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Quasi Real-Time Modeling for Security of Water Distribution Networks 

 

 

Summary 

 The aim of this thesis is to model the propagation of a contaminant inside a water 

distribution network equipped with real time sensors. There are three research directions: the 

solving of the transport equations, the source identification and the sensor placement. 

 Classical model for transport of a chemical product in a water distribution network is 

using 1D-advection-reaction equations with the hypothesis of perfect mixing at junctions. It is 

proposed to improve the predictions by adding a model of imperfect mixing at double T-junctions 

and by considering dispersion effect in pipes which takes into account a 3-D velocity profile. The 

first enhancement is created with the help of a design of experiment based on the Delaunay 

triangulation, CFD simulations and the interpolation method Kriging. The second one uses the 

adjoint formulation of the transport equations applied with an algorithm of particle backtracking 

and a random walk, which models the radial diffusion in the cross-section of a pipe. 

 The source identification problem consists in finding the contamination origin, its 

injection time and its duration from positive and negative responses given by the sensors. The 

solution to this inverse problem is computed by solving the adjoint transport equations with a 

backtracking formulation. The method gives a list of potential sources and the ranking of those 

more likely to be the real sources of contamination. It is function of how much, in percentage, 

they can explain the positive responses of the sensors. 

 The sensor placement is chosen in order to maximize the ranking of the real source of 

contamination among the potential sources. Two solutions are proposed. The first one uses a 

greedy algorithm combined with a Monte Carlo method. The second one uses a local search 

method on graphs. 

 Finally the methods are applied to a real test case in the following order: the sensor 

placement, the source identification and the estimation of the contamination propagation.  

 

key words: Water distribution network – Source identification – Backtracking – CFD - Imperfect 

mixing – Double T-junction – Dispersion – Random walk – Monte Carlo – Greedy algorithm – 

SMaRT-Online
WDN
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Modèle quasi-temps réel pour la sécurité des réseaux d’alimentation en eau 

potable 

 

Résumé 

  Le but de cette thèse est de modéliser la propagation d’un contaminant au sein d’un 

réseau d’eau potable muni de capteurs temps réel. Elle comporte les trois axes de développement 

suivant: la résolution des équations de transport, celle du problème d’identification des sources de 

contamination et le placement des capteurs. 

 Le transport d’un produit chimique est modélisé dans un réseau d’eau potable par 

l’équation de transport réaction 1-D avec l’hypothèse de mélange parfait aux nœuds. Il est 

proposé d’améliorer sa prédiction par l’ajout d’un modèle de mélange imparfait aux jonctions 

double T et d’un modèle de dispersion prenant en compte un profil de vitesse 3-D et la diffusion 

radiale. Le premier modèle est créé à l’aide d’un plan d’expériences avec triangulation de 

Delaunay, de simulations CFD, et de la méthode d’interpolation krigeage. Le second utilise les 

équations adjointes du problème de transport avec l’ajout de particules évoluant à l’aide d’une 

marche aléatoire, cette dernière modélisant la diffusion radiale dans la surface droite du tuyau. 

 Le problème d’identification des sources consiste, à l’aide de réponses positives ou 

négatives à la contamination des nœuds capteurs,  à trouver l’origine, le temps d’injection et la 

durée de la contamination. La résolution de ce problème inverse est faite par la résolution des 

équations de transport adjointes par formulation backtracking. La méthode donne la liste des 

sources potentielles ainsi que le classement de celles-ci selon leur probabilité d’être la vraie 

source de contamination. Elle s’exprime en fonction de combien, en pourcentage, cette source 

potentielle peut expliquer les réponses positives aux capteurs. 

 Le placement des capteurs est optimisé pour l’identification des sources. L’objectif est la 

maximisation du potentiel de détection de la véritable source de contamination. Deux résolutions 

sont testées. La première utilise un algorithme glouton combiné à une méthode de Monte Carlo. 

La seconde utilise une méthode de recherche locale sur graphe. 

 Finalement les méthodes sont appliquées à un cas test réel avec dans l’ordre : le 

placement des capteurs, l’identification de la source de contamination et l’estimation de sa 

propagation. 

Mots clés: Réseau d’eau potable – Identification des sources – Backtracking – CFD – Mélange 

imparfait – Double T – Dispersion - Marche aléatoire – SMaRT-Online
WDN
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Résumé de la thèse : Quasi Real-Time Modeling for Security of Water Distribution Networks 

Auteur: Hervé Ung 

 

 La contamination d’un réseau de distribution d’eau potable, délibérée ou non, peut 

entrainer de sérieuses conséquences sur la santé et la sécurité des consommateurs. Pour prévenir 

cela et pour mieux comprendre l’état des réseaux, les opérateurs du projet SMaRT-Online
WDN

 ont 

décidé d’installer des nouveaux capteurs temps réel qui peuvent mesurer la qualité de l’eau. Ils 

mesurent les paramètres qualités tels que la conductivité, le pH, la turbidité, le taux de chlore 

libre ou encore la température. En couplant les données mesurées avec un algorithme de 

génération d’alarme, il est possible de détecter une contamination à l’intérieur du réseau. En effet, 

même si les capteurs ne mesurent pas la concentration d’un produit spécifique, le produit 

contaminant réagit généralement avec le milieu environnant et donc modifiera au moins un ou 

deux des paramètres qualités mesurés. 

 Deux réponses de contamination peuvent êtres alors obtenues: soit positive soit négative. 

En couplant ces réponses au temps de détection, il est possible de retracer dans le temps avec un 

algorithme de marche rétrograde et de construire la liste des nœuds potentiellement sources de 

contamination. Une source potentielle est représentée par un lieu (un nœud du réseau), un temps 

de début de contamination et d’une durée de contamination. La probabilité pour chaque nœud 

potentiel d’être la véritable source de contamination peut être calculée. Cette information permet 

aux opérateurs de réagir de deux manières. La première est de stopper l’injection de contaminant 

dans le réseau en trouvant sa source. La deuxième est d’empêcher la propagation du contaminant 

dans le réseau en utilisant différentes vannes et poteaux d’incendie pour protéger différents 

districts et diriger l’eau contaminé dans des lieux sécurisés où elle pourra être extraite. Pour faire 

cela, un modèle de propagation fiable est nécessaire pour déterminer les actions à prendre de 

façon à limiter les dommages humains et matériels. 

 Cette thèse a été finance par le projet franco-allemand appelé SMaRT-Online
WDN

, il réunit 

8 partenaires : trois opérateurs de réseau, Berliner Wasserbetriebe (BWB), le service d’eau de la 

CUS, Veolia Eau d’Ile-de-France (VEDIF); 4 instituts de recherches, ENGEES UMR, 

Fraunhofer IOSB, Irstea et DVGW TZW (Dresden); et 2 industriels, 3S Consult GmbH et Veolia 

Environnement (VERI). Le projet a pour but le développement d’un logiciel de sécurité des 

réseaux d’eau potable dans le cas d’une contamination, accidentelle ou intentionnel, du réseau de 

distribution d’eau potable. Les différents aspects étudié sont : le placement des capteurs, la 

génération d’alarme, l’identification des sources de contamination, l’amélioration du modèle de 

transport, la prévision de la demande, la conception du logiciel et les enquêtes sur la réaction des 

consommateurs français et allemands à une contamination du réseau. 

 L’objective de cette thèse se porte sur le développement de trois modèles : l’amélioration 

du modèle de transport (mélange imparfait aux jonctions en double Tés et dispersions dans les 



tuyaux), l’identification des sources et le placement des capteurs. La thèse aborde ces thèmes sur 

six chapitres. Le premier décrit les modèles actuels d’hydraulique et de transport ainsi que des 

solutions apportées à certains problèmes dans les modèles de sécurité des réseaux distribution 

d’eau potable. Le second et troisième chapitre traite du modèle de transport avec le mélange 

imparfait aux jonctions en double Tés et la dispersion dans les tuyaux. Le quatrième explique le 

problème d’identification des sources et donne une solution pour construire la liste des nœuds 

potentiels classé suivant le nœud ayant le plus de chance d’être la véritable source de 

contamination. Un critère est aussi donné pour évaluer un tel modèle d’identification de source. 

Le cinquième chapitre utilise le critère défini précédemment pour le placement de capteurs adapté 

au mieux à l’identification de sources. Deux méthodes ont été développées, une méthode 

gloutonne et une formulation de recherche locale sur graphe. Finalement, le dernier chapitre est 

une étude de cas utilisant les différentes méthodes développées ci-avant sur un grand réseau.  

 Les réseaux de distributions d’eau potable sont composés de nœud jonctions, réservoirs, 

ressources et de tuyaux. La dynamique de l’eau à l’intérieur de ces éléments est fixée par la 

demande aux nœuds de consommations, ainsi que par la hauteur d’eau aux nœuds ressources et 

par la rugosité dans les tuyaux. Les nœuds ressources représentent une source d’eau intarissable, 

avec une hauteur d’eau fixe, et l’eau généralement pompée permet la satisfaction de la demande. 

Les nœuds réservoirs contiennent un certain volume d’eau qui varie le long de la journée. Et les 

nœuds jonctions peuvent être à la fois intersections de tuyaux ou bien nœud consommateur. 

 Dans les model de distribution d’eau potable, le transport est simplifié et est modélisé par 

l’équation d’advection réaction 1-D dans les tuyaux et une condition de parfait mélange aux 

jonctions. Il est montré dans la littérature que les deux simplifications peuvent introduire de 

grandes erreurs dans les calculs. Ho et al. (2008) et Choi et al. (2008) ont montré que le mélange 

imparfait apparaissait dans le cas de croix et de jonctions en double Tés. Dans cette thèse, des 

simulations CFD de mélange aux jonctions en double Tés ont été réalisées pour remplir un 

tableau de données sur lequel une interpolation est utilisée pour définir une loi 1-D pour le 

mélange imparfait aux jonctions en double Tés. Les logiciels Code Saturne et ANSYS Fluent ont 

été utilisé pour faire les calculs, sur grille, respectivement en laminaire et en turbulent. Un 

modèle d’interpolation Krigeage est développé et optimisé dans le cas d’un plan d’expérience 

non structuré. La triangulation de Delaunay est ensuite couplée à l’erreur d’interpolation pour 

définir le prochain point de calcul, celui où l’erreur est la plus grande. Les calculs sont ensuite 

comparés aux expériences menées dans le laboratoire à Dresde et une loi 1-D est créé et 

implémenté dans le modèle de transport. 

 De plus, Taylor (1993) et d’autres ont montrés une différence dans le temps d’arrivé d’un 

agent chimique si on prend en compte le profile de vitesse 3-D et la diffusion dans la section 

droite. Un coefficient virtuel de dispersion est généralement utilisé pour modéliser un tel 

phénomène. Dans cette thèse, les équations 3-D de l’advection ont été directement utilisé avec 

l’aide d’un modèle de marche rétrograde couplé à un model de marche aléatoire modélisant la 

diffusion radiale. Il est montré qu’un tel modèle marche aussi pour des petits coefficients de 



diffusion qui ne peuvent pas être modélisés avec l’ajout d’un terme de diffusion à l’équation 

d’advection 1-D utilisé habituellement. Une étude d’adimentionnalisation des équations 

d’advection diffusion 3-D est effectuée montrant qu’on ne peut négliger la diffusion radiale dans 

la section droite. Une formulation de marche rétrograde des particules est utilisée pour modéliser 

l’advection comportant un profil de vitesse et une marche aléatoire permet le calcul de la 

diffusion radiale. Les résultats montrent un bon comportement en régime laminaire avec les 

expériences. Moins proche, on observe une dispersion toujours présente en régime turbulent. 

 L’identification des sources consiste à déterminer le lieu d’injection des sources de 

contaminations, leurs temps d’injections et leurs durées d’injection. On utilise pour cela les 

réponses positives et négatives aux capteurs. Une fois que les nœuds potentiels de contamination 

sont déterminés, les équations améliorées du transport permettent le calcul de la propagation de la 

contamination présente et future. Des multiples travaux ont été réalisés à ce sujet. La thèse 

complète les travaux précédant de Shang et al. (2002) et de Propato et al. (2010) sur la marche 

rétrograde de particule et la matrice de contamination. Sur le même procédé, un modèle de 

marche rétrograde est utilisé pour créer la matrice d’entrée/sortie des contaminations à partir des 

réponses aux capteurs. La méthode a été modifiée afin de pouvoir effectuer le calcul sur le graphe 

d’un grand réseau. La matrice d’entrée/sortie des contaminations donne et classe les éléments de 

la liste des nœuds de contamination. Elle permet aussi de repérer les cas de contaminations 

multiples. De plus, des critères sont définis afin d’évaluer la méthode d’identification des sources 

sur une configuration spécifique de placement de capteurs. Une étude par la méthode de Monte 

Carlo permet de regrouper les scénarios suivant trois catégories : non détecté, non précis et 

spécifique. Dans les deux premiers cas, la source de contamination ne fait pas partie de la liste 

des nœuds potentiels, soit à cause du placement des capteurs ou bien de la méthode 

d’identification des sources. Il n’y a seulement que dans le dernier groupe que la source est 

trouvée et classée, sa position dans le classement déterminant la capacité de spécification de la 

méthode. 

 Le placement des capteurs est un problème crucial pour les manageurs de réseaux de 

distribution d’eau potable. En effet, leurs caractéristiques, leurs nombres et leurs localisations 

influencent grandement la capacité de surveillance du réseau ainsi que l’efficacité des méthodes 

d’optimisation sur lequel elles s’appliquent. Par exemple, l’efficacité de l’identification des 

sources dépend du nombre et de la localisation de ces capteurs. Un capteur à entrées multiples qui 

peut mesurer la conductivité, la température et le taux de chlore libre est cher mais recueille 

beaucoup de données importantes. Un capteur qui ne mesure qu’un seul de ces paramètre sera lui 

limité en donné, mais il ne coutera peu et un nombre important de capteur pourra alors servir 

pour un couvrement important du réseau. Beaucoup de travaux se sont attaché à l’emplacement 

des capteurs, les opérateurs choisiront surement les capteurs chers, car le coût d’installation doit 

aussi être pris en compte en plus du coût du capteur. De plus, le coût de système de télé relève, 

type SCADA, ainsi que le salaire de l’équipe de maintenance et les coûts associés (alimentation, 

réparation,…) sont aussi à être pris en compte. Beaucoup de méthodes de placement de capteurs 



ont été crées pour la bataille des capteurs de réseaux de distribution d’eau (Battle of the Water 

Sensor Network) détaillé dans le papier de Ostfeld et al. (2008). La pluparts utilisent des critères 

généraux tel que la vraisemblance de détection ou bien le temps moyen à la détection. Cette thèse 

utilise le critère d’identification des sources développé dans le chapitre 4 afin de l’adapter à 

l’emplacement optimal des capteurs pour trouver et mieux classer la véritable source de 

contamination. Deux méthodes sont proposées, une méthode gloutonne qui consiste à rajouter à 

la liste l’emplacement de capteur qui permet le gain maximal sur le critère d’identification des 

sources. Elle donne de très bons résultats mais est très lente. L’autre méthode est celle de 

recherche locale sur graphe qui consiste à partir d’un emplacement prédéfini de capteur et à 

trouver la solution proche qui maximise le critère. Elle donne de bon résultat mais est plus rapide. 

 Finalement, un cas d’étude sur un modèle de grand réseau est présenté, les quatre 

méthodes présentées ci-avant sont appliquées dans l’ordre suivant : placement de capteur, 

identification de la source de contamination et estimation de la propagation présente et future. La 

méthode gloutonne consomme trop de ressources pour être utilisée dans ce cas. La méthode de 

recherche locale sur graphe donne de bon résultat avec une initialisation avec un critère de 

maximisation du temps moyen à la détection. L’utilisation du modèle de transport avec comme 

condition aux limites les résultats de l’identification des sources permet l’estimation de la 

propagation de la contamination. Plus le temps d’observation est grand, plus le nombre de 

sources potentiels augmente, mais plus l’estimation est précise. Finalement, l’influence du 

mélange imparfait et de la dispersion est estimée. Si dans ce cas l’impact du mélange imparfait 

peut être négligé, l’effet de la dispersion sur les résultats doit être pris en compte. 
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pour réaliser les simulations : 

- Mésocentre de Calcul Intensif Aquitain (MCIA, Avakas) 
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NOTATIONS 
 

A: incidence matrix 

q, Q: flow rate in L/s 

d: nodal demand in L/s 

h: head in m of water 

 : headloss function in m of water 

L: pipe length in m 

D: pipe diameter in mm 

R: pipe radius in mm 

CHW: Hazen Williams coefficient 

 : Darcy friction factor 

k: roughness coefficient 

u: velocity in m/s 

  : mean velocity in m/s 

C: concentration in mg/L 

K: reaction coefficient in 1/h 

α: reaction order 

r: radius parameter in m, or Hazen Williams resistance 

  : Taylor virtual diffusion coefficient 

  : molecular diffusion coefficient in m
2
/s 

Re: Reynolds number 

Sc: Schmidt number 

CFD: computational fluid dynamics 

DNS: direct numerical simulation 
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LES: large eddy simulation 

1-D: one dimensional 

2-D: two dimensional 

3-D: three dimensional 

Z0: mass flow percentage going out at outlet 1 

Z: mass flow percentage going out at outlet 1 minus the perfect mixing result 

XX/YY: XX% of the inlet flow comes from the inlet 1 and YY% of the outlet flow goes into the outlet 1 

of the double T-junction (see Figure 6). 

BT: backtracking time 

OT: observation time 

ATDOP: average time to detection optimal placement 

DLOP: detection likelihood optimal placement 

GOP4: greedy optimal placement, backtracking time = 4h 
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LSATDOP24: local search optimal placement, ATDOP initial placement, backtracking 

time = 24h 
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LSDLOP24: local search optimal placement, DL initial placement, backtracking time = 2h 
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GENERAL INTRODUCTION 
 

 The contamination of a water distribution network, deliberate or not, can induce serious 

consequences on consumer health and security. To prevent that and to better understand networks, 

SMaRT-Online
WDN

 operators have decided to install real time sensors to measure the water 

quality. They measure quality parameters such as conductivity, pH, turbidity, free chlorine and 

temperature. By coupling the data measured with an alarm generation algorithm, it is possible to 

detect a contamination inside a network. Indeed, even if the sensors do not measure the 

concentration of a specific product, a contamination product generally reacts with its surrounding 

and therefore will modify at least one or two measured water quality parameters.  

 Then two contamination responses can be obtained: either positive or negative. By 

coupling it to the time of detection, it is possible to go back in time with a backtracking algorithm 

and find the list of the potential sources of contamination. One potential source is represented by 

a location (a node of the network), a starting time of contamination and a duration of 

contamination. The probability of each potential node of being the true source of contamination 

can be computed. That information allows operators to react in two ways. The first one is to stop 

the injection of the contamination inside the network when the source location is found. The 

second one is to mitigate the propagation of the contaminant in the network by using different 

valves and fire hydrants to protect different areas and direct the contaminated water ways in a 

secured area to extract it. For that purpose, a reliable propagation model is then necessary to 

determine the actions to be taken in order to limit human and material damages. 

 This thesis has been financed by the Franco-German project called SMaRT-Online
WDN

, 

gathering 8 partners: three network operators, Berliner Wasserbetriebe (BWB), CUS water 

service, Veolia Eau d’Ile-de-France (VEDIF); 4 research institutes, ENGEES UMR, Fraunhofer 

IOSB, Irstea and DVGW TZW (Dresden); and 2 industrials, 3S Consult GmbH and Veolia 

Environnement (VERI). The project aim is the development of a tool for the security of water 

distribution networks in case of accidental or intentional contamination. The different aspects that 

have been investigated are: the sensor placement, the alarm generation, the contamination source 

identification, the transport model enhancing, the demand forecast, the software conception and 

the surveys on French and German customer reactions to a contamination in the network. 

 The objective of this thesis is to develop computer models focusing on three aspects: the 

enhancement of the transport model (imperfect mixing at double T-junctions and dispersion in 

pipes), the source identification and the sensor placement. In this regard, this thesis is divided in 

six chapters. The first one details the current hydraulic and transport models as well as solutions 

to issues in water distribution network security models. The second and third chapters focus on 

the transport model on both imperfect mixing at double T-junctions and dispersion in pipes. The 

fourth one explains the source identification problem and gives a solution to find and rank a list 
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of potential sources. It also defines criteria in order to evaluate such source identification model. 

The fifth chapter uses precedent defined criteria to adapt the sensor placement problem to source 

identification. Two methods have been developed, a greedy and a local search on graph 

formulations. Finally, the last chapter is a case study that uses the different developed models on 

a large network. 

 Water distribution networks are made of: junctions, tank and resource nodes as well as 

pipes. Water dynamics inside these elements are determined by demands at consumption nodes 

as well as the head at resource nodes and roughness in pipes. The resource nodes represent an 

infinite-capacity of water, with a fixed head, and water is generally pumped to satisfy the demand. 

The tank nodes are containers that have a water level that can vary along the day. Junction nodes 

are both pipe intersections and consumer nodes. 

 In the water distribution model, the transport is simplified to the 1-D advection reaction 

equation in the pipes coupled with perfect mixing at the junctions. It is shown in the literature 

that both simplifications may induce large errors in the calculation. Ho et al. (2008) and Choi et 

al. (2008) have demonstrated that imperfect mixing occurred at crosses and double T-junctions. 

In this thesis, CFD simulations of mixing at double T-junctions have been used to complete a 

data table upon which an interpolation is used to define a 1-D law for imperfect mixing at double 

T-junctions.  

 Also, Taylor (1953) and others have shown a difference in the time of arrival of the 

chemical agent depending on the velocity profile and the diffusion in the cross section. A virtual 

dispersion coefficient is generally used to model such phenomena. In this thesis, the 3-D 

equations have been directly computed with the help of a backtracking model coupled with a 

random walk scheme to model radial diffusion. It is shown that such model also works for low 

diffusion coefficients that can’t be directly modeled with a diffusion term added to the 1-D 

transport equation. 

 The contamination source identification consists in determining the source locations, their 

injection times and durations. This is done from positive and negative responses at sensors. Once 

potential contaminations are determined, the enhanced transport equations can then be used to 

calculate the present and future contamination extent. Multiple works have been done on the 

subject. This thesis completes previous works by Shang et al. (2002) and Propato et al. (2010) on 

particle backtracking and contamination matrix. Similarly, a backtracking model is used to create 

the input/output matrix of contamination from the sensor responses. The method was changed to 

permit working with large network graph.  The IO matrix can both give and rank the potential list 

of contamination nodes. It can also help to discriminate multi-contamination. Moreover, criteria 

are defined to evaluate the source identification on a specific sensor placement configuration. 

 The sensor placement is a crucial issue for water distribution network managers. Indeed, 

their characteristics, their numbers and their locations influence greatly their networks monitoring 
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capacity as well as the optimization methods efficiency. For instance, source identification 

effectiveness depends on the sensors design. A multi-probe sensor that can measure conductivity, 

temperature and free chlorine is expensive but can bring important information. A sensor that can 

only measure one of those parameters will be limited in data. However, it will be cheaper and a 

larger amount of sensors can thus be bought to have a large coverage of the network. Lots of 

works have been done on the sensor placement design, it appears that the operator will most 

likely choose to go for expensive sensors because the installation cost also needs to be taken into 

account no matter the cost of sensors. Besides, the financial balance also needs to include the cost 

of any SCADA like system, which manages the database, as well as the operating staff salary, 

and maintenance and operation cost (energy, repair, ...). Multiple methods in optimal sensor 

placement have been developed in Ostfeld et al. (2008) for the Battle of the Water Sensor 

Network. Most of them have used general criteria such as detection likelihood and average time 

to detection. This thesis uses the source identification criteria developed in Chapter 4 to adapt 

sensor placement to source identification maximization. Two methods are proposed, a greedy 

formulation that gives very good results but is very slow and a local search on graphs formulation 

that gives good results but is faster. 

 Finally, a test case on a large network is presented, applying the four precedent methods 

that have been developed, in this order: sensor placement, contamination source identification 

and estimation of present and future propagation. Imperfect mixing and dispersion influence on 

the model are also described. 
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 A water distribution network is composed of resources, tanks and consumers as well as 

pipes, junctions and equipments such as valves and pumps. The usual way to model such 

networks is through a graph. The incidence matrix defined later is used to formulate the hydraulic 

problem as defined by Todiny et al. (1987). The current model of drinking water supposes a 

pressure load network so that the water covers the whole cross section. The models also assume 

satisfaction of demands, i.e. all consumption nodes get the water they need. The network is 

represented by a graph composed of nodes and pipes. The first ones are characterized by 

resources and tanks as well as junctions and demand nodes. The pipes are the links between the 

nodes and transport the water from sources to consumers. Finally, the equipments are 

installations that are needed to control the water distribution network, for example pumps 

increase the pressure load so that the water flows into the network. The Figure 1 presents a 

simple network with 1 resource “rs”, 1 tank “rv”, and 4 ordinary nodes “od1-4” of which “od4” is 

a consumer. An equipment pumps water from the resource into the network. The tank 

accumulates the water not consumed, or distributes water into the network to satisfy the demands. 

The aims of the different schemes that are presented hereafter are to model the hydraulics and the 

transport of chemical agents, but also to use those models for sensor placement and source 

identification. 

 

Figure 1: Water distribution network example.

