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Chapter 1

Introduction

In many engineering applications, physical experiments or computer codes may have pro-
hibitive costs or evaluation times. Yet, they are now intensively used to design and optimize
complex systems, such as vehicles in the automotive industry. In this context, the computa-
tional bottleneck is very often the evaluation time of these expensive functions. As a direct
consequence, the evaluation budget dedicated to optimization is severely limited, rendering
a manual trial and error process inadequate. In addition, no gradient nor information about
properties of the considered function such as monotonicity are supposed available, i.e. we
are in a black-box setting. Thus looking for the optimum by applying the steepest descent
technique is inconvenient: the gradient needs to be approximated, which is quite costly and
may only result in finding a local solution. Starting from many different points could be
successful in finding the global solution, i.e. the best over the whole range of alternatives,
but is even more costly.

A preferred option is to construct a surrogate model (also called metamodel) of the expen-
sive function with as few evaluations as possible and use it to predict the outputs anywhere
on the research domain. These techniques are very common in the computer experiments and
machine learning literature, see e.g. [SWN03], [FLS05], [RW06], [Kle07], [FSK08], [HHLB11],
[SLA12]. The principle is illustrated on Figure 1.1. Clearly, the initial surrogate model is
only a raw approximation and is not suitable for optimizing directly on it. With Gaussian
processes especially, the prediction of the outputs comes along with an estimation of the
corresponding uncertainty. It enables the definition of statistical criteria providing a balance
between exploration and exploitation of the research domain. The right figure shows the re-
sulting surrogate model obtained after adding sequentially new observations with this point
of view: it is much more precise in regions of interest, in particular with new observations
near the three global optima.
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Figure 1.1 – Illustration of surrogate modeling. Left: output of an expensive function, known
at 10 observations (blue filled triangles) with its global minima (white crosses). Center:
approximation of the true function by a surrogate based on the initial observations. Right:
approximation after adding sequentially ten new observations (empty blue triangles).

In its simplest form, an optimization problem is to find the minimum (say) of a function
over a research space. Real life problems are in general more complex; for instance when con-
straints such as manufacturing restrictions are considered. Also, designing devices typically
includes several possibly conflicting objectives. Specific techniques are used to handle these
two cases, often by extending single objective unconstrained methods. We consider mostly
two or three objectives at once, up to five in an application example. Taking more than
three objectives into account ruins most of the attractiveness enabled by visualization of the
compromise solutions and dedicated methods are in the “many-objective optimization” scope.

Another difficulty, that we discard here, is the case of noisy observations. When relevant,
the possible extensions to cope with this situation will be mentioned. Let us remark that
numerical simulation, if not submitted to observation noise as with real life experiments,
may not be guarded from other sources of noise. Indeed, if running twice exactly the same
calculation returns the same results in general, with codes based on Monte Carlo methods or
finite elements, the output depends on the number of runs and the size or structure of meshes.
Also, some physical phenomena such as crash-worthiness are intrinsically unstable, especially
in high speed tests, where a piece can break differently depending on numerical noise (due
e.g. to the number of cores used or the architecture of high performance computers).

Motivated in addition by test cases at Renault, the contributions of this thesis focus on
both multi-objective optimization and high-dimensional research spaces. The corresponding
results are built upon stochastic processes, Bayesian optimization, random closed sets and
copulas. The structure of this document reflects these contributions with four parts:

• Part I introduces the general context and scope of the memoir, starting with this
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Chapter 1. Chapter 2 briefly details surrogate-based optimization of an expensive
black-box with Gaussian processes. It then focuses on Expected Improvement and its
generalization to multi-objective optimization. In order to keep things readable in a
reasonable number of pages, we have tried to let recalls at their strict minimum and
sometimes voluntarily omit some topics when no contributions have been made. Also
notions that are not needed throughout the whole thesis are detailed in due course.

• Part II contains two articles on uncertainty quantification on Pareto fronts from two
different perspectives: using Gaussian processes with conditional simulations in Chap-
ter 3 and with copulas in Chapter 4. While most methods focus on providing discrete
approximations of the Pareto front, the goal is here to construct a continuous repre-
sentations of this set of optimal solutions. This problem is cast either as considering
a random closed set or as estimating extreme level lines of a multivariate distribution
function.

• Part III summarizes contributions to overcome the challenge of optimizing in high di-
mensional research space with limited budgets. Backed up by empirical evidence, a
hypothesis on a low number of unknown influential variable is made and the problem
is tackled with random embeddings following the work of [WZH+13]. Chapter 5 starts
with a description of the method, before proposing a covariance kernel that alleviates
some of the previously associated shortcomings. Chapter 6 is concerned with selecting
bounds for the low dimensional domain in the Random Embedding Bayesian Optimiza-
tion (REMBO) method. In particular, some modifications of the random embedding
are proposed, along with strategies for optimizing the infill criterion and an extension
to multi-objective optimization. Combined together, the proposed modifications are
shown to significantly improve the performances.

• Part IV tackles the implementation and applicative side of the two previous parts. In
Chapter 7 is a description of the GPareto package that has been released on CRAN dur-
ing this work. Chapter 8 is dedicated to an industrial test case in car crash-worthiness
which has been used during this thesis to challenge the various contributions.

Three articles are integrated in Chapters 3, 4 and 5 respectively:

• M. Binois, D. Ginsbourger, O. Roustant. Quantifying uncertainty on Pareto fronts with
Gaussian process conditional simulations, European Journal of Operational Research,
vol. 243(2), pp. 386 - 394 (2015).

• M. Binois, D. Rullière, O. Roustant. On the estimation of Pareto fronts from the point
of view of copula theory, Information Sciences, vol. 324, pp. 270-285 (2015).
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• M. Binois, D. Ginsbourger, O. Roustant. A warped kernel improving robustness in
Bayesian optimization via random embeddings, Proceedings of the International Con-
ference on Learning and Intelligent Optimization, LCNS, vol. 8994, pp. 281 - 286
(2015).

The documentation of the GPareto package is available on CRAN:

• M. Binois, V. Picheny. GPareto: Gaussian Processes for Pareto Front Estimation and
Optimization, R package version 1.0.1 (2015).

In the appendices are some additional contributions or promising ongoing works, includ-
ing, but not restricted to, a fast approximation of the multipoint Expected Improvement, a
Stepwise Uncertainty Reduction criterion and an interactive optimization procedure follow-
ing Chapter 3, and complements on REMBO.

The computational experiments were performed on a PC with a quad core 2.80GHz pro-
cessor and 32GB of RAM, a laptop with a dual core 2.9GHz processor and 16GB of RAM,
or similar.
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Chapter 2

Basics in Bayesian mono- and
multi-objective optimization

Along this thesis, we consider an expensive-to-evaluate objective function f : E ⊂ Rd → S

with S = R in the mono-objective case or S = Rm in the multi-objective case. The considered
phenomena are complex, such that in general very little or nothing is known about their
mathematical properties, that is why we treat them as black-boxes. We are interested in
(say) minimizing f , possibly under constraints. E is the variable space, also called design,
decision or parameter space and S is the objective space. We first describe this problem from
the point of view of deterministic computer experiments and provide a brief background
on Gaussian processes before detailing the mono-objective infill criteria built upon them,
especially the Expected Improvement. Finally, multi-objective optimization concepts are
exposed along with the corresponding extensions of the Expected Improvement.

2.1 Context and motivations

Expensive experiments or numerical simulations are commonly used in many fields, as for
instance in the automotive and aeronautical industries or in nuclear safety. Indeed, with
increasing computational power and precise physical modeling, it is often simpler, or just
sometimes the only option, to perform numerical experiments instead of real ones. In con-
crete terms, crashing a prototype of a car costs from dozens to several hundreds of thousands
of euros. As a consequence, performing it virtually seems much more affordable. It also of-
fers insight on the results with step by step visualization of deformations and stresses, which
are useful to correct or improve the structure. Note that for now, real experiments are still
required for legal assessment of new vehicles.

Even if computer power has known a spectacular increase over the years, emphasis has
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been put on precision such that the computational time remains long, several hours or days
not being uncommon. In particular, reducing the size of elements in the finite element method
allows predicting some physical phenomena that cannot be addressed at higher scale. The
maximum number of simulations available is also limited by schedule constraints, especially
in competitive sectors like the automotive one, where lead times of new vehicles are shrinking.
On top of that, specifications on possibly antagonistic objectives such as pollutant emissions
or safety are getting stricter and stricter, necessitating to work on broader perimeters, thus
with more variables, to get sufficient improvement over the current designs.

To deal with this situation, approximate models have been used at least since [BW51]
to select next evaluation points, with a variety of surrogate models ranging from polynomial
regression to random forest, along with Support Vector Regression, neural network, wavelets
or PolyMARS models. A review of their use can be found e.g. in [SPKA01], [WS07] or
[FSK08]. We specifically focus on Gaussian process modeling, a probabilistic model that
offers several key advantages over deterministic models such as the possibility of incorporating
prior information from experts or a quantification of the modeling error (see e.g. [Gin09] for
a discussion on this topic).

2.2 Gaussian Process Modeling (Kriging)

Due to a number of desirable features including their tractability and interpretability, Gaus-
sian processes come into play in a variety of contexts, notably in spatial statistics, function ap-
proximation through splines and machine learning, see e.g. [Ste99], [Wah90] and [RW06]. Par-
ticularly, for the link between regularization or interpolation in Reproducing Kernel Hilbert
Spaces and Gaussian Processes, we refer the reader to [Aro50], [KW70], [BTA04], [RW06].
For the sake of brevity, we only recall here the results we build upon in this thesis. More
detailed introductions in a similar context may be found for instance in the recent thesis
[Che13], [Bac13b] or [LG13].

2.2.1 Gaussian processes

A random process Y defined over a probability space (Ω,A,P) and indexed by the parameter
space E is said Gaussian if, and only if, for any finite set (x1, . . . ,xn) ∈ En, n ∈ N∗, Y (x1:n) =
(Y (x1), . . . , Y (xn)) is a multivariate Gaussian random variable. Gaussian processes are fully
characterized (in distribution) by their mean m(·) and covariance (also called kernel) k(·, ·)
functions:
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m(x) := E (Y (x)) ,x ∈ E (2.1)

k(x,x′) := Cov (Y (x), Y (x′)) , (x,x′) ∈ E2 (2.2)

and as such define prior distributions over functions (see e.g. [CHS81], [RW06]).

In particular, Y (x1:n) ∼ N (m(x1:n), k(x1:n,x1:n)), where k(x1:n,x1:n) is the matrix of
k(xi,xj), 1 ≤ i, j ≤ n, that we write in short Y ∼ GP(m, k). The key advantage of GPs is
that for any new point x ∈ E, the joint distribution of Y (x1:n), Y (x) is simply given by:

Y (x1:n)
Y (x)

 ∼ N
m(x1:n)

m(x)

 ,
k(x1:n,x1:n) k(x1:n,x)
k(x,x1:n) k(x,x)

 (2.3)

which provides tractable analytical expressions for marginal and conditional distributions.
In particular, conditioning the GP on some observations results in another Gaussian process.
Indeed, given the event An : {Y (x1:n) = y1:n}, we have L(Y |An) = GP(mn, kn) with:

mn(x) = m(x) + k(x)TK−1(y1:n −m(x1:n)) (2.4)

kn(x,x′) = k(x,x′)− k(x)TK−1k(x′) (2.5)

where k(x) := (k(x,x1), . . . , k(x,xn))T and K := (k(xi,xj))1≤i,j≤n are the vector of covari-
ances of Y (x) with the Y (xi)’s and the covariance matrix of Y (x1:n), respectively.

The choice of the covariance and mean function is of utmost importance as they dictates
the properties of the corresponding GP, see e.g. [BTA04]. To be valid, a covariance function,
k : E×E→ Rmust be positive definite, i.e. if and only if for any q ∈ N,x1, . . . ,xq ∈ E, a ∈ Rq,
q∑
i=1

q∑
j=1

aiajk(xi,xj) ≥ 0. Positive definiteness is a rather restrictive condition, but it is possi-
ble to build new kernels by combining several ones, e.g. by summing, multiplying, composition
(warping) or convoluting, see e.g. [Abr97], [RW06]. A stationary kernel–when k(x,x′) is a
function of (x− x′)–can be written as the Fourier transform of a positive finite measure, see
[Ste99], [RW06], providing a flexible tool to model most stationary kernels from a spectral
density as instantiated in [WA13].

Sample paths (realizations) of the GP may be carried out at locations {e1, . . . , ep} ∈ Ep

from a variety of techniques. Perhaps the simplest approach is to cast the simulation of
Y (e1), . . . , Y (ep) as a standard Gaussian vector simulation problem, thus relying on matrix
decomposition approaches, such as the Cholesky decomposition. Unfortunately, when p in-
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Chapter 2. Basics in Bayesian mono- and multi-objective optimization

creases, the effort required to decompose the covariance matrix can become very cumbersome.
Alternative methods to generate sample paths include e.g. turning bands, spectral methods,
circulant embedding or Gibbs sampling [Jou74], [Cre93], [DR07].

Classical results about continuity and differentiability of sample paths of centered GPs
with stationary or non-stationary kernels may be found in [CL67], [RW06], [Sch09] and ref-
erences therein. Results in terms of invariance with respect to a linear operator are exposed
in [GRD13], allowing to integrate structural priors such a zero mean property, harmonicity
or symmetries. As a last examples of the efforts put in tuning and learning kernels, we refer
to [Duv14] for a language to build kernels, to [GOR10] for applications in sensor networks by
defining metrics over sets, to [CL12] for stationary GPs on hyperbolic spaces and Euclidean
spheres, and to [Esp11] for GPs indexed by graphs.

To illustrate the above discussion, Figure 2.1a) presents several samples from GPs with
various mean and covariance functions, highlighting the variety of possible prior encodings.

0.0 0.2 0.4 0.6 0.8 1.0

-4
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0
2

4
6

x

f(
x)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
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.0

0.
0

1.
0

x

f(
x)

(b)

Figure 2.1 – Left: three simulated sample paths of GPs with different mean and covariance
functions, quadratic trend with Matérn 5/2 kernel (red dashed line), constant trend with
exponential kernel (green solid line) and constant trend with a periodic Gaussian kernel (blue
dotted line). Right: Gaussian process prediction (red line), with 95% prediction intervals (in
blue) based on seven observations (orange dots), using a constant trend with a Matérn 5/2
kernel. The Gaussian distribution of the prediction at x = 0.7 is added in dashed, while the
true underlying function is in black.

2.2.2 Predicting with Gaussian processes

The principle of Gaussian Process modeling, also known as Kriging, is to suppose that the
considered objective function f is a sample path of a random field Y . In practice, taking a
zero or fixed mean function is not the preferred solution as it is possible to incorporate some

9
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basis functions. We suppose that the unknown mean function is of the form:

m(x) =
l∑

i=1
βihi(x) = hT (·)β (2.6)

where β1, . . . βl ∈ R are unknown coefficients and h1(·), . . . , hl(·) are given basis functions.
Supposing that the covariance kernel is known and putting an improper uniform prior on β,
the posterior distribution is Y |An ∼ GP(mn(·), kn(·, ·)), with (see [OK78], [HS93]):

mn(x) = h(x)T β̂ + kn(x)TK−1
(
y1:n −Hnβ̂

)
(2.7)

cn(x,x′) = k(x,x′)− kn(x)TK−1kn(x′)

+
(
h(x)T − kn(x)TK−1Hn

) (
HT
nK−1Hn

)−1 (
h(x′)T − kn(x′)TK−1Hn

)T
(2.8)

where Hn =
(
h(x1)T , . . . ,h(xn)T

)T
and β̂ =

(
HT
nK−1

n Hn

)−1
HT
nK−1

n y1:n. Let us denote in
addition s2

n(x) = cn(x,x) the prediction variance.

See e.g. [Cre93], [Mat69] for the equivalent derivation of the so called Universal Kriging
formulas, corresponding to Y (·) = hT (·)β + Z(·) with Z a zero mean GP. Ordinary and
Simple Kriging are special cases, with one constant and no basis function respectively. There
exist results and discussions about the choice of the basis function, see e.g. [JR89] or [MS05].
Other models for the mean may be found e.g. in [VWF05], [Meh15]. In the rest we will
refer to Kriging or Gaussian process models interchangeably since they basically perform the
same task in our context. A small example of Ordinary Kriging on the fundet function from
the KrigInv R package [CPG14] is provided in Figure 2.1b, showing the ability of a GP to
accurately learn from observations.

Also the hypothesis of a known covariance function is unrealistic in most configurations.
In general, k is supposed to belong to parametric families of covariance functions such as the
stationary Gaussian1 and Matérn kernels, based on hypothesis about the smoothness of the
underlying black-box function: infinitely differentiable in the first case, twice, once or only
continuous in the second case with regularity parameter ν = 5/2, 3/2 and 1/2 respectively.
Expressions of these kernels may be found e.g. in [RW06]. When the input dimension is
greater than one, options presented e.g. in [Abr97], [RW06], include assuming isotropy– k
as a function of ‖x − x′‖–, considering that k is a function of

√
(x− x′)TR(x− x′) with

R a positive (often diagonal) semi-definite matrix (with coefficients as additional parame-

1a.k.a. squared exponential kernel, radial basis function kernel or exponentiated quadratic kernel [Duv14],
[DL13]

10
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ters to estimate) or a separable covariance model as in the DiceKriging package [RGD12]:
k =

d∏
i=1

ki(xi, x′i), with ki one dimensional kernels. Other options like additive models will be
detailed in Chapter 8 while kernels that account for ANOVA decomposition offer promising
perspectives for modelling and learning sparsity in high-dimension [GBC+14].

Next the parameters are estimated e.g. from maximum likelihood or cross validation and
the obtained covariance kernel is plugged in Equations 2.7 and 2.8. The main drawback of
this approach is the underestimation of the posterior variance since the uncertainty on the
covariance parameters is discarded. Note that, as presented e.g. in [RW06], it is also possible
to use Expectation maximization, cross validation, variational estimation or a fully Bayesian
approach, but then the predictive distribution has no more closed form expression, thus re-
quiring the use of more computationally demanding techniques based e.g. on Markov Chain
Monte-Carlo. In [Meh15], the variance of the predictor with plug-in is compared to variance
estimated by conditional simulation and bootstrap. In the following, and unless stated other-
wise, we will use maximum likelihood estimation within the plug-in approach. Nevertheless,
the methods presented in this thesis would still apply if integrating the uncertainty on the
covariance parameters in a full Bayesian setting, and presumably with a better performance.

2.3 Mono-objective infill criteria

Initially, as discussed e.g. in [Jon01], one strategy in surrogate-based methods consists in
replacing the true function by a cheap-to-compute approximation like a polynomial one, to
search the design space inexpensively, find its optimum and evaluate it. Then possibly per-
form the same task again. This generally performs poorly since the surrogate is usually quite
coarse which few points. This puts too much emphasis on exploitation of the surrogate model
without taking into account the uncertainty about its predictions. Moreover, optimization
does not actually require a good model everywhere, as for instance in [GCLD09]. That is
why more elaborated techniques towards optimization have emerged, such as the Efficient
Global Optimization (EGO) algorithm [JSW98] which popularized the Expected Improve-
ment [MTZ78], an infill criterion building on the error of the prediction offered by GP models.
For more details about alternative methods for global optimization with surrogate models
and a discussion about their respective flaws, the interested reader is referred e.g. to [Jon01]
and [Vil08].

2.3.1 Bayesian optimization procedure

Bayesian optimization, initiated with works on the Expected Improvement [MTZ78], is built
on two pillars: the first one is to consider the underlying black-box function as random and
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to put a prior distribution that reflects beliefs about it. New observations then refine the
posterior distribution. The second pillar is an acquisition function that selects new point
locations using the posterior distribution to balance exploitation of promising areas and ex-
ploration of less known regions.

Algorithm 1 gives the general outline of Bayesian optimization algorithms. One such
example is the now famous EGO algorithm [JSW98]. Its prior distribution is a Gaussian
process with anisotropic generalized exponential covariance kernel, and a constant mean.
The initial design of experiments is performed with Latin hypercubes, and then the model
is validated before performing additional experiments with the Expected Improvement as
acquisition function.

Algorithm 1 Sketch of a typical Bayesian optimization procedure
1: Perform an initial design of experiments
2: Train the Gaussian process model
3: Optimize the acquisition function
4: Evaluate f at the corresponding design
5: if Stopping criterion met then
6: Stop
7: else
8: Go to step 2
9: end if

The choice of an optimal initial design of experiments with GP modeling is a research
domain in itself, thus in general we keep to the usual strategy of using a space filling design,
including but not limited to maximin Latin Hypercube Samples, see e.g. [FK09], [DHF15] or
[PM12] for a discussion. Some authors advocate skipping the construction of the design of
experiments and directly start the sequential procedure, see e.g. [WZH+13]. Next we detail
the crucial choice of the acquisition function.

2.3.2 Expected Improvement and other infill criteria

A key aspect for infill criteria is to balance between exploitation of promising areas and ex-
ploration of unknown ones. Particularly, optimizing directly on the prediction mean given
by Kriging is known to be local, while focusing on the variance of the prediction only is
too exploratory. These flaws are discussed e.g. in [Jon01], [GLRC10]. An alternative solu-
tion, initially proposed by [Kus64], is provided by the probability of improvement criterion:
PI(x) = P [Y (x) ≤ tn|An] = Φ

(
tn−mn(x)
sn(x)

)
with tn = min

1≤i≤n
f(xi). It has an analytical expres-

sion but is known to focus too much on exploitation since the magnitude of improvement is
not taken into account, see e.g. [Jon01], [Liz08], [GLRC10]. A solution proposed in [Jon01] is
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to use several thresholds instead of just tn. To avoid this choice of thresholds and yet benefit
from an analytical criterion, a simpler alternative is to use the Expected Improvement (EI)
[MTZ78].

To better understand the roots of EI as well as the development of subsequent criteria, we
take a small detour through decision theory, e.g. in the spirit of [MTZ78], [GLR10], [Che13].
Here we adopt the terminology of optimality gap (or regret) for the difference between the best
response found so far and the true minimum: tn − f ∗, with f ∗ = min

x∈E
f(x). When selecting

xn+1, a natural aim is to minimize the future optimality gap tn+1−f ∗. Unfortunately, tn+1 is
unknown beforehand and f ∗ is generally not known at all. But it can be shown that minimiz-
ing the expected regret is equivalent to maximizing E

(
max(0,

(
min

1≤i≤n
Y (xi)

)
− Y (xn+1)

)
,

which is known as the Expected Improvement criterion, see e.g. [JSW98] and references
above. Indeed, in a minimization context, the improvement is defined as I : R → R+,
I(u; fmin) = max (fmin − u, 0) where fmin = tn is the current minimum and u is typically the
(unknown) response at x. In general the notation fmin is dropped when there is no ambiguity.
Integrating the improvement function I with respect to the distribution of Y (x)|An leads to
a closed form when this posterior is Gaussian:

E (I(Y (x), fmin)|An) =
∞∫
−∞

I(y, fmin)
sn(x) φ

(
y −mn(x)
sn(x)

)
dy =

fmin∫
−∞

fmin − y
sn(x) φ

(
y −mn(x)
sn(x)

)
dy

(2.9)

= (fmin −mn(x))(x) Φ
(
fmin −mn(x)

sn(x)

)
+ sn(x)φ

(
fmin −mn(x)

sn(x)

)
(2.10)

which additionally allows fast computation as well as gradient calculations, see e.g. [RGD12].
The Expected Improvement relies on both point-wise prediction mean and variance, resulting
in a balance between exploitation of areas of low mean and exploration within areas of high
variance, without any tuning parameters. A comparison between EI and PI on the Forrester
function (see e.g. [FSK08]) is provided in Figure 2.2, where it can be seen that PI is indeed
more local. To modify the exploration/exploitation trade-off, generalizations of EI have been
proposed by taking exponents of I: Ig(u, fmin) = max

{
(fmin − u)k, 0

}
, k ∈ N in [SWJ98],

[PWBV08]. As for conditions for convergence, they are given in [VB10], [Bul11]. A similar
infill criterion has been proposed in [OGR09], accounting for the expected loss instead of the
improvement.

This point of view of considering only the next evaluation is known as a 1-step look-ahead
(or myopic) strategy since it acts as if the next iteration were the last one. The Expected Im-
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Figure 2.2 – Left: graphical interpretation of the Probability of Improvement and of the
Expected Improvement. The probability of improvement at x = 0.7 is the integral of the
Gaussian density (dashed green) below the threshold (dotted line), i.e. the gray part, while the
Expected Improvement is the same density but integrated with respect to the improvement
function (in dashed-dotted violet). Right: comparison of the values of the two criteria,
dashed-dotted cyan for EI and green dashed for PI. Other elements are as in Figure 2.1.

provement is optimal in this case see e.g. [Che13]. A more efficient strategy would be to plan
the next k points xn+1, . . . ,xn+k in order to get the smallest regret after those k iteration.
In particular, [GLR10] showed that sequential optimization of the Expected Improvement is
sub-optimal. Optimal 2-step ahead strategies are tackled in one way or another in [Moc89],
[OGR09], [GLR10] and [GAOST10]. As appealing as this may appear, their major drawback
lies in computation: for a 3-step look-ahead strategy, the distribution of future location Xn+3

depends on Xn+2 which in turns depends on Xn+1. The optimal strategy involves random
variables in a non-linear and highly intricated way, simulation is thus required for solving
intermediate EI maximization problems. Hence the amount of sampling required is usually
unaffordable and 1-step look-ahead strategies are used instead.

Variations on the Expected Improvement and recent development of EGO are numer-
ous, and sometimes combined as in [HBdF11]. They include varying the metamodel as in
[Meh15], fully Bayesian approaches [Osb10], [Ben13], or replacement of the observed min-
imum by an adaptive target [QPNV10], [CH14]. The Expected Improvement is concerned
with minimizing the expected regret, but there also exists other criteria based for instance on
Thomson sampling [CL11], [AG13], on mutual information [CPV14] or on entropy [VVW09],
[HS12], [HLHG14] which illustrate the broader concept of uncertainty reduction. Given an
uncertainty measure for a quantity of interest, e.g. the Shannon entropy of the position of the
minimizer [VVW09] in the IAGO algorithm, the principle of Stepwise Uncertainty Reduction
(SUR) strategies is to sequentially add new points which will reduce the most the expected
uncertainty as e.g. in [BGL+12], [Che13], [Pic13]. These SUR strategies dedicated to opti-
mization generally perform better than EI, see e.g. [VVW09] or [HS12], since the uncertainty
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is a more global measure, but they tend to be much more difficult to compute or tune, which
probably hinders their spreading among practitioners. Another popular acquisition function,
which comes with theoretical guarantees, is the Gaussian Process Upper Confidence Bound
(GP-UCB) criterion [SKSK10], [dFZS12] that writes UCBn(x) = mn(x) + β1/2

n sn(x), with
β1/2
n a tuning parameter, see e.g. [SKSK10] on how to determine it. Note that this latter

adopts a bandit setting, i.e. considers the cumulative regret over iterations. It is mostly used
in Machine Learning, motivated by applications. Here, in optimization, we do not care on
the value of the regret over time as long as the last iteration is as close as possible to the
optimum. Besides, in [Osb10], evaluation at designs for which the confidence of the model is
high are not performed.

The last aspect we mention is about batches of new points instead of a single one: with
the development of multi-core or grid architectures in modern computers, running several
instances of the black-box code at once is more and more commonplace. Multipoint ver-
sions of the Expected Improvement have been proposed e.g. in [Sch97], [GLRC10], [CG13],
[JLRGG12], [FC12]. Additional details are given in Appendix A, where we propose a very
fast approximation of the exact formula. Parallel versions of GP-UCB may be found in
[DKB12], [DKB14]. As for SUR criteria, they can usually be parallelized since it amounts to
selecting batches of points inducing the highest decrease of uncertainty, the main challenge
being to keep tractable criteria as in [CGB+14]. In Chapter 3, we only consider adding a
single point at each iteration, but this could be extended to sequential batches directly. It
is the same in Part III with contributions to adapt Bayesian optimization to high dimen-
sional research spaces, where the Expected Improvement could be replaced by parallel criteria
without additional changes.

2.3.3 Constrained infill criteria

A typical situation in optimization is to consider constraints. This is one side of the indus-
trial test case of Chapter 8. They can correspond to given specifications or to incompatibility
problems in the model used for computing some physical phenomenon. Denoting g : E→ Rr,
g(x) = (g1(x), . . . , gr(x)) the vectorized output of constraints, the constrained optimization
problem may be written: min

x∈E
f(x) s.t. g(x) ≤ T, where T is a vector of thresholds on the

constraints. Equality constraints can always be divided in two inequality constraints.

Within EI-like criteria, taking into account expensive constraints has been done in a vari-
ety of ways, see e.g. [FK09], [Par12], [PKFH12], [GSA14] and references therein. One option is
to use penalty methods with EGO, which consist in their simplest form to add a large constant
to the objective function value whenever the constraints are violated. In this case, modeling
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is usually quite difficult and it is best to fit a model per constraint, denoted Gi, 1 ≤ i ≤ r.
One such solution is to work with the probability of feasibility [SWJ98], i.e. that a new de-
sign is feasible, and expressed simply with GP models: P [Gi(x) ≤ Ti] = Φ

(
T i−min(x)
sin(x)

)
, with

mi
n(x) and sin(x) the Kriging mean and standard deviation of Gi respectively. Coupled with

the EI, one gets the Expected Feasible Improvement: EFI(x) = EI(x)
r∏
i=1
P [Gi(x) ≤ Ti],

under the hypothesis that constraints and objective functions are independent. The main
drawback is that EFI tends to add points quite far from the boundary of the admissible
domain, see e.g. [Pic14] and references therein. If unfeasible points can still be evaluated,
they may provide information as taken into account in [GGD+14]. Among other solutions are
general formulation with subset estimation [FBV15], a hybrid method in [GGD+14] based on
the augmented Lagrangian framework, or a dedicated SUR criterion aiming at reducing the
expected volume of the admissible excursion set below the best known feasible point [Pic14]
(requiring integration over the input domain of the updated probability of improvement times
the probability of feasibility).

Even if using constraints may be fine, it also happens that they cannot be fulfilled si-
multaneously (empty feasible set) or that after some changes in the specifications, a new
optimization process has to be started since there is not enough diversity in the obtained
solutions. In this case, it is preferable to consider constraints as objectives instead, and apply
multi-objective methods which possess several advantages. Last but not least, in some cases
it is better to reformulate a mono-objective problem into a multi-objective one, a concept
referred to as multi-objectivization, see e.g. [Deb08] and references therein. One example of
application concerns the multipoint EI, where possible objectives for selection of batches are
the prediction mean and variance, the value of EI, distance to neighbors or distance to known
points [BWB+14].

2.4 Multi-objective optimization

Multi-Objective Optimization (MOO) appears in the frequent situation when one wants to
optimize several objectives at the same time. Such problems have been studied in Economics,
Game Theory and Engineering, resulting in a diversity of terms and concepts between those
fields [MA04]. The reader interested by an historical review on the topic is referred to [Sta87].
The philosophy behind multi-objective optimization differs from the single objective one,
which can already be observed with the more complex definition of a solution, based on the
concept of trade-off. As we are working with generic black-box functions, methods working
with linear or quadratic assumptions on the responses cannot be used. After a brief review
of concepts, classical and evolutionary methods to solve these problems, we concentrate on
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GP-based EI-like criteria developed in this field.

2.4.1 Preliminary concepts

Now f is an application of E ⊂ Rd → S ⊂ Rm and in this context, the focus is not only
on the decision space E but also on the objective space S ⊂ Rm. A (naive) analogy with
mono-objective optimization would lead to define a solution of a MO problem as a solution
minimizing every objective at once. Unfortunately, there exists in general no such solution
since objectives are very often conflicting (consider speed and cost in transportation as an
example). This leads to consider compromises, and the standard definition (or concept) of
solution is based on Pareto dominance:

Definition 2.4.1 (Pareto dominance). Given a and b two vectors of E:

• a � b (a weakly dominates b) if and only if ∀i ∈ {1, . . . ,m}, fi(a) ≤ fi(b);

• a ≺ b (a dominates b) i.i.f. a � b and ∃i ∈ {1, . . . ,m} s.t. fi(a) < fi(b);

• a ∼ b (a is equivalent to b) i.i.f. a ⊀ b and b ⊀ a.

The resulting notion of optimality is as follows:

Definition 2.4.2 (Pareto optimality). Given a ∈ E:

• a is Pareto optimal i.i.f. @b ∈ E s.t. a ≺ b.
If a is Pareto optimal, f(a) is said Pareto efficient.

• a is said weakly Pareto optimal i.i.f. @b ∈ E s.t. ∀i ∈ {1, . . . ,m}, fi(b) < fi(a).

These definitions along with relations derived from domination may be found e.g. in
[Mie99], [CS03], [Ehr05]. Note that notations and terminology may differ between authors,
as specified with further definitions in Chapter 4. All (possibly infinitely many) Pareto op-
timal solutions in E, also called non-dominated points, form the so-called Pareto set, and
their image in the objective space is called Pareto front or Pareto frontier. It corresponds
intuitively to the configuration where it is not possible to improve on one objective without
deteriorating at least one other. When there is no ambiguity, we use both the terms optimal
points and non-dominated points without further precision for points either in the input or
output space. We also define two points of interest, the ideal and nadir vectors [Mie99],
corresponding to the objective-wise minima and maxima respectively. They may be used to
rescale the different objectives when the applied criterion is affected by their relative ranges.
Figure 2.3 illustrates one example of Pareto set and Pareto front, which is not convex nor
concave, and disconnected. As is sometimes added for visualization, the weakly dominated
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Figure 2.3 – Optimal points for the Poloni test problem [PGOP00] obtained on a 100× 100
grid (black dots), with optimal points in red in the input space, i.e. the Pareto set (left) and
in the objective space, i.e. the Pareto front (right). The red dotted line (right) along with
the red points forms the weak Pareto front.

area by non-dominated objective points is marked with a step function. Note that if the
Pareto front dimension is lower than the number of objectives minus one, for instance if the
Pareto front of a bi-objective problem is a point, it is said to be degenerate [HHBW06].

The end product of an optimization study is commonly a unique solution, if possible on
the unknown Pareto front. Depending on the knowledge about this Pareto front, one may
directly orient the search toward a certain solution, or avoid intervening to get a greater
range of alternatives. Briefly, this is the problem of selecting one solution out of the possibly
infinite number of mathematically equivalent solutions, which is done based on preferences of
the decision maker [Mie99], [MA04]. This problem is known in operation research literature
under the terms Multiple-Criteria Decision Analysis and Multiple-Criteria Decision-Making.
The stage at which this choice of a solution, a.k.a. articulation of preferences, is performed
gives one possible classification of MOO methods:

• a priori methods: the relative importance of each objective is given before the opti-
mization. A weighted aggregation of the objectives is then optimized to return a single
solution of this scalarized problem.

• a posteriori methods: from a set of non-dominated solutions obtained without express-
ing preferences, decision makers select the one closest to their desiderata.

• interactive (or progressive) methods: optimization runs and preference articulation goes
in turn to precise and adapt the needs and direct the search accordingly.
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Due to the difficulty of anticipating the behavior in the objective space with a priori
methods, it is more common in engineering to seek the whole set of possible solutions and
then choose from it, i.e. using an a posteriori approach. We adopt this point of view in the
following. For one proposed approach, we also describe how to use it interactively in Appendix
B. Note that even with this setup, choices are sometimes left to the user to influence the
search of new solutions, e.g. by choosing reference points.

2.4.2 Classical methods

Early techniques to tackle multi-objective problems convert them to mono-objective problems
and apply the dedicated machinery to solve them (e.g. with Nelder-Mead, BFGS, CMA-ES,
EGO, etc.). There are plenty of options to do so and we review here only the most common.
Solving one such aggregated problem gives one solution on (or close to) the Pareto front. A
Pareto front approximation is thereby obtained by varying the weights or search directions
in the aggregation procedure.

The most intuitive solution to obtain a scalar function is with a weighted linear com-
bination of the objectives, the problem is then to minimize

m∑
i=1

wifi(x) with
m∑
i=1

wi = 1 and
∀i ∈ {1, . . . ,m} wi ≥ 0. It can be shown that the solution of the transformed problem is
Pareto optimal [Mie99], under some regularity conditions. Nevertheless, there is a major
drawback: only solutions on convex parts of the Pareto front may be found. This is not the
case with the Tchebychev aggregation, where one would solve: min

{
max
i=1,...,m

wi|fi(x)− f ∗i |
}

with weights as above and f ∗i the minimum of fi. If the f ∗i ’s, components of the ideal points
are unknown, then the user must provide a point supposedly dominating it. In both cases,
tuning the weights to obtain a specific solution on the Pareto front is in general arduous, as
highlighted e.g. in [FSK08], [EU11].

Specifically designed methods for multi-objective optimization are goal attainment or goal
programming, based on a target and a direction of search (see e.g. [Mie99], [MA04]). They
consider minimizing the deviation from the target, resulting in a constrained mono-objective
problem. Other constrained approaches include the ε-constraint method where the most
important objective is optimized while putting constraints on values of other objectives.
Lexicographic search is similar: objectives are optimized sequentially with constraints on
previously optimized ones. More recent methods include for instance [EU11].

Equivalences between formulations depending on the distance or reference points used
are discussed e.g. in [Mie99] and [TJR98]. The main advantages of these methods are the
numerous optimality results associated, see e.g. [Mie99], [Ehr05] and the possibility of using
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mono-objective optimizers with well-known properties.

Yet, there are several issues when using these methods. First the transformed problem
may be quite difficult to solve, especially with non-linear aggregation. In addition, one need
to incorporate a priori knowledge about the problem at hand, which is difficult with black-
box functions. Even with precise preferences or target, the resulting solution might not be
located where wanted on the Pareto front. This is especially true when running several
instances with different weights, evenly spaced, which in general results in a poor coverage.

