
HAL Id: tel-01311143
https://theses.hal.science/tel-01311143v2

Submitted on 20 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Person analysis in stereoscopic movies
Guillaume Seguin

To cite this version:
Guillaume Seguin. Person analysis in stereoscopic movies. Computer Vision and Pattern Recognition
[cs.CV]. Université Paris sciences et lettres, 2016. English. �NNT : 2016PSLEE021�. �tel-01311143v2�

https://theses.hal.science/tel-01311143v2
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT
de l’Université de recherche
Paris Sciences Lettres –
PSL Research University

préparée à
l’École normale supérieure

Analyse des personnes
dans les films stéréoscopiques

Person analysis in stereoscopic movies

par Guillaume Seguin

École doctorale n°386
Spécialité: Informatique
Soutenue le 29.04.2016

Composition du Jury :

M Jason Corso
University of Michigan
Rapporteur

M Cristian Sminchisescu
Lund University
Rapporteur

M Ivan Laptev
Inria
Directeur de thèse

M Josef Sivic
Inria
Directeur de thèse

M Karteek Alahari
Inria
Membre du Jury

M Patrick Perez
Technicolor
Membre du Jury

M Jean Ponce
École normale supérieure
Membre du Jury

M Francis Bach
École normale supérieure
Membre du Jury



École normale supérieure

45 rue d’Ulm

75005 Paris

Inria Paris

2 rue Simone Iff

75012 Paris

UPMC

Ecole Doctorale de Sciences

Mathématiques de Paris Centre

4 place Jussieu

75252 Paris Cedex 05

Boite courrier 290



Abstract

Artificial intelligence is one of the grails of computer science, and in many cases it

implies building systems which can understand the surrounding visual environment.

Visual content is most often focused on people, which makes the analysis of people

a challenge of great importance for computer vision. In addition, feature-length

stereoscopic ("3D") movies are now widely available, providing large, varied sets of

stereoscopic pairs which contain more information than standard color movies.

In this thesis, we study how we can exploit the additional information provided by

3D movies for person analysis. We first explore how to extract a notion of depth

from stereo movies in the form of disparity maps. We then evaluate how person

detection and human pose estimation methods perform on such data. Leveraging

the relative ease of the person detection task in 3D movies, we develop a method to

automatically harvest examples of persons in 3D movies and train a person detector

for standard color movies using such automatically obtained training data.

We then focus on the task of segmenting multiple people in videos. We first propose

a method to segment multiple people in 3D videos by combining cues derived from

pose estimates with ones derived from disparity maps. We formulate the segmen-

tation problem as an inference task in a multi-label Conditional Random Field that

explicitly models occlusions between people. Our method produces a layered, multi-

instance segmentation. We show the experimental effectiveness of this approach as

well as its limitations.

We then propose a second model for multiple people segmentation. This model

only relies on tracks of person detections and not on pose estimates. We formulate

our problem as a convex optimization one, with the minimization of a quadratic

cost under linear equality and inequality constraints. These constraints encode the

weak localization information provided by person detections. This method does

not explicitly require pose estimates or disparity maps but can integrate these addi-

tional cues. Our method can also be used for segmenting instances of other object

classes from videos. We evaluate all these aspects and demonstrate the superior

performance of this new method.
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We demonstrate results on two newly collected datasets extracted from 3D movies,

for training and testing of person detection, human pose estimation and video seg-

mentation models. These datasets contain more than five thousand stereo pairs,

one thousand person bounding boxes, five hundred person poses and one thousand

person segmentation masks.
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Résumé

L’intelligence artificielle est l’un des graals de l’informatique. Elle suppose dans de

nombreux cas de construire des systèmes capables de comprendre l’environnement

visuel qui les entoure. Les contenus visuels mettent la plupart du temps en scène

des personnes, ce qui fait de l’analyse des personnes un défi d’importance majeure

pour le succès de la vision par ordinateur. Par ailleurs, les films stéréoscopiques

("3D") sont maintenant largement distribués, fournissant d’énormes collections très

variées de paires stéréoscopiques qui contiennent plus d’information qu’une image

de film classique.

Dans cette thèse, nous étudions comment exploiter les données additionnelles is-

sues des films 3D pour les tâches d’analyse des personnes. Nous explorons tout

d’abord comment extraire une notion de profondeur à partir des films stéréo-

scopiques, sous la forme de cartes de disparité. Nous évaluons ensuite à quel point

les méthodes de détection de personne et d’estimation de posture peuvent béné-

ficier de ces informations supplémentaires. En s’appuyant sur la relative facilité de

la tâche de détection de personne dans les films 3D, nous développons une méth-

ode de supervision automatique pour collecter automatiquement des exemples de

personnes dans les films 3D afin d’entraîner un détecteur de personne pour les films

non 3D.

Nous nous concentrons ensuite sur la segmentation de plusieurs personnes dans

les vidéos. Nous proposons tout d’abord une méthode pour segmenter plusieurs

personnes dans les films 3D en combinant des informations dérivées des cartes

de profondeur avec des informations dérivées d’estimations de posture. Nous for-

mulons ce problème comme un problème d’étiquetage de graphe multi-étiquettes,

et nous modélisons explicitement les occlusions pour produire une segmentation

multi-instance par plan. Après avoir montré l’efficacité et les limitations de cette

méthode, nous proposons un second modèle, qui ne repose lui que sur des détec-

tions de personne à travers la vidéo, et pas sur des estimations de posture. Nous

formulons un problème d’optimisation convexe, en tant que minimisation d’un coût

quadratique sous contraintes linéaires. Ces contraintes encodent les informations

de localisation fournies par les détections de personne. Cette méthode ne néces-

site pas d’information de posture ou des cartes de disparité, mais peut facilement

intégrer ces signaux supplémentaires. Elle peut également être utilisée pour seg-

menter des instances d’autres classes d’objets dans les vidéos. Nous évaluons tous

ces aspects et démontrons la performance de cette nouvelle méthode.
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Cette thèse présente également deux nouveaux jeux de données extraits de films

3D, permettant d’entraîner et d’évaluer les méthodes de détection de personne,

d’estimation de posture humain et de segmentation vidéo. Ces jeux de données

contiennent plus de 5000 paires stéréo, 1000 annotations pour la détection de per-

sonne, 500 annotations de pose et 1000 masques de segmentations fins.
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1Introduction

1.1 Context

In 2016, artificial intelligence is regularly making the news. It is a hot topic, both

as a scientific endeavor and as an ethical and philosophical subject. Artificial in-

telligence in the form of machine learning and data science is transforming many

activities. For instance, online retail of digital and physical goods has already been

transformed: customized suggestions are made to customers based on the products

they previously bought or the ones they viewed. These suggestions are based on the

behavior of the customer and on the ones of all the other customers of the platform.

These techniques are also at the heart of the strategies of advertising giants such as

Google: displaying the right ad for each customer, to increase click rates and then

conversion rates. Natural language processing and machine learning are also being

leveraged to produce speech recognition systems which are able to reply to queries

expressed in plain language, such as Siri or Cortana.

More broadly, artificial intelligence aims at building systems which can autonomous-

ly understand the world they are surrounded by and correctly handle any unex-

pected event while performing their task. For instance, surveillance systems may

need to understand and correlate visual, auditive and digital signals to properly

analyze the behavior of subjects. Given visual inputs, such systems need to detect

each subject as well as the action the subject is performing. This must be done in

combination with an analysis of the sound cues (what the person is saying), and

possibly of the digital feeds (what communications are happening). For instance,

Figure 1.1 shows an example output of an outdoor video-based surveillance system,

which detects and tracks people and vehicles.

A more physical incarnation of AI is being developed in assistive technologies un-

der the form of robots which provide physical help to elderly or disabled people.

Once again, these robots must be able to feature multiple forms of intelligence in

order to perform assistive tasks (lifting heavy objects, cooking, helping a person

stand up. . . ): understanding oral commands, recognizing objects and their posi-

tion, shape and orientation, mapping the scene to know where it can move to and

how, motion planning for both floor displacement and actuators, etc. An example

of such a robot is shown in Figure 1.2.
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Fig. 1.1: Example of surveillance system outputa: the system detects and tracks each per-
son and vehicle in its view. It monitors the speed of the vehicles to detect speeding
ones. It also keeps tracks of persons going in and out of each store.

aDemo from Placemeter company https://vimeo.com/69091237

(a) The HERB robot (b) Example of challenging action: picking
up and tearing apart an OREO cookie

Fig. 1.2: The HERB robota from the Robotics Institute of Carnegie Mellon University. This
experimental assistive robot is able to automatically recognize objects and their
3D pose (position and orientation), grab them and manipulate them. This in-
volves a combination of computer vision and robotics (in terms of mechanics and
motion planning) challenges.

ahttps://www.cmu.edu/herb-robot/photos/

2 Chapter 1 Introduction

https://vimeo.com/69091237
https://www.cmu.edu/herb-robot/photos/


Another physical incarnation of AI can be found in self-driving cars, which face sim-

ilar challenges as illustrated in Figure 1.3. They must combine traffic and routing

information with an understanding of the structure of the road (lanes, traffic lights)

and of where the other cars are and what they are doing. They must be able to react

to sudden changes of the behavior of the other vehicles (lane changes, etc), and to

unlikely events, such as pedestrians crossing the road at unexpected locations.

At the core of many of these applications is the ability to properly understand a

visual environment. This faculty is a natural one for most living beings, which have

large parts of their cognitive systems devoted to the visual perception task, systems

which have evolved and adapted over millions of years. However, it remains a

difficult challenge for machines. Computer vision is the scientific field which aims at

enabling machines to develop a visual understanding of the world. Visual contents

are an extremely rich type of data, but at the same time they are also extremely

variable and noisy. Slight illumination or viewpoint changes can heavily impact the

signal measured by optical acquisition devices such as cameras.

People are at the center of many practical applications, and thus at the center of

many computer vision tasks, as illustrated in Figure 1.4. One of the iconic tasks

of computer vision is the one of face detection. The very popular Viola-Jones

method [Viola and Jones, 2004] is one of the most well-known computer vision

algorithms, and a typical homework assignment for computer vision students. A

more difficult people-related task is the one of person detection, which suffers from

a larger range of possible deformations, occlusions and frame cropping. Given a

face detection or a person detection, higher level questions can be asked: whose

face is this? What is the physical pose of the person? What action is this person per-

forming? At a finer level, a pixel-wise segmentation of the person can be a strong

cue for practical applications such as image and video editing tasks.

However, people are a notably challenging class of objects. Compared to other

typical object classes, people are significantly harder to analyze than rigid or mostly

rigid objects, such as cars or airplanes, and even than other animal classes, which

often have less appearance and pose variability.

An interesting fact is that as people are at the center of many computer vision

problems, they are also at the focus of typical images and videos. Most movies, TV

series and documentaries focus on the stories of human characters. In TV video

footage, movies or YouTube videos, people usually occupy around 34% of the video

pixels [Laptev, 2013]. Furthermore, an average feature-length movie is made of

about 130000 frames. On YouTube in 2014, it was estimated that about 72 hours of

videos were uploaded every minute to the platform, which at 24 frames per second

1.1 Context 3



(a) Prototype of the Google Car

(b) Challenges of self-driving cars

(c) Sensors used in self-driving cars

Fig. 1.3: Challenges of self-driving cars. We show in (a) a prototype of the self-driving
Google Cara. In (b), we show an illustration of the challenges faced by self-driving
carsb: recognizing the road layout, traffic lights and signs, etc. These challenges
are tackled by processing and combining the output of many sensorsc: radar and
ultrasonic sensors, video cameras, lidar (light detection and ranging) sensors, etc.

ahttps://www.google.com/selfdrivingcar/
bExtracted from a Volvo report, photo by Henrik Ottosson http://www.volvocars.com/

SiteCollectionDocuments/TopNavigation/Corporate/Financials/FinancialReportH12013.

pdf
cFrom The Economist http://www.economist.com/node/21560989

4 Chapter 1 Introduction
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(a) Face detection (b) Facial recognition

(c) Person detection (d) Pose estimation

(e) Action recognition (f) Segmentation

Fig. 1.4: Examples of people-related computer vision tasks, from high level, coarse ones
such as face or person detection, to fine, low-level ones such as person segmenta-
tion.
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sums to about 9 billion frames uploaded every day to the platform. This abundance

of data can provide very large datasets for training models and algorithms.

Another trend is that 3D data has recently gained a worldwide commercial success.

On one side, the Microsoft Kinect has been a revolution in the gaming industry.

Based on an infrared emitter and camera, it is able to compute the physical depth

of each point in its viewport. Combined with a powerful pose estimation algo-

rithm [Shotton et al., 2011], it allows Microsoft XBox players to play video games

without holding any controller, simply by making gestures or moving their body.

Combined RGB and Depth (RGB-D) sensors such as the Kinect or other depth cam-

eras have been used to collect datasets for tasks such as pose estimation [Ionescu et

al., 2014] or semantic segmentation [Silberman et al., 2012]. On the other side, 3D

movies have been around for more than a century: the first theatrical tests of stereo-

scopic footage were done in 1915 by Edwin S. Porter and William E. Waddell in

New York City. These tests were presented in red-green anaglyph and depicted a va-

riety of situations, from natural landscapes to human actors and dancers. However,

stereoscopic movies have only recently known a large commercial success. Screen-

ing of such movies was previously only possible in a few hundred theatres around

the world, such as IMAX 3D ones. 3D movies are now available as consumer-level

products: 3D movies screenings are available in more than 25000 theatres, and

millions of 3D televisions have been sold to consumers. At the same time, more

than 500 feature-length movies have been released in 3D, and more than 200 have

been shot with a true 3D stereo rig1. These movies sum up to several hundreds of

hours, providing millions of stereo pairs shot in a very wide ranges of scenes and

situations.

(a) Anaglyph glasses (b) Fujifilm W3 camera (c) Sony HDR-TD30 camcorder

Fig. 1.5: Examples of devices for 3D movies: anaglyph glasses (a) allow watching 3D
movies screened using the anaglyph technique. Consumer-level cameras (b) and
camcorders (c) are available to capture stereoscopic stills and videos.

In addition to the professional hardware used to shoot 3D movies, consumer-level

hardware is now available for shooting memories in 3D, as illustrated in Figure 1.5.

Digital cameras such as the Fujifilm FinePix Real 3D W3 allow capturing stereo-

scopic pairs instead of a single image as standard cameras. 3D camcorders such as

the Sony HDR-TD30 allow shooting stereoscopic videos in full HD resolution. Once

again, these devices can provide large and varied amounts of stereo pairs. For in-

1http://realorfake3d.com/
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(a) (b)

(c) (d) (e)

Fig. 1.6: Examples of improvements obtained by using disparity feature in person detection
and pose estimation methods of Chapter 4. Top line: we compare side-by side
person detection results using only color information (a) or using a combination
of color and disparity information (b) for two frames. Our method that uses
disparity detects two more people (green) that were missed (red) by the baseline
method. Bottom line: we show the original frame (c), pose estimate using only
color information (d) or using both color and disparity information (e) for two
frames. Note how our method recovers more accurately the pose of the person
with the extended right hand.

stance, entire Flickr groups are devoted to sharing pictures shot with the Fujifilm

W3, such as https://www.flickr.com/groups/finepix_real_3d/.

1.2 Goals

In this thesis, we build on the success of 3D video content and study how we can

exploit the additional information contained in this type of data, compared to stan-

dard color videos. We focus on person analysis in stereoscopic movies. In particular,

we study three people-related tasks: person detection, pose estimation and video

segmentation. For person detection and pose estimation, we analyze how disparity

features can improve the output of methods based on deformable part models, as

illustrated in Figure 1.6. For video segmentation, we develop two new methods to

segment multiple persons. The first method combines cues derived from pose esti-

mates with disparity cues. It not only provides a pixel-wise segmentation of each

person but also outputs a layering of the persons in the scene, as illustrated in Fig-

ure 1.7. The second method only relies on tracked bounding boxes and outputs the
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pixel-wise segmentation of each object instance. These bounding boxes are used to

constrain the space of possible segmentations in a weak manner. As illustrated in

Figure 1.8, this method not only works for people but also on any other object class,

as it does not directly require any class-specific appearance model.

Fig. 1.7: Examples of layered multi-person segmentation results produced by our new
method from Chapter 5. In addition to the pixel-wise segmentation of each per-
son, our method outputs a layering of all the persons in the scene, shown by the
numbers and the color overlays on the figure. The foremost person being identi-
fied by 0, and the color overlays use the standard jet color map, with dark blue
corresponding to the foremost person and dark orange/red to the person the most
in the background.

Fig. 1.8: Examples of multi-instance object segmentation results produced by our new
method from Chapter 6. This method not only works on multiple persons (top
line), but can also work on other object classes (bottom line) without requiring
the learning of class-specific appearance models.
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1.3 Challenges

This thesis addresses the following three main challenges: modelling the heav-

ily variable appearance of people, extracting a notion of depth from uncalibrated

stereoscopic streams and combining disparity cues with other cues such as color or

motion signals.

Modelling appearance of people. One of the main challenges in analyzing human

appearance is the heavy variability of pose and appearance of people. Human ap-

pearance can vary considerably due to skin, body shape or clothing variability. Fur-

thermore, the human body features many physical joints and has more than 200

degrees of freedom. As a consequence, our articulated bodies can take a very large

number of poses. The fact that we often pay attention to small nuances of body

postures and motions makes the problem even harder.

The combination of multiple people in a single scene creates even stronger chal-

lenges due to occlusions. For instance, if two persons are wearing similar clothes

and one is partially occluding the other, segmenting apart the two persons and the

background is a very difficult task. Another example is two persons holding each

other’s hand: knowing where the arm of the first person ends and where the arm

of the second person starts is a complicated problem. We illustrate these challenges

in Figure 1.9.

(a) (b)

(c) (d)

Fig. 1.9: Examples of challenges of person analysis: inter-person occlusions (a,b,d), chal-
lenging poses (a,c), person-background appearance similarity (c) and inter-
person appearance similarity (d).
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Extracting depth from stereoscopic movies. At first sight, 3D data used as an input

to person analysis methods may seem like a very powerful addition. Indeed, suc-

cesses such as the ones achieved in foreground-background subtraction and pose

estimation by the Kinect have shown the power of depth data. However, the Kinect

is a joint hardware and software projects: it uses very specific sensors developed for

this purpose, which have a limited range, only work indoors, etc. Thus, the entire

signal acquisition pipeline behind the Kinect algorithms was entirely mastered by

its developers, who were able to model the behavior of the sensors and their partic-

ular noises. In the case of 3D movies, the shooting procedure and post production

work are typically unknown to the consumer. In addition, 3D movies are stored

and distributed as a pair of stereoscopic video streams, one meant to be seen by the

left eye and another one by the right eye. This format is nowhere as explicit as the

depth maps produced by active sensors such as the Kinect. Extracting a notion of

depth from stereoscopic video streams often involves matching the pixels of the two

streams to compute the relative displacement of each pixel from the first view to the

second view. The estimated displacement field is called a disparity map. However,

in uncalibrated and unrectified setups, the disparity estimates may be significantly

noisy, as illustrated in Figure 1.10. The second challenge of our work thus resides

in the exploitation of uncalibrated pairs of stereoscopic video streams.

(a) Kinect depth map (b) Disparity map extracted from a 3D movie

Fig. 1.10: Comparison of a depth map produced by the Microsoft Kinect (a) with a dispar-
ity map estimated from a stereo pair from a 3D movie (b). The Kinect depth
map features fine details and explicitly outputs the regions where the depth es-
timation is unreliable (in black), while the disparity map only recovers layers of
the scene.

Combining cues. The third challenge of our work is the use of this noisy disparity

data in combination with other signals, such as color and motion signals, to solve

people-related computer vision problems. While using an additional channel of

information is most often beneficial, great care is needed to avoid creating new

types of errors because of the weaknesses of this additional channel. For instance,

as shown in Figure 1.11, segmentation methods may produce erroneous results

induced by incorrect disparity estimation in texture-free areas. We thus need to

properly weight the contribution of each signal in our algorithms.
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(a) Left frame (b) Estimated disparity

Fig. 1.11: Example of disparity estimation errors which may typically lead to "leaking"
problems for a disparity-based segmentation method.

1.4 Motivation

Our work aims at producing a set of tools which can be used directly or indirectly in

practical applications. For instance, our person detection and pose estimation work

could be used in surveillance or robotics applications. Multi-person segmentation

could help editing stereo videos or movies, or be used as a mid-level representation

which can be further used for tasks such as action detection and recognition.

Surveillance and robotics. The most straightforward applications of our work is

the use of person detection and pose estimation methods for surveillance or robotics

application. For instance, person detection and pose estimation using 3D cues can

be applied directly to robots and systems already using a stereoscopic camera setup,

such as the HERB robot shown in Figure 1.2 or some self-driving cars, as explained

in Section 1.1. Surveillance systems which usually contain a single camera can also

benefit from better person detectors trained using the proposed harvesting method

which leverages the relative ease of the person detection task in 3D movies to learn

better models for standard color-only contents.

Video editing. Given the people-centric nature of many movies, being able to reli-

ably produce a pixel-wise segmentation of each person in each frame is a valuable

feature for video editing softwares. With such a feature, it becomes much easier

to remove a person entirely from the video, to change their clothing or swap them

with another person. Given the layer ordering of the persons in the scene, which

can be an output of the segmentation method, it also becomes easy to integrate

additional dynamic overlays in between the different layers of the scene, such as

adding a droid which weaves around the people in a Star Wars scene.

Mid-level representation for human action recognition. Reliable pixel-wise segmen-

tation of people can also be used as a mid-level representation for other tasks, such
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as action detection and recognition. The segmentation masks can either be used

directly as features for the target method or can be used indirectly. For instance,

many state of the art methods extract dense features from the whole video or from

a tube of the video. Given per-person segmentation masks, new feature extraction

strategies can be developed, such as extracting features specifically from foreground

regions, or from the region associated to each person.

1.5 Thesis outline

The rest of this thesis is organized as follows.

In Chapter 2, we review the literature related to our work: uses of 3D data for com-

puter vision tasks, person detection, human pose estimation and segmentation.

In Chapter 3, we describe the background theory and methods used in this work:

deformable part models for object detection and pose estimation, Conditional Ran-

dom Fields, spectral and discriminative clustering methods.

In Chapter 4, we explore the acquisition of disparity maps from feature-length

stereoscopic movies. We then extract features from this additional channel of infor-

mation and use these features to train person detection and human pose estimation

models for 3D movies. After evaluating these models, we leverage the relative ease

of the person detection task in 3D movies to perform a depth-supervised harvesting

of person detection positive examples and train a better person detector for non-3D

movies.

The last two chapters of this thesis focus on the task of segmenting multiple people

in videos. We first introduce a model for multi-person segmentation in 3D videos

in Chapter 5. We formulate the segmentation problem as a multi-label Conditional

Random Field. The unary terms of the model combine cues from disparity maps

with a rough segmentation mask derived from pose estimates. We also explicitly

model the occlusions between the different persons in the scene, and produce a

layered, multi-instance segmentation.

Finally, in Chapter 6 we propose a second model for multi-instance person seg-

mentation in videos which takes tracked bounding boxes as an additional input.

This time, we formulate the segmentation problem as a convex optimization one,

the minimization of a quadratic cost under linear equality or inequality constraints.

These constraints are used to encode prior knowledge about the localization of each

object in a weak manner. We can for instance say that in a given region, at least
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70% of the pixels belong to a given object. This model can also be used for non-

person object classes, and can handle additional channels of information or prior

information very easily. We show the flexibility of the model by incorporating pose

estimates in a weak manner, and by performing segmentation propagation on a

standard benchmark dataset.

1.6 Contributions and results

Our contributions are thus the following:

• We study how to extract disparity information from feature-length stereo-

scopic movies. Given that the stereoscopic pairs provided by 3D movies are

neither rectified not calibrated, we resort to standard optical flow methods to

match the pixels of the two views and extract a notion of disparity.

• We evaluate the impact of this additional channel of information for person de-

tection and human pose estimation methods. We include additional disparity-

based features in the feature vectors used by methods based on deformable

part models and study the performance improvements on these two tasks.

• We develop a method to collect training examples from 3D movies for a per-

son detector aimed at standard color movies. Using a small initial dataset of

person bounding boxes labelled by hand, we train a powerful person detector

for 3D movies, which we use to harvest a large number of person examples

which can be used to train a better detector for color movies.

• We propose a model to perform multi-person layered segmentation in 3D

movies. This method combines rough segmentation masks derived from pose

estimates with disparity cues to jointly produce the pixel-wise segmentation

of each person as well as the layering of the persons in the image.

• We propose a model to perform multi-instance object segmentation from ob-

ject tracks. We cast the object tracks as constraints which shape the space of

admissible segmentations in a convex optimization problem. As it involves no

class-specific appearance model, this method can be easily applied to multiple

instances of any object class.

To evaluate the proposed methods, we introduce two new datasets extracted from

feature-length 3D movies. These datasets contain ground-truth annotations for

training and testing person detection, pose estimation and video segmentation mod-

els in 3D movies.

Among the valuable results of our work, the depth-supervised training of a person

detector for standard color movies exhibits a very high performance on our test
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dataset as well as on a standard benchmark dataset. Our video segmentation meth-

ods produce quality segmentations in many cases, and are able to handle some very

challenging sequences with heavy deformations and appearance variations.

1.6.1 Publications

This thesis has lead to the following publications:

• Karteek Alahari, Guillaume Seguin, Josef Sivic, Ivan Laptev. Pose Estimation

and Segmentation of People in 3D Movies. ICCV 2013.

• Guillaume Seguin, Karteek Alahari, Josef Sivic, Ivan Laptev. Pose Estimation

and Segmentation of Multiple People in Stereoscopic Movies. PAMI 2015.

• Guillaume Seguin, Piotr Bojanowski, Rémi Lajugie, Ivan Laptev. Instance-

level video segmentation from object tracks. CVPR 2016.
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2Related Work

In this chapter, we review the literature related to our work. We start by describing

in Section 2.1 the various ways 3D data have been involved in computer vision.

We then describe the evolution of person detection and human pose estimation

methods in Section 2.2. Last, in Section 2.3, we review segmentation methods for

still images, sets of images and videos related to our works on multi-person and

multi-object segmentation in videos.

2.1 3D data in computer vision

Given the 3D nature of our physical world, 3D is naturally at the core of many

computer vision problems. The first 3D-related computer vision problem is the

one of depth estimation. Indeed, while our binocular visual system allows us to

perceive the world in 3D, typical cameras only capture a 2D view of the world. A

stereoscopic pair of images captured by a pair of cameras can be used to estimate

the depth of the scene [Marr and Poggio, 1979] has been studied since at least the

1960s [Julesz, 1962]. Stereo vision methods aim at computing a disparity map,

which measures the distance between pixels in the two images which correspond

to the same physical point. Each disparity value is mathematically related to depth

values, usually by an inverse relationship. Based on the taxonomy from [Scharstein

and Szeliski, 2002], stereo algorithms generally consist of four steps:

1. Computing a matching cost, which evaluates how similar two pixels are, for

instance by measuring the mean square error between their associated colors.

This step usually yields a 3D volume C where C(i, j, d) encodes the similarity

between the pixel at location (i, j) in the first view with the pixel (i+ d, j) in

the second view with d being the considered disparity value.

2. For each disparity value and location, aggregating the matching cost over a

local window, for instance by averaging the costs of all the pixels within the

window. This step yields a new 3D volume A with similar semantic as C, but

which contains a more robust information as it encodes the local similarity

between the candidate regions.

3. Computing the disparity map D by performing either a local or global op-

timization. Local optimization approaches simply select the most likely
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disparity value at each location based on the aggregated cost: D(i, j) =

arg maxdA(i, j, d), a method often referred to as "winner-take-all". Global

optimization techniques combine this local reasoning with global smoothness

priors. Typical global optimization techniques formulate the disparity estima-

tion problem as an energy minimization problem over a graph corresponding

to the pixels of one of the views, with unary terms reflecting the aggregated

costs and binary terms encouraging the smoothness of the solution. These

formulations can be efficiently and exactly optimized using methods such as

graph-cuts on an appropriate graph [Ishikawa, 2003].

4. Refining the disparity map to produce a finer-grained information. For in-

stance, many optimization procedures yield disparity maps which are integer

valued. These initial maps can be refined to achieve a sub-pixel accuracy, for

instance by smoothing the map or by using more advanced techniques which

would have been computationally intractable to compute the initial map.

