.

And what is more is that with this technique we managed to achieve our main objective which was the production of contamination free graphene surface that has never seen any organic resist and hence perfectly compatible for scanning probe measurements.

Figure 1.14 shows the AFM image of an exfoliated graphene flake conatcted by the above method. It is quite evident that the surface is very clean and devoid of any contaminants. Also, region close to the interface is found to be free of any metal grains diffusing into the graphene. The slope of the former is about 0.12 while that of the latter is about 0.14 which is only a minor difference. The measurement of edge sharpness in this way is, of course, not accurate but limited by the finite radius of the AFM tip apex. Nevertheless, the close similarity with edges created by conventional lithography definitely implies the success of this technique to create nearly perfect metal-graphene interfaces.

Even if we were to assume that the spatial width of transition from the graphene to the metal is equal to what is observed in AFM i.e. ∼ 100 nm, this would still be sufficient for our purpose. For the purpose of investigation of Superconducting proximity effect near the interface, with reasonable interface transparency, the thermal length L T (relevant length scale for proximity superconductivity) in graphene is expected to be far greater than 100 nm. Hence, for the objectives that we set our for, this was rather satisfactory.

Contact materials and related challenges

Although this method of contacting the graphene by partially masking it by a metallic wire was quite easy to implement, there were some difficulties encountered on the way. These were mostly related to our choice of Niobium as the superconducting contact metal and our decision to deposit this by electron-beam deposition for reasons already explained (see Section 1.1.1). The extremely high temperatures that are produced during electron-beam deposition of niobium ∼ 3000 • C, subjects the graphene to a very high compressive strain induced by a thermal expansion coefficient (TEC) mismatch between graphene and the underlying substrate as well as the deposited metals. This is because graphene has a negative TEC of about -8 × 10 -6 K -1 , while SiO 2 and the metals, all have a positive TEC [START_REF] Yoon | Negative thermal expansion coefficient of graphene measured by Raman spectroscopy[END_REF]. This may even cause the graphene to slip as the tensile force can exceed the weak van der Waal's foces that usually hold the graphene to the substrate. Figure 1.15

shows an example of a SLG flake that was found in a ruptured state right after metal deposition.

This problem of rupturing of the flakes could be solved by paying attention to the graphene dimensions. It was observed that graphene with a high Length:Width aspect ratio ( 3) were particularly susceptible to being torn. Hence, care was taken to avoid such flakes.

Another major problem was the poor adhesion of the metal to the graphene. As a solution to this, we realized that reducing the thickness of the metal contacts from 3 nm/30 nm/4 nm (Ti/Nb/Au) (Figure 1.16(a)) to 1.5 nm/10 nm/2 nm (Figure 1.16(b)) significantly improved the metal -graphene interfaces. Ti/Nb/Au as well. For this optimum thickness, we measured the T c to be about 5.9 K which was still sufficiently high for our purpose.

The change in metal thickness also brought about a marked difference in the electronic transport properties of the end devices. Figure 1. 16(d) shows the normalized conductance of two SLGs with different metal thicknesses, plotted as a function of the applied voltage bias (V bias ).

With a higher metal thickness, the conductance was always found to decrease for |V bias | < 2∆/e, where ∆ ∼ 900 µeV is the superconducting gap of Ti/Nb/Au, irrespective of the doping level of the graphene. This implied a poor interface transparency. With the reduced thickness, for high doping, there was an increase in conductance for V bias below 2∆/e which was a clear signature of the occurrence of second order Andreev processes that account for the transport of Cooper pairs across a SNS interface and hence contribute to a rise in conductance. Thus, we conclude that reducing the thickness of contact metals definitely helps in increasing the interface transparency.

Conclusion

In this chapter, two distinct fabrication procedures have been discussed : firstly, the Bilayer Metal mask technique for creating nanostructures with thermally evaporated niobium and secondly, the Mechanical shadow mask for contacting graphene. Both methods adopt the non-organic resist route to pattern niobium electrodes via electron beam deposition to achieve uncontaminated Superconductor -Normal metal/Graphene interfaces that are compatible for investigation by scanning probe.

Even though the mechanical shadow mask technique offers an efficient way of achieving clean superconductor-graphene-superconductoe junctions, the width of the junctions are limited to the tungsten wire diameter. 

Introduction

It was sometime in the fall of 2002, when Andre Geim in his lab at the Manchester university realized the power of the scotch tape to isolate a single sheet of graphene from a stack of graphite [START_REF] Novoselov | Two-dimensional gas of massless Dirac fermions in graphene[END_REF]. Being completely two dimensional, graphene was believed by many to be just a theoretical model as 2D crystals were thought to be thermodynamically unstable based on a loose interpretation of the powerful Mermin Wagner theorem [START_REF] Mermin | Absence of Ferromagnetism or Antiferromagnetism in One-or Two-Dimensional Isotropic Heisenberg Models[END_REF]. It has been more than a decade since then and in that time graphene has ushered in a revolution with active participation from various branches of scientific research. The properties of graphene are fascinating from every angle; it is the thinnest and at the same time the toughest material ever measured (150 times stronger than an equivalent weight of steel), it is extremely flexible (can stretch to 120% of its length), it has the best mobility (more than 100 times that of Si) and the highest current density (million times that of copper) beats even diamond in thermal conductivity and the list goes on. Efforts continue to harness these potentials in building high performance field effect transistors, opto-electronic devices like photo-voltaics [START_REF] Won | Photovoltaics: Graphene-silicon solar cells[END_REF], touch-screens [START_REF] Bae | Roll-to-roll production of 30-inch graphene films for transparent electrodes[END_REF] etc, for biding sensors like bio and gas sensors and also in biological applications like tissue engineering [START_REF] Goenka | Graphene-based nanomaterials for drug delivery and tissue engineering[END_REF] and detecting neural activity [START_REF] Chiu | Surface modification of a neural sensor using graphene[END_REF] in brains. With the success in scaling up graphene production [START_REF] Bae | Roll-to-roll production of 30-inch graphene films for transparent electrodes[END_REF], its industrial future seems rather promising.

But from a more fundamental point of view, the interest in graphene stems from the relativistic nature of its charge carriers which arises due to its honey-comb lattice structure. This allows the possibility to study relativistic electrodynamics in table-top experiments like half-integer quantum Hall effect [START_REF] Gusynin | Unconventional Integer Quantum Hall Effect in Graphene[END_REF], Klein tunneling [START_REF] Katsnelson | Chiral tunnelling and the Klein paradox in graphene[END_REF] and scattering [START_REF] Shytov | Klein Backscattering and Fabry-Pérot Interference in Graphene Heterojunctions[END_REF], atomic collapse [START_REF] Shytov | Vacuum Polarization and Screening of Supercritical Impurities in Graphene[END_REF], gauge fields and topological defects [START_REF] Morpurgo | Intervalley Scattering, Long-Range Disorder, and Effective Time-Reversal Symmetry Breaking in Graphene[END_REF], etc. What came as a surprise in the starting years was the failure to observe a theoretically predicted suppression of anti-localization [START_REF] Morozov | Strong Suppression of Weak Localization in Graphene[END_REF] and a universal minimum conductivity [5] in graphene. This was part of a bigger question of what actually limits the mobility in graphene. It was gradually realized that the role of electrostatic potential fluctuations or disorder to which the graphene is subjected is crucial in determining the transport properties of its carriers especially at low carrier densities. With the help of sophisticated scanning probe techniques like scanning single electron transistor [START_REF] Martin | Observation of electron-hole puddles in graphene using a scanning singleelectron transistor[END_REF] and scanning tunneling microscopy and spectroscopy [START_REF] Zhang | Origin of spatial charge inhomogeneity in graphene[END_REF], the presence of an inhomogeneously doped landscape or electron-hole puddles in graphene on SiO 2 was revealed. Understanding the origin of this disorder is really at the heart of graphene research and the most accepted explanation in this respect has been the model of scattering by random charge impurities embedded in the substrate [START_REF] Adam | A self-consistent theory for graphene transport[END_REF].

In this chapter, we theoretically look into the problem of how carriers in graphene respond to a disordered potential of Coulombic origin and its effects both locally and macroscopically, based on theoretical work by S. Das Sarma and Adam et. al [START_REF] Sarma | Electronic transport in two-dimensional graphene[END_REF][29] [START_REF] Adam | Mechanism for puddle formation in graphene[END_REF]. We start with the fundamental electronic properties that are intrinsic to graphene. When many-body interactions are turned on, we see how these properties give rise to a screening behavior that is strikingly different from other two dimensional systems. We then move on to consider the implications of this unique carrier dependent screening when subjected to an electrostatically disordered environment. By assuming a disordered potential created by random charge impurities in the substrate, we quantitatively discuss the bulk transport properties of the carriers in graphene both at high and low carrier densities. This will allow us to identify the important length and energy scales in the problem and the parameters that determine them. With this knowledge, we will finally build up the local correlations of the screened disordered potential of the system and see how this changes as the carrier density is tuned from the high density limit right up to charge neutral Dirac regime.

Electronic Properties

To understand the end result of any interesting experiment related to graphene, or for that matter any system in condensed matter, the importance of understanding the basics of the electronic structure leading to the dispersion relation cannot be overemphasized. Hence, in this section we revisit the basics of this fascinating system to appreciate the unique features in the energy dispersion that sets this material apart. All derivations presented in this section are taken from the review by A. H. Castro Neto [START_REF] Castro Neto | The electronic properties of graphene[END_REF] and S. Das Sarma et al. [START_REF] Sarma | Electronic transport in two-dimensional graphene[END_REF].

Lattice structure of single-layered graphene

P.R. Wallace had used the concept of graphene for the first time, back in 1947 [START_REF] Wallace | The Band Theory of Graphite[END_REF], as a theoretical construct to calculate the band structure of graphite. It consists of a single sheet of carbon atoms arranged in the form of a honeycomb lattice. Since each C atom is shared by three unit cells, each unit cell effectively contains two atoms.

Hence, an alternate way to look at it would be as two triangular inter penetrating sub-lattices as shown in Figure 2.1(b), blue and the yellow circles representing each individual sub-lattice.

The lattice vectors are given by : where a ≈ 1.42 Åis the nearest neighbour distance between two carbon atoms. The three nearest neighbour vectors in real space are given by

a 1 = a 2 3, √ 3 , a 2 = a 2 3, - √ 3 
δ 1 = a 2 1, √ 3 , δ 2 = a 2 1, - √ 3 , δ 3 = -a (1, 0) . (2.2.2)
From the graphene unit cell, it is now straightforward to construct the corresponding reciprocal lattice [START_REF] Neil | Solid State Physics[END_REF] (Figure 2.1(c)) with reciprocal vectors

b 1 = 2π 3a 1, √ 3 , b 2 = 2π 3a 1, - √ 3 . (2.2.3)
The Wigner-Seitz primitive cell of this reciprocal lattice gives the first Brillouin zone. The corners of the Brillouin zone indicated as K and K points in Figure 2.1(c) are known as the Dirac Points. Their positions in momentum space are given by

K = 2π 3a 1, 1 √ 3 , K = 2π 3a 1, - 1 √ 3 . (2.2.4)

Energy Dispersion

The Hamiltonian of this system according to the tight-binding model considering nearest neighbour and next-nearest neighbour hopping of electrons has the form [49]

H = -t <i,j>,σ a † σ,i b σ,j + H.c. -t <<i,j>>,σ a † σ,i a σ,j + b † σ,i b σ,j + H.c. , (2.2.5)
where a i,σ (a † i,σ ) is the operator for creating(annihilating) an electron with spin σ(σ ↑↓) on site R i on sub-lattice A, similarly for sub-lattice B. t ≈ 2.8 eV is the hopping energy between nearest neighbours (inequivalent sub-lattices) and t is the next nearest neighbour hopping energy (same sub-lattice). The corresponding energy bands are given by [START_REF] Castro Neto | The electronic properties of graphene[END_REF] 

E ± (k) = ±t 3 + f (k) -t f (k), f (k) = 2 cos √ 3k y a + 4 cos √ 3 2 k y a cos 3 2 k x a , (2.2.6)
where the plus sign gives the conduction band or π * band and the minus sign gives the lower valence band or π band. It is easy to see that a finite value of t would result in an asymmetry between the π and π * bands. Figure 2.2 shows the band structure of graphene with this slight asymmetry due to a finite value of t = -0.1t 

= K + q (|q| << K) upto second order in q/K [49] E ± (q) ≈ 3t + v F |q| - 9t a 2 4 ± 3ta 2 8 sin(3θ q ) |q| 2 , ( 2.2.7) 
where v F = 3ta/2 = 0.97 × 10 6 m/s (with t = 3 eV and a = 0.142 nm) gives the Fermi velocity of graphene and

θ q = arctan q y q x (2.2.8)
is the angle in momentum space. With t = 0 and retaining t upto the linear term, we arrive at the famous linear dispersion of graphene i.e.

E ± (q) = ± v F |q|. (2.2.9)
This linear dispersion relation implies an energy independent group velocity v group =1 ∂E ∂q = v F which is very different from the usual parabolic dispersion for free electrons in a metal (q) = q 2 /2m where the velocity v = 2E/m changes substantially with energy. Most importantly, we note that this energy dispersion resembles the energy of massless particles which are quantum mechanically described by the Dirac Equation. This is also the reason behind naming the K points of the Brillouin zone as the Dirac Points.

We also note that this linear dispersion is a long-wavelength continuum property of graphene carriers valid only for q << K. A good way to estimate a cut-off wave vector q c would be to demand that the carrier energy E c < 0.4t (∼ 1 eV) so that one can ignore the lattice effects. This leads to k c = 0.25 nm -1 .

The Dirac Formalism

It is possible to recast the tight-binding Hamiltonian of Equation 2.2.5 in the following form assuming t = 0 and some more involved algebra [START_REF] Castro Neto | The electronic properties of graphene[END_REF],

H = -i v F dxdy Ψ † 1 (r)σ • ∇ Ψ1 (r) + Ψ † 2 (r)σ * • ∇ Ψ2 (r) , (2.2.10)
where σ = (σ x , σ y ) are the Pauli matrices and Ψ † i (r) = (a † i , b † i ) (i = 1, 2) i.e. the set of creation operators at the K and K points respectively. This exactly resembles superposition of two copies of massless Dirac like Hamiltonians, one holding for momentum p around K point and the other for p around K point. The two-component electron wave function ψ(r) close to the K point will then obey the 2D Dirac equation.

-i v F σ • ∇ψ(r) = Eψ(r).
(2.2.11)

Combining the two equations for both K and K points and re-writing in momentum space

v F k    σ • k 0 0 σ * • k      ψ K (k) ψ K (k)    = ±E    ψ K (k) ψ K (k)    .
(2.2.12)

Here, E = ± v F k are the eigen energies for the π * and π bands respectively. The corresponding solution spinors around K and K points are given by [START_REF] Xue | Berry phase and the unconventional quantum Hall effect in graphene[END_REF] 

ψ ±,K (k) = 1 √ 2    1 ±e iθ k    , ψ ±,K (k) = 1 √ 2    1 ±e -iθ k    . (2.2.13)
where θ k is given by Eq.(2.2.8). The following important conclusions can be derived from the above eigen solutions.

1. ψ ±,K (k) and ψ ±,K (k) are related by time reversal symmetry.

2. A Berry's Phase of π can be derived from the eigen states in Eq.(2.2.13) [START_REF] Xue | Berry phase and the unconventional quantum Hall effect in graphene[END_REF] which is a characteristic of spinors.

3. Both wave-functions are also eigen functions of the helicity operator ĥ = 1 2 σ • p |p| which is defined as the projection of the pseudospin σ along the direction of the momentum. This is so because ĥ is proportional to the Hamiltonian for both K and K as it is evident from eqn. 2.2.12.

ĥψ K (r) = ± 1 2 ψ K (r), ĥψ K (r) = ∓ 1 2 ψ K (r). (2.2.14) E (b) (c) E (eV) E (eV)
q(Å -1 ) q(Å -1 ) Therefore the electrons (holes) have a positive (negative) helicity at K point and negative (positive) helicity at the K point. In other words, the electron or hole states have a well-defined helicity or chirality.

A 1 A 2 B 1 B 2 γ 3 γ 4 γ 0 γ 4 γ 1 (a)

Bilayer Graphene

Bilayer graphene consists of two graphene monolayers that are weakly coupled by inter-layer carbon hopping. The intra-layer, nearest neighbour hopping energy is γ 0 = t ≈ 3 eV while the interlayer hopping energies are γ 1 = t ⊥ ≈ 0.4 eV, γ 3 = 0.3 eV and γ 4 = 0.04 eV. If γ 3 and γ 4 are ignored (γ 3,4 < t ⊥ ), then for A-B stacking of the graphene layers, the low energy, long-wavelength dispersion relation for bilayer graphene [START_REF] Sarma | Electronic transport in two-dimensional graphene[END_REF] is given by

E ± (q) = ± V 2 + 2 v 2 F q 2 + t 2 ⊥ /2 ± 4V 2 2 v 2 F q 2 + t 2 ⊥ 2 v 2 F q 2 + t 4 ⊥ /4 1/2 , ( 2.2.15) 
where v F = 3ta/2 , V is the potential difference between the two C layers which can exist when an external electric field is applied perpendicular to their plane. This will lead to the opening of an energy gap in the band structure as shown in Figure 2.3. The four energy eigen values E(q) for a given value of q stated above, reflects the four degrees of freedom (two equivalent sub-lattices in each layer) associated with tight-binding Hamiltonian of bilayer graphene, indicated by the four different color curves in Figure 2.3(a) and (b).

For V = 0, Eq.(2.2.15), reduces to a simple parabolic dispersion for small q, ( v F q << t ⊥ ): 

E(q) ≈ 2 v 2 F q 2 /t ⊥ = 2 q 2 /2m
, where m = t ⊥ /(2v 2 F ) ≈ (0.03 -0.05)m e , m e being the electronic mass. For large q ( v F q >> t ⊥ ): E(q) ≈ v F q, exactly the same as for SLG. This parabolic to linear cross-over at V = 0 is best described by re-writing eqn 2.2.15 in the following form

E BLG = ∓mv 2 F ± mv 2 F 1 + q q 0 2 1/2 , ( 2.2.16) 
where

q 0 = t ⊥ /(2 v F ) ≈ 0.3 nm -1 for m ≈ 0.03m e .
The charge carriers in BLG continue to be chiral due to A/B sub-lattice symmetry resulting in conservation of the pseudospin index.

Electronic Density of States

With the energy dispersion relations for both monolayer and bilayer graphene at our disposal, it is now straight-forward to calculate the respective DOS. We begin by writing down the general expression for charge carrier density at temperature T .

n(T ) = ∞ 0 ρ(E)f (E, T )dE (2.2.17)
where f (E, T ) is the Fermi distribution function and ρ(E) is the DOS. For 2D system like graphene, DOS is given by

ρ(E) = g s g ν 2π k(E) dk(E) dE (2.2.18)
Here g s , g ν stands for spin and valley degeneracy respectively, both being = 2 for SLG and BLG.

Substituting k(E) from the linear dispersion relation Eq.(2.2.9) that holds for SLG, in the low energy, long-wavelength limit (k K), in the above equation, we arrive at the following expression for DOS.

ρ(E) = g s g ν 2π |E -E D | ( v F ) 2 (2.2.19)
where E D represents the Dirac point energy. Figure 2.4(a) shows the DOS for monolayer graphene derived using the full dispersion relation [Eq. (2.2.6)]. The zoom-in shows the variation over a larger energy bandwidth where it is clear that at higher energies, ρ(E) shows significant deviation from this linear dependence on E found at energies close to E D .

For bilayer graphene, the DOS for the lowest energy bands (red and blue curves in Figure 2.3(b)) can be calculated using the simplified dispersion expression given in eqn. 2.2.16 for V = 0.

ρ(E) = g s g ν 2π 1 ( v F ) 2 |E -E D | + t ⊥ 2 (2.2.20)
Note that the DOS (shown in Figure 2.4(b)) is still linear for BLG with the important difference that even at E = E D , there is still a finite DOS, which is not the case for SLG.

Finally, all that remains is to find the total charge carrier density n by plugging in ρ(E) in Eq.(2.2.17). For simplicity, we assume T = 0. Hence, for SLG,

n = E F 0 ρ(E)dE = g s g ν 4π E F -E D v F 2 (2.2.21)
In case of BLG, using the dispersion relation for V = 0, i.e. eqn.2.2.16, we obtain the following expression for carrier concentration,

n = g s g ν 2π 1 ( v F ) 2 (E F -E D ) 2 2 + t ⊥ 2 |E F -E D | (2.2.22)
For |E F -E D | t ⊥ , the quadratic term can be dropped after which we obtain the following simplified expression.

n = g s g ν 2π m 2 |E F -E D | (2.2.23)
With this we have revisited the basic electronic properties of both monolayer and bilayer graphene that will provide the foundation necessary for an efficient understanding of the remainder of this chapter.

Many body effects in Graphene: Screening

In our formulation of the tight-binding Hamiltonian for both single-layered and bilayer graphene which ultimately led to the linear dispersion in the former case, we have completely ignored the effect of electron-electron interactions in the system. Including these interactions will modify the dispersion relation and therefore the fundamental properties of these 2D systems will be affected.

The simplest and the most important manifestation of electron-electron interactions in a material is the phenomenon of screening. In this section, we discuss the concept of screening and then see how screening in graphene differs from screening in other two-dimensional systems. To derive the basics, we follow the standard text book on Solid State Physics by Ashcroft and Mermin [START_REF] Neil | Solid State Physics[END_REF] while to understand screening in graphene, we resort to the theory chapter on Graphene carrier transport by Shaffique Adam [START_REF] Adam | Graphene Carrier Transport Theory[END_REF] with whom we collaborated to understand the results presented in Chapter 5.

General introduction to Screening in a 3D electron gas

Let us consider the simple picture of a rigidly held positive charge placed in a medium of an electron gas. It will obviously attract electrons from the neighborhood, creating a surplus of negative charges around it which will have the effect of reducing its electric field. This damping of electric fields caused by mobile charge carriers in a system is referred to as screening. The electrostatic potential arising from this positive charge (volume charge density ρ(r)) alone is

given by Poisson's equation,

-∇ 2 φ ext (r) = ρ ext (r) 0 , ( 2.3.1) 
where 0 = 8.85 × 10 -12 Fm -1 is the permittivity of free space. Let us define the charge density induced in the medium as ρ ind (r) and the total charge density as ρ(r). Then the total potential will be given by

-∇ 2 φ(r) = ρ(r) 0 , (2.3.2)
where ρ(r) = ρ ext (r) + ρ ind (r). By analogy with the theory of dielectric media, we make two assumptions. Firstly, the external potential φ ext (r) and the overall potential φ(r) are linearly related in the manner φ ext (r) = dr (r, r )φ(r ), where (r, r ) is called the static dielectric function and is the quantity that represents the screening properties of a given system. For an isotropic system, (r, r ) can depend only on the separation between the two points r and r .

Hence, (r, r ) = (rr ). Therefore, we can write

φ ext (r) = dr (r -r )φ(r ). (2.3.3)
Invoking the convolution theorem for Fourier transformations, we can relate the Fourier coefficients of φ ext (r) and φ(r) in the following manner.

φ ext (q) = (q)φ(q). (2.3.4)

Secondly, we assume that the induced charge distribution ρ ind (r), also depends linearly on φ(r) (valid for a sufficiently weak φ). In that case, their Fourier transforms will satify the following relation.

ρ ind (q) = χ(q)φ(q), (2.3.5)

where χ(q) is defined as the dielectric susceptibility of the medium. Eventually, by plugging every thing together, we arrive at the following equation that relates the dielectric function (q) to the susceptibility χ(q).

(q) = 1 -1 0 q 2 χ(q) = 1 -

1 0 q 2 ρ ind (q) φ(q) . (2.3.6)
The above equation can be re-written in the following form which will be useful later (section

2.3.2) (q) = 1 + V (q)Π(q). (2.3.7)
where V (q) = e 2 0 q 2 is just the Fourier transform of the Coulomb potential V (r) = e 2 4π 0 r and Π(q) is called the dielectric polarizability function which is related to susceptibility by Π(q) = -χ(q)/e 2 .

As is evident from the above equation, to solve the problem of the total charge induced in the medium by the external potential, all that remains is to calculate χ(q) for the medium.

The two most widely prevalent approaches to do this are the Thomas-Fermi theory which is the semi-classical limit of the Hartree theory (quantum many body theory, [START_REF] Neil | Solid State Physics[END_REF]). The other way is the Lindhard method or the Random Phase Approximation (RPA) which offers an exact Hartree calculation of the induced charge density in the presence of a self-consistent field of the external charge and the electron gas of the medium.

Thomas-Fermi Theory

In the presence of an external potential φ(r) = φ ext (r) + φ ind (r), the total number density of charged carriers in the system will be given by

n(r) = dk 4π 3 1 e β 2 k 2 2m -eφ(r)-µ + 1 , (2.3.8)
where µ is the chemical potential or the Fermi energy of the system. Here, we have made an important assumption. The energy eigen value of a given state k has been considered as

ε(k) = 2 k 2 2m -eφ(r).
(2.3.9)

But this description makes sense only in terms of wave-packets with a typical spread in position of 1/k F . It is therefore required that φ(r) should vary slowly on the scale of the Fermi wavelength. In terms of Fourier components, this means that the calculations of χ(q) will be reliable for q k F .

From Eq.(2.3.8), we can express the total number density of charge carriers n(r) = n 0 (µ) + n ind (r) where

n 0 (µ) = dk 4π 3 1 e β 2 k 2 2m -µ + 1 (2.3.10)
is the total number of charge carriers in the system in the absence of the potential φ(r) or equivalently can be looked upon as the density of background positive charges and n ind (r) is the number density of charges induced in the system by this positive background. Hence, the total induced charge can be written as

ρ ind (r) = -e [n 0 (µ + eφ(r)) -n 0 (µ)] . (2.3.11)
This is the basic equation of non-linear Thomas-Fermi theory. If we furthur make the assumption that φ(r) is small enough, then n 0 (µ + eφ(r)) ≈ n 0 (µ) + eφ(r) ∂n 0 ∂µ , by Taylor expansion about µ. Therefore, we obtain

ρ ind (r) = -e 2 ∂n 0 ∂µ φ(r) (2.3.12)
The proportionality factor gives us χ(q) i.e.

χ(q) = -e 2 ∂n 0 ∂µ (2.3.13)
Hence, finally, we arrive at the expression for the dielectric function of the electron gas in three dimensions.

(q) = 1 + e 2 0 q 2

∂n 0 ∂µ = 1 + q 2 T F q 2 (2.3.14)
Here we introduce the quantity q T F which is called the Thomas-Fermi wave vector given by

q 2 T F = e 2 0 ∂n 0 ∂µ = e 2 0 ν(µ) (2.3.15)
where ν(µ) = ∂n 0 ∂µ is simply the DOS at Fermi level, provided we assume that temperature T T F .

The significance of q T F is that it translates into a damping factor for the Coulomb potential in real space. For example if we consider the external potential due to a point charge Q, i.e.

φ ext (r) = Q 4π 0 r , then the corresponding Fourier transform is φ ext (q) = Q 0 q 2 . The total potential will then be φ

(q) = 1 (q) φ ext (q) = 1 0 Q q 2 +q 2 T F
. Transforming back to real space, we get the resultant potential as

φ(r) = 1 4π 0 Q r e -(rq T F ) (2.3.16)
Hence the total potential is the starting Coulomb potential multiplied by a damping term that renders the total potential negligible beyond a distance 1/q T F . So, to summarize, Thomas-Fermi theory provides a reasonable estimate of the screening response of a system to a slowly varying potential by formulating the analytical expression for the dielectric function of the system.

Lindhard Theory or Random Phase Approximation (RPA)

In this approach, we return to the one-electron Schrödinger equation in the presence of potential φ(r)

- 2 2m ∇ 2 ψ i (r) -eφ(r) = ε i ψ i (r).
(2.3.17)

But unlike in the TF approach, no assumption about the slow varying nature of φ is made in this case. Instead, we start with the fact that the induced carrier density is needed only to linear order in φ. To do this, the above equation is solved perturbatively. Expanding the single electron wave function using the first-order stationary perturbation theory, we have

ψ k = ψ 0 k + k 1 ε k -ε k ψ 0 k φ ψ 0 k ψ 0 k . (2.3.18)
The total charge density can be written as

ρ(r) = -e f k |ψ k (r)| 2 = ρ 0 (r) + ρ ind (r), (2.3.19)
where f k is the equilibrium Fermi distribution of a free electron. With a little algebra, it can be shown that the Fourier transform of the induced charge density upto the linear order in φ is given by

ρ ind (r) = -e 2 dk 4π 3 f k-1 2 q -f k+ 1 2 q ε k-1 2 q -ε k+ 1 2 q . (2.3.20)
Finally it can be shown that at T = 0 K, the quantity χ(q) = ρ ind (q)/φ(q) is given by

χ(q) = -e 2 ν(µ) 1 2 + 1 -x 2 4x ln 1 + x 1 -x , x = q 2k F ⇒ χ(q) χ T F = 1 2 + 1 -x 2 4x ln 1 + x 1 -x . (2.3.21)
where χ T F = -e 2 ν(µ) is the value of χ(q) according to Thomas-Fermi theory. The above ratio is important as it highlights the differences between the two approaches used, TF and RPA, and has been plotted in Figure 2.5. We observe that for q → 0, χ T F = χ RP A as expected (section 2.3.1). However as q → 2k F (scattering of electrons close to the Fermi level), the two theories increasingly deviate. In this regime, the RPA theory gives more insight into the nature of screening than the TF. The decay of a Coulomb potential will no longer be just a Yukawa type decay as predicted by TF theory but rather φ(r) ∼ 1 r 3 cos 2k F r, hence there is considerably more structure in the screened potential at large distances.

Screening in Graphene

So far what has been presented about screening strictly applies to electron gases in three dimensions. Although, it has familiarized us with the basic concepts, there will be some major differences as far as graphene is concerned. The band structure of graphene leading to the Dirac like dispersion of its charge carriers as well as its two dimensional nature will result in these differences. In this sub-section, we try to look into theses differences to gain a deeper understanding of the screening properties of the charge carriers in graphene.

Peculiarities in Screening properties for SLG and BLG

We start with the introduction of the interaction parameter : r s or in case of SLG, what is more correctly called the fine-structure constant. Its importance lies in the fact that it quantifies the strength of electron-electron interactions in a system. It is defined as the ratio of the potential energy to the kinetic energy of the charge carriers.

r s = V E KE (2.3.22)
The interaction potential energy is given by

V = 1 4π 0 κ e 2
<r> where κ is the background dielectric constant and < r > is the average inter-atomic separation. In a two dimensional system, it can be shown that < r >= 1/ π|n|. The Kinetic energy E KE is given by the Fermi energy of the system which for SLG E F = v F sgn(n) π|n|, as obtained from Eq.(2.2.21) and for BLG,

E F = 2 πn
2m , as obtained from Eq.(2.2.23). Therefore, r s in these two systems is given by

r SLG s = e 2 4π 0 κ v F ≈ 0.8, r BLG s = e 2 4π 0 κ 2m 2 1 √ πn (2.3.23)
We straightaway note that for SLG, r s is independent of carrier concentration n, implying that the strength of electron-electron interactions remain fixed. This is a most peculiar property in SLG which is a direct outcome of its linear dispersion. Since the dielectric constant κ can vary in the range 1 ≤ κ ≤ ∞, r s is bounded i.e. 0 ≤ r s < 2.2. Hence, it is a weakly interacting system. Nevertheless, for graphene deposited on SiO 2 , which is currently, the standard system for graphene based devices, r s ≈ 0.8 and this is still far greater than 1/137 which is the finestructure constant in relativistic systems in QED. Hence, interactions are weak but cannot be treated non-perturbatively in SLG. In direct contrast to it is the case of BLG or 2D electron gases (2DEGs) where the interaction strength increases with decrease in carrier concentration.

Next, we look into the screening properties of the two graphene systems. In two dimensions, the Thomas-Fermi vector (that was defined for the 3D case by Eq.(2.3.15)), is given by 

q T F = e 2 2κ 0 ν(E F ), ( 2 
q SLG T F = g s g ν e 2 4π 0 κ v F √ πn, q BLG T F = g s g ν e 2 4π 0 κ m 2 (2.3.25)
Here, n is the charge carrier concentration. What is important to note is that q T F for SLG increases with n whereas for bilayer graphene and also for 2D electron gases, it is independent of the charge carrier concentration. The dielectric function in two-dimensions can be written as (q) = 1 + q T F q .

(2.3.26)

For q = k F , which is the case for electronic states contributing in charge transport, (q) depends on the ratio q s = q T F /k F . This quantifies the strength of screening. In SLG, we can show that q s = 4r s (using Eq.(2.3.25) and Eq.(2.3.23)), which implies a constant dielectric function = 1 + 4r s since r s is constant. This means that the functional form of the screened potential Ṽ (q) = V (q) (q) = V (q) 1+4rs is exactly the same as the unscreened potential V (q). This is yet another peculiar property arising from the linear dispersion in SLG. In contrast for BLG and 2D electron gases, q s = e 2 4π 0 κ 4m 2 1 √ π|n| which can be obtained by considering E F = 2 k 2 F /2m in BLG (2.2.4) and using Eq.(2.2.23) for E F and Eq.(2.3.25) for q BLG T F . This implies that screening becomes stronger in BLG as carrier density reduces and that it behaves like an unscreened system at high carrier densities. This counter-intuitive behavior is also true for other 2D systems like 2DEGs but is opposite of the screening in 3D metals [START_REF] Sarma | Electronic transport in two-dimensional graphene[END_REF].

Screening in SLG using RPA model

Here, we find out the screening properties of graphene using the Random Phase approach that has been briefly discussed in section 2.3.1. Within RPA, the dielectric function of the system is ε(x) defined as in Eq.(2.3.7) using the dielectric polarizability function Π(q). Following the procedure of Hwang et al. [START_REF] Hwang | Dielectric function, screening, and plasmons in twodimensional graphene[END_REF], this function is given by

RPA TF CS x = q/2k F
Π(q) = g s g ν L 2 k,s,s f s k -f s k ε s,k -ε s ,k 1 + ss cos θ k,k 2 (2.3.27) 
where k = k + q is the wave vector corresponding to the scattered state and θ k,k is the angle between state k and k . What is different for single-layered graphene is the sum over both electron bands (s = 1) and hole bands (s = -1) and the overlap between the spinor components of the wave-function.

Without going into the detailed derivation which can be found in [START_REF] Hwang | Dielectric function, screening, and plasmons in twodimensional graphene[END_REF], we come to the final expression for polarizability

Π(q = 2k F x) ν(E F ) =      1, for x ≤ 1 1 + πx 4 -x 2 arcsin 1 x -1 2x √ x 2 -1, for x ≥ 1 (2.3.28)
Incorporating Π(q) into eqn. 2.3.7, we get the full analytic expression for the dielectric function of graphene. This has been plotted in Figure 2.6 (red curve) along with T F = 1 + q T F q (blue) as well as in the complete screening limit (black) where it is assumed that q T F q and hence CS = q T F q . This importantly signifies the following two main points.

1. For q 2k F , → ∞, i.e. screening is perfect. For q < 2k F , TF and RPA coincide for single-layered graphene. This is also consistent with what we saw in the case of threedimensional electron gases (section 2.3.1).

2. For q 2k F , RPA alone gives a proper description for screening. At these high q values, graphene screens like a dielectric insulator with constant .

Eq.(2.3.28) can be simplified to obtain the following approximate expression for the dielectric function in SLG [START_REF] Adam | A self-consistent theory for graphene transport[END_REF] (

q) =      1 + q T F q , for q ≤ 2k F 1 + rsπ 2 for q > 2k F .
(2.3.29)

From local Disorder to Macroscopic Carrier Transport in

Graphene

Upto this point, we have built up a picture of graphene that in reality is little more than a scientific concept. A single sheet of carbon atoms with a Dirac like dispersion, isolated from all kinds of interactions both from the external world as well as electron-electron interactions from within, is clearly a simple theoretical construct. To take this concept from the confines of its theoretical framework and plant it in reality, we have to plug in these perturbations one by one. Switching on the interactions from within i.e. electron-electron (e-e), electron-phonon (eph) and electron-plasmon (e-pl) interactions have the effect of renormalizing graphene electronic structure as well as creating new inelastic excitation tunneling channels [START_REF] Bostwick | Quasiparticle dynamics in graphene[END_REF][59] [START_REF] Elias | Dirac cones reshaped by interaction effects in suspended graphene[END_REF]. Hence, the screening properties that have been discussed in the previous section with the linear dispersion in mind, might have to undergo some modifications.

Further, the graphene that we deal with in our day to day experiments, in particular graphene on SiO 2 is not really a single atomic sheet with a homogeneously defined carrier density that we control with the backgate. Random charged impurities on the substrate [START_REF] Chen | Chargedimpurity scattering in graphene[END_REF], rippled morphology of the graphene [START_REF] Gibertini | Electron density distribution and screening in rippled graphene sheets[END_REF] or even defects in the graphene lattice [START_REF] Rutter | Scattering and Interference in Epitaxial Graphene[END_REF] will render the effective charge distribution inhomogenous. Although extraneous in the sense that graphene linear dispersion is not affected, the effect of this disorder is by no means negligible with major implications in the dynamics of carrier transport in graphene. Figure 2.7 shows a simulated projection of the disordered potential on the substrate giving rise to carrier inhomogeneities in the graphene sheet.

The effect of this disordered potential becomes more important at low carrier densities. In this scenario, the doping fluctuations induced by the underlying disorder, exceed the average carrier density of the graphene, leading to the formation of electron-hole puddles that render the Dirac point inaccessible to experiments. Such puddles have been measured experimentally [START_REF] Martin | Observation of electron-hole puddles in graphene using a scanning singleelectron transistor[END_REF] [START_REF] Zhang | Origin of spatial charge inhomogeneity in graphene[END_REF]. Hence, this low density regime is especially governed by the physics of the interplay of disorder and screening rather than the exotic Dirac physics that people had hoped for. In fact, this is the simple explanation behind the absence of a universal minimum conductivity in graphene devices with a theoretically predicted value σ = 4e 2 /πh [4] [5].

In this section, we start by discussing the basic transport properties of the charge carriers in graphene using the Drude-Boltzmann model. We will see that, assuming scattering by random charge impurities, this model gives the correct description for conductivity at high carrier 

Charge Carrier Transport in Graphene

Main Features in Experimental Field Effect Curves

Measurement of the Field effect is one of the most basic and at the same time highly important characterization of graphene devices as it provides a direct way to estimate the dynamic properties of its charge carriers. Figure 2.8 shows the field effect curves measured by Chen et al. [START_REF] Chen | Chargedimpurity scattering in graphene[END_REF] for different concentration of charged impurities adsorbed on graphene. We observe the following main features that are common to all of them: 1. Finite minimum conductivity σ 0 . 2. σ 0 occurs at a non-zero gate voltage V 0 D that gives the Charge neutrality point. 3. Finite broadening about the minimum at V 0 D . 4. Away from V 0 D , σ scales almost linearly with backgate voltage (at least for high impurity concentrations).

In the subsequent sections, we discuss the reasons behind each of these features. 

Drude-Boltzmann model for carrier transport at high densities

Transport of charge carriers in graphene in the high density regime can be treated using the semi-classical Drude-Boltzmann formalism [START_REF] Adam | A self-consistent theory for graphene transport[END_REF]. The theory is valid in low-disorder systems

where k F l e 1, l e being the electronic mean free path of the charge carriers. In case of graphene k F l e ≥ 4 for low carrier densities (n) and ≈ 100 for high n and hence application of this formalism is justified. Moreover, it is the standard theory used to describe Coulomb scatterers in 2D systems which happens to be the case in graphene as we shall see shortly.

The conductivity is given by Einstein's relation

σ = e 2 ν(E F )D (2.4.1)
where ν(E F ) is the DOS at Fermi energy and

D = v 2 F τ /2 = v F l e /2
is the diffusion constant in two dimensions, τ being the scattering time. Substituting these values in the above equation, we have the final expression

σ = 2e 2 h k F l e (2.4.2)
Using the Boltzmann transport theory, the scattering time can be evaluated.

τ = 4 π k F v F 1 0 dη 1 -η 2 V (2k F η) (2k F η) 2 (2.4.3)
where V (q = 2k F η) is the bare scattering potential and (q = 2k F η) is the static dielectric function. What becomes clear straight away is that graphene transport is governed by the interplay between the disordered potential and screening in the system and each individually can have a major impact in the overall behaviour. In this context, let us have a brief look at what this means for unscreened Coulomb scatterers and delta-correlated short range scatterers.

1. For unscreened Coulomb scatterers ( = 1), V (q) ∝ q -1 which implies τ ∝ k F implying that for a given n imp , mean free path gets smaller and smaller as the Dirac point is approached

k F → 0.
2. For short-range, delta correlated scatterers, V (q) ∼ q 0 implying τ ∼ 1/k F causing the mean free path to increase and ultimately diverge at the Dirac point.

For a disordered potential V (r) created by random charge impurities (which are Coulomb scatterers) trapped in the substrate and considering the static dielectric function according to RPA approximation as given in Eq.(2.3.29), it can be shown that [START_REF] Adam | A self-consistent theory for graphene transport[END_REF] 

σ ≈ A[r s ] e 2 h n n imp = 20 e 2 h n n imp for r s = 0.8 (2.4.4)
where

A[r s ] = F 1 [x = 2r s ] -1 and F 1 (x) x 2 = π 4 + 3x - 3x 2 π 2 + x(3x 2 -2) arccos[1/x] √ x 2 -1 (2.4.5)
The linear dependence of σ on n as obtained in this semi-classical model, considering Coulomb scattering, explains the fourth feature of the experimentally observed field effect curves 4. This is a strong indication that scattering processes at work in present graphene samples (on SiO 2 for example), are indeed Coulombic in origin which once again justifies the use of the Drude-Boltzmann approach.

Conductivity in the full range of carrier density

Although, the linear dependence of conductivity on carrier density n is explained well by the Drude-Boltzmann model, the origin of the other features remain ambiguous. Nevertheless, based on our knowledge of the conductivity at high n, we can roughly extrapolate this dependence upto the low density limit at the charge neutrality point

V 0 D . σ(n) =      20 e 2 h n * n imp if n g < n * 20 e 2 h ng n imp if n g > n * (2.4.6)
where n g is the total carrier concentration and is given by

n g = α(V gate -V 0 D ), α = K 0 /et ≈ 7.
57 × 10 10 cm -2 V -1 for a Si/SiO 2 substrate with the gate oxide thickness t = 285 nm and dielectric constant K = 3.9. The carrier concentration induced by the gate voltage to achieve charge neutrality is given by n = αV 0 D . n * is the residual carrier density at V gate = V 0 D which takes care of the finite minimum conductivity and the finite width of the plateau at minimum conductivity. The origin of this residual charge density and the reason for this finite broadening of the conductivity observed at charge neutrality will become clear in the upcoming sections.

