
HAL Id: tel-01312775
https://theses.hal.science/tel-01312775

Submitted on 9 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Roboconf : an Autonomic Platform Supporting
Multi-level Fine-grained Elasticity of Complex

Applications on the Cloud
Manh Linh Pham

To cite this version:
Manh Linh Pham. Roboconf : an Autonomic Platform Supporting Multi-level Fine-grained Elastic-
ity of Complex Applications on the Cloud. Distributed, Parallel, and Cluster Computing [cs.DC].
Université Grenoble Alpes, 2016. English. �NNT : 2016GREAM009�. �tel-01312775�

https://theses.hal.science/tel-01312775
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministérial : 7 Août 2006

Présentée par

Pham Manh Linh

Thèse dirigée par Prof. Noël de Palma

préparée au sein du Laboratoire d’Informatique de Grenoble
et de L’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Roboconf: une Plateforme Au-
tonomique pour l’Élasticité Multi-
niveau, Multi-granularité pour les
Applications Complexes dans le
Cloud
Roboconf: an Autonomic Platform Supporting
Multi-level Fine-grained Elasticity of Complex
Applications on the Cloud

Thèse soutenue publiquement le 04 february 2016,
devant le jury composé de :

Prof. Noël de Palma
Université Grenoble Alpes, Grenoble, Directeur de thèse
Prof. Didier Donsez
Université Grenoble Alpes, Grenoble, Co-Directeur de thèse
Prof. Françoise Baude
Université de Nice - Sophia Antipolis, Nice, Rapporteur
Prof. Daniel Hagimont
INPT/ENSEEIHT, Toulouse, Rapporteur
Asc. Prof. Vania Marangozova-Martin
Université Grenoble Alpes, Grenoble, Présidente
Asc. Prof. Alain Tchana
INPT/ENSEEIHT, Toulouse, Examinateur

ii

Abstract

Software applications are becoming more diverse and complex. With the stormy
development of Cloud computing and its applications, software applications be-
come even more complex than ever. The complex cloud applications may contain
a lot of software components that require and consume a large amount of resources
(hardware or other software components) distributed into multiple levels based on
granularity of these resources. Moreover these software components might be lo-
cated on different clouds. The software components and their required resources
of a cloud application have complex relationships which some could be resolved at
design time but some are required to tackle at runtime. Elasticity is one of benefits
of Cloud computing, which is capability of a cloud system to adapt to workload
changes by adjusting resource capacity in an autonomic manner. Hence, the avail-
able resources fit the current demand as closely as possible at each point in time.
The complexity of software and heterogeneity of cloud environment become chal-
lenges that current elasticity solutions need to find appropriate answers to resolve.
In this thesis, we propose a novel elasticity approach as an efficient solution which
not only reflects the complexity of cloud applications but also deploy and manage
them in an autonomic manner. It is called multi-level fine-grained elasticity which
includes two aspects of application’s complexity: the multiple software compo-
nents and the granularity of resources. The multi-level fine-grained elasticity con-
cerns objects impacted by elasticity actions and granularity of these actions. In
this thesis, we also introduce Roboconf platform, an autonomic Cloud comput-
ing system (ACCS), to install and reconfigure the complex applications as well
as support the multi-level fine-grained elasticity. To this end, Roboconf is also an
autonomic elasticity manager. Thanks to this platform, we can abstract the com-
plex cloud applications as well as automate their installation and reconfiguration
that can consume up to several hundred hours of labour. We also use Roboconf to
implement the algorithms of multi-level fine-grained elasticity on these applica-
tions. The conducted experiments not only indicate efficiency of the multi-level
fine-grained elasticity but also validate features supporting this approach of Robo-
conf platform.

iii

Keywords. Cloud computing; autonomic computing; Cloud deployment and re-
configuration; multi-level fine-grained elasticity.

iv

Résumé

Les applications logicielles sont de plus en plus diversifiées et complexes. Avec le
développement rapide du cloud computing et de ses applications, les logiciels
deviennent plus complexes que jamais. Ces applications peuvent contenir un
grand nombre de composants logiciels qui nécessitent et consomment une grande
quantité de ressources (matérielles ou d’autres composants logiciels) réparties sur
plusieurs niveaux en fonction de la granularité de ces ressources. En outre, ces
composants logiciels peuvent être localiss sur différents clouds. Les composants
logiciels et les ressources requises d’une application ont des dépendances com-
plexes. Certaines pourraient être résolues lors de la conception, tandis que d’autres
doivent être traitées à l’exécution. L’élasticité est l’un des avantages du cloud
computing. C’est la capacité d’un système a s’adapter la charge de travail en ajus-
tant ses ressources de manière autonome. Ainsi, les ressources correspondent au
besoin en tout instant. La complexité des logiciels et l’hétérogénéité des environ-
nements de type cloud sont des défis auxquels les solutions d’élasticité actuelles
doivent faire face. Dans cette thèse, nous présentons Roboconf, un système au-
tonome de cloud computing (ACCS) qui permet le déploiement, installation et
gestion autonomes d’applications complexes dans le cloud. En utilisant Roboconf,
nous avons implémentés plusieurs algorithmes d’élasticité à niveaux multiples et
à grain fin qui prennent en compte les relations entre les composants logiciels et la
granularité des ressources. L’évaluation menée permet non seulement de montrer
l’efficacité de notre approche d’élasticité mais aussi de valider les fonctionnalités
de Roboconf qui lui sont sous-jacentes.

Mots-clés. cloud computing, calcul autonome, déploiement cloud, reconfigura-
tion cloud, élasticité à niveaux multiples et à grain fin.

v

vi

Acknowledgments

“Some people grumble that roses have thorns; I am grateful that
thorns have roses.”

–Alphonse Karr, A Tour Round My Garden

This work would have been impossible if it was not dedicated to a number of
people to whom I am greatly indebted.

From the deepest of my heart, I would like to give million thanks to my par-
ents. I did not study the best school in the city. I did not attend the better university
in the state. I did not get the best job in the country. But none of this matters be-
cause I have the best parents in the world and they made up for all these things.
Without their love, inspiration, drive and support, I might not be the person I am
today. Thank you mom and dad.

I wish to thank sincerely my supervisor, Noël de Palma, for his endurance,
patience, inspiration and great discussions. He has created a very unique positive
research environment that is rare to find anywhere else. I would also like to thank
my co-supervisor Didier Donsez for the hard work, the great ideas, the long dis-
cussions, and the great feedback. Noël and Didier are not just supervisors, they
are mentors, teachers, and above all friends. It has been a privilege working with
both of you. Your positive impact will stay with me for the rest of my life.

I would like to thank Asc. Prof. Vania Marangozova-Martin for accepting to
be the President of the jury committee of my defense. I also would like to thank
Prof. Daniel Hagimont and Prof. Françoise Baude to become the reviewers of my
thesis. Many thanks to Asc. Prof. Alain Tchana to become the member of the jury
of my defense. I really appreciate your reports, advices as well as your precious
feedback on my work.

I also would like to thank the Vietnamese Government and the Vietnam -
France University (USTH) for giving me the grant to work in France.

A very big thank to awesome colleagues in the ERODS team and to friends in
the LIG laboratory. Thank to Alain for helping me settle in the very first days and
still coaching me then. Thank to Ahmed for answering every single of my naive
questions. Thank to all the coffee sessions in the afternoon and to all Vietnamese

vii

friends in Grenoble. You are the most beautiful memory I have during my stay in
France.