2.4.3 Multi-objective evolutionary algorithms

The field of Multi-Objective Evolutionary Algorithms (MOEA) has become quite popular
from the 1990’s on with many successes in dealing with complicated problems, see e.g.
[CLVV07], [Deb08], [ZQL+11] or [Mon12] for a review. They often apply biomimetism and
in particular take up the ideas of evolution and natural selection. They tend to be robust
with respect to noise, discontinuities or non-differentiability, they are adaptable with the
possibility to add constraints and extensions, and in addition it is possible to combine local
and global search.

Some existing methods re-use the ideas of the classical methods described above with
aggregation, or use several sub-populations accounting for the different objectives [CLVV07].
Perhaps the most popular method is the Nondominated Sorting Genetic Algorithm II (NSGA-
II) [DPAM02], which often serves as a baseline for benchmarking new approaches. The main
concepts applied are:

• non-dominance sorting: ranks of dominance are determined based on the values of the
population in the objective space. Points of rank i are dominated only by points of
rank (i− 1) or lower, and they dominate points of superior rank.

• crowding distance: a measure of the concentration of points in a given region of the
objective space.

• crowding comparison operator : points are compared first on their rank, then on their
crowding distance. They are assigned a fitness value accordingly.

• archiving: points with best fitness values are stored.

• elitism: only the best individuals are used to generate the next population.

• mechanisms to create a new population: binary tournament, recombination, mutation
operators, cross-over operators.
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Many alternatives exist to NSGA-II with variations on fitness attribution and generation
of individuals, such as NPGA (Niched-Pareto Genetic Algorithm), MOGA (Multi-Objective
Genetic Algorithm), or SPEA-II (Strength Pareto Evolutionary Algorithm). A more exhaus-
tive description may be found e.g. in [CLVV07].

Before describing some more recent examples of MOEAs, let us precise what we mean
when speaking of quality of approximation for a Pareto front. The result of an optimization
is a set of non-dominated points, which the user wishes to be in some sense “close” to the
true Pareto front. From this, as it involves comparing sets (on top of that, one of them being
discrete while the other is generally not), judging the quality of the result or comparing it
with the output of different optimizers is quite complex. Qualitatively, we think of an ap-
proximation as good when it offers a uniform covering of the true Pareto front, reflects the
diversity of possible compromises and has as many points as possible (see e.g. [VK10] for
details).

When the true Pareto front is unknown, a number of quality indicators may be used to
compare approximations of Pareto fronts, a detailed survey can be found e.g. in [ZKT08].
Perhaps the most important one is the (unary) hypervolume indicator, which is the volume
dominated by the approximation relatively to a reference point (the dominated area of the
objective space being unbounded, defining volume would have no interest). For a pair of
approximations, the (binary) hypervolume indicator is the volume dominated by the first
one and not by the second. Besides this, a weighted function may be applied in the objective
space to focus on specific parts. Another popular indicator is the additive epsilon indicator,
corresponding to the smallest real number which must be added to the second approximation
in order to be dominated2 by the first. These two families of quality indicators are used to
compare two sets of non-dominated points in Figure 2.4. Finally, they can also be applied to
perform statistical tests when comparing stochastic algorithms. In this case the attainment
function method can also be applied, consisting in computing the probability for a given point
in the objective space to be dominated by a run of a method; these attainment functions
are then confronted with dedicated statistical tests, see e.g. [ZTL+03], [ZKT08], [dFF10] and
references therein.

Since features of interest for the Pareto front are evaluated with quality indicators, it
makes sense to use them to guide the search. Examples are the S-metric selection - EMOA
(SMS-EMOA) method [BNE07] with the hypervolume or the Indicator-Based Evolutionary
Algorithm (IBEA) [ZK04] relying on the epsilon or hypervolume indicators. While being
quite effective in practice, MOEAs also have a number of drawbacks, including the tuning of

2The set A is said dominated by the set B if for any point of A there is a point in B dominating it.
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Figure 2.4 – Additive binary epsilon (left) and hypervolume (right) quality indicators for
comparing two sets of non-dominated points, one with red points and the other with blue
squares. The reference point for hypervolume computations is the black triangle.

parameters such as population size, number of iterations and probability of mutation. The
number of runs is in addition frequently quite high, with thousands or much more of evalu-
ations as budget. Finally, there is in general no known convergence properties, as opposed
to some classical methods, explaining the growing development of hybrid combinations of
global and local algorithms [Deb08].

2.4.4 Surrogate-based and Bayesian multi-objective optimization

When f is too expensive or time consuming, the previously described methods are in general
not applicable directly. As with a single objective, the popular approach in this configura-
tion is to rely on surrogate models. Many of them are used in practice: polynomials, splines,
Support Vector Regression, Radial Basis Functions (RBF), random forests or GPs. They
may be integrated in various strategies, see e.g. [WS07], [SQMC10], [THH+15] and refer-
ences therein. Similarly, there are examples where the metamodel, after validation, simply
replaces the true function in optimization, for instance with NSGA-II [VK10]. It is also
possible to interleave updates of the model and optimization. Several models, possibly of
different nature may also be used, see e.g. [Mon12]. Unfortunately, constructing a precise
model everywhere is usually too expensive as soon as the input dimension increases, due
to the curse of dimensionality, a cost which is this time multiplied by the number of objec-
tives. Same causes leading to the same effects, a more efficient technique is, instead of taking
the surrogate as a replacement of the true function, to take it as an aid to select the most
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promising regions and sequentially add new points. This in fact leads to multi-objective ex-
tensions of the Expected Improvement with several objectives when working with GP models.

Before focusing more specifically on multi-objective variants of EI, let us remark that the
idea of going back to a scalar problem to apply EGO has been exploited in several MOO
methods. ParEGO [Kno06] applies EGO on a Tchebychev aggregation with randomly se-
lected weights while MOEA/D-EGO [ZLTV10] builds several Tchebychev aggregations in
parallel. Modeling a desirability function has also been proposed in [HK07]. However, prob-
lems related to aggregation are even more predominant. First, it causes a loss of information
[HS08]. Then modeling one objective is already quite hard, hence modeling a non-linear
combination of several is even trickier, due for instance to different scaling or characteris-
tic length-scales. In addition, tuning the weights is again a severe difficulty, which results
in more runs and this is typically what we want to avoid when dealing with limited bud-
gets. We thus concentrate on truly multi-objective extensions of the EI, with sequential
infill criteria that benefit from improvements directly expressed based on the current non-
dominated points, as discussed e.g. in [Wag13]. Note that they may also be used as filters in
evolutionary algorithms to select the most promising individuals, see e.g. [Emm05], [EGN06].

In Section 2.3.2, the Expected Improvement was emphasized for enabling a good balance
between exploration and exploitation, from the magnitude of improvement regarding the
best point so far. In a similar fashion, a multi-objective improvement function must be
defined relatively to the non-dominated observations in lieu of the current minimum, with
some desirable properties detailed e.g. in [WEDP10], [Sve11]. Hence a MO improvement
logically becomes a function of Rm → R (dropping again the dependence to the observations).
This leaves more room to tune the balance, with possibilities to put the focus either on a
good coverage, on extremities, or on convergence toward the Pareto front. Multi-objective
improvements are inspired by the mono-objective case and by metrics specific to MOO such as
the hypervolume or epsilon indicators. We denote Pn and Rn the Pareto front approximation
and the area dominated by the current n evaluations, respectively. Let the variable u ∈ Rm

denote where the improvement is calculated in the objective space, i.e. u accounts for the
unknown objective function values at a new design x ∈ E, leading later on to multi-objective
EI. Existing MO improvement functions of the literature include:

• 0-1 Improvement [Sve11], [Par12]: IPI(u) = 1[u∈Rn]. It is a binary function, equal to 1
if the point is not dominated by Pn, else 0. When integrated with the multivariate pdf
of the posterior distribution, it gives the multi-objective probability of improvement;

• Euclidean-based improvement [Kea06], [Par12] also called Keane’s Distance Based Im-
provement [Sve11]:
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IK(u) =

 min
ai∈Pn

‖u− ai‖2 if u ∈ Rn

else 0
.

If u is dominated by Pn, the improvement is zero, else it is the minimal Euclidean
distance between u and points in Pn;

• Hypervolume-based Improvement [Sve11], [Par12]: denoting IH the hypervolume indi-
cator and R the reference point:

IH(u) =

 0 if Pn � u or R � u
IH(u ∪ Pn, R)− IH(Pn, R)

.

Here the improvement is the contribution to the hypervolume of a new observation to
the current Pareto front including the considered point. It is possible to apply a weight-
ing function to promote certain areas, e.g. with the Gaussian Weighted Hypervolume
Improvement IWH [Sve11];

• Pareto Improvement Function [Bau09], [Sve11] : IP(u) = − max
ai∈Pn

min
j=1,...,m

(uj − aij).
The Pareto Improvement (as well as the following Maximin Improvement) can be seen
as a distance to the current Pareto front Pn;

• Maximin Improvement [Sve11], [SS16]:
IM(u) = − max

ai∈Pn
min

j=1,...,m
(uj − aij)1[

− max
ai∈Pn

min
j=1,...,m

(uj−aij)>0
].

This function is also the value of the additive Binary-ε indicator between the Pareto
front obtained with Pn ∪ u and Pn. It differs from the previous one with a zero
improvement in the dominated area instead of negative values;

• Completeness Indicator Improvement [Sve11]: IC(u) = ICP (Pn ∪ u) − ICP (Pn) with
ICP the completeness indicator: P [Pn � f(U)] where U is a uniformly sampled point
from the input space E.
This indicator may be seen as the volume in the input space of points whose responses
are dominated by Pn. Further details on this indicator may be found e.g. in [ZKT08]
or [Lot05].

The behavior of some of these improvement functions is illustrated in Figure 2.5. From
the shape of their level lines, it can be observed that they provide different ways of balancing
between adding points to extremities of the Pareto front, augmenting the current Pareto
front or trying to dominate parts of it. Some undesirable properties can also be noticed, for
instance with the Euclidean improvement, for which the dominance relationship is not re-
spected. Indeed, a point dominated by another may still have a greater improvement. Other
properties of interest for candidate improvement functions include absence of parameters,
invariance with respect to rescaling of the objectives, and analytical expressions. Details,
including summaries of the relative merits of these improvement functions (among others),
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can be found e.g. in [Sve11], [WEDP10] and [Wag13].
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Figure 2.5 – Contour plot of the values in the objective space of several improvement functions
with respect to the observations (white points).

We can finally express the multi-objective expected improvement with arbitrary improve-
ment function I∗. Note that, as stated e.g. in [WEDP10] and [Sve11], splitting the second
term in Equation 2.9 yields I(ȳ, fmin)Φ

(
fmin−mn(x)

sn(x)

)
with ȳ the center of mass of the inte-

gral of the distribution of Y (x) in the interval ] −∞, fmin]. These equivalent formulations
when there is only one objective give rise to two different formulations when extended to
multi-objective optimization, see e.g. [Sve11], [Wag13]:

• QI(x) = E (I∗(Y(x))|An), this is the natural extension of EI since this is an expecta-
tion;

• QI(x) = P [Y(x) ∈ Rn|An]×I∗(Ȳ (x)) with Ȳ (x) = E(Y(x)1[Y(x)∈Rn]|An))
P (Y(x)∈Rn|An) the expectation

of the distribution of Y (x) conditioned to be under the Pareto front. This definition of
QI is not an expectation, but it is used in practice since it avoids many computations of
the improvement I∗ when sampling is required and it allows computing some analytical
expressions (see e.g. [Kea06]).

An extensive comparison in [Sve11] shows no clear superiority of one formulation over the
other.

The multivariate cumulative distribution of the outputs plays a major role in these formu-
lations. Notably, several options exist to introduce dependence between outputs within GP
models, see e.g. the review of [ÁRL11]. The main difficulty is to obtain a properly defined
cross-covariance structure between outputs while having an appropriate one for the inputs. In
general, it is flexible only in one of these spaces and may require more hyperparameters. Due
to these restrictions, integrating dependent models has not shown significant improvement
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in practice, as stated in [Bau09], [Sve11], [KM14]. In addition, the derivation of analyti-
cal expressions depends on the structure of dependence used in the modeling: they have
mostly been elicited when the multivariate pdf is the product of univariate ones (indepen-
dent model), for two or three objectives (theoretically extensible but cumbersome for more
objectives), see e.g. [Kea06], [SS16], [EDK11]. Recent faster algorithms to compute multi-
variate probability of improvement and expected hypervolume improvement may be found
in [CDD13], [HDYE15]. Otherwise the computation is possible with Monte Carlo techniques
from draws of the posterior distribution. In this case, the second interpretation of multi-
objective EI is computationally more efficient when calculation of the improvement is costly,
for instance with the hypervolume for many points and a lot of objectives. Apart from the
probability of improvement which is not efficient, it was stated in [Sve11] that no approach
nor improvement function presented a superior performance. Compared to simpler criteria
such as using only the prediction mean or marginal EI over the different objectives, the Ex-
pected Hypervolume Improvement (EHI) has been shown to perform better in [SSJO12].

As in the mono-objective case, several alternatives to multi-objective EI can be found in
the literature such as a variant of the EHI, i.e. SMS-EGO [PWBV08], [WEDP10], a SUR
criterion for MOO proposed in [Pic13], an active learning algorithm with some convergence
results [ZSKP13], which extends the GP-UCB method to classify solutions from a finite set
of candidate as Pareto optimal, not Pareto optimal and undetermined ; another similar ap-
proach is proposed in [SHSMV14] that is only based on a Support Vector Machine classifier.
In addition to the Expected Hypervolume and Maximim Improvement, we also implemented
in GPareto [BP15] the SMS-EGO and SUR criterion, which we briefly detail.

The SMS-EGO infill criterion [PWBV08], [WEDP10] is basically the hypervolume added
to the current Pareto front by the lower confidence bound of the prediction at x, ŷ − αŝ
where ŷ = (m(1)

n (x), . . . ,m(m)
n (x)), ŝ = (s(1)

n (x), . . . , s(m)
n (x)) and α(p) = −Φ−1(0.5 m

√
p), e.g.

with p = 0.5. To account for possibly too optimistic lower confidence bounds and to fa-
vor good coverage, additive-epsilon dominance is considered, denoted �ε, i.e. a vector b is
said to be ε-dominated by a (a �ε b) if ai ≤ bi − ε , 1 ≤ i ≤ m. In case some solutions
y(i) in the current Pareto front are ε-dominating the lower prediction bound, the increment
of hypervolume is replaced by the maximal penalty over these: maxy(i) s.t.ŷ�εy(i) P (Y (x)) =
−1 +

m∏
j=1

(1 + (m(j)
n − y

(i)
j )).

The SUR criterion of [Pic13] is in turn concerned with the probability of improvement.
The uncertainty is the volume in the input space of the excursion set whose image in the
objective space dominates the Pareto front. This is equal to the integral of the probability
for a point x in the input space of not being dominated by any points in the current Pareto
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optimal set X∗n, which is expressed by evn(x) =
∫
E
P [X∗n 6� x|An]. The SUR criteria is then

Jn(x) = E (evn+1(x)|An). An analytical formula of the probability for a point of not be-
ing dominated at step n + 1 is available but the integration over the input domain requires
Monte-Carlo methods. Practical details about this are given in [Pic13] and references therein.

These sequential infill criteria are more or less similar to multi-objective EI and they share
the common trait that they do not provide a continuous representation of the Pareto front but
only consider improvement over the currently non-dominated points. This somehow missing
point has been one of the lines of research followed within this PhD. The second limitation
underlying in both mono and multi-objective optimization concerns the number of variables.
When it increases, learning the surrogate model becomes impractical. It is also much longer:
computations, for instance related to the inner optimization of the acquisition function, are
also much more difficult. These restrictions are discussed in detail at the beginning of Chapter
5, before describing the Random EMbedding Bayesian Optimization paradigm, to which a
few original contributions are presented. Some of the methods presented here have also been
employed on a test case from Renault with 47 variables, as detailed in Chapter 8.
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Part II

Uncertainty quantification on Pareto
fronts
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Chapter 3

Quantifying uncertainty on Pareto
fronts with Gaussian processes

In Chapter 2, sequential infill criteria based on a Kriging surrogate have been presented.
Here we consider GP metamodels not only for selecting new points, but as a tool for esti-
mating the whole Pareto Front and quantifying how much uncertainty remains on it at any
stage of Kriging-based multi-objective optimization algorithms. This chapter reproduces the
article [BGR15a] that has been published in the European journal of Operational Research.
Additional ongoing works realized after publication and complementing the article are briefly
discussed at the very end of this chapter, while details are presented in Appendix B.

3.1 Introduction

The interest in Multi-Objective Optimization (MOO) has been growing over the last decades,
resulting in the development of numerous dedicated methods, especially in evolutionary MOO
[Deb08]. These methods are able to cope with challenging problems occurring when few infor-
mation about the properties of the objective functions is available (black-box optimization).
In some situations, as for example in car crash safety design [LLY+08], another difficulty
comes from a limited budget of evaluations, because of expensive experiments or high fidelity
simulations.

In this context, see e.g. [SQMC10] for a review, a common approach is to rely on a sur-
rogate model or metamodel to alleviate the computational costs of the optimization process.
In particular, Kriging metamodels have proven to be efficient because they not only give a
response surface but also a quantification of prediction uncertainty. In mono-objective op-
timization, this property has been extensively used following the principles of the Efficient
Global Optimization (EGO) algorithm [JSW98] where the Expected Improvement criterion
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is used to balance between exploitation and exploration. Extensions to MOO have been
developed, from scalarization approaches [Kno06, ZLTV10] to the use of multi-objective ex-
pected improvement criteria such as the Expected Hypervolume Improvement [EDK11].

While results about the optimality of solutions from aggregation approaches have been
reported (see e.g. [Mie99]), things are more difficult to analyze for MOO and even worse in
metamodel based MOO, where an additional source of uncertainty due to surrogate modeling
must be taken into account. Besides, the study of the convergence in evolutionary MOO is
an ongoing subject of research [WTM11].

Inspired by what has been proposed for Kriging-based excursion sets estimation in Cheva-
lier et al. [Che13, CGBM13], we propose here to use notions from the theory of random sets
[Mol05] for quantifying uncertainty on Pareto fronts, through conditional simulations. The
latter are used to estimate the probability that any given point in the objective space is
dominated, which is known in performance assessment of multi-objective optimizers as the
attainment function [dFF10]. From this we obtain a metamodel-based estimation of the
Pareto front using the Vorob’ev expectation [Mol05], with a value of the associated uncer-
tainty: the Vorob’ev deviation. At each stage of the sequential optimization process, an
insight is provided to the practitioner about convergence and possibilities of further improve-
ments. Furthermore, with two or three objectives the proposed approach makes it possible
to visualize the variability around the estimation of the Pareto front in the objective space.

The paper is organized as follows: Section 3.2 details notions in MOO and in Gaussian
Process Regression upon which the proposed approach is based. In particular Section 3.2.4
is dedicated to conditional simulations. In Section 3.3, we propose an original definition of
uncertainty using the Vorob’ev expectation and deviation. Finally, Section 3.4 is dedicated
to applications of the proposed methodology to three different test cases, where the potential
of the approach to quantify uncertainty and monitor convergence within a sequential MOO
algorithm is illustrated.

3.2 Multi-objective optimization and Gaussian Process
Regression

3.2.1 Notions in MOO

Multi-objective optimizers aim at optimizing (say minimizing) several objectives at once:
f1(x), . . . , fm(x) with x = (x1, . . . , xd)T a vector of decision variables in E (usually E ⊂ Rd)
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and f : E→ Rm the vector valued function whose coordinates are f1, . . . , fm. As the objec-
tives are usually in competition, the existence of an optimal solution minimizing all objectives
simultaneously cannot generally be taken for granted. This leads to the definition of com-
promise solutions following the Pareto dominance: a vector is said to be dominated if there
exists another vector which is not worse in any objective and better for at least one of them.
If a vector is not dominated by any other vector, it is said to be optimal in the Pareto sense.

The set of optimal (or non-dominated) points in E is called Pareto set and the correspond-
ing image by f , composed of non-dominated vectors, is called Pareto front. Multi-objective
optimization algorithms aim at finding non-dominated objective vectors as close as possible
to the true underlying Pareto front, creating a discrete approximation sometimes called a
Pareto front approximation [ZKT08].

3.2.2 Kriging / Gaussian Process Regression

A common solution to perform optimization under a tight evaluation budget is to appeal to
a mathematical surrogate of the objective function. Here we focus on a class of probabilistic
metamodels relying on Gaussian random fields. Originating from geostatistics with a tech-
nique named Kriging [Mat63], predicting with such a metamodel is known in the machine
learning community as Gaussian Process Regression (GPR) [RW06]. These Kriging/GPR
metamodels have the property of interpolating the observations when noiseless data is consid-
ered (deterministic case). Furthermore, due to the probabilistic nature of these metamodels,
they also provide a quantification of the prediction uncertainty.

Without loss of generality, here we do not assume a priori any stochastic dependency
between the responses f1, . . . , fm and we treat them separately since the use of dependent
models is significantly more cumbersome and has not been shown to perform better in state
of the art studies [KM14, SS16]. Following the settings of Gaussian Process Regression
[Ste99, SWMW89], each of the objective functions fi is supposed to be a sample path of a
random field Yi:

Yi(.) = gTi (.)βi + Zi(.) (Universal Kriging)

where gi(.)T is a vector of known basis functions, βi a vector of unknown coefficient and
Zi(.) is a zero mean Gaussian process (GP) with given covariance function, or kernel, ki.
With n evaluations at the same locations for the objectives {Yi(x1) = yi,1, . . . , Yi(xn) = yi,n,

1 ≤ i ≤ m} denoted An, the predictor (or Kriging mean) and the prediction covariance (also
referred to as Kriging covariance) of Universal Kriging (UK) are expressed as:
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mi,n(x) = gi(x)T β̂i + ki,n(x)TK−1
i,n

(
yi,n −Gi,nβ̂i

)
ci,n(x,x’) = ki(x,x’)− ki,n(x)TK−1

i,nki,n(x’)

+
(
gi(x)T − ki,n(x)TK−1

i,nGi,n

) (
GT
i,nK−1

i,nGi,n

)−1 (
gi(x’)T − ki,n(x’)TK−1

i,nGi,n

)T
where yi,n = (yi,1, . . . , yi,n), Ki,n = (ki(xs,xt))1≤s,t≤n, ki,n(x) = (ki(x,x1), . . . , ki(x,xn))T ,
Gi,n =

(
gi(x1)T , . . . , gi(xn)T

)T
and β̂i =

(
GT
i,nK−1

i,nGi,n

)−1
GT
i,nK−1

i,nyi,n.

Note that from a Bayesian point of view, assuming that the Yi are Gaussian conditionally
on βi and putting an improper uniform prior on βi, it is known [HS93] that the Universal
Kriging mean and covariance coincide with the conditional expectation and covariance of Yi
knowing An, respectively: mi,n(x) = E(Yi(x)|An) and ci,n(x,x’) = cov (Yi(x), Yi(x’)|An).

The covariance functions are chosen according to prior hypothesis about the unknown
functions, such as regularity, sparsity, possible symmetries, etc. [GRD13]. While there exists
a variety of admissible covariance functions, the most commonly used are the stationary
“Gaussian” and “Matérn” kernels [Ste99]. Maximum likelihood estimation or cross validation
techniques [Bac13a] are typically employed to estimate values for the kernel hyperparameters
[RW06]. An example of a Kriging model with constant unknown trend and Matérn (ν = 5/2)
kernel is depicted in Figure 3.1a.

3.2.3 Multi-objective expected improvement

Sequential approaches in MOO aim at adding new observations with a balance between ex-
ploration and exploitation. Similar to [JSW98], several extensions of the EGO algorithm
have been proposed for MOO. The main idea is to derive criteria in the vein of the Expected
Improvement by defining a generalization of the notion of improvement for multiple objec-
tives. Popular methods include scalarization approaches like ParEGO [Kno06] or MOEAD-
EGO [ZLTV10] or truly multi-objective methods based on the definition of improvement
functions over the current Pareto front Pn defined by the current observations. Considered
improvement functions are respectively based on Euclidean distance [Kea06], Hypervolume
[EGN06, WEDP10] or Maximin distance [Bau09, SS16] i.e. respectively the distance to the
closest point of Pn, the volume added over Pn and an axis-wise distance to Pn.

In the applications of Section 3.4, we use the Expected Hypervolume Improvement to
sequentially add points. This criterion has been successfully applied to problems with limited
budget [EDK11], enjoys some beneficial properties [EDK11] and furthermore is related to the
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concept of attainment function which is of particular importance in what follows.

3.2.4 Conditional simulations

From the Universal Kriging metamodels presented in Section 3.2.2, it is possible to generate
samples interpolating the available evaluation results, called conditional simulations. They
can be generated using a variety of methods, from matrix decomposition to spectral methods,
as presented in [Jou74, Hos95, DR07, RGD12]. Examples of such conditional simulations are
displayed in Figure 3.1b.
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Figure 3.1 – Left: example of Kriging model based on observations at n = 7 locations (black
points), with Kriging mean (bold line) and Kriging pointwise 95% prediction intervals (shaded
area). The Gaussian predictive distribution for x = 0.7 is represented by the vertical dashed
line. Right: conditional simulations (colored thin lines) from the fitted UK metamodel.

They have been applied in mono-objective optimization in [VVW09] as a tool to estimate
an information gain when no analytical formula is available, as opposed to the Expected
Improvement. Until now, the computation of multi-objective Expected Improvement relies
either on analytical formulas or on Monte Carlo estimation with draws of the posterior distri-
bution at a single location x. In contrast, conditional simulations consist in drawing posterior
realizations of the unknown function at multiple points, say Ep : {e1, . . . , ep} ⊂ E. Since
exact1 methods essentially depend on p × p covariance matrices, the number of simulation
points is typically limited by storage and computational cost. Despite this limitation, condi-
tional simulations (based on matrix decomposition) prove useful for Pareto front estimation,
as presented in the next sections.

1with desired statistical properties, as opposed to approximate methods, see e.g. the discussion in [EL06].
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3.3 Quantification of uncertainty

In this section, we assume that a Gaussian process model (see Section 3.2.2) has been esti-
mated for each objective function from a set of n observations An. These models allow us
to generate conditional Pareto front realizations and further estimate the uncertainty on the
Pareto front with concepts from random sets theory.

3.3.1 Conditional simulations for MOO: generation of conditional
Pareto fronts and corresponding attained sets

Here we use conditional simulations to generate so-called conditional Pareto fronts (CPF).
The first step is to simulate a finite number (say N) of vector-valued GP conditional simula-
tions

{
Y(1)

1 , . . . ,Y(1)
m

}
, . . . ,

{
Y(N)

1 , . . . ,Y(N)
m

}
at some simulation points in the design space.

Selecting the corresponding non-dominated simulation points and simulated responses then
provides conditional Pareto sets and fronts as summarized in Algorithm 2 and illustrated in
Figure 3.2.

Note that what we denote by CPF are actually approximations of conditional Pareto
fronts, just like conditional simulations of Gaussian random fields are often approximated
realizations relying on a finite number of points. Simulation points can be fixed for all the
simulations or changed from one simulation to the other. Fixed simulation points accelerate
the simulation generation but they may introduce a bias and lead to missing worthwhile ar-
eas. On the other hand, modifying the simulation points increases the computational burden
but is more exploratory, which might be an asset in high dimensions. Besides, the procedure
used to choose the location of simulation points may impact the results. Accordingly, two
sampling strategies are investigated in Section 3.4.2.

Algorithm 2 Simulation of N conditional Pareto sets and fronts
for i = 1, 2, . . . , N do

Choose p simulation points Ep = e1, . . . , ep in E (fixed or different at each iteration).
for j = 1, 2, . . . ,m do

Generate a conditional simulation at e1, . . . , ep for the jth objective: Y(i)
j =(

Y
(i)
j (e1), . . . , Y (i)

j (ep)
)
.

end for
Determine the Pareto set and front of

{
Y(i)

1 , . . . ,Y(i)
m

}
.

end for

From now on we focus on the use of CPFs since the decision maker is mostly interested
in visualizing results in the objective space. Each CPF is composed of non-dominated points
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Figure 3.2 – Conditional Pareto sets and fronts corresponding to the GP models Y1, Y2,
based on the observations An represented by blue triangles. Left and center: examples of
two conditional simulations of Pareto sets (top) and fronts (bottom), where the simulations
are performed on a regular 100 × 100 grid. The simulation points and simulated responses
are plotted with dots. The corresponding non-dominated points are represented by red
squares. Right: contour plot of the probability density of optimal points in the decision space
estimated from 30 conditional simulations (top) and superposition of simulated conditional
Pareto fronts (bottom).

f2

f1

Figure 3.3 – Example of 3 realizations of RNP sets (points, triangles and squares) and the
corresponding attained sets (shaded areas).
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in the objective space. They have been considered to assess the performances of MO opti-
mizers [FDFP05, ZKT08] under the term Random Non-dominated Point (RNP) sets: sets
of random vectors in Rm, non-dominated with respect to each other and with random finite
cardinality (see e.g. [dFF10]). An alternative view is to consider the set of all objective vec-
tors dominated by a realization of an RNP set, called an attained set. Realizations of RNP
sets and the corresponding attained sets are presented in Figure 3.3.

In the mono-objective case, GP models provide analytical expressions of the expectation
(Kriging mean) and uncertainty (variance of the pointwise prediction). It would be interesting
to get their counterpart for the attained sets of simulated CPFs. Nevertheless, defining an
expectation and/or an index of variability for sets is not straightforward and requires concepts
from random sets theory [Mol05].

3.3.2 Basics from random sets theory: quantifying uncertainty
with the Vorob’ev deviation

Before introducing related notions for CPFs, let us recall some general definitions. Set-
valued random elements, in particular random closed sets [Mol05] received attention in the
probability literature over the last decades. There exist several candidate notions to define
the mean of a random closed set, see [Mol05] (Chapter 2). We choose a rather intuitive one,
based on the notion of coverage function:

Definition 3.3.1 (Coverage function). Let Y be a random closed set on a topological space
D (here D ⊂ Rm equipped with the topology induced by the Euclidean distance). The coverage
function pY is defined by pY : x ∈ D 7→ P(x ∈ Y).

This definition has been applied in the Kriging framework to estimate sets of critical input
values [Che13, CGBM13]. It uses the Vorob’ev expectation, based on the upper level sets
Qβ = {z ∈ D, pY(z) ≥ β}, called β-quantiles.

Definition 3.3.2 (Vorob’ev expectation and deviation). Denoting by µ the Lebesgue measure
on Rm and assuming that E(µ(Y)) < +∞, the Vorob’ev expectation is the β∗-quantile Qβ∗
such that E(µ(Y)) = µ(Qβ∗) if this equation has a solution, and otherwise it is defined from
the condition µ(Qβ) ≤ E(µ(Y)) ≤ µ(Qβ∗), ∀β > β∗. The associated Vorob’ev deviation
is the quantity E(µ(Qβ∗∆Y)), where ∆ denotes the symmetric difference between sets, i.e.
Qβ∗∆Y = (Qβ∗ ∪ Y) \ (Qβ∗ ∩ Y).

The Vorob’ev expectation is a global minimizer of the deviation among all deterministic
closed sets with volume equal to the average volume of Y (see [Mol05] for a proof): for any
set M with µ(M) = E (µ (Y)) , E (µ (Qβ∗∆Y)) ≤ E (µ (M∆Y)).
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3.3.3 Quantification of uncertainty on Pareto fronts using random
set theory

In the MOO literature, the study of distribution location and spread of an attained set X
rely on the attainment function αX [dFF10]: the probability for a given point in the objective
space to be dominated by an RNP set, αX : x ∈ Rm 7→ P(x ∈ Y).

Attained sets are also closed2 and unbounded subsets in Rm. Hence, the attained sets
obtained with the simulated CPFs can be considered as realizations of a random closed set
and are denoted by Yi, (i = 1, . . . , N). Looking again at Definition 3.3.1, one can see that
the attainment function is in fact a coverage function. For proofs and discussions about
the equivalence of the distribution of an RNP set and of the corresponding attained set, as
well as for a definition of the attainment function in terms of coverage function, we refer to
[dFF10]. This reference establishes the link between optimization results and random closed
sets, in a case where the attainment function is computed from several runs of optimizers.
Their comparison is then performed based on statistical hypothesis testing procedures.

In practice the attainment function is estimated by taking the proportion of RNP sets
that dominates a given vector in the objective space:

Definition 3.3.3 (Empirical attainment function). Given a sample of attained sets Y1, . . . ,YN ,
the empirical attainment function is defined as: α̂N : Rm 7→ [0, 1], α̂N(z) = 1

N

N∑
i=1

1{z∈Yi}
where 1{z∈Yi} = 1 if z ∈ Yi, 0 otherwise.

An example of an empirical attainment function is presented in Figure 3.4, showing where
in the objective space there is a high probability to improve on the current Pareto front.

Definition 3.3.2 requires that Y is bounded for its Vorob’ev expectation to exist. Hence
it is necessary to define a reference point R to bound the integration domain. Since the
Lebesgue measure of an attained set with respect to the reference point is the hypervolume
indicator of the corresponding RNP set, denoted by IH(.,R), the choice of R has a similar
influence (see e.g. [ABBZ12]). Unless there is previous knowledge about the range of the
objectives, we choose R as the maximum of each objective reached by the conditional simu-
lations.

The determination of the Vorob’ev threshold β∗ requires the volumes of β-quantiles:

µ(Qβ) =
∫
Ω

1α̂N (z)≥βµ(dz)

2As a finite union of closed sets (hyper quadrants).
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They can be estimated by numerical quadrature, i.e. by computing the values of α̂N on a grid
when there are few objectives or relying on Monte Carlo schemes. The other integrations are
performed using hypervolume computation procedures and their complexity is related to the
difficulty of computing the hypervolume in general. Hence measuring the uncertainty with
the Vorob’ev deviation would be possible with any number of objectives but would require
approximating integrals to keep the computations affordable. Note that since we take the
objectives separately, simulating with more objectives simply requires computing the addi-
tional conditional simulations corresponding to those objectives.

The Pareto frontier of the Vorob’ev expectation provides us with an estimate of the Pareto
front, as illustrated in Figure 3.4. The value of the Vorob’ev deviation gives an idea about
the variability of the simulated CPF and can be monitored as observations are added, as
will be shown in Section 3.4. The procedure to determine the value β∗ corresponding to the
Vorob’ev expectation (Vorob’ev threshold) as well as of the Vorob’ev deviation is described
in Algorithm 3.

Algorithm 3 General procedure for estimating the Vorob’ev expectation and deviation
1: Generate N CPFs (see Algorithm 2).
2: if R is unknown then find the extremal values for the objectives over the RNP sets realizations:

R =
[

max
i∈(1,...,N)

Y(i)
1 , . . . , max

i∈(1,...,N)
Y(i)
m

]

3: Define the integration domain: Ω =
[

min
i∈(1,...,N)

Y(i)
1 , R1

]
× · · · ×

[
min

i∈(1,...,N)
Y(i)
m , Rm

]
4: Determine the average volume of the attained sets Yi:

E(µ(Y)) ≈ 1
N

N∑
i=1

∫
Ω

1{z∈Yi}µ(dz) = 1
N

N∑
i=1

IH(Yi,R)

5: Find the value of the Vorob’ev threshold β∗ by dichotomy: set a = 0, b = 1:
while b− a < ε do

if µ
(
Qa+b

2

)
< E(µ(Y)) then b = a+b

2

else a = a+b
2

end if
end while, β∗ = a+b

2
6: Estimate the Vorob’ev deviation:

E(µ(Qβ∗∆Y)) ≈ 1
N

N∑
i=1

∫
Ω

1(z∈Qβ∗∆Yi)µ(dz) = 1
N

N∑
i=1

(2IH(Qβ∗ ∪ Yi,R)− IH(Qβ∗ ,R)− IH(Yi,R))
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Remark 3.3.1. The last equality in Algorithm 3 comes from the following:
∫
Ω

1z∈A∆Bµ(dz) =
IH2(A,B,R)+ IH2(B,A,R) where IH2(A,B,R) is the binary hypervolume indicator, defined
for instance in [ZTL+03]: the volume dominated by A and not by B, i.e. IH2(A,B,R) =
IH(A ∪B,R)− IH(B,R).
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Figure 3.4 – Example of empirical attainment function (level sets, left) and corresponding
Vorob’ev expectation (shaded area, right), based on 200 conditional simulations. The es-
timate of the underlying Pareto front (dashed line) is the Pareto frontier of the Vorob’ev
expectation. The ten observations are marked by blue triangles.

Remark 3.3.2. [dFF10] proposes the use of the Vorob’ev median (Q0.5) if no compact set is
chosen for integration. While removing the problem of fixing the reference point, no equivalent
of the Vorob’ev deviation seems available in this case.

From a practical point of view, it is also useful for visualization purpose with few objectives
to display the superposition of all the symmetric differences by defining an analogue of the
attainment function:

Definition 3.3.4 (Symmetric-deviation function). The function δY : z ∈ Rm 7→ P (z ∈
Qβ∗∆Y) is called the symmetric-deviation function of Y.

δY is the coverage function of Qβ∗∆Y . It is estimated with the empirical symmetric-
deviation function:

δ̂N(z) = 1
N

N∑
i=1

1{z∈Qβ∗∆Yi}.