Before moving on, we note that more advanced theories exist like the Effective Medium Theory (EMT) which are able to describe the full cross-over from high and low n [START_REF] Rossi | Effective medium theory for disordered twodimensional graphene[END_REF]. But for our purpose, the above method based on RPA-Boltzmann model is sufficient.

Here is a short summary of the different important concentrations that we have discussed so far as well as those that will be needed shortly.

Quantity Definition n imp

Concentration of charge impurities in the substrate.

n Carrier concentration induced by V gate at which the impurity potential is neutralized.

This is related to the charge neutrality point

V 0 D by n = αV 0 D . n *
Residual charge density at CNP.

n g Carrier concentration induced by the gate voltage with n g = 0 at CNP. In general,

n g = α(V gate -V 0 D ).

n(r)

Total carrier concentration at position r.

n rms Root mean square of the fluctuations in n(r).

Table 2.1: Summary of the different charged particle concentrations.

Charge disorder and local correlations

We have seen in the last section how scattering from the disordered potential created by randomly charged impurities on the substrate, combined with the screening response of the carriers, determines the dynamics of transport at high carrier densities. At low carrier densities, this disorder will induce fluctuations in the doping giving rise to puddles of electron and holes. Intuitively it might still appear puzzling as to how carrier transport could continue in such a disordered system with innumerous pn junctions. It is due to the quantum relativistic phenomenon called Klein tunneling [START_REF] Katsnelson | Chiral tunnelling and the Klein paradox in graphene[END_REF] that allows the chiral carriers in graphene to get transmitted across such barriers with 100 % efficiency on normal incidence (Figure 2.9). This ensures a finite non-vanishing conductivity close to the Dirac point.

To understand the low-carrier density regime, we have to start by acknowledging the fact that the carrier density is not homogeneous across the graphene sheet. We therefore introduce a spatially varying quantity n(r) to describe the carrier concentration at position r. The underlying disordered potential V (r) created by random charge impurities embedded in the substrate is responsible for inducing fluctuations in n(r). A quantitative measure of these fluctuations is the standard deviation in n(r) i.e. n rms . These fluctuations in turn have the effect of screening out this potential in a self-consistent manner resulting in a screened potential Ṽ (r). This resultant A good way to characterize Ṽ (r), is by considering its angular averaged auto-correlation function.

C(r) = 1 2π 2π 0 C(r)dφ (2.4.7)
where C(r) is the 2D auto-correlation function given by

C(r) = r Ṽ (r + r) Ṽ (r )dr . (2.4.8)
The value of this auto-correlation function at r = 0 is related to the RMS amplitude of the fluctuations in Ṽ (r) in the following manner.

C(0) = r Ṽ (r ) Ṽ (r )dr = Ṽ 2 = [ Ṽrms ] 2 + Ṽ 2 (2.4.9)
Hence if Ṽ = 0 which is the case close to charge neutrality, then

C(0) = [ Ṽrms ] 2 .
(2.4.10)

We note that C(0) has no spatial dependence. Plugging this back in the expression for the angular averaged correlation function C(r), we have Let us now theoretically calculate the correlation function. To do so, we make two assumptions. Firstly, V (r) is created by a distribution of charged impurities n imp embedded in the substrate at an average distance d from the plane of graphene as shown in Figure 2.10. The inhomogeneities in n(r) induced by V (r) will in turn induce a spatial variation in the screening properties of the graphene. This brings us to the next assumption that it is still possible to find a global dielectric function (q, n) which adequately describes these variations.

C(r) = C(0) × A(r). ( 2 
For a single charged impurity (with charge +e), Fourier transform of the potential created by it on a 2D plane at a distance d from it in a medium with dielectric constant κ is (in CGS units) is

φ(q) = 2πe 2 κ e -qd q .
(2.4.12)

The corresponding screened potential is

φ(q, n) = φ(q) (q, n) . (2.4.13)
The Correlation function for the screened potential created by an impurity concentration n imp will be then given by [START_REF] Adam | Graphene Carrier Transport Theory[END_REF] C 0 a = 4k F d 

C(r) = n imp d 2 q (2π) 2 φ(q, n) 2 e -iq•r = 2πn imp e 2 κ 2 ∞ 0 q 1 (q, n) e -qd q 2 J 0 (qr) dq (2.4.14)
where J 0 (qr) = 1 2π 2π 0 e -iqr cos θ dθ is the Bessel function of zeroth order. Hence, close to the Dirac point, the RMS fluctuations of the screened disordered potential will be given by

[ Ṽrms ] 2 = C(0) = 2πn imp e 2 κ 2 C 0 (r s , a = 4k F d)
where

C 0 (r s , a = 4k F d) = ∞ 0 q 1 (q, n) e -qd q 2 dq (2.4.15)
Here r s = e 2 κ v F is the interaction parameter and ≈ 0.8 for graphene. k F = π|n(r)| is the amplitude of the local Fermi wave-vector. So, C 0 and C(0) both essentially signify the RMS fluctuations in the screened disordered potential, the main difference being that C 0 does not directly depend on the impurity concentration n imp .

In Figure 2.11, C 0 (r s , a) has been plotted as a function of a = 4k F d using the dielectric function (q, n) calculated using all the three methods discussed in section 2.3.2. We see that while all three approximations agree in the high density regime, there are significant deviations near charge neutrality. Although the Thomas-Fermi approach captures the right qualitative behaviour, it grossly underestimates the effect of screening. Hence, we shall follow the RPA method in future calculations. The exact analytic expression for C 0 (r s , a) within the RPA approximation is available in literature [START_REF] Adam | A self-consistent theory for graphene transport[END_REF]. Since C 0 is proportional to the magnitude of the screened disorder potential fluctuations, this plot shows how the disorder is increasingly screened by higher number of charge carriers in the graphene which is expected.

Using this correlation function, we are now in a position to quantitatively analyze the remaining features in the field effect curves of graphene (section 2.4.1).

The Residual Charge carrier density at CNP: Self-Consistent Approach

As the system approaches Charge neutrality i.e. V gate → V 0 D , the fluctuations in n(r) exceeds its mean value. These fluctuations do not allow the total carrier concentration to be absolutely zero but pin it to a minimum value which we define as the residual charge density n * . In a more quantitative manner, it is defined as the charge carrier density at which the RMS fluctuations in the screened disordered potential becomes equal to the mean Dirac point2 i.e.

E D (n * ) 2 = Ṽrms 2 ⇒( v F ) 2 πn * = 2πn imp e 2 κ 2 C 0 (r s , 4d √ πn * ) (2.4.16)
This directly leads to the self-consistent equation to find n * .

n * n imp = 2r 2 s C 0 (r s , a = 4d √ πn * ) (2.4.17)
The method to solve this equation has been graphically demonstrated in Figure 2.12(a).

We find that n * increases with increasing n imp . This is expected since the higher the impurity concentration, the larger is the residual charge induced by it. But if n * increases, one might naively expect σ 0 to increase with n imp as well which is the opposite of what actually happens. This is understood by considering that there are two competing effects :(1) Increase in n * means large number of charge carriers, hence larger conductivity σ 0 . (2) On the other hand, large n * also means stronger screening of the disorder. In the clean limit, n * is too small so that the second effect can be neglected resulting in an overall increase of σ 0 . However, in dirty samples, n * is large resulting in strong screening and the two effects compete to produce a net decrease in σ 0 . This also explains why the minimum conductivity σ 0 is found to vary from sample sample and not have a universal value of 4e 2 /πh as expected in the quantum ballistic limit. Figure 2.12(d),(e) show that both n * and σ 0 decrease as distance of impurities from graphene plane is increased which is what one would expect.

The concept of this residual charge density is very important in understanding the properties of graphene close to charge neutrality. It essentially represents the screened disorder potential Ṽ (r). Besides being useful in finding the value of the finite minimum conductivity in graphene, it allows us to realize the following:

1. It gives the limiting carrier density below which the physics of charge disorder takes over.

Hence the plateu width about the Dirac point is ≈ 2n * .

2. The shift in the plateau position of Charge neutrality from zero induced by the substrate impurities i.e. V 0 D is related to n * and can be calculated.

V 0 D = n α = 1 α n 2 imp 4n * (2.4.18)
3. The RMS fluctuations in n(r) at the Dirac point or the charge disorder can also be calculated from n * .

n rms = n * √ 3 (2.4.19)
The Complete Screening Limit

In the complete screening limit, achieved at very high carrier concentrations when the gate voltage is tuned far away from V 0 D , all three screening approximations give the same result for C 0 as seen in Figure 2.11. This can be obtained from Eq.(2.4.14) by substituting n = n g (carrier concentration induced by the backgate) as the effective carrier concentration. This is a valid approximation because in this regime n g n rms . The expression for C 0 in this limit is

C CS 0 = 1 (2dq T F ) 2 = 1 (2r s a) 2 (2.4.20)
Complete screening is achieved when a > 1 i.e.

n g > 1 16d 2 π (2.4.21)
For d ∼ 1 nm which is a reasonable value for graphene on SiO 2 , to reach the complete screening limit n g > 2 × 10 12 cm -2 which is still possible in experiments. But even if d drops to say 0.1 nm, n g has to exceed about 200 × 10 12 cm -2 , which is not at all feasible. Hence, most of the current experiments with graphene devices fall in the intermediate regime which we will discuss in the next sub-section.

Nevertheless, the complete screening limit is theoretically well understood and hence, it is important to calculate the charge disorder n rms in this case.

n rms = 2 π( v F ) 2 | E D (n g ) | |δE D | (2.4.22)
By setting

E D (n g ) = -v F sgn(n g ) π|n g | and δE D = Ṽrms = [C(0)],
we arrive at the following expression for charge disorder.

n rms = n imp 8πd 2 1/2 (2.4.23)

The Intermediate Regime

Although the behaviour of graphene is well understood at the two extreme limits, i.e. near charge neutrality and in the limit of complete screening, the regime which is accessible to current experiments is the regime intermediate between these two as mentioned in the last section.

Unfortunately, the theory for this cross-over region is not yet well developed.

The way charge disorder n rms is calculated in this case is by extrapolating between the low density [Eq. (2.4.19)] and high density [Eq. (2.4.23)] limits and adding the two contributions in quadrature and solving for n rms self-consistently [START_REF] Adam | Mechanism for puddle formation in graphene[END_REF]. This gives

n rms = 2r s n imp C 0 2n g + 3r 2 s n imp C 0 1/2 (2.4.24)
The above equation has been solved and the resultant charge disorder has been plotted in Figure 2.13 as a function of n g . To do so, we evaluate C 0 using RPA approximation provided in [START_REF] Adam | A self-consistent theory for graphene transport[END_REF]. The following steps have been followed to find n rms at a given value of n g .

1. For a given value of n imp and d, we find the residual charge density n * . 2. We assume a starting value of n rms = n * √ 3 [Eq. (2.4.19)]. 3. A Gaussian distribution of n is set up ranging from (n g -5n rms ) to (n g + 5n rms ) with mean < n >= n g and standard deviation n rms . 4. C RP A 0 is evaluated for the whole distribution.

The average value of C RP A

0 is plugged in Eq.(2.4.24) to find n rms . 6. This process is repeated till a consistent solution is found for n rms . form does not exist. The RPA dielectric function (q, n) has been used as given by Eq. (2.3.29) to account for the screening. We observe that away from the charge neutrality (n g = 0), A(r) is characterized by a sharp decay whereas close to it, the correlations persist over longer distances.

In Figure 2.14(b), A(r) has been shown at the two extreme cases together with Gaussian functions that give the closest fit. Whereas at high n g , the curves can be well described by a Gaussian, at low n g , there is significant deviation from this Gaussian like decay with more structure persisting at quite high distances.

Nevertheless, it is important to extract a decay length for each A(r) and we settle for the

Gaussian function of the form

A G f it (r) = exp - |r| 2 2ξ 2 .
(2.4.25) perturbations and hence explains the small values of ξ.

A more mathematical way to carry out this Gaussian mapping has been presented in [START_REF] Adam | Graphene Carrier Transport Theory[END_REF].

For our purpose, it is sufficient to use the main results which are discussed below.

Firstly, we obtain the dependence of correlation length on the impurity concentration and distance of impurities from the graphene plane which is given by

ξ = 1 √ n imp D 0 4πr 2 s C 0 (r s , 4d √ πn * ) -3/2 (2.4.26)
where full analytic expressions for D 0 and C 0 within the RPA approximation are available in literature [START_REF] Adam | Graphene Carrier Transport Theory[END_REF]. In Figure 2.15, this dependence have been plotted.

Decrease of ξ with increase in n imp is expected since the larger number of carriers induced produces stronger screening and hence smaller puddle size. Also, higher n imp causes a higher density of inhomogenieties in the first place which also results in decrease of ξ. the monotonic increase of ξ with d can be understood by considering the exponentially decaying nature of the single impurity potential φ(q, n) ∝ e -qd which implies a higher distance upto which a finite correlation persists.

Secondly, we also get an important relationship between the charge disorder n rms and the correlation length.

ξ = πn imp n rms n * 2 -3 -1/2
(2.4.27)

Using this relationship, ξ as a function of n g has been replotted in Figure (2.16), marked as 'Method 2'. 'Method 1'just plots ξ extracted by direct Gaussian fitting of the theoretical A(r) curves as illustrated in Figure 2.14. We see that the two are not exactly the same. This is because in 'Method 2', we need to find n rms first using the procedure described in 6. This therefore incorporates the changing charge disorder at each carrier density whereas 'Method 1'does not take this into account.

Hence, with this we have completely characterized the local fluctuations in the screened impurity potential, the longitudinal as well as the spatial extent at different carrier densities. In this respect, we have obtained the four most fundamental quantities that define this disorder:

C(0), n rms , n * and ξ and numerically calculated their relationship to other known system parameters. We realize at this point that all these quantities are ultimately dependent on just two free parameters n imp and d, both of which can be determined from the measurement of charge carrier transport. So, as it stands, this should be sufficient to completely predict the macroscopic transport as well as the microscopic correlations in the system.

Conclusion

The honey-comb structure of the graphene lattice gives rise to the Dirac-Weyl like dispersion of its charge carriers similar to quantum relativistic particles. However, unlike these systems, interactions in graphene are non-perturbative due to its rather high fine-structure constant (or interaction parameter r s ) of about 0.8 in comparison to 1/137 in the former case. This calls for a self-consistent approach to treat the effect of the disordered potential created by charged impurities trapped in the substrate. More specifically, the charge inhomogeneities induced by the underlying disorder will screen out this potential that created it in the first place. This leads to a subtle interplay between disorder and charge carrier response in graphene that ultimately determines the carrier dynamics in the entire system.

While in the high density regime, charge transport is diffusive, and the scattering from Coulombic impurities can be well described by the Drude Boltzmann model, in the low density regime the physics of disorder takes over. The properties of charge carriers in graphene are well understood in both these extreme limits. However, for intermediate carrier concentrations where the majority of experiments are conducted today, the scenario still remains rather ambiguous.

The best way this cross-over regime is understood is by interpolating the results at the two extreme limits. But whether this approach is correct or not can only be decided by carefully designed experiments that can combine and correlate macroscopic with microscopic properties of the system.

As we have seen, existing theory dictates that all the important quantities characterizing screened disorder fluctuations like n rms , n * , ξ and C(0) are ultimately related to n imp and d, both of which can be extracted by conducting transport measurements on the sample. On the other hand, local measurements like scanning probe microscopy can directly measure the above quantities with high energy and spatial resolution. Hence, performing these two different kinds of measurements in parallel, will help us to test the existing theories and hence strengthen our understanding of the fundamental properties of one of the most widely investigated systems today.

Chapter 3

The Cryogenic Scanning Probe Microscope Contents 

Introduction

In this chapter, we introduce our experimental setup which is a Scanning probe microscope capable of operating down to dilution temperatures at magnetic fields up to 2 T. We first discuss the different microscopic techniques that can be implemented in this setup and has been thoroughly used throughout the course of this thesis. This is followed by the description of the key components of the setup i.e. the microscope itself, associated electronics and the inverted dilution fridge or Sionludi on which the microscope is installed. The scanning probe is introduced next with detailed description of its working principle, the way it is implemented in our setup and the change in its properties while cooling down from room to base temperature. Finally, we demonstrate important instances where the option to combine different microscopic techniques in our setup clearly proves to be a strong advantage.

Elements of Scanning Probe Microscopy

When Binnig, Rohrer, Gerber and Weibel invented the Scanning Tunneling Microscope in 1982 [START_REF] Binnig | Tunneling through a controllable vacuum gap[END_REF] followed by the Atomic force microscope four years later by Binnig, Quate and Gerber [START_REF] Binnig | Atomic force microscope[END_REF],

not only did they lead the way into the world of atoms but simultaneously opened the floodgates for a whole new family of powerful experimental techniques -the Scanning probe microscopies that could address the local fluctuations of physical properties of a given system.

The fundamental difference with other microscopies like optical or scanning electron microscopy in which the sample surface is probed with photons or electrons, is that scanning probe microscopy involves the use of a local probe and hence the name. The kind of probe used determines the local property of the surface that can be investigated. For example a metallic tip can measure the local density of states of the sample surface, a resonator like a cantilever or tuning fork can detect the tip-surface interaction, a Hall probe or a SQUID can be used to detect the local magnetization, etc. Each type of probe defines a new technique which all fall under the broad category of Scanning probe microscopy. In the following sections, we introduce and discuss the three different scanning probe techniques that can be implemented in our setup.

Scanning Tunneling Microscopy & Spectroscopy

The Scanning Tunneling Microscope today has become one of the most widely used experimental techniques in probing the local electronic properties of surfaces. As the name suggests, it is based on the phenomenon of quantum mechanical tunneling of electrons between two electrodes separated by a thin potential barrier. The idea is rather simple although realizing a Scanning Tunneling Microscope is quite an experimental challenge! Figure 3.1 shows a cartoon explaining very simply the main working principle of a STM. A sharp, metallic tip, mounted on a piezoelectric scanner capable of three-dimensional positioning with picometric precision, is placed extremely close (of the order of a few Å) to a conducting sample surface. The electrons on the two sides (tip and sample surface) are therefore separated by a finite potential barrier of width of the order of their Fermi wavelength and hence, small enough to allow a finite overlap of their wave-functions. This leads to a non-zero probability for them to tunnel through this barrier resulting in a finite current flow between the tip and the sample on applying a small voltage difference (V bias ) between the two. This tunneling current I t constitutes the main imaging signal of this microscopy technique.

The reason for the remarkably high vertical resolution of this microscope of a few hundredths of an angstrom is due to the exponential dependence of I t on the tip-sample distance z ts :

I t ∝ e -zts/z 0 , 1 z 0 = 2 2mφ 2 ≈ φ(eV)Å -1 (3.2.1)
The work-function (φ) of a typical metal is about 5 eV which implies that I t decreases by an order of magnitude for only a change of 1 Å of the tip-sample separation.

This high sensitivity of I t to z ts is made use of in maintaining the tip at a constant separation from the sample surface while scanning. A feedback loop where I t serves as the input parameter is used to regulate the voltage applied to the z electrode of the piezo-scanner V Z such that I t remains fixed. The changes produced in V Z can be directly converted to give the changes produced in the vertical position of the tip z(x,y). Spatial variations of z produce an image of the sample surface which gives the topography of the surface. This method of imaging the surface is known as the Constant-current imaging mode. Since this method of scanning is dependent on the control of the tip-sample distance by the z-feedback, the scan speed is limited by the bandwidth of the feedback loop which is usually in the kHz range. Another common mode of surface imaging is the Constant-height mode in which the z-regulation is kept off while scanning. In this case, local surface corrugations would produce variations of I t and hence positional map of I t will reflect the surface topography. Of course, since the tip-sample distance is not regulated, the latter method is faster but more risky and should be implemented only after ensuring small surface roughness to prevent collision of the tip with surface protrusions. Also, the I t modulations produce only a qualitative map of topography since δz ∝ ln I t (x, y)/ √ φ, so for a quantitative comparison, local value of φ must be known.

Nevertheless, images of the surface produced in both these STM modes is not just the real topography of the surface. In particular, they contain influences of the variations in the local density of states (LDOS) as well. This is because the tunneling current I t , that constitutes the imaging signal, depends both on the tip-sample distance and the convolution of the density of sates of the sample ρ s and the tip ρ tip , as explained in the following section.

Quantum Mechanical Tunneling

If we assume elastic tunneling of electrons, then within the independent particle approximation, we can write down the following expression for I t as a function of voltage bias V bias and tip-sample distance z:

I t (V bias , z) = 4πe ∞ -∞ |M | 2 ρ tip (E -eV bias )ρ s (E, r) [f (E -eV bias , T ) -f (E, T )] dE (3.2.2)
In the above expression :

1. |M | 2 represents the tunneling matrix element which is proportional to the transmission probability of the electron across the insulating barrier T (E, z) and is responsible for the exponentially decaying nature of I t with the width of the barrier i.e. the tip-sample distance z ts . Under the assumption that V bias << Φ, we can safely assume |M | to be independent of energy.

f (E, T ) represents the Fermi-Dirac distribution function which gives the probability of

an electronic state at energy E being filled at temperature T. We assume here that the electronic temperature for both the tip and the sample is the same.

f (E, T ) = 1 exp E-E F k B T + 1 (3.2.3)
where E F is the Fermi energy and k B = 1.38 × 10 -23 JK -1 is the Boltzmann constant. gives the number of states that are available in the tip in the same energy interval when a voltage V bias is applied to the sample. Hence, the total current flowing from sample to tip will be given by :

I s→tip ∝ ∞ -∞ |M | 2 ρ s (E, r)f (E, T )ρ tip (E -eV bias ) [1 -f (E -eV bias , T )] dE (3.2.4) 4.
Similarly, current flowing from tip to sample will be given by :

I tip→s ∝ ∞ -∞ |M | 2 ρ s (E, r) [1 -f (E, T )] ρ tip (E -eV bias )f (E -eV bias , T )dE (3.2.5)
5. Now from equations 3.2.4 and 3.2.5, the above expression for the effective tunneling current flowing between the tip and the sample 3.2.2 can be easily recovered.

I t (V bias , z) = I tip→s -I s→tip (3.2.6)

Scanning Tunneling Spectroscopy

The fact that the tunneling current is dependent on the local density of states of the sample makes it possible to use this signal as a probe to sense it. This forms the basis of the other important use of the microscope : Scanning Tunneling Spectroscopy or STS. Here, the signal which assumes the key role is the derivative of the tunneling current dI t /dV bias or the tunneling conductance.

dI t dV bias = 4πe ∞ -∞ |M | 2 ρ s (E, r) ∂ ∂V bias [ρ tip (E -eV bias )f (E -eV bias , T )] dE (3.2.7)
If we choose a metallic tip (most often the case in STS) and restrict ourselves to energies close to the Fermi level i.e. eV bias is small enough to approximate ρ tip (E -eV bias ) to be independent of energy, then we can simplify the above expression to get the following.

dI t dV bias = 4πe 2 |M | 2 ρ tip ∞ -∞ ρ s (E, r) ∂f (E -eV bias , T ) ∂(eV bias ) dE (3.2.8)
The expression ∂f (E-eV bias ,T )

∂(eV bias )
is just a bell-shaped weighting function peaked at E = eV bias with weight k B T and unit area under the curve. In fact at T = 0 K, it exactly corresponds to a Dirac delta function and in this situation, dI t /dV bias becomes exactly proportional to the DOS of the sample. having a BCS type DOS [START_REF] Tinkham | Introduction to superconductivity[END_REF]. At T = 0 K, the measurement produces an accurate description whereas at higher temperatures, the dI t /dV bias will produce an approximate value that will be subjected to a smearing of about 4k B T .

To perform tunneling spectroscopy, one way is to simply measure I t as a function of V bias and then to find its derivative numerically. Another popular way is the lock-in technique. In this method, a small sinusoidal ac modulation V ac sin(ωt) (from the lock-in amplifier output) is superimposed with the dc bias voltage supplied to the sample. The frequency of the modulation ω is carefully chosen such as to avoid typical domains of mechanical vibrations or electronic noise for example multiples of 50 Hz should be avoided to ensure minimum influence from the 50 Hz electrical noise. The tunneling current can then be written as (using Taylor expansion):

I t (V ) = I t (V bias ) + dI t dV V =V bias V ac sin(ωt) + O(V 2 ac ) (3.2.10)
The resultant signal is once again measured with the help of the lock-in amplifier which gives back the amplitude and the phase corresponding to the reference frequency ω of the supplied voltage modulation i.e.

A lock-in = V ac dI t dV V =V bias (3.2.11)
Or in other words, the lock-in directly gives the tunneling conductance. Since this method gives the freedom to measure in the least noisy domain of the I t signal spectrum, it often results in very clean measurements with less noise. However, due to smearing effect of the voltage modulation, one should be careful to keep V ac significantly small compared to any physical feature (of width ≈ δE) present in the DOS of the sample being investigated, i.e. eV ac δE.

Also, if possible, V ac 4k B T to keep the resulting smearing lower than the thermal smearing.

Atomic Force Microscopy

Even though the STM is unparalleled as a tool for imaging the local electronic properties of surfaces with spatial resolution down to atomic scale, it suffers from a serious drawback : its range of application is limited to conducting surfaces. This limitation is easily overcome in an Atomic Force Microscope or AFM.

The basic ingredients of AFM are essentially the same as that of STM. that is possible in STM. Nevertheless, the accessibility to practically any kind of surface whether conducting or not and the power of the force sensors to sense them from a distance at least ten to even hundred times further than that possible in STM, makes this technique much more versatile.

Tip-Sample Forces

The tip-sample interactions may be short-range or long range. The short range forces mainly comprise of chemical binding forces (relevant at distances < 5 Å) and the van der Waals forces (distances up to 5 -7 nm in air) while the long range contributions are electrostatic or magnetic in nature. For extremely small tip-sample distances z, the interaction is repulsive. This is because of the Pauli exclusion principle for the overlapping electron clouds of the tip and sample atoms. At slightly larger distances, the attractive van der Waals force takes over. It results from the interaction between electrostatic dipoles induced by electromagnetic field fluctuations in the environment [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF]. At yet larger distances, the short-range contributions disappear and where we observe the range of interaction to reduce at low temperatures. In (c), the blue curve results from the attractive van de Waals interaction while on increasing electrostatic interaction (changing V tip ), the interactions are found to persist up to longer distances.

The emperical way to represent the short-range tip-sample interactions is by the Lennard Jones' potential [START_REF] Neil | Solid State Physics[END_REF] given by

U LJ (z) = 4 σ 0 z 12 - σ 0 z 6 , ( 3.2.12) 
where z = 2 1/6 σ 0 is the equilibrium distance and is the minimum value of this potential i.e.

= -(U LJ ) min corresponding to equilibrium. The positive, rapidly decaying term describes the repulsive part while the negative, slowly decaying term gives the attractive part of the potential.

The component of the tip-sample force perpendicular to the sample surface is then F LJ = -dU LJ dz . In Figure 3.5, U LJ and the corresponding force F LJ has been plotted as a function of tip-sample distance z. For z > σ 0 , the interaction is attractive while it is repulsive at distances smaller than σ 0 .

In non-contact AFM, the probe-sample distances are maintained in the attractive regime unlike in contact or tapping mode AFM where the probe is placed in contact with the surface. 

Detection of Tip-sample Interactions in FM-AFM

As already mentioned, an AFM probe constitutes of a cantilever or a quartz resonator with a characteristic eigen frequency of oscillation ω 0 = 2πf 0 that changes under the influence of the tip-sample force F ts . This can be simply understood by considering the probe as a damped harmonic oscillator subjected to a periodic force F 0 cos(ω d t) (to maintain its oscillations) and the tip-sample interaction. The equation of motion is then given by

mz + mω 0 Q ż + k 0 z = F ts + F 0 cos(ω d t) (3.2.13)
where Q is the quality factor, m is the effective mass of the resonator and k 0 is the spring constant. In the absence of F ts , the eigen frequency of the system is just ω 0 = 2πf 0 = k 0 m . The steady state solution to Eq.(3.2.13) is described by a resultant amplitude and phase given by

A = |A drive | 1 - f 2 d f 2 0 2 + f d f 0 Q 2 , φ = arctan     f d f 0 Q 1 - f 2 d f 2 0     . (3.2.14a) (3.2.

14b)

Here A drive = F 0 /mω 0 . We note that at resonance i.e. f d = f 0 , amplitude A = QA drive is maximum and phase φ = 90 • as shown in Figure 3.6.

For an infinitesimally small tip displacement z, F ts can be written as (by Taylor expansion of tip-sample interaction potential U ts )

F ts (z) = - dU ts dz = - d dz U ts (0) + dU ts dz z=0 z + d 2 U ts dz 2 z=0 z 2 2 + O(z 3 ) ≈ -(α 0 + k ts z) . (3.2.15)
where α 0 = dUts dz z=0

is a constant and

k ts = d 2 Uts dz 2 z=0
. Inserting this back in Eq.(3.2.13), we obtain

mz + mω 0 Q ż + (k 0 + k ts ) z = F 0 cos(ω d t) -α 0 . (3.2.16)
This shows that the motion of the oscillator remains harmonic but the eigen frequency changes to ω = k 0 +kts m . If the oscillator is sufficiently stiff i.e. k 0 k ts , then the shift in frequency is approximately given by A more general expression for ∆f is given by [START_REF] Giessibl | Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators[END_REF] ∆f =

∆f = f -f 0 ≈ f 0 2k 0 k ts = f 0 2k 0 d 2 U ts dz 2 z=0 . ( 3 
f 0 2k 0 k ts ,
where

k ts = 2 π 1 -1 k ts (z + ζA) 1 -ζ 2 dζ (3.2.18)
Figure 3.8: Mechanical analog of a coupled oscillator used as a force sensor. There are three degrees of freedom: the deflection of the central mount q c and the deflections of the two coupled oscillators q 1,2 [START_REF] Giessibl | Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators[END_REF].

At large amplitudes, the above expression can be approximated to

∆f = f 0 k 0 1 A 3/2 γ ts , (3.2.19)
where γ ts ≈ 0.4F ts √ λ is the normalized frequency shift that is independent of A, F ts being the tip-sample interaction and λ being the decay length. The above equation suggests a decrease in ∆f with increase in A which is what we find in Figure 3.7. We also measure the excitation voltage supplied to the tip V exc in order to maintain a constant amplitude set-point, to increase at small tip-sample distances. This implies the presence of a non-conservative component in the tip-sample interaction that leads to dissipation, something that is not included in the Lennard Jones' model. This is further discussed on section 4.2.4.

Nevertheless, the frequency shift produced in the oscillator in response to the tip-sample interaction, has a high sensitivity to the tip-sample distance and this forms the basis for its use as a force sensor in AFM.

Frequency shift in Coupled oscillators

The most common quartz oscillators used today as AFM probes, are coupled oscillators, like the tuning fork [START_REF] Giessibl | High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork[END_REF] [74] and the length extensional resonator [75] [76]. Since in our microscope, the latter is implemented, it is important to understand the influence of the tip-sample force on the dynamics of such a coupled system. The detailed derivation is presented in [START_REF] Giessibl | Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators[END_REF] from which we look at the main results.

Figure 3.8 shows the schematic of a coupled oscillator in which one of the resonators is subjected to the tip-sample force while the other is free to oscillate. In such a system, there are three degrees of freedom: the displacement of the center of mass q c (t) and the displacement of the oscillators q 1,2 (t). The equation of motion is given by

m q1 = -k ts q 1 -k 0 (q 1 -q c ) m q2 = -k 0 (q 2 -q c ) m qc = -k c q c -k 0 (q c -q 1 ) -k 0 (q c -q 2 ) (3.2.20a) (3.2.20b) (3.2.20c)
Since the center of mass has to be in equilibrium, qc = 0. Thus, from Eq(3.2.20c), we find q c = κ(q 1 + q 2 ) where κ = 1/(2 + kc k 0 ). Hence, we are left with a system having two independent degrees of freedom which can be diagonalized and accurately solved to find two eigen frequencies.

Under the assumption that κ > 1/3 (which is reasonable because generally k c < k 0 ) and k ts k 0 , the solutions are as follows:

1. A high frequency, antiparallel motion with frequency

ω 2 1 ≈ ω 2 0 1 + 1 2 k ts k 0 + 1 8κ k ts k 0 2 (3.2.21) 2. A low frequency, parallel motion ω 2 2 ≈ ω 2 0 1 -2κ + 1 2 k ts k 0 - 1 8κ 
k ts k 0 2 (3.2.22)
The antiparallel motion is used in AFM. Therefore, the frequency shift is given by

∆f = f 0 4k 0 k ts . (3.2.23)
to the first order. This means that the frequency shift produced in response to a given tip-sample force is reduced to half the value than in case of a single harmonic oscillator. We can still use Eq.(3.2.17) to obtain the frequency shift provided the individual stiffness of the oscillators k 0 is replaced by an effective stiffness k = 2k 0 .

Frequency Modulated AFM

So far we have discussed about the tip-sample forces and their influence on the scanning oscillator.

What follows next is how this sensed frequency shift can be measured and implemented in controlling the tip-sample distance. There are mainly two different ways this can be done: amplitude modulation (AM) and frequency modulation (FM). In AM-AFM, the probe is excited at a constant frequency slightly off resonance. A change in frequency would result in a decrease or increase of the amplitude of oscillation A which therefore serves as a measure of ∆f . The input for the z-feedback loop is controlled by A. The major limitation of this technique is that the available bandwidth is limited by the quality factor of the probe since the response time of the system is given by τ = 2Q/ω 0 . 1. The analog input signal V in from the scanning resonator is converted into a digital signal via an analog to digital converter.

2. The digital signal is analyzed by a lock-in amplifier which outputs its amplitude and phase separately. The phase is calculated wrt. a reference phase (Φ ref ) that is common for the whole feedback circuit and is chosen such that it is zero when the scan probe is oscillating at resonance, far away from the influence of the tip-sample force.

3. The amplitude signal enters as the input to a feedback circuit called the Amplitude Controller (one part of the PLL) which regulates on the drive to be supplied to the scan probe.

The feedback acts on the Excitation to ensure that amplitude of oscillation of the probe is maintained at a set value (Amplitude setpoint). With this, we have more or less discussed the important aspects on the working of the FM-AFM. Now all that remains is the introduction and characterization of the scan probes for combined AFM/STM that will be taken up in 3.4. thus built up in this process, is the contact potential difference V CPD . This potential difference will give rise to an ac current if one of the surfaces is vibrated wrt. the other due to the changing capacitance. The current can be nullified if a compensating voltage = V CPD is supplied to one of the surfaces so that the effective potential difference between the two is zero (Figure 3.10(c)).

Kelvin Probe Force Microscopy

This forms the basis of detection of CPD by Kelvin probe.

In Kelvin probe force microscopy, the local CPD of the surface is measured with the AFM probe. However, unlike in the Kelvin probe technique, the detected signal is force instead of current. The CPD difference between the tip and the sample causes an electrostatic force which can be detected as a frequency shift by the AFM probe as discussed in section 3.2.2. The CPD is then measured simply by nullifying this force using a compensating tip voltage V tip = -V CPD (Figure 3.10(c)).

In particular, we note that, with the sample grounded and voltage applied to the tip,

V CPD = W sample -W tip |e| . (3.2.24)
where W sample and W tip are the work-functions of the sample surface and scan probe respectively.

Implementation

There are mainly three ways of measuring the local CPD of the surface using KPFM: (1) point to point force spectroscopy, (2) amplitude modulated KPFM and (3) frequency modulated KPFM.

In our setup, the first technique can be implemented. Nevertheless, our collaboration with Benjamin Grévin in CEA enabled us to closely experience the working of frequency modulated KPFM and in chapter 5, CPD measurements by Dr. Grévin using FM-KPFM have been presented. Therefore, we briefly discuss the first and third method to understand the measurements discussed in subsequent chapters.

In point to point force spectroscopy, the frequency shift of the scan probe, which is the derivative of the tip-sample force, is measured as a function of voltage applied to the tip. The voltage at which the frequency shift is minimized then gives the CPD. The tip-sample system can be considered as a capacitor. The electrostatic potential is then given by

U el = 1 2 C (V tip + V CPD ) 2 (3.2.25)
where C is the tip-sample capacitance. Using Eq.(3.2.17), the frequency shift resulting from this electrostatic interaction can be calculated.

∆f = f 0 4k d 2 C dz 2 (V tip + V CPD ) 2 . (3.2.26)
Here k is the effective stiffness constant of the scanning resonator. In deriving the above equation, we have considered only the electrostatic force component perpendicular to the tip-sample surface which has the dominant contribution in AFM. We have also ignored the short range van der Waals contribution which is justified if the spectroscopy is performed sufficiently far > 10 nm from the sample surface. In frequency modulated KPFM, an ac signal V ac cos(ω ac t) is superposed on the dc tip signal i.e. V tip = V dc + V ac cos(ω ac t). This produces three distinct spectral components of the frequency shift.

∆f dc = f 0 4k d 2 C dz 2 (V dc + V CPD ) 2 + V 2 ac 2 ∆f ωac = f 0 2k d 2 C dz 2 V ac (V dc + V CPD ) cos(ω ac t) ∆f 2ωac = f 0 8k d 2 C dz 2 V 2 ac cos(2ω ac t) (3.2.27a) (3.2.27b) (3.2.27c)
The dc component is just added to the topography signal. A lock-in amplifier tuned to the frequency of the ac bias then measures the corresponding component in the frequency shift i.e.

Eq.(3.2.27b) which is proportional to V dc + V CPD . A feedback loop then adjusts the dc bias V DC to minimize ∆f ωac which directly gives the local CPD.

This brings us to the end of the discussion about the different scanning probe microscopies that can be implemented in our setup. The ability to combine these three powerful techniques in a single setup which is capable of operating at dilution temperatures opens up a whole range of possibilities, only a small fraction of which has been explored in this thesis.

Experimental Setup

In this section we will discuss about our Scanning probe microscope (SPM) and the associated experimental environment. The microscope was built by Sylvain Martin under the supervision of Clemens Winkelmann and the full details have been presented in his thesis [START_REF] Martin | Systèmes nanoélectroniques hybrides : cartographies de la densité d'états locale[END_REF]. Here a more concise description is provided. We first describe the SPM head. This is followed by the description of the cryogenic arrangement that enables the operation of the SPM at dilution temperatures i.e. via inverted dilution. Finally we end our discussion with the associated electronics required to probe and measure the local properties of a given sample.

The SPM Head

The SPM head forms the central element of a scanning probe microscope as well as the part that is the most challenging to build. Since the main target is to realize a spatial resolution high enough to image atoms by maintaining a probe at Å scale distances from the sample surface, mechanical vibrations need to be much smaller than the atomic corrugation. Moreover, operation at low temperatures imply lower thermal drift and better energy resolution but at the same time the cryogenic arrangements required for this purpose tend to increase the mechanical vibrations.

A suitable design of the head with proper choice of component materials that results in higher structural resonance frequencies significantly helps in damping these low frequency vibrations.

Therefore, the SPM head needs to be very rigid and at the same time, compact and light for compatibility with cryogenic arrangements. Keeping these requirements in mind, we chose the Pan design [START_REF] Pan | sup 3]He refrigerator based very low temperature scanning tunneling microscope[END_REF].

General Description

The schematic in 

Choice of materials

For operation at dilution temperatures, the choice of the materials of the microscope head is very important. There are several factors that should be taken into account. Firstly, the chosen materials should be good conductors of heat down to base temperature so that the different parts are well thermalised. Hence, materials that turn superconducting at temperatures higher than the base temperature must be avoided as in the superconducting state, these metals are bad thermal conductors. Secondly, the thermal expansion coefficients of the different parts should be well matched to prevent wear and damage on cooling down. Finally, magnetic materials cannot be used as the STM head is placed inside a magnetic coil which might induce large forces on the head due to magnetization. Keeping all these requirements in mind, our choice for the material of the body of the microscope is gold plated phosphor bronze which is an alloy of copper with 3.5 -10% tin and up to 1% phosphorous. It is a good thermal conductor down to base temperature, harder than copper and retains a good thermal expansion coefficient matching to macor and piezoelectric material (PZT) which are the other important materials used (Figure 3.12(a)). 

Piezoelectricity

The crucial ingredient of a scanning probe microscope is the accurate control of the position of the local probe wrt. the sample in three dimensions. This would not have been possible without the discovery of Piezoelectricity by Jacques and Pierre Curie in 1880. It is the property of certain crystalline materials to generate an electric field when mechanically stressed. Or conversely, they respond to an applied electric field by undergoing mechanical deformation which is called the inverse piezoelectric effect. Its origin is related to the fact that in certain crystalline materials with a non-uniform charge distribution, mechanical deformation can give rise to separation of geometric centers of positive and negative charges resulting in electric polarization P. The piezoelectric effect can be described by the strain-charge coupled tensorial equations: In the microscope, two different piezoelectric materials have been used: quartz and Pb (Zr x Ti 1-x ) O 3

S = [s]T + [d] t E D = [d]T + [ ]E, (3.3 
(PZT). Table 3.2 lists the transverse piezo electric coefficient of these materials at room temperature and at 4 K. Quartz is a naturally occurring piezo-electric, possible to produce with very good quality and is a natural choice for the material for the resonators used in the scanning probe (section 3.4). However, from table 3.2, we see that its piezoelectric coefficient is rather small which limits its application as an actuator. PZT, an artificially synthesized ceramic with far greater d 31 than quartz, is a suitable choice for constructing strong actuators needed for three dimensional movement of the tip. However, unlike quartz, its piezoelectric properties are dependent on temperature and this gives rise to hysteresis and thermal drift.

