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INTRODUCTION 

 

For millennia, storing and transmitting information have played a great role in 

Man’s life. After ages of oral transmission, the appearance of Writing gave us the 

ability to store some of the information in a more reliable way on an external support 

such as a book. In the last century, the advent of the electronics era has seen the 

quantity of the stored information exploding. 

Magnetism is a phenomenon that has always fascinated men. It is difficult to date 

precisely the first use of magnetism but some documents seem to place the discovery 

of the compass in the 11th century, in China. It is however only in the 19th century that 

a better understanding and mastering of magnetism appeared thanks to the 

numerous advances made in the field of the electromagnetism. 

One of the first ways to store information thanks to magnetism was the creation 

the magnetic tape in 1928. The data were stored in iron oxide particles deposited on a 

flexible substrate. This technology enabled to record audio and video data but was 

also used in the first computers. It was quickly replaced a few years later in the 1950s 

by the Hard Disk Drive technology that provides faster reading of the information. A 

lot of research has been performed on these devices, in particular to increase the 

storage capacities. Nowadays, the hard disk drives can reach densities of a few 

Tbit/in2. 

More recently, the discoveries in terms of spin transport in ferromagnetic 

materials gave rise to a new kind of discipline: the spintronics (also known as spin-

electronics). The main idea is to add the spin information of the electron to the 

conventional charge displacement used in standard electronics so as to create new 

functionalities. This field was particularly boosted by the discovery of the Giant 

MagnetoResistance (GMR) in the late 1980s by A. Fert [Bai-88] and P. Grünberg 

[Bin-89] who received the Nobel Prize of Physics in 2007 for their work. This effect 

was quickly used to advantageously enhance the performances of the read heads in 

the Hard Disk Drives [Die-91]. A few years later, another spin-related phenomenon 

started to appear interesting in the field of memory applications: the Tunnel 

Magnetoresistance (TMR). It relies on the relative orientation of the magnetizations 

of two magnetic layers separated by an insulating layer. Such a stack is known as a 

Magnetic Tunnel Junction and constitutes the basic component of Magnetic Random 

Access Memories (MRAM). This technologyfurther developed with the discovery of 

Spin Transfer Torque (STT) switching thanks to the theories developed by J. C. 

Slonczewski [Slo-96] and L. Berger [Ber-96]. 

As predicted by the Moore’s law, the number of components on a chip has been 

increasing exponentially in the last decades. Even if this tendency is starting to slow 

down recently, there are still a lot of developments towards downsize scalability. In 
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that matter, MRAM and in particular STT-MRAM that have been proved to be 

particularly competitive among the emerging non-volatile memory technologies. It 

was indeed identified, along with redox RRAM, by the International Technology 

Roadmap for Semiconductors (ITRS, [Itr-10]) as the emerging technologies that 

could scale down to the 16 nm nod and beyond. Besides, MRAM is also seen as a 

possible candidate to build a new universal memory that would have the ability of 

replacing DRAM (known for its high speed, low power, good endurance and 

reliability) and Flash memory with its large capacity and non-volatility. A comparison 

between the Flash, Ferroelectric RAM (another emerging technology), MRAM and 

STT-RAM is given in Table 1. 

          
Flash-
NAND 

FeRAM MRAM 
STT-

MRAM 

Storage capacity > 1 Gb > 10 Mb 16 Mb 1 Gb 

Write time 1 ms 10 ns 20 ns 3-10 ns 

Read time 50 ns 45 ns 10 ns 10 ns 

Write energy 
(pJ/bit) 

> 0.01 0.03 70 0.1 

      Table 1: Comparison between different non-volatile memory technologies [Hu-11]. 

 

In this context, SPINTEC was founded in 2002 to combine both fundamental and 

applied research in the field of spintronics. This thesis has been realized in the 

MRAM team, with the idea of continuing the materials developments of magnetic 

tunnel junctions with perpendicular anisotropy. Indeed, this property of the magnetic 

materials that is characterized by an out-of-plane orientation of the magnetization 

has been found to be particularly interesting for practical applications. Compared to 

the previously in-plane magnetized structures, perpendicular anisotropy gives the 

possibility to reduce the size of the devices, which improves the storage density. 

Besides, this type of anisotropy should provide larger thermal stability to the memory 

elements. Moreover, the STT efficiency of such structures is known to be particularly 

good with perpendicularly magnetized materials. 

The objective of this thesis is to enhance the magnetic and transport properties of 

perpendicular magnetic tunnel junctions by carefully adapting the different parts of 

the magnetic stack to the required functionality. This can only be achieved through a 

good mastering of the deposition tool and of the different materials involved. In a 

first Chapter, we will recall the origin of perpendicular anisotropy and the different 

concepts that have accompanied the developments of MRAM, in particular in the case 

of perpendicular systems. We will also present the different experimental procedures 

that have been used during this thesis regarding samples preparation and 

characterization. In the second Chapter, we will see how a standard magnetic tunnel 

junction with a bottom Co/Pt-based reference can be optimized by tuning the 

different thicknesses that compose the structure. We will show that both magnetic 

and transport properties are related and that some compromises have to be done. 
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The third Chapter will show that even more complex structures can be build such as 

double magnetic tunnel junctions with perpendicular anisotropy. We will start by 

inserting a second MgO layer as a capping and after developing a top reference layer, 

we will show the realization of full double structures. In the fourth Chapter, we will 

focus on the development of FeCoB-based synthetic antiferromagnetic layers 

comprising various spacers. We will see that these systems can play different roles in 

a double junction but can also be made stable enough to be used as reference layers in 

single Pt- or Pd-free junctions. Finally, the fifth Chapter will present the 

nanofabrication process and some of the results obtained by electrical testing of 

patterned junctions. 
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Perpendicular magnetic anisotropy is a phenomenon that has been known for 

many years, in particular in the field of Hard Disk Drive. However, the interest for 

such a property has been growing dramatically recently due to the development of the 

MagnetoResistive Random Access Memories (MRAM). 

As we will see, this effect can have several origins that are mostly material 

dependent. A large breakthrough was made with the discovery of perpendicular 

anisotropy at metal/oxide interface as it enables building magnetic tunnel junctions 

(MTJs) with perpendicularly magnetized electrodes.  

In this Chapter, we will see how perpendicular magnetic anisotropy is defined and 

where it originates from. We will describe how the developments of MRAM followed 

the advances of spintronics and which materials developments have been necessary 

to achieve perpendicular magnetic tunnel junctions. This type of junctions was found 

particularly promising for Spin Transfer Torque MRAM applications and we will 

explain what compromises must be made to ensure low power consumption as well 

as long lasting data retention. Finally we will describe our experimental procedures 

regarding materials deposition, properties characterization and annealing conditions. 
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I-1. Origin of perpendicular magnetic anisotropy 

 

Magnetic materials may present preferential orientations for their magnetization. 

This effect is defined as the magnetic anisotropy. The preferred axis is known as easy 

axis of magnetization. The effective magnetic anisotropy is characterized by a 

constant Keff, which accounts for a volume energy. The total energy of a system then is 

given by E=-Keffcos2(), where  is the angle between the magnetization and the 

anisotropy axis. 

I-1.1 Definition of the magnetic anisotropy 

 

The magnetic anisotropy consists of different contributions: 

- The magnetocrystalline anisotropy: it originates from the organization of the 

atoms in the crystal lattice and induces a favored crystallographic direction for 

the magnetization. This effect is due to the electrostatic interactions between 

atoms by spin-orbit coupling. 

- The magnetoelastic anisotropy: stresses in the material may modify the easy 

axis of magnetization by changing the magnetocrystalline anisotropy. In thin 

films, such stresses can appear because of lattice mismatch or a difference in 

thermal expansion coefficients. 

- The shape anisotropy: it is due to the existence of a demagnetizing field 

originating from dipolar interactions. This contribution tends to align the 

magnetization along the largest dimension of the sample, that is to say in-

plane in the case of magnetic thin films. 

- The surface anisotropy: it appears because of the change of environment 

encountered by the atoms at the interfaces and may induce interactions 

between different materials. Surface roughness is particularly important as it 

can generate local demagnetizing fields that reduce shape anisotropy. This 

contribution is essential for perpendicular anisotropy, as we will see in the 

following. 

The effective anisotropy is described by the anisotropy constant Keff which is 

defined as follows: 𝐾𝑒𝑓𝑓 = 𝐾𝑣 − 2𝜋𝑀𝑠
2 +

2𝐾𝑠

𝑡
, where Kv is the volume contribution 

(magnetocristalline and magnetoelastic anisotropies), -2Ms2 is the demagnetizing 

field, Ks the surface contribution and t the magnetic thickness.  

As we will see in the following, perpendicular anisotropy can have bulk and 

interfacial contributions. 
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I-1.2 Perpendicular anisotropy originating from spin-orbit 

interactions 

 

One of the prevailing effects in magnetic anisotropy is the spin-orbit interaction. 

This interaction links the spin of an electron with its orbital motion and is then 

particularly influenced by the lattice arrangement in the material. Commonly, large 

spin-orbit coupling is observed in heavy materials such as Pt, Au, Ta, rare earths… 

This is why, during the development of perpendicularly magnetized media for 

Hard Disk Drive (HDD), alloys such as CoPtCr or L10 ordered FePd [Geh-97] were 

found particularly interesting. In those cases, perpendicular anisotropy originates 

from the large spin-orbit coupling of Pt or Pd associated with reduced crystal 

symmetry, both resulting in a strong magnetocrystalline anisotropy. Perpendicular 

anisotropy has in that case a bulk origin. 

As magnetic films get thinner, interfacial properties become more and more 

important and reinforce the part played by surface anisotropy. This effect has already 

been predicted in 1954 by L. Néel [Née-54] and was attributed to a change in the 

symmetry at the interfaces. This is particularly the case in multilayers such as (Co/Pt) 

or (Co/Pd). These systems take benefit both from the large spin-orbit coupling of the 

Pt or Pd elements and the interfacial effects at the ferromagnetic material/heavy 

metal interfaces. The anisotropy can have several sources. Indeed, strains due to 

lattice mismatch between neighboring elements may introduce magnetostriction 

effects [Joh-95]. Besides, perpendicular anisotropy can also arise from electron 

hybridization at the interface [Daa-94]. 

 

I-1.3 Perpendicular anisotropy at metal/oxide interface 

 

More recently, another form of interfacial anisotropy was found to appear at the 

interface between transition metals and oxides. It was relatively surprising as spin-

orbit coupling is rather weak in those materials but the anisotropy can reach values as 

large as those obtained in Co/Pt multilayers (~1.4 erg.cm-2). 

This type of anisotropy was first observed in 2002 in Pt3/CoFe0.6/AlOx stacks 

[Mon-02] and found to be extremely dependent on the oxidation state at the 

interface. Indeed, as shown in Figure I-1 (a), for samples that were naturally oxidized 

in air for 24h, the anisotropy depends a lot on the deposited Al thickness. Without 

any Al layer, the magnetization is in-plane whereas for thicknesses between 0.2 and 

0.4 nm the signal is characteristic of a perpendicularly magnetized layer. For Al 

thicknesses larger than 0.6 nm the magnetization falls back in-plane. This suggests 

that, as the interface goes from over-oxidized to under-oxidized, there exists an 
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optimal oxidation condition that brings strong perpendicular anisotropy to the 

system. This is confirmed in Figure I-1 (b), where the same behavior is observed for 

Pt3/Co6/AlOx samples in which the AlOx barrier is obtained by plasma oxidation of 

metallic Al with different oxidation times [Rod-03]. Similarly, an optimal oxidation 

time between 2-3 min allows getting perpendicular anisotropy. 

  

Figure I-1: Hall resistance as a function of perpendicular applied field for (a) Pt3/CoFe0.6/AlOx 
samples naturally oxidized in air with varying thicknesses of Al [Mon-02] (b) Pt3/Co0.6/AlOx samples 
plasma oxidized with different oxidation times [Rod-03]. 

 

This phenomenon was found to be relatively general and could be observed for a 

large range of oxides, either crystalline or amorphous (CrOx, AlOx, TaOx, MgO, 

RuO). It also does not depend on the type of oxidation (natural, plasma or RF 

sputtered) [Man-08]. 

In this study, it was found that the loss of remanence observed for over-oxidized 

samples can be attributed to the creation of up and down domains due to the oxygen 

diffusion at the Co grain boundaries. Further chemical analyses (X-ray absorption 

and photoemission) revealed that as the oxidation time is increased, the interface 

goes from pure Co to pure CoO. The maximum perpendicular anisotropy is obtained 

when Co-O bonds have appeared at the interface but when Co remains unoxidized in 

the rest of the layer. This indicates that the origin of the anisotropy in these systems 

can be explained by the hybridization of the transition metal atomic orbitals with 

those of oxygen. This type of mechanism had been predicted since 1989 [Bru-89] and 

was later confirmed by ab-initio calculations [Yan-11]. These calculations showed that 

perpendicular anisotropy arises at the metal/oxide interface because of the 

hybridization of the 3d orbitals of the metal with the 2p orbitals of oxygen. They also 

confirmed that perpendicular anisotropy is reduced for over-oxidized or under-

oxidized interfaces due to the modification of hybridized states in the case of an 

additional (or missing) oxygen atom at the interface. 

Furthermore, the key role played by the oxidation state at the metal/oxide 

interface was also evidenced in studies on the effect of annealing [Rod-09]. It 
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appeared for example that the range of oxidation time enabling to obtain 

perpendicular anisotropy gets larger as the annealing temperature is increased. It was 

shown that this annealing step leads to the migration of oxygen atoms towards the 

interface where they are more stable, which improves perpendicular anisotropy. 

As we will see in the following, this perpendicular anisotropy at metal/oxide 

interface is particularly interesting for devices. It indeed gives the possibility to 

prepare magnetic tunnel junctions with perpendicular anisotropy, thanks to the 

properties of the magnetic electrode/oxide barrier interface.  

I-1.4 Experimental determination of the anisotropy constant 

 

As seen previously, the effective anisotropy may be defined by the following 

formula:  

𝐾𝑒𝑓𝑓 = −2𝜋𝑀𝑠
2 + 𝐾𝑣 +

2𝐾𝑠

𝑡
 

where 2Ms2 stands for the demagnetizing field energy, Kv is the volume 

contribution (magnetocrystalline and magnetoelastic anisotropies), Ks is the surface 

contribution and t the magnetic thickness. As the layer gets thinner, the surface 

contribution becomes more and more important. Note that 2Ks might be developed 

as Ks1+Ks2 to discriminate between the top and bottom interfaces. Indeed, if the two 

interfaces differ, their respective contributions to the anisotropy might be different.  

 By convention, Keff is positive when the easy axis of magnetization is 

perpendicular to the layer plane. If Keff is negative, the easy axis lies in the film plane. 

 One can determine the volume and surface contributions by plotting the 

evolution of the Keff.t product as a function of magnetic material thickness t. An 

example of the obtained curve is given in Figure I-2. With such graphs, the critical 

thickness at which the transition between perpendicular and planar orientation 

occurs, as well as the volume (slope) and surface (zero intercept) anisotropy energies, 

can be estimated. 
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Figure I-2: Example of a plot of Keff.t as a function of t for Co/Pd multilayers [Joh-96]. 

  

Keff corresponds to the energy that is necessary to switch the direction of the 

magnetization from the easy axis to the hard axis. It can be extracted from easy and 

hard axis magnetic measurements. 

 

Figure I-3: Schematic magnetic cycles for a field applied parallel (red) or perpendicularly (blue) to the 
anisotropy axis. 
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Hc corresponds to the coercive field (that is to say the field that must be applied to 

change the magnetization orientation), Ms the saturation magnetization and HK the 

anisotropy field. 

Keff may be then calculated as the difference between the areas above the curves 

measured along the hard and easy axis. 

𝐾𝑒𝑓𝑓 = ∫  𝑀𝑑𝐻
ℎ𝑎𝑟𝑑 𝑎𝑥𝑖𝑠

− ∫  𝑀𝑑𝐻
𝑒𝑎𝑠𝑦 𝑎𝑥𝑖𝑠

  

Most of the time the easy axis contribution is negligible, but it might not be the 

case near the critical thickness, when the anisotropy is switching from perpendicular 

to planar. In the simplest cases, Keff can then be expressed this way: 

𝐾𝑒𝑓𝑓 =
𝐻𝐾𝑀𝑠

2
 

If the variation of magnetization as a function of applied field is linear in the hard 

axis curve, HK will be equivalent to the saturation field Hs. If it is not the case, only 

the difference of areas will allow estimating Keff. Note that obtaining the absolute 

value of Ms is not straightforward. Indeed many measurement techniques give signals 

that are solely proportional to the magnetization (Extraordinary Hall Effect, 

magneto-optic Kerr effect). In the case of Vibrating Sample Magnetometry (VSM), 

the size of the sample and position on the sample holder introduce uncertainties that 

prevent from achieving a precise estimation of Ms on a unique sample. This is why we 

will use dedicated studies that combine a series of samples with varying thicknesses 

as well as the use of an internal reference. This method will be detailed later in this 

manuscript. 
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I-2. Tunnel magnetoresistance and perpendicular 

magnetic tunnel junctions 
 

The discovery of the tunnel magnetoresistance has been a major breakthrough for 

the development of Magnetic Random Access Memories. It gave the possibility to 

build a new type of non-volatile memories which characteristics are particularly 

promising. More interestingly, systems with perpendicular anisotropy have been 

found to be particularly relevant in the race towards downsize scalability. As we will 

see in the following, this step could only be achieved through a good mastering of the 

deposited materials. 

 

I-2.1 What is tunnel magnetoresistance? 

 

At the early stages of the Hard Disk Drive (HDD) industry, the read heads were 

based on the Anisotropic MagnetoResistance (AMR) effect, in which the resistance 

varies as a function of the angle between the current and the magnetization direction 

[Gui-75]. However this signal amounts only to a few percent. A major breakthrough 

was then achieved thanks to the Giant MagnetoResistance (GMR) effect that allowed 

a large increase of the signal. It was discovered in (Fe/Cr) multilayers and Fe/Cr/Fe 

trilayers by A. Fert [Bai-88] and P. Grünberg [Bin-89] in the late 80s, both of them 

being granted the Nobel Prize of Physics in 2007 for this research work. This 

discovery followed earlier work on transport in ferromagnetic materials that 

suggested electrons are separated into two channels: one for the majority electrons 

(with spins parallel to the magnetization) and one for minority electrons (with spins 

antiparallel to the magnetization) [Mot-36]. In the structures studied by A. Fert and 

P. Grünberg, it appeared that two resistance states could be measured depending on 

the relative orientation of the magnetizations in the magnetic layers: when they are 

antiparallel a high resistance state is measured whereas a lower resistance is obtained 

when they are parallel. This can be explained by the conduction model with two 

channels. In the case of an antiparallel configuration, both minority and majority 

electrons are diffused the same way as their spin is parallel to the magnetization of 

one layer and antiparallel to the other one. On the contrary, in the case of a parallel 

configuration, the minority electrons are more diffused than the majority ones, 

leading to a difference of resistance between the two channels that results in an 

overall lower resistance level. 

The giant magnetoresistance is defined by the ratio: 𝐺𝑀𝑅 =
𝑅𝐴𝑃−𝑅𝑃

𝑅𝑃
, where RAP and 

RP stand for the resistances in the antiparallel and parallel states of the 

magnetizations, respectively. The difference in resistances is normalized to Rp, so that 
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the maximum of GMR tends towards infinity. It is usually known as the “optimistic 

definition”.  

In terms of applications, this phenomenon has been particularly important for the 

development of read heads for HDD [Die-91]. Generally, they employed spin valves 

that consist of NiFe layers separated by a Cu spacer. One of the layers is pinned 

thanks to exchange bias with an antiferromagnet while the other one is free to align 

its magnetization to the one of the memory element. Reading the resistance state of 

the spin-valve allows retrieving the information stored in the probed byte. 

The Tunnel MagnetoResistance (TMR) effet is slightly similar and happens when 

two ferromagnetic layers are separated by an insulating spacer, instead of a metallic 

one. This type of stack is known as Magnetic Tunnel Junction (MTJ). The insulating 

layer is called tunnel barrier and is generally characterized by its Resistance-Area 

product (RA). It was firstly evidenced by M. Jullière in 1975 in a Fe/GeO/Co junction 

which exhibited a TMR signal of 14 % at 4.2 K [Jul-75]. In the model developed to 

explain this phenomenon, the first hypothesis is that the spin of the electron is 

conserved during tunneling. The second one states that the tunneling probability is 

proportional to the densities of states at the Fermi level in both transmitting and 

receiving electrodes. The conductance of the structure can then be viewed as 𝐺 ∝

𝐷1
↑𝐷2

↑ + 𝐷1
↓𝐷2

↓, where D1 and D2 are the densities of states in the two electrodes for 

either spin up or spin down electrons. 

If the magnetizations are parallel 𝐷1
↑ > 𝐷1

↓ and 𝐷2
↑ > 𝐷2

↓ whereas if they are 

antiparallel 𝐷1
↑ > 𝐷1

↓ and 𝐷2
↓ > 𝐷2

↑ (see the schematic representation of Figure I-4). 

Therefore, when changing the magnetic configuration, one modifies the amount of 

current crossing the barrier. In Jullière’s model, the polarization of the electrode i is 

defined as 𝑃𝑖 =
𝐷𝑖

↑−𝐷𝑖
↓

𝐷𝑖
↑+𝐷𝑖

↓. For non-magnetic materials P is then zero while for fully 

polarized materials |P|=1. 

Similarly to the GMR effect, the resistance level is higher in the case of the 

antiparallel configuration of the electrodes than in the parallel one. The TMR ratio 

can be defined as: 𝑇𝑀𝑅 =
𝐺𝑃−𝐺𝐴𝑃

𝐺𝐴𝑃
=

𝑅𝐴𝑃−𝑅𝑃

𝑅𝑃
=

2𝑃1𝑃2

1−𝑃1𝑃2
. 
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Figure I-4: Schematic representation of the tunnel magnetoresistance effect for (a) parallel 
configuration of the magnetizations (b) antiparallel configuration of the magnetizations [Yua-07]. 

 

I-2.2 First developments of planar magnetic tunnel junctions 

 

At the early stages of magnetic tunnel junction development, the barriers were 

mostly made of amorphous alumina. This is thanks to the use of this type of barrier 

that TMR ratios around 18 % could be achieved at room temperature in 1995 [Miy-

95, Moo-95]. Even though further research on AlOx barriers enabled to reach TMR 

levels as large as 70 % at room temperature [Wan-04], those signals are still too low 

to satisfy the requirements of the memory industry. Indeed, TMR ratios above 150 % 

should be preferred to guaranty a good readability of the stored information. 

In 2001, theoretical studies predicted that epitaxial systems with crystalline 

tunnel barriers could exhibit TMR of the order of several 1000 % [But-01, Mat-01]. 

This can be explained by the nature of the tunneling that becomes coherent instead of 

incoherent with amorphous barriers. Due to the crystallographic symmetries, the 

tunneling effect appears to be more efficient as illustrated in Figure I-5. 
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Figure I-5: Schematic representation of electron tunneling through (a) an amorphous AlOx barrier (b) 
a crystalline MgO barrier [Yua-07]. 

 

These theoretical predictions led to a rapidly growing interest for magnetic tunnel 

junctions with a crystalline MgO tunnel barrier. The same year, a room temperature 

TMR of 30 % could be achieved in an epitaxial Fe/MgO/FeCo structure [Bow-01]. 

This is however only when the quality of the materials growth got much better and 

the interfaces got cleaner that TMR ratios of the order of 200 % could be reached 

[Yua-04, Par-04]. 

Despite the good results obtained in epitaxial junctions, the deposition technique 

(Molecular Beam Epitaxy, MBE) is not compatible with the development of these 

structures at the industry level due to its high cost. Junctions prepared by sputtering 

techniques have been thus favored in the more recent developments that focused 

mainly on CoFeB/MgO/CoFeB stacks. One of the advantages of CoFeB alloys is that 

they are amorphous in the as-deposited state. It was observed than when the MgO 

barrier is deposited on top of amorphous CoFeB it grows with its naturally oriented 

polycrystalline (001) structure, which is required for a good tunneling effect [Dja-05]. 

As illustrated in Figure I-6, TEM images revealed the good crystallinity of the MgO 

barrier, even in the as-deposited state. Such a structure could yield a TMR of 230 % 

at room temperature but much higher levels of the order of 500 % are achievable by 

properly tuning the thickness and composition of the CoFeB electrodes [Lee-07]. 
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Figure I-6: (a) TEM cross section of a planar magnetic tunnel junction with CoFeB electrodes and MgO 
crystalline barrier (b) zoom on the same junction on the barrier region [Dja-05]. 

 

As already pointed out in [Lee-07], the crystallization of the CoFeB electrodes 

plays a crucial role in the tunnel magnetoresistance effect. It was indeed observed 

that upon annealing the CoFeB electrodes crystallize, using as a template the 

crystalline MgO barrier. This provides them a bcc (001) texture that ensures a 

coherent tunneling effect thanks to an “epitaxial-like” behavior [Yua-05, Cho-07]. 

I-2.3 Materials developments for magnetic tunnel junctions with 

perpendicular anisotropy 

 

In the early stages of the magnetic tunnel junction developments, research was 

mostly done on in-plane magnetized systems. The progresses made in the field of 

perpendicular magnetic anisotropy gave way to even more promising devices in terms 

of MRAM applications. 

The first report on perpendicularly magnetized tunnel junctions was released in 

2002 and was presenting AlOx-based junctions that exhibited TMR values of around 

50 % [Nis-02]. But a major breakthrough was achieved in 2010 when Ikeda et al. 

presented results on Ta/CoFeB/MgO-based perpendicular tunnel junctions. Taking 

advantage of the perpendicular anisotropy arising at the CoFeB/MgO interface, they 

were able to build structures stable at small dimensions and with high TMR of 120 % 

[Ike-10].  

If in this first approach, junctions were composed of Ta/CoFeB electrodes solely, 

another type of structure became rapidly standard. It comprises a Synthetic 
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AntiFerromagnetic (SAF) reference made with Co/Pt or Co/Pd multilayers coupled to 

a CoFeB layer at the interface with MgO and a CoFeB storage layer [Wor-11, Miz-11]. 

As we have seen previously, the Pt (Pd)-based multilayers provide strong 

perpendicular anisotropy and are thus used to harden the reference layer, making it 

particularly stable. We will come back with more details on the advantages of these 

SAF structures in the next Chapter. 

A lot of effort has followed to optimize the anisotropy and transport properties of 

perpendicular magnetic tunnel junctions focusing in particular on the materials 

aspect. Indeed, these properties are extremely sensitive to the stack composition. 

There have been then various studies on the influence of buffer layers on the 

perpendicular anisotropy of the CoFeB magnetic electrodes. Standard materials such 

as Cr, Ru, Ta, Al were investigated and it appeared that the best results were obtained 

for Ta buffer layers [Wor-11]. This can be explained by the getter properties of Ta that 

has indeed the ability to attract boron away from the CoFeB/MgO interface which is 

beneficial both to the perpendicular anisotropy and the TMR [Koz-10]. Further 

studies showed that Hf could be a good candidate to replace Ta as it increases the 

anisotropy by 35 % [Liu-12]. This material was also found to be amorphous at small 

thickness, providing good growth conditions to the CoFeB and MgO layers. In 

another research group, Ta has been doped with nitrogen and it resulted in an 

increase in perpendicular anisotropy [Sin-13]. This was interpreted as TaN acting as a 

diffusion barrier that prevents intermixing between CoFeB and Ta. This is an 

interesting property as limiting Ta diffusion has been shown to enhance the TMR 

signal of planar junctions [Ike-08]. More recently, promising results have been 

obtained with Mo underlayers in terms of anisotropy and thermal endurance, with 

however no information on the transport properties with such Mo/CoFeB electrodes 

[Liu-14]. 

At the same time, similar work was performed on the capping layers. If Ta gives 

relatively satisfying results, some studies drew the attention on MgO and V capping 

layers [Nat-12, Kub-12, Yam-12]. Focus on MgO capping will be developed in Chapter 

III of this manuscript. 

Another important factor playing a role on the perpendicular anisotropy of the 

CoFeB magnetic layer is the alloy composition. Indeed, as seen in ab-initio 

calculations, larger interfacial anisotropy is obtained for Fe/MgO interfaces than for 

Co/MgO ones [Yan-11]. This was experimentally confirmed: as the Fe content 

increases, the anisotropy field increases as well [Dev-13, Lam-13]. 

Note that to be able to rigorously compare the anistropies of different systems, it 

is necessary to know the magnetic dead layer thicknesses that appear at the 

interfaces. This way, only the effective magnetic thicknesses are taken into account. 
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I-3. Perpendicular magnetic tunnel junctions for Spin 

Transfer Torque MRAM applications 

 

Magnetic Random Access Memories (MRAM) are a new type of non-volatile 

memories that rely on the tunnel magnetoresistance effect to code binary 

information. As we have seen, depending on the relative orientation of the 

magnetizations of the electrodes in a magnetic tunnel junction, two resistance states 

can be measured: a high resistance one when they are antiparallel and a low 

resistance one when they are parallel. This allows coding a “1” and a “0”, respectively. 

The higher the TMR of the junction is, the easier the reading of the information will 

be. This type of memories is particularly promising as, in addition to providing non-

volatility, MRAM can be made extremely dense and reach high write speed of a few 

nanoseconds, as well as possibly infinite endurance (>1016 write cycles). They are also 

considered very interesting for aerospace applications due to their radiation 

hardness. 

In 2010, the International Technology Roadmap for Semiconductors identified 

Spin Transfer Torque MRAM and redox RRAM as the two emerging technologies 

capable of scaling to and beyond the 16 nm generation. This led to a lot of effort in 

research on STT-RAM, both in laboratories and in the industry. 

 

I-3.1 The different families of MRAM 

 

The progresses made in the field of MRAM closely followed the discoveries of 

spintronics. Figure I-7 schematically represents the different generations of MRAM. 

In the first generation, field-induced switching was employed. In Stoner-Wolfarth 

MRAM, two perpendicular field lines are used to switch the magnetization of the 

storage layer. One drawback of this structure is that even though only the junction 

located at the intersection of the two field lines should be written, as the lines are 

shared by several junctions, an unwanted writing of another junction may happen. 

The selectivity of the junction has been improved in 2003 by Motorola [Sav-03], 

using a new kind of design named toggle-MRAM. In that case, a Synthetic 

Antiferromagnetic storage layer is used and writing is done by applying two 

orthogonal fields in a 4-steps sequence. This type of MRAM has been commercialized 

for the first time in 2006 by Everspin. Both methods are however not scalable enough 

due to both the presence of field lines and the relatively large currents needed to 

generate the magnetic fields. 
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Figure I-7: Schematic representation of the different generation of MRAMs [Die-15]. 

 

To enhance writability of the memory dot, a new method was proposed using 

thermal assistance [Die-01, Pre-07]. The idea is that heating allows reducing the 

energy barrier for switching which decreases the power consumption of the device. 

The selectivity is also improved as the current path for heating is specific to each 

junction. This new design is at the origin of the creation of the start-up Crocus 

Technology in Grenoble. 

However, the performances of MRAM really started to become competitive in the 

field of memory applications when Spin Transfer Torque switching was introduced, 

and even more in perpendicularly magnetized systems. As we will see in more details 

in the following, this approach uses a spin-polarized current to switch the 

magnetization. This allows the creation of new designs that are particularly compact 

as no field lines are needed anymore. 

More recently a new type of structure has emerged: called 3-terminal MRAM, the 

memory is composed of a magnetic tunnel junction in which the storage layer is 

switched thanks to an in-plane current flowing through a metallic stripe. Different 

phenomena can be used for switching such as domain wall propagation or spin-orbit 

torques [Mir-10, Cub-14]. Even though this type of MRAM cannot be scaled down to 

very small dimensions, such a structure, with separated write and read paths, can be 

interesting in terms of circuit design, in particular in the field of ultrafast switching. 
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I-3.2 What is Spin Transfer Torque? 

 

The main idea behind the phenomenon of Spin Transfer Torque (STT) is that if 

the magnetization of a layer has the ability to polarize a current flowing through it, 

the reverse effect also exists. Thus, as a polarized current is injected in a magnetic 

layer, the spin of the electrons can act on the magnetization thanks to a torque and 

induce a precession that may be large enough to reverse its direction. The theory of 

spin transfer torque was developed in 1996 by J. C. Slonczewski [Slo-96] and L. 

Berger [Ber-96]. It relies on the idea that angular momentum should be conserved. If 

the spin polarization P of the electrons that flow through the magnetic layer is not 

collinear to the magnetization M, the electrons will start to be polarized along the 

magnetization direction. To conserve the angular momentum, a torque will appear as 

the electrons precess around the magnetization axis and tend to orient the 

magnetization along the initial polarization direction. This can be seen as a transfer of 

angular momentum between the electrons and the magnetization. The torque is 

expressed as: 

Γ𝑆𝑇𝑇
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑎𝑗�⃗⃗� × (�⃗⃗� × �⃗� ) + 𝑏𝑗�⃗⃗� × �⃗�  

where P is the spin polarization of the current, M the magnetization and aj and bj 

two coefficients. aj depends on the current amplitude and its sign. The first term 

corresponds to the longitudinal component of the torque and is known as 

Slonczewski torque while the second term is orthogonal to the first one and is named 

field-like torque. This torque can then be injected in the Landau-Lifshitz-Gilbert 

(LLG) equation that describes the magnetization dynamics: 

𝑑�⃗⃗� 

𝑑𝑡
= −𝛾0�⃗⃗� × 𝐻𝑒𝑓𝑓

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ +
𝛼

𝑀𝑠
�⃗⃗� ×

𝑑�⃗⃗� 

𝑑𝑡
+ Γ𝑆𝑇𝑇

⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

with Heff the effective field (comprising the external applied field, the dipolar field 

and the anisotropy field),  the gyromagnetic ratio,  the Gilbert damping parameter 

and Ms the saturation magnetization. 

The first term represents the precession of the magnetization around the effective 

field Heff. The second one corresponds to the damping term that tends to put back the 

magnetization along the effective field direction. As the sign of aj depends on the 

current direction, the STT component can then either strengthen the damping or act 

against it. If the STT has the same sign as the damping, the magnetization will be 

stabilized in its initial orientation. On the contrary, if they have opposite signs and 

the STT becomes greater than the damping term, then the magnetization will switch 

in the other direction. There is then a critical current density allowing the reversal of 

the magnetization: 

𝑗𝑐 =
2𝑒

ℏ

𝛼𝑡𝑀𝑠

𝜂(𝜃)
𝐻𝑒𝑓𝑓 
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where e is the electron charge, ћ the reduced Planck constant,  the Gilbert 

damping parameter, Ms the saturation magnetization, t the magnetic thickness, () 

a function that depends on the angle between the two magnetizations and the 

polarization, and Heff the effective field. 

The first experimental observations of STT switching were done with Co/Cu/Co 

spin-valves [Tso-98, Mye-99, Kat-00], only a few years after the theoretical 

predictions of J. C. Slonczewski and L. Berger. It could also be observed in magnetic 

tunnel junctions with low RA (Resistance-Area product) AlOx barrier [Hua-04]. In 

that study, a critical current density of 8.106 A/cm2 was measured, with however low 

TMR between 1 and 20 %. More interestingly, spin torque-induced magnetization 

switching had been observed in MgO-based planar tunnel junctions [Kub-05, Kub-

06, Hay-05, Dia-05]. Such devices exhibit critical current densities of a few MA/cm2 

and much larger TMR signals over 100 %. 