Steps 1 and 2 are often combined when the matching cost is computed by using

information from an entire window, as it is done for instance for normalized cross-

correlation [Hannah, 1974] where the intensities are normalized over the corre-

sponding window by taking the average and standard deviation of the intensity in

the window into account. A very large number of approaches has been proposed

across the years [Scharstein and Szeliski, 2002] and differ on the type of matching

cost, aggregation procedure and optimization method. Stereo vision methods are

most often evaluated on the Middlebury dataset and benchmark1 and on the KITTI

stereo benchmark2.

Most of the early works on stereo vision did not use of datasets with ground truth to

learn parameters for their models and used either hand-crafted matching costs and

aggregation procedures. Newer approaches are often based on machine learning,

such as the method of [Kong and Tao, 2004] which learns a classifier which predicts

whether the matching cost used is reliable at a given location, or unreliable due to

a foreground object in the view, or unreliable due to another factor. The disparity

map is then initialized to the one deduced from the matching cost and aggregation,

and refined based on the probability of the location belonging to each of the three

classes. More recently, a random forest classifier was trained to predict the confi-

dence of the matching cost at each location [Spyropoulos et al., 2014]. The predic-

tions were then used to select pixels for which the matching cost has been deemed

as highly reliable. The disparity map is then produced by solving a Markov Random

Field optimization problem in which the assignment of these highly-reliable pixels

are specified as soft constraints. The current state of the start method for stereovi-

sion [Žbontar and LeCun, 2015] trains a siamese convolutional neural network to

1http://vision.middlebury.edu/stereo/
2http://www.cvlibs.net/datasets/kitti/eval_stereo.php
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compare a pair of patches from the two views. This approach trains a matching cost

function which is highly fit for the disparity estimation task. This matching cost is

then aggregated over an appropriate, pixel-specific region selected so that it mostly

belongs to the same object [Zhang et al., 2009] and smoothed using a semiglobal

matching approach [Hirschmüller, 2008], before building the disparity map with

the winner-take-all method.

In our work, we work with uncalibrated pairs of stereoscopic streams extracted

from 3D movies. We explore how to compute disparity maps from these streams in

Chapter 4.

On a slightly unrelated note, more images or viewpoints can be used to estimate the

3D location of each captured pixel. Structure-from-motion techniques [Hartley and

Zisserman, 2000] jointly estimate the 3D world location of each image pixel with

the 3D poses of cameras. They involve finding point correspondences between the

images, and then reasoning on the underlying geometry to properly reconstruct the

viewpoints and a 3D point cloud. These techniques have been used on large datasets

with many views taken by different cameras and at multiple points in time: the

Photo Tourism project [Snavely et al., 2006]3 aimed at reconstructing 3D models of

entire buildings or areas using personal photo albums or collections shared on social

networks such as Flickr. At an even larger scale, the Rome in a Day project [Agarwal

et al., 2011]4 proposed a highly scalable system which can reconstruct entire cities

by using millions of pictures, as illustrated in Figure 2.1. This represents great

challenges, as it involves matching millions of images and solving very large non-

linear optimization problems.

Other kinds of sensors can capture depth directly or indirectly. Direct acquisition

can be achieved by using laser rangefinders such as LIDARs (contraction of "light"

and "radar"), which send pulses of laser light and measures the round-trip time be-

tween a pulse emission and the reception of its reflection. Multiple forms of LIDARs

exist, such as ones which can measure the depth of a single point at a time and

require a mechanical scanning system to measure the depth of the entire scene, as

well as time-of-flight systems which can capture the depth of the whole scene with-

out requiring a mechanical scanner. LIDAR devices are often used in combination

with standard cameras, for instance for autonomous vehicles, such as self-driving

cars or unmanned aerial vehicles (UAV). Typical applications of such combinations

include pedestrian detection [Premebida et al., 2009] or mapping and reconstruc-

tion of the 3D world [El-Hakim et al., 2004]. Time-of-flight cameras and LIDARs

have also been used to capture datasets for computer vision, since they can produce

high accuracy depth ground truth. For instance, the Human3.6M dataset [Ionescu

3http://phototour.cs.washington.edu/
4http://grail.cs.washington.edu/projects/rome/
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Fig. 2.1: The Rome in a Day project: millions of pictures collected from the image sharing
websites are used to produce a 3D reconstruction of an entire city [Agarwal et al.,
2011].

et al., 2014] is composed of 3.6 million images featuring various human poses,

actions and contexts, for which ground truth depth maps were captured using a

combination of a time-of-flight camera with motion capture sensors. Similarly, the

KITTI dataset [Geiger et al., 2012] features road sequences captured from a car

rigged with multiple cameras and a laser scanner, and provides ground truth depth

data.

Indirect acquisition can be achieved by using active sensors, such as structured-light

systems. Such systems project known patterns of light, for instance grids, horizontal

lines or dots, and use a camera to capture a view of the scene. Analyzing the dis-

tortion of the projected pattern in the captured view allows to efficiently estimate

the depth of each point. One example of this type of sensor is the Microsoft Kinect,

which uses an infrared emitter to project a pattern of dots, along a monochrome

CMOS sensor which captures the reflected infrared light. This consumer-grade de-

vice was originally developed and sold as a peripheral for the XBox 360 gaming

system, which allows the player to play games without holding a physical controller,

by detecting the pose of the player and specific gestures. The pose estimation algo-

rithm developed for the Kinect [Shotton et al., 2011], illustrated in Figure 2.2, relies

on random forests to find the body part to which each person pixel belongs. The

proposed assignments are then refined to be spatially consistent, and the position of

each physical joint is estimated from the corresponding cluster of points. The differ-

ences of depth between the considered pixel and multiple neighboring pixels at var-

ious distances are used as features for the random forests. An interesting fact is that

the random forests were trained using synthetic data, generated to reproduce the

noises and biases of the final sensor. Such consumer-grade devices also allow mak-

ing cheap 3D scanners, which can efficiently produce 3D models of objects, persons
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and indoor scenes, for instance by using the KinectFusion algorithm [Newcombe

et al., 2011]. They can also be used for autonomous vehicles and robots to perform

tasks such as Simultaneous Localization And Mapping (SLAM) [Kerl et al., 2013].

(a) Input depth map (b) Pixel labels (c) Final joint predictions

Fig. 2.2: The Kinect pose estimation algorithm [Shotton et al., 2011] reasons on depth
maps (a) obtained by the device and for which the background has been sub-
tracted. Each foreground pixel is classified into a body part (b), using features
computing the relative difference of depth between the current pixel and neigh-
boring ones at multiple ranges. After aggregating and refining the predictions, 3D
body joint locations are computed (c). Figure from [Shotton et al., 2011].

In addition to scene reconstruction and pose estimation, 3D data is also a popu-

lar medium for object recognition. For instance, in [Collet et al., 2011] multiple

pictures of the same object are captured from different viewpoints. Keypoints and

descriptors are extracted from each image, and matched with those from the other

images, and a 3D model of each object composed of a set of 3D points, each point

being linked to the corresponding descriptors from the original images. At test time,

features are extracted from the input image and matched to the ones in the object

database. Object proposals and object 3D pose estimates are then produced using

an algorithm which iteratively refines the set of features belonging to each object

instance and estimates the pose aligning the keypoints with the object model.

The Kinect has also enabled researchers to collect large datasets for 3D object recog-

nition, such as the BigBIRD dataset [Singh et al., 2014], which features 600 views

(RGB image + depth ground truth) for each of the 125 objects of the database, as

well as 3D pose and segmentation masks ground truths. On this type of data, meth-

ods such as [Xie et al., 2013] have demonstrated superior performance than on

RGB-only data, by properly leveraging the depth data for preliminary segmentation

as well as feature computation.
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3D data has also been used for semantic segmentation. For instance, the NYU Depth

Dataset V2 [Silberman et al., 2012] features 464 scenes and 1449 annotated pairs

of RGB image and depth map, with semantic and instance-level labels. Combining

RGB and depth information enables algorithms to handle typically hard situations

in RGB-only data, such as occlusions where both objects have a similar appearance.

For instance, the state-of-the-art method on this dataset [Banica and Sminchisescu,

2015] combines boundaries detected on the RGB image with boundaries detected

on the depth image to improve a segment proposal method. It also extracts addi-

tional features based on the 3D bounding box of each segment proposal, using the

3D point cloud of the region.

Our work is inspired by the success of the Kinect on pose estimation and the pro-

liferation of datasets acquired by using 3D sensors. In Chapter 4, we study how to

extract disparity from readily available 3D movies, introduce two datasets extracted

from 3D movies and study how person detection and pose estimation methods can

be improved by the additional channel of information offered by 3D movies. In

Chapter 5 and Chapter 6, we study the task of instance-level segmentation and

evaluate our methods on data extracted from 3D movies.

2.2 Person detection and pose estimation

Person detection and human pose estimation are two of the main people-related

computer vision tasks. These tasks directly face the challenges posed by the inher-

ent high deformability of the human body and the infinitive variation of human

appearance due to body shape, skin color and clothing variations.

2.2.1 Person detection

Person detection aims at automatically finding the location of people in images

and videos. In practice, the output of person detection methods is often a set of

bounding boxes, rectangles inside which a person has been localized. In addition

to the classical challenges of computer vision (viewpoint changes, illumination vari-

ations), person detectors face the very large variability of human shape, pose, skin

and clothing combinations, as well as frequent intra-occlusions (a limb hidden be-

hind another) or inter-occlusions (one person partially occluding another one).

Some of the first approaches to person detection targeted the simpler case of pedes-

trians. Indeed, the pose and shape of a standing pedestrian is usually quite simpler

recognizable than when considering the set of all possible human poses. These ap-

proaches first built templates of pedestrian edges, either by manually annotating
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person outlines [Gavrila, 2000] or by using a perceptron to learning 2-D filters over

image contours [Felzenszwalb, 2001]. At test time, they then matched the extracted

image edges to these templates.

However, edge detection is by nature a hard task, especially in the wild. Instead

of extracting edges from the entire image, patches from the image can be consid-

ered using the sliding window approach. Features are extracted from each patch,

and classified into person or background classes, for instance using Haar wavelets

and support vector machines [Oren et al., 1997; Papageorgiou and Poggio, 2000].

In [Dalal and Triggs, 2005], a new type of features, Histogram of Oriented Gradi-

ents (HOG), computed over cells on the gradients maps, was introduced and applied

successfully to person detection.

To handle more types of poses than a single rigid template can, multiple templates

can be used. For instance, poselets [Bourdev and Malik, 2009] are local pose-

specific detectors, which are trained using examples which have a locally consistent

pose, for instance people having their arms stretched would lead to a local detector,

while people having their arms crossed would lead to another, and people sitting

on a bench to another, as illustrated in Figure 2.3. A single example can thus be

used to train multiple detectors which consider different parts of the body. Later on,

a method to combine the output of these detectors into a reliable person detector

was proposed by [Bourdev et al., 2010].

Fig. 2.3: Examples of clusters of locally consistent poses used to learn poselets in [Bourdev
and Malik, 2009].

Using a single rigid template or even multiple alternative rigid templates is too lim-

ited to handle the large deformability of the human body. To solve this forthcoming,

multiple templates corresponding to different body parts can be introduced. For

instance, in [Mohan et al., 2001], four parts are considered: upper body, left and

right arms, lower body. These parts are allowed to move slightly relatively to each

other, but the extent of the moves has to be set manually. The pictorial structure

model [Fischler and Elschlager, 1973] allows defining parametric relationships be-

tween parts, which can be deformed using spring-like deformation priors. The score
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of a bounding box is the sum of the scores of the parts plus a deformation cost for

each link between two parts. While the inference over such models was consid-

ered as hard initially, it was made tractable for certain types of deformation cost

by the introduction of the generalized distance transform algorithm [Felzenszwalb

and Huttenlocher, 2004a]. It was then applied to object detection by [Felzenszwalb

and Huttenlocher, 2005].

These "deformable parts models" were extended in multiple directions. For instance,

occlusions are handled in [Girshick et al., 2011] by incorporating an occluder part,

which can represent any object occluding part of the person. Another successful

development was the person detection and pose estimation method of [Yang and

Ramanan, 2011]. Instead of discovering the parts automatically as in [Felzenszwalb

and Huttenlocher, 2005], the parts correspond to physical body parts and joints:

wrists, elbows, shoulders, etc, which were fully annotated in the training set. In

addition, and building upon the poselets idea, multiple components are learned for

each part to handle different local configurations, such as straight elbows or folded

elbows, based on a clustering of all the configurations of each part in the training

set. Both the template and the deformation cost are learned relatively to the part

type. This approach can successfully model a very large number of configurations

and can produce very good detection results.

More recently, object detection, including person detection, has been revolution-

ized by the growing performance of convolutional neural networks (CNN). Using

ImageNet, a very large object classification dataset, high classification performance

was achieved on a 1000 class task using a deep convolutional neural network

by [Krizhevsky et al., 2012]. These advances were then transferred to object de-

tection tasks and datasets by [Girshick et al., 2014] by leveraging the networks

trained for the classification task and adding additional adaptation layers. This way,

the mid-level representations which were trained for classification are reused (and

even often fine-tuned) for another task without requiring a very large training set

again. Recent developments shifted away from the sliding window paradigm by us-

ing box proposal methods [Krähenbühl and Koltun, 2014; Krähenbühl and Koltun,

2015] which were later even incorporated in a single network used for both box

proposal and object detection [Ren et al., 2015].

In our work, we use the object detection method of [Felzenszwalb et al., 2010] for

person detection, which we retrain using additional features extracted from dispar-

ity maps in Chapter 4. We use this detector to perform the depth-supervised training

of a person detector for color movies in Section 4.4, and to detect persons for multi-

person segmentation in Chapter 5. We also use a method derived from [Girshick

et al., 2014] to detect person heads which are used to build our instance-specific

constraints over the shape of the segmentation space in Chapter 6.
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2.2.2 Human pose estimation

Human pose estimation is the task of estimating the posture of a person in visual

data. The output of pose estimation methods is most often a set of sticks correspond-

ing to limbs (lower arms, upper arms, etc.), or a set of keypoints corresponding to

body joints (wrists, shoulders, etc.).

Based on the physical structure of the problem, early approaches, often using gen-

erative models, considered the human limbs as cylinders connected to each other in

the 3D world [Deutscher et al., 2000; Sidenbladh et al., 2000; Elgammal and Lee,

2004] as illustrated in Figure 2.4. Instead of sets of cylinders, complete 3D mod-

els of the human body can be considered [Sminchisescu and Triggs, 2001]. In this

setup, estimating a person pose implies estimating the relative 3D rotations between

each pair of connected limbs, as well as other scaling and displacement factors.

However, such approaches are typically hard, especially since the problem is quite

ill-posed, given that multiple 3D poses can lead to the same human appearance in a

2D image. They often imply using advanced sampling methods [Sminchisescu and

Triggs, 2002] or search techniques [Sminchisescu and Triggs, 2003].

Fig. 2.4: Results of a pose estimation method [Deutscher et al., 2000] which searches the
space of 3D poses for matches within the image. The limbs are considered as
being 3D cylinders. Figure from [Deutscher et al., 2000].

Instead of building tedious generative models, pose estimation can be tackled as

a learning problem. The pose estimation problem is formulated by [Ionescu et al.,

2011] as the selection of appropriate figure/ground proposals and the prediction

of 3D joint positions, using a discriminative model. In [Agarwal and Triggs, 2004],

a regressor from person silhouette to person pose is learned using a non-linear

model. [Ramanan et al., 2005] learned a pose-specific person detector and applied

it to video frames. Once a person with the right pose was detected, an appearance

model of each body part was learned and used to track the pose in the rest of
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the video. [Ramanan, 2006] further extended this to drop the person detector

step, and instead initialized the model using part-specific detectors based on image

edges, before iteratively refining the appearance model of each part. This work was

adapted to videos in [Ferrari et al., 2008].

Later on, the deformable part models described in the previous section were

adapted to pose estimation [Sapp et al., 2010]. Instead of learning a single model,

multiple detectors can be trained for different types of poses produced by cluster-

ing the training set [Johnson and Everingham, 2010; Johnson and Everingham,

2011]. Similarly, the method of [Yang and Ramanan, 2011] mentioned above in

the context of person detection uses multiple part types and fully annotated part

locations. Combining the two, in [Sapp and Taskar, 2013] multiple high-level

pose components are used and are associated to a coarse template and to a full

deformable part model like the one of [Yang and Ramanan, 2011]. Using a cascade

approach to filter out unlikely pose components, this allows having more specific

estimators which can produce finer results. In [Pishchulin et al., 2013], an im-

proved pose appearance model is used in combination with more expressive body

part representations.

These methods, which represent a person pose as a tree of parts, were also extended

to video, for instance by connecting the nodes corresponding to the same part in

successive frames in a bigger pose graph [Sapp et al., 2011]. Efficient inference was

possible by iteratively optimizing over sub-trees of the graph. Another video exten-

sion was to use motion cues [Fragkiadaki et al., 2013] to refine the pose estimation

results from [Yang and Ramanan, 2011], which iteratively refines optical flow es-

timation and pose estimation in an alternated optimization scheme. The method

of [Cherian et al., 2014] samples multiple pose candidates for each person in each

frame of the video and selects the best candidate by finding a track of poses which

is coherent in time and with the video motion.

Deep learning advances were leveraged for pose estimation. For instance, in

[Toshev and Szegedy, 2014] a multi-stage regressor outputs the position of the

person joints given an image patch centered on a person. The first stage of this

regressor is a deep convolutional neural network trained using the euclidean loss

which outputs the position of all the joints, while the following stages refine the

position of a joint given a zoomed-in patch centered on the previous stage estimate.

In [Tompson et al., 2014], part detectors are trained using deep networks, as well

as a fully-connected spatial model. To train this model, the detectors are trained

first and then used to train the spatial model, and then the two stages are combined

and fine-tuned to improve performance even more. Convolutional networks are

also used in [Chen and Yuille, 2014b] to train part detectors as well as to train

image-dependant pairwise terms for a deformable part model similar to the one
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of [Yang and Ramanan, 2011]. Combining the approaches above, [Fan et al., 2015]

uses multi-task learning to train a joint part detector and part localizer, taking as

an input a full body patch containing the whole person and a part patch around the

expected part location, as illustrated in Figure 2.5.

Fig. 2.5: Architecture of a deep neural network for part detection and localization [Fan
et al., 2015]. The network takes both a coarse patch of the whole person as well
as a fine patch around the expected limb position, and outputs a heatmap for the
part detection as well as the part location. Figure from [Fan et al., 2015].

In our work, we use the pose estimator of [Yang and Ramanan, 2011], which we

retrain in Chapter 4 to benefit from disparity maps. In Chapter 5, we use this

method to estimate the poses of multiple persons in the image, and produce rough

pose-specific segmentation masks which we include as a component of our multi-

person segmentation model.

2.3 Segmentation

Segmentation is the task of grouping pixels in a coherent manner. It maps to

the natural capability of our visual system to group nearby pixels into relevant

regions [Wertheimer, 1923]. In computer vision, multiple types of segmentation

tasks exists, from binary foreground/background segmentation to multi-class seg-

mentation tasks, such as semantic segmentation, where each label corresponds to

an object class (e.g.car, plane, person, road, sky), or instance-level segmentation,

where each label maps to a different instance of an object class (e.g.multi-person

segmentation). Typical difficulties for segmentation methods arise from the lack of

clear boundaries between the different target segments, or at the opposite from the

existence of boundaries within a target segment. In our work, we investigate the

task of multi-person segmentation in videos, which is at the corner of semantic seg-

mentation and multi-object segmentation in videos. In addition, we use cues from

stereo videos as well as ideas related to co-segmentation methods. We describe

works related to these problems in the following.
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2.3.1 Semantic segmentation

Semantic segmentation is the task of grouping the pixels of an image which corre-

spond to the same object class or concept. For instance, in the case of an urban

environment, the classes can be cars, bicycles, road, pavement, building, sky, etc, as

illustrated in Figure 2.6. It is often referred to as image or scene parsing, and can

be seen as jointly performing recognition and segmentation.

(a) Original image (b) Ground-truth semantic segmentation

Fig. 2.6: Semantic segmentation aims at identifying regions of the image which correspond
to a coherent object class or concept. We show here the original image (a) and a
ground-truth segmentation label in the context of an urban scene, with persons,
cars, roads, buildings, etc.

Many approaches for semantic segmentation are based on Markov Random Fields

(MRFs) or Conditional Random Fields (CRFs) over pixels or superpixels [Corso

et al., 2008; Chen et al., 2008; Russell et al., 2009; Gould et al., 2009; Kumar

and Koller, 2010; Tighe and Lazebnik, 2010]. For instance, in the Graph-Shifts

method [Corso et al., 2008], a hierarchical graph is built, with nodes represent-

ing classes at the top level and nodes from a hierarchical over-segmentation below.

An iterative graph manipulation procedure is applied to update the hierarchical la-

belling efficiently and optimize an MRF formulation for semantic segmentation. An

extension of this method has also been applied to videos [Chen and Corso, 2011].

In [Kumar and Koller, 2010], the semantic segmentation problem is addressed as

joint tasks of assigning pixels to regions and of assigning regions to semantic classes.

The problem is formulated as an energy minimization problem, with an energy com-

posed of two terms: one which evaluates the coherence of the pixels in each region,

and one which evaluates whether each selected region label is appropriate. A sim-

ilar approach is proposed by [Ion et al., 2011], where tiling sets are considered

over region proposals acquired using the Constrained Parametric Min-Cut (CPMC)

algorithm [Carreira and Sminchisescu, 2012]. A tiling set is a set of region pro-

posals which cover the image as much as possible but do not overlap each other.

The proposed energy contains one term which evaluates the chosen tiling and one
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term which evaluates the chosen labelling of each segment of the tiling. It is then

optimized using a classic message-passing method [Kolmogorov, 2006].

Images can also be segmented in a hierarchical manner [Munoz et al., 2010], by

first computing a a hierarchy of over-segmentations. Then, given an image region

and predictions made at the previous hierarchy levels, the method predicts the

proportion of each class in the image.

Region proposals can be classified using pooled features, as shown by [Carreira

et al., 2012], where local features such as SIFT or local binary patterns (LBP) are

pooled over region proposals using second-order operators (such as second-order

max- or average-pooling). The pooled features are then mapped to an appropriate

space and fed to a SVM to predict the region label.

Using neural networks, convolutional features are extracted at multiple scales,

and used in a segmentation tree to smooth out the prediction of semantic classes

[Farabet et al., 2013]. More recently, fully convolutional networks adapt state-

of-the-art classification models to apply them in a sliding window fashion [Long

et al., 2015]. The score map produced by these methods can be further refined

using a fully connected CRF [Chen et al., 2015] to produce cleaner results. The

CRF model can even be integrated as part of the neural network by formulating

it as a Recurrent Neural Network (RNN) [Zheng et al., 2015]. Doing so creates a

deep network which can be trained end-to-end using back-propagation and which

exhibits excellent performance and segmentation quality. Instead of using a slid-

ing window approach to simply produce score maps, a multi-task neural network

can also be trained to predict whether the input patch is centered on an instance

of the considered object class and output a segmentation mask [Pinheiro et al.,

2015]. This approach has been shown to produce both excellent object detection

performance and high quality segmentation masks.

Our work of Chapter 5 and Chapter 6 focuses on the segmentation of persons

against the background, which is a form of semantic segmentation. In addition,

we aim to segment each person against the rest and the background, which can be

seen as multi-object segmentation, or even instance-level segmentation given that

all the considered foreground objects belong to the same semantic class.

2.3.2 Multiple object segmentation in videos

The problem of object and multiple object segmentation in videos can be ap-

proached from multiple angles. Naturally, given the dynamic nature of videos,

unsupervised motion-based segmentation is an efficient approach. Point tracks can
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be used to group regions with a coherent motion through the video, for instance by

clustering long term tracks [Ochs et al., 2014]. Occlusion reasoning can be applied

to long term tracks analysis to further improve the results [Lezama et al., 2011],

as illustrated in Figure 2.7. Using motion boundaries, the method of [Papazoglou

and Ferrari, 2013] estimates an initial binary segmentation by assigning pixels

inside the motion boundaries to the foreground segment. The segmentation is then

refined using a spatio-temporal extension to GrabCut. Occlusion relationships can

also be analyzed to recover a layered partition of each frame of a video and to

segment each object of the video [Taylor et al., 2015].

(a) Without occlusion reasoning (b) With occlusion reasoning

Fig. 2.7: Unsupervised video segmentation using long term tracks. Long term point tracks
are computed and then aggregated based on the similarity of the motion (a).
However, when the camera moves, static objects move similarly with the back-
ground. By reasoning on occlusions, static objects which are occluded by moving
objects during the video can be identified and segmented separately.

Another approach is to track segmentation proposals through the entire video. Fore-

ground segments can for instance be extracted using foreground/background seg-

mentation based on motion, and then the produced blobs can be matched and con-

nected across frames [Colombari et al., 2007]. Many segmentation proposals can

also be generated by methods such as CPMC, and then tracked and combined to pro-

duce the final segmentation [Li et al., 2013; Banica et al., 2013]. Instead of tracking

proposals, clusters of coherent segments can be computed and used to compute ap-

pearance likelihoods for a space-time MRF to recover the segmentation. [Lee et al.,

2011].

Instead of trying to group regions having similar appearance or motion, it is possible

to learn instance-specific object appearance models. For instance, in [Fathi et al.,

2011] soft segmentations are produced iteratively over a graph of superpixels and

are used to measure the uncertainty of the segmentation. At each iteration, the

labels of the most certain frame are frozen and are used to train appearance models

in the form of weights for higher-order potentials. These appearance models are

then used to produce the soft segmentations of the next iteration.
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A slightly different but related task is the one of segmentation propagation, which

has been tackled by ensuring the consistency of the segmentation over supervox-

els [Jain and Grauman, 2014]. The problem is formulated as a space-time MRF over

superpixels, with classical spatial and temporal neighborhood potentials as well as

additional higher-order potentials encouraging the consistency of the labelling over

an entire supervoxel.

A notable work which does not focus on videos but is still relevant is a system

targeted at multi-instance segmentation for cars in images [Zhang et al., 2015b].

While it is restricted to a specific setup, the one of car-mounted cameras, it provides

layered, instance-level segmentation for the cars in the view. A convolutional neural

network is used to predict segmentation masks for at most 6 cars inside a single

patch, in a layered fashion. The predictions at each location in the image are then

merged by first detecting the connected components in the network outputs, and

then formulating an MRF problem using priors over the ordering of the cars (the

cars are the bottom of the image should be the foremost ones, while the ones at the

top are likely to be behind) and short-range and long-range pairwise terms.

Other related works [Ladický et al., 2013; Eichner et al., 2012] have considered the

case of jointly estimating the pose and segmentation of multiple people in a scene.

Following previous works on jointly reasoning about poses of multiple upright peo-

ple [Eichner and Ferrari, 2010], [Eichner et al., 2012] proposes a pose estimation

algorithm which supports multiple persons in a single scene and also outputs a soft

segmentation mask for each person. The formulation proposed in [Ladický et al.,

2013] uses a candidate set of poses for finding a pixel-wise body part labelling of

people in the scene. It combines multiple standard potentials over color and texture

with potentials derived from rough segmentation masks estimated from the body

parts locations of each candidate pose as well as potentials from the pose estimation

itself. The solution to the pose estimation and segmentation problem is obtained by

first greedily selecting high-quality candidates until adding the next best candidate

degrades the quality of the initial solution. Then, the selected candidates are jointly

refined until convergence.

In our work, we combine multiple cues such as appearance and motion cues to

segment multiple persons or objects (potentially multiple instances from the same

object class) in a video. In addition, in Chapter 5 we incorporate person detections,

pose estimates and disparity cues and reason on the layering of the different per-

sons in the scene, while in Chapter 6 we only require object tracks to perform the

segmentation.
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2.3.3 Segmentation using bounding boxes or pose estimates

Prior information, such as object bounding boxes or pose estimation can be used to

guide the segmentation. Person and body-part detectors as well as skin color mod-

els have been used as unary potentials in CRFs [Lempitsky et al., 2009; Rother et

al., 2004; Hernández-Vela et al., 2012]. In the GrabCut framework, initial appear-

ance models of the foreground object and of the background are computed from

user inputs, such as scribbles (areas annotated by the user) or bounding boxes as

in [Rother et al., 2004], as illustrated in Figure 2.8. These models are then used to

seed the unary potentials of a graph-cut problem, which is then solved, producing

the desired segmentation. This procedure is then iterated, the appearance models

being recomputed using the segmentation found at the previous iteration.