Figure 3.5 presents an example of a symmetric difference between two sets and an empir-
ical symmetric-deviation function. This shows the variability around the estimated Pareto
front: dark areas indicate regions where the estimation of the Pareto front is not known
precisely.
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Figure 3.5 – Left: symmetric difference between the Vorob’ev expectation (the level line of
the Vorob’ev threshold is represented by the red dashed line) and a simulated CPF’s attained
set (blue dotted line). Right: illustration of the deviation around the estimated Pareto front
corresponding to Figure 3.4 with an example of empirical symmetric-deviation function (level
plot).

3.4 Application

3.4.1 Two-dimensional bi-objective test problems

In this section, we illustrate the benefits of the proposed methodology for estimating Pareto
fronts. We consider the following two variable, bi-objective optimization problems from the
literature:

(P1) The problem presented in [Par12], which has a convex Pareto front:

f1(x) =
(
b2 −

5.1
4π2 b

2
1 + 5

π
b1 − 6

)2
+ 10

[(
1− 1

8π

)
cos(b1) + 1

]

f2(x) = −
√

(10.5− b1)(b1 + 5.5)(b2 + 0.5)− 1
30

(
b2 −

5.1
4π2 b

2
1 − 6

)2
−1

3

[(
1− 1

8π

)
cos(b1) + 1

]
where b1 = 15x1 − 5, b2 = 15x2 and x1, x2 ∈ [0, 1].

(P2) The ZDT3 problem [ZDT00] which has a disconnected Pareto front.

For each example, we start with a set of few observations that allow fitting initial Gaus-
sian process models for the two objective functions. Then we add new points sequentially
by maximizing the Expected Hypervolume Improvement, based on the formula detailed in
[EDK11]. At each step, the Gaussian process models are updated and their hyperparameters
re-estimated. These models are then used to simulate CPFs, from which we compute the
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estimates of the Vorob’ev mean and the measures of uncertainty: Vorob’ev deviation and
symmetric-deviation function. Since the integration domain varies as points are added, the
values are displayed divided by the volume of this integration domain. The following test
problems are fast to compute, so it is possible to compare the outcome of the proposed work-
flow to a reference Pareto front by using the volume of the symmetric difference.

The results are presented in Figure 3.6 and Figure 3.7, showing the evolution of the es-
timated Pareto fronts with the corresponding uncertainty around it. For the problem (P1)
the sequence is detailed, demonstrating the strength of the proposed approach for giving in-
sights about the uncertainty on the Pareto front. In particular, the uncertainty measures are
helpful for choosing a minimal number of observations for approximating the Pareto front:
while 10 initial observations may not be enough (Figure 3.6a) regarding the large symmetric-
deviation, adding 10 more observations dramatically reduces the uncertainty (Figure 3.6c).

The conclusions are similar for problem (P2) Figure 3.7, where the Pareto front is discon-
nected, starting this time with 20 observations and sequentially adding ten more observations
by Expected Hypervolume Improvement maximization. This example makes clear that the
Vorob’ev expectation refers to the area dominated by the Pareto front. When the latter is
disconnected, the dominated area’s frontier is horizontal in the corresponding parts. The
position of the cuts in the Pareto front depends on the model and simulations, resulting in a
higher variation around cuts: a small change in the extent of a peak impacts the beginning
of the next one (where the symmetric difference volume depends on the size of the discon-
nection).

One can note that the approximations obtained are dependent on the model accuracy.
In Figure 3.6a the approximation is clearly too optimistic about the range of the first ob-
jective, due to an underestimation of the range parameters of the used Matérn covariance
kernel (ν = 5/2) combined with a misleading trend estimation in the corresponding surro-
gate. Similarly, for one objective, the expected value of the minimum would be misleading
at the beginning.

Finally, we propose the use of the Vorob’ev deviation as a stopping criterion when the
Pareto front location is known. An empirical rule could be a threshold on the Vorob’ev
deviation (e.g. expected volume of the symmetric difference less than 1% of the integration
volume) and detection of stagnation (e.g. under the threshold for several evaluations). On
the examples Figures 3.6d and 3.7b, by considering the two last evaluations, the result would
have been to stop for problem (P1) and continue for problem (P2). Note that this simple
criterion would fail if the estimation of hyperparameters is misleading. A more robust version
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(c) 20 observations
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Figure 3.6 – Evolution of the deviation with new observations added using Expected Hyper-
volume Improvement for Problem (P1). The shaded area represents the image of E by f with
a thicker border for the Pareto front. Observations are marked with blue triangles and the
blue solid line represents the current Pareto front. The dashed line is the estimated Pareto
front, with the corresponding values of the symmetric-deviation in level plot. Bottom right:
evolution of the Vorob’ev deviation scaled by the current integration volume (black solid line
with circles) and evolution of the distance to the real Pareto front measured with the volume
of the symmetric difference with the estimation (red dotted line with crosses).
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Figure 3.7 – Evolution of the deviation with new observations added using Expected Hy-
pervolume Improvement for Problem (P2). The figure description is the same as in Figure
3.6.

would be to integrate the uncertainty on the hyperparameters estimation in a full Bayesian
framework [DR07]. More sophisticated values could also be derived inspired from [WTM11].

3.4.2 Additional experiments on conditional simulations

The aforementioned methodology depends on the number and location of simulation points
used to obtain the CPFs from the Gaussian process models (cf. Algorithm 1 and first step
of Algorithm 2). As a first study, we have compared two sampling strategies: i.i.d. uniform
sampling and space-filling sampling relying on a Sobol sequence, again with 2 variables. The
objective functions are taken as sample paths of centered Gaussian processes with Matérn
covariance kernel (ν = 5/2), with range parameters equal to 0.3/

√
3 for f1, and 0.5/

√
3 for f2.

We compute the approximation error over the set of non-dominated points obtained from
the two sampling strategies. To compare the results with a reference set obtained with an
NSGA-II [DPAM02] with archiving, three error indicators are used: hypervolume difference,
epsilon and R2 quality indicators [ZTL+03]. The tests are repeated one hundred times. The
results presented in Figure 3.8 show that space-filling sampling slightly outperforms uni-
form sampling to get an accurate estimation of the Pareto front. Additional tests performed
showed a similar behavior with 3 variables but no difference for 10 variables, where the num-
ber of points considered was too small.

Here, only the impact of the error introduced by discretizing conditional simulations is
studied. Given a few hundred to a few thousands of simulation points, it should remain
negligible considering a relatively low number of variables, as is usually the case in appli-
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cation examples up to six variables and six objectives [Sve11]. Alternatively, resorting to
approximate spectral simulation methods such as the truncated Karhunen-Loève expansion
could be considered.
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Figure 3.8 – Hypervolume difference, epsilon and R2 quality indicators between random
reference Pareto fronts and approximations of them. A hundred conditional simulations
for each of the two objectives considered are generated on a bi-dimensional grid with 225
points. Each of them is re-interpolated by Kriging and a reference Pareto front is obtained
by applying an NSGA-II [DPAM02] with archiving. This reference set is used to compare
the quality of approximations of the Pareto front obtained by uniform sampling (red crosses)
or with a Sobol sequence (blue points) with respect to the number of simulation points. The
error bars indicate the quantiles of level 5% and 95% for the hundred repetitions.

3.5 Conclusion and perspectives

We presented an original methodology to estimate and visualize the uncertainty of Pareto
front approximations, based on Gaussian process conditional simulations. More precisely, the
attainment function provides an estimation of the probability of dominating a given point in
the objective domain. Then, a global uncertainty measure was defined relying on the theory
of random sets through the concept of Vorob’ev deviation. It indicates the confidence of the
model on the approximation of the attained set. The last tool is a visualization of the region
of confidence for two or three objectives. Application on a higher number of objectives would
be feasible, requiring the use of Monte Carlo methods for the computation of the various
integrals. As illustrated on two bi-objective problems with convex or disconnected Pareto
fronts, these measures can also be used as a basis to define stopping criteria in a sequential
framework.

Further work is needed to analyze the different kinds of uncertainty and biases that
may occur when applying the proposed methodology. In addition, techniques for simulating
efficiently over more points and updating simulations with new observations [CEG14] should
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be considered, as well as optimization of simulation points locations with re-interpolation or
re-simulation [Oak99]. Another direction for future research includes the integration of the
proposed uncertainty estimate in a Stepwise Uncertainty Reduction (SUR) strategy [CEG14]
as an infill criterion.

Post-publication addendum

After the release of this article, further work has been performed following some of the
given perspectives. The corresponding material is postponed in Appendix B. First, the
SUR criterion based on the Vorob’ev deviation has been expressed and tested. It actually
reduces the Vorob’ev deviation faster than EHI, but is more cumbersome to compute. In
addition, even if the Pareto front estimation given by the Vorob’ev expectation is better,
new observations may not be on it, which is not very appealing in practice. This statement
motivated to consider adding new points based on the Vorob’ev expectation, i.e. the question
of finding the best suited point in the input space to have a given location in the objective
space. As a possible solution we propose to use the GP-LVM model [Law05] to build a
model from objective to input space, based on the conditional Pareto sets that have not been
used yet. Finally, to apply the quantification of uncertainty methodology to the case study
in Chapter 8, we propose a procedure to select the simulation points from a multi-objective
optimization conditional simulations.
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Chapter 4

Quantifying uncertainty on Pareto
fronts with copulas

In the previous chapter, the estimation of the location of the Pareto front is obtained from
conditional simulations as a mean to get the probability of attainment, relying on metamod-
els. We propose here to study this problem from the point of view of multivariate analysis,
introducing a probabilistic framework with the use of copulas. This approach enables the ex-
pression of level lines in the objective space, giving an estimation of the position of the Pareto
front when the level tends to zero. In particular, when it is possible to use Archimedean cop-
ulas, analytical expressions for Pareto front estimators are available. This chapter has been
published in the Information Sciences journal [BRR15]. Note that due to the hypothesis
made in this chapter, i.e. that inputs are i.i.d. samples, the proposed approach is not suited
for a direct use on expensive black-box simulators but is applicable on their surrogates. To
emphasize this point, in addition to the content of the article, a comparison with the method
developed in Chapter 3 is briefly discussed in the end and is the topic of Appendix C.

4.1 Introduction

Multi-objective optimization (MOO) received a lot of attention recently, including in par-
ticular developments on scalarization [GF15], hybrid approaches [GA10], evolutionary opti-
mization (see e.g. [CZ14], [Deb08], [ZQL+11]) or surrogate-based optimization [VK10]. Since
no solution usually minimizes every objective at once, the definition of a solution for a multi-
objective optimization problem is generally defined as a compromise: a solution is said to
be optimal in the Pareto sense if there exists no other solution which is better for every
component. All the optimal points in the objective space form the Pareto front. As a result,
optimizers provide a set of non-dominated points to approximate the Pareto front. Meth-
ods are then designed to seek some properties for these sets, such as uniformity and coverage.
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Usually an optimization process starts with random sampling, either to generate an initial
population or as a basis to construct a metamodel. The current Pareto front estimated from
this first sample may be highly variable, especially when only a small number of function
evaluations are available, corresponding to time-consuming functions. This is illustrated in
Figure 4.1 for the bi-objective problem ZDT1 [ZDT00], with five 50-points initial samples.
However, the stochastic nature of sampling provides a probabilistic framework that can be
exploited to quantify this variability and to give a better initial localization of the Pareto
front. More precisely, if X = (X1, . . . , Xd) is a d-dimensional random vector representing the
inputs, and f1, . . . , fm the objective functions, then the Pareto front should be connected to
the extreme level lines of the distribution of Y = (f1(X), . . . , fm(X)). To investigate such
connection is the aim of the paper.

In the mono-objective situation, a similar probabilistic connection is studied by [QPNV10]
to estimate the value of the extremum. Considering a small sample of n observations
(y1, . . . , yn) of Y, the minimum of Y is approximated using concepts from extreme order
statistics. In multi-objective optimization, the connection seems to be new. Uncertainty
quantification around the Pareto front has been recently considered by [BGR15a], using con-
ditional simulations of Kriging metamodels and concepts from random sets theory. Whereas
such approach is relevant in a sequential algorithm, it may be inappropriate in the initial
stage that we consider here, due to a potentially large model error in metamodeling.

In this paper, we give a theoretical framework in which the Pareto front appears as a zero
level line of the multivariate distribution FY of Y. This problem is known in the probabilistic
literature as support curve estimation (see e.g. [GGS12], [Hal82], [HNS97]). However, the
existing methods rely on assumptions, such as domain of attraction or polynomial rate of
decrease, which can hardly be checked in an optimization context. As an alternative, we
propose to take advantage of copulas [Nel99] which are multivariate probability distributions
with uniform marginals, allowing to consider separately the estimation of the marginals and
the dependence structure. This allows estimating extreme level lines, without making specific
assumptions about domain of attractions. Copulas have already been used in optimization,
mainly in the variable space to estimate distribution in evolutionary algorithms, see e.g.
[GPL+13a], [GPL+13b], [WZ10], while here we focus on the objective space. We propose
a first estimation of the Pareto front relying on the empirical copula. Then, we consider
the case where the copula belongs to the class of Archimedean copulas, parameterized by
a function. This assumption can be checked visually or statistically with specific tests of
the literature. If relevant, a better localization of the Pareto front is found. Furthermore, a
parametric expression of the approximated Pareto front is available.
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The paper is structured as follows. Section 4.2 proposes alternative definitions of the
Pareto front from the point of view of the cumulative distribution function, presents some
background about copulas and describes the estimation procedure in the Archimedean case.
Section 4.3 discusses the applicability of the model and more specifically the consequences
of the Archimedean copula model. Section 4.4 illustrates in several configurations the ap-
plication of the proposed approach to Pareto front localization. Section 4.5 concludes and
describes possibilities for further improvements.
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Figure 4.1 – Non-dominated points obtained with 5 different random samples (one color and
type of line per sample) of 50 points for the bi-objective problem ZDT1. The true Pareto
front is the black solid line.

4.2 Methodology

The present section describes the interest of using a probabilistic framework in multi-objective
optimization by establishing the link between both domains. Based on the resulting theorem,
the expression of level lines of the multivariate cumulative distribution functions FY using
copulas is described as well as a procedure for their estimation. Empirical and parametric
model are discussed, with emphasis on Archimedean models.

4.2.1 Link between Pareto front and level curves

For a variety of methods ranging from evolutionary optimization [Deb08] to surrogate-based
methods [PWBV08], optimization starts with random sampling in the design space, with
uniform sampling or with a random Latin Hypercube. In this case, it is possible to study
the resulting observations in the objective space as a set of points. Specifically, assuming
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that the outputs can be considered as independent and identically distributed (i.i.d.) random
variables, they enter the scope of multivariate analysis.

Let us start with definitions of Pareto dominance and Pareto front, in a minimization
context. For two points y = (y1, . . . , ym) and z = (z1, . . . , zm) of Rm, m ≥ 2, we first define
the respective weak, strict and strong dominance operators 4, ň and ≺ as:


z 4 y ⇔ ∀i = 1, . . . ,m, zi ≤ yi ,

z ň y ⇔ ∀i = 1, . . . ,m, zi ≤ yi and ∃i ∈ {1, . . . , k} , zi < yi ,

z ≺ y ⇔ ∀i = 1, . . . ,m, zi < yi .

The expression weak dominance is used here as in [ZKT08], section 14.2, or [LZ11], strict
dominance as in [DCD99], Definition 2.1, and strong dominance as in [Deb01], section 2.4.5.
Strict dominance is usually referred simply as dominance or Pareto dominance. Notice that
the terminology or symbols employed differ among authors.

Consider a subset G of Rm. We define here the Pareto front P of the set G as the subset
of G of all points that are weakly dominated only by themselves:

y ∈ P ⇔ {z ∈ G, z 4 y} = {y} (4.1)

This definition coincides with the more classical definition of Pareto front using strict
dominance. The Pareto front is the set of Pareto optimal points, which are not strictly
dominated:

y ∈ P ⇔ ∀z ∈ G, ¬ (zňy) , (4.2)

where ¬ is the logical not operator. The link with Equation (4.1) can be shown using the fact
from Equation (4.2), if y ∈ P , {z ∈ G, z ň y} = ∅ and using z ň y ⇔ (z 4 y and z 6= y).
This link has also been noticed, e.g. in [War83]. Definitions of weak Pareto front exist in
the literature, using strong dominance, where y ∈ Pweak ⇔ ∀z ∈ G, z 6≺ y, implying that
P ⊂ Pweak.

Now assume that G = f(E) is the image of a set E ⊆ Rd by a vector-valued objective
function f : E → Rm, with f(x) = (f1(x), . . . , fm(x)), x ∈ E. Then, the Pareto front of f is
defined as the Pareto front of the image set G. In this case we retrieve the usual interpreta-
tion that a solution in the objective space is Pareto-optimal if there exists no other solution
which is better in every component: for y ∈ G, there exists no z ∈ G such that z 4 y and
z 6= y.

Assume that X is a random vector with values in E and let us denote Y = (Y1, . . . , Ym)
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with Yi = fi(X). Then if Y has an absolutely continuous distribution with respect to the
Lebesgue measure in G, one easily gets y ∈ P ⇒ P [Y ∈ {z ∈ G, z 4 y}] = 0. As a direct
consequence, denoting FY(y) = P [Y 4 y] the multivariate cumulative distribution function
of Y,

y ∈ P ⇒ FY(y) = 0 . (4.3)

The Pareto front thus belongs to the zero level set of FY, {y ∈ G, FY(y) = 0}, which en-
lightens the connection between Pareto front and level sets of FY.

Define the upper level set LFα = {y ∈ Rm, FY(y) ≥ α} with α ∈ (0, 1), and the cor-
responding level line ∂LFα = {y ∈ Rm, FY(y) = α}. The following main result is that the
upper level set LFα converges towards the area dominated by the Pareto front, when α tends
to 0. This seems quite natural, as illustrated in Figure 4.2. However, the rigorous proof
involves topological arguments that are different in the continuous and discrete cases. Some
pitfalls are that for α > 0, LFα are not necessarily included in Y , the support of the probabil-
ity distribution function of Y, as illustrated in Figure 4.2, and that all points of Y are not
necessarily dominated by the Pareto front, as when Y = Rm for some unbounded objective
functions1.

Theorem 4.2.1. Consider a random vector Y which admits a probability density function
fY with respect to the Lebesgue measure on Rm, and denote by Y its support (i.e. the essential
support of the function fY). Let P be the Pareto front of the set Y. Define the respective
weakly and strongly dominated sets:

P< =
⋃

y∈P
{z ∈ Rm , y 4 z} and P� =

⋃
y∈P
{z ∈ Rm , y ≺ z} .

If all points of Y are dominated by the Pareto front, i.e. Y ⊆ P<, then the dominated area
is obtained as the union of all upper level sets:

P� =
⋃
α>0

LFα .

As a consequence we have lim
α→0

P
[
Y ∈ LFα

]
= P [Y ∈ P�] = 1.

Proof. We want to prove that the dominated area is equal to the area dominated by the set
L0 = ⋃

α>0
LFα .

• L0 ⊆ P�: It is sufficient to prove that if y /∈ P�, then FY(y) = 0.
1In particular, this is the case when objectives are GPs, see Appendix C.
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– Assume first that y /∈ P<, FY(y) = P [Y 4 y] = P [Y ∈ {z ∈ Y , z 4 y}] . One can show
that if y /∈ P< and if z 4 y then z /∈ P<, so that {z ∈ Rm , z 4 y} ∩ P< = ∅. Finally
{z ∈ Rm , z 4 y} ∩ Y = ∅, since by assumption Y ⊆ P<, and FY(y) = P [Y ∈ ∅] = 0.

– Now assume that y ∈ P<\P�. One can show that the Lebesgue measure µ(P<\P�) = 0:
Otherwise, there would exist a hypercube ∏m

i=1[ai, bi] included in P< \ P� such that for
all i = 1, . . . ,m, bi > ai; This would be in contradiction with b = (b1, . . . , bm) ∈ P�.
Now, FY(y) = P [Y 4 y] = P [Y 4 y and Y ∈ P<] since by assumption Y ⊆ P<. This
probability is equal to P [Y 4 y and Y ∈ P< \ P�] because y /∈ P� and Y 4 y⇒ Y /∈
P�. Thus this probability is 0 by absolute continuity of Y since µ(P< \ P�) = 0.

• P� ⊆ L0: Recall that the complementary set YC of the support Y is defined as the union
of all open sets Ω such that fY(.) = 0 almost everywhere on Ω. Let y ∈ P�, ∃y∗ ∈ P such
that y∗ ≺ y. Denote Dy = {z ∈ Rm , z 4 y}. There exists an open set By∗ ⊆ Dy which
contains y∗. Now, we show that we cannot have P [Y 4 y] = 0. Otherwise, by assumption
of absolute continuity of Y, this would imply that almost everywhere fY(.) = 0 on Dy.
Then By∗ would be an open set belonging to YC . This would be in contradiction with
P ⊆ Y , by definition of P , which implies that the non-empty set P ∩ By∗ ⊆ Y . Thus
necessarily P [Y 4 y] > 0, and there exists α > 0 such that y ∈ LFα . Therefore P� ⊆ L0.

Given that P [Y ∈ P<] = 1 and P [Y ∈ P< \ P�] = 0, the last part of the proposition
is obtained by considering a decreasing sequence αn and LFαn and using Proposition 1.27 in
[Bre92].
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Figure 4.2 – Level lines ∂LFα with α = 0.0001, 0.01, 0.1 of the empirical cumulative distribu-
tion function of f(X) obtained with sampled points (in black), showing the link between the
level line of level α and the Pareto front P (apart from the vertical and horizontal compo-
nents), as α tends to zero.
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The case when G is discrete is also of practical interest and the corresponding result is
detailed in Remark 4.2.1, slightly differing from Theorem 4.2.1.

Remark 4.2.1. Let Y be a discrete random vector with support Y. Let P be the Pareto front
of the set Y. Assume that all points of the support Y are dominated, i.e. Y ⊆ P<. Then

P< =
⋃
α>0

LFα .

Proof. Denote L0 = ⋃
α>0 L

F
α . As Y is a discrete random vector, for any y ∈ Y , by definition

of the support P [Y = y] > 0. Now let us show that P< = L0.

• P< ⊆ L0: For any z ∈ P<, there exists y ∈ P such that y 4 z. Now for any y ∈ P ,
as P ⊆ Y by definition of the Pareto front, then P [Y = y] > 0. Then P [Y 4 z] ≥
P [Y 4 y] > 0 and P< ⊆ L0.

• L0 ⊆ P<: Let y ∈ LFα , α > 0, then P [Y 4 y] ≥ α. As P [Y 4 y] = ∑
y0∈Y,y04y P [Y = y0]

> 0, there exists y0 ∈ Y such that y0 4 y. Since by assumption Y ⊆ P<, y0 ∈ P< and
since y0 4 y, one gets y ∈ P<.

4.2.2 Expression of level curves using copulas

The m-dimensional distribution function FY contains all the information about the problem
at hand, in particular about the Pareto front. The copula framework offers the possibility to
study the dependence on the level lines separately from the univariate marginal distributions.
Furthermore, under a particular Archimedean hypothesis detailed hereafter, the level lines
have a parametric expression. To distinguish between the objective space and the copula
space, we denote by y = (y1, . . . , ym) ∈ Rm vectors in the objective space and by u =
(u1, . . . , um) ∈ [0, 1]m vectors in the copula space.

Short summary on copulas

Consider some continuous random variables Y1, ..., Ym, and write Fi(yi) = P [Yi ≤ yi] the uni-
variate cumulative distribution functions (cdf) of Yi, i = 1, . . . ,m.

For independent random variables, the joint distribution of (Y1, . . . , Ym) is FY(y1, . . . , ym) =
P [Y1 ≤ y1, . . . , Ym ≤ ym] = P [Y1 ≤ y1] · . . . · P [Ym ≤ ym], so that FY(y1, . . . , ym) =
C⊥(F1(y1), .., Fm(ym)), where the product function C⊥(u1, ..., um) = u1 . . . um is called the
independence copula.
More generally, for possibly dependent random variables, Sklar’s theorem [Skl59] states that
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for any continuous multivariate distribution function FY, there is a unique copula function
C such that:

FY(y1, . . . , ym) = C(F1(y1), . . . , Fm(ym)) .

Copulas are essential tools for separating the univariate marginal distributions and the
dependence structure of a random vector: first, a random vector has independent compo-
nents if and only if C = C⊥ (See [ELM03], Th. 2.5), making copulas more reliable than other
dependence measures such as linear correlation coefficients. Moreover, strictly increasing
transformations g1, . . . , gm of the underlying random variables Y1, ..., Ym do not change the
copula of the joint random vector (g1(Y1), . . . , gm(Ym)) (See [ELM03], Th. 2.6). At last, by
Sklar’s theorem, a copula uniquely determines the joint distribution with given margins.

There naturally exist some constraints on copula functions. For continuous distributions,
a function C : [0, 1]m → [0, 1] is an m-dimensional copula if C is a joint cumulative distri-
bution function of an m-dimensional random vector on the unit cube [0, 1]m with uniform
marginals, i.e. if there exist random variables U1, . . . , Um, uniformly distributed on [0, 1], such
that

C(u1, . . . , ud) = P [U1 ≤ u1, . . . , Um ≤ um] .

Other classical properties like bounds on C(u1, . . . , ud) are given in [Nel99].

Level curve expressions

Consider the Pareto front associated with the vector-valued objective function f : E → Rm,
with f(x) = (f1(x), . . . , fm(x)), x ∈ E. We have seen in Theorem 4.2.1 that it was di-
rectly linked with level curves of the random vector Y = (Y1, . . . , Ym) where Yi = fi(X),
i = 1, . . . ,m. We now use the copula framework to express these level curves.

From now on, we consider that the Fi’s are continuous and invertible functions. Recall
that the marginal distribution of Yi is denoted Fi and that from Sklar’s theorem [Skl59],
there is a unique copula function C such that:

FY(y1, . . . , ym) = C(F1(y1), . . . , Fm(ym)) ,

thus we can write for u ∈ [0, 1]m:

C(u1, . . . , um) = FY(F−1
1 (u1), . . . , F−1

m (um)) .

Let α ∈ (0, 1). The α-level lines of C, i.e. {u ∈ [0, 1]m, C(u1, . . . , um) = α} are denoted
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∂LCα . They are connected to the level lines ∂LFα of FY by the following relationship:

∂LFα =
{

(y1, . . . , ym) = (F−1
1 (u1), . . . , F−1

m (um)) ∈ Rm , u ∈ ∂LCα
}
.

It follows that given a model of the copula and given the marginals, the levels lines of FY

are obtained without additional effort. We describe next a specific model of copula which
allows a parametric expression of those level lines. The methods to estimate both the copula
model and the marginals will be detailed in Section 4.2.3.

Parametric form in the Archimedean case

A parameterization of the Pareto front has sometimes been proposed based on a metamodel
of one output in function of the others [GVH+07] or using B-splines [BDD14]. It seems
that in both cases the results do not necessarily follow the Pareto dominance, which might
cause problems when dealing with Pareto fronts. Here we propose a method usable with any
number of points, after sampling randomly in the design space, and respecting (weak) Pareto
dominance for the proposed results.

Among other available parametric models of copulas (see e.g. [NQMRLÚF03]), a practical
class of copula is the class of Archimedean copula, see e.g. [MN09]. The family of Archimedean
copula is a flexible family that depends on a real function φ : R+ → [0, 1], called the generator
of the copula. An Archimedean copula is defined by

Cφ(u1, . . . , um) = φ
(
φ−1(u1) + . . .+ φ−1(um)

)
,

where the function φ−1 is the generalized inverse of the generator φ:

φ−1(t) = inf
{
x ∈ R+, φ(x) ≤ t

}
.

Note that depending on the author, φ and φ−1 are sometimes swapped. The generator
φ is supposed to be continuous, m-monotone (see [MN09], which implies convexity), strictly
decreasing on [0, φ−1(0)] with φ(0) = 1 and lim

x→+∞
φ(x) = 0. If φ(x) > 0 for all x ∈ R+, the

generator and the corresponding Archimedean copula are said to be strict, otherwise they
are called non-strict.

Also φ can be seen as a particular univariate survival function, so that in the following we
will say that ψ0 = φ−1(0) is the end-point of the generator, with ψ0 < +∞ for non-strict gen-
erators, and ψ0 = +∞ for strict generators. Examples of generators of Archimedean copula
models are given in Table 4.1. Clayton, Gumbel and Frank families are numbered No. 1, No.
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4 and No. 5 respectively in [Nel99], along with more examples of strict and non-strict copulas.

Table 4.1 – Example of generators of classical Archimedean copulas from [KKPT14, Nel99],
with Θ the definition domain of the parameter θ.

φ(t) Θ strict
Independent exp(−t) yes
Clayton (1 + θt)−1/θ [−1,∞)\{0} θ > 0
Gumbel exp

(
−t1/θ

)
[1,∞) yes

Frank −1
θ

log(1 + exp(−t)(exp(−θ)− 1)) R\{0} yes
No. 2 in [Nel99] 1− t1/θ [1,∞) no

The interest of representing C with an Archimedean copula (or a transformed copula
[DBR13a]) is that we know how to express parametrically the level curves of such copulas,
and consequently those of FY.

Proposition 4.2.1 (Level curves for an Archimedean copula). Let S denotes the simplex
S = {s ∈ [0, 1]m , s1 + . . .+ sm = 1}. If Cφ is an Archimedean copula with generator φ then
for all α ∈ (0, ψ0), we have

∂LCφα =
{
u ∈ [0, 1]m , ui = φ

(
siφ
−1(α)

)
, 1 ≤ i ≤ m, s ∈ S

}
, (4.4)

and the level lines of FY are expressed as:

∂LFα =
{
y ∈ Rm , yi = F−1

i (ui) , ui = φ
(
siφ
−1(α)

)
, 1 ≤ i ≤ m, s ∈ S

}
(4.5)

Proof. For an Archimedean copula with generator φ, the level curve of level α > 0 is ∂LCφα =
{u ∈ [0, 1]m , Cφ(u1, . . . , um) = α}. Let u ∈ [0, 1]m, u ∈ ∂L

Cφ
α ⇔ Cφ(u1, . . . , um) = α ⇔

φ (φ−1(u1) + . . .+ φ−1(um)) = α.
Suppose that in addition α ∈ (0, ψ0), then u ∈ ∂LCφα ⇔ φ−1(u1)+...+φ−1(um)

φ−1(α) = 1.
By re-parameterizing with si = φ−1(ui)/φ−1(α), 1 ≤ i ≤ m (equivalent to ui = φ (siφ−1(α))),
we obtain that those si belongs to the simplex S.
Hence ∂LCφα = {u ∈ [0, 1]m , ui = φ (siφ−1(α)) , 1 ≤ i ≤ m, s ∈ S}. The expression of ∂LFα
follows from the connection between ∂LFα and ∂LCφα .

Other parameterizations of level curves of FY can be found in the literature (see e.g.
[DBR13a], Proposition 2.4.).

A difference between strict and non-strict generators lies in the behavior of the level lines
when α tends to 0:
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Definition 4.2.1 (zero set, from [KKPT14, Nel99], extended to m ≥ 2). The zero set of a
copula C is the set

S0 = {u ∈ [0, 1]m , C(u1, . . . , um) = 0} .

The Lebesgue measure on Rm of this zero set S0 are denoted mS0.

As recalled in [KKPT14], based on [Nel99], the zero set is of Lebesgue measure zero if
and only if the copula is strict. In the other case, for non-strict generators, the boundary of
the zero set, {u ∈ [0, 1]m , φ−1(u1) + . . .+ φ−1(um) = ψ0} is called the zero curve of Cφ. For
such a non-strict Archimedean copula and with m = 2, the zero curve can be expressed with

∂L
Cφ
0 =

{
(u1, u2) ∈ [0, 1]2 , u2 = φ(φ−1(0)− φ−1(u1))

}
.

This form can be extended to any dimension m by writing the mth output as a function of
the m − 1 first ones. Still when m = 2, setting ψ = φ−1, the probability mass of the zero
curve is equal to − ψ(0)

ψ′(0+) , thus zero if the copula is strict or ψ′(0+) = −∞ (cf. Theorem 4.3.3.
in [Nel99]).

Figure 4.3 illustrates the different cases described on the level lines of the copulas. With
strict generators, the level lines converge towards the axis [0,∞) × {0} and {0} × [0,∞) as
α tends to zero. This is not the case for non-strict generators, where zero sets have a strictly
positive Lebesgue measure mS0 , as visible on lower left corners of center and right panels of
Figure 4.3.
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Figure 4.3 – Scatterplots of samples of a thousand points U1, . . . ,U1000 from Archimedean
copulas with different generators and level lines with α = {0, 0.01, 0.25, 0.5, 0.8}. Left: strict
generator (Gumbel copula with θ = 2). Center: non-strict generator (Clayton copula with
θ = −0.8). Right: non-strict generator with a probability mass on the zero curve (copula
No.2 from [Nel99] with θ = 5).

As a summary, the Archimedean family of copulas has the advantage to be very flexible
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(it is indexed by a whole real function), to provide simple parametric expressions of the level
curves, and to distinguish naturally degenerate or non degenerate Pareto front (via strict or
non-strict generators). Note that other quantities related to the level curves, such as Kendall
distributions, are derivable in the Archimedean case ([NS09], Section 2). In the next section,
we explain how to get an approximation of the Pareto front P from this parametric expression
of ∂LCφα . The relevance of this Archimedean model in practice is the subject of Section 4.3.

4.2.3 Estimation of the level lines

When working with black-box functions in order to find Pareto optimal solutions, the marginal
distribution functions and copulas of the output Y must be estimated from the data. In the
general case, only empirical estimation is possible while supposing that the copula is Archi-
medean gives parametric expressions for the level lines.

We aim here at proposing estimators of the level lines ∂LFα for small values of α. In par-
ticular, when α tends to 0, ∂LFα is directly related to the Pareto front P (see Theorem 4.2.1).
As shown in Section 4.2.2, ∂LFα can be expressed as a function of ∂LCα and F1, . . . , Fm. For
α ∈ (0, 1), the proposed plug-in estimators of the α-level lines are thus of the form

∂̂L
F

α =
{

(y1, . . . , ym) = (F̂−1
1 (u1), . . . , F̂−1

m (um)) ∈ Rm,u ∈ ∂LĈα
}
, (4.6)

where Ĉ and F̂1, . . . F̂m are respective estimators of C and F1, . . . Fm, and where F̂−1
1 , . . . , F̂−1

m

are generalized pseudo inverse of F̂1, . . . F̂m.

The proposed estimator of the Pareto front will be

P̂ = ∂̂L
F

α∗

where α∗ ∈ [0, 1) is a small level value whose choice will be discussed hereafter. In the
following, we first investigate the case where Ĉ is an empirical copula, and then the case
where Ĉ is an Archimedean copula with generator φ.

Empirical copula

Several estimators of an empirical copula can be proposed, see e.g. [Deh79] and [OGV09].
Consider a set of n observations in Rm :

{
Yk = (Y k

1 , . . . , Y
k
m)
}
k=1,...,n

. Corresponding pseudo-

observations are defined as
{
Uk = (Uk

1 , . . . , U
k
m)
}
k=1,...,n

, with

Uk
i = 1

n+ 1

n∑
j=1

1{Y ji ≤Y ki }, i ∈ {1, . . . ,m} , (4.7)
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where 1 is the indicator function such that 1A = 1 if the event A occurs and 1A = 0 otherwise.
The empirical copula can be estimated using the following formula:

Ĉn(u1, . . . , um) = 1
n

n∑
k=1

1{Uk1≤u1,...,Ukm≤um}. (4.8)

This is in fact the empirical distribution of the (normalized) ranks of the data. More details
can be found in [Deh79] and [OGV09].

The empirical copula Ĉn being a step function, we mostly consider its level sets: LĈnα ={
u ∈ [0, 1]m, Ĉn(u1, . . . , un) ≥ α

}
. In this case, different values of α may lead to the same

level sets. An estimator of the level lines can be obtained by considering the frontiers of these
upper level sets. This operation may be computationally costly, especially in large dimension.
Furthermore, no simple analytical expression is available for these frontiers, justifying the
use of parametric models when they are relevant.

Estimation in the Archimedean case

We consider here the case where the copula C is estimated by an Archimedean copula Ĉφ,
having a generator φ. There exists a vast literature on the estimation of Archimedean cop-
ulas, see for example [GR93] or [KSS07]. In the case of parametric estimation, methods to
fit an Archimedean copula Cφ rely for instance on Maximum Likelihood estimation or on
dependence measures. A review of these methods and associated parameters estimators can
be found e.g. in [KY10].

An important option is to consider a non-strict Archimedean copula, for which one has
to estimate the end-point of the generator ψ0 = φ−1(0) = inf{x ∈ R+, φ(x) = 0}. In
parametric estimation, a recent method has been proposed in [KKPT14]. Among admissible
parameters leading the zero curve to dominate all pseudo-observations, the choice is based on
the functional form of the zero curve of the copula. The selected parameter is the one giving
the closest zero curve to the pseudo-observations, under the assumption that the Lebesgue
measure of the zero set is monotone with respect to the parameter. More formally, considering
that the generator depends on ψ0 and other parameters θ ∈ Θ, selected parameters are:

(ψ∗0, θ∗) = argmax
(ψ0,θ)∈R∗+×Θ

mS0(ψ0, θ) s.t. Uk /∈ S0, 1 ≤ k ≤ n , (4.9)

where mS0(ψ0, θ) represents the Lebesgue measure of the zero set S0 of the copula (see Defi-
nition 4.2.1).

In the case of non-parametric estimation, among other different possible estimation pro-
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cedures, one can cite [DKP08] or [GNZ11]. Under what is called Frank’s condition (see
[EGBHC13]), the Archimedean copula is uniquely determined by its diagonal section δ(u) =
C(u, . . . , u), u ∈ [0, 1]. For more details about the diagonal section of a copula, we refer
to [Jaw09]. In this paper, for strict generators, we use a non-parametric estimator of the
generator φ, based on an initial estimator of the diagonal section of the empirical copula, as
detailed in Algorithm 2 in [DBR13b].