The Piezoelectric Scanner

The piezoelectric scanner used in our microscope is made by PI the tube controls its Z-movement. The capacitance of the X,Y and Z plates wrt. ground is 5, 5 and 10 nF respectively at RT while at low temperatures, the capacitances drop to 1.1, 1.1 and 2.2 nF respectively. The thickness of the tube is t ≈ 0.5 mm and its interior diameter d ≈ 9 mm. The length of the X,Y electrodes are L x , L y = 14 mm and for the Z electrode is L z = 10 mm. For elongation or contraction along Z, a voltage V z is applied to the outer Z electrode while the interior of the tube is maintained at ground (cold). The radial electric field, thus applied, is parallel to the direction of polarization of the tube which induces mechanical strain radially. Hence the walls of the tube are thinned (thickened) and to maintain constant volume, an elongation (contraction) along Z is simultaneously produced. Lateral displacement in the X-Y direction also uses this transverse piezoelectric effect. A voltage of opposite polarity is ±V x and ±V y is applied to the X and Y plates respectively. A positive voltage would cause an elongation of the corresponding side of the tube while a negative voltage to the opposite electrode would cause a contraction, thus leading to a bending of the tube laterally. 300 K 100 mK Calculated at 300 K ∆X/∆V(nm/V) 40 6.5 39.2 ∆Z/∆V(nm/V) 3.5 0.7 3.6 maximum voltage that is applied to the tube electrodes is ±150 V. This implies a maximum scan range of 12 µm and a maximum longitudinal deformation of 1.050 µm. Although the electronics used (Nanonis) allows a maximum output voltage of ±400 V, we found it safe to restrict the applied voltage to ±150 V as application of too high voltages could lead to depolarization of the tube. At 4 K or lower, we apply a maximum of ±310 V which gives a maximum scan range 4 µm.

The maximum voltage applied to the Z electrode at low temperatures is about ±280 V which gives a maximum longitudinal deformation of 396 nm.

These high scan ranges are required for the purpose of localization of our sample by AFM (section 3.5.2). Nevertheless, this does compromise the spatial resolution achievable by the microscope to some extent. The Nanonis electronics is a 16 bit system with maximum output of ±10 V and gains 4, 15 and 40. Hence, the highest resolution achievable with gain 4 is about δV = 1.2 mV which corresponds to a spatial resolution of δX = ∆X ∆V δV = 50 pm and longitudinal resolution of δZ = ∆Z ∆V δV = 4.3 pm at room temperature. At low temperatures, both spatial and Z resolution is enhanced to 7 pm and 0.8 pm respectively due to reduction of the piezoelectric coefficient at low temperatures. The electrical noise associated with the high voltage amplifier is about 1 mV which contributes to a noise in δX of about few tens of pm at room temperature. This is acceptable but not ideal for permitting a good resolution in STM. Once again, this is reduced by a factor of 5 -10 at low temperatures.

Coarse Motion

The coarse motion of the piezoelectric scanner in the vertical direction and the sample in the horizontal plane is brought about by the piezo-actuators, also made of PZT, operated in shear mode (section 3.3.1). Figure 3 The coarse motion is based on the "slip-stick" mechanism as demonstrated in Figure 3.15(a).

A saw-tooth voltage V impulse (t), consisting of a slow rise (t = 1 ms) and a sharp drop (t ≈ 1 µs), is applied to the face of the actuators in contact with the part to be moved (scanner/X-Y wagons) while the other face is maintained at ground potential. During the slow rise of V impulse (t), the shear force on the actuators is perfectly balanced by the static friction. This implies that the part to be moved "sticks" to the actuators and gets dragged along the direction of deformation.

When V impulse (t) suddenly drops to zero, the static friction is unable to overcome the resulting large acceleration and this causes the actuators to "slip" wrt. the scanner/wagons and return to their original position. This, therefore imparts a net displacement to the piezoelectric scanner and the X-Y wagons.

The time taken to drop V impulse to zero during the rapid face is very important as it determines the acceleration imparted to the scanner or the wagons. This time is limited by the intrinsic time constant of the actuator circuit τ . With C = 10 nF and the resistance of the lines being R = 70 Ω, the time constant is about τ = 0.7 µs. At room temperature, 100 V pulses are applied at a frequency of 1 kHz which generates a displacement of ≈ 250 nm/pulse in X/Y and ≈ 100 nm/pulse in Z, towards the sample and ≈ 350 nm/pulse away from the sample (supported by gravity since in the downward direction). At 4 K or lower, 200 -250 V pulses at the same frequency are used. While displacement produced in the X-Y direction is about ≈ 75 nm/pulse, towards the sample along Z direction, it is about ≈ 40 nm/pulse and away from sample, it is about 120 nm/pulse. However, these measures are highly subjected to the pressure exerted by the spring plates and can be optimally adjusted for higher efficiency.

The Inverted Dilution Fridge : Sionludi

The cryostat used in the experiment belongs to the second generation (2008) of Sionludi or Inverted Dilution cryostat developed here in Institut Néel [START_REF] Benoît | Cryostat Sionludi[END_REF]. It operates in a completely reversed manner compared to a standard dilution refrigerator, hence the name. Whereas in the latter, the cryostat is inserted top-down inside a helium bath, inverted dilution requires the cryostat to be mounted on top of a 4 He reservoir. This is particularly convenient for scanning probe experiments as it provides an easy access to the sample and the tip. However, since the cryostat is in a room temperature environment, heavy shielding and a good vacuum is essential to reduce the heat load on the dilution stage.

The whole cryostat is housed inside a vacuum chamber, located on top of the 4 He reservoir.

There are a total of five stages for thermalisation, stacked one on top of the other, at: 80 K, 20 K, 4 K, 1 K and 100 mK (from bottom to top), as shown in Figure 3.16(a). The different stages are isolated thermally by stainless steel legs that ensure a good mechanical stability. Gold plated copper screens installed at 80 K and 20 K help to isolate the 4 K and colder stages from thermal radiation.

The schematic shown in Figure 3.16(b) explains the functioning of the Sionludi. The cryostat possesses a 4 He circuit (secondary circuit) that is distinct from the circuit of the mixture 3 He/ 4 He (primary circuit). The cooldown of the cryostat from 300 K to 100 mK is achieved in two stages.

The first stage involves cooldown of the mixture to 4 K by creating a strong thermal contact between the mixture and the 4 He circuit while in the second stage this thermal contact is cut off and the mixture is cooled down further by the process of dilution [START_REF] Pobell | Matter and Methods at Low Temperatures[END_REF]. The different steps involved are listed below:

1. An overpressure of 100-300 mbar maintained on the 4 He reservoir causes the 4 He to flow up into the 4 K pot, thus cooling the lower stages on the way. It then flows downwards through a counter-flow heat exchanger where it comes into thermal contact with the mixture circuit. This process causes the temperature to gradually lower from 4 K to 1 K. 4. By 1 K, the mixture in the MC has condensed and separates into an upper 3 He rich phase (practically 100% 3 He) and a lower dilute phase (6.6% 3 He+93.4% 4 He). To cross the phase boundary, 3 He molecules from the concentrated phase absorb heat from the surroundings and flow into the dilute phase. This endothermic process of dilution is the key process for creating temperatures as low as 100 mK. The cold 3 He then leaves the MC in the dilute phase and on its way out cools the incoming mixture. In Still 1, the 3 He flows through superfluid 4 He which is at rest, and is pumped out. Finally, all the 4 He in the mixture is trapped as superfluid 4 He in the MC and Still 1 while the pumping ensures a constant circulation of 3 He in the primary circuit 1 .

With the microscope installed, our cryostat can cool down to a base temperature of 130 mK with the stills at a temperature of about 1.1 K and the injection pressure dropping down to about 1 bar. This enables us to turn off the compressor and only one pump is sufficient to maintain the mixture circulation. 

Thermometry

Resistance based thermometers are installed at different stages of the cryostat to monitor the temperature during the cooling process from room temperature to 4 K and then further down to base temperature. Table 3.4 lists the different types of resistors used as thermometers and their respective locations in the cryostat.

Location

Type of thermometer Three different types of resistors have been used which function as thermometers at different temperature ranges. Figure 3.17 shows the temperature of the mixing chamber recorded simultaneously by the three different thermometers installed at the dilution stage during cooldown to 4 K and then during condensation. Platinum resistors are sensitive to temperature in the range T ∈ (300 K, 40 K) beyond which it saturates. The carbon thermometers gives the correct temperature value from 10 K to about 700 mK beyond which the RuO x thermometers are operational up to the lowest temperature of the cryostat.

Between 40 K and 10 K, there is no direct access to the temperature of the mixing chamber.

But we are able to deduce the intermediate temperatures by considering the Pt thermometer reading from 300 K to 40 K and then the C thermometer reading from 10 K to 4 K. By ex-trapolating between the two sets of readings by means of a polynomial fit, we can extract the temperature of the mixing chamber in the range (40 K, 10 K). In Figure 3.17 Additionally, the wires have been directly thermalised at stages 4 K, 1 K 3 and at 100 mK. Table 3.5 lists the length of the wires between the different stages and the corresponding thermal power transmitted (crudely estimated assuming a thermal conductivity of 19.5 Wm -1 K -1 for constantan). For reducing noise in the tunneling current line, we have dedicated a single low noise, coaxial cable just for this purpose. Apart from this there are three separate capillaries with 12 wires each for the thermometers.

Filtering

For low temperature cryogenic operation, it is extremely important to filter high frequency electromagnetic radiations which can disturb the thermal equilibrium of the electrons in the circuit. The gold-plated copper shields installed at the different stages cut off a significant fraction of these radiations. However, the electrical lines serve as good wave guides for transmission of 2 The existing wiring at the beginning of my PhD had to be redone because several important connections showed significant leakage to ground 3 At 4 K and 1 K stage, thermalisation of the wires have been done inside closed copper boxes using Kapton tapes glued with Eccobond (good thermal conductor but electrically insulating.) 

Magnetic Field

The cryostat is equipped with a superconducting magnet constituted by a coil of niobium titanium (NbTi) woven around a copper shield that is installed at the 4 K stage. The magnetic field provided by it is 160 mT/A. The current source used to drive these coils can provide a maximum of 10 A, thus giving a maximum magnetic field of 1.6 T.

However, due to local damage in the coil, the maximum magnetic field that could be achieved in the later part of my PhD, was restricted to 320 mT. It is currently under repair.

Electronics

For overall control of the microscope operation, we have utilized Nanonis electronics made by Specs [START_REF] Nanonis | SPM Control System[END_REF]. It is equipped with a PC which has a real time operating system and 2 NI-FPGA cards that enables data acqusition, analysis and implementation. The PC communicates with the main computer of the experiment by ethernet. The Nanonis is a 16 bit, fully digital system and consists of three modules: Apart from the overall control by the Nanonis, there are two important home-built electronic components: (1) the tunneling current amplifier and (2) the AFM electronics that control the signals involving the scan probe in the STM and AFM mode of operation respectively. We discuss this next.

Tunneling Current Amplifier

The tunneling current amplifier must allow the measurement of currents with a precision less than pA and a band-pass of about 1 kHz (sufficient for imaging 10 atoms/nm at a speed of 100 nm/s).

It constitutes of a very low noise current to voltage operational amplifier implemented in the inverted configuration, as shown in the schematic in Figure 3.19(a). The output voltage produced by a tunneling current I t is given by:

V out = -Z f b I t = - R f b 1 + jωR f b C p I t , (3.3.2)
where R f b is the feedback resistor, C p is the parasitic capacitance and ω is the frequency of I t .

As is evident, the low frequency gain of the amplifier is given by -R f b with a cut-off frequency is given by the Johnson-Niquist formula [START_REF] Horowitz | The art of electronics[END_REF],

f c = 1/(2πR f b C p ).
n R = 4k B T R f b , (3.3.3) 
where k B = 1.38 × 10 -23 J/K is the Boltzmann's constant and T is the temperature where R f b is installed.

In our tunneling current amplifier R f b = 100 MΩ and installed at room temperature. 

S It = n R √ B R f b = 4k B T B R f b (3.3.4)
where B is the acquisition bandwidth with a maximum = f c . S It ≈ 0.7 pA in our case at T = 300 K and B = f c . Using Eq.(3.2.1), we can find the corresponding vertical noise in z ts given by

S zts = S It ∂It ∂zts = z 0 S It I t . (3.3.5)
If we assume z 0 ≈ 1 Å, then for I t = 100 pA, the vertical noise in z ts is ≈ 0.7 pm which is well below the vertical resolution required to image atoms.

AFM Amplifier

The design of the AFM electronics depends on the choice of the AFM resonator and the manner in which it is excited. In many cases like cantilevers or quartz resonators, the signal generated in response to a given excitation (electrical/mechanical) is electric current. Therefore, the electronics required to measure this response signal essentially consists of a current to voltage converter just like in STM operation. However, unlike STM, the response signal is composed of extremely high frequencies, especially for quartz based resonators (> 30 kHz). The choice of our AFM probe is the Length Extensional Resonator or LER (section 3.4) which has an eigen frequency of f 0 ≈ 1 MHz. There are two standard ways to measure this: (1) by using a current to voltage amplifier with higher bandwidth, but reduced gain. Since the current to be measured is of the order of tens of nA, the reduced gain does not pose a problem. However, the current noise is and C 0 taken from manual for the Kolibri sensor [START_REF] Specs | Advanced Quartz Sensor Technology for FM-AFM[END_REF]) as well as the response considering electrical line contributions. As can be seen clearly, the intrinsic resonance properties of the probe are subdued which hinders its capability to efficiently respond to changes in the tip-sample force The compensation achieved at a given frequency far off resonance, in this manner, continues to persist at all frequencies in the neighborhood of f 0 i.e. |f -f 0 | η∆f 0 /2 (∆f 0 is the FWHM) where η can be as large as 20 or even more. This is not so obvious given the frequency dependence of the electrical line signals. This is partially explained by the fact that since the two lines are very similar, if not perfectly identical, their electrical properties should evolve with frequency in a similar manner; hence once matched at a particular frequency, they should remain that way for other frequencies as well. There is another reason which becomes clear if we consider the mathematical expression for the output at the exit of the first amplifier at a far off frequency in comparison to the intrinsic response characteristics of the resonator. Therefore, even if the lines are not perfectly identical, this small variation with frequency ensures that the compensation method described persists over a broad range of frequencies (about f 0 ), far higher that what is required in AFM.

(Figure 3.21); V 1 out = Z f b + Z line Z line V exc , ( 3 
Therefore the AFM electronics, described above, provides a way to perfectly compensate the contribution from the electrical lines. Any imbalance appearing as a result of changing temperature and pressure during cooldown, can be compensated by simply tuning the phase and the amplitude controller. Hence this provides an efficient way to recover the intrinsic resonator response and therefore, fully harness its potential as a force sensor. Figure 3.24 shows the response characteristics of a LER measured with the Femto amplifier from SPECS [START_REF] Specs | Advanced Quartz Sensor Technology for FM-AFM[END_REF] and by our AFM electronics that brings out the advantage offered by the latter. 

The Needle Sensor

As force sensors in AFM, commercially available quartz based oscillators like the tuning fork (TF) [START_REF] Günther | Scanning near-field acoustic microscopy[END_REF] or the length extensional resonator (LER) [START_REF] Michels | 1 MHz quartz length extension resonator as a probe for scanning near-field acoustic microscopy[END_REF] are being increasingly used. The natural piezoelectric property of quartz renders them self-actuating and self-sensing, thus eliminating any need to include complicated detection systems. This makes them compact and easy to implement, particularly well-suited for cryogenic applications. Moreover, the intrinsic frequency stability of quartz ensures minimum fluctuations and thermal drift compared to other force sensors like the Si cantilevers, for example 5 . Additionally, the high quality factor found in such resonators (can easily exceed 600 000 at low temperatures) reduces noise contributions (thermal and oscillator noise) in the ∆f signal which consequently improves the quality of measurement.

Out of the two quartz resonators available, we chose the LER based Needle Sensor (NS) [START_REF] Heike | Atomic resolution noncontact atomic force/scanning tunneling microscopy using a 1 MHz quartz resonator[END_REF][START_REF] Toshu An | Atomically-resolved imaging by frequency-modulation atomic force microscopy using a quartz length-extension resonator[END_REF]. Figure 3.25(a) shows an SEM image of the NS while (b) demonstrates its geometrical dimensions. The quartz rod supported in the middle and free to oscillate longitudinally at the ends, constitute a system of two coupled electromechanical oscillators, whose oscillation dynamics had been discussed in section 3.2.2. An oscillating electric field applied between the two side electrodes (red arrows in (c)) induces mechanical oscillations by transverse piezoelectric (inverse) effect 3.3.1 (therefore self-actuating). By the reverse piezoelectric effect, the periodic mechanical deformations in turn induce a periodic surface charge at the electrodes and hence current which can be easily measured (hence, self-sensing). The stiffness of each beam is k 0 ≈ 540 kN/m, therefore the effective stiffness of this coupled system is k = 2k 0 ≈ 1080 kN/m 3.2.2. This is about 600 times larger than the qPlus sensor which is based on the tuning fork oscillator6 . Table 3.6 lists the relevant properties of the NS and the qPlus.

k 0 (N/m) k (N/m) f 0 (Hz) Needle sensor
540 000 1 080 000 1 000 000 qPlus sensor 1800 1800 32 768

Table 3.6: Important oscillating properties of the NS and the qPlus sensor. k 0 is the stiffness of each electromechanical oscillator (each beam in NS and each prong in qPlus), k is the effective stiffness of the system and f 0 is the eigen frequency [START_REF] Giessibl | Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators[END_REF].

The high stiffness of the NS reduces its sensitivity to tip-sample force gradients Eq.(3.2.17)

as well as increases the noise level in the measurements, especially thermal and oscillator noise, compared to the qPlus [START_REF] Giessibl | Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators[END_REF]. Nevertheless, this high stiffness protects the probe against instabilities like 'jump to contact'. Since our main aim is to combine STM with AFM, the tip is required to be extremely close ≈ 1 Å to the surface in STM than in AFM and hence is subjected to far stronger tip-sample forces. Operations like sudden switching of tip voltage in STM mode, can also result in very high electrostatic forces. Therefore, a high probe stiffness is of paramount importance to prevent the probe from snapping to contact. Even in AFM, the higher stiffness makes it possible to work with smaller amplitudes ∼ 100 pm which increases the signal-to-noise ratio and reduces the sensitivity to unwanted long-range force contributions.

This essentially justifies our decision to choose the Needle sensor as our scan probe.

Tips

In STM, the importance of the tip cannot be overemphasized. A clean, atomically sharp tip with stable tunneling conditions is key to achieving reproducible, superior quality measurements with high spatial and energy resolution that are free from artifacts. The important requirements for the material for an STM tip is that it should have a high conductance, hence passive against surface oxidation and high stiffness in order to withstand the strong tip-sample forces operational at tunneling distances. To combine AFM with STM, the metallic tip needs to be mounted on the force sensor. Hence, it must be light enough so that the oscillation dynamics of the sensor is not severely affected. For the qPlus sensor, this is not so stringent since it is essentially used as a cantilever, but for the NS, the weight of the tip is absolutely critical as it introduces asymmetry between the otherwise identical beams of the LER .

Tungsten (W) and platinum-iridium (Pt/Ir) are the most popular choices for STM tips. While W tips have a higher stiffness, they are prone to surface oxidation while Pt/Ir is comparatively soft, nevertheless inert to oxidation. Hence W tips are more suitable for operation under UHV conditions with sophisticated tip-preparation arrangements like FIM (Field Ion Milling) where the surface oxide layer can be evaporated by the application of a high electric fields. For moderate vacuum conditions, like ours, Pt/Ir is more suitable.

However, for the purpose of mounting the tips on the LER, the wire diameter is required to be very small, of the order of few microns, to ensure minimum degradation of the Q-factor. In this regard, 15 µm Pt/Ir wires were first tried. They were already quite tricky to handle given the small size and the tendency to curl up (low stiffness). Moreover, the success rate was very low with maximum probes showing poor Q-factors afterwards. The tips are then shaped with Focussed ion beam (FIB) by Jean Francois Motte of the Nanofab department in Institut Néel.

Etching of 15 µm wires also proved to be rather time consuming. Using smaller diameter Pt/Ir wires ∼ 5 µm would perhaps have been a far better choice. It was not tried but manipulating such thin wires with low stiffness is anticipated to be rather challenging. Thin (∼ 4µm) tungsten wires, on the other hand, could be manipulated with relative ease, because of their higher stiffness (do not curl up). The success rate was quite high (75-80%) for the probes to retain a reasonable Q-factor afterwards and FIB in the final stage, was also way faster. We opted for FIB instead of electrochemical etching of W for tip sharpening, as is commonly done, because of mainly two reasons. Firstly, the electrochemical etching process oxidizes the tip apex, which can be several nm thick. Secondly, the tip-apex produced is extremely sharp and often curls up on touching the surface (see [START_REF] Martin | Systèmes nanoélectroniques hybrides : cartographies de la densité d'états locale[END_REF], Pg. 48, for example). Moreover, FIB sharpening removes any nascent oxide from the tip apex. Quickly transferring the tip to the setup (∼ 2 -3 days) or stored in vacuum, yielded reasonable tunneling conditions both at room and low temperature.

Apart from W tips, others tried were Pt/Ir coated Si cantilever tips and carbon fibers [START_REF] Castellanos-Gomez | Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors[END_REF]. reduction in Q-factor. But, the major problem with these is that the conductive Pt/Ir coating at the tip-apex is fragile and would be easily lost while scanning, as shown in Figure 3.27(1), thus resulting in the absence of a tunneling current at low temperature (when the remaining Si at the apex is not/less conducting). Therefore, in view of all the different advantages and problems for the different tips, we decided in favour of the pyramidal shaped W wire tip.

Towards the end, we started experimenting with carbon fiber tips, shown in Figure 3.

26(b).

This work is in progress in terms of optimizing tip fabrication procedure and performance testing at dilution temperatures. Our interest in the carbon fibers stem from their electrical and mechanical properties that make them seem quite promising material for STM/AFM tips [START_REF] Castellanos-Gomez | Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors[END_REF].

They are electrically conducting up to dilution temperatures7 , resistent to corrosion, robust against tip crash and incredibly stiff (remains straight over centimeters!) as is clear from Fig- suitable applications where such tips can be implemented.

Implementation

The length extensional resonators are purchased from Microcrystal [96]. To construct the Needle sensor from the LER, several intermediate steps are involved which has been presented below.

1. Using araldite (quickly drying, insulating glue), the LER is fixed to a PCB substrate, in between two metallic contact pads made of copper (Figure 3.25 and Figure 3.29(a),(b)).

2. The two LER electrodes are electrically connected (microbonded) to the nearest Cu pad.

3. The response characteristics is checked. At this stage f 0 ≈ 998 kHz and Q factor is about 13 000 -17 000. on the extended arm of the micro-manipulator. The set of these three wires can be precisely 10 The length of the tip is not long enough to reach the side electrode. This is done to keep the weight to a minimum moved in 3D. The LER is fixed on a Cu stand. With one of the copper wires a very small amount of silver epoxy is placed at the top of the right side electrode. The W wire is then gently placed over this epoxy and the arm of the manipulator removed from the bottom, thus leaving the wire fixed on the LER. This is followed by annealing in an oven to cure the epoxy. The steps have been schematically shown in Figure 3.29(c).

7. The response of the LER is checked yet again. This time the Q-factor is seen to be severely affected and f 0 drops to 987 -990 kHz. Only those LERs showing a Q factor greater than 1000 are handed over to J. F. Motte for sharpening by FIB.

8. In FIB, the tip length protruding out is kept between 10 -30 µm and the angle between the slanting edges to about 35 • . 9. After FIB, high Q factors are recovered ≈ 5 000 -15 000. Sensors with Q < 2000 are difficult to use and hence discarded.

Under vacuum (pressure < 0.01 mbar), Q-factors rise to about 3-4 times the value at ambient pressure. Lowering of temperature generally causes a sharp increase. The maximum achieved at 130 mK was about 650 000.

We would like to mention here, that a serious problem of lack of tunneling current at low temperatures was noted on several occasions, although perfect tunneling conditions existed at room temperature. Replacing the initially used Pt/Ir coated Si cantilever tips with FIB etched W wire tips increased the success rate but did not completely eliminate the problem. The atmospheric oxidation of the W tip apex could be a reason as in certain cases, tunneling current was found to occur only at very high voltages (> 10 V). In these cases, recovery of a good tip was possible by field effect. In many other cases, tunneling current was absent up to the maximum sample bias applied, even if the tip was placed into physical contact with the surface. Strangely, the signal returns at about T = 150 K as shown in Figure 3.31. This tends to imply a weak electrical connection at some point in the tunneling current circuit. The silver epoxy (silver granules dispersed in a solvent) and/or the deposited Pd layer could therefore be a reason. Replacing the initially used silver epoxy [97] with a new one [98], seemed to work better (two out of two times). However, more tests are required to confirm this.

What could be a good solution to the problem is if the tip is directly placed from the copper pad in the PCB up to the LER end, hence eliminating the need for both the Pd layer or the silver epoxy. Efforts are on in this direction to implement this technique without hampering the Q-factor.

Temperature dependence of the Properties of the NS

For the implementation of the Needle sensor at cryogenic temperatures, it is important to understand their properties at these temperatures and how they respond to changes in temperature.

Many important properties like the eigen frequency, stiffness, quality factor, sensitivity etc, which directly affect their role as the scan probe in STM/AFM, are different at dilution temperatures than at room temperature. Therefore a knowledge of the temperature characteristics of these properties will allow us to recalibrate the scan or other measurement parameters which is important for performing quantitatively accurate, reproducible and precise measurements at different temperatures.

To characterize the properties of the needle sensor with changing temperature, we track the eigen frequency f 0 and the quality factor Q while cooling down the setup from room temperature to 4 K in the first step and then from 4 K to base temperature of 130 mK in the subsequent step (section 3.3.2). In the first step, complete frequency sweeps are recorded from which (f 0 , Q) are extracted using Eq.(3.2.14). Each sweep takes about 3 min during which T can change by about 1.5 K at maximum (Figure 3.17(a)). In the second step, since the temperature drop from 4 K to 130 mK proceeds faster (Figure 3.17(b)), the Phase locked loop (section 3.9) is used to record the frequency shift ∆f 0 wrt. the starting frequency at 4 K and the driving voltage V exc required to keep the probe oscillating with a set amplitude. f 0 and Q are then extracted from ∆f and V exc respectively. About 26 sensors were studied in this manner. Figure 3.32 shows the recorded variation in the temperature range T ∈ (4 K, 130 mK) while the inset shows the same in the range T ∈ (300 K, 4 K). We summarize the main findings below:

1. f 0 decreases with temperature by about 1.64 kHz from room temperature to 4 K. On further cooling to 130 mK, it turns around and increases slightly reaching a saturation again.

2. Thermal drift in f 0 is minimum at the maximum point at T ≈ 300 K and at the minimum at T = 4 K. These temperatures are called the turnover temperatures T p [START_REF] Giessibl | Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators[END_REF] and is determined by the crystal cut. The T p of quartz sensors is kept about 300 K on purpose to ensure maximum temperature stability of f 0 at RT where they are usually used.

3. The quality factor Q shows a non-monotonic change with T from 300 K to 4 K. In majority of the NS investigated, a drop in Q occurs at around 100 K followed by an increase, reaching a maximum at about 40-50 K after which it decreases till 4 K. In some cases, Q is observed to drastically decrease below 40 K such that the sensor is not usable at low temperature. 4. In most of the other cases, below 4 K, Q increases monotonically and does not reach saturation even at base temperature of 130 mK, as clearly observed in Figure 3.32.

The relevant thermal expansion co-efficient for the NS α

⊥ = 1 L dL dT
is related to the relative change in f 0 in the following manner [START_REF] Pielmeier | Impact of thermal frequency drift on highest precision force microscopy using quartz-based force sensors at low temperatures[END_REF]:

∂f 0 ∂T = f 0 -α ⊥ + 1 v s ∂v s ∂T (3.4.1)
where v s is the velocity of sound that remains independent of T below 10 K. If we assume that v s remains constant in the whole range of temperature from 300 K to 4 K then

α ⊥ ≈ -1 f 0 ∂f 0
∂T . This has been plotted in Figure 3.33(c) for three different NS. We once again find a non monotonic change in α ⊥ wrt. T with a minimum at T = 40 -50 K. This implies that the NS expands rapidly up to 40 -50 K after which the rate of expansion reduces.

Interestingly, this temperature coincides with the point of maximum Q.

The decrease in f 0 of 1.64 kHz from room temperature to 4 K that we find is consistent with what is reported by T. An et al [START_REF] Toshu An | Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length-extension resonator[END_REF] which is about 1.7 kHz. However, they do not provide the complete ∆f 0 vs T profile for the NS. For the quartz tuning fork (TF), J. Rychen et al. [START_REF] Rychen | Operation characteristics of piezoelectric quartz tuning forks in high magnetic fields at liquid helium temperatures[END_REF] 3.33(a) shows the f 0 vs T for the NS compared to that of a TF as measured in [START_REF] Hembacher | Evaluation of a force sensor based on a quartz tuning fork for operation at low temperatures and ultrahigh vacuum[END_REF]. We find that the two sensors show considerable difference while being cooled to lower temperatures. The change in f 0 is more slow about 300 K for the NS than for the tuning fork.

However, for both, turnover temperatures T p occur at 4 K and at room temperature, which gives a low thermal drift near both these temperatures, particularly advantageous for SPM operation.

At lower temperatures (Figure 3.32), f 0 increases and once again stabilizes at about 130 mK which is once again to our advantage.

Nevertheless, implementing AFM at such low temperatures was found much more challenging than at room temperature. One explanation is the excessively high Q-factors, found on some occasions, makes it tricky to optimize the scan conditions. Also, we see that although f 0 stabilizes, the Q factor of the NS remains highly sensitive to temperature at 130 mK. So, although the different thermal properties are comparatively more stable at 4 K and at 130 mK than at other temperatures, room temperature by far offers the best environment in terms of intrinsic thermal stability of the probe.

Finally, this measurement allows us to estimate the change in sensitivity of the needle sensor from room temperature to 4 K, based on the changed eigen frequency, stiffness and geometrical dimensions. The sensitivity is defined as the current produced by maximum deformation of the beams of the NS. This is given by [START_REF] Giessibl | Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators[END_REF],

S N S = 4πf 0 d 31 k 0 L t sin πL e 2L , ( 3.4.2) 
where d 31 = 2.31 pC/N is the transverse piezoelectric coupling co-efficient for quartz (section 3.3.1) and can be assumed to be temperature independent. By deducing the thermal expansion coefficient of a given NS from its f 0 vs T variation [Eq.(3.4.1)], we can estimate the change in length L and thickness t due to lowering of temperature.

This gives small changes in L and t, about 1.5 µ and 80 nm respectively and the changed longitudinal stiffness is about 538 kN/m (Figure 3.33(b)). The corresponding sensitivity is then about 283.4 nA/nm which corresponds to a change of only 0.5%. We note here that this is only the theoretical sensitivity. For a proper characterization, the sensitivity must be measured experimentally. Both F. J. Giessibl [START_REF] Giessibl | Atomic resolution on Si(111) (7 × 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork[END_REF] and T. An et al [START_REF] Toshu An | Atomically-resolved imaging by frequency-modulation atomic force microscopy using a quartz length-extension resonator[END_REF] had found an experimentally measured sensitivity for the qPlus and the NS respectively, that was half the theoretically expected value.

They attributed the discrepancy to non ideal effects occurring at the edges of the electrodes.

In conclusion, we have measured the eigen frequency and the quality factor of the NS from room temperature to dilution temperature of 130 mK. This thermal characterization, conducted for several sensors, gives insight into the stability and performance of the sensor at various temperatures. The thermal stability is found to be maximum at room temperature while good stability is also attained at the low operational temperatures in our microscope i.e. T → 4 K and T → 130 mK. The thermal expansion co-efficient α ⊥ is found to be negative and changes non-monotonically with temperature with maximum (|α ⊥ |) occurring at about 40 -50 K. This temperature coincides with the maximum attained by the quality factor which also shows a nonmonotonic change. Further, the measurement allows us to find the theoretical sensitivity of the sensor at different temperatures which gives us a change of only 0.5%.

Applications of combining AFM with STM

Both AFM and STM are individually very powerful tools to probe the properties of the sample surface at a local scale, as we must have realized by now. Combining these two techniques in a single microscope helps to overcome the individual limitations and opens the possibilities for a vast number of applications that could not have been achieved otherwise. Relationship between tunneling current in STM and attractive forces in AFM can be investigated, which can further give insights into dissipation occurring at the atomic scale [START_REF] Hembacher | Local Spectroscopy and Atomic Imaging of Tunneling Current, Forces, and Dissipation on Graphite[END_REF]. Another interesting application is the technique of dynamic STM, i.e. STM with an oscillating tip, which could provide enhanced stability and resolution in comparison with only STM for studying molecular assemblies [START_REF] Berdunov | Dynamic scanning probe microscopy of adsorbed molecules on graphite[END_REF]. Simultaneous measurements of force and tunneling conductance over nano-sized metallic adsorbates can also help in understanding the nature of short-range chemical forces [START_REF] Ternes | Interplay of Conductance, Force, and Structural Change in Metallic Point Contacts[END_REF].

The list can go on.

In this section, we present two important applications in which both STM and AFM are directly employed. While the first application offers a way to experimentally measure the sensitivity of the NS, the second application involves using the AFM feature of the probe to locate a nano-device on an insulating substrate [START_REF] Quaglio | A subKelvin scanning probe microscope for the electronic spectroscopy of an individual nano-device[END_REF]. This second application is fundamental to my PhD work and forms the main motivation behind combining the two microscopies. 

Experimental Determination of Sensitivity of NS

We present here a method to experimentally measure the sensitivity of the needle sensor S N S [Eq.(3.4.2)] by using the superior sensitivity of the tunneling current I t to tip-sample distances z ts . This offers an elegant way to perform an in-situ calibration of the oscillations of the needle sensor at various temperatures. The tunneling current set-point is kept sufficiently low (< 25 pA) so that the tip does not touch the surface. The oscillating tip-sample distance z = z m + A sin 2πf 0 t will induce a modulation in the tunneling current I t at frequency f 0 given by (using Eq.(3.2.1))

I t (t) = I 0 exp - z m + A sin(2πf 0 t) z 0 = I t (0) exp - A z 0 sin(2πf 0 t) . (3.5.1)
However, these modulations cannot be measured by the tunneling current amplifier because its bandwidth is about 3 kHz f 0 (section 3.3.4). Hence, what is measured is the average i.e.

I mes = I t . It can be shown that this average value is related to the amplitude of oscillations in the following manner [START_REF] Martin | Systèmes nanoélectroniques hybrides : cartographies de la densité d'états locale[END_REF]:

I mes = I t (0)J 0 i A z 0 , (3.5.2)
where J 0 is the zeroth order Bessel's function. Hence if the excitation voltage supplied to the sensor is changed so as to change A at a rate much smaller than the bandwidth of the tunneling current amplifier 12 , then I mes changes according to the above equation, and this change can be 2), the data is fitted with this equation using η as a fit parameter.

We find η ≈ 2.3 which implies an actual calibration of G real = 325 nm/V and a sensitivity of S N S = 1/(G real R f b ) = 140 nA/nm. This is marginally higher than what has been reported in literature of about 125 nA/nm [START_REF] Toshu An | Atomically-resolved imaging by frequency-modulation atomic force microscopy using a quartz length-extension resonator[END_REF] at room temperature.

We must note that, while fitting the observed dependence to Eq.(3.5.2), we have assumed a constant tunneling current decay length z 0 which we find by measuring the exponential decay of I t with tip-sample distance (insets of Figure 3.34), both before and after measurement of I mes vs A. In the presented measurement z 0 is found to differ by about 10% between forward and backward sweeps which is quite normal in STM operation. However, this hysteretic behaviour would give rise to an error of the order of 10% in the measured sensitivity.

Localizing a single nano-device on a chip

Our primary motivation for combining AFM with STM in our setup is to be able to perform local tunneling spectroscopy of nano-devices located on mm-sized insulating substrates. In the absence of elaborate optical arrangements, which are incompatible with cryogenic arrangements, it becomes important to have an alternative scheme in place to locate the measurement site on the vast sample surface. By simple eye-estimation one can at best align the tip within few hundreds of microns from the target location which is not good enough and will evidently result in a tip-crash in STM. In AFM, this is of course not a problem and this is what makes it worthwhile to have this additional ability to scan the surface by sensing the tip-sample force. T. Quaglio et al. [START_REF] Quaglio | A subKelvin scanning probe microscope for the electronic spectroscopy of an individual nano-device[END_REF] had used a substrate with markers pointing towards the sample. Hence, successive AFM images can gradually guide us to our destination. H. le Sueur [START_REF] Hélèn Le Sueur | Cryogenic AFM-STM for Mesoscopic Physics[END_REF] used a different coding scheme that allows us to precisely identify the present location of the tip wrt. the sample from the very first AFM image. We adopt this system for an efficient localization of the target device.

The substrates (Si/SiO 2 ) are engraved with a 16 bit coding scheme using deep UV lithography.

The fabrication steps have been listed in [START_REF] Martin | Systèmes nanoélectroniques hybrides : cartographies de la densité d'états locale[END_REF]. The tip position wrt. the sample is changed by moving the sample stage with the help of piezo-actuators (section 3.3.1). Hence, particular care is taken to fix the sample to the sample holder in a specific orientation which ensures that the X/Y directions of the code is parallel to the X/Y directions of the microscope (depends on the designated direction of the piezo actuators)

and that right/left/top/bottom of code also has exact correspondence to that of the microscope.

Care is also taken to ensure that both the target device in the sample and the tip is well-centered wrt. the sample holder. A good centering is crucial for the efficient localization of the target (can be done within two hours!). This is not only because the tip is already in close proximity to the target but also because the functioning of the actuators work best and in a reproducible manner in this situation. The movement calibrations have been mentioned in section 3.3.1. However, it is recommended to calibrate the movement at the beginning of each search.

At room temperature, the scan range is about 12×12µm 2 which is sufficient for understanding the present location from one single image. However, at low temperature, the maximum scan range should not exceed 4 × 4 µm 2 3.3.1. Therefore one single image is often not sufficient to understand the location. In fact, locating the desired position is a challenge at low temperatures given the small scan range and the reduced efficiency of the piezo actuators. The following steps were found useful to speed up the search at low temperatures:

1. Sample is located at room temperature.

2. The tip is now moved 15 µm to the right (2 squares of binary code) and 45 µm down (6 squares of code). This should compensate for the relative displacement occurring between tip and sample while cooling down because of the different thermal contractions of the different parts of the microscope. This compensation ensures that at low temperatures, the tip is within one/two squares off at maximum.

3. AFM images are acquired till the present position is accurately understood. In the process, the X/Y movement is continuously calibrated. This often resembles putting pieces of a puzzle together and one might efficiently make use of the hint that the target is very close.

This really helps in excluding a vast number of possibilities.

4. Based on the average movement calibration done in the previous step, the tip is now displaced to reach the target. In most cases, this is sufficient to reach the target. If not, the previous step is once again repeated. After two or three iterations, the target is definitely achieved.

This, therefore, offers a simple yet efficient technique for an optics free localization of the target device. This technique was implemented in finding contacted graphene flakes (section 1.3), the measurements on which will be presented in Chapter 5.

Summary

Scanning probe microscopy has been discussed in detail in this chapter, the several aspects which have been particularly useful in the course of my PhD. The microscope assembly, the different scanning probe techniques that can be implemented, the cryogenic arrangements supporting the low temperature operation, the electronics involved, the needle sensors for combining AFM with STM, the different kinds of tips and finally localizing a nano-sized target device on a mm-sized insulating substrate; in short, these have formed the several highlights. This forms the backbone for the significant bulk of the measurements that has been presented in subsequent chapters.

Introduction

The method to isolate free-standing graphene from graphite has only been realized in 2004 [START_REF] Kostya S Novoselov | Electric field effect in atomically thin carbon films[END_REF].

But in an adsorbed form on metal surfaces, graphene has been known for at least forty years. During the preparation of single crystal surfaces of certain metals like Ru or Pt, graphene formation was observed when the metals were annealed at high temperatures that caused the carbonaceous impurities to segregate from the bulk to the surface [START_REF]Platinum surface LEED rings[END_REF]. Alternatively, graphitic carbon deposition on metal surfaces was already known for quite sometime as the leading cause of deactivation of the catalytic activity of the metal in industrial heterogenous catalysis reactions involving the decomposition of hydrocarbons [START_REF] Schlögl | Handbook of Heterogeneous Catalysis, chapter Preparation of Solid Catalysts[END_REF]. The avalanche of scientific activity in graphene physics triggered by the breakthrough of 2004 also led to a revival of interest in graphene deposited on metal surfaces.

The system of graphene on a metallic substrate is appealing for a number of reasons. Firstly, from the point of view of industrial applications, these systems are highly important as they currently offer the only solution to large scale growth of graphene of different thicknesses and extraordinary quality that can be later transferred to polymers/insulating substrates. Secondly, from a technical point of view, it is important to understand the role of metal contacts in doping the graphene which will eventually influence the transport properties of the end device [START_REF] Eduardo | Contact and edge effects in graphene devices[END_REF].

Finally, from a more fundamental point of view, there are certain aspects of these systems which remain quite ambiguous: How does the graphene layer interact with the metal, what is the nature of bonding at the graphene-metal interface? How is the electronic structure of graphene affected by the metal? If it is, is it possible to completely decouple the graphene from the influence of the metal? What is the state of doping in such decoupled graphene, is it homogenous or disordered?

From the large family of metal-graphene systems currently available, the system that forms the subject of this chapter is decoupled graphene on an iridium [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] substrate. But before we delve into the details of this specific case, we first try to develop a better understanding of metal-graphene systems in general in order to understand the significance of the key questions.

Graphene on a Metallic Substrate

Graphene on a metallic substrate comes very close to the text-book like graphene that we have in mind: single sheet of carbon atoms arranged in a honey-comb lattice with very close, if not perfect, lattice matching with the metallic substrate underneath. In the case of one class of systems like GR/Ni(111) [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] or GR/Co(0001) [START_REF] Vaari | The adsorption and decomposition of acetylene on clean and K-covered Co(0001)[END_REF], it is possible to have a perfect registry between the carbon lattice of graphene and that of the metal as shown by the Low Energy Electron Diffraction (LEED) image in the inset of Figure 4.1(a) where the reciprocal space of the two respective lattices are superposed. In most other cases like Pt(111) [START_REF] Land | STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition[END_REF], Ir(111) [START_REF] N'diaye | Two-Dimensional Ir Cluster Lattice on a Graphene Moiré on Ir(111)[END_REF] or Ru(0001) [START_REF] Marchini | Scanning tunneling microscopy of graphene on Ru[END_REF], a slight lattice mismatch exists which give rise to In spite of the apparent structural perfectness of graphene in these systems, the linear dispersion of its charge carriers is not guaranteed. This is because of the metal-graphene interaction which can significantly influence the intrinsic properties of graphene in some cases. Based on the strength of interaction with graphene, there can be broadly two class of metals : Strongly interacting like Co, Ni, Ru, Rh and Re and weakly interacting like Cu, Ag, Ir, Pt and Au.