(a) Original image with bounding box (b) Binary segmentation result

Fig. 2.8: Given an image and a bounding box, the GrabCut algorithm [Rother et al., 2004]
builds an appearance model for the foreground using the pixels inside the box and
one for the background using the pixels outside of the box, and solves a binary
graph-cut problem to produce the segmentation. This procedure is then repeated
until convergence by updating the appearance models at each iteration by using
the segments found at the previous iteration.

Higher order terms of CRFs can also be used to encode priors from bounding

boxes [Ladický et al., 2010; Vineet et al., 2011]. For instance, in [Ladický et al.,

2010], a higher order term of a pixel-wise CRF links all the pixels inside a bound-

ing box to encourage their labels to be coherent. A similar term is used by [Vineet

et al., 2011] to perform the segmentation of multiple persons in a video, as well as

terms related to body part detections.

A recently proposed task, simultaneous detection and segmentation [Hariharan et

al., 2014], closes the gap between object detection and segmentation. They do

so by scoring region proposals produced by MCG [Arbeláez et al., 2014] using a
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method based on CNN features and a SVM classifier, and combine likely regions

together to produce a segmentation mask and output object detections.

Recently, bounding boxes have been used to weakly supervise the training of a

deep neural network for semantic segmentation [Dai et al., 2015; Papandreou et

al., 2015]. In [Dai et al., 2015], region proposals from MCG are combined with

bounding boxes of an object class to learn an initial fully convolutional network

for the segmentation task. The network is iteratively improved by combining the

predicted masks from the network trained at the previous iteration with the most

likely region proposal for each bounding box and updating the network with the

produced, refined mask. In [Papandreou et al., 2015], multiple strategies using

bounding boxes or simply image-level tags are used to supervise the training of a

fully convolutional neural network, for instance by considering the whole content

of the bounding box as a positive label, or by using automatic binary segmentation

within the bounding box to produce the positive segment. These methods produce

results which are competitive with methods which require fully annotated object

masks such as [Long et al., 2015]. In addition, in both works, semi-supervised se-

tups where pixel-wise ground truth masks are provided for a fraction of the training

set and bounding boxes for the rest of the set are even more competitive with fully

supervised setups.

The use of object detectors as weak cues for semantic video segmentation has been

explored in [Zhang et al., 2015a]. In this work, given image-level object tags, object

detections are produced according for the object classes specified by the tags, and

region proposals are generated. The detections and proposals are tracked through

the video, and then refined to only retain likely hypotheses.

In our work, bounding boxes are used in Chapter 6 to constrain the set of possi-

ble segmentations. These constraints guide the segmentation without having to

explicitly build any model from their contents.

2.3.4 Person segmentation in stereo videos

The problem of segmenting a stereo video into foreground-background regions has

been addressed for a teleconferencing set-up in [Kolmogorov et al., 2005], with

applications in graphics as illustrated in Figure 2.9. The sequences considered in

this work involved only one or two people seated in front of a webcam, i.e., a

restricted set of poses and at best, simple occlusions. They propose two algorithms

for binary segmentation in stereo videos. The first one solves both the disparity

estimation problem and the segmentation problem taking appearance matches and

occlusions into account. The second one solves the segmentation problem without
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explicitly involving the estimation of a disparity map. It formulates this problem as

a tri-label pixel-wise graph cut and combines an appearance model with smoothness

priors and a stereo consistency model.

(a) Stereo pair input (b) Output with automatic background substitution

Fig. 2.9: Illustration of the output and potential application of the foreground/background
segmentation method for stereo videos of [Kolmogorov et al., 2005]. The back-
ground can be subtracted and replaced by another one dynamically. Figure
from [Kolmogorov et al., 2005].

More recently, the model presented in [Sheasby et al., 2012] uses disparity cues to

perform human pose estimation and binary segmentation. They use the pose esti-

mation method of [Yang and Ramanan, 2011] to recover the torso of the person and

use two points from the torso as seeds for a flood fill algorithm over the disparity

map. They further formulate the problems of disparity estimation, pose estimation

and binary segmentation jointly, and solve them using a dual decomposition.

In our work, we integrate disparity cues either as a strong prior for segmentation in

Chapter 5 or as a simple feature for a smoothness prior in Chapter 6.

2.3.5 Co-segmentation

Fig. 2.10: Co-segmentation aims at segmenting multiple images jointly by exploiting the
appearance similarities of the objects present in all the pictures.

Co-segmentation is the task of simultaneously segmenting a set of images that all

contain the same objects, exploiting the fact that the objects present in these images

have similar appearance, as illustrated in Figure 2.10. Early works only considered

pairs of images, such as [Rother et al., 2006] where a classic binary segmentation

MRF model is combined with a term which encourages the coherence of the color

histograms of the foreground segments of the two images. Further works [Kim et

al., 2011; Joulin et al., 2010] explored co-segmentation with many images. For

instance, in [Joulin et al., 2010] a global appearance model of the object class is

learned jointly with the foreground/background segmentation in each image. It

does so by minimizing an energy composed of a grouping term, which encourages
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the smoothness of the solution in each image, and of a discriminative term, which

encodes how well each segment fits the appearance model. Following the DIFFRAC

discriminative clustering framework [Bach and Harchaoui, 2007], [Joulin et al.,

2010] uses the square loss for the discriminative term, which allows computing

the appearance model in closed form when given the labels (the segmentation as-

signment), which in turn allows writing the whole energy as a convex function

of the labels which can be optimized efficiently. The multi-class co-segmentation

problem is tackled in [Joulin et al., 2012] using the soft-max loss function and an

expectation-maximization (EM) optimization scheme.

Note that this discriminative clustering approach has also been recently applied to

other tasks: object co-localization in images [Tang et al., 2014], finding actor iden-

tities in movies [Bojanowski et al., 2013; Ramanathan et al., 2014] and temporal

action localization [Bojanowski et al., 2014]. Each of these techniques is built upon

a task-dependent set of constraints, modeling simple assumptions and encoding

prior knowledge.

In our work, we cast the multi-instance object segmentation problem in videos as a

multi-class discriminative clustering problem in Chapter 6, following the intuition

that we are segmenting the same objects in all the frames of the video. We cast

object tracks provided as an input into instance-specific constraints which shape

the space of admissible segmentations.
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3Background Theory

In this chapter, we describe the background theory and methods used in the rest of

the thesis. In particular, we focus on deformable part models for object detection

(Section 3.1) and pose estimation (Section 3.2) used in Chapter 4. Conditional

Random Fields (Section 3.3) is the theoretical framework behind the multi-label

video segmentation method proposed in Chapter 5. Spectral (Section 3.4) and

discriminative (Section 3.5) clustering methods are used in the convex multi-label

segmentation framework of Chapter 6.

3.1 Deformable part models for object detection with

LSVM

Given an image I, object detection is the task of predicting object locations (most

often represented by bounding boxes) in I. This task can be reduced to the binary

classification problem: given a bounding box p in I, the task is to predict whether

the box tightly contains an object of the target category or not. Given a feature

vector Φ(I, p) which represents the appearance of the image region in p and model

parameters w, this classification task can be seen as thresholding a score function

f(p|I, w). Given such a binary classifier, detection can then be performed by clas-

sifying all bounding boxes inside image I, which can for instance be done using

the sliding window approach (evaluate the classifier at all possible locations and

scales) or using a cascade scheme (by skipping bounding boxes which are unlikely

to contain the target object using an object proposal method or a faster classifier).

Linear classifiers where f(p|I, w) = ⟨w|Φ(I, p)⟩ are a simple and efficient example

of classifier for object detection, but they may not be able to capture the large space

of configurations of certain object classes such as persons or cars, especially when

using feature vectors Φ(I, p) which directly encode the spatial layout of the image.

Indeed, with such features, the linear model w encodes a rigid template.

A more powerful approach is the one of pictorial structures [Felzenszwalb and

Huttenlocher, 2005], where objects are represented by a graph (or often simply

a star or a tree) of parts which can be deformed. Let us call (V, E) the vertices and

edges of this graph. i ∈ V identifies one of the parts, and (i, j) ∈ E identifies one of
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edge of the graph where part j is a child of part i. Parts encode local appearance

information of the object and a spring-like model allows displacement of each part

with respect to a subset of other parts. For instance in the case of a person class,

parts can correspond to physical joints (shoulders, elbows, wrists), and the left wrist

can move with respect to the left elbow, which itself can move with respect to the

left shoulder. Figure 3.1 illustrates the person detection model from [Felzenszwalb

et al., 2013]. This model is a combination of a global object template, called the

root template as illustrated in (a), and of local part templates, shown in (b), linked

by spring-like connections, which behaviors are illustrated in (c).

Fig. 3.1: Examples of person detections obtained with a deformable part model (left) and
visualization of the global object template (a), part templates (b) and displace-
ment costs (c). The global object template is fairly coarse, while part templates
are finer, using features computed at a higher spatial resolution. The displacement
costs encode the spatial model of the deformable part model, which penalizes the
displacement of the part from their expected position within the bounding box.
Figure from [Felzenszwalb et al., 2013]

Information about part locations can be encoded as latent variables. By using the

same notations as before, denoting the values of these latent variables by z and

adapting our feature vector to incorporate information from z, the score function

of our classifier can then be written as:

f(p, z|I, w) = max
z
⟨w|Φ(I, p, z)⟩ . (3.1)

In practice, a bias term b is usually added to the score function, so that thresholding

is performed with a threshold at 0. For the sake of simplicity, we skip this term in

the following as it simply offsets the threshold.

In the following, we describe the object detection method of [Felzenszwalb et al.,

2010]. The model, cost function and inference procedure are described in Sec-

tion 3.1.1 and the training procedure in Section 3.1.2. In particular, this train-

ing procedure involves a framework called latent support vector machine (LSVM)

which is able to train such latent-variable classifiers without requiring training data

with part annotation.
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3.1.1 Model and inference

Deformable part models for object detection can be expressed as graphical models,

where parts are cast as nodes and links between connected parts are cast as edges.

In these models, unary terms encode how well the part appearance correspond to

the image appearance at the selected part location while binary terms encode how

likely the displacement between two parts is.

Unary terms. To encode appearance information, templates which are usually lin-

ear filters are applied to a feature map computed over the whole image in a dense

manner. Each element of the feature map is a d-dimensional feature vector which

encodes the local appearance of the underlying image patch. With p = (x, y, s), we

denote by ϕ(I, p) the portion of the image feature map starting at image coordi-

nates (x, y) at scale s. In practice, many practical implementations of deformable

part models use histograms of oriented gradients (HOG) [Dalal and Triggs, 2005].

These features are extracted by first computing the horizontal and vertical gradients

of the image and the orientation of the gradient vector at each location. These ori-

entations are aggregated and discretized into histograms over small patches of the

image. Formally, a filter F if a w×h×d weight tensor which scores a portion of size

w× h of the feature map by summing the dot products of each of the w× h feature

vectors with the corresponding weight vector. We write this score as ⟨F |ϕ(I, p)⟩.

Two levels of detail are used for the templates. A first template, usually called the

root template or root filter, is used at the bounding box level and scores the global

appearance of the entire bounding box. It is usually trained and evaluated on a

coarse feature map, as its goal is to roughly localize the object. The rest of the

templates are part templates. They are usually much smaller than the bounding

box and trained and evaluated on higher resolution feature maps, as their goal is to

precisely localize the object parts by capturing fine appearance details.

In the following, we will denote the root template by F0 and the n part templates

by F1 to Fn.

Binary terms. The root template and the part templates form a star graph, with the

root template being the root of the star. In the deformable part models, each edge

of the star graph corresponds to a possible displacement between the expected loca-

tion of the part relative to the root template. The allowed deformation is modeled

using a spring-like quadratic cost. The i-th template, 1 ≤ i ≤ n, is associated with

a vector of deformation parameters di which encode the rest position and rigidity

of the spring between the root template and the i-th template. If we denote by pi
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the position (location and scale) of the i-th part, we can then write the deformation

cost as ⟨di|ψ(pi, p0)⟩ where ψ(pi, p0) = (xi − x0, yi − y0, (xi − x0)2, (yi − y0)2).

Using these notations, and by noting z = (p1, · · · , pn), we can write the full score

function:

f(p0, z|I) =
n
∑

i=0

⟨Fi|ϕ(I, pi)⟩ −
n
∑

i=1

⟨di|ψ(pi, p0)⟩. (3.2)

Note that this score function can be expressed as a dot product between model

parameters

w = (F0, · · · , Fn, d1, · · · , dn)

and feature vectors

Φ(I, p0, z) = (ϕ(I, p0), · · · , ϕ(I, pn),−ψ(p1, p0), · · · ,−ψ(pn, p0))

as:

f(p0, z|I, w) = ⟨w|Φ(I, p0, z)⟩ . (3.3)

In turn, the score of a bounding box can be computed by finding the best parts

placement:

f(p0|I, w) = max
z
f(p0, z|I, w) = max

z
⟨w|Φ(I, p0, z)⟩

= ⟨F0|ϕ(I, p0)⟩+
n
∑

i=1

max
pi

⟨Fi|ϕ(I, pi)⟩ − ⟨di|ψ(pi, p0)⟩.
(3.4)

The score of all possible bounding boxes can be computed efficiently by using a

generalized distance transform algorithm [Felzenszwalb and Huttenlocher, 2004a]

as shown in Figure 3.2. This procedure involves independently applying each part

template at all possible locations in the image and computing the contribution of

this part to the score for all possible object bounding boxes using distance transform.

The final score of each bounding box is then computed by summing the score of the

root template and the score contribution of each part for this bounding box.

3.1.2 Training and LSVM

As shown above, given an image I and a bounding box p0, our score function is:

f(p0|I, w) = max
z
⟨w|Φ(I, p0, z)⟩ (3.5)
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Fig. 3.2: Visualization of the efficient inference procedure for the deformable part model
for object detection. Feature maps are extracted at a coarse and a fine resolution
from the original image. Filter responses are computed over the entire feature
maps using efficient convolution procedures. Filter response maps are then trans-
formed using a generalized distance transform to incorporate the deformation
costs. This produces maps which give the best possible part score contribution at
each root part location. These maps are summed to produce the final scoremap,
which gives detection scores at each possible object location and can be thresh-
olded to produce a set of object detections. Figure from [Felzenszwalb et al.,
2013]
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where z represents the vector of values of latent variables, w holds the model param-

eters and Φ(I, p0, z) is the feature vector associated with the image I, the bounding

box p0 and the latent values z.

We add one entry to Φ(I, p0, z) with value 1 and one entry to w to incorporate a

bias in the model. Let us denote by xi = (Ii, p0i) a bounding box in an image

and write f(xi|w) = f(p0i|Ii, w). Then, given a set of N training examples D =

(xi, yi), i ∈ {1, · · · , N} with yi ∈ {−1, 1} the associated label to the example xi, we

can write the following objective function and optimization problem, analogous to

the standard SVM formulation, using the hinge loss:

w∗ = arg min
w

1

2
∥w∥2 +

C

N

∑

i∈D

max(0, 1− yif(xi|w)) (3.6)

with C the weight of the regularization term.

Given that f(xi|w) is convex (as being the maximum of a family of linear functions)

but nonlinear in w, the objective function is non-convex in w. This challenge can

be worked around by using an alternated optimization scheme. Indeed, when the

values of the latent variables zi are known, the score function becomes linear in

w and the objective becomes the one of the linear SVM with the hinge loss. In

this framework, called latent support vector machine (LSVM), at each optimization

iteration:

1. The best assignment of the latent variables is recovered by performing the

inference with given, fixed, model parameters w:

zi = arg max
z

⟨w|Φ(Ii, p0i, z)⟩

2. The model parameters w are updated by fixing the latent variables and solving

the corresponding convex optimization problem.

The other challenge of the training procedure for these deformable part models is

that the training set is usually very unbalanced, with many more negative examples

than positives examples. To work around this issue, a proper data mining scheme

is required. A typical scheme is to use a small subset of the entire dataset while

training, and regularly update it during the subset, keeping only hard positive and

negative examples. This approach has been shown [Felzenszwalb et al., 2013] to

be guaranteed to find an optimal dataset and to terminate.

Initialization. Initial root templates are trained by learning a standard linear SVM

over the feature maps computed over versions of the training bounding boxes
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warped to have a common size. Parts positions are initialized in a greedy man-

ner over salient regions of the root template, and initial part templates are derived

as higher resolution versions of the corresponding root filter region, while deforma-

tion costs are initialized to penalize large displacements.

Mixtures of components and mixtures of parts. To capture even more variations,

multiple object sub-types (called object mixture components) or part types (called

part mixture components) can be considered in the model. Object mixtures can for

instance deal with multiple object subcategories. For instance, in the case of cars,

one can have one mixture component for sedan cars, one for sport cars and one for

off-road vehicles.

Multiple object mixture components can be easily implemented by having a model

wk for each mixture component k ∈ {1, · · · ,K} instead of a single one, and comput-

ing the best score over all components for each bounding box. The scoring function

then becomes:

f(p0|I, {w1, · · · , wK}) = max
k

f(p0|I, wk). (3.7)

Note that formally the model can still be written as a linear dot product, after

concatenating the model weight vectors wk into a single vector and building the

feature vector appropriately. More specifically, an additional entry is added to the

latent variables vector, specifying which component is selected (z = (k, p1, · · · , pn)).

If the feature vector of the single mixture case is of size D, and 0D the vector of size

D with all values being 0, the full feature vector is produced by concatenating 0D

k − 1 times, the feature vector of the single mixture case with z = (p1, · · · , pn) and

0D K − k times.

At a finer level, part mixtures can help dealing with heavily deformable objects such

as people. Instead of requiring many object mixture component to handle the very

large variety of human poses, representing local part configurations (in the elbow

case, the configurations could be straight elbow, half bent elbow, fully bent elbow,

etc.) and pair-wise coherence between part mixture components allows represent-

ing an exponentially large space of configurations with a single model [Yang and

Ramanan, 2011], as described in the next section.

3.2 Deformable part models for pose estimation

The deformable part models described in the previous section in the context of ob-

ject detection do not require explicit part location annotations and automatically

discovers significant object parts which may have no specific semantic meaning.
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However, the task of pose estimation can be expressed as a structured prediction

problem which goal is to predict the location of keypoints of the object. For in-

stance, in the case of human pose estimation, these keypoints could be physical

body joints. These keypoints can be seen as parts of the deformable part models

framework, however the model needs to be extended and the training procedure

adapted. In this section, we describe the pose estimation method of [Yang and

Ramanan, 2011].

3.2.1 Model and inference

Using the same notations as in Section 3.1, the pose estimation problem can be

formulated as:

z∗ = arg max
z

f(p0, z|I) (3.8)

where p0 is the root bounding box and I is the input image. Solving (3.8) implies

finding the best arrangement of part positions at the root bounding box location.

Note that in this context, the root bounding box does not necessarily need to contain

the whole object. For instance, in the case of human pose estimation it is common

place to have the root part correspond to the person head.

The first model modification is to use a tree of parts instead of a star graph. Here

V = {0, · · · , n} contains the n+1 parts, and E the n edges of the tree. This tree struc-

ture allows modeling an exponential number of pose configurations, yet inference

can still be performed efficiently as shown below. With this structure, we adapt the

notation of the deformation parameters for simplicity, and call dij the deformation

parameters between part i and part j. The scoring function becomes:

f(p0, z|I) =
∑

i∈V

⟨Fi|ϕ(I, pi)⟩ −
∑

(i,j)∈E

⟨dij |ψ(pi, pj)⟩. (3.9)

As discussed in Section 3.1, part mixtures can be incorporated in the model to deal

with multiple part appearance patterns and capture an even larger number of pose

configurations. Formally, this implies incorporating more latent variables, one per

part, to identify the selected part mixture component. If there are T part types for

each part, then we add variables ti ∈ {1, · · · , T}, i ∈ {0, · · · , n}, ti identifying the

part type of part i. Instead of having 1 filter per part and n + 1 filters in total, we

now have T ×(n+1) filters F ti

i . The deformation cost parameters also become part-

types dependant, as illustrated in Figure 3.3 (a), and are now called d
ti,tj

ij . With

z = (p1, · · · , pn, t0, · · · , tn), the scoring function becomes:

f(p0, z|I) =
∑

i∈V

⟨

F ti

i |ϕ(I, pi)
⟩

−
∑

(i,j)∈E

⟨

d
ti,tj

ij |ψ(pi, pj)
⟩

. (3.10)
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(a) Deformation cost (b) Co-occurrence prior

Fig. 3.3: Examples of part mixtures and associated deformation costs (a) and co-
occurrence priors (b). Each part is associated to multiple candidate configura-
tions, and the deformation costs between a child part and its parent part depends
on the type of the parent part, as illustrated in the case of an arm in (a). In
addition, a co-occurrence prior is learned from training data to encourage com-
binations of parent and child part types which were seen in the training data, as
shown in (b). Figures from [Yang and Ramanan, 2013] and http://www.di.ens.

fr/willow/teaching/recvis14/slides/lecture07_structured_models.pdf.

The occurrence of each part type and co-occurrence of pairs of connected part

types can be taken into account in the score function as well, as illustrated in Fig-

ure 3.3 (b). By introducing new parameters bti

i , i ∈ V, which enables preferring

certain part types, and b
ti,tj

ij , (i, j) ∈ E , which enables favoring combinations of

certain part types, this score can be written as:

typesscore(z) =
∑

i∈V

bti

i +
∑

(i,j)∈E

b
ti,tj

ij . (3.11)

Once incorporated in the score function, the latter becomes:

f(p0, z|I) =
∑

i∈V

bti

i +
⟨

F ti

i |ϕ(I, pi)
⟩

+
∑

(i,j)∈E

b
ti,tj

ij −
⟨

d
ti,tj

ij |ψ(pi, pj)
⟩

. (3.12)

Let us note that as in Section 3.1.1, the score function f(p0, z|I) can be expressed

as a dot product between an appropriately built vector of model parameters and an

appropriately built feature vector.
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Let us now rewrite the score function to follow the tree structure. Let fi(pi, ti|I) be

the best score of the sub-tree starting from part i placed at position pi with type ti.

It can be written as:

fi(pi, ti|I) = bti

i +
⟨

F ti

i |ϕ(I, pi)
⟩

+
∑

j,(i,j)∈E

sj(ti, pi|I), (3.13)

sj(ti, pi|I) = max
tj

b
ti,tj

ij + max
pj

fj(pj , tj |I)−
⟨

d
ti,tj

ij |ψ(pi, pj)
⟩

. (3.14)

Then:

f(p0|I) = max
t0∈{1,··· ,T }

f0(p0, t0|I). (3.15)

As before, this score function can be efficiently evaluated over the whole image us-

ing dynamic programming. Indeed, once the scores of the sub-trees of a node have

been evaluated, the score of the node can be efficiently computed using the same

generalized distance transform method as for the star graph case. By applying this

method from the leaves to the root of the tree, the score function can be efficiently

evaluated and the best part locations and types obtained by keeping track of the

arg max of each max operation, and backtracking from the best root score.

Implementation details for human upper body pose estimation

In this section we illustrate this pose estimation method by giving a few imple-

mentation details for the human upper body pose estimation model of [Yang and

Ramanan, 2011]. In this model, there are 18 parts: head, neck, left and right shoul-

der, elbow, wrist and hips, plus several additional parts regularly spaced between

the physical body joints, as shown in Figure 3.4. These additional parts aim at hav-

ing a fairly dense coverage of the person body while using filters which are fairly

small in terms of spatial extent, to avoid taking large parts of the background into

account. The training data is produced from annotated poses with the 10 physical

joints, and the positions of the additional parts is interpolated from the neighboring

physical joints. Each part mixture model has T = 6 components. The training exam-

ples for a given part are clustered into the T components by running the K-means

algorithm with K = T over the set of relative position between the part example

and its parent part.
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Fig. 3.4: Structure of the tree of parts for human upper body pose estimation from [Yang
and Ramanan, 2011]. The nodes in blue correspond to parts that relate to physi-
cal body joints which are annotated in the training dataset. The nodes in orange
correspond to additional parts which are added to have a denser coverage of the
person surface.

3.2.2 Training procedure

The learning setup of this method is slightly different than the one previously used

for object detection. Indeed, while the model can still perform object detection,

the level of supervision for the positive examples is much higher, since both part

positions (from annotations or interpolation) and part types (from part examples

clustering) are known. We are thus given a dataset D with a set of positive pose

examples pos and a set of negative examples neg, for a total of N training examples.

An element i of pos corresponds to a tuple (xi, zi) where xi = (Ii, p0i) specifies an

image and root position for the pose and z = (p1, · · · , pn, t0, · · · , tn) specifies the

ground truth values of the part positions and types. An element i of neg corresponds

to an xi specifying an image and root position which does not contain the target

object.

The training problem from [Yang and Ramanan, 2011] is formulated as:

arg min
w,ξi≥0

1

2
∥w∥2 +

C

N

N
∑

i=1

ξi

s.t. ∀i ∈ pos, f(xi, zi|w) ≥ 1− ξi

∀i ∈ neg,∀z, f(xi, z|w) ≤ −1 + ξi

(3.16)

It aims at learning a model which
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1. gives high scores to the true pose of the positive examples

2. gives low scores to all possible poses in negative examples, since they contain

no target object and thus no valid pose.

The constraints used to encode these desired properties of example i can be violated

at the expense of paying a penalization cost, encoded in the slack variable ξi.

It is equivalent to the following optimization problem, which we can relate to the

one for object detection:

arg min
w

1

2
∥w∥2 +

C

N

(

∑

i∈pos

max(0, 1− f(xi, zi|w))

+
∑

i∈neg

max
z

(

max (0, 1 + f(xi, z|w))
)

)

.

(3.17)

This formulation is similar to the one from Equation 3.6 and could be optimized in

a similar manner, by iteratively alternating between the selection of optimal latent

values z for the negative examples and optimization of the model parameters w. In

practice, a dual coordinate-descent solver has been used to optimize the problem

from Equation 3.16 by making the negative optimization examples associated to a

single negative example from the dataset share the same slack variable [Ramanan,

2013]. This is necessary as the number of constraints can be exponentially large,

even though only a few of them are usually active.

3.3 Conditional Random Fields for segmentation

Foreground-background image segmentation consists in assigning a binary label

yi ∈ {0; 1} to each pixel i of an image I, usually described by a descriptor xi ∈ R
d.

A simple approach at solving this problem would be to model the appearance of

foreground and background segments, for instance by building color histograms

hF and hB for foreground and background respectively using prior knowledge on

the content of the image or using labels given for certain pixels. However, this

could lead to local errors for instance where the foreground locally looks like the

background. These errors of the pixel-wise predictions could be avoided, or at least

smoothed out, by adding a spatial consistency model and predicting jointly all the

labels.

Going from independent predictions to structured predictions can be done by in-

troducing graphical models. These models allow reasoning over a set of random
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variables, which are in our example the pixels represented by their descriptors xi

and binary labels yi. The descriptors xi are observed variables, while labels yi are

hidden variables aimed at explaining the observations. Let G = (V, E) be the graph

used in the model of this segmentation problem. Each of the random variables is

represented by a node v ∈ V of the graph. The set of undirected edges E defines

the connections between the variables, which can for instance map to the spatial

structure of the problem. In the case of images, it can be as simple as the typical

4-neighborhood which connects each pixel to its adjacent pixels on the horizontal

and vertical axes. Examples of neighborhoods are shown in Figure 3.5. For segmen-

tation, in addition to the spatial structure of the problem, we also want to link the

observation of a pixel xi to the corresponding label yi, resulting in a graph structure

illustrated in Figure 3.6.