 

I-1 Hydraulic Model 

 

 The hydraulics in a water distribution network represents the dynamic state of the fluid in 

the network. It is defined by different variables such as the velocity/flow rate in the pipes and the 

head at nodes. This state is generally computed as permanent by constant time step in the 

hydraulic model. The state at a new time step is computed by minimizing a function taking into 

account the energy calculated at the preceding time step. 
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I-1.1 Incidence Matrix 

 

 The incidence matrix represents the graph of the water distribution network. It is defined 

as follows: 

    
                                         
                                      

            

  

 

 Therefore, its size is node number × pipe number. It can also take a reduced form by 

simplifying the cycles of the graph as defined by Piller (1995). An example is given in Figure 

2 giving the incidence matrix corresponding to the network of Figure 1. 

 

 I II III IV V VI 

od1 -1 1 1 0 0 0 

od2 0 0 -1 0 1 0 

od3 0 0 0 -1 -1 1 

od4 0 0 0 0 0 -1 

rv 0 -1 0 1 0 0 

rs 1 0 0 0 0 0 

 

Figure 2: Incidence matrix. 

 

 Operations on its columns and rows permit to show characteristics of the graph such as 

the core, the trees and the bridges. It may be used to simplify the graph and therefore simplify the 

solving of the equations of the models, as described by Deuerlein et al. (2014). An example is 

given in Figure 4 where “rs”, “od1”, “od2” , “od3”, “rv” , ”I” , ”II”, “III”, “IV”, “V” form the 

core and the rest is a tree composed of one branch. “od2” and “od3” can also be merged, giving 

Figure 3. Also, trees such as the one composed by the branch “VI” and “od4” can be simplified 

on node “od3” by adding “od4” demands to “od3”. 
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Figure 3: Water distribution network example simplified. 

 I II IIIV IV 

rs 1 0 0 0 

od1 -1 1 1 0 

od3 0 0 -1 -1 

rv 0 -1 0 1 

 

Figure 4: Simplifications of the incidence matrix. 

 

I-1.2 Analysis Problem and Content Model 

  

 Let us consider a pipe of length L and diameter D in which we consider a hydraulic 

scenario with the following characteristics: let q be the flowrates, d the demands, h the heads 

(composed of the pressure heads and the elevation heads),   the headloss function depending on q. 

The headloss functions are composed of friction headloss on pipes and singular headloss due to 

equipments, which are balanced with pump gains.  

 The mass conservation and energy conservation can be used to model the hydraulic 

behavior inside the network. According to the system given by the Analysis Problem (Piller, 

1995), it is defined as follows: 
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 (1) 

 

with A the incidence matrix reduced to ordinary nodes  and the notation   represents the fixed 

head nodes.   

 A typical headloss function for pipes is given by Hazen-Williams formula, (see Carlier 

(1980)): 

                     (2)  

where r, the resistance, takes into account the material of the pipe and is usually given by: 

  
       

             
  

with L the length, D the diameter and CHW the Hazen Williams coefficient without dimension 

whose typical value is between 40 and 149 and is usually calibrated. 

 The Colebrook (1939) formula can also be used to find the Darcy friction factor  . 

  

  
       

 

    
 
    

    
   

 (3) 

 

with k the roughness coefficient of the pipe and Re the Reynolds numbers. Numerical estimation 

is generally needed to find this parameter.   is then used in the Darcy equation: 

ξ       λ
 

 

  
 

  
 

with g is the local acceleration due to gravity and    the average flow velocity. 

 The Analysis Problem can be solved with Piller (1995) method with the resolution of an 

optimization problem. The Content Model is defined as: 

               
  
 

                   . 

 This method consists in applying a Newton method to the equations with the 

(q, h) formulation: 

        
                

     
     

with Lagrange function: 
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then:    and    known,      and      are computed through: 

 
    

    
   

  

  
   

     

    
 
  

 
                  

      
   

with    the Jacobian of   from q (a diagonal matrix). 

 Three Newton methods have been tested: Newton on the reduced problem, Newton on 

Lagrangian and Newton on dual problem. Multiple tests have shown that the Newton on 

Lagrangian has better performances than the other two and is now implemented in Porteau (Irstea 

hydraulic modeling software, 2016).  

 Let us remark that A is generally not a square matrix, the existence and uniqueness of a 

solution of the mass conservation is not guaranteed without consideration of the energy equation. 

 

I-2 Transport Model 

  

 The solutions given by the hydraulic model are used in the transport equations applied to 

a chemical product injected inside the network. It is mostly used for chlorination injection 

propagation inside the network, which has been well motivated in France since the event of the 

year 2001. The transport modeling is a complex subject. Chemical agents can be found in two 

forms inside the network, either being freely transported and reacting in the bulk or participating 

in the formation of a biofilm. The biofilm is slowly built on top of the inside wall of the pipes. 

Depending on the hydraulic state, chemical product can be absorbed inside the biofilm or injected 

back in the network. Multiple works have been done in order to model that biofilm or to clean it 

off from the network. Sometimes, the incrustations can be so large that it is required to change 

the diameter of the pipe by a smaller one in the model. Here we will only get interested in the 

bulk transport and simple reaction with the biofilm. 

 

I-2.1 Advection Reaction Equation and Perfect Mixing 

  

 The equation used for the transport of chemical products in a water distribution network is 

the advection reaction 1-D equation: 

   

  
  

  

  
         (4) 
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 Additionally, the mixing condition at nodes is generally considered as perfect: 

 
                 

             
       

  
 (5) 

 

 Different models exist among the Eulerian methods and the Lagrangian methods. Two of 

them are presented: a hybrid Eulerian method and a Lagrangian method. Another one can be used 

for sensitivity analysis, the adjoint model. 

 The hybrid Eulerian model is the one used in the hydraulic free software Porteau of Irstea 

as described by Constans et al. (2003) and Fabrie et al. (2010). This is a time-driven scheme that 

works on a quality time step, which is smaller than the hydraulic time step. That quality time step 

dq is composed of two parts:  

              

 The calculation begins with a method of characteristics that solves exactly the transport 

on      ; and then use a          (Crank-Nicolson if      ) on the other time step part 

   . The first part needs the utilization of an interpolation for the discretization of each pipe, 

therefore it may be source of errors and increases the calculation time. 

 The Lagrangian model is used in the open source software Epanet (2000) and has been 

developed by Boulos et al. (1994). This is an event-driven scheme which is determined by the 

boundary condition changes. The scheme transports segments of contaminant and manages the 

node mixing creating smaller mixed segments. A minimum size is necessary on those 

discretizations to avoid an explosion of the calculation time. The scheme uses the method of 

characteristics: 

                
  

 
   

 Wagner et al. (2015) have used the adjoint method and applied it to source identification. 

The adjoint method permits to focus on the sensors instead of the source of contamination. Those 

are mostly used to calculate sensibilities. The adjoint equations are given by 

 
     
      

  

therefore 
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 (6) 

 

and the previous calculation methods can be used again with few changes of signs. 

 An important need for operators is to have a precise quality model. Indeed, all simulations 

of security breakthrough come with the calculation of the propagation of a contamination. Errors 

on the quality model will affect the sensors responses simulated as well as the source 

identification and the evaluation of the propagation. Two enhancements to the current model are 

proposed. One is to add a model of imperfect mixing at double T-junctions, the other is to take 

into account the 3-D phenomena that are the velocity profile and the radial diffusion in a 

dispersion model. 

 For details on the implementation, see Appendix A. 

 

I-2.2 Imperfect Mixing 

 

 There is a need, for water distribution network security, to have a reliable transport model in order 

to precisely predict the propagation of a contaminant. Two enhancements of the model are possible and 

one concerns the mixing at the junctions. Indeed, current model used to model the mixing at the junction 

with a perfect and instantaneous mixing condition. The outflow concentration is the flow rate weighted 

sum of the inlet concentration. However that assumption is not always actually verified. 

 In recent studies, Ho et al. (2008) and Choi et al. (2008), showed that mixing at crosses 

and double T-junctions is important with regards to security. It is therefore essential to add it 

when calculating the hydraulic quality state of the network. Ho et al. (2008) developed, and 

adjusted with experiments, the Bulk-Advective Mixing model BAM for cross-junction imperfect 

mixing depending on the Reynolds numbers at the inlets and outlets.  

 

Figure 5: Cross configuration (from Ho et al. (2008)) with 2 inlets and 2 outlets. 
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 In the cross-junction configuration of Figure 5, there is a principal flow 1, where the inlet 

goes into the two outlet directions 3 and 4 and the secondary flow where the flow inlet 2 is only 

going to the nearest outlet 3. For this configuration and within steady state condition, the pure 

BAM model reads: 

 

 

     

   
              

  
 
  

  

(7) 

 

 From Figure 5, it can be seen that    <   , therefore       is positive. The complete 

BAM model consists of combining the perfect mixing and the pure BAM model with the 

following equation:  

                                     

where s is a coefficient that depends on the real state of the cross-junction,          being the 

usual result without imperfect mixing and Cbulk is computed with Eq. (7). 

  They proposed to calibrate the s coefficient from experiments.  Their results for X and N-

junctions (or double T-junctions) are implemented in the Epanet-BAM module. 

 The AZRED model of Choi et al. (2008) proposes the use of a lookup table with 

interpolations or extrapolations for inputs not in the table. It was validated on experimental 

values with a large range of flows. One limitation is the need for extrapolation for Reynolds 

numbers approaching zero or infinity. In this thesis, it is proposed to complete the two previous 

models. The approach is to use a Computational Fluid Dynamics (CFD) based method. Main 

results have been published in Braun et al. (2014) and Ung et al. (2014). 

 The transport model equations that are usually used in water distribution hydraulic models 

are the 1-D advection-reaction equation coupled with a perfect mixing law. A 2-D solving has 

been proposed in Waeytens et al. (2015) to better assess the mixing at the junction by applying 

adjoint method and solving the Stokes equations in laminar flow (Re < 2,000). 

 The solution proposed here is to complete Choi et al. (2008) works. CFD simulations 

have been launched in laminar and turbulent cases to create a lookup table upon which the high 

order interpolation Kriging is applied to create a 1-D imperfect mixing law at double T-junctions. 

A method based on the Delaunay triangulation is used in the design of experiment phase to get 

the next most relevant simulation to perform. The law created has been done with diameters all 

equal for the double T-junctions but has also been extrapolated for different diameters. 

 For details on the implementation, see Appendix B-I. 
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I-2.3 Dispersion 

 

 The other enhancement to the transport model concerns the propagation inside the pipe. 

The usual transport equation used is the advection reaction 1-D equation with the velocity taken 

as the average velocity inside the pipe. The dispersion modeling consists in both taking into 

account the velocity profile and the diffusion in the cross section of pipe. 

 Dispersion literature is quite recent, but most papers cite the article done by Taylor (1953) 

concerning the transport of a chemical agent in a pipe considering a velocity profile. He shows 

that a chemical agent that is placed inside a pipe is dragged by the fluid through the form of a 

diffusion propagation with a virtual diffusion coefficient   : 

   

  
    

  

  
   

   

   
        

 (7) 

 

with C the concentration,    the mean velocity, K and   the reaction coefficient and order, and 

   
     

    
  

with R the radius of the pipe and    the molecular diffusion term in     . 

 

 This equation is however only justified for very long time: 

  
   

  
      

with T a dimensionless time. 

 Gill et al. (1970) extend the study also to small time by setting the virtual diffusion term 

dependent of the time E(t). They also proposed a method to calculate the exact solution of E(t) 

through the use of Bessel functions.  

 
                

            

  
        

       
   

 

   

   (8) 

with    the Bessel function of the first kind of order n and    the root of   . 

 Lee (2004) has proposed in his thesis an approximation of it: 
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    (9) 

with    a Lagrangian term determined by calibration with Gill et al. (1970) expression, he has 

found the value  

   
 

  
  

then he deduces the average of that coefficient between 0 and t: 

                     

with 

        
       

 
  
 

 
  

   

 That expression is approximated by Li (2006) for very small time (T<0.01): 

 
          

   

 
  

 (10) 

 

with L the length of the pipe. 

 However Romero-Gomez et al. (2009) show an overestimation of the coefficient given by 

Lee (2004) formula (Eq. (9)) and they propose a correction factor    which is around the value 

0.7 in the cases they studied: 

 

   
    

     

  

         
  

 (11) 

 

with   the cinematic viscosity,    the Reynolds number and    the Schmidt number. 

 They have written in 2011 that for very small time (T<0.01) that coefficient is highly 

influenced by the boundary layer of the pipe. That pipe may not be axially homogenous and 

therefore they propose to use two coefficients    and     instead of one. Those would be 

calibrated with CFD simulations. 

 The method developed here models the dispersion effect as a 3-D phenomenon without 

virtual diffusion coefficient as defined in previous papers. 3-D CFD simulations being too time 

consuming, a random walk algorithm is applied coupled to a backtracking scheme to simulate the 

phenomenon. The backtracking scheme is an efficient way to get the results of particle transport 
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simulation. Indeed, all particles are launched at the location of the information, such as 

concentration, is wanted to be known. Therefore, fewer particles are needed to get the results. 

That scheme is well adapted to a coupling with a random walk scheme that models the radial 

diffusion. 

 For details on the implementation, see Appendix B-II. 

 

I-3 Source Identification Inverse Problem 
 

 The enhancement of the transport model is necessary to precisely estimate the propagation of the 

contaminant. Some other needs of operators for the security of the water distribution networks are 

a source identification algorithm, which points out the locations and times of injection of the 

contamination source(s), and a sensor placement, which gives out the best locations for sensors to 

be placed in order to best monitor the network. 

 Literature shows different examples of contamination cases, accidental or intentional. One 

recent case happened at Laval (September 2015) where a malfunctioning wastewater treatment 

plant induced the dumping of river water directly in the water distribution network. One security 

measure had been to advise citizen to boil the water before consumption. 

 The source identification problem consists in finding the source of contamination, its 

starting time and the injection duration time for given contamination responses at sensors. This is 

an inverse problem and different methods exist to solve it. The source identification problem has 

been widely studied, and can be dispatched in three categories.  

 The first one is the enumeration type that consists in determining a subgroup of nodes that 

may be sources of contamination. For instance, Shang et al. (2002) use a particle backtracking 

algorithm (PBA) and compute the system in reverse time to find the list of the potential sources 

of contamination. De Sanctis et al. (2010) use the same algorithm extended to binary sensor 

response. Propato et al. (2007) and Propato et al. (2010) simulate all possible scenarios of 

contamination to create the matrix that links any source to any sensor. That matrix can be used to 

find the list of potential nodes of contamination.  

 The second type is the exploration type, which does the ranking. It uses the previous list 

and gives probabilities of each node of that group to be the true source of contamination. Guan et 

al. (2006) formulate a Least-Squares optimization problem. Laird et al. (2006) prefer to use a 

mixed-integer formulation to solve the source identification problem with concentration 

measurements at sensors. Liu et al. (2011) solve the same problem with the use of a logistic 

regression model, the work has also been done with binary sensors but results are less good.  

Propato et al. (2007) and Propato et al. (2010) use the matrix of contamination they created and 
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apply a minimum relative entropy method (MRE), to compute probabilities and confidence 

bounds. Also, Preis et al. (2006) couple Epanet (2000) with a genetic algorithm method.  

 Finally, the last type regroups the methods which take into account the sensor’s error rate 

and use stochastic methods to calculate contamination source probabilities through the network. 

For instance, Dawsey et al. (2006) propose a Bayesian Belief Network (BNN). Also Perelman et 

al. (2010) developed a stochastic method on directed acyclic graph (DAG) which creates clusters 

of nodes upon whom the probabilities are then calculated.  

 The method developed here does both enumeration and exploration. It uses a backtracking 

algorithm to find the potential sources of contamination while creating the input/output matrix of 

contamination. The created matrix is the same as the one created by Propato et al. (2010) but not 

restricted to only positive responses, it is also extended to large networks. Indeed,  Propato et al. 

(2010) method is direct and therefore needs to calculate all possible scenarios of contamination 

that may launch an alarm, which is time consuming. The reverse method proposed here uses 

sensor responses, either positive or negative, to tackle the adjoint equations. It takes considerably 

less time for large networks, which is important for a real time solving. That matrix will then be 

used to give rankings through counting positive values on rows and columns. The more a node 

can explain positive sensor responses, the more likely it is to be source of contamination. By 

crossing information on two nodes or more, it is also possible to define a probability for multi-

contamination for each group of nodes it may come from. 

 The adjoint equation (see Eq (8)), presented before, allows the resolution of the source 

identification problem. Indeed, taking the sensor responses as initial conditions, the results of the 

adjoint equations give the possible solutions that may be sources of responses. This is a fast 

method to get the list of potential sources of contamination, however it does not produce the 

ranking for being the true source of contamination. 

 The backtracking model, used in this thesis, is similar to the previous method but is 

discrete. The previous one solves the transport equations with continuous methods, propagating 

the solution inside pipes. This one only cares about what is happening at the nodes, calculating 

the time to go from one end of a pipe to the other end. Particles are then sent back to get discrete 

information on the network state. This discrete form allows the creation of the input/output 

contamination matrix and gives a ranking through a counting algorithm. It is more detailed in 

chapter IV and it is also used for the sensor placement. 

 For details on the implementation, see Appendix C-I. 

 Also, the paper written by Seth et al. (2016) introduces an evaluation method to test the 

capabilities of a source identification method. They define two criteria, the accuracy and the 

specificity as follows: 
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Two close definitions of those criteria are used in this thesis. The accuracy taken in this thesis is a 

binary value based on whether or not the true source of contamination is in the list of potential 

contamination nodes. It is the characteristic function of the value given by Seth et al. (2016) 

formula. The specificity is then defined in this thesis to only concern scenarios where the source 

identification is accurate. This criterion also includes the number of nodes with lower likeliness 

than the true injection node. However it is here divided by the number of all the nodes of the 

network instead of the number of potential contamination nodes. Those two new definitions are 

adapted to an evaluation of a large number of contamination scenarios. The accuracy percentage 

indicates the number of scenarios where the source of contamination is included in the potential 

source node list. Therefore a large accuracy limits the number of scenarios where the true source 

of contamination is not found. And the specificity focuses on the capability of the source 

identification method to give a good rank to the true source of contamination among all the nodes 

of the network. 

 

I-4 Sensor Placement Model 

 

 Another important issue for water network managers is the sensor placement design. 

Installations cost, material and data managing are factors that define how operators should buy 

and set their sensors. Optimization design algorithms are necessary to make the best suited 

choices for each network and objectives. 

 To my knowledge, Lee and Deininger (1992) were the first to formulate an optimal sensor 

placement problem for the location of water quality monitoring stations on water distribution 

systems. Then multiple authors proposed their formulation and methods which are listed in Rathi 

et al. (2014). At first it was with one objective such as time to detection or the coverage. And 

then multi-objective methods appeared. In 2006, in Cincinnati, was organized the Battle of the 

Water Sensor Networks (BWSN) by Ostfeld et al. (2008) where algorithms have been proposed 

to solve the sensor placement problem. Among them is the resolution of the p-median facility 

location problem by Berry et al. (2006) or Krause et al. (2006). It uses the fact that the greedy 

algorithm based on a nondecreasing submodular function gives nearly optimal function. Propato 

et al. (2006) formulate a close formulation within a mixed integer linear programming (MILP) 

formulation.  
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 A few tackled the problem of sensor placement optimizing the source identification 

criteria. Preis et al. (2006) perform a clustering of the network and use a genetic algorithm. 

Propato et al. (2007) propose a method that minimizes the set of solutions given by the matrix of 

contamination, improving the source identification. Tryby et al. (2010) carry on that work and 

propose a method that improves the regularization of the matrix. They have reached the 

conclusion that detection likelihood and source identification are correlated. Liu et al. (2014) use 

a multi-optimization genetic algorithm and draw Pareto fronts for these two criteria. 

 Determinist and stochastic methods look for the sensor locations (or placements) that 

minimize or maximize one or multiple criteria. The multi-criteria method developed by Irstea can 

be cited, see Piller et al. (2015). It uses the greedy method associated with a Monte Carlo method 

on different scenarios of contamination and criteria such as average time to detection or detection 

likelihood. A genetic algorithm can also be used, but most of the time it is highly time consuming. 

However it has the advantage to look for a global solution, avoiding local minima. The usual 

objective function criteria for sensor placement are: average time to detection, detection 

likelihood, contaminated population fraction, contaminated water volume. In this thesis a new 

criterion is defined on the rank of the potential node associated to the true source of 

contamination. 

 This thesis proposes new sensor placement methods that favor location helping the source 

identification process. The backtracking source identification method will be used to do the 

ranking. That ranking will serve as the sensor placement optimization objective.  

 A Monte Carlo method is associated with a greedy algorithm to calculate the best sensor 

locations. It looks, at each iteration, for the sensor location that maximizes the source 

identification criterion. Even though the method is quite costly in time, it can be parallelized. 

Also, another solution is used based on local search methods and graph theory which limit the 

sensor location search to the adjacent nodes of the current location estimations. From an initial 

guess of the best placement, the solution seeks placements that better comply with the source 

identification criterion. The search is done with three distance adjacent nodes through multiple 

iterations. 

 For details on the implementation, see Appendix C-II. 
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 For now, the transport of contaminants has been mostly modeled assuming perfect mixing 

conditions at T-junction. However, some studies have shown that it is not always the case when 

crosses or double T-junctions are involved. In this thesis, the imperfect mixing at double T-

junction model is used, taking into account 3-D behavior, in order to construct a 1-D law that can 

be applied to 1-D transport models for water distribution networks. A four parameter Kriging 

interpolation based on the ratio of Reynolds number at the inputs and at the outputs, the average 

Reynolds number, and the length of the intermediate pipe of the double T-junction is 

implemented into the 1-D model. To efficiently build the process, the Delaunay triangulation is 

used in combination with an estimation of the interpolation error to define the next region of 

space where a simulation needs to be done. 

 Precedent works have studied crosses with simulations and experimentations, and double 

T-junctions with experimentations. Our approach consists in performing 3-D CFD simulations to 

estimate both laminar and turbulent dynamics at double T-junctions. They are performed by 

solving Navier-Stokes equations with either advection equations or mixture models. The results 

give the behavior of the mixing at double T-junctions at design points. To get the solution for 

parameter values not in the table, a Kriging interpolation, suitable for cloud point distribution, 

Wim et al. (2004) , is performed. First, a calibration of its parameters is needed and is solved with 

a maximum likelihood function. Then the solution of the interpolation is defined as a weighted 

sum of the CFD simulation results with those weights found through the resolution of a linear 

system. An example is then given to explain its application. The interpolation is also used to 

define the interpolation error that is used in the Delaunay triangulation method to find new design 

points. These are the center of the triangles with the highest error. An interpretation of the 

interpolated result surfaces is then given concerning the behavior of the imperfect mixing 

depending on the four parameters: length of the interpipe, the average Reynolds number and the 

input and output Reynolds number ratios, for double T-junctions composed of pipes with equal 

diameters. And finally, the results are generalized by a 1-D law that is valid for mixing at double 

T-junctions in water distribution network models. 

 1-D advection-reaction equations are usually used to simulate the propagation of physico-

chemical agents inside the pipes of a water distribution network. 

   

  
  

  

  
           

with C the concentration of the agent, t the time, x the position, u the average velocity of the pipe 

and K and  , the kinetic constant and order of the reaction respectively. 
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 Perfect mixing at T-junction law is usually used 

 
     

              

            

   

with C the concentration and Q the flow. 

 

II-1 Double T-junction Configuration 

 

 A double T-junction (Figure 6) is a special kind of junction composed of an interpipe 

connecting two T-junctions. In case of two inflows on one side and two outflows on the other 

side, the mixing may not be complete depending on the four parameters: Reynolds number 

fraction at the inputs, Reynolds number fraction at the outputs, the average Reynolds number, 

and the length of the interpipe, noted L. 

 

Figure 6: Double T-junction configuration with 2 inlets and 2 outlets. 

 

 It is proposed to use 3-D CFD simulations to create a 1-D law based on a lookup table and 

a 4-D Kriging interpolation method. Code Saturne, see Archambeau et al. (2015), has been used 

to simulate laminar flows and ANSYS Fluent for turbulent flows. Some common simulations 

have been completed for both software for turbulent cases and have given similar results, which 

justify that any of them can be used to model the phenomenon. They have been computed on the 

Mésocentre de Calcul Intensif Aquitain (MCIA) and Irstea computation grid respectively. The 

Jade supercomputer of Centre Informatique National de l’Enseignement Supérieur (CINES) has 

been used to assure the validity of the grid convergence. 
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 The CFD simulations that have been carried out have been divided in 2 types:  

 The first one is composed of the laminar flow (   ≤     ) and transitional flow 

(2000<Re < 4000) cases. Direct Numerical Simulations (DNS) have been used and the 

transport model is the resolution of the advection equation for a concentration. In Figure 6, the 

boundary conditions are 0 mg/L for the straight inlet (In1) and 1 mg/L for the other one (In2). 

The velocities at 3 locations of the boundary are calculated from the laminar velocity profile 

formula: 

           
  

  
   

 

with u the velocity that is computed,    the average velocity, r the radius from the center of the 

pipe and R the Radius of the pipe. The last boundary surface is pressure outflow set. 

 The second type is composed of the turbulent cases (   ≥     ). Large Eddy Simulation 

(LES) has been applied with Smagorinsky condition. The Mixture model of ANSYS Fluent has 

been used. Two fluids are defined to be water with similar properties but different initial 

conditions, the volume fraction of each fluid is set to 0 and 1 respectively at each input. Turbulent 

profiles have been developed and injected at the inlet and flow percentage is defined for each 

output. 