On a more personal level, I fell in love with a girl long time before I started my
PhD studies. She becomes my wife 2 years after I started my PhD work. Diem,
thanks for being my leash when I was running too fast and my push when I was
moving too slow, thanks for being my anchor when I was sinking too deep and
my rope when I was flying too high. Last but not least, I would like to thank my
future little prince. He is the most precious thing I am waiting for and the main
source of joy in life!

viii

Contents

Abstract iii

Résumé v

Acknowledgments vii

Contents ix

List of Figures xiii

List of Tables xv

1 INTRODUCTION 1
1.1 Context . 1
1.2 Motivation . 4
1.3 Contribution . 6
1.4 Document Organization . 7

2 CLOUD COMPUTING AND AUTONOMIC COMPUTING 9
2.1 Theory of Cloud Computing . 9

2.1.1 Cloud Computing Characteristics 10
2.1.2 Cloud Computing Models 12
2.1.3 Actors in Cloud Ecosystem 13
2.1.4 Virtualization on the Cloud 14
2.1.5 Challenges . 17

2.2 Theory of Autonomic Computing 18
2.2.1 Definition . 18
2.2.2 Autonomic Loop . 19
2.2.3 Autonomic Properties 20
2.2.4 Autonomic Cloud Computing 21

2.3 Synthesis . 21

ix

CONTENTS

3 ELASTICITY 23
3.1 Definition . 24
3.2 Classification . 25

3.2.1 Strategy . 27
3.2.2 Architecture . 29
3.2.3 Scope . 30

3.3 Elasticity Actions . 31
3.3.1 Horizontal Scaling on Various Tiers 32
3.3.2 Vertical Scaling on Various Tiers 33

3.4 The Unresolved Issues . 35
3.4.1 Resource Availability . 35
3.4.2 Resource Granularity . 36
3.4.3 Startup Time . 36
3.4.4 Rising of Container-based Virtualization 36
3.4.5 Composability . 37

3.5 Synthesis . 37

4 MULTI-LEVEL FINE-GRAINED ELASTICITY 39
4.1 Definition . 39
4.2 Related Work . 41
4.3 Requirements of Autonomic Elasticity Managers 45
4.4 Synthesis . 47

5 MODEL OF ROBOCONF APPLICATIONS 49
5.1 Introduction . 50
5.2 A Motivating Use Case . 50
5.3 Model of Roboconf Applications 51
5.4 Description of Roboconf Applications 56

5.4.1 The Application Descriptor 56
5.4.2 The Graph . 57
5.4.3 Instance Description . 58
5.4.4 The Graph Resources . 59

5.5 Roboconf Domain Specific Language 60
5.5.1 Configuration Files and Fine-grained Hierarchical DSL . . 60
5.5.2 Reusability in the Roboconf Model 61
5.5.3 Roboconf DSL Dedicated to the Rules of Elasticity 64

5.6 Synthesis . 69

6 THE ROBOCONF PLATFORM 71
6.1 Introduction . 72
6.2 Architecture of the Roboconf platform 72

x

CONTENTS

6.2.1 Design Details of the Roboconf Platform 73
6.2.2 Roboconf Targets . 74
6.2.3 Roboconf Plug-ins . 77
6.2.4 Extension of the Roboconf Platform 79

6.3 Deployment Process . 80
6.3.1 Instance Life Cycle . 80
6.3.2 Instance Synchronization 81
6.3.3 Initial Deployment Process 83
6.3.4 Reconfiguration Process 84

6.4 Elasticity Management as an Autonomic System 85
6.4.1 Monitoring Phase . 87
6.4.2 Analyzing Phase . 88
6.4.3 Planning Phase . 88
6.4.4 Executing Phase . 88

6.5 Synthesis . 88

7 EVALUATION OF THE MULTI-LEVEL FINE-GRAINED ELAS-
TICITY WITH ROBOCONF 91
7.1 Multi-level Elasticity . 92

7.1.1 Experiment Setup . 92
7.1.2 Test Scenario . 92
7.1.3 Scaling Algorithm . 94
7.1.4 Result . 97

7.2 Multi-level Fine-grained Elasticity 99
7.2.1 Experiment Setup . 99
7.2.2 Test Scenario . 100
7.2.3 Scaling Algorithm . 100
7.2.4 Result . 103

7.3 Synthesis . 106

8 EVALUATION OF THE ROBOCONF PLATFORM 109
8.1 Experiments . 110

8.1.1 Experiment 1 . 110
8.1.2 Experiment 2 . 112
8.1.3 Experiment 3 . 113
8.1.4 The Overhead of Roboconf 116

8.2 Use Cases . 117
8.2.1 Enterprise Social Network (ESN) 117
8.2.2 Cloud Infrastructure for Real-time Ubiquitous Big Data

Analytics (CIRUS) . 118
8.3 Synthesis . 121

xi

CONTENTS

9 CONCLUSION AND PERSPECTIVES 123
9.1 Summary . 123
9.2 Perspectives . 126

9.2.1 Enhancement of the Algorithms of Multi-level Fine-grai-
ned Elasticity . 126

9.2.2 Variety of Resource Dimensions 126
9.2.3 Mitigation of Lightweight Container Migration Time . . . 126

Bibliography 129

Glossary 143

Appendix 145

xii

List of Figures

2.1 The relations among the actors in cloud ecosystem 14
2.2 Type 1 and Type 2 VM-based hypervisor 16
2.3 Container-based Virtualization 17
2.4 MAPE-K autonomic system loop 19

3.1 Analysis grid of elasticity solutions 26
3.2 The centralized architecture as a variant of MAPE-K architecture . 29
3.3 The decentralized architecture as a variant of MAPE-K architecture 30

4.1 Multi-level resource types . 40

5.1 A multi-cloud deployment of the RUBiS benchmark 52
5.2 Illustration of a fine-grained description of components 55
5.3 Example of a Roboconf DSL: (a) graph and (b) instance files for

3-tier deployment . 63
5.4 Syntax to create an event in Roboconf DSL 64
5.5 Syntax of an event reaction in Roboconf DSL 65
5.6 Illustration of reactions in a multi-level fine-grained manner . . . 68

6.1 Simplified architecture of Roboconf 75
6.2 a) Roboconf target definition of Amazon EC2 VM; b) example of

configuring an elastic IP for a EC2 VM instance 78
6.3 Life cycle of a Roboconf instance 82
6.4 Communication protocol for instance synchronization 84
6.5 Example of an autonomic rule of Roboconf DSL: (above) at the

agent side, (bottom) at the DM side 85
6.6 Roboconf autonomic loop for elasticity 87

7.1 Topology of the J2EE test using CLIF load injector 93
7.2 CLIF load profiles of the WebappA and WebappB 94
7.3 Autonomic responses with fluctuation of average response time of

webapps . 98

xiii

LIST OF FIGURES

7.4 CLIF load profiles of the WebappA 100
7.5 Initial state of the experiment with two VMs 9GB memory 101
7.6 Autonomic responses with fluctuation of average response time of

WebappA using MFS algorithm 103
7.7 States of the experiment with MFS algorithm 104
7.8 Autonomic responses with fluctuation of average response time of

WebappA without full MFS algorithm 106
7.9 States of the experiment without full MFS algorithm 107

8.1 Deployment time with different deployment systems 111
8.2 OSGi application: Roboconf hierarchical view vs. Cloudify flat

view . 113
8.3 Components and inter-dependencies of the Storm cluster 114
8.4 Component graph of the Storm cluster described under Roboconf