Once the graph structure is set, we can now formulate and reason over the joint

or conditional probability distribution of the random variables. This can be done

by using the framework of Markov Random Fields (MRF). This well studied frame-

work can be used as long as the random variables satisfy the local Markov property,

which requires that each variable is conditionally independent of all other variables

given its neighbors. A MRF defines a joint probability distribution over the random

variables as:

p(y, x) =
1

Z

∏

C∈G

ΨC(VC) (3.18)

where C(G) is the set of cliques of G, VC the subset of variables in a clique C, ΨC a

potential function for this clique and Z the normalizing factor:

Z =
∑

y

∏

C∈G

ΨC(VC). (3.19)

For our example problem, this probability distribution could be written as:

p(y, x) =
1

Z

∏

yi

Ψ(yi, xi)
∏

(yi,yj)∈E

Φ(yi, yj) (3.20)

where Ψ(yi, xi) evaluates how well the pixel descriptor xi fits the prior model for

label yi and Φ(yi, yj) encourages neighboring pixels to have the same label. In the

literature, Ψ(yi, xi) would often be called an unary potential, as it reason on the

variables related to a single physical pixel, and Φ(yi, yj) a pairwise potential as it

models the interaction between neighboring pixels. The unary potential can for

instance evaluate how well the pixel color fits the estimated color models hF and

hB of foreground and background:

Ψ(yi, xi) = hF (xi)yi + hB(xi)(1− yi) (3.21)
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The pairwise potential can be derived from the classical Ising prior from [Winkler,

2003]:

Φ(yi, yj) = exp(−λ|yi − yj |) (3.22)

The proposed model is a generative model, and can be used both for generating

similarly looking images or to find the best labelling y∗ given observations x by

finding the MAP:

y∗ = arg max
y

p(y, x). (3.23)

This probabilistic formulation can easily be transformed into an energy optimization

problem by taking the negative log of p(y, x):

E(y, x) =
∑

yi

ψ(yi, xi) +
∑

(yi,yj)∈E

ϕ(yi, yj). (3.24)

While the inference problem in general MRFs is NP-hard, certain types of problems

can be optimized efficiently. In particular, energy functions of the form of the one

of Equation 3.24 which only contain pairwise potentials and is submodular can

be minimized exactly using graph cuts. More specifically, this implies building an

appropriate graph, containing a pair of special nodes (s, t) linked to all other nodes

of the graph, find the minimum cut of the graph by solving the maximum flow

problem between nodes s and t, and recover the labeling from the edges which

were cut [Ishikawa, 2003].

When exact inference is not possible, multiple methods exist for approximate infer-

ence, such tree-reweighted message passing [Kolmogorov, 2006] or α-expansion

[Boykov et al., 2001].

To model more complex interactions or priors, a variant of MRFs called Conditional

Random Fields (CRFs) can be used. As the name implies, instead of modeling the

joint distribution of all variables, it is used to model the conditional distribution

of the hidden variables given the observed variables p(y|x). Comparatively, CRFs

avoid the need of modeling the distribution over the observations. As such, they are

a form of discriminative model, while MRFs in general are expressed as generative

models.

In terms of expressive power, the pairwise terms of a CRF can be made observation-

dependant at little cost. For instance, in our segmentation example we can replace

the pairwise term Φ(yi, yj) by Φ(yi, yj , xi, xj)

Φ(yi, yj , xi, xj) = exp
(

−λ|yi − yj | exp(−γ∥xi − xj∥
2)
)

(3.25)
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to take into account the difference of appearance of the neighboring pixels. This

way we can encourage similarly looking neighbors to take the same label, but not

penalize label mismatches in case the neighbors do not look the same.

3.4 Spectral clustering and normalized cuts

Spectral clustering is a popular unsupervised method to partition data points into a

given number of clusters. Given similarity for all pairs of data points, the method

aims at assigning similar points to the same clusters and dissimilar points to differ-

ent clusters. It relies on the study of the eigenvectors (the spectrum) of a matrix

derived from the similarity measurements to perform dimensionality reduction. It

is simple to implement and can be solved using standard, efficient linear algebra

tools.

Formally, let V = {x1, · · · , xn} be the set of n input data points and sij ≥ 0 be the

similarity between points xi and xj . In this setup the similarity is symmetric, so

that sij = sji. We denote by E) the edges of the similarity graph, by wij ≥ 0 the

weight of the edge between xi and xj , and by W the weighted adjacency matrix

of the graph. Typically this graph (V, E) is fully connected: each pair of points

(xi, xj) such that sij > 0 leads to an edge in E with wij = sij . In many cases,

the similarity is itself derived from the data points for instance using the Gaussian

similarity function s(xi, xj) = exp(−∥xi − xj∥
2/(2σ2)) if xi ∈ R

d.

Multiple approaches have been proposed to perform spectral clustering. They all

revolve around building new representations of data points by solving an eigenvec-

tor problem on a matrix L, called the Laplacian matrix, which is derived from the

weighted adjacency matrix W . The new representations are usually much easier to

cluster using techniques such as the k-means algorithm. There are multiple types

of Laplacian matrices, and they are at the core of the spectral graph theory [Chung,

1997]. All of the formulations of these matrices involve the degree matrix D, which

is a diagonal matrix such that the i-th diagonal element is:

dii =
n
∑

j=1

wij .

This matrix counts the weights attached to each vertex of the graph. Typical Lapla-

cian matrices include:

• the unnormalized Laplacian matrix:

L = D −W (3.26)
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(a) 4-neighborhood (b) 8-neighborhood (c) higher-order

Fig. 3.5: Examples of connectivity for graphical models. Considering the node in blue, we
show (a) a simple 4-neighborhood pairwise model (with edges drawn in red),
(b) a 8-neighborhood pairwise model and (c) a more complex model with an
additional higher-order connection which connects all nodes to all others

Fig. 3.6: Example of graphical model: each observation xi is linked to the corresponding
output yi, and pairs of outputs corresponding to pairs of neighbor pixels are linked
together.
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• the random-walk normalized Laplacian matrix:

Lrw = In −D
−1W (3.27)

• the symmetric normalized Laplacian matrix:

Lsym = In −D
−1/2WD−1/2 (3.28)

These matrices are positive semi-definite and have n non-negative, real-valued

eigenvalues. Their smallest eigenvalue is 0.

Let y ∈ {0, 1}n×k be an assignment matrix of our n data points into k clusters. The

matrix y is such that yic is equal to one if and only if the point i is assigned to cluster

c. The spectral clustering objective is defined as:

E(y) = Tr(yTLy). (3.29)

For instance, when using the unnormalized Laplacian matrix, E(y) translates to:

E(y) = Tr(yTLy) =
1

2

n
∑

i,j=1

wij

(

k
∑

c=1

(yic − yjc)
2

)

, (3.30)

which intuitively means that whenever two points are in a different cluster, a cost

wij is paid. In turn, this means that a low E(y) corresponds to a clustering where

pairs of points picked from two different clusters have low similarities. Spectral

clustering techniques allow finding an assignment matrix y such that E(y) is low by

studying the spectrum of L and building a new representation of the data points in

R
k using the k smallest eigenvectors of L. For instance, in Algorithm 1, we describe

the normalized spectral clustering algorithm of [Shi and Malik, 2000].

Algorithm 1: Normalized spectral clustering algorithm [Shi and Malik, 2000]
Input: Similarity matrix S = (sij)i,j=1,··· ,n and desired number of clusters k.
Algorithm:

Build the similarity graph (V, E) and its adjacency matrix W .
Compute the random-walk normalized Laplacian Lrw.
Compute the k eigenvectors u1, · · · , uk of Lrw corresponding to the k
smallest eigenvalues of Lrw.

Build the matrix U ∈ R
n×k by stacking horizontally u1, · · · , uk.

Let vi ∈ R
k be the vector corresponding to the i-th row of U .

Cluster the points vi using the k-means algorithm, producing an
assignment matrix Y = (yij)i=1,··· ,n j=1,··· ,k ∈ {0; 1}n×k.

Output: Assignment matrix Y such that yij = 1 iff xi belongs to cluster j.
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3.4.1 Normalized cuts

A typical application of spectral clustering is the normalized cut problem [Shi and

Malik, 2000]. In graph theory, a cut C = (A,B) is the partition of the vertices of

a graph (V, E) into two disjoint subsets A and B. In terms of adjacency graph, it

implies removing the edges which connect vertices from one subsets to vertices of

the other subset. Using the previous notations, the cost of this cut is:

cut(A,B) =
∑

xi∈A, xj∈B

wij . (3.31)

This cost evaluates the amount of similarity which has been ignored when remov-

ing the edges between the two subsets. Finding the minimum cut of a graph, which

leads to the optimal bi-partitioning of the graph, is a classical and well-studied

problem, with efficient solving approaches. Namely, the min-cut max-flow theorem

states that finding the minimum cut of a graph is equivalent to solving a maximum

flow problem over this graph. The maximum flow problem can be solved in poly-

nomial time, for instance using the Edmonds-Karp algorithm [Edmonds and Karp,

1972].

Fig. 3.7: Toy example where finding the minimum cut would lead to a cluster containing
a single element (cut drawn in red) and where a normalized cut would lead to a
better partitioning (cut drawn in green)

This cost cut function can be used for clustering. However, it is naturally biased

towards forming unbalanced clusters, which a large one and a small one, as the

cost increases with the number of edges originally connecting the two subsets, as

shown by [Wu and Leahy, 1993] and illustrated in Figure 3.7. To work around this

issue, a new type of cut has been proposed by Shi and Malik, 2000, the normalized

cut. Instead of just taking into account the weight of the edges between the two

partitions, it also takes into account all the weight of all of edges starting from each

partition:

assoc(A,V) =
∑

xi∈A,xj∈V

wij . (3.32)
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The cost function is formulated as:

Ncut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
. (3.33)

This rebalances the cut problem: forming a partition with a single isolated vertex

will cost 1 (as all the edges of this partition are cut), which may no longer minimize

the cost as it might have been the case with the standard min-cut problem.

Using the previous notations for D, W and by introducing the assignment vector

y ∈ {0, 1}n, the normalized cut problem:

min
A, B

Ncut(A,B) (3.34)

can be rewritten as:

min
y

yT (D −W )y

yTDy

s.t. yTD1n = 0.

(3.35)

This is a quadratic problem under constraints, which is known to be NP hard when

y takes binary values, as it is as hard as solving a max-cut problem. A continuous

relaxation, by letting y take real values, can be solved as it is equivalent to solving

the generalized eigenproblem

(D −W )y = λDy. (3.36)

It appears that normalized cut is a spectral clustering problem aiming at finding

k = 2 clusters. The clusters can be recovered from the eigenvector corresponding

to the second smallest eigenvalue of the Lrw matrix, for instance by thresholding

the values of the eigenvector.

In our work, we use a spectral clustering term as part of the objective function of

the multi-instance segmentation method described in Chapter 6.

3.5 Discriminative clustering with the square loss

Discriminative clustering is a family of unsupervised methods, such as DIFFRAC [Bach

and Harchaoui, 2007] or [Guo and Schuurmans, 2007], aimed at clustering data

in such a manner that if the produced clusters were provided to a supervised tech-

nique, the training error would end up as low as possible. Provided that features

are discriminative enough, these techniques are proven to be more robust to noise

than generative ones.
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Formally, we are given N data points represented by vectors x1, · · · , xn in R
d,

stacked in a matrix X ∈ R
N×d, and our task is to partition them into K clusters.

Let us define the label matrix y ∈ {0, 1}N×K . The matrix y is such that ynk is equal

to one if and only if the point n is assigned to cluster k. Since each point can only

belong to a single cluster, y is also such that y1K = 1N , where 1K (resp. 1N ) is the

constant vector of size K (resp. N) with all entries equal to one. We denote by Y

the set of admissible label matrices y.

The supervised multi-label classification problem, given input data X and labels y

is to find a predictor f∗ such that:

f∗ = arg min
f

l(y, f(X)) + µ r(f) (3.37)

with l a loss function, r a regularizer and µ a weight between the two terms.

Following [Bach and Harchaoui, 2007], using the square loss l(y, f(X)) = 1
N ∥y −

f(X)∥2F , a linear model f(X) = Xw + 1Nb with w ∈ R
d×K and b ∈ R

1×K and a L2

regularization r(f) = ∥w∥2F , this problem becomes:

w∗, b∗ = arg min
w∈R×K, b∈R1×K

1

N
∥y −Xw − 1Nb∥

2
F + µ ∥w∥2F . (3.38)

This cost function can be minimized in closed form. Indeed, as ∥A∥2F = TrATA, the

cost can be written as:

1

N
Tr((y −Xw − 1Nb)

T (y −Xw − 1Nb)) + µ Tr wTw

=
1

N
Tr((yT − wTXT − bT

1
T
N )(y −Xw − 1Nb)) + µ Tr wTw

=
1

N
Tr(yT y − 2yTXw + wTXTXw + 2bT

1
T
NXw − 2yT

1Nb+NbT b) + µ Tr wTw.

(3.39)

After derivation with respect to b, b∗ is:

0 = 2w∗TXT
1N − 2yT

1N + 2Nb∗T

⇒ Nb∗T = yT
1N − w

∗TXT
1N

⇒ Nb∗ = 1
T
N (y −Xw∗)

⇒ b∗ =
1

N
1

T
N (y −Xw∗).

(3.40)
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After derivation with respect to w, and by writing ΠN = IN −
1
N 1N1

T
N the centering

projection matrix, we get that w∗ is:

0 = −2yTX + 2w∗TXTX + 2b∗T
1

T
NX + 2N µ w∗T IN

⇒ 0 = −yTX + w∗TXTX +
1

N
(yT − w∗TXT )1N1

T
NX +N µ w∗T IN

⇒ 0 = −yTX + w∗TXTX +
1

N
yT

1N1
T
NX −

1

N
w∗TXT

1N1
T
NX +N µ w∗T IN

⇒ w∗T (XTX −
1

N
XT

1N1
T
NX +N µ IN ) = yTX −

1

N
yT

1N1
T
NX

⇒ w∗T (XT ΠNX +N µ IN ) = yT ΠNX

⇒ w∗ = (XT ΠNX +N µ IN )−1XT ΠNy.
(3.41)

After reinjecting w∗ and b∗ into the cost function, the optimal objective value is:

Tr
(

yTA(X,µ)y
)

(3.42)

with A(X,µ) the positive, semi-definite matrix defined as:

A(X,µ) =
1

N
ΠN (IN −X(XT ΠNX +NµIN )−1XT )ΠN . (3.43)

The discriminative clustering problem in itself can now be written as:

y∗ = arg min
y∈Y

Tr
(

yTA(X,µ)y
)

. (3.44)

As for the normalized cut problem, this is a quadratic problem under constraints

which is NP-hard when y takes binary values. However, efficient convex relaxations

can be used.

For instance, a standard technique is to reason on equivalence matrices Y = yyT ,

perform a continuous relaxation, properly constrain the problem and solve the as-

sociated semidefinite programming problem. The resulting equivalence matrix can

then be directly used to recover the cluster assignments. This approach allows incor-

porating prior knowledge over clusters in the form of must-link and must-not-link

constraints.

Another possible technique is to perform a continuous relaxation on y, properly

constrain the problem and use methods such as the Frank-Wolfe optimization algo-

rithm [Frank and Wolfe, 1956; Jaggi, 2013] (which only relies on solving linear

problems) to find a relaxed solution. This approach can handle prior knowledge

directly on labels through constraints as well as must-link and must-not-link con-
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straints. For instance, in an image foreground/background segmentation setup, it

allows encoding different prior information for foreground and background explic-

itly.

Note that the quadratic cost functions has trivial solutions, which include the con-

stant matrix (after the continuous relaxation) and the column-wise constant matri-

ces. Proper conditioning is thus required to avoid a degenerate solutions.

In our work, a discriminative clustering term is included in the objective function

of the multi-instance segmentation method described in Chapter 6. Given that the

objects considered are of instances the same object class, we use this discriminative

term to separate the pixels which belong to one of the instance from the rest of the

image.
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4Disparity estimation, person

detection and pose estimation in

3D movies

In this chapter, we first describe in Section 4.1 how we extract noisy disparity infor-

mation from stereo videos. We present two new datasets we have collected from

3D movies for the tasks of person detection, pose estimation and multi person seg-

mentation. In Section 4.3, we then describe how exploiting the additional disparity

channel can help the performance of deformable part models for person detection

and pose estimation. Last, in Section 4.4, we discuss how the relative ease of the

person detection task in 3D movies can be exploited to automatically harvest per-

son bounding boxes to efficiently train better person detection models for standard

color images.

4.1 Disparity estimation

In this section, we explain how we acquired our stereoscopic data (i.e. pairs of

videos for left and right eye views) and how we extracted depth from it. We then

discuss and illustrate the quality of the produced depth maps.

4.1.1 Acquiring 3D data from stereoscopic movies

Extracting stereo pairs from BluRay movies. 3D BluRay disks are built as a com-

bination of a main stream encoding the left eye view (which is also the fallback

in case of a non-3D display), and an additional stream which stores the difference

between left and right views, using both intra-view and inter-view cues to optimize

compression, as specified in the H.264/MPEG4 MVC (which stands for Multi View

Coding) standard [Marpe et al., 2006]. We had to modify a standard decoder1 to

handle this and decode our streams, after successfully ripping (i.e. getting raw disk

contents and decrypting them) and demultiplexing (i.e. separating video data from

sound data or other metadata) them, as shown in Figure 4.1.

1http://iphome.hhi.de/suehring/tml/
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Fig. 4.1: Pipeline used to extract stereo pairs from 3D Blu Ray disks. The first three steps,
from Ripping to Demuxing, are handled by the MakeMKV software (http://www.

makemkv.com/). The decoding is performed by a modified version of a reference
MPEG4 decoder.

Computing disparity from stereo pairs

After acquiring stereoscopic pairs for each frame (Figure 4.2), we proceed with ex-

tracting depth information. Depth estimation from stereo images (or several multi-

view images in general) is a standard task in computer vision, with many proposed

algorithms and classical benchmarks2. Furthermore, there are other approaches

aimed at video data which can jointly estimate the depth of the scene together

with motion displacements – termed "Scene Flow" [Vedula et al., 2005; Wedel et al.,

2008; Rabe et al., 2010].

Fig. 4.2: Stereovision use-case3.

However, in both cases cameras are assumed to be calibrated, or at least the stereo

pairs to be rectified. Being calibrated means that we know which camera (or in our

case, which pair of cameras) was used, with which sensor and lens. This translates

into a set of parameters (called intrinsic parameters), such as focal length, pixel-to-

distance scale or radial distortion parameters. In the case of stereo pairs, calibration

might also include extrinsic parameters encoding the relative position of the two

cameras. Knowing those parameters enables the use of epipolar geometry [Hartley

and Zisserman, 2000], which provides a number of relations between 3D points

and their 2D projections, as shown in Figure 4.3.

Epipolar geometry introduces the notion of epipoles (EL and ER in Figure 4.3),

which are the intersection points between the planes of each image and the line be-

tween the optical centers of the cameras (OL and OR in Figure 4.3), and the notion

of epipolar lines, which are the lines between a point of an image and the epipole of

the same image. Epipolar geometry provides relationships between corresponding

2http://vision.middlebury.edu/stereo/
3http://en.wikipedia.org/wiki/File:Aufnahme_mit_zwei_Kameras.svg
4http://en.wikipedia.org/wiki/File:Epipolar_Geometry1.svg
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Fig. 4.3: Epipolar geometry4.

epipolar lines in both images : given a point PL in the left image, search for the

corresponding point PR in the right image can be reduced to the known epipolar

line.

A stereo pair is said rectified when epipolar lines coincide and in practice are aligned

with the horizontal axes of the two images, as shown in Figure 4.4. With such a

stereo pair, the search for the matching point in the right image of a given point in

the left image is much easier, since it is reduced to searching the point on the same

horizontal line in the right image.

Fig. 4.4: Rectification makes epipolar lines coincide in stereo pairs5.

This is particularly useful for stereovision, where one aims to recover the estimate of

depth from a stereo pair. This can be done by evaluating the disparity of each point,

which is the distance between a point in the left image and the matching point in

the right image. This disparity is negatively correlated with the depth, since the

larger the distance between a 3D point and the camera, the lower is the disparity

value of the projected 3D point.

Unfortunately, in our attempts of working with stereo movies, we have found that

standard methods of rectification and depth estimation did not produce reliable

results. This might be attributed to the motion blur affecting reliable estimation

of point correspondences as well as to possible geometry-violating post-production

effects in movies. We have found a reliable rectification of movie frames to be

important for depth-from-stereo algorithms since movie makers use dynamically

5http://en.wikipedia.org/wiki/File:Image_rectification.png
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verged camera pairs to enhance the field of view or keep the focused object in the

center of the field of view.

We have originally expected that the stereo pairs from the 3D movies would be

rectified. Indeed, human vision makes use of binocular disparity just as standard

stereovision algorithm to infer depth of the scene and distance to objects. Never-

theless, human eyes seem to be able to handle slightly unrectified images where

the matching points are a little (i.e. by a few pixels) above or below the expected

epipolar line, and we indeed found that our data was slightly unrectified. As ex-

pected, standard stereovision algorithms [Felzenszwalb and Huttenlocher, 2004b]

fail when the rectification constraint is not fulfilled, as shown in Figure 4.5, produc-

ing more and more noisy results.

Fig. 4.5: Disparity maps from a rectified image pair (left) and unrectified image pairs with
1 to 4 pixels of vertical miss-alignment (four images on the right).

In our attempt to rectify the images, we used standard computer vision methods to

match points in the two images (we computed SIFT (Scale-Invariant Feature Trans-

form [Lowe, 1999]) features at Harris corners, matched them and removed outliers

using RANSAC [Fischler and Bolles, 1981]) and tried to align those matches using

homographies (i.e. projective transformations). Computing unconstrained homo-

graphies lead to a loss of information, since disparity would be almost suppressed

by the alignment, and homographies constrained to vertical displacements did not

provide satisfying results in a lot of cases, as shown in Figure 4.6.

Fig. 4.6: Left view and stereo result after tentative rectification.

To address the problem, we have tried several standard uncalibrated rectification

and calibration packages [Fusiello et al., 1999; Kukelova and Pajdla, 2007]67 (see

Figure 4.7 for a sample).

Standard depth-from-stereo algorithms above rely on the strict geometric con-

straints which may not be satisfied in 3D movies e.g. due to the post-production

effects. To address this, we have investigated a less constrained approach of dispar-

6http://profs.sci.univr.it/~fusiello/demo/rect/
7http://cmp.felk.cvut.cz/minimal/8_pt_radial.php
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Fig. 4.7: Left view, ours and [Fusiello et al., 1999] rectification results.

ity estimation based on the Optical Flow methods. Indeed, optical flow is commonly

used to study the displacement of objects between two succeeding frames. By com-

puting the dense optical flow between the two views and extracting the horizontal

component of the displacement, dense disparity maps can be successfully estimated

from the uncalibrated stereo pairs obtained from 3D movies. See Figure 4.8 and

Figure 4.9 for results, using software from [Liu, 2009]8.

Fig. 4.8: Disparity maps computed using optical-flow on image examples from Figures 4.6-
4.7.

4.1.2 Disparity maps quality

The quality of the disparity maps acquired using optical flow is quite satisfying,

however the level of detail varies a lot from one shot to another one, as can be seen

in Figure 4.9. In particular, the quality of the depth obtained from 3D movies may

not be sufficient for existing approaches of human pose estimation from depth data

[Grest et al., 2005; Plagemann et al., 2010; Shotton et al., 2011], see for instance

a sample Kinect depth map in Figure 4.10 (which appears of lower quality than

it is due to visualization restrictions, but the disparity is almost continuous on the

body).

Nevertheless, our estimated disparity maps provide quite clear object boundaries in

many cases (see Figure 4.9), and the boundaries of body parts can often be visually

detected, even for hard situations such as poses with crossed arms. Furthermore,

disparity maps across a single shot are similar enough to be used without requiring

any rescaling or normalization, which is a valuable property.

During the span of this work, we have tried multiple optical flow methods on the

task of estimation horizontal disparity between unrectified stereo pairs from 3D

8http://people.csail.mit.edu/celiu/OpticalFlow/
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Fig. 4.9: Left views and disparity maps computed using optical-flow.
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Fig. 4.10: Depth map provided by Microsoft Kinect. Fine depth information is produced
by the sensor. Black areas correspond to occluded regions and occlusion bound-
aries.

movies. One difficulty of this study is that no ground truth disparity maps are avail-

able for this type of data, so no quantitative evaluation is possible. Visual inspection

and relative performance analysis of the final tasks (e.g.person detection) are the

only ways to assess the quality of the produced disparity maps. The first method

we used is the one of [Liu, 2009] which solves a variational energy minimization

problem in a coarse-to-fine scheme. This method runs in about 30 seconds on a

standard single-core CPU for a pair of 960 × 540 pixel frames. The second method,

from [Ayvaci et al., 2012], jointly performs occlusion detection and optical flow

estimation. This method runs in about 12 seconds for a pair of 960 × 540 pixel

frames on a recent GPU (nVidia Tesla K20X). Recently a new method aimed at

handling setups with large displacements and significant occlusions was proposed:

EpicFlow [Revaud et al., 2015]. This method first detects edges in the input be-

fore performing an edge-preserving dense matching between the two input frames.

These matches are then used to initialize a standard variational energy minimiza-

tion problem which solution produces the final dense optical flow map. This method

runs relatively fast on a standard single-core CPU, taking about 10 seconds for a pair

of 960× 540 pixel frames.

A qualitative comparison between these three methods is available in Figure 4.11

and Figure 4.12. Visually, the results from [Ayvaci et al., 2012] and [Revaud et

al., 2015] present less errors than the ones from [Liu, 2009], which tends to over-

smooth the produced flow (we have tried to reduce this over-smoothing by playing

with the hyperparameters of the method but could not find a better regularization

trade-off). Compared to the results of [Revaud et al., 2015], the results of [Ayvaci

et al., 2012] tend to appear flatter, discarding fine details in the disparity map. This

is both a quality and a problem: it produces very clean layers in the image, but it

loses valuable occlusion information.
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In the rest of this work, we use the method of [Ayvaci et al., 2012] to perform

disparity estimation.

4.2 Datasets

We have collected and annotated two datasets from 3D movies to train and test

our methods. The first dataset, the Inria 3DMovie Dataset (Section 4.2.1), con-

tains annotated person bounding boxes and person poses in stereo movie frames

as well as instance-level person segmentations in keyframes of 36 video clips. The

second dataset, the Inria 3DMovie Dataset v2 (Section 4.2.2), focuses on instance-

level person segmentation, with 27 annotated video clips presenting significant chal-

lenges.

4.2.1 Inria 3DMovie Dataset

The Inria 3DMovie dataset is available on the project website9. Most of the frames

in this dataset were obtained from the “StreetDance 3D” [Giwa and Pasquini, 2010]

and “Pina” [Wenders, 2011] stereo movies. We chose these movies since they are

filmed in true stereoscopic 3D, unlike others where 3D effects are added in post-

production and result in inferior disparity estimation. Some of the stereo pairs used

as negative examples for people-related tasks were harvested from Flickr and were

originally shot with a Fuji W3 camera. The dataset includes stereo pairs (as jpegs),

estimated disparity, (manually annotated) ground truth segmentations, poses and

person bounding boxes.

The movie “StreetDance” was split into two parts (roughly in the middle), from

which we selected the training and test frames, containing multiple people, respec-

tively. The training set is composed of 520 annotated person bounding boxes, 438

annotated poses and 198 annotated segmentation masks from over 230 stereo pairs.

Negative training data is extracted from 247 images with no people, taken from the

training part of the movie, and from stereo pairs shot with a Fuji W3 camera.

The test set contains 36 stereo sequences (2727 frame pairs). For quantitative eval-

uation we provide 638 person bounding boxes and 149 pose annotations in 193

frames, among which a few do not contain any people. Given the cost of manually

annotating pixel-wise segmentation, we provide this on a smaller set of 180 frames,

containing 686 annotated person segmentations.

9http://www.di.ens.fr/willow/research/stereoseg
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(a) Left frame (b) [Liu, 2009] (c) [Ayvaci et al., 2012] (d) [Revaud et al., 2015]

Fig. 4.11: Comparison between optical flow algorithms for the task of disparity estimation
in stereoscopic movies.
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(a) Left frame (b) [Liu, 2009] (c) [Ayvaci et al., 2012] (d) [Revaud et al., 2015]

Fig. 4.12: Comparison between optical flow algorithms for the task of disparity estimation
in stereoscopic movies.
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4.2.2 Inria 3DMovie Dataset v2

To evaluate the performance of our method on the task of instance-level video seg-

mentation, we have collected a dataset composed of 27 video clips, correspond-

ing to a total of 2476 frames. The video clips are taken from the 3D feature

movie “StreetDance 3D” [Giwa and Pasquini, 2010]. The proposed dataset is an

improved version of the Inria 3D Movie Dataset for the task of instance-level per-

son segmentation, adding a substantial amount of challenges, such as longer shots,

self-occlusions, inter-person occlusions, and hard poses such as dancing or jumping.