I-3.3 Interest of perpendicular anisotropy for STT-MRAM 

applications 

 

In the first developments of STT-MRAM, work was essentially done on in-plane 

magnetized tunnel junctions as they were the most mastered devices at that time. 

Memory cells had then to be patterned into elliptical pillars in order to provide shape 

anisotropy to the system. This was used to increase the stability of the stored 

information but this anisotropy cannot be large enough to provide long lasting data 

retention. The thermal stability of a memory dot is characterized by a constant  

defined as Δ =
𝐾𝑒𝑓𝑓𝑉

𝑘𝐵𝑇
, where Keff is the effective anisotropy constant, as defined 

previously, V the magnetic volume and T the temperature. To guaranty a data 

retention of 10 years, which is one of the requirements of the memory industry,  

must be greater than 50-60. It appears then that due to their large anisotropy 

constant, perpendicular MTJs are particularly promising compared to their in-plane 

counterparts. 

Besides, in the case of out-of-plane magnetization, no elliptical shape is needed to 

stabilize the direction of the magnetization. This gives the opportunity to pattern the 

junctions in circular pillars which allows scaling down even further the memory 

elements. Larger storage capacities are then expected. 

a) In-plane systems with reduced demagnetizing field 

One first idea to improve the STT performances of planar magnetic tunnel 

junctions was to introduce some contribution of perpendicular anisotropy in the 

storage layer. As a matter of fact, in the case of in-plane magnetized layers, the energy 

barrier to overcome for STT switching is mostly related to the demagnetizing energy. 

To switch, the magnetization has to precess in the out-of-plane direction which is 
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facilitated when the perpendicular anisotropy component of the “still planar storage 

layer” is increased. Indeed, the additional perpendicular anisotropy counterbalances 

the demagnetizing field which leads to a decrease of its switching current density. 

This concept gave rise to several patents [Ngu-04, Rod-06]. To increase the 

perpendicular anisotropy component, one can for example play with the thickness of 

the storage layer: as it gets thinner, the interfacial anisotropy component arising at 

the CoFeB/MgO interface becomes more and more important [San-14]. 

This design has been proved to be functional as it was used by Everspin in their 64 

Mb STT-RAM product [Riz-13]. 

b) Fully perpendicular magnetic tunnel junctions 

As the stacks of perpendicularly magnetized junctions were becoming more and 

more known and mastered, their properties regarding STT switching started to be 

tested. It appeared their advantages over planar systems are significant, in particular 

in terms of switching current density [Wol-10, Yod-10, Hei-10]. 

In the case of perpendicular structures, when introducing the thermal stability 

constant in the formula of the critical switching current density, one finds: 

𝐼𝑐 =
4𝑒

ℏ

𝛼𝑘𝐵𝑇

𝜂
Δ 

As we have seen previously, large stability factors are required to ensure a long 

data retention. However, at the same time,  should be reduced if ones want to obtain 

low switching currents. A compromise must then be found.  

It has been observed that the type of magnetization reversal depends on pillar 

diameter. Indeed for pillar sizes greater than 40 nm, the stability factor appears to 

remain almost constant as the magnetic volume increases [Sat-11]. This suggests that 

nucleation-propagation type of switching occurs, because in that case the dot size is 

larger than the domain wall width. At the same time, the intrinsic critical current Ic0 

(i.e. the current necessary to switch in 1 ns) was found to increase linearly with the 

cell area. It can seem then interesting to work at small dimensions. However, to 

maintain the stability against thermal fluctuations, the volume reduction has to be 

compensated by a larger perpendicular anisotropy Keff. 

Similarly, another important parameter playing a role in the STT efficiency is the 

Gilbert damping parameter . If one could consider materials such as Co/Pt (Pd) 

multilayers to bring large perpendicular anisotropy, their strong spin-orbit coupling 

leads to a large damping parameter. Besides, as we have shown in the previous part, 

this type of materials cannot yield large TMR signal if used as storage layers in MgO-

based tunnel junctions due to bad growth conditions for the barrier. Some materials 

such as Co/Ni multilayers or some Heusler alloys have been found to exhibit 

perpendicular anisotropy and weak Gilbert damping. They do not provide however 

sufficiently high TMR signals to fulfill the requirements in terms of readability. 
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Luckily, the Ta/CoFeB/MgO systems present a relatively low damping parameter in 

addition to their good anisotropy properties. Nevertheless, the dependence of the 

damping parameter  as a function of magnetic thickness works against STT 

efficiency. Indeed, as was shown by Ikeda et al. in 2010 on their 

Ta/CoFeB/MgO/CoFeB/Ta perpendicular MTJs (see Figure I-8), the damping 

parameter  increases sharply as the electrode thickness decreases [Ike-10]. Thin 

layers are however needed to ensure a strong perpendicular anisotropy. Once again a 

compromise has to be made here. 

 

Figure I-8: Variation of damping parameter a as a function of CoFeB thickness [Ike-10]. 

 

Some ferromagnetic resonance measurements showed that the damping 

parameter of perpendicularly magnetized CoFeB layers depends on the composition 

of the alloy. Lower values of  are obtained for Fe-rich alloys than for Co-rich ones 

[Dev-13]. Along with a lower perpendicular anisotropy, the Co-rich alloys are then 

less interesting for STT applications. 

Fully perpendicular magnetic tunnel junctions are thus particularly promising 

devices for STT-MRAM. They allow good data retention thanks to their large 

anisotropy and they provide lower switching current densities which make them 

competitive in the field of low power consumption. However, there exist some 

compromises to make between thermal stability and switching current, mostly 

adapting materials parameters and size of the nanopillars. For example, in 2010, IBM 

demonstrated the feasibility of a 4-kbit memory array with perpendicular MTJs 

exhibiting TMR of about 100 % (on full sheet samples, the signal dropping down to 

70 % after patterning due to etching defects) and RA around 10 m2. Structures 

were patterned into 80 nm circular pillars. Perpendicular anisotropy was found large 

enough to guaranty a stability factor >50 and a 0.008 damping parameter was 

measured. These good parameters allowed achieving a critical current density of 

about 3 MA.cm-2. Narrow switching distributions were measured which indicate a 

good reproducibility from junction to junction. No information was however given on 

the nature of the materials deposited in that study [Wor-10]. 
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I-4. Thin films deposition 
 

All samples we used in this project were deposited by magnetron sputtering. This 

is a technique of physical vapor deposition that uses a plasma to accelerate ions 

towards a target made of the material one wants to deposit. Deposition is performed 

in a chamber under vacuum in order to ensure a good purity of the deposited 

materials (typically in the range of 10-6 to 10-9 mbar, depending on the performance 

of the tool). To create the plasma, an inert gas is employed, in our case argon. The 

target material is positioned at the cathode while the substrate is at the anode. By 

applying an electrical potential, a discharge appears and ionizes the argon atoms. The 

Ar+ ions are then accelerated towards the target. If their kinetic energy overcomes the 

binding energy of the target atoms, those atoms will be ejected and start to deposit 

themselves on the substrate. 

In the case of magnetron sputtering, a magnet is installed at the cathode. The 

magnetic field modifies the trajectory of the electrons above the cathode leading to an 

increase in the number of collisions with the Ar atoms and then the number of Ar+ 

ions. This effect allows increasing the deposition rate. The principle of magnetron 

sputtering is illustrated in the schematic representation of Figure I-9. 

 

Figure I-9: Schematic representation of a sputtering chamber. 

 

 Our tool is an Actemium machine which possesses 12 targets that give us the 

opportunity to develop complex stacks involving a wide range of materials. Targets 

diameter is 125 mm which leads to a good homogeneity of the depositions on 100 mm 

wafers. This is also ensured by the rotation of the sample holder at 600°/s upon 

deposition. The whole deposition process is automated. Indeed, as shown in Figure I-

10, our tool is equipped with a treatment chamber in which oxidation and etching 
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steps are taking place and a robot allows transferring the substrate from one chamber 

to the other as well as moving the substrate to place it in front of the chosen target. 

The deposited thicknesses are determined by the opening time of the shutter that 

covers the target. Deposition rates can be modulated by adjusting the current set 

point (typically between 60 and 350 mA), that is to say the power applied to the 

cathode. The Ar pressure in the chamber will also influence the deposition rate. In 

our system, it is set to 2.10-3 mbar. The rates are basically ranging between 0.03 nm/s 

and 0.2 nm/s, making it possible to deposit layers as thin as a few tenths of 

nanometer. In order to calibrate them properly, X-rays reflectivity is used. Regular 

calibrations are performed as aging of the targets will tend to reduce the deposition 

rates. 

 

Figure I-10: Plan of the Actemium deposition tool showing the organization of the different chambers. 

 

One interesting feature of our deposition machine is that we have the ability to 

create thickness gradients by shifting the substrate from the on-axis position. The two 

configurations are represented in Figure I-11. When the substrate is in the off-axis 

position and the sample holder is not rotated, a gradient of thickness appears in the 

deposited material. This wedge depends on the distance between the sample and the 

target. In the standard configuration, the distance amounts to 100 mm and allows a 

variation of about a factor 2 along the 100 mm wafer surface. The gradients are 

calibrated for each material, either by X-rays reflectivity or resistivity measurements. 
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Figure I-11: Schematic representation of the two possible geometries in our deposition tool. 

 

As we said earlier, our deposition tool is equipped with a treatment chamber in 

which oxidation steps can be performed. This is one way to create the oxide barriers 

of the tunnel junctions. In our studies, we used mostly MgO barriers obtained by 

natural oxidation of metallic Mg. A thin layer of Mg is deposited in the sputtering 

chamber and is then exposed to an oxygen atmosphere for a given time in the 

treatment chamber. Two procedures are employed depending on the RA levels that 

are targeted. For low RA (typically 5-10 m2), a dynamic oxidation is performed at a 

low oxygen pressure of 3.10-2 mbar, with a 100 sccm flow, for 360 s. For higher RA 

(typically 25-50 m2), a static oxidation is used in which the sample is exposed to a 

high oxygen pressure of 150 mbar for 10s. The tool is also able to perform plasma 

oxidations that utilize an oxygen plasma to oxidize a metallic element. This technique 

is more commonly applied to alumina barriers. Besides, we also have the possibility 

to deposit the oxide directly from a ceramic MgO target. In that case, a 

radiofrequency power supply is needed. A current of alternative polarity is applied to 

the target, avoiding the accumulation of charges that would otherwise strongly 

decrease the deposition rate of the material. 
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I-5. Characterisation techniques 
 

I-5.1 Magnetic characterization 

 

a) Vibrating Sample Magnetometry 

 Vibrating Sample Magnetometry is a tool used to characterize the magnetic 

properties of a sample. It allows measuring the variation of the magnetic moment as a 

function of applied field, thus enabling to plot its hysteresis loop. To do this, the 

sample is fixed to a sample holder located in the gap of an electromagnet. It is then 

translated vertically at a given frequency. This vibration induces a change of magnetic 

flux related to the magnetic moment of the sample that is transformed into a current 

in the detection coils. A schematic representation is given in Figure I-12. 

 

Figure I-12: Working principle of a VSM. 

  

The advantage of this technique is that it is rather accurate (around 10-5 emu) and 

that magnetic field can be applied along any direction of the sample by setting the 

measurement angle. This is a convenient and rapid way to evaluate the anisotropy of 

a sample as both easy and hard axis loops can be performed. With our tool, magnetic 

fields as high as 17 kOe may be reached. One should note that the sample holder adds 

a contribution to the measured signal. Most of the time, it can be easily removed as it 

varies linearly with field (diamagnetic or paramagnetic holder). However, in the case 

of a sample presenting a very large saturation field, the slope might be difficult to 

determine. 
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In order to show the limitations of a VSM tool and establish the samples 

preparation procedure we deposited a 50 nm thick NiFe layer on a 3x10 mm 

substrate previously cut. This implies that the edges of the substrate are perfectly flat. 

The edges along the smallest dimension are covered with Kapton in order to fix the 

substrate on the sample holder which means that only the top surface and the longest 

edges are exposed during deposition. The sample is then measured in the VSM in two 

different configurations: planar field along the largest dimension (longitudinal 

measurement) and planar field along the smallest dimension (transverse 

measurement). The results are gathered in Figure I-13, where only half loops coming 

from positive fields saturation are presented. 

 

Figure I-13: Magnetic loops of a 50 nm NiFe sample measured by VSM in different configurations (a) 
longitudinal planar field (b) transverse planar field, before and after cleaning of the edges. 

 

It appears that there is a difference in signal amplitude depending on the 

orientation of the sample in the gap of the electromagnet. The total signal is much 

smaller in the transverse measurement as the sample is in this case further away from 

the pick-up coils compared to the longitudinal configuration. Note that the tool 

calibration, both in sensitivity and sample holder position, is generally done with a Ni 

test sample which exhibits a magnetization of a few emu, much larger than the 

expected value on our samples. However, precise centering of the sample holder 

cannot be performed with the calibration menu using our samples as the holder 

signal is too large in comparison. Thus, all these effects prevent us from getting any 

absolute value of the magnetization of our samples, even though their size is reduced 

to limit the influence of the geometry. This is the reason why, when trying to extract 

any numerical value from VSM measurements, we will use an internal reference (that 

is to say a layer with known magnetization included in the stack). More detailed 

information on this data treatment technique will be given in Chapter II. 

Another part of the experiment consisted in cleaning the edges of the sample to 

see the effect of removing the magnetic materials located there. As can be seen in 

Figure I-13 (a), when the field is applied along the long dimension of the sample, 

cleaning the edges allows removing the magnetic signal present between 0 and -500 
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Oe. In the case of a transverse configuration, a hard signal that saturates at about 

5000 Oe is present in the sample with unprotected edges and it disappears after the 

cleaning step (see Figure I-13 (b)). These two parasitic signals can be then attributed 

to a magnetic contribution from the edges. Indeed, the longitudinal configuration 

corresponds to applying a magnetic field in the plane of the edges whereas in the 

transverse configuration, the field is applied perpendicularly to the edges which now 

corresponds to a hard axis configuration. In both cases, the amplitude of this extra 

signal represents about 5 % of the total signal. Knowing that the ratio of surfaces 

between the edges and the front face is 33 %, we can estimate the thickness deposited 

on the edges to represent about 15 % of the total deposited thickness, that is to say 

about 7 nm. Note that this estimation would not be possible in the case of cleaved 

samples as the edges geometry is unpredictable. 

The case of a 3x10 mm substrate is obviously one of the most unfavorable 

situations as the surface of the edges is particularly large compared to the total 

surface. However, we also observed this effect in a standard perpendicular junction 

with a bottom SAF reference and a top 1.4 nm thick FeCoB storage layer. The 

deposition was made on 2 square substrates, one with non-protected edges and the 

other one with edges covered with Kapton. The corresponding magnetic curves 

measured by VSM with perpendicular applied field are shown in Figure I-14, with 

focus on the minor loop on the storage layer. Similarly a parasitic signal that 

saturates around 500 Oe appears when the edges are not covered. It is not present in 

the case of protected edges. 

 

Figure I-14: Magnetic loops measured by VSM with perpendicular applied field on standard magnetic 
tunnel junctions with (a) non-protected or (b) protected edges. 

 

An ideal solution to get clean measurements could be to deposit the stack on full 

100 mm wafers and then cut small pieces of determined size after putting a protective 

resist. Circular shapes would be the best to reduce the geometry effects. However, this 

procedure would be extremely time-consuming and would considerably slow down 

the developments. For this reason, we decided to work with about 12x12 mm cleaved 

squares which edges are covered with Kapton before deposition. 
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b) Extraordinary (or anomalous) Hall Effect 

 Another way to characterize the magnetic properties of a sample is to take 

advantage of the extraordinary Hall Effect that arises in magnetic materials. 

 The Hall Effect is due to the Lorentz force that affects the electrons when an 

electrical current passes through a material submitted to a magnetic field that is 

perpendicular to the current direction. This force deflects the electrons and a voltage, 

known as Hall voltage, appears in the direction perpendicular to both current and 

magnetic field. 

 In the case of ferromagnetic materials, an additional component, which is 

proportional to the magnetization, exists and is called extraordinary or anomalous 

Hall Effect. The Hall resistance that will be then measured by the set-up can be 

expressed as: 

RH = R0 B + RE Mz 

where R0 is the ordinary Hall Effect coefficient, RE the extraordinary Hall Effect 

coefficient, B the magnetic induction and Mz the out-of-plane component of the 

magnetization. This technique is particularly well adapted to study samples with 

perpendicular anisotropy as it is only sensitive to the out-of-plane component of the 

magnetization. It is also possible to perform planar measurements where magnetic 

field is applied in the film plane. The in-plane component of magnetization is then 

deduced from its perpendicular projection (Mx2=1-Mz2). 

 In general, the ordinary Hall Effect is negligible in magnetic materials 

compared to the extraordinary one. The factor between the respective coefficients can 

be as high as 100. Thus, the ordinary contribution appears as a linear slope that can 

be easily subtracted from the total signal. 

 

Figure I-15: Schematic representation of the configuration of the probes in an Extraordinary Hall 
Effect measurement set-up. 
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 As shown in Figure I-15, the measurement is done using a Van der Pauw 

configuration, in which the current is injected through probes that are 

perpendicularly oriented to those employed to determine the Hall voltage. 

 It is worth noting that a Hall Effect measurement does not allow getting the 

numerical value of magnetization. The Hall signal is only proportional to it and 

depends a lot on the thicknesses of the other layers involved in the stack. Indeed, a 

variable part of the current will be derived in the metallic buffer and capping layers, 

reducing the final Hall amplitude. This method is however practical to compare 

similar samples and gives precise values of the transition fields. 

 In our laboratory set-up, magnetic fields as large as 17.5 kOe may be applied. 

 

I-5.2 Characterization of the transport properties (Current In-Plane 

Tunneling) 

 

When studying magnetic tunnel junctions, the tunnel magnetoresistance (TMR) 

and Resistance.Area (RA) product are particularly important parameters to control. 

One procedure to evaluate them consists in fabricating pillars with nanometric size, 

in which a current is applied perpendicularly to the plane of the tunnel barrier. To do 

this, many steps such as etching, lithography, metallic contact depositions, etc. are 

necessary, as we will see in Chapter V. These techniques are time-consuming and may 

modify the magnetic properties of the tunnel junctions by introducing defects. 

This is the reason why a measurement technique that is directly applicable to non-

patterned tunnel junctions has been developed in 2003 by D. C. Worledge and P. L. 

Trouilloud at IBM laboratories [Wor-03]. Named Current In-Plane Tunneling (CIPT), 

this method allows working with macroscopic samples. 

The method relies on a 4-point resistance measurement with aligned probes and 

different spacings. Current is injected in the external probes while the voltage is 

measured with the internal ones. Spacing x between contacts is varied, using 

multiprobes heads. Resistance measurements are performed for increasing values of 

probe spacing in both parallel and antiparallel configuration of the magnetizations. 

For very small values of x, current flows only in the top electrode, enabling to get the 

value of its sheet resistance RT as shown in Figure I-16. For large values of x, the 

barrier resistance becomes negligible and one can extract the resistance of the 

combination of the bottom and top electrodes resistances in parallel. For each 

spacing the magnetoresistance MRcip is calculated using the values of resistance in 

the parallel (Rlow) and antiparallel (Rhigh) configuration: MRcip=(Rhigh-Rlow)/Rlow. 



40 
 

 

Figure I-16: Schematic representation of the CIPT technique. 

 

The RA and TMR, as well as RT and RB, are then estimated using a model that 

realizes fitting of the resistance vs probe distance and MRcip vs probe distance curves. 

The ideal fitting conditions have been found to be obtained when the probe distance 

ranges between  and 5, where  is a length scale that depends on the sample 

parameters, 𝜆 = √
𝑅𝐴

𝑅𝑇+𝑅𝐵
. Thus depending on the RA of the sample, one should select 

among the different measurement heads with varying probe configurations the one 

that suits the best. This is not necessarily straightforward as the RA of the measured 

sample might not be known before the measurement. It is only when the parameters 

RT, RB and x are well adapted to the barrier properties that a maximum will clearly 

appear in the MRcip vs probe distance curve, as shown in the example of Figure I-17. 

This guaranties a good reliability of the fitted RA and TMR parameters. 
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Figure I-17: Example of the evolution of the MRcip as a function of the probe distance for a standard 
planar junction. The curve includes both the experimental data points and the fit of the CIPT tool. 

 

Similarly, there exist some conditions on RT and RB to get a good fit. Indeed, RT 

has to be higher than RB in order to force the current to flow in the entire structure 

through the barrier. A ratio of 5 is sufficient to ensure good results. To obtain a low 

RB, our samples are deposited on 60 nm thick CuN buffer layers. The advantage of 

CuN, apart from its good electrical conductivity, is that compared to Cu, it exhibits a 

lower surface roughness. The value of RT is adjusted by depositing a ruthenium 

capping layer on top of the magnetic stack. This Ru layer provides a hard surface for 

the mechanic contacts of the probes (preventing them to go through the barrier) and 

good electrical contact is guaranteed as Ru oxide is a conductive material. In order to 

avoid chemical contamination of the surface, the Ru deposition is performed after the 

annealing step and is preceded by a surface etching. 

During this thesis, CIPT measurements have been performed on a Capres tool at 

Crocus Technology, Grenoble. This tool gives us the possibility to characterize both 

planar and perpendicular systems. In the planar configuration, resistance vs field 

loops can be measured, enabling the user to determine the fields to apply to switch 

between the parallel and antiparallel states. The maximum field available is in that 

case 250 Oe. In the perpendicular configuration resistance vs field loops cannot be 

measured. Transition fields have then to be checked before the measurement, either 

by VSM or Extraordinary Hall Effect. Note that the presence of a CuN buffer prevents 

from doing Hall measurements as this layer would derive too much current. If 

necessary, depositions can be performed on two types of substrate: CuN and SiO2. 

The perpendicular Capres set-up allows applying perpendicular fields as high as 1500 

Oe. 
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I-6. Annealing procedure 
 

As we have seen previously, the TMR signal of a magnetic tunnel junction 

depends greatly on the crystallization state of the CoFeB electrodes [Yua-05, Cho-07]. 

In the case of perpendicularly-magnetized systems, perpendicular anisotropy as well 

as TMR amplitude have been found to show relatively the same trends as a function 

of annealing temperature [Gan-11, Men-11, Wan-11, Nat-13]. They present first an 

improvement with increasing the annealing temperature followed by a decay due to a 

degradation of the magnetic properties. The optimal temperature is generally found 

around 300-350 °C. Note that the choice of the annealing temperature of our samples 

will be described in more details in Chapter II. 

In our laboratory, two furnaces can be used to anneal samples under vacuum 

(typically at a pressure around 10-6 mbar). A larger one exhibits a 200 mm capacity 

while the small one can only hold samples with sizes up to 15x60 mm. However, due 

to its reduced volume, the small set-up allows reaching annealing cycles of about 2 h 

in total (including heating and cooling ramps) instead of a full day in the large 

structure. The latter one will be thus chosen only when large surfaces are needed 

(wafers for the nanofabrication for example), while the small furnace will be favored 

for “every day” materials development. The large furnace possesses a permanent 

magnet with a 2.3 kOe planar field that cannot be removed. In the case of the small 

one, the permanent magnet can be removed or put in perpendicular or planar 

configurations. It is known that, for planar magnetic tunnel junctions that comprise 

an exchange bias pinned reference layer, a magnetic field is required during 

annealing in order to set the exchange direction. As this is not the case in 

perpendicular junctions, we will first check the effect of applying a field during 

annealing on the magnetic properties of samples with perpendicular anisotropy. 

I-6.1 Effect of the presence of a magnetic field during annealing 

 

In the case of perpendicularly magnetized materials, there are usually two types of 

situations encountered in the literature: either a perpendicular magnetic field is 

applied during annealing or no magnetic field at all is present. To check the effect of 

putting a magnetic field during the annealing step we deposited a top electrode with 

the following composition: MgO/CoFeB1.5/Ta0.3/Co0.3/(Pd1.2/Co0.3)4/Pd2. Three 

different field configurations for the annealing have been used: 

- No field 

- In-plane field of 2.3 kOe 

- Perpendicular field of 2.3 kOe 
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The annealing was performed in the small furnace at a temperature of 300°C, 

with a duration of 1 h, which is the standard time used in the laboratory with this set-

up. The time given here corresponds to the duration at which the set temperature is 

maintained and does not include the heating and cooling ramps (60 °C/min and 

about 10 °C/min, respectively). The magnetic properties of the electrode measured by 

Extraordinary Hall Effect are shown in Figure I-18. 

 

Figure I-18: Extraordinary Hall Effect loops measured on a top electrode with (a) perpendicular 
applied field and (b) in-plane field for varying configurations of the magnetic field during annealing. In 
(b), only half of the loop is shown and the signal is normalized to its maximal amplitude. 

 

It appears that the presence of a magnetic field during annealing has a negligible 

effect on the magnetic properties of perpendicular electrodes. Whatever the 

configuration, the magnetic curves are almost identical. For the following studies 

done during this thesis, no field will be applied when using the small furnace. 

This study also confirms that the presence of a planar field in the larger set-up will 

not be detrimental to the properties of our samples. 

 

I-6.2 Set-up equivalence 

 

As we have said at the beginning, we have access to two different furnaces and 

using the largest one is necessary if we want to work with large samples such as full 

wafers. We have seen that the permanent in-plane field that is present in this furnace 

will not modify the properties of the perpendicularly magnetized layers. 

The equivalence between the two apparatus has been then determined using 

magnetic and transport properties. It appeared that annealing conditions of 300 °C 

for 1 hour in the small furnace give equivalent properties as 250 °C for 1h30 in the 

large furnace. 
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Note that in the large set-up, the set time is longer. This is to minimize the parts 

played by the heating and mostly the cooling ramps that take much more time with 

this furnace compared to the small one (around 10 °C/min and 0.5 °C/min, 

respectively with the large set-up). 
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I-7. Conclusions 
 

We have seen that mastering the magnetic and transport properties of 

perpendicular magnetic tunnel junctions is not straightforward and requires a good 

knowledge of the deposited materials. There exists however a strong interest for those 

structures as they give the opportunity to create particularly efficient memories. This 

is what motivated the works of this thesis. 

In the following of this manuscript, we will see that starting from a relatively 

standard structure, with a Co/Pt-based reference and a top storage layer, we can 

enhance its properties by tuning the stack parameters and that we can also go 

towards even more complex designs. 
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From the review of Chapter I on the recent developments of magnetic tunnel 

junctions with perpendicular anisotropy, it appears that getting functional structures 

is not easy and that a lot of materials parameters are involved. Indeed, mastering the 

growth conditions of the different layers is extremely important, in particular because 

perpendicular magnetic anisotropy has mostly interfacial origins. 

Both seed and cap layers play a role in the magnetic properties of the stacks, as 

well as the chemical composition of the electrodes of the magnetic tunnel junction. To 

create functional devices it is necessary to have a good knowledge of the working 

window of each parameter, in particular the thicknesses. As we will see, varying the 

composition of the stack will influence both the magnetic and the transport 

properties. 

In this Chapter, we will first show how the thickness of the Ta insertion separating 

the Co/Pt multilayer from the CoFeB layer in the reference layer can be optimized to 

enhance the properties of the whole junction [Cuc-13]. We will then describe the 

development of the bottom Synthetic AntiFerromagnetic (SAF) reference, in 

particular the choice of the thicknesses of each material. Finally, we will see that 

optimizing both the bottom and top CoFeB thicknesses allows improving the 

magnetic and transport properties of the junctions [Cuc-14]. 
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II-1. Optimization of the Ta insertion 
 

II-1.1 Role of the Ta insertion 

 

As we have seen in the first Chapter, CoFeB alloys are good candidates to get large 

tunnel magnetoresistance effects since they allow coherent tunneling when used with 

MgO barriers. However, the stability of the reference layer in 

Ta/CoFeB/MgO/CoFeB/Ta magnetic tunnel junctions is much lower than what can 

be obtained with Co/Pt or Co/Pd multilayers. That is why both systems were 

combined to create composite layers in which the CoFeB layer in contact with the 

MgO barrier is coupled to the multilayers. 

It has been shown that the texture of the CoFeB layer plays a dominant role to get 

high TMR signal. Thus, it is necessary to introduce a spacer between the multilayers 

and the CoFeB. Indeed, the bcc (100) texture that guaranties a good tunneling effect 

cannot be obtained in the CoFeB electrodes if they grow directly in contact with a Co 

hcp (0001) or a Pt (Pd) fcc (111) layer. In 2011, Worledge et al. introduced a thin Ta 

layer between the bottom Co/Pt multilayer and the CoFeB film [Wor-11]. This 

technique has also been employed by other groups with Co/Pd multilayers [Nat-12]. 

As thin Ta is amorphous, it allows the CoFeB alloy, which is also amorphous after 

deposition, to crystallize from the MgO side into the right bcc (100) structure upon 

annealing. 

Using a Ta insertion has also another advantage: it attracts boron away from the 

interface with MgO during annealing. This effect has been observed and proved to be 

beneficial for TMR. As the annealing temperature increases, the boron content of the 

CoFeB electrode decreases at the MgO interface and the crystalline structure is 

improved [Koz-10]. 

We decided to investigate the effect of this Ta spacer in perpendicular magnetic 

tunnel junctions both on their magnetic and transport properties. 
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II-1.2 Magnetic coupling between the multilayer and the CoFeB 

layer through the Ta spacer 

 

a) Case of a “thick” bottom CoFeB layer 

To study the impact of varying the thickness of the Ta spacer on the magnetic 

properties of our magnetic tunnel junctions, we deposited samples composed of a 

bottom Co/Pt multilayer coupled through Ta to a Co-rich CoFeB layer. The top 

electrode is a single layer of Fe-rich CoFeB composition and represents the free layer 

in this case. The stack is the following 

Ta3/Pt5/(Co0.5/Pt0.4)5/Co0.5/TaxTa/CoFeB1.2/MgO/FeCoB1.2/Ta1/Pt2, where 

thicknesses are given in nanometers. The Ta insertion thickness is varied between 0 

and 0.9 nm. The depositions are done on CuN buffer layers to allow performing 

transport measurements by CIPT (see Chapter I). Samples are vacuum-annealed at 

300°C for 1 h. 
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Figure II-1: Typical EHE loop obtained for xTa=0 nm with a perpendicular field. The red curve 
corresponds to the minor loop on the top free layer. 

 

We show in Figure II-1 an example of the magnetic loop we measure for a sample 

with no Ta insertion (xTa=0 nm) using our Extraordinary Hall Effect (EHE) set-up, 

with perpendicular applied field. Transitions of both the top soft layer and the bottom 

hard electrode are visible. A minor loop is performed on the free layer and is included 

in red in the Figure. It can be seen that this cycle is not centered on zero field but is 

slightly shifted towards positive fields. As the measurement is performed coming 

from positive saturation, this shift corresponds to the typical antiferromagnetic 

coupling that exists through the MgO barrier. For this sample, it amounts to about -

80 Oe. This type of indirect exchange coupling has been theorized using spin torque 

mediated effects through the MgO barrier [Slo-89, Bru-95]. One cannot however 

exclude the possibility of magnetostatic coupling due to surface roughness. L. Néel 
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proposed such an explanation defining what is known as orange peel coupling [Née-

62]. This theory can indeed be adapted to perpendicular systems and leads to the 

existence of an antiferromagnetic coupling in the case of strong perpendicular 

anisotropy [Mor-04]. It was firstly observed in epitaxial systems for which the 

coupling goes from antiferromagnetic to ferromagnetic as the barrier thickness 

increases [Fau-02]. The amplitude of the coupling is found to decrease as the barrier 

thickness increases, as shown in Figure II-2. In the case of sputtered systems the 

antiferromagnetic coupling persists up to larger barrier thicknesses, probably due to 

a greater surface roughness associated with this deposition technique. This indirect 

exchange coupling was also found to oscillate in amplitude as a function of magnetic 

thickness and to be dependent on annealing temperature [Nis-10b], in agreement 

with theoretical predictions [Bru-93]. 

 

Figure II-2: Evolution of the indirect coupling energy as a function of MgO barrier thickness for 
Fe/MgO/Fe/Co epitaxial structures [Fau-02].   

 

Similar measurements to the one shown in Figure II-1 were then done for samples 

with increasing Ta thickness and we present in Figure II-3 the results for Ta 

thicknesses of 0.4, 0.5 and 0.6 nm. All curves have been normalized to their 

maximum Hall resistance in order to facilitate the comparison between samples. Only 

the part comprised between -1 and 4 kOe is shown here. One can observe that a hard 

axis component abruptly appears in the signal for xTa=0.5 and 0.6 nm. This planar 

signal is attributed to the bottom CoFeB layer. As its magnetization decouples from 

that of the underlying Co/Pt multilayer, it abruptly falls in-plane. This means that the 

thickness of 1.2 nm of CoFeB we are working with cannot retain perpendicular 

anisotropy on its own. As can be seen in Figure II-3, a field of about 3 kOe is 

necessary to pull the magnetization out-of-plane, once it is magnetically decoupled 

from the Co/Pt multilayer. 
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Figure II-3: Partial EHE loop performed on samples with xTa=0.4, 0.5, and 0.6 nm. 

 

The amplitude of the planar signal has been evaluated for all Ta thicknesses and 

normalized to the bottom electrode contribution. Results are given as a function of 

the Ta spacer thickness in Figure II-4. It comes out that for Ta thicknesses up to 0.45 

nm, no in-plane component is visible in the magnetic loop, meaning that the CoFeB 

layer is still strongly coupled to the Co/Pt multilayer. Above 0.55 nm of Ta, the 

amplitude of the planar signal remains constant at a value of about 4.5 % of the 

bottom multilayer contribution. Note that this amplitude is a lot smaller than what 

we would expect from the magnetizations of both layers. This is due to the fact that 

the Hall coefficient of CoFeB is much lower than the one of Co/Pt layers. For the 0.5 

nm thick Ta insertion, the planar signal has not reached yet its maximum value. We 

assume that, at this thickness, the system is in an intermediate state in which the 

magnetization of the CoFeB layer is not homogeneous and some parts have kept 

perpendicular anisotropy (probably because of the roughness). 
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Figure II-4: Relative Hall contribution of the in-plane component of the bottom electrode as a function 
of Ta insertion thickness. 

 

The antiferromagnetic coupling that exists through the MgO is also a 

representative parameter of the effect of the Ta layer thickness. The evolution of this 

coupling field as a function of spacer thickness is plotted in Figure II-5. We remind 

that due to the sign convention, negative field values correspond to antiferromagnetic 

coupling. As the Ta insertion gets thicker, the coupling field amplitude decreases 

from -80 Oe without Ta to about -20 Oe for xTa=0.5 nm. This is explained by a 

reduction of the MgO barrier roughness thanks to the beneficial effect of the 

underlying Ta layer, as it becomes thicker. When the Ta spacer thickness is larger 

than 0.5 nm, the coupling field remains constant as the CoFeB magnetization is now 

in-plane. This non zero asymptotic value might probably originate from a remaining 

interfacial roughness. It leads to the existence of stray fields that prevent the 

magnetizations on both sides of the MgO from being fully orthogonal to each other. 

Note that as the coupling energy can be expressed as 𝐽 = 𝐻𝑐𝑝𝑙𝑀𝑠𝑡, with Ms and t the 

saturation magnetization and the thickness of the top FeCoB layer that switches, any 

variation of the coupling field Hcpl can only be attributed to a change in coupling 

energy. 
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Figure II-5: Variation of the coupling field between the bottom and top magnetic layers through the 
MgO barrier as a function of Ta thickness. 