DSL . 115
8.5 The ESN architecture . 118
8.6 Real-time ubilytics scenario with Roboconf 119
8.7 Components of CIRUS under Roboconf DSL 122

xiv

List of Tables

5.1 List of Operators . 66

7.1 Symbols Used in Scaling Algorithms 95

8.1 Deployment Order of the LAMP Application 111
8.2 Number of D&C Scripts of the OSGi Application 113
8.3 Execution Time and Additional Cost 116

xv

LIST OF TABLES

xvi

Chapter 1

INTRODUCTION

Contents
1.1 Context . 1

1.2 Motivation . 4

1.3 Contribution . 6

1.4 Document Organization . 7

1.1 Context
“The cloud is for everyone. The cloud is a democracy.”

–Marc Benioff, CEO - Salesforce.com

This thesis has been written in the era when Cloud computing has been recog-
nized around the world. Cloud computing has a magical glamour and everybody
is talking about it everywhere. One of Cloud computing promising characteris-
tics is ability to provision virtually computational resources on demand. Cloud
consumers utilize the resources provided by service providers in a pay-as-you-
go style. It means the consumers pay only for the resources they actually used
(e.g. CPU, memory, bandwidth, storage) to resolve their specific problems, not
for entire IT system. This not only increases revenue for cloud providers but also
decrease costs of cloud consumers. A recent survey of more than 930 IT pro-
fessionals and decision-makers globally by Right Scale [1] revealed that cloud
adoption rate in 2015 continues to rise, as 75% of respondents cited they are us-
ing at least one cloud platform and 15% are considering move to the Cloud. This
growing number, up from 14% and 10% of the companies in 2010 respectively,

1

CHAPTER 1. INTRODUCTION

suggests that the Cloud is having a magnificent impression on the business world,
encouraging CTOs to implement the technology in order to not only cut the IT
costs but also help the companies focusing on their core businesses. Although
there remains some doubts about insecurity, not interoperability, limited control
or vendor lock-in issues of Cloud computing, this computing model is still full
promising and plays an important role in reducing the initial investment for IT
infrastructures.

The history of Cloud Computing back to the sixtieth when Licklider, who was
responsible for development of ARPANET (Advanced Research Projects Agency
Network, later became the Internet), introduced an “intergalactic computer net-
work” in 1969 [2]. His vision was for everyone on the world to be connected
and accessing programs and data from anywhere at any sites, that much like what
we are calling “Cloud computing” nowadays. Since then, Cloud computing has
evolved through a number of phases including grid and utility computing. In the
ninetieth, explosion of the Internet and Web technologies are important premises
for flying up of the Cloud in early 21st century. Other key factors which have con-
tributed to evolution of the Cloud include the development of high-speed band-
width, the standardization of software interoperability and especially the matur-
ing of virtualization technology. First milestone was made by Salesforce [3] in
1999, which promoted the concept of SaaS (Software-as-a-Service) by delivering
enterprise applications to end users with a simple website. The next poke was
from Amazon Web Services [4] in 2002, which provided a suite of cloud-based
services such as computation, storage and artificial intelligence. These services
were commercialized in 2006 by launching of Elastic Compute cloud (EC2) [5]
that allows individuals and enterprises to rent virtual resources on which to run
their own applications. Amazon EC2/S3 was recognized as the first widely ac-
cessible infrastructure service on the Cloud. As Web 2.0 reached its maturity in
2009, Google offered browser-based enterprise applications through its web ser-
vice which is Google App Engine [6]. Thenceforth, Cloud computing market is
stirred continuously and incessantly by the technology giants such as Microsoft,
IBM, HP, VMware, etc.

Software applications also evolve along with the growth of Cloud computing,
from simple software programs running on a single machine in those days be-
fore the era of Internet to very complex distributed applications spanning multiple
servers on different sites in recent days. Cloud computing has changed the way
people develop and use software, the regular programs have transformed into ser-
vices available on the Internet. A simple example is the evolution of Microsoft
Office, a suite of office applications has leveraged premium features of Cloud
computing to become Office 365, a service enables Microsoft Office on the Cloud.
In this context, traditional applications (i.e. legacies) must be ready for modifica-
tions to be migrated to the Cloud. For many decades until now, we are seeing the

2

1.1. CONTEXT

continuous growth of the complexity of applications, due to the development of
new technologies on the one hand, and the emergence of new needs on the other
hand. An application does not address a single problem but several. This growth
of their complexity implies the same phenomenon regarding their execution envi-
ronment (organization of physical machines or devices on which they run). For
instance, this has brought forward a change from centralized to distributed and
heterogeneous places of execution. All of this make human administration very
difficult because they are errors prone, slow to respond (e.g. fault solving), and
highly costly (e.g. wages).

The habits in the field of software development is also changing due to the
increasing complexity of applications. Nowadays, the software developers can-
not stand alone, they have to combine with testers and system administrators who
must stick together in the same software life-cycle loop to ensure minimum soft-
ware bugs and still have to satisfy the most demanding customers. This raises a
new job called DevOps [149] where software developers are also the sysadmin
who understand thoroughly the application from development, staging to produc-
tion phases. This characteristic of agile software development also set the software
product on an endlessly autonomous loop from development to customer delivery,
named Continuous Delivery. This software engineering approach ensures produc-
ing of applications in short cycle and releasing of software product reliably at
any time [27]. The appearance of the new software development trends requires
software manufacturers have to modernize themselves by increasing levels of au-
tomation in the production process.

When deploying cloud services or applications, cloud providers and users both
want to maximum benefits brought from Cloud computing. One of advantage is
the efficient use of resources to support scalability. This consequently leads to
saving in cost, energy and labour. The cloud infrastructure providers must try to
optimize their infrastructures to save energy and provide on-demand resources.
The cloud platform providers try to integrate advanced features into their plat-
forms, which adjust capacity of resources so that it meets resource demand of
workload fluctuation as closely as possible. The cloud application providers opti-
mize management of applications to request for just-enough resources. To be able
to do this, the process of application and resource management in the Cloud must
be automated as much as possible to minimize repetition and risks from human
errors. In this context, many cloud tools have been developed and introduced to
realize this need, but it is still not enough.

In the early 2000s, IBM [7] proposed to automate the administration of com-
plex applications throughout the use of what we called Autonomic Computing
Systems (ACS for short). This practice consists in transferring human adminis-
tration knowledge and behaviours to an ACS, which can be done in two ways:
either by introducing autonomic behaviors into application components at its de-

3

CHAPTER 1. INTRODUCTION

velopment time [8] or by building a computing system (different to the application
we want to administrate) which will make the application autonomous [9]. The
autonomous applications own self-managing characteristics of distributed com-
puting resources, which help them adapting to unpredictable changes and hiding
complexity to sysadmins or users. However, implementation of cloud applica-
tions is a challenging domain for existing ACSs, as it introduces one or multiple
intermediate levels of virtualization such as virtual machines (VM), lightweight
containers and their various combinations. Moreover, it sometimes requires the
use of several clouds at once (hybrid and multicloud). For example, running a fi-
nancial/bank application within the cloud generally requires two clouds: a private
cloud (located in the company to which the application belongs) to run business-
critical part, and a public cloud (e.g. Amazon EC2) to run non-critical part of the
application. Note that in some situations, the non-critical part can move from one
cloud to another for price and competitiveness reasons. To make matter worse,
cloud APIs are not standardized, which results in non interoperable clouds. In
next section, existing problems of automating implementation of cloud applica-
tions using ACS are further discussed and pointed out.