 

II-2 Kriging Interpolation 
 

 An interpolation method is necessary to get the mixing with where simulations have not 

been performed. The simulations are not chosen from a Cartesian algorithm; therefore simple 

polynomial interpolations cannot be used. The interpolation needs to depend essentially on the 

distance from each simulation point. There exist several methods such as inverse distance 

interpolation or radial-based function interpolation. To make multi-dimensional inferences, we 

use in this research the well-known Kriging method or Gaussian Process Regression, see Chauvet 

(1982), Cressie (1993) and Jun et al. (2009) in geological sciences. It was created by Matheron 

and Krige. This is a minimum variance method based on the definition of a probability 

distribution at each of the n sample points   . It is based on the theory of regionalized variables 

and provides best results when data points are not evenly spread, which is our case. Compared to 

inverse distance interpolation, it gives more predominance to closer nodes as described by Wim 

et al. (2004). It also has the advantage of being more general than the radial-based function, 

which is a particular case treated by this method; see Costa et al. (1999). A comparison of 12 

different types of interpolations is accomplished in Yang et al. (2004) and Kriging interpolation 

gives a very good approximation but is quite slow. However, here, the time of interpolation can 

be neglected in comparison with the CFD simulation time; therefore Kriging interpolation is a 
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good choice. The method chosen is the universal Kriging that we detail below. It consists in two 

steps. 

 

II-2.1 Regression Model and Estimation of Parameters with Maximum Likelihood 

 

 In this section the aim is to resolve the calibrating optimization of Kriging parameters, 

considering n points of observation   ,   ,…,   . The function is taken as the sum of a 

polynomial function of s and a stochastic scalar function Y(s). 

 

                    

 

   

  

 

(12) 

 

with    the unknown coefficient of the polynomial. 

 We set: 

                      and    

  
 
  

   

therefore, 

                   

 Remark: if the row-vector F(s) is only composed of one element equal to 1, the method is 

called ordinary Kriging, otherwise it is universal Kriging. 

 It is also supposed that the stochastic part is of expectation zero. 

           

 It implies: 

                      

with 

                

where Z and Y are the column n-vectors with components (Z(  )) and (Y(  )). 

 Finally the covariance is set as: 
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(13) 

 

where m is the dimension of the problem (here 4) and    and    are to be estimated.  

 The same equation is used when calculating R(Y(  ),Y(sj)) with the coordinates of the 

estimation point    instead of any observation point     

 It is supposed that the probability density function associated to   on the sample points   , 

  ,…,    is a multidimensional Gaussian: 

  

    
 
        

 
 

  
 
 
                   

with 

                                                                   

 The Y probability density function can be rewritten as: 

 

      
 
        

 
 

 
 

 
   

                
  

with 

                             

and  ,  ,       (       ) are estimated with the help of a maximum likelihood optimization.   

 The function log-likelihood to minimize is: 

 
             

 

 
          

 

 
            

 

   
                  

 The function f is differentiated with respect to         to derive necessary optimality 

condition by cancelling the gradient function: 

             

  
 
 

 
 

 

  
                  

therefore, 

              

  
        

 

 
                    (14) 
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and 

               
 

   
              

then 

              

  
                         

(15) 

 The gradients of function f with respect to                        : 

              

   
 
 

 
              

 

   
                         

where tr is the matrix operator trace;  

                     

with o the product of Hadamard; and 

                 
  
  

 

              

   
 
 

 
              

 

   
                         

where  

                                 
  
  

 Finally  ,  ,       are estimated by solving the following minimization problem: 

 
                

 

 
          

 

 
                 

 

   
                     

                       

  

 

(16) 

 

 It is solved using the Trust Region Optimization as defined by Conn et al. (1988) by 

giving it the gradients which allows finding the minimum of an unconstrained multivariable 

function. From a first trust region it then expands or contracts the search region by comparing the 

predicted and actual improvement of the objective function realization. As the problem is not 

strictly convex and not defined everywhere (see Figure 7), simplifications of the problem are 

done.   and   are taken as optimal, values of    components have all been fixed to 1 and the 
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   have been expressed with regards to a non-dimensional parameter scaled by the maximum 

distance in all four directions: 

 
   

  

                 
  

with    the non-dimensional parameter that needs to be optimized. A second one is the 

regularization term defined thereafter. In this case, and taking into account the observations 

collected, the objective function may be undefined (see Figure 17), due to the correlation matrix 

R for small  , which is not an invertible matrix. Therefore a regularization term is added to the 

diagonal of the correlation matrix R: 

           

with   the regularization term. This is equivalent to making a ridge regression or using a 

Tikhonov regularization technique, it is also called nugget effect. 

 The new problem to solve becomes: 

 

 
 
 

 
          

 

 
           

 

 
                

 

    
       

 
     

         

        
  

              
  
 

  (17) 

 

Figure 7: Contour plot of the log-likelihood function with respect to the shape parameter theta and the regularization 

parameter for polynomial equals to zero or its degree equals to 0, 1, 2 and 3. 
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 The problem is not convex, therefore to understand the behavior of the function        , it 

has been ploted in Figure 7 with the generalized correlation parameter           , the 

regularization term α        and the polynomial degree k between 0 and 3 as well as no 

polynomial, k being the degree of the polynomial. With  ,   fixed as optimal values from 

Eqs. (14) and (15). When there is not a polynomial term it is called simple Kriging (SK), when 

k = 0 its name is ordinary Kriging, for k > 0 it is universal Kriging. 

 For k between 0 and 3 and SK, there are 3 regions for  . If   is too small (<0.45), the R 

matrix may not be invertible (because it is not regularized enough), therefore its determinant is 

zero and the function f equals –infinity. On the other hand, if α is too large (>0.6), the 

correlation matrix may be too close to        , therefore its determinant is approximately 

      , the matrix is invertible but its determinant in floating-point arithmetic is +infinity.  

 To get the optimized parameters, the system Eq. (17) has been resolved by choosing 

     at first iteration (because visually near the minimum) and   = 0.5, for k =0, 1, 2, 3: 

Table 1: Kriging parameter optimization results by solving log-likelihood function for dimensionless    and the 

regularization term   for a polynomial null or with a degree between 0 and 3. 

Polynomial order 
No 

polynomial 
k=0 k=1 k=2 k=3 

   2.76 2.81 2.85 3.13 3.63 

Α 0.5 0.5 0.5 0.5 0.5 

     α  initial 2,902.92 2,895.64 2,891.3 2,855.29 2,806.2 

     α  optimal 2,866.93 2,864.77 2,863.32 2,841.27 2,804.62 

Mean error not exists 1.75 1.94 1.86 1.82 

Standard deviation not exists 3.40 3.24 2.83 2.37 

Min not exists 0.02 0 0 0 

Max not exists 35.19 34.09 31.4 26.86 

 

 The Table 1 sums up the result found by solving Eq. (17). Final value of    increases with k. 

As  ,   are different for each k, the initial value of f gives different initial values. In this case the 

initial value of f is further away from the optimal value for lower values of k. The optimal value 

of f decreases with k. The average absolute error is the lowest for k = 0. Except for that, for 

average error and standard deviation, their values decrease with k increasing. Minimum errors are 

close to zero for all and maximum errors decrease with k increasing. 

 Finally, based on those results, we have chosen k =3,   ,   ,           and   = 0.5 with 

              all being fixed to 1. 
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II-2.2 Kriging Interpolation Solution 

 From the maximum-likelihood estimation of parameters  ,  ,    it is possible to predict 

the polynomial term of Eq. (12) or regression term. The residual term Y is not a white noise, it is 

possible to reduce it further by explaining the maximum of the intragroup variance. 

 An estimation of Z at the point    is taken as a linear combination of Z from the 

observation points. 

                        

 

 (18) 

where the    are the unknowns of the problem.  

 Moreover we consider an unbiased predictor: 

                    

that leads to: 

             

 

         

which is satisfied if: 

                  

 

         

 We seek    that minimizes the variance of the error term: 

                            

and by y expanding the error term: 

                                

 

               

                                             

 

  

it follows: 
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 We recall that: 

                      

 We have found that the function to minimize is quadratic in lambda with Hessian K that is 

symmetrical definite positive (under mild conditions of  ). It is therefore strongly convex. 

 The convex minimization problem states: 

 

 

                    

                  

 

        
  (19) 

 It is possible to define a problem without constraint by defining the Lagrangian function 

and the Lagrange multipliers    such that: 

 

                   
  

           

 

    

                

 

        

 

 

(20) 

or 

                                          

 

         

with                         and                         

 The sufficient and necessary optimality conditions are: 
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  (21) 

 

 These last equations can be written as the saddle point equation: 

 
 
  
   

  
  

  
   

  
      

    

 Using the Schur complement of K in the full matrix, it leads to the expression of optimal 

λ and μ: 

                           
    

                

 Moreover we also obtain an estimation of the error variance by using Eq. (21) in the Eq. 

(20): 

                     
                 

 The Kriging interpolation consists of two parts: The first one consists in estimating the 

parameters  ,  ,    at maximum-likelihood sense; the    are fixed to 1s; a regularization term   

is added to the diagonal of the correlation matrix. Finally an optimization problem is solved to 

find the parameters. The second part consists in solving the interpolation as a weighted sum of 

the observation results. It gives an effective way of interpolating non-structured points. 

 The interpolation is called in the 1-D law based on the lookup table of the results. It is 

also used to determine the errors of interpolation used with a Delaunay triangulation to choose 

new points of simulation from an initial set. 

II-2.3 Kriging Interpolation and Imperfect Mixing 

 

 To better illustrate how Kriging interpolation has been used, an example of results in a 

case of imperfect mixing is presented. All results are given later where they are interpreted. The 

imperfect mixing law is computed from Table 2 of the simulations results. The Kriging method is 

used to interpolate any value inside the Reynolds and distance range. Extrapolation out of range 

is not recommended and more researches need to be carried out there. The Table 2 gives a non-

exhaustive list of the simulations performed. The first column is the distance between T-junctions 

(in diameters), the second is the average Reynolds number (between the T-junctions), the third 
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column is the Reynolds percentage of inlet 1 (straight inlet see Figure 6) from the previous one, 

the fourth is for the outlet 1 (%In2 and %Out2 can be found from 100 - %In1 and 100 - %Out1 

respectively). The last two columns give the repartition of contaminant for outlet 1 and 2 

averaged in time (Z1 and Z2). Indeed, LES and DNS simulations are transient and therefore 

results need to be averaged for a sufficient period of time (e.g., several dozen minutes) when 

converged (see Figure 8). 

 

Figure 8: Example of simulation result: curve of mass flux (left: Out1, right: Out2) with averaging range. 

Table 2: Results of the CFD simulations for different parameters (non-exhaustive). 

Distance 

(in 

diameter) 

Reynolds %In1 %Out1 Z1 Z2 
 

Distance 

(in 

diameter) 

Reynolds %In1 %Out1 Z1 Z2 

5 1,000 20 20 21.6 78.4 
 

5 10,000 50 50 62.5 37.5 

5 1,000 20 80 81.1 18.9 
 

5 10,000 50 70 82 18 

5 1,000 30 30 30.1 69.9 
 

5 10,000 70 50 69 31 

5 1,000 30 70 71.7 28.3 
 

8 5,000 30 30 31 69 

5 1,000 70 30 58.8 41.2 
 

8 5,000 30 50 50 50 

5 1,000 70 70 93.4 6.6 
 

8 5,000 30 70 70 30 

5 1,000 80 20 54.8 45.2 
 

10 1,000 20 20 21.5 78.5 

5 1,000 80 80 86.3 13.7 
 

10 1,000 20 80 81.5 18.5 

5 5,000 20 20 20 80 
 

10 1,000 30 30 32.5 67.5 

5 5,000 20 80 79 21 
 

10 1,000 30 70 70.5 29.5 

5 5,000 30 30 29 71 
 

10 5,000 0 0 30 70 

5 5,000 30 50 49 51 
 

10 5,000 0 0 70 30 

5 5,000 30 70 69 31 
 

10 5,000 0 0 40 60 

5 5,000 50 30 37 63 
 

10 5,000 0 0 81.5 18.5 

5 5,000 50 50 60 40 
 

10 5,000 0 0 64 36 

5 5,000 50 70 80 20 
 

10 5,000 0 0 50 50 

5 5,000 70 30 44 56 
 

10 5,000 0 0 74 26 

5 5,000 70 50 66 34 
 

10 5,000 0 0 34 66 
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Figure 9: Interpolation result in case of distance = 5D and Reynolds number = 1,000. 

 For the interpretation of the results, it is worth recalling that 100% of the contaminant 

comes from inlet 2 and 0% from inlet 1. One way of interpreting the figures is by fixing two 

parameters and plotting the results with the other two varying.  

In Figure 9, the distance is fixed to 5D and the Reynolds number is 1,000. It shows Z, the 

difference between the result found in the simulations and the complete mixing plan (Z=%Out1). 

Therefore the values are inside the boundary space [0 - %Out1; 100 - %Out1]. The difference is 

up to 30%, and therefore can’t be neglected. It can also be noticed that for %In1<50, which is 

when the straight inlet is dominated, the mixing law is close to complete. The mixing is inversed 

when %In1>85 :more concentration is detected at Outlet 2 than in perfect mixing condition. A 

peak is visible with its top around %In1=70 found in every configuration. 

 

 

Figure 10: Comparison of interpolation results in case of Reynolds number = 5,000. 

 Figure 10 shows the results when the Reynolds number is fixed at 5,000 and the distance 

is increased from 5D to 10D. It can be observed that there is a peak situated in the right part 

(when the straight inlet is dominating). The effect of increasing the distance between the two T-

junctions is a reduction of the peak in height and width. 



II Enhancing the Transport Model: the Imperfect Mixing at Double T-junctions 

 

52 II-2 Kriging Interpolation 

 

 An important issue is the choice of the boundary conditions: contrary to previous studies, 

the boundary conditions are fixed as the complete mixing case values. Indeed, a previous study 

Ho et al. (2008) also took these conditions for the left, bottom and top conditions but not for the 

right boundary condition (%In1 = 100). Around this last one the inlet 2 is almost closed and 

therefore almost no contaminant enters, its repartition at the outlet is then not clear. The 

simulations tend to show that it is close to complete mixing state and therefore it was fixed in this 

study as such. 

II-3 Design Plan and Delaunay Triangulation 

 

 One limitation of the study has been the limited number of simulations to be performed. 

Indeed, DNS and LES simulations are computationally demanding, therefore a method is needed 

to find the best points of simulation to perform. One well-known method is the Latin-Square 

design (see Abraham (1943)) consisting in dividing the space into a fixed number of squares and 

then randomly picking points in each square. However, for computational simulation, a major 

drawback is that it requires a lot of simulation points, at least one for each region defined. In this 

study we have selected the Delaunay triangulation method. This method has been used for the 

FFAST project by Bergmann et al. (2012) to improve a domain-decomposition. It was made to 

enrich the database of principal component analysis basis functions used in oscillating airfoils in 

a compressible flow context. Points of simulation could have been chosen from structured 

method or Latin Hypercube method (see Kay et al. (1979)) which is a generalization of the Latin-

Square design, however more points of simulation would have been needed. The advantage of the 

method is to give a non-random optimized method for design of experiments. 

 It was determined in a previous study of Ho et al. (2008) that for Re>10,000, no further 

change in behavior is observed. Additionally, it has been shown by Ho et al. (2008) that after 20 

diameters for the length between 2 T-junctions, complete mixing occurs. A discussion with 

operating partners of SMaRT-OnlineWDN has permitted to fix the low boundary for distance 

between T-junctions. Indeed, crosses and double T-junctions can’t be compared easily, because 

for double T-junctions some space is needed to put a valve at the interpipe. That valve may also 

influence the computation but is, for now, not modelised. Therefore we have chosen the domain 

for the parameters described in the Table 3. 
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Table 3: Parameters domain. 

Factors Low level (-) Mid level chosen High level (+) 

Reynolds average : Re 1,000 5,000 20,000 

Distance inter-T : L 5×Diameters 10× Diameters 20× Diameters 

Fraction Reynolds : %In1 0 50 100 

Fraction Reynolds : %Out1 0 50 100 

 

 To complete the study, at least three experiments are needed for every factor. As CPU 

time is long to get the stability, 81 simulations should been carried out. However, we take 

advantage of simulation control points to get more reliable results in concordance with the 

Kriging interpolation and Delaunay triangulation. 

 The Delaunay triangulation method is usually used for space partitioning. It defines a list 

of triangles from a list of points where no points are strictly inside any circumcircle of any 

triangle. Here it is used to determine new points of simulation by a greedy algorithm: 

 - For each point of the design plan, we define the interpolation error as the absolute 

difference between its value and the interpolated value at that point when it is not taken into 

account;  

 - For every Delaunay triangle the sum of the interpolation error of its vertices multiplied 

by its area is computed; 

 - The best point candidates to include in the design plan are the centroid for triangles with 

the highest weight; then, in this research, the selected point is the closest point with rounded 

coordinates, which is more convenient for simulation. 

 A simple example is given in Figure 11 taking into account nine points, which are given 

in Table 4.The function M is the list of the measurements and E is the list of errors of 

interpolation when discarding the point. 

Table 4: Example of the Delaunay method with associated errors. 

M(x,y) x = 0 x = 1 x = 2  E(x,y) x = 0 x = 1 x = 2 

y = 2 3 3 3  y = 2 0.70 0.48 0.70 

y = 1 2 2 2  y = 1 0.57 0.53 0.57 

y = 0 1 0 1  y = 0 1.75 1 1.75 
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 In this case, the method divides the space in eight triangles of equal area. The maximum 

error is found at the points (0,0) and (2,0) equals to 1.75. In this case, the two-bottom triangles 

will most likely be chosen for new simulations (blue crosses), this is where more accuracy is 

needed. The method detects the most problematic point, here the only point not in the plan z = 

y+1, and refines around it. 

 

 

Figure 11: Result of the Delaunay method with: left) Delaunay triangles and new design points; middle) full interpolation; 

right) interpolation without point (1,0). 

 
 

 
 

Figure 12: Example of Delaunay method application and interpolation of imperfect mixing for the distance = 5D, 

Reynolds = 1,000: up) before, down) after simulations chosen by the triangulation of Delaunay. 
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 In Figure 12 the behavior of the Delaunay method is highlighted with an application of 

the case L = 5D and Re = 1,000. On the left can be seen the Delaunay triangles partitioning the 

domain space, the vertices being the points of simulation or the boundaries. The blue cross 

defines the new point of simulation to perform. On the right is plotted the interpolation result, 

initially and after multiple simulations chosen by the Delaunay method. The repartition of the 

simulation chosen points is not structured, most points are chosen on the right part where the 

straight inlet is dominating, %In1 > 50. It is also where the simulations give imperfect mixing 

results and the derivatives are bigger. 

 Table 5 sums up the different new simulation points to consider that were found for the 

case where L = 5D and Re = 1,000 are fixed. The first column refers to the order of the 

simulations made given the Delaunay method and the number 0 is for the initial simulations. The 

second and third columns give the Reynolds inlet and outlet fractions compared to average 

Reynolds of 1,000. Finally the fourth and fifth columns are the sum of the errors, either averaged 

(divided by current number of points) or the maximum, of all the points simulated at each stage. 

 In Table 5 and Figure 13, it can be observed that for both types of error, the error is 

globally decreasing. The error can increase when a particular point is found, in this example (80, 

30), but then the Delaunay method will search for points around that will decrease the global 

error. Figure 12 on the left shows the points of Delaunay locations (vertices of the Delaunay 

triangle). At the end the method concentrates the points where there is a need for more 

information, here in the right part, when the straight inlet is dominating. 

Table 5: Delaunay points for distance = 5D and Re = 1,000. 

Numbe

r 
%In1 %Out1 

Mean. 

error 

Max 

error  
Number %In1 %Out1 

Mean. 

error 

Max 

error 

0 30 30 5.1 14.1 
 

6 60 80 4.4 11.1 

0 30 70 5.1 14.1 
 

7 80 30 3.9 13.3 

0 50 50 5.1 14.1 
 

8 80 20 4.1 12.4 

0 70 30 5.1 14.1 
 

9 70 20 4.1 12.4 

0 70 70 5.1 14.1 
 

10 80 80 4.2 12.4 

0 50 30 5.1 14.1 
 

11 70 80 3.7 12.4 

0 50 70 5.1 14.1 
 

12 70 10 3.6 13.3 

0 30 50 5.1 14.1 
 

13 90 10 3.8 9.8 

0 70 50 5.1 14.1 
 

14 80 10 3.8 9.8 

1 80 40 5.2 14.7 
 

15 40 60 3.7 9.6 

2 80 60 4.9 13.9 
 

16 70 60 3.3 12 

3 60 60 5.1 14.3 
 

17 90 20 3.3 12 

4 60 40 5.3 11.9 
 

18 50 20 3.3 12 

5 80 50 4.5 11.9 
 

19 50 90 3.0 8.2 
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Figure 13: Comparison between structured and the Delaunay simulation point selection. 

 In order to show that the Delaunay method performs better than the Structured method in 

terms of design point selection, they are compared. Figure 13 shows the average and maximum 

error of interpolation (as explained before) when adding points of simulation. To compare both 

methods there is the need to define how the Structured algorithm was performed. The Structured 

selections have been made using the following sets of simulation points in Figure 14: the groups 

go from 0 to 8 (each having its own color). Each number represents a set of points, whose 

number is between 8 and 12 points. For instance, at first, both methods begin with the set 0 

composed of 9 points corresponding to Reynolds number combination ratios of 30/50/70 

Reynolds fraction at inlet and outlet. Then, 10/50/90 (set 1) combination is added to the 

precedent points. Henceforth it goes until set 8, when the domain is filled with a fully-structured 

repartition of points. 

 For both average and maximum interpolation error, the Delaunay method gives better 

results with a steady average behaviour of error decreasing. For the average error, both methods 

give similar results at first, until a point when the Delaunay method error stays smaller compared 

to the Structured error. For maximum error, the Structured method does not have a well-defined 

behaviour compared to average steady decrease of the Delaunay method. Each new increase peak 
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can be explained by new regions of space not well modelled. The Delaunay triangulation is then 

selecting points in that region until the error decreases again. This justifies the use of the 

Delaunay method over the Structured method. 

 

%In1/%Out1 10 20 30 40 50 60 70 80 90 

90 1 6 2 7 1 7 2 6 1 

80 6 4 8 3 6 3 8 4 6 

70 2 8 0 5 0 5 0 8 2 

60 7 3 5 4 7 4 5 3 7 

50 1 6 0 7 0 7 0 6 1 

40 7 3 5 4 7 4 5 3 7 

30 2 8 0 5 0 5 0 8 2 

20 6 4 8 3 6 3 8 4 6 

10 1 6 

 

2 7 1 7 2 6 1 

 

Figure 14: Structure selection points. 

 The Delaunay method has been used for space partitioning for selecting new CFD 

simulations to perform. At each step, it calculates the absolute interpolation errors, which can be 

used as a stop criterion. For instance, if we have fixed the mean error at 3 as the criteria of 

convergence, there is no need to continue the simulations after the 19th simulation. It gives an 

effective way to consume less computational time, by favoring simulations that give the most 

information. 

 

II-4 Results 

  

 In this part CFD simulations are plotted and interpreted. First is given the repartition of 

simulations that have been carried out for the four parameters (Re, L, %In1 and %Out1). Then, 

two ways of interpreting the results are presented. One is by fixing the Reynolds number and the 

distance, the other by fixing the inlet and outlet Reynolds ratios. 

 The following notation is given XX/YY: XX% of the inlet flow comes from the inlet 1 

(In1) and YY% of the outlet flow goes into the outlet 1 (Out1) of the double T-junction (see 

Figure 6).  

 All simulation points have been gathered in Figure 15 below: 
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 L 5D L 8D L 10D L 20D 

Re 

1,000 

 

 

Re 

2,000 

Re 

5,000 

Re 

10,000 

Re 

20,000 

 

Figure 15: Points of simulations summary. 

 Figure 15 shows the list of simulations that have been realized, here represented by points. 

Each point is defined by its Reynolds number and its intermediate pipe length as well as its value 

of %In1 and %Out1 respectively in x-axis and y-axis. The Delaunay method has been mostly 

used on the space Re=1,000/L=5D and Re=5,000/L=5D to ensure the validity of the 

interpolation. 
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Figure 16: Interpolation 4-D Kriging in space %In1/%Out1, case                   and           . 
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Figure 17: Interpolation 4-D Kriging in space L/Re, case %In1 and %Out1 = 20/30/50/70/80. 
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 The results of the four parameter interpolation have been drawn in Figure 16 and Figure 

17.  

The first figure gives a lot of information on the behavior of this law. We may observe that when 

the second input (see Figure 6) is dominating (%In1 < 50%), the mixing is almost perfect. On 

the other hand, when it is the first input that is dominating, the mixing is not perfect. And it 

converges toward the perfect mixing with the increase of the distance and the Reynolds number. 