 

The anisotropy field of the planar contribution has been evaluated for the 

different values of Ta insertion thickness. Results are presented in Figure II-6. This 

field corresponds to the field needed to orient perpendicularly the magnetization of 

the CoFeB layer and is taken with a negative value, following the usual convention to 

state that the anisotropy is planar. Note that we cannot extract the anisotropy of the 

CoFeB layer when it is coupled to the underlying Co/Pt multilayer as its contribution 

cannot be estimated separately. At the appearance of the planar signal for xTa=0.5 

nm, the anisotropy field amounts to about -3 kOe. It then decreases in amplitude 

upon increasing the Ta insertion thickness to reach -1 kOe for xTa=0.9 nm. This can 

be explained by an increase of the perpendicular anisotropy of the in-plane 

magnetized CoFeB for increasing Ta thicknesses. The effect of Ta on perpendicular 

anisotropy is not easily interpreted. Indeed, if some studies attribute a contribution of 

the interface with Ta to PMA [Wor-11, Yam-12], others state that it solely originates 

from the CoFeB/MgO interface, Ta ensuring only a better growth to the layers [Liu-

12]. As already pointed out, Ta plays a role in the enhancement of TMR by attracting 

boron away from the interface with MgO during annealing [Koz-10]. This diffusion of 

boron atoms that improves TMR might also have a beneficial impact on PMA [Nis-

10a]. One could also think that as the Ta spacer gets thicker a possible alloying 

between Ta and CoFeB might lead to a reduction of effective CoFeB thickness and 

then to a decrease of the anisotropy field. However, the fact that the amplitude of the 

planar signal stays constant for xTa>0.55 nm (as seen in Figure II-4) seems to exclude 

the possibility of a change of magnetic dead layer with Ta thickness in that case. 
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Figure II-6: Perpendicular anisotropy field of the in-plane magnetized CoFeB layer as a function of Ta 
insertion thickness. 

 

b) Case of a fully perpendicular system (“thin” bottom FeCoB) 

After seeing this effect of decoupling between the bottom Co/Pt multilayer and a 

CoFeB layer that loses its perpendicular magnetization, we wanted to investigate the 

case of a fully perpendicular system, that is to say a structure in which the CoFeB 

layer keeps perpendicular anisotropy even when it is decoupled from the Co/Pt 

multilayer. To do this, we deposited bottom electrodes with the following stack: 

Ta5/Pt5/(Co0.5/Pt0.25)5/Co0.5/Ru0.9/(Co0.5/Pt0.25)3/Co0.5/TaxTa/FeCoB1/MgO

/FeCoB0.5/Ta1/Pt2, with thicknesses given in nm. Note that in this study we used a 

bottom FeCoB layer as the Co-rich composition target had been removed from our 

deposition tool at that time. The structure is in that case a synthetic antiferromagnet 

in which one bottom Co/Pt multilayer is antiferromagnetically coupled through a Ru 

spacer to a top Co/Pt multilayer plus a 1 nm thick FeCoB layer. Details on the 

optimization of the SAF layer will be given later. In those stacks, we put a 0.5 nm 

thick FeCoB on top of the barrier, which we know is non-magnetic due to dead layer 

formation. This allows having the same interfaces without getting a magnetic 

contribution of the free layer that might be mixed with the signal of the bottom 

FeCoB layer. 

Typical hysteresis loops obtained by VSM are shown in Figure II-7 for xTa=0.3, 0.5 

and 0.8 nm. Magnetic loops are measured coming from positive fields saturation and 

a minor loop is performed on the top part of the SAF (red curves in Figure II-7). 

Curves are normalized to their total amplitude in order to make comparison easier. 

Note that the edges of the substrates were not protected for this series of samples so a 

parasitic signal appears at small fields between ± 500 Oe, as explained in Chapter I. 

This signal will not be taken into account in the discussion. For xTa=0.3 nm the 

bottom FeCoB layer is still strongly coupled to the Co/Pt multilayer so we only see 
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two transitions in the magnetic loop, corresponding to the bottom and top part of the 

SAF respectively. For xTa=0.5 nm, new transitions are visible in the hysteresis loop. 

Around a positive field of 1300 Oe, an abrupt transition appears. It corresponds to 

the switching of the bottom FeCoB magnetization which starts to decouple from the 

underlying Co/Pt multilayer. Contrary to the case of a 0.8 nm thick Ta insertion, this 

signal is not centered on zero field. This means that the system is in an intermediate 

state in which the multilayer and the FeCoB layer are still partly coupled, probably 

because of some interfacial roughness. 

 

Figure II-7: Magnetic loops measured with perpendicular field for bottom SAF with increasing 
thicknesses of Ta insertion (xTa=0.3 (a), 0.5 (b) or 0.8 nm (c)). Minor loops on the top part of the SAF 
are included in red. 

 

The value of the shift of the bottom FeCoB transition has been evaluated for all 

samples of this study and is presented as a function of Ta thickness in Figure II-8 (a). 

In the case of strong ferromagnetic coupling between the FeCoB and the multilayer, 

that is to say when they switch together, we cannot extract any value of the coupling 

field. Thus, no data points are presented for xTa<0.5 nm. 
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Figure II-8: Evolution of (a) the coupling field of the FeCoB layer and (b) the SAF field as a function of 
Ta insertion thickness. 
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As we have seen in the magnetic loop of Figure II-7, the signal of the FeCoB layer 

starts to appear for xTa=0.5 nm. This thickness is equivalent to the one we had 

previously observed in the case of a thick CoFeB layer. The coupling field reaches 

about 1800 Oe for xTa=0.55 nm and then decreases to become null as soon as xTa is 

greater than 0.7 nm, when the FeCoB magnetization is fully decoupled from the rest 

of the SAF. This curve shows that the transition between a strongly coupled system 

and two decoupled layers is not sharp and happens between 0.45 and 0.7 nm. 

When the FeCoB layer starts decoupling from the Co/Pt multilayer, a 

supplementary transition appears for negative fields around -2000 Oe (see Figure II-

7 (b)). This is due to the fact that the RKKY coupling energy through the Ru spacer 

now predominates over the anisotropy energy leading to an additional reversal of the 

net moment of the SAF, still keeping an antiferromagnetic coupling. This effect will 

be described in more details in the following part. In the meantime, as the FeCoB 

magnetization is no longer coupled to the top Co/Pt multilayer, the total thickness of 

the layers involved in the SAF is reduced. This leads to a decrease in the amplitude of 

the first transition (coming from positive fields) as it now corresponds to the top 

multilayer only. Besides, its reversal happens at larger fields as the coupling field 

through the Ru spacer is increased for thinner layers, for a constant coupling energy. 

The evolution of the SAF coupling field as a function of Ta thickness is given in Figure 

II-8 (b). Note that due to the sign convention, the coupling field values are taken with 

a negative sign to account for the antiferromagnetic nature of the coupling. It roughly 

exhibits the same behavior as the coupling field on the FeCoB layer. The SAF field is 

more or less constant around 3500 Oe for xTa<0.45 nm and then, as the FeCoB layer 

decouples itself from the Co/Pt multilayer, its value increases to reach a constant 

value of about 6000 Oe for xTa>0.7 nm. 

 

II-1.3 Effect of the Ta insertion thickness on transport properties 

 

To study the impact of varying the Ta insertion thickness on the transport 

properties of magnetic tunnel junctions, we used the series of samples described in 

the previous part, in the case of a thick bottom CoFeB layer. Transport measurements 

were performed using a CIPT set-up, after applying a field of 1.5 kOe to saturate the 

samples. Magnetic fields of +/-150 Oe are applied in order to switch the top FeCoB 

free layer and resistance is measured in each case. The TMR ratio as a function of Ta 

thickness is given in Figure II-9. 
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Figure II-9: TMR evolution as a function of Ta insertion thickness. 

 

Without any Ta insertion, the TMR is around 40% and it increases up to almost 

70 % when the Ta spacer thickness is increased to 0.4 nm. This reflects the 

improvement of the texture of the CoFeB layer thanks to a thin Ta layer. Above 0.45 

nm, the TMR signal drops which is consistent with the reorientation of the CoFeB 

magnetization in the plane of the magnetic film. Indeed, once the CoFeB 

magnetization is in-plane, no matter which direction the free layer takes (up or 

down), the level of resistance will always be the same, which translates into zero 

magnetoresistance. We have thus a clear correlation between the magnetic and the 

transport properties of our magnetic tunnel junctions as a function of Ta insertion 

thickness. 

 

II-1.4 Conclusions 

 

In this part, we have seen that the Ta insertion that is introduced in the hard 

magnetic electrode of a magnetic tunnel junction to decouple the growth of the 

CoFeB layer from the adjacent Co/Pt(Pd) multilayer has to be chosen carefully. 

Indeed, the Ta insertion enhances significantly the TMR signal of the magnetic tunnel 

junctions by improving the crystalline structure of the CoFeB alloy. However, it is 
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necessary to keep this spacer thin enough in order to maintain a strong magnetic 

coupling between the layers. As we have shown, any decoupling between the CoFeB 

and the multilayer translates into a decrease of TMR. 

From the magnetic and transport measurements that have been performed on 

different types of structures, it appears that a good compromise would be to choose a 

thickness of Ta around 0.3 nm. This gives us the largest TMR signals while remaining 

in the coupled zone. For the following studies, this thickness will be kept as the 

standard value to use for Ta spacers between a Co/Pt(Pd) multilayer and a CoFeB 

layer. 
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II-2. Development of bottom synthetic antiferromagnetic 

references 
 

II-2.1 Origin of the antiferromagnetic coupling: RKKY interactions 

 

In a stack comprising two ferromagnetic layers separated by a non-magnetic 

spacer, it has been observed that an indirect exchange coupling could appear between 

the magnetic layers. In the case of interfacial roughness, a ferromagnetic coupling 

may exist due to the existence of magnetostatic charges. This dipolar coupling is 

known as Neel type or orange peel coupling [Née-62]. However, even when the 

interfaces are smooth, some coupling can arise from the polarization of the electrons 

of the non-magnetic material in contact with the magnetic layers. Indeed, a magnetic 

impurity present in a non-magnetic material can polarize the conduction electrons 

leading to a disequilibrium between the densities of spin up and spin down electrons. 

This polarization oscillates with a period of 2kF, where kF is the Fermi wave vector, 

and decreases in amplitude with a 1/r3 behavior, r being the distance from the 

impurity. In the presence of two impurities, both polarization waves will interact to 

couple indirectly the two magnetic moments, either ferromagnetically or 

antiferromagnetically depending on the distance between them. This phenomenon is 

called RKKY interaction and is named after the researchers who worked on it: 

Ruderman and Kittel [Rud-54], Kasuya [Kas-56] and Yosida [Yos-57]. The same kind 

of behavior exists between two ferromagnetic layers separated by a non-magnetic 

spacer. The sign of the coupling oscillates as a function of spacer thickness and 

decreases in amplitude as the spacer gets thicker. 

In 1991, S. S. P. Parkin showed that this oscillatory behavior is a general 

phenomenon for almost all transition metals [Par-91]. He worked on numerous 

spacer materials sandwiched between different magnetic layers (Co or Fe) and found 

that the coupling field oscillates as a function of spacer thickness with a period of 

approximately 1.0 nm for all transition metals (with the exception of Cr, which 

presents a larger period). An example of the obtained oscillations for Co/V, Co/Mo 

and Co/Rh multilayers is given in Figure II-10. In our studies, we will mostly work 

with ruthenium spacers which had also been found to exhibit RKKY coupling [Par-

91]. 
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Figure II-10: Oscillations of the coupling as a function of spacer thickness for different materials 
(Co/V, Mo or Rh). Data extracted from [Par-91]. 

 

II-2.2 What is a synthetic antiferromagnet? 

 

Being able to couple antiferromagnetically two magnetic layers is particularly 

interesting for spintronic devices. Indeed, as the lateral sizes of the pillars are 

reduced to enhance storage density, strong dipolar couplings appear between the 

reference and storage electrodes. This coupling is increasing as the pillar diameter 

decreases and adds to the existing indirect couplings through the tunnel barrier to 

become even predominant at small sizes. This effect translates into a shift of the 

hysteresis loop of the storage layer and might lead to a loss of a bistable state in zero 

field as illustrated in Figure II-11. 

 

Figure II-11: Schematic representation of the magnetic loop of the storage layer in the case of (a) no 
dipolar coupling and (b) a dipolar coupling. Hdip corresponds to the amplitude of the shift of the 
hysteresis loop. 
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This is the reason why Synthetic AntiFerromagnetic (or SAF) structures have been 

developed in which two ferromagnetic layers are antiferromagnetically coupled 

through a metallic spacer. They are mostly used as reference layers and have been 

observed to be strongly effective to reduce dipolar coupling in small size pillars. The 

first SAFs were inserted in magnetic tunnel junctions with planar anisotropy. In that 

case, magnetic compensation on both sides of the spacer allows suppressing the 

coupling field that act on the storage layer. Figure II-12 schematically shows how the 

field lines are locked in a compensated planar SAF. 

 

 

Figure II-12: Schematic representation of a planar SAF. 

 

In the case of perpendicular anisotropy, RKKY coupling also exists and it is 

possible to create SAF reference layers. Similarly to the planar systems, the coupling 

field can be strongly reduced. However, the compensation is not straightforward and 

varies significantly with pillar diameters. S. Bandiera et al. compared magnetic 

tunnel junctions with either a single layer or a SAF reference [Ban-10]. Calculations 

revealed that the stray fields mostly come for the edges of the nanopillars and are 

much lower in amplitude for the SAF systems. To minimize the loop shift of the free 

layer, the ratio of magnetizations in the SAF has to be adjusted and depends on the 

pillar diameter. In Figure II-13, the coupling field is represented as a function of the 

ratio =M1/M2, where M2 is the magnetization of the layer the closest to the barrier 

and M1 the farthest one. It appears that the optimal ratio to suppress any loop shift 

depends on the size of the pillar and is increasing rapidly for diameters smaller than 

200 nm. Note that in any case, the magnetization of the layer that is farther from the 

free layer has to be larger due to a distance effect.  
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Figure II-13: Calculated coupling field on the free layer as a function of magnetizations ratio  in the 
SAF (from [Ban-10]). 

 

II-2.3 Magnetic behavior of a synthetic antiferromagnet 

 

Using a SAF stack gives the possibility to stabilize an antiparallel configuration of 

the magnetizations of the ferromagnetic layers at zero field. In a SAF system 

F1/Ru/F2 under applied field, different energy terms have to be taken into account: 

the Zeeman energy, the anisotropy energy and the RKKY coupling energy. Depending 

on their relative contributions, two different magnetic behaviors are possible. They 

are schematically represented in Figure II-14. 

 

 

Figure II-14: Schematic hysteresis loops of a SAF in the case where (a) the RKKY coupling energy is 
smaller than the Zeeman and anisotropy contributions (b) the opposite situation. We add in red minor 
loops. 
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In both cases, coming from positive field saturation, where the two 

magnetizations are aligned in the field direction, a first transition is observed and 

corresponds to the switching of the softest layer of the SAF. A minor loop can be 

performed on this layer, by increasing again the amplitude of the magnetic field, as 

shown in red. The shift of this minor loop gives the coupling field HSAF, that can be 

used to calculate the coupling energy JRu=HSAFM2t2, with layer 2 being the softest 

one. If one continues to decrease the field to go towards negative saturation, the 

switching of the hardest layer F1 occurs. In the case where the Zeeman and anisotropy 

energies of F2 are larger than the coupling energy (Figure II-14 (a)), only one 

transition is visible and F1 switches while F2 stays parallel to the field direction. In the 

opposite case (Figure II-14 (b)), when the RKKY coupling through Ru is strong, the 

switching of F1 translates into a back-switching of F2, as the layers are preferably in 

antiparallel configuration. This corresponds to the alignment of the net 

magnetization of the system in the field direction. As the field keeps decreasing, F2 

finally switches so that both layers are parallel to the field. In both cases, two 

antiparallel configurations can be stabilized in zero field. 

 

II-2.4 Optimization of layers thicknesses in the bottom SAF 

electrode 

 

In order to develop reference layers for perpendicular magnetic tunnel junctions, 

we decided to work on SAF systems with Co/Pt multilayers coupled to a CoFeB layer 

through a thin Ta spacer. Due to their large perpendicular anisotropy, Co/Pt 

multilayers are particularly good candidates to create magnetically hard layers that 

can be used as references. In the meantime, as we have seen previously, this kind of 

structure will have the advantage of reducing stray fields in the future patterned 

samples. This strategy had already been adopted by Worledge et al. in 2011 in the 

case of a top reference stack with Co/Pd multilayers [Wor-11]. Here we focus on the 

development of a bottom reference layer, in which the different layers have to be 

tuned properly so as to get the optimal magnetic behavior. 

The typical stacks we will study in this part are the following: 

Ta3/Pt5/(Co/Pt)5/Co/Ru/(Co/Pt)3/Co/Ta0.3/CoFeB1.2/MgO/FeCoB1.4/Ta1/Pt2, 

with thicknesses in nm. 

 

a) Choice of the Ru spacer thickness 

The oscillatory nature of RKKY coupling implies that the strength of this coupling 

will depend on spacer thickness. To enhance the reference stability, one needs to 

achieve the largest antiparallel plateau as possible. To that aim, we deposited a series 
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of samples with varying Ru thickness in which the thicknesses of Co and Pt in the 

multilayers were fixed at 0.5 and 0.25 nm respectively. Some examples of the 

hysteresis loops we obtain by VSM with perpendicular applied field are shown in 

Figure II-15. We only present half loops, measured from positive saturation (in black) 

and minor loops are performed both on the free layer and the softest part of the SAF 

(in red). Coming from positive fields, the first transition corresponds to the top part 

of the SAF, which is the magnetically softest one. Then, the top FeCoB layer switches, 

with its minor loop almost centered on zero field. Finally, for negative applied fields, 

the hard bottom multilayer is reversed. It appears that the magnetic behavior of the 

magnetic tunnel junctions varies a lot as a function of Ru thickness. In Figure II-15 

(a), for a Ru spacer of 0.45 nm, the RKKY coupling is large with an antiparallel 

plateau that extends between about -5500 and 5000 Oe. This strong coupling gives 

rise to rounded shapes of the transitions and the appearance of a third transition in 

the SAF, as we have shown in Figure II-14 (b). For Ru thicknesses of 0.55 and 0.9 nm 

(Figure II-15 (b) and (c)), the magnetic loops are very similar with however distinct 

coupling fields that amount to 2300 and 3300 Oe, respectively. For a thicker Ru layer 

of 1.1 nm, the coupling strength is drastically reduced. As we can observe in Figure II-

15 (d), the coupling field is very low (around 700 Oe) and the antiparallel plateau is 

almost lost at this thickness. Note that for strong RKKY coupling, the stability of the 

SAF reference layer appears to be much larger than in the case of the single 

ferromagnetic reference seen in the previous part. Indeed, as observed in Figure II-1, 

the coercive field of the ferromagnetic reference is only around 350 Oe whereas SAF 

structures give antiferromagnetic plateaus as large as a few kOe. 

 

Figure II-15: Magnetic cycles measured by VSM with perpendicular field for samples composed of a 
bottom SAF reference with varying Ru spacer thickness and a top free layer. Minor loops are included 
in red. 
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The value of the RKKY coupling field HSAF has been measured for Ru thicknesses 

varying between 0.3 and 1.1 nm. As shown in Figure II-16, the expected oscillatory 

behavior is observed. 
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Figure II-16: RKKY coupling field as a function of Ru spacer thickness. 

 

For a Ru thickness of 0.4 nm, the amplitude of the coupling field is very high 

around -7000 Oe. Upon increasing the Ru thickness, the coupling field decreases 

quickly to reach a minimum of 2000 Oe between 0.5 and 0.7 nm. A peak is obtained 

around 0.9 nm, with an amplitude of about -3200 Oe. For thicker spacers, the 

coupling strength decreases again. Note that for Ru insertions thinner than 0.3 nm it 

is not possible to measure coupling fields as both layers start to be ferromagnetically 

coupled, probably due to direct coupling through pinholes. We cannot then consider 

the first “peak” at small thicknesses as a real maximum since the coupling turns 

abruptly from an indirect antiferromagnetic to a direct ferromagnetic one at small Ru 

thicknesses. 

According to this study, the best option seems to be using a thickness of Ru spacer 

around 0.9 nm. Indeed, even though larger RKKY coupling amplitudes can be 

reached for thinner spacers, they vary really quickly in the range between 0.4 and 0.6 

nm. This might induce reproducibility issues as the deposited thickness of Ru may 

fluctuate a little. Besides, as we have seen in Figure II-15 (a) for a Ru spacer of 0.45 

nm, tilted transitions appear for systems with thin insertion layers. On the contrary, 

for a 0.9 nm thick layer of Ru, perpendicular anisotropy is sufficiently high and we 

have a relatively large range of thicknesses for which the coupling energy is stable 

(typically between 0.8 and 1.0 nm). This makes these structures more stable against 

possible fluctuations of the deposition rates. 
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b) Optimization of the Co thickness in the (Co/Pt) multilayers 

After setting the Ru insertion thickness to 0.9 nm, we now try to optimize the Co 

thickness in the multilayers. In the previous series with varying Ru thickness, Co had 

been fixed at 0.5 nm in the Co/Pt multilayers and as shown in Figure II-15 (c), 

already good SAF references were obtained. However, to check if the anisotropy and 

coupling properties could be further enhanced, we investigated the effect of 

modifying the Co thickness, in a small range around 0.5 nm. For this study, Pt 

thickness is fixed at 0.25 nm in the multilayers and the thickness of Co is varied 

between 0.4 and 0.6 nm. In Figure II-17, VSM loops are plotted for three different Co 

thicknesses. All curves are relatively similar and all SAF structures are working in 

those cases. Nevertheless, there are slight modifications in the coupling strength and 

the anisotropy. Indeed, as the Co thickness increases, coercive fields of the bottom 

and top parts of the SAF decrease. In Figure II-17 (c), for 0.6 nm thick layers of Co, 

the transitions are clearly less sharp than those of the thinner cases, indicating that 

perpendicular anisotropy is weaker. This behavior is expected as thicker the magnetic 

layer is, the smaller the perpendicular anisotropy energy gets. 

The coupling field HSAF, extracted as presented in Figure II-14, as well as the 

coercive field HC1 of the bottom Co/Pt multilayer are shown for all Co thicknesses in 

Figure II-18. We observe that the coercive field of the bottom Co/Pt multilayer is 

monotonously decreasing as the thickness of Co is increased. The coupling field does 

not vary so much between 0.4 and 0.5 nm and then starts decreasing rapidly above 

0.5 nm. It thus seems that in order to enhance the width of the antiparallel plateau 

and perpendicular anisotropy, the Co thickness has to be chosen around 0.4-0.5 nm. 

This study allows confirming the order of switching since, as can be observed in 

Figure II-17, as the thickness of Co increases, the amplitude of the transition at 

negative fields gets larger. Knowing that the amount of Co is increasing faster in the 

bottom multilayer, we can then attribute the transition at large positive fields to the 

top part of the SAF that is in contact with the MgO barrier. 

 

 

Figure II-17: Magnetic loops measured by VSM with perpendicular applied field for magnetic tunnel 
junctions with varying Co thickness in the Co/Pt multilayers. 
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Figure II-18: Variation of the coupling field HSAF and the coercive field HC1 of the bottom multilayer as 
a function of Co thickness in the Co/Pt multilayers. 

 

c) Optimization of the Pt thickness in the (Co/Pt) multilayers 

Similarly, the thickness of Pt in the multilayers was tested. In this study, Co was 

set to 0.5 nm and magnetic tunnel junctions with varying thicknesses of Pt were 

deposited. We present in Figure II-19 the magnetic loops obtained for three different 

thicknesses: (a) 0.2 nm, (b) 0.25 nm and (c) 0.4 nm.  

 

Figure II-19: Magnetic loops measured by VSM with perpendicular applied field for magnetic tunnel 
junctions with varying Pt thickness in the Co/Pt multilayers. 

 

For 0.2 nm of Pt, we observe that the SAF exhibits tilted transitions and the 3 

steps behavior that we presented in Figure II-14 (b), which is not the case for the two 

other thicknesses. This suggests that a Pt layer as thin as 0.2 nm does not allow 

keeping a high perpendicular anisotropy. For 0.25 and 0.4 nm thick Pt layers, the 
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anisotropy is much larger and the transitions appear sharper. Both thicknesses seem 

to give roughly the same results. 

In the same way we did for the Co layer optimization, we plotted the value of the 

coupling field HSAF and the coercive field HC1 of the bottom multilayer as a function of 

the Pt thickness. In that case, the coupling field appears to be independent of the Pt 

thickness and amounts to about 3200 Oe. The coercive field of the bottom part of the 

SAF however decreases upon increasing the Pt thickness. We did not put a value for 

0.2nm thick Pt layers as the SAF switching mechanism is different. It thus seems that 

to enlarge the antiferromagnetic plateau, thin Pt layers are necessary but they have to 

be kept thick enough to keep perpendicular anisotropy. A good compromise would be 

to set the thickness of Pt in the multilayers at 0.25 nm. 

 

 

0.20 0.25 0.30 0.35 0.40 0.45
2500

2750

3000

3250

3500

M
a
g

n
e

ti
c
 f

ie
ld

 (
O

e
)

Pt thickness (nm)

 H
SAF

 H
C1

 

Figure II-20: Variation of the coupling field HSAF and the coercive field HC1 of the bottom multilayer as 
a function of Pt thickness in the Co/Pt multilayers. 

 

d) Optimization of the Pt buffer layer 

Finally, we studied the influence of the thickness of the Pt buffer layer. This layer 

is used to enhance the perpendicular anisotropy of the Co/Pt multilayers that grow 

upon it. Throughout the beginning of this study on bottom SAF reference 

optimization, it has been kept at 5 nm. However we wanted to check the influence of 

the Pt buffer on the magnetic properties of the SAF. As previously, a series of samples 

has been deposited with Co 0.5 nm and Pt 0.25 nm in the multilayers and various Pt 

buffer thicknesses. As observed in Figure II-21 (a), for a buffer thickness of 0.25 nm, 

which is equivalent to the thickness of Pt in the multilayers, the perpendicular 

anisotropy is very low and there is almost no antiferromagnetic plateau. Increasing 
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the thickness of the Pt buffer improves the anisotropy as the transitions become 

sharper for thicker buffers of 1 and 5 nm (Figure II-21 (b) and (c)).  

Similarly, the coupling field HSAF and the coercive field HC1 of the bottom 

multilayer have been evaluated for all samples and are shown in Figure II-22. HSAF 

increases sharply between 0.25 and 2 nm of Pt from 1500 to 3300 Oe. The increase is 

then much smaller for thicker buffer layers. The coercive field HC1 on the other hand 

keeps increasing as we increase the Pt thickness. It is relatively stable around 3200 

Oe for Pt buffer thicknesses between 1 and 5 nm but it can reach values as high as 

3600 Oe for 20 nm thick layers. Even though such large coercive fields can be 

achieved with very thick Pt buffer layers, it seems reasonable to set it at 5 nm to have 

a functional structure. 

 

Figure II-21: Magnetic loops measured by VSM with perpendicular applied field for magnetic tunnel 
junctions with varying Pt buffer thickness. 
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Figure II-22: Variation of the coupling field HSAF and the coercive field HC1 of the bottom multilayer as 
a function of Pt buffer thickness. 

 



78 
 

II-2.5 Choice of the optimal annealing temperature 

 

In order to determine the best temperature to use for the annealing of our 

perpendicularly magnetized samples, a series of annealing temperatures was tested in 

the small furnace on a standard perpendicular MTJ stack. The following stack has 

been chosen: Ta3/Pt5/(Co0.5/Ptx)5/Co0.5/Ru0.9/(Co0.5/Ptx)3/Co0.5/Ta0.3/ 

CoFeB1.2/MgO/FeCoB1.4/Ta1/Pt2. It corresponds to a structure with a bottom SAF 

reference layer and a top free layer. The Pt thickness is either 0.4 nm which was the 

former standard value in the structures developed by S. Bandiera [Ban-11] during his 

thesis in Spintec or 0.25 nm which is the newly chosen thickness. 

The annealing temperature has been varied between 260 and 400 °C, 300 °C 

being the historical standard temperature in the laboratory. Figure II-23 presents the 

magnetic curves obtained by VSM in the case of the junction with 0.25 nm thick 

layers of Pt for four different temperatures: 260, 300, 340 and 400 °C. 

 

Figure II-23: Magnetic loops measured by VSM with perpendicular applied field for standard 
perpendicular junctions with Co0.5/Pt0.25 multilayers in the bottom SAF. Three different annealing 
temperatures are presented: (a) 260 °C (b) 300 °C (c) 340 °C and (d) 400 °C. 

 

As can be seen in the curves, for the first two temperatures, the magnetic cycles 

are almost identical whereas for a large temperature like 400 °C, the magnetic 

anisotropy appears really reduced, with strongly tilted transitions. For the 

intermediate temperature of 340 °C, we still observe abrupt transitions in the SAF 

but the loop on the top FeCoB layer seems to be more tilted. Zooms on the minor 
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loops performed on the top storage layer are shown in Figure II-24. From this graph, 

we see that for an annealing temperature of 300 °C, we have a rather good 

perpendicular anisotropy, with the possibility to stabilize two magnetic states as the 

cycle is fully remanent (note that due to the antiferromagnetic coupling through 

MgO, the cycle is shifted towards negative fields with an off-set of about -30 Oe). As 

the annealing temperature increases, a progressive decrease of the perpendicular 

anisotropy is observed: there is a loss of the remanence and at 360 °C a typical planar 

signal is visible. 

 

Figure II-24: Minor loops on the top FeCoB storage layer measured by VSM with perpendicular 
applied field for different annealing temperatures. 

 

The transport properties have been evaluated, using the CIPT technique. In Figure 

II-25, we show the evolution of the TMR signal as a function of annealing 

temperature for the junctions with two values of Pt thickness in the multilayers of the 

SAF. In both cases the trend is the same and looks like the results quoted in the 

literature. There is first an increase in TMR as the crystallization process occurs. TMR 

is only 7 % in the case of a non-annealed sample (the data point is not shown on the 

scale of Figure II-25, as putting it will strongly affect the legibility of the figure). The 

signal reaches a maximum of about 100 % at the annealing temperature of 340 °C. It 

decreases then down to about 35 % at 400 °C. The loss of TMR for high annealing 

temperatures seems then to be due to the reduction in perpendicular anisotropy. 

However, the signal appears to be maintained for temperatures as high as 380 °C 

whereas from the magnetic characterizations we have seen that the anisotropy starts 

decreasing from 320 °C. This is due to the fact that for those temperatures, we are 

still able to fully saturate the storage layer perpendicularly in both orientations with 

the maximum field of the CIPT tool. Our results thus agree with other studies that 

show a link between perpendicular anisotropy and magnetoresistance [Wan-11, Nat-

13, Nis-10a]. 
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Figure II-25: Variation of the TMR signal as a function of annealing temperature for standard 
magnetic tunnel junctions with bottom SAF reference and varying thicknesses of Pt in the multilayers. 

 

The similarity in the curves obtained for the two thicknesses of Pt suggests that 

the diffusion of Pt should not play an important part in this range of annealing 

temperature. From this curve, the optimal temperature seems then to be 340 °C with 

this set-up, but a good thermal endurance can be maintained for temperatures as 

high as 380 °C, if we only take into account the transport properties. However, 

knowing that the best magnetic properties are obtained at 300 °C for the present 

magnetic thickness and that the TMR signal appears almost constant between 300 

and 380 °C, we will then choose 300 °C as the standard annealing temperature for 

our perpendicular samples. 

 

II-2.6 Conclusions 

 

The use of RKKY coupling is particularly interesting to create synthetic 

antiferromagnetic reference layers that will have the advantage of exhibiting reduced 

stray fields once patterned into small size devices. However, in the case of magnetic 

tunnel junctions with perpendicular anisotropy, there are several parameters to 

master in order to get an optimal magnetic behavior. 

In this part, we have shown that the thicknesses of the different layers composing 

the SAF must be adapted to get large perpendicular anisotropy and a good stability of 

the antiparallel plateau at the same time. According to the different series of samples 

that have been made the final stack we will be choosing as the bottom reference of 
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our magnetic junctions is the following: substrate/Ta3/Pt5/(Co0.5/Pt0.25)n/Co0.5 

/Ru0.9/(Co0.5/Pt0.25)m/Co0.5/Ta0.3/CoFeBx, where thicknesses are given in nm. 

The choice of the thickness x of CoFeB will be detailed in the following part. The 

numbers of repeats n and m of the Co/Pt multilayers will be adapted to the 

magnetization of the CoFeB layer used in the bottom electrode so as to optimize the 

ratio M1/M2, in order to minimize stray fields at small pillar sizes. 

These structures were found to exhibit a rather large thermal endurance as 

annealing temperatures up to 380 °C can be applied without any deterioration of the 

transport properties. However, to maintain a good enough perpendicular anisotropy, 

the annealing temperature will be limited to 300 °C. Note that we could probably 

maintain the anisotropy properties at higher temperatures by choosing a thinner 

storage layer. 
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II-3. Optimization of magnetic electrode thicknesses 
 

Having optimized the composition of Co/Pt multilayers of the bottom SAF 

reference, one now has to adjust the thicknesses of the bottom and top CoFeB 

electrodes and find windows for which the magnetizations of the electrodes is 

perpendicular-to-plane, with a thickness large enough to maximize tunnel 

magnetoresistance. Knowing the influence of these thicknesses on the transport 

properties is essential to be able to design a device exhibiting the best performances 

as possible. 

In this study, we will work on samples with the following stack: 

substrate/Ta3/Pt5/(Co0.5/Pt0.25)5/Co0.5/Ru0.9/(Co0.5/Pt0.25)3/Co0.5/Ta0.3/Co

FeB/MgO/FeCoB/Ta1/Pt2, with thicknesses in nm. They comprise the optimal Co/Pt 

SAF structure we have developed previously and can be schematically represented as 

M1/Ru/M2/MgO/M3. For the bottom electrode we use our Co-rich Co60Fe20B20 alloy 

and for the top electrode the Fe-rich Fe72Co8B20 one is employed. They are deposited 

on standard 60 nm thick CuN buffers to allow CIPT measurements and annealed at 

300 °C for 1 hour. 

 

II-3.1 Determination of the critical thicknesses 

 

Two series of samples were deposited in which the thicknesses of CoFeB and 

FeCoB are varied independently. For varying thickness of bottom CoFeB, the top 

FeCoB layer is kept at 1.4 nm while in the case of varying top FeCoB, the bottom 

CoFeB remains at 1.2 nm. Examples of the magnetic loops that are obtained by VSM 

with perpendicular applied field are shown in Figure II-26. As observed before, 

coming from positive field saturation, the first transition around 2800 Oe 

corresponds to the reversal of the top part of the bottom SAF M2. This can be verified 

by the increase of its relative contribution as the bottom CoFeB thickness increases 

(left part of Figure II-26). It can be seen rather easily as the amplitude of the signal at 

zero field keeps decreasing. The central transition corresponds to the top free FeCoB 

layer M3 and the last transition at negative applied fields represents the switching of 

the bottom hardest part of the SAF which has the largest coercive field, M1. 

For the samples with bottom CoFeB thicknesses of 0.8, 1.0 and 1.2 nm (Figure II-

26, left), perfectly horizontal magnetic signals are measured between sharp 

transitions. This indicates that the anisotropy is fully perpendicular in the whole 

structure. In the case of a 1.6 nm thick CoFeB layer, a slope appears in the loop, 

characteristic of a hard magnetic signal. It is not symmetrical with respect to the 

applied field, reflecting that it comes from the SAF electrode. The magnetization of 

the top part of the SAF starts to tilt away from the perpendicular direction and as the 
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field is decreased it stabilizes M2 in the perpendicular negative direction, explaining 

why no slope is observed for negative applied field. In the case of varying top FeCoB 

thickness (Figure II-26, right), we see the magnetization of the FeCoB layer going 

from fully perpendicular to planar, a hard axis behavior being clearly recognizable for 

a thickness of 1.7 nm. 