1.2 Motivation

ACS solutions seem to be attractive for deployment and management of legacy
applications. However, there are still various challenges when a company decides
to move to the Cloud and apply ACS to automate the installation and manage-
ment of their complex application. In this context, existing ACSs [10, 11, 12] are
inappropriate for several reasons:

• Existing ACSs only consider one level of deployment/execution: an ap-
plication runs within a physical machine (PM), whereas in the context of
Cloud, the application often runs within a VM. The introduction of container-
based virtualization, a technology has been mentioned since decades but
has only been popular recently, not only brings forward the opportunities,
but also put much complexity to the automation of deployment process.
Nowadays, a container (called lightweight container from now on) hosting
a service can run on bare metal, inside a VM or even reversely, a VM runs
inside a container. The complexity increases strongly when these virtual-
ized layers combine together (e.g. lightweight container on VM, software
component on VM, software component on container, etc.).

• The target execution environment is not static in the context of Cloud, an
application does not stay within the same clouds during its overall lifetime.

4

1.2. MOTIVATION

It can stay in a private cloud in the staging phase and then move to a pub-
lic cloud in production phase. It can span multiple clouds and blur their
limitations.

• Existing ACSs are built to administrate the whole environment (application
and execution environment) while in the context of Cloud, administration
is ensured by two actors (the cloud application provider administrates its
application while the cloud provider is responsible for infrastructure).

Although generic ACSs [13] for grids and clusters of machines exist, their
enhancement for clouds requires a high expertise for the deployer. Concerning
cloud solutions, the Autonomic Cloud Computing Systems (ACCS for short) [6,
14, 15, 16, 17, 18] are either proprietary, devote to a specific application, or target
a static cloud.

As summarized by [7], administration tasks can be divided into the following
categories: installation or initial provisioning, reconfiguration and uninstallation.
The former includes the description of application components and its runtime,
the initialization of the execution environment, the installation of artifacts from
repositories, the configuration of the application, and its start-up. About reconfig-
uration tasks, they are performed at runtime in order to reconfigure the application
when a particular situation is detected (e.g. fault). It is response of the managed
system to react properly to fluctuations of surrounding environment. It can be
done manually by human conscious intervention or automatically by autonomous
engine. Lastly, the uninstallation is to gracefully clean an application which is no
longer necessary, outdated or damaged. The ACSs have proved their usefulness
in all administrative tasks and now the major part of research in this topic focuses
on the reconfiguration tasks [19].

The automation of reconfiguration is really challenging because it relates to a
chain of concerns which include monitoring managed elements, gathering mea-
sured parameters, analyzing collected data, planning for reactions, executing plans
and tracking feedbacks. In those challenges, planning for distributing and provi-
sioning virtual resources to adapt the changes of environment, especially work-
loads, has extremely important implication. It promotes elasticity of the Cloud,
which scales applications to ensure distributed resources to fit actual demands as
closely as possible. In other words, applications on the Cloud should be elastic,
i.e., they should be able to integrate or remove resources on-demand and automat-
ically as well as use them efficiently to handle fluctuations of workloads.

Coming back to broadly recognized definition of Cloud computing of Na-
tional Institute of Standards and Technology (NIST) in their publication “The
NIST Definition of Cloud Computing” [20]: “Cloud computing is a model for
enabling convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services)

5

CHAPTER 1. INTRODUCTION

that can be rapidly provisioned and released with minimal management effort
or service provider interaction.”

With this definition, five essential characteristics have been defined that ev-
ery true cloud computing implementation should have: on-demand self service,
broad network access, resource pooling, rapid elasticity, and measured service.
Among them, it is necessary to come back and resolve one of basic characteris-
tics and requirements of Cloud computing: rapid elasticity which is challenging
the existing ACCSs. Many elasticity solutions based on principles of Autonomic
computing but only a couple of research paid proper attention to its “rapid” as-
pect. Why “rapid” is very important in terms of elasticity? For instance, in Event
Stream Processing (ESP) applications, allocating and deallocating VMs can be
expensive and thus further affects the system performance. In a research about
elasticity on the Cloud [21], author proposed architectures using dedicated VM
for each instance, which has a relative high (de)allocation cost compared to alter-
natives such as lightweight container and processes. VM provisioning on cloud
platforms is a slow process on the order of minute. How can this be used for
dynamic scaling in stream processing? In this situation, we need to consider com-
plexity of applications as well as classify resources required by application into
different levels based on resource granularity. An elasticity action which impacts
a more fine-grained resource benefits elasticity with rapid provisioning in terms
of reducing Service-level Agreement (SLA) violation rate and increasing resource
exploitation ratio.

Classification of resources leads to provisioning more fine-grained resources
in the elasticity actions. The ACSs do not have to deal with coarse-grained fatty
VMs which needs a couple of minutes for its startup and may cause unnecessary
over-provisioning or postpone scaling. With scaling in/out or horizontal scaling,
they can instead use other fine-grained resources like lightweight container or soft-
ware container. With scaling up/down or vertical scaling, adding and removing
fined-grained resources like CPU, memory, storage device is a possible approach.
We believe that this approach supported by an ACCS will help to obtain the truly
rapid elasticity. This is also the motivation behind the work of this thesis.

1.3 Contribution

Provided the presented context, our contribution in this PhD work consists in the
design, development and evaluation:

• (1) an ACS-based cloud platform, called Roboconf, for description, deploy-
ment and self-management of complex applications on multicloud. This

6

1.4. DOCUMENT ORGANIZATION

system is open source 1 and was introduced in our conference publica-
tions [22, 23].

• (2) a novel elasticity approach, namely multi-level fine-grained elasticity,
and its algorithms to obtain rapid elasticity for cloud applications in an au-
tonomic manner using Roboconf as the main elasticity manager.

With (1), we made following specific contributions with Roboconf:

• Introduce an application model of Roboconf and a hierarchical domain spe-
cific language (i.e. DSL) which allow description of cloud applications and
their runtimes. This DSL includes a dedicated part for rules of elasticity.

• Detail architecture of Roboconf platform, deployment and reconfiguration
process as well as its autonomic loop used for elasticity.

• Perform several experiments which validate all features of Roboconf and
assess its overhead. We deploy a web application onto a hybrid cloud
(a private VMware hosting center combined with Amazon EC2 and Mi-
crosoft Azure [24] clouds). We also deploy a smart home application (open-
HAB [25]) in embedded boards (BeagleBone Black) and VMs on EC2 and
OpenStack [26] clouds. As a consequence, this work has led to a journal
publication [130].

With (2), specific contributions are as follows:

• We define and propose algorithms for multi-level fine-grained elasticity ap-
proach which can be described under Roboconf DSL for elasticity.

• We use Roboconf platform to deploy RUBiS application [141] and apply
the multi-level fine-grained elasticity to this application for evaluation.

1.4 Document Organization
The thesis consists of three main parts: Background and State-of-the-art (from
Chapter 2 to 3) which describes and reviews all technologies related to our work
which are Cloud computing, Autonomic computing and Elasticity; Contributions
(from Chapter 4 to 6) which details our proposals; and Evaluation (from Chapter 7
to 8) which evaluates the proposals.