Examples of frames and ground-truth annotations from our dataset are provided in

Figure 4.13.

Providing ground-truth annotations for evaluation in an entire video is a highly

time-consuming task. As a consequence, we have only annotated a sparse subset of

235 frames out of 2476, for all 632 person instances present in these frames. We

split the dataset into a set of 7 clips for adjusting hyperparameters and a set of 20

clips for evaluation. Note that there is no training step in our method, but only a

validation step to find appropriate hyperparameters, presented in Section 6.3.4.

(a) (b) (c) (d)

Fig. 4.13: Examples of frames (a) and (c) and corresponding ground-truth head bounding
boxes and pixel-wise segmentation labels (b) and (d). Note that the segmenta-
tion labels (indicated by color) are instance-level, i.e. we provide a segmentation
mask for each individual person.
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4.3 Person detection and pose estimation in 3D

movies

The deformable part models described in Section 3.1 for object detection and in

Section 3.2 for pose estimation typically rely on feature maps built by computing

histograms of oriented gradients (HOG features) over the input image converted

to grayscale. To benefit from the stereo signal, we can train models jointly on ap-

pearance and disparity by concatenating appearance and disparity features into one

representation. Indeed, the stereo signal that we extract as disparity maps exhibits

properties which we expect to be beneficial for object detection and pose estima-

tion. For instance, compared to color images, disparity maps are less textured and

the object boundaries are often clearly visible. The feature maps computed on

standard images can be easily extended to integrate features from disparity maps

by computing HOG features at each location and concatenating them to the corre-

sponding feature vector computed over the grayscale image. This is done by first

converting the disparity map into a grayscale image by linearly mapping the dis-

parity range to [0,1]. We then compute HOG on this grayscale image. Our HOG

feature representation for disparity maps is similar to that used in [Spinello and

Arras, 2011; Walk et al., 2010] for person/pedestrian detection. The intuition is

that HOG robustly captures the changes in the disparity rather than the actual dis-

parity values, which can vary from scene to scene. Furthermore, compared to HOG

features extracted on RGB, those extracted on the disparity map are usually less

noisy and much sparser, since there are many constant areas in the disparity maps,

as illustrated in Figure 4.14.

We evaluate the use of these features for person detection in Section 4.3.1 and for

pose estimation in Section 4.3.2.

4.3.1 Person detection

In this section, we study the use of HOG features on color images and disparity

maps in deformable part models (see Section 3.1) for upper body detection, using

the Inria 3D Movie dataset. We use these features with the object detection method

of [Felzenszwalb et al., 2010] and with the person detection and pose estimation

method of [Yang and Ramanan, 2011]. To produce person bounding boxes from the

pose estimates produced by [Yang and Ramanan, 2011], we compute the bounding

box of a subset of the estimated upper body joints: head, shoulders, elbows, hips.

We have found this heuristic to perform well for the task of upper body detection.

68 Chapter 4 Disparity estimation, person detection and pose estimation in 3D movies



(a) RGB image

(b) HOG features computed on the RGB image

(c) Disparity map

(d) HOG features computed on the disparity map

Fig. 4.14: Examples of HOG feature maps computed (b) on a RGB image (a) and (d) on the
corresponding disparity map (c). Note that disparity maps are almost constant
on object regions and highlight object boundaries. On the contrary, HOG feature
maps for RGB input are sensitive to texture, which may confuse subsequent
recognition.
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Using on the deformable part-based person detector [Felzenszwalb et al., 2010],

we have trained three variants using: (i) standard HOG extracted from grayscale

images (HOG), (ii) HOG extracted from disparity maps (HOGdisp), and (iii) joint

appearance and disparity features, using the concatenation of the two features

(HOGcomb). We evaluated them on standard metrics from the PASCAL VOC devel-

opment kit 2011 [Everingham et al., 2011]. Precision-recall curves are shown in

Figure 4.15 (a), with corresponding average precision (AP) values. It shows that

the disparity-based detector (HOGdisp) improves over the appearance-based detec-

tor (HOG). Combining the two representations (HOGcomb) further increases person

detection performance.

We show a qualitative comparison of these detectors in Figure 4.16. The appearance-

based model HOG and the disparity-based model HOGdisp are often complementary,

and the joint model HOGcomb outperforms both models, being able to cope well

with the difficulties handled by each of the other two models. It appears that mod-

els using disparity cues are generally better at handling partially occluded persons

or persons seen from the side or the back.

In addition, using the code from [Yang and Ramanan, 2011], we have trained pose

estimators with annotated poses available for a subset of 438 person examples out

of the 520 we used to train the detectors based on [Felzenszwalb et al., 2010]. We

have trained three models, one using appearance cues only (Y. & R. HOG), one

using disparity cues only (Y. & R. HOGdisp) and one using jointly appearance and

disparity cues (Y. & R. HOGcomb). We evaluate these models for person detection in

Figure 4.15 (b) on the same test set as for the [Felzenszwalb et al., 2010] detector

above. As in Figure 4.15-(a), we observe considerable improvement provided by

the disparity features and their combination with appearance features. However,

we observe that performance is significantly lower than each of the corresponding

person detector based on the model of [Felzenszwalb et al., 2010]. This is likely

due to [Yang and Ramanan, 2011] relying on accurate detection of all individual

body parts (e.g., elbows, wrists, which are challenging to detect) to predict the

location of the person, whereas [Felzenszwalb et al., 2010] uses a more holistic

person model. In other words, [Felzenszwalb et al., 2010] is more robust to body

parts being occluded or poorly detected.

4.3.2 Pose estimation

Pose estimation is typically evaluated using the percentage of correctly estimated

body parts (PCP) score [Yang and Ramanan, 2011; Eichner et al., 2012]. A body

part is deemed to be correct if the two joints it links are within a given radius of

their ground truth position, where the radius is a percentage of the ground truth
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(a) Felzenszwalb et al. [Felzenszwalb et al., 2010]
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(b) Yang and Ramanan [Yang and Ramanan, 2011]

Fig. 4.15: Precision-recall curves for person detection based on (a) Felzenszwalb et al.
[Felzenszwalb et al., 2010] and (b) Yang and Ramanan [Yang and Ramanan,

2011] methods. For both methods we report the performance of the appearance

(HOG) and disparity (HOGdisp) based detectors, as well as the jointly trained ap-

pearance and disparity based detector (HOGcomb). HOGcomb, the detector based

on [Felzenszwalb et al., 2010] performs significantly better than the other models.

(Best viewed in colour.)
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(a) HOG (b) HOGdisp (c) HOGcomb

Fig. 4.16: Qualitative comparison between the appearance-based person detector HOG,
the disparity-based detector HOGdisp and the joint appearance and disparity
based detector HOGdisp. True positives are shown in green, and missed detec-
tions are shown in red. We operate in a mode where we have little to no false
positives, so none are visible in these frames. See Section 4.3.1 for comments.
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Tab. 4.1: Evaluating pose estimation. We report global APK scores as well as scores for all five

body parts, with γ = 0.2 as in [Yang and Ramanan, 2013]. We also evaluate the

upper-body model from [Yang and Ramanan, 2011] trained on the Buffy dataset.

The combination of appearance and disparity features (HOGcomb) outperforms the

individual estimators (HOG, HOGdisp). Note that these scores are the average of

the left and the right body parts, while those in Figure 4.17(b,c) show the scores for

the left elbow and wrist only.

[Yang and Ramanan, 2011] HOG HOGdisp HOGcomb

Head 0.976 0.983 0.993 0.986
Shoulders 0.935 0.931 0.947 0.969

Elbows 0.658 0.665 0.759 0.784

Wrists 0.298 0.294 0.297 0.400

Hips 0.563 0.705 0.714 0.757

Average 0.686 0.716 0.742 0.779

length of the part. However, as argued in [Yang and Ramanan, 2013], a relaxed

version of this definition has often been used in place of the original one, making it

hard to compare published results. Furthermore, PCP requires matching the ground

truth poses with the estimated ones, but there is no specification of how this match-

ing should be done. Lastly, this measure uses the ground truth length of each part

to set the radius within which the part is deemed to be correctly detected. This re-

sults in a foreshortening bias, where shorter limbs (which have a shorter radius) are

penalized more severely than longer limbs. Instead of using PCP, we follow [Yang

and Ramanan, 2013] and use their average precision of keypoints (APK) measure

instead. In contrast to PCP, which evaluates the correctness of a part (connected to

two joints/keypoints), APK measures the correctness of each keypoint. To overcome

the foreshortening bias, the APK measure is based on the size of the ground truth

person bounding box, rather than the individual parts. More precisely, a keypoint is

considered to be correctly estimated if it lies within a radius given by the largest side

of the ground truth pose bounding box, scaled by γ. Since the person detections

are evaluated separately (Section 4.3.1), we use APK to only measure the pose es-

timation accuracy by considering the pose with the highest automatically obtained

confidence score for each person detected.

In Figure 4.17, we present mean APK curves, where we vary γ between 0 and 1,

and plot APK curves for left elbow and left wrist for γ = 0.2, similar to [Yang and

Ramanan, 2013]. The APK scores for all the parts are given in Table 4.1. The jointly

trained pose estimator Y. & R. HOGcomb outperforms the individual estimators. We

observe that the head and shoulder body parts are localized with high accuracy.

Furthermore, combining appearance and disparity cues improves the localization

of lower arms (elbows and wrists) by over 8%. We show a qualitative comparison

of the three models in Figure 4.18. Visually, the joint model Y. & R. HOGcomb is
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Fig. 4.17: Pose estimation results. Buffy-HOG is the upper-body model from [Yang and

Ramanan, 2011], and Streetdance- corresponds to our models trained on appear-

ance or/and disparity features extracted from the 3D movie Streetdance. (a) Mean-

APK curves, which are produced by varying the γ threshold. (b) & (c) Precision-

recall curves for left elbow and left wrist respectively. Using disparity cues improves

the recall of the pose estimator for elbows, and combining them with appearance

cues shows a good initial precision performance. Estimating the wrist position re-

mains a challenge, and the overall performance for this part is similar to [Yang and

Ramanan, 2011]. (Best viewed in colour.)
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(a) Input image (b) Y. & R. HOG (c) Y. & R. HOGdisp (d) Y. & R. HOGcomb

Fig. 4.18: Qualitative comparison between the appearance-based model Y. & R. HOG, the
disparity-based model Y. & R. HOGdisp and the joint appearance and disparity
based pose estimator Y. & R. HOGdisp. See Section 4.3.2 for comments.
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able to handle a larger number of poses and situations, especially dark or crowded

scenes as well as similar clothing and occlusions.

4.4 Depth-supervised training of person detection

Training object detectors typically require a large amount of training examples. This

is especially true when considering Deep Neural Networks, which have the capacity

to benefit from very large training datasets. However, bounding box annotations is a

time consuming task, especially when consistency is required, and is thus expensive.

In this section, we propose to leverage the fact that the detection task may be easier

in other setups than standard color images. More specifically, we consider feature-

length 3D movies as a source for large and diverse person bounding boxes examples.

As shown in Section 4.3.1 and highlighted in Figure 4.19, the additional channel of

information provided by 3D movies makes the person detection task substantially

easier than in standard color images: the shape of the upper body of a person in

terms of depth/disparity is fairly simple.

Fig. 4.19: Quantitative improvement of person detection performance when using dispar-
ity cues. By incorporating features computed on disparity maps (HOGcomb),
we trained a model which presents a very interesting "high-precision" plateau,
highlighted in red. This model, when applied on our dataset, produces perfect
results up to 25% of recall. Comparatively, the model trained using only RGB
information (HOG) only provides a very short high-precision plateau. This high-
precision mode can be leveraged by applying the model to a very large amount
of frames and selecting high-confidence detections.

In particular, the person detector trained using additional features computed on dis-

parity maps presents a significant high-precision mode. This mode can be leveraged
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to collect a large number of high-confidence examples. Indeed, a typical feature-

length 3D movie contains on the order of 130.000 frames. Each movie is a potential

source for thousands of person examples, and while the color appearance may be

heavily different from the original movie, there is a high chance that the disparity

appearance will be similar.

4.4.1 Automatic harvesting of hard positive samples

We develop a harvesting technique, illustrated in Figure 4.20, which only involves

labelling a limited number of initial training examples from 3D movies.

Fig. 4.20: Overview of the proposed method: from an initial training set, learn an
appearance-based detector and a joint appearance and disparity-based detec-
tor. Use the joint detector to harvest many positive examples, select those which
would currently be missed by the appearance-based detector, and train a better
appearance-based detector by combining the initial training set with the har-
vested set of hard positives.

These examples are used to train two initial detectors: one over appearance chan-

nels only, and one jointly over appearance and disparity channels. In practice, we

use the training examples from the Inria 3DMovie Dataset from Section 4.2.1 and

the models trained in Section 4.3.1: the appearance-based model HOG and the

joint model HOGcomb. The joint detector HOGcomb is used to harvest examples

over multiple 3D movies operating in the low recall, high precision regime. The

appearance-only detector HOG is then used to score the harvested examples, to se-

lect hard positives which were missed by the HOG detector and discard the ones

which were already well detected by this detector. Due to this combination of de-

tectors, one for selecting high-confidence examples using depth information and

one for selecting hard examples when using appearance cues only, we call the en-

tire method "depth-supervised training of person detection". We show examples of

harvested examples in Figure 4.21. In total, we ran this harvesting procedure on 1

out of 6 frames over one movie and a half (the entire “Pina” movie and the half of

the “StreetDance 3D” movie we have dedicated to training models), which sums to
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more than 50000 frames. We collected a total of 118633 person detections using

the HOGcomb detector, among which 39109 were deemed highly confident, having

a detection score higher than 0.2. After filtering out examples which scored well

already for the initial HOG detector (those having a detection score higher than 0

for this detector), we retained a total of 8902 automatically harvested bounding

boxes.

Using the initial training set combined with the newly harvested hard positives, we

train a new appearance-based only detector, which we call HOGretrained. We evalu-

ate this new detector on two datasets, and compare it with the original appearance-

only detector HOG. In Figure 4.22, we show a quantitative comparison between

the two models on (a) the Inria 3DMovie Dataset and (b) the Buffy dataset. The

latter was extracted from the TV series Buffy the Vampire Slayer10. It is composed

of 164 frames, out of which 79 frames contain positive examples, for a total of 101

annotated person bounding boxes. In both cases, the model trained with the ad-

ditional harvested examples (HOGretrained) significantly outperforms the original

model. The high-precision mode of the intermediate detector used to perform au-

tomatic harvesting on disparity data is partly transferred to the new models, which

present significantly better high-precision plateaus. Last, we show in Figure 4.23 a

qualitative comparison between the two detectors. The new detector HOGretrained

is able to handle a larger variety of situations, such as partially occluded persons or

persons seen from the side or from the back.

4.5 Discussion

We have successfully extracted disparity maps from stereoscopic movies stored on

BluRay 3D disks. We have collected two datasets which can be used to train and

test methods for person detection, pose estimation and video segmentation in 3D

movies. Using these datasets, we have adapted classical object detection and pose

estimation methods based on the deformable part models framework to exploit

the additional disparity maps provided by stereoscopic movies. We have further

leveraged the relative ease of the person detection task in stereoscopic movies to

use a joint appearance and disparity person detector to automatically collect person

hard training samples. Using these additional examples, we have shown that the

retrained appearance-only detector performs significantly better compared to the

original one, trained on the same set of manually annotated samples.

10http://www.robots.ox.ac.uk/~vgg/software/UpperBody/
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Fig. 4.21: Examples of automatically harvested person examples. We show side-by-side
the cropped image and the cropped disparity map of each example. These ex-
amples were collected from stereoscopic movies. They were associated to a
highly confident score by the joint HOGcomb detector, and a low score by the
appearance-based HOG detector.
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(a) Results on the Inria 3DMovie Dataset
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(b) Results on the Buffy dataset

Fig. 4.22: Precision-recall curves for person detection based on Felzenszwalb et al.
[Felzenszwalb et al., 2010], using either a model trained on 520 annotated per-
son bounding boxes from the Inria 3DMovie Dataset from Section 4.2.1 (HOG)
or a model trained on these 520 manually annotated examples plus an addi-
tional 8902 automatically harvested examples (HOGretrained). We report re-
sults on the test set of the Inria 3DMovie Dataset (a) and on a test set from the
Buffy dataset (b).
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(a) HOG detector (b) HOGretrained detector

Fig. 4.23: Qualitative comparison between the original appearance-based HOG model (a)
and the one retrained using additional depth-supervised harvested examples
HOGretrained (b).
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5Multiple person segmentation

with pose cues

In this chapter, we describe a method to obtain a pixel-wise segmentation of mul-

tiple people in stereoscopic videos. This task involves challenges such as dealing

with unconstrained stereoscopic video, non-stationary cameras, and complex in-

door and outdoor dynamic scenes with multiple people. We cast the problem as a

discrete labelling task involving multiple person labels, devise a suitable cost func-

tion, and optimize it efficiently. We build on the improvements achieved in the

Chapter 4 on person detection and pose estimation. We develop a segmentation

model incorporating person detections and learned articulated pose segmentation

masks, as well as colour, motion, and stereo disparity cues. The model also ex-

plicitly represents depth ordering and occlusion. We demonstrate results on the

challenging Inria 3DMovie dataset from Section 4.2.1, as well as on the H2view

dataset from [Sheasby et al., 2012].

5.1 Introduction

Segmenting multiple people in a video is a task of great interest in computer vision.

We explore this problem in the context of stereoscopic feature length movies, which

provide a large amount of readily available video footage of challenging indoor

and outdoor dynamic scenes. Our goal is to automatically analyze people in such

challenging videos. In particular, we aim to produce a pixel-wise segmentation and

recover the partial occlusions and relative depth ordering of people in each frame,

as illustrated in Figure 5.1. Our motivation is three-fold. First and foremost, we

wish to develop a mid-level representation of stereoscopic videos suitable for sub-

sequent video understanding tasks such as recognition of actions and interactions

of people [Yao and Fei-Fei, 2010]. Human behaviours are often distinguished only

by subtle cues (e.g., a hand contact) and having a detailed and informative rep-

resentation of the video signal is a useful initial step towards their interpretation.

Second, disparity cues available from stereoscopic movies can improve results of

person segmentation or person detection. Such results, in turn, can be used as a

(noisy) supervisory signal for learning person segmentation in monocular videos or

still images [Everingham et al., 2011; Gulshan et al., 2011; Niebles et al., 2010;

Yang et al., 2011]. For instance, a single 90 minute feature length movie can pro-
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(a) Original frame (left) (c) Unary cost for person 1 (e) Estimated pose of person 1

(b) Disparity (d) Smoothness cost (f) Segmentation result

Fig. 5.1: Illustration of the steps of our proposed framework on a sample frame (a) from

the movie “StreetDance”. We compute the disparity map (b) from the stereo pair.

Occlusion-aware unary costs based on disparity and articulated pose mask are com-

puted for all the people detected in the scene. In (c) we show the unary cost for the

person labelled 1. Pairwise smoothness costs computed from disparity, motion, and

colour features are shown in (d). The range of values in (b,c,d) is denoted by the red

(low) - blue (high) spectrum of colours. The estimated articulated pose for person

1 is shown in (e). (f) shows the final segmentation result, where each colour repre-

sents a unique person, and the numbers denote the front (0) to back (4) ordering of

people.

vide more than 150,000 pixel-wise segmented frames. Finally, segmentation of

people will also support interactive annotation, editing, and navigation in stereo

videos [Goldman et al., 2008; Koppal et al., 2011], which are important tasks in

post-production and home video applications.

Given the recent success of analyzing people in range data from active sensors,

such as Microsoft Kinect [Ren et al., 2012; Shotton et al., 2011], and a plethora

of methods to estimate pixel-wise depth from stereo pairs 1, the task at hand may

appear solved. However, depth estimates from stereo videos are much noisier than

range data from active sensors, see Figure 5.1(b) for an example. Furthermore,

we aim to solve sequences outside of the restricted “living-room” setup addressed

by Kinect. In particular, our videos contain complex indoor and outdoor scenes

with multiple people occluding each other, and are captured by a non-stationary

camera.

Here, we develop a segmentation model in the context of stereoscopic videos, which

addresses challenges such as: (i) handling non-stationary cameras, by incorporat-

ing explicit person detections and pose estimates; (ii) the presence of multiple peo-

ple in complex indoor and outdoor scenarios, by incorporating articulated person-

specific segmentation masks (Section 5.3) and explicitly modelling occlusion re-

1http://vision.middlebury.edu/stereo/
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lations among people; and finally (iii) the lack of accurate stereo estimates, by

using other cues, such as colour and motion features. We cast the problem as

a discrete labelling task involving multiple person labels, devise a suitable cost

function (Section 5.2), and optimize it efficiently (Section 5.4). We evaluate the

proposed model on the Inria 3DMovie dataset (Section 4.2.1) with challenging re-

alistic dynamic scenes from two stereoscopic feature-length movies “StreetDance"

[Giwa and Pasquini, 2010] and “Pina" [Wenders, 2011] (Section 5.5). Additionally,

we present comparative evaluation of our method on the Humans in Two Views

(H2view) dataset [Sheasby et al., 2012].

5.2 Segmentation model

We aim to segment stereoscopic video sequences extracted from 3D movies into

regions representing individual people. Figure 5.1 illustrates an overview of our

method on a sample frame from a video. Here we consider a stereo pair (only the

left image is shown in the figure), estimate the disparity for every pixel, and use it

together with person detections, colour and motion features, and pose estimates, to

segment individual people, as shown in Figure 5.1(f).

We initialize our model using automatically obtained person detections and assign

every detection to a person, i.e., we assume a one-to-one mapping between people

and detections. Each pixel i in the video takes a label from the set L = {0, 1, . . . , L},

where {0, 1, . . . , L − 1} represents the set of person detections and the label L de-

notes the “background”.2 We use the Conditional Random Field framework de-

scribed in Section 3.3 with multiple labels. The cost of assigning a person (or

background) label, from the set L, to every pixel i, E(y; Θ, τ), is given by:

E(y; Θ, τ) =
∑

i∈V

ψi(yi; Θ, τ) +
∑

(i,j)∈E

ϕij(yi, yj)

+
∑

(i,k)∈Et

ϕt
ij(yi, yk), (5.1)

where V = {1, 2, . . . , N} denotes the set of pixels in the video. The pairwise spatial

and temporal neighbourhood relations among pixels are represented by the sets E

and E t respectively. The temporal neighbourhood relations are obtained from the

motion field [Liu, 2009] computed for every frame. The unary potential ψi(yi; Θ, τ)

is the cost of a pixel i in V taking a label yi in L. It is characterized by pose pa-

rameters Θ = {Θ0,Θ1, . . . ,ΘL−1} and disparity parameters τ = {τ0, τ1, . . . , τL−1},

where Θl and τ l represent the pose and disparity parameters for a person label l re-

spectively. The disparity parameters determine the front-to-back ordering of people

2We refer to image regions that correspond to objects other than people as background.
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Fig. 5.2: A graphical illustration of our model, where the observed variables are shaded. The

variable di in the graph represents the features computed at each pixel i in the video.

For clarity, we show 4 pixels from a frame, and 2 of the temporal links (dashed line),

which connect pixels in one frame to the next. The person label yi and disparity

parameters τ are inferred given the image features di, and the pose parameters Θ.

in the scene, as discussed in more detail in Section 5.4.1. Note that the pose and dis-

parity parameters vary across time. However, for brevity, we drop this dependency

on t in our notation.

The function ϕij(yi, yj) is a spatial smoothness cost of assigning labels yi and yj to

two neighbouring pixels i and j. Similarly, ϕt
ij(yi, yk) is a temporal smoothness cost.

Given the parameters Θ and τ , minimization of the cost (5.1) to obtain an optimal

labelling y∗ = arg miny E(y; Θ, τ), results in segmentation of the video into regions

corresponding to distinct people or background. However, in our problem, we also

aim to optimize over the set of pose and disparity parameters. In other words, we

address the problem of estimating y∗, the optimal segmentation labels, and Θ
∗, τ∗,

the optimal pose and disparity parameters as:

{y∗,Θ∗, τ∗} = arg min
y,Θ,τ

E(y; Θ, τ), (5.2)

where E(y; Θ, τ) is the cost of label assignment y, given the pose and disparity

parameters, as defined in (5.1). Given the difficulty of optimizing E over the joint

parameter space, we simplify the problem and first estimate pose parameters Θ

independently of y and τ as described in Section 5.3. Given Θ, we then solve for y,

τ as:

{y∗, τ∗} = arg min
y,τ

E(y, τ ; Θ). (5.3)
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Further details are provided in Section 5.4. A graphical representation of our model

is shown in Figure 5.2. The remainder of this section defines the unary costs, which

are computed independently in every frame, and the spatio-temporal pairwise costs

in energy (5.1).

5.2.1 Occlusion-based unary costs

Each pixel i takes one of the person or background labels from the label set L.

Building on the approach of [Yang et al., 2011], we define occlusion-based costs

corresponding to these labels, ψi(yi = l; Θ, τ), l in L, as a function of likelihoods βl,

computed for each label l, as follows:

ψi(yi = l; Θ, τ) = − logP (yi = l|Θ, τ), (5.4)

where P (yi = l|Θ, τ) = βl
i

∏

{m|τm>τ l}

(1− βm
i ). (5.5)

Here, βl
i is the likelihood of pixel i taking the person (or background) label l. Note

that βl
i ’s do not sum to one over the label set for any given pixel. The label likeli-

hood over the entire image βl is then formed by composing the likelihoods βl
i, for

all pixels i ∈ V in the image. In essence, βl is a soft mask, which captures the

likelihood for one person detection. It can be computed using the pose estimate of

the person, and image features such as disparity, colour, and motion, as discussed

in the following section. To account for the fact that the people in a scene may be

occluding each other, we accumulate the label likelihoods in a front-to-back order

as in Equation (5.5). This order is determined by the disparity parameters τ we

estimate (see Section 5.4). In other words, to compute the cost of a pixel taking a

person label i, we consider all the other person labels that satisfy τm > τ i, i.e., are

in front of person i. This makes sure that pixel i is likely to take label l, if it has

sufficiently strong evidence for label l (i.e., βl
i is high), and also has low evidence

for other labels m, which correspond to people in front of person l (i.e., βm
i is low

for all labels with τm > τ l). Figure 5.3 shows an illustration of these costs on an

example.

5.2.2 Label likelihood βl

Given a person detection and its corresponding pose estimate Θl, the problem of

computing the label likelihood βl can be viewed as that of segmenting an image into

person vs. background. Note that we do not make a binary decision of assigning

pixels to either the person or the background label. This computation is more akin
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(a) Person 0 (b) Person 1 (c) Person 2

(d) Person 3 (e) Person 4 (f) Background

Fig. 5.3: Illustration of the occlusion-based unary costs for the example in Figure 5.1. From

left to right we show the unary costs for persons labelled 0 – 4 and the background.

The cost for a pixel to take a label (person or background) is denoted by the red

(low) - blue (high) spectrum of colours. Here we observe the effect of accumulating

the label likelihoods in a front-to-back order. For example, in the illustration for

Person 4, a low cost (red) for taking label 4 is observed only for the pixels that are

not occluded by the other people in front.

to generating a soft likelihood map for each pixel taking a particular person label.

We define this using disparity and pose cues as:

βl
i = (1− αl) ψp(Θl) + αl ψd(τ l), (5.6)

where ψp(Θl) is an articulated pose mask described in Section 5.3, ψd(τ l) is a dis-

parity likelihood, and αl is a mixing parameter that controls the relative influence

of pose and disparity. The disparity potential is given by:

ψd(di; τ
l, σl) = exp

(

−
(di − τ

l)2

2(σl)2

)

, (5.7)

where di is the disparity value computed at pixel i. The disparity potential is a

Gaussian characterized by mean τ l and standard deviation σl, which together with

the pose parameter Θl determines the model for person l. We set βL
i = 0.9 for all

the pixels for the background label L. The method for estimating the parameters τ l

and σl for person labels (i.e., l ̸= L) is detailed in Section 5.4.