An important parameter to know is the critical thickness, that is to say the 

thickness at which the out-of-plane to in-plane reorientation of the magnetization 

occurs. This will allow knowing the upper limit with which we can work. Even though 

it is not possible to accurately determine the critical thickness in the case of the 

bottom CoFeB electrode, we can estimate it to be around 1.6 nm. For the top FeCoB 

layer, a critical thickness of 1.7 nm is estimated from the magnetic loops. 

 

Figure II-26: Magnetic cycles measured by VSM with a perpendicular field for varying thicknesses of 
bottom CoFeB (left) and top FeCoB (right) electrodes, keeping thicknesses of 1.4 nm for the top FeCoB 
layer and 1.2 for the bottom CoFeB layer, respectively. 
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II-3.2 Determination of saturation magnetization and magnetic 

dead layer thickness 

 

Series of samples with varying CoFeB or FeCoB enable us to extract materials 

parameters such as saturation magnetization Ms and magnetic dead layer thickness 

td. In a very simple model, the magnetic dead layer corresponds to the non-magnetic 

layer that forms at the interfaces due to the intermixing of the different materials. It 

is supposed to preferentially arise at the interface with Ta. 

Reminding that our structures can be schematically represented as 

M1/Ru/M2/MgO/M3, there are always two contributions that stay constant when 

varying the thickness of CoFeB or FeCoB. They can be used for normalization, 

enabling us to get to get rid of any calibration uncertainty of our VSM tool. In Figure 

II-27, we present the variations of M2/M1 for varying bottom CoFeB thickness and 

M3/M1 for varying top FeCoB. 

 

Figure II-27: Magnetization ratio M2/M1 as a function of bottom CoFeB thickness (a) and M3/M1 as a 
function of top FeCoB thickness (b). The horizontal line on the left graph corresponds to the ratio 
M2/M1 for zero CoFeB thickness, that is to say 2/3. 

 

The M2/M1 ratio can be expressed as 

𝑀2

𝑀1
=

4𝑡𝐶𝑜𝑀𝑠𝐶𝑜 + (𝑡𝐶𝑜𝐹𝑒𝐵 − 𝑡𝑑)𝑀𝑠𝐶𝑜𝐹𝑒𝐵

6𝑡𝐶𝑜𝑀𝑠𝐶𝑜
 

where tCo is the Co thickness in the Co/Pt multilayers, td the magnetic dead layer 

thickness and Ms the Co and CoFeB saturation magnetizations. 

From Figure II-27 (a) the magnetic dead layer thickness of the bottom CoFeB 

layer can be extracted at the intercept between the linear fit of the experimental data 

and the theoretical ratio M2/M1without any CoFeB which is 2/3. A magnetic dead 

layer td of 0.33 ± 0.02 nm is obtained. This treatment assumes all the layers of Co in 
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the Co/Pt multilayers have the same contribution, that is to say the same saturation 

magnetization, despite different interfaces (Co/Ru, Ru/Co or Co/Ta). This also 

supposes that there is no extra dead layer forming at the Co/Ta interface. 

Knowing that M1 is composed of 6 Co layers of 0.5 nm each, which saturation 

magnetization MsCo has been estimated in a previous study around 1200 emu.cm-3 

(about 15% smaller than bulk Co due to Co-Pt interdiffusion) [Ban-10], the fitted 

slope enables calculating the saturation magnetization of the bottom CoFeB layer, 

MsCoFeB = 600 ± 30 emu.cm-3. 

A similar treatment can be performed for the top FeCoB layer, using this time the 

M3/M1 ratio. 

𝑀3

𝑀1
=

(𝑡𝐹𝑒𝐶𝑜𝐵 − 𝑡𝑑)𝑀𝑠𝐹𝑒𝐶𝑜𝐵

6𝑡𝐶𝑜𝑀𝑠𝐶𝑜
 

From the fitted data of Figure II-27 (b), we can extract a magnetic dead layer for 

the top FeCoB electrode of 0.60 ±0.04 nm and a saturation magnetization MsFeCoB = 

1300 ± 60 emu.cm-3. 

One notices that the magnetically dead layer in the case of the top FeCoB layer is 

almost twice thicker than the one measured for the bottom CoFeB layer. This can be 

explained by the difference in thickness of the Ta layers that are in contact with the 

CoFeB and FeCoB electrodes, respectively. Indeed, it has been shown that the dead 

layer formation mostly comes from the interface with Ta. In the case of the top FeCoB 

layer, the 1 nm thick Ta cap that is deposited on top of it is much thicker than the 0.3 

nm Ta insertion onto which the bottom CoFeB grows. One can then assume more 

intermixing will happen if the Ta thickness is larger. To rule out any influence of the 

composition of the CoFeB alloy, a series of samples with bottom Fe-rich FeCoB layer 

has been deposited. The same data treatment is performed as shown in Figure II-28. 

From this plot a dead layer td = 0.24 nm and a saturation MsFeCoBbottom = 1030 

emu.cm-3 are extracted. This indicates that we have roughly the same magnetic dead 

layer thickness whatever the composition we use in the bottom electrode. 
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Figure II-28: Magnetization ratio M2/M1 as a function of bottom Fe-rich FeCoB thickness. The 
horizontal line corresponds to the ratio M2/M1 for zero FeCoB thickness, that is to say 2/3. 

 

Note that the values we obtained for the saturation magnetizations of both 

compositions, CoFeB and FeCoB, are in good qualitative agreement with those 

quoted in the literature [Wor-11, Ike-12]. However, the values reported in the various 

publications exhibit a rather large scatter. This can be attributed to the strong 

dependence of Ms on annealing conditions due to the variations of residual boron 

concentration [Nat-12]. 

In order to check the validity of our treatment, we can calculate the theoretical 

ratios that are supposed to be constant in both cases: M3/M1 for varying bottom 

CoFeB thickness and M2/M1 for varying top FeCoB thickness. To do this we used the 

values of Ms and td extracted from Figure II-27 and found M3/M1 = 0.32 ± 0.03 and 

M2/M1 = 0.81 ± 0.08. In Figure II-29, we compare these theoretical ratios with those 

extracted from the VSM loops measured on both series of samples. They are found 

reasonably constant and in good agreement with theoretical calculated values. 
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Figure II-29: Magnetization ratio of the constant magnetic contributions M2/M1 as a function of top 
FeCoB thickness, filled black circles, left-hand scale, and M3/M1 as a function of bottom CoFeB 
thickness, open blue circles, right-hand scale. Horizontal lines correspond to the theoretical values, 
0.81 and 0.32, respectively. 

 

II-3.3 Anisotropy measurements on the top electrode 

 

In order to study the variation of the anisotropy constant for the top FeCoB layer, 

a series of top electrodes with varying thicknesses of FeCoB was deposited. The stack 

is the following: Ta3/FeCoB0.3/MgO/FeCoBx/Ta1/Pt2, with thicknesses given in 

nm. x varies between 1 and 2.4 nm. The thin bottom FeCoB layer is non-magnetic (as 

it is thinner than the expected dead layer thickness) and is used to try keeping the 

same environment for the MgO tunnel barrier as in full junctions. 

The anisotropy constant is evaluated using the method presented in Chapter I. 

Magnetic loops are measured with VSM both with perpendicular and planar 

configurations of the magnetic field. Only top electrodes are needed since, in the case 

of full junction, the signal coming from the bottom reference layer would make it 

difficult to extract the contribution of the top electrode alone, in particular with 

planar applied field. In Figure II-30, we present the variation of Keff.t as a function of 

effective magnetic thickness, that is to say taking into account the magnetic dead 

layer. This treatment is then complementary to the previous study as it is necessary to 

know the magnetic dead layer thickness at that stage. 
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Figure II-30: Variation of Keff.t as a function of effective thickness for top FeCoB electrodes capped 
with Ta. 

 

Recalling that the effective anisotropy constant is expressed as 𝐾𝑒𝑓𝑓 = 𝐾𝑣 −

2𝜋𝑀𝑠
2 +

2𝐾𝑠

𝑡
, we can extrapolate the linear trend to estimate the value of 2Ks. We find 

here about 1.1 erg.cm-2. Assuming a negligible volume anisotropy [Ike-10, Liu-12], the 

slope gives a saturation magnetization Ms= 1240 emu.cm-3, which is in good 

agreement with the value extracted from the analysis of the full junctions in the 

previous part. This also confirms that the assumption made on Kv is not far from 

reality. At the zero intercept, we find the value of the critical thickness which is in that 

case around 1.14 nm. This agrees as well with the previously extracted value that is 

1.7-0.6=1.1 nm.  

Note that for small thicknesses the evolution of Keff.t deviates from the linear 

behavior. This is commonly observed and might be explained by a variation of the Ms 

value for very thin layers. 

II-3.4 Correlation between magnetic and transport properties 

 

In order to study the transport properties of our magnetic tunnel junctions as a 

function of bottom CoFeB and top FeCoB thicknesses, the same series of samples 

were measured using the CIPT set-up. Figure II-31 (a) shows that as the thickness of 
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CoFeB increases, the TMR ratio increases as well to reach about 90% for thicknesses 

between 1.0 and 1.6 nm. It is followed by a decrease in the TMR signal when the low-

field slope appears in the magnetic cycles (as seen Figure II-26). As explained earlier, 

this slope is attributed to a tilt in the magnetization of the top part of the SAF M2 

away from the perpendicular direction. Perfect parallel and antiparallel states cannot 

be reached anymore with the available maximum field of the Capres tool, which leads 

to an artificial decrease in TMR. In the case of varying top FeCoB thickness the same 

increase of TMR with thickness is observed with a similar asymptotic value of 90% 

for thicknesses between 1.2 and 1.7 nm. Note that even if the magnetization gets 

planar for the thickest layers, as long as their saturation field is smaller than the 

maximum field of the CIPT tool (1500 Oe), we are still able to get the full TMR signal. 

 

Figure II-31: TMR ratio as a function of bottom CoFeB (a) and top FeCoB (b) nominal thicknesses 

 

One can note that the maximum TMR value is not obtained for the same nominal 

thicknesses of bottom CoFeB and top FeCoB. This can be explained by different 

magnetic dead layer thicknesses in both cases: 0.33 nm in the bottom CoFeB layer 

and 0.6 nm in the top FeCoB layer. A plot of the TMR ratio as a function of effective 

thickness, i.e. correcting the nominal values from their respective dead layer 

contributions, is given in Figure II-32. Identical thickness dependences are now 

obtained: the TMR ratio starts increasing as soon as the effective thickness is larger 

than 0.3 nm and the maximum signal is reached when it is greater than 0.6 nm. Note 

that the RA product for these two series of samples is essentially constant around 30 

m2, showing that the decrease in TMR for small thicknesses is not related to a 

deterioration of the quality of the MgO barrier but rather to a progressive decrease of 

the spin polarization through thinner magnetic electrodes. 
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Figure II-32: TMR ratio as a function of bottom CoFeB (blue open circles) and top FeCoB (black filled 
circles) thicknesses, respectively, after subtraction of their corresponding dead layer thicknesses. 
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II-4. Conclusions 
 

In this Chapter, we have seen that by carefully adjusting the thickness of the Ta 

insertion that structurally decouples the CoFeB layer from the adjacent Co/Pt 

multilayer in the reference layer enables optimizing the transport properties of the 

magnetic tunnel junctions. The optimal Ta thickness is found around 0.3-0.4 nm. 

To harden the reference layer Co/Pt or Co/Pd multilayers may be used. They can 

advantageously be put in a synthetic antiferromagnetic configuration, which is known 

to reduce the stray fields acting on the storage in patterned devices. In these systems, 

all magnetic layers thicknesses have to be chosen carefully to obtain the best 

magnetic properties as possible. The annealing temperature has also to be adjusted if 

one wants to enhance simultaneously the anisotropy and the transport properties. We 

found that with our laboratory furnace, a good compromise is obtained at 300 °C. 

Finally, we saw that optimization of the thicknesses of the bottom CoFeB and top 

FeCoB layers allows maximizing the TMR signal. To determine the operating window 

of our structures, it is necessary to know the magnetic dead layer thicknesses that 

depend on the growth conditions, in particular on the nature of the seed or buffer 

layer in contact with the CoFeB alloy. The upper limit is defined by the critical 

thickness that is when out-of-plane to in-plane reorientation of the magnetization 

occurs. A maximal TMR value is found as soon as the effective magnetic thicknesses 

are greater than 0.6 nm. 
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As we have seen in Chapter I, a large perpendicular anisotropy has been found to 

arise at the metal/oxide interfaces. If in the first developments of perpendicular 

magnetic tunnel junctions the capping layers were mostly metallic materials such as 

Ru or Ta (see Chapter II), some research groups started recently to study structures 

with a second MgO layer used as a capping. This was indeed proved to enhance 

significantly the magnetic anisotropy of the system. 

In parallel, there have been several works on dual magnetic tunnel junctions with 

planar anisotropy. They comprise two tunnel barriers and two polarizing layers on 

both sides of a storage layer. The advantages of such structures are mostly seen for a 

use in STT-MRAM applications. They can indeed reduce drastically the critical 

current density as well as the bias voltage dependence of TMR. 

We propose then to combine the advantages of both perpendicular anisotropy and 

double magnetic tunnel junctions by building perpendicularly magnetized structures 

with a double barrier configuration and two synthetic antiferromagnetic reference 

layers. To do so, we will study in a first part the beneficial effect on the anisotropy of 

introducing an MgO capping layer in our standard magnetic tunnel junctions with a 

bottom Co/Pt SAF reference. We will then show how Co/Pd top reference layers can 

be developed so as to present transition fields compatible with those of the bottom 

reference. Finally, we will combine all the different magnetic blocks to create a 

complete double junction with perpendicular anisotropy [Cuc-15]. 
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III-1.  Influence of a MgO capping 

 

As already pointed out in the introduction, perpendicular magnetic anisotropy 

arises at the metal/oxide interface [Mon-02, Rod-09]. Although the standard Ta 

capping layer used in our previous samples gave relatively good results in terms of 

transport and anisotropy, one could imagine replacing it by a second oxide interface 

to see if perpendicular anisotropy can be further enhanced. 

 

III-1.1 Effect on the magnetic properties 

 

In order to investigate the effect of introducing a MgO capping above the top free 

layer, we deposited a series of junctions composed of our standard bottom reference 

and a top free layer with varying FeCoB thicknesses : 

Ta3/Pt5/(Co0.5/Pt0.25)5/Co0.5/Ru0.9/(Co0.5/Pt0.25)3/Co0.5/Ta0.3/FeCoB1.2/Mg

O/FeCoBx/Ta0.3/FeCoBx/MgO/Pt2. A thin Ta layer is introduced in the middle of 

the FeCoB top storage layer. Its role is to attract boron away from the interfaces with 

MgO upon annealing so that a good crystalline structure is ensured as well as a high 

TMR signal [Koz-10]. Figure III-1 presents typical loops obtained by VSM for six 

samples with increasing FeCoB thickness. 

 

Figure III-1: Magnetic loops measured by VSM with perpendicular applied field for samples with a 
bottom SAF reference and varying thickness of FeCoB in the top electrode capped with MgO. The total 
FeCoB thickness goes from 0.8 (a) to 3.2 nm (f). 
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As expected, the signal of the free layer goes from a fully perpendicular response 

to a typical hard axis behavior as its thickness increases. Figure III-2 shows a zoom 

on the minor loop performed on the top free layer for a sample with a 

FeCoB1.5/Ta0.3/FeCoB1.5 stack. One observes that for this total nominal thickness 

of 3.0 nm, we are very close to the transition between perpendicular and planar 

anisotropy. The anisotropy is still perpendicular but magnetization is in a multi-

domain state at zero field. 
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Figure III-2: Minor loop performed on the free layer by VSM with a perpendicular applied field for a 
sample with a FeCoB1.5/Ta0.3/FeCoB1.5/MgO storage layer. 

 

Compared to the nominal critical thickness of 1.7 nm obtained with a 1 nm thick 

Ta capping in Chapter II, the MgO capping seems to be a particularly efficient way to 

improve perpendicular anisotropy. However, to be able to compare rigorously MgO 

and Ta cappings, the magnetically dead layers present at the interfaces must be taken 

into account. In order to extract this parameter, we used the same data treatment 

presented in the previous Chapter for a Ta capping. Note that in the case of a 

composite free layer, the standard dead layer model might not be really accurate, as 

in total there will be four interfaces instead of two. The amplitude of the free layer 

transition M3 is normalized to the amplitude of the bottom Co/Pt multilayer M1 and 

plotted as a function of its total nominal thickness in Figure III-3. 

Recalling that the ratio of magnetizations can be expressed as 
𝑀3

𝑀1
=

(𝑡𝐹𝑒𝐶𝑜𝐵−𝑡𝑑)𝑀𝑠𝐹𝑒𝐶𝑜𝐵

6𝑡𝐶𝑜𝑀𝑠𝐶𝑜
, the slope enables extracting a saturation magnetization 

Ms=1100 emu.cm-3 and the extrapolation to zero magnetization gives a magnetically 

dead layer thickness td=0.3 nm. This value is about half that measured for similar 

junctions with a 1 nm Ta capping. This might be explained by the difference in Ta 

content between a thick capping and a thin Ta insertion, as was already the case in 

Chapter II for the bottom FeCoB layer growing on a 0.3 nm thick Ta insertion. 
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Figure III-3: Magnetization of the FeCoB storage layer with a 0.3 nm Ta insertion as a function of its 
nominal thickness for junctions with a bottom SAF reference and an MgO capping. tc and td stand for 
dead layer and critical thicknesses, respectively. The magnetization M3 of the storage layer is 
normalized to the magnetization M1 of the bottom part of the SAF (internal reference). 

 

A magnetic dead layer of 0.6 nm had been found in the FeCoB top electrodes with 

a Ta capping and the critical thickness was in that case 1.7 nm (see Chapter II). The 

use of an MgO cap layer allows thus increasing the effective critical thickness from 1.1 

to 2.7 nm. This effect has already been noted in other studies but with little 

consideration about a possible modification of dead layer thicknesses between Ta and 

MgO-capped junctions [Kub-12, Sat-12].  

The effective anisotropy constant can be expressed as 𝐾𝑒𝑓𝑓 = 𝐾𝑣 − 2𝜋𝑀𝑆
2 +

𝐾𝑆1+𝐾𝑆2

𝑡
, 

where Kv stands for the volume anisotropy, Ms the saturation magnetization, Ks1,2 the 

interfacial anisotropy at the bottom and top interfaces and t the effective magnetic 

thickness. Assuming a negligible volume anisotropy energy [Liu-12, Ike-10], the 

critical effective magnetic thicknesses tc and the calculated Ms values can be used to 

estimate Ks1+ Ks2 knowing that Keff=0 when t=tc. This calculation leads to interfacial 

anisotropy energies of 1.2 and 2.1 erg.cm-2 for the Ta-capped and MgO-capped 

junctions, respectively. We can use these values to calculate the thermal stability 

factor , for a given pillar diameter as ∆=
𝐾𝑒𝑓𝑓𝑉

𝑘𝐵𝑇
. An example is given in Figure III-4 

for a pillar diameter of 30 nm. It appears clearly that for a given effective magnetic 

thickness, the MgO capping provides larger thermal stability. Besides, the range of 

usable thicknesses is much wider with an MgO capping than with a Ta one. In the 

example of Figure III-4, to maintain a stability factor  above 70 (horizontal line in 

the figure), the effective magnetic thickness must be thinner than 0.7 nm with Ta 

whereas it can reach 2.2 nm in the case of MgO. 
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Figure III-4: Calculated thermal stability factor as a function of FeCoB storage layer effective thickness 
for a pillar diameter of 30 nm. The capping layer is either Ta (black curve) or MgO (red curve). 

 

III-1.2 Anisotropy of top electrodes with Ta or MgO capping 

 

To estimate more precisely the enhancement of perpendicular anisotropy brought 

by the MgO capping, series of top electrodes with varying thicknesses of FeCoB have 

been fabricated. They are capped with either a Ta or an MgO layer. The MgO-capped 

electrodes are FeCoB bilayers with a 0.3 nm thick Ta insertion in the middle, as in the 

full junctions. This allows measuring the samples with both a planar and a 

perpendicular field so as to determine the anisotropy as explained in Chapter I. It is 

necessary to work with top electrodes only as it is not possible to discriminate 

between the different contributions when measuring a full junction with a bottom 

(Co/Pt) SAF reference under an in-plane field. The results for the Ta-capped 

electrodes have already been presented in Chapter II. They are recalled here to make 

a direct comparison with the systems capped with MgO, as shown in Figure III-5. 
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Figure III-5: Variation of Keff.t as a function of effective thickness for top FeCoB electrodes capped with 
Ta or MgO. 

 

As expected, a larger critical thickness is obtained with the MgO capping. The 

value is here identical to the one we had previously estimated with the data treatment 

performed on the full junctions. Similarly to what had been done with the Ta-capped 

electrodes, the extrapolation to zero thickness gives the total surface anisotropy. For 

MgO-capped electrodes, we find 2Ks=2.2 erg.cm-2, which is twice the value estimated 

for a Ta capping. This confirms that a large increase of the interfacial anisotropy is 

observed when a second MgO interface is added to the storage layer. Note that the 

extracted Ks are in very good agreement with the previously calculated values using 

the critical thicknesses. 

From the slope of the linear trend, we can estimate the Ms value to be 

approximately 1150 emu.cm-3, which is also in good agreement with the estimation 

made with the series of full junctions. We can clearly see that this slope is smaller 

than in the case of a Ta capping for which a saturation magnetization around 1300 

emu.cm-3 had been found. 
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III-1.3 Effect of changing the nature of the insertion 

 

Another series of samples in which the standard Ta insertion layer is replaced by a 

Ru one has been deposited. The stack is the following: 

Ta3/Pt5/(Co0.5/Pt0.25)5/Co0.5/Ru0.9/(Co0.5/Pt0.25)3/Co0.5/Ta0.3/FeCoB1.2/Mg

O/FeCoBx/Ru0.3/FeCoBx/MgO/Pt2. The Ru thickness is fixed at 0.3 nm to be 

equivalent to the former Ta one. 

 

Figure III-6: Magnetic loops measured by VSM with perpendicular applied field for samples with a 
bottom SAF reference and varying thickness of FeCoB in the top electrode capped with MgO. The total 
FeCoB thickness goes from 0.8 (a) to 2.8 nm (f). 

 

Figure III-6 shows the magnetic cycles measured by VSM with perpendicular 

applied field for six different thicknesses of FeCoB. Similarly to what had been 

observed in the case of a Ta insertion in Figure III-1, the amplitude of the transition 

of the free layer increases with FeCoB thickness and undergoes the transition 

between perpendicular and planar anisotropy. The nominal critical thickness is in 

that case just below 2.8 nm, as a planar signal can be observed for this thickness in 

Figure III-6 (f). It seems that the perpendicular anisotropy is slightly reduced when 

using a Ru insertion instead of a Ta one. However, we cannot compare directly the 

two systems as it has not been possible to extract precisely the magnetic dead layer in 

the Ru case. Indeed, if we plot M3/M1 a clear slope cannot be found easily, as 

illustrated in Figure III-7. Previous data on junctions with Ta insertion are recalled 

with black dots (equivalent to Figure III-3). It seems that for the thinner FeCoB layers 

the magnetic dead layer is much larger with a Ru insertion as the ratio M3/M1 is 

smaller. However, for thicker FeCoB layers, the ratios appear to be relatively similar. 

This could be the result of a variation of magnetically dead layer thickness with 
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magnetic thickness in the case of Ru. Globally, we can probably assume a thicker 

dead layer with Ru compared with Ta. 
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Figure III-7: Magnetization of the FeCoB storage layer with a 0.3 nm Ru insertion as a function of its 
nominal thickness for junctions with a bottom SAF reference and an MgO capping (red dots). The 
magnetization M3 of the storage layer is normalized to the magnetization M1 of the bottom part of the 
SAF (internal reference). Results for samples with a Ta insertion are recalled with black dots. 

 

We also tried removing entirely the insertion to see the effect on perpendicular 

anisotropy. This leads to the following stacks: 

Ta3/Pt5/(Co0.5/Pt0.25)5/Co0.5/Ru0.9/(Co0.5/Pt0.25)3/Co0.5/Ta0.3/FeCoB1.2/Mg

O/FeCoBx/MgO/Pt2. Figure III-8 shows four examples of the magnetic loops 

obtained for such samples. 

 

Figure III-8: Magnetic loops measured by VSM with perpendicular applied field for samples with a 
bottom SAF reference and varying thickness of FeCoB in the top electrode capped with MgO. (a) 
FeCoB1.2 (b) FeCoB1.5 (c) FeCoB2.0 (d) FeCoB2.4. 
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Surprisingly a very small signal is observed for the 1.2 nm thick FeCoB free layer, 

indicating that the layer is almost non-magnetic. This is quite unexpected as 

magnetic dead layers are commonly said to originate from the Ta (or Ru) interface 

rather than from the MgO one. As the thickness of FeCoB increases, the transition of 

the free layer becomes more abrupt and a large coercive field appears for a thickness 

of 1.5 nm. If the thickness is further increased, the coercive field starts decreasing and 

as seen previously the magnetization gets planar. The values of the coercive fields 

obtained for these samples without insertion are very large compared to those of the 

previous series. The variation of the coercive field as a function of FeCoB thickness is 

given in Figure III-9 (a). It reaches a maximum of about 360 Oe for a thickness of 1.6 

nm whereas in systems with Ta or Ru insertion the coercive field rarely exceeds 100 

Oe. It might be explained by the fact that putting insertion materials in the FeCoB 

layer favors the nucleation phenomenon and reduces the coercive field. Besides, 

when removing the insertion we suppress the possible getter effect of this layer and 

boron atoms might be differently distributed in the magnetic layer, thus modifying 

the chemical composition in the bulk and at the interfaces, with unknown 

consequences on the magnetic properties. 

 

Figure III-9: (a) Coercive field and (b) normalized magnetization of the top FeCoB free layer for 
magnetic tunnel junctions with MgO capping and without insertion. 

 

In Figure III-9 (b) the standard plot of M3/M1 as a function of FeCoB thickness 

shows that the extraction of the magnetically dead layer is not that simple. Two 

slopes seem to appear: one for thicknesses between 1 and 1.5 nm and another one for 

thicker layers. This could mean that, similarly to the case of a Ru insertion, the dead 

layer thickness depends on the total amount of FeCoB that has been deposited. If we 

consider the entire range of thicknesses, one can extract a mean dead layer thickness 

of 0.59 nm and a saturation magnetization of 1600 emu.cm-3. However, if we only 

consider the data points for thicknesses greater than 1.5 nm (blue dotted line on 

Figure III-9 (b)), the extracted dead layer thickness is reduced down to 0.05 nm and 

Ms is estimated around 1175 emu.cm-3. Those values are more consistent with the 
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previous results and the expected behavior for such a storage layer. It seems however 

that the validity of the dead layer model could be questioned here.  

III-1.4 Nature of the two MgO barriers 

 

In the beginning of this study, we chose two different oxidation conditions for the 

MgO barriers. The first barrier was done by natural oxidation with our standard high 

pressure static conditions (HP = 150 mbar, 10s) and using the following thicknesses 

of Mg: Mg0.9/Ox/Mg0.5. The top one was also realized by natural oxidation but with 

the low pressure dynamic conditions (LP = 3.10-2 mbar, 100 sccm, 360s) and thinner 

Mg layers: Mg0.6/Ox/Mg0.5. This choice is particularly relevant if one does not want 

to lose too much TMR by introducing a second resistive MgO layer on top of the 

stack. Indeed, we know our HP barriers exhibit a RA value around 50 m2, while 

the LP ones give a value of the order of 10 m2. This difference allows keeping a 

reasonable TMR signal. 

Note that even though the two barriers are nominally identical, their RA products 

can be different. Some studies have indeed shown that the resulting TMR of a 

junction capped with MgO can be equivalent to the one of a standard Ta-capped 

junction as the environment of the MgO barriers (buffer and seed layers) changes the 

structure of the MgO, making the top one less resistive [Sat-13]. 

It could seem interesting to check the effect on perpendicular anisotropy of 

changing the nature of the MgO barriers. To that aim, three magnetic tunnel 

junctions were prepared, with varying oxidation conditions for the two barriers: 

either the high pressure (HP) or low pressure (LP) ones. The total top FeCoB 

thickness is chosen close to the perpendicular to planar anisotropy transition to have 

more sensitivity. A thin Ta insertion of 0.3 nm is included in the top FeCoB layer in 

that case so that we have the following stack for the storage layer: 

FeCoB1.5/Ta0.3/FeCoB1.5. Magnetic cycles measured by VSM are shown in Figure 

III-10. 
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Figure III-10: Magnetic cycles measured by VSM with perpendicular applied field for junctions having 
a bottom SAF reference and a MgO capping. A Ta 0.3 nm layer is inserted in the FeCoB layer. 
Oxidation conditions of the two MgO barriers are varied: LP and HP stand for low and high pressure, 
respectively. 

 

From these magnetic loops, it seems that modifying the oxidation conditions does 

not impact a lot the perpendicular anisotropy. There are slight changes in the 

saturation field that goes from 800 Oe for two HP barriers to 400 Oe for two LP ones. 

The asymmetric system (HP-LP) gives an intermediate value of 600 Oe. It appears 

then that to some extent the low pressure conditions improve perpendicular 

anisotropy but not in a significant way. Besides, in the vicinity of the critical 

thickness, the magnetic behavior is extremely sensitive to the deposited thickness so 

we cannot exclude here the possibility of small thickness variations. 

In the case where these junctions would be used for STT-MRAM applications, one 

should favor the low pressure conditions as low RA values are necessary for writing 

with reasonable current densities. Even though this configuration will lead to a 

decrease in the resulting TMR signal, a compromise is required. The difference in RA 

will still be large enough to ensure a functional device. 

 

 

 

 

 

 



108 
 

III-2. Development of magnetic tunnel junctions with a top 

reference 

 

With the aim of developing double junctions with two reference layers, it seemed 

necessary to investigate the feasibility of top references in our deposition tool. 

 

III-2.1 Metallic synthetic antiferromagnetic layers 

 

As seen in Chapter II, our standard bottom SAF layer is composed of Co/Pt 

multilayers and is deposited on top of a 5 nm Pt buffer layer. This buffer has been 

shown to be crucial to ensure good anisotropy properties to the multilayers. In the 

case of a top reference layer, a thick buffer cannot be used because a strong coupling 

needs to be kept between the FeCoB layer and the adjacent multilayers. 

In order to start with simplified structures, purely metallic SAF without any 

FeCoB or oxide barriers have been investigated. Two types of multilayers were 

deposited: Ta3/(Co0.5/Pt0.25)3/Co0.5/Ru0.9/(Co0.5/Pt0.25)5/Co0.5/Pt2 and 

Ta3/(Co0.3/Pd1.2)3/Co0.3/Ru0.9/(Co0.3/Pd1.2)5/Co0.3/Pd2. The stacks are made 

as mirrors of the standard bottom reference, with a number of repeats that is larger in 

the top multilayer. Figure III-11 shows the magnetic loops obtained by VSM. 

 

Figure III-11: Magnetic cycles measured by VSM with perpendicular applied field for SAF composed of 
(a) Ta3/(Co0.5/Pt0.25)3/Co0.5/Ru0.9/(Co0.5/Pt0.25)5/Co0.5/Pt2  and (b) 
Ta3/(Co0.3/Pd1.2)3/Co0.3/Ru0.9/(Co0.3/Pd1.2)5/Co0.3/Pd2. Minor loops are included in red. 

 

As already observed for a bottom SAF with a 0.25 nm thick buffer (Figure II-21 (a) 

in Chapter II), the anisotropy of the Co/Pt SAF in Figure III-11 (a) is strongly 

reduced. Transitions of the two parts of the SAF are not abrupt contrary to the case of 

Co/Pd multilayers in Figure III-11 (b). In that last case, three transitions appear in 

the magnetic loop, which is representative of system with strong RKKY coupling 
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energy. In terms of anisotropy properties, it seems then preferable to favor the Co/Pd 

multilayers in the stack of the top SAF references. 

 

III-2.2 Optimization of single junctions with SAF top references 

 

To realize full junction with a top reference, a stack with Co/Pd top multilayers 

and a bottom FeCoB storage layer was deposited: 

Ta3/FeCoB1.2/MgO/FeCoB1.2/Ta0.2/(Co0.3/Pd1.2)4/Co0.3/Ru0.9/(Co0.3Pd1.2)8/

Co0.3/Pd2. Numbers of repeats in the SAF have been optimized to obtain a ratio of 

magnetizations equal to 1.2 in order to limit stray fields in 100 nm pillars, as 

explained in Chapter II [Ban-10]. A layer of 1.2 nm of FeCoB is introduced in the 

bottom part of the SAF and separated from the multilayer by a thin Ta spacer in order 

to guaranty a good TMR signal. The junctions are annealed at our standard 

temperature of 300 °C and this will be the case for all the samples presented in the 

following. By analogy to the work done on the bottom SAF structure, we can 

schematically represent this type of junction as M’3/MgO/M’2/Ru/M’1. Its magnetic 

loop, plotted in Figure III-12, shows that coming from positive field saturation, the 

reversals of M’3 and M’2 are not distinct whereas the transition of M’1 is clearly 

identifiable at a large negative field of -1840 Oe. However once the bottom part of the 

SAF M’2 is fully saturated at a negative field larger than -500 Oe, a minor loop can be 

performed on the bottom free layer between ± 200 Oe and the transition M’3 is 

recovered (see red loop in Figure III-12). 
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Figure III-12: Magnetic cycle measured by VSM with perpendicular applied field for a junction with 
top Co/Pd SAF reference, a Ru spacer of 0.9 nm and a bottom free layer of 1.2 nm of FeCoB. A minor 
loop is performed by saturating the system in a negative field of -1000 Oe and increasing it towards 
positive field saturation (red dots). 
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As the parallel and antiparallel states can be reached by a proper field treatment, 

this type of magnetic stack is functional and could be used in a device. However, it 

complicates the procedure as a saturation of the SAF in two steps is required. This is 

why we will try to further optimize the magnetic properties. 

To see if the stability of the SAF could be enhanced, the RKKY coupling in the top 

SAF has been studied as a function of Ru thickness, similarly to what had been done 

in Chapter II for the bottom SAF. The rest of the stack is similar to the one of the 

junction in Figure III-12: Ta3/FeCoB1.2/MgO/FeCoB1.2/Ta0.2/(Co0.3/Pd1.2)4/ 

Co0.3/Rux/(Co0.3Pd1.2)8/Co0.3/Pd2. As can be observed in Figure III-13, similarly 

to the case of the bottom Co/Pt SAF (Figure II-16 in Chapter II), the classical 

oscillatory behavior is achieved with a largest amplitude around a Ru thickness of 

0.45 nm, followed by a peak at 0.9-0.95 nm. The amplitude of the coupling field is 

however much reduced in the case of the Co/Pd SAF: at the second maximum, HSAF 

reaches only -600 Oe instead of more than -3000 Oe in the bottom Co/Pt SAF. 