We summarize in Algorithm 4 a possible framework for estimating an Archimedean cop-
ula. One assumes that a catalog of methods is available along with the corresponding es-
timation procedures of the generators from the data. It may include parametric strict and
non-strict estimators, and non-parametric strict estimators . In our applications examples,
we used strict generators Clayton, Gumbel, Frank and non-strict generators of copulas No.
1 and No. 2 (see Table 4.1) with parametric estimation and in addition the non-parametric
generator estimation from [DBR13b]. As discussed above, for each method an estimation
procedure giving parameters from a data is available. The user has to select methods he
wants to try. In order to select the best candidate model, it is possible to estimate a dis-
tance between the empirical copula Ĉn and a fitted copula Cφ, based on an integrated mean
squared error (IMSE):

∫
[0,1]m

(Ĉn(u) − Cφ(u))2du1 . . . dum or with a root mean squared error

(RMSE):
√

1
n

∑n
i=1 (Ĉn(Ui)− Cφ(Ui))2. Notice that if the resulting distance is too high or

if the Archimedean assumption seems irrelevant (see further Section 4.3), one may keep the
empirical copula.

Algorithm 4 Estimation of the Archimedean copula
Input: Select candidates methods among a given catalog of generators (e.g. parametric strict

and non strict, non-parametric).
1: Compute the pseudo-observations

{
Uk
}
k=1,...,n

from the data, using Equation (4.7).
2: Compute the empirical copula Ĉn as in Equation (4.8).
3: for each selected candidate method do
4: Estimate parameters of the candidate method (see the corresponding literature).
5: Compute distance to empirical copula (e.g. RMSE).
6: end for
Output: Copula candidate Ĉφ having smallest computed distance and corresponding dis-

tance.

Note that the storage of the copula is depending on the chosen method. A parametric
copula can be characterized by a function for the generator and the value of its parameter
whereas a non-parametric copula may be defined from a set of values of the generator together
with an interpolation function.

59



Chapter 4. Quantifying uncertainty on Pareto fronts with copulas

Choice of the level α∗

Depending on the copula model: empirical copula or Archimedean with strict/non-strict
generator, the behavior of LCα when α tends to zero differs. Consider an estimator Ĉ of
the copula C. Notice that any admissible level α∗ for the Pareto front estimator P̂ should
dominate all pseudo-observations (i.e. be such that ∀k ∈ {1, . . . , n} ,Uk ∈ LĈα∗). Otherwise,
pseudo-observations of the data would have a zero likelihood. Inspired by the method in
[KKPT14], we also want to select the level α giving the closest zero curve to the pseudo-
observations:

α∗ = sup
{
α ∈ [0, 1] : ∀k ∈ {1, . . . , n} ,Uk ∈ LĈα

}
.

It follows directly that:

Lemma 4.2.1 (conservative threshold α∗).
Let us consider the threshold α∗ = sup

{
α ∈ [0, 1] : ∀k ∈ {1, . . . , n} ,Uk ∈ LĈα

}
, then α∗ =

min
k=1,...,n

Ĉ(Uk).

Proof. Let α1 ≤ α2, for any u ∈ LĈα2 , u is also in LĈα1 by definition of the upper level sets.
Hence by taking α = min

i=1...n
Ĉ(Ui), all Uk ∈ LĈα , k ∈ {1, . . . , n}. Furthermore, there exists

k∗ ∈ {1, . . . , n} such that Ĉ(Uk∗) = α, so that for any α′ > α, Uk∗ /∈ LĈα′ .

We discuss here consequences of this choice of the level α∗ on the estimated copulas
considered in this paper:

• For empirical copulas, the conservative threshold is almost surely α∗ = 1
n
since any

inferior value results in a zero set included in the axis [0,∞)× {0} and {0} × [0,∞).

• For strict Archimedean copulas, this choice leads to α∗ > 0 as soon as pseudo-observations
are all strictly positive. It thus avoids setting α∗ = 0 which would lead to a degenerate
zero set included in the axis [0,∞)× {0} and {0} × [0,∞).

• For non-strict Archimedean copulas, the choice of ψ∗0 as in Equation (4.9) leads to
α∗ = 0 by construction. It would be possible to set smaller values of ψ∗0 leading to
admissible parameter α∗ ≥ 0, but for the sake of simplicity, we have considered here
only the case where ψ∗0 was given by Equation (4.9).

Estimation of the marginals

The univariate marginals and their inverses also need to be estimated. This can be performed
with the empirical quantiles or any method using truncated or non-truncated kernel density
estimation. In some experiments with scarce data, we use the method proposed in [QPNV10]
to estimate the support of the cumulative distribution function and its inverse, based on a
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catalog of beta distributions.

We summarize in Algorithm 5 a general methodology for estimating a marginal distri-
bution: one assumes that a catalog of classical parametric and non-parametric estimators
is available. The user has to select the estimators he wants to try, the algorithm selecting
the best one using a chosen distance to the empirical distribution, e.g. Kolmogorov-Smirnov
(K.-S.) distance.
Notice that if the resulting distance is too high, the user can try other members of the cat-
alog or keep the empirical distribution function (thus losing the ability of smoothing and
extrapolating).

Algorithm 5 Estimation of one marginal
Input: Select candidates estimators among a given catalog (including classical parametric

or kernel-based estimators).
1: Compute empirical distribution function of selected marginal from data.
2: for each selected candidate do
3: Estimate parameters (e.g. by maximum likelihood estimation).
4: Compute distance to empirical marginal distribution (e.g. K.-S. distance).
5: end for
Output: Candidate distribution having smallest computed distance and corresponding dis-

tance.

Increasing the number of objectives usually implies to sample more points in the variable
space to cover the objective space, providing more points to estimate each of the univariate
marginals.

At last, the expression of the estimated level lines of the multivariate distribution also
depends on the inverse functions of the marginal distributions, see Equation (4.6). Some
parametric methods have been proposed in order to fit univariate distributions and to obtain
straightforward simple expressions for their inverse functions, see e.g. [BR12].

General algorithm

We recapitulate the general procedure for estimating level lines of an Archimedean copula in
Algorithm 6. If one would rather use the empirical copula, as discussed in the next Section, it
is sufficient to compute the empirical copula and to estimate level lines from Equations (4.6)
and (4.8).
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Algorithm 6 Estimation of the level curves of FY and of the Pareto front with an Archi-
medean copula
Input: Set of levels A = {α1, . . . , αn} .
1: Get estimation of the Archimedean copula, Ĉφ, from Algorithm 4.
2: Compute threshold α∗ as prescribed in Section 4.2.3.
3: Compute levels lines of the copula, ∂LĈφα , α ∈ A ∪ α∗, with Equation (4.4).
4: Get estimations of univariate marginal distributions by Algorithm 5.
5: Compute levels lines of the cdf of FY, ∂LFα , α ∈ A ∪ α∗, with Equation (4.5).
Output: Pareto front estimation P̂ = ∂LFα∗ and levels lines ∂LFα , α ∈ A.

4.3 Pertinence of the Archimedean model

The interest of such a model, if appropriate, lies in the fact that if the dependency is accu-
rately modeled, every observation gives information about the whole Pareto front, providing
a continuous and smooth estimation. The parametric expression for the level curve of FY,
written in Proposition 4.2.1, requires the assumption that the copula describing the depen-
dency structure can be approximated by an Archimedean copula. This section provides a
discussion of the associated restrictions in practice and about the choice of an Archimedean
copula model from the alternatives presented in Section 4.2.3.

4.3.1 Properties of Archimedean copulas: convexity, symmetry
and associativity

The Archimedean model is convenient and tractable even with many objectives, but it im-
poses symmetry and associativity. This corresponds, when m = 2, to C(u1, u2) = C(u2, u1)
and C(C(u1, u2), u3) = C(u1, C(u2, u3)) for any (u1, u2, u3) ∈ [0, 1]3. In addition the level
lines of the copula are convex.

Proposition 4.3.1 (Convexity of ∂LCφα ). The level curves of an Archimedean copula of
dimension m are convex.

Proof. This proposition is demonstrated in the case m = 2 in [Nel99]. In the case m > 2,
the result is still valid.
Given u = (u1, . . . , um) and v = (v1, . . . , vm) two points of ∂LCφα . Given λ ∈ [0, 1], we
denote w = λu + (1 − λ)v. In dimension m, the generator φ is a m-monotone function,
implying in particular that φ−1 is a decreasing convex function. Hence for all i ∈ {1, . . . ,m},
φ−1(wi) = φ−1(λui + (1− λ)vi) ≤ λφ−1(ui) + (1− λ)φ−1(vi). Then
φ−1(w1) + . . .+ φ−1(wm) ≤ λ (φ−1(u1) + . . .+ φ−1(um)) + (1− λ) (φ−1(v1) + . . .+ φ−1(vm)).
Since u and v belongs to ∂LCφα ,

(
φ−1(u1) + . . .+ φ−1(um)

)
=
(
φ−1(v1) + . . .+ φ−1(vm)

)
= φ−1(α).
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Then φ−1(w1) + . . .+ φ−1(wm) ≤ φ−1(α) , which is equivalent to w ∈ LCφα .

Note that having convex level lines does not imply that the level lines in the objective
space will also be convex since it depends on the marginals. In the case when it is known
that the Pareto front is convex, a sufficient condition to ensure the convexity of the Pareto
front is to have concave marginals with an Archimedean copula.

Proposition 4.3.2 (Convexity of ∂LFα ). If the marginals F1, . . . , Fd are concave, then the
level lines of ∂LFα are convex.

Proof. Given y = (y1, . . . , ym) and z = (z1, . . . , zm) two points of ∂LFα . Given λ ∈ [0, 1], we
denote w = λy + (1− λ)z. The Fi’s are concave, hence for all i ∈ (1, . . . ,m), λFi(yi) + (1−
λ)Fi(zi) ≤ Fi(wi). Since the generator φ−1 is a decreasing convex function, λφ−1(Fi(yi))+(1−
λ)φ−1(Fi(zi)) ≥ φ−1(Fi(wi)). And thus by summation λ(φ−1(F1(y1)) + · · ·+φ−1(Fm(ym))) +
(1− λ)(φ−1(F1(z1)) + · · · + φ−1(Fm(zm))) ≥ φ−1(F1(w1)) + · · · + φ−1(Fm(wm)). Now, φ is a
decreasing function:
φ
(
λ(φ−1(F1(y1)) + · · ·+ φ−1(Fm(ym))) + (1− λ)(φ−1(F1(z1)) + · · ·+ φ−1(Fm(zm)))

)
≤ φ (φ−1(F1(w1)) + · · ·+ φ−1(Fm(wm))) = FY(w).

Since y and z are in ∂LFα , φ−1(F1(y1)) + · · · + φ−1(Fm(ym)) = φ−1(F1(z1)) + · · · +
φ−1(Fm(zm)) = φ−1(α). Then FY(w) ≥ α, which means that w ∈ ∂LFα .

If the level curves must be concave, then the use of survival copulas (associated with
1− FY) can be a solution.

It is important to mention that even if the hypothesis of Archimedeanity is restrictive, it
can still cover a great variety of situations, as illustrated in Figure 4.4 with varying copulas
and marginals. For the Frank copula, which is strict, the real Pareto front is reduced to (0,0).
The assessment of this hypothesis is detailed in the next paragraph.

4.3.2 Archimedeanity tests—choosing between the different op-
tions

An immediate solution is to test whether the hypothesis of Archimedeanity holds or not.
Recent works exist in the bivariate case, see e.g. [BDV12]. Otherwise a simple test is to com-
pare visually the level curves of the empirical copula with those of the fitted Archimedean
copula in the same spirit as the normal probability plot in dimension one.
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Figure 4.4 – Scatterplots (in the objective space) with a thousand of sample points
Y1, . . . ,Y1000 generated from Archimedean copulas models and further applying inverse of
beta distribution functions as univariate marginals. Left: Clayton copula, θ = −0.8, F1 =
Beta(1, 3) and F2 = Beta(1.5, 3.5). Center: Clayton copula, θ = −0.8, F1 = Beta(0.5, 0.5)
and F2 = Beta(2.5, 2.5). Right: Frank copula, θ = −12, F1 = Beta(2, 2) and F2 = Beta(2, 2).

It remains to decide which Archimedean model is the best to estimate the Pareto front, by
trying the different possibilities: parametric strict and non-strict models or non-parametric
strict models. Non-strict parametric models seem best suited to estimate Pareto fronts due
to the presence of the zero set but in certain circumstances non-parametric strict models
perform better. For parametric families with analytical strict generator function, one can
mention for instance the Clayton family (θ > 0), Gumbel family or Frank families of Archi-
medean copulas. The parameters are evaluated using Maximum Likelihood.

Estimating a non-parametric generator from the data gives more flexibility when the
Archimedean hypothesis is too strong, as illustrated in the applications. Even if it cannot
capture the dissymmetry of the empirical copula, the fitted model is often more accurate
with this non-parametric generator.

Non-strict Archimedean copulas play a particular role for modeling the Pareto front, due
to their non degenerate zero-sets. A generator of such a copula can be linked to a non-
observable univariate random variable (e.g. the radial part of the copula, see [MN09]). The
maximum value of such random variable is directly related to the location of the Pareto
front, and using end-point probabilistic literature would be an interesting perspective (see
e.g. [GGS12], [HW99], [LPX11], [Loh84], and references therein).

4.4 Applications

To illustrate the benefits of the approach proposed in Algorithm 6 we take three classical
bi-objective f1, f2 problems from the MOO literature: the ZDT1, ZDT6 [ZDT00] and Poloni
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[PGOP00] test problems. They have respectively convex, concave and disconnected Pareto
fronts. The variable dimension is two in all the examples, but it could be much higher since
the estimation procedure only deals with the objective space. Note that with an increasing
variable dimension, it becomes necessary to increase the sample size. We use R packages
copula [HM11, HKMY14, KY10, Yan07] for estimating strict Archimedean copulas and ks
[Duo14] for kernel density estimation.

4.4.1 Estimation of the Pareto front for the ZDT1 test problem

The first test problem, ZDT1, is a relatively simple benchmark problem:

ZDT1. Let x ∈ [0, 1]d and g(x) = 1 + 9
d−1

d∑
i=2

xi. Consider:

f1(x) = x1, f2(x) = g(x)
1−

√√√√f1(x)
g(x)

 .
Here we choose d = 2 and draw a sample of size n = 100, uniformly in [0, 1]2.

The first step is to estimate the marginals. As one can see from Figure 4.5, the para-
metric estimation based on beta distribution gives a good fit of the empirical inverse of
the marginals while non-parametric estimation is clearly too optimistic2 on the range of the
ZDT1 test problem : [0, 1] for f1 and [0, 10] for f2. Then we select the model with the best
fit for the copula, which is the non-parametric copula model in this case, based on Figure
4.6. Here several models would be acceptable, since all the other Archimedean models look
close to the empirical copula, except the non-strict model No. 2. However, the RMSE error
on the pseudo-observations is the lowest with the non-parametric generator.

Finally we obtain the estimation of the position of the Pareto front, cf. Figure 4.7. While
being slightly too optimistic on the right side, it is more accurate than the Pareto front
approximation from the non-dominated points of the observations. Also a comparison with
what would have been obtained using only the empirical copula illustrates that the Archime-
dean hypothesis brings a smoother and better localization. It can be observed that due to
errors on the estimation of the marginals, the Pareto front approximation using the empirical
copula may be dominated by Pn on various parts.

2In the sense that it would give a better Pareto front than in reality, in terms of Pareto dominance.
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Figure 4.5 – ZDT1 test problem: comparison between three estimation methods of the
marginals F1 and F2 – empirical (black solid line), kernel density (blue dashed line) and fit
of a generalized beta distribution (red dotted line) – for the objectives f1 (left) and f2(right).

u1

u 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ClaytonNcopula
RMSEN=N0.0217

u1

u 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FrankNcopula
RMSEN=N0.0224

u1

u 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GumbelNcopula
RMSEN=N0.0241

u1

u 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non-strictNcopulaNNo.1
RMSEN=N0.0231

u1

u 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non-strictNcopulaNNo.2
RMSEN=N0.112

u1

u 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non-parametricNgenerator
RMSEN=N0.017

Figure 4.6 – Levels lines ∂LCφα of the different fitted Archimedean models based on the pseudo-
data Uk, k = 1, . . . , n, from test problem ZDT1. The level lines correspond in each case to
α∗, 0.1, 0.2, 0.3 and 0.4.
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Figure 4.7 – Estimated level line ∂LFα∗ with the best Cφ for the ZDT1 test problem (green
dashed line), compared to the Pareto front approximation from the observations Pn (black
line), the result with the empirical copula Ĉn (blue dashed-dotted line) and the true Pareto
front P (violet solid line). Other level lines with levels 0.1, 0.2, 0.3 and 0.4 are also displayed
with thinner lines.

4.4.2 Estimation of the Pareto front for the ZDT6 test problem

The second test problem has a concave Pareto front and is harder due to a very low density
around the Pareto optimal area:

ZDT6. Let x ∈ [0, 1]d and g(x) = 1 + 9
(

d∑
i=2

xi
i

)1/4

. Consider:

f1(x) = 1− exp(−4x1) sin6(6πx1), f2(x) = g(x)
1−

(
f1(x)
g(x)

)2
 .

Again, we choose d = 2 and we draw a sample of size n = 100 uniformly in [0, 1]2, giving
observations farther away from the true Pareto front.

This time kernel-based estimation gives the best fit of the marginal distributions, see
Figure 4.8. The best copula model is given by the non-parametric copula model, see Figure
4.9. Here again only the non-strict model No.2 is clearly not relevant. For all the models the
level lines with α∗ closely approximate the corresponding level line of the empirical copula,
indicating that the Archimedean hypothesis is acceptable. Note that the lowest RMSE er-
ror is also in this case obtained with the non-parametric generator, taking advantage of the
higher flexibility offered by this option.

The estimation of the position of the Pareto front is presented in Figure 4.10, showing that
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the model can extend the information of the extremal observations to improve estimation in
the center of the attainable image space, where no observations are available. In this case,
knowing the range of the objectives, for instance by minimizing each objective separately
would help selecting the best estimation of marginals.
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Figure 4.8 – ZDT6 test problem: comparison between three estimation methods of the
marginals F1 and F2 – empirical (black solid line), kernel density (blue dashed line) and
fit of a generalized beta distribution (red dotted line) – for the objectives f1 (left) and f2
(right).

4.4.3 Estimation of the Pareto front for the Poloni test problem

This last problem has a disconnected Pareto front with concave and convex parts. A math-
ematical description of the problem can be found in [PGOP00].

The estimation of marginals suggest the use of non-parametric estimation for f1 and the
estimation from the catalog of beta distribution for f2, as visible in Figure 4.11. Concerning
the copula model, it appears in Figure 4.12 that the level lines α∗ from the Archimedean
models do not approximate well the shape of the Pareto front. In particular, the lowest
level of the empirical level lines is highly non-symmetric. Thus we discard the Archimedean
assumption and we keep the empirical copula, getting the extrapolation from the marginals.

The estimation of the position of the Pareto front is shown in Figure 4.13, showing that
the proposed approach is also suited when the Archimedean model hypothesis does not hold.
Even if the approximation cannot be improved on the lowest part of the Pareto front due to
the absence of observations in this area, it effectively gives a better estimation of the Pareto
front in the other parts.
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Figure 4.9 – Levels lines ∂LCφα of the different fitted Archimedean models based on the pseudo-
data Uk, k = 1, . . . , n, from test problem ZDT6. The level lines correspond in each case to
α∗, 0.1, 0.2, 0.3 and 0.4.
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Figure 4.10 – Estimated level line ∂LFα∗ with the best Cφ for the ZDT6 test problem (green
dashed line), compared to the Pareto front approximation from the observations Pn (black
line), the result with the empirical copula Ĉn (blue dashed-dotted line) and the true Pareto
front P (violet solid line). Other level lines with levels 0.1, 0.2, 0.3 and 0.4 are also displayed
with thinner lines.
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Figure 4.11 – Poloni test problem: comparison between three estimation methods of the
marginals F1 and F2 – empirical (black solid line), kernel density (blue dashed line) and fit of
a generalized beta distribution (red dotted line) – for the objectives f1 (left) and f2 (right).
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Figure 4.12 – Levels lines ∂LCφα of the different fitted Archimedean models based on the
pseudo-data Uk, k = 1, . . . , n, from test problem Poloni. The level lines correspond in each
case to α∗, 0.1, 0.2, 0.3 and 0.4.
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Figure 4.13 – Estimated level line ∂LFα∗ for the Poloni test problem (green dashed line),
compared to the Pareto front approximation from the observation Pn (black line) and the
true Pareto front P (violet solid line). Other level lines with levels 0.1, 0.2, 0.3 and 0.4 are
also displayed with thinner lines.

4.5 Conclusions and perspectives

In this paper, we addressed the problem of estimating the Pareto front in an initial phase of
multi-objective problems when an i.i.d. sample is available.
At the theoretical level, we established a connection between Pareto fronts and upper level
lines of the outputs sample. The approximation of these level lines can be done with very
few natural assumptions by using the theory of copulas. An interesting particular case is for
Archimedean copulas, for which analytical expressions are available. This assumption can
be checked visually or statistically with specific tests of the literature.
The benefits of this methodology are illustrated on some common bi-objective problems from
multi-objective optimization literature.

There are several perspectives of this research. Though the Archimedean assumption
corresponds to a large range of copulas, it is sometimes inappropriate. As an intermediate
solution to the general alternative proposed here – i.e. usage of empirical copula –, it may be
interesting to consider nested Archimedean copulas see e.g. [HM11] and references therein, or
other families of copulas. Further developments about non-strict generators have also been
evocated in Section 4.3.
Secondly, the restriction to i.i.d. samples, while discarding most optimization procedures,
still allows random search, which in some cases may perform relatively well – see e.g. [BB12]
on hyperparameter optimization – and has known convergence properties [LZ11]. However,
it might be possible to extend the approach of [Hüs10] to deal with non independent obser-
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vations.
Finally, this methodology relies on the estimated distribution of the outputs. In the context
of time-consuming objective functions, such estimation could be improved by using surrogate
models.

Post-publication addendum

After the release of this article, further work, described in Appendix C, has been performed
accounting for the expensive black-box functions case. In particular, a discussion of the
relative merits of this approach with copulas and the one with GP conditional simulations
is performed. Then, the application of the methodology to surrogate models instead of the
real functions is discussed, which is much more computationally affordable that the one with
conditional simulations.
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Part III

Contributions to high-dimensional
Bayesian optimization
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Chapter 5

Bayesian optimization in
high-dimension with random
embeddings

The methods presented until now are generally applied on problems with relatively few vari-
ables, up to few dozens, see e.g. [JSW98], [VJFK11], [SFT+12], [PWG12], [SLA12], [Wag13],
[CH14], [LZG14]. Extending the scope of Gaussian process-based optimization in terms
of dimensionality of inputs is one of the main contemporary challenges faced by this class
of methods, see e.g. [VSBT14]. We present results towards making these algorithms cope
with high-dimensional search spaces, under the hypothesis that only a small number of vari-
ables are actually influential. Inspired by the Random Embedding Bayesian Optimization
(REMBO) approach [WZH+13], we propose to integrate a warping of the high dimensional
subspace within the covariance kernel. The proposed warping, that relies on elementary
geometric considerations, allows mitigating the drawbacks of the high extrinsic dimension-
ality while preventing the algorithm to evaluate points giving redundant information. It
also alleviates constraints on bound selection for the embedded domain, thus improving the
robustness of the algorithm, as illustrated with a test case with 25 variables and intrinsic
dimension 6.

Part of this chapter has been published recently in Lecture Notes in Computer Science
[BGR15b]. An extended introduction to problems related to many variables as well as a more
precise description of REMBO replace the original beginning of the article. In addition,
some complementary experiments are provided in Appendix D as well as an alternative
interpretation of the warping.
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5.1 Challenge of high dimensionality and related works

The root of the difficulty with many variables is that the number of observations required to
learn a function when using standard kernels, e.g. without sparsity assumption on f , increases
exponentially with the dimension. This is not specific to Kriging and it is shared with other
meta-modeling approaches [FSK08], [KCL11], if no structural assumption on the black-box
is made. In a broader setting than kernel methods, this is referred to as the “curse of di-
mensionality”, see e.g. [Don00], [HTFF05]. Here we describe briefly some of the techniques
to handle expensive high-dimensional black-box functions, say with hundreds or thousands
of variables. A detailed survey may be found e.g. in [SW10].

Selecting few variables based on their contribution to the variance is a rather natural
idea to get back to a moderate search space. In [SK07], the authors select seven out of forty
variables based on an initial metamodel taking into account all the variables, with variable
screening and analysis of variance. The risk is to discard variables that are not influential
in most of the design space but are critical for the optimum. Also, the phase dedicated to
selecting variables may consume a part of the evaluation budget. Another common strategy
in dimension reduction is to construct a mapping from the high-dimensional research space
to a smaller one, see e.g. [VJFK11] or [LZG14] and references therein. Possible drawbacks
are the computational effort required to build the mapping and that, since it depends on
previous observations, it may not be suited to extrapolate at unobserved designs (a trait
which is common with most methods).

Working on the modeling is another angle of attack. For instance, when using an
anisotropic Gaussian kernel over the inputs, the length-scales hyperparameters may be used
to perform an Automatic Relevance Determination since they reflect the influence of each
input [Nea96], [RW06]. The rationale is then to remove the variables with highest estimated
length-scales. A similar idea is exploited in [CCK12] to select only the relevant variables.
Inspired by additive models in regression, additive GP models (in the sense of sum of uni-
variate GP) have also been studied, see [DGR12], [Dur11], [Duv14] and references therein.
They are very powerful if the problem is additive since they have a linear learning rate with
respect to the problem dimensionality. Unfortunately, they may not be perfectly suited to
optimization since the variance is possibly zero at unobserved locations. For more flexibility,
FANOVA models [MRCK12], described further in Chapter 8, additionally allow to include
some interactions between variables, and to perform optimization [IK14]. ANOVA kernels
[GRS+14], [CLG15] are also quite promising for building sparse models.

Lastly, recent methods to cope with possibly very high dimensional spaces (up to dimen-
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sion one billion) suppose that the black-box function is only varying along a low dimensional
subspace, possibly not aligned with the canonical basis. One example is [DKC13], where a
low rank matrix is learned to get the low dimensional subspace before optimization, within
a cumulative regret bound settings, i.e. the sum of the differences between the observation
values and the true minimum. Another method to recover the low dimensional linear struc-
ture is proposed in [GOH13] but not with an optimization purpose. Also, with few unknown
active variables, [CM12] proposes to combine compressed sensing with linear bandits to op-
timize efficiently.

In most of the above references, a significant part of the budget is dedicated to uncover
the structure of the black-box, which may impact optimization with very scarce budgets.
The alternative proposed in [WZH+13] is to simply discard the problem of finding the low
dimensional structure and optimize on a randomly selected subspace instead. We will focus
especially on this case, which we found to be the most attractive in our settings.

5.2 Random EMbedding Bayesian Optimization

We present here the REMBO (Random EMbedding Bayesian Optimization) method de-
scribed in [WZH+13] for mono-objective optimization and recall the main definitions and
results. Denote X ⊂ RD the input domain and f : X → R the function to optimize. It is
supposed that f is of effective dimensionality de � D, see Definition 5.2.1.

Definition 5.2.1 (Effective dimensionality [WZH+13]). A function f : RD → R is of effec-
tive dimensionality de < D if there exists a linear subspace T ⊂ Rde such that ∀x> ∈ T ⊂ RD

and x⊥ ∈ T ⊥ ⊂ RD, f(x) = f(x>+ x⊥) = f(x>) where T and T ⊥ are the so-called effective
subspace and constant subspace, i.e. the orthogonal complement of T in RD.

In sensitivity analysis or in applications, it is commonly shown that in fact only a small
number of variables are important, see e.g. [JSW98], [SK07], [IL15] or examples given in
[WZH+13]. It coincides with the concept of effective dimensionality if the influential vari-
ables (or a linear combination of them) concentrate all the influence on the output. From this
statement, the principle of REMBO is to map a smaller-dimensional domain Y ⊂ Rd onto
X using a random matrix A ∈ RD×d with independent N (0, 1) entries, where de ≤ d � D.
If X is RD, then an optimal solution can be found with probability 1 in Rd, see Theorem 5.2.1.

Theorem 5.2.1. (Theorem 2 in [WZH+13]). Suppose that f : RD → R is of effective
dimensionality de and that A ∈ RD×d is sampled with independent N (0, 1) entries where
d ≥ de. Then with probability 1, ∀x ∈ RD, ∃y ∈ Rd such that f(x) = f(Ay).
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Sketch of proof. See [WZH+13] for a detailed proof. In particular, for all x ∈ RD, decom-
posing between T and T ⊥ gives x = x> + x⊥. Then it is possible to find y ∈ Rd such that
Ay = x> + x′ with x′ ∈ T ⊥ if A is of rank de, which occurs with probability 1. The result
follows since f(x> + x′) = f(x>) = f(x).

In such case, one would simply optimize over Rd instead of RD. However, most opti-
mization problems are defined on bounded domains, mostly with box constraints on the
variables. Accordingly, in the rest it is supposed that X = [−1, 1]D, possibly obtained via
rescaling. These box constraints are enforced with the convex projection onto X : RD → RD,
u → pX (u) = argminx∈X ‖x − u‖2, which can be computed simply in this case since it
amounts to take max(−1,min(1,Aiy)), 1 ≤ i ≤ D. As a result of the box constraints, a
solution is to be found with probability 1 only if T is the span of de basis vectors. This is
one part of the following Theorem 5.2.2, along with a result to define Y .

Theorem 5.2.2. (Theorem 3 in [WZH+13]). Suppose that f : X = [−1, 1]D ⊂ RD → R
is of effective dimensionality de, whose effective subspace T is the span of de basis vectors
of RD and where X is a centered box domain. Denote x∗> ∈ T ∩ X a minimizer of f . If
A ∈ RD×d is sampled with independent N (0, 1) entries, d ≥ de, then ∃y∗ ∈ Rd such that
f(Ay∗) = f(x∗>) with probability 1. In addition, ‖y∗‖d ≤

√
de
ε
‖x∗>‖D with probability 1− ε.

Sketch of proof. See [WZH+13] for a detailed proof. The existence of x∗> ∈ T ∩ X is only
granted if T is the span of de canonical basis vectors. Then as in Theorem 5.2.1, a solution
can be found with probability 1 on Rd. The rest follows from a result on the norm of the
inverse of random matrices with i.i.d. N (0, 1) entries [SST06].

The concept is illustrated in Figure 5.1a with d = 1 and D = 2: the search of the op-
timum is restricted to the red line instead of the whole domain. A counterexample with a
non-aligned influential subspace is provided in Figure 5.1b, where the optimum cannot be
found on the drawn embedding. Note that the authors showed empirically, on a rotated
Branin-Hoo function, that REMBO also works when the effective subspace is not the span
of de variables. Arguably, this may be due to the presence of three global optima, which are
not on the boundary of the domain.

It remains to find a solution in the low dimensional domain. To this end, Bayesian
optimization is applied, e.g. with the Expected Improvement [JSW98], to optimize the low-
dimensional function g : Y → R, g(y) = f (u(y)) with u : Y → X , u(y) = pX (Ay). Two
Gaussian kernels with length scales l were proposed to build the GP models: the first one is
kY(y,y′) = exp (−‖y− y′‖2

d/2l2) and the second one, using the non-linear mapping (or warp-
ing [RW06]) u, is kX (y,y′) = exp(−‖u(y)− u(y′)‖2

D /2l2). The standard REMBO algorithm
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Figure 5.1 – Left: contour plot of a bi-variable function depending on x2 only, the optimum
value is reached on the black dotted line. Right: same but with a function varying along a
rotated influential subspace.

is sketched in Algorithm 7. Selecting the small dimension d may follow previous knowledge
on the problem at hand, with results from sensitivity analysis for instance or hypothesis on
the behavior of the function as in Chapter 8. Otherwise, as preconized in [GOH13], d should
be chosen based on the budget of evaluations at hand and computational constraints.

Algorithm 7 Summary of the standard REMBO procedure.
1: Select d empirically or based on previous knowledge.
2: Sample A ∈ RD×d with independent standard Gaussian coefficients.
3: Set g : Y = [−

√
d,
√
d]d 7→ R, g(y) = f(Ay).

4: Build the surrogate model, either with kernel kY or kX .
5: while time/evaluation budget not exhausted
6: Optimize the acquisition function (Expected Improvement).
7: Evaluate the objective function at the corresponding design point.
8: Update the model with the new observation and, every few iterations, the hyperpa-

rameters.
9: endwhile

Other practical concerns arise from the selection of the low dimensional domain Y , which
is the focus of the following Chapter 6. In case X = [−1, 1]D, with probability 1 − ε,
‖y∗‖d ≤ de/ε. But setting a low ε results in quite a large domain, with in addition problems
of injectivity: distant points in Y may coincide in X , especially far from the center, so that
using kY leads to sample useless new points in Y corresponding to the same location in X after
the convex projection. On the other hand, kX suffers from the curse of dimensionality when Y
is large enough so that most or all of the points of X belonging to the convex projection of the
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subspace spanned by A onto X have at least one pre-image in Y . Indeed, whereas embedded
points pX (Ay) lie in a d dimensional subspace when they are inside of X , they belong to a
D-dimensional domain when they are projected onto the faces and edges of X . To alleviate
these shortcomings, the authors of [WZH+13] suggest to set Y = [−

√
d,
√
d]d. In practice,

they split the evaluation budget over several random embeddings or set d > de to increase
the probability for the optimum to actually be inside Y , slowing down the convergence.

5.3 Proposed kernel and experimental results

Both kY and kX suffering from limitations, it is desirable to have a kernel that retains as
much as possible of the actual high dimensional distances between points while remaining of
low dimension. This can be achieved by first orthogonally projecting pX (ARd) (the image of
the low-dimensional space by embedding and convex projection) to the subspace spanned by
A: Ran(A), with pA : X 7→ RD, pA(x) = A(ATA)−1ATx. Note that these back-projections
can be outside of X for points on faces of X . The calculation of the projection matrix is done
only once, inverting a d × d matrix. This solves the problem of adding already evaluated
points: their back-projections coincide. Nevertheless, distant points on the sides of X from
the convex projection can be back-projected close to each other, which may cause troubles
with the stationary kernels classically used.

The next step is to respect as much as possible distances on the border of X , denoted
∂X . Unfolding and parametrizing the manifold corresponding to the convex projection of
the embedding of Y with A would be best but unfortunately it seems intractable with high
D. Indeed, it amounts to finding each intersection of the d-dimensional subspace spanned by
A with the faces of the D-hypercube, before describing the parts resulting from the convex
projection. Alternatively, we propose to distort the back-projections which are outside of X ,
corresponding to those convex-projected parts on the sides of ∂X . In more details, from the
back-projection of the initial mapping with pX , a pivot point is selected as the intersection
between ∂X and the line (O; pA(pX (Ay)). Then the back-projection is stretched out such
that the distance between the pivot point and the initial convex projection are equal. It re-
sults in respecting the distance on the embedding between the center O and the initial convex
projection. The resulting warping, denoted Ψ, is detailed in Algorithm 8 and illustrated in
Figure 5.2. Based on this, any positive definite kernel k on Y can be used. For example,
the resulting SE kernel is kΨ(y,y’) = exp

(
−‖Ψ(y)−Ψ(y′)‖2

D /2l2Ψ
)
. Note that the function

value corresponding to Ψ(y) remains g(y).

Like kX , kΨ is not hindered by the non-injectivity brought by the convex projection pX .
Furthermore, it can explore sides of the hypercube without spending too much budget since
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Figure 5.2 – Illustration of the new warping Ψ , d = 1 and D = 2, from triangles in Y to
diamonds in X , on three points y1, y2, y3. As for REMBO, the points yi are first mapped by A
and convexly projected onto X (if out of X ). If the resulting image is strictly contained in X
– as for y2 – nothing else is done. Otherwise, the new warping is defined in two supplementary
steps: back-projection onto Ran(A) (giving zi) and stretching out in the resulting line [0, zi)
(red solid line) by reporting the distance between the intersection of [0, zi] on the frontier of
X , z′i, and the initial convex projection pX (Ayi). The points y1 and y3 correspond to cases
where such projections are on a corner or a face of X .

Algorithm 8 Calculation of Ψ.
1: Map y ∈ Y to Ay
2: If Ay ∈ X Then
3: Define Ψ(y) = Ay
4: Else
5: Project onto X and back-project onto Ran(A): z = pA(pX (Ay))
6: Compute the intersection of [O; z] with ∂X : z′ = (maxi=1,...,D |zi|)−1z
7: Define Ψ(y) = z′ + ‖pX (Ay)− z′‖D. z′

‖z′‖D
8: EndIf
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belonging to Ran(A) (all distances between embedded points after warping are d-dimensional
instead of D-dimensional, thus smaller, hence limiting the risk of over-exploring sides of X ).
It is thus possible to extend the size of Y to avoid the risk of missing the optimum. For in-
stance, one can check that Y is larger than [−γ, γ]d with γ such that γ−1 = min

j∈[1,...,D]

d∑
i=1
|Aj,i|,

with Aj,i the components of A, ensuring to span [−1, 1] for each of the D variables.

We compare the performances of the usual REMBO method with kY , kX and the proposed
kΨ, with a unique embedding. Tests are conducted with the DiceKriging and DiceOptim
packages [RGD12]. We use the isotropic Matérn 5/2 kernel with hyperparameters estimated
with Maximum Likelihood and we start optimization with space filling designs of size 10d.
Initial designs are modified such that no points are repeated in X for kY and kX . For kΨ, we
apply Ψ to bigger initial designs, before selecting the right number of points by removing the
points that are closest to each other. Experiments are repeated fifty times, taking the same
random embeddings for all kernels. To allow a fair comparison, Y is set to [−

√
d,
√
d]d for

all kernels and the computational efforts on the maximization of the Expected Improvement
are the same.