5.2.3 Smoothness cost

In some cases, the disparity cue used for computing the unary costs may not be

very strong or may “leak” into the background (see examples in Figure 5.10). We

introduce colour and motion features into the cost function (5.1), as part of the

smoothness cost, to alleviate such issues. The smoothness cost, ϕij(yi, yj), of as-
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signing labels yi and yj to two neighbouring pixels i and j takes the form of a

generalized Potts model [Boykov and Jolly, 2001] given by:

ϕij(yi, yj) =



















λ (λ1 exp(
−(di−dj)2

2σ2
c

) + λ2 exp(
−||vi−vj ||2

2

2σ2
v

)

+λ3 exp(
−(pbi−pbj)2

2σ2
p

)) if yi ̸= yj ,

0 otherwise,

(5.8)

where λ, λ1, λ2, λ3, σc, σv and σp are parameters of the model. The function

(di − dj)2 measures the difference in disparity between pixels i and j. The motion

vector at pixel i is denoted by vi ∈ R
2, and ||vi − vj ||2 is the norm of the motion

vector difference of pixels i and j. The function (pbi−pbj)2 measures the difference

of colour features (Pb feature values [Arbelaez et al., 2011]) of pixels i and j. The

temporal smoothness cost ϕt
ij(yi, yk) is simply a difference of Pb features values for

two pixels i and k connected temporally by the motion vector vi.

Thus far we have discussed the model given person detections, their pose and dis-

parity parameters. In what follows, we will describe our method for detecting peo-

ple, their poses, and the likelihood computed from them (Section 5.3). We then

provide details of the inference scheme for determining the disparity parameters

and the pixel-wise segmentation (Section 5.4).

5.3 Estimating an Articulated Pose Mask

The aim here is to obtain an articulated pose segmentation mask for each person

in the image, which can act as a strong cue to guide the pixel-wise labelling. We

wish to capture the articulation of the human pose as well as the likely shape and

width of the individual limbs, torso, and head in the specific pose. We build here

on the state-of-the-art pose estimator of Yang and Ramanan [Yang and Ramanan,

2011], and extend it in the following two directions. First, we incorporate disparity

as input to take advantage of the available stereo signal. Second, we augment the

output to provide an articulated pose-specific soft-segmentation mask learned from

manually annotated training data.

5.3.1 Person detection and tracking

We obtain candidate bounding boxes of individual people and track them through-

out the video. Detections are obtained from the deformable part-based person de-

tector HOGcomb from Section 4.3.1. We apply this joint appearance and disparity

based detector to each frame in the video sequence independently. We also com-

pute point tracks, which start at a frame and continue until some later frame, over
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the entire sequence with the Kanade-Lucas-Tomasi tracker [Shi and Tomasi, 1994].

Point tracks that lie within each detection result are used to fill-in any missing de-

tections by interpolating the location of the bounding box and also to smooth the

detections temporally [Everingham et al., 2006].

5.3.2 Pose estimation from appearance and disparity

We estimate the pose of the person within each person detection bounding box. We

restrict our pose estimation models to upper body poses, which are more commonly

found in movie data. Again, to benefit from the stereo video, we extract both ap-

pearance and disparity features in the frame (in contrast to [Yang and Ramanan,

2011; Desai and Ramanan, 2012], which use appearance features only). The ad-

vantage is that some edges that are barely visible in the image, e.g., between people

in similar clothing, can be more pronounced in the disparity map. We use HOG fea-

tures for both appearance and disparity, as described above for person detection.

We introduce specific mixtures for handling occlusion, as in [Desai and Ramanan,

2012], into the pose estimation framework of [Yang and Ramanan, 2011].

In this framework, the model is represented as a set of K parts, where a part refers

to a patch centered on a joint or on an interpolated point on a line connecting two

joints. For example, we have one part for an elbow, one for a wrist, and two parts

between the elbow and the wrist, spread uniformly along the arm length. We use

a model with 18 parts. The set of parts includes 10 annotated joints, head, neck,

2 shoulders, 2 elbows, 2 wrists, 2 hips, together with 8 interpolated parts. Further,

each part is characterized by a set of mixtures. The mixture components for an

elbow part, for example, can be interpreted as capturing different appearances of

the elbow as the pose varies, including occlusions by other limbs or people, that are

explicitly labelled in the training data. We learn up to eight mixture components,

among which one or two are dedicated to handle occlusions, for each part. We

refer the reader to [Yang and Ramanan, 2011] for more details on the training

procedure.

5.3.3 Articulated pose mask ψp

The output of the pose estimator is the location of the individual parts in the frame

as shown in Figure 5.5(a). To obtain a pose-specific mask we learn an average mask

for each mixture component for each part. This is achieved by applying the trained

pose-estimator on a training set of people with manually provided pixel-wise seg-

mentations. All training masks, where mixture component c of part k is detected,

are then rescaled to a canonical size and averaged together to obtain the mean
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Left shoulder

Head

Left wrist

Left elbow

Fig. 5.4: Articulated pose masks for three mixture components are shown for some of the body

parts. The pose masks for each part capture a different configuration of the pose. For

instance, the masks for “Left wrist” show three different locations of the lower arm:

stretched out, partially bent over the shoulder, and lying by the torso.

mask mkc(i). The value at pixel i in the mean mask counts the relative frequency

that this pixel belongs to the person. An illustration of masks for individual parts

and mixture components is shown in Figure 5.4.

At test time, given an estimated pose with an instantiated mixture component c∗ for

a part k, the likelihood for the person, ψp(Θ, i) at pixel i, is obtained by laying out

and composing the articulated masks mkc∗ for all the parts. If, at pixel i, multiple

masks overlap, we take the maximum as ψp(Θ, i) = maxk mkc∗(i). We found that

taking the max was beneficial for person segmentation targeted in this chapter as

it suppresses internal edges between body parts, such as a hand positioned in front

of the torso. An illustration of the articulated pose masks for various examples is

shown in Figure 5.5. Note how the part masks can capture fine variations in the

shape and style of the pose.

5.4 Inference

In the previous section we have outlined how we compute the pose parameters Θl

and the corresponding articulated pose mask for each person l. Poses are estimated

independently for each person and fixed throughout the rest of the inference proce-

dure described next. The aim is to compute the optimal disparity parameters τ∗ and
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(a) Estimated pose (b) Pose mask (c) Per-mixture masks

Fig. 5.5: Estimated poses and masks on sample frames. Given a pose estimate (a), we com-

pute a pose-specific mask (b) using per-mixture part masks learned from manually

segmented training data. In (c) we show a scaled version of the masks, doubling the

actual distances between part masks. This visually explains how each per-mixture

mask is contributing to the final mask. In (b,c), the cost for a pixel to take a person

label is denoted by the red (low) - blue (high) spectrum of colours.
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pixel labels x
∗ given the pose parameters Θ, as described by the minimization prob-

lem (5.3). It is well known that minimizing multi-label functions such as E(y; Θ, τ),

which corresponds to the segmentation problem, given the pose and disparity pa-

rameters, is in itself NP-hard (for the type of smoothness cost we use) [Boros and

Hammer, 2002]. The additional complexity of optimizing over disparity parame-

ters τ further adds to the challenge. Methods like [Isack and Boykov, 2012] ex-

plore joint optimization solutions for such problems. Here, we propose a two-step

strategy, where we first: (i) estimate the optimal disparity parameters τ∗ using an

approximation to (5.3), without the pairwise terms; and then (ii) obtain the pixel

labels x
∗ with the estimated (and now fixed) parameters τ∗ by minimizing the full

cost (5.1). These two steps are detailed below.

5.4.1 Obtaining disparity parameters

The estimation of the set of disparity parameters τ for all the people in a frame can

be succinctly written as:

τ∗ = arg min
{τ}

Ẽ(ỹ; Θ, τ), (5.9)

where we approximate the original cost function (5.1) by only using unary and

ignoring the pairwise terms3 as Ẽ(y; Θ, τ) =
∑

i∈V ψi(yi; Θ, τ). Note that for this

modified cost function, the optimal pixel labelling ỹ for a given τ can be obtained

independently for each pixel as ỹi = arg minm∈L Ẽ(yi = m,Θ, τ). Further, the

disparity parameter τ is inversely related to depth, and determines the front-to-

back order of people in a frame. Thus, this minimization problem (5.9) explores

various combinations of the relative order of people in a frame by optimizing over

{τ}. The set of possible disparity parameter values for each person can still be large,

and exploring the exponentially many combinations for all the people in the frame

may not be feasible. To address this issue, we obtain and optimize over a small

set of (up to 3) candidates {τ l}, for each person l. Using a thresholded pose mask,

we compute mean disparity µl of all the pixels within, and set {τ l} = {µl, µl ± σl}.

The parameter σl is set according to a linear decreasing function of µl. Note that

the disparity parameters are estimated jointly for all the people in the scene. We

illustrate this on a sample image in Figure 5.6.

5.4.2 Person segmentation

With the estimated disparity (and pose) parameters, we compute the unary and

smoothness costs, and use the efficient α-expansion algorithm [Boykov et al., 2001]

3We note that this is a reasonable approximation, as τ only directly affects the unary cost ψi in (5.1).
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Correct ordering:

2 in front of 4

Wrong ordering:

4 in front of 2

Unary for Unary for Combined
person 2 person 4 unary

2 4

Fig. 5.6: The front-to-back ordering of people in a scene is determined by τ l, the disparity

parameter in the potential (5.7), estimated for each person (shown at the top). The

optimal set τ∗ is estimated jointly for all the people by solving (5.9) over a candidate

set. Here we show the effect of picking wrong τ l for two people, which implies

wrong ordering (shown at the bottom). This results in poor unary cost functions

and a higher overall cost, due to the additional negative evidence in the form of

(1−βm

i
) as defined in (5.5). The colours red, yellow and blue in the unary cost figures

represent low, medium and high costs respectively. Unaries (here for persons 2 and

4) are combined (third column) by taking their per-pixel minimum, as described in

Section 5.4.1. Note the lower cost (more red) of the combined unary for the correct

person ordering.
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to optimize (5.1). This assigns every pixel a person or background label from the

set L.

5.5 Experiments

In this section, we first report results for layered segmentation in Section 5.5.1.

Next, in Section 5.5.2, we investigate the sensitivity of our algorithm to its main

parameters and in Section 5.5.3, we analyze the robustness of our approach by

replacing its components with ground truth results. Finally, in Section 5.5.4 we

evaluate the segmentation accuracy of our method on the H2view dataset [Sheasby

et al., 2012].

5.5.1 Segmenting multiple people

In our experiments we used the following parameter values: λ = 1.0, λ1 = 6.3,

λ2 = 6, λ3 = 2.7, σ2
c = 0.025, σ2

v = 0.01, σ2
p = 0.025, which were set empirically,

and fixed for the evaluation. A quantitative evaluation of the segmentation model

using ground truth annotations is shown in Table 5.1. In this evaluation we com-

pare three variants of our approach and two baseline methods. The first one (“No

mask, single frame”) refers to the case where the label likelihood βl
i = ψd, i.e.,

there is no influence of pose on the segmentation. In other words, this method uses

disparity features, but not the pose information. The second method (“Uni mask,

single frame”) incorporates a person location likelihood, which is computed by aver-

aging ground truth segmentations of people from the training data (after rescaling

them to a standard size) into a single non-articulated “universal” person mask – an

approach inspired by the successful use of such masks in the past [Yang et al., 2011].

We use this as the person likelihood ψp, and combine it with disparity likelihood ψd,

as explained in Section 5.2. The third variant (“Pose mask, single frame”) incor-

porates the articulated pose mask, described in Section 5.3. Our complete model

(“Proposed”) introduces temporal smoothness across frames.

For the “Colour only” baseline, we used a colour-based model for the unary costs

without the disparity potential. These costs were computed from colour histograms

for each label [Boykov and Jolly, 2001]. In other words, each label is associated

with a histogram computed from a region in the image, and the unary cost of a pixel

is a function of the likelihood of the pixel, given its colour, taking this label. The

success of this model certainly depends on the regions used for computing the his-

tograms. We used the result obtained by segmenting in the disparity space, i.e., “No

mask, single frame”, as these regions. We believe that this provides a reasonable

estimate for the label potentials. The background histogram was computed with
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(a) Original image (b) Segmentation result

Fig. 5.7: Qualitative results on images from the movies “StreetDance” and “Pina”. Each row

shows the original image and the corresponding segmentation. Rows 1 and 2 demon-

strate successful handling of occlusion between several people. The method can also

handle non-trivial poses, as shown by Rows 3 and 4. The segmentation results are

generally accurate, although some inaccuracies still remain on very difficult exam-

ples. For instance, in Row 1, the segmentation for the people in the background for

persons 3 and 5, due to the weak disparity cue for these people far away from the

camera. The numbers denote the front (low values) to back (high values) ordering

of people.
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Tab. 5.1: Evaluation of pixel-wise person segmentation on our Inria 3DMovie dataset. We

used precision, recall and intersection vs. union scores to compare the methods. Our

method (“Proposed”), which uses disparity, colour, and motion features, along with

pose likelihoods and temporal terms shows the best performance. We also show

results of variants of our approach and two baseline methods.

Method Precision Recall Int. vs Union

Proposed 0.869 0.915 0.804

Variants of our method:

No mask, single frame 0.525 0.371 0.278
Uni mask, single frame 0.783 0.641 0.544
Pose mask, single frame 0.849 0.905 0.779

Baselines:

Colour only 0.778 0.769 0.630
[Eichner et al., 2012] 0.762 0.853 0.662

bounding boxes harvested from regions with no person detections. Another base-

line we compared with, is derived from the recent work of [Eichner et al., 2012],

which computes the pose of a person in a scene. We evaluated the (monocular)

person vs. background segmentation performed as part of this formulation on our

dataset.

We used the precision, recall, and intersection vs. union [Everingham et al., 2011]

measures to evaluate our segmentation results. From Table 5.1, our method “Pro-

posed” shows the best performance. The poor performance of the Colour only

method, despite a reasonable initialization for the histograms, is perhaps an in-

dication of the difficulty of our dataset. From Figures 5.1 and 5.7 we note that the

person vs. background distinction is not very marked in the colour feature space.

Furthermore, these images appear to be captured under challenging lighting condi-

tions.

We then evaluated the benefits of the temporal smoothness terms in (5.1). Perform-

ing segmentation temporally shows a 2% increase in the intersection vs. union score

(Table 5.1). We also observe that it reduces flickering artifacts, produces more con-

sistent segments and reduces leaking in the segmentation, as shown in Figure 5.8

and the video results4. Other methods [Budvytis et al., 2011] to propagate segmen-

tations from a few key frames of the video onto others can also be used.

Results on a few sample frames for the “Proposed” method are shown in Figure 5.7.

The influence of the articulated pose mask is analyzed in Figure 5.9. Another com-

ponent of our model – the smoothness terms based on colour, motion, and depth –

are analyzed in Figure 5.10.

4http://www.di.ens.fr/willow/research/stereoseg

5.5 Experiments 97

http://www.di.ens.fr/willow/research/stereoseg


(a) (b)

Fig. 5.8: Comparison of segmentation performed: (a) individually on each frame; and (b)

temporally on video. We overlay the result of our person detector on each image.

We observe that the temporal consistency term reduces leaking (Row 1, rightmost

person). It also helps segment more people in the scene accurately (Rows 2 and 3).

The success of our approach depends on the quality of detections. Here, we oper-

ated in the high-precision mode, at the expense of missing difficult examples, e.g.,

heavily occluded people. Other prominent failure modes of our method are: (i)

challenging poses, which are very different from the training data; and (ii) cases

where the disparity signal is noisy for people far away from the camera (e.g., Fig-

ure 5.7, row 1).

5.5.2 Sensitivity to parameters

In this section we experimentally investigate the sensitivity of the proposed algo-

rithm to its main parameters. The parameter αl in (5.6) moderates the relative

weight of the pose mask and the disparity cues for person label l. We used one

single α = 0.45 for all the labels in the results discussed thus far. In Figure 5.11(a)

we show the influence of varying α on the segmentation score. We observe that
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Original image Result using
no mask

Result using
universal mask

Result using
pose mask

(a) (b) (c) (d)

Fig. 5.9: Benefits of the articulated pose mask. (a) Left input image. (b) Segmentation re-

sult using no mask. In this case, the disparity-based likelihoods are not combined

with any pose prior. (c) Segmentation result using a single universal pose mask.

The disparity-based likelihood is combined with a potential computed from the uni-

versal mask.(d) Segmentation result using articulated pose-specific masks; see Sec-

tion 5.3.3. We observe that using a mask improves the segmentation, and the pose-

specific masks show the best performance.

Original image Pairwise cost
Result using

no pairwise cost
Result using
pairwise cost

(a) (b) (c) (d)

Fig. 5.10: Influence of the motion, colour and disparity sensitive smoothness cost on segmen-

tation results. (a) Left input image. (b) Illustration of the spatial smoothness cost.

Red denotes high cost, and the yellow to blue range of colours denotes low cost. (c)

Segmentation result using no smoothness cost. (d) Segmentation result using the

smoothness cost. Using this pairwise term reduces person segments leaking into the

background.
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using no pose cues (i.e., α = 1.0) shows a lower average performance than giving

equal importance to pose and disparity cues on the entire dataset. However, we

note that increasing the influence of the disparity term segments articulated poses

more accurately, as shown in Figure 5.12, at the expense of reduced precision in

other situations, such as scenes with multiple people who are close to each other

and at similar depth where pose estimates help. We use α = 0.45 so that the pose

and disparity terms have nearly equal influence and avoid a bias towards one of the

extremes.

We also analyzed the influence of the parameters λ1, λ2 and λ3 in the pairwise term

(5.8). The segmentation score was fairly robust to changing these parameters. For

instance, disabling any of the three terms still leads to a reasonable performance,

and varying the relative influence of each term showed only minor variations in the

segmentation quality. In contrast, changing the overall influence of the pairwise

term, λ in (5.8), shows first a slight increase in the segmentation score but putting

too much weight on the pairwise terms reduces the segmentation score as shown

in Figure 5.11(b).

5.5.3 Analysis with ground truth components

We further analyze the robustness of our approach by replacing its components with

ground truth results. In particular, we use ground truth person detections, pose es-

timates and disparity parameters. The ground truth disparity parameters are mean

and standard deviation computed with the disparity values of all the pixels within

each ground truth person segmentation mask. The analysis is performed on indi-

vidual frames, where ground truth annotations are available, i.e., using the method

“Pose mask, single frame” (see Section 5.5.1) without any temporal smoothing. The

results are summarized in Table 5.2 and demonstrate that using the noisy disparity

and pose estimates (rows 1-3) results in only a moderate loss in the segmentation

accuracy compared to the segmentation with their ground truth values (row 4).

Please note that the the segmentation results in Tables 5.1 and 5.2 are not directly

comparable, since all results in Table 5.2 are based on the full set of ground truth

person detections.

5.5.4 H2view dataset

The H2view dataset [Sheasby et al., 2012] was acquired using a static stereo rig,

in combination with a Kinect active sensor. Ground truth poses and segmentations

are available for 7 test video sequences, with a total of 1598 annotated frames. It

is, however, restricted to a single person setup and hence has no inter-person occlu-
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Fig. 5.11: (a) Influence of the parameter α, specifying the relative weight of the pose mask

and disparity cues. All the results in this chapter are produced with α = 0.45.

Using only disparity cues (α = 1.0) leads to worse overall performance than using

a combination of pose and disparity cues. (b) Influence of the overall weight λ of

the pairwise terms. We use λ = 1.0 in all the experiments.
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(a) α = 0.2 (b) α = 0.45 (c) α = 0.8

Fig. 5.12: Qualitative influence of the mixing parameter α, specifying the relative weight of

the pose mask and disparity cues. Note that putting more weight on the disparity

cues (increasing α) results in a better segmentation of people with articulated poses

(Row 1), but performs worse when multiple people at a similar depth are close to

each other (Row 3).

sions. We tested our model (trained on 3D movies) directly on this dataset, without

any further tuning, and analyzed the segmentation quality using the evaluation

code from [Sheasby et al., 2012]. As our method models only the upper body, we

cropped the ground truth, our results, and those from [Sheasby et al., 2012] just

above the hips, and considered only upper body (rather than full body) segmenta-

tion. Our method achieves a segmentation overlap score of 0.825 compared to their

0.735 (see Table 5.3). Qualitative results on frames from different sequences in the

H2view dataset are shown in Figure 5.13. Our segmentation produces cleaner, and

more human-like shapes, compared to the seed-based segmentation from [Sheasby

et al., 2012].

An extension of our method for full body segmentation can be envisaged by expand-

ing the bounding boxes (in which we perform the segmentation) vertically. Since

our articulated pose mask does not capture the lower limbs, we only used depth

cues in this setting. Although this led to some leaking in the segmentation result

(due to the noisy disparity signal close to the ground), our method achieves an over-

all segmentation performance similar to [Sheasby et al., 2012] (see Table 5.3).

Computation time: On a 960 × 540 frame it takes about 13s to detect and track

people, 8s to estimate the pose of each person, and 30s per frame to perform the
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(a) (b) (c)

Fig. 5.13: Qualitative results on images from the H2view dataset. (a) The original image,

(b) result from [Sheasby et al., 2012] (upper body only), and (c) our result, are

shown in each row. Note that our approach shows better performance, including

cases with challenging poses (Row 2). Some of the finer details in the segmentation

could be improved further, e.g. hands.
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Tab. 5.2: Evaluation of pixel-wise person segmentation on our Inria 3DMovie dataset using

ground truth components. We show results using ground truth detection (Det.),

ground truth pose masks (Pose) and ground truth disparity parameters τ (Disp.).

Using the noisy estimated pose and disparity parameters (rows 1-3) results in only

a moderate loss in the segmentation accuracy compared to the segmentation with

their ground truth values (row 4).

Method Precision Recall Int. vs Union

Variants with ground truth:

Det. 0.862 0.864 0.759
Det. + Disp. 0.872 0.884 0.782
Det. + Pose 0.869 0.908 0.799
Det. + Pose + Disp. 0.892 0.929 0.835

Tab. 5.3: Evaluation of pixel-wise person segmentation on the H2view dataset. Our method

for segmenting upper bodies shows about 9% improvement in int. vs. union score

over [Sheasby et al., 2012]. Note that our method for full body segmentation only

uses upper body pose mask.

Method Precision Recall Int. vs Union

Upper body segmentation:

[Sheasby et al., 2012] 0.848 0.841 0.735
Proposed 0.940 0.871 0.825

Full body segmentation:

[Sheasby et al., 2012] 0.796 0.832 0.692
Proposed 0.880 0.789 0.706

segmentation with our non-optimized Matlab implementation. The time for seg-

mentation is 6s per frame for the H2view dataset, which contains 512 × 384 frame

sequences of a single person.

5.6 Discussion

We have developed a model for segmentation of people in stereoscopic movies. The

model explicitly represents occlusions, incorporates person detections, pose esti-

mates, and recovers the depth ordering of people in the scene. The results suggest

that disparity estimates from stereo video, while noisy, can serve as a strong cue

for localizing and segmenting people. The results also demonstrate that a person’s

pose, incorporated in the form of an articulated pose mask, provides a strong shape

prior for segmentation. The developed representation presents a building block for

modelling and recognition of human actions and interactions in 3D movies.
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6Multiple person segmentation

under weak constraints

In this chapter, we address the problem of segmenting multiple object instances

in complex videos, and in particular multiple persons. The previous chapter in-

troduced a method for segmenting multiple persons in 3D movies which relies on

person detection, pose estimates and disparity cues to perform segmentation. How-

ever, errors on pose estimates may lead to strong segmentation errors, and pro-

ducing pose masks for other object classes may be impossible. Here, we aim to

formulate a method which does not require manual pixel-level annotation for train-

ing, and relies instead only on readily-available object detectors and visual object

tracking. Given object bounding boxes as input, we cast video segmentation as a

weakly-supervised learning problem. Our proposed objective combines (a) a dis-

criminative clustering term for background segmentation, (b) a spectral clustering

one for grouping pixels of same object instances, and (c) linear constraints enabling

instance-level segmentation. We propose a convex relaxation of this problem and

solve it efficiently using the Frank-Wolfe algorithm. We report results and compare

our method to several baselines on a challenging dataset for multi-person segmen-

tation, Inria 3DMovie Dataset v2, an extension of the dataset used for evaluation

in Chapter 5. We also report results and comparisons on a standard benchmark

dataset for video segmentation, SegTrack [Tsai et al., 2010].

6.1 Introduction

Semantic object segmentation in images and videos is a challenging computer vision

task [Joulin et al., 2010; Lempitsky et al., 2009; Li et al., 2013; Shi and Malik, 2000;

Vineet et al., 2011]. Common difficulties arise from frequent occlusions [Taylor et

al., 2015] and background clutter, as well as variations in object shape and appear-

ance. Video object segmentation also requires accurate tracking of object bound-

aries over time in the presence of possibly fast and non-rigid motions. An addi-

tional challenge addressed by several recent works is in segmentation of individual

instances of the same object class [Hariharan et al., 2014; He and Gould, 2013;

Vineet et al., 2011; Tighe et al., 2014; Zhang et al., 2015b]. Indeed, while it may be

easy to segment a herd of cows from a grass field, segmenting each cow separately

is a much harder task.
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Fig. 6.1: Results of our method applied to multi-person segmentation in a sample video
from our database. Given an input video together with the tracks of object bound-
ing boxes (left), our method finds pixel-wise segmentation for each object in-
stance across video frames (right).

Instance-level object segmentation in video is an interesting and understudied prob-

lem at the intersection of semantic and motion-based video segmentation. Solutions

to this problem can benefit from class-specific object models and motion cues. Seg-

mentation of static and/or partially occluded objects of the same class, however,

pose additional challenges, difficult to solve with existing methods of motion-based

and semantic segmentation. Meanwhile, successful solutions to instance-level video

segmentation can serve in several tasks such as video editing and dynamic scene un-

derstanding.

Given recent advances in object detection [Ren et al., 2015] and visual object track-

ing [Danelljan et al., 2014], coarse object localization in the form of object bound-

ing boxes can now be used as input for solving other problems. In particular, we

address in this chapter the problem of instance-level video segmentation given ob-

ject tracks. We assume that prior (weak) knowledge about objects is available in

the form of tracked object bounding boxes, obtained by a separate process. For in-

stance, pre-trained object detectors or visual object tracking algorithms as the ones

cited above can be used.

Segmentation methods typically optimize carefully designed objective functions

combining data terms and prior knowledge. Object prior knowledge in such meth-

ods is often encoded by higher-order potentials [Ladický et al., 2009; Ladický et al.,

2010; Seguin et al., 2015], which enable richer modeling but lead to hard opti-

mization problems. Here we take an alternative approach and build on the discrim-

inative clustering framework [Bach and Harchaoui, 2007; Guo and Schuurmans,

2007]. Following previous work on co-segmentation [Joulin et al., 2010] and

weakly-supervised classification [Bojanowski et al., 2013], we formulate our prob-

lem as a quadratic program under linear constraints. We use object tracks as con-

straints to guide segmentation, but other forms of prior knowledge could easily be

integrated in our method. Our final segmentation is obtained by solving a con-
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Video frames and superpixels

t t+ 1

Fig. 6.2: Spatio-temporal graph of superpixels. For the yellow superpixel, spatial edges are
shown in dark blue and temporal edges in dark green.

vex relaxation of our objective with the Frank-Wolfe algorithm [Frank and Wolfe,

1956].

We compare our method to the state of the art and show competitive results on

a new dataset for instance-level video segmentation. In contrast to most previous

methods, our approach segments multiple instances of the same object class and

supports reasoning about occlusions. Figure 6.1 illustrates the data and results of

our method on a sample video from our dataset.

The contributions of this chapter are two-fold. (i) We propose a discriminative clus-

tering approach for instance-level video segmentation using external guidance in

the form of object bounding boxes. (ii) We demonstrate the high accuracy and flex-

ibility of our model on the task of multi-instance person segmentation in video.

The rest of the chapter is organized as follows. We present our problem formu-

lation in Section 6.2. We describe the convex relaxation of our model and the

optimization of the cost function with the Frank-Wolfe algorithm in Section 6.3.

Section 6.4 presents our experimental setup and results. We then study how our

method performs when using pixel-wise instance-specific priors in Section 6.5. Fi-

nally, in Section 6.6 we show that our method performs well when applied on other

object classes and that it is very easy to adapt it to perform slightly different tasks,

such as segmentation propagation.
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6.2 Problem formulation

The segmentation problem we aim to solve is to assign to every pixel a label in

{0, . . . ,K}. To design a suitable cost function, we follow previous work on co-

segmentation [Joulin et al., 2010; Joulin et al., 2012]. This implies using two

complementary cost functions: the first one is a spectral clustering term [Shi and

Malik, 2000], which enforces spatial and temporal consistencies according to some

descriptors ϕ. The second term is a discriminative clustering cost based on the

square loss [Bach and Harchaoui, 2007] which learns a foreground vs. background

classifier. In order to include prior information, we propose several constraints

which we detail in Section 6.2.4. The proposed constraints are linear, leading to a

tractable (relaxed) optimization problem (see Section 6.3).