Moreover, the difference in amplitude between the two peaks is smaller in the top 

SAF (a factor 1.3 instead of 2 in the previous case). 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
200

0

-200

-400

-600

-800

-1000

H
S

A
F
 (

O
e
)

Ru spacer thickness (nm)

 

Figure III-13: RKKY coupling field as a function of Ru thickness for junctions with a Co/Pd SAF top 
reference. 

 

An example of the magnetic loop obtained for a sample at the first maximum of 

RKKY coupling (0.45 nm) is given in Figure III-14. Even though the coupling 

strength is slightly larger than the one of the junction with a 0.9 nm thick spacer 

(Figure III-12), it is still not large enough to allow separating out the transitions of 

M’2 and M’3 at the first descending branch. We will then keep the same strategy as in 

the bottom Co/Pt SAF and opt for a thickness of 0.9 nm for the Ru layer, as this 

maximum still gives a larger range of stability in terms of spacer thickness (less 

sensitive to deposition-dependent thickness fluctuations). 
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Figure III-14: Magnetic cycle measured by VSM with perpendicular applied field for a junction with 
top Co/Pd SAF reference, a Ru spacer of 0.45 nm and a bottom free layer of 1.2 nm of FeCoB. A minor 
loop is performed by saturating the system in a negative field of -1000 Oe and increasing it towards 
positive field saturation (red dots). 

 

As varying the thickness of Ru spacer does not allow separating out the transitions 

of M’2 and M’3, we investigated the effect of changing the thickness of the top FeCoB 

layer that is coupled to the Co/Pd multilayers. From Figure III-15 (a), it appears that, 

if the FeCoB layer is thin enough (0.6 nm), two separate transitions can be obtained 

without any special field treatment. As this thickness increases, both M’2 and M’3 

start switching together at positive fields and thick FeCoB introduces slopes in the 

magnetic signal (Figure III-15 (c)). It could then seem interesting to choose thin 

FeCoB layers as they induce a good separation of the magnetic transitions thanks to a 

larger antiparallel plateau. 

 

Figure III-15: Magnetic cycles measured by VSM with perpendicular applied field for junctions having 
varying thickness of FeCoB in the top SAF reference, 
Ta3/FeCoB1.2/MgO/FeCoBx/Ta0.2/(Co0.3/Pd1.2)4/Co0.3/Rux/(Co0.3Pd1.2)8/Co0.3/Pd2. (a) x=0.6 
nm (b) x=1.2 nm (c) x=1.5 nm. 

 

Using the full series of magnetic tunnel junctions with varying thicknesses of 

FeCoB in the top reference, we can plot the variation of the ratio M’2/M’1 as a function 

of the FeCoB thickness (Figure III-16). 
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Figure III-16: Magnetization ratio M’2/M’1 as a function of top FeCoB thickness. The horizontal line 
corresponds to the ratio M’2/M’1 for zero FeCoB thickness, that is to say 5/9. 

 

Knowing that 
𝑀′2

𝑀′1
=

(𝑡𝐹𝑒𝐶𝑜𝐵−𝑡𝑑)𝑀𝑠𝐹𝑒𝐶𝑜𝐵+5𝑡𝐶𝑜𝑀𝑠𝐶𝑜

9𝑀𝑠𝐶𝑜
 and assuming there is no magnetic 

dead layer in the Co/Pd multilayers, a magnetic dead layer of 0.36 nm is found in the 

top FeCoB layer, at the intercept between the linear fit and the line representing the 

ratio M’2/M’1 without FeCoB, that is 5/9. Taking MsCo=1200 emu.cm-3, as for the 

Co/Pt multilayers (see Chapter II), the slope gives a saturation magnetization 

MsFeCoB=1020 emu.cm-3. 

The separation of the transitions of M’2 and M’3 appears to be only maintained in 

junctions with top FeCoB thickness thinner than 0.6 nm. Taking into account the 

magnetic dead layer calculated above, this leads to effective thicknesses of FeCoB 

smaller than 0.24 nm. Knowing, from the previous Chapter, that effective thicknesses 

larger than 0.6 nm are necessary to preserve high TMR signal, it seems impossible to 

get functional devices using such thin FeCoB layers in the top SAF reference. 

Another way to adjust the anisotropy of the top Co/Pd reference is to adapt the Co 

thickness in the Co/Pd multilayers. Figure III-17 shows the magnetic loops of four 

samples with increasing Co thickness: Ta3/FeCoB1.2/MgO/FeCoB1.2/Ta0.2/ 

(Cox/Pd1.2)4/Cox/Ru0.9/(CoxPd1.2)8/Cox/Pd2. The top FeCoB thickness is fixed at 

1.2 nm to ensure a sufficiently high TMR. For Co layers as thin as 0.2 nm (Figure III-

17 (a)), it is not possible to distinguish the transitions of M’2 and M’3 as both layers 

switch together. The perpendicular anisotropy is quite low for this sample, probably 

because of weakly magnetized layers. As the Co thickness increases, the anisotropy is 

reinforced and for a value of 0.4 nm the SAF stability is finally large enough to allow 

separating the transition of the free layer M’3 from those of the SAF (Figure III-17 

(c)). As the Co thickness is further increased, perpendicular anisotropy starts to 

decrease as can be deduced from the tilted transitions and the loss of remanence in 
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M’2 in the case of 0.45 nm thick Co layers in Figure III-17 (d). A good compromise 

seems then to choose a thickness of 0.4 nm in the Co/Pd multilayers. 

 

Figure III-17: Magnetic cycles measured by VSM with perpendicular applied field for samples with 
varying thickness of Co in the top Co/Pd SAF reference. (a) 0.2 nm (b) 0.3 nm (c) 0.4 nm (d) 0.45 nm. 

 

Similarly to what had been done for the bottom SAF reference layer, we checked 

the optimal Ta insertion to use in order to structurally decouple the Co/Pd 

multilayers from the FeCoB layer. The stack of the junctions is the following: 

Ta3/FeCoB1.2/MgO/FeCoB1.2/TaxTa/ (Co0.3/Pd1.2)4/Co0.3/Ru0.9/(Co0.3/Pd1.2)8/ 

Co0.3/Pd2, with thicknesses in nm. Note that at the time of this study, the Co 

thickness had not been optimized yet. The TMR as a function of Ta thickness is given 

in Figure III-18. 
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Figure III-18: TMR signal as a function of Ta insertion for samples with top SAF reference with Co/Pd 
multilayers. 

 

Similarly to the previous results with Co/Pt multilayers, the TMR amplitude is 

rising upon increasing the Ta insertion thickness up to 0.3-0.4 nm. For thicker Ta 

spacers, the signal starts dropping. Interestingly, the same thickness of Ta insertion 

allows getting the maximum TMR in both kind of structures (bottom or top 

reference). It then seems that the order of deposition (CoFeB on Ta or Ta on CoFeB) 

does not modify the magnetic and transport behaviors of our samples. 

We can observe that the TMR signal obtained with these top-referenced junctions 

is much smaller than the 70 to 100 % usually achieved with Co/Pt bottom referenced 

junctions. However, the same TMR values around 10-15 % have been obtained for 

inverted structures with bottom Co/Pd SAF reference layers. This effect seems then 

to be intrinsic to the nature of the material used in the multilayers or to deposition 

conditions in our sputtering tool. 

 

III-2.3 Thermal endurance of the junctions with a top reference 

 

As was the case for the bottom SAF reference, a series of junctions with varying 

annealing temperature has been prepared with the following stack: 

Ta3/FeCoB1.2/MgO/FeCoB1.2/Ta0.2/ (Co0.3/Pd1.2)4/Co0.3/Ru0.9/(Co0.3/Pd1.2)8 

/Co0.3/Pd2. Unfortunately, at the time of this study, the stack was still not fully 

optimized, which means that the magnetic and transport properties will not be the 

ideal ones. Nevertheless, it allows us to check the qualitative behavior of this type of 
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junctions as a function of annealing temperature. In Figure III-19, we present the 

evolution of the TMR signal, measured by CIPT. 

 

Figure III-19: Evolution of the TMR signal as a function of annealing temperature for magnetic tunnel 
junctions with a Co/Pd-based top reference layer. 

 

Qualitatively, the same behavior is observed: a first increase of TMR due to the 

crystallization of the FeCoB appears until 280 °C, followed by a decrease at higher 

temperatures. Note that in the case of these junctions with top Co/Pd SAF reference, 

the decay of TMR happens at much smaller temperatures around 300 °C instead of 

more than 380 °C for the Co/Pt-based structures. They seem then less robust to the 

annealing step than our previous stacks. This had also been observed in a previous 

thesis done at Spintec [Ban-11]. It is however worth noting that due to the very small 

TMR signals measured in that case, it is relatively difficult to be absolutely confident 

in the trend observed here. Keeping the annealing temperature at its standard value 

of 300 °C should still be reasonable. 

III-2.4 Compatibility with the bottom SAF references 

 

If one wants to build double junctions with perpendicular anisotropy having two 

reference layers and a storage layer in between, it is necessary to have distinct 

transition fields for all the magnetic layers. Figure III-20 allows visualizing that the 

junction we developed with top SAF reference provides a much reduced 

antiferromagnetic plateau compared to our standard Co/Pt bottom reference 

(between -1700 and 1200 Oe instead of -3500 and 2500 Oe). At first sight, both 

structures seem then usable in a full double junction as they should allow the 

stabilization of different magnetic configurations of the softest reference without 

perturbing the configuration of the hardest one. This is what we will try to show in 

the following part. 
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Figure III-20: Comparison of the magnetic loops of two junctions with (a) a bottom Co/Pt SAF 
reference (b) a top Co/Pd SAF reference. 
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III-3. Double junctions with perpendicular anisotropy 

 

III-3.1 Advantages of double junctions 

 

More than ten years ago, interest started rising for systems with double barrier 

structures. Studies focused on magnetic tunnel junctions with planar anisotropy and 

it appeared that having two tunnel barriers presents various advantages. 

It was shown in 2000 that such double structures enable reducing significantly 

the voltage bias dependence of TMR [Ino-00]. Indeed, it is well known that as the 

applied voltage on a junction increases, its TMR decreases and can lose a significant 

part of its value for voltages as low as 300-400 mV. Using double junctions is then 

particularly interesting for device applications as it allows enlarging the functioning 

range in terms of applied voltage. 

More recently, double barrier junctions proved to be efficient candidates for STT 

switching. A study showed in 2007 that the intrinsic current density for switching 

could be reduced by a factor 2-3 for a structure with two barriers of different RA 

values and two pinned references oriented antiparallel [Dia-07]. But one can go much 

further with those structures and tune the STT efficiency. Indeed, in the case of a 

single ferromagnetic storage layer, if the two reference layers on both sides of the 

barriers have antiparallel magnetizations, the two spin transfer torques add up and 

allow reducing the critical current density for writing. On the contrary, when the 

references are parallel, the torques subtract and the STT efficiency is much reduced. 

It is then possible to alternate between a write mode and a read mode. The write 

mode with antiparallel references provides a low switching current. In the read mode, 

rather large voltages can be applied to retrieve the information without any risk of 

rewriting the memory element [Clé-14]. However, note that introducing a second 

barrier will increase the overall resistance so that it will be necessary to work with 

higher voltages if one wants to get the same current densities. 

In this part, we propose to combine the advantages of double junctions with those 

of perpendicular anisotropy by creating perpendicular double junctions. 
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III-3.2 Magnetic properties of perpendicular double magnetic 

tunnel junctions 

 

As we have seen previously, adding a second MgO interface above the storage 

layer increases strongly its perpendicular anisotropy. Besides, junctions with top SAF 

references appeared to be functioning and compatible with the transition fields of our 

standard bottom SAF reference. It seems then natural to build a double junction in 

which the storage layer is a FeCoB layer sandwiched between a bottom Co/Pt-based 

SAF reference and a top Co/Pd-based SAF reference. Here are the stacks of the 

different blocks composing the double junction: 

- SAF1=Ta3/Pt5/(Co0.5/Pt0.25)6/Co0.5/Ru0.9/(Co0.5/Pt0.25)3/Co0.5/Ta0.3/

FeCoB1.2/MgO1.4 (=M1/Ru/M2) 

- Storage layer (SL)=FeCoB1.1/Ta0.3/FeCoB1.1 (=M3) 

- SAF2=MgO1.1/FeCoB1.2/Ta0.3/(Co0.4/Pd1.2)4/Co0.4/Ru0.9/(Co0.4/Pd1.2)8

/Co0.4/Pd2 (=M’2/Ru/M’1) 

In that case, asymmetric tunnel barriers have been deposited. The bottom one is 

done under high pressure oxidation conditions and is 1.4 nm thick. It is expected to 

exhibit a larger RA than the top one which is done under low pressure oxidation 

conditions and is 1.1 nm thick. 
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Figure III-21: Magnetic cycle measured by VSM with perpendicular field for a double junction with a 
FeCoB1.1/Ta0.3/FeCoB1.1 storage layer. The inset shows minor loops performed on the free layer with 
either parallel (red) or antiparallel (blue) configuration of the reference layers. 

 



 CHAPTER III: Towards double junctions with perpendicular anisotropy 

119 
 

Figure III-21 shows the magnetic loop obtained for such a double junction 

measured by VSM. As expected from the results of the individual junctions, the 

transition fields of all the five different magnetic layers are distinct. This means that 

different configurations of the references are achievable. Recalling that the junction 

stack can be schematically represented as M1/Ru/M2/MgO/M3/MgO/M’2/Ru/M’1, 

Figure III-22 presents a schematic major loop to help visualizing the different 

magnetic transitions. 

 

Figure III-22: Schematic representation of the major loop of a double junction. The black line 
corresponds to the descending branch coming from positive field saturation while the black dotted line 
shows the ascending branch. The red dotted line symbolizes H=0. 

 

Coming from positive field saturation, the first transitions correspond to the 

reversals of the layers of the SAFs the closest to the MgO barriers: first, at larger 

fields, the top part of the bottom SAF M2 followed by the bottom part of the top SAF 

M’2. At the center of the loop the switching of the storage layer M3 is visible. We 

represent it deliberately shifted towards negative fields to account for the commonly 

observed antiferromagnetic coupling through the MgO barrier. At negative fields, the 

hardest parts of the bottom and top SAF switch one after the other (M’1 followed by 

M1). 

As shown in the inset of Figure III-21, minor loops can be performed on the 

storage layer with either parallel (red) or antiparallel (blue) configuration of the 

references. These two configurations are reached by applying a proper field 

treatment, as schematically represented in Figure III-23. Starting from positive field 

saturation and decreasing the field down to about -1000 Oe allows putting the 

references in parallel configuration (Figure III-23 (a)). The minor loop on the free 

layer is then done by increasing the field again towards positive values. At the same 

time, this treatment gives the minor loops on the bottom and top SAFs at larger 

fields. To set the references in an antiparallel configuration, the field has to be 
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decreased down to about -2500 Oe. It is then increased to switch back the 

magnetization of the bottom part of the top SAF M’2 and a minor loop can be 

performed on the free layer (Figure III-23 (b)). 

 

 

Figure III-23: Schematic representations of the field treatments needed to perform the minor loop on 
the free layer with (a) parallel or (b) antiparallel configuration of the references. 

 

From these two minor loops, it is possible to extract the coupling fields acting on 

the free layer from both MgO barriers. Indeed, when the references are parallel the 

two coupling fields add whereas when they are antiparallel they subtract. In the case 

of the junction presented in Figure III-21, we found Hcpl1+Hcpl2=-16 Oe and Hcpl1-

Hcpl2=10 Oe, where the indices 1 and 2 stand for the bottom and top barrier 

respectively. This translates into Hcpl1=-3 Oe and Hcpl2=-13 Oe. Both coupling are then 

weakly antiferromagnetic, with a larger one coming from the top MgO interface. This 

might be due to a larger roughness of the top MgO barrier than of the bottom one, 

probably because of different growth conditions. 

 

III-3.3 Transport properties of perpendicular double magnetic 

tunnel junctions 

 

Depending on the relative orientations of the magnetizations in the reference 

layers, the resulting TMR of a double junction differs. If we call RA1 and TMR1 the 

parameters of the bottom MgO barrier and RA2 and TMR2 those of the top barrier the 

resulting TMR in the case of parallel or antiparallel references can be written as: 

𝑇𝑀𝑅𝑡𝑜𝑡/𝑝𝑎𝑟𝑎 =
𝑅𝐴1𝑇𝑀𝑅1+𝑅𝐴2𝑇𝑀𝑅2

𝑅𝐴1+𝑅𝐴2
 and 𝑇𝑀𝑅𝑡𝑜𝑡/𝑎𝑛𝑡𝑖𝑝𝑎𝑟𝑎 =

𝑅𝐴1𝑇𝑀𝑅1−𝑅𝐴2𝑇𝑀𝑅2

𝑅𝐴1+𝑅𝐴2(1+𝑇𝑀𝑅2)
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The expression of TMRtot/antipara is correct in the case where RA1TMR1 > RA2TMR2. 

We chose this case as it is the most frequently encountered in our structures. 

As we have seen in the magnetic loops of Figures III-21 and III-23, for switching 

between the antiparallel configuration of the references (which is necessary to 

enhance the STT efficiency) and the parallel one (that would ensure the stability of 

the stored information against read voltage), rather large magnetic fields are needed. 

In a device, applying these fields (if achievable) would lead to a loss of the written 

state of the memory dot. 

One could then consider keeping the system in an antiparallel configuration of the 

references to benefit from the enhancement of the STT effect and still read the 

information in this configuration. This leads to some requirements on the two tunnel 

barriers. Indeed, as seen in the above expression, if one wants to have a resulting 

TMR with antiparallel references it is necessary to satisfy the condition RA1TMR1 > 

RA2TMR2, which is equivalent to having RA1 > RA2. This is commonly achieved by 

dissymmetrizing the barriers (changing the oxidation conditions for example). 

In order to test the effect of the two barrier parameters on the transport 

properties of double magnetic tunnel junctions we deposited three stacks with 

varying MgO barriers. The junctions are composed of the same reference layers and 

storage layer as the junction shown in Figure III-21. Two types of barriers were 

deposited:  

- LP = Mg0.6/Ox/Mg0.5 (low pressure conditions 3.10-2 mbar, 100 sccm, 360 s) 

- HP = Mg0.9/Ox/Mg0.5 (high pressure conditions 150 mbar, 10 s) 

We then combine them so that we have either symmetric or asymmetric barriers 

in the stack. Transport properties were measured by CIPT in perpendicular mode, 

both with parallel or antiparallel configuration of the references. These 

configurations are obtained by applying the previously shown field treatments to the 

junctions, prior to the transport measurements. Results are given in Table III-1, 

where the first label corresponds to the bottom barrier and the second label to the top 

one. 

Type of barriers TMRpara (%) TMRantipara (%) 

HP / LP 32 35 

LP / LP 16 7 

HP / HP 27 13 

Table III-1: Values of the measured TMR by CIPT for double junctions with different types of oxidation 
conditions for the two tunnel barriers. 

It appears that in the case of asymmetric barriers (HP/LP), the TMR values in 

parallel and antiparallel configurations are identical (within the error range of the 

measurement). This indicates that the RA of the top barrier done with low pressure 

conditions is negligible compared to the one of the bottom barrier. On the contrary, 
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with symmetric barriers (LP/LP or HP/HP), the TMR in the antiparallel 

configuration of the references is half the one obtained in the parallel configuration. 

Even though barriers are nominally identical, we notice than the TMR in the 

antiparallel configuration does not drop down to zero. This means that probably due 

to different growth conditions, the two barriers have distinct parameters which lead 

to a non-zero resulting TMR. This effect had already been observed in other studies 

[Sat-13]. 

One could however question the validity of the CIPT fit when two barriers are 

present. We then calculated the expected values of TMR in the double junctions, 

using the parameters measured in individual junctions with either bottom or top 

references (given in Table III-2). Values given here correspond to the standard mean 

values obtained for the different types of stack and barriers. 

Type of barrier Reference RA (m2) TMR (%) 

HP 
bottom 50 80 

top 50 15 

LP 
bottom 10 40 

top 10 10 

Table III-2: Transport parameters measured on individual junctions by CIPT for two types of oxidation 
conditions (low pressure LP and high pressure HP). 

Note that despite identical tunnel barriers, magnetic tunnel junctions with top 

Co/Pd reference always give smaller TMR signals, as was already observed 

previously.  

Table III-3 presents the calculated values of TMR in double junctions with varying 

types of barrier, using the parameters of the individual barriers extracted from the 

measurements of single junctions. For the bottom barrier we take the parameters of 

the junctions with a bottom reference whereas for the top barrier we use those of the 

junctions with a top reference. We see that these results qualitatively agree with the 

CIPT measurements performed on full double junctions. Similarly, TMR signals in 

the parallel and antiparallel configurations of the references are almost identical in 

the case of asymmetric barriers while a rather large decrease is observed with the 

antiparallel configuration in the symmetric cases. 

Type of barriers TMRpara (%) TMRantipara (%) 

HP / LP 68 64 

LP / LP 10 6 

HP / HP 48 30 

Table III-3: Values of the calculated TMR by CIPT for double junctions with different types of 
oxidation conditions for the two tunnel barriers, using the parameters of single junctions given in 
Table III-2. 

 

 



 CHAPTER III: Towards double junctions with perpendicular anisotropy 

123 
 

III-4. Conclusions 

 

We saw that replacing the Ta cap by an MgO one in our standard Co/Pt-based 

bottom referenced tunnel junctions enables improving significantly the perpendicular 

anisotropy of the storage layer. Indeed, in the case of a FeCoB/Ta0.3/FeCoB 

composite storage layer the effective critical thickness, at which we have the out-of-

plane to in-plane reorientation of the magnetization, reaches 2.7 nm instead of 1.1 nm 

in the Ta-capped structures. The total interfacial anisotropy is also doubled (from 

about 1 to 2 erg.cm-2). This is a particularly interesting result that gives the possibility 

to improve the thermal stability of the memory dots. 

We developed top reference layers made of Co/Pd multilayers. To obtain 

satisfying magnetic properties, several parameters have to be adjusted, in particular 

the magnetic thicknesses in the multilayers. These top references have been found to 

be compatible with the previously optimized Co/Pt bottom SAF references so that 

they could be integrated in a complete double structure. 

We showed that a double magnetic tunnel junction with two MgO tunnel barriers 

and two SAF references can be prepared. As expected from the behavior of the 

different parts of the structure, a magnetically functional stack could be observed by 

VSM measurements. 
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As we have seen in Chapter I, the phenomenon of RKKY interactions was 

discovered relatively early in the 1950s. However, it is only for 25 years that practical 

applications have been developed in the field of spintronics. Indeed, being able to 

couple antiferromagnetically two magnetic layers is particularly interesting in the 

case of small devices for which stray field effects become extremely important. 

In the case of perpendicular systems, the RKKY coupling has been mostly used in 

the reference layers made most of the time of Co/Pt or Co/Pd multilayers. If these 

materials are interesting for their large perpendicular anisotropy, they have the 

drawback of being difficult to etch. Besides they require a good control of the 

deposition tool as usual very thin layers of a few tens of nanometer are needed. 

This is why we propose in this part to study synthetic antiferromagnetic structures 

made of two FeCoB layers separated by a spacer of different nature (Ta, Ru or 

Ta/Ru). We will first study the evolution of the magnetic properties of such systems 

as a function of the inserted layer. We will then see how we can tune these properties 

by playing on the nature of the spacer as well as on the magnetic compensation. We 

will show that such SAF layers can be used in different parts of double junctions with 

perpendicular anisotropy. Finally, using these structures as reference layers, we will 

be able to deposit Pt (Pd)-free single magnetic tunnel junctions [Cuc-16]. 
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IV-1. Variation of the coupling strength as a function of 

the nature and thickness of the insertion layer 

 

As shown in 1991, the oscillatory behavior of magnetic coupling between two 

ferromagnetic layers separated by a metallic spacer is a common phenomenon 

observed with a wide range of spacer materials [Par-91]. The nature of the inserted 

layer however changes period, phase and strength of the coupling. In this part, we 

will study the antiferromagnetic coupling between two FeCoB layers as a function of 

spacer thickness for different types of insertion. 

IV-1.1 Ta insertion 

 

In 2012, V. Sokalski et al. showed that an antiferromagnetic coupling can be 

obtained with two perpendicularly magnetized CoFeB layers separated by a Ta spacer 

[Sok-12]. This antiferromagnetic configuration of the magnetizations appears for Ta 

thicknesses larger than 0.6 nm but is rather weak: the antiferromagnetic plateau does 

not exceed 200-250 Oe, for magnetic thicknesses of 0.9 and 1.2 nm on both sides of 

the spacer. The case of thinner insertion layers has already been presented in Chapter 

III when introducing an MgO capping on top of the storage layer. With a 0.3 nm thick 

Ta insertion, the two FeCoB layers are strongly ferromagnetically coupled, probably 

thanks to direct coupling through pinholes.  

We obtained results similar to those of the literature when inserting a Fe-rich 

FeCoB1.2/Ta0.8/FeCoB1.2/MgO composite storage layer in a MTJ stack comprising 

our standard Co/Pt-based bottom reference. The magnetic loop measured by VSM is 

presented in Figure IV-1. 
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Figure IV-1: Magnetic loop measured by VSM with perpendicular applied field for a junction with 
bottom SAF reference and a top SAF storage layer made of FeCoB1.2/Ta0.8/FeCoB1.2/MgO. 

 

As can be seen, the storage layer has indeed a typical SAF behavior with two 

transitions. The inset allows visualizing more precisely the loop performed on the free 

layer. After saturating the SAF in positive fields, the field is swept towards negative 

values down to a field of -300 Oe and is then increased again up to 300 Oe. This 

treatment gives the full loop of the SAF and shows that two antiparallel 

configurations of the FeCoB magnetizations are stable in zero field, making this SAF 

storage layer functional for memory applications. Note that as already pointed out, 

the stability of the antiferromagnetic plateau is rather limited (around 250 Oe in total 

in that case). We can see the transitions of the major loop performed on the SAF 

storage layer are also shifted due to the antiferromagnetic indirect coupling that 

exists through the MgO barrier. 

IV-1.2 Ru insertion 

 

Knowing that the RKKY coupling is particularly strong with Ru and that good 

results were obtained with this spacer for the standard Co/Pt (Pd)-based SAF (see 

Chapters II and III), we decided to investigate the use of Ru with FeCoB layers. To 

that aim, a series of junctions with a bottom SAF reference and a top 

FeCoB1.3/Rux/FeCoB1.2/MgO composite storage layer was deposited, with varying 

Ru thickness. We recall that the standard bottom reference consists of: 

Ta3/Pt5/(Co0.5/Pt0.25)6/Co0.5/Ru0.9/(Co0.5/Pt0.25)3/Co0.5/Ta0.3/FeCoB1.2/Mg

O. For simplicity, it will be referred as SAF1 in the following. It is included to account 

for the needs in terms of normalization, as explained previously. The FeCoB bilayer is 

made slightly dissymmetric as a larger magnetically dead layer is expected in the 
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bottom FeCoB (closest to the MgO barrier), by analogy with the results obtained with 

Ta in Chapter II. 

Figure IV-2 shows the magnetic loops measured by VSM for six different Ru 

thicknesses. It appears that in the case of a Ru spacer, a three transitions type of 

behavior is observed (Figure II-14 (b), Chapter II). As explained previously, this is 

due to the coupling energy becoming stronger than the anisotropy one. Two 

reversible parts are visible at large fields on both sides of an abrupt transition at low 

field. Extracting the coupling field HSAF is a bit complicated by the presence of the 

transitions of the bottom SAF at large fields, particularly in the case of large coupling 

strengths for Ru insertions of 0.5, 0.55 and 0.6 nm (see Figure IV-2 (a), (b), (c)). It 

can however already be seen that the coupling field is decreasing as the Ru thickness 

increases. However, HSAF reaches values as large as -2500 Oe, which are much higher 

than the ones obtained with Ta. 

 

Figure IV-2: Magnetic loops measured by VSM with perpendicular applied field for samples with 
standard bottom SAF reference and a composite FeCoB1.3/Rux/FeCoB1.2 storage layer. Values of x 
are: (a) 0.5 (b) 0.55 (c) 0.6 (d) 0.65 (e) 0.7 (f) 0.9 nm. 

IV-1.3 Ta/Ru bilayer insertion 

 

In Chapter II, we pointed out the important role of a Ta insertion in improving the 

TMR signal of our magnetic tunnel junctions. It is also known that the getter effect 

and the anisotropy are much lower with Ru than with Ta. Then, to try and combine 

the large RKKY coupling brought by Ru with the advantages of Ta, we changed the 

storage layer to FeCoB1.4/Ta0.2/Rux/FeCoB1.1/MgO. We proceed similarly by 

depositing a series of junctions with varying spacer thickness. Some examples of the 
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magnetic cycles measured by VSM are given in Figure IV-3, with focus made on the 

storage layer cycle only. 

 

 

Figure IV-3: Magnetic loops measured by VSM with perpendicular applied field for samples with 
standard bottom SAF reference and a composite FeCoB1.4/Ta0.2Rux/FeCoB1.1 storage layer. Values 
of x are: (a) 0.3 (b) 0.4 (c) 0.5 (d) 0.6 (e) 0.7 (f) 0.8 nm. Only zooms on the storage layers are shown. 

 

As the Ru thickness increases, we can see the coupling going from ferromagnetic 

to antiferromagnetic and back to ferromagnetic, which is typical of the oscillatory 

behavior of RKKY coupling. The antiferromagnetic coupling is maintained for Ru 

thicknesses between 0.4 and 0.7 nm and its strength depends on the spacer 

thickness. For very thin layers, the ferromagnetic coupling probably originates from 

direct coupling through pinholes. In the case of thick spacers, the ferromagnetic 

coupling might have a dipolar origin. As expected, the stability of the SAF is less than 

the one achieved with pure Ru. The perpendicular anisotropy is on the other hand 

higher as more abrupt transitions appear and the switching of the SAF happens in 

two steps instead of three. 

When carefully looking at the loops of Figure IV-3, one notices that the levels of 

the antiparallel plateau vary as a function of Ru thickness. Between 0.4 and 0.5 nm of 

Ru, the levels even get inverted. This suggests that there is a change of total 

magnetization as the Ru spacer thickness varies. We can plot the amplitude of each 

transition (normalized to the amplitude of the bottom part of the SAF M1) as a 

function of insertion thickness. The SAF storage can be schematically represented as 

Mb/Ta0.2/Rux/Mt. From the two distinct behaviors, as shown in Figure IV-4, we can 

attribute the constant transition to the bottom FeCoB magnetization Mb that does not 

see its interfaces change. On the contrary, the decreasing magnetization can be 
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associated to the top FeCoB magnetization Mt, which grows on a thicker and thicker 

Ru layer. This most probably translates into an increase in magnetic dead layer 

thickness. From this study, we can then infer that the first transition at positive field 

corresponds to the reversal of the bottom FeCoB layer Mb (in contact with the MgO 

barrier) and the second transition at negative field to the reversal of the top FeCoB 

layer Mt (in contact with the MgO capping layer). 
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Figure IV-4: Normalized magnetizations Mb/M1 and Mt/M1 as a function of Ru thickness for junctions 
with bottom SAF reference and FeCoB1.4/Ta0.2/Rux/FeCoB1.1/MgO top storage layer. 

 

To compare the Ta/Ru spacer with the Ru one, the values of the coupling field 

HSAF have been extracted for both series of samples by carrying out minor loop 

measurements on the storage layer: after saturation at positive fields, the field is 

decreased down to 0 Oe and increased again to switch back the magnetization of the 

softest layer of the SAF. Note that in the case of ferromagnetic coupling, one cannot 

extract the value of the coupling field, so we arbitrarily set it at zero. The usual sign 

convention has been applied and negative values of field are taken to account for the 

antiferromagnetic nature of the coupling. The two plots of HSAF as a function of Ru 

thickness are gathered in Figure IV-5. 
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Figure IV-5: Evolution of the RKKY coupling field as a function of Ru thickness for Rux (black) and 
Ta0.2/Rux (red) spacers. Note the different scales for the field amplitude. 

In both cases, the trend is really similar: the coupling field amplitude increases to 

reach a maximum around 0.5-0.6 nm of Ru and then monotonously decreases. We 

observe that the maximum that commonly appears around 0.9 nm in the Co/Pt SAFs 

is missing in that case. This might be due to the fact that the magnetic layers are 

alloys here instead of pure materials. Upon Ta insertion, the curve is slightly shifted 

towards smaller Ru thicknesses but by a value of 0.05 nm, smaller than the 0.2 nm of 

Ta insertion. This effect can be explained by the dependence in period, phase and 

amplitude of the RKKY coupling on the nature of the non-magnetic spacer [Par-91], 

as well as on the nature of the magnetic material [Pet-91]. Figure IV-5 allows noting 

especially that the maximum of amplitude of the coupling field is reduced by a factor 

of 5 when the Ru spacer is replaced by a Ta0.2/Ru one. This agrees with previous 

results indicating that the antiferromagnetic coupling is very weak with pure Ta. Even 

though the maximum coupling energies cannot be determined accurately due to the 

lack of information on saturation magnetization and magnetic dead layers with that 

kind of spacers, we can however estimate them to be roughly 0.30 erg.cm-2 and 0.06 

erg.cm-2 for a Ru0.6 and a Ta0.2Ru0.5 spacer, respectively (using Jcpl=HSAFMst, with 

Ms and t the saturation magnetization and thickness of the softest layer of the SAF). 

IV-1.4 Influence of Ta thickness on RKKY coupling 

 

To study more precisely the effect of Ta on the RKKY coupling, samples with 

varying thickness of Ta in the Ta/Ru spacer were prepared. In order to keep the 

maximum coupling amplitude, the Ru thickness is adjusted using a linear 

approximation between Ta0 and Ta0.2 nm. The width of the antiparallel plateau as a 

function of Ta thickness is plotted in Figure IV-6. 
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Figure IV-6: Variation of the width of the antiparallel plateau as a function of Ta insertion thickness 
for junctions made of SAF1/MgO/FeCoB1.4/Tax/Ruy/FeCoB1.1/MgO. y is adjusted to keep the 
maximum coupling amplitude. 

 

A progressive decrease of the antiferromagnetic coupling strength is observed as 

the Ta thickness increases. The width of the antiparallel plateau goes from 2600 Oe 

without Ta insertion down to about 600 Oe for a Ta thickness of 0.25 nm. This agrees 

with our first result giving a stability range of only 250 Oe in the case of a pure Ta 

insertion of 0.8 nm.  
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IV-2. Magnetic properties of FeCoB-based SAF 
 

In this part, we will study in more details the magnetic properties of the 

FeCoB/(Ta)/Ru/FeCoB synthetic antiferromagnetic structures. We will in particular 

extract the magnetic dead layer thicknesses as well as examine the magnetic 

compensation of the stack. 

IV-2.1 Determination of the magnetic dead layer thicknesses 

 

We present here the determination of the magnetic dead layer thickness in the 

bottom FeCoB layer for the SAF structure with a Ta0.2Ru0.5 insertion. To that aim a 

series of junctions with the following composition has been prepared: 

SAF1/MgO/FeCoBx/Ta0.2/Ru0.5/FeCoB1.1/MgO/Pt2. As usual the bottom reference 

is used for normalization. The ratios Mb/M1 and Mt/M1 as a function of the nominal 

bottom FeCoB thickness are plotted in Figure IV-7. 
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Figure IV-7: Normalized magnetizations Mb/M1 and Mt/M1 as functions of bottom FeCoB thickness for 
junctions consisting of SAF1/MgO/FeCoBx/Ta0.2/Ru0.5/FeCoB1.1/MgO. 