The case Re = 30,000, L = 5D, %In1 = 70 was additionally computed and is showing that the 

function converges to a stable equilibrium for high Reynolds number, which may not be the 

perfect mixing depending on the distance. In case 5D, 70/50 it tends to Z =10, that means that in 

this case where the ratio at the output is 60% of mass introduced goes into Out1 (instead of 50%) 

and 40% in Out2. When D increases, a slow converging to perfect mixing in the laminar case can 

be seen. Figure 17 shows that for different configurations of Reynolds fractions in input and 

output, the behavior law is very different. As seen in Figure 16, when %In1 is lower than 50% 

the mixing is mostly perfect. In the laminar case the mixing has a clear behavior, 

under %In1 = 50 it is perfect mixing and above 70 it is imperfect mixing. In the turbulent case it 

is more progressive. 

 %In1 30 %In1 50 %In1 70 

%Ou

t1 70 

 

%Ou

t1 50 

%Ou

t1 30 

 

Figure 18: Representation of scalar on longitudinal section of Double T in cases Re = 1,000 fixed, L = 5D fixed, and %In1 

and %Out1 = 30/50/70. 
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 To understand the behaviour of the mixing, Figure 18 shows the longitudinal section of 

the double T-junction in the case Re = 1,000, L = 5D and %In1 and %Out1 = 30/50/70 and 

plots the scalar. It can be seen that when the percentage of inlets at the first input is lower than 

%In1 = 30%, the contaminated water coming from In2 hits the opposite wall, creating 

turbulence. When %In1 = 50%, the turbulence is caused by the corner of the second T-junction. 

The more fluid going into the second output, the less stable is the flow. For %In1 = 70, most of 

the contaminated water goes into the first output regardless of the output velocity repartition. 

 More than 250 simulations have been made to describe the phenomenon in four directions 

(Reynolds, inter T distance, %In1 and %Out1). The results have been interpolated and projected 

on two different spaces (%In1, %Out1) and (Re, L). When the first input is dominated (%In1 < 

50) the mixing is perfect. The mixing becomes imperfect when %In1 increases. This behaviour 

shift is more pronounced for laminar cases whatever the inter T-junction distance, and 

progressive in turbulent cases. There is a maximum of imperfect mixing around In1% = 70. The 

mixing tends to perfect mixing when the inter T-junction distance increases, it is almost perfect 

for L = 20D in the turbulent case. It also decreases when the Reynolds number is increased but 

tends to equilibrium that may not be perfect mixing (tends to 10 when L = 5D, %In1 = 70, 

%Out1 = 50). The behaviour described can be explained by looking into the longitudinal section 

of the double T-junction. The mixing is created by hitting the walls, which depends on the ratios 

of the flows in input and output. 

 

II-5 Experimentations 

 The test bench pilot is situated in Dresden at the TZW premises. It is shown in Figure 19. 

 

Figure 19: Photo of the pilot in Dresden. 
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Figure 20: Schema of the pilot in Dresden with a contamination example. 

 Figure 20 shows an example of contamination in the network of TZW. A contamination is 

injected at the black point; then, the flow brings the contaminated water to a double T-junction 

downstream. The concentration of the fluid is then measured (on the left and bottom of the 

double T-junction) at the center of the tube by an electrical conductivity meter. Conductivity is 

used as surrogate for the concentration. 

 A comparison between the simulations and the experiment results has been made. Twelve 

experiment cases have been carried out: L = 5D, 8D, 10D, 20D. And for each case the following 

combinations of Reynolds 30/50/70 have been taken.  

 Figure 21 shows the comparisons between simulation and experiments for the laminar 

case, Re = 1,000. The simulations and experiments show big differences in 70/XX cases when 

the flow going in inlet In1 is at maximum. It might be due to difficulties in keeping a stable low 

velocity because it is hard to measure. It might be also due to the property of the solution of 

contaminant. In the laminar case (Re = 1,000) the contaminant travels more preferably to the 

bottom of the tube, the sensor being at the center of the tube. 
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5D 8D 

  

10D 20D 

  

 

Figure 21: Comparison between CFD and experiments: RE = 1,000 (blue CFD simulations, red experiments). 
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 Figure 22 shows better agreement, the trend of simulation and experiment is the same. It 

is almost perfect mixing when %In1 < 50 and above zero for the cases 70/XX. Larger residues 

in the last cases may also be due to the contaminant falling slowly to the bottom. 

5D 8D 

  

10D 20D 

  

 

Figure 22: Comparison between CFD and experiments: RE = 2000 (blue CFD simulations, red experiments).  
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 Figure 23 shows good matching between CFD simulations and experiments. The 

difference remaining might also be due to gravity. However as the fluid regime is turbulent, this 

can be caused by the hypotheses of simulation where the effect of turbulence is not taken into 

account enough. 
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Figure 23: Comparison between CFD and experiments: RE = 5,000 (blue CFD simulations, red experiments). 
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 In conclusion, the simulations and the experiments show a perfect mixing in the case where entry 

inlet 1 is dominating. 

 Some discrepancies between simulation and experimentation can be observed for the case 

Re = 1,000, that may be due to the difficulty to measure very low flow in pipes. 

 A good matching can be seen in the cases Re = 2,000 and Re = 5,000. The simulations 

show however an overshooting compared to the experiments and may underestimate the 

turbulence. 

 

II-6 1-D Law 

  

 A 1-D law can now be developed. It uses the lookup table of the simulations results and 

determines the proportion of mixing with the help of the Kriging interpolation. The simulations 

were executed based on the following scenario: pure water coming from In1 and contaminated 

water coming from In2. The law first needs to be generalized in case of any water concentration 

at each inlet. 

 Let us consider   ,   ,    and    the mean concentrations on the cross sections for the 

following pipes In1, In2, Out1 and Out2 (cf. Figure 6). In the CFD simulation,    = 0 mg/L, 

   = 1 mg/L have been chosen. We calculate the ratio   of the average mass flux      going out 

of the output 1 divided by the introduced mass flux: 

   
    

         
  

and in the case    = 0 mg/L,    = 1 mg/L: 

   
    
    

 
    
  

  

 We then define  * as the deviation from the perfect mixing ratio:  

 

     
   

           
     

         
   

  

     
   

  

     
  

 

(22) 

 

with  * being the coefficient saved in the lookup table.  * is bounded from below by -1 and from 

above by +1. In practice,  * was found in the range [-0.056, 0.361]. 

 From  *(%ReIn1, %ReIn1, Re, L/D), that interpolated at values not in the table by the 

Kriging method,   (%ReIn1, %ReIn1, Re, L/D) is computed from Eq. (22). 
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 Therefore, if    = 0 mg/L,    = 1 mg/L: 

                       
 

 
      

 This can be generalized for any    and   . The mass flux leaving by outlet Out1 is 

composed of a part coming from In1 and another one from In2, the same for Out2. 

 

                       
                      

       

  

 We thus have a system of three equations and six unknowns (  ,   ,     ,     ,     ,     ), 

since we know the flows,    and   . To resolve the system, we need three more constraints; they 

can be found as follows: 

 When    = 0 mg/L, the mass-balance between inlets and outlets must be satisfied: 

                              

so 

                         

and assuming that      is not zero leads to: 

               

 Similarly, when    = 0 mg/L  and      is positive, we get: 

               

 Finally, for   =  >0 mg/L, the mixing of fluids of similar concentration should give a 

fluid of same concentration,    =    =    =    > 0 mg/L: 
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 This gives four more equations from which three are independent, for example: 

 

      
          

  
                                            

          

  
  

 

 We have six equations for six unknowns that can be reduced to four equations with four 

unknowns: 

 

 
 
 

 
 

                    
                            

      

    
         

  
 

  (23) 

 

with    and    that can be computed from  ,   ,    and the flow rates. 

 These equations allow the definition of a law that can be used for every double T-

junctions (with equal diameters). CFD simulation results have helped to fill a lookup table with a 

non-dimensional indicator of the deviation from the perfect mixing. A system of equations that 

generalizes the case of an introduction of a contaminant only at inlet 2 to both inlets is derived. 

Firstly, the Kriging interpolation is used to determine the coefficient   and then is put as input in 

Eq. (22) to get the concentration at the outlets. 

 For instance, let us consider a double T-junction with a diameter of 0.1m and an interpipe 

of length L = 5D. The flow rates are for each input and output    =    =    =    = 1.96 L/s 

(the velocity is  about 0.25 m/s). Therefore Reynolds numbers are Re1 = Re2 = Re3 = Re4 = 

2,500. The four parameters are respectively, Re = 5,000, L = 5D, %In1 = 50, %Out1 = 50. 

The interpolation function returns      , then         and         . Let us say that a 

contaminated water comes from inlet1 with    = 1 mg/L and another water at inlet 2 with    = 4 

mg/L then the concentrations on both outputs are:    = 2.8 mg/L and    = 2.2 mg/L. 

 

II-7 Two T-junctions Decomposition 

 

 The idea is to combine one single T-junction with another T-junction to treat both as 

separate, henceforth decreasing the computation time. The idea comes from the study of the 

simulation result of the double T-junction. We can remark that in Figure 24 (top left and right), 
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the repartition of the scalar inside the intermediate pipe is the same, and at the bottom only the 

results at the two outlets are different. The entries are dominating the phenomenon.  The idea is 

then to simulate the behaviour in a long T-junction. Then the scalar and the velocities are taken 

from a cross-section and re-injected as input in another T-junction representing the outputs. 

 

Figure 24: Cross-section in cases 10D, Re=1,000, 80/20 and 80/80. 

 A study on the use of two T-junctions instead of one double T-junction has been made. 

The method works on the cases Re = 1,000, L = 5D and L = 10D on most of the points (see 

Figure 25 and Figure 26). However, the points 70/70 and 70/50 (in 10D case) present a 

significant error. It works well for Re = 2,000 cases (Figure 27). Finally, for Re = 5,000 (Figure 

28) the method shows different results from the double T-junction simulations. In the latter case, 

more research is needed to conclude on the viability of the method. 

 

Without projection Projection with the perfect mixing plan 

  

Figure 25: Comparison combined, 5D Re=1,000. 
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Without projection Projection with the perfect mixing plan 

  

Figure 26: Comparison combined, 10D Re=1,000. 

Without projection Projection with the perfect mixing plan 

  

Figure 27: Comparison combined, 5D Re=2,000. 

Without projection Projection with the perfect mixing plan 

  

Figure 28: Comparison combined, 5D Re=5,000. 

 To accelerate the convergence with CFD simulations that requires fewer cells, it was 

decided to combine two single T-junction simulations to solve the double T-junction problem. It 

has been found by comparison between full double T-junction simulations and combined single 

T-junction simulations that this method is working in laminar case for most scenarios. But it does 

not work for turbulent cases. 
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II-8 Real Geometry 
 

 The real geometry of the experiment case is the one described in Figure 29. Some 

deviations were observed between CFD simulations and experimentation (cf. Figure 31). It is 

important to know if the precise modeling of the double T-junction is necessary. It is possible 

that eddy turbulence phenomenon at elbows may change the mixing ratios at the end. The 

complex mesh of Figure 30 was generated. It is a 2 million cells mesh generated under Salome 

software, (see Conn et al. (1988)). 

 

Figure 29: Real geometry. 

 

Figure 30: Complex mesh. 
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Without projection Projection with the perfect mixing plan 

  

Figure 31: Comparisons of complex geometry, normal geometry and experimentations. 

 

 The cases L = 5D, Re = 5,000, 70/(30 ; 50 ; 70) have been simulated but no large 

deviations can be observed from the previous simulation of double T-junction with simpler mesh. 

 The complex geometry of the double T-junction caused by joints does not seem to affect 

the results much. It cannot explain the differences between simulations and experimentations. 

 

II-9 Conclusion 

 

 In this chapter, the objective is to improve water distribution quality transport modeling 

for security management in case of contamination events. The focus is made on mixing 

conditions at double T-junctions. Numerous 3-D CFD simulations of different configurations of 

double T-junction mixing were performed and a 1-D law for imperfect mixing was derived that is 

added to the full network transport model. It depends on the four input parameters: Reynolds 

number in the interpipe, the length between the two T-junctions and the ratio of Reynolds number 

at the inlets and at the outlets. A problem-specific Kriging method was developed for 

interpolating mixing percentages at non-simulated configurations. For sampling design we use a 

Delaunay method to determine new configurations to simulate. 

 To complete this study, two CFD simulation tools have been mainly used, Code Saturne 

for direct numerical simulations (DNSs) and Fluent for Large Eddy Simulation (LESs). The 

simulations have been launched on the Irstea computational grid and on the MCIA. Additional 

simulations to test convergence of the grid have been made on the CINES. The results of the 

simulations have been added to a table and have been interpolated with the interpolation Kriging 

method.  
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 The Kriging interpolation consists in estimating the function by dividing it in two parts: a 

stochastic one and a polynomial one. The parameters of the method have been optimized for the 

problem by minimizing a log-likelihood function. As the problem is not strictly convex and not 

defined everywhere, choices have been made to simplify the problem. The polynomial 

coefficients and the variance are taken as their least square optimal values; covariance terms have 

been chosen as exponential; coefficients in the exponential are functions of    ; and a 

regularization term α is added to the covariance matrix and chosen as 0.5. Finally, the    optimal 

value is computed to be 3.63 and the order of the polynomial equals to 3. Minimization of the 

residual variance allows a linear system of equations to be solved.  

 The computational cost of each simulation justifies the use of a Delaunay method to 

optimize the repartition of simulation points and therefore the sampling design. The Kriging 

interpolation is coupled with the Delaunay triangulation method. It consists in calculating 

interpolation error sums in the triangle domain to define the region the most susceptible to be 

poorly modeled. It has been compared to a Structured algorithm and performed better with fewer 

points. It shows that the Delaunay triangulation is a simple and efficient method to find new 

points of simulation reducing the number of calculations to be made.  

 The results have been interpreted by fixing both the Reynolds number and the length of 

the interpipe, or both the Reynolds number ratio at the inputs and at the outputs. The 

contamination was introduced through one of the two inlets, namely inlet In2. The results show 

that perfect mixing still occurs when inlet In2 is dominating. It is due to the fluid coming from 

the input 2 going straight to the wall, creating a lot of turbulence. In the other cases, we observe 

imperfect mixing with a peak at around %In2=30. It can also be seen that when the length 

increases the mixing becomes perfect for all configurations, except in laminar cases where 

imperfect mixing can still be observed for a length of 20 diameters. In the same way, the increase 

of the Reynolds number decreases the imperfect mixing impact, but at some point, it converges to 

a value that may not be the complete mixing.  

 Finally, a 1-D transport model has been created and implemented. It considers 

advection/reaction along pipes, imperfect mixing for double T-junctions, and perfect mixing for 

simple junction nodes. For imperfect mixing the mean cross-sectional concentration at the two 

outlets is computed. The result depends on the Reynolds number at half distance, on the two inlet 

and outlet flow rate ratios and on the interpipe length. A lookup table was deduced from the CFD 

simulations, and a Kriging method is used for points that are not in the table. The imperfect 

mixing transport model takes the form of a DLL in C++ that can be indifferently called from the 

Irstea ( Porteau) or from the 3S Consult ( Sir 3S) software solutions. 

 This study has been performed for the general case of double T-junctions, composed of 

pipes with the same diameter, and no slip-wall condition in CFD simulations. Future research 

will consist in a generalization of the mixing law to pipes of unequal diameters and for pipes with 

large roughness that influences the turbulence inside the double T-junctions. 
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 Current transport models are designed with only one dimension. To take into account the 

3-D phenomena which are the velocity profile and the axial and radial diffusions a new model is 

necessary. The difference of velocity along the radius induces, for chemical agent, both a front in 

advance and a back front delay. This is modeled in the literature by a virtual diffusion coefficient 

added to the transport equation. Different formulations have been proposed that are associated 

with parameters to be calibrated. This chapter will instead use a backtracking algorithm coupled 

with a random walk to model the dispersion effect. No calibration is needed but the method is 

limited to laminar regime with Poisson profile hypothesis. A backtracking scheme is used to 

focus on the information at the end of the pipe. Then, a random walking scheme is developed to 

take into account the radial diffusion. Finally, that method is tested on a pilot network. 

 

III-1 Advection-Diffusion Equations 

 

 The equations that are mostly used in water distribution network quality model are 1-D 

advection-reaction equations coupled with perfect mixing at any junction. 

   

  
  

  

  
    α       

with C the concentration of the agent, t the time, x the space, u the average velocity of the pipe 

and K and α, the kinetic constant and order of the reaction respectively. 

 
     

              

            

   

with C the concentration and Q the flow rate of the pipes whose water is going into the node. 

 

III-1.1 Nondimensionalization 

 

 The reaction term is discarded (it can be added after with a splitting scheme), and laminar 

velocity profile as well as a radial diffusion term are added to the equation in 3 dimensions: 

   

  
     

  

  
   

 

 

 

  
  
  

  
     (24) 

with r the radial position. 
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 In the laminar case, 

 
        

  

  
    

then (24) becomes: 

   

  
       

  

  
 
  

  
   

 

 

 

  
  
  

  
     (25) 

with the variable changing following: 

    
  
 
   

   
 

 
   

   
 

 
   

    
 

  
   

with    a characteristic concentration not zero. 

 Then (25) becomes: 
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and with multiplying by 
 

    
 

   

   
         

   

   
   

 

   2

 

  
 

   
   

   

   
     

 

also multiplying by   at top and bottom: 
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therefore: 
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     (26) 

 

with    the Schmidt number, Re the Reynolds number and because         , the radial diffusion 

term can be neglected only if : 

  

 
        (27) 

 This condition is not always verified, particularly in the night, when the water flows 

slower than in the day. For example, let us take a laminar case such as       ,        and 

R = 0.1 m. Then the condition to neglect radial diffusion is       m. This condition is not 

always respected in hydraulic networks. The radial diffusion cannot be neglected in several cases.  

 Now if we want to know if the axial diffusion can be neglected, we look for the following 

nondimensionalized equation: 

  

  
  

  

  
   

   

   
    

therefore 

   

   
         

   

   
 

 

    

    

    
    

 

 The criterion to neglect the axial diffusion is: 

 
        (28) 

 

which is true in most cases, for instance with              , then       , and therefore 

the condition is respected for         . To conclude, the radial diffusion cannot always be 

neglected but the axial diffusion can be neglected in most cases. 
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III-1.2 Advective Hypothesis 

 

 In order to build an applicable model, we first study the non-diffusive case and integrate 

the 3 dimensional advection transport. The Poisson profile in a pipe gives the value of the 

velocity in function of the radius: 

 

            
  

  
   (29) 

then 

 

 
   

         

  
      

 

 

  

 

 
 

 
         

  

  
  
         

  
        

 

 

  

 

  

and by supposing C continuous and differentiable in time and space: 

  

        

  
    

        

  
 
   
   

      
         

  
         

 

 

  

 

 

therefore  
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 C is integrated on r between 0 and R: 

        
 

 
                 

 

 

  

 

 

and from the method of characteristic: 

                       

with 
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and S  =     . 

 Therefore 

         
 

  
      

 

      
  

  
 
    

   

 

  

 

(30) 

 

 Let us take the following change of variable: 

 

     
 

      
  

  
 
  

then 
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by changing those expressions in (30): 

         
 

   
       

 

       
   

     
 
   

  

  
 

(31) 

  

 This gives an explicit relation between         and       . Let us note that the formula 

does not depend on the radius of the pipe. In fact, it is numerically computed with the trapezoidal 

rule. However for some simple cases, as the step case with constant average velocity and laminar 

profile, it can be solved with an explicit formula. 
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III.1.3 Step Case 

 

 Let us suppose the following contamination profile g(t) which is a step equal to    

between the times t1 and t2. 

 

Figure 32: Contamination profile as step definition. 

 Let us use formula (31), for 3 cases: 
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              : 

        
 

   
   

 

      
 

 

      
   

 Therefore we obtain the concentration result with      ,          and    

         plotted in Figure 33. 
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Figure 33: Dispersion effect in pipe along the time. 

 Now that we have an advective model taking into account 3-D velocity profile, we will 

then focus in the next part of the case when the radial diffusion cannot be neglected. It will be 

studied with the use of a backtracking algorithm coupled with a random walk. 

III-2 Backtracking Algorithm and Random Walk to Model Radial Diffusion 
 

 The backtracking algorithm is a method based on the adjoint formulation of the transport 

equation on a graph. It is used here to simulate the transport of a chemical agent inside a water 

distribution network. A random walk algorithm is coupled with it to simulate the radial diffusion. 

 

III-2.1 Equations and Method 

 

 The usual transport models used are either Eulerian or Lagrangian. The Lagrangian 

viewpoint takes advantage of the particle trajectories to workout the solution in backward manner 

(backtracking algorithm) or forward manner (the forward walking algorithm). 

The associated adjoint or inverse transport equations ( Neupauer (2011)), when the nonlinear 

reaction term is not taken into account, permit to go back in time from any node to find where the 

water comes from. 

   

  
  

  

  
     

                               And                    

(32) 
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With   the adjoint variable,    and    are arbitrary fixed time and length. In the following 

scheme    is equal to the current time and    the length of the pipe, psi is the adjoint state. Here 

only advection phenomenon is considered. Water quality indicators with an appropriate change of 

variable can be described by a simple transport equation ( Piller et al. (2014)). 

 The backtracking algorithm uses the method of the characteristics to find the time needed, 

for a particle going into one end of the pipe, to get out. The Lagrangian solution takes the form: 

         
  

 
          

and its adjoint formulation is: 

         
  

 
          

 If u is constant, and if dx = L, then 
  

 
 is the transport time the particle needs to reach the 

other end of the pipe. The time backtracked    is computed using the formula: 

          
                  

      
 

    

  

  

with      given and    looked for. 

 This may give multiple solutions. The one chosen here is the first (smallest) non trivial 

one:    ≠     .  

 That value is computed with the following algorithm. Actually, hydraulic models often 

use constant velocity by hydraulic time step. In this case, an algorithm has been developed that 

takes into account that time step     as explained in the following. First that particle is moved of 

space step           , with      constant for                     and i an integer 

representing current time step (i = 0 initially). Then a test is made to know if the particle is still 

inside the pipe. If that is the case, the time backtracked    takes the new value         (with 

         initially) and the algorithm does that first part again with      , unless the next 

condition happens. That condition is: the particle is not out and    is past the initial time of the 

hydraulic simulation; then the algorithm ends with    set to initial time of hydraulic simulation. 

However, if the particle goes out, the last time step    is only reduced of the part of     that is 

necessary for the particle to reach the end of the pipe and then the algorithm ends (see Appendix 

A-V.8). 
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III-2.2 Adaptation to Water Quality Transport 

 

 The backtracking algorithm is explained for one pipe, but it will be extended to a whole 

network. Let us take a source of chemical agent N1, a pipe and a consumer N2 and with a 

concentration of 0 mg/L as initialization for both nodes and pipe: 

 

Figure 34: Pipe backtracking. 

 We want to know the concentration at node N2 for all time under the form        , with 

    being the quality time step which is a divisor of the hydraulic time step. The backtracking 

algorithm starts on time t and we look for   . 

 In this example, let us set the velocity to be constant, u = 0.1 m/s, the length of the pipe 

to be equal to L = 100 meters and the source N1 to have a constant concentration    = 1 mg/L 

from time t = 0 s (0 mg/L before). The quality time step is fixed to 300 seconds.  

 First a backtracking is used at time t = 300s at N2, the output is N1 at time        s, 

because the time needed to go through the entire pipe is u×L which is equal to 1000s. Therefore, 

thanks to the method of the characteristics, we know that the concentration at N2 at 300s is the 

same as the one at N1 at -700s:          = 0 mg/L. In the same way,    gets the same value for 

time    600s and    900s. For starting times above 1200s the results of the backtracking are 

times      . As                , therefore, in this example case,     ≥        = 1 

mg/L.  

 The algorithm can be extended to a graph. We take one source of chemical agent N1, four 

pipes, two passing nodes N2, N3, a consumer N4 and a concentration of 0 mg/L as initialization 

for all nodes and pipes: 

 

Figure 35: Small network backtracking. 
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 We take the following example: all pipes have equal flow rate and it takes 300s to go 

from N1 to N2, 500s from N1 to N3, 600s from N2 to N4 and 800s from N3 to N4. In Table 6 the 

concentration values of all nodes for the 5 first time steps are summarized. 

 

Table 6: Transport for small network. 

t (s)    (mg/L)    (mg/L)    (mg/L)    (mg/L) 

< 0 0 0 0 0 

0  1 0 0 0 

300 1 1 0 0 

600 1 1 1 0 

900 1 1 1 0.50 

1200 1 1 1 0.66 

1500 1 1 1 1 
 

 The concentration of    and    are computed with the method presented previously on 

one pipe. The concentration of    is calculated as follows: 

       
                           

     
 
                        

 
  

with      the time it takes to go from node Ni to node Nj, Qi the flow rates and Ci the 

concentrations. 

 A linear interpolation is used on the concentration for any time backtracked    that is not 

a multiple of the quality time step. Let n be the integer that respects  

                            

then: 

        
    
     

                 

and therefore in the example case: 
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III-2.3 Random Walk Coupled to the Backtracking Algorithm 

  

 The backtracking algorithm, modeling the axial transport, is coupled with a random walk 

method to model the radial diffusion effect. Let us consider a pipe of length L and a laminar 

velocity profile. A concentration C(t) is injected in the inlet, and depends only on the time 

(uniform on the cross-section). We want to find the concentration C(x,r,t) to be integrated on the 

cross section at x.  

 

Figure 36: Pipe, dispersion problem. 