Strongly interacting metal-graphene systems are characterized by: (1) a genarally high latticematching, if not then a buckling of more than 1 Å is observed in the graphene, (2) high metalgraphene bonding strength (for example 0.132 eV/Catom in case of GR/Co(0001) [START_REF] Voloshina | Graphene on metallic surfaces: problems and perspectives[END_REF]), [START_REF] Katsnelson | Chiral tunnelling and the Klein paradox in graphene[END_REF] very small graphene-metal distance 2.1 -2.2 Å which is even smaller than the inter-plane separations of carbon atoms in graphite and (4) most importantly, linear dispersion in graphene is significantly disrupted due to strong hybridization between the d states of the metal and the π states of graphene; in particular, shift to higher binding energy of 1 -3 eV and opening of a band gap as shown in Figure 4.2(a) in the case of GR/Ni(111) [START_REF] Grüneis | Tunable hybridization between electronic states of graphene and a metal surface[END_REF]. In short, what we are left with is no longer graphene but more of a graphene-metal hybrid system.

In contrast, weakly interacting systems are characterized by: (1) a higher rotational mismatch between the graphene and the metal lattice, (2) weaker, inhomogeneously distributed metal-graphene bonding strength (0.05 eV/Catom in case of GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF], [START_REF] Voloshina | Graphene on metallic surfaces: problems and perspectives[END_REF]), (3) larger [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF]. Horizontal arrows point to the minigap in the primary Dirac cone [START_REF] Pletikosić | Dirac Cones and Minigaps for Graphene on Ir(111)[END_REF].

metal-graphene separations of about 3.6 -3.8 Å and (4) effect of metallic substrate on the electronic properties of the charge carriers in graphene is not as pronounced as in the case of strongly interacting systems but more complicated to understand. The linear dispersion is almost preserved. However, minor discrepancies can arise as in the case of GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF], evident from the ARPES spectrum shown in Figure 4.2(c), to be dealt with in detail later, (section 4.1.3). Apart from this, one important effect is that the work-function mismatch between the metal and the graphene results in an overall p-type or n-type doping [START_REF] Giovannetti | Doping Graphene with Metal Contacts[END_REF].

Decoupling Graphene

From the above section, it becomes quite clear that for graphene-metal systems, the influence of the metal plays a crucial role and has a significant impact on the electronic band structure of graphene. For most practical purposes, this pronounced influence of the metal substrate is unwanted as it obscures the unique electronic properties of the charge carriers in graphene. At the same time, it is easy to achieve graphene growth on these strongly interacting metals.

A standard route adapted by experimentalists to quench the strong influence of the metallic substrate and hence recover the linear dispersion, is to intercalate weakly interacting molecular species in between the graphene sheet and the underlying metal. One prominent example is in the case of CVD grown graphene on Ni [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] where intercalation with Sn, Al [START_REF] Addou | Graphene on ordered Ni-alloy surfaces formed by metal (Sn, Al) intercalation between graphene/Ni(111)[END_REF], Au, Ag, [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] with intercalated Au in between [START_REF] Haberer | Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene[END_REF].

Cu [START_REF] Varykhalov | Effect of noble-metal contacts on doping and band gap of graphene[END_REF], alkali atoms [START_REF] Grüneis | Tunable hybridization between electronic states of graphene and a metal surface[END_REF] etc has been tried to achieve various degrees of decoupling of the graphene from the metallic influence. The best results are obtained with gold intercalation in which case the graphene fully recovers the linear dispersion of the π bands with the complete disappearance of the band gap of 3 eV [START_REF] Shikin | Surface intercalation of gold underneath a graphite monolayer on Ni(111) studied by angleresolved photoemission and high-resolution electron-energy-loss spectroscopy[END_REF] about the Dirac point present in GR/Ni. Au intercalated graphene really resembles text-book like graphene. Other prominent examples include decoupling of graphene by controlled oxygen intercalation in GR/Ru(0001) [START_REF] Sutter | Chemistry under Cover: Tuning Metal-Graphene Interaction by Reactive Intercalation[END_REF] and GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] [128] [START_REF] Ulstrup | Sequential oxygen and alkali intercalation of epitaxial References graphene on Ir(111): enhanced many-body effects and formation of pn -interfaces[END_REF]. In the case of few layer graphene on metallic substrate, the lower carbon sheets can serve as the buffer that liberates the top layer from the influence of the lower metal which has been demonstrated in GR/Ru(111) [START_REF] Sutter | Electronic Structure of Few-Layer Epitaxial Graphene on Ru[END_REF].

A simple schematic of this process has been shown in Ni by decomposition of the hydrocarbon, propene or C 3 H 6 (CVD), (ii) deposition of metal to be intercalated and finally (iii) annealing at high temperatures (depending on the intercalating metal) that causes the metal ions to penetrate through the graphene lattice and occupy the space underlying it. This is possible because Au monolayer in the intercalated form is energetically more stable than in the adsorbed form as shown by DFT calculations [START_REF] Ho Kang | Density functional study of the Au-intercalated graphene/Ni(111) surface[END_REF]. The complete decoupling of graphene, achieved in some cases, suggests that the intercalated molecules are able to inter-diffuse and homogenously fill up the space between the graphene and the metal.

However, the intercalation process itself is not very clear and can proceed quite differently for different intercalating molecules. The energy required for a single atom to distort the carbon lattice of defect-free graphene in order to penetrate it is prohibitively high and hence the intercalation process has to occur through defects in the graphene sheet. There have been few studies so far, in the role of defects as pathways for intercalation, namely graphene free edges [START_REF] Sutter | Chemistry under Cover: Tuning Metal-Graphene Interaction by Reactive Intercalation[END_REF] and point defects [START_REF] Coraux | Air-Protected Epitaxial Graphene/Ferromagnet Hybrids Prepared by Chemical Vapor Deposition and Intercalation[END_REF][133] [START_REF] Lahiri | Graphene destruction by metal-carbide formation: An approach for patterning of metal-supported graphene[END_REF]. But in all these cases, the intercalation had been performed

under UHV conditions to enable optimum control over the process. Hence, some questions that remain are (i) whether there are other defects that could serve as intercalation pathways? (ii)

Can molecular intercalation occur under ambient conditions? and (iii) If so, how different would it be from well-controlled intercalation under UHV conditions?

Graphene on Ir(111)

In this broad family of metal-graphene systems, the system of Graphene on iridium [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] features as one of the weakly interacting members as had been already mentioned in section 4.1.1. Hence, the graphene under consideration can be expected to retain its graphene-like electronic properties, in particular the linear band structure of its π bands, with only minor influences from the metallic substrate. Indeed, this seems to be verified if we come back to This figure alone reveals several important information about this system [START_REF] Pletikosić | Dirac Cones and Minigaps for Graphene on Ir(111)[END_REF]:

1. Dirac cones show no sign of hybridization with substrate electronic bands. This suggests a weak bonding of graphene with the iridium surface. Further density functional theory (DFT) calculations have shown the average graphene-Ir separation to be about 0.34 nm [START_REF] Peter | Pinning of graphene to Ir(111) by flat Ir dots[END_REF] which can account for the defect free growth of graphene over step edges. 

Decoupling graphene by controlled oxygen intercalation

It is possible to recover fully the intrinsic properties of graphene by following the route of intercalation of molecules between the graphene and the underlying metallic substrate, as has been described in section 4.1.2. R. Larciprete et al, in 2012, demonstrated for the first time that an entire monolayer of epitaxial graphene, devoid of any cracks or holes, could be perfectly decoupled from the Ir substrate at a sufficiently high oxygen pressure of ∼ 5 × 10 -3 mbar and at a temperature between 500 -520 K [START_REF] Larciprete | Oxygen Switching of the Epitaxial Graphene-Metal Interaction[END_REF] under UHV conditions. Since the graphene covered the entire substrate, verified by XPS (X-ray photo-emission spectroscopy), intercalation could only proceed via defects, domain boundaries or in the vicinity of wrinkles in the graphene sheet. This process can be reversed or in other words, the oxygen de-intercalated on annealing the sample above 600 K. Figure 4.4 shows the ARPES spectrum of GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF], starting from the pristine sample to decoupled graphene obtained by oxygen intercalation followed by "landed" graphene or graphene after deintercalating oxygen. Following are the features in the spectra that are noteworthy:

1. The minigaps and the Dirac cone replicas due to weak coupling of the graphene to Ir and superperiodic potential imposed by the moiré lattice (section 4.1.3) completely disappear after the process of oxygen intercalation and reappear again after the removal of the oxygen molecules. This clearly demonstrates the role that oxygen molecules play in completely decoupling the graphene sheet from the metallic substrate underneath. Another beautiful manifestation of this is the fading out of the moiré structure captured with the help of STM and LEED imaging by S. Ulstrup et al [START_REF] Ulstrup | Sequential oxygen and alkali intercalation of epitaxial References graphene on Ir(111): enhanced many-body effects and formation of pn -interfaces[END_REF] as shown in Figure 4.5. The STM image after oxygen intercalation appears less corrugated while the higher order moiré spots in the LEED image of GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] becomes vague on oxygen intercalation.

2. The Dirac cone shifts upwards by about 0.57 eV on oxygen intercalation compared to pristine graphene on Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] i.e. the Fermi level lies 0.67 eV below the Dirac point in the valence band implying a strong positive doping by the intercalated oxygen molecules. This is attributed to electron transfer from the graphene to the electronegative oxygen molecules.

3. The momentum distribution curve (MDC) in the ARPES spectrum is seen to broaden after oxygen intercalation. This could of course be due to increased phase-space scattering due to higher p-doping or due to inferior structural quality of the iridium. But one important reason pointed out was the presence of doping inhomogeneity in the graphene due to nonuniform oxygen intercalation that would locally shift the Dirac point and lead to broadening of the Dirac cone in the ARPES spectrum from the bulk sample.

Decoupled Graphene on Ir(111)

Having gained a detailed understanding of graphene-metal systems in general and GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] system in particular, in the previous section, we now begin our discussion on the system that has been investigated in the present work. This is also CVD grown graphene on iridium. However, prior to measurement, the samples had been subjected to atmospheric conditions. Hence, as we will discover in the subsequent sections, the properties of this system is very different from samples that have been both prepared and characterized in situ under UHV conditions. The samples were provided by the group of Dr. Johann Coraux at Institut Néel.

Using the scanning probe techniques of STM/STS, AFM and KPFM (sections 3.2.1, 3.2.2, 3.2.3), we investigate, in detail, the local properties of this system. At first, the important topographic features on the GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] surface are introduced: i.e. the graphene itself, the regions devoid of graphene and the graphene wrinkles. Detailed characterization of the graphene free regions reveal their oxidized nature while STS on graphene wrinkles show a vanishing doping, thus implying a negligible influence of the metallic substrate in such regions. Next, we study a freshly prepared sample that has faced exposure to ambient conditions for a very small duration of time. This helps us to particularly understand the dynamics of the intercalation processes at work when exposed to ambient conditions and elucidates the role of the wrinkles, in particular, as pathways for such intercalation. Finally, we investigate the state of charge disorder in graphene that has been completely decoupled from the substrate due to sufficient exposure to ambient conditions. We find a strong correlation of this disorder with the topographic corrugations in STM which we relate to the presence of the intercalated molecular species between graphene and the metal substrate.

This work has been conducted in collaboration with the group of Dr. Johann Coraux (for the samples) and Dr. Benjamin Grévin (for the KPFM measurements). I have included some results from the work of Sylvain Martin (charge disorder in graphene, Figure 4.15) and Amina Kimouche (decoupling of graphene, Figures 4.6, 4.13) which were essential for a complete understanding of the subject. Other than that, the rest of the measurements were done by me as well as the analysis of the KPFM data.

Sample Preparation

The samples of graphene on iridium [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] were prepared in accordance with the procedure demonstrated by C. Vo-Van et al. [START_REF] Vo-Van | Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire[END_REF]. Iridium, few nm thick, was first grown on C-plane sapphire wafers by pulsed laser deposition in an ultra-high vacuum (UHV) chamber with a base pressure of 5×10 -11 mbar, at a temperature of 700 K and then later annealed to 1100 K for the best structural quality. This was followed by the growth of graphene by chemical vapour deposition or CVD, which essentially involves the decomposition of the hydrocarbon, ethylene in the presence of the freshly prepared iridium surface, acting as a catalyst, in a second UHV chamber with base pressure of 10 -10 mbar, at a temperature of 1300 K. The ethylene is introduced in the vicinity of the iridium via a dosing tube ensuring a higher local partial pressure ∼ 10 -8 mbar. terminating in a graphene edge. The region beyond this interface is just exposed iridium; (b)

shows the clearly visible moiré lattice characteristic of this weakly lattice mismatched system. the main features that the system has to offer.

Large scale surface features

1. Graphene covering most of the surface. The roughness of graphene is about ∼ 50-100 pm over an area ∼ 100 nm × 100 nm in STM, somewhat lower than what is usually found in graphene on SiO 2 . We note that for pristine graphene that has not been exposed to ambient conditions after growth, the only roughness observed is due to the moiré which shows a lateral periodicity of 2.5 nm.

Atomic steps of Iridium. The graphene sheet extends over step like features of height

∼ 220 pm with separation of ∼ 250 pm between them. These correspond to the atomic terraces of the underlying iridium substrate. .The presence of these wrinkles makes it easy to distinguish the regions with and without graphene. These features are discussed in detail in section 4.2.4.

4.

Oxidized Ir implies the regions devoid of graphene where the bare Ir substrate is exposed.

They appear as terminations of many wrinkles. Section 4.2.3 contains further discussion on these oxidized regions of the iridium substrate.

Regions devoid of Graphene : Oxidised Ir

We first discuss the regions devoid of graphene where the bare substrate is exposed. As has been mentioned before, a lot of current research on metal-graphene systems is being directed towards decoupling graphene to liberate it from the metallic influence. In this respect, it is important to understand the intercalation mechanisms at work along the surface, in particular the role that defects have to play in initiating and propagating such processes. Since these exposed regions devoid of graphene actually represent macroscopic defects in the graphene sheet, it is important to examine the nature of these surfaces.

AFM vs STM Topography

These regions appear as depressions in STM and as elevations in AFM with respect to the surrounding graphene. This difference can be explained if we consider that the two regions, with and without graphene are electronically very different with a high probability of the latter being oxidized as a result of being subjected to atmospheric oxidation. This would result in reduced conductivity of the exposed part, as associated with oxides, causing the STM tip to move closer to the surface with respect to the surrounding graphene covered region, to maintain the set-point tunneling current. This would account for the depression recorded in STM. On the contrary, since AFM scanning is not affected by electronic properties of the surface, the topography given by AFM should give a more accurate description in this case. The elevation of the exposed regions is then real and justified by an increase in volume that accompanies the oxidation process. The work-function over the graphene is ≈ 4.5 eV with a variation of ≈ 0.1 eV over micrometer distances which is similar to what has been reported for carbon adlayers on iridium [START_REF] Rut | A study of the carbon adlayer on iridium[END_REF]. For the parts devoid of graphene, WF is found to be 4 -4.1 eV which is close to 4.2 eV, that has been reported for IrO 2 using ultraviolet photoelectron spectroscopy [START_REF] Babu | Effect of growth conditions on surface morphology and photoelectric work function characteristics of iridium oxide thin films[END_REF].

Hence, it is quite clear that the regions in the iridium substrate that are left uncovered by the graphene sheet have indeed undergone oxidation under ambient conditions.

Graphene Wrinkles

Probably the most striking feature in the presented surface topography (Figure 4.7) are the graphene wrinkles. These are local delaminations on the graphene, formed during cooldown to room temperature after high temperature CVD growth (∼ 1300 K), due to unequal contraction of the graphene and the iridium substrate. The wrinkling of the graphene sheet does not exclusively apply to the GR/Ir( 111) system but is a common occurrence for graphene on various substrates. Examples include CVD grown graphene on Cu that has been transferred onto SiO 2 [START_REF] Zhu | Structure and Electronic Transport in Graphene Wrinkles[END_REF], graphene on SiC [START_REF] Lalmi | Flower-Shaped Domains and Wrinkles in Trilayer Epitaxial Graphene on Silicon Carbide[END_REF] as well as exfoliated graphene on SiO 2 [START_REF] Xu | Scanning Tunneling Microscopy Characterization of the Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers[END_REF]. This class of corrugations are expected to represent one of the major type of defects in graphene. Hence, understanding their properties and role in influencing the bulk electronic properties is important both fundamentally as well as for industrial applications.

AFM vs STM Topography

Graphene on the wrinkles possesses structural and electronic properties that can be very different from graphene on the flat part. Recent STM studies on wrinkles of graphene on SiO 2 [START_REF] Xu | Scanning Tunneling Microscopy Characterization of the Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers[END_REF] have revealed triangular atomic patterns on the wrinkles in comparison to the expected hexagonal C arrangement on the flat part. The strain created by the increased local curvature on the wrinkle was thought to be the reason for this observed breaking of the six fold symmetry. The authors of [START_REF] Xu | Scanning Tunneling Microscopy Characterization of the Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers[END_REF] further observed distortions between subsequent images of the triangular lattices on wrinkles while no such distortion was observed on the flat graphene. This prompted them to conclude that these distortions probably arose from the higher flexibility of the wrinkled surface.

By combining the techniques of STM and AFM, we examine the scenario, in particular the topography of the wrinkles on graphene on iridium. Figure 4.7 (d) shows a comparison of the height profile over the same graphene wrinkle acquired in AFM and STM mode. The differences are quite remarkable and consistent. In AFM, the wrinkles appear as rounded dome-like folds of the graphene whereas in STM, the very same wrinkle along the exact cross-section appears more like a sharply spiked protrusion. What is even more surprising is that the measured height in STM is far greater than in AFM, more that ∼ 3 times in this case.

A possible explanation for this observation could be due to STM tip induced deformation of the graphene on the wrinkle. During scanning in STM mode the tip-sample distance is of the order of a few Å while in non-contact AFM, scanning distances are much higher (about 5 nm further away from STM contact in this case). It has been shown by Altenburg et al. [START_REF] Altenburg | Local work function and STM tip-induced distortion of graphene on Ir(111)[END_REF], that for tip-sample separations below ≈ 5 Å, the graphene sheet on Ir gets lifted significantly, as high as 12 pm, by Van der Waals' forces between the graphene and the STM tip. In view of this finding, we can expect the STM tip induced deformation to be enhanced on the wrinkle where the graphene is far away from the Ir substrate (1 -5 nm) than on the flat part where the Van der Waals' force between the substrate and the graphene will partly cancel the pull from the tip. Figure 4.9 shows an interesting experiment performed on suspended graphene membranes on SiO 2 substrate which demonstrates this mechanical pulling by the STM tip. A convex shape of the membrane implies an increased Van der Waals' force of the tip while a concave shape is produced when the electrostatic force of the backgate overcomes this upward pull by the tip [START_REF] Klimov | Electromechanical Properties of Graphene Drumheads[END_REF].

V gate = 0 V 20 V 40 V 60 V (f) (a) (b) (c) (d) (e)
In AFM mode of scanning, since the tip-sample distances are far higher than 5 Å, the Van der Waals' pull from the tip should be significantly smaller and hence the AFM topography should give us the real height and shape of the wrinkles.

Hence, from a comparative study of topography of wrinkles in AFM and STM, we can clearly see that the wrinkle shape and height is significantly distorted by the STM tip. From this observed distortion, we can conclude that structurally the graphene in the wrinkle is more flexible due to the reduced influence of the Van der Waals' force from the iridium substrate as compared tp flat graphene.

Dissipation Microscopy

Another interesting aspect is the consistent observation of reduced energy loss of the scanning resonator or in other words, reduced dissipation over the wrinkles in comparison to flat graphene. 

2). Hence V exc ∝ A drive

where A drive is the drive amplitude in units of displacement. In frequency modulated AFM, the scan probe is always maintained at resonance, hence f drive = f 0 where f 0 is the eigen frequency of the probe. Then, it is rather straightforward to show that [Eq.( 3.

2.14)]

A A drive = Q = 1 2ζ . (4.2.1)
where Q is the quality factor and ζ is the damping ratio. Since A is maintained constant during scanning, by an amplitude controller, it follows, therefore that a map of V exc or A drive would directly produce a map of dissipation encountered by the probing resonator while scanning the surface. Figure 4.10(c) verifies that the amplitude A is maintained constant to within 0.3 % of its mean value of 300 pm. Hence, in the V exc or local dissipation map in figure 4.10(b), we clearly see that the energy loss is reduced over the wrinkles. Moreover, if we compare the wrinkled graphene in the encircled region between the AFM and the dissipation map, we find that the higher the elevation of the graphene wrt to the underlying substrate, the lesser is the dissipation encountered by the probe. Interestingly, this observation is rather consistent with the observation reported in section 1.3.3, for exfoliated graphene on SiO 2 .

Dissipation in scanning probe measurements could have multiple origins: electrical, magnetic, due to Brownian motion or hysteresis related dissipation [START_REF] Hug | Measurement of Dissipation Induced by Tip-Sample Interactions[END_REF]. In the present situation, differences in the extent of dissipation on the wrinkles could be of electrical origin. The metallic tip and the sample can be considered to form the two plates of a capacitor maintained at a potential difference equal to their work-function mismatch i.e. their contact potential difference V CPD , as explained in section 3.2.3 (assuming externally applied bias voltage on the sample to be zero). While scanning in non-contact AFM mode, the periodic modulations of the tip-sample distance z ts causes the tip-sample capacitance C ts to change periodically. If the tip and sample resistances are high, this will lead to currents at finite frequency, thus resulting in energy dissipation. According to Denk and Pohl [START_REF] Denk | Local electrical dissipation imaged by scanning force microscopy[END_REF], this dissipation is proportional to V 2 CP D /z 2 ts . Hence, a difference in dissipation observed indicates a difference in V CPD which is ultimately related to work-function differences in graphene between the two regions. In fact, we shall see shortly, that this is indeed the case. 

Vanishing doping over Wriinkled Graphene by STS

The reduced influence of the iridium substrate on the wrinkled graphene should imply different electronic properties than graphene on the flat part as had been suggested by the observation of reduced dissipation over these folds in graphene. Here, we directly measure the local density of states (LDOS) across the wrinkle via scanning tunneling spectroscopy (STS) to analyze these differences. to the doping concentration by Eq.(2.2.21)1 . This will be explained in detail in section 5.3.3. In our setup, since the voltage bias is applied to the sample while the tip is maintained at ground by the tunneling current amplifier (Figure 3.1), a positive value of E D implies a hole doping while a negative value would have implied electron doping. Therefore Figure 4.11(c) indicates that the flat graphene is positively doped while on the wrinkle, the doping is still positive but far less than in the flat part. This is reasonable as the doping existing on the graphene can be either due to the iridium substrate itself or some intercalated molecules present in the space between it and the graphene. Hence further the graphene from the substrate, less should be the influence which in this case translates into negligible doping on the wrinkle. 3. While approching the wrinkle from the flat region, E D rapidly decreases to almost zero as the wrinkle height exceeds ∼ 0.6 nm. In other words, this measurement gives us the metal-graphene distance at which the latter is liberated from the influence of the former.

Hence, we see that electronic properties are indeed very different on the wrinkle than on graphene closer to the substrate i.e. on the flat part. The E D fluctuations on the flat graphene show a weak correlation with topography (≈ 0.3) in this case. However, we are probably limited by the spatial (= 2.6 nm) and energy resolution to do such an analysis, since the measurement was performed at room temperature. Nevertheless, the comparison of the doping disorder with topography on the flat graphene is reported, in detail, in a subsequent section. We further employ frequency modulated Kelvin probe force microscopy (FM-KPFM) to map out the spatial variations of the contact potential difference V CPD (section 3.2.3). V CPD is directly related to the work-function of the sample W s as given by Eq.(3.2.24). The V CPD map can, therefore, be equivalently interpreted as the work-function map of the surface provided we assume absence of any surface charge, dipoles or bonding of the scanning cantilever to the surface which might cause additional changes. This is useful in the present situation because any existing local doping difference will be directly detected in a V CPD map of the surface. 111) surface, acquired with a Si cantilever tip. We observe that the wrinkled regions are manifested as a depression in the V CPD map. This implies that the work-function decreases over the wrinkle, indicating a decrease in the Dirac point E D [START_REF] Yu | Tuning the Graphene Work Function by Electric Field Effect[END_REF]. Figures (c) and(d) show the topography and the V CPD profile respectively along a path starting from the graphene wrinkle and terminating on flat graphene. V CPD measured over wrinkled graphene is ≈ 0.3 eV lower than what is measured on the flat part. This equivalently means that the Dirac point over wrinkle is lower by 0.3 eV. This confirms quantitatively the tunneling spectroscopy measurements (Figure 4.11) where hole doping reduces from ≈ 0.290 eV on the flat to ≈ 0 on the wrinkled graphene.

Kelvin Probe Microscopy

The schematic in (e) illustrates this situation.

Hence, by employing two complimentary microscopy techniques, scanning tunneling spec-troscopy and Kevin probe force microscopy, we clearly demonstrate the difference in the electronic properties found on the graphene on the flat part as compared to the graphene on the wrinkle. Both methods lead to the same conclusion that the doping level changes from strongly p-doped nature on the flat region where graphene is closer to the substrate to negligibly small doping value on the wrinkle where it is ∼ 1 nm from the influence of the substrate.

Dynamics of Decoupling of Graphene

So far, we have concentrated on GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] systems that had experienced exposure to ambient conditions for prolonged durations (several months in some cases). This system is very different from the same system that had always remained in UHV. From our analysis so far, we can already cite one prominent difference. The positive doping observed in an as-grown sample leads to a Dirac point energy of < 100 meV wrt. the Fermi energy, as has been discussed in section 4.1.3. In our case, E D on graphene on the flat part is ≈ 300 meV, which is considerably higher. And this is yet less than on GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] systems with perfect coverage of the iridium substrate that has been subjected to controlled oxygen intercalation under UHV conditions in which case, it is ≈ 600 meV. An obvious and important question is what causes this difference.

To answer this question, in this section, we study a freshly prepared sample of GR/Ir(111), of intermediate coverage, that has been subjected to ambient conditions for a very short duration of time 2 . AFM observation at room temperature reveals a gradual decoupling of the graphene, starting from the wrinkles. This suggests some intercalation processes at work which is confirmed by the detection of oxygen via chemical analysis, throughout the sample. The role of the wrinkles is then discussed as tunnels for such intercalation process. Scanning tunneling spectroscopy is finally performed to investigate the difference in the electronic properties between well-coupled and decoupled graphene.

The AFM measurements for visualization of the decoupling process has been performed by Amina Kimouche while I have performed the STS measurements in the subsequent section. on iridium, acquired right after exposing it to ambient conditions. We observe that apart from the usual features that has been discussed (section 4.2.2), there is an additional new feature: graphene surrounding the wrinkles is elevated wrt. graphene further away, forming a kind of halo around the wrinkles. To distinguish the graphene in these regions from graphene in the flat part, we will refer to it as decoupled graphene based on the fact that in these ribbon-like regions adjoining the wrinkles, graphene-metal distance is higher than on the flat part, which we will refer to as well-coupled, henceforth. c) shows the gradual evolution of these regions with time. From 0.4 nm and several 10 nm after 1 h of exposure to air, the height and width of the regions of decoupled graphene increases, rapidly at first, then slower and slower. After a few days they do not increase much and reach about 1.5 nm and a few 100 nm, respectively. The increase can be stopped at any stage by simply placing the sample under UHV. This observation suggests that there is some intercalation process at work that gradually decouples the graphene from the metallic substrate underneath, starting from the wrinkles. A closer look at the topography (Figure 4.13(a)) shows that there are several wrinkle terminations at any given hole in the graphene sheet. Without the presence of these terminations, intercalation of molecules would have been difficult since graphene is known to bind strongly to the iridium substrate at the edges [START_REF] Subramaniam | Wave-Function Mapping of Graphene Quantum Dots with Soft Confinement[END_REF]. Hence the wrinkle terminations serve as entry points for the intercalation of molecules while the wrinkle themselves act as tunnels for their propagation underneath the graphene. The schematic shown in Figure 4.13(d) demonstrates this process.

Wrinkles as pathways for intercalation

We expect the diffusing molecular species to be predominantly oxygen because chemical analysis of the sample via area selected X-ray photo-emission performed with PEEM confirms the presence of oxygen all over the surface [START_REF] Kimouche | Modulating charge density and inelastic optical response in graphene by atmospheric pressure localized intercalation through wrinkles[END_REF]. It is important to note that such an intercalation would not have been possible in samples with 100 % graphene coverage under ambient conditions [START_REF] Larciprete | Oxygen Switching of the Epitaxial Graphene-Metal Interaction[END_REF] [START_REF] Grånäs | Oxygen Intercalation under Graphene on Ir(111): Energetics, Kinetics, and the Role of Graphene Edges[END_REF]. The presence of the large number of free edges in the graphene sheet in the present system containing multiple wrinkle terminations is therefore necessary for the observed oxygen 

Electronic Properties of well-coupled vs decoupled graphene

To understand the effect of intercalated oxygen molecules on the electronic properties of the graphene, we perform STM and STS. shows that the graphene on the decoupled part is lifted by about 0.4 nm wrt. graphene in the well-coupled region. We note that this height is different from the equilibrium height of 1.5 nm reported in the previous section. This could be because of several reasons: (1) this sample is different from the sample in Figure 4.13, (2) Figure 4.14(a) shows a STM topograph while Figure 4.13(a)-(c) presents the AFM topograph and the heights recorded in AFM and STM can be different, as we saw in the case of wrinkles (section 4.2.4) and (3) time of exposure to ambient conditions was quite different for the two samples. In the present case, time duration is longer (> 1 week). Hence, possibly, some non-zero quantity of oxygen must have intercalated throughout the system, in this time, which might lead to a reduced step height at the interface.

The roughness (STM) of graphene increases on decoupling in general, in this case being about 22 pm which is almost double the value measured on the well coupled region. This is consistent with the fact that the moiré pattern (Figure 4.1) that is found in the pristine samples, is absent in samples which has faced prolonged exposure to ambient conditions ([9], Figure 1). and decoupled graphene (blue). Each tunneling spectrum represents the average of 100 spectra, acquired over a total area of 50 nm × 50 nm. The main findings are enumerated below.

1. On well-coupled graphene: ĒD ≈ 8 meV i.e. almost no doping with σ E D ≈ 15 meV. 2. On decoupled graphene: ĒD = 180 meV, n = 2.9 × 10 12 cm -2 and the corresponding fluctuations are σ E D = 23 meV, σ n = 7.8 × 10 11 cm -2 , i.e positively doped but less than what is usually measured on samples subjected to prolonged exposure to ambient conditions as discussed in section 4.2.4.

The reason for observing lower positive doping in the decoupled regions in this sample as compared to other samples presented before (section 4.2.4) is related to the difference in exposure time to the atmospheric conditions, (about a week, which is far less than usual) before the STM measurements. The fact that the decoupled graphene has a higher positive doping over wellcoupled graphene clearly demonstrates the role that the intercalated oxygen molecules play as positive dopants of the graphene sheet besides decoupling it from the influence of the metallic substrate.

Conclusion

In conclusion, ex-situ prepared GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF], that has faced exposure to ambient conditions for prolonged durations of time, is different from both pristine GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] grown and preserved in UHV or perfectly graphene covered iridium that has been subjected to controlled oxygen intercalation, also under UHV conditions. It is kind of an intermediate between the two, indicated by the level of positive doping which lies midway between that of pristine GR/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] and decoupled graphene in GR/O/Ir [START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] systems. The natural intercalation of oxygen molecules, starting at the graphene edges and propagating via wrinkles, accounts for this intermediate level of doping. This natural decoupling process transforms the moiré lattices into a corrugated landscape with typical roughness ∼ 50 -100 pm.

Charge disorder in decoupled graphene

In this final section, we return to a system of GR/Ir(111) that has been exposed to ambient conditions for a prolonged duration of time. This, therefore, offers a system where the graphene is decoupled from the substrate by the intercalation of oxygen molecules from the atmosphere. Importantly, we note that the linear dispersion, which is missing in the corresponding pristine system in UHV (Figure 4.2(b),(c)), is completely restored in this decoupled system as shown by us in [START_REF] Martin | Disorder and screening in decoupled graphene on a metallic substrate[END_REF] (primarily the work of S. C. Martin). The Fermi velocity is found to be v F = 0.9 ± 0.04 m/s which implies that the charge carriers are subjected to a highly screened environment [START_REF] Hwang | Fermi velocity engineering in graphene by substrate modification[END_REF] i.e. the dielectric constant → ∞, which is probably a consequence of the close proximity to the metallic substrate which acts as an electrostatic screening plate. , between E D and topography maps given above [START_REF] Martin | Disorder and screening in decoupled graphene on a metallic substrate[END_REF].

We investigate the charge disorder in such a system using STM/STS and then by KPFM.

The measurement of charge disorder, presented here, was performed by S. C. Martin, KPFM by Benjamin Grévin while I participated in the data analysis.

STM/STS investigation of charge disorder

To find the doping inhomogeneity in decoupled graphene, we perform point to point tunneling spectroscopy over a region of 250 nm × 250 nm. The Dirac point E D (r) and the corresponding doping concentration n(r) are then extracted by analyzing each tunneling spectrum following the same procedure as described in (section 4.2.4). The color map shown in Figure 4.15(a) pictures the spatial inhomogeneities of E D (r) around its mean value, forming a smooth landscape of charge puddles, of about 8 -9 nm in diameter. The standard deviation in charge carrier concentration is found to be σ n = 1.2 × 10 12 cm -2 .

We now focus on the comparison between the Dirac point distribution and the topography.

Since only topographic variations at length scales similar or larger than the typical puddle size can correlate with the charge inhomogeneities, we filter out the topographic maps from structures of dimensions below half the mean puddle size. 

χ z-E D (r) = i E D (r i -r) × z(r i ) (σ E D σ z ) . (4.4.1)
The local cross correlations χ z-E D (0) between z(r) and E D (r) are in excess of 60% in large area maps [Figure 4.15(c)]. These correlations are independent of the region chosen, but are enhanced in maps with dimensions much larger than the typical puddle size. When correlating spectroscopic maps with topography, one also has to recall that in constant current STM mode, a LDOS variation will lead to a change in the tip-sample distance z. This can misleadingly induce phantom topographic features.

In order to check the influence of the DOS on the topographical images, we performed a calculation to estimate the apparent δz that would be caused by variations of the DOS. Using

Eq.(3.2.1) and Eq.(3.2.2), the expression for the tunneling current can be written as

I t = A exp - z z 0 eV bias 0 ρ (E -E D (r)) dE, ( 4.4.2) 
where we assume that the DOS spectra are described by a single function ρ(E -E D ) and spatial dependence is only via E D (r) and A is a constant. In constant current mode and choosing a specific reference location r 0 at which E D (r 0 ) = E 0 D , we can then write the variations of z around z(r 0 ) as was measured), that is more than one order of magnitude smaller than the typical roughness measured on the same region by STM. Hence, the measured topography is weakly affected by the inhomogeneities of the DOS.

δz = z 0 ln eV bias 0 ρ (E -E D (r)) dE eV bias 0 ρ E -E 0 D dE . ( 4 
The cross-correlation coefficients found between the Dirac point map and topographic images taken on the same region but at different bias voltages are listed in Table 4.1. Except for the highest bias, topographic images at all energies including V bias < 0, show similarly strong correlations to the Dirac point map. The lower cross-correlation at V bias = 700 mV can be attributed to the fact that graphene is transparent at high bias, thus we probably probe the metallic substrate below rather than the graphene.

Hence, from the above analysis we can convincingly state that the doping landscape in this system of naturally decoupled graphene on iridium is disordered and this disordered landscape bears a strong positive correlation with the actual corrugated landscape of the sample measured in STM. Therefore, a positive correlation between doping and topography should also imply a positive correlation between the V CPD map and the topography.

However, this is not always the case. Both positive and negative correlations are found between V CPD map and the topography with magnitudes χ z-V CPD (0) = 0.1 -0.6 where χ z-V CPD is the angular averaged, normalized correlation function between them, defined in a manner equivalent to Eq.(4.4.1). In general, fluctuations in the V CPD map could be characterized by a standard deviation of about 10 meV and a spatial extent of 6 -14 nm. Figure 4.16 shows an instance where a strong negative correlation ≈ -60% is found while Figure 4.17 shows another region where a strong positive correlation ≈ 45% is seen.

In our interpretation of V CPD maps so far, we have only considered ideal, charge or dipole free surfaces. Hence, V CPD had a one to one correspondence with the WF distribution along the surface [Eq. (3.2.24)]. However, presence of charges or dipoles in the surface will manifest themselves in the V CPD maps, creating additional features. In particular, 1. A negative V CPD shift (with respect to its reference/background value) will be produced for a local positive charge.

2. A negative V CPD shift will also be produced for an electric dipole pointing upwards.

This has been demonstrated in Figure 4.18. To compensate the electric field created by a positive charge or a positive dipole on the surface, an additional positive voltage needs to be supplied to the tip which equivalently means a negative shift in V CPD (section 3.2.3).

In addition, non-conventional mechanisms (such as local surface polarization effects induced by the AC modulation at the tip) can contribute to the local V CPD contrasts at the sub-10 nm scale, when the nc-AFM/KPFM is operated in the regime where short range forces contribute significantly to the tip-surface interaction [START_REF] Nony | Understanding the Atomic-Scale Contrast in Kelvin Probe Force Microscopy[END_REF]. These extra contributions depend on the nature of the sample, and state of the art modeling simulations are needed to carry out quantitative analysis of the V CPD contrasts.

While the above effects can explain the negative correlations sometimes found, a concrete conclusion is not possible at the moment. Efforts continue in this direction for a clearer under- 

Origin of Disorder

The analysis of charge disorder by tunneling spectroscopy (section 4. The graphene doping could further be due to graphene-metal distance dependent charge transfer from the metallic substrate due to finite electronic wave function overlap. Calculations of this effect [START_REF] Giovannetti | Doping Graphene with Metal Contacts[END_REF] yield a qualitatively correct description, including the correct sign of χ z-E D for graphene on iridium. But as we have seen before (4.3.1), the graphene-metal distance ∼ 1 nm in this case of decoupled graphene, a distance at which the above scenario would have negligible contributions as seen in Figure 4.20. 1) of [START_REF] Giovannetti | Doping Graphene with Metal Contacts[END_REF]). Work-function of iridium W Ir = 5.76 eV.

The most likely explanation of the doping bases on the presence of molecular species, in particular oxygen as we have shown above, intercalated between the graphene and its substrate.

It has already been demonstrated in section 4.3.2, that oxygen intercalation is accompanied by increase in surface corrugation as well as enhanced p-doping of the graphene. Locally enhanced accumulation of negatively charged intercalates induce a reduction of the Fermi level, that is, enhanced p doping in the graphene. Hence, a random distribution of oxygen intercalates underneath the decoupled graphene sheet seems to be the most probable reason for the observed strong positive correlation between charge disorder and topography.

Conclusion

In conclusion, we have presented scanning probe measurements on a sample of ex-situ grown graphene on iridium (111) of intermediate coverage. Unlike the corresponding pristine system prepared in UHV, the present system consists of graphene that is decoupled from the influence of the iridium substrate by the natural intercalation of oxygen molecules under ambient conditions.

These molecules enter at the free edges of the graphene and propagate along local delaminations called wrinkles which are seen to act as tunnels for their propagation. We find an increase in positive doping on decoupling which confirms the role of the oxygen molecules in inducing this doping. The positive doping is found to disappear almost completely on the wrinkles where the graphene-substrate distance is maximum. Doping inhomogeneities on decoupled graphene are further investigated by STS which show a strong positive correlation with topography measured in STM. The inhomogeneous distribution of negatively charged oxygen intercalates underneath the graphene is identified as the most probable reason for this charge disorder and its strong signature in topography. KPFM measurements of the corresponding distribution of V CPD in decoupled graphene present ambiguous results which calls for the necessity for further measurements.

Introduction

In Chapter 2, we considered the unusual screening properties of monolayer graphene from a purely theoretical point of view. In the absence of interactions, the low energy quasiparticle spectrum in graphene is purely Dirac like. Switching on these interactions will induce changes in this linear dispersion [START_REF] Sarma | Many-body interaction effects in doped and undoped graphene: Fermi liquid versus non-Fermi liquid[END_REF][155] [START_REF] Polini | Graphene: A pseudochiral Fermi liquid[END_REF]. In intrinsic graphene1 , the changes are quite remarkable as the Fermi liquid model for quasiparticles is no longer applicable [START_REF] Sarma | Many-body interaction effects in doped and undoped graphene: Fermi liquid versus non-Fermi liquid[END_REF]. The low energy dispersion is profoundly non-linear with the Dirac cone developing an inward curvature as has been reported in transport measurements of effective mass in suspended graphene [START_REF] Elias | Dirac cones reshaped by interaction effects in suspended graphene[END_REF] and in ARPES measurements on free standing graphene on SiC [START_REF] Siegel | Many-body interactions in quasi-freestanding graphene[END_REF]. However, for extrinsic graphene, which encompasses the vast majority of samples prepared in labs for practical device applications, the Fermi liquid model holds true as any kind of doping will induce generic Fermi liquid behaviour.

In this case, electron-electron interactions just renormalize the quasiparticle dispersion keeping the linear structure intact [158][154].

These many body interaction effects are well described by the dielectric function of the system which we have studied in detail in section 2.3. This function introduces an important length scale in the problem : the Thomas-Fermi screening length 1/q T F which sets the relevant length scale for many body interactions. Whereas in 2D electron gases or bilayer graphene having a parabolic dispersion relation, q T F is independent of carrier concentration, the case of SLG is markedly different. Here, the screening length changes with carrier concentration that can be easily controlled in gated graphene devices. Hence for a given disordered impurity potential, created by random charge impurities in the substrate, the correlations in the screened potential possess an amplitude and spatial extent that both depend on the carrier density. Or equivalently, the doping inhomogeneities induced by the disordered potential change with the gate potential, a fact that is often neglected.

By combining macroscopic transport with in situ scanning probe microscopy (AFM + STM) at dilution temperatures, we investigate this screened Coulomb impurity problem in exfoliated graphene devices on SiO 2 . Transport will give us an overall characterization of the bulk electronic properties of the sample and in principle should be sufficient to predict the scenario at a local scale, provided the model of scattering by random charge impurities holds true. Hence, combining and correlating the local measurements with the macroscopic characterizations will rigorously test the validity of this model as well as enable a deeper understanding of the problem.