 

The obtained trends are as expected: the magnetization of the top part Mt remains 

approximatively constant while the bottom magnetization Mb increases with FeCoB 

thickness. Note that for very thin FeCoB layers (<0.9 nm) it gets really difficult to 

extract the amplitude of the transition, as can be seen in the example of Figure IV-8 

(a) that gives the magnetic loop of a junction with a 

FeCoB0.8/Ta0.2/Ru0.5/FeCoB1.1 SAF storage layer. Thus, to calculate the value of 

Mb, we use the total amplitude of the SAF and assume Mt is equal to the mean value 

extracted from the other data points (horizontal red line on Figure IV-7). Similarly, 

for thicker FeCoB layers, when the magnetization starts to become planar, the 
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different contributions are also not so easy to distinguish, as illustrated in Figure IV-8 

(b) for a FeCoB1.6/Ta0.2/Ru0.5/FeCoB1.1 storage layer. We then proceed the same 

way to extract the value of Mb. With this data treatment, there is a larger error for the 

estimated values at large and small thicknesses. Indeed, on the graph of Figure IV-7, 

we can clearly see that these points deviate from the linear fit. Using this fit, a 

magnetic dead layer thickness of about 0.6 nm is obtained as well as a saturation 

magnetization Ms=1630 emu.cm-3. If we exclude the points corresponding to the 

three smaller and larger thicknesses, the slope of the linear fit is slightly reduced and 

gives a magnetic dead layer of about 0.5 nm and a saturation magnetization around 

1390 emu.cm-3, which is closer to the value obtained previously in Chapter II for a 

standard Ta-capped FeCoB free layer. 

 

Figure IV-8: Magnetic loops measured by VSM with perpendicular applied field for samples with 
standard bottom SAF reference and a composite FeCoBx/Ta0.2/Ru0.5/FeCoB1.1 storage layer. 
Examples with (a) thin 0.8 nm and (b) thick 1.6 nm bottom FeCoB layers are shown. 

 

This study as a function of thickness had also the advantage of confirming the 

assumption made previously that the first transition at positive fields corresponds 

indeed to the reversal of the bottom FeCoB layer, which is in contact with the tunnel 

barrier. 

The magnetic dead layer of the top FeCoB layer may also be estimated from 

Figure IV-7, if one assumes that the saturation magnetization is the same in the two 

FeCoB layers. This hypothesis is probably not so accurate because, as we have seen in 

Chapter II, the value of Ms depends a lot on the nature of the other materials at the 

interfaces. This assumption enables however to get a crude estimation of the dead 

layer thickness. We see indeed that Mb=Mt for a bottom thickness of about 1.3 nm. 

Knowing that the nominal top FeCoB thickness is 1.1 nm, we estimate a magnetic 

dead layer thickness of 0.4 nm in the top FeCoB layer. This is in good qualitative 

agreement with our former results of Chapter II that gave larger magnetic dead layer 

thicknesses in the case of top FeCoB growing on MgO and capped with Ta, than in 

bottom FeCoB layers growing on Ta and capped with MgO.  
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IV-2.2 Comparison between Ta/Ru and Ru spacers 

 

To have an idea of the difference in magnetic behavior between a Ta/Ru and a 

pure Ru spacer, we compare directly the magnetic loops of two MTJs with the same 

nominal thickness of FeCoB in both parts of the SAF that is to say 

FeCoB1.4/spacer/FeCoB1.1. The loops are given in Figure IV-9, the bottom panel 

presenting zooms on the storage layer cycle. 

 

Figure IV-9: Magnetic cycles measured by VSM with perpendicular applied field for samples composed 
of SAF1/MgO/FeCoB1.4/spacer/FeCoB1.1/MgO/Pt2. The spacer is either Ru0.6 (a, c) or Ta0.2/Ru0.5 
(b, d). Curves (c) and (d) are zooms of the top SAF. 

 

As already pointed out in the previous part, the coupling strength is much larger 

with pure Ru as the stability of the antiparallel plateau ranges between ± 1300 Oe 

with Ru0.6 instead of ± 600 Oe for the Ta0.2Ru0.5 spacer. 

The zooms of Figure IV-9 (c) and (d) show that changing the nature of the spacer 

results in a modification of the relative positions of the antiparallel plateau. The 

descending branch (in blue) of the loop is above the ascending one (in red) in the case 

of a Ru spacer whereas it is the opposite with the Ta/Ru bilayer spacer. The system is 

thus under-compensated in the first case and over-compensated in the other one. As 

the nominal thicknesses are identical, this is another indication that the magnetic 

dead layer varies as a function of the material at the interface. Normalizing the two 
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transitions by M1, Mt is found to remain constant while Mb decreases by about 15 % 

when the FeCoB/Ta interface is replaced by a FeCoB/Ru one. The magnetic dead 

layer thickness is then greater with a pure Ru spacer. 

Assuming Ms is the same whatever the insertion layer (which is probably not so 

true, as explained earlier), we would find a magnetic dead layer thickness of about 0.7 

nm in the bottom FeCoB layer in the case of a pure Ru spacer. 

IV-2.3 Modification of the magnetic compensation 

    

In the previous series of samples with a Ta0.2Ru0.5 spacer and a varying 

thickness of the bottom FeCoB layer, the stability of the SAF seemed to vary 

depending on the compensation state of the SAF. It was however not very easy to 

observe this phenomenon, probably because the coupling is rather weak with Ta/Ru 

insertions. This is why we carried out similar experiments with pure Ru-based tunnel 

junctions. 

 

Figure IV-10: Magnetic cycles of SAF1/MgO/FeCoBx/Ru0.6/FeCoB1.1/MgO/Pt2 structures measured 
by VSM with perpendicular applied field. 4 different thicknesses of bottom FeCoB are shown: (a) 1.25 
(b) 1.3 (c) 1.35 and (d) 1.4 nm. The magnetic configurations labelled 1 to 4 on the graphs are 
schematically represented on the right. 

 

Figure IV-10 shows the magnetic cycles of MTJs with a bottom reference SAF1 and 

a SAF storage layer with a Ru0.6 insertion and varying bottom FeCoB thickness. The 

stability of the structure strongly depends on the magnetic thicknesses and thus on 
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the magnetic compensation on both sides of the spacer. For the thinner layers, when 

the system is under-compensated, an additional transition appears corresponding to 

the reversal of the net magnetization of the SAF, still keeping an antiparallel 

alignment of the magnetizations (transition from configurations 2 to 3 in Figure IV-

10). 

Defining the RKKY energy through the Ru spacer as JRu, H the applied field, Keffb 

the effective perpendicular anisotropy of the bottom FeCoB layer with magnetization 

Mb and effective thickness tb, the additional transition appears when: 

𝐽𝑅𝑢 > 𝐻𝑀𝑏𝑡𝑏 + 𝐾𝑒𝑓𝑓𝑏𝑡𝑏 

The fact that this additional transition is not clearly seen in the Ta/Ru systems 

probably originates from the much reduced RKKY coupling energy in these stacks 

compared to the Ru0.6 SAFs. 

This additional transition strongly reduces the stability range of the antiparallel 

plateau. It occurs at about -350 Oe in the case of the thinnest bottom FeCoB layer, as 

shown in Figure IV-10 (a). As the FeCoB thickness increases, we approach the 

magnetic compensation and the positions of the ascending and descending plateaus 

get progressively closer to one another. At the same time, the transition between 

configurations 2 and 3 shifts to larger fields and disappears around the magnetic 

compensation (see Figure IV-10 (d)). This comes from the fact that the torque exerted 

by the external field is inversely proportional to the net magnetization and becomes 

then less and less efficient as one reaches the magnetic compensation. This transition 

field Hsw can be qualitatively represented as: 

𝐻𝑠𝑤 =
𝐾𝑏𝑡𝑏 + 𝐾𝑡𝑡𝑡
𝑀𝑡𝑡𝑡 − 𝑀𝑏𝑡𝑏

 

where Kb,t, tb,t and Mb,t are the anisotropy energy, effective magnetic thickness and 

saturation magnetization of the bottom and top FeCoB layers, respectively [Ber-97]. 

In Figure IV-11, we show the variation of this switching field as a function of the 

bottom FeCoB thickness. Using the above equation, we can make a fit (in red in the 

graph) that gives a compensation thickness of 1.44 nm for the bottom FeCoB layer at 

the divergence. Extracting any supplementary information from such a fit would 

require having a good knowledge of the saturation magnetizations and effective 

thicknesses. As was previously the case in the Ta0.2Ru0.5 system, such a 

compensation thickness indicates that the dead layer is larger in the bottom layer 

than in the top one. 

The variation of the net magnetization (i.e. the difference between the two 

magnetic moments) of the SAF, normalized to M1, as a function of bottom FeCoB 

thickness is also given in Figure IV-11. It corresponds to half the vertical opening of 

the low field magnetic cycle, as observed in Figure IV-10. As expected, the net 

magnetization decreases linearly with increasing FeCoB thickness. By extrapolating it 
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to zero, we find a compensation thickness for the bottom FeCoB layer of 1.46 nm, 

which is in very good agreement with the value of 1.44 nm determined previously. 
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Figure IV-11: Switching field Hsw of the additional transition (in red) and net magnetization 
normalized to M1 (in black) as a function of the bottom FeCoB thickness for 
SAF1/MgO/FeCoBx/Ru0.6/FeCoB1.1/MgO/Pt2 magnetic tunnel junctions. 

 

If we assume the magnetic dead layer thickness of the top FeCoB layer to be 

identical in the Ta0.2Ru0.5 and the Ru0.6 systems (around 0.4 nm, as determined 

previously), we can estimate the magnetic dead layer of the bottom FeCoB, using a 

mean compensation thickness of 1.45 nm. We will in that case keep the hypothesis 

that the Ms value of FeCoB is the same in the whole stack. We then find a bottom 

magnetic dead layer thickness of about 0.75 nm, which leads to effective thicknesses 

of 0.7 nm in each FeCoB layer at the magnetic compensation. As seen in Chapter II, if 

the effective magnetic thicknesses are greater than 0.6 nm, the maximum TMR signal 

is guaranteed. This type of SAF should then be functional for device applications. 
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IV-3.  Use of an FeCoB-based SAF in double junctions 
 

As we have seen in the previous parts, synthetic antiferromagnetic structures 

made of two FeCoB layers can be developed and their magnetic properties may be 

tuned by modifying the nature of the non-magnetic spacer or the magnetic 

compensation. 

This type of SAF is particularly interesting for a use in double magnetic junctions 

with perpendicular anisotropy. Indeed, we presented in Chapter III the realization of 

double MTJs with a ferromagnetic storage layer in the middle of the stack [Cuc-15a]. 

In that type of stack, the most efficient configuration for STT switching is having 

antiparallel references. If the ferromagnetic storage layer is replaced by the newly 

developed FeCoB-based SAF, the STT efficiency will be in that case maximal if the 

references are oriented parallel. This is quite a good solution as the parallel 

configuration of the references might be favored due to dipolar coupling in patterned 

samples. Besides, having a SAF type of storage layer makes it more immune to the 

remaining stray fields. The two favorable configurations as a function of the type of 

storage layer are schematically represented in Figure IV-12. 

 

Figure IV-12: Schematic magnetic configurations optimizing STT efficiency in perpendicular double 
magnetic tunnel junctions: (a) antiparallel references and single ferromagnetic storage layer, (b) 
parallel references and synthetic antiferromagnetic storage layer. 

 

The FeCoB-based SAF can be put at different positions in the structure and may 

have various functions as we will see in the following. 
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IV-3.1 Use as a SAF storage layer in a double junction with two SAF 

reference layers 

 

As explained above, the SAF can be put in the middle of the double junction stack 

presented in Chapter III instead of the single ferromagnetic layer. The stack then 

comprises three SAFs: 

- Bottom reference SAF1: Ta3/Pt5/(Co0.5/Pt0.25)6/Co0.5/Ru0.9/ 

(Co0.5/Pt0.25)3/Co0.5/Ta0.3/FeCoB1.2/MgO 

- Storage layer SAF3: FeCoB/spacer/FeCoB 

- Top reference SAF2: MgO/FeCoB1.2/Ta0.3/(Co0.4Pd1.2)4/Co0.4/ 

Ru0.9/(Co0.4/Pd1.2)8/Co0.4/Pd2 

Figure IV-13 shows an example of the magnetic loop obtained for a 

FeCoB1.2/Ta0.8/FeCoB1.2 composite storage layer. 
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Figure IV-13: Magnetic cycle measured by VSM with perpendicular applied field for a double junction 
with SAF1/MgO/FeCoB1.2/Ta0.8/FeCoB1.2/MgO/SAF2. The inset shows minor loops recorded with 
either parallel (red) or antiparallel (blue) configuration of the reference layers. 

 

As expected, six distinct transitions are visible in the magnetic loop and the 

central SAF storage layer can be switched without perturbing the two references. 

Similarly to what had been done in Figure III-21 for a single ferromagnetic storage 

layer, minor loops on the storage layer might be measured with either parallel 

references or antiparallel references. In the first case, the field has to be decreased 

down to about -1000 Oe, whereas in the other one it should reach -2500 Oe to switch 

the magnetization of the top reference layer. Using the shifts of the minor loops with 

regard to zero field, one also find here that the coupling energy through the bottom 
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barrier is three times smaller than through the top one (-1.10-3 instead of -3.10-3 

erg.cm-2, respectively). 

The advantage of such a structure, as explained previously, is that the storage 

layer would be particularly immune to remaining stray fields once patterned into 

small size devices. This idea was also used in some recent developments on single 

magnetic tunnel junctions. The storage layer was in that case composed of a CoFeB 

antiferromagnetically coupled to a Co/Pd multilayer [Yos-13, Yos-14]. In our double 

junctions, the parallel configuration of the references allows increasing the STT 

efficiency in the write phase. To perform the reading, one could want to put the 

references in an antiparallel configuration to increase the stability of the stored 

information against applied voltage. However, as was the case with the ferromagnetic 

storage layer, we cannot switch back with field the references in the antiparallel 

configuration without risking to rewrite the information of the memory bit. As 

previously, with that structure the best option is then to dissymmetrize the tunnel 

barriers and work with the parallel configuration of the reference layers at any time. 

IV-3.2 Use as a top reference in a double junction with single 

ferromagnetic storage layer 

 

In the previous part, we have seen that rather large stabilities (above ± 1000 Oe) 

may be obtained with the FeCoB-based SAF structures. Knowing that the standard 

single ferromagnetic storage layers with MgO capping exhibit coercive fields of the 

order of 100 Oe (case of Ta insertion, see Chapter III), one can consider using the 

FeCoB/(Ta and/or Ru)/FeCoB SAF structures as top references in a double magnetic 

junction with perpendicular anisotropy. They would in that case replace the Co/Pd-

based reference. 

A junction has then been prepared with the following parts: 

- Bottom reference SAF1 (as in the previous part) 

- Single ferromagnetic storage layer SL: FeCoB1.2/Ta0.3/FeCoB1.2 

- Top reference SAF3: MgO/FeCoB1.4/Ru0.6/FeCoB1.1/MgO. 

The magnetic cycle measured by VSM is shown in Figure IV-14. As expected, the 

reversal of the storage layer, in the middle of the loop, is fully distinct from the 

transitions of the two SAF references, the width of the smaller antiparallel plateau 

being about ± 1300 Oe. Similarly to the firstly presented double junction of Chapter 

III (see Figure III-21), the top reference can be put either parallel or antiparallel to 

the bottom reference. The antiparallel configuration remains here the one to 

maintain if one wants to maximize the STT efficiency. One should however note that 

in such a structure three MgO barriers are present. To have a functioning device, we 
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should then be careful of reducing the RA product of the top one if we do not want to 

get too large resistances. 
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Figure IV-14: Magnetic loop measured by VSM with perpendicular applied field for a double junction 
having a SAF1/MgO/SL/MgO/SAF3/MgO structure. 

 

IV-3.3 Use as a SAF storage layer in a double junction with a bottom 

reference layer and a top soft control layer 

 

Another solution could be using a SAF storage layer and a soft layer instead of the 

top reference. This type of structure has already been proposed for planar double 

magnetic tunnel junctions by P.–Y. Clément in Spintec [Clé-14]. The idea is that the 

top soft layer, also called control layer, can be switched by field without modifying the 

information stored in the SAF storage layer which is much harder. This makes it an 

even more efficient structure for STT applications. A schematic representation of the 

write and read modes with this stack is given in Figure IV-15. 
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Figure IV-15: Schematic representation of the write (a) and read (b) modes in the case of double 
junctions with the following structure: SAF1/MgO/SAF3/MgO/SL, SL standing for the soft control 
layer. 

 

A magnetic junction with this structure has been deposited. It comprises the 

following blocks: 

- Bottom reference SAF1 (as previously) 

- Storage layer SAF3: FeCoB1.4/Ta0.2/Ru0.5/FeCoB1.1 

- Top control layer SL: MgO/FeCoB1.4/Ta1/Pt2 

We use in that case a Ta0.2Ru0.5 insertion layer but pure Ta or pure Ru systems 

would work as well. To make the soft control layer, a standard single ferromagnetic 

FeCoB layer capped with Ta is chosen. It is identical to the storage layer of a single 

magnetic tunnel junction. Figure IV-16 presents the magnetic loop measured by 

VSM. We can distinguish the five different transitions, the reversal of the top control 

layer being contained in between those of the SAF storage layer, on the antiparallel 

plateau near zero field. 
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Figure IV-16: Magnetic loop measured by VSM with perpendicular applied field for a double junction 
having a SAF1/MgO/SAF3/MgO/SL structure. 

 

As can be seen in the zoom between -1000 and 1000 Oe, the control layer can be 

switched by applying a small field of about 150 Oe, without changing the orientation 

of the magnetizations of the storage layer which reversals happen at larger field 

values (typically 700 Oe). We can also imagine other ways to switch the control layer 

like for example using a planar current in a stripe to induce domain wall propagation 

in a magnetic material or spin-orbit torque related effects at the interface with a 

heavy metal [Cub-14]. 

Note that it is however necessary to be able to stabilize the antiparallel 

configuration during writing, that is to say make the top control layer insensitive to 

STT. This may be done by introducing impurities with strong spin-orbit coupling that 

would lead to a larger Gilbert damping. 
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IV-4.  FeCoB-based SAF as reference layers in single 

magnetic tunnel junctions 
 

Developing the FeCoB-based SAF structures, it appeared that the stability of such 

systems can be made notably large, in particular near the magnetic compensation. 

Antiparallel plateaus as wide as ± 1300 Oe may be achieved enabling these stacks to 

compete with the standard Co/Pt (Pd)-based SAF. The advantage of removing the 

multilayers is that not such a precise control of deposited thicknesses is needed 

anymore (typically 0.2-0.3 nm in the case of Pt). Besides, using noble metals such as 

Pt or Pd presents some drawbacks in terms of manufacturability. Indeed these 

materials are very difficult to etch by reactive ion etching techniques. If ion beam 

etching is still possible, this method is not really appropriate at the industry level for 

homogeneity reason and production of residues. 

Moreover, using our FeCoB-based SAF as reference layers enables reducing 

drastically the thickness of the stack and then the amount of materials to etch. This is 

particularly interesting for the nanofabrication steps [Kar-14]. If this is already the 

case in the Ta/CoFeB/MgO/CoFeB/Ta junctions [Ike-10], such structures do not 

present a large difference of coercive fields between the reference and storage layers. 

Unless etching of the top electrode is stopped at the MgO barrier, stray fields from 

the reference layer may be too large and induce a loss of the dot magnetic bistability. 

This is why SAF structures in the reference are most of the time favored. This adds 

another advantage to the FeCoB/spacer/FeCoB structures: besides providing reduced 

magnetic thickness, they enable benefiting from a SAF configuration of the reference 

layer. 

In this part, we propose to study the realization of single junctions including this 

new SAF structure as bottom or top reference. Note that the standard 2 nm thick Pt 

capping layer will be kept in the following developments. But tests with a Ru or a Ta 

capping layer above the top MgO layer revealed that the magnetic properties are very 

similar whatever the capping material. It should thus be possible to make entirely Pt-

free magnetic tunnel junctions. 

IV-4.1 Use as a top reference 

 

From previous Figure IV-14, the developed double junction already showed that 

using the FeCoB-based SAF as top reference, above a single ferromagnetic storage 

layer would be feasible. The zoom at small fields around ± 4000 Oe already gave a 

glimpse of what could be the magnetic cycle of the corresponding single junction. 

We then prepared a magnetic tunnel junction made of Ta3/FeCoB1.2/MgO/ 

FeCoB1.4/spacer/FeCoB1.1/MgO/Pt2. The spacer is either Ru0.6 or Ta0.2Ru0.5. 
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Note that as the storage layer is now growing on Ta instead of MgO, we cannot make 

it as thick as in the storage layer of the double junction of Figure IV-14. Indeed, it 

does not benefit anymore from the supplemental anisotropy brought by the bottom 

MgO interface. The magnetic loops obtained for those two junctions are shown in 

Figure IV-17. 

 

Figure IV-17: Magnetic cycles measured by VSM with perpendicular applied field for single junctions 
with a bottom storage layer SL=Ta3/FeCoB1.2 and a top reference that is either (a) 
FeCoB1.4/Ru0.6/FeCoB1.1/MgO or (b) FeCoB1.4/Ta0.2/Ru0.5/FeCoB1.1/MgO. 

 

As in the case of synthetic antiferromagnetic storage layers, almost the same 

stability ranges of the antiparallel plateau are found: ± 1000 Oe with a Ru0.6 spacer 

and ±600 Oe with a Ta0.2Ru0.5 one. In both cases, functional magnetic tunnel 

junctions are obtained. 

IV-4.2 Use as a bottom reference 

 

Similarly, starting from the double junction developed in Figure IV-16, we 

prepared a single junction with a bottom FeCoB-SAF reference and a top single 

storage layer. The stack is the following: Ta3/FeCoB0.3/MgO/FeCoB1.4/ 

spacer/FeCoB1.1/MgO/FeCoB1.4/Ta1/Pt2. As we are keeping the growth of the SAF 

on a MgO layer, a non-magnetic FeCoB underlayer, growing on Ta, is deposited so 

that the growth of the first MgO barrier is similar to the one obtained in double 

junctions or when the SAF is used as a top storage layer. The free layer is here our 

standard Ta-capped FeCoB layer. 
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Figure IV-18: Magnetic cycles measured by VSM with perpendicular field for single junctions with a 
top storage layer SL=FeCoB1.4/Ta1 and a bottom reference that is either (a) 
MgO/FeCoB1.4/Ru0.6/FeCoB1.1 or (b) MgO/FeCoB1.4/Ta0.2/Ru0.5/FeCoB1.1. 

 

Similarly to the top-referenced junctions developed above, two functional 

structures are realized. The perpendicular anisotropy seems however lower, with 

slightly more tilted transitions. The stability range of the SAF has also slightly 

decreased. This might be due to the difference in growth conditions, as the SAF is 

deposited on much thinner layers compared to the case of double MTJs. 
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IV-5. Stability of the SAF configuration in small pillars 
 

As we have seen, rather large antiparallel plateaus are obtained in the Pt-free 

SAFs, particularly when Ru spacers are used, with stabilities of about ±1300 Oe. This 

is sufficient to make functional junctions at the macroscopic scale. However, one 

could question the stability of such structures in small size devices. Indeed, as the 

diameter of the nanopillar decreases, the stray fields become more and more 

important and tend to favor a parallel configuration of the magnetizations. As the 

coupling strength in our newly developed SAF structures is smaller than the one of 

the standard Co/Pt-based SAF references (with coupling fields around 3000 Oe or 

more), we wanted to check if the SAF behavior of the Pt-free structure could be 

maintained in small pillars. 

To that aim, we deposited a SAF1/SAF2 stack in which SAF1 is the standard Co/Pt-

based bottom SAF reference and SAF2 is a Pt-free SAF with a Ru spacer. The exact 

stack of SAF2 is the following: FeCoB1.2->1.5/Ru0.6/FeCoB1.1/MgO. The wedge on 

the bottom FeCoB layer was made to study the effect of the magnetic compensation in 

the SAF. Using the nanofabrication process that will be presented in details in the 

next Chapter, circular nanopillars of different diameters were patterned in the 

sample. The resistance as a function of applied field was then measured. We present 

in Figure IV-19, the R(H) loops obtained for 4 pillar sizes. 

 

Figure IV-19: Resistance as a function of applied field for SAF1/SAF2 structures patterned into circular 
nanopillars of different diameters. 

 

It can be seen from these four graphs that the magnetic behavior of the SAF 

storage layer is very similar for all studied pillar sizes. The slopes that appear at 
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higher fields correspond to the reversible transitions that we also observe in the 

macroscopic loops (as seen in Figure IV-10 for example). Very large coercive fields 

are measured with this SAF storage layer, which should bring good thermal stability 

to the memory dots. We can however see an effect on the coercive field of the storage 

layer as a function of pillar diameter. In Figure IV-20, we gathered some data on 

different junctions measured on the sample. 

 

Figure IV-20: Coercive field of the storage layer as a function of pillar diameter for SAF1/SAF2 
junctions. 

 

It appears that as the junction diameter is decreased, the coercive field decreases 

as well, a more abrupt reduction being observed as soon as the diameter gets below 

100 nm. This is representative of the effect of stray fields which compete against the 

RKKY energy. However, it seems from these measurements that the SAF behavior is 

kept at least down to pillar diameters around 50 nm. 
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IV-6. Conclusions 
 

In this Chapter we have seen that we can create Synthetic AntiFerromagnetic 

layers with two FeCoB layers separated by a metallic spacer. Various spacer materials 

are functional and interesting results have been obtained with pure Ta, pure Ru or 

Ta/Ru bilayer insertions. As expected the coupling strength depends a lot on the 

nature of the spacer and it has been found to decrease continuously as the Ta content 

increases in the spacer for a constant total thickness. The properties of the SAF 

appear to be tunable, in particular by changing the magnetic compensation of the 

structure. 

Such SAF layers can be used in double magnetic tunnel junctions and play 

different roles in the magnetic stack. Indeed we have shown that they can be used as 

SAF storage layers either in a double junction with top Co/Pd SAF reference layer or 

with a soft top control layer. The latter case is particularly interesting as the device 

could be switched from a write to a read mode, possibly enhancing considerably the 

STT performances. The FeCoB-based SAF structures can also more easily be used as 

top reference layer in the case of a double junction with a soft single storage layer in 

the middle of the two tunnel barriers. 

Finally, we have seen that due to their good stability with antiferromagnetic 

plateaus as large as 500 to 1000 Oe, such SAF structures can be employed as top or 

bottom reference layers in single magnetic tunnel junctions. This result gives us the 

possibility to build Pt (Pd)-free structures which are particularly advantageous for 

practical applications. 

Note that the stability of these SAF at small device sizes is however questionable. 

Indeed, if the (Co/Pt)-based SAF appeared to be stable in patterned samples, their 

stability in macroscopic samples is much higher (around 3000 Oe) than the one of 

the newly developed structures. We investigated the SAF behavior of the Pt-free 

systems at small sizes in a structure where they were used as storage layers. It seems 

from the magnetic characterization that the SAF is still functional at least down to 

sizes of 50 nm. Besides, some preliminary calculations considering the balance 

between the RKKY coupling energy and the dipolar energy show that these systems 

should be stable down to pillar diameters of about 30 nm. To further confirm this, 

samples are now in preparation to check the magnetic properties of such FeCoB-

based as a function of pillar size, using arrays of pillars and a focused Kerr set-up. 
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Mastering the properties of our magnetic tunnel junction at the macroscopic level 

is essential and as we have seen in the previous Chapters, if one wants to optimize the 

performances of the structures some compromises are necessary. 

However, to make one step closer towards the MRAM applications, it is necessary 

to pattern the junctions into small nanopillars that will represent the memory dots of 

a future device. This is also the only way to test electrically the magnetic tunnel 

junctions and evaluate their performances regarding Spin Transfer Torque switching. 

In a first part, we will recall the different steps of the nanofabrication process that 

we have performed in the clean room. This will be done by schematically representing 

the realization of a nanopillar thanks to a sequence involving several levels of mask. 

In a second part, we will present the results of the electrical tests realized on our 

standard junctions with a bottom SAF reference and a Ta-capped storage layer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



160 
 

V-1. Nanofabrication process 

 

In this part, we will schematically represent the different fabrication steps that 

enable us to get nanopillars, starting from the magnetic deposition on a Si wafer 

covered with a CuN buffer layer. This process is performed in the Plateforme 

Technologique Amont (PTA) of Grenoble and has been developed by Ricardo Sousa, 

Laurent Vila and Marie-Thérèse Delaye. 

 

 

Figure V-1: Deposition of a 150 nm thick Ta hard mask on top of the magnetic tunnel junction. 

 

 

Figure V-2: Definition of the pillar sizes by electron beam lithography through a PMMA resist. Pillars 
diameters can vary between about 50 and 1000 nm. The resist is then developed. 

 

Ta 

MTJ 

CuN bottom elec 

Ta 

MTJ 

CuN bottom elec 

PMMA 



 CHAPTER V: Electrical testing of patterned perpendicular magnetic tunnel junctions 

161 
 

 

Figure V-3: Pt deposition by evaporation to protect the pillars. 

 

 

Figure V-4: Lift-off of the resist. The pillar is defined by the Pt deposition. 

 

 

Figure V-5: Reactive ion etching of the Ta hard mask. The parts under the Pt are protected. 
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Figure V-6: Ion beam etching of the magnetic tunnel junction. Etching is performed with an angle of 
45° which results in a conic base for the pillar. 

 

 

Figure V-7: Deposition of a positive resist (AZ) and optical lithography to define the bottom electrode. 

 

 

Figure V-8: Ion beam etching of the bottom electrode down to the substrate. The part protected by the 
resist is not etched. The resist is afterwards removed. 

 

CuN bottom elec 

Ta 

MTJ 

Ta 

MTJ 

AZ resist 

CuN bottom elec 

Ta 

MTJ 

CuN bottom elec 



 CHAPTER V: Electrical testing of patterned perpendicular magnetic tunnel junctions 

163 
 

 

Figure V-9: Deposition of the planarizing polymer (Accuflo) which will isolate the bottom electrode 
from the top one. 

 

 

Figure V-10: Deposition of the positive AZ resist and optical lithography to define an insulating zone 
around the pillar. 
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Figure V-11: Reactive ion etching of the Accuflo on the unprotected parts of the wafer. The resist is 
then removed. 

 

 

Figure V-12: Thinning down of the Accuflo to a thickness around 90-130 nm in order to free the top 
part of the Ta pillar. 

 

 

Figure V-13: Deposition of the positive AZ resist and optical lithography to define the top electrode. 
The resist is afterwards developed. 
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Figure V-14: Deposition of the Cr/Al metallic contacts by evaporation to create the top electrode. 

 

 

Figure V-15: Final lift-off of the resist. 
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V-2. Testing of standard magnetic tunnel junctions with a 

bottom SAF reference and a top Ta-capped FeCoB storage 

layer 
 

After the first materials optimizations performed on the standard junctions in 

Chapter II, we wanted to test their Spin Transfer Torque (STT) switching 

performances on patterned samples [Cuc-14]. A magnetic tunnel junction with a 

bottom Co/Pt-based SAF reference and a top FeCoB storage layer has been deposited 

on a 50 mm wafer covered with a CuN buffer layer. As seen in the previous part, this 

layer is used to make an electric contact on the bottom electrode. 

The following stack has been chosen for the junction: 

Ta1/Pt5/(Co0.5/Pt0.4)5/Co0.5/Ru0.9/(Co0.5/Pt0.4)3/Co0.5/Ta0.3/CoFeB1.2/MgO/

FeCoB1.0->1.4/Ta1/Pt2. We take advantage of the possibility to deposit thickness 

wedges in our deposition tool to vary the thickness of the storage wafer on the same 

wafer. This will enable keeping the same growth conditions and the same barrier for 

all the devices. We will be using nominal thicknesses in this Chapter but according to 

the results of Chapter II, a magnetic dead layer thickness of about 0.6 nm exists in 

this top storage layer. Note that the Pt thickness in the Co/Pt multilayers is 0.4 nm in 

that case instead of the optimized 0.25 nm, because at the time of the deposition this 

optimization has not yet been done. The structure is however functional, as we saw in 

Chapter II. Annealing was performed in our largest furnace with the standard 

procedure (250 °C for 1h30). The barrier is obtained with low pressure conditions 

and CIPT measurements on test samples deposited at the same time as the processed 

wafer gave a TMR signal of about 40 % and a RA value of 6 m2. On the patterned 

sample, maximum TMR was 36 % and the RA product is found slightly higher at 10 

m2. 

Using the method presented in the first part, the wafer was patterned into circular 

nanopillars with diameters ranging between 100 and 300 nm. The dot sizes given 

here correspond to the values defined in the electron beam lithography mask. 

V-2.1 Field-pulse voltage diagrams 

 

To establish the magnetic field-pulse voltage state diagrams of one junction, 100 

ns current pulses are applied at each point of the hysteresis loop, while measuring the 

resistance of the junction. The magnetic field is applied perpendicular to the plane of 

the magnetic layers. The hysteresis loops are recorded for different pulse amplitudes, 

applying consecutive pulses of the same polarity until switching occurs. A typical 

diagram obtained for a 100 nm pillar with a top FeCoB thickness estimated around 

1.24 nm is presented in Figure V-16 (a). 
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Figure V-16: (a) Field-pulse voltage diagram of a 100 nm pillar with a top FeCoB thickness of 1.24 nm. 
Parallel and antiparallel configurations of the magnetizations are represented as P and AP, 
respectively. (b) Current density as a function of applied field. The AP-P transition has been reversed 
to present the results in absolute values. Open circles = AP-P transition. Solid circles = P-AP 
transition. 

 

The points at which switching occurs are represented with solid circles for the 

parallel to antiparallel (P-AP) switching and with open circles for the antiparallel to 

parallel (AP-P) case. At low pulse voltages amplitudes, the STT influence is negligible 

and the magnetization switches under the effect of the magnetic field, as soon as it 

overcomes the coercive field value. In our convention, positive voltage corresponds to 

electrons flowing from the storage layer to the reference layer. Therefore negative 

voltages favor the parallel state, while positive voltages favor the antiparallel state. On 

the field-pulse voltage diagram, these regions are separated by the bistable region, in 

which both parallel and antiparallel configurations are possible, depending on the 

previous field-voltage treatment. In the case of the junction presented in Figure V-16 

(a), the coercive field is 350 Oe. 

To determine the critical current density for the AP-P and the P-AP switching by 

STT, the data extracted from the phase diagram can be used. Using the value of RA 

measured on the patterned wafer, we can calculate the current density for each 

applied pulse amplitude as 𝐽 = 𝑉/(𝑅. 𝐴). In Figure V-16 (b), both transition 
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boundaries are plotted as functions of magnetic field and absolute current density 

value. The minimum current density allowing both AP-P and P-AP transitions can be 

determined at the crossing between the two boundaries. At this field, switching 

between AP (P) and P (AP) states is possible with exactly the same current density. 

The origin of the switching current asymmetry observed in many STT writing data 

comes from the fact that the chosen offset field does not correspond to the boundary 

intersection field point. For this device, the lowest current density for AP (P) to P 

(AP) switching is found to be 2.9 MA.cm-2 at a bias field of 33 Oe. 