In Chapter 2, we review theory of Cloud computing and Autonomic comput-
ing. With Cloud computing, its definition, characteristics, models, stakeholders as

1http://roboconf.net/en/index.html

7

CHAPTER 1. INTRODUCTION

well as virtualization technologies are presented. With Autonomic computing, we
presents its definition, the different phases of the MAPE-K autonomic loop, the
properties an autonomic manager must have as well as the combination between
Cloud computing and Autonomic computing.

Chapter 3 brings a complete picture about elasticity: its definition, classifi-
cation accompanying a comprehensive summary of the state-of-the-arts and new
issues that remains unsolved.

Our contributions begin from Chapter 4 with introduction of multi-level fine-
grained elasticity approach. Chapter 5 dedicates to Roboconf hierarchical DSL
and its application model. Architecture and principles supporting the multi-level
fine-grained elasticity of Roboconf platform are detailed in Chapter 6.

Chapter 7 proposes algorithms for multi-level fine-grained approach which
aim to obtain rapid elasticity. Two experiments to validate the algorithms are
included.

Chapter 8 presents some experiments to validate all the features supporting
the multi-level fine-grained elasticity of Roboconf. Several use cases of Roboconf
used in practice are also mentioned.

Finally, at the end of the thesis in Chapter 9, we resume our approach, em-
phasize the positive achievements harvested and open up some potential research
perspectives which can be built up from this work.

8

Chapter 2

CLOUD COMPUTING AND
AUTONOMIC COMPUTING

Contents
2.1 Theory of Cloud Computing 9

2.1.1 Cloud Computing Characteristics 10

2.1.2 Cloud Computing Models 12

2.1.3 Actors in Cloud Ecosystem 13

2.1.4 Virtualization on the Cloud 14

2.1.5 Challenges . 17

2.2 Theory of Autonomic Computing 18

2.2.1 Definition . 18

2.2.2 Autonomic Loop . 19

2.2.3 Autonomic Properties 20

2.2.4 Autonomic Cloud Computing 21

2.3 Synthesis . 21

2.1 Theory of Cloud Computing
During the last decade, Cloud computing emerges as a next evolution of Grid
computing, which driven originally by economic needs. By providing on-demand
computing resources, Cloud computing model allows more efficient utilization of
resources in traditional datacenter as well as significant reducing the infrastruc-
ture investment cost. Like Grid computing, Cloud computing model is also very

9

CHAPTER 2. CLOUD COMPUTING AND AUTONOMIC COMPUTING

attractive for scientific community with many promising research areas to be ex-
plored [39]. While Grid computing is mainly used on scientific research, Cloud
computing has passed beyond this community and broadly used for commercial
systems. Some of the characteristics that helps Cloud computing to admire the
commercial users is its user-friendliness and on-demand scalability [40]. On the
one hand, most grid systems are to handle applications with batch jobs. On the
other hand, the Cloud supports more types of application including web services,
data-processing applications and batch systems as well.

There are a lot of Cloud computing definitions such as [40, 41, 42], but they
all do not reach an agreement. Authors in [40] defines Cloud computing as a real-
ization of utility computing, while others [41, 42] consider the Cloud according to
the online services it provides. A massive datacenter behind is the factor that some
authors [43] argue it makes the main difference to make up the Cloud computing
concept. Definition used in this thesis comes from the NIST definition [20]. In
this document, they define Cloud computing as a resource sharing model that of-
fers ubiquitous, convenient, on-demand network access to a pool of configurable
computing resources. With minimum cloud provider intervention and manage-
ment efforts, the computing resources are expected to be provisioned and released
efficiently and rapidly. There are many advances in technology that contributes to
building a cloud system. Advances in server power management [44], virtualiza-
tion techniques [45], network bandwidth [46] are some key technologies among
them. Commonly, cloud customer leases virtual resources to run their services,
applications, computation jobs or to store their data. They are then glad to pay for
amount of the leased resources or amount of time the resources had been really
occupied. The most often, the resources are utilized to launch and maintain a web
services which enable accessibility to multi-tenant. Airbnb, one of the new stars in
homestay lodging and Netflix, the giant in streaming media, entrust their services
on virtual resources of Amazon EC2. The reason is very clear and simple, their
core businesses are not about IT infrastructure. By delegating the IT infrastructure
for cloud providers, the former can focus on renting houses and the latter can sell
streaming movies which are their favorite.

2.1.1 Cloud Computing Characteristics
There are five Cloud computing characteristics pointed out by NIST [20]. How-
ever this is not an exhaustive list. Discussed below is characteristics that we be-
lieve they are the more important ones when talking about the Cloud.

On-demand Provisioning
It is definitely the most important thing of Cloud computing. Without the hu-
man interaction with cloud provider, virtual resources are provisioned on-demand
whenever Cloud users need and they only have to pay for the amount of resources

10

2.1. THEORY OF CLOUD COMPUTING

or slot of time they actually used. The promotion for pay-as-you-go style is in-
deed not new in public utility. Paying for amount of electrical kilowatt per hour
or gallons of water has been carried out for a long time.

Broad Network Access
One of charming characteristics of Cloud computing is to allow access universally
from various kinds of standard client devices ranging from smartphones, worksta-
tions to super-duper computing servers. Provided by a common communication
protocol such as Internet or RESTful web services, cloud users can use more and
more cloud-based popular services such as cloud storage, imaging sharing, social
networking with any kinds of terminal devices.

Resource Pooling
A pooling of physical or virtual resources such as memory, storage, processing,
network bandwidth can be assigned or reassigned dynamically using multi-tenant
model according to fluctuation of demand. The resources are located at places
beyond recognition and control of users. However, abstracted locations are usually
provided for monitoring by cloud providers.

Rapid Elasticity
Capacity of resources can be provisioned or deprovisioned to cope with changes of
workload. These resources are usually unlimited and purchasable with any quan-
tity at any time. The scaling capacity should be automated and programmed care-
fully to provide just-enough elastic that avoids oscillation in resource allocation.
Some authors define elasticity according to granularity of usage accounting [48].
When load declines, elasticity is not only a function of deprovisioning speed, but
also depends on whether charging for the released resource stops immediately or
hang on for a while.

Measured Service
Active measurement should be performed transparently and reported to both cloud
users and providers. Measured services help users to manage efficiently their
budget because the reported figures tell them know how much they have to pay
for rented resources. At the provider site, a carefully monitored system brings
forward valuable information about the waste of system resources helping them
cut costs resulting in better marginal revenues.

Other Characteristics
Beside five characteristics mentioned officially in the NIST document. We believe
that two following characteristics are essential for Cloud computing model.

• The Quality-of-Service (QoS) must be provided for the customers to meet
the desired SLA. The service elements need to be quantified clearly using
automatically metering tools.

• As the cloud systems are often built on inexpensive commodity hardware,
the cloud infrastructure behavior suffers from sporadic faults and is often

11

CHAPTER 2. CLOUD COMPUTING AND AUTONOMIC COMPUTING

non-uniform. Thus transparent fault tolerance mechanisms need to be de-
veloped to report failures caused from the customers.

2.1.2 Cloud Computing Models
The traditional classifications categorize cloud systems according to the service
or deployment models. In the service models, type of services provided by cloud
providers are described. Whereas, how a cloud service is implemented on the
actual infrastructure is detailed on the deployment models.

Cloud computing service models Three main service models often named
according to type of services they provide are Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS).