Charge Carrier Transport in Graphene

In this section, we consider the macroscopic electronic properties of a sample of exfoliated singlelayered graphene on SiO 2 /Si substrate by means of transport measurements in a two-probe configuration. Carrier transport in any system depends on the mobility of its charge carriers which, in the case of practical graphene samples, is primarily limited by scattering from random charge impurities [START_REF] Adam | A self-consistent theory for graphene transport[END_REF]. This leads to a constant mobility at high carrier densities and a sample dependent minimum conductivity as explained in section 2.4.2. The other scattering mechanisms that have been pointed out are short range scattering from defects [START_REF] Chen | Defect Scattering in Graphene[END_REF] leading to sub-linear conductivity at high n, scattering by graphene phonons [START_REF] Hwang | Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene[END_REF], substrate surface polar phonon scattering [START_REF] Fratini | Substrate-limited electron dynamics in graphene[END_REF], midgap states [START_REF] Stauber | Electronic transport in graphene: A semiclassical approach including midgap states[END_REF] and local curvature induced gauge fields [START_REF] Gibertini | Electron density distribution and screening in rippled graphene sheets[END_REF]. However, a vast majority of experiments show the scattering from random charge impurities to be the dominant mechanism determining carrier transport in graphene.

Assuming this is true, it is possible to explain all the important features of carrier dependent conductivity in graphene by just two parameters: (a) concentration of charged impurities in the substrate, n imp and (b) average distance, d, of these impurities from the plane of the graphene sheet (section 2.4.2). In this section, we experimentally analyze the field effect in a graphene device to recover these two fundamental quantities.

Sample Description and Experimental Method

Our sample constitutes of a single-layerd graphene flake prepared by the process of mechanical exfoliation and contacted using the mechanical shadow mask technique as described in section 1.3. Out of seventy samples prepared using this process, sixteen were measured. While the starting samples had a single contact and were multi-layered, the last four were single-layered with two isolated electrical contacts. The final sample measured was by far the best in terms of mobility (factor of two improvement) and interface transparency (section 1.3.5). Hence, we mainly present measurements on this final SLG sample while results on a multi-layered flake has been included in the appendix. and (c) the width of the G peak is 7.5 cm -1 < Γ 0 G ≈ 16 cm -1 , where (IR 0 , G 0 , Γ 0 G ) indicate the respective quantities in undoped graphene, we can conclude that the flake was already doped by the impurity atoms in the substrate prior to deposition of metal contacts. Further, the 2D peak position of about 2687 cm -1 > 2D 0 ≈ 2685 cm -1 , where 2D 0 is the corresponding position in the undoped case, tells us that the nature of doping is p-type [START_REF] Ferrari | Raman spectrum of graphene and graphene layers[END_REF] [START_REF] Das | Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[END_REF]. The presence of any defect would have been indicated by a peak at about ∼ 1350 cm -1 . Unfortunately, spectrum in this range was not measured. The two resistors in series to V DC , provide a voltage division by factor 500 to reduce voltage noise. The current is measured from the 'Drain' using a variable gain (10 3 -10 11 V/A), low noise current amplifier from Femto [163]. For the measurements presented in this chapter V s = 5 mV and the gain used in the current amplifier was usually 10 5 unless otherwise mentioned. A current density exceeding 3.6 × 10 12 A/m 2 was found to be unsafe for the flake, hence V DC was chosen accordingly.

Experimental Method

2. Current Bias: In some cases, current biasing was also used to measure the two probe resistance of the sample. Figure 5.2(b) illustrates how this was implemented in our setup.

A DC voltage in series with a high resistance R = 10 MΩ served as the current source. The voltage difference between the two contacts was measured using a NF Voltage Amplifier [START_REF]High Speed Bipolar Amplifier[END_REF].

The backgate voltage V gate was applied via a very high resistance R gate ∼ 100 MΩ. This was done to protect the gate against accidental voltage spikes/jumps and to protect the cryostat in case of defective gate. The room temperature ground was used as the overall ground reference.

Electric Field Effect

The electric field effect in graphene allows tuning its carrier concentration by means of changing a capacitively coupled external voltage V gate [START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF]. As is usually the practice, V gate is connected to the bottom, highly doped Si layer of the Si/SiO 2 substrate which therefore forms the backgate.

By changing V gate , we can continuously tune the relative position of the Dirac point E D wrt. the Fermi level E F such that the latter gradually changes its position from the valence band up into the conduction band (schematics in Figure 5.3(a)). To measure the field effect in graphene, the gate voltage was gradually changed and the corresponding two probe resistance was measured in a manner described above. Figure 5.3 shows the field effect measured in the current device in a voltage bias configuration. The gate voltage at which the conductivity of the sheet is minimum corresponds to the situation where E F is aligned with the Dirac point (E D ) leading to 'charge neutral' graphene. Hence this gate voltage V 0 D is called the 'Charge Neutrality Point' or CNP. For V gate > V 0 D , the graphene is doped with electrons whereas for V gate < V 0 D , hole doping occurs. Due to presence of intrinsic doping, from impurities on the substrate and perhaps the metal contacts, V D differs from zero and ∼ 30 V in this case, which corresponds to a hole doping of

∼ 2.3 × 10 12 cm -2 .

Hysteresis and Asymmetry

There exists a small but finite hysteresis between forward and reverse sweeps. Presence of polar water molecules in the Graphene/SiO 2 interface could be a reason for this [START_REF] Timm Lohmann | Four-Terminal Magneto-Transport in Graphene p-n Junctions Created by Spatially Selective Doping[END_REF]. This is not so surprising since the cleaning of the substrate by oxygen plasma renders the surface hydrophilic (section 1.3.1).

Additionally, we notice that there is a prominent asymmetry between the electron and hole conductivities. We can characterize this asymmetry in the following manner.

R odd = R(V 0 D + dV g ) -R(V 0 D -dV g ) 2 (5.2.1) 
where dV g = |V gate -V 0 D |. Figure 5.3(c) shows R odd as a function of both dV g and the corresponding carrier concentration n. We find that for n < 8 × 10 11 cm -2 , R odd fluctuates about zero and for higher n, stabilizes to a positive value of ∼ 60 Ω implying a higher contact resistance at electron doping than in case of hole doping. We will find later that this limiting carrier concentration approximately corresponds to the impurity concentration in the substrate.

Theoretically, the scattering cross-sections off charged impurities for electrons and holes are different and hence in this respect, the transport is expected to be asymmetric for these charge carriers of opposite polarities [START_REF] Novikov | Numbers of donors and acceptors from transport measurements in graphene[END_REF]. Novikov predicted a value of µ el /µ h = 0.37 for an impurity charge Z = 1. However, this asymmetry is expected to reduce when screening by conduction electrons is taken into account. Chen et al. [START_REF] Chen | Chargedimpurity scattering in graphene[END_REF], experimentally found this ratio to be 0.83±0.01.

In our case µ el /µ h = 0.9±0.2. The method adopted to extract the mobilities is discussed shortly.

Another important reason for this asymmetry could be due to the metal contacts. By the mechanism of charge transfer, the metal contacts pin the carrier density in graphene underneath them [START_REF] Eduardo | Contact and edge effects in graphene devices[END_REF][START_REF] Huard | Evidence of the role of contacts on the observed electron-hole asymmetry in graphene[END_REF]. In case of Ti, as is the case in the present sample, this doping is p-type. This leads to the formation of a p-n junction all along the interface at overall negative doping by V gate and p-p junction at overall positive doping. This provides the reason for positive value of R odd at high n. The resistance of the metal leads is zero because of their superconducting nature with T c ≈ 7.2 K 2 which is well above the temperatures at which the measurements are conducted T < 4.2 K.

Therefore, the resistance shown in Figure 5.3 is R = R GR + R series where R GR is the resistance of the graphene. Using the following procedure we can roughly estimate R series and eleminate it to get the actual conductivity of graphene.

Away from V 0 D , there will be only one type of carriers, and conductivity will be given by σ = neµ where n is the carrier concentration (either electrons or holes). As V gate → V 0 D , the system will break up into electron and hole puddles. So, in this case, the carrier concentration will not be zero but equal to a finite residual carrier density n * which had been introduced in section 2.4.1. Assuming carrier mobilities to be the same, σ = (n e + n h )eµ = n * eµ. Combining these two limiting cases in a single expression and incorporating R series , we get [START_REF] Zhu | Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene[END_REF]:

R = R series + L W 1 µ (n * e) 2 + C g V gate -V 0 D 2 (5.2.2)
where the number of carriers induced by capacitance. Here K = 3.9 is the dielectric constant of the SiO 2 , 0 = 8.85 × 10 -12 Fm -1 is the vacuum permittivity and t = 285 nm is the thickness of SiO 2 in the substrate.

V gate is n = C g V gate -V 0 D and C g = K 0 /t
Because of the asymmetry, it is not possible to fit the conductivity for the full range of V gate using the above expression. However separately fitting the hole and the electron conductivity with (R series , µ, n * ) as fit parameters is possible. Figure 5.4(a) shows the fit to the above equation done in this way. The mean values of the series resistance for the hole and electron side were found to be R h series = 320 Ω and R el series = 400 Ω respectively.

The conductivity of graphene is then obtained by subtracting out R el series and R h series from the electron and hole sides respectively i.e. σ el = 1

σ el tot -R el series W L -1
and similarly for the hole side. This has been shown in Figure 5.4(b). The conductivity of graphene, so obtained, shows a linear dependence on V gate on both sides with minor deviations in some cases. This linear dependence is in accordance with the model for Coulomb scattering by random charge impurities (section 2.4.2).

We note here that a gradual decrease of both resistances i.e. R el series and R h series was observed during the course of measurement (Figure 5.5(c)) while their difference (R el series -R h series ) = (80 ± 30) Ω fluctuates about the mean value. This seems to suggest a gradual improvement of interface transparency with time.

RPA-Boltzmann Conductivity

The RPA-Boltzmann model, that we discussed in section 2.4.1, predicts a constant mobility at high carrier densities for random-charge impurity scattering, described by Eq. (2.4.6) Hence, from the measurement of conductivity as a function of carrier concentration, we are able to extract all the important parameters that determine the carrier dynamics in the system i.e. V 0 D , µ, n * , n imp , d. In Figure 5.5(a)-(f), all these quantities have been plotted so as to track their evolution with time during the course of the experiment. Although, initially conditions changed, towards the end, they were more steady. In the following table, we enumerate the mean values of these different quantities extracted from transport for electron and hole doped graphene. 5.1: Summary of Parameters extracted from Transport. R series is the series resistance due to the connecting wires leading up to the sample and the metal-graphene contact resistance, V 0 D is the charge neutrality point, µ is the mobility of graphene, n imp is the concentration of impurities, n * is the residual charge concentration and d is the average distance of the charge impurities from the graphene plane.

Carrier R series (Ω) V 0 D (V) µ (cm 2 V -1 s -1 ) n imp (10

Local Field Effect with Scanning probe microscopy

The transport measurements that we have considered so far have helped in looking into the bulk electronic properties of the sample which are primarily determined by carriers at the Fermi energy. In this section, we go beyond this by implementing the techniques of Kelvin Probe Force microscopy (KPFM) (section 3.2.3) and Scanning tunneling spectroscopy (STS) (section 3.2.1). This allows us to look into the details of the energy dispersion for energies ranging from the valence band to the conduction band with a high resolution both energetically and spatially. 

Experimental Method

The experimental arrangement for performing KPFM and STS on the gated single-layered graphene device have been shown in Figure 5.6. In particular, we note that:

1. KPFM: A DC voltage is applied to the tip V tip via the LER electrode connected to it whereas the other electrode is used for AFM operation. The sample is maintained at ground (RT). The CPD is measured in the manner described in section 3.2.3.

STS:

A DC voltage V DC , sometimes superposed with an AC modulation V AC is supplied to the connected graphene flake via voltage divisions n 1 and n 2 respectively while the tip is maintained at ground (RT) via the ground of the tunneling current amplifier. 

Contact Potential Difference with KPFM

The working principle and measurement of contact potential difference V CPD between the sample surface and the tip by KPFM (force spectroscopy), has already been explained in section 3.2.3.

In the case of graphene, V CPD will change with V gate . This is because, changing the carrier concentration by V gate implies shifting the entire band-structure of graphene (i. 

V CPD = -V tip = W GR -W tip = ∆ + E D . (5.3.1)
where ∆ = W 0 GR -W tip i.e. the work-function mismatch between undoped graphene W 0 GR and the tip. Using Eq.(2.2.21), we can write down the dependence of E D on V gate (with E GR F as reference).

E D = -v F sgn(n) π|n| = -v F sgn(V gate -V 0 D ) πK 0 et (V gate -V 0 D ) ⇒E D = -γe sgn V gate -V 0 D V gate -V 0 D (5.3.2)
where γ = v F πK 0 e 3 t ∼ 0.035 V 1/2 , V 0 D is the charge neutrality point which for the present sample is 30 V, K = 3.9 is the dielectric constant for SiO 2 and t = 285 nm is its thickness in the substrate, v F = 1.1 × 10 6 m/s is the Fermi velocity of graphene on SiO 2 [START_REF] Jung | Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots[END_REF]. 

Measurement of CPD as a function of backgate

To measure the variation of the local contact potential difference of graphene wrt. the scan probe (tungsten tip mounted on LER) with backgate, the following procedure is adopted.

1. The tip is approached close to the surface in FM-AFM mode with setpoint parameters ∆f set = -1 Hz, A set = 500 pm and V tip = 0 V. After stabilization of the tip-sample distance, z-regulation is turned off and tip retracted by about 5 nm from this position. This causes the frequency shift ∆f to drop to zero due to negligible contribution from Van der Waals force.

2. The voltage applied to the tip V tip is gradually ramped up leading to a finite ∆f due to the resulting electrostatic interaction between the tip and the sample. This measurement was performed at base temperature of 130 mK with minimum thermal drift 3 . This enabled us to stabilize the tip at about 10 nm above the sample surface for a total duration of about 3.5 hrs of the experiment, without any z-regulation. The measurement location was chosen to be about 1 µm away from one of the metal-graphene interfaces.

Assuming negligible contribution from Van der Waals interaction, the frequency shift of the scanning resonator due to the electrostatic tip-sample interaction is given by Eq. (3.2.26). This equation gives the condition that ∆f = 0 at V tip = -V CPD implying a perfect compensation of the work-function mismatch induced electric field by the tip voltage. In the experiment, however, since ∆f is adjusted to zero only once in the beginning under the conditions (V gate , V tip ) = 0 V, the maximum value of ∆f is found to vary slightly from 25 mHz to -10 mHz. This is a natural consequence of the variation of the maximum position of the parabolas i.e. -V CPD with V gate .

To remove this artifact and recover the above condition, the individual parabolic curves are vertically shifted. Figure 5.8(a) shows the color plot of ∆f as a function of V gate and V tip after this adjustment. We clearly see the position of maximum ∆f to change from negative to positive tip voltages as V gate is increased, implying a Fermi level moving from the valence band into the conduction band as expected.

To extract V CPD , the individual ∆f vs V tip curves are fitted to a second order polynomial.

The position of the maximum of this polynomial gives V CPD4 (Figure 5.8(c)). We see that this can be well fit with Eq.(5.3.1) with V 0 D and ∆ as the free parameters. This gives us V 0 D ∼ 25 V and ∆ ∼ 80 meV. The value for charge neutrality, although not exactly the same as measured in transport, comes reasonably close. This discrepancy could be due to measurement on a locally doped region that causes charge neutrality to be achieved at a gate voltage which is different from the bulk value. We additionally note that unlike at high carrier densities where the V CPD data is less noisy and have a better agreement with Eq.(5.3.1), at low carrier densities n < 8×10 11 cm -2 ∼ n imp (section 5.2.3), the data points are rather scattered. This is probably pointing to electronhole puddles at low carrier concentrations which cause local random deviations from the gate dependence of the charge carrier concentration as assumed in Eq.(5.3.1).

Along with V CPD , the curvature of the ∆f vs V tip parabolas also change with the backgate. This curvature is ∝ the gradual decrease observed as V gate is changed from negative to positive values. Eq.(5.3.1) also assumes an infinite extent of the graphene which is not the case. The probe will sense the electric field due to the backgate from the sides which might account for the linear background.

Local CPD change across the Metal-Graphene Interface

With this method of V CPD detection by Kelvin probe, it is possible to measure the work-function mismatch between graphene and the metal contacts as well as measure how the local V CPD gradually evolves across the interface. Figure 5.9 shows the change of V CPD along the interface at high hole doping (V gate = -80 V) and close to the charge neutrality point V 0 D (V gate = 30 V). To do this measurement, the tip-sample distance was adjusted at each point along the line running across the interface (blue line in sub-figure (a)) to the same set-point conditions as before at V tip = 0 V. After this, the z-regulation was turned off and the tip lifted by 5 nm to perform the ∆f spectroscopy. On completion of the measurement, the z-regulation was turned back on, tip approched and moved to the next point. This ensured a safe, reproducible and crash-free positioning of the tip as well as minimum drift in frequency shift during the course of the measurement.

At high hole concentrations (Figure 5.9(b)), we observe a higher V CPD on the graphene than on the metal which is expected since the Fermi level in the graphene lies deep in the valence band.

As the metal interface is approached, V CPD decreases and stabilizes as soon as the tip moves fully on the metal. The transition in the V CPD profile fully coincides with the transition in the height profile of the metal contact as indicated by the rectangular gray window. The broadening of the interface observed in the topography is predominantly due to the finite curvature of the tip apex, as explained in section 1.3.4. On the graphene itself, V CPD profile is not completely horizontal but possesses a gentle slope, which could imply a gradual decrease of p-doping as the interface is approached. Another plausible reason could be that close to the interface, the tip-sample force is shared between interaction with graphene and the metal which has a lower V CPD and therefore produces a gradual decrease. However, this second reason is proven wrong by repeating this measurement near charge neutrality. This implies that next to the interface, graphene is more n-doped than further away which is consistent with the observation at high hole doping. We can safely dismiss the possibility of the metal contributing to the tip-sample force close to the interface because if it were true, then we should have observed a gradual increase in graphene on approaching the metal contact which has higher V CPD now. The presence of this relatively higher e-doping next to the interface is somewhat surprising as the titanium contacts are expected to induce a positive doping in the graphene (section 5.2.2). Another prominent difference with the high density situation is that V CPD transition from graphene to metal is much more rapid in this case.

This measurement allows us to quantify the work-functions of the different materials involved.

The average V CPD of the metal contact (Au) is (110 ± 20) meV. If we assume the work-function of Au to be 4.83 eV [START_REF] Anderson | Work Function of Gold[END_REF], then this gives a tip work-function W tip = 4.72 eV, which is within the range expected for tungsten. From the variation of V CPD of graphene with back-gate (Figure 5.8), we can say that the work-function of graphene changes from (5.16 ± 0.02)eV at V gate = -80 V to 4.58 eV at V gate = 80 V [Eq. (3.2.24)].

The work-function mismatch between the upper gold surface of the metal contact and graphene at high hole doping is ∆W M G = 330 meV. If we assume that work-function of the Ti bottom layer of the metal electrode is approximately the same as this top layer, then we can crudely estimate the carrier transmission probability of the interface T using Landauer's approach [START_REF] Xia | The origins and limits of metal-graphene junction resistance[END_REF].

In this approach, the contact conductance is understood by G = 1/R c = 4e 2 h T M , M being the number of quantum modes. For a graphene channel of width

W , M = |∆W GM | π v F W [172].
This gives a transmission probability T ∼ 0.13 at V gate = -80 V if we cosider R c ∼ 80 Ω as found from transport (section 5.2.2).

Summary of CPD measurements

From the measurements of contact potential difference by KPFM, we conclude the following.

1. For undoped graphene, the contact potential difference wrt. the tungsten tip is found to be V CPD = 80 meV at a single location. As we will see later, this value is not fixed but dependent on tip condition as well as spatial doping inhomogeneities.

2. Both the maximum position as well as the curvature of the ∆f vs V tip parabolic curves are found to change with backgate. V CPD change with V gate at a point in graphene follows the expected symmetric dependence given by Eq.(5.3.1) while the curvature shows a nonmonotonic decrease from high hole to electron doping.

3. From the variation of V CPD profile across the metal-graphene interface, we find a 150 nm broad region of significantly higher n-doping on the graphene, right next to the interface. This inhomogeneity is clearly observed as a step of 110 meV in the V CPD profile at low overall doping while at high hole doping, it causes a gradual decrease in V CPD towards the interface. This clearly reveals that inhomogeneities are magnified as the charge neutrality point is approached, completely consistent with expectations (section 2.4.2).

Tunneling Spectroscopy on graphene

Scanning tunneling spectroscopy provides an ingenious way to measure the local density of states of a given sample by simply aligning the Fermi level of a metallic tip (flat DOS), to the energy E at which DOS of the sample needs to be measured as discussed in section 3.2.1. This process is illustrated in the following Figure 5.10(a) for the simple case of undoped graphene.

When the voltage applied to the sample V bias = 0, the Fermi level of the tip E tip F , graphene E GR F and the Dirac point E D , are all perfectly aligned (Case 1 of Figure 5.10(a)). For the moment we consider the work-function mismatch between tip and graphene to be zero. Now, if we apply a positive bias voltage to the graphene wrt. the tip, we displace all the energy bands and the Fermi level in graphene downwards by an amount eV bias wrt. E tip F . If we fix E GR F as our reference, then from this reference, it equivalently means that E tip F has moved up by eV bias (case 2). Similarly, applying a negative bias means shifting E tip F downwards (case 3). Therefore, using [Eq.(3.2.9)], the tip-graphene differential tunneling conductance at T = 0 K is given by

G(V bias , T = 0 K) ∝ ρ GR (eV bias ) = 2 π 2 v 2 F |eV bias -E D | (5.3.3)
where ρ GR refers to the DOS of graphene given by Eq.(2.2.19). The above equation suggests the minimum of the differential conductance to be zero and occurring at eV bias = E D , i.e. when E tip F is aligned with the Dirac point. However, the minimum conductance measured in STS experiments in graphene is never zero because of thermal smearing as well as smearing due to spatial doping disorder. Inducing charge carriers in graphene by means of the backgate V gate , will change E D [Eq.(5.3.2)] and consequently the position of this minimum. (table 5.1). The 'S' like dependence of E D on V gate is prominently visible as the locus of the minimum of the conductance curves for each V bias , additionally indicated by the maroon line.

The lines of constant carrier density run parallel to the V bias axis.

Local gating with the tip

So far we have only considered the metallic tip as a measurement probe and completely ignored any effect that it might have on the graphene as a local gate. This issue was addressed in detail by S.K Choudhary et al. [START_REF] Shyam | Effects of tip induced carrier density in local tunnel spectra of graphene[END_REF] and later on by Y. Zhao et al. [START_REF] Zhao | Creating and probing electron whispering-gallery modes in graphene[END_REF]. In the latter case, the authors incorporated the additional effect of having a finite work-function mismatch between the tip and the graphene, thus significantly improving our understanding of the effect of the tip as a local gate. In this section, we first follow the reasoning of S.K. Choudhary et al., to derive the changes induced in the STS gate maps as a result of tip-gating. Later on, we will improve on these results with the help of Zhao et al.

If a voltage V bias is applied to the graphene with the tip grounded, then the potential with which the tip gates the graphene is -V bias . So the total carrier density induced by the combined gating of V gate and V bias is 5 This approximation is quite reasonable. The authors in [START_REF] Shyam | Effects of tip induced carrier density in local tunnel spectra of graphene[END_REF], have explicitly calculated the induced charge-density using a sphere-plane capacitor model and found that for a tip radius of about 30 nm and z ts = 1 nm, the parallel plate model overestimates the charge induced by only 1%. Also, we must remember that the induced charge has been assumed to be of infinite extent for simplicity but this is not true. So, the results are valid only for the point exactly under the tip. For z ts ∼ 1 nm, which is quite often the case in STM operation, β ∼ 75 and hence gating by the tip has quite a significant impact in influencing the differential tunneling conductance measured.

The Dirac point position will now be given by

E D = -γe sgn(V gate -βV bias ) |V gate -βV bias |. (5.3.5)
Here, for simplicity, we have assumed V 0 D = 0. To incorporate a finite V 0 D , we should just replace introducing too much error.

V gate by (V gate -V 0 D ). Substituting E D in Eq. (5.3.3), gives the necessary modification in the tunneling conductance.

G t (V bias , T = 0 K) ∝ V bias + γ sgn(V gate -βV bias ) |V gate -βV bias | . (5.3.6) This has been plotted in 

V min = -sgn(V gate ) βγ 2 + γ 4 |V gate | + β 2 γ 2 2 , V min = V gate β .
(5.3.7)

Therefore, from the slope of V min vs V gate , we are able to extract β and hence estimate the tip-sample distance z ts . The smaller the tip-sample distance, the smaller will be the slope of the position of the secondary minimum vs backgate which implies a stronger gating by the tip. We also note that along the inclined line of the secondary minimum, indicated in Figure 5.11(b), n = 0. Along any parallel line to this, n is constant.

From the knowledge of β and V min , it will be possible to recover the value of E 0 D which is the main objective and hence correct for the error introduced due to this local gating by the tip. Using Eq.(5.3.7) and Eq.(5.3.2), we can formulate the relation between V min and E 0 D .

E 0 D =   2γ |V gate | βγ 2 + γ 4 |V gate | + β 2 γ 2   V min . (5.3.8)
In Figure 5.12, using the above equation, the differences between E 0 D and V min has been plotted. It becomes clear that the presence of the tip causes a significant difference between the two at tip-sample distances z ts < 1 nm whereas beyond ∼ 5 nm, we can ignore the contribution of the tip as a local gate. Hence, while considering the V CPD measurements (section 5.3.2), where z ts > 10 nm, we were justified in ignoring this effect. At high gate voltages (V gate β 2 γ 2 /4), this difference can be approximated by the following expression,

V min -E 0 D = -sgn(V gate ) βγ 2 2 .
(5.3.9)

Hence the tip-induced gating has the effect of enhancing the discontinuity in the primary minimum as compared to E 0 D , seen clearly in Figure 5.11(b) or Figure 5.12(a). However, the discontinuity itself still occurs at the charge neutrality point of the entire sample. 

Work-Function mismatch

A finite work-function mismatch between the tip and the graphene will induce further modifications in the differential tunneling conductance gate maps as pointed out by Y. Zhao et al. [START_REF] Zhao | Creating and probing electron whispering-gallery modes in graphene[END_REF].

As already discussed in section 5.3.2, due to this work-function mismatch, the potential difference between the tip and the graphene will not be zero when they are electrically connected but equal to their contact potential difference V CPD given by Eq.(5.3.1). This potential difference will also act as a local gate if z ts is sufficiently small. When a finite bias voltage is applied to graphene, the total potential of the tip wrt. graphene will be (-V bias + V CPD ). Again assuming a parallel plate capacitor model, the total carrier density induced in the graphene by the combined effect of the tip and the backgate is .3.10) This leads to a Dirac point position given by

n = K 0 et [V gate -β {V bias -(∆ + E D )}] . ( 5 
E D = -γe sgn [V gate -β (V bias -∆ -E D )] |V gate -β (V bias -∆ -E D )| ⇒E D = -sgn [V gate -β (V bias -∆)] -βγ 2 + γ 4 |V gate -β (V bias -∆)| + β 2 γ 2
2 .

(5.3.11)

Inserting E D , given by the above expression, in Eq.(5.3.6) gives the differential tunneling conductance as a function of V bias and V gate which has been plotted in Figure 5.13 for three different tip-sample distances. Most importantly we note that now V min has approximately the same functional dependence on V gate as E 0 D with the significant difference that unlike E 0 D which becomes zero at V gate = V 0 D (= 0 in this example), the primary minimum becomes zero at a different value of V gate . Let us call this point of discontinuity of V min as V D which is related to the charge neutrality point in the following manner.

V D = V 0 D -β∆.
(5.3.12) We note that V D can be either higher or lower than V 0 D depending on the sign of ∆ which can change in the course of a scanning probe experiment. The secondary minimum V min also becomes zero at V gate = V D . Hence, experimentally, V D can be identified as the point of intersection of the curves corresponding to V min and V min in the differential tunneling conductance gate map as also seen in Figure 5.13.

z ts = 0.3 nm z ts = 1 nm z ts = 3 nm V bias (V) V gate (V) V gate (V) V gate (V) V bias (V) V bias (V) (a) (b) (c)
The position of the primary and the secondary minimum are, therefore, approximately given by

V min = -γ sgn(V gate -V D ) |V gate -V D |, V min = V gate -V 0 D β + ∆.
(5.3.13)

Using the above equation and Eq.(5.3.2), we can now find the relationship between the primary minimum and the position of the Dirac point E 0 D unperturbed by the tip.

E 0 D =      -(V min ) 2 -γ 2 (V 0 D -V D ) for V gate > V D (V min ) 2 -γ 2 (V D -V 0 D ) for V gate < V D (5.3.14)
This equation should correct for the complication introduced by the tip-gating. We note that only at high doping, when |V min | γ V 0 D -V D , we can ignore the second term above and hence, have 

E 0 D ≈ V min . As V min becomes comparable to γ V 0 D -V D , E 0 D increasingly

Confinement effects due to tip-induced circular p-n junctions

The results derived so far are true only for the point directly under the tip r = 0. Due to the finite curvature of the tip, the charge density induced by it in the graphene will have a finite spatial extent. This means a finite region is created underneath the tip with doping that is different from the doping present in the rest of the flake. When we sweep V bias , in the course of performing tunneling spectroscopy, we are therefore tuning this doping difference. If V bias is such that the polarity of charges is reversed underneath the tip wrt. the surrounding, then a circular p-n or n-p junction is created. Figure 5.14(a) shows a schematic illustrating this situation. This leads to confinement of electronic states. This is because, even though Klein tunneling ensures 100% transmission of the normally incident chiral charge carriers across such a barrier, for oblique incidences the transmission is strongly suppressed [START_REF] Katsnelson | Chiral tunnelling and the Klein paradox in graphene[END_REF]. Interference between incident and reflected electronic waves will then lead to spatially distributed resonances as shown in Figure 5.

14(b).

These resonances in the DOS are in turn detected as local maxima and minima in the tunneling spectrum. Hence, we add one more set of features to the differential tunneling conductance gate maps that are a manifestation of the gating effect of the tip.

This effect was most prominently visible in the gate maps presented by Y. Zhao et al [START_REF] Zhao | Creating and probing electron whispering-gallery modes in graphene[END_REF] for graphene on boron nitride while others found in literature show vague but definite signatures of such tip-induced resonances [170][158]. They occur as two sets of fringes, where one follows the primary minimum V min and the other follows the secondary minimum V min . The energy spacing between the fringes is given by the formula ∆ = π v F /r where r is the radius of the p or n doped cavity created by the tip where the electronic states are confined. The reason behind the presence of two sets of fringes instead of one is the same as the reason for the presence of two local minima related to the Dirac point. Any feature in the LDOS of graphene is manifested twice in the tunneling spectrum, once when E tip F is aligned with it (this will follow the primary minimum) and next time when E GR F is aligned with it (this will follow the secondary minimum).

To be more quantitative, let us assume a spherical tip with radius R, located at a distance z ts from the graphene plane (Figure 5.14(a)). Using the method of images, we find the induced surface charge density at a position r to be ∆n(r) ∝ 1 zts+r 2 /2R , provided R >> z ts which is a fair assumption in STM experiments. Now, if we consider the voltage applied to graphene to be V bias such that the effective voltage of the tip wrt. graphene is -(V bias -∆ -E D ), then the total charge density induced by the combined effect of the tip and the gate is

n(r) = K 0 et V gate -V 0 D - 0 z ts + r 2 /2R (V bias -∆ -E D (r)) ⇒n(r) = K 0 et V gate -V 0 D -β(r) (V bias -∆ -E D (r)) (5.3.15)
The above equation is the same as Eq.(5.3.10), the only difference being that in this case β has a spatial dependence given by β(r) = t 2K 1 zts+r 2 /2R . For r → ∞, β → 0, implying that far away from the tip-center, the doping induced is only set by the backgate while directly under the tip at r = 0, we recover the results of the previous section. In Figure 5.15, the E D (r) profiles under the tip have been plotted as V bias is changed from negative to positive values keeping V gate fixed, using Eq.( 5 Hence, we see that tunneling spectroscopy is an excellent tool to probe the local density of states of the sample but one has to proceed with caution when the sample in question is graphene. This is because unlike metallic surfaces, carrier concentration in graphene is sensitive to external electric fields and the applied tip-sample potential difference meant for measuring the DOS will in turn modify it via local gating. The above analysis should therefore be helpful in the interpretation of the experimentally measured differential tunneling conductance gate maps that is presented in the following section. depth was more for hole doped graphene than when it is doped by an equivalent amount of electrons [Figure 5.16(c)]. A decrease of DOS at the Fermi level is a known characteristic of low dimensional disordered systems like graphene due to long range Coloumb interactions [START_REF] Al Efros | Coulomb gap and low temperature conductivity of disordered systems[END_REF] and could offer an explanation for this ZBA as also pointed out by Jung et. al [START_REF] Jung | Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots[END_REF]. Interestingly this gap is camouflaged when the gate voltage is adjusted such that the primary minimum V min coincides with it at the Fermi level as clearly seen in Figure 5.16(c) for V gate = 35 V (which is close to local charge neutrality point V D ).

The Primary and the Secondary Minima

Apart from this, we can clearly identify a global minimum for each tunneling spectrum. For V gate < 38 V (≈ V D ), this minimum is located at positive values of V bias while for V gate > 38 V, it shifts to negative V bias as indicated by the blue arrows in The two curves, representing V min vs V gate and V min vs V gate , are seen to approximately coincide at V gate = V D ≈ 38 V, V bias = 0. V D is clearly different from the CNP measured in transport where V 0 D = 25 V recorded just prior to STS measurement (Figure 5.16(a)). This is consistent with our discussion in section 5.3.4. The slope of V min = 1/β [Eq. (5.3.13)] and this gives us an estimate for the tip-sample distance z ts . Also, the value of ∆ i.e. work-function mismatch between undoped graphene and the tip can be extracted using Eq.(5.3.12). Figure 5.17 shows all the gate maps acquired during the course of this experiment over a period of one month at different locations on the graphene. This is followed by a table 5.2 that lists all the relevant parameters extracted from the gate maps using the above procedure.

We see that the crossing of V min and V min is a common feature in all the gate maps. However, values of V 0 D , V D and ∆ are all seen to vary with time. We note the stark difference between 'Point 4' and rest of the location points where, in contrast to the other locations, V D is much lower than V 0 D . From Eq.(5.3.12), a change in V D from point to point can occur due to two reasons: firstly due to doping inhomogeneities which results in a spatially varying charge neutrality point

V D (r) = V 0 D + δV D (r)
, which is bound to be different at the four chosen locations. Secondly, due to the change in tip work-function in the course scanning resulting in change of ∆ which is also perfectly possible given the long time differences between the different measurements (5.2). β, which is independently determined from the slope of V min vs V gate , is expected to depend on the set tunneling resistance R t which is a measure of the tip-sample distance. However, positive correlation expected between R t and z ts is not clear in the data sets. The significant time difference between measurements at Point 2, 3 and 4 is once again the possible explanation, during which tip conditions changed (the decay length of tunneling current I t i.e. z 0 given by Eq.(3.2.1) changed). R t is therefore not a good estimate for z ts in this case and a more systematic study would have been useful. Also, an unambiguous determination of V min is difficult due to the presence of several smaller resonances near it leading to a blurring effect. V bias measurement when z-regulation was turned off, V 0 D is the charge neutrality point (CNP) measured from transport just before the corresponding STS. (c) V D is the value of V gate at which V min and V min intersect, z ts is the tip-sample distance, β = t/(Kz ts ) and ∆ is the work-function difference between undoped graphene and the tip.

The Fringes

Finally, we turn our attention to the resonances accompanying V min and V min . In the gate map shown in Figure 5.16, we see two sets of fringe like patterns, one set moving parallel to V min and the other set moving parallel to V min . As we discussed before in section 5.3.4, the origin of these fringes is related to the formation of p-n or n-p junctions underneath the tip which leads to confinement in the electronic states. The fringe width in this case is observed to be ≈ 100 meV. This allows us to roughly estimate the dimension of the confinement cavity created by the tip r 0 = π v F /∆ε ≈ 23 nm. If we consider a tip-sample distance z ts = 1.2 nm (table 5.2) and assume a spherical shape of the metallic tip, then a lateral extent r 0 of induced doping would imply a tip radius of R = r 2 0 /2z ts ≈ 220 nm. In this experiment, the STM tip used had a pyramidal shape (Figure 3.26(c)) with a slanting horizontal apex of length ≈ 600 nm (from SEM image). However, the actual shape and dimension of the tip that participates in the tip-sample tunneling process can be quite different. In this sense, the estimate obtained from the G t gate map above could provide a better estimate. However, the broadening observed at the metal-graphene interface (Figure 5.9(b),(c)) of about 100 nm, suggests a tip apex radius of about 50 nm.

We note that the fringes occur only close to V min and V min . This is because, as explained before (section 5.3.4), states lying away from E D (r) do not face any tip-induced p-n junction barrier and hence no confinement. Only states close to the E D (r) with energy |ε| < |E D (r = 0) -E D (r → ∞)| will form p-n junctions for certain values of V bias . We also notice that the fringes are rather vague, the most prominent being at Point 1 (Figure 5.17), especially if we compare these maps to those acquired by Y. Zhao et al., [START_REF] Zhao | Creating and probing electron whispering-gallery modes in graphene[END_REF] on graphene on BN. This could be related to the fact that graphene on SiO 2 has significantly more charge inhomogeneity than graphene on BN [START_REF] Decker | Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy[END_REF]. The visibility of the fringes is expected to improve by decreasing the tip-sample distance as this would induce a higher distortion of the E D (r) profile under the tip.

Conclusion

In conclusion, we find that the experimentally measured differential tunneling conductance gate maps on graphene are reasonably well explained if we incorporate the effect of (1) tip-induced gating (2) doping induced by the gate dependent tip-graphene work-fuction mismatch and (3) confinement of electronic states induced in graphene due to the finite curvature of the tip. Together, they account for the two important minima in the tunneling spectrum i.e. V min and V min and the fringes observed at low energies. However, what is not accounted for is the zero bias anomaly (ZBA), found at all gate voltages which we attribute to a Coulomb gap present in low dimensional disordered systems.

We importantly realize that in gated graphene devices where the tip acts as a local gate, the primary minimum of the differential tunneling conductance spectrum is different from the Dirac point E 0 D unperturbed by the tip. Only at very high doping V min ≈ E 0 D but at low doping, the deviations become increasingly more pronounced. This is in contrast with graphene on metals where the presence of the metal substrate prevents local gating by the tip and hence, we can safely say E 0 D = V min , as done in Chapter 4 for the case of graphene on iridium. Plenty of rich literature is available on STS measurements of graphene on SiO 2 at different gate voltages. While many of them target investigation of eletron-hole puddles in graphene [START_REF] Zhang | Origin of spatial charge inhomogeneity in graphene[END_REF][START_REF] Deshpande | Imaging charge density fluctuations in graphene using Coulomb blockade spectroscopy[END_REF], implicitly assuming that the primary minimum is the same as E 0 D , few delve into the details of interpreting the G t gate maps. The G t spectrum is actually a 'zoo' of gate dependent/independent features and many researches have been directed towards finding the origin of these features. Many-body interactions like electron-electron, electron-phonon, electron-plasmon etc have been suggested to contribute additional features to the spectrum [START_REF] Victor | Observation of Carrier-Density-Dependent Many-Body Effects in Graphene via Tunneling Spectroscopy[END_REF], E 0 D vs V gate dependence has been suggested to be modified due to Fermi velocity renormalization [START_REF] Chae | Renormalization of the Graphene Dispersion Velocity Determined from Scanning Tunneling Spectroscopy[END_REF], to name a few. Incorporating these effects might lead to further advancement in our analysis. However, in our opinion, the role that the STM tip has to play in influencing the G t spectrum is quite dramatic and will contribute in a major way. Hence, our interpretations have been primarily influenced by the work of S. K. Choudhuri et. al [START_REF] Shyam | Effects of tip induced carrier density in local tunnel spectra of graphene[END_REF] and Y. Zhao et al. [START_REF] Zhao | Creating and probing electron whispering-gallery modes in graphene[END_REF] who have directly addressed this issue in detail. What our experiment adds to this is the fact that we can constantly correlate the measured gate maps with the bulk behavior of the sample obtained from in-situ measurement of transport characteristics of the device.

Electron-Hole Puddles in Graphene

Finally we come to our main objective, which is the investigation of local charge disorder in graphene. In Section 5.2, we have discussed in detail, the transport properties of the present sample which allowed us to extract the impurity concentration n imp and their average distance from the plane of graphene d. Assuming the origin of this disorder to be random charge impurities embedded in the substrate, these two quantities should be sufficient to completely characterize the correlations of the screened disorder potential ṼD (r) as discussed in Chapter 3. In this section, we use Scanning tunneling spectroscopy to directly image the doping inhomogeneities present in graphene at different carrier concentrations and hence experimentally measure these local correlations. This will allow us to directly compare the theoretical predictions with what we measure experimentally.

Imaging Electron-Hole Puddles

To measure the doping fluctuations present in a given region of graphene by STS, there are two ways. One way is to acquire the full differential tunneling conductance G t = dI t /dV spectrum at each point which is called Constant imaging tunneling spectroscopy or CITS. Using the position of the primary minimum of this spectrum, we can then find the local Dirac point E 0 D (r) using Eq.(5.3.14) 6 . By this process, we can accurately measure the Dirac point distribution present in the given region. However, the high measurement time involved poses a major disadvantage for the implementation of this technique. For example, if the measurement time for one point is adjusted at about 30 s, then for 64 × 64 pxls, the whole CITS would last for about 34 hours! Since our experiment involves investigating the charge disorder at several gate voltages at low temperatures (T ∼ 130 mK) in an inverted dilution cryostat, such long duration measurements are not feasible.

The second alternative is the spatial mapping of G t using a lock-in amplifier, at a fixed value of V bias with the z-feedback on. This technique was demonstrated by Y. Zhang et al. to image electron-hole puddles in graphene on SiO 2 [START_REF] Zhang | Origin of spatial charge inhomogeneity in graphene[END_REF]. The measurement time involved in this case (85 mins for an image of 256 × 256 pxls at a speed of 10 nm/s for the images presented), is orders of magnitude less than in the previous case. Hence, for the bulk of the measurements presented in this section, we adopt this method.

The principle behind the spatial mapping of the differential tunneling conductance G t to visualize the existent charge inhomogeneity is that if V bias is chosen in the vicinity of the primary minimum V min , then an infinitesimal fluctuation in the position of the Dirac point δE 0 D (r) due to doping inhomogeneity will lead to an infinitesimal change in V min which in turn should produce an infinitesimal change in G t (V bias ) given by δ(dI t /dV ) ∝ δV min ∝ δE 0 If the tunneling spectrum on graphene would be perfectly linear about the Dirac point or rather the primary minimum as in the insets in the schematic of Figure 5.19(a), then this method should provide an accurate image of the doping inhomogeneities up to a multiplicative factor provided the voltage bias chosen for imaging (V bias ) set lies sufficiently far from (V min ± δV min ).