Results in Figure 5.3 show that the proposed kernel kΨ outperforms both kY and kX when
d = 6. In particular, kY loses many evaluations on the sides of Y for already known points
in X and kX has a propensity to explore sides of X , while kΨ avoids both pitfalls.

0.0 0.5 1.0 1.5

kX

kY

kΨ

Figure 5.3 – Boxplot of the optimality gap (best value found minus actual minimum) for
kernels kX , kY and kΨ on the Hartman6 test function (see e.g. [JSW98]) with 250 evaluations,
d = de = 6, D = 25.
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5.4 Conclusion and perspectives

The composition with a warping of the covariance kernel used with REMBO wipes out some
of the previous shortcomings. It thus achieved the goal of improving the results with a single
embedding, as was shown on the Hartman6 example. Studying the efficiency of splitting the
evaluation budget between several random embeddings, compared to relying on a single one
along with kΨ, would be the scope of future research. Of interest is also the study of the
embedding itself, such as properties ensuring fast convergence in practice.
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Chapter 6

Analysis of the REMBO method
toward improved robustness

6.1 Motivations

Let us rewrite the problem tackled in the REMBO method [WZH+13]. We consider f : X =
[−1, 1]D → R and suppose that f ∗ = minx∈X f(x) exists. Ultimately we are interested in
finding x∗ ∈ argmin

x∈X
f(x). To this end, the main hypothesis (H) is that f only depends on a

set of d variables, whose unknown indices are denoted I = {i1, . . . , id} ⊆ {1, . . . , D}1. Denote
xI = (xi1 , . . . , xid) and x−I = x[1,...,D]\I ; in fine, up to a permutation of indices2, x = (xI ,x−I).
Under (H), there exists a function h : Rd → R such that ∀x ∈ X , f(x) = h(xI). Considering
h makes it clear that working in a lower dimensional space is sufficient. One smart way
of reducing dimensionality without knowing the d active variables in advance consists in
appealing to a linear embedding, A : Rd → RD, represented (in canonical coordinates) by a
D×d matrix. Indeed, taking also into account box constraints with convex projection on X ,
i.e. pX , the low dimensional function of interest is g : Y ⊆ Rd → R, g(y) = f(pX (Ay)). This
leads to the problem considered in REMBO (Theorem 5.2.2 , i.e. Theorem 3 in [WZH+13]),
(R):

(R) : Under H, find y∗ ∈ Y ⊆ Rd such that f(pX (Ay∗)) = f ∗.

Noting that (pX (z))I = pXI (zI) for all z ∈ RD, this is equivalent to:

(R′) : Under H, find y∗ ∈ Y ⊆ Rd such that h(pXI (AIy∗)) = f ∗

1This is stronger than the hypothesis of effective dimensionality, Definition 5.2.1 (Definition 1 in
[WZH+13]) which is sufficient if X = RD, see Theorem 5.2.1 (Theorem 2 in [WZH+13]).

2A permutation, omitted to clarify notations, is assumed such that coordinates are put in the right order
when necessary.
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where AI is the submatrix with rows i1, . . . , id and XI = [−1, 1]d.

In particular, if A is sampled with i.i.d. standard Gaussian components, a solution can be
found with probability 1 when Y = Rd [WZH+13]. However, for practical reasons, it is prefer-
able to work with a compact Y . Fortunately, it was shown in [WZH+13] that it is sufficient for
Y to contain the ball (0, d/ε) for this probability to be greater than 1− ε. Heuristically, the
authors recommend to limit the search domain by setting Y = [−

√
d,
√
d]d, which is included

in the ball with ε ≤ 1, arguing that optima are in general not on the boundary of X . There
are several arguments to do so. First, as discussed in [WZH+13] and Chapter 5, the kernels
kY and kX employed for Bayesian optimization have shortcomings that are more important
on large domains, due to non-injectivity and high-dimensionality respectively. Also a larger
domain renders optimization harder. As a workaround, strategies consisting respectively in
splitting the budget between several instances with different random matrices or increasing
the dimensionality of the low-dimensional subspace were proposed in [WZH+13].

In Chapter 5, we proposed a specific kernel for REMBO which does not suffer from the
issues of the previous covariance kernels. It thus offers the possibility to define a larger
low-dimensional domain Y , which in turn increases the probability of having a solution in Y
without splitting the budget, see Appendix D. Motivated by this, we now address the problem
of finding a minimal compact set Y such that problem (R) has a solution. This is achieved
in Section 6.2 with the set U , corresponding to points in Y whose image in X have at least
d components in ]-1,1[, and we discuss how to enclose it within a simple domain Y in practice.

This setting is in fact a worst case scenario and Y may become very large and unprac-
tical. Therefore, in Section 6.3, we consider the problem of finding a matrix A such that U
is, in a certain sense, as small as possible while still ensuring to find a solution to problem
(R). As a result, we propose some possible modifications of the matrix A along with the
resulting variations for the REMBO algorithm. They are tested on the same 25-dimensional
mono-objective test problem as in Chapter 5.

Motivated by the good performance in mono-objective optimization, we detail in Section
4 an extension of REMBO and its proposed variants to multi-objective optimization, which
is later on also applied on an industrial test case in Chapter 8.

6.2 Sets of interest in the low dimensional space Y

The embedding procedure is composed of a linear transformation (A) and a convex projection
(pX ). As such, the low dimensional space Rd is divided between half-space intersections
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corresponding to components xi = ±1 in the high dimensional space RD. This structure is
useful to extract sets of interest. We especially focus on a compact set, U , which is sufficient
to find a solution to (R), instead of encompassing the entire d-dimensional space as input
domain (i.e. Y = Rd). Nevertheless, this set is complex and difficult to exhibit and we discuss
practical approaches to find simple supersets Y enclosing it, such as a d-ball or a d-square.

6.2.1 Preliminary definitions and properties

We begin with two elementary properties of the convex projection onto the hypercube X =
[−1, 1]D:

Property 6.2.1 (Tensorization property). ∀x ∈ RD, pX


x1

. . .

xD

 =


p[−1,1](x1)

. . .

p[−1,1](xD)

 .
Property 6.2.2 (Commutativity with some isometries). Let q be an isometry represented
by a diagonal matrix with terms εi = ±1, 1 ≤ i ≤ D. Then, for all x ∈ RD, pX (q(x)) =
ε1p[−1,1](x1)

. . .

εDp[−1,1](xD)

 = q(pX (x)).

Now consider the low-dimensional space Rd. Denote Ha,δ the hyperplane in Rd with nor-
mal vector a ∈ Rd and offset δ ∈ R: Ha,δ =

{
y ∈ Rd , 〈a,y〉 = δ

}
. Our analysis in the low

dimensional space begins by a general definition of what we call strips.

Definition 6.2.1. The set of points between the parallel hyperplanes Ha,−δ and Ha,δ, is called
a strip, denoted Sa,δ: Sa,δ =

{
y ∈ Rd , |〈a,y〉| ≤ |δ|

}
.

Let us now consider hyperplanes normal vectors given by the rows of a matrix A ∈ RD×d

and with fixed δ = 1. The D corresponding strips, simply denoted Si for convenience, are
given by:

Si =
{
y ∈ Rd,−1 ≤ Aiy ≤ 1

}
.

The intersection of all strips Si is denoted I. It corresponds to the pre-image of X ∩Ran(A)
by A:

I =
D⋂
i=1
Si =

{
y ∈ Rd, ∀i = 1, . . . , D : −1 ≤ Aiy ≤ 1

}
=
{
y ∈ Rd , pX (Ay) = Ay

}
.

Denoting Cd the d-cube [−1, 1]d and supposing temporarily that the I indices are known,
there is a simple set Y such that problem (R) has a solution, as shown now.
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Lemma 6.2.1. If AI is invertible, then problem (R) admits a solution in Y = A−1
I Cd =: PI .

Proof. Define y∗ = A−1
I x∗I . Then by Property 6.2.1:

f(pX (Ay∗)) = h((pX (Ay∗))I) = h(pXI (AIy∗)) = h(pXI (x∗I)) = h(x∗I) = f ∗.

Remark 6.2.1. Notice that a milder sufficient solution is that x∗I ∈ Ran(AI), the subspace
spanned by the columns of A. However this of poor practical interest.

The set of interest in Lemma 6.2.1, PI = A−1
I Cd, is a parallelotope, i.e. a linear transfor-

mation of a d-cube in a d-dimensional subspace, see e.g. [LSA+13]. In addition, it directly
follows that:

PI =
{
y ∈ Rd,∀i ∈ I : −1 ≤ Aiy ≤ 1

}
=
⋂
i∈I
Si.

6.2.2 A minimal set for problem (R)

Since the d influential variables are unknown, Lemma 6.2.1 shows that a solution to (R) exists
if all submatrices extracted from rows of A are invertible (i.e. of rank d). In the following,
we denote by A this class of matrices,

A =
{
A ∈ RD×d such that any d× d extracted submatrix is invertible

}
.

As the set I of active variables is unknown, a solution is to be found in one of the
(
D
d

)
different parallelotopes PI . We thus consider their union, which is referred to as U :

U =
⋃

I⊆{1,...,D},|I|=d
PI

where |I| is the size of I. The sets U , PI and I are illustrated with d = 2 in Figure 6.1.
On the left figure, strips are marked by lines. In addition, the color of a point corresponds
to D minus the dimension of the face it belongs to, i.e. the number of coordinates of its
image by pX (A·) that are equal to 1 in absolute value. For instance, edges of X (1-faces)
have D−1 components fixed to ±1. This is also D minus the number of strips they belong to.

From this definition, we directly have Proposition 6.2.1 as a direct consequence of Lemma
6.2.1.

Proposition 6.2.1. If A ∈ A, then problem (R) admits a solution in Y = U .

In fact we show in the following Proposition that U is the smallest closed set such that
the map g U : U → pX (ARd), y 7→ pX (Ay) is surjective.

Proposition 6.2.2. If A ∈ A, then U is the smallest closed set Y ⊆ Rd such that pX (AY) =
pX (ARd). Furthermore, U is a compact and star-shaped set with respect to every point in I.
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Figure 6.1 – Representation of the sets of interest introduced in Section 6.2 with d = 2,
D = 7. Left: colors represents how many variables in X are not in ]− 1, 1[. The green lines
are the parallel hyperplanes forming the strips Si. Right: each of the 21 parallelotopes (here
parallelograms) PI is depicted with a different color and their union is the minimal set U .
The intersection of all parallelograms I is in black. For illustration purpose, U is truncated:
the violet horizontal parallelogram actually spreads up to approximately |y1| = 35.

Proof. First, note that U is a closed set as a finite union of closed sets. Then, let us show that
pX (AU) = pX (ARd). Consider x ∈ pX (ARd), hence |xi| ≤ 1 and ∃y ∈ Rd s.t. x = pX (Ay).
Denote b = Ay. We distinguish two cases:

1. More than d components of b are in [−1, 1]. Then there exists a set I of size d such
that y ∈ ⋂

i∈I
Si = PI ⊆ U , implying that x ∈ pX (AU).

2. 0 ≤ k < d components of b are in [−1, 1]. It is enough to consider that b ∈ [0,+∞)D.
Indeed, for any x ∈ pX (ARd), any A ∈ A, let ε be the isometry given by the di-
agonal D × D matrix ε with elements ±1 such that εx ∈ [0,+∞)D. It follows that
εb is in [0,+∞)D too. Denote x′ = εx, b′ = εb and A′ = εA. Thus if ∃u ∈ U
such that x′ = pX (b′) = pX (A′u), by property 6.2.2: εx = εpX (Au) leading to
x = pX (b) = pX (Au). From now on, we therefore assume that bi ≥ 0, 1 ≤ i ≤ D.
Furthermore, we can assume that 0 ≤ b1 ≤ · · · ≤ bD, from a permutation of indices.
Hence bi > 1 if i > k and x = (x1 = b1, . . . , xk = bk, 1, . . . , 1)T .

Let y′ ∈ Rd be the solution of A1,...,dy′ = (b1, . . . bk, 1, . . . , 1)T (vector of size d). Such
a solution exists since A1,...,d is invertible by hypothesis. Then define b′ = Ay′, b′ =
(b1, . . . , bk, 1, . . . , 1, b′d+1, . . . , b

′
D)T . We have b′ ∈ Ran(A) and y′ ∈ P1,...,d ⊆ U .
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• If mini∈{d+1,...,D}(b′i) ≥ 1, then pX (b′) = pX (b) = x, and thus x = pX (Ay′) ∈
pX (AU).

• Else, the set L = {i ∈ N : d + 1 ≤ i ≤ D , b′i < 1} is not empty. Consider
c = λb′+ (1−λ)b, λ ∈]0, 1[. By linearity, since both b and b′ belong to Ran(A),
c ∈ Ran(A).

– For 1 ≤ i ≤ k, ci = xi.

– For k + 1 ≤ i ≤ d, ci = λ+ (1− λ)bi ≥ 1 since bi > 1.

– For i ∈ {d+ 1, . . . , D} \ L, b′i ≥ 1 and bi > 1 hence ci ≥ 1.

– We now focus on the remaining components in L. For all i ∈ L, we solve
ci = 1, i.e. λb′i + (1 − λ)bi = λ(b′i − bi) + bi = 1. The solution is λi = bi−1

bi−b′i
,

with bi − b′i > 0 since b′i < 1. Also bi − 1 > 0 and bi − 1 < bi − b′i such that
we have λi ∈]0, 1[. Denote λ∗ = mini∈L λi and the corresponding index i∗. By
construction, ci∗ = 1 and ∀i ∈ L, ci = λ∗(b′i − bi) + bi ≥ λi(b′i − bi) + bi = 1
since λi ≥ λ∗ and b′i − bi < 0.

To summarize, we can construct c∗ with λ∗ that has k + 1 components in [−1, 1]
(the first k and the i∗th ones), the others are greater or equal than 1. Moreover,
c∗ ∈ Ran(A) and fulfills pX (c∗) = pX (b) = x by Property 6.2.1. If k+ 1 = d, this
corresponds to case 1 above, otherwise, it is possible to reiterate by taking b = c.
Hence we have a pre-image of x by g in U .

Thus the surjection property is shown. There remains to show that U is the smallest closed
set achieving this, along with additional topological properties.

Let us show that any closed set Y ∈ Rd such that pX (AY) = pX (ARd) contains U . To
this end, we consider U∗ = ⋃

I⊆{1,...,D},|I|=d
P̊I with P̊I =

{
y ∈ Rd , ∀i ∈ I,−1 < Aiy < 1

}
, the

interior of the parallelotopes. We have g Ů bijective. Indeed, all x ∈ pX (AU∗) have (at least)
d components whose absolute value is strictly lower that 1. Without loss of generality, we
suppose that they are the d first ones, I = {1, . . . , d}. Then there exists a unique y ∈ Rd s.t.
x = pX (Ay) because xI = (Ay)I = AIy has a unique solution with AI is invertible. Since
Y is in surjection with pX (ARd) for g Y and g U∗ is bijective, U∗ ⊆ Y . Additionally, Y is a
closed set so it must contain the closure U of U∗.

Finally let us prove the topological properties of U . Recall that parallelotopes PI

(I ⊆ {1, . . . , D}) are compact convex sets as linear transformations of d-cubes. Thus
I = ⋂

I⊆{1,...,D},|I|=d
PI is a compact convex set as the intersection of compact convex sets,

which is non empty (O ∈ I). It follows that U = ⋃
I⊆{1,...,D},|I|=d

PI is compact and connected
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as a finite union of compact connected sets with a non-empty intersection, i.e. I. Addition-
ally U is star-shaped with respect to any point in I (since I belongs to all parallelotopes in
U).

To sum up, we have three different sets of interest: the (unknown) parallelotope corre-
sponding to the influential variables PI , the intersection of all of them I, and their union
U .

For solving problem (R), setting Y = U seems appealing. Unfortunately this is impracti-
cal for combinatorial reasons: as a union of

(
d
D

)
parallelotopes, U is not easy to directly work

with. Consequently, we aim at finding some tractable Y of small volume while satisfying
U ⊆ Y . A first natural idea is to enclose U in a ball. For that we need the diameter of U ,
which is what we pursue next.

6.2.3 Estimation of the diameter of the minimal set U

Suppose that we want to define Y enclosing U in order to find a solution to problem (R). We
then need to find the diameter of U , i.e. δ(U) = maxy1,y2∈U ‖y1 − y2‖, or equivalently since
U is centrally symmetric, its radius r∗ = δ(U)/2 = maxy∈U ‖y‖. Simple forms for Y would
then either be a ball of radius r∗ or a square of side 2r∗. In both cases, r∗ is needed. How-
ever, unless the dimensions d and D are small, solving maxy∈U ‖y‖ appears to be out of reach.

Nevertheless, due to the structure of the problem, it can be decomposed over all parallelo-
topes. In particular, the maximum of the norm over a parallelotope is reached on its vertices
since the norm is a convex function and parallelotopes are convex sets, see e.g. Chapter 32
in [Roc70]. The problem is then: max

y∈U
‖y‖ = max

I⊆{1,...,D},|I|=d

(
max
v∈Vd

(
‖A−1

I v‖
))

where Vd is the

set of vertices of Cd.

Maximizing the norm over only one parallelotope is relatively easy with moderate d since
it amounts to inverting a d × d matrix AI and considering the 2d vertices3 where the opti-
mum is possibly reached. But there are quickly too many possible parallelotopes, i.e.

(
D
d

)
,

to consider for getting r∗ in general.

One option is to obtain an estimate by stochastic simulation, as proposed in Algorithm
9. The principle is to sample points on an initially large d-sphere of radius ρ and determine
whether or not some are in a parallelotope. If not, the size of the sphere is reduced. Images
of points in parallelotopes have at least d coordinates lower than 1 in absolute value in the
high-dimensional domain. We concentrate on the d smallest ones, whose indices are denoted

3In fact half of them since ‖v‖ = ‖ − v‖ with v ∈ Vd.
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by I. It remains to find the vertex of the parallelotope PI with largest norm, i.e. most
distant to the center. Notice that Theorem 5.2.2 (Theorem 3 in [WZH+13]) provides a way
to initialize ρ: taking ε = 10−6 gives a probability of less than one in a million of not being
too large.

Algorithm 9 Pseudo-code for the estimation of the radius of U
Input: k > 1, matrix A, number of sampled points N , Q = ∅, initial radius ρ
1: while Q = ∅ do
2: Sample N points on B(Od, ρ): y(1), . . . ,y(N).
3: Compute x(i) = pX (Ay(i)), 1 ≤ i ≤ N .
4: Define Q =

{
x(j), 1 ≤ j ≤ N , ∃I = {i1, . . . , id} ⊆ {1, . . . , D} , |x

(j)
i1
| ≤ 1, . . . , |x(j)

id
| ≤ 1

}
.

5: r̂ ← ρ; ρ← ρ/k.
6: end while
7: for j = 1, . . . , |Q| do
8: Define I = (i1, . . . , id), the indices of the d smallest coordinates of x(j) ∈ Q (in absolute

value).
9: Compute r̂ = max(r̂,max

s∈Vd
‖A−1

I s‖).
10: end for
Output: r̂

Note that the estimation of r∗ is biased since r̂ ≤ r∗ for any sample but it is useful to
give first initial values for r∗ in the remainder of this chapter. An alternative for enclosing
a parallelotope is to compute the smallest box that contains it, as given e.g. in [LSA+13]:
[−C1, C1]× · · · × [−Cd, Cd] with Ci =

d∑
j=1
|Bi,j| with B = A−1

I .

6.3 Practical considerations depending on A and pro-
posed modifications

Having U ⊆ Y ensures to find a solution of the optimization problem (R). We now focus on
the matrix A with the aim of making U as small as possible. We start by defining properly
this goal, for which analytical solutions exist with d = 1, 2. Then we propose an extension to
d ≥ 3 that we validate with simulation results. It allows us to propose a modified REMBO
algorithm with improved robustness properties in the case of a single random embedding,
along with some guidelines.

6.3.1 Objective of modifying A

Considering simply r∗ (see Section 6.2.3) to define Y is insufficient: multiplying A by a pos-
itive constant k does not change pX (ARd) but changes r∗ since r∗(kA) = r∗(A)/k (through
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A−1
I with parallelotopes). Similarly for strips, the half length li of the ith strip of kA is li/k:

li is half the distance between two parallel hyperplanes, i.e. li = 1/‖Ai‖d.

We thus focus on the quantity r∗/l∗ where l∗ is half the length of the smallest strip, which
is not affected by a rescaling of A. This is problem (D):

(D) : min
A∈A

η(A) = r∗(A)
l∗(A) .

There are several justifications to this choice of l∗ in problem (D). First, it is simple to
compute for any matrix A, contrarily to other possibilities such as for instance the diameter
of I. In addition, I is closely related to the warping Ψ : Rd → RD of Chapter 5. Recall that
Ψ is constructed in two steps for a point in Y : first by applying the orthogonal projection
onto Ran(A) to pX (Ay) to get z = pA(pX (Ay)) and then, if z /∈ X , by distorting it to take
into account the distance between the pivot point: z′ = (maxi=1,...,D |zi|)−1z and pX (Ay).
It follows from their construction that pivot points correspond to the exterior of AI, i.e. of
X ∩Ran(A), and that Ψ(I) = AI. The smallest strip is thus directly connected to the pivot
points of the warping.

The image of Rd by Ψ belongs to Ran(A), a d-dimensional subspace. To get the co-
ordinates on Ran(A), we use A†, the Moore-Penrose pseudo-inverse of A [Bar90], which
is a d × D matrix such that for all x = Ay ∈ Ran(A), A†x = y. In our case where A
has full column rank, we have A† = (ATA)−1AT . Furthermore the orthogonal projection
onto Ran(A) is pA = A(ATA)−1AT : we thus have A†A = Id while pA = AA†x. We
refer to A†Ψ(Rd) =

{
A†Ψ(y) with y ∈ Rd

}
as the warped space. The counterpart of r∗/l∗

after warping is r∗Ψ/l∗, with r∗Ψ = maxy∈U ‖A†Ψ(y)‖. This ratio controls the relative impor-
tance of points in pA(pX (ARd)) over those of pA(X ∩ Ran(A)). While distances between
points belonging to X ∩ Ran(A) are d-dimensional, those between pivot points and vertices
of pX (ARd) may be D-dimensional. As a consequence, most of the volume of the warped
space may correspond to the exterior of X .

Furthermore, instead of looking for a solution to problem (D) in the entire setA, according
to Lemma 6.3.1 it is possible to restrict the search to row normalized matrices.

Lemma 6.3.1. Let A ∈ A be optimal in the sense of problem (D). Then A′ defined by
A′i = Ai/‖Ai‖, 1 ≤ i ≤ D, is also in A and optimal in the same sense.

Proof. Let A ∈ A optimal in the sense of problem (D). Reducing the length of a strip
decreases the diameter of the parallelotopes that it forms. So by making all strip lengths
equal to the minimal strip length, r∗ decreases or remains unchanged, while l∗ is not affected.
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Since strip lengths are equal to 2/‖Ai‖, it amounts to have rows of equal norms for A.
Furthermore, recall that η(A) is invariant when replacing A by k(A), k 6= 0. Thus η(A) is
invariant by normalization of the rows of A. Finally, A′ is also optimal and because the rank
of a matrix is not altered by multiplying its rows by a scalar, A′ ∈ A.

Importantly, note that even if a bias is introduced by restricting the set of possible matrices
when modifying A to get A′, this has no consequence on the existence of an optimal solution
to problem (R) since A′ is still in A.

6.3.2 Solutions for problem (D) with d = 1, 2

When d = 1, we show in Proposition 6.3.1 that the optimal solution of (D) is when Ran(A)
corresponds to a diagonal of X . This is stronger than Lemma 6.3.1 since here an optimal
matrix has necessarily the same row lengths. An example is provided in Figure 6.2.

Proposition 6.3.1. Solutions to problem (D) with d = 1 are the matrices A = (±a, . . . ,±a)T ∈
RD×1 with a ∈ R∗, i.e. such that A corresponds to a diagonal of X . The optimal value is
r∗/l∗ = 1.

Proof. When d = 1, Ai 6= 0 and Si = [−1/Ai, 1/Ai], 1 ≤ i ≤ D, thus I = [−l∗, l∗] and U =
[−r∗, r∗] with l∗ = min1≤i≤D(1/|Ai|) and r∗ = max1≤i≤D(1/|Ai|). Therefore the minimum of
r∗/l∗ is reached when r∗ = l∗, forcing the |Ai| to be equal to a same constant a.

Figure 6.2 – Examples in X of optimal (right) and non-optimal (left) embeddings in the sense
of problem (D) with d = 1 and D = 2. The asterisks and circles denote the images by A in
X of centered segments in Y of lengths l∗ and r∗, respectively.

As a direct by-product, with this choice of A, Ψ = Id. Then there is no need for the
convex projection, and r∗Ψ/l

∗ is also equal to 1 and optimal. With d = 1, optimal A have
rows of equal length. In the d = 2 case, a sufficient condition for optimality is obtained if in
addition the strips are evenly spread as detailed now.

Proposition 6.3.2. Solutions to problem (D) with d = 2 are matrices A with rows of equal
norms and corresponding to regularly spaced points on a circle. In addition, let (i, j) be a
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couple of indices such that the angle between Ai and Aj is equal to π/D. The criterion value

at optimum is r∗/l∗ with r∗ = max
∥∥∥∥∥∥A−1

i,j

1
1

∥∥∥∥∥∥
d

,

∥∥∥∥∥∥A−1
i,j

 1
−1

∥∥∥∥∥∥
d

 and l∗ = l1 = · · · = lD =

1/‖A1‖.

Sketch of proof. For illustration the reader is referred to Figure 6.3. Parallelotopes are here
parallelograms. Let A ∈ A optimal in the sense of problem (D), with rows of equal norms
as assumed from Lemma 6.3.1. The sum of the D smallest angles between any two strips
is π if these angles are taken positive. The diameter of U is equal to the largest diame-
ter of the parallelograms constituting it. Since all strips have equal length, the difference
of diameters between parallelograms only depends on angles between strips, and the diam-
eter of a parallelogram is a decreasing function of this angle. Hence r∗ is minimal when
the smallest angles between any two strips is equal to π/D, i.e. when all angles are equal
since their sum is π. Otherwise at least one angle is strictly lower that π/D, which contra-
dicts A optimal. Furthermore, notice that here the condition of rows of equal norms is also
necessary: otherwise reducing the strip length will reduce the diameter of the parallelograms.

For the second part, from the hypothesis on Ai and Aj, r∗ is equal to the diameter of PI

with I = {i, j}. Then the diameter of this parallelogram is equal to the length of its largest

diagonal, hence r∗ = max
∥∥∥∥∥∥A−1

I

1
1

∥∥∥∥∥∥
d

,

∥∥∥∥∥∥A−1
I

 1
−1

∥∥∥∥∥∥
d

, see Section 6.2.3.

Let us remark that the naive generalization of the d = 1 case results in a matrix A /∈ A.
If A has to columns (±a, . . . ,±a)T and (±b, . . . ,±b)T , a, b > 0, then rows are either ±(a, b)
or ±(−a, b). Hence if D > 2, some rows are equal up to a sign difference, implying the
existence of singular extracted d× d matrices.

An illustrative example is given, see Figure 6.3. Interestingly, for an optimal embedding,
there is no violet area enclosed in the black circle, where each violet area maps to one vertex
of X . Thus having more than one point in a violet area has no interest since the value of the
function is already known. As discussed in Chapter 5, it may happen when using kY but not
with kX and kΨ. In addition, representations in the warped space are given, where it can be
observed that the ratio of radius of the black circle over the yellow one, i.e. r∗Ψ/l∗, is again in
favor of the optimal embedding.

In the d = 2 case, optimal embeddings are very regular and symmetrical. Consequently
a number of quantities such as r∗Ψ are derivable from planar geometry considerations. A
summary is given in Appendix D. Specifically, optimal matrices for problem (D) have their
two columns orthogonal. With optimal matrices, the randomness initially on both strips
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Figure 6.3 – Example of optimal (right) and non-optimal (left) embeddings in the sense of
problem (D) with d = 2, D = 5 in the low dimensional space Y (top) and in the warped
space A†Ψ(Y) (bottom). Colors represent the number of coordinates equal to ±1 in X . The
yellow and black circles are of radius l∗ and r∗ (top) or r∗Ψ (bottom) respectively.
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orientations and lengths is reduced to randomness on the indexing of stripes for variables.

6.3.3 General case

From the d = 2 case, we infer that optimal solutions to problem (D) for arbitrary d would
also correspond to evenly spaced points on the d-sphere. Except that formally defining “reg-
ularly” with higher d leads to several definitions, whose optimal solutions for an arbitrary D
are generally unknown anyway. This is linked to the existence of regular convex polygons in
arbitrary dimension with any number of vertices. The reader interested in this problem of
distributing points on a hypersphere is referred to [SK97], [LDS01] and references therein.

As a preliminary and heuristic study on this topic, we propose two modifications for a
matrix sampled with independent standard Gaussian entries A:

1. Normalizing the rows of A, since this can only improve the ratio r∗/l∗ (see Lemma
6.3.1). Rows of A are then points on the unit d-sphere. The obtained matrix is
denoted A′. This acts on l∗ and all strips then have equal lengths.

2. In a second time, spreading of points on the unit d-sphere S by maximizing the min-
imal distance between any two points: max

x1,...xD∈S
min

1≤j<k≤D
‖xj − xk‖d. In [SK97], this is

called maximizing a potential. This is computationally demanding: a D×D matrix of
distances needs to be computed for the potential. Here we propose to optimize locally
this function starting from A′ to obtain Ã. If D is too high, random search is still pos-
sible by sampling several matrices, normalizing their rows and estimating r∗/l∗ before
selecting the best one.

Note that the rank property required for A in Proposition 6.2.2 holds with probability 1
for matrices with standard i.i.d. Gaussian entries, [WZH+13] (proof of Theorem 2).

We compare our proposed modifications for d = 2, 3, 5 and 10, with D = 20d. In addi-
tion to r∗/l∗ we also estimate its equivalent in the warped space: r∗Ψ/l∗. The corresponding
results are given in Figure 6.4. As U is only estimated, it may not be found precisely every
time, especially when increasing d. Nevertheless, the results clearly show the relevance of the
proposed modifications for the r∗/l∗ ratio as well as for the r∗Ψ/l∗ one. Normalizing over the
rows (A→ A′) offers a great improvement compared to the one brought by the second step
(A′ → Ã).

By analyzing the results of the maximization of the potential to obtain Ã from A′, in
several cases the result obtained is close to a matrix with orthogonal rows. This could be
investigated further in future works. Next we consider the benefits for Bayesian optimization.
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Figure 6.4 – Simulation results comparing a matrix A ∈ R20d×d with independent standard
Gaussian entries and its modifications A′ and Ã for two criteria (left, right) over 100 repe-
titions (50 in dimension 10). The left criterion is the ratio r∗/l∗, in log10 scale, the right one
is r∗Ψ/l∗.

6.3.4 Impact on the REMBO algorithm and experiments

Based on all previous comments and results, we now discuss variations of the REMBO
method regarding both the choice of the random embedding matrix and the selection of the
low dimensional domain Y . For the choice of the random embedding, three alternatives are
available: A as in [WZH+13] with Gaussian i.i.d. entries, A′ with normalized rows or Ã.
When required, r∗ is estimated with Algorithm 9.

We also propose two new options for selecting the bounds of Y , with dedicated strategies
for the optimization of the acquisition function, here the Expected Improvement:

1. Y = [−
√
d,
√
d]d, as in the standard REMBO method, with a constrained optimization

of the acquisition function;

2. Y = [−r∗, r∗]d, i.e. such that U ⊆ Y , also with a constrained optimization of the
acquisition function;

3. Y = [−r∗, r∗]d, combining a non-constrained optimization initialized in [−l∗, l∗]d with
a constrained optimization in Y .

This third strategy takes into account that while a solution to problem (R) is to be found
on U with probability 1, this domain is very large while PI may only represent a small frac-
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tion of it. Hence it may not be worth spending too much effort on it. On the other hand, in
the small domain I, all variables – including the influential ones – are varying, making it a
good start for EI optimization.

Note that as also proposed in Chapter 5 for box constraints on Y in l1-norm, it is good to
ensure that Y at least contains the ball of radius max1≤i≤D li in order that each components
xi spans over [−1, 1].

To compare A, A′ and Ã with the different strategies described above, the Hartman6
mono-objective example is considered, as in Chapter 5. In all tests, only d randomly selected
variables out of the D possible ones have an influence on the function. We use the covariance
kernels kY and kΨ in these tests. To construct designs of experiments, a simple way is to use
space-filling designs in Y . If some points have the same image by pX (A·), redundant points
are replaced until the required number of points is obtained. Another option when working
with kΨ is to sample more points than needed in Y and to remove the surplus sequentially
based on their distances in Ψ(Rd). These tests are conducted in R, with packages DiceKriging
and DiceOptim for the GP modeling and Expected Improvement function. rgenoud and pso
are used for optimizing the acquisition function, in addition to random search. The budget
for this inner optimization is the same for all instances, as are the realizations of random
matrices (before modification if performed).

The results are given in Figure 6.5. First, kΨ performs much better than kY (except for
strategy 2 where both show a similar behavior). Normalizing the rows of A decreases signif-
icantly the optimality gap, while Ã has only a marginal positive effect. With kY , taking a
larger domain with strategies 2 and 3 deteriorates the performance, since this kernel only con-
sider distances in Y . Results of A′ and Ã with classical bounds (strategy 1) or unconstrained
optimization starting from I (with [−l∗, l∗]d) coupled with optimization over U (strategy 3)
are very similar and they outperform those with A, both in average and for the third quartile.

Unsurprisingly, taking U for bounds without adapting the optimization of the acquisition
function (strategy 2) gives very poor results. This under-performance may be explained by
considering the deformation of the function h with g, i.e. g(y) = h(pXI (AIy)):

(a) over PI , g(y) = h(AIy);

(b) over Rd \
(⋃
i∈I
Si
)
, g is piece-wise constant (all influential variables are equal to ±1);

(c) over
(⋃
i∈I
Si
)
\ PI , the deformation of g compared to h depends on the number of
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Figure 6.5 – Optimality gap for the Hartman6 function with D = 25 over 50 runs with a
budget of 250 evaluations, with kY (top) and kΨ (bottom). For each strategy, matrices A,
A′ and Ã are tested. The red dashed line indicates the best median performance, i.e. for
strategy 3 with Ã.
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influential variables that are not fixed to ±1.

Hence the function g has three different behaviors over Rd, which might be difficult to learn
for a surrogate model. With relatively small bounds, as in strategy 1, case (a) and (b) may
be predominant while for strategy 2 and 3, case (b) is expected to be predominant and case
(c) is more probable. In strategy 3, the optimization budget of the acquisition function is
split to focus on I, i.e. on case (a). An illustration of these deformations and behaviors with
d = 2, D = 3 for the Branin-Hoo test function (see e.g. [Gin09] for its formulation), is given
in Figure 6.6.

Taking into account these instationnarities with the GP modeling would probably be
beneficial. Otherwise, modeling difficulties are less important with small bounds. Yet, a case
when restricting to the center is more dangerous occurs in the multi-objective setting that
we consider in the following.
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Figure 6.6 – Branin-Hoo function (d = 2) with 1 added non-influential dimension (D = 3):
original (left), in the low-dimensional space Y with g (center) and in the warped space (right).
Global minima are marked by points.

6.4 Multi-objective REMBO optimization

The REMBO method has been originally proposed for mono-objective optimization. The
good performance shown in high dimension advocates questioning its transposition to the
multi-objective case. However, since the set of optimal solution is on the Pareto set, failing
to enclose parts of it in the research domain may cause more troubles than in mono-objective
optimization. As such, it offers a challenging case study to the present work.

6.4.1 Theoretical extension

We consider that the parameter space is shared between objectives. Then the difference when
dealing with several expensive objectives in the Bayesian optimization framework concerns
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the acquisition function, which depends on several models, see Chapter 2. We show that
this is also the case with REMBO and modify Theorem 5.2.2 to take into account several
objectives in Lemma 6.4.1.

Lemma 6.4.1. Let f = (f1, . . . , fm) be a vector-valued function whose coordinate functions
fi : RD 7→ R, (1 ≤ i ≤ m) are with effective dimensionalities di and effective subspace
τi. Denote A ∈ RD×d a random matrix with standard Gaussian independent entries and
d ≥ Rank

m⊕
i=1

τi. Then, with probability 1, for any x ∈ Rd, there exists y ∈ Rd such that
f(x) = f(Ay).

Proof. This proof is slightly modified from [WZH+13]. By definition of effective dimension-
ality, for each fi there exists an effective subspace τi ⊆ RD such that Rank(τi) = di. Denote
T the span of all the effective subspaces, it has rank d = Rank(

m⊕
i=1

τi) ≤
∑m
i=1 di. In addition,

any x ∈ RD decomposes as x = x> + x⊥, x> ∈ T , x⊥ ∈ T ⊥. Denoting xτi and xτi,⊥ the
decomposition of x> between τi and T ∩τ⊥i , this gives for each objective x = xτi +xτi,⊥+x⊥,
leading to fi(x) = f(x>) = fi(xτi). The results follows since it is shown in [WZH+13]
that with probability 1, ∀x ∈ RD, x = x> + x⊥, ∃y ∈ Rd such that Ay = x> + x′, with
x′ ∈ T ⊥.

For box constraints on X , Theorem 5.2.2 (Theorem 3 in [WZH+13]), which holds if
restricting influential variables to basis variables, i.e. hypothesis (H), is still valid with several
objectives as shown in Lemma 6.4.2.