 The direct method consists in injecting particles along the cross-section at the inlet of the 

pipe to count how many reach x. This implies a large number of particles in time and space. The 

idea is to use the particle backtracking (non reactive tracer). Taking the end of the pipe, particles 

are injected and they are moved back in time and space to find their original position (radius) and 

the time they have been injected in order to find the concentration they had at that time. 

 

Figure 37: Pipe, particle backtracking with random walk. 

 The advantage of the backtracking is that the information of the introduced particles is 

where we want to know the results, at at the junction end of the pipe. Therefore, fewer particles 

are needed to get the result.  

 As it is the application of the analytical formula (Eq. 31) computed with a rectangle rule, 

the results are the same. 

 To simulate the radial diffusion, a random walk method has been used: where each 

backward movement on x and time step dt is associated to a radial movement with quadratic 

average: 

                  

with d the spatial dimension,    the coefficient of diffusion and dt the time step.  

L

C(x,r ,t)C(t)
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 A Gaussian can be used to determine the amplitude of the random walk. Therefore, in one 

dimension, the move of one particle is given by: 

                

 In a pipe, the particle is moving in a disk corresponding to the cross-section. Both 

movement in x and y direction are given by a Gaussian. 

                

                

which have been implemented with the current formula: 

                                         

with    and    two random numbers between 0 and 1. 

 The boundaries are taken as reflective. A is the starting point, B the ending point. 

1  

Figure 38: Random walk with circle boundary condition. 

 As the problem is symmetric, dy is taken positive to ease the calculation. P is the point 

that intersects the line (AP) and the circle. 

 

       

   
  

  
    

  

with r the position of A in the x-axis and R the radius of the circle. By substitution and by 

resolving a second-order polynomial the coordinates of the point P are computed: 
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with B’ being symmetric to the point B around (OP) and therefore it has the same radius. B’ is 

calculated from P with the vector (-dx;-dy) and the amplitude                                 . 

III-2.4 Random Walk Validation 

 

 Different methods have been described that solves the transport problem: 

  - The Eulerian hybrid method of Porteau (see I-II.1) that will be called the no 

dispersion model. 

  - The backtracking in one dimension (see III-2.2) 

  - The integral formula (Eq. (31)) 

  - The backtracking and random walk with no radial diffusion which give the same 

result as the integral formula in constant velocity (see III-2.3 with    = 0     ) that will be 

called the no radial diffusion model. 

  - The backtracking and random walk with a radial diffusion    (see III-2.3) 

 Here, the results of those models are compared to CFD simulations results. Pipes of 1 and 

2 meters, with a diameter of 100 mm, are meshed and a laminar model is used to simulate the 

propagation of contamination with a concentration equal to 1 mg/L on the whole cross section at 

the inlet. The advection-diffusion equation is simulated with diffusive coefficient    

          and             . 

 The simulations have been performed with Code Saturne software, (see Archambeau et al. 

(2015)). The pipe is meshed as illustrated in Figure 39 with 30 cells on the radius (20 in the 

boundary layer) and 320 on the length. Only one quarter of the pipe section is used and 

symmetric boundary conditions are applied on the surface cut. Dirichlet condition with zero 

velocity is used on the round surface. Laminar velocity profile is imposed on the entry and at the 

initialization inside the pipe. 



III Enhancing the Transport Model: the Dispersion 

 

 

90 III-2 Backtracking Algorithm and Random Walk to Model Radial Diffusion 

 

 

Figure 39: Pipe mesh. 

 The Figure 40 shows a comparison between the different models, considering the 

simulation of the propagation of a contamination in a 1 meter pipe. The purple line is the model 

without dispersion and the green line corresponds to the results when only taking into account the 

velocity profile effect (no radial diffusion). The green one is reaching the end of the pipe twice 

faster than the purple one. The CFD result gives a curve in-between those two curves; it is due to 

the radial diffusion that tends to make uniform the concentration in the cross section. Finally, the 

backtracking and random walk model with              (blue line hidden by red line) give 

similar results with the CFD results for both 1 meter and 2 meters. 

 

Figure 40: Comparison CFD, dispersion              with and without radial diffusion and no dispersion on a 1 and 

2 meter pipe. 

 The same comparison has been made with the diffusion coefficient             . As 

shown in Figure 41 the backtracking and random walk model with              also give 

results similar to the CFD results for the 1 meter pipe. This proves the efficiency of the 

backtracking and random walk model for different diffusive coefficients and different lengths. It 

needs several hours on 12 processors to do the CFD simulation and only several minutes on 1 

processor to do the same with the backtracking and random walk model. 
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Figure 41: Comparison CFD, dispersion              with and without radial diffusion and no dispersion on a 1 

meter pipe. 

 The results for the different models are compared in Figure 42. As shown earlier, the no 

dispersion model and the no radial diffusion model give differen²t results. When taking into 

account the radial diffusion, the result is in-between those two models. The bigger is the diffusive 

coefficient, the closer it is to the no dispersion model. 

 

Figure 42: Comparison dispersion                           with and without radial diffusion and no 

dispersion on a 1 meter pipe. 

 The result is also given for a step shape concentration at inlet in Figure 43.  

 Diffusive coefficients below              give results close to the no radial velocity 

model. The concentration arrives twice faster than the no dispersion model. The curve increases 

progressively until a certain time, then decreases slowly. That time corresponds to half the time it 

takes for the end of the step to reach the end of the pipe with the no dispersion model.  

 A Gaussian shape can be seen for diffusive coefficients higher than               

and therefore may be modeled by a virtual diffusion term as it has been treated in literature, see 

Taylor (1953), Romero-Gomez et al. (2009). 
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Figure 43: Comparison dispersion                              with and without radial diffusion and no 

dispersion on a 20 meter pipe with step concentration. 

III-3 Application to a Small Network and an Experiment Pilot 

 The algorithm coupling backtracking to a random walk is compared here to no dispersion 

models. The following transport models are compared: Eulerian hybrid transport model 

implemented in Porteau, the backtracking algorithm in one dimension, the no radial diffusion 

algorithm, and two cases of backtracking with random walk that have diffusive coefficient 

              and              respectively. It is then applied to a pilot scale (see 

Figure 46) for discussion. 

 The network is presented in Figure 44, it is composed of two pipes, one source “rs0” and 

one consumer “od2”. A periodic step concentration is injected in “rs0” and the profile of 

consumption, and therefore the velocities in the pipe, is assumed to be oscillating. The Reynolds 

number is oscillating between 250 and 3750. 

 The Poiseuille profile for   ≤      is defined as follows: 

           
  

  
   

 For high Reynolds number (  ≥       the profile is taken as the average axial velocity: 

         

 and finally, to take into account the transitional regime, Reynolds number in-between, a 

linear prolongation of the velocity profile is taken as followed: 

      
       

    
          

  

  
         

  

  
   (33) 
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III.3.1 Model Comparison 

 

Network (2 pipes, length = 300m, 
diameter = 100mm) 

rs0_conc rs0_age 

   

 
Figure 44: Network, concentration and age at "rs0", velocity in pipes rs0->od1 and od1->od2. 

 The Figure 45 shows the results (concentrations evolution with time at node od1 and od2) 

given by the different models. The no dispersion model gives a step. The no radial diffusion 

model achieves to a different solution. In the two situations             and    

          associated to the backtracked with random walk model, because of their low radial 

diffusivity, have results close to the no radial diffusion model. Logically, the other diffusive 

coefficients associated to the backtracked with random walk model show a concentration 

between no radial diffusion and non dispersive cases. 

 

Figure 45: Comparison concentration at node od1 and od2 for models with dispersion                    

          with and without radial diffusion and no dispersion on Network. 
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 Table 7 gives the computer running times for these models with a time step of 30 seconds 

and the simulation time fixed to 12h. The dispersion models have used 1000 particles. Depending 

on the targeted accuracy, less or more will be needed. The no radial diffusion model takes fifteen 

more time than the no dispersion model, so it may still be used for calculation. However, the full 

dispersion models with radial diffusion takes until 400 times more time. They can be used with 

bigger quality time steps, but only for small networks. 

 

Table 7: Model execution times comparison with dt = 30s. 

                                                          
No radial 
diffusion 

No 
dispersion 

Running 
time 

432 400 377 370 360 15 1 

 

III-3.4 Experiments 

  

 Experiments have been performed on the TZW network in Dresden to calibrate the pilot 

network with measures of conductivity of a chemical product injected inside the network.  

 

 

Figure 46: Pilot network TZW. 

 

 In Figure 46 the pilot network is represented with the length of the pipe in meters. The 

conductivity sensors are placed at red points “L1”, “L2”, “L3”, “L4” and “L5” (red nodes) with 

the injection of contaminant (constant profile from 60s during 120s) at point “House” (green 

node). The hydraulic paths go from resource node “In” to the points where the sensors are places. 
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Moreover velocity sensors have been placed on different pipes and the other pipes velocities are 

computed with the help of the mass conservation law. The measures of conductivity have been 

adapted in order to be compared with simulation results, by equalizing the mean integral of the 4 

sensors to the concentration introduced at the inlet which have been used for the simulation. 

 The concentration at each sensor node is calculated with Porteau. Figure 47, Figure 48 

and Figure 49 show results for three different hydraulic permanent regimes 1, 2 and 3. The first 

one is in laminar regime (Re < 2000), the second in the transitional/turbulent (2000 < Re < 6000) 

state and the last is in turbulent regime (Re > 4000). For Porteau simulations, a step has been 

injected, therefore, in such 1-D simulations, it is normal to find steps at outputs. 

 Figure 47, Figure 48 and Figure 49 show the comparison between Sensors L3 and L5 

measurements and the 3 models: no dispersion, no radial diffusion and full dispersion with 

diffusive coefficient             . These figures present respectively the results found in 

regimes 1, 2 and 3. 

 For laminar regime 1 in Figure 47, the curve that corresponds to the new backtracking and 

random walk model, with diffusive coefficient             , gives satisfactory results 

compared with experiments. The no dispersion model is late on the measurements and is 

overestimating the concentration. On the contrary, the no radial diffusion model estimates a 

concentration lower than in reality, and also does not foresee the two fronts of concentration for 

the sensor L5. 

 The transitional/turbulent regime 2 is presented in Figure 48. The dispersion model still 

does well for the transitional case. The model without dispersion is closer to experiments than in 

the previous regime. Finally, the Figure 49 presents the turbulent regime 3. The model is less 

good as it has not been adapted to the turbulent case in this thesis. 

 In all cases and models, the measurements are in advance from what the models predict. It 

can only be due to a real phenomenon that is not taken into account. That can be the value of the 

velocities estimated from the conductivity measurements, that are superior to those measured by 

the velocity sensors. It can also be due to the fact that conductivity meters are placed at the center 

of the pipe and therefore close to high velocities. 
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Figure 47: Comparison at Sensor L3 and L5, regime 1. 

 

 

Figure 48: Comparison at Sensor L3 and L5, regime 2. 

 

 

Figure 49: Comparison at Sensor L3 and L5, regime 3.
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III-4 Conclusion 
 

 This chapter tackles the dispersion effect in water distribution systems transport models. 

This consists in taking into account two phenomena which are the velocity profile and the radial 

diffusion in the pipe. It has been modeled in different papers by a virtual diffusion coefficient 

using various different models and it needs to be calibrated. The approach here is a backtracking 

scheme coupled with a random walk. The first one models the velocity profile, the second the 

radial diffusion. It does not need calibration however it is highly dependent on the velocity and is 

only treated in laminar cases in this chapter. 

 The nondimensionalization of the advection diffusion equation in laminar regimes has 

given two criteria to neglect the radial diffusion and the axial diffusion. The radial diffusion term 

can be neglected only if 
 

 
       and the axial diffusion can be neglected if       . The 

first one is hard to get in water distribution models but the second can easily be found. If the two 

conditions are respected, diffusion can be neglected, and an integral formula can be given to 

calculate the concentration anywhere inside a pipe, knowing the concentration limit conditions at 

the ends of the pipe: 

 

         
 

   
       

 

       
   

     
 

   

  

   

 

 Therefore, a model of backtracking has been developed for water distribution networks. It 

uses the adjoint formula of the transport equation to link the concentration at one end of the pipe 

to its origin and deduce its value from it. It has been extended to more than one pipe using a 

concentration time table at all nodes. A discretization of the radius on the cross section of the 

pipe permits to take into account the velocity profile and gives the same results as the integral 

formula. Finally, a random walk is added to the scheme to model the radial diffusion. It has been 

compared to CFD results and gives good results for different diffusion coefficients.  

 The model has been used to compare the results of the different transport schemes on a 

double pipe network with oscillating velocity and a periodic step concentration. When taking into 

account the dispersion effect, the results for concentration are different than one dimensional with 

no dispersion effect models. The hydrodynamic diffusion (with only velocity profile) can be 

modeled for a cost of fifteen times the usual transport calculation time, with a discretization 

N = 100 which has been sufficient in the case tested. Moreover, the radial diffusion model by 

random walk is expensive in time, around 400 times the usual time. It depends greatly on the 

quality time step used as well as the diffusive coefficient. Research in parallelization can be made 

to accelerate the calculations. 



III Enhancing the transport model: the dispersion 

 

98 III-4 Conclusion 

 

 Finally the method has been tested to model a pilot scale where current model simulation 

results are different than those measured. Three regimes have been tested, laminar, 

transitional/turbulent and turbulent. The backtracking scheme and random walk models have 

generated results close to measurements in both first and second experiment cases, but less good 

in turbulent case. More research is needed to take into account the dispersion in turbulent regime. 
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 The enhancement of the transport model is needed to precisely estimate the propagation 

of a contaminant. In this chapter, we tackle the problem of source identification. It is solved with 

the use of a backtracking algorithm to calculate the list of potential source nodes. It also gives a 

ranking of those nodes to be the real source of contamination. 

 Real-time sensors are quite a new topic. Multiple researches are focused on where to 

place the sensors and how to treat the data they produce. One possible use is the identification of 

the source of a contamination. Taking into account that we have an alarm generator based on non 

specific quality sensor, the aim is to find the location of the source of the contamination by using 

the time and location of detection as well as the history of the network dynamics.  

 We consider binary sensor responses: positive or negative. Both can be used to deduce the 

location, starting time and duration of a contamination. A positive response means that the alarm 

generator algorithm has computed that, at this sensor location and at that time, there has been a 

contaminated water going through. In the other case, a negative response is produced that also 

helps in identifying the node where no contamination could have happened. In this thesis, only 

perfect sensors are considered: there is no false positive and false positive. 

 This chapter first presents the source identification method used as well as the 

backtracking algorithm. Further, we first describe the multi-contamination solution and second 

the criteria used for the sensor placements.  

 

IV-1 Backtracking Algorithm 
 

 The backtracking algorithm is a method based on the adjoint formulation of the transport 

equation on a graph. It has been used by Shang et al. (2002) and De Sanctis et al. (2010) to 

enumerate the potential sources of contamination. It is used here to build the input/output matrix 

as defined in Propato et al. (2010) but beginning at positive sensor responses in order to 

accelerate the calculations. The negative responses are also used as presented afterwards but not 

as part of the matrix of contamination. That matrix is a binary matrix, where true values link the 

potential source of contamination to positive sensor responses.  Negative responses help 

identifying times where nodes can’t be source of contamination and therefore limit true values in 

the matrix. 

 

IV-1.1 Equations and Method 
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 As seen in part III-2.1, the equations that are mostly used in water distribution network 

quality models are one-dimension advection-reaction equations coupled with perfect mixing at all 

junctions. 

   

  
  

  

  
    α       

with C the concentration of the agent, t the time, x the space, u the average velocity of the pipe 

and K and α, the kinetic constant and order of the reaction respectively. 

 
     

              

            

   

with C the concentration and Q the flow rate. 

 The contaminant goes from a source, travels through the network and may reach an 

installed sensor. The usual transport models used are either Eulerian or Lagrangian. The adjoint 

equations associated allow to go back in time from the sensor response to find in the network the 

possible sources. 

   

  
  

  

  
     

                               And                    

 

 The backtracking algorithm used is one of the Lagrangian adjoint forms. It uses the 

method of characteristics to find the time needed, for a particle going into one end of the pipe, to 

exit out. The Lagrangian solution takes the form: 

         
  

 
          

and its adjoint formulation is: 

         
  

 
          

 If u is constant, and if dx = L, then 
  

 
 is the time it needs to reach the other end of the pipe. 

Hydraulic models often use constant velocity by hydraulic time step. In this case the time is 

obtained with the formula: 

         
                  

      
 

    

  

  

with      given (the time step calculated) and     looked for. 
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 This may give multiple solutions, the one chosen is the first (smallest) that is not the 

trivial one (   =     ). 

 

Figure 50: Backtracking algorithm method, red are potential nodes, green are safe nodes and black are unknown nodes. 

 To get the whole solution around the network, a recursive algorithm is used as shown in 

Figure 50. The red sensor has detected a contamination as contrary to the green one. Green nodes 

are safe and red ones are potential sources of contamination. Top nodes are safe because green 

wins upon red. Indeed, if the top nodes were red, the Sensor 1 would have been red. Finally, 

black nodes are the ones upon where we don’t have any information. The middle one is black 

because no sensor monitors it. The two nodes on the top left are black because the time limit for 

the backtracking has been reached. 

 Let us take a contamination detected at a node at a time. We calculate for every inflow 

pipe the node and the time from when the contamination could have originated and repeat the 

algorithm for each new node reached. Moreover, as this method can go back far in time, a 

backtracking time (BT) is given from when it is assumed that the contamination cannot have 

lasted that much time, it needs to be calibrated from the maximum residence time inside the 

network. Also, as will be shown in the results part, the efficiency of the source identification 

method depends on both BT and the average time to detection.  

 This algorithm allows from a sensor node and a response time to calculate every node 

location and time that can explain where this detection is coming from. Now, it can also be used 

in another way, if the sensor is sure to not have detected something, the algorithm can tell which 

node at which time cannot be a source of contamination.  

 Finally, both ways can be used simultaneously and for a large range of sensor times by 

launching all simulations and crossing the information. This allows the creation of the 

input/output matrix of contamination. It is the matrix that can illustrate which node at which time 

can explain which positive sensor at which time. Henceforth, it gives the list of potential sources 

of contamination. An example is given in Figure 51. 
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Figure 51: Input/output matrix of contamination, blue points are non zero values. 

 In Figure 51, each row represents a positive sensor response at a time and the column a 

potential node at a time. A blue point means that the node at a time corresponding to a column 

can explain the sensor node at a time on the row. Each sub-diagonal matrix represents the 

contamination duration. Indeed, in case of a velocity that does not vary a lot, subsequent 

contamination time steps can explain subsequent sensor responses. 

 Now, by using the input/output matrix of contamination, it is possible to find which node 

may be more likely to be the real source of contamination. Indeed, the node that best explains the 

sensor response is the one with the most non zero values in every row, all times taken together. 

Table 8: Simplified input/output contamination matrix. 

Node Id 3 5 7 9 17 19 21 23 31 33 35 

Sensor 7 0.98 0.69 1.00 1.00 0.56 0.64 0.64 0.64 0.00 0.00 0.00 

Sensor 35 0.98 0.30 0.00 0.00 0.98 0.89 0.33 0.00 1.00 1.00 1.00 

Mean 0.98 0.49 0.50 0.50 0.77 0.76 0.48 0.32 0.50 0.50 0.50 

Rank 1 9 8 8 2 3 10 11 8 8 8 

 

 Table 8 shows the results for simplification (aggregation) in time of the matrix in Figure 

51, on the rows and the columns. Firstly, columns of the same node are combined in one column 

that takes the value 1 on each row having at least one non zero value. Then all columns are 

averaged on the number of rows to gives a score. Table 8 gives the average score for each sensor. 

In fact, all sensors are weighted with their number of rows, or positive responses, but in this 

example both sensors have the same weight. The averaging on the rows gives an efficient 

weighting for ranking nodes to be the likely source of contamination. In this example, node 3 is 

the one that is most likely to be the true source of contamination. It can explain 98% of the 

positive responses at sensors. However the mean taken is calculated on all responses, no matter 

the sensor it belongs to, and therefore the method favors the information given by the sensors 

with more responses.  
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 The averaging method used is algebraic, instead, a product may have been used to define 

probabilities. Indeed, in case of one contamination only, node 7 in Table 8 has a zero probability 

to be the source of contamination if the product of the scores in the rows of sensor 7 and 35 score 

is done.  The method used here is more robust, all positive sensor responses have the same 

weight. Also it can be used in case of multi-contamination contrary to the product probabilities, 

as explained in the next part. 

 Two variables of the backtracking algorithm are defined: the backtracking time (BT) and 

the observation time (OT) from first time to detection. These two variables define two real 

aspects of source identification. The first one is the time the algorithm goes back in time to find 

the source of contamination. The second one is the period of observation used after the first 

observation. The ability of a sensor placement to do the source identification will depend on these 

two parameters. A large BT will allow finding contamination that happened far in the past and a 

large OT means more information to solve the inverse problem. A good sensor placement tries to 

minimize these two parameters while keeping the same results. A small BT induces a good early 

warning, the contamination is detected fast. A small OT proves a good performance; the amount 

of observation time needed to accurately identify the contamination is small. 

 

IV-1.2 Multi-Contamination 

 

 The problem of source identification with multi-contamination can also be tackled. It is 

solved here with a simple application of coverage theory (see Godsil et al. (2004) ). The method 

that has been presented, as such, cannot establish if it is a one or multi-contamination case. 

However by operating on the matrix it is possible to define cross information. Generally, a 

product of the matrix with its transpose is used to create the matrix of information. However, the 

simplified input/output matrix of contamination (before row averaging) is binary and therefore 

the operator OR is used here. This operator allows the definition of couples of nodes where true 

values mean that at least one node can explain the positive sensor response. For a two-

contamination, the following product can be done: 

       
           
 
   

 
  

with n the number of rows of the simplified input/output matrix of contamination, the size of M is 

then potential node × potential node and 

                 

   being the coefficient of the simplified input/output matrix of contamination. 



IV Contamination Source Identification 

 

106 IV-1 Backtracking Algorithm 

 

 Each coefficient of the matrix M is the coupled result explaining positive responses at 

sensors. The coefficient represents the percentage of positive sensor responses that can be 

explained by the couple of nodes associated. The maximum coefficient of M is the one more 

likely associated with the couple responsible of those contaminations. 

 The diagonal coefficients     of the matrix M are equal to the mean row values (see Table 

8) when simplifying the input/output matrix of contamination. The Table 9 is the cross 

information matrix for a double contamination on nodes 5 and 15. It can be seen that their 

respective score 0.43 and 0.55 are not the highest on the diagonal (node 17 score is 0.74). A one 

contamination assumption would be, in this case, not placing the two contamination sources firsts. 

 Any coefficient     not in the diagonal can’t be inferior to either the two diagonal values 

    and     due to the OR operator maximization proprieties. If there is a large difference 

between diagonal elements and the maximum coefficient of M, the chance to have a multi-

contamination is high. The highest value on the table is 0.96, which corresponds to the coupling 

of the two sources of contamination cited before. They can explain 96% of the positive sensor 

answers. And, as this value is quite above the two criteria values taken separately, it is most 

likely that this is a case of multi-contamination. 

Table 9 : Multi-contamination cross information matrix. 

Node Id 1 3 5 7 9 15 17 19 21 29 31 33 35 43 

1 0.30 0.33 0.62 0.55 0.47 0.66 0.80 0.78 0.64 0.49 0.64 0.64 0.64 0.40 

3 0.33 0.27 0.57 0.51 0.43 0.68 0.77 0.76 0.59 0.51 0.63 0.63 0.63 0.40 

5 0.62 0.57 0.43 0.56 0.55 0.96 0.85 0.80 0.68 0.67 0.74 0.74 0.74 0.56 

7 0.55 0.51 0.56 0.34 0.34 0.77 0.85 0.80 0.57 0.60 0.87 0.87 0.87 0.47 

9 0.47 0.43 0.55 0.34 0.23 0.66 0.74 0.69 0.46 0.49 0.76 0.76 0.76 0.36 

15 0.66 0.68 0.96 0.77 0.66 0.55 0.86 0.85 0.77 0.55 0.77 0.77 0.77 0.55 

17 0.80 0.77 0.85 0.85 0.74 0.86 0.74 0.75 0.74 0.86 0.76 0.76 0.76 0.86 

19 0.78 0.76 0.80 0.80 0.69 0.85 0.75 0.69 0.70 0.82 0.76 0.76 0.76 0.82 

21 0.64 0.59 0.68 0.57 0.46 0.77 0.74 0.70 0.46 0.72 0.76 0.76 0.76 0.59 

29 0.49 0.51 0.67 0.60 0.49 0.55 0.86 0.82 0.72 0.26 0.66 0.66 0.66 0.26 

31 0.64 0.63 0.74 0.87 0.76 0.77 0.76 0.76 0.76 0.66 0.53 0.53 0.53 0.66 

33 0.64 0.63 0.74 0.87 0.76 0.77 0.76 0.76 0.76 0.66 0.53 0.53 0.53 0.66 

35 0.64 0.63 0.74 0.87 0.76 0.77 0.76 0.76 0.76 0.66 0.53 0.53 0.53 0.66 

43 0.40 0.40 0.56 0.47 0.36 0.55 0.86 0.82 0.59 0.26 0.66 0.66 0.66 0.13 

 

 This method works for groups with more than two contaminations, however the time to 

calculate the coefficients is quadratic with the number of potential nodes, henceforth it is quite 

expensive for more than a simple couple. In other cases a coverage optimizing algorithm must be 

developed. 
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IV-1.3 Sensor Placement Criterion 

 

 The usual criteria for sensor placement are: average time to detection, detection likelihood, 

volume of water consumed, population exposed and extent of contamination. Some other criteria 

may be used such as detection redundancy but few in the literature take into account the 

performance of a method of source identification linked with a specific set of sensor locations. 