• Infrastructure-as-a-Service model, where cloud providers lease raw comput-
ing resources located at the lowest level of abstraction of the Cloud. Users
specify requirements for their application in terms of the raw computing
resources which can be either physical (i.e. Hardware-as-a-Service) or vir-
tual thanks to virtualization technology. The permission for controlling and
distribution of the cloud infrastructure belongs to the cloud providers. The
users are responsible for implementing desired operating systems, program-
ming frameworks, applications and other required software. Rackspace [47]
and Amazon EC2 who own big data centers providing IaaS platforms are
examples about IaaS providers.

• Platform-as-a-Service model, where cloud providers maintain and offer their
platforms for targeted cloud users. The platform may provide from pro-
gramming language, libraries, supported services, tools to execution envi-
ronments. The PaaS provider, themselves, can build their infrastructure or
rent one from an IaaS provider. The users use the platform to develop, re-
lease and/or deploy their own applications. Window Azure and Google App
Engine are two of key players in this particular sector.

• Software-as-a-Service model, where cloud applications are offered as is and
usually in multi-tenant mode. These applications are developed and pro-
vided by SaaS provider. The users do not have any controls to infrastructure
or platform, exempt the service utilization. Salesforce and Dropbox [49] are
typical examples for this kind of model.

Many other XaaS terms are used nowadays to name different provided services
in the Cloud. Ben-Yehuda and her colleagues introduce the term Resource-as-a-
Service in [52] which foresees that resources will be packed and sold in more fine-
grained form such as CPU, memory, bandwidth network rather than fixing them in

12

2.1. THEORY OF CLOUD COMPUTING

a virtual machine. While Zhu et al. suggests adding three more XaaS for service
models which are Data-as-a-Service (DaaS), Identity and Policy Management-as-
a-Service (IPMaaS) and Network-as-a-Service [54]. A full taxonomy of XaaS can
be found in papers [53, 124], such as Analytics as a Service (AaaS) or Framework
as a Service (FaaS).

Cloud computing deployment models The deployment models are all about
how and where the services are deployed on Cloud. They also tell us who can ac-
cess resources from those models. According to NIST, the four main deployment
models are as follows.

• Private cloud are used and managed by an organization who wish their re-
sources to be accessed only for entities within their jurisdiction. All sensi-
tive data are kept internal, thus offering a higher level of security. Private
cloud is a good choice for companies who still concern about data safety
on the Cloud. It is a fact that the NSA (USA National Security Agency) is
using a private cloud [50].

• Community clouds are shared among organizations who have common con-
cerns. Thus access to these clouds belongs to these organizations. The
North Carolina Research and Education Network (NCREN) are an example
about using community cloud in education [51].

• Public clouds lease computing resources and make them available to the
general public or a large industry group and owned by an organization sell-
ing cloud services. Typically, the resources are shared among cloud cus-
tomers. Salesforce, Amazon EC2, Google App Engine are all about public
clouds.

• Hybrid clouds are combination of two or more clouds (private, commu-
nity, or public) that enable data and application portability as well as remain
unique entities bound by standardized or proprietary technologies. Some-
time one cloud is not enough, a private cloud may not provide enough re-
sources or a public cloud may be less secure. With hybrid cloud model, a
cloud can expand its capacity by using resources from other clouds which
may be in different kinds. In some cases, load balancing can be imple-
mented on this cloud model. Plenty of hybrid cloud solutions are offered
by popular names, some of them are Eucalyptus, HP hybrid Cloud Manage-
ment and VMware vCloud Hybrid Service.

2.1.3 Actors in Cloud Ecosystem
There are many stakeholders participating in cloud ecosystem. In this section,
we only define main actors playing important roles and these definitions are used

13

CHAPTER 2. CLOUD COMPUTING AND AUTONOMIC COMPUTING

from now on throughout the thesis.
Cloud Provider (CP): is a company owning large data centers along with ded-

icated software systems that enable it to lease resources on-demand over the In-
ternet and get back pay-per-use fees. A CP can be either an IaaS or PaaS provider.
A PaaS provider can implement its own underlying infrastructure or rent infras-
tructure from one or several IaaS providers. In either ways they deliver hardware
and software tools usually needed for application development.

Cloud Application Provider (CAP): is a stakeholder that rent the on-demand
resources provided from the CP to develop and build its applications and services.
The CAP then sell these services or applications to its customers to get pay-per-
use fee. The customers could also pay a monthly/annual subscription fee to be
used the applications. An CAP can be referred to as a SaaS provider or a CP User
(CP-U). In this thesis, in some cases, we may use the term CP-U instead of CAP.

Cloud Application User (CAU) or common name “Cloud end user”: It is the
customer of the CAP who is willing to pay a pay-per-use fee for using the appli-
cations or services provided by the CAP. In this thesis, the terms CAU and Cloud
end user may also be used interchangeably.

Figure 2.1 illustrates the three actors of cloud ecosystem, which are mainly
used in the specific context of this thesis.

Figure 2.1: The relations among the actors in cloud ecosystem

2.1.4 Virtualization on the Cloud
Virtualization is a prerequisite which wings for development of the Cloud. By vir-
tualization, hardware resources are abstracted and shared broadly on the Cloud.
Many cloud users can use virtual resources which might be abstracted from the

14

2.1. THEORY OF CLOUD COMPUTING

same set of hardware resources. Core principle of virtualization is to create as
many separating operating systems as possible on a given set of bare-metal hard-
ware. To manage virtualization, it needs a management software in order to
separate operating systems and virtualize hardware resources. The underlying
hardware often provides architectural support for virtualization. There are many
technologies coexist supporting two main types of virtualization: VM-based and
Container-based virtualization.

VM-based virtualization uses Virtual Machine Monitor (VMM) or hypervi-
sor to emulate hardware and make communication among host OS and its guest
OSes. As the kernel of host OS is not shared, each VM must be installed an entire
guest OS of itself, which quickly exhausts resources on the server such as RAM,
CPU and bandwidth. This creates significant overhead because instructors must
be translated by the VMM. The guest OSes also occupy resources of the host.
However VM-based virtualization ensures a reliable isolation among VMs when
wrapping the guest OSes in the separated VMs. This guarantees the isolation in
both resource and performance aspects. Resource of different VMs cannot be uti-
lized mutually and thus avoid the resource abuse which degrades performance of
applications installed on them. There are two types of VM hypervisor demon-
strated in Figure 2.2.

Type 1 or bare-metal hypervisor: runs directly on the bare metal hard-
ware. The advantage of this type is the guest OS can communicate with hardware
through only the hypervisor without existing of a host OS in between. This re-
duces the overhead caused by host OS level. However it is difficult to implement
the Type 1 hypervisor on an existing and running system because it requires for-
mat and partitioning while installation. The Citrix XenServer and VMware ESX
are examples of Type 1 hypervisors.

Type 2 or hosted hypervisor: The hypervisor runs on a host OS thus increase
a level of virtualization overhead. However the Type 2 is easy to implement on a
existing and running system as a tradeoff. Some examples of the Type 2 hypervi-
sors include Oracle open-source VirtualBox and VMware Server.

Container-based virtualization: uses a container manager to effectively vir-
tualized the host OS. Therefore it does not require a full-fledged guest operating
system running on the VM. The containers running on the same operating system
have their own abstracted networking layer, processes, devices and do not know
they are sharing resources. In other words, containers are executed in different
spaces that are isolated and from certain regions of the host OS. Containers ex-
ist on the host OS just lightweight as processes. Docker and LXC are two of
technologies supporting container-based virtualization.