The intuition behind our approach is that constraints provide weak localization

cues for each object instance. Discriminative clustering separates foreground ob-

jects from the background based on appearance features. Spectral clustering helps

producing clean spatial boundaries, separating different instances of the same class

and smoothing the segmentation in time for each object instance.

6.2.1 Notations and model

We are given a video clip composed of T frames indexed by t. Our problem is to

assign a label k in {0, 1, . . . ,K} to each pixel in each frame, where label k = 0

corresponds to the background and all other integers in {1, . . . ,K} correspond to

the K object instances in the video. Since the number of pixels in a video is usually

high, we propose to work with superpixels instead. Assuming that there are N

superpixels in the whole video, we index them by n in {1, . . . , N}.

Let us define a label matrix y in {0, 1}N×(K+1). The matrix y is such that ynk is

equal to one if and only if the superpixel n is of label k. This matrix sums up to one

along rows, since every superpixel is assigned to a single label. In Section 6.2.4, we

propose several constraints that will restrain the set of admissible matrices y. We

denote by Y this set. The constraints can be indexed by c in {1, . . . , C}. Since some

of them may not be satisfied, for every constraint c, we define a slack variable ξc

which will allow us to violate it. Let ξ be the concatenation of all the ξc into a single

vector. We denote by C(y, ξ) the set of constraints over a specific y with slack ξ.
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The cost we minimize is a sum of three terms: a grouping term EG, a discriminative

term ED, and a term penalizing the slack ξ:

min
y∈Y, ξ∈R

C
+

EG(y) + α ED(y) + β∥ξ∥2, (6.1)

under linear constraints C(y, ξ), where α and β allow us to weigh the different

terms. We provide a detailed description of these terms in the following sections.

6.2.2 Grouping term

The grouping term EG is a classic spectral clustering term meant to ensure spatial

and temporal consistency of the segmentation, as described in Section 3.4. To this

end, we define a superpixel graph G = (S, E), whose nodes correspond to superpix-

els and edges encode spatio-temporal neighborhood information. A sample graph

G is illustrated in Fig. 6.2. For two nodes n and n′ from the same frame, there

is an edge (n, n′) in E if the two superpixels are spatial neighbours. For node n

in frame t and node n′ in frame t + 1, we add an edge (n, n′) to E if n and n′

are temporal neighbours. The exact way we define neighbourhoods is discussed in

Section 6.4.1.

For each superpixel n, we define a set of descriptors ϕi
n indexed by i in {1, . . . , I}.

We denote by di the dimension of ϕi
n and by d the sum of all the di. Let us denote by

ϕn the concatenation of all the ϕi
n. We then define the similarity matrix W in R

N×N

which encodes the similarities between superpixels: Wnn′ =
∑I

i=1 µi exp(−λi∥ϕ
i
n −

ϕi
n′∥2) if (n, n′) ∈ E and 0 otherwise. µi and λi are weighting parameters for the

i-th descriptor.

Following [Shi and Malik, 2000], we define the associated unnormalized Laplacian

matrix L = D − W . D is the diagonal matrix composed of the row sums of W :

D = Diag(W1N ). Using these definitions, the grouping term can be written as the

following quadratic form:

EG(y) =
1

N
Tr(yTLy). (6.2)

6.2.3 Discriminative term

ED is a standard discriminative clustering term as described in Section 3.5. We use

it to learn a foreground vs. background model is fit for segmenting the background

from multiple instances of the same object category.
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It aims to learn an affine classifier for separating foreground vs. background. Let

M be a binary matrix in {0, 1}(K+1)×2 which maps labels to foreground and back-

ground. Let us denote by w ∈ R
d×2 and b in R

2 the parametrization of this model.

We also define the matrix Φ in R
N×d whose rows are the ϕn. The discriminative

cost is defined as follows:

ED(y) = min
w∈R

d×2

b∈R
2

1

N
∥yM − Φw − 1Nb

T ∥2F + κ||w||2F . (6.3)

The minimization w.r.t. w in (6.3) is a ridge regression problem, whose solution

can be found in closed form, and ED is easily rewritten [Joulin et al., 2010] as a

quadratic form in y:

ED(y) =
1

N
Tr(MT yTAyM), (6.4)

where A = 1
N ΠN (IN − Φ(ΦT ΠN Φ + NκId)−1ΦT )ΠN and ΠN is the centering pro-

jection matrix IN −
1
N 1N 1T

N .

Note that when dealing with multiple instances of multiple object categories, we

could easily learn one model per object category by adapting the M matrix.

Overcoming trivial solutions. The optimization problem (6.1) is similar to the one

of [Joulin et al., 2010]. It has trivial solutions, which include the constant matrix

and the column-wise constant matrices. These solutions are due to the symmetries

of the discriminative clustering objective, as noted by [Guo and Schuurmans, 2007].

A standard technique to tackle this problem is to perform a lifting from label ma-

trices to equivalence matrices [Bach and Harchaoui, 2007], namely, to perform the

optimization in Y = yyT instead of y. In our case, we get rid of symmetries by

constraining the optimization space, as done by [Bojanowski et al., 2013] in the

context of person identification in movies.

6.2.4 Constraints

As mentioned earlier, our model incorporates constraints on the y matrix. They

allow us to encode simple priors as well as more complicated, instance-specific

information. We can constrain the number of superpixels assigned to a given label

in a spatio-temporal region using linear inequalities. We can also use strict equality

constraints to fix the labels of some superpixels. We first provide a general form

and then describe the different variants used in our experiments. Some of them are

also illustrated in Fig. (6.3) for multi-instance person segmentation using head and

full-body tracks.
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Object tracks. We assume that we are given a track of bounding boxes for each

object in the video. We denote by B this set and index the elements B of B by k in

{1, . . . ,K} and t in {1, . . . , T}, such that Bt
k denotes the bounding box of the k-th

object in frame t.

Inequality constraints. We want to impose linear inequality constraints on a set of

superpixels in the video. In the following sections we will describe in details what

these sets can correspond to. For now, let us denote by R a subset of the indices of

superpixels, R ⊂ {1, . . . , N}. We can represent R by the indicator vector 1R, such

that the n-th entry is equal to one if the superpixel n is in R. Note that for videos,

this set R can correspond to a spatio-temporal region. We use the notation ek to

denote the k-th vector of the canonical basis of RK+1.

For some region R and a label k, we propose to constrain the matrix y using con-

straints of the following form:

0 ≥ σ
(

1
T
R y ek − ρ

)

− ξc, (6.5)

where σ ∈ {−1, 1} controls whether this is an at least or an at most constraint,

ρ a parameter and ξc is the slack variable allowing this constraint to be violated.

Intuitively, y ek selects the k-th vector of the label matrix y which indicates whether

a superpixel is assigned to label k or not. 1
T
R y ek then counts the number of

superpixels from region R which have the label k.

The parameters R, σ, k and ρ depend on the kind of prior we want to enforce. For

instance, if we want to enforce that at least ρ = 50 superpixels of a given region

R are assigned to the label of the first object instance k = 1, we would add the

following at least constraint (thus with σ = −1):

0 ≥ −1
(

1
T
R y e1 − 50

)

− ξc

⇐⇒ 50 ≤ 1
T
R y e1 + ξc.

Replacing σ = −1 with σ = 1 would make it an at most constraint, enforcing that

at most 50 superpixels of R are assigned to the label k = 1.

Note that while our notations refer to superpixels and counts of superpixels, in prac-

tice we weigh the contribution of each superpixel to the constraint by its relative

area in region R. Likewise, we reason in terms of pixels when computing the ρ

parameters. Let us denote by s the vector which n-th entry is equal to the number
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of pixels in superpixel n, and Diag(s) the N × N diagonal matrix which diagonal

elements are the entries of s. Our inequality constraints are actually written as:

0 ≥ σ

(

1

1
T
R s

1
T
R Diag(s) y ek − ρ

)

− ξc. (6.6)

As above, y ek is a column vector which indicates whether a superpixel is assigned

to label k or not. Diag(s) y ek then corresponds to a column vector containing

the areas of the superpixels assigned to the k-th label and 0 for superpixels which

are not assigned to this label. In turn, 1T
R Diag(s) y ek counts the sum of areas of

superpixels which are both inside the region R and assigned to the label k. Finally,

1
T
R s counts the total area of the superpixels inside the region R and is used to

normalize the constraint so that ρ can be expressed independently of the specific

area of the region R.

As the formulation of these constraints is generic and not specific to the underly-

ing structure of the problem, they can indifferently encode prior knowledge over

bounding boxes, frame regions or even entire volumes of the video.

Equality constraints. When some supervision is available (semi-supervised set-

ting), or when a strong cue allows us to freeze variables, we want to use equality

constraints. Let us suppose that we have a set of superpixels R and a set of labels Q.

We set variables for region R and labels Q to predetermined values stored in ỹ:

∀r ∈ R, ∀q ∈ Q, yrq = ỹrq. (6.7)

As for the inequality constraints, the definitions ofR, Q and ỹ depend on the prior.

Must-link/must-not-link constraints When prior knowledge over a set of superpix-

els R, such as a supervoxel, specifies that these superpixels should share the same

label, we can apply must-link constraints. If r0 is one element of this set, then we

can write these constraints as linear equality constraints:

∀r ∈ R, ∀k ∈ {1, . . . ,K + 1} yrk − yr0k = 0. (6.8)

Likewise, must-not-link constraints can be imposed. If the superpixels of the set R

should not take the same label as superpixel r0 (not in R), then:

∀r ∈ R, ∀k ∈ {1, . . . ,K + 1} yrk − yr0k ̸= 0. (6.9)

Track constraints. Given an object bounding box Bt
k, we require that at least ρB

superpixels inside Bt
k get assigned the label k. This can be enforced by setting R,
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and σ appropriately in Eq. (6.5). We set R to the set of superpixels that lie inside

Bt
k. Since this is an at least constraint, we set σ = −1. The amount of superpixels

ρB is set to a ratio of the total number of superpixels in Bt
k. In Figure 6.3 (a) and

(b), head tracks and object tracks are used for such constraints.

In complex videos picturing multiple objects, the bounding boxes, and thus the

corresponding constraint regions, can heavily overlap. Without slack variables, our

problem may be infeasible in such situations, and even with slack variables the

constraints may still be misleading. To cope with occlusions, we propose a simple

occlusion reasoning. In a given frame, for each pair of overlapping bounding boxes,

pixels inside the region of overlap are marked as occluded. In turn, we reduce the

strength of each such constraint by multiplying ρB by (1− o) where o is the ratio of

occluded pixels in the bounding box.

Area constraints. To reduce “leaking” effects in the segmentation, we constrain

the area of each object segment in each frame. For object k in frame t, we impose

that at most ρarea of the superpixels in frame t get assigned the label k. This can

be expressed by setting R to be the set of superpixels in frame t. Since this is an at

most constraint, we have σ = +1. We set ρarea to the amount of superpixels in track

Bt
k times a constant, to take object size into account.

We can also enforce a minimal amount of superpixels per label and per frame. We

do so by changing σ to −1 and setting an appropriate ρ. This constraint can be used

if we know the object is in the frame but lack the corresponding bounding box.

Background constraints. We request that most superpixels which are outside ob-

ject bounding boxes belong to the background label. The rationale is that only a

few of the superpixels outside object detections may belong to objects, as shown in

Figure 6.3 (c). Typically, in the case of multiple people segmentation, these super-

pixels belong to lower arms. We express this constraint by setting R to the set of

superpixels that do not belong to any track in frame t. This is an at least constraint

so we set σ = −1. We set ρ = ρbg to a ratio of the cardinality of R.

Non-object constraints. In our work, we make the assumption that if a pixel is far

enough from an object detection, it is reasonable to assume that it does not belong

to the corresponding object. We assume that when there are no detections at all,

we do not apply these constraints. For a bounding box Bt
k, we build R as the set

of superpixels in frame t that are further away from Bt
k than a given distance, as

shown in Figure 6.3 (d). In practice, we set this minimum distance to the width of

the object bounding box. R can be computed by performing a distance transform
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(a) Head constraint. (b) Body constraint.

(c) Background constraint. (d) Non-person.

(e) Must-be background.

Fig. 6.3: Constraints (see Section 6.2.4) used in our model for multi-person segmentation.
In this setup we are provided head detections, from which we derive body boxes.
We require 75% of pixels inside head detections (a) and 50% of pixels inside
body boxes (b) to belong to the instance. Part (c) illustrates the background
constraint (96% of this surface should be background); non-person constraints
which enforce superpixels far from the person to be assigned to the corresponding
label (d) ; and the superpixels which can only be background (e).
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and then thresholding. We then enforce an equality constraint with Q containing

only the label k and ỹ filled with zeros.

Ground-truth supervision. Pixel-wise ground-truth segmentation can sometimes

be provided for some frames, e.g.for the task of segmentation propagation. In

such cases we can use equality constraints and assign ỹ according to the provided

segmentation mask for frame t. R is the set of superpixels in frame t and Q contains

all the labels. This constraint is a strong cue for both the grouping term and for

the discriminative term as the fixed variables provide reliable cues to learn the

discriminative model.

6.3 Optimization

6.3.1 Continuous relaxation

The quadratic problem defined in Eq. (6.1) is known to be NP hard when y takes

binary values. Indeed, when the quadratic cost matrix has positive off diagonal en-

tries, this is as hard as solving a max-cut problem. Classic relaxations of such prob-

lems [Joulin et al., 2010] imply working with equivalence matrices Y = yyT . Doing

so in our case would be intractable due to the problem size and would prevent us

from imposing constraints relating superpixels to labels. Instead, we propose a con-

tinuous relaxation of our problem by solving it over the convex hull Y of the initial

set Y. Then, we aim at solving the minimization of a positive semi-definite quadratic

form over a convex compact set defined by a large number of linear constraints. Due

to the size of y (of the order of 106 entries) and the number of constraints it is not

realistic to use a standard off-the-shelf quadratic programming solver based on in-

terior point methods [Boyd and Vandenberghe, 2004]. Nevertheless it is possible to

solve linear programs of such a size. This is why, following other approaches to dis-

criminative clustering [Bojanowski et al., 2014], we propose to use the Frank-Wolfe

optimization algorithm [Frank and Wolfe, 1956; Jaggi, 2013] which only relies on

the minimization of linear forms over Y.

6.3.2 Frank-Wolfe algorithm

The Frank-Wolfe algorithm, also known as the conditional gradient method, is an

iterative method to optimize convex objectives over compact convex sets. Intuitively,

it is an iterative optimization algorithm which considers a linear approximation of

the objective function at each iteration, finds a point of the domain minimizing this

linear approximation and moves a bit the current point towards this minimizer. It
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is thus particularly handy when solving linear problems over the domain is possible

but other operations are either impossible or too expensive. Another good feature

of this algorithm is that it provides an approximation of the duality gap, which can

be used as a reliable stopping criterion for the optimization. Our problem satisfies

the desired properties as the optimization domain satisfies the desired properties

and the objective function is convex.

Let us now briefly describe the iterations. We define our optimization variable

z = (y, ξ) in Z = Y × R
C
+. For the sake of simplicity, we rewrite as E(z) the

sum of the three terms from Eq. (6.1). Let us denote by zk the current point at

iteration k. At iteration k, we compute the gradient ∇zE(zk) and minimize the

following linear form: Tr(∇zE(zk)(z − zk)), which is the linear approximation of

our quadratic objective function. This can be easily done using a generic LP solver,

and yields a corner of the polytope that we will denote z FW. We then update the

current point as follows: zk+1 = zk+γ(z FW−zk). The optimal parameter γ∗ leading

to the best improvement in that direction can be found in closed form by doing an

exact line search. We iterate this procedure until the duality gap dgap, which is an

upperbound of the difference between the objectives of the current point and of the

optimal solution [Jaggi, 2013], is lower than a predefined threshold.

Algorithm 2: Frank-Wolfe algorithm to solve the problem formulated in
Eq. (8).

k ← 0
dgap ← inf
while dgap > ϵ do

Solve zF W = arg minz∈Z Tr(∇zE(zk)T z)

Set dF W = zF W − zk

Set dgap = −Tr(∇zE(zk)TdF W )
Find γ∗ = arg maxγ∈[0,1]E(zk + γdF W )

Update zk+1 = zk + γ∗dF W

Note on away and pairwise steps for the Frank-Wolfe algorithm. The standard

Frank-Wolfe iterations are also called toward steps. Two alternative types of steps

have been proposed in the literature: the away [Wolfe, 1970; Guelat and Marcotte,

1986; Lacoste-Julien and Jaggi, 2013] and pairwise steps [Allende et al., 2013;

Lacoste-Julien and Jaggi, 2015]. Using these alternative steps has significantly im-

proved the speed of convergence in our experiments. This is true even though each

iteration is slightly longer due to the additional evaluations. The main downside of

these methods is the requirement of the explicit storage of all the points zF W met

during optimization with their corresponding weights. But, in our case, the points

zF W are sparse binary arrays. Thus this only corresponds in practice to a small

increase of the memory cost.
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Rounding. Using the Frank-Wolfe algorithm we obtain a solution z∗ = (y∗, ξ∗).

The solution continuous solution we obtain needs to be rounded. We first freeze

the slack variables of the constraints to the values ξ∗. We then round y∗ into a

binary matrix by finding the closest point to y∗ in Y in terms of Frobenius norm

∥y − y∗∥2F which is equivalent to

min
y∈Y
−2Tr(y∗T y). (6.10)

We solve this linear program using the LP solver.

6.3.3 Non-convex refinement

Experimentally, we observe that the convex relaxation of our problem may lead

to sub-optimal rounded solutions. Indeed, our model is attracted to a degenerate

solution with all constant entries of value 1
K+1 , which has a low objective value for

the discriminative term. This is a common drawback of discriminative clustering

techniques, as noted by [Joulin et al., 2010; Guo and Schuurmans, 2007]. In order

to push our solution away from these near-constant solution, and following the

approach of graduated non-convexity [Blake and Zisserman, 1987; Zaslavskiy et al.,

2009], we propose to add a concave quadratic term to our objective: Tr(yT (1− y)),

and weight it using a parameter δ. This term encourages the entries y to be close to

either 0 or 1. The corresponding optimization problem is the following:

min
y∈Y, ξ∈R+

C
EG(y) + αED(y) + β∥ξ∥2 + δ Tr(yT (1− y)).

The parameter δ can be a function of the iteration count k. In practice however,

choosing a scalar value is already complicated and we therefore use a piecewise

constant function. We first optimize the convex relaxation of our problem with

δ = 0. Then we perform Frank-Wolfe steps on the non-convex objective with a

non-zero δ which has been selected by parameter search. Although we are only

guaranteed to converge to a local optimum of this non-convex function [Bertsekas,

1999, Section 2.2.2], we empirically observe a drastic improvement of performance

as shown in Table 6.1.
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Fig. 6.4: Illustration of the non-convex cost described in Section 6.3.3. Please note that
adding this cost makes our cost function non-convex. By controlling the weight
of this term, we push the solution towards the extreme points of the optimization
polytope.

6.3.4 Hyperparameter search

The proposed model involves several hyperparameters: two per feature channel,

two for the discriminative term, one for the type of inequality constraint and oth-

ers. Consequently, performing a full grid search is prohibitive. We have tried to

perform coordinate descent in the parameter space, but the runtime was still too

long. Instead, we have optimized hyperparameters using the method in [Snoek et

al., 2012], which has allowed us to optimize all hyperparameters simultaneously.

The model automatically refines the search space over time by constructing a prob-

abilistic model of the performance and exploiting it to decide where to evaluate

next. We use the freely available implementation called Spearmint1. This method

produces a better parameter set and runs 100 times faster compared to our grid

search.

6.4 Experiments on multiple person segmentation

under weak constraints

In this section, we describe experimental details and evaluation procedures for the

proposed method. We evaluate multi-instance person segmentation in 3D movies

using head tracks and full-body bounding boxes on the Inria 3DMovie Dataset v2

from Section 4.2.2.

6.4.1 Implementation details

1https://github.com/HIPS/Spearmint
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Superpixels. We extract video superpixels using [Chang et al., 2013]. The su-

perpixels are evenly distributed, fairly compact, and tracked in time, as shown in

Figure 6.5. We use temporal links obtained from superpixel tracks as edges in the

superpixel graph (Section 6.2.2). We also add edges between superpixels from con-

secutive frames if sufficient pixel-wise correspondence is provided by optical flow.

Fig. 6.5: Example of superpixels produced by the method of [Chang et al., 2013]. We set
the method parameters to get about 2000 superpixels per frame.

Features. We first compute dense optical flow between consecutive frames using

DeepFlow [Weinzaepfel et al., 2013]. Then, we use two different sets of features

ϕn for the grouping and discriminative terms. These features are computed for

each superpixel based on the underlying image pixels. For the spatial edges in the

similarity matrix W of the grouping term, we use: (i) a histogram of optical flow

with 8 bins for orientations and one bin for no motion, and (ii) the average CIE

L*a*b* color, over the superpixel. For the temporal edges of W , we use the average

CIE L*a*b* color. As discriminative features in Φ, we use: (i) the same histogram of

optical flow, (ii) a color histogram computed over RGB colors, with 8 bins per color

channel, 512 bins in total, and (iii) the average SIFT descriptor over the superpixel,

obtained by first computing dense SIFTs over the whole image, and then averaging

the SIFTs which cover the superpixel.

We also optionally exploit recent advances in semantic segmentation by including

features produced by a deep neural network trained for semantic segmentation

for the PASCAL dataset [Zheng et al., 2015]. We take the output of the method

for each pixel and pool it (either using max-pooling or mean-pooling) over the

superpixel, and use it as an additional discriminative feature in Φ. As this output

represents a strong semantic cue, it should help our discriminative term to separate

the foreground from the background.
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For 3D movies, we also include median disparity over the superpixel in both spatial

grouping and discriminative features. The method of [Ayvaci et al., 2012] is used

to estimate the disparity map from stereo pairs.

Person detection and tracking. We evaluate our method on ground-truth (man-

ually annotated) head tracks as well as on tracks automatically produced by a

tracking-by-detection method: we use a CNN-based detector [Girshick et al., 2014]

trained on heads in movies. The tracker associates these detections based on KLT

tracks [Shi and Tomasi, 1994], interpolates missing detections and smooths the

tracks in time [Everingham et al., 2006]. Using ground-truth or automatic tracks,

we extrapolate full-body bounding boxes from the head bounding boxes using a lin-

ear transformation. Note that our full-body bounding boxes start below the head,

as shown in Fig. 6.1. This way, the superpixels on the sides of the head are not

involved in the corresponding constraints, since they do not belong to the person in

most cases.

Occlusion reasoning. We adapt the occlusion reasoning of Section 6.2.4 to stereo

videos by computing a depth estimate from the median disparity inside the head

box. Given two overlapping bounding boxes in the frame, we mark the pixels of

the object which is behind as occluded. This procedure allows a more accurate

handling of occlusions than the original reasoning, since constraint strength will

only be reduced for objects which may actually be occluded.

We evaluate the proposed method on stereo videos where head (bounding boxes)

tracks for multiple people are given as input to our algorithm. We use these tracks

and extrapolated full-body bounding boxes, to derive two types of track constraints

in our framework. We also integrate the corresponding background and non-object

constraints from Section 6.2.4. We combine disparity, appearance and motion cues

and evaluate performance on a dataset extracted from 3D movies with challenging

scenes and poses.

6.4.2 Baselines

We compare our method to multiple baselines, spanning the whole range of meth-

ods from pure semantic segmentation to pure motion segmentation. Some of them

are completely unsupervised: Multi-modal motion segm. [Ochs et al., 2014], FG/BG

motion segm. [Papazoglou and Ferrari, 2013]. Some other require pixel-wise su-

pervision to train appearance models: Pose & segm. [Seguin et al., 2015] (Ch. 5),

SDS [Hariharan et al., 2014], CRF as RNN [Zheng et al., 2015]. We used the publicly

available code and models for all methods.
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CRF as RNN [Zheng et al., 2015]2 is the state-of-the-art semantic segmentation

method. It uses an end-to-end deep network combining a standard Convolutional

Neural Network with a Recurrent Neural Network to perform dense CRF inference.

We adapt this method to the task of instance-level segmentation for a given semantic

class by assigning each pixel labelled with the said semantic class to the instance

which has the closest bounding box. In practice, for people we assign the pixels to

the person which spine (derived from the head bounding box) is the closest.

SDS [Hariharan et al., 2014]3 is a simultaneous detection and segmentation method.

It classifies region proposals by scoring CNN features extracted from the region

and the corresponding bounding box. This method is inherently an instance-level

segmentation method, and we evaluate it directly. Note that given the results pro-

duced by this method are using a different set of detections (which are an output

of the method itself), the performances are not directly comparable with the other

reported methods. This baseline is provided for reference as it is the best instance-

level segmentation method available.

Pose & segm. [Seguin et al., 2015] (Ch. 5)4 is the method described in Chapter 5 of

this thesis. Given person tracks, it combines pose estimates and disparity cues in an

unary term after reasoning on occlusions. A binary term encodes spatio-temporal

smoothness using color and motion features.

Multi-modal motion segm. [Ochs et al., 2014]5 separates objects which exhibit differ-

ent motions. It is a classic method for video segmentation. We adapt it to our prob-

lem by assigning the biggest segment (in terms of surface) to be the background

segment, and inside each object bounding box we label the largest non-background

segment as belonging to the instance.

FG/BG motion segm [Papazoglou and Ferrari, 2013]6 is a pure figure-ground motion

segmentation method. We adapt it to the task of instance-level segmentation using

the same method as for the first baseline, by splitting the foreground segment in

multiple segments.

6.4.3 Results

We evaluate segmentation by computing per-person precision, recall, overlap (de-

fined as the intersection over union between the ground-truth and predicted la-

2http://www.robots.ox.ac.uk/~szheng/CRFasRNN.html
3http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sds/
4http://www.di.ens.fr/willow/research/stereoseg/
5http://lmb.informatik.uni-freiburg.de/resources/software.php
6http://groups.inf.ed.ac.uk/calvin/FastVideoSegmentation/
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Tab. 6.1: Comprehensive study of the influence of each component of our method on our
dataset. See Section 6.4.3 for comments.

Method F1 Precision Recall Overlap

Ours + semantic cue 80.1% 81.9% 79.6% 68.6%

Ours 78.3% 80.8% 77.3% 66.0%

No temporal smoothness 76.4% 79.2% 75.4% 63.7%
Single frames 76.4% 77.9% 76.4% 63.7%

Grouping term only 77.6% 79.4% 77.2% 65.0%
Discriminative term only 66.9% 70.7% 64.7% 52.1%

No constraint 12.8% 10.4% 40.0% 09.0%
Convex only 75.6% 78.0% 74.1% 62.4%

No disparity 74.0% 77.5% 72.6% 59.9%

bels [Everingham et al., 2010; Jaccard, 1912]) and F1 score (the harmonic mean

between precision and recall). We report the average of these measures over

people and frames. We show qualitative results of our method in Figure 6.6.

Video results are also available on http://www.di.ens.fr/willow/research/

instancelevel/.

Comprehensive analysis. We first analyze each component of our method in Ta-

ble 6.1. It is interesting to note that similar results are achieved when removing tem-

poral edges from the graph (No temporal smoothness), or when processing frames

one by one (Single frames). Experiments on single frames have a higher recall,

while segmenting all frames at once without temporal smoothness produces higher

precision, showing the influence of the discriminative term when it has access to the

whole video context. Results obtained using the Grouping term only are quite good,

whereas using the Discriminative term only has a lower performance since it only

models foreground vs. background segmentation without any spatial or temporal

consistency. Still, combining the two terms (Ours) leads to the best performance as

the discriminative term helps to improve precision. Performance is pushed even fur-

ther when the discriminative term contains strong semantic cues (Ours + semantic

cue). The non-convex refinement from Section 6.3.3 used in Full method produces

significantly better performance than using Convex only optimization. As discussed

in [Bach and Harchaoui, 2007; Bojanowski et al., 2013], using No constraint leads

to trivial solutions and very poor results. Last, even without disparity features (No

disparity), which are strong cues, our method produces decent results.