Lemma 6.4.2. Let f : RD → Rm be such that each objective fi is of effective dimensionality
di. Suppose that all their respective influential subspaces τi are the span of di basis vectors.
Denote T the span of all τi, of rank d and A a D × d random matrix with independent
standard Gaussian entries. Then, for any Pareto optimal solution x∗ of f , its projection x∗>
onto T is such that x∗> ∈ T ∩ X . Also, ∃y∗ ∈ Rd such that f(Ay∗) = f(x∗>) with probability
1. In addition, ‖y∗‖2 ≤

√
d
ε
‖x∗>‖2 with probability 1− ε.

Proof. It is sufficient to show that under the hypothesis on the effective subspaces, any Pareto
optimal solution x∗ may be written as x∗> + x∗⊥ where x∗> ∈ T ∩ X . Denote e1, . . . , eD the
basis vectors of X and I the d indices of those spanning T . Then, ∀x ∈ X , x =

D∑
i=1

xiei =∑
i∈I
xiei +

∑
i/∈I
xiei = x>+x⊥. Since for all i, |xi| ≤ 1, x> belongs to X . As this is true for any

x, it is true for any Pareto optimal solution x∗. Then the existence of y∗ with probability
1 follows from Lemma 6.4.1. The proof of the last result on ‖y∗‖2 does not differ from the
proof in [WZH+13].

Hence we have shown that the REMBO method is applicable to multi-objective opti-
mization under the same hypotheses than for mono-objective optimization. Now consider
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the constrained problem minx∈E fl(x), 1 ≤ l ≤ m, such that fj(x) ≤ εj, 1 ≤ j ≤ m,
j 6= l. This formulation of a multi-objective problem as a constrained problem is called the
ε-constraint method. Since any solution of this constrained problem, if it exists, is Pareto
optimal (see e.g. Theorem 3.2.2, Part. II, in [Mie99]), REMBO is also applicable to con-
strained optimization. We use it for instance on the industrial test case of Chapter 8.

Modifications to Algorithm 7 consist in building and updating several models instead of
one (steps 4 and 8). Then in step 6, the Expected Improvement is replaced by a dedicated
multi-objective [EDK11], [Pic13], [SS16] or constrained expected improvement [SWJ98],
[Pic14], which are also functions of RD → R. Note that except in the favorable case when
all influential subspaces are shared, the low dimension d is increasing linearly with more
constraints and objectives.

6.4.2 Multi-objective tests

We now perform tests on modifications of the matrix A and optimization strategies on
bi-objective problems from the literature: (P1) [Par12] as in Chapter 3, Deb3, Fonseca2
[CLVV07] and ZDT3 [ZDT00]. The results of a comparison between the standard setting
(strategy 1 with A and kY) and kΨ with Ã for strategy 3 are presented in Figure 6.7 (lower
is better). Except for test problem Deb3, the results are better using the proposed modifica-
tions. Note that test functions Fonseca2 and Deb3 are very difficult to model with standard
GPs due to their landscapes composed of large plateaus and peaks.

Extended results corresponding to the tests of Section 6.3.4 in a multi-objective setup
are given in Figures 6.8 and 6.9 for problem (P1) and ZDT3 (d = 4) respectively. Based on
the previous experiments, only kΨ is tested extensively, while results for kY with standard
bounds [−

√
d,
√
d] are given as a baseline for comparison.

Results for problem (P1) show that for strategies 2 and 3, the modifications of the ma-
trix A are beneficial to increase the robustness, as can be seen on box sizes (inter-quartile
interval). For strategy 1 the third quartile is slightly higher after modification of A but the
median is much lower. Notice that this time strategy 2 is competitive with the other strate-
gies and bring the most concentrated results when coupled with Ã. The best median are
obtained with strategy 1 with A′ and Ã, but with higher third quartile than other strategies.

For problem ZDT3, results are more mitigated. Modifications to the matrix A only
bring an enhancement with strategy 3, with best third quartile. The reasons of this counter-
performance may be various. First the Pareto set is located on the boundary on the domain,
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Figure 6.7 – Hypervolume difference to a reference Pareto front for bi-objective test problems
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hence a too small domain may not contain it. This is what may happen with strategy 1 with
A′ and Ã: strip lengths with A follows an inverse χ2 law, of mean (1/(d − 2)) for d > 2
while A′ and Ã have strips of length 2. Hence classical bounds are relatively larger with
A. The second difficulty is that while the first objective of this test problem is very simple:
f1(x) = x1, it becomes more difficult to model in the REMBO setting since y 7→ pX (A1y) is
piecewise linear4.

6.5 Conclusion and perspectives

From our analysis of the low dimensional space, we have found the smallest compact con-
nected set U that contains a solution if influential variables are canonical variables. Then
we have considered the problem of reducing the volume of U relatively to the volume of I,
the intersection of Ran(A) ∩ X , by modifying the matrix A. Optimal solutions have been
described for d = 1 and d = 2 while options have been proposed for the general case. We
additionally proposed two new strategies to optimize the acquisition function, with a low
dimensional domain Y such that U ⊆ Y . We subsequently tested the proposed modifications
on test functions, mono and multi-objective ones, after extending REMBO to this latter case.
These first results indicates that selecting the bounds adaptively with U along with a modi-
fied matrix for the random embedding has in general a positive impact on the performance
of REMBO, especially with respect to high quantiles.

There are several attractive perspectives from remaining open questions and difficul-
ties. The tests conducted have highlighted the importance of appropriately selecting the
low-dimensional domain Y . Considering other bounds, based for instance on the average
diameter of parallelotopes, may be of interest. The recent work on Bayesian optimization
with automatic resizing of bounds of [SBCdF15] could also help to this task. Regarding the
selection of the matrix A, further work is needed on optimal matrices for problem (D) such as
considering orthogonality of columns or better procedures to obtain regularly spaced points
on the d-sphere. The estimation of the diameter of U could also be improved, potentially
considering the orthogonal projection of pX (ARd) onto Ran A, which is detailed in Appendix
D. While under hypothesis (H), the proposed modifications of A still ensure that a solution
is to be found in U , more analysis is needed outside this scope.

Moreover, hypothesis (H) is not exploited in GP modeling. Then recovering the par-
allelotope corresponding to influential variables in the low-dimensional space to define the

4This drawback can be mitigated. First, in very high dimension, optimizing even a very simple function is
hard. Second, for one objective, even a poor modeling of slopes breaks should catch the general trend. This
may be more troublesome when several objectives are considered simultaneously.
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Figure 6.8 – Hypervolume difference to a reference Pareto front for the bi-objective test
problem (P1), d = 2, D = 50 for 50 runs with a budget of 100 evaluations. The reference
with standard REMBO using kY is the leftmost boxplot, separated from all other tests using
kΨ by a dashed line.
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Figure 6.9 – Hypervolume difference to a reference Pareto front for the bi-objective test
problem ZDT3, d = 4, D = 50 and for 50 runs with a budget of 100 evaluations. The
reference with standard REMBO using kY is the leftmost boxplot, separated from all other
tests using kΨ by a dashed line.
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search domain would alleviate troubles related to instationnarity, with a knowledge on the
influence of each variable as a by-product. Alternatively, the work in [MGB+15] which de-
velops instationnarity over a cliff given by a direction is expected to adapt well in the strips
configuration. Finally, combining appropriately active learning of the linear embedding as
in [GOH13] and REMBO with optimization on a low dimensional subspace is a promising
direction for future research.
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Chapter 7

Contributions in software for
multi-objective optimization

The aim of this chapter is to give a brief overview of the GPareto package’s features [BP15]
that has been released as a contribution of this PhD work. It provides in R [R C15] multi-
objective optimization algorithms for expensive black-box functions and the quantification
of uncertainty method described in Chapter 3. The copula approach of Chapter 4 is also
written in R, but is not integrated in the package.

7.1 Presentation of GPareto

As of September 2015 and to the best of the author’s knowledge, multi-objective objective
optimization is scarcely represented in R. There are a few packages on this subject: nsga2R,
emoa, mopsocd and mco, which provides tools and algorithms such as NSGA-II [DPAM02]
or hypervolume computations. As for methods available for expensive black-box functions
optimization, the package SPOT [BBZ12] seems to be the only alternative to GPareto.

Building upon the DiceKriging [RGD12] package that offers Kriging model training for
computer experiments, several associated packages deal with various related problems:

• DiceOptim: mono-objective optimization with criteria such as Expected Improvement,
multipoint Expected Improvement or criteria suited for noisy function evaluations;

• DiceDesign: construction of initial designs of experiments (especially space-filling);

• KrigInv: algorithms for inversion problems such as contour line and excursion set esti-
mation;

• DiceEval, DiceView: evaluation and visualization of metamodels;
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• fanovaGraph: Kriging models from FANOVA graphs;

• MuFiCokriging: multi-fidelity cokriging models;

• kergp: alternative to DiceKriging for building GP models with tunable and user-defined
covariance kernels.

In this suite of packages, the recently released GPareto offers the possibility to tackle
multi-objective optimization problems. Its functions names and descriptions are given in
Table 7.1.

Table 7.1 – Overview of the GPareto functions

Name Category Description
checkPredict Test Prevention of numerical instability for a new observation
CPF Entry point Conditional Pareto Front simulations
crit_EHI Criterion Expected Hypervolume Improvement with m objectives
crit_EMI Criterion Expected Maximin Improvement with m objectives
crit_optimizer Entry point Maximization of multi-objective Expected Improvement criteria
crit_SMS Criterion Analytical expression of the SMS-EGO criterion
crit_SUR Criterion Analytical expression of the SUR criterion for 2 or 3 objectives
fastfun Class Fastfun function

GParetoptim Entry point Sequential MO EI maximization and model re-estimation,
with a number of iterations fixed in advance by the user

integration_design... Initialization Function to build integration points (for the SUR criterion)
plotParetoEmp Graphical Pareto Front visualization
plotParetoGrid Graphical Visualization of Pareto front and set
plotSymDevFun Graphical Display of the Symmetric Deviation Function
plotSymDifRNP Graphical Display of the symmetric difference of RNP sets
test functions ZDT1-3, ZDT5-6, DTLZ1-3, DTLZ7, P1, P2, MOP2, MOP3

The background on GP modeling and multi-objective optimization is presented in Chapter
2. The two complementary research lines of the package, quantification of uncertainty and
multi-objective optimization are presented with an emphasis on computational challenges
and implementation choices. The possible integration in this framework of the work on
high-dimensional optimization discussed in Chapters 5 and 6 concludes this chapter.

7.2 Multi-objective optimization using GPareto

Concepts in multi-objective optimization and corresponding EGO-like or SUR methods are
presented in Chapter 2. The implemented criteria are briefly described from a computational
point of view. Then criteria-optimization and sequential algorithms are presented before
detailing some more advanced options.
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7.2.1 Available infill criteria

Four criteria are available in GPareto 1.0.1:

• crit_SMS for the SMS-EGO criterion [PWBV08], [WEDP10] (based on the Matlab
source code of the authors);

• crit_EHI for the Expected Hypervolume Improvement criterion [EDK11] (based on
the Matlab source code of the authors in the bi-objective case);

• crit_EMI for the Expected Maximin Improvement criterion [SS16], [Sve11];

• crit_SUR for the Expected Excursion Volume Reduction criterion [Pic13].

The crit_SMS criterion has an analytical expression for any number of objectives while
the one for crit_EHI is only for the bi-objective case. There is a semi-analytical1 formula
for crit_EMI but it has not been implemented in GPareto yet. Note that the formula for
crit_EHI is coded in Rcpp [EF11], [Edd13], which offers considerable speed-up over an R
implementation. In SPOT, the Expected Hypervolume Improvement also relies on the for-
mulas of [EDK11] for the bi-objective case, coded in R. For more objectives, a variation of
the SMS-EGO infill criterion as well as other lower confidence bounds criteria are available
in SPOT. Hence the multi-objective SUR approach as well as Expected Maximin or Hyper-
volume Improvement criteria for any number of objectives are new in R.

For crit_EMI and crit_EHI with m > 2, computations rely on sample average approx-
imation (SAA) [Sha03] as proposed in [Sve11]. The principle is to take samples from the
posterior distribution of Y(x), i.e. Y(x)(1), . . . ,Y(x)(p), and take the average of the improve-
ment function over these samples: E (I(Y(x))|An) ≈ 1

p

p∑
j=1

I(Y(j)(x)). The larger the number
of samples p, the better the approximation. In addition, when samples of the posterior dis-
tribution Y(x) are generated from Cholesky decomposition, i.e. Y(x)(j) = mn(x) + C(x)ξj,
with a fixed sample ξ1, . . . , ξp ∼ N (0m, Im), mn(x) = (m(1)

n (x), . . . ,m(m)
n (x))T and C(x) the

Cholesky decomposition of the covariance matrix of Y1(x), . . . , Ym(x), then the SAA estima-
tion is a deterministic function.

crit_SUR requires Monte-Carlo integration of the probability for a point of not being
dominated at the next step. Similarly to the KrigInv package [CPG14], possible alternatives
to select integration points are with uniformly distributed random points in E or points from
a low discrepancy or quasi Monte Carlo sequence such as a Sobol sequence. No importance
sampling scheme is implemented yet, see e.g. [Pic13], [CPG14], but users have the option to

1Numerical quadrature is needed for some 1-dmensional integrals, see [Sve11].
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provide their own integration points and weights. For now crit_SUR is available for two or
three objectives.

In terms of complexity, both crit_EHI with m > 2 and crit_SMS use hypervolume com-
putations provided in the emoa package (much more frequently for the first one, which is thus
slower). Those have an exponential complexity in the number of objectives and also depend
on the number of points in the Pareto front. For crit_EMI the complexity mainly depends
on the number of sample points for the SAA approximation and linearly in the number of
objectives, it is more affordable than crit_EHI for more than two objectives. For crit_SUR,
the complexity is essentially related to the integration over the input domain which can be-
come cumbersome with many variables.

Importantly, except for crit_SUR, these criteria depend on the relative scaling of the
objectives, i.e. multiplying one objective by a constant modifies the results. Scaling may be
performed by the user, e.g. from the maximum and minimum values observed for each ob-
jective as in [Par12] or [Sve11]. In addition, crit_EHI and crit_SMS need a reference point
for bounding hypervolume computations. If no reference point is given by the user, we set
it to max

yj∈Pn
(y(i)

1 , . . . , y(i)
n ) + 1, 1 ≤ i ≤ m, as done in [PWBV08] and references therein. The

scaling and additional parameters are some of the drawbacks of multi-objective infill criteria,
as discussed in [WEDP10] and [Sve11].

A brief comparison of the different criteria is given in Table 7.2.

Table 7.2 – Summary of the characteristics of infill criteria available in GPareto. The
computational costs are given for the bi-objective example of Figure 7.2. Note that the
cost of crit_EHI is low in this case but increase exponentially with the output dimension.
SURcontrol is a list of parameters depending on the integration strategy chosen.

Name Indicator Analytical m Cost Parameters
crit_EHI Hypervolume Yes (m = 2) Any + (to +++) refPoint, nb.samp (m > 2)
crit_EMI Additive-ε No Any ++ nb.samp
crit_SMS Hypervolume Yes Any + refPoint
crit_SUR No m ≤ 3 +++ SURcontrol

To illustrate the functionalities of GPareto discussed here and highlight differences be-
tween criteria, we take the (P1) test problem from [Par12], described in Chapter 3. Its Pareto
set and Pareto front are displayed in Figure 7.1. The four criteria are represented in Figure
7.2. Their maxima appear to be located quite close to Pareto optimal solutions, with em-
phasis on different locations. Notice also the proximity of the results between crit_EHI and
crit_SMS (negative values for penalized areas are set to 0 in order to keep similar color-scales).
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Figure 7.1 – Optimal points for the (P1) test problem, with optimal points in red in the
input space, i.e. the Pareto set (left) and in the objective space, i.e. the Pareto front (right).
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Figure 7.2 – Values in colorscale of the four infill criteria available in GPareto on a 26 × 26
grid, with 15 observations of the (P1) function.
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Other test functions are provided inGPareto, such as problems in the MOP [VVL99], ZDT
[ZDT00] and DTLZ [DTLZ05] test suites. As a perspective, it would be possible to develop
multipoint versions of the criteria, e.g. as in [Sve11] and [Par12]. Also faster algorithms
for the EHI and hypervolume are now available, see e.g. [CDD13], [HDYE15] and could be
integrated.

7.2.2 Optimization of the criteria

The same framework is applied to the four possible criteria with two interfaces: one-shot op-
timization with crit_optimizer or sequential optimizations with GParetoptim. Optimizing
the criteria, a.k.a. acquisition functions, is quite complicated due to their multi-modality.
Besides, in general, no derivative expressions are available and there are large plateaus (see
for instance the landscapes of Figure 7.2). On top of that, the attraction basin of the global
optimum of the infill criterion may have a very small volume in E. Nonetheless, acquisition
functions are typically much cheaper to evaluate than the objective functions and intensive
optimization can be carried out.

Three solutions to perform this inner optimization are provided in GPareto:

1. the user can provide a set of candidate points with optimcontrol in crit_optimizer
and GParetoptim;

2. the default optimization routine is genoud [MS11], a genetic algorithm;

3. the psoptim optimization method [Ben12], a particle swarm algorithm is also provided;

and the corresponding tuning parameters may be passed to optimcontrol. For now, passing
any optimizer as an argument is not possible. Results after several iterations of criteria
optimization and model update on the same example as previously are presented in Figure
7.3. All criteria perform remarkably well, with points added on or very close to the Pareto
front. A perspective to improve the user-friendliness of the package would be to provide an
entry point taking only the search domain and the objective functions.

7.2.3 Advanced options

Motivated by applications such as the one presented in Chapter 8, where the mass objective
function is computable at a negligible cost compare to other objectives, GPareto offers an
option for MOO in case of co-existing cheap- and expensive-to-evaluate objectives. To ensure
compatibility with the infill criteria, fast objectives are wrapped in the fastfun class which
mimics the behavior of methods such as predict or update. Then predicting the value at
a new point amounts to evaluating the fast function, which returns the corresponding value
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Figure 7.3 – Results of five iterations with GParetoptim with the four possible infill criteria
in the input (left) and output spaces (right). The true Pareto set (left) is represented in red.

with a zero prediction variance, exactly like what happens for already evaluated points. Fig-
ure 7.4 illustrates on a small example that using fast objectives, if possible, improves the
results since there is no longer a prediction error on them.

Another computational challenge with Kriging, discussed, e.g. in [RGD12], is the numer-
ical non invertibility of covariance matrices. It usually happens whenever design points are
too close. This is especially troublesome in optimization since when converging, points are
likely to be added close to each other. In GPareto, preventing this problem is achieved with
the checkPredict function. Before evaluating the selected criterion, checkPredict tests
whether the new point x is too close to existing ones, with a tunable threshold that can be
passed as argument. Three options are available to define when designs are considered as
“too close”:

• minimal Euclidean distance in the input space: min
1≤i≤n

d(x,xi);

• ratio of the predictive variance sn(x)2 over the variance parameter for stationary kernels;

• minimal “canonical distance” associated with kn: min
1≤i≤n

√
kn(x,x)− 2kn(x,xi) + kn(xi,xi).

The first two options are also used in KrigInv and DiceOptim respectively. The first one is
the less computationally demanding but also the less robust.

Moreover, to improve stability of the update of already existing models with new obser-
vations, first an update with re-estimation of the hyperparameters is performed. Then, if it
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Figure 7.4 – Results of five iterations with GParetoptim with Expected Hypervolume Im-
provement, in the input (left) and output spaces (right), considering the second objective as
expensive (green triangles) or cheap (red triangles). Initial observations are depicted as blue
triangles and the true Pareto set (left) is plotted in red.

has failed a new update is tested with the old hyperparameters. If this is still insufficient
to train the model with all observations, the user may try to remove some points or apply
the jitter technique consisting in adding a small constant to the diagonal of the covariance
matrix to improve its condition number, see e.g. [RGD12]. Replacing two close observations
by one observation and its estimated derivative as proposed in [Osb10] is another appealing
solution.

7.3 Uncertainty quantification using GPareto
This is the computational twin of Chapter 3 in the bi-objective case. A possible solution to
compute conditional simulations is to rely on the DiceKriging package but other packages or
methods could be used.

The entry function is the creator of the CPF class, which deals with computing the attain-
ment function, Vorob’ev threshold β∗, Vorob’ev Expectation (VE) and Vorob’ev deviation
(VD), from a grid discretization. It takes as arguments:

• fun1sims, fun2sims the sets of conditional simulations for both objectives;

• response the known objective values;

and, optionally:
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• paretoFront the current Pareto front;

• f1lim, f2lim evenly spaced sets of points that define the grid;

• refPoint reference point for hypervolume computations;

• n.grid the length of f1lim and f2lim;

• compute.VorobExp and compute.VorobExp booleans to compute or not VE and VD.

If not provided, f1lim, f2lim are taken from objective-wise minima and maxima of the con-
ditional simulations. When refPoint is provided, it defines the maxima of f1lim and f2lim.

The empirical attainment function is calculated on the grid given by f1lim and f2lim
from the RNP sets computed using the nondominated_points function of emoa. Taking
advantage of the regularity of the grid to compute volumes, the Vorob’ev threshold is com-
puted quickly by dichotomy. Then the Vorob’ev deviation is a sum of hypervolume indicator
values, using the dominated_hypervolume function of emoa. The method plot applied to
CPF objects display the attainment function in grey-scale, and possibly the VE.

In addition, for visualization of the remaining uncertainty, the plotSymDefFun function
computes the empirical symmetric deviation function. Again, a grid is used to estimate the
probability for a cell to belong to the symmetric difference between the random attained set
and the Vorob’ev expectation. As an illustration of the interest of using the quantification
of uncertainty, we present the results of the empirical symmetric deviation function before
and after optimization on the Poloni test problem [PGOP00] in Figure 7.5 (results for the
(P1) problem are in Figure 3.6). At an initial stage, here with 15 observations, the Vorob’ev
expectation and symmetric deviation function highlight portion of the objective space where
improvements are possible, here especially at the bottom of the initial Pareto front. At the
end, the Vorob’ev expectation provides a rather accurate approximation of the Pareto front,
with a lower uncertainty.

The CPF class is used in Appendix B to test the SUR criterion associated this time with
the Vorob’ev deviation. However the computational overhead associated is still too impor-
tant as is. Passing some routines of CPF in Rcpp could alleviate this limitation as well as fast
methods to generate conditional simulations. Future research may also include applying the
ideas of Appendix C.

At last, all the methods described so far are limited in terms of input dimension. Ex-
tending them relying on random embeddings is one possible solution that does not require
re-implementing everything from scratch.
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Figure 7.5 – Symmetric deviation function in grey-scale with 25-points initial design of ex-
periments and after ten iteration of GParetoptim with the SUR criterion (red triangles).
The Vorob’ev expectation is in blue and green points are the image of a 100 × 100 grid in
the objective space by function P2 (Poloni test problem [PGOP00]).

7.4 Perspectives toward higher dimensions

The REMBO method along with the modifications proposed in Chapters 5 and 6 have been
implemented in R. The corresponding codes are not yet released and we discuss here a pos-
sible integration within the DICE and ReDICE packages.

On the first hand, training a GP model is already performed with DiceKriging and now
also with kergp. On the other hand, possible acquisition functions for mono- or multi-objective
optimization are implemented within DiceOptim and GPareto. As for constrained infill cri-
teria, they have been implementing by modifying DiceOptim. The missing components for a
REMBO method are then mostly mapping functions and connection methods.

The skeleton for a REMBO method using R packages is given as Algorithm 10 with
notations from Chapters 5 and 6. Methods to select the low dimensional domain as well as
for selecting a matrix A could also be included.
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Algorithm 10 A possible framework for REMBO in R
Input: m ≥ 1 objective functions of X ⊂ RD → R, a budget of evaluations nm, nb the

number of evaluations for the design of experiments, a low-dimensional domain Y ⊂ Rd,
a matrix A ∈ RD×d and a mapping Ξ (e.g. Ψ, u, Id)

1: Construct an initial design of experiments in Y : y1, . . . ,ynb , e.g. using lhs or DiceDesign.
2: Evaluate g = f ◦ u on the design of experiments.
3: while n ≤ nm do
4: Train the Kriging models with inputs Ξ(y1), . . . ,Ξ(yn) and outputs g(y1), . . . , g(yn),

e.g. using km.
5: Optimize the acquisition function evaluated on Ξ(y), e.g. to get yn+1 ∈

argmax
y∈Y

EI(Ξ(y)), e.g. with acquisition functions from DiceOptim or GPareto.

6: Evaluate g(yn+1).
7: end while
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Industrial test case

Complementing and/or substituting real life experiments by high-fidelity simulations has
been a significant trend in the industry during the last decades. Some phenomena are now
very precisely described while for others, such as for composite materials, accuracy is still
perfectible. As would also happen with physical testing, the preparation of the black-box is
quite complex. The standard procedure is to first create and parametrize a numerical rep-
resentation of the considered device using Computer Assisted Design (CAD). The definition
and selection of parameters at this stage is of uttermost importance since it could result
in instability later if some configurations end up to be unfeasible. Then the behavior of
the device is simulated using a dedicated solver, here Pam-Crash, an explicit finite element
program for fast dynamic impacts. Finally, a post-processing step is needed to extract the
value(s) of interest.

In the case of crash-worthiness, with its inherent bifurcation behavior, see e.g. [Ros12],
results may change even with exactly the same design due to numerical noise, e.g. from dif-
ferent meshing in the finite elements resolution. In physical experiments, slightly different
environmental conditions would lead to variability as well. Other difficulties not considered
here are the influence of some uncontrolled variations of the thickness due to the fabrication
process, possibly having a substantial impact on the robustness of the solution found.

Throughout these three years, we have worked on a test case to confront with a real
application. The corresponding model was created around the year 2007 for the design of
a car now on the market. It is composed of 47 continuous parameters; four crash scenarii
define four objectives. The main goal being to reduce the mass of the device, these four
objectives are sometimes considered as constraints. In the remainder of this chapter, we
take several viewpoints reflecting these goals. After presenting the application, we discuss
the results of a sensitivity analysis and propose customized surrogate modeling. Then we
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present the outcomes obtained with the GPareto package. They ultimately provide a baseline
for a comparison when using the REMBO algorithm.

8.1 Presentation of the rear shock absorber

The rear shock absorber, illustrated in Figure 8.1, is a plastic device located directly behind
the rear bumper. Its aim is to prevent intrusion in case of a shock and in particular the
deformation of the underlying metallic structure in low speed impact scenarii ECE42. In the
considered set-ups, the impact occurs in the middle or on the side of the vehicle, on either
an empty or a loaded car, see Figure 8.2. The impactor speed, 4 or 2.5km/h, is sufficiently
slow to discard dispersion of the results and to consider them as deterministic. The absorber
is composed of 47 parameters: thicknesses of 39 stiffening ribs plus 8 structuring parts. The
main objective is to reduce as much as possible the mass of the device while ensuring that
some thresholds are not exceeded in terms of intrusion. These values are extracted with a
post-processing of the crash simulation, by considering the displacement of a specific node.
Two points of view were adopted: either taking five objectives or one objective with four con-
straints into account. The first approach is potentially more interesting if the specifications
are not fixed or may vary while the second one is focused on a specific portion of the Pareto
front.

Figure 8.1 – Presentation of the rear shock absorber. Left: global vue on the rear of the
vehicle, right: different views of the considered device.

This application has been an opportunity to test several approaches and confront with
real industrial problems. Indeed, it has 47 parameters, which is close to the limit of what
one can treat with standard GP models. In 2007, an optimization study has been conducted
using the Alternova software, relying on expert models. Here this latter consists of two
PolyMARS and one regression models. Note that, back then, the strategy employed was first
to reduce the perimeter to 35 variables and work only on the axial impacts before integrating
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Figure 8.2 – Illustration of the four impact scenarii: axial (top) or lateral (bottom) impact
on a loaded (left) or an empty (right) vehicle.

all variables and scenarii. This should be kept in mind when comparing the results and
number of evaluations. This test case has also been experimented on, in [Vil08], but only
with a subset of the objectives.

8.2 Creation of customized kernels and sensitivity anal-
ysis

During the various stages of the optimization study, the data base of observations has been
filled with a variety of points coming from different types of experimental designs (a resolu-
tion III classical design and several maximin LHS designs), various optimization strategies
(only some objectives considered for instance) and algorithms (EHI, NSGA-II, REMBO).
They have been used to perform some sanity checks on quality of candidate metamodels, as
advocated e.g. in [JSW98].

8.2.1 Initial sensitivity analysis

Once a surrogate model such as a GP model is fitted, global sensitivity analysis can be
performed directly on it. To do so, a popular tool is the Functional ANOVA (FANOVA)
decomposition, see e.g. [ES81], [Sob01], [MRCK12], [FRM13], which writes:

f(X) = µ0 +
d∑
i=1

µi(Xi) +
∑
i<j

µij(Xi, Xj) + · · ·+ µ1,...,d(X1, . . . , Xd) (8.1)
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with centered and orthogonal terms, i.e. E (µJ(Xj)) = 0 and ∀J ′ 6= J,E (µJ(XJ)µJ ′(XJ ′)) =
0, using standard index set notations. In particular, the µi are the main effects and the µij
are twofold interactions.

From this decomposition, FANOVA graphs, available in the R package fanovaGraph
[FMRJ14], are a tool to visualize with a graph the main effects and the additive struc-
ture, represented by cliques. In a graph, a clique is a subset of vertices such that they are
all adjacent, i.e. connected by an edge. More precisely, main effects are represented by the
thickness of the sphere corresponding to a variable while segments joining variables gives the
importance of the interaction. An edge between two variables is removed if all possible Sobol
indices in which they intervene are null. As all effects are estimated, their values are possibly
small but not zero. Hence the raw graph contains all interactions and selecting a threshold
on the value of the total interaction indices determines the separation of variables into cliques
as well as their number. The graphs without thresholding corresponding to the four impact
configurations are depicted in Figure 8.3. Even if it is highly dependent on the (possibly
terrible) quality of the fitted model, it clearly shows that only a handful of variables really
are influential in the different cases, with very low interactions. This statement justifies the
application of REMBO in the following.

Let us remark that it is not a real surprise that only few parameters have an important
impact on the response. Particularly, due to the geometrical configuration of the problem,
lateral ribs are not expected to have a great influence in axial impact and vice versa. Also
note that this can be analyzed directly on the outputs of the numerical simulations. For
instance, taking the results for the minimum, maximum and reference design configurations1

and considering stresses or strains on the different parts of the absorber, it can be seen
that they are concentrated where the impact occurs. For instance, see Figure 8.4 for an
illustration. In Table 8.1 is a summary of strains in the different configurations, making it
clear that large deformations only occur for a few components. This is useful in particular
to adapt the covariance kernel in the GP modeling.

8.2.2 Customization of kernels

Due to the dimensionality of the problem, GP modeling is expected to be difficult. In this
case, several adaptations of the structure of the covariance kernel are possible. We thus
compare some options, relying on the analysis above.

We consider here the Matérn 5/2 kernel, which is recommended in [Ste99] over the Gaus-
1with all thickness to minimum, maximum or as in the configuration before optimization.
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Figure 8.3 – FANOVA graphs corresponding to the four impact scenarii: axial (top) and
lateral (bottom), loaded (left) or empty (right). Each circle stands for a variable’s main effect
while segments are for interaction indices, whose values may be deduced from thicknesses.
They are computed based on isotropic Kriging models built from 380 observations for axial
impact, 347 in lateral loaded impact and 312 in lateral empty impact. Interactions being of
the same order of magnitude, they are very low due to their high number. Also circles may
not be seen if they are too thin compared to the few bigger ones.
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Table 8.1 – Maximal deformation (∆L/L) observed on the elements (from the mesh) of the
different parts corresponding to variables in the Axial (A.), Lateral (L.), Charged (C.) and
Empty (E.) cases. The last column is the percentage of mass of the given component for the
reference device; if more than 5% it is marked in bold.

xi Ref Min Max Mass
A. C. A. E. L. C. L. E A. C. A. E. L. C. L. E A. C. A. E. L. C. L. E %

1 0.1 1.29
2 0.1 0.1 0.1 0.5 5.62
3 0.3 0.1 0.1 0.1 0.1 0.1 0.5 0.1 0.1 9.94
4 0.5 0.3 0.3 0.3 0.1 0.5 0.3 0.1 0.1 0.3 21.4
5 0.5 0.3 0.1 0.1 0.5 0.1 8.11
6 0.5 0.1 0.5 0.1 0.1 0.3 0.1 0.3 0.1 0.1 21.1
7 0.1 0.3 0.1 0.1 0.3 4.37
8 0.3 0.1 0.1 0.1 0.1 16.8
9 0.1 0.3 0.1 0.5 0.1 0.1 0.3 0.17
10 0.3 0.3 0.1 0.3 0.5 0.37
11 0.3 0.1 0.3 0.21
12 0.07
13 0.3 0.1 0.1 0.1 0.3 0.1 0.28
14 0.10
15 0.1 0.16
16 0.1 0.1 0.1 0.1 0.3 0.1 0.55
17 0.1 0.20
18 0.1 0.18
19 0.1 0.1 0.55
20 0.3 0.1 0.3 0.21
21 0.1 0.1 0.16
22 0.1 0.3 0.55
23 0.3 0.3 0.3 0.24
24 0.1 0.1 0.1 0.16
25 0.3 0.3 0.50
26 0.1 0.1 0.1 0.21
27 0.1 0.1 0.23
28 0.3 0.1 0.3 0.45
29 0.1 0.1 0.21
30 0.3 0.23
31 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.46
32 0.1 0.21
33 0.1 0.17
34 0.1 0.1 0.46
35 0.25
36 0.1 0.11
37 0.1 0.1 0.51
38 0.23
39 0.1 0.1 0.16
40 0.1 0.3 0.1 0.3 0.44
41 0.1 0.1 0.1 0.1 0.1 0.31
42 0.3 0.3 0.1 0.3 0.32
43 0.1 0.5 0.5 0.48
44 0.1 0.1 0.1 0.38
45 0.1 0.3 0.1 0.1 0.1 0.21
46 0.3 0.5 0.1 0.1 0.3 0.5 0.42
47 0.5 0.1 0.5 0.28
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Figure 8.4 – Visualization of the output of the numerical simulator in axial loaded impact
for the reference configuration, important deformations range from blue to yellow.

sian kernel. The one dimensional Matérn 5/2 kernel with hyperparameter lengthscale θ,
denoting h = |x − x′|, is expressed: kM(h; θ) = (1 +

√
5h/θ + 5/3(h/θ)2) exp (−

√
5h/θ).

Then extensions for more dimensions are with tensor product, tensor sum or by supposing
isotropy (i.e. a one dimensional kernel depending on ‖x− x′‖). In particular, the number of
hyperparameters of a tensor product of Matérn 5/2 kernel raises linearly with the number
of inputs: k(x,x′;θ, σ) = σ

d∏
i=1

kM(xi, x′i; θi). Their estimation is troublesome and learning
becomes very slow, not only from an informational point of view because of the curse of
dimensionality but also computationally, from the cubic cost in the number of inputs (when
computing the inverse or Cholesky decomposition of the covariance matrix). Alternatively,
with 2d hyperparameters, additive models have a linear learning rate in the input dimension
but the additivity hypothesis is much more limiting, see e.g. [DGR12]. The corresponding
covariance kernel is written k(x,x′;θ,α) =

d∑
i=1

αikM(xi, x′i, θi). In between are kernels mixing
tensor product and sum, relying for instance on the FANOVA decomposition of Equation 8.1.
The corresponding covariance model, following [MRCK12], is written k(x,x′) =

L∑
l=1

kCl(x,x′)
with L the number of different cliques and the kCl the covariance kernel between variables in
the clique Cl, 1 ≤ l ≤ L.

From these, we tested a variety of parametrizations alternatives offered in DiceOptim,
kergp and fanovaGraph to account for the structure of the problem and report here the
hypothesis made for the axial loaded configuration:

1. additive kernels with different clique configurations:

• M3/M3bis: based on geometrical considerations, a clique structure is constructed
for the structuring parts (variables 4, 5, 6, 7 and 8) and for the ribs at the center,
directly impacted (variables 13, 16, 19, 22, 25, 28, 31, 40 and 41). Each clique is
supposed anisotropic for M3 (here with a tensor sum) and isotropic for M3bis.

• M4/M4bis: again from geometrical considerations, the structuring parts form one
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clique, the top ribs one, the middle ribs another and the last for bottom ribs. Each
clique is supposed anisotropic for M4 and isotropic for M4bis.

• M13: a fully additive model for reference.

2. tensor product kernels with some shared hyper-parameters θi between variables, either
automatically, from geometrical or deformation considerations:

• M5: the geometrical considerations are similar to the ones of M4, this time in
a tensor product situation. Length-scales parameters are fitted to each of the
structuring parts and there is one for each layer of ribs (top, middle and bottom).

• M6: the geometrical considerations reflects those of M3 with a tensor product:
length-scales are estimated for the structuring parts and variables (13, 16, 19, 22,
25, 28, 31, 40 and 41), all other share the same hyperparameter.

• M7: from the strains observed on the reference, min and max designs, the 15 vari-
ables with most deformation have their own length-scale hyperparameter, while
the rest share the same one.

• M8: from the observed deformations, the structuring parts, axial ribs and ribs with
important deformations are regrouped together with a shared hyperparameter, a
fourth group is created with the remaining variables.

• M16/M17/M18/M19: the 4, 6, 8 and 10 variables with biggest main effect from
FANOVA graphs have their own lengthscales while the remaining variables are
grouped.