Utilization of such lightweight containers brings to some benefits. First, re-
source utilization is much more efficient. If a container does not execute anything,
it also does not consume resources and these resources can be released for other

15

CHAPTER 2. CLOUD COMPUTING AND AUTONOMIC COMPUTING

Figure 2.2: Type 1 and Type 2 VM-based hypervisor

containers. Secondly, it does not require a guest OS bootup or shutdown, thus
creation and termination of containers is just as fast as creating or killing applica-
tion processes. With the same reason that the containers do not have a guest OS
and containers share the host OS kernel and many libraries and basic commands,
size of images created from containers are smaller than VM images (VMIs). In
summary, containers are cheap with near native creating speed. Figure 2.3 depicts
the container-based virtualization.

Beside the advantages, container-based virtualization also has drawbacks. Shar-
ing the host OS kernel implies that containers in the same physical node must
have the same execution environment. It means we cannot have Window con-
tainers running on the Linux host OS and vice versa. Containers are not suitable
for permanent data storage as they are easy to volatile, thus storage data used by
containers need other advanced techniques.

Like Type 1 VM-based virtualization, container on bare metal is feasible but
it is still in its infancy. Some technologies having announced to early support
this type of virtualization are Triton Elastic Container of Joyent 1 and LXD of

1https://www.joyent.com/

16

2.1. THEORY OF CLOUD COMPUTING

Figure 2.3: Container-based Virtualization

Ubuntu 2.
Paravirtualization [144]: is a form of virtualization which virtualizes a part

of hardware and leaves remains for the host OS that provides some API to the
images to be deployed there. This may significantly shrink the size of the OS
kernel image in the VMIs but still larger than container-based approach. Those
kernels should be slightly modified and adapted. Another good point is different
VMs may use different kinds of OS in the same host.

2.1.5 Challenges

As a young and promising technology, Cloud computing have to face with many
challenges to be mature. These challenges are discussed thoroughly by Armbrust
et al. in [139]. One of very first challenge when a company decides to bring its
application to the Cloud is how to make it be ready with the new environment,
especially with the legacy applications. At that time, the company has to make
an important decision to choose what cloud providers for managing its applica-
tion. As the lack of common standards on the Cloud, the company possibly has to
develop or modify its application following a proprietary archetype of a specific

2http://www.ubuntu.com/cloud/lxd

17

CHAPTER 2. CLOUD COMPUTING AND AUTONOMIC COMPUTING

cloud provider. Thus the company will most likely run into the vendor lock-in
problem and have to stick with the cloud provider, even when it is not satisfied
with the service it received. As soon as the company chooses a cloud provider, it
wants the application to be deployed and be monitored by automatic tools. These
tools should ensure the application be available with the rate regulated in the SLA.
The availability can be done by some methods such as using the load-balancing
technique or hybrid cloud. However implementation on hybrid cloud will face
obstacles coming from the heterogeneity of the Cloud. Security should be con-
cerned from very beginning because it is the main worry of companies when they
decide to move to the Cloud. An insecure cloud solution might lose the customers’
confidential and sensitive information at the hand of exploited attackers and com-
petitors. Thus data on the Cloud need to be encrypted although encryption might
degrade the performance. Admission control and identity management should be
other ways to fasten security on the Cloud. Scalability also needs to be taken into
account to have the application still available even when demand of resource in-
creases. A scalable cloud system will wing for elasticity which helps the system
adapt and fit with the changes of workload as closely as possible. To be adaptive,
rented resources should be used in optimal way because they are not really infi-
nite, especially with cloud users who have to pay for them. Elasticity solutions
should be rapid enough in terms of both speed and accuracy of elasticity actions.
As mentioned, this is the motivation of this thesis and will be presented further in
Chapter 4.

2.2 Theory of Autonomic Computing

2.2.1 Definition

It is an indisputable fact that computing systems are increasingly complex. Their
complexity is beyond the handling of normal administration tasks. The manage-
ment and maintenance of a large computing system soon become boring for even
the most experienced professionals. It is worth noting that human often make
mistakes when repeating tedious tasks. This is the most basic reason for IBM to
propose a biologically-inspired computational model called Autonomic comput-
ing to automate the management of complex computing systems. IBM defines
Autonomic computing as self-managing characteristics of distributed computing
resources. The self-managing characteristic are to adapt to changes from the sys-
tem and surrounding environment, which are usually elusive and unknown be-
forehand. An autonomic system often relates to an autonomic loop which collects
information from one or multiple managed elements and then analyzes them to
build appropriate plans for autonomic responses. These plans then will be imple-

18

2.2. THEORY OF AUTONOMIC COMPUTING

mented on the managed elements to achieve goals of autonomic properties. The
autonomic loop and properties will be discussed soon next.

2.2.2 Autonomic Loop
The MAPE-K is an autonomic loop reference defined by IBM itself. In this
reference model, we see appearance of five core components, namely Monitor-
Analyze-Plan-Execute-Knowledge, which operate seamlessly and continuously.
Data are collected and control commands are triggered deliberately in this closed
loop. A demonstration of the MAPE-K is found in Figure 2.4.

Figure 2.4: MAPE-K autonomic system loop

In this loop, information about the managed element will collected progres-
sively and dynamically by sensors. These sensors can be independently small
program or embedded software in a hardware device. Their mission is to invig-
orate, collect and transmit data from the managed element to the Monitor com-
ponent using the given metrics. The monitor is responsible for monitoring the
entire system, who will aggregate data received from the sensors, from the inter-
nal system and perhaps from other sources. This operation captures the current
state of the system and then data will be delivered to the Analyze component for
further analysis. Next, the analyzed information combined with some planning
algorithms construct plan of changes to be applied on the managed element. Sim-
ply, these plans are described as a set of discrete instruction commands to modify

19

CHAPTER 2. CLOUD COMPUTING AND AUTONOMIC COMPUTING

incrementally the current state of the managed element. In some cases, the auto-
nomic manager needs to compare in advance the current state with the proposed
plan to generate only differences which finally applied to the managed element in-
stead of rebuilding the entire system. Planning is often based on knowledge which
is either captured real-time from the system or retrieved from the historical statis-
tics. Knowledge also could be put on the system from the very beginning. The
instruction commands finally are executed on the managed element by the actua-
tors. The mass of knowledge will accumulate and grow over time and is circulated
continuously in the system. To circulate the knowledge as well as the control di-
rectives, it needs the help of a component responsible for communications such a
messaging server. The instruction commands finally are executed on the managed
element by the actuators, which put the managed element into the expected state
described in the SLA. The system in the new state is also monitored regularly to
detect changes and therefore constitute the autonomic loop.

2.2.3 Autonomic Properties
The fundamental properties of autonomic computing have been pointed out by
Kephart et al. [7] are self-configuration, self-healing, self-optimization and self-
protection. However this list is not exhaustive. Poslad [146] have added to this list
many self-* properties such as self-regulation, self-learning, etc. They represent
different purposes that an autonomic system desires to achieve.

Self-configuration Self-configuration enables the capability for a system to
reconfigure itself to adapt to changes. The reconfiguration is to maintain system
staying in a desired state which can be declared in the SLA or be setup in advance
by system administrator. This might include adding/removing the components of
an existing infrastructure, which affect to result of reconfiguration. For example,
a VM can be added to a cluster in order to enhance the availability and reliability
of a web service.

Self-healing Faults and errors sooner or later will appear in any computer
systems, which range broadly from software bugs to hardware failure. The auto-
nomic systems should be able to not only discover and correct existing faults, they
should but also to predict and prevent potential errors. Therefore it needs to apply
proactive solutions to make the system more robust.