6 E 0 D refers to the actual Dirac point of graphene without any perturbation from the tip. 7 The proportionality should hold, at least at high doping [Eq. (5.3.14)], because V min follows the same dependence on Vgate as E 0 D except that their origins are horizontally shifted by ∆β. However, measuring at bias voltages located too far from the primary minimum is not recommended. This is because the perturbations that induce these doping inhomogeneities also act as scattering centers and at high energies, will give rise to quasiparticle interference patterns in the G t (x, y) maps as clearly seen in Figure 5.19. Therefore for |(V bias ) set | |V min |, the G t (x, y) maps will contain spatial modulations induced by the QPIs superposed on the doping distribution. The characteristic spatial dimension of features extracted from such an image would mainly correspond to the QPI patterns rather than the charge inhomogenieties.

Measuring at V bias located too close to the primary minimum is not recommended either.

As we had discussed in section 5.3.4, the tunneling spectrum close to V min is not linear but complicated by the presence of a series of fringes due to tip-induced confinement of the electronic states close to the Dirac point. We also found it best to avoid energies lying in the range 0 < |(V bias ) set | < |V min | because of the presence of the zero bias anomaly at V bias = 0.

Keeping all these conditions in mind, it is important to find an optimum value of V bias at which we can correctly implement the second technique to image the charge inhomogenieties.

From our discussion so far, it is quite obvious that the choice of this bias voltage will depend on the position of E D or rather the primary minimum V min which in turn is dependent on the backgate voltage. In Figure 5.18(a), the choice of (V bias ) set for each V gate has been demonstrated.

The following briefly summarizes our selection criteria.

(V bias ) set =      V min + 0.1 V for V min > 0 V min -0.1 V for V min ≤ 0 (5.4.1) 
From Figure 5.17, we clearly see that the above criteria select the optimum bias voltage at which the tunneling spectrum is approximately linear and featureless. At the same time, the difference of 0.1 V ensures that it is neither too far from nor too close to the primary minimum.

However, we must note that the two different conditions used for hole and electron doping will result in a contrast reversal as demonstrated in Figure 5.18(b)-(d). For a given doping distribution shown in (c), following the positive doping criteria will produce the same image as the given distribution [(d)]. But choosing the negative doping criteria will produce the complimentary image. However, this is not a problem as the quantities of interest i.e. amplitude and spatial extent of disorder remain identical in the two cases. 

Charge Disorder with Point to Point Tunneling Spectroscopy

CITS at high electron concentration

Figure 5.20 presents the thorough investigation of the local doping inhomogeneities found at high electron concentrations corresponding to a backgate voltage of 70 V by the method of CITS. Since, the charge neutrality point was observed at V 0 D = 30 V, this backgate voltage should correspond to an electron concentration of n g = 3.0 × 10 12 cm -2 (2.1). Considering an average impurity distance of d = 0.21 nm, as suggested by transport measurements for electron doping (table 5.1), this value of n g lies in the intermediate regime where the theory is not very well developed (section 2.4.2). It would have been interesting to measure beyond the complete screening limit but since this would mean V gate > 600 V, it was not feasible. (a) and (b) shows the topography and the Dirac point map of the given region on graphene. The two images do not seem to be correlated. This is expected on graphene on SiO 2 as the source of E D fluctuations are randomly charged impurities embedded in the substrate and is consistent with the measurements by Y.

Zhang et al. [START_REF] Zhang | Origin of spatial charge inhomogeneity in graphene[END_REF] or A. Deshpande et al [START_REF] Deshpande | Spatially resolved spectroscopy of monolayer graphene on SiO 2[END_REF]. The topographic roughness is about 110 pm.

To obtain the Dirac point distribution in the given region, as a first step, we extract the primary minimum from each G t vs V bias curve. This is done by means of a parabolic fit over an energy window spanning from -400 mV to -60 mV in this case 8 . Not all spectra are perfect and a selection procedure is needed to shortlist the better ones. Ensuring a positive curvature of the best fit parabola serves as a good criterion for this purpose. From the primary minimum, the Dirac point E 0 D (r) is obtained using Eq.(5.3.14). Figure 5.20(c) shows the collection of all selected spectra with the black line showing the mean differential tunneling conductance. (d) gives the histogram of the distribution of E 0 D (r) found in the above way with a mean value of -203.7 meV and a standard deviation of σ E D = 28.3 meV. Using Eq.(2.2.21), we also find the associated distribution of doping concentration n(r) with an average value of n = 31×10 11 cm -2 and standard deviation n rms = 9 × 10 11 cm -2 . All these have been listed together in the table 5.3 along with the corresponding values extracted from CITS at other gate voltages.

Since the CITS measurement involves probing the spatial variations in the LDOS at different energies, it becomes possible to cross-check if G t (x, y) maps acquired at V bias that follows the selection criteria given by Eq.(5.4.1) actually resembles the Dirac point map. The standard way to quantify the resemblance between two given images, A and B with dimensions (M,N), is via their correlation coefficient which is given by

χ 0 A-B = M m=1 N n=1 A mn -Ā B mn -B σ A σ B . ( 5.4.2) 
As is evident, a perfect resemblance would correspond to χ 0 A-B = 1 while completely uncorrelated images would correspond to χ 0 A-B → 0. Figure 5.20(e) shows the variation of the 2D correlation coefficient between G t (x, y) and the Dirac point map as a function of V bias . At the average primary minimum i.e. V bias =< V min >, χ 0 E D -Gt ≈ 0.5 (orange dot) and is clearly seen (Figure 5.20(e)) to increase to about 0.8 at V bias =< V min > -0.1 V (magenta dot) beyond which it saturates. Therefore, this implies that the G t (x, y) maps for V bias (< V min > -0.1 V) show maximum positive correlation with the E 0 D (x, y) map and hence justifies our criteria for choosing (V bias ) set according to Eq.(5.4.1) for imaging the inhomogeneities at high electron densities. This is further verified by the G t (x, y) map at

V bias =< V min > -0.1 V shown in (f) which indeed shows a strong resemblance to E 0 D (x, y) map in (b). On the right of V bias =< V min >, χ 0 E D -Gt
decreases and becomes negative at around (V bias = -0.1 V), then rises again to almost zero at V bias = 0 V and then once again drops to negative values. The reason for the change in sign is expected as explained clearly by the schematic in Figure 5.18. Had the G t vs V bias dependence been perfectly linear about V min , the change in sign of χ 0 E D -Gt would have been instantaneous. The finite slope in (e) about V bias =< V min > therefore arises due to the flattening of the G t spectrum about the primary minimum. The presence of the zero bias anomaly at V bias = 0 V (section 5.3.5) obscures the existing correlations i.e. χ 0 E D -Gt ≈ 0 and hence justifies the need to optimally choose the bias voltages for imaging the doping inhomogeneities. The interpretation of χ 0 E D -Gt vs V bias (Figure 5.21(e)) is more complicated in this case. The highest correlation χ 0 E D -Gt ≈ -0.8 is almost the same in magnitude as before but with an inverted sign and develops for V bias (< V min > +0.1 V) (magenta dot) which is expected (Figure 5.18) and also in accordance with our prediction (section 5.4.1). At V bias < V min , |χ 0 E D -Gt | decreases and turns positive at about V bias = 0.1 V, beyond which it reduces once again to weakly negative values at about V bias = 0 V and remains fluctuating there, unable to recover a high positive value as would have been expected. This is the fundamental difference measured between high electron doping (Figure 5.20) and high hole doping (Figure 5.21). The reason for this difference is not very clear but seems to be related to the different shape of the tunneling spectrum in the two situations, as seen from Figure 5.20(c) and Figure 5.21(c), which is very much flatter about < V min > in the hole doped case in comparison to the situation at high electron doping. This fact is also visible in the all the G t (V bias , V gate ) maps shown in Figure 5.17.

CITS at high hole concentration

For the imaging of doping inhomogeneities by mapping of tunneling conductance G t (x, y) at a set V bias , this asymmetry between high electron and hole doping implies that imaging at high hole densities will be trickier than imaging at high electron densities, and would rely heavily on a careful choice of V bias for scanning. The flatter G t spectrum at high hole doping also implies lower sensitivity to a given spatial inhomogeneity which manifests as a lower standard deviation in the G t (x, y) maps (notice color bar scale of Figure 5.20(f) and 5.21(g)). 9 , hence a direct comparison is not possible as before. Nevertheless, it is still possible to find out the statistics related to the local E 0 D distribution as before. We find the Dirac point fluctuations to be about 36 meV and the corresponding doping fluctuations n rms = 4.77 × 10 11 cm -2 . We note that in this case n = 1.79 × 10 11 cm -2 n rms , hence this indeed corresponds to the low density regime.

CITS near charge neutrality

We note here, that the values of σ E D and n rms that we measure in this case, also listed in table 5.3, may be erroneous. This is because the ZBA and V min lies in close proximity in the G t spectra. This renders an unambiguous detection of V min difficult. In this respect, measuring away from the primary minimum, as in Method 2 presented in the subsequent section, may give a more accurate description of the amplitude of the inhomogeneities. For example, the correlation length ξ (section 2.4.2) associated with the features in the Dirac point map is only 4.2 nm while it increases in the correlated G t (x, y) maps (g) to 7 nm which is perhaps closer to the actual value.

The 2D correlation coefficient χ 0 E D -Gt (Figure 5.22(e)) is zero at V bias = 0 and rises equally on both sides of the primary minimum which is expected and well understood. Therefore choosing either side i.e. (< V min > + 0.1 V) or (< V min > -0.1 V) for measuring the carrier density fluctuations would give a proper visualization of the E 0 D distributions as additionally verified in (f) and (g). For V bias > (< V min > + 0.1 V), χ 0 E D -Gt remains at ≈ -0.6, at least within the measurement window, but drops rapidly at high negative V bias . This drop in correlation is probably related to the onset of scattering from doping inhomogeneities at high energies resulting in lower puddle sizes as seen in Figure 5.19. However, the situation is once again found to be asymmetric for hole states (V bias < 0) and electron states (V bias > 0).

The following table lists the summary of the main results found from the three CITS presented above.

V gate (V) ĒD (meV) n (×10 11 cm -2 ) V D (V) σ E D (meV) n rms (×10 

Comparison with theory

The question now is whether σ E D that we find at the three different carrier concentrations agree with what is expected from the value of (n imp , d) found from transport (table 5.1)? The inhomogeneities being induced by the disordered impurity potential on the substrate, should be related to the screened disorder potential Ṽrms as discussed in section 2.4.2. In the complete screening limit obtained at large carrier densities, the fluctuations in the Dirac point should be The red and blue solid lines are calculated assuming (n imp , d) obtained from transport (table 5.1) for the electron and hole side respectively. The red, blue and black squares represent the experimentally measured values for the CITS at the three different carrier concentrations 10 .

It is quite obvious that the fluctuations measured in the CITS do not agree with what is derived from the parameters extracted from transport. The amplitude of disorder is significantly less. We must note here that Eq.(5.4.3) is true only in the complete screening limit whereas in the present experiment, this limit was never reached. For both CITS, at V gate = -15 V and V gate = 70 V, the carrier densities lie in the intermediate regime where the theory is not well described, as discussed in section 2.4.2. We must also note that due to lack of a good spatial resolution in the CITS, σ E D and n rms measured is subjected to finite error. 10 ng for the CITS at Vgate = -15 V and 70 V is not n of the distribution but calculated from the relation given in table 2.1 11 By method 2 discussed in section 2.4.2

In table 5.3, ξ found from the Dirac point maps at the three different carrier concentrations have been listed. Once again, the poor agreement is due to the lack of sufficient spatial resolution.

However, for the CITS conducted at charge neutrality point i.e. V gate = 30 V, we find ξ = 4.2 nm and for the best correlated G t (x, y) map (Figure 5.22(g)), ξ = 7 nm which comes very close to the theoretically predicted value.

To summarize, using the CITS measurements, the doping inhomogeneities in graphene has been probed at high electron and hole concentrations as well as close to charge neutrality. Although a clear quantitative comparison with theory is not possible at this stage due to lack of spatial resolution, the measurements clearly validate the technique for imaging the charge puddles, that has been discussed in section 5.18.

Gradual evolution of Charge disorder with Carrier Concentration

In the last section, we employed the process of acquiring the full differential tunneling conductance spectrum at each designated spatial location of a given region to investigate the fluctuations in the Dirac point E 0 D . Although we were able to measure σ E D at three different carrier concentrations, the measurements lacked the spatial resolution needed to observe the small coherence lengths at large carrier concentrations. Also, because of the large measurement time involved, we were unable to track the gradual evolution Ṽrms or ξ with carrier concentration. In this section, we overcome these limitations by employing the second method of imaging G t (x, y) at a well chosen bias voltage (V bias ) set [Eq.(5.4.1)], to track the evolution of the disordered landscape of the screened impurity potential with carrier concentration at two different locations.

Experimental Details

To acquire a series of G t (x, y) maps at different backgate voltages using method 2 (section 5.4.1), the first step involves the preparation of a list of bias voltages (V bias ) set at which the image scans are to be conducted. This requires the knowledge of the variation of V min wrt. V gate in order to follow our imaging criteria described by Eq.(5.4.1). Hence, a G t (V bias , V gate ) map is obtained at a given location just prior to this measurement. This gives the required information about the primary minimum which enables the preparation of the list of (V bias ) set 12 .

However, this is not very trivial as an unambiguous determination of V min is difficult in most cases, especially at low densities. Also, it must be clarified, that at the time of performing the measurements, the difference between the V min and E 0 D was not very well understood. Hence at the two locations, two different selection criteria for (V bias ) set were eventually implemented, different from that given by Eq.(5.4.1). Figure 5.24 shows the chosen (V bias ) set wrt. V min at the two different locations. For Location 1 in (a), the selection was done based on the position of V min extracted from the G t spectrum at different V gate . The uneven choice of (V bias ) set reflects the crudeness of detection of V min in this way. For Location 2, the theoretical Eq.(5.3.2) (with V 0 D = 30 V) was used to obtain E 0 D at different V gate . Then assuming E 0 D = V min , (V bias ) set was chosen in a manner given by Eq.(5.4.1).

In Figures (5. 

V min

The primary minimum of the tunneling conductance G t spectrum.

(V bias ) set Bias voltage set for imaging puddles.

[V min ] 1 V min extracted by fitting a parabola about the minimum (also described in section 5.4.2).

[V min ] 2 Derived by visually estimating the position of V min from the gate map in a manner discussed in section 5.3.5

Table 5.4: Summary of the different relevant voltages for mapping the puddles.

Once the list of (V bias ) set has been decided, the following steps just involve setting V gate and V bias according to the prepared list with tip in retracted position for safety, then approaching and stabilizing the tip before scanning and finally scanning over the given region with closed z-feedback i.e. in constant current mode.

The Puddles

Figures (5.25 and 5.26) (c) show the set of G t (x, y) maps that track the gradual evolution of the 'electron-hole puddle ' landscape as V gate is tuned from high hole concentration (V gate V 0 D = 30 V) to charge neutrality (V gate = V 0 D ) and eventually to high electron concentration (V gate V 0 D ). Both the spatial dimension as well as the amplitude of the features in the G t (x, y) maps is clearly seen to increase as the gate voltage approaches charge neutrality i.e. V gate → V 0 D . This is a direct consequence of the fact that at high carrier concentrations, the underlying disordered potential is strongly screened leading to reduction in induced inhomogeneity whereas at low carrier densities, screening is week and the underlying disordered potential renders the graphene strongly disordered, hence accounting for the large e-h puddles.

To better understand the evolution with V gate , let us go over the G t (x, y) maps from high hole doping to high electron doping. At Location 1 (Figure 5.25(c)), from V gate = -20 V to 25 V, we do observe the puddles to gradually grow in size and come into prominence. A contrast reversal occurs between 25 V and 30 V which is related to the sign change in (V bias ) set . We can explain this by once again considering the 2D correlation coefficient χ 0 E D -Gt between G t (x, y) and the Dirac point map E D (x, y). Based on our analysis of χ 0 E D -Gt in section 5.4.2, the positive or negative sign of the correlation has been depicted in Figure 5.24 for the different (V bias ) set for both locations. For location 1 [in (a)], the switch in sign of χ 0 E D -Gt occurs between 25 V and 30 V which explains the contrast reversal. However, another contrast inversion occurs between 40 V and 45 V. From Figure 5.24(a), this cannot be explained but if we consider the possibility that due to the uneven nature of (V bias ) set , the V min vs V gate curve intersects it between 40 V and 45 V, then this would account for the contrast change. Beyond 45 V, the puddle sizes decrease in a consistent manner. For Location 2 (Figure 5.26), the choice of (V bias ) set captures the evolution of the puddles in a more consistent fashion. In this case, the puddles grow systematically in size till V gate = 27.5 V beyond which the switch in contrast occurs, clearly explained by Figure 5.24(b). On further increasing V gate , the large puddles are gradually fragmented to give rise to smaller ones at high electron densities.

We distinctly notice that a stronger disorder persists at higher electron doping than in the equivalently hole doped graphene at both locations (first and last G t image at each location, for example). In case of Location 2, one might suspect this to be the result of scanning too close to the primary minimum (Figure 5.26(a)) in the hole doped side which causes confinement of the electronic states being probed (situation demonstrated schematically in Figure 5.15(c)), and hence QPIs may follow leading to decrease in size of the features. However, at Location 1, on the hole doped side, the scan voltages chosen were sufficiently far from V min (Figure 5.25(a)). On the contrary, scan voltages used for probing electron doped graphene were perhaps too close to the primary minimum in this case. Nevertheless, we continue to observe this asymmetry between electron and hole doped graphene. This seems to be related to the asymmetry that was found in the CITS measurements discussed in section 5.4.2 where the tunneling spectrum at high hole doping (Figure 5.21(c)) was found to be flatter about V min than at high electron doping (Figure 5.20(c)). Both observations tend to imply a relative difficulty in imaging of puddles at high hole concentrations.

Therefore, we see that tuning the gate voltage causes the lateral and longitudinal scale of screened potential fluctuations to change. The fluctuations increase as the charge neutrality point is approached (maximum achieved near V D ) and subside away from it at high carrier concentrations. A distinct asymmetry exists between electron and hole doping as larger puddle sizes persist at higher electron doping than at an equivalent amount of hole doping. This observation is common to all locations measured, although different criteria were used to set the bias voltage. 

Correlation with Topography

In the previous section, we have studied the gradual evolution of the G t (x, y) maps with V gate . Now let us look at the corresponding changes in the simultaneously acquired STM topography. We find that at both locations, the STM surface roughness increases as charge neutrality point V 0 D is approached and reduces at higher concentrations. The maximum roughness is achieved at V gate = 35 V at Location 1 and at V gate = 27.5 V at Location 2. For the second case, this maximum position coincides with V switch (Figure 5.24(a)) but for the first location, this is not the case since V switch = 25 V (Figure 5.24(b)). χ 0 z-Gt also shows a dependence on V gate . Approaching V 0 D from high hole doping, χ 0 z-Gt first decreases from ≈ 0 to negative values, then increases to positive values and then subsides again to smaller positive values at high electron doping. In (c),(d) and (e),(f), topography and the simultaneously acquired G t (x, y) maps are shown corresponding to largest negative and positive correlation respectively which do show a small resemblance to each other.

The reason for the variation of the STM topography with V gate , found at both locations, is clearly related to the increase in inhomogeneities in the DOS at low carrier concentrations. This is because in STM, the topography is the convolution of the actual topography and the DOS Eq.(3.2.2), hence strong fluctuations in the DOS will tend to produce strong variations in the tunneling current I t . I t being maintained constant during imaging of the puddles in STM, the fluctuations will be reflected as an apparent topography with higher corrugations. However, the explanation for the observed variation in χ z-Gt is not very clear, and would require further investigation.

Correlations at Different carrier densities

The differential tunneling conductance maps presented in Figure 5.25 and 5.26 have shown quite explicitly that both the lateral and longitudinal scale of screened disorder potential fluctuations dramatically increase as charge neutrality point is approached. The correlation function C(r), that we have discussed in detail in section 2.4.2, provides a good way to quantitatively characterize these fluctuations. It can be considered to be composed of two distinct parts: (1) the amplitude of the fluctuations and (2) the spatial extent, as given by Eq. (2.4.11). In this section, we calculate these two quantities for the measured DOS maps and compare them with what is expected from the transport measurements, summarized in table 5.1. In section 5.4.2, we had quantitatively measured the RMS value of the Dirac point fluctuations (= Ṽrms ) at high hole and electron doping (table 5.3). Using these values, we can rescale the curves plotted in (a). This allows us to convert the RMS fluctuations in differential tunneling conductance i.e. σ Gt in units of energy. This has been separately carried out for the electron and the hole side. In Figure 5.29(b) and (c), the rescaled values have been plotted together with theoretically calculated ones using the procedure described in section 5.4.2. The solid lines have been calculated for (n imp , d) suggested by transport while to calculate the dashed lines, d has been changed to match the value at high doping suggested by the CITS measurements. However, we see clearly that the observations are not in agreement with the theoretical fits.

The discrepancy could be related to the gating effect exerted by the tip on the graphene which causes the Dirac point of the graphene right below it to change from E 0 D [Eq.(5.3.2)] to E D [Eq. (5.3.11)]. Additionally, the primary minimum V min in the G t spectrum no longer corresponds to E 0 D as we have discussed in section 5.3.4. In such a situation, it is actually not so obvious that all three of these important energy locations will follow the same inhomogeneous doping profile existing on the sample. From a differential tunneling conductance spectrum in graphene, since the directly measurable quantity is V min , it is important to understand whether this correctly reproduces a given doping profile along the graphene surface. is considered to be equal to the RMS value of the screened disorder potential i.e. ∆E 0 D = Ṽrms . Since Ṽrms changes with V gate , ∆E 0 D changes accordingly. In (e), the orange curve shows this change as a function of V gate which is calculated using the same parameters as the red dashed curve in Figure 5.29(b). To correctly measure this doping profile, we would require V min (indicated by the green line) to reproduce the behavior of E 0 D . However, we see that this is not the case. Away from charge neutrality, the agreement is reasonable but towards it, ∆V min is magnified to almost 2.5 times the actual value (∆E 0 D ) in the present example. The maximum value of ∆V min depends directly on the work-function mismatch ∆ and inversely on the tip-sample distance z ts . This might account for the difference in the increase of Ṽrms observed in the two locations (Setpoint current I t at location 1 was 100 pA and at Location 2 was 50 pA as stated in Figure 5. 25 and 5.26). Further, this seems to roughly explain the other observations in the experimentally measured Ṽrms vs V gate curves shown in Figure 5.29(a): that the maximum value of V min is shifted wrt. V 0 D and that the rise in ∆V min from high doping to low doping is asymmetric for hole doped and electron doped graphene.

Method to extract Puddle Size

Although quantitative detection of the amplitude of screened potential fluctuations by STS is difficult, as illustrated in Figure 5.30, the spatial extent of the inhomogeneities is correctly tracked by V min as seen in (b),(c) and (d). Hence, let us now discuss the method by which we can extract the spatial dimension of the fluctuations in the G t (x, y) maps at different backgate voltages. Since, the smallest size of puddles at high carrier densities ≈ 1.5 nm, this level of filtering should 4σ 2 (indicated by the red line in (c)), gives us the decay length σ of the correlation curve for this direction. Repeating this process for several directions and considering the mean curve gives the angular averaged, normalized correlation function A φ . The mean of σ gives the average decay length of the correlation curve and the standard deviation can be considered as the associated error. This error is an indication of the non circular shape of the puddles and can be significant for large puddle sizes. This forms a standard way to extract the characteristic dimension of repetitive features in a given image, which in our case are the puddles. Since this is a statistical process, we have to bear in mind that the lengths extracted in this manner are a rough estimate and not entirely accurate. This is especially true when the size of the puddles are significantly large compared to the image area and when large number of puddles fuse to form a huge blob. To get an estimate of the amount of error we introduce in this process, let us consider the table 5.5 which lists the results of applying the above process to simulated images of Gaussian puddles.

The first column lists the size (σ) of the Gaussian puddles considered for the simulations. We see that for one single puddle, fit with the function G(x) accurately determines the puddle size. (both locations) and electron doped graphene (location 1). But this is not so surprising as in this regime, with large size of inhomogeneities, the error is expected to be higher; correlation curves deviate significantly from a Gaussian due to finite size effects (Figure 5.32(b),(d), for example.

By employing Scanning tunneling spectroscopy, we are able to measure a carrier density dependent correlation length of fluctuations that follows the trend predicted by transport theories for charge carriers in graphene. Hence, this once again constitutes a strong validation of the fact that the origin of the charge disorder in graphene on SiO 2 is indeed random charge impurities on the substrate.

Conclusion

In conclusion, we have presented a detailed investigation of the field effect in graphene by combining in-situ transport with scanning probe microscopy at dilution temperatures. The same Coulombic impurity potential that causes a linear conductivity in graphene at high carrier densities, renders the local electrostatic landscape of graphene disordered. By transport, we measure the average properties of this impurity potential i.e. (n imp , d) which we find to be asymmetric for electrons and holes. Using STS, we investigate the screened impurity potential locally at different gate voltages where we find a dramatic increase of both the spatial extent and amplitude of inhomogeneities at low carrier densities. While the variations of the spatial extent of the fluctuations with back-gate show very good agreement with (n imp , d) extracted from transport, the observed amplitude of inhomogeneities show a larger than expected increase at low densities. We explain this as a result of the local gating effect exerted by the tip on graphene which amplifies any change in the intrinsic doping at low carrier concentrations. 

Conclusion

In monolayer graphene, the disorder induced charge puddles are predicted to grow as the Fermi level approaches the Dirac point. This is a unique feature of MLG amongst 2DEGs. This thesis is the first experimental quantitative verification on the microscopic scale of this prediction.

In our quest, we have realized that the role of the metallic tip, employed in measuring these puddles by STM, can in no way be neglected. Being over a hundred times closer to graphene than the backgate, the tip acts as a local gate that induces a p-n or n-p junction right underneath. This leads to significant effect in the tunneling spectrum. The situation is very different on graphene on iridium where the close proximity to the metal substrate weakens any local gating by the tip. The interpretation of the tunneling spectrum on graphene has, therefore, been far more simple in that case.

In this thesis, I had the fascinating opportunity to explore Scanning probe microscopy. The primary motivation for combining AFM with STM in our setup was to conduct site-specific STM where the role of the AFM is just like a blind man's tool to guide the tip to the sample that is placed on a vast insulating substrate. Although this application was extensively used, we additionally experimented with other techniques like Kelvin probe force microscopy, dynamic STM, dissipation microscopy, scanning gate microscopy, to name a few. AFM also enabled us to directly visualize the effect the STM tip created on the sample such as cleaning action of the tip, any destructive effect, etc. In brief, we realized that the AFM, especially when combined with STM, is so much more than just a guiding tool for the tip. More innovative applications trying to combine the two techniques, can lead to significant progress towards realizing the true potential of this microscope.

There has been quite some failures on the way. One of the initial targets of this thesis had been the investigation of the superconducting proximity effect in superconductor-graphene hybrid devices using STM/STS. As a first try, we probed HOPG (highly oriented pyrolytic graphite) covered with tin islands. Such a system was difficult to probe as the soft islands were easily picked up by the tip. Eventually, we succeeded in measuring such an interface with the tin showing the superconducting DOS but failed to observe a proximity induced gap on the graphite itself. This measurement continued on the exfoliated graphene devices that were contacted with Ti/Nb/Au,
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 1 Figure 1: Resist free device nanofabrication. (a) Steps for device fabrication with thermally evaporated niobium using Bilayer metal mask technique. (b) Nb-Au-Nb SQUIDS fabricated with technique in (a). (c) Steps for contacting exfoliated graphene with two isolated electrical contacts using the mechanical shadow mask technique. (d) AFM topography and (e) Phase map of contacted graphene.

Figure 2 :

 2 Figure 2: Charge disorder in decoupled graphene on iridium (111) substrate. (a) Schematic demonstrating the role of graphene wrinkles as pathways of oxygen intercalation [8]. (b) Differential tunneling conductance spectrum over well coupled and decoupled graphene. Inset presents the STM topograph showing the boundary between well coupled and decoupled graphene. (c) Dirac point map E D (r) superposed over simultaneously acquired STM topography z(r). (d) Histogram of the doping fluctuations corresponding to the E D map in (d). (e) Angular averaged, normalized cross-correlation between z(r) and E D (r).
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 31 Figure 3: From macroscopic transport to charge disorder in graphene devices at various carrier concentrations. (a) Exfoliated graphene (GR) contacted with two isolated metal (M) contacts with a Needle sensor positioned on top: arrangement compatible for both transport and scanning probe microscopy. (b) Two-probe resistance as a function of V gate . V 0 D = 30 V gives the charge neutrality point. (c) Differential tunneling conductance G t as a function of V bias and V gate . (d) DOS maps at different V gate over an area of 100 × 100 nm 2 .
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 11 Figure 1.1: Thermogravity Analysis (TGA) results for PMMA polymer with a molecular weight M W = 950.000 g/mole. The full line indicates the weight loss vs. temperature in percent. The dashed line represents the derivative of the TGA curve and indicates degassing of volatile species which are particularly abundant in PMMA [10].

1. 1 .Figure 1 . 2 :

 112 Figure 1.2: PMMA resist residues on graphene. Optical image of a single-layer graphene sheet device.The electrodes A, B, C, and D were deposited by evaporation through a shadow mask, and E, F, and G were fabricated using standard electron beam lithography. Plots of two-terminal conductance (G) vs back gate voltage (V g ) for the electrode pairs (b) B, C and (c) F, G at room temperature (red) and 4.2 K (black) [14].
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 13 Figure 1.3: The Bilayer metal mask. (a) Steps for the fabrication of nanostructures with Niobium using bilayer metal mask. (b) SEM image of Al/Si (200 nm/30 nm) mask showing the well-defined undercuts in the Al sublayer. (c) Al/Si (200 nm/30 nm) mask showing Si bridges suspended over 2.2 µm with the Al underneath completely etched.
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 1 3(a) outlines the main fabrication steps while (b) and (c) shows two examples of the bilayer metal mask.
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 114 Figure 1.4: Optical Microscope images showing the different steps for Bilayer metal mask fabrication with the example of an Al/Si mask. (a) After development in MIBK/IPA (1:3) (b) after dry etch of Si (30 nm) top layer (c) after resist removal in acetone (d) after wet etch of Al (200 nm) (e) after metal deposition and lift-off.
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 3458 Patterning the resist by electron-beam lithography. This is followed by development in MIBK/IPA (1:3) for 35 s, rinsing in IPA for 5 s and finallly finishing off in another fresh bath of IPA for 90 s 1.4(a). Pattern in the resist is transferred to the Mo layer by dry reactive ion etching with a 20 W SF 6 plasma for 2 minutes. This plasma preferentially attacks the exposed Mo 1.4(b). Removal of the resist by immersing the sample in a bath of acetone for 45 minutes. It was found best to avoid ultrasonication to preserve fragile structures. This was followed by 5 minutes in 50 W O 2 plasma 1.4(c). 6. Removal of Al from the exposed parts by wet etching in a basic solution of MF-26A for about 90 s 1.4(d). The exposed substrate was then cleaned with 5 minutes of 50 W oxygen plasma before metal deposition. This gets rid of any organic contaminants on the substrate. 7. Metal (Niobium and/or other metals) deposition in an ultra high vacuum (P ∼ 10 -10 torr). Removal of the Al/Mo mask by wet etch in once again a basic solution of MF-319 for about 45 minutes 1.4(e).

Figure 1 . 5 :

 15 Figure 1.5: AFM analysis of the Line-edge roughness. (a) Atomic force microscopy (AFM) image of a 400 nm wide niobium line. (b)Profile along the straight line indicated in blue in (a). The inset indicates a zoomed in view of the line edge. The transition width of the edges is observed to be about 25 nm. (c) Edge contour of line along with a linear fit. (d) Histogram of line edge contour. Here 3σ = 10 nm.

Figure 1 .Figure 1 . 6 :

 116 Figure 1.6: Characterization of niobium lines by transport. (a) Optical microscope image of the Ti/Nb (10 nm/26 nm) lines of length L = 30 µm and widths W = 400 nm, 700 nm, 1 µm, 1.5 µm and 2.5 µm from left to right. (b) Resistance versus temperature of the three narrowest lines (I bias = 5 µA). Inset shows the normal state resistance of the lines at T = 4 K as a function of the aspect ratio, the different colors indicate the different line widths : 400 nm (red), 700 nm (green), 1 µm (blue) and 1.5 µm (magenta). The slope gives the sheet resistance R = 13.03 Ω/sq. (c) Voltage versus current characteristics at T = 4 K. These display hysteresis (as high as 32 % for the 400 nm line) as well as random fluctuations of the measured resistance at (I ≈ I c ). (d) Resistance vs magnetic field B applied perpendicular to the plain of the lines.
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 17 Figure 1.7: Oscillations of I c and I r with magnetic field. (a) SEM image of the entire sample consisting of five SQUIDs. (b) V (I) characteristics of device C at T = 135 mK and B = 0.253 mT i.e. magnetic field corresponding to the third maxima of I c at Φ/Φ 0 = 2 in (d). Inset shows the SEM image of SQUID C. Black line indicates the length scale of 2 µm (c) V (I) characteristics of device D at T = 125 mK and B = 0.121 mT i.e. magnetic field corresponding to the second maxima of I c at Φ/Φ 0 = 1 in (d). Inset shows the SEM image of SQUID B. Black line indicates the length scale of 3 µm. (c) Critical current I c and retrapping current I r oscillations vs applied magnetic field flux in SQUIDs B (squares, T = 125 mK) and C (bullets, T = 135 mK).

Figure 1 .

 1 7(b) and (c) shows the V (I) characteristics of SQUID C and SQUID B respectively at magnetic field corresponding to a critical current maxima for each. Out of the 5 SQUID devices, critical current is observed only for theses two devices i.e. ones with the shortest junction length L.

Figure 1 .

 1 Figure 1.7(b) and (c). A small but finite hysteresis is nevertheless observed : 7 % for the highest I c SQUID (device C) and 4 % for device B at the lowest temperatures. While sweeping the current down from large values |I| > I c , the SQUID turns non-resistive at a retrapping current
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 1813 Figure 1.8: Temperature dependence of eR n I c / c product for SQUID C for critical current I c and retrapping current I r along with fits with equation 1.2.4. Fitting parameters are η and c . For I c , best fit parameters are : η = 0.023, c = 31.14 µeV. For I r , best fit parameters are : η = 0.023, c = 30.22 µeV.

  plemented in the fabrication of S-N-S interfaces with both the superconductor (S = Nb) and the normal part (N = Au) deposited one after the other without breaking vacuum of the deposition chamber. This technological advancement led to dramatic increase in interface transparencies by almost 35 times the value obtained in case of the SQUIDs! Figure 1.9(a) shows the metal mask for the SNS structure while (b) shows the end device.
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 19 Figure 1.9: Nb-Au-Nb Josephson Junctions. (a) Scanning electron micrograph (SEM) of Al/Mo (290 nm/45 nm) bilayer mask for fabrication of Nb-Au-Nb junctions. (b) SEM image of the final junctions consisting of 90 nm Nb and 30 nm Au [24].
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 111 Figure 1.11: Identification of number of layers by Raman Spectroscopy. (a)Plot shows the G Peak at 1587 cm -1 and the 2D Peak at 2684 cm -1 . Blue dots indicate measured data points while the red curves indicate a lorentzian fit of the 2D intensity peak with a broadening of 24 cm -1 . Inset shows the optical micrograph of the corresponding graphene captured in green light for best contrast (≈ 9 %). (b) Broadening or FWHM (Γ) as a function of intensity ratio of 2D peak to that of G Peak (I 2D /I G ) for 20 monolayers (SLG) right after exfoliation. The blue dashed line is just a guide to eye to emphasize the positive correlation between Γ G and I 2D /I G .

Figure 1 .

 1 Figure 1.11 (a) shows the Raman spectra of one of the monolayers prepared, whose optical image is shown in the inset. The Raman spectra of the entire graphite family i.e starting from few layer flakes to the bulk crystal, are characterized by an intensity peak at Raman shift ≈ 1580 cm -1 which is called the G Peak and another peak at ≈ 2700 cm -1 called the 2D Peak. The G Peak is caused by the doubly degenerate zone center E 2g mode while the 2D Peak is a second order effect created by zone-boundary phonons. But what sets the monolayer spectra apart from the rest of the graphite family is the distinct Lorentzian shape of the 2D peak with a broadening (FWHM) ≈ 30 cm -1 .
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 112 Figure 1.12: Surface characterization of exfoliated graphene by atomic force microscopy in tapping mode. (a) AFM topograph and (b) Phase signal map of a given monolayer (SLG 1). (c) Topography and (d) Phase signal map of a second monolayer (SLG 2). (e),(g),(i) Topography and (f), (h), (j) Phase signal map of a third monolayer (SLG 3). (e)-(j) Each row from top to bottom have been recorded one after the other.

Figure 1 .

 1 Figure 1.12 shows examples of AFM characterization done on three monolayers. It is quite evident that while the flakes are vaguely visible in the topography, they prominently stand out in the Phase signal because the latter is directly sensitive to the nature of the tip-sample interaction.
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 113 Figure 1.13: Contacting Graphene by Mechanical masking. (a) Photograph showing the setup used for manual alignment of a W wire mask over the graphene consisting of a micromanipulator placed under an optical microscope. (b) Schematic explaining the working of the micromanipulator. (c) Fabrication steps for placing two isolated electrical contacts on exfoliated graphene. Step 1: Positioning 4 µm W wire on the selected flake. Step 2: Deposition of metal through a rectangular slit of size 0.3 mm × 2 mm placed on top of the wire. Step 3: Contacted graphene after removing the wire and the second mask.

Figure 1 . 14 :

 114 Figure 1.14: AFM Characterization of the Metal-Graphene Interface. (a) AFM Topography and (b) Phase map of a SLG contacted by the Ti/Nb/Au (1.5 nm/10 nm/2 nm) using the technique of mechanical masking. The roughness measured on the graphene is ∼ 0.6 nm, over an area of 1 µm × 1 µm while that on the SiO 2 substrate is about 0.3 nm and that on the metal is ∼ 0.8 nm for the same area. (c) Comparison of edge sharpness between graphene-metal interface (blue) created by the wire mask and a marker hole (red dashed line in plot and white dashed line in topography image (a)) patterned by deep UV lithography.

Figure 1 .

 1 Figure 1.14(c) shows the edge sharpness of the metal-graphene interface in comparison to that of a marker hole patterned by deep UV lithography as measured by an AFM tip in tapping mode.
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 115 Figure 1.15: Rupture of Graphene under strain. Phase map (AFM) of a contacted (Ti/Nb/Au) (1.5 nm/10 nm/2 nm) monolayer flake found to be torn from the middle right after deposition.

Figure 1 .

 1 16(c) shows the comparison of interface profiles (AFM) of graphene devices with different thickness of metal contacts. Of course, reducing the thickness meant reduction of superconducting critical temperature (T c ) of the metal combination
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 116 Figure 1.16: Interface improvement with reduced metal thickness. (a) AFM topograph of a metal-graphene-metal junction with poor adhesion of the contacts to the graphene. (b) AFM topograph of another sample with reduced metal thickness that shows much better contact with the SLG. (c) Gradual improvement of interfaces with lower metal thickness deposited. Plot shows the Z profiles (AFM) of Au/Nb/Ti -Graphene interfaces for different thicknesses of the metal deposited. (d) Normalised conductance measured by transport as a function of voltage bias across the sample for two different metal thicknesses at zero backgate voltage which corresponded to a intrinsic positive doping in both cases (T = 130 mK).
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 21 Figure 2.1: Honeycomb lattice of Graphene and its Brillouin Zone. (a) Atomically resolved STM image showing the hexagonal arrangement of atoms in a unit cell of graphene [50]. (b) Schematic of the honeycomb lattice consisting of two inter-penetrating triangular sublattices. a 1 and a 2 are the lattice unit vectors while δ i , i = 1, 2, 3 are the nearest neighbour vectors. (c) Corresponding Brillouin zone. The Dirac cones are located at K and K points while b 1 and b 2 indicate the reciprocal lattice vectors [49]. The background color plot gives energy E(k) of the conduction band in units of the hopping energy [Eq.(2.2.6)].

Figure 2 .

 2 1(a) shows an STM image of graphene lattice which beautifully captures the hexagonal arrangement of the carbon atoms in a unit cell.

Figure 2 . 3 :

 23 Figure 2.3: Lattice structure and energy dispersion relation in bilayer graphene. (a) Lattice structure of Bernal (A-B) stacked bilayer graphene. γ i , i = 1, 2, 3, 4 indicates the inter and intra-layer hopping parameters, see text [54]. (b) The four energy bands (different colors) corresponding to V = 0 eV and (b)V = 0.3 V. Intra-plane, nearest neighbour (NN) hopping parameter γ 0 = t = 3 V and inter-plane, NN hopping energy γ 1 = t ⊥ = 0.4 eV. The insets show a three dimensional schematic for each case.

Figure 2 .

 2 3(a) shows the lattice structure for A-B or Bernal stacked bilayer graphene. The tight-binding approach used to derive the dispersion relation in SLG can also be applied in this case. The different inter and intra-layer hopping terms have been indicated in (a).