3. fully isotropic or anisotropic kernels:

• Mfull: anisotropic (separable tensor product) Matérn 5/2 kernel with length-scale
parameters for each variable

• Miso: isotropic Matérn 5/2 kernel

Note that models with tensor product covariances have been built with a linear trend,
which gives better results that either a constant trend or a trend with linear plus second order
terms without interaction. To compare the different models, built with 140 observations, we
used either leave one out, or external validation with 40 test samples selected as suggested
in [IBFM10] with selection of the designs farthest away from the design samples from Sobol
and Halton sequences. We also constructed some regression models as well as polyMARS
models to compare. The corresponding results are provided in Tables 8.2. A somewhat dis-
appointing result is that first order linear regression performs better in external validation
than most models, probably due to over-fitting with Kriging. Another trend that appears
is that models with less hyperparameters perform in general better. Models M16 and M17
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have the best overall performance.

Based on Leave One Out or external validation results, the selection of the best model
would be different. A preliminary explanation is that design points comes from different
stages, i.e design of experiments or optimization runs and they appear to be all located on
the boundary of the design space, i.e. with at least one design variable equals to its minimal
or maximal possible value. As for the validation test set, from its generation procedure, it is
composed of points not on the surface. Due to the high dimensionality of the problem, they
are closer to the center of the domain: the average distance to the center after rescaling the
inputs to [0,1] is of approximately 3.28 for points in the DOE and of approximately 1.52 for
validation points.

Table 8.2 – Leave One Out and external validation results for the different tested models. “+”
stands for additive models, “shared θs” for models where some variables are grouped with
common length scale parameters. “Geometry”, “deformations” and “FANOVA” correspond
to several ways of grouping variables, according to their localization on the considered device,
to observed deformation on simulated outputs, or to a FANOVA analysis, respectively. “Nb.
Hyp.” stands for the number of hyperparameters.

+ Shared From Nb. LOO Validation Overall
θs geometry deformations FANOVA Hyp. error error rank

Mfull (cst.) 48 2.61 1.26 14
Mfull (quad.) 48 3.14 6.40 18
Miso (cst.) 2 2.66 1.28 17
Miso (quad.) 2 3.28 6.80 20
Mfull 48 2.27 1.24 11
Miso 2 2.12 1.06 4
M3 X X 83 1.49 1.97 15
M3bis X X X 19 1.32 1.97 13
M4 X X 51 1.86 1.28 16
M4bis X X X 8 1.62 1.03 3
M5 X X 12 1.80 1.22 9
M6 X X 19 1.36 1.26 8
M7 X X 17 1.09 1.46 5
M8 X X 5 1.65 1.21 6
M13 X 95 8.36 13.7 22
M16 X X 6 1.24 1.06 2
M17 X X 8 1.22 1.13 1
M18 X X 10 1.13 1.34 7
M19 X X 12 1.22 1.46 10
Reg1 2.65 1.21 12
Reg2 4.27 9.58 21
PolyMARS 3.91 2.5 19

In a second stage we also considered the modeling process of the device in the CAD
model: indeed, ribs need to have a triangular shape due to molding constraints. They are
then modeled with rectangular blocks (PIDs) of decreasing width to get the triangular form.
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When a rectangle is too small, i.e. under a certain threshold, it must be removed, which may
cause jumps in the objective value. A visual representation is provided in Figure 8.5. It
suggests using the volume of the ribs instead of their base length as parameter for modeling.
However, this has almost no or a negative effect on the accuracy of the model, hence we have
not pushed this idea further.

Figure 8.5 – Left: modeled stiffening rib in the CAD software, piloted by the base length.
Right: real shape of a rib.

Contrarily to what could be expected, standard GP modeling performs honorably well.
Consequently, the tests on optimization have been performed with them.

8.3 Tests using GPareto

8.3.1 Multi-objective and optimization tests

We have here five objectives where one is fairly easy to compute: the mass. It has motivated
the fastfun option available in GPareto, described in Chapter 5, to account for objectives
that can be computed quickly.

MOO has been performed with the SMS-EGO criterion, as it is much faster to compute
than EHI when the number of objectives increases. Results on the five objectives are difficult
to visualize and also to analyze since many points are equivalent in this case. Anyway they
are presented in Figure 8.6 along with results of a constrained optimization. A comparison
with the 2007 study results shows that they are clearly outperformed by the obtained solu-
tions with GPareto in terms of coverage of the Pareto front. Indeed, the results obtained in
2007 are concentrated on a small portion of the Pareto front and they are dominated by those
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obtained with GPareto: 7 out of the 19 non-dominated points of the old Pareto front are
dominated by the new candidate solutions (while previous solutions dominate none of the 34
points of the new Pareto front). The small number of non-dominated solutions is explained
partly by the fact that not all impact configurations have been calculated for each design
point. Note that insertion in the lateral loaded scenario is almost always under the threshold
and this objective could be removed in a real industrial study. This was the strategy adopted
in 2007, first to concentrate on axial configurations before also taking into account the lateral
ones; this may mitigate partly the lower performance.

Since specifications have been fixed during the development of the car, it is possible to
test whether a better solution can be found in a constrained setup. Constrained optimization
using the Expected Feasibility Improvement described in Chapter 2 has been used, taking
the same initial design of experiments as for the multi-objective study. The new best solution
offers an additional mass reduction of the absorber of more than 5% compared to the previous
best one, as presented in Table 8.3. The number of evaluations, identical for multi-objective
and constrained optimization, is also reduced compared to the budget used in 2007 for axial
scenarii, see Table 8.4. Note that as expected, constrained optimization results are much
more concentrated on a specific part of the Pareto front.

8.3.2 Uncertainty quantification

The approach proposed in Chapter 3 to quantify the uncertainty on Pareto fronts has been
experimented on this test case. The main difficulty is the number of parameters, which is
quite high when it comes to performing conditional simulations. This is why we applied the
procedure detailed in Algorithm 13, Appendix B, based on optimization of the simulation
points. The obtained result is presented in Figure 8.7 for 2 objectives: the mass and one
intrusion. Due to the low number of observation points (200) relatively to the dimension,
the remaining uncertainty and position of the Vorob’ev deviation are optimistic since they
predict the location of the Pareto front well behind the non-dominated points. More runs of
optimization are needed to assess if this optimism is realistic, in the sense that solutions on
the Vorob’ev expectation are reachable.

8.4 Tests under the REMBO paradigm

It has been observed at the beginning of this chapter that the REMBO method should work
pretty well in this case. But if this is true for the four crash objectives, it must be mit-
igated for the mass: indeed, from Table 8.1, all variables have an influence on the mass,
even if relatively small. It resulted in the rather conservative choice of d = 18 as dimension
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Figure 8.6 – Optimization result for multi-objective (red) and constrained optimization (blue),
with (shared) design of experiments represented with black circles, filled in gray if all ob-
jectives are evaluated. Coordinates in the five dimensional space can be deducted from the
mass value. Triangles represents the responses obtained from a previous study in 2007. The
green lines represent the maximum values of the intrusion as defined in the specifications.
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Figure 8.7 – Uncertainty quantification on the axial loaded impact configuration, with 47
parameters from 50 simulations at 8000 points, with optimization of the locations. The
Vorob’ev expectation is in blue and the observations are denoted with red triangles.

for Y , let say low dimensionality of 3 for each lateral impact, 4 for each axial one, and 4
for the mass (some can be shared). It was also motivated by a drastic reduction of the
evaluation budget, i.e. by taking 120 + 20 as evaluation budget instead of 286 (maximum
over the different objectives), which is between five and ten times the input dimension as
initial number of evaluations to build the design of experiments, as also considered in [Sve11].

Similar experiments as in the previous section have been conducted, this time within the
REMBO procedure. The multi-objective results are presented in Figure 8.8, and a summary
of the constrained ones in Table 8.3 with corresponding number of evaluations in Table
8.4. None of the 19 points of the old Pareto front are dominated by the ones of REMBO,
while 7 out of the 97 non-dominated points with REMBO are dominated (32 out of the 97 are
dominated by the Pareto front with GPareto without REMBO). The best explanation is that
for the mass, all the variables have an influence, even if it is one percent. The constrained
REMBO optimization provides a bit more than 1% of gain over the previous best solution
but with a halved budget of evaluations (considering the axial configurations). Note that
the best feasible solution found in 2007 in far from the constraint boundary while better
solutions are possible if relaxing the thresholds. Also, the constrained criterion used with
GPareto and GPareto+REMBO is known for not often adding points close to the boundary
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either, as mentioned e.g. in [Pic14], thus better results could possibly be obtained with more
efficient ones.
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Figure 8.8 – Pareto optimal points obtained with GPareto combined with REMBO (blue)
compared to those obtained with GPareto only (red). Pareto optimal points obtained in 2007
are also represented in yellow. Coordinates in the five dimensional space can deducted from
the mass value. The green lines marks the specifications used in constrained optimization.

The question of the choice of the low dimension need further investigation, even if selecting
it from maximal budget considerations seems suited, the complex question of determining
what is lost if taking a lower one is still of interest. Also, from the specific configuration
of the problem, with the mass monotonically increasing with the thicknesses, it raises the
question of adapting the selection of the random matrix A to this case. Indeed, the random
embedding should intuitively cover in priority configurations with low mass.

8.5 Concluding remarks on the test case

This test case in car crash-worthiness is, by its number of input variables, quite challenging.
Notwithstanding this difficulty, the performed sensitivity analysis is in line with the state-
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Table 8.3 – Comparison of number of results of constrained optimization, abbreviations are
Axial (A.), Lateral (L.), Charged (C.), Empty (E.), constrained (cstr.).

Mass (g) A. C. A. E. L. C. L. E.
Specifications ≤ 80mm ≤ 80mm ≤ 55mm ≤ 55mm
Reference 3375 74.1 72.9 25 35
2007 study (1) 2820 (-16.4%) 80.2 78.8 30.3 54.3
2007 study (2) 2730 (-19.1%) 81.0 80.9 28 51.4
2007 study (3) 2847 (-15.6%) 80.1 79.3 29.0 52.4
2007 study (4) 2942 (-12.8%) 78.4 77.6 26 33.4
Cstr. GP (1) 2762 (-18.2%) 80.0 78.7 34.4 50.9
Cstr. GP (2) 2734 (-19.0%) 80.1 78.7 36.2 50.5
Cstr. GP (3) 2729 (-19.1%) 81.1 78.3 29.6 54.2
Cstr. REMBO (1) 2749 (-18.6%) 80.8 81.0 27.2 54.2
Cstr. REMBO (2) 2904 (-14,0%) 79.0 80.0 27.1 53.3
Cstr. REMBO (3) 2885 (-14,5%) 80.2 80.1 27.4 55.0

Table 8.4 – Comparison of the numbers of evaluations

Number of experiments Axial loaded Axial empty Lateral loaded Lateral empty
2007 study 286 286 62 92
Initial design of experiments 180 180 147 112
Constrained GP-optimization 210 210 177 142
Constrained REMBO 140 140 140 140

ment that, in most applications, the number of important variables is actually low, see e.g.
[WZH+13], [IL15]. A customization work on covariance kernels demonstrates the interest
of adapting k to the task at hand, with promising perspectives offered by other modeling
options such as in [Duv14] or [GRS+14]. Methods such as in [MIDV08] with a progressive
estimation of the hyperparameters and regression functions may also be of interest. From an
optimization point of view, the results obtained with GP-based methods clearly outperform
those of a previous study, which was based on optimizing regression and PolyMARS mod-
els relying on the NSGA-II algorithm [DPAM02]. The REMBO [WZH+13] algorithm also
showed its adequacy for reducing the number of runs in high dimensional settings, while pro-
viding competitive results. Future work options include the use of customized kernel within
optimization as well as developing REMBO further.
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Conclusion and future works

In this thesis, we mainly study the problem of multi-objective optimization of expensive
black-box functions. These problems arise daily in an industrial context and, as an example,
we detail experimentation on a test case in car crash-worthiness.

Existing works on Kriging-based multi-objective optimization methods already provide
efficient solutions to obtain Pareto optimal solutions. Yet, the approximation of the Pareto
front obtained is only discrete. Two main contributions of this thesis aim at providing a con-
tinuous picture of the Pareto front. One proposed solution in Chapter 3, adapted from the
work of [Che13], is to rely on Gaussian process conditional simulations along with concepts
from random closed sets theory to capture the variability of the Pareto front given by the
surrogate models. Resorting to conditional simulations to compute the attainment function
is a hindrance in computational terms, especially if considering the associated stepwise uncer-
tainty reduction criterion. In a second contribution, this stage is replaced by an estimation of
the multivariate cumulative distribution of the surrogate models using copulas, see Chapter
4. Both approaches provide practitioners with a Pareto front approximation they can rely
on when deciding to stop, intensify or guide the optimization process.

A possibly high number of variables has been identified as one of the main challenges for
surrogate based methods in general. Whether in terms of learning rate or practical (often
computational) tractability, a change of viewpoint may be needed to take these methods
further in terms of dimensionality. A potential break-through has been performed with the
REMBO algorithm [WZH+13], using random embeddings of a low dimensional subspace into
the initial high dimensional one. We contributed to the study of this method and proposed
original extensions addressing several key issues. First, in Chapter 5, with a covariance ker-
nel that avoid pitfalls associated with the originally proposed ones. Then, in Chapter 6, we
worked on the difficult problem of selecting a proper low dimensional domain in order to
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avoid missing an optimum and at the same time not impeding the optimization process by
considering a too large domain. We showed a clear improvement of the performance that, in
particular, enables to apply it with multi-objective optimization. It paves the way to more
developments, possibly in sensitivity analysis or in hybridization with active learning of linear
embeddings (see e.g. [GOH13], [DKC13]).

To propagate and spread the use of these methods in engineering, the GPareto package
has been released to complement DiceKriging and related packages by multi-objective opti-
mization. Chapter 7 consists in a tutorial of GPareto. In addition, to ensure ourselves of the
applicability of the contributions in an industrial context, the methods have been tested on
a Renault case study in Chapter 8, outperforming older results, both in terms of fitness of
solutions and in number of evaluations required to reach them.

Moreover, some attempts to tune kernels have been performed and they provide one of the
most important directions for future research. Indeed, our contributions bring some pieces to
the puzzle of general Bayesian optimization and we believe in the potential offered by com-
binations with some of the recent developments, in particular related to surrogate modeling
or acquisition functions. As an example, a promising perspective for REMBO is to enhance
the surrogate model by accounting for instationnarities that are present, due to both the em-
bedding process and the black-box function optimized. Several recent works, e.g. [SSZA14],
[AWdF14], [MC15], propose various possibilities to learn these instationnarities, giving more
flexibility and showing improved performance. Extensions of Gaussian processes are also a
current trend, with options such as Deep GPs [DL13] or Student-t processes [SWG14] that
could replace the more standard GP models we have used.

Remaining obstacles are possibly a lack of user-friendly solutions for flexible modeling
accounting for the complexity in test cases. One example occurs with variables of mixed
nature, e.g. continuous or discrete [ZQZ11], as well as with nested parameters, e.g. with
several alternative components in a device that all have their own parameters. On the other
hand, opportunities are offered with integration of physical behavior with latent force models
[TL10], by exploiting multi-fidelity models or gradient observations that are now given by
adjoint solvers or from approximations, see e.g. [Fro14], [GJGM15]. Finally, ongoing works
on other test cases in car crash-worthiness raise the question of taking into account noisy
simulations with both multi-objective infill criteria like e.g. in [KWE+15] and REMBO.
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Appendix A

A very fast approximation of the
multipoint Expected Improvement

First parallel versions of the Expected Improvement were either analytical for batches of
two points or based on heuristics, such as Kriging believer (KB) and Constant liar (CL)
[Gin09]. The exact formula for the multipoint expected improvement at q points x1, . . . ,xq,

qEI(x1, . . . ,xq) = E
((

max
i∈{1,...,q}

Yi − T
)

+

)
was defined in [Sch97] but derived later in [CG13],

while its gradient was expressed recently in [MCG15]. They are implemented in the R pack-
age DiceOptim [RGD12].

The exact formula allows optimizing in one round, but the computation is quickly hin-
dered by calls to Φq−1, the cdf of the centered multivariate Gaussian distribution, which
becomes computationally demanding as q increase. Here we propose an approximation of
the exact qEI which is linear in q, with simple expressions, thus allowing intensive optimiza-
tion of the qEI, or large values for q.

The qEI may be rewritten E (max(Y1 − T, . . . , Yq − T, 0)), i.e. the first moment of the
maximum of correlated Gaussian variables. A fast approximation of this first moment was
proposed by [Cla61] and as been used e.g. in [DVD13]. In particular, for three Gaussian ran-
dom variables ξ1, ξ2 and ξ3, to approximate E (max(ξ1, ξ2, ξ3)), the principle is simply to write
max(ξ1, ξ2, ξ3) as max(ξ1,max(ξ2, ξ3)) and suppose that max(ξ2, ξ3) is normally distributed.
This is of course not the case but the error made is very small.

In more details, denote µi = E (ξi), σi = Var (ξi), ρi,j = Cor (ξi, ξj), 1 ≤ i, j ≤ 3
and additionally a2 = σ2

1 + σ2
2 − 2σ1σ2ρ1,2, α = (µ1 − µ2)/a. If ξ1 and ξ2 do not fulfill
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σ1 − σ2 = ρ1,2 − 1 = 0, the following results are given in [Cla61]:

E (max(ξ1, ξ2)) = µ1Φ(α) + µ2Φ(−α) + aφ(α) (A.1)

E
(
max(ξ1, ξ2)2

)
= (µ2

1 + σ2
1)Φ(α) + (µ2

2 + σ2
2)Φ(−α) + (µ1 + µ2)aφ(α) (A.2)

Cor (ξ3,max(ξ1, ξ2)) = σ1ρ1,3Φ(α) + σ2ρ2,3Φ(−α)√
E (max(ξ1, ξ2)2)− E (max(ξ1, ξ2))

(A.3)

Then, it is possible to approximate E (max(ξ1, ξ2, ξ3)) from equation A.1, by applying
equations A.1 and A.2 to max(ξ2, ξ3) and equation A.3 to get Cor (ξ1,max(ξ2, ξ3)). With
four or more normal variables, the idea is simply to successively apply the approximations,
E (max(ξ1, ξ2, ξ3, ξ4)) = E (max(ξ1,max(ξ2,max(ξ3, ξ4)))) and so on. To get an approximated
qEI, it remains to treat 0 as a normal variable of mean 0 and standard deviation 0 (or a
small constant if necessary for computational reasons), uncorrelated with all other variables.

The worst case for the approximation, as discussed in the corresponding paper, is when ξi
and ξj have very close first and second moment. It could motivate to switch the order of vari-
ables xi, to avoid this situation. Anyway, intuitively the values of the qEI will increase when
the xi, 1 ≤ i ≤ q are spread. Also this criterion is more intended to provide a simple mean
to filter or massively optimize the qEI, before using the exact expressions in a second stage.
In Figure A.1 we compare the values given by the exact qEI and several approximations
included our proposition. First the difference using the fast option in DiceOptim1 cannot be
seen on the graphs. The Monte-Carlo estimation is also quite reliable while the proposed
fast estimation gives a crude estimate of the qEI, but at a much lower computational cost:
see Table A.1. Finally remark that the mean of the qEI is higher when q is greater, as can
be expected.

Table A.1 – Average computation times (milliseconds) of the qEI for different q and methods
over a hundred repetitions. With q > 20, the function qEI of the R package DiceOptim (v.1.5)
is no longer available. It also has an option fast to save some time on computations.

q 3 5 10 20 30 50
qEI 2.58 7.66 21.3 163 - -

qEI (option fast = FALSE) 3.98 11.6 63.1 851 - -
qEI (MC) 24.8 27.0 32.7 51.4 82.8 137
fast qEI 1.09 1.13 1.28 1.49 1.62 2.21

1This option relies on a reformulation of the multipoint EI as a sum of derivatives estimated using finite
differences, resulting in a reduced numerical complexity, see [Mar14].
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Figure A.1 – Comparison of the values of the qEI with four different algorithms with q = 16
and q = 32 over a thousand batches of size q, given by a random Latin hypercube (to avoid
the situation of points to close to each other), and sorted in ascending order. The exact
qEI from DiceOptim is in solid black, the exact qEI with option fast = TRUE in dashed
blue, the Monte Carlo estimation (with a sample of size 10000) in dotted green and the fast
approximation in dashed-dotted red.
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Ongoing work on Chapter 3

B.1 Associated optimization criterion

The quantification of uncertainty on Pareto fronts was initially intended to provide a possi-
ble stopping criterion of the optimization process as well as a practical tool for visualization,
while optimization was conducted e.g. with Expected Hypervolume Improvement. Never-
theless, the Vorob’ev deviation may also be used as an infill criterion since it quantifies the
uncertainty on the Pareto front P . The criterion of [Pic13], detailed in Chapter 2 aims at
reducing the volume of the excursion set below the Pareto front, that is the volume in the
input space of the probability of being non-dominated. The main difference is that in our
case the uncertainty is measured directly in the objective space instead of the design space.

The SUR paradigm, introduced in Chapter 2, involves adding a new observation where
the expectation of the future associated uncertainty is minimal. Since the Vorob’ev deviation
(VD) measures the uncertainty on the Pareto front location, the corresponding criterion to
minimize is:

J(xn+1) = E
(
µ(Qβ∗n+1

∆Yn+1)|An
)
, (B.1)

where xn+1 ∈ E is a new candidate location. With the next observation, both β∗-quantile
Qβ∗ and attained set Y will be modified and thus need to be recomputed since it seems
unreachable to obtain an analytical expression.

Monte Carlo estimation with conditional simulations of the corresponding Vorob’ev de-
viation requires conditional simulations for each draw of Y (xn+1). In comparison, Monte
Carlo estimation of multi-objective EI criteria without analytical expression needs uniquely
draws of Y (xn+1) and the estimation of the corresponding improvement. Furthermore, due
to the Pareto dominance relationship for several objectives, the computational savings and
analytical formulas available for excursion sets [Che13] does not seem to transpose in this
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case. Recently in [CEG14], a method to update conditional simulations has been proposed
that enables computational savings. Indeed, the authors show that a set of conditional sim-
ulation can be updated to integrate a new observation at a reduced computational cost if
this response has been previously simulated. This is the main ingredient in Algorithm 11 to
estimate J .

Algorithm 11 Estimation of J(xn+1)
Input: p conditional simulations knowing An
1: for i ∈ (1, . . . , q) do
2: Sample z ∼ N (mn(xn+1), sn(xn+1)2).
3: Y ← Update of the p conditional simulations with z.
4: V E ← Estimation of Vorob’ev expectation from the RNP sets extracted from Y.
5: V D(i) ← Estimation of the Vorob’ev deviation of Y.
6: end for
7: J(xn+1) ≈ 1

q

q∑
i=1

V D(i).

Although easily parallelizable, this is still quite an expensive criterion, especially when
the numbers of simulations, simulation points and samples of the response at xn+1 increase.
It may only be used for now on very expensive problems which takes days to compute. Still,
a comparison with the EHI and random sampling is provided on the same problem as in
Chapter 3. Again a ten points maximin LHS is used, and ten points added sequentially. The
choice of a new point is done on a discrete 51 × 51 grid, corresponding also to conditional
simulation locations. The values of the Vorob’ev deviation at each iteration are reported in
Figure B.1. Despite the fact that parameter re-estimation might cause unfavorable effects
to it, the SUR criterion (Equation B.1) is the most efficient to reduce V D while the EHI
criterion performs also well. The final symmetric deviations are displayed in Figure B.2 to
provide intuition on the different behaviors: the EHI criterion tends to add points on or
very close to the Pareto front, while the SUR criterion is more exploratory. As is, knowing
precisely the expected location of the Pareto front but with known observations only quite
far from it may not be very appealing to a practitioner, who would prefer having points on it.
Since EHI is faster and gives more usable results, for the VD-based SUR criterion to become
more competitive, one needs to be able to find a solution in the design space corresponding
to a given point on the Vorob’ev Expectation, which is discussed in the following.

B.2 Toward interactive optimization

The Pareto front estimation, along with the corresponding uncertainty, provides practitioners
with useful information on where possible improvements may be found. Unfortunately, even
if it would be tempting to select new points directly from the estimation, there is no straight-
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Figure B.1 – Monitoring of the symmetric difference with respect to the true Pareto front
while adding ten points sequentially with either random sampling, EHI or the SUR criterion.

0.0

0.2

0.4

0.6

0.8

1.0

-100 0 100 200 300
-40

-30

-20

-10

0

Symmetric deviation function

f1

f 2

(a) Initial state n = 10

0.0

0.2

0.4

0.6

0.8

1.0

-100 0 100 200 300
-40

-30

-20

-10

0

Symmetric deviation function

f1

f 2

(b) Random sampling

0.0

0.2

0.4

0.6

0.8

1.0

-100 0 100 200 300
-40

-30

-20

-10

0

Symmetric deviation function

f1

f 2

(c) EHI criterion

0.0

0.2

0.4

0.6

0.8

1.0

-100 0 100 200 300
-40

-30

-20

-10

0

Symmetric deviation function

f1

f 2

(d) SUR criterion

Figure B.2 – Symmetric deviation function before and after optimization (i.e. n = 20), for
the different sampling strategies.
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forward way from the objective space to come back to the variable space. An algorithm to
perform this reverse mapping has been proposed by [GF14], where the authors take a convex
set in the objective space from the non-dominated points returned by an optimizer, and then
they use an RBF neural network for modeling the mapping. Focusing on the relationships
between design and objective space is also conceptualized by innovization [DS06], which at-
tempt to decipher design rules from the optimal solutions found.

When using GPs as surrogates, a simple solution to find a pre-image to v ∈ Rm, here
supposedly on the Vorob’ev expectation, is to maximize the probability of dominating v,
which is the multi-objective probability of improvement with respect to v. Another option
is to maximize the probability of being in a hypercube of side δ > 0 centered on v. There
are several drawbacks and limitations with these approaches:

• the multi-objective probability of improvement has been shown to perform rather poorly
as an infill criterion, see e.g. [Par12], and selecting δ is by no means straightforward;

• with many variables, this task may be quite difficult;

• last but not least, it does not use at all the properties of the Pareto set.

Indeed, when focusing on the Pareto set, many authors (e.g. [JS03], [LZ09], [ZZJ08],
[Lov12] or [BDD14]) have used that under some “mild” regularity conditions, derived from
the Karush-Kuhn-Tucker optimality conditions, e.g. in [Hil01], the Pareto set is a piecewise
connected manifold of dimension m− 1.

So we propose here to take advantage of the special structure of the Pareto set and benefit
from the Conditional Pareto Sets (CPS) on which we did not put a focus until now. Em-
pirically, when adding new observations by sequential optimization, the CPF and estimated
Pareto front are expected to get closer to the true one and we can also expect a similar
behavior for the Conditional Pareto Sets with respect the true Pareto set. The problem is
then to be able to find a piecewise connected set from a number of points surrounding it.
One such method is the Gaussian Process Latent Variable Model (GP-LVM) [Law05], which
performs non-linear principal components analysis. GP-LVM basically learns a GP mapping
from a latent space to the data space, here E, where positions of points in the latent space
corresponding to those in the data space are determined by likelihood maximization. It al-
lows representing the data set, here composed of the CPS, in the latent space and, more
importantly, to map from this latent space to the original data space, with the uncertainty
associated to this prediction, given by the GP. We thus are able to go back and forth from
design to objective spaces with the GP models of f and the GP-LVM model. To take into
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account the Gaussian distribution of the prediction of the inputs given by the GP-LVM map-
ping from latent to variable space, we use the Monte-Carlo approximation detailed in [Gir04].
That is, suppose that x is corrupted with some Gaussian noise ε = N (0,Σx) , i.e. x = u+ ε
such that x ∼ N (u,Σx). Then the mean prediction or standard deviation at x is the average
of the mean predictions (standard deviation respectively) of the GP on samples of N (u,Σx).

As a proof of concept, we propose Algorithm 12 and an illustrative example. To keep
things displayable, we only present here results on a bi-objective problem with three vari-
ables. This problem, the F3 function in [LZ09], has been designed to have a more complicated
Pareto set than usual toy functions. The design of experiments is composed of 50 points from
a maximin LHS design and 70 points were added with Expected Hypervolume Improvement.
We use the vargplvm R package, available on the repository of the authors of the method,
to perform the analysis. This variant of GP-LVM applies variational Bayesian integration
of the latent variables instead of maximum a posteriori [TL10]. Again for a visualization
motive, the latent dimension is set to two instead of one (=m − 1). The obtained results
are quite promising: first the Pareto set is relatively well approximated, and the CPF points
(green) have the desired behavior around the true Pareto set. Then, the latent space seems
to have found the spiral structure of the Pareto set, as can also be noticed from the mapping
back to the input space (blue points). Finally, the proposed method to find designs in E
which are predicted to be on the Vorob’ev expectation is quite conclusive: the black points
are very close to the Pareto front approximation and with low variance. Note that compared
to directly searching in E a solution with maximal probability of mapping to a hypercube
centered on a target, the search is conducted in the latent space which is of smaller dimension.

Algorithm 12 Interactive optimization combining GP and GP-LVM models
Input: GP models (Y1, . . . Ym) of the objective functions with n observations and conditional

simulations
1: Compute Conditional Pareto Fronts and Conditional Pareto Sets of the simulations.
2: Compute Vorob’ev expectation VE from the CPFs.
3: Fit GP-LVM model from all CPS points to obtain Ξ : Rm−1 → E, the mapping from

latent to data space.
4: Select a target point v on the VE.
5: Find in the latent space a potential candidate u∗ mapping to v, e.g. by maximizing

the probability that (Y1(Ξ(u)), . . . , Ym(Ξ(u))) belongs to the hypercube of center v and
radius δ, with δ ∈ Rm.

Output: Ξ(u∗) and optionally, (Y1(Ξ(u∗), . . . , Ym(Ξ(u∗))

There are several possible extensions to this idea. In GP-LVM [Law05], the main focus is
on keeping points distant in the data space distant in the latent space; the modified version
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Figure B.3 – Top: parameter space, with non-dominated points of the observations (big
orange points), non-dominated points obtained from 50 simulations at 2000 uniformly selected
locations (green points), image of the points in the latent space corresponding to the green
points (blue points) and true Pareto set (red line). Bottom left: latent space with CPS
(red crosses), the uncertainty is represented in gray scale (white is better). Bottom right:
objective space with observations in blue, the Vorob’ev expectation (cyan step line), non-
dominated points of the CPF (green small points), image of points found in the latent space
with predicted image on the Vorob’ev expectation (black point with uncertainty in dotted
ellipses) and real Pareto front (red line).
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of [LQC06] introduces back constraints (through a constrained likelihood) to also preserve
some local distances. Then points close in the data space should somehow be close in the
latent space. In addition, the latent space could be used to sample new points, to perform
the optimization of criteria too expensive if applied in the original design space or to select
next simulation points.

B.3 Sequential generation of conditional simulation points

Until now, we have had conditional simulations performed on a grid in numerous situations.
This becomes quickly intractable when the number of variables increases and alternative
approaches are needed. Given a simulation on p points of a Gaussian process conditioned on
the n observations of the expensive function, it is possible to augment this simulation at q new
designs, this time conditioned on both n real observations and p simulated ones. In this sense,
we propose to optimize simulated realizations, where evaluating a conditional simulation at
x amounts to performing a simulation conditioned on the n observations of f and on all
previously simulated observations. This way, re-evaluating a point still give the same result1.
In case of a population based optimization method, the procedure is briefly summarized in
Algorithm 13. An example is provided in Figure B.4, where the simulation points are the
points visited by an NSGA-II algorithm [DPAM02] optimizing the corresponding simulation.
As a result, areas of interest are more explored than regions of the design space mapping to
dominated points, with a higher density of points close to Pareto optimal regions.

Algorithm 13 Selection of simulation points with a population based optimization
Input: Initial population for the algorithm, with corresponding simulated values
1: while Number of simulation points < budget do
2: Get new population from the evolution mechanism of the optimization method
3: Simulate the corresponding value(s) conditionally on the previous ones
4: end while
Output: All populations as simulation points and corresponding simulated values

Depending on computational constraints, one can optimize a single conditional simulation
and keep the same simulation points for all other simulations, do it for bundles of several
simulations or treat each of them separately. Note that a faster alternative to Algorithm 13 is
to optimize directly on the Kriging mean, with the risk of not exploring areas of high variance.

We propose to compare the Vorob’ev deviation obtained by selecting the simulation points
by optimization, taking them from a Sobol sequence or from a uniform random sampling.
The setup is rather similar to the one in Chapter 3, considering centered GPs with Matérn

1In [Oak99], the kriging prediction based on simulation points replaces the full conditional simulation.
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Figure B.4 – Example of the optimization of the location of simulation points with two
objectives functions of one variable. Left and center: three conditional realizations with
optimized locations (green, blue, red). Known observations points are marked with bigger
black points. Right: corresponding image in the objective space.
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V D = 3.05
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(b) Sobol sequence,
V D = 3.45
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V D = 4.31

Figure B.5 – Symmetric deviation function obtained with three different strategies for con-
ditional simulation generation.

kernel for f1 and f2 but this time with an input dimension of twenty and 200 observations.
The three strategies are compared considering a fixed number of simulation points, here
6000. The approach giving the results with highest Vorob’ev deviation is with optimization
of the simulation, see the results Figure B.5. The corresponding Vorob’ev expectation widely
dominates the two others, as was expected since the Pareto set is a (possibly disconnected)
curve of dimension 1 hidden in this twenty dimensional space and the probability to be
relatively close to it is very low. Also the Sobol sequence and the uniform sampling give
similar results. In Chapter 8, the optimization of conditional simulation points is also applied
to a problem in dimension 47. Finally, another perspective is to select simulation points
maximizing the Vorob’ev deviation (the aim remaining to reduce it the most), e.g. as in
[ABCG15].
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C.1 Comparison with the Gaussian processes method

We summarize here the main differences and similarities between approaches of Chapter 3
with Gaussian processes and Chapter 4 with copulas:

• both focus on the objective space, but while there is a strong link to the input space
with GP models, it is much more tenuous with copulas (only by sampling);

• the dependence structure between objectives can be restricted to be Archimedean with
the copula framework, while integrating one with GP models is also possible but at
the cost of losing flexibility in the design space [ÁRL11] and is generally not done in
practice;

• the GP approach can be applied sequentially, while for now the copula modeling works
only for i.i.d. observations;

• the copula approach is much faster than the one using GPs, in particular, the compu-
tational complexity is not affected by an increase of the variable dimension;

• prior information on f may be integrated via the kernel function for GPs. With copulas
it amounts to selecting the proper univariate marginals or dependence model, which
are seldom known.

Next we describe the inner motivation which initially started the work on copula, i.e. to
find an alternative to the use of conditional simulations.

C.2 Combination with the GP approach

While giving promising results, the quantification of uncertainty based on the Vorob’ev de-
viation described in Chapter 3 is computationally expensive when using conditional sim-
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ulations, and consequently the associated SUR criterion, see Appendix B, is very expen-
sive. Conditional simulations are used mostly to estimate the attainment function. In-
deed, going back to the article of Chevalier et al., [CGBM13], once the coverage (or at-
tainment) function pY is estimated, the computation of the Vorob’ev expectation and de-
viation does not require conditional simulations anymore: µ(Qβ∗) =

∫
Ω
pY(u)µ(du) and

E (µ(Qβ∗∆Y)) =
∫

Qβ∗
(1− pY(u))µ(du) +

∫
Qc
β∗

pY(u)µ(du).

Recall that in Chapter 3, Conditional Pareto Fronts Yi, 1 ≤ i ≤ N obtained from
conditional simulations of the GP models Y1, . . . , Ym of f1, . . . , fm are realizations of a ran-
dom closed set Y . The coverage function of a random closed set, see Definition 3.3.1, is
α : u ∈ S, u → P [u ∈ Y ] = P [∃x ∈ E , Y1(x) ≤ u1 ∩ · · · ∩ Ym(x) ≤ um]. No closed form are
available for these probabilities (in fact not even with one objective, see e.g [AW09]).

In Chapter 3, the coverage function is estimated using the empirical attainment func-
tion, see Definition 3.3.3, i.e. α̂N(u) = 1

N

N∑
i=1

1{u∈Yi}. Algorithm 2 provides Y1, . . . ,YN , at
p simulations points. Here, these p simulation points are a sequence of p i.i.d. random vec-
tors X1, . . . ,Xp ∼ X, with X a random vector with support E and of absolutely continuous
distribution with respect to the Lebesgue measure. Consequently, α̂N(u) is an estimator of
αp(u) = P

[ p⋃
i=1

(Y1(Xi) ≤ u1 ∩ · · · ∩ Ym(Xi) ≤ um)
]
and α(u) = lim

p→+∞
αp(u).

Let us now detail the link between the empirical attainment and the multivariate cu-
mulative distribution function that has been the focus of Chapter 4. From the Bonferroni
formulas, we get:

P
[ p⋃
i=1

(Y1(Xi) ≤ u1 ∩ · · · ∩ Ym(Xi) ≤ um)
]
≤

p∑
i=1
P [Y1(Xi) ≤ u1 ∩ · · · ∩ Ym(Xi) ≤ um)] .

Since X1, . . . ,Xp are identically distributed:

p∑
i=1
P [Y1(Xi) ≤ u1 ∩ · · · ∩ Ym(Xi) ≤ um)] = p P [Y1(X) ≤ u1 ∩ · · · ∩ Ym(X) ≤ um] .