V-2.2 Coupling field as a function of pillar diameter 

  

One can also note in Figure V-16 that the bistable region is not centered on zero 

field. This is explained by the fact that at this pillar size, the magnetizations of the two 

parts of the bottom SAF reference do not allow a perfect compensation of the stray 

fields originating from the pillar edges. As we have seen previously, it is possible to 

reduce those stray fields by adjusting the magnetic thicknesses and numbers of 

repeats in the Co/Pt multilayers [Ban-10]. Note that however, this adjustment will 

only work for one pillar size. Similarly, if the thickness of the top free layer varies, the 

size at which compensation is obtained also changes (since for a given coupling 

energy, the coupling field is inversely proportional to the free layer thickness). This is 

shown in Figure V-17, where the coupling field Hcpl acting on the storage layer is 

plotted as a function of the pillar diameter for different thicknesses of the top FeCoB 

layer. 

 

Figure V-17: Coupling field acting on the storage layer as a function of pillar diameter for different 
thicknesses of the top FeCoB layer. 
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Because of stronger stray fields at smaller junction sizes, the coupling field is 

found larger for the smallest dots of 100 nm. It then decreases as the dot size 

increases. One should notice that on macroscopic samples with the same stack, there 

exists an antiferromagnetic coupling through the MgO barrier that shifts the 

transition of the free layer. As explained in Chapter II, this coupling is mostly due to 

the existence of some roughness in the tunnel barrier [Mor-04, Nis-10]. This coupling 

amounts to about -50 to -100 Oe and should be subtracted to the Hcpl value to only 

estimate the effect of stray fields in the patterned pillar. From the graph of Figure V-

17, it appears that for a diameter of 300 nm, we are very close to the behavior of a 

macroscopic sample. The effect of thickness appears clearly, particularly on the 300 

nm pillars, where it can be seen that the coupling field increases in amplitude when 

the FeCoB layer gets thinner. 

V-2.3 Critical current and anisotropy as a function of the storage 

layer thickness 

 

The critical current density for STT switching was measured as a function of free 

layer thickness with two different methods. The first one consists of using the phase 

diagrams measured with consecutive pulses of the same polarity, as shown in Figure 

V-16. In the second method, we apply current pulses of alternate polarity at each field 

point. This experiment is repeated 30 times until 100 % switching is obtained. In the 

case of consecutive pulses of the same polarity, a lower critical current is obtained 

because this way of measuring represents a low switching probability, similar to the 

measurements of critical currents with current ramps. The values extracted with 

alternate polarity pulses are more closely related to the actual memory operation, 

where a deterministic switching threshold is required. Results obtained with both 

methods are shown in Figure V-18 for 100 and 150 nm pillars as a function of FeCoB 

storage layer thickness. 
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Figure V-18: (a) Critical current density Jsw for STT switching as a function of top FeCoB thickness. 
Results are shown for two pillar sizes, 100 nm (squares) and 150 nm (circles) and for the two 
measurement techniques, alternate polarity (solid symbols) and consecutive pulses (open symbols). 
(b) Coercive field Hc (solid symbols) and anisotropy field Heff (open symbols) as a function of top 
FeCoB thickness. 

 

In Figure V-18 (a), we observe an increase of the critical current density Jsw as the 

thickness of the storage layer increases. This is due to the fact that in this range of 

thicknesses, the effective perpendicular anisotropy energy Keff is still increasing with 

thickness. This is what we observe in Figure V-18 (b) where we represent the coercive 

field Hc and the anisotropy field Heff as a function of magnetic thickness. The values 

of Heff are obtained from the phase diagrams by extrapolating the linear field-voltage 

dependence of the switching boundaries towards zero current. If this increase of 

perpendicular anisotropy with thickness seems counterintuitive, we recall, in Figure 

V-19, the data extracted on our macroscopic samples in Chapter II. It appears that in 

the small range of thicknesses we have on our patterned sample, we are still in the 

part of the curve were the anisotropy increases with thickness. Note that on this 

graph, we use effective magnetic thicknesses in which the 0.6 nm thick magnetic dead 

layer has been subtracted. From the data gathered in Figure V-18 (b), it seems that a 

slightly larger anisotropy is measured for 100 nm pillars compared to the 150 nm 

ones. 
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Figure V-19: Variation of the Keff.t product as a function of effective thickness for top FeCoB layers 
capped with Ta. The dashed region corresponds to the thickness range present on our patterned 
sample. 

 

For junctions with 1.24 nm thick storage layer, the largest value of the average 

thermal stability  was estimated to be around 43 ± 10. The stability of the AP state 

was found generally higher than that of the P state. The values were obtained from 

the standard Néel-Brown model for thermally activated reversal, by fitting the 

switching field distribution as a function of applied field. The switching field 

distribution was obtained from 100 successive hysteresis loop measurements under a 

constant sweep rate. This technique has been explained in more details in a recent 

publication [Tho-14]. 

V-2.4 Determination of the damping parameter 

 

We know that the critical current density can be expressed this way [Man-09]: 

𝐽𝑠𝑤 =
2𝑒𝛼𝜇0𝑀𝑠𝑡

ℏ𝜂
(𝐻𝑒𝑓𝑓 + 𝐻𝑎𝑝𝑝 + 𝐻𝑐𝑝𝑙) 

where  is the Gilbert damping parameter, Ms the saturation magnetization of the 

storage layer, t its effective thickness,  the spin polarization, Heff the anisotropy field, 

Happ the applied field and Hcpl the coupling field. As we have seen in Figure V-16 (a), 
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above a threshold voltage, a mostly linear relationship exists between the critical 

current density and the applied field. The slope 𝜕𝐽𝑠𝑤/𝜕𝐻 corresponds to the prefactor 

in the above equation and depends on materials parameters: damping, spin 

polarization, thickness and magnetization. Deviations from the linear model can 

originate from a STT dependence on bias and dependence of spin polarization on the 

angle between the storage and reference layers. 

From Figure V-16 (a), we extract a slope of -3 MA.cm-2/kOe for the P-AP 

boundary and a slope of -3.5 MA.cm-2/kOe for the AP-P boundary, in the case of the 

100 nm pillar with a 1.24 nm thick storage layer. Similar state diagram measurements 

had given slopes of -18.2 MA.cm-2/kOe (P-AP) and -13.8 MA.cm-2/kOe (AP-P) in the 

case of Co/Ni perpendicular spin valves measured with dc bias current [Man-09]. The 

slope is reduced by a factor of 5 with our magnetic tunnel junctions, probably because 

the damping parameter is lower and the spin polarization higher in CoFeB/MgO 

systems. 

We extracted the value of the P-AP slope as a function of FeCoB thickness for 150 

nm pillars, as shown in Figure V-20. This slope is decreasing in amplitude linearly 

with increasing FeCoB thickness. We know that this slope can be expressed as: 

𝜕𝐽

𝜕𝐻
= −

2𝑒𝛼𝜇0𝑀𝑠𝑡

ℏ𝜂
 

 

Figure V-20: Slope of the P-AP transition as a function of top FeCoB thickness for 150 nm pillars. 

 

From the slope of Figure V-20 we can extract the damping parameter. Indeed, all 

the other materials parameters are known. From the study of Chapter II, we know 

that the saturation magnetization Ms is about 1300 emu.cm-3. The polarization  can 

be estimated around 0.3 using the following model: 𝜂 = √𝑀𝑅(𝑀𝑅 + 2)/(2(𝑀𝑅 + 1)) 

[Jul-75]. We thus find from the linear fit of Figure V-19 a damping parameter 
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~0.016 ± 0.004, which is in good agreement with the values obtained by 

ferromagnetic resonance on similar samples [Dev-13]. 

 

V-2.5 Effect of the temperature 

 

Heat assisted MRAM have been found particularly interesting to reduce power 

consumption. Systems with perpendicular anisotropy were patented in Spintec [Die-

08] and studied by S. Bandiera during his thesis [Ban-11]. In the case of 

perpendicular magnetic junctions, the idea is to heat the sample over a certain 

temperature above which there is a switching of the anisotropy from perpendicular to 

planar in the storage layer, configuration in which the spin transfer torque is 

maximal. As in standard STT writing, a spin-polarized current is applied. It will make 

the magnetization precess out-of-plane in one or the other direction, which will 

define the final orientation taken during the cooling phase. 

With this concept in mind, we tested the effect of applying temperature on our 

patterned pillars. In Figure V-21, we present the variation of the coercive field Hc as a 

function of applied temperature for different thicknesses of the top FeCoB storage 

layer in the case of 100 nm pillars. The temperature is applied thanks to a heating 

chuck on which the wafer is installed and which temperature is controllable.  
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Figure V-21: Variation of the coercive field Hc as a function of the temperature for 100 nm pillars with 
varying thickness of the top FeCoB storage layer. 
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The general trend is a linear decrease of the coercive field with temperature. As 

already seen in Figure V-18 (b), the anisotropy and the coercive are getting larger as 

the thickness increases (in the range of studied thicknesses). The critical temperature 

at which the coercivity is lost is thus increasing with the thickness of the storage layer. 

In the case of very thin FeCoB layers, even at room temperature there is almost no 

coercive field as the perpendicular anisotropy is still low. For the 1.15 nm thick 

storage layer the critical temperature is found around 60 °C, it increases to 90 °C for 

1.20 nm and we can extrapolate it around 110 °C for the thickest layer of 1.24 nm. A 

significant variation of this temperature is then observed in a relatively narrow range 

of magnetic thicknesses (0.13 nm only!). This can be explained by the large variation 

of anisotropy along the thickness wedge of the sample, as already seen in Figure V-18 

(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 CHAPTER V: Electrical testing of patterned perpendicular magnetic tunnel junctions 

175 
 

V-3. Conclusions 

 

We have seen that thanks to a well-defined nanofabrication process it is possible 

to create small size pillars that allow electrical testing of the structures. 

The performances of standard junctions with a bottom SAF reference and a top 

Ta-capped FeCoB storage layer were evaluated. Using a wedge configuration in our 

deposition tool, we were able to study some of the properties of our junctions as a 

function of storage layer thickness on the same wafer. Varying the pillar diameter also 

gave the possibility to see the effect of the dot size. Magnetic field vs pulse voltage 

phase diagrams could be established for individual junctions by applying consecutive 

pulses of the same polarity and measuring the resistance of the pillar. They enable to 

see that pure STT switching is possible and several parameters can be extracted from 

them. For example, in the case of a magnetic tunnel junction with a 1.24 nm thick 

FeCoB storage layer patterned in a 100 nm pillar a critical current of 2.9 MA.cm-2 was 

measured as well as a coercive field of 350 Oe. 

As the compensation of the SAF reference is not ideal for all pillar sizes, we could 

observe a coupling field on the storage layer that shifts its hysteresis loop. As 

expected, this coupling is increasing as the pillar diameter gets smaller. The effect of 

storage layer thickness is also visible and we could observe the increase of the 

coupling field as the thickness decreases. We saw as well that as the perpendicular 

anisotropy is still rising in the range of studied thicknesses, this translates into an 

increase of critical current density. From the phase diagrams, a linear relationship 

between current density and applied field is observed and we can use the extracted 

slope and its variation with magnetic thickness to extract the Gilbert damping 

parameter of our FeCoB storage layer (around 0.016). 

Finally, the variation of the coercive field as a function of the temperature has 

been studied. It shows us how thermally assisted switching could be used in our 

perpendicularly magnetized systems, in which perpendicular anisotropy is lost or at 

least considerably reduced above a certain threshold temperature. It appears that, as 

the storage gets thicker, the temperature at which the anisotropy switches from 

perpendicular to planar increases. A large range of this critical temperature is 

obtained (between room temperature and 110 °C) while the FeCoB thickness only 

varies of a few tenths of nanometers. 
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CONCLUSION 

 

The aim of this thesis was to optimize the magnetic and transport properties of 

magnetic tunnel junctions with perpendicular anisotropy. This work was part of the 

current developments on such devices for Magnetic Random Access Memories. 

Indeed combined with Spin Transfer Torque (STT) switching [Slo-96, Ber-96], this 

technology has been spotted as one of the most promising emerging type of non-

volatile memories able to satisfy the requirements of the microelectronic industry in 

terms of scalability. However, building such structures is not straightforward and 

requires a good mastering of the deposited materials. Several parameters need to be 

optimized, in particular the materials thicknesses, if one wants to improve the 

performances of the devices both in terms of anisotropy and transport. 

Perpendicular anisotropy, that is to say a preferred out-of-plane orientation of the 

magnetization, is a phenomenon that has been predicted for a long time and which 

has been proved to exhibit mostly interfacial origins [Née-54]. It was widely studied 

at first in the field of the Hard Disk Drive industry, in particular with the use of Pt 

(Pd)-based alloys that present strong spin-orbit coupling properties. Co/Pt 

multilayers appeared also interesting to create structures with large perpendicular 

anisotropy [Joh-96]. However, a great step forwards was made with the discovery of 

strong perpendicular anisotropy at the metal/oxide interface [Mon-02]. It enabled to 

consider the realization of perpendicular magnetic junctions as these structures are 

made of two magnetic layers separated by an insulating material. 

Magnetic tunnel junctions are components that are at the origin of Tunnel 

MagnetoResistance (TMR), an effect that was discovered in 1975 [Jul-75] and that 

can be used to store the information. Indeed, depending on the relative orientations 

of the two magnetizations on both sides of the barrier, two resistance states are 

possible. It appeared from theoretical predictions [But-01, Mat-01] that crystalline 

MgO barriers were a good choice of material to reach large TMR signals and this was 

confirmed experimentally in epitaxial systems [Yua-04, Par-04]. Due to their 

advantages in terms of growth and crystallization, sputtered CoFeB alloys became 

favored rapidly [Lee-07, Yua-05, Cho-07] and could be also used in perpendicular 

magnetic tunnel junctions [Ike-10]. Studies also revealed that this type of junctions 

presents a lot of advantages in terms of STT applications compared to the planar 

systems (larger storage density, high thermal stability, lower current for switching). 

However to obtain this anisotropy, the choice of the buffer and capping layers has 

been found to be particularly important [Wor-11, Liu-12, Nat-12, Kub-12].  

We started from a standard structure comprising a Synthetic AntiFerromagnetic 

(SAF) reference layer made of Co/Pt multilayers and a top FeCoB free layer. In a SAF 

structure, the layers are coupled antiferromagnetically through a metallic spacer 

thanks to RKKY interactions [Rud-54, Kas-56, Yos-57] in order to reduce the stray 
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fields acting on the storage layer in small size devices [Ban-10]. The advantage of 

using Co/Pt multilayers in the reference is that they provide strong perpendicular 

anisotropy which makes them extremely stable. However, to obtain a large TMR 

signal, it is necessary to keep a CoFeB layer at the interface with the MgO barrier. It 

can be coupled to the Co/Pt multilayers but a thin Ta insertion is necessary to get the 

right bcc (001) orientation that guaranties good transport properties [Wor-11]. The 

advantage of using Ta is that its getter effect will have the ability to attract boron 

away from the interface with MgO which is beneficial to the TMR [Koz-10]. We 

studied the influence of the thickness of this insertion both on the magnetic and 

transport properties of the magnetic tunnel junctions [Cuc-13]. It appears that an 

optimal thickness around 0.3-0.4 nm allows keeping a strong magnetic coupling in 

the bottom reference, while improving the TMR signal of the junction thanks to the 

good crystallization of the CoFeB alloy. 

The RKKY coupling strength in the SAF bottom reference was tested. As expected, 

the typical oscillatory behavior was obtained as a function of the Ru spacer thickness 

[Par-91]. It turns out that setting the Ru thickness at 0.9 nm allows benefiting from a 

strong antiferromagnetic coupling while being less sensitive to possible thickness 

variations as the peak is rather broad. The Co and Pt thicknesses in the multilayers as 

well as the Pt buffer layer play also an important role in the magnetic properties of 

the bottom SAF reference and have to be chosen carefully. Besides, knowing the 

characteristics of the bottom and top FeCoB electrodes is particularly interesting as it 

will allow knowing the working windows of the system. Thanks to series of samples 

with varying thicknesses of bottom and top FeCoB layers, the critical thicknesses, at 

the transition between perpendicular and planar anisotropy, could be extracted as 

well as the saturation magnetization and the magnetic dead layer thickness. This last 

parameter is necessary if one wants to evaluate the anisotropy of the magnetic layer 

through Keff.t vs t plots. From this treatment we could extract an interfacial 

anisotropy 2Ks of the top free electrode around 1 erg.cm-2. Transport measurements 

by Current In-Plane Tunneling (CIPT) [Wor-03] on such structures showed that to 

get a maximum TMR signal, it is necessary to have effective magnetic thicknesses in 

the CoFeB electrodes that are larger than 0.6 nm [Cuc-14a]. 

Knowing that perpendicular anisotropy mostly arises at the metal/oxide interface, 

we replaced our standard Ta capping by a MgO one and it appeared that the effective 

critical thickness (taking into account the magnetic dead layer) is increased from 1.1 

to 2.7 nm by using FeCoBx/Ta0.3/FeCoBx/MgO storage layers. This is accompanied 

by a doubling of the interfacial anisotropy constant that reaches about 2 erg.cm-2 in 

the second case, which gives the ability to get a large thermal stability in these 

systems. That gives as well the possibility to work with thicker layers that should 

reduce the damping parameter. Note that a thin Ta insertion was used in the middle 

of the storage layer to keep its getter effect. Samples with a Ru insertion or without 

any insertion were also tested and appeared to be working as well. The type of MgO 

barrier can be varied in order to change its RA value. Indeed, a smaller RA should be 

used in the top MgO barrier if one wants to keep a reasonable resulting TMR. We 
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found out that the nature of the barriers does not seem to influence a lot the 

perpendicular magnetic anisotropy of the storage layer. 

From previous studies on planar structures, it appeared that the use of double 

junctions comprising two tunnel barriers and two polarizing layers is particularly 

interesting for STT applications [Dia-07, Clé-14]. Indeed, by adjusting the relative 

orientation of the reference layers, one can tune the STT efficiency to create a write 

mode with a low switching current and a read mode in which larger voltages can be 

applied without risking losing the stored information. We proposed then to add these 

advantageous properties to our perpendicular magnetic tunnel junctions [Cuc-15a]. 

To do so, a top Co/Pd reference was developed after several thicknesses 

optimizations. Note that as no Pd buffer layer can be used in these reversed 

structures, the perpendicular anisotropy is much reduced compared to our bottom 

Co/Pt reference. This is however a good point as it enables us to get distinct 

transitions in the two references and to build a functional system in which all 

magnetic layers can be switched independently. We have thus shown the realization 

of a double magnetic tunnel junction with perpendicular anisotropy made of a bottom 

Co/Pt-based SAF reference, a single ferromagnetic storage layer and a top Co/Pd-

based SAF reference. By a correct field treatment, the storage layer can be switched 

with both parallel and antiparallel configurations of the references. 

For practical applications, it would be interesting to work with SAF storage layers 

as they would be more immune to possible stray fields in small pillars. With that aim, 

we developed FeCoB-based structures with different spacer materials [Cuc-16]. It 

appears that if a Ru spacer gives the largest coupling strength, functioning systems 

can be built with Ta or Ta/Ru bilayers. Playing with the magnetic compensation of 

the FeCoB layers on both sides of the spacer allows enhancing the stability of the SAF. 

Such a structure can be used at different positions in a double magnetic junction, 

either as a reference or a SAF storage layer. It gives the possibility to imagine an even 

more efficient device in which the top reference layer would be replaced by a soft 

layer that could be switched by field between a write and read mode, without losing 

the information stored in the more stable SAF storage layer. This control layer will 

however have to be made immune to STT during the write phase. 

These FeCoB-based SAF could be made particularly stable with antiferromagnetic 

plateaus that could reach ± 1300 Oe. They can thus advantageously replace our 

standard Co/Pt(Pd)-based SAF reference in single junctions. It gives the ability to a 

build Pt(Pd)-free system that would be a particularly efficient way to remove the thin 

noble materials multilayers that are difficult to etch by standard reactive ion etching 

techniques. The amount of materials involved is also reduced in that case. 

After patterning into small pillars, the electrical properties of a standard junction 

with a Co/Pt-based SAF reference and a top Ta-capped FeCoB storage layer were 

evaluated [Cuc-14b]. Field vs pulse voltage diagrams were measured and critical 

current densities as low as 2.9 MA.cm-2 could be obtained. Thanks to the variation of 

the properties with magnetic thickness, the Gilbert damping parameter could be 



180 
 

estimated around 0.016, in good agreement with other studies [Dev-13]. The 

temperature dependence of the coercive field was also tested and proved to be related 

with the storage layer thickness as expected. 

If these first electrical tests are encouraging, it would be interesting to test the 

performances of the MgO-capped structures as well as the double junctions. In that 

context, further work on the tunnel barriers might be necessary, in particular if we 

want to tune precisely the RA values of each barrier. 

The FeCoB-based structures are particularly promising and could be tested for 

STT applications in various structures. However, the stability of the RKKY coupling 

in these structures at small dimensions is still to be confirmed. Preliminary results 

suggest that the SAF behavior can be maintained in pillars as small as 50 nm at least. 

This is a property that could be further tested by realizing arrays of pillars of different 

sizes and measuring their hysteresis loops with a focused Kerr set-up. 
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Introduction 
 

Depuis des millénaires, le stockage et la transmission de l’information ont joué un 

rôle très important dans la vie des Hommes. Après des années de transmission orale, 

l’apparition de l’Ecriture nous a permis de stocker une partie de l’information de 

façon beaucoup plus pérenne, sur un support externe tel qu’un livre. C’est cependant 

au cours du siècle passé que l’avènement de l’ère de l’électronique a vu la quantité 

d’informations stockées exploser. 

Parallèlement, le magnétisme est un phénomène qui a toujours fasciné les 

Hommes. Il est relativement difficile de dater précisément la première utilisation du 

magnétisme mais certains documents semblent placer la découverte de la boussole au 

XIe siècle en Chine. Ce n’est cependant qu’à partir du XIXe siècle qu’une meilleure 

compréhension et maîtrise du magnétisme a été possible grâce aux nombreuses 

avancées faites dans le domaine de l’électromagnétisme. 

Une des premières techniques de stockage de l’information sur un support 

magnétique fût la bande magnétique, créée en 1928. Les données y étaient stockées 

dans des particules d’oxyde de fer déposées dans un substrat flexible. Cette 

technologie permit d’enregistrer des données audio et vidéo mais fût également 

utilisée dans les premiers ordinateurs. Elle fût cependant rapidement remplacée dès 

les années 1950 par la technologie des disques durs qui permet une lecture beaucoup 

plus rapide de l’information. De nombreuses études ont été menées sur ces 

dispositifs, notamment afin d’augmenter les capacités de stockage. De nos jours, dans 

les disques durs, les densités de stockage peuvent atteindre plusieurs Tbit/in2. 

Plus récemment, les découvertes en termes de transport de spin dans les 

matériaux ferromagnétiques ont donné naissance à une nouvelle discipline : la 

spintronique (ou électronique de spin). L’idée est de créer de nouvelles 

fonctionnalités en combinant le spin de l’électron au déplacement de sa charge tel 

qu’utilisé dans l’électronique traditionnelle. Ce domaine a été particulièrement 

dynamisé par la découverte de la MagnétoRésistance Géante (GMR) à la fin des 

années 1980 par A. Fert [Bai-88] et P. Grünberg [Bin-89], qui reçurent le prix Nobel 

de Physique en 2007 pour ces travaux. Ce phénomène a été rapidement mis en 

pratique de manière à améliorer les performances des têtes de lecture des disques 

durs [Die-91]. Quelques années plus tard, un autre phénomène lié au transport de 

spin est apparu comme particulièrement prometteur pour les applications aux 

mémoires : la MagnétoRésistance Tunnel (TMR). Cet effet dépend de l’orientation 

relative des aimantations de deux couches magnétiques séparées par une couche 

isolante. Un tel empilement est appelé Jonction Tunnel Magnétique et constitue 

l’élément de base des mémoires magnétiques à accès aléatoire (Magnetic Random 

Access Memories, MRAM). Cette technologie fût ensuite encore améliorée par 

l’introduction de l’écriture par couple de transfert de spin (Spin Transfer Torque, 

STT), phénomène théorisé par J. C. Slonczewski [Slo-96] et L. Berger [Ber-96]. 
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Comme prédit par la loi de Moore, le nombre de composants par puce 

électronique a augmenté de manière exponentielle aux cours des dernières décennies. 

Même si cette tendance commence à ralentir, il existe encore de nombreux 

développements vers la réduction des tailles des dispositifs. Sur cet aspect, les MRAM 

et tout particulièrement les STT-MRAM sont apparues comme des technologies 

significativement prometteuses parmi les mémoires non-volatiles émergentes. En 

effet, de même que les redox RRAM, elles ont été identifiées en 2010 par la 

commission de l’International Technology Roadmap for Semiconductors (ITRS, [Itr-

10]) comme étant les technologies émergentes pouvant atteindre le nœud 

technologique 16 nm et même au-delà. D’autre part, la MRAM est aussi envisagée 

comme une possible mémoire universelle qui aurait la capacité de remplacer à la fois 

la DRAM (connue pour sa rapidité, sa faible consommation d’énergie, sa forte 

endurance et sa fiabilité) et la mémoire Flash avec sa capacité de stockage élevée et sa 

non-volatilité. Une comparaison des technologies Flash, FeRAM (pour Ferroelectric 

RAM, une autre mémoire émergente), MRAM et STT-MRAM est donnée dans le 

Tableau 1. 

 

          
Flash-
NAND 

FeRAM MRAM 
STT-

MRAM 

Capacité de 
stockage 

> 1 Gb > 10 Mb 16 Mb 1 Gb 

Temps d’écriture 1 ms 10 ns 20 ns 3-10 ns 

Temps de lecture 50 ns 45 ns 10 ns 10 ns 

Energie d’écriture 
(pJ/bit) 

> 0,01 0,03 70 0,1 

  Tableau 1 : Comparaison entre différentes technologies de mémoires non-volatiles [Hu-11]. 

 

C’est dans ce contexte que le laboratoire SPINTEC fût fondé en 2002, pour 

combiner des approches à la fois fondamentales et appliquées de la recherche en 

spintronique. Cette thèse a été réalisée au sein de l’équipe MRAM, avec l’idée de 

poursuivre les développements matériaux de jonctions tunnel magnétiques à 

anisotropie perpendiculaire. En effet, cette propriété, qui se caractérise par une 

orientation hors du plan de l’aimantation des couches magnétiques, est apparue 

particulièrement intéressante pour les applications pratiques. En comparaison des 

structures aimantées dans le plan, l’anisotropie perpendiculaire permet de réduire la 

taille des dispositifs, ce qui augmente la capacité de stockage. De plus, ce type 

d’anisotropie devrait apporter une plus grande stabilité thermique aux éléments 

mémoires, c’est-à-dire une plus grande stabilité de l’information face à l’agitation 

thermique. Enfin, il a été montré que l’efficacité de l’écriture par couple de transfert 

de spin est particulièrement bonne avec les systèmes à anisotropie perpendiculaire, 

ce qui permet de réduire significativement la consommation électrique des mémoires. 
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L’objectif de cette thèse est d’améliorer les propriétés magnétiques et de transport 

électrique de jonctions tunnel perpendiculaires, en ajustant soigneusement les 

différentes parties de l’empilement à la fonctionnalité visée. Cela est uniquement 

possible grâce à une bonne maîtrise de l’outil de dépôt et des différents matériaux 

utilisés. Dans le premier Chapitre, nous rappellerons l’origine de l’anisotropie 

magnétique perpendiculaire et les différents concepts qui ont accompagné les 

développements de la MRAM, en particulier dans le cas des systèmes 

perpendiculaires. Nous présenterons également les différentes procédures 

expérimentales que nous avons utilisées durant cette thèse, notamment pour la 

préparation des échantillons et leur caractérisation. Dans le deuxième Chapitre, nous 

verrons comment une jonction tunnel standard avec une référence inférieure à base 

de multicouches Co/Pt peut être optimisée en adaptant les épaisseurs des différentes 

couches constituant l’empilement. Nous montrerons que les propriétés magnétiques 

et les propriétés de transport sont liées et que certains compromis sont nécessaires. 

Le troisième Chapitre démontrera que des structures encore plus complexes peuvent 

être développées, comme des doubles jonctions tunnel magnétiques à anisotropie 

perpendiculaire dont les propriétés en termes de STT permettent d’imaginer des 

dispositifs encore plus performants. Nous commencerons par insérer une deuxième 

couche de MgO comme couverture et après avoir développé une couche de référence 

supérieure, nous montrerons la réalisation de doubles structures complètes. Dans le 

quatrième Chapitre, nous nous focaliserons sur le développement de couches 

antiferromagnétiques synthétiques à base de FeCoB comportant des inserts de 

différentes natures. Nous verrons que ces systèmes peuvent jouer différents rôles 

dans une double jonction mais peuvent également être rendus suffisamment stables 

pour servir de couche de référence dans une jonction sans Pt ni Pd. Finalement, le 

cinquième Chapitre expliquera le processus de nanofabrication et présentera les 

résultats de mesures électriques réalisées sur des nanopiliers à anisotropie 

perpendiculaire. 
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Chapitre I 
 

L’anisotropie magnétique perpendiculaire est un phénomène connu depuis de 

nombreuses années, notamment grâce aux avancées réalisées dans le domaine des 

disques durs. Cependant, l’intérêt accordé à cette propriété a considérablement 

augmenté au cours du développement des mémoires magnétiques à accès aléatoire 

(MRAM). L’objectif de ce premier Chapitre est de rappeler les origines de 

l’anisotropie perpendiculaire ainsi que les principales découvertes faites dans la 

spintronique. Un rapide état de l’art des développements de jonctions tunnel 

magnétiques permettra de mettre en évidence les compromis, notamment en termes 

de matériaux, nécessaires pour garantir une bonne fonctionnalité des dispositifs. 

Nous décrirons enfin les procédures expérimentales utilisées au cours de cette thèse 

pour l’élaboration et la caractérisation de nos échantillons. 

L’anisotropie magnétique se caractérise par une orientation préférentielle de 

l’aimantation et comporte plusieurs contributions : l’anisotropie magnétocristalline, 

l’anisotropie magnétoélastique, l’anisotropie de forme et l’anisotropie d’interface. Un 

des effets prédominants dans l’anisotropie magnétique est le couplage spin-orbite qui 

lie le spin de l’électron à son mouvement orbital et qui est par conséquent 

particulièrement influencé par la structure cristalline du matériau. A mesure que les 

couches magnétiques deviennent de plus en plus minces, les contributions 

interfaciales prennent de plus en plus d’importance. Cet effet a été prédit dès 1954 

[Née-54] et a été attribué à un changement des symétries aux interfaces. C’est pour 

cela que les systèmes multicouches à base de Co/Pt ou Co/Pd présentent de fortes 

anisotropies perpendiculaires : en plus de multiplier les interfaces, le Pt et le Pd 

possèdent de forts couplages spin-orbite [Joh-96]. Plus récemment, une autre forme 

d’anisotropie d’interface a été mise en évidence à l’interface entre les métaux 

magnétiques et les oxydes [Mon-02, Rod-03, Man-08]. Elle est du même ordre de 

grandeur que celle obtenue dans les systèmes Co/Pt et est extrêmement dépendante 

de l’état d’oxydation de l’interface [Yan-11]. 

L’anisotropie effective d’un système peut être définie par la formule suivante : 

 𝐾𝑒𝑓𝑓 = −2𝜋𝑀𝑆
2 + 𝐾𝑉 +

2𝐾𝑆

𝑡
  

où 2MS2 est l’énergie de champ démagnétisant, KV la contribution volumique 

(anisotropies magnétocristalline et magnétoélastique), KS la contribution surfacique 

et t l’épaisseur magnétique. Par convention, Keff est positive si l’anisotropie est 

perpendiculaire et négative si elle est planaire. 

Une des avancées majeures de la spintronique fût la découverte de la 

MagnétoRésistance Géante (GMR) par A. Fert [Bai-88] et P. Grünberg [Bin-89]. Cet 

effet est caractérisé par l’existence de deux états de résistance différents en fonction 

de l’orientation relative des aimantations de deux couches magnétiques séparées par 

un espaceur métallique. La MagnétoRésistance Tunnel (TMR) est un effet 
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relativement similaire qui apparaît dans le cas où l’espaceur métallique est remplacé 

par un oxyde [Jul-75], dans un empilement appelé jonction tunnel magnétique. Les 

premières jonctions développées étaient à anisotropie planaire et c’est seulement 

lorsque les barrières amorphes AlOx furent remplacées par des barrières cristallines 

MgO que les signaux de TMR augmentèrent significativement pour atteindre 

plusieurs centaines de pourcent (prévisions théoriques [But-01, Mat-01], mesures 

expérimentales dans des systèmes épitaxiés [Yua-04, Par-04]). La recherche s’est 

ensuite surtout focalisée sur les électrodes à base d’alliages de CoFeB qui peuvent être 

obtenues par pulvérisation cathodique, et ont la particularité d’être amorphes au 

moment du dépôt et de cristalliser pendant le recuit selon une texture bcc (001) ce 

qui garantit un bon effet tunnel [Yua-05, Cho-07]. 

Du fait de leurs propriétés avantageuses, notamment en termes de densité de 

stockage, différents groupes de recherche ont commencé à s’intéresser aux jonctions 

magnétiques à anisotropie perpendiculaire. Ainsi, en 2010, des jonctions 

perpendiculaires du type Ta/CoFeB/MgO/CoFeB/Ta ont pu être fabriquées sous 

forme de nanopiliers et ont donné de forts signaux de TMR d’environ 120 % [Ike-10]. 

Afin de durcir l’électrode de référence, des systèmes avec couche de référence 

antiferromagnétique synthétique (SAF) à base de multicouches Co/Pt couplées à une 

couche de CoFeB ont également été développées [Wor-11]. Il apparaît que dans ces 

empilements, les couches aux interfaces avec le CoFeB jouent un rôle très important 

dans l’anisotropie perpendiculaire, que ça soit la couche tampon [Liu-12, Sin-13, Liu-

14] ou la couche de couverture [Nat-12, Kub-12, Yam-12]. 

Grâce aux théories développées par J. C. Slonczewski [Slo-96] et L. Berger [Ber-

96], il est apparu que l’aimantation d’une couche magnétique peut être commutée 

grâce à un courant polarisé en spin : on parle de couple de transfert de spin (Spin 

Transfer Torque, STT). Cela a donné naissance à une nouvelle génération de 

mémoires MRAM pouvant être plus compactes. Pour ce type de mémoire, les 

systèmes perpendiculaires se révèlent être particulièrement compétitifs car ils 

permettent de réduire significativement les densités de courant nécessaires pour 

l’écriture [Wol-10, Yod-10, Hei-10]. D’autre part, du fait de leur forte constante 

d’anisotropie, ils présentent des stabilités thermiques élevées ce qui est bénéfique 

pour la rétention des données. Cependant, des compromis doivent être réalisés car le 

courant critique est proportionnel au facteur de stabilité thermique. Similairement, si 

de faibles épaisseurs magnétiques sont nécessaires pour assurer une forte anisotropie 

perpendiculaire, elles induisent également une augmentation du facteur 

d’amortissement de Gilbert, augmentant le courant d’écriture. 

L’ensemble des échantillons réalisés pendant cette thèse a été déposé par 

pulvérisation cathodique dans un bâti de dépôt qui possède 12 cibles. Cela nous a 

permis de réaliser des empilements complexes avec un contrôle des épaisseurs 

jusqu’au dixième de nanomètre. D’autre part, la machine de dépôt est équipée d’une 

chambre de traitement permettant de réaliser les barrières tunnel par oxydation 

naturelle de Mg métallique. Différentes valeurs de produits résistance x aire (RA) 
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peuvent être obtenues en fonction des conditions d’oxydation choisies. Cet outil de 

dépôt nous donne également la possibilité de réaliser des gradients d’épaisseur sur un 

même échantillon en utilisant une configuration dite « off-axis ». 