Baselines comparison. Quantitative and qualitative comparisons between our

method and baselines are shown in Table 6.2 and Figure 6.7.

The motion segmentation baselines Multi-modal motion segm. and FB/BG motion

segm. perform poorly on this challenging dataset. Both methods completely miss

non-moving and almost non-moving people by nature. Multi-modal motion segm.
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Fig. 6.6: Qualitative results of our method. Note that most of the visually unpleasant arti-
facts are due to the use of superpixels.
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(a) Ours (b) CRF as RNN

(c) FB/BG motion segm. (d) Pose & segm.

(e) SDS (f) Multi-modal motion segm.

Fig. 6.7: Qualitative comparison between our method and the five baselines. Note that
Pose & segm. may drop detections if the pose estimator fails, and that SDS is
producing both detection and segmentation, so it uses its own set of detections.
See Section 6.4.3 for comments.

also tends to separate the different limbs of a single person into multiple seg-

ments.

The SDS method performs fairly well. Its detection performance is better than the

automatic detector we used (on some key sequences SDS detects twice more people

than our detector), but it still misses a significant part of person instances. For

instance, it misses most heavily occluded persons. The other main downside is that

the method mostly provides upper body segmentations (due to either the region

proposals or the classifier itself which has been trained on a mix of face, upper body

and full body examples), in spite of the refinement procedure which is applied at

the end of their method and is meant to provide more complete segmentations.

The CRF as RNN method is the best performing baseline. It produces a clean figure-

ground segmentation for a given object class. When people are separated in the
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Tab. 6.2: Quantitative performance comparison of our method with 5 baselines. Please
note that the results from Ground truth tracks, Automatic tracks and SDS detec-

tions sections are not comparable as they use different sets of detections. We also
report the upperbound of performance which can be achieved given the fact that
we use superpixels. See Section 6.4.3 for comments.

Method F1 Precision Recall Overlap

Ground truth tracks:
Ours 78.3% 80.8% 77.3% 66.0%
Ours (+ semantic cue) 80.1% 81.9% 79.6% 68.6%

CRF as RNN [Zheng et al., 2015] 78.5% 83.2% 77.7% 66.5%
Pose & segm. [Seguin et al., 2015] (Ch. 5) 68.5% 68.3% 76.1% 55.0%
Multi-modal motion segm. [Ochs et al., 2014] 27.4% 41.0% 30.4% 19.4%
FB/BG motion segm. [Papazoglou and Ferrari, 2013] 52.2% 65.1% 49.8% 38.8%

Automatic tracks:
Ours 63.6% 61.6% 68.6% 52.0%
CRF as RNN [Zheng et al., 2015] 56.2% 58.2% 54.9% 46.5%
Pose & segm. [Seguin et al., 2015] (Ch. 5) 52.7% 57.2% 59.5% 40.8%
Multi-modal motion segm. [Ochs et al., 2014] 27.4% 40.6% 30.4% 19.4%
FB/BG motion segm. [Papazoglou and Ferrari, 2013] 48.4% 57.6% 50.7% 34.9%

SDS detections:

SDS [Hariharan et al., 2014] 65.1% 73.5% 62.8% 52.6%

Upperbound:

Superpixels 94.7% 95.4% 94.1% 90.0%

image, our relabelling procedure inherently produces good instance-level segmen-

tation results. However, when the person instances are close by or overlap, our

method often outperforms the baseline. Our method, which uses only generic fea-

tures (color, motion, SIFT) and ad-hoc constraints, still performs as well as this

strong baseline. It successfully segments each object instance with only coarse

localization cues (encoded in the constraints) and without training a pixel-level

appearance model for the segmentation as does the baseline. In addition, when in-

cluding semantic features in the discriminative term (extracted from the baseline),

the performance of our method exceeds the one of the baseline.

Pose & segm., which uses instance-specific pose masks, performs significantly worse

than the method proposed here, as it makes strong assumptions about the pose or

disparity priors. For instance, it can not recover from errors from the pose estima-

tor. In comparison, our constraints only restrict the space of possible segmentations.

They can even be violated in situations which do not satisfy the implicit priors they

are enforcing. However, they are strong enough to successfully guide the segmen-

tation even for complicated poses, crowded scenes and cluttered backgrounds.

6.4 Experiments on multiple person segmentation under weak constraints 125



Per-video quantitative results

We provide per-video performance comparison with the baselines in Figure 6.8 and

qualitative results of our method in Figure 6.9. As Figure 6.8 shows, our method

handles most situations well, especially crowded scenes (videos 1, 2, 17, 18), al-

though our method does not use a pre-trained person appearance model, as op-

posed to the CRF as RNN baseline. The two videos where our method performs less

good compared to strongly-supervised baselines are #13 and #10. In #13 one per-

son violates our assumption that most of the body pixels should be located under

person’s head. In #10 the body bounding box derived from the person head box is

too small and our constraints are too weak to get a high recall.

Running times Our optimization procedure takes about 6 hours on a video of 200

frames with about 2000 superpixels per frame and 4 labels (3 object tracks plus

the background). A better superpixels algorithm would allow having much less

superpixels and heavily speeding up the optimization procedure. Comparatively,

the method of [Seguin et al., 2015] (Ch. 5) can only process blocks of 40 frames at

a time at a resolution of 960x540, and takes a total of 15 hours to process the same

total amount of frames.

6.4.4 Correlation between cost and performance

One important matter with segmentation algorithms is that they typically optimize

a cost which is not directly related to segmentation performance. We therefore

studied the correlation between our cost function and segmentation performance.

Figure 6.10 depicts that, in most cases, lowering duality gap (which is the best

optimization certificate we have when using the Frank-Wolfe algorithm) leads to a

higher segmentation performance.

6.5 Incorporating pose cues in a weak manner for

multiple person segmentation

The model proposed in Chapter 5 introduced instance-specific person pose masks,

derived from pose estimates. While these strong pixel-wise cues could lead to seg-

mentation mistakes when the estimated pose was incorrect, our framework can

easily leverage them as weaker cues, by weighing the contribution of each pixel to

the track constraint by the likelihood of this pixel to contain a pose.
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Fig. 6.8: Per-video quantitative results of our instance-level segmentation method on the
Inria 3DMovie Dataset v2 (Section 4.2.2).
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Fig. 6.9: Per-video qualitative results of our method (Ours)
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Fig. 6.10: Evaluation of F1 score variation (y axis) w.r.t. duality gap (x axis). Each line
corresponds to the convex optimization procedure for one of the 20 clips of the
multi-person segmentation experiments. In most cases, the lower the duality
gap is, the higher the segmentation performance is.

Using the articulated pose masks and notations from Section 5.3.3, we denote by

ψp(Θ, i) the likelihood for a pixel i to belong to a person associated to a pose Θ.

In the case of multi-person segmentation, for a given person k ∈ {1, . . . ,K} with

associated pose Θk in a frame, we denote by ω the vector which n-th entry contains

the average of ψp(Θk, ·) over the pixels of the n-th superpixel. We translate and

rescale ω into ω̃ so that its entries are are between 0 and 1:

ω̃i =
ωi −minω

maxω −minω
(6.11)

and then compute Ω, which encodes the trade-off between the pose prior and uni-

form prior over the entire bounding box:

Ω = ζ IN + (1− ζ)Diag(ω̃). (6.12)

with ζ a weight controlling the influence of the pose prior. We can then adapt

the track constraints to incorporate this information by adjusting the form of the

corresponding inequality constraints defined in Equation 6.6:

0 ≥ σ

(

1

1
T
R Ω s

1
T
R Ω Diag(s) y ek − ρ

)

− ξc. (6.13)

By properly adjusting the influence of the pose on the contribution of each super-

pixel to the linear constraint through the weight ζ, we can both benefit from a

128 Chapter 6 Multiple person segmentation under weak constraints



strong class-specific and instance-specific cue and avoid mistakes. Figure 6.11 illus-

trates the contribution of each superpixel to the constraint for various ζ values.

(a) Pose mask (b) ζ = 0 (c) ζ = 0.5 (d) ζ = 1

Fig. 6.11: Influence of pose masks (a) on track constraints for various ζ values. When not
using the pose masks (ζ = 0), the contribution of each superpixel is solely based
on the size of the superpixel (b). When incorporating pose cues, the superpixels
inside the pose mask contribute more to the linear constraint than the ones
outside (c) up to a point where only the ones inside have a contribution (d).
The colormap used is the standard "jet" colormap, where low values are drawn
in blue and high values are drawn in red.

To evaluate this approach, we ran the modified method with various ζ parameters,

and report the variation of the performance measures according to ζ in Figure 6.12,

as well as a qualitative comparison between results of the pose-agnostic method

(corresponding to ζ = 0) and the modified method with the best ζ (ζ = 0.1),

ζ = 0.5 and ζ = 1 in Figure 6.13.

Overall, weighting the constraints using pose masks helps the precision of our

method, but quickly becomes harmful to the recall of our method as ζ increases.

The best quantitative trade-off is found at ζ = 0.1, where the pose cues help reduc-

ing leaks but are not strong enough yet to mislead the method when the estimated

pose is wrong. Qualitatively though, results are more visually pleasing at ζ = 0.5,

where most obvious leaks are avoided (such as leaks between legs, see columns 2

and 3 of Figure 6.13).

In terms of flexibility, we note that we can vary ζ between 0 and 0.5 and obtain

stable F1 and overlap scores. However, precision increases as ζ increases, while

recall decreases. We can thus explicitly choose where we set the trade-off between

precision and recall at constant F1 performance by varying the contribution of pose

information to weighting of our track constraints.
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Fig. 6.12: Quantitative evaluation of the influence of weighting the constraints based on
pose masks.

6.6 Handling of other object classes

The major strength of our method is that it is mostly agnostic to the underlying ob-

ject class. We provide the method with a single floating point parameter specifying

which amount of each bounding box is expected to belong to the object. With this

single parameter, the video input and the corresponding bounding box tracks, our

method is able to properly segment the object instance from the background of the

video and from the other object instances. To the best of our knowledge, there is no

proper complete dataset for instance-level segmentation in videos for the moment.

To show that our method can handle non-person object classes, we ran it on two

videos with multiple object instances from the popular SegTrack v2 dataset [Li et

al., 2013]. We show two sample frames in Figure 6.14. In this section, we adapt

our method to the segmentation propagation task and run it on the whole SegTrack

dataset [Tsai et al., 2010] using a single set of hyperparameters. We show that

our method is also able to handle a variety of object classes and situations without

changing the hyperparameters for this task.
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(a) Input frame

(b) ζ = 0

(c) ζ = 0.1

(d) ζ = 0.5

(e) ζ = 1

Fig. 6.13: Qualitative evaluation of the influence of weighting the constraints based on
pose masks. Pose masks help reducing leaking by providing stronger anchors,
however they also reduce the flexibility of the method and tend to lower the
achieved recall.

Fig. 6.14: Results of our method applied to two multi-instance videos from SegTrack v2 [Li
et al., 2013].

Segmentation propagation

We evaluate the performance of our approach for segmentation propagation on

the SegTrack dataset [Tsai et al., 2010]7. In this setup, we are given a video and

ground-truth segmentation for the first frame of the video, which we incorporate as

ground-truth supervision constraints (Sec. 6.2.4). In addition, we derive a bounding

box for each object using its segmentation label in the first frame. We then use

7
http://cpl.cc.gatech.edu/projects/SegTrack/
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an off-the-shelf tracker [Danelljan et al., 2014]8 to track the object bounding box

through the clip. We incorporate this information in our model as track constraints.

We also evaluate our model with manually annotated ground-truth bounding boxes

to get an upper bound if tracking was perfect. We then segment all the clips using

the same set of hyperparameters.

Evaluation protocol. The standard metric used for evaluation on this dataset is

the mean pixel error (MPE), which is the average number of erroneous pixels (false

positives or false negatives) for each object instance for each frame.

Baselines. We compare our approach with two other methods: the first one is

the full segmentation method of [Fathi et al., 2011] which does not use the initial

ground-truth segmentation for the first frame. Instead, it iteratively segments the

video by learning appearance models from the most reliably segmented frame at

the current iteration, using a measure of uncertainty. The second baseline is the

segmentation propagation method of [Jain and Grauman, 2014], which uses both

binary potentials and higher-order potentials based on supervoxels to propagate the

segmentation.

Results. A quantitative comparison is provided in Table 6.3. Qualitative results

are shown in Figure 6.15 and on the project website9. Our method achieves state-

of-the-art performance using given ground-truth bounding box tracks, and com-

petitive performance using automatically computed tracks, compared to [Fathi et

al., 2011] and [Jain and Grauman, 2014]. When motion is slow, such as for the

penguin sequence, or when there is little deformation, as for the birdfall sequence,

pure propagation without extra supervision produces satisfactory results. In other

situations, accurate object localization is essential for our method to provide good

segmentation. For instance, in sequences with fast movement and heavy deforma-

tion (cheetah, monkeydog), automatic tracks fail and the other constraints are too

weak to propagate boundary-accurate segmentations. Note that we use the same

set of parameters for all sequences, which indicates a good generalization of our

method over different object classes, while most methods used on this dataset usu-

ally use a different set of parameter for each video to handle the different types of

situations (e.g.fast vs. slow movement).

8
https://github.com/gnebehay/DSST

9http://www.di.ens.fr/willow/research/instancelevel
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Tab. 6.3: Segmentation results on the SegTrack dataset [Tsai et al., 2010]. The metric is
mean pixel error (lower is better). We report result for three variants of our
method, as well as for two state-of-the-art methods [Fathi et al., 2011; Jain and
Grauman, 2014]. We test our framework with just the segmentation propagation
constraints (column No BB) and when adding object tracks, either automatic (BB

tracks) or ground-truth (GT BBs). In each row we highlight the best result (in
green), the 2nd best (in yellow) and the 3rd best (in blue).

Clip No BB BB tracks GT BBs [Jain and Grauman, 2014] [Fathi et al., 2011]

birdfall 221 169 168 189 342
cheetah 2196 1305 724 1170 711

girl 2733 1606 1602 2883 1206

monkeydog 2405 1021 658 333 598

parachute 305 251 278 228 251

penguin 787 848 830 443 1367

Legend: Best 2nd best 3rd best

Fig. 6.15: Results on the SegTrack dataset [Tsai et al., 2010], using automatic object tracks
(top) or ground-truth tracks (bottom). In the first example of the top row, we
notice minor leaking above the objects, as the discriminative model struggles to
differentiate them from the rest of the herd. The other results on this row are
visually excellent. When using ground-truth tracks, the fast moving cheetah and
antelope on the left are mostly recovered. On the right, segmentation is very
good for the monkey (in red), while the dog (in green), being of the same color
as the road, is mostly missed. Note that these pair of animals are from different
species, so we learn a background vs. animal model.

6.7 Discussion

We have presented a flexible and effective framework for multi-instance object seg-

mentation. We have demonstrated its experimental performance on a challenging

dataset, showing that constraining the space of segmentations is a robust way to

incorporate object tracks information.

6.7 Discussion 133





7Conclusion and perspectives

In this chapter, we summarize the contributions of this thesis and discuss avenues

for future research.

7.1 Contributions

We have shown that 3D movies can be successfully exploited for person analysis,

and that it was possible to exploit the relative ease of certain tasks in 3D movies,

such as person detection, to train better models for standard color data. We have

also visited the problem of segmenting multiple object instances, possibly of the

same object class, and in particular multiple persons, in videos. We have inves-

tigated two different approaches, either with strong semantic cues or with weak

localization cues.

In this thesis:

• We have studied how to extract disparity maps from the uncalibrated, un-

rectified pairs of stereoscopic streams provided by 3D movies in Chapter 4.

After investigating standard stereovision techniques, we resorted to using op-

tical flow methods that can match pixels of the two views in challenging non-

calibrated and non-rectified situations.

• In Section 4.3, we have studied how using disparity cues could improve meth-

ods based on deformable part models for person detection and pose estima-

tion. We have shown that person detection models that jointly consider ap-

pearance and disparity significantly outperformed models which only consider

appearance. For pose estimation, we have shown a similar trend, albeit with

a smaller improvement.

• The person detector trained jointly on appearance and disparity cues features

an interesting high-precision mode. In Section 4.4, we have leveraged this

property to perform a depth-supervised training of a person detector for stan-

dard color movies. We harvest detections using the joint appearance and

disparity-based detector in a high-precision mode, filter out the ones which

were already well detected by an initial appearance-based detector, and train

an improved appearance-based detector using the collected examples.
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• In Chapter 5, we have proposed a method to segment multiple persons in

3D videos using a CRF which encodes disparity cues, pose estimates as well

as classical color and motion cues. Using pixel-wise annotations for a subset

of our training set for pose estimation, we learn soft segmentation masks for

each part mixture of the pose estimation model. Using these masks, we are

able to produce soft segmentation outputs which are pose-specific. We then

analyze the disparity maps to build a model of each person in the disparity

space, from which we derive a likelihood map for each person, which we

combine with the corresponding pose-specific mask. We then reason about

inter-person occlusions to produce maps which are used as the unary terms

of the CRF model. The binary terms are derived from classical smoothness

priors based on color and motion information in space and time.

• In Chapter 6, we have proposed an algorithm to segment multiple object in-

stances, and in particular multiple persons, in videos with given object tracks.

We formulate this problem as a convex optimization one over the space of

segmentations, with a quadratic objective function combining a discrimina-

tive term to encourage a long-term coherence and a spectral clustering term

to ensure local space-time consistency. We cast the object bounding boxes as

linear constraints which efficiently guide the optimization of the segmentation

problem in a weak manner, by shaping the space of admissible segmentations.

• To properly train our models and evaluate our work, we have collected two

new datasets for person detection, pose estimation and multi-person segmen-

tation in 3D movies. These datasets contain a total of 1158 annotated person

bounding boxes, 587 annotated poses and 1318 person segmentation masks.

In particular, the multi-person segmentation part of our datasets provides the

segmentation mask of each person in a given frame, which makes it valuable

for instance-level segmentation experiments.

7.2 Perspectives

In this section, we discuss possible directions for future research. In Section 7.2.1,

we propose several avenues of research to extend our work on person detection and

human pose estimation from Chapter 4. Section 7.2.2 lists two possible improve-

ments for our multi-person segmentation method using pose cues from Chapter 5.

Last, we propose two technical improvements and two future directions for the

multi-instance segmentation method of Chapter 6 in Section 7.2.3.
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7.2.1 Person detection and pose estimation

Iterated training for the depth-supervised person-detector. The depth-supervised

training procedure for person detectors proposed in Section 4.4 is currently com-

posed of four steps:

1. training the initial detectors from the manually labelled dataset,

2. harvesting examples using the joint appearance and disparity detector,

3. filtering the harvested examples to retain the ones which were not detected

by the appearance-based detector

4. retraining the appearance-based detector with the collected examples.

A downside of this method is that among the examples we collect, many could be

redundant, which means the final training set may be much bigger than necessary,

unnecessarily increasing the subsequent training time. To overcome this, an iterated

training scheme could be adopted, where the appearance-based detector would

be retrained regularly during the filtering step to incorporate the new examples

which have already been selected. It would then reduce the number of redundant

examples selected while filtering the remainder of the set of harvested examples. An

alternative approach would be the one of self-paced learning [Kumar et al., 2010],

where increasingly large subsets of the training set are presented to the learning

procedure based on a notion of easiness of each example. For instance, this notion

of easiness could be derived from both the score of the initial or current appearance-

based detector and of the score of the initial detector trained jointly on appearance

and disparity. The first examples presented to the learning procedure could be the

ones which have the lowest initial appearance-based score, to start with the hardest

examples, or the other way around to strictly follow the typical self-paced learning

intuition. This approach would allow the algorithm to progressively incorporate the

harvested examples.

Appearance models based on convolutional neural networks. The person detec-

tion and pose estimation experiments we have performed are based on deformable

part models. Since then, convolutional neural networks have shown excellent per-

formances on these tasks. For instance, the Faster R-CNN method [Ren et al., 2015]

is an efficient and powerful object detection method. Networks as the one of [Chen

and Yuille, 2014a] can also be trained to learn part detectors and spatial relation-

ships between parts, which can then be used in a graphical model to perform hu-

man pose estimation. These methods could be adapted to use additional disparity

cues, which could lead to interesting performance improvements. In particular, our

depth-supervised training pipeline could be very relevant, as it can produce a very
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large number of high quality training samples which could feed the data-hungry

training procedures of very deep neural networks.

Training from synthetic data. During this PhD, we have also studied (results not

shown in the thesis) the use of synthetic (computer-generated) data for pose es-

timation, as synthetic data provides a potentially unlimited number of examples.

Using motion-capture datasets such as the CMU Mocap Dataset1 and the Human

3.6M dataset [Ionescu et al., 2014] and softwares such as Blender or Autodesk Mo-

tionBuilder, we have rendered millions of synthetic stereo pairs and depth ground

truth for a varied set of poses, viewpoints and characters. We have tried to exploit

this very large set of synthetic examples using multiple approaches: training de-

formable part models, learning classification neural networks, learning regression

neural networks. We have investigated the various channels of information at hand,

illustrated in Figure 7.1: ground truth depth, estimated disparity between the stereo

pairs, estimated motion field, synthetic color images.

However, so far, we have only observed limited improvements, especially when

it comes to transferring to non-synthetic data. We believe the estimated disparity

data from real 3D movies may not be detailed enough to be able to recover fine pose

information, which may be overcome by improving disparity estimation. Next, our

synthesis procedure could be improved by adding more clothing and background

scene variations and by rendering scenes with multiple persons interacting and

occluding each other, as inter-person occlusions are a typical challenge of realistic

scenarios and in particular of the dataset we used for evaluating this task on non-

synthetic data.

7.2.2 Multi-person segmentation with pose cues

Principled optimization of the multi-person layering model. In Chapter 5, the

choice of ordering of the persons in each frame based on the selection of disparity

parameters is performed using a brute force search over a limited set of possible

disparity parameters. To further improve the quality of this component, the dis-

parity parameters could be selected using a more principled optimization method

which could also search over entire intervals of disparity parameters. This may look

hard at first sight, given that the disparity parameters are also involved in the oc-

clusion model, but could be done by first enumerating the set of possible ordering,

optimizing the possible disparity parameters for each ordering and then taking the

global optimum over all orderings. This would lead to a finer selection of disparity

parameters, which in turn could yield segmentation performance improvements.

1http://mocap.cs.cmu.edu/
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(a) Synthetic RGB (b) Estimated motion

(c) Synthetic depth (d) Estimated disparity

Fig. 7.1: Example of synthesized upper body pose example. Stereoscopic pairs of se-
quences of synthetic RGB frames (a) are generated using Blender, as well as a
sequence of depth ground truth (c). Motion (b) is estimated from one frame of
the left view to the next, while disparity (d) is estimated from a stereoscopic pair.
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Joint optimization of poses and segmentation. While our formulation from Equa-

tion 5.2 is posed as a joint optimization on the space of poses and the space of

segmentations, we currently first select the best poses and then optimize the seg-

mentation, as shown in Equation 5.3. Given a set of candidate poses for each person

detection, the segmentation we obtain could be used to select a better set of poses,

which in turn may lead to a better segmentation. Such an alternated optimization

scheme could be explored to perform the joint optimization of the initial problem

of Equation 5.2.

7.2.3 Multiple-instance segmentation under weak constraints

Speed-up optimization by working with supervoxels. The multi-instance segmen-

tation method designed in Chapter 6 has been designed to work on tracked super-

pixels. With minor changes, the framework we proposed could be adapted to work

with supervoxels, which could lead to large speedups. Indeed, on average on the

Inria 3D Movie v2 dataset, there are about 20 times less supervoxels than super-

pixels on average, and up to 100 times less on some sequences. Optimizing on

supervoxels could thus lead to significant speedups.

Qualitative improvements by using other superpixel methods. Similarly, using

other superpixel methods which feature a stronger capability to stick to the im-

age edges such as SLIC superpixels [Achanta et al., 2012] could lead to cleaner

results.

Multiple object classes. Adapting this method to handle multiple instances of mul-

tiple object classes in a single sequence would be a straightforward but valuable

improvement to the method.

Part segmentation. However, we believe the most interesting next step would be

to adapt our method to perform per-part segmentation of multiple people. Instead

of having a single label per person, multiple labels would map to the different

limbs of the person, and multiple linear constraints would be added to guide the

optimization, such as one area constraint per limb, or constraints which encode the

expected neighborhood of the different limbs.
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Résumé
Les humains sont au coeur de nombreux problèmes de

vision par ordinateur, tels que les systèmes de surveil-

lance ou les voitures sans pilote. Ils sont également au

centre de la plupart des contenus visuels, pouvant amener

à des jeux de données très larges pour l’entraînement de

modèles et d’algorithmes. Par ailleurs, si les données

stéréoscopiques font l’objet d’études depuis longtemps,

ce n’est que récemment que les films 3D sont devenus

un succès commercial.

Dans cette thèse, nous étudions comment exploiter les

données additionnelles issues des films 3D pour les tâches

d’analyse des personnes. Nous explorons tout d’abord

comment extraire une notion de profondeur à partir des

films stéréoscopiques, sous la forme de cartes de dis-

parité. Nous évaluons ensuite à quel point les méthodes

de détection de personne et d’estimation de posture peu-

vent bénéficier de ces informations supplémentaires. En

s’appuyant sur la relative facilité de la tâche de détection

de personne dans les films 3D, nous développons une

méthode pour collecter automatiquement des exemples

de personnes dans les films 3D afin d’entraîner un dé-

tecteur de personne pour les films non 3D.

Nous nous concentrons ensuite sur la segmentation de

plusieurs personnes dans les vidéos. Nous proposons

tout d’abord une méthode pour segmenter plusieurs per-

sonnes dans les films 3D en combinant des informations

dérivées des cartes de profondeur avec des informations

dérivées d’estimations de posture. Nous formulons ce

problème comme un problème d’étiquetage de graphe

multi-étiquettes, et notre méthode intègre un modèle des

occlusions pour produire une segmentation multi-instance

par plan. Après avoir montré l’efficacité et les limitations

de cette méthode, nous proposons un second modèle,

qui ne repose lui que sur des détections de personne

à travers la vidéo, et pas sur des estimations de pos-

ture. Nous formulons ce problème comme la minimi-

sation d’un coût quadratique sous contraintes linéaires.

Ces contraintes encodent les informations de localisation

fournies par les détections de personne. Cette méthode

ne nécessite pas d’information de posture ou des cartes

de disparité, mais peut facilement intégrer ces signaux

supplémentaires. Elle peut également être utilisée pour

d’autres classes d’objets. Nous évaluons tous ces as-

pects et démontrons la performance de cette nouvelle

méthode.

Mots Clés
vision par ordinateur, films 3D, détection de personne,

estimation de pose, segmentation vidéo, segmentation

multi-instance

Abstract
People are at the center of many computer vision tasks,

such as surveillance systems or self-driving cars. They

are also at the center of most visual contents, potentially

providing very large datasets for training models and al-

gorithms. While stereoscopic data has been studied for

long, it is only recently that feature-length stereoscopic

("3D") movies became widely available.

In this thesis, we study how we can exploit the additional

information provided by 3D movies for person analysis.

We first explore how to extract a notion of depth from

stereo movies in the form of disparity maps. We then

evaluate how person detection and human pose estima-

tion methods perform on such data. Leveraging the rela-

tive ease of the person detection task in 3D movies, we

develop a method to automatically harvest examples of

persons in 3D movies and train a person detector for stan-

dard color movies.

We then focus on the task of segmenting multiple people

in videos. We first propose a method to segment multi-

ple people in 3D videos by combining cues derived from

pose estimates with ones derived from disparity maps.

We formulate the segmentation problem as a multi-label

Conditional Random Field problem, and our method in-

tegrates an occlusion model to produce a layered, multi-

instance segmentation. After showing the effectiveness

of this approach as well as its limitations, we propose a

second model which only relies on tracks of person de-

tections and not on pose estimates. We formulate our

problem as a convex optimization one, with the minimiza-

tion of a quadratic cost under linear equality or inequality

constraints. These constraints weakly encode the local-

ization information provided by person detections. This

method does not explicitly require pose estimates or dis-

parity maps but can integrate these additional cues. Our

method can also be used for segmenting instances of

other object classes from videos. We evaluate all these

aspects and demonstrate the superior performance of

this new method.

Keywords
computer vision, 3D movies, person detection, pose es-

timation, video segmentation, instance-level segmenta-

tion
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