Figure 2 . 4 :

 24 Figure 2.4: Electronic density of states (DOS) of single-layered (SLG) and bilayer (BLG) graphene. (a) DOS of SLG close to the Dirac point. Inset shows the DOS for the full bandwidth [49]. (b) DOS of BLG for V = 0 (v F = 10 6 ms -1 , t ⊥ = 0.4 eV), calculated using Eq.(2.2.20).
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 25 Figure 2.5: Ratio of susceptibilities determined from Thomas-Fermi and Lindhard or Random Phase Approximation (RPA) theory of screening.
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 26 Figure 2.6: Dielectric function of graphene calculated using the three different approaches : Thomas-Fermi (TF), Random Phase Approximation (RPA) and Complete Screening (CS).
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 27 Figure 2.7: Doping inhomogeneities induced in graphene by disordered impurity potential. Lower color plot shows the spatial distribution of the disordered potential V D due to charged impurities. Upper plot traces the distribution of the induced carrier concentration n, also shown above in 3D. The black lines define the boundary of e-h puddles [64].
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 28 Figure 2.8: Change of conductivity σ dependence on backgate V gate with increased impurity concentration (by depositing potassium atoms at T = 20 K in UHV). Lines represent fits to Eq.(2.4.6) in accordance with Drude-Boltzmann model [61].
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 29 Figure 2.9: Klein tunneling of Dirac quasiparticles in graphene. (a) Schematic showing the tunneling of an electron, with energy E and pseudospin σ parallel to its momentum (k), between two electron doped regions via a hole-doped region. (b) Transmission probablity T through a barrier of width D = 100 nm and height V 0 as a function of the incident angle. (c) T at normal incidence as a function of D (V 0 = 285 meV, E = 80 meV) and (d) V 0 (D = 0.01 nm, E = 80 meV)for Klein tunneling in graphene and normal quantum mechanical tunneling for a free electron in a square potential[START_REF] Katsnelson | Chiral tunnelling and the Klein paradox in graphene[END_REF].
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 210 Figure 2.10: Sketch of charged impurity induced doping in Graphene. Reddish regions in the graphene indicate higher positive doping due to the negatively charged impurities embedded in the substrate.
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 211 Figure 2.11: Comparison of C 0 (r s = 0.8, a = 4k F d) using different screening approximations [29]. All approximations agree in the high density regime but show major differences in the low density regime. Dashed lines represent small density analytic asymptotes for the Thomas Fermi and RPA. Squares show numerical evaluation of Eq.(2.4.14) using exact dielectric function reported in [57]. Highlighted (red) window approximately shows the regime accessible by experiments (d = 1 nm).
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 212 Figure 2.12: Residual charge density and Minimim conductivity. (a) Finding n * self-consistently. Black curve represents the RHS of Eq.(2.4.17) and the straight lines represent the LHS for the indicated values of n imp . The intersections give the solution n * . (b) Variation of n * and (c) minimum conductivity σ 0 with n imp for d = 1 nm. (d) Variation of n * and (e) σ 0 with d for n imp = 4.0 × 10 11 cm -2 .
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 213 Figure 2.13: Charge disorder as a function of carrier density solved self-consistently, see text.

n

  imp = 8.56 × 10 11 cm -2 and d = 2.09 Å. Lateral extent of Disorder So far we have concentrated on the amplitude of the screened disorder potential Ṽ (r) and the magnitude of the charge disorder n rms induced by it. Now, we move to the second part of the local correlation function in Eq.(2.4.11) which contains the spatial dependence or in other words, the normalized correlation A(r) = C(r)/C(0). The color plot in Figure 2.14(a) shows A for a disordered potential landscape created by Coulombic impurities [Eq.(2.4.14)], as a function of carrier concentration n g and distance r. Each correlation curve has been obtained by numerically solving Eq.(2.4.14) since a closed analytic

Figure 2 .

 2 Figure 2.14(c) shows the correlation length ξ as a function of n g both with RPA and TF screening, extracted in this way. The divergence of the decay length close to the Dirac point can be understood as a natural consequence of the small number of carriers in the system that result in very weak screening and the effect of any potential fluctuation can therefore be felt at long distances. At high carrier densities, the strong screening results in a rapid decay of any

Figure 2 .

 2 Figure 2.14: (a) Normalized auto-correlation of screened Coulomb potential as a function of n g and distance r by numerically solving Eq.(2.4.14) (n imp = 4 × 10 11 cm -2 and d = 0.23 nm). (b) Two cuts of A(r) along lines indicated in (a) corresponding to two different values of n g , along with the respective Gaussian fits. (c) Variation of correlation length ξ as a function of n g , extracted as standard deviation of the best-fitting Gaussian, see text.
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 215 Figure 2.15: Variations in Correlation length ξ at n g = 0 with (a) impurity concentration n imp and (b) distance of the impurities from the plane of graphene using Eq.(2.4.26).

Figure 2 . 16 :

 216 Figure 2.16: Correlation length as a function of carrier concentration n g found using two different methods. In Method 1, ξ is found by Gaussian fitting of the A(r) given by Eq.(2.4.14). In Method 2 Eq.(2.4.27) is used which incorporates the effect of changing charge disorder at different carrier concentrations.
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 31 Figure 3.1: Schematic showing the working of a Scanning Tunneling Microscope. A metallic tip mounted on a piezo tube scanner scans over a conducting sample with the tip-sample distance maintained by a feedback loop controlled by the tunneling current flowing between the two surfaces. (b) Schematic showing the tunneling process occurring between the tip and the sample across an insulating (vacuum) barrier fo width z [68].

3 .

 3 ρ s (E, r)f (E, T )dE gives the position dependent number of electronic states of the sample that are filled between energy E and E+δE whereas ρ tip (E-eV bias ) [1 -f (E -eV bias , T )] dE
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 32 Figure 3.2: Scanning Tunneling Spectroscopy. (a) Schematic demonstrating elastic tunneling of quasiparticles from a metallic tip (left) with a flat DOS to a superconducting sample with a BCS like DOS (right) through an insulating (vacuum) barrier. By tuning the bias (V bias ) applied to the sample, relative position of the Fermi levels of tip and sample changes giving access to different parts of the sample DOS. (b) Tunneling current as a function of V bias at T = 1 K. (c) Tunneling conductance as a function of V bias at T = 1 K (blue) and T = 0 K (green).

dI t dV bias = 4πe 2 |M | 2 ρ

 22 Figure 3.2 shows an example of using STS to measure the DOS of a superconducting sample
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 33 Figure 3.3: Atomic Force Microscopy. (a) Schematic explaining the basic working principle of the Atomic force microscope. Here, the needle sensor has been depicted as the force sensor, see section 3.4. (b) I t vs z sensitivity curve, on gold surface at room temperature with a Pt/Ir coated Si cantilever tip, the decay length is about 100 pm. (c) ∆f vs z sensitivity curve, recorded also on gold with a FIB shaped tungsten tip mounted on a needle sensor at 4 K (Q = 54300, f 0 = 993.864 kHz, A = 400 pm). For both (b) and (c), z = 0 corresponds to the starting position determined by the set-point parameters.

Figure 3 . 4 :

 34 Figure 3.4: Experimentally measured tip-sample interactions under different conditions. (a) Frequency shift ∆f vs tip-sample distance z at T = 300 K (P ≈ 10 -4 mbar), 4 K and 150 mK. (b) ∆f as a function of z and tip voltage V tip . (c) ∆f vs z at three different tip voltages with (sample grounded), along the horizontal cuts in (b). (Sample: gold, tip: W tip mounted on LER, T = 4 K)

Figure 3 .

 3 Figure 3.3(b) shows the sensitivity of ∆f to tip-sample distance (measured with a needle sensor) as compared to the sensitivity of I t in STM. The lower sensitivity combined with the nonmonotonic change of ∆f with z does make it difficult to achieve the spatial and vertical resolution
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 35 Figure 3.5: The Lennard Jones' potential U LJ , corresponding force F LJ = -dU LJ dz and the frequency shift given by Eq.(3.2.17) as a function of tip-sample distance z.

Figure 3 .

 3 Figure 3.4(a) shows the experimentally measured frequency shift ∆f of scan probe (derivative of tip-sample interaction) as a function of tip-sample distance at room temperature and at 4 K
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 36 Figure 3.6: Calculated steady state response characteristics of a forced, harmonic oscillator with f 0 = 1 MHz and Q = 50000. (a) Amplitude vs frequency shift. (b) Phase vs frequency shift.

Figure 3 . 7 :

 37 Figure 3.7: Experimental z spectroscopy for different amplitude of oscillations. (a) ∆f vs tipsample distance z for different amplitude of oscillations A set (Sample: graphene on iridium (111), tip: Pt/Ir coated Si cantilever tip mounted on LER, T = 4 K. (b) Excitation voltage V exc supplied to probe to maintain a constant amplitude set-point, as a function of z. z = 0 is the tip position where z-feedback is switched off and z > 0 implies tip withdrawal.

Figure 3 . 9 :

 39 Figure 3.9: Block diagram of the Frequency Modulation AFM (FM-AFM) feedback loop for maintaining the scan probe at resonance while scanning. NCO is a Numerically Controlled Oscillator.

4 .

 4 Figure 3.10: Schematic explaining measurement of contact potential difference (CPD) between tip and sample in Kelvin probe force microscopy (KPFM). Alignment of the different energy levels in the sample wrt. the tip when (a) they are electrically disconnected, (b) electrically connected and (c) a voltage V tip = -V CPD is applied to the tip where V CPD is the CPD of the sample wrt. the tip. E F represents the Fermi level, E vac : the vacuum level and W : the work-function of tip/sample as indicated by superscript/subscript.
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 311 Figure 3.11: Measurement of V CPD by force spectroscopy at different tip-sample distances. (Sample: gold, Probe: W tip mounted on LER). (a) Parabolic dependence of ∆f on V tip . (b) ∆f as a function of V tip and tip-sample distance z. z = 0 refers to the sarting point. (c) Change of d 2 C dz 2

Figure 3 .

 3 [START_REF] Varmazis | Metallurgy of Superconducting Materials: Treatise on Materials Science and Technology[END_REF] shows an example of force spectroscopy performed on a gold surface with a tungsten tip mounted on a LER at 130 mK. Figure (a) shows the parabolic dependence of ∆f as a function of V tip as expected according to Eq.(3.2.26). The ∆f values are negative implying the attractive nature of the electrostatic force. The position of the maximum of the parabola gives the V CPD . Figure (b),(c) shows the decreasing curvature of the parabola as the tip-sample distance is increased due to the expected decrease of the tip-sample capacitance.

Figure 3 .

 3 12(a) shows the lateral view of the STM head while in (b)-(e), optical images of the corresponding parts are shown. The microscope is equipped for top loading of sample with face downwards while the scan probe, facing upwards, is made to vertically move up to reach the sample. The sample holder is inserted on an assembly of two movable wagons which facilitates displacement of the sample in the horizontal plane. The probe is fixed on a metallic (phosphor bronze) tip holder that is detachable from the microscope. This assembly of the probe and the tip holder fits into a receptacle that is present on the top of the piezo scanner. Figure (c) shows a top view of the scanner with the tip holder receptacle. The scanner essentially consists of a piezo tube (Figure (d)), fixed on a macor (machineable ceramic) base and housed inside a macor tube which in turn is housed inside a sapphire prism. The vertical coarse approach mechanism involves the side walls of the microscope, a spring plate (Figure (c), part 10), six piezo stacks (Figure (e)) with ceramic surface (4 fixed on the side walls and two on the spring plate) and the sapphire vertical shaft.

Figure 3 . 12 :

 312 Figure 3.12: General assembly of the SPM head. (a) Schematic explaining the basic structure of the SPM head. (1) Sample holder, also in (b). (2) Wagons for displacement of sample holder in the horizontal plane, also in (b). (3) in (a) and (10) in (c): Spring plates for piezo actuators. (4) Scan probe (tip on LER). (5) Tip holder. (6) Piezo tube scanner, also in (d). (7) Macor prism with sapphire outer plates for movement along Z direction, also shown in (c). It also forms the outer protective case of the piezo-tube scanner. (8) Piezo-electric acctuators for coarse motion along Z, also in (e). (9) Macor base plate of scanner assembly, also in (d).

. 1 )

 1 where S and T are the six-component mechanical strain and stress vectors respectively (3 longitudinal and 3 in shear mode) and E, D are the three component electric field and electric displacement vectors respectively. S and T are related by the tensor [s] (6 × 6) called the mechanical compliance, similarly D and E by the dielectric permittivity [ ] (3 × 3) while S and E are coupled by [d] (3 × 6) which is the symmetric, piezoelectric coupling matrix . The coefficientd i,jgives the induced strain in direction j ∈ (1, 6) per unit of electric field applied in direction i ∈ (1, 3). Usually the 3 rd direction is considered as the polarization direction P of the crystal.
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 3153 Figure 3.13 demonstrates the normal and shear mode mechanical deformations induced in a

40 Table 3 . 2 :Figure 3 . 14 :

 4032314 Figure 3.14: Schematic of the piezoelectric tube. The side electrodes (connected to ±V x and ±V y ) cause bending motion of the tube for scanning in the horizontal X-Y plane. The top electrode (connected to ±V z ) together with the interior grounded plane is responsible for longitudinal extension and contraction of the tube.
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 315 Figure 3.15: Coarse motion. (a) Movement by 'Slip-stick' mechanism. (b) Optical microscope image showing the piezo actuators attached to microscope body for coarse motion in z direction. (c) Top view of the assembly of piezo scanner, outer macor tube and outermost sapphire shaft held inside the microscope body by the spring plate. (d),(e) Schematic for the wagons for the displacement of the sample in the horizontal plane.

  .15(b) shows the six actuators for Z-displacement of the piezo tube, four attached to the microscope body and two attached to the spring press plate while (c) shows the image of the complete arrangement for vertical motion. The frictional force between the actuators and the sapphire shaft of the scanner can be adjusted by adjusting the pressure exerted by the spring press plate on the scanner. In a similar fashion, the X and the Y wagons are acted on by six actuators each, four on the microscope base and two on spring press plates (Figure3.15(d),(e)). The dimension of each actuator is 5 × 5 mm 2 and consists of three piezo stacks with a total capacitance of 10 nF.
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 316 Figure 3.16: The Inverted Dilution fridge or Sionludi. (a) Optical image with the five stages of thermalisation indicated. (b) Schematic explaining the working of the Sionludi [78]. MC stands for mixing chamber, S1 for Still 1 and S2 for Still 2.

The 4

 4 He vapours thus formed, then flow into the recovery. 2. A very small quantity of the 3 He/ 4 He mixture (7 l STP) is injected at high pressure (≈ 1.3 bar and flow rate of 11 l/min STP) into the rapid injection path, indicated by the red arrows in (b). At this stage, Still 2 is directly pumped. This causes the cooled mixture (cooled by the thermal contact with 4 He at the counter-flow heat exchanger) to directly flow into Still 2, then to the mixing chamber, Still 1 and finally pumped out. This gradually cools the upper stages to 4 K. The whole process takes about 15 hours. 3. Once everything is at 4 K, direct pumping of Still 2 is stopped. The rest of the mixture from the tank is now gradually injected into the circuit via normal injection, indicated by the blue line in Figure 3.16(b). The mixture therefore flows from the 4 K pot into Still 1 via a narrow capillary which provides a high impedance, then into the upper part of the mixing chamber (MC) via a second high impedance. The sudden expansion into the broad space of the MC from the narrow high impedance path causes significant cooling by Joule Thompson effect. The colder mixture exits the MC and flows back into Still 1, then another exchanger, thus cooling the inflowing mixture on the way, and then finally pumped out.
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 317 Figure 3.17: Temperature of mixing chamber recorded by different thermometers. (a) During cooldown from room temperature to 4 K and (b) during condensation. T ef f gives the effective temperature estimated by considering the Pt thermometer reading from 300 K to 40 K and the C thermometer reading from 10 K to 4 K and then extrapolating between the two by a polynomial fit (order 9) to get the readings in the range T ∈ (40 K, 10 K).

  (a), the effective temperature T ef f extracted in this manner has been plotted.The measurement of the thermometer resistances is done by electronics and accompanying labview interface developed by the electronic service in the lab[85].WiringThree shielded cables of length ≈ 1 m each have been used to electrically connect the different components of the SPM head located at the 100 mK stage to Jaeger connectors located at the outermost stage of the cryostat at room temperature 2 . Each cable consists of 15 constantan (alloy of 55% copper and 45% nickel) wires of diameter 0.1 mm (R ≈ 73 Ω) with a plastic insulation and shielded outside by 7 * 16 braids of constantan. The outer shield of the cables have been thermally anchored at every thermalisation stage to successively reduce the heat load.
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 318 Figure 3.18: Filters. (a) 6.5 nF pi-filters inserted at the dilution stage. (b) Schematic and (c) optical image of the filter of the tunneling current line at the 1 K stage [78]. (c) Normalized differential tunneling conductance spectra over Ti/Nb/Au (3 nm/30 nm/4 nm) at T = 180 mK, with and without an external feed-through pi-filter (bandwidth < 100 kHz) on the high voltage lines (J3).

Figure 3 .

 3 18(c) shows the differential tunneling conductance spectrum on Ti/Nb/Au (3 nm/30 nm/4 nm) showing the superconducting DOS, with and without pi-filter on J3. The remarkable improvement of the measurement, characterized by the welldeveloped coherence peaks and sharper drop at V bias = ∆, clearly indicated a lower electronic temperature after including the pi filter in the high voltage lines.

Figure 3 .

 3 Figure 3.19: (a) Schematic showing the implementation of the tunneling current amplifier. R f b is the feedback resistor and C p is the parasitic capacitance. (b) Gain of the amplifier as a function of frequency showing a cut-off at about 3 kHz.

Figure 3 .

 3 19(b) shows the measured transfer characteristics which indicates a cut-off frequency of about 3 kHz. The parasitic capacitance is therefore C p ≈ 0.5 pF. The Johnson-Niquist noise density at 300 K is 1.29 µV/ √ Hz. This gives a current noise
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 320 Figure 3.20: Effect of electrical line on AFM signal. (a) Circuit diagram for AFM resonator (enclosed by blue rectangle) connected to a current to voltage converter. (L, C, R) are the inductance, capacitance and resistance respectively of the AFM resonator, C 0 is the capacitance between the electrodes and (C line , R line ) are capacitance and resistance of the electrical line respectively. (b) Amplitude of current, with (red) and without (blue) line contribution, as a function of ∆f = f -f 0 where f is the drive frequency and f 0 = 993.75 kHz is the eigen frequency of the resonator. (c) Phase of I vs ∆f . (L = 1.9 H, C = 13.5 pF, R = 600 Ω, C 0 = 1 pF, R line = 70 Ω and C line = 131 pF [88, 89]).

  increased [Eq.(3.3.4)]. (2) By using a charge amplifier 4 , as is the case for Femto amplifiers by SPECS [88]. However, one major problem in measuring the high frequency response of the resonators is that the effect of the line capacitance and resistance (C line ≈ 131 pF, R line ≈ 70 Ω) is significant since C line C.Figure 3.20(b) shows the response characteristics of a LER (value of (L, C, R)

Figure 3 . 21 :

 321 Figure 3.21: Measuring response of the AFM resonator with line compensation. Schematic of the electronics used to cancel the contribution from the electrical lines. I R is the current generated by the resonator in response to the excitation voltage V exc and I line is the current contribution from the electrical line. R f b = 22 kΩ gives the overall gain and C p ≈ 1 pF is the parasitic capacitance.

Figure 3 .Figure 3 . 22 :

 3322 Figure 3.22(a) and (c) shows the electronic circuit of the Phase and amplitude controller respectively. The Phase controller essentially consists of a low pass filter with a capacitance

.3. 6 )Figure 3 . 23 :Figure 3 . 24 :

 6323324 Figure 3.23: Contribution from the electrical line. (a) Amplitude of V 1 out /V exc due to electrical line given by Eq.(3.3.6) as a function of ∆f = f -f 0 (C p = 1 pF, R f b = 22 kΩ and the rest of the parameters are same as in Figure 3.20). Inset shows the simultaneous variation in the amplitude of the resonator response. (b) Phase of V 1 out /V exc as a function of ∆f . Inset shows the simultaneous variation in the phase of the resonator response.

Figure 3 . 25 :

 325 Figure 3.25: The Needle Sensor (NS). (a) SEM image of the Needle Sensor based on a length extensional resonator (LER). (b) Schematic explaining the geometry of the NS. The black arrows indicate the direction of oscillation. L = 1340 µm is the total length of each beam of the resonator, L e = 1100 µm is the length of the electrode starting from the support in the middle. (c) Crosssection of the LER (B-B) indicated in (b). W = 130 µm is the width and t = 70 µm is the thickness of the LER beams. The red arrows indicate the direction of the applied electric field E.

Figure 3 . 26 :

 326 Figure 3.26: SEM images of different conducting tips for combined AFM/STM used during my the PhD. (a) Pt/Ir coated silicon cantilever tip. (b) Electrochemically etched carbon fiber tip (diameter ≈ 4 µm) [Courtesy A. De-Cecco]. Inset shows a zoomed-in view of tip apex. (c) Tungsten wire (diameter ≈ 4 µm), shaped with focused ion beam (FIB) in the form of a pyramid. (d) Conical W tip, shaped with FIB. Courtesy J. F. Motte.

Figure 3 . 27 :

 327 Figure 3.27: SEM images showing some examples of the nature of tip damage occurring during use as a scan probe. (a) Pt/Ir coated Si cantilever tip. (b) Pyramid shaped (FIB) W tip (4 µm). (c) FIB shaped W wire tip, initially with a conical tip apex.

Figure 3 .

 3 Figure 3.26 shows the SEM images of some of the different kind of tips that were experimented with. Among the W tips, two different shapes were tried: (1) pyramidal tip apex as shown in (c) and (2) conical tip apex as shown in (d). Although the conical design yielded sharper tip apex, the success rate was less compared to the more robust pyramidal shape.Figure 3.27(c) shows the state of a conical W tip after use. The sharp tip-apex is rather fragile and is almost never recovered after scanning. The pyramidal tips are seldom damaged.Figure 3.27(b) shows

Figure 3 .

 3 27(b) shows an example of a damaged pyramidal tip (rare occurrence). Pt/Ir coated Si cantilevers were used at the beginning of my work. Their light weight is a major advantage, resulting in minimum/no

ure 3 .

 3 26(b). Hence, very thin fibers (∼ 5 µm) are quite easy to manipulate. These tips can be electrochemically etched without undergoing oxidation (Inset of Figure3.26(b)), therefore FIB is not required (which is quite expensive and time consuming). The only disadvantage is that they have a parabolic DOS, unlike conventional metallic STM tips with flat DOS near Fermi energy. For investigating small, low energy features in the DOS, like the superconducting DOS or the induced gap in superconducting proximity effect, this does not pose any problem. But for investigating gate dependent features in the DOS of graphene, for example, might be difficult.

Figure 3 . 28 :

 328 Figure 3.28: Scanning tunneling spectroscopy on a normal metal with a superconducting tip (50 nm NbN sputtered on Pt/Ir wire of diameter 250 µm). (a) Normalised differential tunneling conductance spectrum on gold at temperature T = 120 mK and magnetic field B = 0 T. (b) G (normalised) as a function of sample bias V bias and magnetic field.

Figure 3 .

 3 28(a) shows the normalized differential tunneling conductance spectrum acquired on gold which has a normal DOS, at a cryostat temperature of 120 mK. The spectrum clearly reveals the superconducting DOS of the tip with superconducting gap ∆ ≈ 2.26 meV 8 which implies a T c ≈ 14.9 K 9 . Figure3.28(b) shows the evolution of the tunneling spectrum with magnetic field. We see almost no change in the superconducting DOS with magnetic field which is expected because the upper critical field in NbN can go up to 35 T[START_REF] Baskaran | High upper critical field in disordered niobium nitride superconductor[END_REF], depending on the extent of disorder. Nevertheless, more work needs to be done towards optimization and characterization of the tips and finding

Figure 3 . 29 :

 329 Figure 3.29: Implementation of the Needle Sensor. (a) SEM image of a Length Extensional Resonator (LER) fixed to a PCB with two isolated copper contacts. (b) Schematics showing the different steps after fixing the LER to the copper chip, see text.

4 .

 4 Since the metallic tip will be fixed on the right side, the top electrode of the LER needs to be electrically connected to the right side electrode10 . This is done by depositing about 40 nm of palladium (Pd).

Figure 3 .

 3 30 shows the schematic of the necessary arrangement to implement this step. The LERs are fixed on an Al block with the right side facing towards the Pd target. Al foils, placed over the right side cover most of the LER except the small region which needs to be connected. Such an arrangement is necessary to prevent any short between the two side electrodes.

Figure 3 . 30 :

 330 Figure 3.30: Stand for Pd deposition on LERs

Figure 3 .

 3 Figure 3.29(a) shows the arrangement necessary to do this. The W wire (diameter = 4 µm and length ≈ (200 -300) µm) and two other Cu wires (diameter ≈ 250 µm) are first placed

Figure 3 . 31 :

 331 Figure 3.31: Current in the tunneling current line, as a function of temperature while warming up. The tip is placed in physical contact with the sample .

Figure 3 . 32 :

 332 Figure 3.32: Change of the eigen frequency f 0 and Q factor of the Needle sensor from 4 K to 130 mK (f 4 K 0 = 991107 Hz). Inset shows the corresponding variation from room temperature to 4 K (f 300 K 0 = 991107 Hz and Q 300 K = 21000) (The two measurements are done for two different needle sensors.)

Figure 3 .

 3 Figure 3.33: (a) Relative frequency change with T for the NS (same as in the inset of Figure 3.32) in comparison to a quartz TF [Eq.(49) of [72]]. (b) Variation of longitudinal stiffness of one of the beams on the NS with T, assuming k 0 (300 K) = 540 kN/m, table 3.6. (c) Change of -1 f 0 ∂f 0 ∂T ≈ α ⊥ with T , using Eq.(3.4.1) for three different NS (indicated by the different colors).

Figure

  Figure 3.33(a) shows the f 0 vs T for the NS compared to that of a TF as measured in

Figure 3 .

 3 Figure 3.34: (a) Schematic explaining the method employed to determine the sensitivity of the NS 11 . (b) Average tunneling current measured I mes vs A on a sample of graphene on iridium (111) at T = 130 mK. Red line indicates fit with Eq.(3.5.2) [fit parameter: η = 2.3]. Inset shows variation of tunneling current I t with tip-sample distance z recorded just prior to measurement of I mes vs A. Green dots represent data points and red line indicates fit with Eq.(3.2.1). Fit parameter: z 0 = 0.080 nm.

Figure 3 .

 3 Figure 3.34(a) schematically demonstrates the process employed. The NS, vibrating with an amplitude A at its eigen frequency f 0 is approached towards the sample surface in STM mode.

Figure 3 . 35 :

 335 Figure 3.35: The Binary code. (a) Schematic of a coded Si/SiO 2 substrate with a contacted graphene flake positioned close the center. (b) Zoom-in showing the 16 bit code, represented by a systematic sequence of holes, enclosed within the four crosses. First two rows denote the X co-ordinate while the last two rows denote the Y co-ordinate. (c) Interpretation of binary code to convert it to the corresponding decimal number [78]. (d) AFM (tapping mode) image of a substrate with the code. (e) Height profile along blue line indicated in (d). The dimension of the holes is about 750 nm, distance between them is about 1.5 µm and the depth is about 10 nm.

Figure 3 .

 3 Figure 3.34(b) shows the variation of the measured tunneling current with the apparent amplitude of oscillation A at a temperature of 130 mK on a sample of graphene on iridium[START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF]. A is obtained assuming a calibration of G = 140 nm/V, implying a sensitivity of S N S = 325 nA/nm (gain of our AFM amplifier is R f b = 22 kΩ, Figure3.21). We consider the real amplitude of oscillation to be linearly related to A i.e A real = ηA. By substituting A with A real in Eq.(3.5.2), the data is fitted with this equation using η as a fit parameter.

Figure 3 .

 3 35(a) shows a schematic depicting the coded substrate with the device located close to the center. Each big square block of coded positions spans an area of 1920 × 1920 µm 2 . Within each block, the position can be accurately determined with the help of a sequence of holes and crosses. The elementary unit of the code consists of a square region enclosed between four crosses over an area of 7.5×7.5 µm 2 , as depicted in (b) and (d). Each square region contains a sequence of 'holes' and 'no holes' organized into a 4 × 4 matrix. The first two rows represent the X co-ordinate while the last two rows represent the Y co-ordinate. The first element of the first row represents the least significant bit (LSB) while the last element of the second row represents the most significant bit (MSB).

Figure 3 .

 3 35(c) demonstrates the way to convert the code to the corresponding decimal form. For example in (a) X i = (10110101) 2 = (181) 10 and Y i = (01011110) 2 = (94) 10 . The X co-ordinates increase from left to right while the Y co-ordinates increase from top to bottom.

Figure 4 .

 4 1 shows atomically resolved STM images of two such graphene-metal systems; (a) GR/Ni(111) and (b) GR/Ir(111).

Figure 4 . 1 :

 41 Figure 4.1: Graphene on metallic substrates. (a) Atomically resolved, constant current STM image of graphene on Ni(111) showing the perfect graphene lattice. Tunneling parameters: V bias = 2 mV and I t = 48 nA. The inset shows a LEED image obtained at 63 eV [111]. (b) STM topograph of graphene grown on Ir(111) at 1320 K. The moiré pattern due to lattice mismatch between graphene and the Ir substrate is clearly visible, extending over several Ir steps. Tunneling parameters: V bias = 100 mV and I t = 30 nA[START_REF] Coraux | Structural Coherency of Graphene on Ir(111)[END_REF]. The inset shows the LEED pattern for graphene on Ir where additional intensity spots of the moiré are visible surrounding the graphene and Ir integer spots[START_REF] Pletikosić | Dirac Cones and Minigaps for Graphene on Ir(111)[END_REF].

Figure 4 . 2 :

 42 Figure 4.2: Effect of metallic substrate on graphene band structure. (a) ARPES intensitiy map of the band structure of graphene monolayer on Ni[START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF]. The red lines represent π and π * bands while the thin white line represent the σ band according to tight-binding (TB) calculations. 2p depicts the on-site energy and ∆ represents the energy gap between the π and π * bands due to the influence of Ni surface states[START_REF] Grüneis | Tunable hybridization between electronic states of graphene and a metal surface[END_REF]. (b) ARPES spectrum of bare Ir[START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF]. K points of Ir and graphene are marked as K Ir and K g , respectively. S 1 -S 3 represent surface states. (b) ARPES spectrum of single-layered graphene on Ir[START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF]. Horizontal arrows point to the minigap in the primary Dirac cone[START_REF] Pletikosić | Dirac Cones and Minigaps for Graphene on Ir(111)[END_REF].

Figure 4 . 3 :

 43 Figure 4.3: Decoupling of graphene from the metallic substrate by intercalation of molecular species. (a) Schematic depicting the process of obtaining free-standing graphene on a Ni substrate by depositing a gold monolayer that gradually intercalates between the graphene and the underlying metal, resulting in decoupling of the graphene sheet [121]. (b) ARPES spectrum of graphene on Ni(111) [122], (c) of graphene on Ni[START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] with intercalated Au in between[START_REF] Haberer | Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene[END_REF].

Figure 4 .

 4 3 (b) and (c) shows the ARPES spectrum on GR/Ni(111) before and after gold intercalation.

Figure 4 .

 4 3(a) which gives the three steps involved in this process in the case of GR/Ni(111) :(i) growth of monolayer graphene on

Figure 4 .

 4 2(b),(c) which shows the ARPES spectrum of an in-situ prepared sample of GR/Ir(111) taken under UHV conditions.

2 . 3 . 4 .

 234 The Fermi level passes through the valence band (|E D -E F | = 0.10 ± 0.02 eV), indicating an overall p-doping. Minigaps in the graphene band structure (gap width ≈ 0.1-0.2 eV) and Dirac cone replicas are observed due to the superperiodic potential (potential amplitude ≈ 0.05 -0.10 eV) created by the moiré lattices. No conclusions could be drawn about the presence or absence of a band gap at the Dirac point since this point was not accessible with ARPES. However, if it does exist, it should be smaller than 0.2 eV.

Figure 4 . 4 :

 44 Figure 4.4: Effect of controlled oxygen intercalation and deintercalation of oxygen molecules on the electronic band structure of graphene. ARPES measurements of the spectral function along the direction perpendicular to the Γ -K direction on (a) as-grown GR/Ir(111), (b) lifted graphene due to oxygen intercalation and (c) landed graphene following O-deintercalation[START_REF] Larciprete | Oxygen Switching of the Epitaxial Graphene-Metal Interaction[END_REF] 

Figure 4 . 5 :

 45 Figure 4.5: Fading moiré after decoupling of graphene by oxygen intercalation. Atomically resolved STM images showing the moiré sub-lattices (a) as grown GR/Ir(111) under UHV conditions (b) after oxygen intercalation. LEED images showing the reciprocal space of GR/Ir(111) (c) before and (d) after oxygen intercalation [129].

Figure 4 . 6 :

 46 Figure 4.6: STM topographs of an as-grown sample of GR/Ir(111) in UHV conditions prior to exposure to ambient conditions. (a) Graphene wrinkle ending at a graphene edge. Imaging conditions: I t = 1.7 nA, V bias = 1.2 V. (b) Triangular moiré lattice formed due to lattice mismatch of the graphene and the Ir substrate. Imaging conditions: I t = 30 nA, V bias = 0.5 V [8].

Figure 4 .

 4 Figure 4.6 shows STM topographs of the sample, in UHV conditions, just after growth;(a) shows the topography over a larger area with the sheet of graphene containing a wrinkle,

Figure 4 . 7 :

 47 Figure 4.7: Large scale AFM and STM topography of Graphene on Ir acquired one after the other, with the same tip. (a) FM-AFM topography [∆f set = 5 Hz, A set = 300 pm, V bias = 0.8 V, scan speed = 200 nm/s, f 0 = 974350 Hz, Q = 1400, FIB etched Pt/Ir tip on LER]. (b) STM topography [I set = 100 pA, V bias = 0.8 V at RT, pressure ∼ 10 -4 mbar]. (c) Height profile along the atomic steps of Ir in AFM (blue) and STM (magenta). (d) Comparison of height of graphene wrinkle recorded in AFM (blue) and STM (magenta). (e) Profile showing the height of oxidized Ir wrt. the surrounding graphene in AFM (blue) and STM (magenta).

Figure 4 .

 4 Figure 4.7(a) and (b) shows the AFM and STM topography, acquired one after the other (with the same tip), of the same region of the sample surface. This region is large enough to introduce

Figure 4 . 3 .

 43 7(c) shows a comparison of the height profiles of these Ir steps recorded in AFM and STM. Both imaging techniques give the same dimensions in this case. Graphene wrinkles 'criss-crossing' the graphene sheet. These appear as folds in the graphene of height ∼ 1 -5 nm and width ∼ 20 -25 nm (Figure 4.7(d))

Figure 4 .

 4 7(e) shows the line profile comparison over such a Graphene/exposed Ir interface recorded in STM and AFM. The elevation in AFM (h AF M ) is observed to be about 0.9 nm and the depression in STM (-h ST M ) to be ≈ 0.4 nm.

Figure 4 . 8 :

 48 Figure 4.8: Signatures of oxygen in regions devoid of graphene. (a) AFM topography and (b) CPD map (in FM mode) of GR/Ir(111) showing wrinkles as well as Ir substrate devoid of graphene (indicated by white arrow). Imaging parameters: ∆f = -3 Hz, A set = 8.4 nm (RT, UHV). (c) CPD profile corresponding to the path highlighted by the magenta line in (b). Courtesy F. Fuchs and B. Grévin. (d) Work-Function (WF) map of GR/Ir(111) surface (different sample than in (a)-(c)) measured with PEEM. (e) Histogram showing the corresponding WF distribution [8].

Figure 4 .

 4 Figure 4.8(a) and (b) show the AFM topograph and the simultaneously acquired map of contact potential difference or CPD (in frequency-modulated mode) of a region on GR/Ir[START_REF] Yu | Electronic and magnetic properties of the graphene-ferromagnet interface[END_REF] surface that includes one of these voids in the graphene sheet indicated by the white arrow.The CPD over this region is seen to drop by 0.5 eV as compared to the surrounding graphene covered regions (sub-figure (c)) implying a decrease in WF by the same amount 3.2.3. This is consistent with local WF analysis carried out using PEEM, as shown in Figure4.8(d),(e).

Figure 4 . 9 :

 49 Figure 4.9: Deformation of graphene membrane by competing forces of the STM tip (pulling upwards) and the back-gate electric field (pulling downwards). (a-d) STM topographs at the indicated backgate voltages (V gate ). (e) Atomistic model showing deformations in the graphene membrane interacting with the STM tip.(f) Calculated membrane shapes at the critical tip height for horizontal tip positions of 2.5 nm (black curve), 5.2 nm (blue curve), and 25 nm (red curve) from the membrane edge. A back-gate force of 0.012 pN was applied to each atom in the membrane. The gray dot-dashed curve is an envelope showing the membrane height as seen in a STM measurement[START_REF] Klimov | Electromechanical Properties of Graphene Drumheads[END_REF] 

Figure 4 .

 4 Figure 4.10 shows the large scale topography of the GR/Ir(111) surface, already shown before, together with the simultaneously acquired map of excitation signal or V exc and the oscillation amplitude A of the scan probe. V exc is the modulation voltage supplied to the scanning resonator to maintain it at the set-point amplitude A at resonance (section 3.2.2). Hence V exc ∝ A drive

Figure 4 . 10 :

 410 Figure 4.10: Reduced dissipation over wrinkles. (a) AFM topography same as shown in Figure 4.7(a). (b) Corresponding excitation signal (V exc ) map which directly gives the spatial variation of the energy dissipation over the surface. (c) Oscillation amplitude A of scan probe.

Figure 4 . 11 :

 411 Figure 4.11: Scanning tunneling spectroscopy over graphene wrinkle. (a) FM-AFM topograph showing a large scale view of graphene, wrinkled in certain parts. Imaging parameters: ∆f set = 2 Hz, A set = 700 pm, V bias = 0.8 V, scan speed = 300 nm/s, f 0 = 994967 Hz, Q = 120000, Pt/Ir coated Si cantilever tip on LER, RT. (b) Zoomed in view of the graphene wrinkle. (c) Differential tunneling conductance G t spectrum over flat (red) vs wrinkled (blue) graphene. (d) Height profile of the wrinkle along blue line in (b), recorded before tunneling spectroscopy at each point along this line. (e) Tunneling conductance map across the wrinkle shown in (b).

Figure 4 .

 4 Figure 4.11(a),(b) shows the large scale AFM topograph of the surface and the zoomed in view over a graphene wrinkle respectively. The blue line passing across the wrinkle, as indicated in (b), is chosen as the path for performing point to point differential tunneling conductance spectroscopy with inter-point spacing of 2.6 nm. The differential tunneling conductance spectra G t are measured by the lock-in technique as described in section 3.2.1. A modulation of 6 mV and frequency 407 Hz is superposed on the DC bias V bias applied to the sample to measure the

Figure 4 .

 4 Figure 4.11(c) shows the average G t spectrum on flat (red) vs wrinkled graphene (blue). For graphene on metal, the position of the minimum of G t vs V bias curve approximately represents the position of the local Dirac point wrt. the Fermi level of graphene, i.e. |E D -E F | which is related

Figure 4 .

 4 Figure 4.11(e), shows the spatial variation of the G t spectrum along a line passing over the wrinkle (indicated in (b)) while (d) gives the simultaneously acquired STM topography. E D has been indicated in (e) (black curve). By considering the E D and the z profiles across the wrinkle simultaneously, we are able to track the manner in which E D , or equivalently, doping changes from the flat to wrinkled graphene. We list here the significant features: 1. Graphene on the flat part is positively doped with mean value of Dirac point as ĒD ∼ 290 meV which implies a mean doping level of n ∼ 6 × 10 12 cm -2 . The local fluctuations in the Dirac point is found to be σ E D = 30 meV corresponding to a doping inhomogeneity of σ n ∼ 1.3 × 10 12 cm -2 , using Eq.(2.2.21). 2. Graphene on the wrinkle is significantly less doped. Mean value of Dirac point and doping are ĒD ∼ 40 meV and n ∼ 1.4 × 10 11 cm -2 respectively. Corresponding fluctuations are σ E D ∼ 18 meV and σ n ∼ 1.0 × 10 11 cm -2 , but these fluctuations are not very accurate since the number of measurement points considered in this case is only 10.

Figure 4 . 12 :

 412 Figure 4.12: Kelvin probe force microscopy on graphene wrinkles. (a) Topography by FM-AFM and (b) corresponding contact potential difference (V CPD ) image by frequency modulated KPFM of GR/Ir(111) surface, (UHV, 300 K). Imaging parameters: ∆f = -15 Hz, A set = 8.4 nm. (c) Height profile of the wrinkle along the blue line marked in (a). (d) V CPD profile of wrinkle over the same path, marked by the magenta line in (b). (e) Schematic explaining the V CPD change across graphene wrinkle. E F = Fermi energy, E D = Dirac Point, E vac = Vacuum energy level. Courtesy F. Fuchs and B. Grévin.

Figure 4 .

 4 Figure 4.12(a) and (b) show the FM-AFM topography and V CPD map respectively of the GR/Ir(111) surface, acquired with a Si cantilever tip. We observe that the wrinkled regions are

Figure 4 .

 4 Figure 4.13(a) shows a large scale AFM topograph of a freshly prepared sample of graphene

Figure 4 . 13 :

 413 Figure 4.13: Gradual oxygen intercalation around graphene wrinkles. (a) Large scale AFM topograph (tapping mode) of a sample of GR/Ir(111) right after exposure to ambient conditions. The regions devoid of graphene have been indicated as 'A' while the ribbon-like regions in the graphene surrounding the wrinkles are labelled as B. (b) Zoom-in on the rectangular region indicated in (a) after 1,5 and 7 days of exposure to ambient conditions. (c) Height profiles along the lines marked in (b). (d) Schematic demonstrating the role of graphene wrinkles as pathways of oxygen intercalation[START_REF] Kimouche | Modulating charge density and inelastic optical response in graphene by atmospheric pressure localized intercalation through wrinkles[END_REF] 

Figure 4 .

 4 Figure 4.13(b)and (c) shows the gradual evolution of these regions with time. From 0.4 nm

Figure 4 . 14 :

 414 Figure 4.14: Tunneling Spectroscopy over well coupled and decoupled graphene. (a) STM topograph showing the boundary between coupled and decoupled graphene. Imaging parameters: I t = 100 pA, V bias = 0.6 V, scan speed = 40 nm/s. (b) Height profile along the blue line indicated in (a). (c) Tunneling conductance as a function of V bias over graphene well coupled to Ir substrate (blue) and that decoupled from it (red). The tunneling conductance is obtained by taking the numerical derivative of the tunneling current, see text for details.

Figure 4 .

 4 14(a) shows the STM topograph of the boundary between decoupled and well coupled graphene. The height profile across this boundary in (b)

Figure 4 .

 4 Figure 4.14(c) shows the tunneling conductance spectra over well-coupled graphene (blue)

Figure 4 . 15 :

 415 Figure 4.15: Correlation between charge disorder and topography. (a) Dirac point map (color code) superimposed over a 3D plot of the long-wavelength topography. Image of 250 nm×250 nm. (b) Carrier density distribution extracted from (a) (see text). (c) 2D correlation coefficient χ z-E D (r) (see text), between E D and topography maps given above [9].

Figure 4 .