 The criterion for ranking explained in part IV-1.1 is modified and used in the following 

method to perform the sensor placement. The objective function, that is named Contribution, is 

defined as a real number between 0 and 1. It is defined as a non-dimensional ranking of the 

potential sources over the total number of nodes. It defines the capability of one sensor placement 

to rank the true source of contamination, as potential node, among the nodes list. 

 

 
                

      

             
  (34) 

 

with node number being also the rank max. 

 If the contribution equals 1 then there are no nodes higher in the ranking, if it is 0 then the 

node is the least likely to be source of contamination. Also it has been chosen that when a node is 

not a potential source of contamination, it is given the Contribution 0. 

Table 10: Contribution for a source identification with source of contamination being at node 3. 

Node Id 3 5 7 9 17 19 21 23 31 33 35 

Contribution 1.00 0.58 0.63 0.63 0.95 0.89 0.53 0.47 0.63 0.63 0.63 

 

 Table 10 gives the example associated with the results of Table 8.  The node 3 is the first 

in the list, therefore it has the Contribution 1 associated with it. The others have an intermediate 

value between 0 and 1. In case of same criteria values, the smallest ranking is chosen, therefore 

nodes « 7 », « 9 », « 31 », « 33 » and « 35 » have equal rankings of 8. Then they are associated 

the value 0.63 equals to   
   

    
 , 20 being the number of nodes in the network. The true source 

of contamination being the node 3, the criterion for the sensor placement is 1. If this would have 

been node 9 and the same values were found, the criterion would have been 0.63.  



IV Contamination Source Identification 

 

108 IV-1 Backtracking Algorithm 

 

 Therefore, from one sensor placement, and a given contamination, the method finds the 

Contribution of any potential source of contamination. The one corresponding to the true source 

of contamination can then be used to test the source identification method performance. 

 This criterion can also be used to perform the sensor placement method that is explained 

in the next section. The larger the Contribution, the higher is the source contamination potential 

node probability of being the true source of contamination. Depending on the contamination 

scenario, the sensor placement and the parameters BT and OT, three cases exist. The first one 

concerns the scenarios where the contamination is not detected, their Contribution is fixed to 0. 

The same applies for the scenarios where contamination source nodes are not inside the potential 

contamination nodes list. The accuracy of the source identification algorithm is then defined: the 

algorithm is accurate only if the source node is among the list of potential nodes of 

contamination:  

                  
                                                                        

       
  

Lastly are the remaining contamination scenarios and the rank of the source of contamination 

among all the nodes. The specificity of the source identification algorithm is then defined as 

follows: 

                    
                 

             
      

and represents the percentage of nodes that are ranked worse than the source of contamination. A 

100% specificity indicates that the source node is ranked first. 

 The scenarios of contamination belong either in the not detected scenarios, the not 

accurate or the ranked scenarios. 

                                                 

The average Contribution can be calculated with the following formula: 

                               
    

         
             

       
    

          
  

It can also be calculated as a function of the specificity percentage, the accurate percentage and 

the detection likelihood, with the following formula: 
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 IV-2 Source Identification Results 
 

 A sufficiently large number of simulations of random one-contamination have been 

performed for the test network which has around 2,500 nodes. Each simulation lasts for 72 hours, 

and the contaminations are simulated between 24h and 48h for durations of 1h to 6h. Simulations 

with a fixed concentration of 1mg/L of conservative contaminant have been taken to simulate 

sensor responses. The sensors are considered respecting the following hypothesis: any 

contamination value that is higher than 0.001 mg/L in the simulation is taken as a positive 

response, otherwise it is negative. The time of backtracking BT is taken as 24h and the 

Contribution criterion will be plotted as a function of the time of observation OT for both average 

time detection optimal placement (ATDOP) and detection likelihood optimal placement (DLOP) 

given by Piller et al. (2015).  

 

IV-2.1 Ranking for 10 Sensors 

 

 First 10 sensors have been used. In Figure 52 Contribution for both average time detection 

(ATDOP) and detection likelihood (DLOP) optimal placement with 10 sensors has been plotted 

as a function of OT. For both, the Contribution increases with OT, proving the efficiency of 

exploiting new information by the source identification algorithm. The DLOP sensor placement 

is doing better than ATDOP. Indeed it has a higher probability of detection and therefore is less 

impacted by the constraints. The Contribution is equal to 0 if not detected.  

 When looking at the accuracy and the specificity, ATDOP is doing slightly better. In 

Figure 53, the accuracy is increasing from 95 or 96% to 99% with OT increasing. Most 

contamination scenarios that are not backtracked, and therefore not accurate, are probably 

because that the contamination happened before the backtracked time. This explains why 

ATDOP, which is the average time to detection optimal placement, performs better than the 

detection likelihood optimal placement when observation time is low. Table 11 5 shows, as 

expected, that ATOP has an average time to detection lower than DLOP but also has a lower 

detection likelihood. In Figure 53, the specificity is going from near 93% to at most 96%, which 

is correct, the source node is on average among the first 7% nodes which is equal to at most 175 

nodes. 
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Figure 52: Contribution for average time to detection and detection likelihood optimal sensor placement with 10 sensors. 

Table 11: Average time to detection and detection likelihood scores for ATDOP and DLOP. 

 ATDOP DLOP 

Average time to detection 3.8h 6h 

Detection likelihood 75% 82% 

 

 

Figure 53: Accuracy and specificity for average time to detection and detection likelihood optimal sensor placement with 

10 sensors. 

IV-2.2 Ranking for 10, 20 and 50 Sensors 

 It is also interesting to see the influence of the number of sensors on the ranking. In 

Figure 54 the Contribution for both average time to detection and detection likelihood optimal 

placement have been plotted as a function of sensor numbers. The Contribution increases with the 

number of sensors for both sensor placements. This increase is not linear, the gain from 10 

sensors to 20 sensors is not the same as between 20 and 50 and the asymptotic value seems lower 

for average time to detection optimal placement than for detection likelihood optimal placement. 
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Figure 54: Contribution for average time to detection and detection likelihood optimal sensor placement with 10, 20 and 

50 sensors. 

 In Figure 55, the Contribution is also given but this time as a function of the observation 

time for 10/20/50 sensors. For average time to detection optimal placement, the more sensors 

there are, the less is the result is impacted by the observation time. A similar behavior can be seen 

with the detection likelihood optimal placement but with less sensitivity. Finally, average time to 

detection optimal placements are doing better than respective detection likelihood optimal 

placements for both accuracy and specificity as seen in Figure 56. The sensor number impacts 

greatly on the source identification results but with less impact for each new sensor added, and 

the decision to choose the number of sensors to place depends on the four desired criteria: the 

type of optimization, the Contribution, the average time to detection and the detection likelihood, 

as given in Table 12. 

 

 

Figure 55: Contribution for average time to detection and detection likelihood optimal sensor placement with 10/20 and 50 

sensors in function of observation time. 

Table 12: Average time to detection and detection likelihood for ATDOP 10/20/50, DLOP 10/20/50. 

 ATDOP 10 ATDOP  20 ATDOP  50 DLOP 10 DLOP 20 DLOP 50 

Average time to 

detection 
3.8h 2.7h 1.8h 6h 4.4h 3.4h 

Detection likelihood 74% 80% 84% 82% 91% 95% 
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Figure 56: Accuracy and specificity for average time to detection and detection likelihood optimal sensor placement with 

10, 20 and 50 sensor. 
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IV-3 Conclusion 

 

 The novel method of source identification uses a backtracking algorithm to construct the 

input/output contamination matrix in real time. The backtracking is based on the adjoint of the 

transport equations. It computes those in reverse time, beginning at sensors, to enumerate 

potential nodes of contamination. The use of the backtracking methods allows to handle large-

size networks that would require huge calculation times if it was performed with a forward 

scheme. Indeed, the time needed to run every possible contamination is exponential with the size 

of the network. The matrix obtained is then analyzed (with simple manipulation such as 

aggregation) to evaluate the number of positive sensor responses that each potential source of 

contamination can explain. This score allows the creation of a ranking list among the potential 

sources of contamination. The method uses positive answers to find potential nodes but it also 

processes negative answers to eliminate candidates. It can also be extended to multi-

contamination but is quite costly in time; extended covering methods may be developed to 

overcome this drawback. 

 The method has been optimized to be computed in real-time condition even for big 

network and a large number of sensors. The backtracking algorithm contains break conditions in 

case of repetitions: graph edges are not checked twice for same time and sensor response. In 

result, the method takes at most several minutes to compute even for a big network and a 

widespread contamination. 

 To take into consideration detection likelihood, the accuracy and the specificity criteria in 

the sensor placement, one new criterion is defined that is called Contribution. This is a 

dimensionless variable between 0 and 1 that depends on the ranking, the last ranked are given the 

value 0 and the first to be source of contamination is given the value 1. That criterion is averaged 

on several contamination scenarios. The not detected scenarios as well as the not accurate 

scenarios are given the value 0. The Contribution is then the average of the results given by all 

the contamination scenarios simulated.  

 The methods have been tested on a real French network with around 3,000 pipes. The 

influence of the backtracking time (BT) as well as the initial sensor placement for the local search 

method has been carried out. Eight parameter/method combinations have been defined: Two 

come from the application of the Piller et al. (2015) method each based on average time to 

detection (ATDOP) and detection likelihood (DLOP) maximization through a greedy algorithm. 

Six method/parameter scenarios have been added to ATDOP and DLOP. The following two 

come from a greedy algorithm but with objective being the maximization of the Contribution 

criteria in the two parameter cases BT being long, 24h, or short, 4h, and observation time (OT) 

being short set at 2h. The fourth last sensor placements assessed are results of a local search 
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algorithm in the same configuration than for the greedy algorithm but with two different 

initializations. The first twos begin with ATDOP, the other two launched from DLOP. 

 It was found that the criteria are conflicting. When comparing ATDOP and DLDOP, the 

first one is performing better with average time to detection, accuracy and specificity, however it 

performs worse concerning detection likelihood than the second one. It can be concluded that 

ATDOP performs better the source identification but on less coverage of the network. 

  Also, adding new sensors to ATDOP and DLDOP improves the results for the criteria, 

however each new added sensor brings fewer result improvements each time. Particularly 

ATDOP gets less detection likelihood improvement than the other placement, impacting the 

overall score for the source identification performance.  

 In this chapter we have defined four variables upon which the source identification gives 

different results depending on the sensor placement it is applied on: average time to detection, 

detection likelihood, the accuracy and the specificity. The first twos are conflicting and therefore 

an optimization problem solving is needed. The average time to detection will be constrained 

through the BT, the others criteria through OT and the objective function being the minimization 

of the Contribution. 
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 The aim is to look for the best placement of sensors in a water distribution network to 

monitor and detect contaminations. In this chapter we will consider the solving of an optimal 

optimization problem with averaged Contribution as objective function. 

V-1 Models 
 

 The optimization problem is solved by two methods. The first method uses a coupling 

between the backtracking method presented before and a Monte Carlo method (for contamination 

scenarios) associated with a greedy algorithm. Then a local search on graph method is also given 

which is a quicker algorithm. 

 The results are then analyzed and compared between them as well as the solutions given 

by Piller et al. (2015). It is a greedy algorithm that takes into account several computed quality 

parameters to define the best location for sensors placements. Among those are the average time 

to detection and the detection likelihood.  

 

V-1.1 Greedy Algorithm 

  

 Piller et al. (2015) perform a several mono-objective optimization solving on conflicting 

criteria such as minimization of time to detection, maximization of the detection likelihood and 

minimization of the fraction of population exposed. The method uses a greedy algorithm which is 

easy to compute. However, in some cases, it may not give the optimal solution. It has to be noted 

however that Propato et al. (2006) showed near optimality for this greedy algorithm. The aim of 

the optimization is to place the sensor so as to respect as much as possible the criterion chosen. A 

criterion defined as a weighted sum of the simple criteria can also be used instead. 

 It is proposed to add a new criterion, which optimizes the location that performs the best 

for source identification. It is defined as the placement that gives the best ranking to the real 

source of contamination-associated candidates. It uses the criterion defined in part IV-1.3, based 

on the ranking among all nodes of the network, that is the Contribution of one sensor placement 

for the localization of the source of contamination. The method follows the flowchart in the 

Figure 57. Firstly several contamination scenarios are defined as well as an empty list of sensors. 

All nodes are added to this list separately as temporary sensors and all contamination scenarios 

are tested giving the average Contribution for that temporary sensor. The node with the highest 

Contribution is then added permanently to the list of sensors. Then the greedy algorithm can be 

used again, until the number of sensors corresponds to the value wanted. 

 An example of the result is given in Table 13, only the first 10 nodes and 11 (among 20) 

contamination scenarios are shown. Each cell gives the value of the Contribution of the potential 
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sensor associated to the contamination scenarios. Here, node 47 on average the one which gives 

the best results. Then after several use of the algorithm, node 35, and then 49 are chosen. These 

are in the same order in Table 13 but may not be for other examples. 

Table 13: Average Contribution calculations for 20 scenarios. 

 NodeId 47 35 49 33 45 31 23 19 7 21 

Scenario Contamination 
node 

          

1 19 0.53 0.53 0.42 0.58 0 0 0.63 0.74 0.63 0.68 
2 23 0 0 0 0 0 0 0.74 0 0 0 
3 51 0 0 0 0 0 0 0 0 0 0 
4 47 0.95 0 0.83 0 0 0 0 0 0 0 
5 23 0 0 0 0 0 0 0.63 0 0 0 
6 3 0 0 0 0 0.63 0.74 0 0.74 0.58 0.68 
7 19 0.84 0.79 0.67 0.84 0 0 0.89 0.95 0.74 0.89 
8 9 0 0 0 0 0 0 0 0 0.58 0 
… … … … … … … … … … … … 
18 51 0 0 0 0 0 0 0 0 0 0 
19 31 0.53 0.53 0.42 0.58 0.63 0.73 0 0 0 0 
20 31 0.53 0.53 0.42 0.58 0.63 0.73 0 0 0 0 

 mean 0.28 0.27 0.27 0.25 0.23 0.22 0.22 0.20 0.19 0.19 

 

 The algorithm for sensor placement is presented in Figure 57 and is the following: 

  - begin with a list with no sensor in the network 

  - calculate for every node its average score for the criterion Contribution by a 

Monte Carlo method when adding temporarily the node to the list of sensor. 

  - add the best sensor to the list of sensors 

  - keep on until the number of sensors is reached 

 It is an effective method, however it is quite expensive. The method has only been used 

for cases of one contamination. For multi-contamination, more computation time is needed and 

the algorithm has to be modified. 
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Figure 57: Algorithm of sensor placement. 
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V-1.2 Local Search on Graph Algorithm 

 

 The previous algorithm looks at each iteration for the node that best suits the criteria of 

source identification. As the search is done on the whole node list, this method is quite costly as 

shown in the next part. To accelerate the algorithm, an optimization based on local search on 

graphs method is used. It begins with an initial set of guessed best locations, which can be a list 

given by another method such as the average time detection optimal placement given by Piller et 

al. (2015). Then the optimal solution is found by testing the Contribution source identification 

criteria on adjacent nodes. If the criterion has increased on adjacent nodes compared to the actual 

node then it is taken as the new sensor location in the next iteration. It may not converge to one 

solution (as seen later in Figure 61 and Figure 62) because all potential sensors are changed at the 

same time for each iteration to accelerate the algorithm. A convergence criterion can be defined 

to stop the algorithm and returns the best placement found. It is also proven later that it may not 

give the optimal solution but local minima. To improve the method, adjacent to already-used 

adjacent nodes can be explored or a genetic algorithm be used. In this thesis we have taken a 

three adjacent nodes distance. 

 

V-1.3 Parallelization 

 

 Parallelization of the code has been necessary because of the large number of 

contamination scenarios that have been taking too much computational time. Both precedent 

algorithms have been parallelized and launched on a cluster for computation. For the first 

algorithm, for each potential sensor node 2,000 contamination scenarios are tested on a test 

network case. Firstly these 2,000 cases are divided into 20 groups of 100 because of the memory 

limit of the processors needed for large networks. The contamination scenario groups are then 

divided by groups of processors depending on their numbers. Each processor is given a certain 

amount of scenarios to process. These scenarios are taken from the 100 scenarios known by that 

processor. To accelerate the algorithm an optimization has been performed on the work list of 

each processor. To each scenario, a certain amount of time is associated that depends mostly on 

the scenario and on the sensor placement, therefore a translation on the scenario list has been 

applied, and the same scenario might not be done by the same processor for another potential 

sensor. This allows us to average the calculation time charge for all processors, decreasing the 

total time of calculation. Indeed, for each iteration, all processors need to synchronize to decide 

on the sensor to add to the list, therefore the total time of calculation is based on the processor 

that takes the most time to calculate, and that mostly depends on the contamination scenario it 

needs to perform. 
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V.2. Sensor Placement Results 

 

 The Contribution criterion studied in the previous section is now used as an objective for 

the optimal sensor placement problem. The greedy and local search on graph methods have been 

used on the test network. Two cases have been taken, BT = 4h, OT = 2h and BT = 24h, OT = 2h 

with 10 sensors. The results are presented hereafter. 

V.2.1 Greedy Algorithm Results 

 

 The test network has been tested for the greedy algorithm. Two cases have been 

performed BT = 4h, OT = 2h (GOP4) and BT = 24h, OT = 2h (GOP24) with 10 sensors. It 

consists of testing every potential sensor location and determining, for all generated 

contamination scenarios, which location is best for the placement of the next sensor. Concerning 

the Contribution (see Figure 58), both DLOP and GOP24 are performing best compared to GOP4 

in third and ATDOP in last place. The Table 14 gives the average time to detection and the 

detection likelihood of the two sensor placements. The detection likelihood is in the following 

ascending order ATDOP, GOP4, GOP24 and DLOP. Concerning the accuracy and specificity 

(see Figure 59), GOP4 performs better and equal respectively with GOP24. Depending on the 

wanted criteria, either average time to detection, detection likelihood, accuracy or specificity will 

be chosen GOP4, DLOP, GOP4 or GOP24 respectively. 

 

Figure 58: Contribution for average time to detection, detection likelihood and greedy algorithm optimal sensor placement 

with 10 sensors. 

Table 14: Average time to detection and detection likelihood for ATDOP, DLOP, DOP4 and GOP24. 

 ATDOP DLOP GOP4 GOP24 

Average time to 

detection 
3.8h 6h 3.5h 5.1h 

Detection likelihood 74% 82% 76% 80% 
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Figure 59: Accuracy and specificity for average time to detection, detection likelihood and greedy algorithm optimal 

sensor placement with 10 sensors. 

 

 

Figure 60: Execution time per iteration for the greedy algorithm with BT = 24h and OT = 2h with 120 processors for 23 

sensors. 

 Figure 60 shows the time it takes, at each iteration, to find a new sensor location with 120 

processors, which is not the cumulated time. The first iteration takes less than half an hour, then 

the execution time increases, until it reaches an asymptotic slope, adding less than 10 minutes for 

each new sensor from the last execution time. The time of execution increases with the number of 

sensors set because the complexity increases. As sensor placement is not done in real time 

conditions, the execution times are still not a problem on a sufficient cluster. However it is 

believed that for bigger networks it might be problematic because the problem is NP hard. 

Another algorithm, based on local search on graph is developed to decrease the execution time. 
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V-2.2 Local Search Algorithm 

 

 A local search algorithm with 3 adjacent node distance has been used for 10 sensors. At 

each iteration, a local search around the 10 potential sensors location is performed concerning the 

source identification criteria. Each potential sensor is replaced with the local neighbor that 

performed the best. Firstly the evolution of the criteria is given, defined in the first section, as a 

function of the iteration. Then the last sensor placement performance is tested for source 

identification for both initialization with average time to detection and detection likelihood 

optimal placement.  

 

Figure 61: Criteria evolution in function of iteration for local search with average time detection initialization and BT = 4h 

or BT = 24h and OT = 2h for 10 sensors. 

 

Figure 62: Criteria evolution in function of iteration for local search with detection likelihood initialization and BT = 4h or 

BT = 24h and OT = 2h for 10 sensors. 

 Four cases have been performed BT = 4h, OT = 2h (LSATDOP4, resp. LSDLOP4) and BT = 24h, 

OT = 2h (LSATDOP 24, resp. LSDLOP24) with ATDOP (resp. DLOP) initialization and 10 sensors. 
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 In Figure 61 and Figure 62 the evolution of the Contribution is shown, defined in the first 

section, as a function of the iterations. It can be seen that the algorithm has converged in all cases 

in fewer than 10 iterations. The Contribution values are slightly better when the initialization is 

taken as detection likelihood optimal sensor placement. The time for each iteration is constant 

around 700 seconds for 60 processors and therefore the algorithm converges in more or less one 

hour, which is a lot faster than the previous algorithm. 

 The Contribution scores in ascending order are ATDOP, LSATDOP4, LSATDOP24, 

LSDLOP4, LSDLOP24 and DLOP. The Contributions values are between the average time to 

detection and detection likelihood optimal placement Contributions. The same applies for 

average time to detection and detection likelihood. Finally, LSATDOP24 and LSATDOP4 

perform best concerning accuracy and specificity. As discussed before, the Contribution criteria 

is not enough to decide which sensor placement to choose, detection likelihood, average time to 

detection, accuracy and specificity are also decision factors. If average time to detection is 

favored, LSATDOP4 may be chosen because it has better results than ATDOP and almost the 

same average time to detection. In case of favouring detection likelihood, LSATDOP24  and 

LSDLOP24 may be choosen because they have better accuracy and specificity than DLOP. 

LSDLOP4 is good on average for average time to detection and detection likelihood. In 

conclusion this method is giving better solutions overall than initial ones and which parameters 

and initialization to use depend on the results we want to favor. 

 

Figure 63: Contribution for average time to detection, detection likelihood and local search algorithm optimal sensor 

placement with 10 sensors. 

Table 15: Average time to detection and detection likelihood for ATDOP, DLOP, LSATDOP4, LSATDOP24, LSDLOP4 

and LSDLOP24. 

 ATDOP DLOP LSATDOP4 LSATDOP24 LSDLOP4 LSDLOP24 

Average time to 

detection 
3.8h 6h 3.9h 5.4h 4.3h 5.2h 

Detection 

likelihood 
74% 82% 77% 79% 80% 81% 
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Figure 64: Accuracy and specificity for average time to detection, detection likelihood and local search algorithm optimal 

sensor placement with 10 sensors. 

V.2.3 Evaluation 

 We have seen that different objectives can influence the choice for a source identification 

optimal sensor placement: the average time to detection, the detection likelihood, the accuracy, 

the specificity and finally the Contribution which is a combination of the last three. The rankings 

for all these parameters have been written in Table 16 and the mean over all parameters is given 

with BT = 24h and OT = 2h. Overall, the greedy algorithm solutions are the best followed by the 

local search algorithm solution LSATDOP4, LSATDOP24 and LSDLOP24. This ranking should 

however be used cautiously and different weights can be used depending on which is considered 

more important for the decision maker. 

Table 16: Evaluation for all objectives. 

 

Average 
time to 

detection 
rank 

Detection 
likelihood 

rank 

Accuracy 
rank 

Specificity 
rank 

Contribution 
rank 

Mean 
rank 

GOP24 5 3 3 2 2 3 

GOP4 1 7 1 4 6 3.8 

LSATDOP24 7 5 2 3 5 4.4 

LSATDOP4 3 6 5 1 7 4.4 

LSDLOP24 6 2 7 6 1 4.4 

LSDLOP4 4 4 4 8 4 4.8 

DLOP 8 1 8 7 3 5.4 

ATDOP 2 8 6 5 8 5.8 

 To conclude this section, we have described two methods: a greedy algorithm and a local 

search on graph to maximize the Contribution criterion. Both were better for source identification 

(accuracy and specificity) than optimization based on average time to detection and detection 

likelihood. However these methods are time-consuming. The greedy algorithm execution time is 

between 30 minutes to 3 hours on 120 processors with each new sensor added. The local search 

on graph showed best results with both average time to detection initialization, BT = 4h, BT = 
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24h, OT = 2h criteria and detection likelihood initialization, BT = 24h, OT = 2h criteria. The 

algorithm converges in approximately one hour in total on 60 processors. The local search 

solutions are not as good as the greedy ones but can be chosen as their results are not too far and 

the time of execution is a lot faster. 

V.3 Conclusion 
  

 For a given sensor placement, the forward transport method is used to evaluate two 

criteria of the battle of the water sensor networks BWSN which are the average time to detection 

(ATD) and the detection likelihood (DL), chosen because they are worldly used nowadays in 

early warning sensor placement. Additionally, the backtracking method is used and two other 

criteria have been defined that evaluate the source identification Contribution. Among the 

scenarios of pollution simulated, the contamination is detected but the source is computed as not 

being in the list of potential source of contamination, because of insufficient backtracking time 

and numerical inaccuracies; the percentage of those scenarios among the detected scenarios is 

given as the accuracy percentage. Finally, a last criterion is taken which is the specificity which is 

calculated from the rank of the true source of contamination among the scenarios remaining. 