We thus have an upper bound on αp: αp(u) ≤ p P [Y1(X) ≤ u1 ∩ · · · ∩ Ym(X) ≤ um],
where one would recognize the joint multivariate cumulative distribution function of (Y1(X),
. . . , Ym(X)), enabling the possibility to apply the proposed copula method this random vec-
tor. For estimation, sampling from the posterior distributions of the GPs at X ∈ E is far less
computationally expensive than generating conditional simulations. The general approach is
described in Algorithm 14.
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Algorithm 14 Estimation of an upper bound on the attainment function with Archimedean
copulas
Input: GP models Y1, . . . , Ym corresponding to f1, . . . , fm.
1: Sample p i.i.d. points in E (e.g. uniformly): X1, . . . ,Xp.
2: Sample the corresponding values in S, i.e. when objectives are independently modeled:

(N (ŷ1(Xi), ŝ1(Xi)), . . . ,N (ŷm(Xi), ŝm(Xi)))1≤i≤p .
3: Estimate the level lines or values of the cdf with Algorithm 6.

The GP posterior has already been used in MOO, for instance to obtain a dense ap-
proximation of the Pareto front [CPD14]. Note that using the empirical estimator of the
multivariate cdf at u, i.e. 1

p

∑1Y1(Xi)≤u1∩···∩Ym(Xi)≤um , to compute the upper bound on the
attainment with samples from the posterior only results in a field of 0 and 1, i.e. if there is no
or at least one point dominating the current location in the sample respectively. Indeed, the
possible discrete values for this empirical estimation goes from 0 to 1 with step of 1/p, hence
the upper bound goes from 0 to p by steps of 1, thresholded to 1 since it is a probability1.
Then the Vorob’ev expectation is undefined, all Qβ-quantiles with β > 0 are identical. A
similar problem may occur when using the empirical copula, since it is again a step function,
but not with Archimedean copulas.

In the end, the upper bound on the attainment may be rather crude, but it is far cheaper
to compute, especially when the input dimension increases. The results obtained on a syn-
thetic 2-dimensional function, problem (P1) (see Chapter 3) are presented in Figure C.1.
They correspond to one hundred conditional simulations on a thousand locations uniformly
sampled in E or from a thousand samples of the posterior distribution at these uniformly
sampled points in E, respectively.

Perspectives include applying the proposed estimation approach to the SUR criterion
based on the Vorob’ev deviation. The attainment function might be replaced by its upper
bound in Algorithm 11, with posterior distributions derived from the Kriging update for-
mulas, see e.g. [CEG14] and references therein. An open issue remaining is about possible
approximations or expressions of the marginal of outputs from a GP, instead of using more
standard marginal estimators as proposed in Chapter 4. Studies of adequate models of cop-
ulas for the dependency between GPs may also be beneficial. The approach developed in
[TWG07], applicable on a grid, might be employed for comparison.

1Taking p− 1 instead of p results in three levels, 0, p/(p+ 1) and 1, which is not much more interesting.
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Figure C.1 – Top: results after the design of experiments, n = 10. Bottom: results after
ten rounds of optimization with EHI, n = 20. Left: samples from the posterior distribu-
tion of (Y1, Y2) (points) with the true Pareto front of f in violet and level lines of level
(α∗, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5) in green dashed lines. Center and right: filled level lines of the
upper bound on the attainment function αp and of the empirical attainment function α̂N
respectively, in gray-scale. The Vorob’ev expectation is in cyan and observations are denoted
by blue triangles.
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Complements on REMBO

Some additional results following Chapter 5 are presented here concerning the size of the
low-dimensional search domain Y as well as the splitting strategy proposed in [WZH+13],
to avoid the risk of missing the optimum. Then additional interpretation for the warping
procedure are given before detailing analytical results on optimal matrices for the problem
(D) addressed in Chapter 6. Some results concern ongoing works and several proofs are
reduced to sketchs. Notations are as in Chapters 5 and 6.

D.1 Additional experiments following Chapter 5

D.1.1 Influence of the bounds and of the high dimensionality

In Chapter 5, the proposed covariance kernel kΨ is shown to increase the robustness of
REMBO. We illustrate in Figure D.1 that kΨ, as opposed to both kX and kY , allows to take
larger bounds without hindering the performance. It also appears that if Y is sufficiently
small such that AY ⊂ X , then all three considered kernels give similar results. It has moti-
vated the work on bounds in Chapter 6.

One may also wonder if the performance shown is independent of D as in [WZH+13]. We
thus replicated the experiments of Chapter 5 with D = 1000. The results in Figure D.2a)
show no difference with those where D = 25.

D.1.2 Comparison to splitting

In [WZH+13], splitting the evaluation budget between several different random embeddings
improves the performance of the method, on the Branin-Hoo test function with total budget
of 500 evaluations. It also decreases the performance if there are not enough evaluations left
for each sub-optimization.
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Figure D.1 – Optimality gap for the Hartman6 function with D = 25 over 50 instances with
a budget of 250 evaluations for various bounds.

For the example considered in Chapter 5, i.e. the Hartman function in dimension 6 with
250 evaluations as total budget, we also test the splitting strategy, using kΨ. In such case,
keeping all the budget for one single embedding is much better, see Figure D.2b.
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Figure D.2 – Optimality gap for the Hartman6 test function over 50 runs. Left: D = 1000
with a budget of 250 evaluations for kΨ and kY . Right: D = 25, the budget of evaluations is
split according to the legend.

D.2 Insight on the warping Ψ

We give here further details on the warped kernel kΨ, see Chapter 5. It has two additional
components over the high dimensional kernel kX proposed in [WZH+13], namely orthogonal
projection onto Ran(A) and a distortion.
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The set obtained by orthogonal projection of pX (X ) onto Ran(A) is known to be a
zonotope, a special class of convex symmetric polytopes, see Definition D.2.1 and e.g. in
[McM71], [Zie95], [LSA+13].

Definition D.2.1 (Zonotope as Hypercube affine projection, adapted from [LSA+13]). A D-
zonotope in Rd is the translation by the center p ∈ Rd of the image of the [−1, 1]D hypercube
CD under a linear mapping. Given a matrix H ∈ Rd×D representing the linear mapping, the
zonotope Z is defined by Z = p + HCD.

In fact, we show in Proposition D.2.1 that the orthogonal projection of the set pX (ARd)
onto Ran(A) is equal to the orthogonal projection of the set X onto Ran(A).

Proposition D.2.1. pA(X ) and pA(pX (ARd)) are equal zonotopes.

Sketch of proof. First, pX (ARd) ⊂ X , hence pA(pX (ARd)) ⊆ pA(X ).
It follows from Definition D.2.1 that pA(X ) is a zonotope of center O, obtained from the

orthogonal projection of the D-hypercube X . As such, pA(X ) is a convex polytope, which
can be described directly from its vertices.

Let x ∈ RD be a vertex of pA(X ).
If x ∈ X , then pA(pX (x)) = pA(x) = x, i.e. x has a pre-image in pX (ARd).
Else, if x /∈ X , consider the vertex v of X such that pA(v) = x. Suppose that v /∈ pX (ARd).
Let us remark that if v is a vertex of X such that v /∈ pX (ARd), then Ran(A)∩{h ∈ Hv} = ∅,
where Hv is the open hyper-octant (with strict inequalities) that contains v. Indeed, if
x ∈ Ran(A) ∩ {h ∈ Hv}, ∃k ∈ R∗ such that pX (kx) = v, which contradicts v /∈ pX (ARd).
Denote by u the intersection of the line (Ox) with X , since x /∈ Hv, u /∈ Hv either, hence
x̂uv > π/2. Then ‖u − v‖ ≤ ‖x − v‖, which contradicts x = pA(v). Hence v ∈ pX (ARd)
and pA(X ) ⊆ pA(pX (ARd)).

As a zonotope, several properties of pA(pX (ARd)) are available, such as its number of
vertices and facets, see e.g. [TOG04]. In addition, as stated in [Zie95], “the faces of Z can
be uniquely associated with the faces of the cube it is projected from”, here the faces of
pX (ARd). Exploiting the rich literature on zonotopes is thus one possible line for future
research.

Finally, Lemma D.2.1 explains why the distortion part of the warping Ψ is necessary:
vertices of pA(X ) farther away from O are actually the closest to Ran(A), which do not rep-
resent well distances on convex projected parts. This is corrected by the distortion: distances
on Ran(A) with respect to the origin are then equal to distances between pivot point and
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vertices (thus bigger than the norm of the orthogonal projection).

Lemma D.2.1. Vertices of pX (ARd) farthest away from Ran(A) correspond to vertices of
pA(X ) closest to O.

Proof. Consider a vertex x of X and x> its orthogonal projection on Ran(A). From Pythago-
ras, ‖x‖2 = ‖x>‖2 + ‖x− x>‖2; since the norm of a vertex is fixed, it follows that ‖x− x>‖
decreases as ‖x>‖ increases.

D.3 Special case with d = 2 for A optimal in the sense
of problem (D)

In Chapter 6, optimal solutions with d = 2 in the sense of problem (D) turned out to be
matrices with lines corresponding to vertices of a regular polygon. We detail briefly some
additional properties that can be deduced from the symmetry of these polygons. Without
loss of generality, we suppose that rows of A are of norm 1. We then describe further optimal
matrices with d = 2 in Lemma D.3.1.

Lemma D.3.1. Optimal matrices in the sense of problem (D) with d = 2 have, up to rotation
and multiplication by a positive scalar, rows of the form: Ai = (ρ cos(θ), ρ sin(θ)) with ρ = ±1
and θ ∈ {0 ≤ k ≤ D − 1, kπ/D}.

Sketch of proof. These are (half) the vertices of the regular polygon with 2D vertices. Ap-
plying a rotation of the low dimensional domain or a rescaling by a scalar does not affect
pX (ARd).

We thus deduce that rows of an optimal A in the sense of problem (D) are orthogonal:

A1 ·A2 =
D−1∑
k=0

ρ2 sin(kπ/D) cos(kπ/D) =
D−1∑
k=0

sin(2kπ/D)/2 = 0.

Concerning pivot points, they are on I, which is also in this case a regular polygon, see
Figure D.3 (black polygon). It appears after warping that extreme points (i.e. points most
distant to the center) in Ψ(Rd) are also extreme points of U (since columns are orthogonal
and of same norm). Pivot points corresponding to vertices of parallelograms with biggest
diameter, i.e. extreme points of U , are either vertices of I if D is even or at the middle of
the edge joining two adjacent vertices of I if D is odd. With rows of norm 1, I has apothem
1 (radius of the inscribed circle) and radius 1/ cos(π/(2D)) (radius of the circle enclosing
I). We thus can express the coordinates of these pivot points in X (up to a rotation, for
symmetry reasons):
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• D even: with A as expressed above in Lemma D.3.1, y =
(
1, sin

(
π

2D

)
/ cos

(
π

2D

))
is a

pivot point for an extreme vertex. Then Ay has coordinates of the form ± cos( π
2D −

kπ
D

) cos( π
2D ), 0 ≤ k ≤ D;

• D odd: y = (0, 1) is a pivot point for an extreme vertex, then Ay has coordinates of
the form ± cos(kπ

D
), 0 ≤ k ≤ D.
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Figure D.3 – Example with d = 2 for D = 4 and D = 5, in Y . Colors correspond to orders
of the face on the D-cube of the image by pX (A·), i.e. the number of variables equal to 1 in
absolute value; in particular black points are in I.

For extreme vertices, the norm of pivot points as well as distance between pivot points and
vertices have been computed with the online symbolic computational software WolframAlpha
[Wol], using that coordinates of the pivot point and the corresponding vertex are of same sign.
A summary of the tentative results is given is Table D.1. It follows from these expressions
that for vertices of pX (ARd) and their pivot points:

lim
D→∞

‖pivot point‖+ ‖vertex− pivot‖
‖pivot point‖ = lim

D→∞
r∗Ψ/l

∗ = 1 +
√

3− 8/π.

In contrast, for a random A, this ratio is probably unbounded.
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Table D.1 – Quantities of interest when rows of A are vertices of a convex regular polygon
in R2. The distinction between D even or odd is simply that the position of pivot points
for vertices of pX (ARd) is either on a vertex of I or at the center of the edge between two
adjacent vertices.

D even D odd
coordinates of pivot points, 0 ≤ k ≤ D − 1 cos( π

2D −
kπ
D ) cos( π

2D ) cos(kπD )
‖vertex point ‖

√
D

√
D

‖ pivot point ‖
√
D/2× 1

cos(π/(2D))
√
D/2

‖vertex - pivot ‖
√
D
(
1 + 1

2 cos(π/2D)2

)
− 8

sin(π/D)

√
3D
2 −

2
sin(π/2D)
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Résumés des chapitres en français

E.1 Introduction

Dans le domaine de la conception en ingénierie, les essais physiques et les codes de calcul
numériques peuvent avoir des coûts ou des temps d’évaluation prohibitifs. De nos jours, ils
restent utilisés intensivement pour concevoir et optimiser des systèmes complexes tels que des
automobiles. Une conséquence directe est un budget d’évaluation dédié à l’optimisation ex-
trêmement limité, ce qui rend une procédure par tâtonnement inadaptée. En sus, le gradient
et les propriétés mathématiques de la fonction considérée sont très souvent indisponibles, ce
qui correspond à un cadre boîte noire. Par conséquent, chercher l’optimum en appliquant des
méthodes de descente de gradient n’est pas réalisable : le gradient doit être approché, ce qui
est très coûteux, et au risque de n’identifier que des solutions locales. Utiliser différents points
de départ peut permettre de trouver l’optimum global, c’est-à-dire le meilleur possible, mais
nécessite encore plus d’évaluations.

Une solution préférable est d’établir un modèle de substitution, ou métamodèle (modèle
de modèle), de la fonction coûteuse avec aussi peu d’observations que possible, pour ensuite
pouvoir prédire la réponse en tout point du domaine. Ces techniques sont très communes en
computer experiments et en machine learning, c.f. e.g. [SWN03], [FLS05], [RW06], [Kle07],
[FSK08], [HHLB11], [SLA12]. Le principe est illustré en Figure 1.1. Clairement, le modèle de
substitution initial n’est qu’une approximation grossière et n’est pas adapté pour optimiser
directement. Néanmoins, et en particulier avec les processus gaussiens, la prédiction des ré-
ponses est donnée avec une estimation de l’incertitude associée. Cela permet de définir des
critères statistiques qui fournissent un équilibre entre exploration et exploitation du domaine
de recherche. La figure de droite montre le métamodèle obtenu après ajout séquentiel de
nouvelles observations, en prenant ce point de vue : le modèle est plus précis dans les ré-
gions d’intérêt, en particulier avec de nouvelles observations proches des trois optima globaux.
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Dans sa forme la plus simple, un problème d’optimisation consiste à trouver le minimum
(ou le maximum) d’une fonction pour un périmètre donné. Les problèmes réels sont toutefois
plus complexes, comme par exemple lorsque des contraintes de fabrication sont prises en
compte. De plus, la conception est typiquement sujette à différents objectifs, possiblement
antagonistes. Des techniques spécifiques existent pour traiter ces deux cas, souvent en éten-
dant les méthodes mono-objectives non contraintes. Nous considérons ici en général deux ou
trois objectifs simultanément, jusqu’à cinq lors d’une application. Avec plus de trois objectifs,
il n’est alors plus possible de visualiser la surface des compromis optimaux et des méthodes
dédiées se retrouvent dans la littérature sur l’optimisation many-objective.

Une autre difficulté, écartée ici, est le cas d’observations bruitées. Lorsque c’est pertinent,
les extensions possibles pour traiter cette situation seront mentionnées. Remarquons que la
simulation numérique, si elle n’est pas soumise au bruit d’observation comme les expériences
réelles, n’est pas exempte d’autres sources de bruit. En effet, si répéter exactement le même
calcul renvoie le même résultat en général, avec des codes Monte Carlo ou par éléments fi-
nis, la sortie dépend du nombre d’itérations et de la taille du maillage. Par ailleurs, certains
phénomènes physiques tels que le crash sont intrinsèquement instables, encore plus à grande
vitesse, où une pièce peut se rompre différemment à cause d’un bruit numérique (par exemple
à cause du nombre de cœurs utilisés ou de l’architecture en calcul haute performance).

Motivées également par des cas tests Renault, les contributions de cette thèse traitent
à la fois d’optimisation multiobjectif et d’espace de recherche en grande dimension. Les
résultats correspondants sont basés sur les processus aléatoires, l’optimisation bayésienne, les
ensembles aléatoires et les copules. La structure du document reflète ces contributions avec
quatre parties :

• La Partie I introduit le contexte général et le périmètre de ce manuscrit, en commençant
par ce Chapitre 1. Le Chapitre 2 détaille brièvement l’optimisation avec métamodèle
de fonctions boîtes noires coûteuses par processus gaussiens. Il se concentre ensuite
sur l’amélioration espérée (Expected Improvement) et ses généralisations multiobjectifs.
Dans un souci de concision et de clarté, les rappels sont limités au strict minimum et
certains sujets ont parfois été omis lorsqu’aucune contribution n’a été apportée. Les
notions qui ne sont pas nécessaires pour l’ensemble de la thèse sont détaillées dans les
parties correspondantes.

• La Partie II contient deux articles en quantification d’incertitude sur les fronts de
Pareto, à partir de deux points de vue : en utilisant des processus gaussiens et des
simulations conditionnelles dans le Chapitre 3 et avec des copules dans le Chapitre
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4. Alors que la plupart des méthodes fournissent une approximation discrète du front
de Pareto, le but est ici de construire une représentation continue de l’ensemble des
solutions optimales. Ce problème est traité soit en considérant un ensemble aléatoire
fermé, soit en estimant les lignes de niveau extrêmes d’une fonction de répartition
multivariée.

• La Partie III reprend les contributions proposées pour s’affranchir du challenge posé par
des espaces de recherche en grande dimension avec des budgets limités. En s’appuyant
sur un constat empirique, l’hypothèse d’un faible nombre de variables influentes (et
inconnues) est faite et le problème est traité à partir de plongements aléatoires d’après
les travaux de [WZH+13]. Le Chapitre 5 débute par une description de la méthode, avant
de proposer un noyau de covariance qui s’affranchit de certains problèmes présents
initialement. Le Chapitre 6 traite de la sélection des bornes du domaine de petite
dimension dans la méthode REMBO (Random Embedding Bayesian Optimization).
En particulier, des modifications du plongement aléatoire sont proposées, aux côtés
de stratégies pour optimiser le critère d’ajout et une extension au cas multiobjectif.
Combinées, ces modifications apportent un gain significatif aux performances.

• La Partie IV traite du côté implémentation logicielle et applicatif des deux parties
précédentes. Dans le Chapitre 7 se trouve une description du package GPareto qui a
été déposé sur le CRAN. Le Chapitre 8 est lui dédié à un cas test industriel en crash,
qui a été utilisé durant cette thèse pour éprouver les différentes contributions.

Trois articles sont intégrés en Chapitres 3, 4 et 5 respectivement :

• M. Binois, D. Ginsbourger, O. Roustant. Quantifying uncertainty on Pareto fronts with
Gaussian process conditional simulations, European Journal of Operational Research,
vol. 243(2), pp. 386-394 (2015).

• M. Binois, D. Rullière, O. Roustant. On the estimation of Pareto fronts from the point
of view of copula theory, Information Sciences, vol. 324, pp. 270-285 (2015).

• M. Binois, D. Ginsbourger, O. Roustant. A warped kernel improving robustness in Baye-
sian optimization via random embeddings, Proceedings of the International Conference
on Learning and Intelligent Optimization, LCNS, vol. 8994, pp. 281-286 (2015).

La documentation du package GPareto est, quant à elle, disponible sur le CRAN :

• M. Binois, V. Picheny. GPareto : Gaussian Processes for Pareto Front Estimation and
Optimization, R package version 1.0.1 (2015).
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En annexes sont décrites des contributions additionnelles ou des travaux en cours pro-
metteurs, incluant notamment une approximation grossière mais très rapide de l’Expected
Improvement multi-point, un critère Stepwise Uncertainty Reduction et une procédure inter-
active d’optimisation complétant le Chapitre 3, ou encore de compléments sur REMBO.

Les tests numériques ont été réalisés sur un PC avec un quadri-cœur cadencé à 2.80GHz
et 32Go de RAM, un portable avec un bi-cœur cadencé à 2.9GHz et 16Go de RAM, ou
équivalents.

E.2 II - État de l’art en optimisation bayésienne

Tout au long de cette thèse, nous considérons une fonction coûteuse à évaluer, f : E ⊂ Rd → S
avec S = R dans le cas d’un unique objectif et S = Rd dans le cas multiobjectif. Les phéno-
mènes considérés étant complexes, en général très peu voire rien n’est connu sur leurs pro-
priétés mathématiques, et on les traite donc comme des boîtes noires. Nous nous intéressons
à la minimization de f , possiblement sous contraintes. E est l’espace des variables (ou encore
espace de décision, des paramètres), et S l’espace des objectifs. Nous décrivons tout d’abord
ce problème du point de vue des codes de calcul déterministes, puis, brièvement, les proces-
sus gaussiens, avant de détailler les critères mono-objectifs qu’ils permettent de construire,
en particulier l’Expected Improvement. Enfin, les concepts d’optimisation multiobjectif sont
exposés, dont les généralisations correspondantes de l’Expected Improvement.

E.3 III - Quantification d’incertitude sur fronts de Pa-
reto par processus gaussiens

Les algorithmes d’optimisation multiobjectif ont pour but de trouver les solutions Pareto
optimales. Les retrouver à partir d’un nombre limité d’observations est un problème diffi-
cile. Une approche communément utilisée dans le cas de fonctions coûteuses à évaluer est
de faire appel à un métamodèle. Le Krigeage a démontré son efficacité dans de nombreux
cas comme base pour l’optimisation multiobjectif séquentielle, notamment par des critères
d’ajout qui proposent un équilibre entre exploitation et exploration tels que l’Expected Hy-
pervolume Improvement. Ici nous considérons des métamodèles de Krigeage non seulement
pour sélectionner de nouveaux points, mais aussi comme outil pour estimer le front de Pareto
dans son ensemble et quantifier l’incertitude restante à n’importe quelle étape du processus
d’optimisation. Notre approche repose sur l’interprétation en tant que processus gaussiens
du Krigeage, par l’utilisation de simulations conditionnelles. A partir de concepts tirés de
la théorie des ensembles aléatoires fermés, nous proposons d’adapter l’espérance ainsi que la
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déviation de Vorob’ev pour capturer la variabilité de l’ensemble des points non-dominés. Des
expériences numériques illustrent l’intérêt de la procédure proposée, et il est montré sur des
exemples comment les simulations conditionnelles de processus gaussiens et l’estimation de
la déviation de Vorob’ev peuvent être utilisées pour suivre la capacité des algorithmes MO
basés sur le Krigeage à apprendre précisément le front de Pareto.

E.4 IV - Quantification d’incertitude sur fronts de Pa-
reto à partir de copules

Il est courant en optimisation de débuter par un tirage aléatoire dans l’espace des variables
pour initialiser une population ou créer un métamodèle. En particulier, dans le cas multiob-
jectif, cela conduit à un ensemble de points non-dominés qui ne renseignent que peu sur le
vrai front de Pareto. Nous proposons d’étudier ce problème du point de vue de l’analyse
multivariée, en introduisant un cadre probabiliste et en particulier en utilisant le formalisme
des copules. Ainsi, des expressions pour les lignes de niveau sont accessibles dans l’espace des
objectifs et permettent par conséquent d’obtenir une estimation de la position du front de Pa-
reto, lorsque le niveau tend vers zéro. Des expressions analytiques explicites sont disponibles
quand des copules archimédiennes sont utilisées. La procédure d’estimation correspondante
est détaillée puis appliquée sur plusieurs exemples.

E.5 V - Optimisation bayésienne en grande dimension
par plongements aléatoires

Ce chapitre traite de l’impact d’un grand nombre de variables sur l’optimisation à partir
de processus gaussiens. En particulier, la méthode REMBO est décrite avant de détailler
une modification qui intègre un warping de l’espace de grande dimension dans le noyau de
covariance. Le warping proposé, qui s’appuie sur des considérations géométriques simples,
permet d’atténuer les inconvénients liés à la grande dimension tout en évitant à l’algorithme
d’évaluer des points qui fournissent des informations redondantes. Cela permet également de
relâcher les contraintes sur la sélection des bornes du domaine de petite dimension, et donc
d’améliorer la robustesse de la méthode, tel qu’illustré sur un exemple en dimension 25 et de
dimensionnalité intrinsèque 6.
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E.6 VI - Analyse de la méthode REMBO pour une
robustesse améliorée

La méthode REMBO apporte une solution possible pour optimiser en grande dimension,
sous l’hypothèse qu’un faible nombre de variables soient effectivement influentes. Néanmoins,
certains éléments pratiques restent problématiques, tels que la sélection des bornes du do-
maine de petite dimension. En particulier, lorsque l’on étend le paradigme à l’optimisation
contrainte ou multiobjectif, supposer que l’optimum sera proche au centre du domaine ne
tient pas. Il peut alors être nécessaire d’explorer également à la périphérie, c’est-à-dire au
niveau des faces du domaine de grande dimension, sans pour autant s’y focaliser. En effet,
de par la projection convexe, le domaine potentiellement explorable pour ajouter un nou-
veau point peut être très large et sans précaution particulière la convergence sera freinée.
Pour contrer cet effet, nous proposons une étude des propriétés, notamment géométriques,
du plongement aléatoire. Nous discutons ensuite d’options pour sélectionner les bornes du
domaine de petite dimension ainsi que de modifications de la matrice contrôlant le plonge-
ment. Finalement, nous détaillons l’extension à l’optimisation multiobjectif et présentons les
résultats sur plusieurs exemples.

E.7 VII - Contributions logicielles à l’optimisation mul-
tiobjectif

Ce chapitre est un tutorial du package R GPareto, qui a été livré sur le CRAN comme
contribution de ces travaux de thèse. Il permet de résoudre des problèmes multiobjectifs et de
quantification d’incertitude, telle que décrite dans le Chapitre 3. Après une brève description
des packages liés en R, la structure du package est explicitée. Ensuite l’implémentation des
différents critères d’optimisation disponibles (présentés en Chapitre 2) est détaillée, ainsi que
certaines fonctionnalités. Des exemples illustratifs sont également fournis, avant d’étendre
sur la possibilité d’implémentation de la méthode REMBO comme surcouche pour GPareto.

E.8 VIII - Cas test industriel

Ce chapitre détaille les expérimentations effectuées sur un cas test industriel en crash. Il s’agit
d’optimiser l’absorbeur de choc situé derrière le bouclier arrière en considérant cinq objectifs :
la masse ainsi que quatre enfoncements pour des scenarii de crash donnés. Ce problème peut
être traité de manière multiobjectif ou avec des contraintes puisque le but final, une fois des
seuils fixés sur les enfoncements, est de diminuer la masse du dispositif. Ce dernier comprend
47 paramètres, ce qui en fait un cas difficile pour l’optimisation bayésienne. Il a par conséquent
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servi à éprouver les méthodes de quantification d’incertitude ou d’optimisation décrites dans
les chapitres précédents, et de tester le package GPareto. Comparés à une ancienne étude
utilisant NSGA-II sur modèles d’experts (régression + polyMARS), les résultats obtenus sont
meilleurs en matière de performance et en nombre d’appels aux codes de calcul.

E.9 Conclusion

Dans cette thèse, nous étudions principalement le problème de l’optimisation multiobjectif
de fonctions boîtes noires coûteuses. Ces problèmes sont très courants dans des contextes
industriels et, comme exemple, nous détaillons des expérimentations en crash de voitures.

Les travaux existants en optimisation multiobjectif par modèle de Krigeage proposent déjà
des solutions efficaces pour obtenir des solutions Pareto optimales. Cependant, les approxi-
mations du front de Pareto obtenues sont seulement discrètes. Deux principales contributions
de cette thèse ont pour but de donner une représentation continue du front de Pareto. La
solution proposée dans le Chapitre 3, adaptée du travail de [Che13], est de faire appel à des
simulations conditionnelles de processus gaussiens en conjonction avec des concepts tirés de
la théorie des ensembles aléatoires fermés pour capturer la variabilité autour du front de
Pareto donné par les modèles de substitution. Recourir aux simulations conditionnelles pour
calculer la fonction d’attainment est une gageure au niveau du temps de calcul, et plus en-
core en considérant le critère d’optimisation associé. Dans une deuxième contribution, cette
étape est remplacée par une estimation de la fonction de répartition multivariée des modèles
de substitution, en utilisant le formalisme des copules, voir Chapitre 4. Les deux approches
apportent aux praticiens une approximation du front de Pareto sur laquelle ils peuvent s’ap-
puyer pour décider de stopper, d’intensifier ou d’orienter le processus d’optimisation.

Un grand nombre de variables est identifié comme l’un des principaux challenges pour
l’optimisation par modèle de substitution. En effet, il impacte la vitesse d’apprentissage et
l’utilisation pratique ; ainsi un changement de point vue est sans doute requis pour ame-
ner ces méthodes plus loin sur le plan de la dimensionnalité. Une avancée potentielle a été
effectuée avec l’algorithme REMBO [WZH+13], qui utilise des plongements aléatoires d’un
espace de petite dimension vers l’espace initial de grande dimension. Nous avons contribué
à l’analyse de cette méthode et avons proposé des extensions inédites sur certains points
bloquants. Premièrement, dans le Chapitre 5, avec une fonction de covariance qui évite les
écueils associés aux noyaux proposés initialement pour REMBO. Ensuite, au Chapitre 6, nous
avons travaillé sur la question de la sélection d’un domaine de petite dimension adéquat afin
d’éviter de manquer l’optimum, tout en essayant de ne pas trop impacter le processus d’op-
timisation avec un domaine de recherche trop étendu. Nous montrons une nette amélioration
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des performances, qui, notamment, favorise l’application au cas multiobjectif. Cela ouvre le
chemin vers de nouveaux développements, possiblement en analyse de sensibilité ou en hybri-
dant avec des méthodes d’apprentissage actif de sous-espace linéaires (cf. [GOH13], [DKC13]).

Pour propager et étendre l’utilisation de ce type de méthodes en ingénierie, le package
R GPareto a été déposé sur le CRAN pour compléter DiceKriging, et les packages liés, par
des méthodes d’optimisation multiobjectif. Le Chapitre 7 fournit un tutorial pour GPareto.
De plus, pour s’assurer de l’applicabilité des contributions dans un contexte industriel, les
méthodes ont été testées sur un cas d’étude Renault, présenté en Chapitre 8, avec des perfor-
mances supérieures à des résultats précédents, à la fois au niveau de la qualité des solutions
et en nombre d’évaluations requis pour les obtenir.

En supplément, des essais d’adaptation de noyaux ont été réalisés, et ils forment l’une des
plus importantes directions pour des recherches ultérieures. En effet, nos contributions ap-
portent des éléments à l’optimisation bayésienne en général et nous croyons au potentiel offert
par des combinaisons avec certains développements récents, en particulier concernant les mo-
dèles de substitution ou les fonctions d’acquisition. Par exemple, une perspective attrayante
pour REMBO est d’améliorer le modèle de substitution en tenant compte des instationnari-
tés qui sont présentes, tant par le procédé de plongement qu’au niveau de la fonction boîte
noire sous-jacente elle-même. Quelques travaux récents, e.g. [SSZA14], [AWdF14], [MC15],
proposent différentes options pour les apprendre, donnant plus de flexibilité et montrant
des performances intéressantes. Des extensions des processus gaussiens sont également une
tendance actuelle, avec des alternatives telles que les Deep GPs [DL13] ou les processus de
Student-t [SWG14], qui pourraient remplacer les processus plus standards utilisés ici.

Les obstacles restants sont un possible manque de solutions simples à prendre en main
tout en tenant compte de la complexité des cas tests. Un exemple apparaît avec les variables
mixtes, continues et discrètes [ZQZ11], ou encore avec des paramètres emboîtés : avec des
alternatives de pièces dans un dispositif, ayant toutes leurs propres paramètres. D’un autre
côté, des opportunités apparaissent avec l’intégration d’un comportement physique avec les
modèles de latent force [TL10], par l’exploitation de modèle avec différents niveaux de fidélité,
des observations du gradient qui peuvent maintenant être obtenues avec les solveurs adjoints
ou par des approximations, voir [Fro14], [GJGM15]. Enfin, les travaux en cours sur d’autres
cas tests en crash soulèvent la question de la prise en compte d’observations bruitées dans
les critères d’ajout multiobjectifs, comme dans [KWE+15], et dans REMBO.
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Main notations

Vectors are denoted with bold lowercase letters, such as x, scalars with lowercase letters
(x), while uppercase bold letters, i.e. A, denote matrices. Below are summarized the main
notations used throughout this manuscript. In an attempt to respect common notations
from communities on the various topics treated, some conflicts remain between chapters and
additional notations are detailed upon appearance.

Symbol Description

Mathematical notations

N∗ N \ {0}
R∗ R \ {0}
Ran range/image of an application
µ Lebesgue measure
φ probability density function of the standard Gaussian law N (0, 1)
Φ cumulative distribution function of the standard Gaussian law N (0, 1)
‖ · ‖ Euclidean norm

defined variable names (general)

f objective function, when m > 1, f = f1, . . . , fm

k covariance kernel of a GP
m number of objectives
mn Kriging mean
n number of evaluations
sn Kriging standard deviation
x∗ global minimizer of f
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E parameter space
I improvement function
S objective space
Y Gaussian process model of f
Y1, . . . , Ym Gaussian process models of f1, . . . , fm

An {f(x1) = y1, . . . , f(xn) = yn}

defined variable names in Part II

pY coverage function
C copula function
FY multivariate cumulative distribution function of Y
IH hypervolume indicator
LFα upper level set of level α of FY

∂LFα α-level line of FY

P true Pareto front
Pn Pareto front of the n observations
Qβ β-quantile
X random non-dominated point set
Y random attained set
αX attainment function
α̂N empirical attainment function
φ generator of an Archimedean copula
∆ symmetric difference between sets

defined variable names in Part III

d dimension of the low-dimensional domain
g function defined over Y , g(y) = f(pX (Ay))
pX convex projection onto X
pA orthogonal projection onto Ran(A)
A D × d matrix
D dimension of the variable domain
I set of variable indices, subset of {1, . . . , D}
A set of D × d matrices for which all d× d submatrices are invertible
I intersection of all parallelotopes given by the matrix A
Si strip defined by the ith row of A
U union of all parallelotopes given by the matrix A
X [−1, 1]D
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Y subset of Rd

PI parallelotope given by strips of indices in I
‖ · ‖d Euclidean norm in Rd

‖ · ‖D Euclidean norm in RD

Ψ warping
T effective subspace

Abbreviations
cdf cumulative distribution function
ANOVA ANalysis Of VAriance
CPF Conditional Pareto Front
DOE Design Of Experiments
EHI Expected Hypervolume Improvement
EI Expected Improvement
FANOVA Functional ANalysis Of VAriance
GP Gaussian Process
GP-LVM Gaussian Process Latent Variable Model
LHS Latin Hypercube Sampling
MO Multi-Objective
MOO Multi-Objective Optimization
PI Probability of Improvement
REMBO Random EMbedding Bayesian Optimization
RNP set Random Non-dominated Point set
SUR Stepwise Uncertainty Reduction
VD Vorob’ev Deviation
VE Vorob’ev Expectation
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Abstract:

This dissertation deals with optimizing expensive or time-consuming black-box functions
to obtain the set of all optimal compromise solutions, i.e. the Pareto front. In automotive
design, the evaluation budget is severely limited by numerical simulation times of the consid-
ered physical phenomena. In this context, it is common to resort to “metamodels” (models
of models) of the numerical simulators, especially using Gaussian processes. They enable
adding sequentially new observations while balancing local search and exploration. Comple-
menting existing multi-objective Expected Improvement criteria, we propose to estimate the
position of the whole Pareto front along with a quantification of the associated uncertainty,
from conditional simulations of Gaussian processes. A second contribution addresses this
problem from a different angle, using copulas to model the multi-variate cumulative distri-
bution function. To cope with a possibly high number of variables, we adopt the REMBO
algorithm. From a randomly selected direction, defined by a matrix, it allows a fast opti-
mization when only a few number of variables are actually influential, but unknown. Several
improvements are proposed, such as a dedicated covariance kernel, a selection procedure
for the low dimensional domain and of the random directions, as well as an extension to the
multi-objective setup. Finally, an industrial application in car crash-worthiness demonstrates
significant benefits in terms of performance and number of simulations required. It has also
been used to test the R package GPareto developed during this thesis.
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Résumé:

Cette thèse traite de l’optimisation multiobjectif de fonctions coûteuses, aboutissant à la
construction d’un front de Pareto représentant l’ensemble des compromis optimaux. En con-
ception automobile, le budget d’évaluations est fortement limité par les temps de simulation
numérique des phénomènes physiques considérés. Dans ce contexte, il est courant d’avoir
recours à des « métamodèles » (ou modèles de modèles) des simulateurs numériques, en se
basant notamment sur des processus gaussiens. Ils permettent d’ajouter séquentiellement
des observations en conciliant recherche locale et exploration. En complément des critères
d’optimisation existants tels que des versions multiobjectifs du critère d’amélioration espérée,
nous proposons d’estimer la position de l’ensemble du front de Pareto avec une quantification
de l’incertitude associée, à partir de simulations conditionnelles de processus gaussiens. Une
deuxième contribution reprend ce problème à partir de copules. Pour pouvoir traiter le cas
d’un grand nombre de variables d’entrées, nous nous basons sur l’algorithme REMBO. Par un
tirage aléatoire directionnel, défini par une matrice, il permet de trouver un optimum rapide-
ment lorsque seules quelques variables sont réellement influentes (mais inconnues). Plusieurs
améliorations sont proposées, elles comprennent un noyau de covariance dédié, une sélection
du domaine de petite dimension et des directions aléatoires mais aussi l’extension au cas
multiobjectif. Enfin, un cas d’application industriel en crash a permis d’obtenir des gains
significatifs en performance et en nombre de calculs requis, ainsi que de tester le package R
GPareto développé dans le cadre de cette thèse.
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