 4 15(a) shows the superposition of an E D (r) map (color scale) along with the long wavelength-pass filtered topography z(r) recorded at the same position [three-dimensional (3D) profile]. A very high degree of correlation between doping and topography is readily seen. We have quantified this by calculating the normalized cross-correlation function between topography z(r) and the Dirac point map E D (r), given by

.4. 3 )

 3 Starting from the experimental Dirac point map of Figure4.15(a) and assuming a flat topography, we calculate using 4.4.3, a phantom topography appearing with an apparent roughness of 6 pm at V bias = 570 meV (the bias voltage at which the the topography of Figure4.15(a) 

1 :

 1 Cross-Correlation coefficient between the topography images at different bias voltages V bias and the E D map. The images 570(1) and (2) are two images performed at the same place but successively.
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 416442 Figure 4.16: Negative correlation between V CPD fluctuations and AFM topography. (a) Topography (by FM-AFM) and (b) and V CPD map (by FM-KPFM) of flat graphene. Imaging parameters: ∆f = -50 Hz, A set = 8.4 nm. (c,d) Numerical zoom extracted from the area enclosed by the black dotted square in images (a,b). Both images have been filtered by applying a Gaussian smooth to remove high frequency noise. (e) Topographic and V CPD levels corresponding to the paths highlighted by black lines in (c,d). Depressions in the topography are clearly correlated with local maxima of the V CPD . (f) Angular average of the cross-correlation function, χ z-CP D (r) between V CPD and topography maps given above. Courtesy F. Fuchs and Benjamin Grévin

Figure 4 . 17 :

 417 Figure 4.17: Example of a region where a positive correlation between V CPD fluctuations and AFM topography is found. (a) V CPD map (color code) superposed over a 3D plot of the long-wavelength topography. (b) Angular average of the normalized cross-correlation function, χ z-CP D (r) between the V CPD map and topography. Courtesy F. Fuchs and Benjamin Grévin.

Figure 4 . 18 :

 418 Figure 4.18: Schematic depicting changes in V CPD due to surface charges or dipoles.

  4.1) leads to the conclusion that decoupled graphene on a metallic substrate displays a strong local correlation between doping and topography. Several scenarios can be considered for this observation. A contribution of curvature effects [151][62][152][153] could, for example, be anticipated.

Figure 4 .

 4 [START_REF] Hsj Van Der Zant | The superconducting transition of 2-D Josephson-junction arrays in a small perpendicular magnetic field[END_REF] shows the charge disorder induced in the graphene by the strain field associted with the measured topography, theoretically calculated for us by the group of Marco Polini. However, we see that the contribution of the local curvature in this system is nearly two orders of magnitude below the observed amplitude of the doping disorder.z (nm)δn(r) (10 12 cm -2 )

Figure 4 . 19 :

 419 Figure 4.19: Strain field induced charge disorder. (a) Height fluctuations z(r) of decoupled graphene. (b) Charge disorder δn(r) induced in the graphene by the strain fields generated by the topography in (a). Courtesy A. Tomadin, M. Gibertini and M. Polini.

Figure 4 . 20 :

 420 Figure 4.20: Fermi level shifts ∆E F (d) as a function of metal-graphene distance calculated by the model proposed by Giovanetti et al.(Eq.(1) of[START_REF] Giovannetti | Doping Graphene with Metal Contacts[END_REF]). Work-function of iridium W Ir = 5.76 eV.
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 51 Figure 5.1: Sample Description and Raman Characterization. (a) Device geometry. Phase signal image of contacted monolayer graphene, acquired ex-situ in tapping mode AFM. [L = 4.3 µm and W = 4.2 µm]. (b) Raman Spectrum of flake (blue line). 2D peak at 2687 cm -1 with Lorentzian fit of width Γ 2D ∼ 23 cm -1 (red dashed line). G peak position ∼ 1584 cm -1 with line-width Γ G ∼ 7.5 cm -1 .

Figure 5 . 2 :

 52 Figure 5.2: Configuration for two probe measurement of resistance of sample by (a) voltage biasing and (b) current biasing. [GR = graphene on SiO 2 (285 nm)/Si substrate, M = Metal].

Figure 5 .

 5 Figure 5.1(b) shows the Raman spectrum of the graphene prior to contacting. The Lorentzian profile of the 2D peak with width Γ 2D ∼ 23 cm -1 proves that the flake is single-layered (section 1.3.2). From the combined observation that (a) the intensity ratio beween the 2D peak and the G peak is about 1.4 < IR 0 ≈ 3, (b) the position of the G peak is 1584 cm -1 > G 0 ≈ 1582cm -1

Figure 5 .

 5 Figure 5.2(a) and (b) show the two main configurations used to measure the two-probe resistivity of the sample.

Figure 5 . 3 :

 53 Figure 5.3: Electric field effect in monolayer graphene. (a) Two probe resistance vs backgate voltage V gate for forward and reverse sweeps (maximum slew rate = 30 mV/s), measured at 130 mK. The schematics indicate the position of the Fermi energy E F wrt. the Dirac point E D at different V gate . V 0 D indicates the Charge neutrality point. (b) Two-probe conductivity σ tot = (L/W )/R vs V gate . (c) Asymmetry between electron and hole carriers. R odd characterizes this asymmetry, see text.

Figure 5 . 4 :

 54 Figure 5.4: Field effect after subtracting contact resistance. (a) Field effect curve for reverse sweep together with fit according to Eq.(5.2.2), electron and hole side fitted separately. Fit parameters: Series resistance R h series = 325 Ω, mobility µ h = 6190 cm 2 V -1 s -1 and intrinsic doping n * h = 4.45 × 10 11 cm -2 (hole side); R el series = 409 Ω, µ el = 5305 cm 2 V -1 s -1 and n * el = 5.55 × 10 11 cm -2 (electron side) . (b) Two-probe conductivity of graphene after subtracting the corresponding series resistance, R h series and R el series , from the hole and electron side respectively.

Figure 5 . 5 :

 55 Figure 5.5: Evolution of the different transport parameters with time. V 0 D is the charge neutrality point, R series is the series resistance, µ is the mobility, n * is the induced residual charge density, n imp is the impurity concentration and d is the distance of impurities from the graphene plane. The thirteen sweeps have been acquired over seventeen days at temperature 4 K or 130 mK. Parameters extracted from fit to hole side indicated by red circles and electron side by blue circles.

Figure 5 . 6 :

 56 Figure 5.6: Experimental configuration for (a) CPD measurement with KPFM and (b) STS.

Figure 5 . 7 :

 57 Figure 5.7: Schematics explaining V CPD measurement on graphene. (a)-(c) Band structure schematics showing band alignment between AFM tip and undoped graphene at charge neutrality (V gate = V 0 D ). (a) Tip and sample not in electric contact. (b) Tip and sample in electric contact that causes Fermi level in tip and graphene to align and corresponding vacuum levels to E tip vac and E GR vac to misalign by an amount equal to the V CPD . (c) The misalignment in vacuum level is compensated by the applying a voltage to the tip equal to -V CPD .

  e. Dirac point position E D and vacuum energy E GR vac ) wrt. its Fermi energy E GR F , thus causing a change in its work-function W GR = E GR vac -E GR F and consequently a change in V CPD [Eq.(3.2.24)]. Figure 5.7(b) demonstrates the measurement of V CPD in graphene at different V gate by KPFM. It is quite straight-forward to show then that

Figure 5 . 8 :

 58 Figure 5.8: Variation of V CPD with backgate. (a) Frequency shift ∆f as a function of backgate V gate and tip voltage V tip . The ∆f vs V bias parabolic curves at each V gate have been shifted vertically such that ∆f = 0 at the maximum position. (b) ∆f vs V tip along the vertical cuts indicated in (a) at high (orange) and low carrier densities (green). (c) Variation of CPD with backgate. Red dots indicate data points and black solid line indicates fit to Eq.(5.3.1). Fit parameters ∆ = 80 meV and V 0 D = 25 V. (d) Variation of curvature of the ∆f vs V tip parabolas as a function of V gate . Red dots indicate data points while black solid line indicates an average over 15 adjacent points.

3 .

 3 Parabolic dependence of ∆f on V tip is measured after adjusting the back-gate voltage to the desired value. By repeating this tip voltage sweep at several gate voltages, we get a complete gate map of ∆f .

d 2 dz 2 ts[

 2 Eq.(3.2.26)] where C is the tip-sample capacitance and z ts is the tipsample distance.

Figure 5 . 2 ts = -4k f 0 p 2 Figure 5 . 9 :

 52259 Figure 5.9: Change of V CPD across the metal-graphene interface. (a) STM topograph of the metal-graphene interface. Imaging parameters: I t = 50 pA, V bias = 0.8 V, scan speed = 50 nm/s at 130 mK. (b) Change of V CPD and height profile across the metal-graphene interface at high hole doping V gate -80 V V 0 D and (c) at low carrier concentration V gate = 30 V → V 0 D . The grey window indicates the transition region between metal and graphene and the black dashed horizontal line runs along the V CPD of the metal for a comparison between the two situations at high and low carrier doping.

Figure 5 .

 5 Figure 5.9(c) shows the simultaneous change of V CPD and height profile across the metalgraphene interface at low carrier concentrations. Now V CPD in the graphene is more or less aligned with V CPD in the metal of about 110 meV. But the profile does not monotonically change from graphene to the metal anymore. There is a significant drop of about ∼ 110 meV in the graphene close to the interface over a spatial width of ∼ 150 nm before rising up on the metal.

Figure 5 .Figure 5 . 10 :

 5510 Figure 5.10: Schematic of STS on graphene at different carrier densities. (a) Band-structure schematics explaining the relative position of the Fermi level of undoped graphene wrt. the Fermi level of the metallic tip for varying bias voltage V bias on the graphene, see text. (b) Calculated differential tunneling conductance G t as a function of V bias and V gate according to Eq.(5.3.3) and Eq.(5.3.2). The 'maroon' line along the minimum of G t gives E D vs. V gate according to Eq.(5.3.2). (c) G t vs. V bias at different V gate along the vertical cuts indicated in (b). The arrows indicate the situation corresponding to case (1)-(3) in (a).

Figure 5 . 11 :

 511 Figure 5.11: Effect of tip-induced gating in tunneling spectroscopy in graphene. (a) Schematic showing the position of the energy bands in graphene wrt. E tip F in the course of changing V bias . (b) Calculated differential tunneling conductance G t (T = 0 K) as a function of V gate and V bias (z ts = 1nm). Dirac point dependence (maroon line) without considering tip-induced gating [Eq.(5.3.2)], position of the primary minimum V min (white dashed line) and secondary minimum V min (black dashed line) [Eq.(5.3.7)] has been indicated. (c) G t and (d) E D as a function of V bias at different V gate along the vertical cuts indicated in (b).

Figure 5 .

 5 11(b). Instead of one minimum in each G t vs. V bias curve occurring at the actual Dirac point of sample E 0 D , there are two local minima now (sub-figure (b)) moving in opposite directions with V gate . The primary minimum occurs when V bias = E D where E D itself is dependent on V bias (sub-figure (c)) and the secondary minimum occurs when E D = 0 wrt. E GR F at which point it has a sharp jump due to the square root dependence on |n| ∝ |V gate -βV bias |. The position of the primary and secondary minima is given respectively by

Figure 5 . 12 :

 512 Figure 5.12: Change in the position of the primary minimum of G t vs V bias in the presence of tip-induced gating. (a) Comparison between E 0 D and V min at different tip-sample distances (z ts ). (b) V min /E 0 D as a function of z ts for different V gate indicated by the vertical lines in (a).

Figure 5 . 13 :

 513 Figure 5.13: Tunneling conductance as a function of V bias and V gate after incorporating the effect of work-function mismatch induced doping described by Eq.(5.3.11) for ∆ = -0.1 V and tipsample distances z ts indicated at bottom right. Maroon line indicates the Dirac point position wrt. E GR F without considering additional doping due to the tip.

  deviates from V min . At charge neutrality when E 0 D = 0, the above equation gives V min = γ |β∆| which is just the finite Dirac point resulting from the doping induced by the tip-neutral graphene work-function mismatch (∆).

Figure 5 . 14 :

 514 Figure 5.14: Local doping induced in the graphene by the STM tip. (a) Schematic demonstrating the situation where (V bias ) and V gate are adjusted so as to reverse the polarity of the charge carriers underneath the STM tip by local gating, wrt. the background polarity. (b) Spatial profile of graphene wavefunction (real part of the second spinor component) underneath the tip. Electronic confinement results from the interference of incident and reflected waves at the p-n junction rings created by the STM tip. Confinement is stronger for larger angular momentum m i.e. for larger incidence angles. This is demonstrated for m = 5 (weak confinement) and m = 13 (strong confinement) [174].

  .3.11) but with the modified value of β(r). In sub-figure (a), E D (r) crosses the Fermi level of graphene. This imposes a p-n junction for states with energy |ε| < |E D (r)-E GR F |, being defined wrt. E D (r). This gives rise to the second set of fringes following V min . In sub-figure (b), Fermi level of tip is raised further up, such that E D (r) lies in between E GR F and E tip F but crosses neither. In this situation, graphene is p-doped throughout and no resonances occur. In sub-figure (c), E tip F is raised further up such that now E D (r) crosses it. Once again p-n junctions are formed for states with energy |ε| < |E D (r) -eV bias | which will now result in the first set of fringes that run parallel to V min . States with energies |ε| > |E D (r = 0) -E D (r → ∞)| will never face a p-n junction barrier and will therefore be free of fringes.

Figure 5 . 16 :

 516 Figure 5.16: Tunneling spectroscopy at different V gate . (a) Macroscopic two-probe conductivity vs. V gate measured just before STS measurement giving the charge neutrality point V 0 D ≈ 25 V. (b) Differential tunneling conductance in ns as a function of V gate and V bias . (c) The same as in (b) but with E 0 D (maroon line) [Eq.(5.3.2)], primary minimum V min (blue dashed line) and secondary minimum V min (black dashed line) [Eq.(5.3.13) with V D = 35 V, ∆ = -0.171 V and β = 58.5] vs V gate superposed. (d) Differential tunneling conductance G t vs. V bias at different gate voltages (curves displaced by 0.06 ns for clarity). Blue arrows indicate V min and black arrows indicate V min .

Figure 5 .

 5 16(c). In the gate map shown in sub-figure (b), the blue dashed line approximately traces this feature. We see that it follows a Dirac point E 0 D like dependence with V gate (maroon dashed line in sub-figure (b)). As discussed in the previous section, this is the primary minimum V min . The secondary minimum V min is also visible in the gate map in sub-figure (b), as indicated by the black dashed line. In sub-figure (c), the black arrows indicate their position in each tunneling spectrum. The position of this local minimum is seen to move in exactly the opposite direction with V gate as compared to V min in a linear fashion, as expected.

Figure 5 . 17 :

 517 Figure 5.17: Tunneling conductance in 'ns' as a function of V bias and V gate measured at different locations (Points 1-4) over a span of one month, see table (5.2). In each row, first image [(a), (c), (e)] gives G t (V bias , V gate ) in ns while the second image [(b), (d), (f)] is the first image along with lines drawn along the three relevant quantities (E 0 D , V min , V min ). Maroon curve gives E 0 D for charge neutrality at V 0 D from transport. V min and V min are indicated by blue and black dashed lines respectively. 167

  Figure 5.17: Tunneling conductance in 'ns' as a function of V bias and V gate measured at different locations (Points 1-4) over a span of one month, see table (5.2). In each row, first image [(a), (c), (e)] gives G t (V bias , V gate ) in ns while the second image [(b), (d), (f)] is the first image along with lines drawn along the three relevant quantities (E 0 D , V min , V min ). Maroon curve gives E 0 D for charge neutrality at V 0 D from transport. V min and V min are indicated by blue and black dashed lines respectively. 167
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 7 The upper-right and lower-left insets of Figure 5.18(a) demonstrate this schematically for the hole and electron doped case respectively.

Figure 5 . 18 :

 518 Figure 5.18: Imaging of electron-hole puddles at different backgate voltages. (a) Schematic demonstrating the choice of V bias , i.e. (V bias ) set , for acquiring the LDOS maps at different gate voltages based on the variation of the primary minimum V min of the differential tunneling conductance spectrum (due to the variation in E D ). Inset at upper-right demonstrates the proportionality of doping disorder (δE D ∝ δV min ) to fluctuations in tunneling conductance δ(dI/dV ) at a given V bias for V gate > V D where V D is the CNP under the joint action of the tip and the backgate. Lower-left inset demonstrates the same for V gate < V D . (c) Schematic of a given distribution of electron-hole puddles and (b) its corresponding dI t /dV images for hole-doped and (d) electron-doped graphene.

Figure 5 . 19 :

 519 Figure 5.19: Charge Disorder and Quasiparticle Interferences on graphene on SiO 2 by Y. Zhang et al. [6]. (a) Spatial map of differential tunneling conductance G t that gives the charge disorder. Bias voltage used for scanning (V bias ) set = -0.25 V at V gate = 15 V when the average Dirac point is at ≈ -0.1 V. (b) G t (x, y) map of the same region, at the same gate voltage but at (V bias ) set = 0.35 V and (c) at 0.6 V. These maps are a superposition of the charge disorder and the spatial modulations induced by QPI. The insets show the corresponding Fourier transform indicating the characteristic spatial dimension of the features in the map.

  Let us start with a detailed investigation of the local charge disorder in the present sample by acquiring the full differential tunneling conductance spectrum at each point in a given region i.e. a complete CITS. Although quite time consuming, it remains the best and the most direct way to quantitatively measure the fluctuations in the local Dirac point by Scanning tunneling spectroscopy. They serve the additional purpose of validating our imaging criteria of the electronhole puddle landscape using the second method.
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 520 Figure 5.20: Dirac point fluctuations at high electron doping V gate = 70 V using point to point tunneling spectroscopy (64 × 64 points over 100 nm × 100 nm). (a) Simultaneously acquired topography in STM (I set = 100 pA, V bias = 0.3 V). (b) Dirac Point map composed of the position of the primary minimum V min of the tunneling spectrum acquired at each point. (c) Differential tunneling conductance G t as a function of V bias measured using lock-in technique (V AC = 6 mV, f AC = 322.4 Hz). Cyan curves indicate all the tunneling spectra at different spatial locations while the black curve represents their average. (d) Histogram of Dirac point. (e) Correlation coefficient χ E D -Gt between Dirac point map in (b) and spatial map of tunneling conductance G t (x, y) as a function of V bias . (f) G t (x, y) at V bias = -283.7 mV and (g) at V bias = 201 mV.

Figure 5 . 21 :

 521 Figure 5.21: Dirac point fluctuations at high hole doping V gate = -15 V. Region under consideration is the same as in Figure 5.20. (a) Simultaneously acquired topography in STM (I set = -100 pA, V bias = -0.32 V). (b)-(e) Analogous to (a)-(e) of Figure 5.20. G t (x, y) as a function of V bias . (f) G t (x, y) at V bias = -200.8 mV and (g) at V bias = 296.5 mV.

Figure 5 .

 5 Figure 5.21 shows the main results acquired from a CITS at V gate = -15 V on the same region as above that is clearly identified by the well-matched topography in the two cases as seen from Figure 5.20(a) and Figure 5.21(a).V gate = -15 V corresponds to hole doped graphene with carrier concentration n g = 34 × 10 11 cm -2 considering V 0 D = 30 V, as seen from transport. Proceeding in a similar manner as before, we obtain the distribution of E 0 D and the charge carrier concentration n which enables us to calculate the fluctuations in these quantities present in the given region. Our results show a stronger disorder in the present case with n rms = 13×10 11 cm -2 and σ E D = 42.1 meV, both of which are higher than at V gate = 70 V. A comparison of the Dirac point maps at the two gate voltages i.e.Figure 5.20(b) and Figure

Figure 5 .

 5 20(b) andFigure 5.21(b) clearly illustrates how the relatively lower electron doped regions at V gate = 70 V (red circular regions at lower right and upper middle) transforms into regions with higher hole doping wrt. the surroundings at V gate = -15 V.

Figure 5 .

 5 Figure 5.22: Dirac Point fluctuations close to Charge Neutrality V gate = 30 V (50 × 50 points over 100 nm × 100 nm). Region under consideration is different from that in Figures 5.20 and 5.21. (a) Simultaneously acquired topography in STM (I set = 200 pA, V bias = 0.6 V). (b)-(e) Analogous to (a)-(e) of Figures 5.20 and 5.21. G t (x, y) as a function of V bias . (f) G t (x, y) at V bias = 140 mV and (g) at V b ias = -60 mV.

  Figure 5.22: Dirac Point fluctuations close to Charge Neutrality V gate = 30 V (50 × 50 points over 100 nm × 100 nm). Region under consideration is different from that in Figures 5.20 and 5.21. (a) Simultaneously acquired topography in STM (I set = 200 pA, V bias = 0.6 V). (b)-(e) Analogous to (a)-(e) of Figures 5.20 and 5.21. G t (x, y) as a function of V bias . (f) G t (x, y) at V bias = 140 mV and (g) at V b ias = -60 mV.

  Figure 5.22: Dirac Point fluctuations close to Charge Neutrality V gate = 30 V (50 × 50 points over 100 nm × 100 nm). Region under consideration is different from that in Figures 5.20 and 5.21. (a) Simultaneously acquired topography in STM (I set = 200 pA, V bias = 0.6 V). (b)-(e) Analogous to (a)-(e) of Figures 5.20 and 5.21. G t (x, y) as a function of V bias . (f) G t (x, y) at V bias = 140 mV and (g) at V b ias = -60 mV.

Figure 5 .

 5 Figure 5.22, summarizes the main findings from the complete CITS at V gate = 30 V which corresponds to the charge neutrality point in transport. However, the region under investigation is different from that in Figure 5.20 or Figure 5.219 , hence a direct comparison is not possible as be-

Figure 5 . 23 :

 523 Figure 5.23: Comparison of local fluctuations with expected values from transport. (a) Variation of the fluctuations in the screened disorder potential Ṽrms with carrier concentration n g . (b) Variations in the correlation length of the screened disorder potential with n g . Solid lines are calculated using (n imp , d) obtained from transport (table 5.1). For calculation method, see text 5.4.2.

Figure 5 .

 5 Figure 5.23(a) shows the variation of this C(0) with n g for two different sets of (n imp , d).

Figure 5 .

 5 Figure 5.23(b) shows the change in the correlation length as a function of n g , calculated using Eq.(2.4.27) 11 also for the two different sets of (n imp , d) as discussed above (indicated in figure).
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 524 Figure 5.24: The voltage bias set for scanning (V bias ) set at different V gate wrt. the location of the primary minimum V min (Eq.(5.3.13) with V D = 38 V in accordance with point 2 and 3 of table 5.2). χ 0 E D -Gt gives the 2D correlation coefficient of the differential tunneling conductance map G t (x, y) with the Dirac point map E D (x, y). The sign is assigned based on our discussion in section 5.4.2. (a) For Location 1 and (b) for Location 2. V switch gives the gate voltage beyond which (V bias ) set switches sign which for Location 1 ia at 25 V and for Location 2 is at 27.5 V.

0 D

 0 25 and 5.26) (a) gives the G t gate map measured at a single point right before imaging the puddles while (b) gives the same but with different curves superposed. Table 5.4 lists the definition of each. Quantity Definition E Dirac point position without considering tip induced gating [Eq.(5.3.2)]
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 525 Figure 5.25: Evolution of charge disorder with carrier concentration at Location 1. (a) G t gate map (in ns) acquired at a single point, just before imaging the charge disorder (same as Point 1 in Figure 5.17). (b) The same as (a) but with different relevant voltages superposed which are described in table 5.4. (c) Spatial maps of differential tunneling conductance at different V gate for Location 1 over an area of 40 nm × 40 nm, resolution = 0.39 nm. Imaging parameters : I t = 100 pA, V bias = (V bias ) set , V AC = 6 mV, f AC = 322.4 Hz, τ lock-in = 10 ms, scan speed = 10 nm/s.
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 526527 Figure 5.26: Evolution of charge disorder with carrier concentration at Location 2. (a) G t gate map (in ns) acquired at a single point, just before imaging the charge disorder (same as Point 3 in Figure 5.17). (b) The same as (a) but with different relevant voltages superposed which are described in table 5.4. (b) Spatial maps of differential tunneling conductance at different V gate for Location 2 over an area of 100 nm × 100 nm, resolution = 256 pxls.. Imaging parameters : I t = 50 pA, V bias = (V bias ) set , V AC = 12 mV, f AC = 322.4 Hz, τ lock-in = 10 ms, scan speed = 10 nm/s.
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 52 Figure 5.27(a) shows the STM topograph of 100 nm × 100 nm region corresponding to Location 2 (Figure 5.26) at V gate = 27.5 V. The roughness is found to vary between (0.06 -0.2) nm and the spatial dimension of the corrugations is about 10 nm (Figure 5.27(b)) which is consistent with what is found in literature [181].

Figure 5 .

 5 Figure 5.[START_REF] Nagashio | Electrical transport properties of graphene on SiO2 with specific surface structures[END_REF] shows the change in the STM topography with backgate, in particular, the apparent surface roughness in (a) and the 2D correlation coefficient with the simultaneously acquired G t (x, y) map in (b). We find that at both locations, the STM surface roughness increases

Figure 5 . 28 :

 528 Figure 5.28: Change of (a) surface roughness σ z and (b) 2D correlation coefficient between topography and the simultaneously acquired G t (x, y) map χ 0 z-Gt [Eq.(5.4.2)] with V gate for Location 1 (Figure 5.25) and 2 (Figure 5.26). (c) STM Topography and (d) the corresponding G t (x, y) map for V gate = 25 V (maximum negative correlation), for Location 2. (e) STM Topography and (f) the corresponding G t (x, y) map for V gate = 60 V (maximum positive correlation), for Location 2.

Figure 5 .

 5 Figure 5.25 and 5.26, has been plotted as a function of V gate for the two different locations. The curves have been normalized wrt. their value at high electron doping. We now see quantitatively that the amplitude of the fluctuations gradually build up towards charge neutrality and subside away from it. The extent of increase measured in the two locations is different. This is certainly related to the difference in set-point parameters used for acquiring the images in the two cases in terms of choice of both V bias and I t (I t = 100 pA in the case of Location 1 and 50 pA for Location 2).
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 5 Figure 5.30(a) shows the schematic of a STM tip positioned over graphene with inhomogeneous doping indicated by the red and blue regions. The actual doping profile without influence of the tip is given by E 0 D which is indicated by the orange lines in (b),(c) and (d). The change in E 0 D

Figure 5 . 30 :

 530 Figure 5.30: Calculation of the role of the tip in influencing the Inhomogeneity. (a) Schematic showing the STM tip positioned on graphene with inhomogeneous doping. (b)-(e) Profile along the white line in (a) of the Dirac point unperturbed by tip E 0 D [Eq.(5.3.2)], with tip influence E D (Eq.(5.3.11), ∆ = -0.213 V, z ts = 1.4 nm) and the primary minimum V min wrt. the bias voltage chosen for scanning (V bias ) set at four different gate voltages. The charge neutrality point is at V 0 D = 30 V. The inhomogeneity in the E 0 D distribution is given by ∆E 0 D = Ṽrms = max(E 0 D ) -min(E 0 D ) where Ṽrms is calculated for n i mp = 7.6 × 10 11 cm -2 and d = 0.7 nm, following the process discussed in section 5.4.2.

Figure 5 .

 5 Figure 5.31 demonstrates the procedure that has been adopted to extract the lateral scale of fluctuations in the G t (x, y) maps shown in Figures 5.25and 5.26. We start with a given image

  and 5.26. We start with a given image of electron-hole puddles, Ψ. As a first step, the mean is subtracted to obtain Ψ -Ψ (Figure5.31(a)). The images are then filtered using a Gaussian filter with FWHM of about 0.55 nm.

Figure 5 . 31 :

 531 Figure 5.31: Demonstration of finding correlations from a given image of charge puddles. (a) Simulated image of charge puddles. Each puddle is constructed from a Gaussian function. The size and position of the puddles are randomly generated. This image contains 200 puddles with σ = (3.1 ± 0.3) nm. (b) Corresponding normalized cross-correlation matrix A(r, φ) = C(r, φ)/C(0). (c) Profile of A along a single cut in a given direction φ as indicated in (b) with a Gaussian fit. (d) Angular average of A. Length of error bars Err(r) = [max{A(r, allφ)} -min{A(r, allφ)}] /2.
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 533 Figure 5.33: Gaussian fits to A(r) (red,blue) using Eq.(2.4.25) by increasing weightage (wt.) of points in the first 15 nm and the last 4 nm wrt. the middle points. A(r) shown here corresponds to G t map at V gate = 70 V for Location 2 (Figure 5.26).
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 534 Figure 5.34: Comparison of the experimentally measured correlation length with theory. (a) Variation of correlation length ξ as a function of carrier concentration n g at Location 1 and (b) Location 2. Solid lines are calculated theoretically using Eq.(2.4.27) for (n imp , d) obtained from transport (table 5.1). Squares and triangles represent measurements at location 1 and 2 respectively. n * ≈ 4 × 10 11 cm -2 is the residual charge density found from transport 5.1.

  

  

  

  

Table 1 .

 1 1: Device parameters of the Nb-Au-Nb SQUIDS. L is the geometrical length of the normal weak link. R N is the normal state resistance of the weak link, measured at 4 K, ρ

	µeV )

N the corresponding resistivity and D the diffusion coefficient. I C is the maximum critical current measured at 135 mK. c = D/L 2 is the Thouless energy assuming the weak link length is L.
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  Figure 2.2: Electronic band structure of Graphene. Energy spectrum (in units of t) with finite values of t and t': t = 2.7 eV and t = -0.1t in this case. Inset shows the zoom-in of the energy bands close to one of the Dirac Points.
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	As such Eq.(2.2.6) gives the full dispersion for single-layered graphene and in principle we are
	done here. Nevertheless, to appreciate the uniqueness of this band structure, we have to zoom-in
	close to the K points of the Brillouin zone (inset of Figure 2.2) where most of the excitement
	around graphene is centered. If we expand Eq.(2.2.6) about k

Table 3

 3 

	Materials	Thermal	Thermal	Thermal
		expansion	conductiv-	conductivity
		coefficient	ity at 300 K	at 100 mK
		∆l l at 300 K	W cm -K -1	W cm -K -1
		(×10 -6 K -1 )		
	Copper Bronze Phosphor Bronze Macor Titanium Ta6V PCB Inox PZT Quartz	16.4 18.9 17.5 9.3 8.9 14 13 4-6 8.1	4 1.2 0.5 1 0.058 0.16 0.011 0.013	10 -1 6 × 10 -4 2.2 × 10 -3 5 × 10 -5 10 -6 2 × 10 -4 1.5 × 10 -4 1.5 × 10 -4
	Sapphire	8.4	0.4	
	Stycast 2850 FT	35	1.2	
	Epotex H21D Constantan Ecosorb	26 14.9 63	0.19	5 × 10 -1

.1 lists the value of the relevant thermal properties of the different materials used in the microscope.

Table 3 .

 3 

1: Thermal properties of the principle materials used in the microscope

[START_REF] Cabrera | A low temperature thermal conductivity database[END_REF][START_REF] Pobell | Matter and Methods at Low Temperatures[END_REF] 

Table 3 .

 3 3: Measured sensitivity of Piezo-electric tube using a calibration sample and from theoretical estimate[START_REF] Martin | Systèmes nanoélectroniques hybrides : cartographies de la densité d'états locale[END_REF].

Table 3 .

 3 

3 lists the lateral and longitudinal deforming capability or the sensitivity of the piezoelectric tube in our microscope at room temperature and at 4 K. At room temperature, the

Table 3 .

 3 4: Thermometers installed at different locations.

	80 K	Platinum resistor
	20 K	Platinum resistor
	4 K	Platinum and Carbon resistor
	Still 1	Carbon resistor
	Still 2	Carbon resistor
	Mixing Chamber Platinum, Carbon and RuO x resistors

Table 3 . 5

 35 

	Temperature Length of wire Thermal power
	300 K -> 80 K	20 cm	2.35 mW
	80 K -> 20 K	10 cm	1.28 mW
	20 K -> 4 K	10 cm	0.34 mW
	4 K -> 1 K	30 cm	21.4 µW
	1 K -> 100 mK	30 cm	6.4 µW

: Thermal powers conducted by each shielded cable of 14 constantan wires between each thermalisation stage.

  1. The SPM Controller: It controls all the basic STM operations like scan control, Z-control, data acquisition, data monitoring, spectroscopy etc. The generic analog interface provides 48 live signals: 8 inputs, 8 outputs and 32 internal signals. The maximum voltage that can be obtained from each output is ±10 V.2. The Oscillation Controller with PLL: It provided the excitation voltage to the AFM resonator, measures the response generated by it and utilizes this signal in the manner described in section 3.2.2. The AFM operation is controlled by this module.3. The High voltage amplifier: This is a low noise amplifier with gains 4, 15 and 40. This is used to amplify the voltages supplied to the X,Y,Z electrodes of the piezo tube scanner as well as one extra channel.4. The Piezo driver: It supplies the voltage pulses to the piezo actuators for coarse motion, at an amplitude and frequency that can be set by the user.

The Nanonis interface provides a user-friendly environment for scanning probe measurements.

It additionally includes several modules that can be easily integrated in labview programming

to perform experiments as per user requirement. This feature has been extensively utilized throughout the course of my PhD to automate various experiments; tip approach in AFM mode, performing Bias and Z spectroscopy, LDOS mapping at different back gate voltages (Chapter 5), recording temperature dependence of sample and tip properties during cooldown, are a few examples.

  is the gate

2 

Carbon thermometers used were not precise in this range

  . From this equation, we can relate this constant mobility to the concentration of charge impurities in the substrate n imp i.e. This allows us to obtain n imp from the previously extracted mobility. Knowing (n imp , n * ), we finally invoke the self-consistency relation Eq.(2.4.17), to obtain the value of d (distance of impurities from the 2D plane of graphene) that best satisfies it.

	µ = 20	e h	1 n imp	.	(5.2.3)

  11 cm -2 ) n * (10 11 cm -2 )

							d (nm)
	Electron	400	29 ± 1	5706 ± 600	8.56 ± 0.99	4.92 ± 0.69	0.21 ± 0.03
	Hole	320	29 ± 1	6450 ± 900	7.61 ± 0.90	4.36 ± 0.54	0.22 ± 0.04
	Table						

Table 5 .

 5 2: Parameters extracted from differential tunneling conductance on graphene as a function of V bias and V gate at different locations and at different times. R t is the tunneling resistance at the beginning of each G t vs.

	Location	Date	R t (GΩ)	V 0 D (V)	V D (V)	z ts (nm)	β	∆ (eV)
	Point 1	13/02/2015	18	25	35	1.2	58.5	-0.171
	Point 2	14/02/2015	18	25	38	1.2	60.9	-0.213
	Point 3	18/02/2015	4	29	38	1.3	56.2	-0.178
	Point 4	02/03/2015	8	30	7	1.5	48.7	0.478

Table 5 .

 5 11 cm -2 ) ξ (nm) 3: Comparison of parameters extracted from CITS at high electron doping V gate = 70 V, high hole doping V gate = -15 V and near charge neutrality V gate = 30 V. ĒD and n are the mean Dirac point and carrier concentration respectively, σ E D and n rms are the standard deviations in E D and n respectively, V D is the gate voltage at which the primary minimum V min of < G t > would be zero.

	70	-203.7	30.98	36.8	28.3	8.99	7.3
	30	40.7	1.79	31.3	36.1	4.77	4.2
	-15	238.7	35.59	16.0	42.1	13.51	7.8

The value of t' is not well known but ab initio calculations have shown 0.02t t 0.2t. Experiments on cyclotron resonance have found t ≈ 0.1 eV[START_REF] Castro Neto | The electronic properties of graphene[END_REF] 

Ṽrms here is in units of energy

This is in ideal case. In practical case, some 4 He keeps circulating.

current to voltage converter operated beyond the cut-off frequency

For Si, ∆f /f0 ≈ -35 ppm/K at RT whereas for quartz it is 1 ppm/K[START_REF] Giessibl | Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators[END_REF] 

A tuning fork with one prong fixed and the other, containing the metallic tip, free to oscillate, constitutes the Q-Plus. It therefore operates as a cantilever. Therefor k = k0 in this case.

R ≈ 3.3 kΩ[START_REF] Sethi | Towards STM on a gate tunable Quantum Dot[END_REF]. Stable tunneling current exists at 16 K. STM at base temperature remains to be verified.

Roughly estimated by considering the difference between the coherence peaks.

Using ∆ ≈ 1.764kBTc[START_REF] Tinkham | Introduction to superconductivity[END_REF].

In the measurements presented, integration time τ = 100 ms

Because of close proximity to the metallic substrate which acts as a screening plate, local gating effect by the tip is weak

Time duration mentioned before each measurement.

It is undoped or ungated graphene with n and EF = 0 homogenously throughout. It is a theoretical construct.Very "clean" graphene, free from the influence of substrate impurities, like suspended graphene, comes close to this theoretical limit.

This was verified by AFM imaging of the surrounding structures in the surface before and after measurement.

This procedure produces the CPD dependence on backgate with the least noise

Care is taken to avoid the Zero bias anomaly (ZBA)

Due to technical difficulties.

Perhaps a better method would have been to measure at Gt vs V bias spectrum for a given Vgate at multiple locations and then determine the average spectrum for identifying V min .

(orange line) . Idea from [START_REF] Zhao | Creating and probing electron whispering-gallery modes in graphene[END_REF], supplementary information.

Tunneling Spectroscopy at different carrier density: The Experiment

We perform tunneling spectroscopy in graphene in the configuration discussed in Section 5.3.1.

With tunneling current I t as the feedback parameter, the tip is approached close to the surface, the set-point adjusted at the starting bias voltage V bias for STS. The gate voltage is then gradually ramped up/down (0.1 V/s) to the desired value. After a wait time of about 5 -10 s for the tip conditions to stabilize, the z-feedback is turned off followed by tunneling spectroscopy, at the end of which V bias is restored to its starting value. For minimizing noise, a voltage division by factor of 10 is used on V bias . All tunneling conductances measured in this section refer to the numerical derivative of the tunneling current. Due to the low temperature T ∼ 130 mK in which the measurements were performed, thermal drift was minimum. approximately midway between the two metallic contacts, i.e. about 2 µm from each. The features that have been discussed in the previous section due to local gating by the tip are visible apart from some additional features. Let us go through these one by one.

Local Minimum at Fermi Energy of Graphene

There is a prominent dip at Fermi energy i.e. at V bias = 0 V that does not change its position with backgate. This feature has been observed by quite a few groups by now and is famously referred to as the zero bias anomaly or ZBA. The group of Michael F. Chrommie consistently reported on observation of such a gap of width ∼ 130 meV for graphene on SiO 2 [START_REF] Zhang | Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene[END_REF][6] as well as on boron nitride [START_REF] Decker | Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy[END_REF], and attributed it to phonon mediated inelastic tunneling processes. Others like A. Deshpande et al. [START_REF] Deshpande | Spatially resolved spectroscopy of monolayer graphene on SiO 2[END_REF] or S. K. Choudhary et. al. [START_REF] Shyam | Effects of tip induced carrier density in local tunnel spectra of graphene[END_REF] observed no such gap.

In the present measurements, the gap width was seen to be about 60 -100 meV and the 

Amplitude of Fluctuations of the Screened disorder potential

The amplitude of fluctuations in the screened disorder potential or Ṽrms can be considered to be directly proportional to the standard deviation of the G t (x, y) maps. This is because, as explained in section 5. 

From this definition, it is easy to see that C(0) = σ 2 A /M N . Therefore, the standard deviation of the G t (x, y) images can be obtained either in this way or directly. The fluctuations in the screened disorder potential is then simply Ṽrms ∝ σ Gt .

In Figure 5.29(a), Ṽrms obtained in the above way, for the set of G t (x, y) maps shown in

Err N =86 (10.0 ± 0.4) nm 9.9 nm 8.6 nm 16.3% (6.1 ± 0.6) nm 38% (8.0 ± 0.4) nm 8.0 nm 7.6 nm 11.0% (6.4 ± 0.7) nm 21%

(5.9 ± 0.4) nm 5.9 nm 5.5 nm 6.2% (5. is the size extracted from an image consisting of a single puddle Ψ,

is the same but with mean subtracted i.e. for Ψ-Ψ and Err N =1 is the percentage error in estimating the size of a single puddle from image Ψ -Ψ . σ Out p (Ψ -Ψ )

and Err N =86 is the same as above but for 86 puddles per 100 nm × 100 nm.

The act of subtracting the mean from the image of the single puddle already introduces a finite error (Err N =1 ) that increases with the puddle size. Now if we consider number of puddles to be N = 86 in an area of 100 nm × 100 nm (since n imp ≈ 8.6 × 10 11 cm -2 , table 5.1), then we find that the error percentage increases even more Err N =86 . In particular, this process underestimates the puddle size by an amount dependent on the size itself.

Nevertheless, in lack of a better solution, we adopt the process of fitting the angular averaged, normalized correlation curves with a Gaussian function of the form G(r), to extract the puddle size. Moreover, Gaussian mapping of the Coulombic impurity potential happens to be a popular choice among theoreticians [START_REF] Adam | Graphene Carrier Transport Theory[END_REF] which allows one to relate the correlation length ξ to the carrier concentration n g using Eq. (2.4.27). Note that the correlation length and puddle size are related by ξ = σ √ 2.

Lateral Extent of Disorder: The Puddle Size

Using the method described in the previous section 5. the extracted values of ξ to better follow this boundary as seen by the black-bullets. An example of this weight adjustment is shown in Figure 5.33.

The difference between ξ extracted by the two methods is considered as the error introduced by this preferential weighting procedure which is additionally represented by the width of the transition region between yellow and blue in the color plots of Figure 5.32.

In Figure 5.34, we superpose the values of these experimentally measured correlation lengths with what we expect from the value of (n imp , d) found from transport (solid lines) and from the CITS measurements (dashed lines). We find that the agreement is rather good for hole doped graphene as seen in (a) and also for electron doped graphene at location 2. At high hole concentrations, the correlation length is about 13 % smaller than expected at location 1 while for location 2, the agreement is much better. Perhaps the best agreement with transport is found for electron doped graphene at location 2 (bullets almost exactly follow the blue solid line). In this case ξ seems to saturate for n g < 4 × 10 11 cm -2 which is of the order of the induced residual doping n * (table 5.1). In the low density regime, the agreement is weaker for hole doped graphene as discussed in chapter 1. Although a small gap in the DOS was found on some occasions, a systematic spatial evolution could not be measured as the interface was approached.

Perhaps, measuring proximity induced superconductivity in graphene by STM might not be possible in the first place. Our measurements have shown that the metallic tip induces a confinement of electronic states right beneath it. Because charge and phase are conjugate variables, charge confinement implies large phase fluctuations, which in turn suppresses superconductivity.