 The Contribution criterion can then be used as an objective function to be maximized and 

two method solutions of sensor placements were tested. Both methods use a Monte Carlo 

algorithm to simulate contamination events inside a network and measure their impacts. The first 

one uses a greedy algorithm and tests every node as potential sensor choosing at each iteration 

the best candidate which is added to the list of sensors and reiterates until the amount of sensors 

desired is obtained. The second method uses a local search on graph algorithm testing three 

adjacent distance nodes on the Contribution criterion for source identification. It iterates until the 

maximum Contribution is found. 

 Six method/parameter configurations have been added to ATDOP and DLOP. The 

following two come from a greedy algorithm but with objective being the maximization of the 

Contribution criteria in the two parameter cases BT being big, 24h, or little, 4h, and OT being 

short set at 2h. The last fourth sensor placements assessed are results of the local search algorithm 

in the same configuration than for the greedy algorithm but with two different initializations. The 

first two ones begin with ATDOP, the other two ones launched from DLOP. 

 Both methods have been parallelized and launched on a calculation cluster. The two 

methods use two parameters that influence the result of the source identification. The first one is 

the time of backtracking, how much time the algorithm search in the past from the first time to 

detection (BT). The second is the time of observation after the first time of detection (OT) it 

gives the source identification algorithm to process information.  

 The optimal sensor placement methods adapted to the source identification Contribution 

criteria are doing better with the new source identification overall, than the first two sensor 
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placements, ATDOP and DLOP, however they take more time to execute. Also, the greedy 

method is doing better than the local search method but is slower. 

 Concerning the backtracking time BT parameter, a small value (e.g. 4h) induces a small 

average time to detection score. This parameter is important, because the results show that a 

small average time to detection is performing better but on a smaller scale than with a big 

detection likelihood. For the observation time OT, 2h seems to be enough to have an idea to 

identify the contamination, still a bigger observation time improve the results. 

 In conclusion of the two methods of sensor placement, greedy and local search: the 

placements based on the first method presented in this chapter, greedy algorithm with 

Contribution objective, are doing the best overall. However they are the longest with an 

increasing iteration execution time going from half an hour to three hours, using one hundred 

twenty processors. The solutions given by the local search are second and the method is much 

faster than the previous one taking three hours overall on sixty processors. Finally ATDOP and 

DLDOP are less suited for source identification than the two previous methods but are fast to 

compute.  

 The choice of the method will depend on the objectives and the network properties as well 

as the number of sensors available. More research work should focus on evaluating the impact of 

hydraulic and transport model error in the final optimal designs. Firstly, the velocity may not be 

accurate or not the same as in the simulations used to place the sensors. Secondly, transport 

model, reaction coefficients and sensor thresholds need careful attention. Results from the 

SMaRT-OnlineWDN project have shown that imperfect mixing at cross junctions and double T-

junctions may have an impact on the contamination spreading. The same applies when adding the 

dispersion effect to the transport model. The two modifications can influence the simulation of 

the contamination scenarios, therefore it can also change the sensor responses, and finally it 

influences the sensor placement optimization. 

 Also, for exploring the merits of sensor optimal placements, more statistics, other than the 

mean, can be conducted on the results of the different Monte Carlo scenarios to workout robust 

dispersion indicators such as the interquartile range. It will permit to make clustering among 

equivalent sensors solutions. 
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 The sensor placement adapted to source identification has been used on a case study 

network. It is a large network composed of more than 13,000 nodes and four district metering 

areas (DMA). Because of the size of the network, all methods developed previously will take a 

lot of time. Also the network being bigger means that more sensors are needed and also more 

sensor responses are to be proceeded for the source identification algorithm. In this case, the 

number of sensor to look for is set as 50. That represents one sensor every 20 km of pipes, which 

is a good value for current monitoring of networks. Also for security measures, networks will not 

be shown and will be replaced with blank color filled filtered images. 

 

VI-1 Sensor Placement and Source Identification Efficiency for the Large 

Case Study 
 

 First the greedy algorithm, presented in V1.1, cannot be used as it is too slow, not even 

one sensor is calculated with 1,200 processors during 4 hours. The average time to detection and 

detection likelihood optimal placement will be compared to the result given by the local search 

on graph algorithm, which has been computed on 60 processors for a day. 

 The Figure 65 shows the Contribution results for the different sensor placements in 

function of the time of observation. It was shown in the previous part that the Contribution 

criterion is strongly connected to detection likelihood criteria. Indeed, scenarios where the 

contamination is not detected are given the Contribution zero. To evaluate a sensor placement, 

four criteria are defined in previous chapter: average time to detection, detection likelihood, not 

accuracy and specificity. The equation (35) gives the relations between those criteria and the 

Contribution. 

 ATDOP and DLOP have been obtained with Piller et al. (2015) for a first set of 

contaminations: a duration of 120h with contamination starting the first day. However, those 

sensor placement are assessed (average time to detection, detection likelihood and the other 

results) from scenarios of contamination with a simulation duration of 72h with the injection the 

second day. Therefore, ATDOP and DLOP are not optimal for those new conditions. Indeed, 

Table 17 gives the average time to detection and detection likelihood of the 6 sensor placements 

evaluated in this chapter, and DLOP has the lowest detection likelihood. 

 The choice of the new set of contamination is motivated by two reasons. The first one is 

because a smaller time of simulation will induce smaller time of execution from the sensor 

placement algorithms. The second one is because we want to be close to the reality. 24h is 

already a lot of time for a contamination to spend in the network. In this network, the maximum 

residence time is close to 5 days, therefore a good detection likelihood optimal sensor placement 
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with no restriction will tend to be at the borders of the network. However, such sensor placement 

will have a poor detection rate for an observation time like 24h. 

 In Table 17, the ATDOP and the local search that takes it as initialization are doing better 

with a detection likelihood around 70% and average time to detection around 4h for ATDOP and 

LSATDOP4, and 5.6h for LSATDOP24. The local search placements with DLOP as 

initialization have a better Contribution with a detection likelihood around 78% and average time 

to detection 5.5h and 6.2h. However, by comparing the different sensor placements on accuracy 

and specificity (see Figure 66), the local search based on ATDOP and backtracking time of 4h is 

doing the best for the two criteria. And by evaluating all sensor placements on all criteria, 

LSATDOP4 is the one that gives the best score overall as shown in Table 18. 

 Therefore, the LSATDOP4 will be the one sensor placement that will be used in the 

following. 

 

Figure 65: Sensor placement Contribution comparison on test case network.  

Table 17 : Average time to detection and detection likelihood for ATDOP, DLOP, LSATDOP4, LSATDOP24, LSDLOP4 

and LSDLOP24 on Case study network. 

 ATDOP DLOP LSATDOP4 LSATDOP24 LSDLOP4 LSDLOP24 

Average time to 

detection 
4.3h 4.3h 4.1h 5.6h 5.5h 6.2h 

Detection 

likelihood 
70% 64% 69% 72% 77% 79% 
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Figure 66: Accuracy and specificity for greedy and local search optimal sensor placement with 10 sensors. 

Table 18 Evaluation for all parameters on case study network for OT = 2h. 

 Average 
time to 

detection 
rank 

Detection 
likelihood 

rank 

Accuracy 
rank 

Specificity 
rank 

Contribution 
rank 

Mean 
rank 

LSATDOP4 1 5 1 2 5 2.8 

ATDOP 2 4 2 4 4 3.2 

LSDLOP4 4 2 3 6 2 3.4 

LSDLOP24 6 1 5 5 1 3.6 

LSATDOP24 5 3 6 3 3 4 

DLOP 3 6 4 1 6 4 

 

 ATDOP is second in the evaluation, still LSATOP4 gives better results overall so it is the 

one that is chosen to be used in the next calculations. The fact that LSDLOP24, LSATDOP24 

and DLOP are lasts reflects that 50 sensors are not enough for this case study network. 

VI-2 Source Identification Scenario and Contamination Extend Estimation 

 

 A simulation of a contamination, on the node S of case study network at noon for 2 hours, 

is used to create the sensor responses. Those are proceeded by the source identification algorithm 

to get the potential sources of contamination and their ranking at their evaluated times of 

contamination. The source identification results are then used to estimate the potential 

propagation of the contamination. 

 First, the simulation of the contamination is done with a boundary condition of 1 mg/L at 

node S between 36h and 38h.  
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 Then, the source identification results are given in Table 19. Depending on the 

observation time, different results are found. The higher the observation time, the smaller the 

rank but the bigger is the potential source number. As time passes, there is more positive sensor 

responses and therefore the number of potential source of contamination increases. However, as 

we get more information, the real source of contamination is better estimated, and therefore the 

rank decreases. 

Table 19: Source identification results for case network and different OT. 

OT Rank Potential souce node number 

2h 125 131 

4h 29 1204 

8h 29 2906 

 

 Finally, there is the estimation of the propagation. The source identification algorithm not 

only gives the list of potential sources of contamination but also the times of potential 

contamination. The computation of the propagation is done with as much injection node as 

potential sources of contamination. Depending on the potential node being source at each time, 

the injection used is either 0 or a fixed value. That value is taken as the Contribution of that 

potential node. The more a node contributes to the contamination, the highest is its value for the 

estimation of the propagation. Therefore the result is not a concentration but some transported 

value: the dimensionless rank. The highest the value (closer to 1) is for a time and location, the 

highest the chance is that the network is contaminated at this location. Also, different results are 

given by the source identification algorithm for different observation times, therefore different 

results are found when simulating the propagation. The Figure 67 and Figure 68 compare the 

different propagation estimations with the real propagation. The scales are not the same, the real 

propagation is given in mg/L (1 mg/L is injected at the inlet) and the estimations with a value 

between 0 and 1 as given in Table 20. 

 The results have been filtered to not show the network because of confidential 

information constrain. That explains the no continuity of the contamination on the figures, which 

in fact are not actually the case. 

Table 20: Scales of figure 69 and 70. 
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The Figure 67 gives the real propagation of the contamination as well as the estimation of the 

contamination when the source identification has been done with an observation time of 2h. The 

Figure 68 gives the estimations for both OT = 4h and OT = 8h. As seen in Table 19, the more is the 

observation time, the higher is the number of potential sources and therefore that explains why 

the coverage of the network by the estimated contamination gets bigger with the observation time. 

 The Figure 67 compares the propagation with its estimation with an observation time of 

two hours. The results have been taken at the times 36h, 40h and 44h, which correspond to 0h, 4h 

and 8h after the beginning of the contamination injection. 

 It can be seen that the estimation gives good results with the propagation being part of its 

coverage. The Figure 68 gives the estimation for OT = 4h and OT = 8h. Those two estimations 

give a bigger coverage of the network than the estimation with OT = 2h. However, the higher is 

the observation time, the better is the contamination area drawn by the probabilities intensity. The 

result of OT = 8h after eight hours of contamination gives really good estimation of the 

contamination (in dark red).  
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Figure 67: Comparison Contamination and evaluation OT = 2h for time 36h, 40h and 44h. 
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Figure 68: Comparison evaluation OT = 4h and OT = 8h for time 36h, 40h and 44h.
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 Afterwards, we want to test if the imperfect mixing and dispersion enhancements of the 

transport model influences the estimation of the propagation.

VI-3 Imperfect Mixing 

 In the case study network, there are more than 100 double T-junctions. However, only 

one double T-junction has been found with equal diameters, and 15 when diameters are not 

equals, which are in the right hydraulic conditions (i.e., 2 inflows and 2 outflows) as defined in 

chapter II. The law found in chapter II is generalized to all diameters (Reynolds number analogy) 

to see if those can affect the transport of chemical agent. The extrapolation of the function needs 

to be justified in further researches. 

 Imperfect mixing results show that the differences from usual transport simulation are 

limited to two small regions of tens of node. Still, in those areas the error can be superior to 20%. 

Imperfect mixing is mostly negligible in the two networks that have been studied. However, it 

has been shown from the experiments that the imperfect mixing at double T-junction have an 

impact on the transport of contaminants. Any network should be tested to see if it has an actual 

impact. 

 

Figure 69: Perfect and imperfect mixing comparison on test case network. 
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VI-4 Dispersion 
 

 In this part the results given by the model with dispersion are compared with the model 

without it for the contamination at node S. The results are given in Figure 70 with the no 

dispersion propagation on left at 4h after the beginning of the contamination and the absolute 

difference to it with the dispersion effect included propagation. The scales  are given in Table 21. 

Table 21: Scales for figure 72. 

 

 

 

 

  

Figure 70: Dispersion comparison at 4h. real propagation on left, absolute difference with dispersion on right. 

 

 The interpretation of the results is that the dispersion does not change much the coverage 

of the contamination as can be compared the Figure 67 and the Figure 70 (left) at 4h. However 

the difference value from the models with and without dispersion can be superior to 10% of the 

initial contamination concentration. When analyzing the whole simulation (Figure 71), most part 

of the network present significant differences from the no dispersion transport model.  

=0 mg/L  

>0 mg/L  

>0.01 mg/L  

>0.05 mg/L  

>0.1 mg/L  

=0 mg/L  

>0 mg/L  

>0.001 mg/L  

>0.01 mg/L  

>0.1 mg/L  



VI Contamination case study 

 

140 VI-4 Dispersion 

 

 

Figure 71: Dispersion difference to real propagation for the whole simulation. 

 Two characterizations of the dispersion can be seen that explain that results. The first is 

due to a difference in time of propagation and in this case is mostly present near the 

contamination source. The second type is when a peak is dispersed, the peak value is lower and is 

diffused in time, it is shown in Figure 72. The further in the network the node is from the 

contamination source, the more chance that effect is to appear. 

 

Figure 72: Dispersion effect example. 

 The dispersion does not need to be used to estimate the propagation of a contamination as 

the front is the same in this case. However it should be taken into account when transporting 

chemical agent and that we want to know its concentration. 
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GENERAL CONCLUSION 

 

 The operators are currently installing real time sensors in order to better manage and 

secure the water distribution networks. Those facilities are vulnerable and critical infrastructures 

that require protection against accidental and intentional contamination in the network.  

 The aim of this thesis is to develop different methods that allow the accurate identification 

of the source of contamination as well as the estimation of its propagation. Different methods 

have been proposed to complete current methods in three aspects: transport model, source 

identification evaluation and optimal sensor placement. 

 The transport model is enhanced in order to have a good model to perform the estimation 

of the propagation. Indeed, current models do not take into account the two phenomena that are 

the imperfect mixing and the dispersion. The first one has recently been extended to cross 

junctions. The prevalence of double T-junctions with respect to simple cross junctions in the 

French water distribution networks was one of the motivation of studying the imperfect mixing. 

The dispersion effect concerns the modeling of the three dimensional dynamics which are caused 

by the velocity profile and the radial diffusion. That effect may appear both on laminar and 

turbulent regimes. Current transport models are one dimensional advection reaction models that 

only use the average velocity inside the pipe. In this thesis, we have focused on the effect on the 

laminar regime, postponing the study of the turbulent regime to future works.  Those 

enhancements to the transport model are then tested on a large network test case to evaluate their 

benefits. 

 The transport model considered here is composed of two parts: transport of chemical 

agent inside pipes on the one hand and mixing at junctions on the other hand. Since the most 

dangerous scenario is the case of the conservation transport, only this case has been considered. 

The study of the possible reaction with the biofilm is thus postponed to future developments. 

Concerns exist on imperfect mixing at structures such as crosses and double T-junctions, and 

could affect transport simulation results. Cross studies have been done and showed that it can 

have consequences on the estimation of the propagation of contaminants. Depending on the 

Reynolds number at each inlets and outlets, the mixing may not be perfect. In some cases, two 

separate flows appear at the intersection hindering the mixing. The classic model is in-between 

the perfect mixing and the non mixing state. For double T-junctions, depending on the distance 

between the two T-junctions, the mixing may also present imperfect mixing like in the cross case. 

In this thesis, the study has been done as follow. Large numbers of CFD simulations have been 

computed, direct numerical simulations for laminar cases and large eddy simulations for turbulent 

cases. A four parameter table is filled with the results of those simulations and the Kriging 

interpolation is used to complete the entries that are not in the table. A Delaunay triangulation 
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method is used in the design of experiment phase to select the best design points to simulate in 

order to have as much information as possible. As the simulation cost is high, this avoids too 

many simulations that would be needed in a structured design. A 1-D-law is finally created to 

take into account every configuration of flow rates and concentrations possible. The results are 

that when the velocity of the straight inlet is smaller than the velocity at the second inlet, the 

mixing is almost perfect. Otherwise, the mixing is imperfect and depends on the outlet flows as 

well as the distance between the T-junctions. The higher the distance is, the more the mixing is 

close to perfect. The same applies for the Reynolds number, the higher it is, the less there is 

imperfect mixing. However, contrary to the distance inter-T-junctions, it does not necessarily 

converge to the perfect mixing but to a constant state of imperfect mixing. It has been compared 

to experiments: the laminar case was hindered by experimental measurement issues such as 

difficulties in measuring low velocity. However, turbulent CFD simulations have the same 

behavior as experiments, thus validating the model. In the turbulent case, the CFD simulations 

may induce a little more imperfect mixing, this may be due to some turbulence being neglected. 

Simulations and experiments have been carried out using the real geometry, that takes into 

account physical matters such as joints, but it did not change the results. Finally, an imperfect 

mixing 1D-law for double T-junction has been created that uses a CFD based data table and a 

high order interpolation Kriging. It completes the precedent studies of experiments on cross and 

double T-junctions. 

 Aside from mixing simplification, the current transport model may also neglect the 

dispersion effect. Current models are for now one dimensional and only use the average velocity 

inside the pipe. The dispersion model proposes an enhanced version of that model that takes into 

account velocity profile and radial diffusion. It has been studied here under the laminar regime 

with a Poisson profile. A backtracking scheme has been developed on water distribution 

networks in order to model the transport. That permits to concentrate the information at the nodes 

instead of the pipes. The velocity profile can then be taken into account, and the velocity value is 

different on each radius layer of the pipe. An integral is done to give the average results of 

concentration at the nodes. Additionally, a random walk algorithm is coupled to it in order to 

simulate the radial diffusion. A Gaussian distribution is both used to get spatial steps on x-axis 

and y-axis with symmetric boundary. It is then compared to CFD simulations and gives similar 

results. A small application of the algorithm on a two pipe networks shows that depending on the 

diffusion coefficient, the results change. If the coefficient is small, the result is close to the 

velocity profile backtracking results, if it is big, it is close to the one dimensional no dispersive 

model results. Finally, experiments have been made and measurements have shown a good 

matching with the model proposed of backtracking and random walk. The trends are the same, 

only times differ. The experiments give results that are in advance, it may be due to sensors being 

at the center of the pipes. It also shows that the dispersion is also present in turbulent case, and 

more research in that subject is necessary. Finally, a model of backtracking, for axial velocity, is 

coupled to a random walk, for radial diffusion, to model the phenomena of dispersion. It gives 
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similar concentration results as previous studies, using a virtual diffusion term, and extends them 

for low diffusion coefficients. 

 Additionally, to the establishment of an accurate transport model, a source identification 

method and a sensor placement algorithm are needed in case of accidental or intentional 

contaminant injection inside the network. Taking into account contamination responses at sensors, 

the contamination source needs to be found in order to turn off its input. It is also essential to 

simulate the propagation of the past contamination as well as its current situation. The source 

identification methods are well studied in the literature. The method proposed here is coupled to 

two new sensor placement methods to get a solution dedicated to source identification. A 

probabilistic propagation model is then described; it uses a source identification potential nodes 

list as well as their rankings. 

 The aim of the source identification algorithm is to get the list of potential sources of 

contamination and to rank them according to the probability of being the true source of 

contamination. The method used is a backtracking algorithm on both positive and negative 

responses at sensors. It traces back the possible sources of each response. Then it ranks them on 

the one that explains most of the positive responses. The rank given by the algorithm to the true 

source of contamination node is then used to create a criterion named Contribution whose value 

is between 0 and 1. A Monte Carlo method is used to evaluate a sensor placement on its capacity 

in performing a good source identification. Four criteria are computed: the average time to 

detection, the detection likelihood, the accuracy and the specificity. Finally, a backtracking is 

applied on positive and negative answer to create the binary input/output matrix of contamination. 

It extends previous studies to large network and defines new criteria to evaluate the source 

identification performance of sensor placement. 

 The results of the source identification depend on the sensor placement it is applied on. 

Eight method/parameter configurations have been tested in this thesis. The first twos have been 

given by a greedy algorithm developed by Piller et al. (2015) : one applied on average time to 

detection criterion and the other one based on detection likelihood. Another twos are also coming 

from a greedy algorithm but with the Contribution criteria and a backtracking time of 4h and 24h 

respectively. Last four ones are given by the local search on graph algorithm applied to the first 

two sensor placements (ATDOP and DLOP) as initialization and backtracking time of 4h and 24h 

respectively. A result is that the Contribution factor may be too dependent on the detection 

likelihood criterion. Moreover, the backtracking time influences directly the average time to 

detection: the smaller it is the smaller the average time to detection is. Finally, the greedy 

algorithms adapted to source identification, with Contribution criteria, give better results overall, 

considering average time to detection, detection likelihood, non accuracy and specificity. 

However, it is too computationally demanding to be used on large networks. The local search 

algorithm is giving good results and is much quicker. It can even be used on large networks. 

Finally, two new methods of sensor placement have been developed. One is the greedy algorithm 

and the other is the local search on graph. Both are applied to the source identification 
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Contribution criterion. They give better result overall for source identification but take much 

longer time. 

 The methods have been applied on a large test case network. The sensor placement giving 

better results overall is the local search algorithm with average time to detection sensor 

placement initialization and backtracking time of 4h. The source identification algorithm is then 

used to get the list of potential sources of contamination and their rankings. The dimensionless 

value of that ranking, Contribution between 0 and 1, is then used to estimate the propagation 

inside the network. For every time step, every potential sources of contamination concentration is 

either given the value equals to its Contribution, when it is potentially contaminated at that time, 

or zero. The estimate propagation matches the real propagation, and the higher the time of 

observation, the more accurate the model is. Finally, the two enhancements of the transport 

model have been tested. Fifteen double T-junctions, not constrained to equal diameters, are in 

hydraulic conditions to be affected by imperfect mixing. However, overall, only very small 

regions present differences and it may be neglected for that network. Concerning the dispersion 

effect, small differences have been observed when comparing the coverage of the propagation. 

However, the value of the concentration of the contamination may be greatly affected and can be 

easily found in the network with deviation more than ten percent of the injected concentration. 

 As a conclusion, local search on graph is enhancing the capability of a sensor placement 

to identify the source of contamination. A small backtracking time may be used to induce small 

average time to detection, which is important in case of contamination breakthrough. This 

capability can then be evaluated with a Monte Carlo method on the four parameters: average time 

to detection, detection likelihood, probability of missing the true source of contamination and 

ranking on detected scenario. In case of contamination, the source identification algorithm is then 

used to give the ranked potential list of contaminations. Afterwards, that list is put as injection 

point inside the network to evaluate the propagation. The higher the observation time, the best the 

model is estimating the contamination location. Finally, the imperfect mixing at double T-

junctions may be tested beforehand on the network to know if it can affect the transport. And the 

dispersion effect has mostly an influence on the value of the concentration. The coverage of the 

contamination stays more or less the same. That may depend on the hydraulic regime of the 

network, as turbulent regime dispersion effect is underestimated by the model proposed. 

 Next researches can focus on imperfect mixing for double T-junctions with unequal 

diameters. The dispersion model differences on propagation results can be studied to see its effect 

on sensor responses calculation, and therefore sensor placement. An extended statistical study on 

the evaluation of source identification performance can be performed. And multi-objective 

frameworks can be used for sensor placement to draw Pareto front on the source contamination 

criteria defined. Finally, imperfect sensor study needs to be done on the source identification 

algorithm and negative responses use need careful attention as it is directly related to 

contamination detection threshold and false negative rate. 
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Appendix A: Transport model 
 

 The transport model aim is to model the propagation of a chemical agent inside the 

network. One use is to model the transport of chlorine inside water distribution network. One 

other is to compute the residence time of water. Still one other application can be to model the 

thermal state inside the distribution network. 

A-I Model 

A-I-1 Transport Equation 

 

 The usual equation used for the transport of chemical product in a water distribution 

network is the advection reaction 1-D equation: 

  

  
  

  

  
        

with u the velocity, C the concentration, K and   the kinetic constant and order of the reaction. 

 Additionally, mixing condition at nodes is generally considered as perfect: 

                  
             
       

  

with in(i) the pipes whose flow going into node i. 

 The thermal equation is a little different (except for       ): 

  

  
  

  

  
               

with T the temperature,    the thermal constant and      the external temperature. 

 

A-I-2 Transport Graph 
 

 The transport model is applied on a non-oriented network like the example given Figure 

73. The chemical agent is injected at boundary condition nodes such as resources or injection 

points. It’s transport depends on the water velocity inside pipes. 
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 The pipe model is composed of: 

- Length (m) 

- Diameter (mm) 

- Velocity(m/s) (that depends on time) 

 

Figure 73: Water distribution network example. 

 Also three hydraulic types of node exist depending on their role in the water distribution 

system: 

- ordinary: either demand node or pipe junction 

- tank: model a water tank 

- resource: source of water with constant head, concentration, age… 

 Finally, water quality types can be defined to represent different boundary conditions. 