Les caractérisations magnétiques ont été principalement effectuées par 

magnétométrie VSM (Vibrating Sample Magnetometry). Cette technique permet de 

réaliser des mesures selon n’importe quelle direction de l’échantillon et donc de 

pouvoir en évaluer le champ d’anisotropie. Il faudra cependant faire attention au fait 

qu’il est très difficile d’obtenir des valeurs absolues d’aimantation avec cette 

technique. En effet, l’amplitude de l’aimantation dépend énormément de la position 

et de l’orientation de l’échantillon entre les bobines de détection. Pour obtenir la 

valeur de l’aimantation d’une couche, nous utiliserons donc une référence interne 

d’aimantation connue dans nos échantillons. D’autre part, nous avons pu observer 

une contribution importante des bords des échantillons lorsque ceux-ci ne sont pas 

protégés pendant le dépôt. Un signal parasite d’environ 5 % du signal total apparaît 

ainsi dans le cycle magnétique. A partir de cette observation, nous avons donc décidé 

de protéger soigneusement les bords des échantillons avant dépôt quand des mesures 

quantitatives précises étaient nécessaires. Une autre technique de caractérisation 

magnétique que nous avons employée est l’effet Hall extraordinaire. Il apparaît dans 

les matériaux magnétiques et est proportionnel à la composante perpendiculaire de 

l’aimantation. Cette méthode est donc particulièrement adaptée aux structures à 

anisotropie magnétique perpendiculaire. Cependant, cette technique de mesure ne 

fournit pas de valeur absolue de l’aimantation car la résistance mesurée dépend du 

coefficient d’effet Hall extraordinaire propre à chaque matériau et de la résistance des 

autres couches métalliques (en couverture par exemple). 

Finalement, il a été possible de réaliser des mesures de transport grâce à un outil 

Capres de Crocus Technology, développé à partir de la technique « Current In-Plane 

Tunneling » (CIPT) mise au point en 2003 à IBM [Wor-03] et permet de caractériser 

les propriétés de la jonction (RA et TMR) sur des échantillons macroscopiques, sans 

avoir besoin de passer par le processus de nanofabrication. Cette technique réalise 

des mesures de résistance pour différents écartements de pointe ce qui permet de 

remonter aux paramètres de la barrière. Pour adapter les résistivités des électrodes 

inférieure et supérieure, nous travaillons avec des substrats de CuN et une couche de 

Ru est déposée sur l’échantillon après recuit. 
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Chapitre II 
 

Ce Chapitre présente le développement de jonctions simples avec couche de 

référence inférieure. Nous montrons comment il est possible d’optimiser à la fois les 

propriétés d’anisotropie et de transport dans ce type de structure. 

Dans une première partie, nous avons étudié l’insert de Ta qui est introduit entre 

une multicouche Co/Pt et une couche de CoFeB qui forment l’électrode de référence. 

Le but de cet insert est de permettre d’obtenir une bonne texture de l’alliage de 

CoFeB ce qui ne serait pas possible si cette couche est directement déposée sur la 

multicouche Co/Pt [Wor-11]. Cependant, il faut être attentif à ce que cet insert soit 

suffisamment mince pour conserver un fort couplage magnétique entre les deux 

couches adjacentes. Pour optimiser cette épaisseur d’insert nous avons réalisé une 

série de jonctions à épaisseur de Ta variable. Il apparaît lors des mesures 

magnétiques que, pour l’épaisseur de CoFeB choisie, une composante planaire est 

visible dans le signal magnétique lorsque la couche de CoFeB se découple de la 

multicouche. Cela se produit à partir de 0,5 nm de Ta. Des mesures de transport ont 

permis de corréler ses propriétés magnétiques à l’évolution du rapport de TMR. On 

observe ainsi une augmentation du signal de TMR avec l’épaisseur de Ta, suivie d’une 

chute brutale de ce signal lorsque le découplage magnétique apparaît. Une épaisseur 

optimale de Ta est donc obtenue autour de 0,3 nm car elle permet une amélioration 

de la texture cristalline du CoFeB tout en maintenant un fort couplage magnétique 

dans toute la structure. 

Dans une deuxième partie, nous avons optimisé la structure SAF de l’électrode 

inférieure. Ce type de structure se compose de deux couches magnétiques couplées de 

manière antiferromagnétique à travers un espaceur métallique [Par-91]. Cela permet 

de réduire fortement les champs rayonnés sur la couche de stockage dans les 

dispositifs de petite taille. Il faut cependant adapter le rapport des aimantations à la 

taille de pilier visée [Ban-10]. Nous avons utilisé dans notre électrode des 

multicouches Co/Pt couplées à travers un espaceur de Ru. L’épaisseur de Ru a été 

fixée à 0,9 nm après avoir étudié la variation du couplage avec l’épaisseur d’espaceur. 

Les meilleures propriétés magnétiques en terme de couplage et d’anisotropie ont été 

obtenues pour des épaisseurs de 0,5 nm de Co et 0,25 nm de Pt dans les 

multicouches, ainsi qu’avec une épaisseur de couche tampon de Pt de 5 nm. Nous 

avons ensuite optimisé la température de recuit de ce type de jonction. Il apparaît 

qu’à 300°C à la fois de bonnes propriétés d’anisotropie et un fort signal de TMR 

autour de 100 % sont garantis. Il faut noter que les propriétés de transport sont 

maintenues jusqu’à environ 380°C. 

Enfin, les épaisseurs magnétiques de CoFeB dans les électrodes inférieure et 

supérieure ont été étudiées. Grâce à des séries de jonctions à épaisseurs magnétiques 

variables, nous avons pu estimer les épaisseurs critiques à partir desquelles 

l’anisotropie perpendiculaire ne peut plus être maintenue. On obtient 1,6 nm et 1,7 

nm dans l’électrode inférieure et supérieure, respectivement. Nous avons ensuite 
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déterminé les aimantations à saturation et les épaisseurs de couches magnétiquement 

mortes qui se forment aux interfaces. Pour la couche de CoFeB inférieure, nous 

obtenons MsCoFeB=600 emu.cm-3 et td=0,3 nm et pour la couche de FeCoB supérieure 

MsFeCoB=1300 emu.cm-3 et td=0,6 nm. Cette forte différence peut s’expliquer par la 

différence d’épaisseur de Ta aux interfaces : en effet la couche de CoFeB inférieure 

croît sur un insert de Ta mince alors que la couche supérieure est couverte par une 

couche de Ta épaisse de 1 nm. Nous avons ensuite évalué les propriétés de transport 

de nos jonctions en fonction des épaisseurs magnétiques. Dans les deux cas nous 

obtenons le même comportement : une augmentation du signal de TMR puis une 

stabilisation à sa valeur maximale autour de 90 % dès que les épaisseurs effectives 

dépassent 0,6 nm (tant qu’il est encore possible de saturer complètement le système 

en perpendiculaire avec le champ maximal de l’outil de mesure). Il apparaît donc que 

les jonctions perpendiculaires possèdent des gammes de fonctionnement en 

épaisseur plus réduites que les systèmes planaires. Les épaisseurs magnétiques 

effectives doivent en effet être comprises entre 0,6 nm et l’épaisseur critique si l’on 

veut obtenir bonnes propriétés d’anisotropie, et donc un fort signal de TMR. 
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Chapitre III 
 

L’objectif de ce Chapitre est de montrer comment il est possible d’aller vers des 

structures plus complexes à double barrière permettant d’améliorer significativement 

les performances des dispositifs, notamment l’efficacité de l’écriture par STT. 

Comme nous l’avons vu dans le premier Chapitre, une très forte anisotropie 

perpendiculaire apparaît aux interfaces métal/oxyde. Nous avons donc voulu étudier 

dans un premier temps l’effet de remplacer la couche de couverture traditionnelle de 

Ta par une deuxième couche de MgO. Pour cela une série de jonctions avec épaisseur 

de couche de stockage supérieure variable a été déposée. Dans ce cas, un mince insert 

de 0,3 nm de Ta est inclus dans l’électrode de FeCoB de manière à conserver l’effet 

bénéfique du Ta sur les propriétés de transport. Nous avons ainsi observé que 

l’épaisseur critique est fortement augmentée et atteint 3 nm en épaisseur nominale. 

La couche morte a été estimée à 0,3 nm et des mesures d’anisotropie ont permis de 

constater que l’anisotropie d’interface est doublée avec la couverture MgO par 

rapport à la couverture Ta (2Ks=2,2 erg.cm-2 contre 1,1). Il semble donc que 

l’interface avec Ta apporte très peu d’anisotropie perpendiculaire. Ces systèmes avec 

couverture MgO apparaissent donc prometteurs pour augmenter la stabilité 

thermique (à épaisseur constante) et permettent également de travailler avec des 

épaisseurs plus importantes à anisotropie perpendiculaire, ce qui devrait permettre 

de diminuer le facteur d’amortissement . 

Afin de réaliser des doubles jonctions complètes avec une référence supérieure, 

nous avons travaillé sur le développement de structures de référence SAF 

supérieures. Il est rapidement apparu que du fait de l’absence de couche tampon dans 

ces structures inverses, il était difficile d’obtenir de bonnes propriétés d’anisotropie 

avec des multicouches Co/Pt. Nous avons donc développé des multicouches Co/Pd et 

après plusieurs étapes d’optimisation, il a été possible d’obtenir une couche de 

référence supérieure avec une bonne anisotropie perpendiculaire et présentant des 

champs de transition distincts de ceux de la référence inférieure en multicouches 

Co/Pt. 

Enfin, nous avons pu réaliser des doubles jonctions à anisotropie perpendiculaire 

avec une couche stockage comprise entre deux références. L’idée est de combiner les 

avantages de l’anisotropie à ceux des structures à double barrière tels qu’ils ont pu 

être observés dans les systèmes planaires. Il est en effet possible de moduler 

l’efficacité de l’effet STT dans ce type de structure. Dans le cas d’une couche de 

stockage simple, lorsque les références sont en configuration antiparallèle, les couples 

de transfert de spin en provenance des deux références s’ajoutent ce qui permet de 

réduire le courant critique. Au contraire, si les références sont en configuration 

parallèle, les couples se soustraient, ce qui réduit l’efficacité du STT. Cela donne donc 

la possibilité de basculer entre un mode écriture à forte efficacité du STT et un mode 

lecture dans lequel on peut appliquer de fortes tensions pour lire rapidement 
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l’information, sans risquer de réécrire la mémoire. L’une des premières réalisations 

pratiques de double jonction perpendiculaire se composait d’une couche de stockage 

simple encadrée par les deux références SAF précédemment développées 

(SAF1/CL/SAF2). La mesure du cycle magnétique au VSM de ce type de jonction nous 

a permis de constater, qu’avec des traitements en champ, il est possible de réaliser un 

cycle mineur sur la couche libre à la fois en configuration parallèle ou antiparallèle 

des références. Cependant de forts champs doivent être appliqués pour inverser la 

référence la plus douce, ce qui entraîne une perte de l’information stockée si l’on 

souhaite passer d’un mode écriture à un mode lecture. Une solution pour utiliser ce 

type de dispositif consiste à maintenir la configuration antiparallèle tout le temps, de 

manière à permettre la réduction du courant critique. Cela nécessite cependant de 

dissymétriser les barrières afin de conserver un signal de TMR résultant. Cela peut se 

faire en modifiant les conditions d’oxydation par exemple. Quelques mesures de 

transport ont été réalisées par la méthode CIPT sur ce type de structure avec 

plusieurs types de barrière. Si qualitativement les résultats sont conformes avec les 

prédictions, la validité des données extraites par l’outil de mesure pour ces structures 

à double barrière reste discutable. 
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Chapitre IV 
 

Comme nous l’avons vu précédemment, l’utilisation de couches de référence SAF 

est particulièrement intéressante pour réduire les champs rayonnés dans les 

dispositifs de petite taille. Les multicouches Co/Pt ou Co/Pd utilisées dans de telles 

structures ont l’avantage d’apporter de fortes anisotropies perpendiculaires et de 

constituer des références stables à fort champ de couplage. Cependant, il est 

nécessaire d’avoir un bon contrôle des épaisseurs déposées car les couches ne font 

généralement que quelques dixièmes de nanomètre dans ces structures. D’autre part, 

les matériaux nobles comme le Pt et le Pd coûtent relativement cher et sont difficiles 

à graver par gravure ionique réactive ce qui limite l’industrialisation de tels 

dispositifs. C’est pourquoi dans ce Chapitre nous avons voulu développer des 

structures SAF à fort champ de couplage sans utiliser de Pt (ou Pd). 

Il a ainsi été observé que deux couches de CoFeB peuvent être couplées de 

manière antiferromagnétique à travers un espaceur de Ta d’épaisseur supérieure à 

0,6 nm [Sok-12]. Cependant, avec ces inserts Ta, les champs de couplage obtenus 

sont plutôt faibles : nous avons mesuré un plateau antiparallèle de ±150 Oe avec une 

structure FeCoB1,2/Ta0,8/FeCoB1,2. Cela est insuffisant pour servir de couche de 

référence dans une jonction tunnel. En revanche, de plus forts couplages peuvent être 

observés avec des inserts Ru ou Ta/Ru. Ainsi, des largeurs de plateau de ±1300 Oe et 

±700 Oe peuvent être obtenues avec des inserts de Ru de 0,6 nm ou de Ta0,2/Ru0,5 

nm, respectivement. Il apparaît que la force du couplage diminue linéairement avec 

l’augmentation de la proportion de Ta dans l’insert. 

Nous avons ensuite étudié plus précisément le comportement magnétique de ces 

structures. Nous avons pu constater que la position relative des plateaux sur les 

branches aller et retour des cycles magnétiques est inversée entre les inserts Ru et 

Ta/Ru. Cela signifie que la couche morte présente dans le FeCoB dépend des 

éléments présents aux interfaces. Nous en déduisons une plus grande épaisseur de 

couche morte dans la couche inférieure pour les structures avec insert de Ru pur. 

D’autre part, dans les structures avec ce type d’insert, la compensation magnétique 

du SAF joue un rôle important dans le comportement magnétique observé. En effet, 

comme l’énergie de couplage devient dominante, une troisième transition 

correspondant au retournement de l’aimantation nette du SAF apparaît et réduit 

fortement la stabilité de la référence. Cependant, plus on se rapproche de la 

compensation magnétique, plus cette transition se décale vers les champs forts, pour 

disparaître au moment où le SAF est compensé. 

Après avoir développé des structures SAF sans Pt avec des champs de couplage 

plus ou moins importants, nous avons cherché à les introduire dans des doubles 

jonctions à anisotropie perpendiculaire. Nous pouvons ainsi utiliser les structures 

FeCoB1,2/Ta0,8/FeCoB1,2 à faibles champs de couplage comme couche de stockage 

SAF dans une double jonction de la forme SAF1/SAF3/SAF2. Dans ce cas, nous 

conservons les références développées au Chapitre précédent. Dans un deuxième 
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temps, nous avons vu que nous pouvons remplacer la référence supérieure en Co/Pd 

par l’une des nouvelles structures SAF dans un empilement du type SAF1/CL/SAF2. 

Cependant, comme pour la première structure de double jonction introduite au 

Chapitre III, il est impossible de basculer entre les modes écriture et lecture sans 

appliquer de forts champs magnétiques. C’est pourquoi une nouvelle structure a été 

introduite en partant de l’idée d’une couche douce de contrôle développée dans la 

thèse de P.–Y. Clément [Clé-14]. Il s’agit de remplacer la couche de référence 

supérieure par une couche douce qui pourra être retournée indépendamment par 

déplacement de parois de domaines ou utilisation de couples de spin-orbite. Il faudra 

cependant être attentif à ce que cette couche reste insensible au STT pendant la phase 

d’écriture. 

Finalement, dans la dernière partie de ce Chapitre, nous avons pu vérifier la 

faisabilité de jonctions simples sans Pt et Pd en utilisant les structures SAF à base de 

FeCoB comme couche de référence inférieure ou supérieure. Dans le cas où ces SAFs 

servent de référence inférieure, les propriétés d’anisotropie sont légèrement moins 

bonnes, mais dans les deux types d’empilement des jonctions fonctionnelles ont pu 

être obtenues. 
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Chapitre V 
 

Ce Chapitre présente les résultats des mesures électriques effectuées sur des 

nanopiliers de différentes tailles. 

Dans une première partie, le processus de nanofabrication est présenté. Après 

avoir effectué le dépôt magnétique et l’avoir caractérisé, un masque dur de 150 nm de 

Ta est déposé sur la plaque. Une première étape de lithographie électronique permet 

de définir la forme et la taille des piliers. Puis grâce à plusieurs étapes de lithographie 

optique et de gravure, les contacts sur les électrodes inférieure et supérieure peuvent 

être réalisés. 

Les premiers tests électriques ont été faits sur la jonction optimisée au Chapitre I, 

qui se compose d’une électrode de référence SAF à base de multicouches Co/Pt et 

d’une électrode de stockage supérieure. Nous avons réalisé un gradient d’épaisseur 

sur la couche de stockage qui varie entre 1 et 1,4 nm sur la plaque de 50 mm de 

diamètre. Après nanofabrication, un signal maximal de TMR autour de 36% est 

mesuré et un RA d’environ 10 m2. Des piliers circulaires de diamètre compris 

entre 100 et 300 nm ont été définis sur cet échantillon. Grâce à l’application 

d’impulsions de courant de 100 ns pour différentes valeurs de champ magnétique, il a 

été possible de tracer des diagrammes de phase champ-tension. Nous en avons déduit 

des densités de courant raisonnables pour l’écriture par STT autour de 3 MA.cm-2 et 

un facteur de stabilité thermique  d’environ 43. Ces mesures nous ont également 

permis d’observer la variation du champ de couplage dipolaire en fonction de la taille 

de pilier. Nous obtenons une forte augmentation de ce champ à mesure que la 

dimension du plot est réduite. En utilisant la dépendance en champ du courant 

critique (𝐽𝑠𝑤 =
2𝑒𝛼𝜇0𝑀𝑠𝑡

ℏ𝜂
(𝐻𝑒𝑓𝑓 + 𝐻𝑎𝑝𝑝 + 𝐻𝑐𝑝𝑙)) et la variation d’épaisseur de la couche 

libre, nous avons estimé le paramètre d’amortissement de Gilbert  autour de 0,016. 

Nous avons également étudié l’influence de la température sur le champ coercitif de 

la couche de stockage. Il apparaît que Hc diminue linéairement quand la température 

augmente. Nous constatons que, lorsque l’épaisseur passe de 1,1 à 1,24 nm, la 

température à laquelle le champ coercitif devient nul augmente de 20 à presque 110 

°C. Cela vient du fait que l’anisotropie perpendiculaire augmente avec l’épaisseur 

magnétique dans la gamme d’épaisseurs étudiée.  
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Conclusion 
 

Le but de cette thèse était d’optimiser les propriétés magnétiques et de transport 

de jonctions tunnel magnétiques à anisotropie perpendiculaire. Ce travail s’inscrit 

dans les développements actuels de ces dispositifs pour les mémoires magnétiques à 

accès aléatoire (MRAM). En effet, combinée à l’écriture par couple de transfert de 

spin (STT) [Slo-96, Ber-96], cette technologie a été repérée comme l’une des 

mémoires non-volatiles émergentes les plus prometteuses, capable de satisfaire les 

critères de l’industrie de la microélectronique en termes de réduction des tailles de 

dispositifs. Cependant, créer de telles structures n’est pas si simple et nécessite une 

très bonne maîtrise des matériaux déposés. De nombreux paramètres doivent être 

optimisés, notamment les épaisseurs des différents matériaux, si l’on veut améliorer 

les performances des dispositifs à la fois en termes d’anisotropie et de transport. 

L’anisotropie magnétique perpendiculaire, c’est-à-dire l’orientation préférentielle 

de l’aimantation dans la direction hors-plan, est un phénomène qui fût prédit 

relativement tôt et dont les origines sont essentiellement interfaciales [Née-54]. Cet 

effet a été largement étudié dans un premier temps pour les applications aux disques 

durs, notamment dans les alliages à base de Pt ou Pd qui présentent de forts 

couplages spin-orbite. Les multicouches Co/Pt sont également apparues 

intéressantes pour créer des structures à forte anisotropie perpendiculaire [Joh-96]. 

Cependant, une grande avancée fût réalisée avec la découverte d’une anisotropie 

perpendiculaire élevée aux interfaces métal/oxyde [Mon-02]. Cela permit d’envisager 

la réalisation de jonctions tunnel magnétiques perpendiculaires car ces structures 

possèdent une barrière isolante séparant les deux électrodes magnétiques. 

Les jonctions tunnel magnétiques sont des composants à la base de la 

MagnétoRésistance Tunnel (TMR), un effet qui fût découvert en 1975 [Jul-75] et qui 

peut être utilisé pour stocker de l’information. En effet, en fonction de l’orientation 

relative des aimantations de part et d’autre de la barrière, deux états de résistance 

peuvent être mesurés. De premières prédictions théoriques [But-01, Mat-01] 

montrèrent qu’une barrière tunnel cristalline de MgO se révélait être un bon choix de 

matériau pour obtenir de fort signaux de TMR, ce qui fût rapidement confirmé 

expérimentalement [Yua-04, Par-04]. Grâce à leurs avantages en termes de 

croissance et de cristallisation, les alliages de CoFeB obtenus par pulvérisation 

cathodique furent rapidement favorisés [Lee-07, Yua-05, Cho-07] et purent être 

utilisés pour obtenir des jonctions à anisotropie perpendiculaire [Ike-10]. D’autres 

études révélèrent également que ce type de jonctions magnétiques présentait de 

nombreux avantages pour les applications STT en comparaison avec les systèmes 

planaires (grande capacité de stockage, forte stabilité thermique, courant critique 

d’écriture plus faible). Cependant, pour obtenir cette anisotropie, le choix des couches 

tampon et de couverture est particulièrement crucial [Wor-11, Liu-12, Nat-12, Kub-

12]. 



 French summary 

199 
 

Nous sommes partis d’une structure standard comprenant une référence 

inférieure antiferromagnétique synthétique (SAF) à base de multicouches Co/Pt et 

d’une couche libre supérieure en FeCoB. Dans une structure SAF, les couches 

magnétiques sont couplées antiferromagnétiquement à travers un espaceur 

métallique, grâce aux interactions RKKY [Rud-54, Kas-56, Yos-57], de façon à réduire 

les champs rayonnés agissant sur la couche de stockage dans le cas de dispositifs de 

petite taille [Ban-10]. L’avantage d’utiliser des multicouches Co/Pt dans la référence 

est qu’elles apportent une forte anisotropie perpendiculaire ce qui rend la couche de 

référence très stable. Cependant, pour obtenir un fort signal de TMR, il est nécessaire 

de conserver une couche de CoFeB à l’interface avec la barrière MgO. Cette couche est 

couplée aux multicouches adjacentes mais à travers un mince insert de Ta permettant 

d’obtenir la bonne structure bcc (001) au moment de la cristallisation. Cela garantit 

de bonnes propriétés de transport à la structure [Wor-11]. Le tantale a l’avantage de 

présenter un fort effet « getter » et ainsi d’attirer une partie du bore loin de l’interface 

avec la barrière oxyde ce qui est bénéfique pour la TMR [Koz-10]. Nous avons étudié 

l’influence de l’épaisseur de cet insert à la fois sur les propriétés magnétiques et de 

transport de jonctions tunnel perpendiculaires [Cuc-13]. Il apparaît qu’une épaisseur 

optimale d’environ 0,3-0,4 nm permet de garder un fort couplage magnétique dans la 

référence inférieure tout en améliorant significativement le signal de TMR de la 

jonction grâce à la bonne cristallisation de l’alliage de CoFeB. 

La force du couplage RKKY dans la structure SAF inférieure a été testée. Comme 

attendu, le comportement oscillatoire typique en fonction de l’épaisseur de l’espaceur 

de Ru est obtenu [Par-91]. Il apparaît que choisir une épaisseur de Ru autour de 0,9 

nm permet de bénéficier d’un fort couplage antiferromagnétique tout en étant 

relativement peu sensible aux possibles fluctuations d’épaisseurs car le pic est 

relativement large autour de cette épaisseur nominale. Les épaisseurs de Co et de Pt 

dans les multicouches, ainsi que de la couche tampon de Pt jouent un rôle primordial 

dans les propriétés magnétiques de la structure SAF et doivent donc être choisies 

avec précaution. D’autre part, il est particulièrement important de connaître les 

caractéristiques des électrodes inférieures et supérieures pour savoir quelles sont les 

fenêtres de fonctionnement de nos systèmes. Grâce à des séries d’échantillons dont 

les épaisseurs de FeCoB inférieur ou supérieur ont été variées, les épaisseurs critiques 

(pour lesquelles on a une réorientation de l’aimantation de perpendiculaire à 

planaire), les aimantations à saturation et les couches magnétiquement mortes ont pu 

être extraites. Ce dernier paramètre est nécessaire si l’on veut évaluer l’anisotropie de 

la couche magnétique grâce à des courbes Keff.t=f(t). Avec ce traitement, nous avons 

pu extraire une anisotropie d’interface 2Ks d’environ 1 erg.cm-2 dans la couche libre 

de FeCoB supérieure. Des mesures de transport par la méthode CIPT (Current In-

Plane Tunneling) [Wor-03] sur ces structures ont montré qu’un signal maximal de 

TMR est obtenu à partir du moment où les épaisseurs magnétiques effectives des 

électrodes de CoFeB sont supérieures à 0,6 nm [Cuc-14a]. 

Sachant que l’anisotropie perpendiculaire provient essentiellement de l’interface 

métal/oxyde, nous avons remplacé la couverture standard de Ta par une seconde 
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couche de MgO. Nous avons ainsi observé une augmentation de l’épaisseur critique 

effective (en prenant en compte la couche morte) de 1,1 à 2,7 nm avec les couches de 

stockage FeCoBx/Ta0,3/FeCoBx/MgO. Cela s’accompagne d’une forte augmentation 

de l’anisotropie d’interface, qui atteint environ 2 erg.cm-2 ce qui devrait apporter une 

forte stabilité thermique aux nanopiliers. De plus, cette forte anisotropie donne la 

possibilité de travailler avec des épaisseurs magnétiques plus élevées qui devraient 

permettre de réduire le facteur d’amortissement. Une fine couche de Ta est insérée 

dans la couche de stockage de manière à conserver son effet « getter ». Des 

échantillons avec un insert Ru ou sans insert ont été testés et fonctionnent également. 

Le mode de réalisation de la couverture MgO peut être modifié afin de changer la 

valeur de son produit RA. En effet, un faible RA doit être employé pour la barrière 

supérieure si l’on veut conserver une valeur raisonnable de TMR résultante. Il est 

apparu que la nature des barrières MgO ne semble pas influencer énormément les 

propriétés d’anisotropie de la couche de stockage. 

D’après des études réalisées sur des structures à anisotropie planaire, il est apparu 

que l’utilisation de doubles jonctions comportant deux barrières tunnel et deux 

polariseurs est particulièrement attractive pour les applications STT [Dia-07, Clé-14]. 

En effet, en ajustant l’orientation relative des couches de référence, il est possible de 

moduler l’efficacité du couple de transfert de spin pour créer un mode écriture avec 

un faible courant critique et un mode lecture dans lequel de fortes tensions peuvent 

être appliquées sans risquer de perdre l’information stockée dans le point mémoire. 

Nous avons donc proposé de combiner ces propriétés avantageuses à celles de 

l’anisotropie perpendiculaire [Cuc-15a]. Pour cela, une couche de référence 

supérieure à base de multicouches Co/Pd a été développée après plusieurs 

optimisations d’épaisseurs. Il faut noter que comme on ne peut pas utiliser de couche 

tampon épaisse de Pd dans ces structures inversées, l’anisotropie perpendiculaire est 

bien plus faible comparée aux systèmes inférieurs en Co/Pt. C’est cependant une 

bonne chose car cela nous permet d’obtenir des champs de transition distincts dans 

les deux références et de construire un système fonctionnel dans lequel toutes les 

aimantations des couches magnétiques peuvent être basculées indépendamment. 

Nous avons donc pu montrer la réalisation d’une double jonction à anisotropie 

perpendiculaire composée d’une référence inférieure SAF à base de multicouches 

Co/Pt, une couche de stockage simple et une référence supérieure SAF à base de 

multicouches Co/Pd. Grâce à différents traitements en champ, la couche de stockage 

peut être renversée à la fois en configuration parallèle ou antiparallèle des références. 

Pour les applications pratiques, il peut être intéressant de travailler avec des 

couches de stockage de type antiferromagnétique synthétique, car elles seraient 

moins sensibles aux possibles champs rayonnés dans les piliers de petite taille. Dans 

ce but, nous avons développé des structures SAF à base de FeCoB possédant 

différents types d’espaceur [Cuc-16]. Même si l’espaceur de Ru donne la plus grande 

force de couplage, des systèmes fonctionnels peuvent également être obtenus avec du 

Ta ou des bicouches Ta/Ru. En jouant sur la compensation magnétique des couches 

de FeCoB de part et d’autre de l’espaceur, il est possible d’augmenter la stabilité de la 
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structure SAF. Elle peut ensuite être placée à différentes positions dans une double 

jonction, soit comme couche de référence soit comme couche de stockage SAF. Cela 

permet d’imaginer des dispositifs encore plus performants, dans lesquels la référence 

supérieure est remplacée par une couche magnétique douce dont l’aimantation 

pourrait être basculée par champ entre un mode écriture et un mode lecture, sans 

risquer de perdre l’information stockée dans la couche de stockage SAF, plus stable. 

Cette couche douce, dite de contrôle, doit cependant être rendue insensible au STT 

durant la phase d’écriture. 

Durant leur développement, il est apparu que ces structures SAF à base de FeCoB 

pouvaient être particulièrement stables avec des plateaux antiferromagnétiques 

atteignant ± 1300 Oe. Elles peuvent donc avantageusement remplacer nos références 

SAF standard à base de Co/Pt (Pd) dans des jonctions magnétiques simples. Cela 

permet de créer des systèmes sans Pt ou Pd qui ne contiennent aucune multicouche à 

base de métaux nobles, difficiles à graver avec les techniques standard de gravure 

ionique réactive. De plus dans ce cas, la quantité de matériaux impliqués dans 

l’empilement magnétique est beaucoup plus réduite. 

Après avoir réalisé l’ensemble des étapes de nanofabrication, les propriétés 

électriques d’une jonction standard avec référence SAF inférieure et couche libre 

supérieure avec une couverture Ta ont été évaluées [Cuc-14b]. Des diagrammes de 

phase champ magnétique-impulsion de tension ont été mesurés et des densités de 

courant critique aussi faibles que 2,9 MA.cm-2 ont pu être obtenues. Grâce à la 

variation des propriétés en fonction de l’épaisseur magnétique, le paramètre 

d’amortissement de Gilbert est estimé autour de 0,016, ce qui est en bon accord avec 

les résultats obtenus dans d’autres groupes [Dev-13]. La dépendance en température 

du champ coercitif de la couche de stockage a également été testée. Elle est fortement 

liée à l’épaisseur magnétique, comme attendu. 

Ces premiers tests électriques sont encourageants mais il serait d’autant plus 

intéressant de pouvoir tester les performances des structures avec couverture MgO et 

des doubles jonctions perpendiculaires. Dans ce contexte, d’autres travaux sur les 

barrières tunnel seront probablement nécessaires, notamment afin de pouvoir 

moduler précisément le produit RA de chaque barrière. 

Les structures SAF à base de FeCoB sont particulièrement prometteuses et 

pourraient être testées pour les applications STT dans de nombreuses structures. 

Cependant, la stabilité du couplage RKKY dans des piliers de petite taille devra être 

confirmée. Les premiers résultats préliminaires semblent indiquer un maintien des 

propriétés du SAF jusqu’à des tailles d’au moins 50 nm. Cela pourrait être vérifié plus 

précisément en réalisant des réseaux de plots de différentes tailles et en mesurant 

leurs cycles d’hystérésis par effet Kerr focalisé. 
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ABSTRACT 
Due to their advantageous properties in terms of data retention, storage density and critical 

current density for Spin Transfer Torque (STT) switching, the magnetic tunnel junctions with 

perpendicular anisotropy have become predominant in the developments for MRAM applications. The 

aim of this thesis is to improve the anisotropy and transport properties of such structures and to 

realize even more complex stacks such as perpendicular double junctions. Studies on the magnetic 

properties and Tunnel MagnetoResistance (TMR) measurements showed that to optimize the 

performances of the junctions, all the thicknesses of the different layers constituting the stack have to 

be adapted. To guaranty both a large TMR as well a strong perpendicular anisotropy, compromises are 

most of the time needed. Studies as a function of magnetic thickness enabled to extract the saturation 

magnetization, the critical thickness and the magnetic dead layer thickness both in the bottom 

reference and the top storage layer in structures capped with Ta. This type of junction could be tested 

electrically after patterning the sample into nanopillars. Knowing that perpendicular anisotropy 

mostly arises at the metal/oxide interface, the Ta capping layer was replaced by a MgO one, leading to 

a huge increase in the anisotropy of the free layer. A second top reference was then added on such a 

stack to create functional perpendicular double junctions. CoFeB/insertion/CoFeB synthetic 

antiferromagnetic storage layers could be developed and were proved to be stable enough to replace 

the standard Co/Pt-based reference layers. 

Keywords: Spintronics, Magnetic Tunnel Junctions, MRAM, Perpendicular Magnetic Anisotropy, 

Double junctions, Spin Transfer Torque 

RESUME 
Du fait de leurs propriétés avantageuses en termes de rétention des données, densité de stockage 

et faible courant critique pour l’écriture par courant polarisé en spin (STT), les jonctions tunnel 

magnétiques à anisotropie perpendiculaire sont devenues prédominantes dans les études sur les 

applications aux mémoires magnétiques MRAM. Les travaux de cette thèse s’inscrivent dans ce 

contexte avec pour but l’amélioration des propriétés de transport et d’anisotropie de telles structures 

ainsi que la réalisation d’empilements encore plus complexes tels que des doubles jonctions 

perpendiculaires. Grâce à l’étude des propriétés magnétiques et des mesures de MagnétoRésistance 

Tunnel (TMR), il apparaît que pour optimiser les performances des jonctions tunnel, l’ensemble des 

épaisseurs des couches composant l’empilement doit être adapté. Des compromis sont souvent 

nécessaires pour obtenir à la fois une forte anisotropie perpendiculaire et des signaux de TMR élevés. 

Des études en fonction des épaisseurs magnétiques ont permis de déterminer les aimantations à 

saturation, épaisseurs critiques et couches mortes dans les couches de référence et de stockage de 

jonctions standard avec électrode libre supérieure et couverture Ta. Ce type de jonction a pu être nano-

fabriqué sous forme de piliers circulaires afin de tester l’écriture par STT. Sachant que l’anisotropie 

perpendiculaire provient essentiellement de l’interface métal/oxyde, la couverture Ta a été ensuite 

remplacée par une deuxième couche de MgO, permettant d’améliorer significativement l’anisotropie 

de la couche libre. En introduisant une seconde référence au-dessus de cette jonction, des doubles 

jonctions perpendiculaires fonctionnelles ont pu être fabriquées. Des couches de stockage 

antiferromagnétiques synthétiques de la forme CoFeB/insert/CoFeB ont pu être développées et 

apparaissent suffisamment stables pour pouvoir remplacer les traditionnelles références à base de 

multicouches Co/Pt. 

Mots-clés : Electronique de Spin, Jonctions Tunnel Magnétiques, MRAM, Anisotropie Magnétique 

Perpendiculaire, Double jonctions, Couple de Transfert de Spin 
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