Each condition is classed in one of the four quality types: 

- ordinary: mixing node (ordinary node) 

- fixed limit condition: fixed concentration function on time (ordinary, tank and resource 

nodes) 

- injection node: mixing with additional amount of water at a fixed concentration (ordinary 

node) 

- initial condition: tank with initial amount of water and concentration (tank node) 

A-II Model Types 

 Different models exist, some are time-driven, and others are event-driven. They use the 

same equation presented previously but used different algorithms and schemes to solve them. 
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A-II-1 Hybrid Porteau Model 

 

 It is a time-driven model, it is based on a discretization of the calculation time on quality 

time step. That time step is generally a divisor of the hydraulic time step to easier the calculation. 

 The model uses a hybrid Eulerian scheme that is composed of two parts: one method of 

characteristics followed by a Crank-Nicholson scheme. It is applied on a segment divided into 

discretization           
      

    
 . The chemical agent is first transported on       

  

 
 by 

method of the characteristics. (see Fabrie et al. (2010)) 

                           
 

 Then a  –scheme is applied on the time left dt =       -      . 

 

                  

                                                                                         

  
    

  
  

 

 

Figure 74: Hybrid Eulerian method. 

 The Eulerian model asset is that the scheme can easily be changed, increasing the order if 

needed. Also more phenomena such as diffusion can be easily added to the model. The 

drawbacks are that it needs some memory capacity as it needs to save data on each pipe 

discretizations. Also interpolation errors may influence the calculation results. However Fabrie et 

al. (2010) shows that is still better than any 2
nd

 order scheme. 
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A-II-2 Lagrangian Epanet Model 

 

 It is an event-driven model that happens at each change in the boundary condition and 

when a marker reach the end of a pipe. 

 

 The model uses a forward Lagrangian scheme. The quality is transported inside the pipe 

between two markers as long as no event happens. When limit conditions change, markers are 

created for every pipe with water going out of this source. When a marker reaches the end of a 

pipe, the mixing is done and new markers are set to outflowing pipes.  

 

 The assets are that the transport is exactly done and that the accuracy only depend on the 

hydraulic time step and boundary conditions. The drawback comes from the mixing conditions, a 

limit on the distance between two markers is needed or else too much markers are created and the 

calculation time exponentially grows. 

 

A-II-3 Forward Adjoint Model (used for dispersion) 
 

 This is a new model proposed to solve the transport. It is based on particle backtracking 

scheme. It is also a time-driven model. For every time step, quality at every node is computed 

and added to precedent ones into a quality matrix. This matrix is used to calculate future values 

through a backtracking scheme. The quality at one end of the pipe can be traced back to its origin. 

The time it has needed to travel through the pipe from one end of the pipe is calculated. The 

quality value of the source node at that time is given by the matrix with an interpolation method. 

Then reaction is done accordingly to time passed inside the pipe. Finally mixing on the end node 

is done to calculate its current value. If the order of the reaction is 1 and the reaction constant is 

K: 

                                                                         
       

   

 

   
                                           

        
  

 

             
                  

     
   

 
with i the current iteration, dtqua the quality time step and timeinpipe the time spend in the pipe 

computed by the backtracking algorithm 
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 This method asset is that it does not model what is a happening inside the pipe. Also it can 

be used for the dispersion model presented in this thesis. Its drawbacks are that it needs to store 

all velocities and quality values of the whole calculation to do next calculation. Also the 

interpolation precision depends on the quality time step defining the time difference between two 

values inside the quality matrix. 

A-II-4 Summary 

 

 More models exist and a non exhaustive list is given Table 22. They are grouped in 

Eulerian and Lagrangian model as well as direct and adjoint models. The reaction term is not 

included; usual modeling includes a splitting algorithm to take it into account. 

 Different Lagrangian models can be used depending on the variables calculated. The 

forward adjoint model is also a Lagrangian method. It uses the direct formulation of the adjoint 

scheme applied to do the source identification. Therefore, the same algorithm can be used for 

both as described on the object part in Appendix D. 

Table 22: List of transport models. 

 Direct Adjoint 

Equation 
  

  
  

  

  
   

  

  
  

  

  
   

with         and         

and then        and         

Eulerian 
Explicit 

 
     
          

   
  

  
      

    
        

          
   

  

  
      

    
   

Eulerian θ-
scheme 

 

     
          

  

  
  

  
         

      
     

            
    

    

(Porteau) 

 

 

     
          

  

  
  

  
        

       
      

            
    

    
 

Lagrangian        
       

  

(Epanet 1) 

(Porteau 

with x=udt) 
 

       
       

   
 

Lagrangian 

 
 
    

  
  
    

  
(Epanet 2) 

 
     
    

   
  
  

 

 
 
    

  
  
    

  
(Backtracking 

with dx=L) 

 
     
    

   
  
  

 

 

Lagrangian 

 
     
       

      
  
  

(forward 

adjoint 

with dx=L) 
 

     
       

     
  
  

Lagrangian   
  
  
       

    

  
  
       

  

A-III Model Data 
 In this part are detailed the data needed to carry out the transport computation. Some are 

fixed such as network data, others are given during the calculation like velocities in pipes. 
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A-III-1 Initial Data 

 

A-III-1.1 Parameters 

 Those define the different time step used, the quality time step dividing the hydraulic time 

step: 

- hydraulic time step 

- transport time step 

A-III-1.2 Network 

 The graph characteristics are: 

- the list of nodes: name, hydraulic and quality types 

- the list of pipes: name, length, diameter, begin and end nodes 

- the list of double T-junctions: mixing scenario (perfect/imperfect), node 1 and 2, 

pipe 1 to 5 

- the list of crosses: mixing scenario (perfect/imperfect), node, pipe 1 to 4 

A-III-1.3 Transport Model 

 The transport models have been defined previously: 

- Hybrid Eulerian 

- Forward adjoint 

- Mix of Hybrid Eulerian with the Adjoint direct model applied only on laminar 

pipes 

A-III-1.4 Transport Objects 

 The transport objects define which kind of quality model is used. The concentration 

model calculates the transport of a reactive chemical agent inside the network. The ageing model 

gives the residence time. The provenance model gives for every node the provenance of each 

source defined in the form of a percentage. The thermal model gives the temperature state of the 

network. 

 Except for the thermal object, the others use the same equations. Only the parameters may 

be different, for instance for ageing the reaction constant is fixed at -1 and order at 0. 

- Concentration: initial value, mixing law, kinetic constant and order of pipe and 

tank reaction 

- Ageing: initial value, mixing law, ageing boolean of pipes and tanks 

- Provenance: index, mixing law 

- Thermal: initial value, mixing law, thermal constant of pipes 
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The initial value defines the value that is fixed on every nodes and pipes at the beginning of the 

simulation. The mixing law is minimum, average or maximum. The reaction constant and order 

depends on the pipe or the tank it is applied on. A boolean list is given to the ageing model, the 

ageing is done inside the pipe only if that boolean is true. It can be used to calculate the time 

water spends in specific pipes or tanks. The thermal model only needs to be given the thermal 

constant for each pipes, however extern temperatures are also needed during the calculation 

phase. 

A-III-1.5 Quality Limit Condition Parameters 

 Those are the list of the different limit condition and their constant parameters. 

 For fixed limit condition: 

- Index 

 For injection condition: 

- Index 

- Concentration 

 For initial condition: 

- Index 

- Initial concentration 

- Initial volume of water 

A-III-2 Calculation Data 

 Those define the data needed at each hydraulic time steps. Quality data are given as a list 

with size corresponding to the division of the hydraulic time step by the quality time step. 

A-III-2.1 Hydraulics 

 Those are: 

- The velocity in pipes 

- The new volume of water inside tanks 

The flow, needed for the mixing, can be computed from the velocity and the diameter of the pipe. 

The new volume of water inside tanks is needed to calculate extern inflow or outflow inside the 

tank. 

A-III-2.2 Quality 

 The limit condition values are given for every time step as to adapt it to real time 

simulation: 

- The fixed limit condition values 

- The flows injected 
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A-IV Main Transport Algorithm 

-  Here is described the usual transport algorithm for either hybrid Eulerian 

model or forward adjoint model. The diagram Figure 75 pipes 

A-III-1.4 Transport Objects 

 The transport objects define which kind of quality model is used. The concentration 

model calculates the transport of a reactive chemical agent inside the network. The ageing model 

gives the residence time. The provenance model gives for every node the provenance of each 

source defined in the form of a percentage. The thermal model gives the temperature state of the 

network. 

 Except for the thermal object, the others use the same equations. Only the parameters may 

be different, for instance for ageing the reaction constant is fixed at -1 and order at 0. 

- Concentration: initial value, mixing law, kinetic constant and order of pipe and 

tank reaction 

- Ageing: initial value, mixing law, ageing boolean of pipes and tanks 

- Provenance: index, mixing law 

- Thermal: initial value, mixing law, thermal constant of pipes 

The initial value defines the value that is fixed on every nodes and pipes at the beginning of the 

simulation. The mixing law is minimum, average or maximum. The reaction constant and order 

depends on the pipe or the tank it is applied on. A boolean list is given to the ageing model, the 

ageing is done inside the pipe only if that boolean is true. It can be used to calculate the time 

water spends in specific pipes or tanks. The thermal model only needs to be given the thermal 

constant for each pipes, however extern temperatures are also needed during the calculation 

phase. 

A-III-1.5 Quality Limit Condition Parameters 

 Those are the list of the different limit condition and their constant parameters. 

 For fixed limit condition: 

- Index 

 For injection condition: 

- Index 

- Concentration 

 For initial condition: 

- Index 

- Initial concentration 

- Initial volume of water 
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A-III-2 Calculation Data 

 Those define the data needed at each hydraulic time steps. Quality data are given as a list 

with size corresponding to the division of the hydraulic time step by the quality time step. 

A-III-2.1 Hydraulics 

 Those are: 

- The velocity in pipes 

- The new volume of water inside tanks 

The flow, needed for the mixing, can be computed from the velocity and the diameter of the pipe. 

The new volume of water inside tanks is needed to calculate extern inflow or outflow inside the 

tank. 

A-III-2.2 Quality 

 The limit condition values are given for every time step as to adapt it to real time 

simulation: 

- The fixed limit condition values 

- The flows injected 

A-IV Main Transport Algorithm 

 Here is described the usual transport algorithm for either hybrid Eulerian model or 

forward adjoint model. The diagram Figure 75 sums up the algorithm. 

 

A-IV-1 Initialization 

 In the first time all tables are initialized and pipe discretized. First quality values are given 

with the initial values parameter of quality objects as well as limit conditions. 

A-IV-1.1 Nodes 

 The initial value is given to every node except the initial and fixed limit condition nodes 

whose have their own value. 

A-IV-1.2 Pipes 

 In case of Eulerian scheme, the pipes are discretized depending on the initial velocity. The 

discretization used is           
      

    
 . All discretization is given the same initial value. 

A-IV-1.3 Non-Oriented Adjacent List 

 The non-oriented adjacent list is built from the list of pipes. For each node it gives the list 

of connected pipes. The oriented list that is used when mixing is calculated for every hydraulic 

time step. 
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A-IV-2 Calculation 

 Now for every hydraulic time step, transport is done and results are returned. 

A-IV-2.1 Precalculation 

 First limit condition nodes are updated: 

- limit condition nodes are given a new value 

- reaction is done on initial condition node 

 Then, new discretization on pipes is done in function of new velocity as well as 

interpolation of values. 

 After that, the reaction is done on pipe with velocity zero for all its discretizations. 

 Then, balance on flows is done for each node to detect eventual inflows. 

 Finally, the propagation pipe list is built depending on the velocities direction, going from 

fixed limit and initial conditions. This is necessary for the hybrid Eulerian model as it is a semi 

implicit model. 

A-IV-2.2 Calculation 

 Transport is done on pipes in the order of propagation pipe list. For hybrid Eulerian model, 

first a model of characteristic is done on       
  

 
, then a Crank-Nicholson scheme is used on 

the time left. For forward adjoint model the time and source node is found, value and reaction is 

given accordingly. 

 The mixing is done when all incidence pipe transport has been done for that node. Mixing 

is done given the mixing law: minimum, perfect/average or maximum. Mixing calculation 

includes inflow pipes, inflows, injection and initial condition. 
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Figure 75: Transport algorithm. 
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A-V Sub Algorithms 

 It is described in this part all the sub algorithms that may be used to solve the transport 

model. 

A-V-1 Pipe Discretization 

 Be u the velocity, L the length of the pipe, NbPint the previous interior number point, 

newNbPint the new one, NbPintVelZero a constant and value the previous quality results. 

For all pipes: 

 if      : 

  Calculate interior point number                 
 

 
    

 else: 

                           

 if                     : 

  Interpole value: 

   for i = 0 to           +1: 

    newi = floor((NbPIint+1/           +1)×i) 

    position = NbPIint+1/           +1×i-newi 

    newvalue[i] = (value[newi+1]-value[newi])×position + 

value[newi] 

 

A-V-2 Adjacent List 

 Be nodeadjacent the adjacent list, begnode and endnode the list of node at begin and end 

of pipe. 

For all pipes ipipe: 

 Add ipipe to nodeadjacent[begnode[ipipe]] 

 Add ipipe to nodeadjacent[endnode[ipipe]] 
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A-V-3 Reaction 

 Be concentration the previous concentration, K and   the constant and order of the 

reaction and dt the time step of reaction. 

if     : 

 newconcentration = concentration –K×dt  

else if     : 

                                   –      

else 

 newconcentration = concentration - K×              ×dt 

 

A-V-4 Temperature 

 Be temperature the previous temperature,    the thermal constant,    the extern 

temperature and dt the time step. 

newtemperature = temperature -                   )×dt 

 

A-V-5 Hydraulic Balance 

 Be flowout and flowin the outflow and inflow list for every node, and endnode the list of 

node at begin and end of pipe and flow the flow value for each pipe. 

For all pipes ipipe: 

 if flow[ipipe] > 0: 

  flowout[begnode[ipipe]] = flowout[begnode[ipipe]] + abs(flow[ipipe]) 

  flowin[endnode[ipipe]] = flowin[begnode[ipipe]] + abs(flow[ipipe]) 

 else 

  flowin[begnode[ipipe]] = flowout[begnode[ipipe]] + abs(flow[ipipe]) 

  flowout[endnode[ipipe]] = flowin[begnode[ipipe]] + abs(flow[ipipe]) 

For all nodes: 

 if flowout[ipipe] > flowin[ipipe] + ɛ: 
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  ipipe is inflow with flow = flowout[ipipe] - flowin[ipipe] 

 

A-V-6 Propagation List 

 Be mark a list of boolean on pipe size,  

For all pipes: 

 mark[i] = false 

For all limit, initial condition and inflow nodes: 

 (R) For all pipe ipipe adjacent to node: 

  If mark[ipipe] = false: 

   mark[ipipe] = true 

   add ipipe to propagation list 

   recursivity on (R) with other pipe end node 

 

A-V-7 Hybrid Transport 

 Be C the concentrationvalue table for one pipe, u the velocity, idx the spatial position, idt 

the time, and dt the time step: 

              

For all dx in pipe: 

 C[dx+1, idt+     ] = C[dx, dt] 

For all dx in pipe: 

 C[dx+1, idt+dt] = C[dx+1, idt+     ] -h×(   ×( C[dx+1, idt+     ] - C[dx, 

idt+     ])-(1-  )× C[dx, idt+dt]) 

 C[dx+1, idt+dt] = reaction(C[dx+1, idt+dt]) 

with  
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A-V-8 Adjoint Transport 

 Be time the current time, length the current length, u the velocity, dt the time step, 

begnode and endnode the pipe ends and L the length of the pipe. 

While time > 0 

 length = length – u×dt 

 if (length < 0) 

  node = begnode 

              
       

 
  

  end 

 else if (length > L) 

  node = endnode 

             –
         

 
  

  end 

 else 

  time = time – dt 

 

A-V-9 Average Mixing 

 Be    ,       and          the concentration of initial condition, injection and pipe ipipe 

respectively. Be    ,       and          the flows and         eventual flow going into the 

node. 
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Appendix B: Imperfect Mixing and Dispersion 

B-I Imperfect Mixing 

 First the imperfect mixing function is given for one double T-junction. It gives the 

concentration at each outputs from the ones at inputs. Then is explained how it is adapted to 

current transport models. 

 

B-I-1 Imperfect Mixing Algorithm 

 The aim of this function is to calculate the concentration at the beginning (node) of a pipe 

inside a double T-junction configuration. The following equation will be used: 

     
                             

    
  

with q the flow, C the concentration and a (between 0 and 1) the percentage of concentration for 

the output coming from input 1. It respects the following conditions: 

 
                     

               
   

Inputs/outputs: 

 Inputs:  

-distance L (double in meter) 

-Reynolds number Re1,Re2,Re3,Re4 (double) 

-diameter D1,D2,D3,D4 (double in meter) 

-concentration C1,C2 (at the end of the input pipes) 

-boolout (boolean: 0 if 1
st
 output, 1 if 2

nd
 output) 

 Output: 

-concentration at the beginning of the output pipe (1
st 

or 2
nd 

depending on boolout) 

 The data table is given under the form [length (in diameter), Reynolds number, ReIn1, 

ReIn2, ReOut1, ReOut2, mass flow percentage at Out1] 

 This table is proceed into another table under the form [length (in diameter), Reynolds 

number, %In1, %Out1, mass flow percentage at Out1-%Out1] 
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 Then, previous to calculation the inverse of the covariance matrix invCov is calculated.  

Q1, Q2, Q3 and Q4 are calculated from Reynolds numbers and diameters. 

 

If 5D < L < 20D and Reynolds number > 1,000 

 Cov0 = covariance between point of calculation and data 

 B = invCov×Cov0 

 θ = B×data_results 

 coeff = (θ + %Out1) /100 

 if coeff > 1 then coeff = 1and if coeff < 0 then coeff = 0 

 coeff2 = (Q3-coeff×Q1)/Q2; 

 if coeff2 > 1 then coeff2 = 1 and if coeff2 < 0 then coeff2 = 0 

                 
                      

  
 

                 
                               

  
 

Else 

                    
         

     
 

 

B-I-2 Hybrid Eulerian Adaptation 

 When doing transport, test if the pipe belongs to a double T-junction, then change first 

discretization value accordingly. 

 

B-I-3 Forward Adjoint Adaptation 

 During mixing, take correct value if one inflow pipe belongs to a double T-junction. 
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B-II Dispersion 

 The dispersion algorithm is an improved version of the adjoint transport equation applied 

to graph as explained chapter II. It includes both particle backtracking and random walk to model 

both velocity profile and radial diffusion effect. 

B-II-1 Main Algorithm 

 Be Np the number of particle, N number of discretization on the radius, u the velocity, dt 

the time step, x the axial position, r the radius, R the radius of the pipe,    the diffusive 

coefficient, time the current time, concentration the concentration list values. 

For all adjacent pipe: 

 if u>0: 

  newconcentration = 0 

    
 

 
 

  for all N discretization idr: 

                        

   for all Np particles: 

    While (particle still inside the pipe and time > 0): 

     x = x – u(r)×dt  

     r = random_walk(r, D) 

     time -= dt 

                                            

                     
                     

  
 

                 
   

  

 
      

  

 
  

  
 

                                                      

 

B-II-2 Random Walk 

 Be dt the time step, r the radius, R the radius of the pipe and    the diffusive coefficient. 
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dx = Gaussian(  ×dt) 

dy = Gaussian(  ×dt) 

                   

if newr < R: 

 r = newr 

else 

 do the symmetry on the circle boundary 

 

B-II-3 Gaussian Random Function 

 Be   and   two random values between 0 and 1. 

results =                              
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Appendix C: Source Identification and Sensor Placement 

C-I Source Identification 

 The source identification method includes both sensor response simulation, creation of the 

input/output contamination matrix and the scoring. 

C-I-1 Sensor Responses 

 Either define a contamination scenario: the number of contamination with the node of the 

contamination, the begin time and the duration of each. Or have N random single contamination 

scenario. 

 Then give the transport model and its parameters. The forward adjoint model needs the 

parameter Np the number of particle, N number of discretizations on the radius and    the 

diffusive coefficient. 

 For all simulation, the node of contamination gives an injection (needed for multi 

contamination) value of either 0 or 1. 

 The contamination results at sensors are used as contamination responses 

 
                                 

         
  

with threshold a constant between 0 and 1. 

 

C-I-2 Recursive Backtracking on Graph 

 The backtracking algorithm or adjoint transport method (see A-V-8) is used for source 

identification. From one node at certain time, it traces back a particle to know where and when 

that particle entered any inflow pipe. 

 

Figure 76: Backtracking. 

 

 By recursivity that function can be extended to the whole graph and trace back the 

potential source of it.  
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 It can be used in different subjects. It can help in risk analysis by giving risk for a node 

depending on its potential sources. It can also serve for sensor placement by calculating the 

detection coverage of a node. Finally it is used hereafter for source identification with the 

construction of the imput/output matrix. 

 Be a node inode and time itime 

(R) If sensor response is positive: 

 Add (inode, itime) to source list 

 (inewnode, inewtime) = backtracking(inode, itime) (see A-V-8) 

 do (R) with (inewnode, inewtime) 

 

C-I-3 Source Identification Algorithm 

For all itime: 

 inode = isensor 

 (Rinv) If sensor response is negative: 

  Matrice[itime, inode] = -1 

  (inewnode, inewtime) = backtracking(inode, itime) (see A-V-8) 

  do (Rinv) with (inewnode, inewtime) 

 (R) If sensor response is positive: 

  If (Matrice[itime, inode] ≠ -1) 

  Add (inode, itime) to input output matrix 

  (inewnode, inewtime) = backtracking(inode, itime) (see A-V-8) 

  do (R) with (inewnode, inewtime) 

For all potential node inode: 

 score[inode] = 0 

 If (Matrice[itime, inode] ≠ -1): 

  for all positive responses: 

   if coeff = 1: 
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   score[inode]  += 1 

                
            

                        
 

Rank nodes upon score. 

C-II Sensor Placement 

 The sensor placement problem is defined in chapter V. All resolution methods presented 

here use a Monte Carlo algorithm as base to get for instance average time to detection, detection 

likelihood or Contribution to source identification. 

 

C-II-4 Monte Carlo 

 The Monte Carlo method is a statistical method based here on contamination scenario.  

 First, a certain number are randomly selected at a node, at a time of injection and for a 

certain duration. Then the transport is simulated and the results save in a table. That table is then 

proceeded to extract the information wanted. 

 In both the greedy and local search algorithm proposed hereafter the objective function is 

the Contribution of the real source of contamination. It is calculated for each scenario with the 

help of the source identification algorithm presented before. 

 

C-II-5 Greedy Algorithm 

 Be N the number of sensor expected to be placed on the network, a list of node detailing 

the different nodes that may be used as sensor location and a list of contamination scenarios. 

Begins with 0 sensor. 

While number sensor < N: 

 Loop on the list of potential sensor: 

  Loop on contamination scenario: 

   Get Contribution 

   Add the sensor with the highest Contribution 
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C-II-6 Local Search 

 Be an initial sensor placement such as the one given by Piller (2015) with average time to 

detection as objective function. 

Begins with a N initial sensor placement 

While find a higher Contribution: 

 Loop on the list of sensor isens: 

  Loop on adjoint node to isens: 

   get Contribution when adjoint node is taken in place of isens 

 Loop on the list of sensor isens: 

  Replace isens to the adjoint node with max Contribution if it is higher than isens 

Contribution  
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Appendix D: Object model 
 

All algorithms are gathered in one object model: 

 

Figure 77: Object model. 

 Unified Modeling Language has been used to create a coherent domain for all algorithms 

to interact between them. It has already been proved that object modeling help the development 

of code and its sustain.  

 It helps mostly the development of new functions by focusing only on parts of the code 

whose links to other function are well defined. For instance an upwind scheme can easily replace 

the hybrid transport model defined as an Eulerian transport scheme. Therefore new functionalities 

can both be implemented and tested. This is also particularly interesting in the research field as 

new works come complete precedent ones and algorithm needs to be tested and compared to 

previous ones. 
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 Also different versions of same object can be implemented to differ only on some 

parameters. For example Concentration and Ageing objects differ here only on the fixed 

parameter K and α, constant and order of reaction, whose values are -1 and 0 respectively. That is 

interesting to propose formatted version of quality object to users. 

  The object model sustains the code development. Indeed, classic code may contain 

repetition of code applied to different objects. However, object modeling allows the gathering of 

different object into one category upon which same function is applied on. Therefore change of 

that function will affect all of them. 

 Another important use is inheritance of attributes and methods. Both can be initialized 

differently as well as behave differently depending on the object they belong to. For instance, 

Eulerian model and forward adjoint model both have a transport function. Both are called in the 

same way by the main function, however their implementations are completely different. One 

used Eulerian transport on pipes, the other one use adjoint transport from node to node. 

 UML not only allows the user to create the class diagram whose use is to define the 

objects and create the relation between them. Different level of conception can be define, from 

the user case to the technical point of view. 

 Object model allows also code development managing, tools such as Modelio that have 

been used here, allows several users to work together on the same project. One may use multi 

user lock option to forbid other user modifying the files they are working on. Versioning can also 

be done to do automatic savings as well as managing the merging process. 

 Finally automatic documentations can be done through object modeling. Any 

commentaries can both be process directly to generate documentation but also commentaries 

inside the code. That eases the coding process as well as gives a better representation of the 

whole program. 
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