Self-optimization An autonomic system needs to continuously improve and
optimize itself in terms of cost, performance, etc. This ties closely to monitoring
the resources provided to the system and the amount of resources actually used
to give timely feedback to the system. The elasticity in the Cloud also expresses
such the same behaviors, thus elasticity systems are often built on an autonomic
loop. Operations of optimization can be either reactive or proactive depending on
specific conditions of the system under consideration.

20

2.3. SYNTHESIS

Self-protection It is a property which helps an autonomic system to detect
and prevent intrusion from outside as well as anomalies from inside which cannot
be handle by self-healing policies. The security threads and holes need to be
identified and must be inhibited as early as possible.

2.2.4 Autonomic Cloud Computing
Since the cloud systems are more and more complex and heterogeneous, they need
efficient mechanisms to fulfill the new requirements. Thereby the marriage be-
tween Cloud computing and Autonomic computing is essential and it is becoming
an emerging research trend, namely Autonomic Cloud computing. It is a result of
applying the aforementioned self-managing properties of Autonomic computing
(self configuration, self-healing, self-optimization, self-protection) in the cloud
environment. As pointed out by Kephart et al., the advantage brought from Au-
tonomic computing is not only the autonomic elasticity management. This is a
two-way relationship of mutual benefits. The properties of Autonomic computing
can be used efficiently to resolve some challenges coming from Cloud comput-
ing such as resource allocation or infrastructure optimization. At the Cloud end,
this is a fertile ground for the autonomic implementations because of its inherent
complexity and dynamic nature.

2.3 Synthesis
In this chapter, we have pointed out the characteristics of Cloud computing, the
benefits that it brings to and the challenges that it has to deal with. We revealed
how Cloud computing can provide unlimited resources and leave IT complexi-
ties behind, which help its users to focus on their core businesses. To deploy
applications and implement elasticity approaches on them, automation is indis-
pensable. Autonomic Cloud computing with its ACCSs is the solution behind
most Cloud management tasks. The ACCSs often implement a variant of the
MAPE-K autonomic loop to obtain one or multiple properties of Autonomic com-
puting: self-configuration, self-healing, self-optimization and self-protection. In
the next chapters, we will see how Autonomic computing techniques are used to
deploy cloud applications and implement elasticity solutions. This reflects the
self-configuration and self-optimization properties of Autonomic computing.

21

CHAPTER 2. CLOUD COMPUTING AND AUTONOMIC COMPUTING

22

Chapter 3

ELASTICITY

Contents
3.1 Definition . 24

3.2 Classification . 25

3.2.1 Strategy . 27

3.2.2 Architecture . 29

3.2.3 Scope . 30

3.3 Elasticity Actions . 31

3.3.1 Horizontal Scaling on Various Tiers 32

3.3.2 Vertical Scaling on Various Tiers 33

3.4 The Unresolved Issues . 35

3.4.1 Resource Availability 35

3.4.2 Resource Granularity 36

3.4.3 Startup Time . 36

3.4.4 Rising of Container-based Virtualization 36

3.4.5 Composability . 37

3.5 Synthesis . 37

Elasticity term originally comes from a definition in physics as a properties of
substance returning to its original state after a deformation. On the other hand, it
is defined as sensitivity of a dependent variable to diversification in other variables
in the theory of economics [56]. The concept of elasticity has been ingeniously
transferred and popularly used in Cloud computing as a momentous characteris-
tic. In comparison to other characteristics of Cloud computing model, elasticity

23

CHAPTER 3. ELASTICITY

is gradually gaining more attractive from researchers both in academic and indus-
trial sectors. Whereas much research reach to an agreement that elasticity is an
unique characteristic of Cloud computing which distinguishes it from Grid com-
puting, there is no consensus on its definition and classification. It is also missing
an unification of requirements for an elasticity controller or a Cloud system sup-
porting elasticity. This section discusses about elasticity based on an abundance
of state-of-the-art solutions in the literature.

3.1 Definition
This section goes over definitions of elasticity, thereby equivalences and differ-
ences are analyzed thoroughly. According to the broadly recognized definition of
NIST [20], elasticity is an essential characteristic of Clouds which enables elastic
provisioning and releasing of capability and rapid scaling depending on demands
of application. Although the automation for elasticity is not strictly required in
the NIST definition, it is obligatory in some other works. For instance, elastic-
ity definition of Schouten [58] includes removing “any manual labor needed to
increase or reduce capacity”, which highlights the role of automation in building
an efficiently elastic solution. NIST delineates an ideal circumstance where the
capabilities available for provisioning often appear to be unlimited and can be
rented in any quantity at any time by customers. It is matter of fact that cloud
providers are not able to provide a real “unlimited” sky of resources. In addition,
demand of virtual resources for elastic applications is sometimes getting really
high for group of special consumers, the cloud providers must tighten resource-
provisioning upper bounds which weakens and blurs the no limitation of elasticity.
Similar to the NIST definition, Leymann adds a statement saying that the elastic-
ity also implies the changing over time of actual resource demands without any
clues predicted beforehand [55]. Having consensus with [20] and [55], Galante
and de Bona [60] propose a widely accepted definition which assigns elasticity
the capability to “quickly request, receive and later release as many resources as
needed. The elasticity implies that the actual amount of resources used by the
Cloud user may be changed over time, without any long-term indication of the
future resource demands”.

The resource scaling to increase or decrease capacity is used as a critical el-
ement to define elasticity [20, 57, 58]. With ODCA [57], elasticity is ability to
scale up and scale down capacity based on subscriber workload, whereas [58]
even defines elasticity is just a “rename” of scalability. The confusion between
elasticity, scalability and some other similar terms really exists and is going to be
made clear in Section 4.3. Correlation of provisioned resources to fluctuation of
workload demand is a part of elasticity definition in [59]. This statement more

24

3.2. CLASSIFICATION

or less gains some consent with [20] and [57]. Rich Wolski, CTO of Eucalyptus,
promotes the resource-scheduling feature of elasticity when says that elasticity is
a non-functional measure for ability “to map a single user request to different re-
sources” [61] on Cloud. Although mentioning to quantifiability of elasticity, it is
too succinct to cover all aspects of elasticity, especially in QoS.

It is worth mentioning a definition of Herbst which insists that elasticity is
“the degree to which a system is able to adapt to workload changes by provi-
sioning and deprovisioning resources in an autonomic manner, such that at each
point in time the available resources match the current demand as closely as pos-
sible” [62]. This definition covers both scalability and adaptivity of elasticity. It
forces to implement autonomic mechanisms to release elastic system from any
human operators. Instead of drawing an idealistic picture of “perfect” elasticity,
resource supply just needs to match workload demand as much as possible.

Although they are somewhat different, these definitions still have some uni-
ties in terms of scaling, adaptivity and autonomy. Other features have not really
been mentioned as the requirements of an elastic manager will be pointed out
in Section 4.3. Next section is specially dedicated to classification of elasticity
solutions.

3.2 Classification
Industrial and academic solutions regarding elasticity can be classified based on
many factors, mainly concerning requirements of an elastic system speedy and ef-
ficiently. In 2012, Galante and de Bona propose a classification of elasticity works
in their especially successful survey [60], which based on main features found in
the analyzed commercial and academic solutions. It contains four different axes:
scope (infrastructure, platform, application), policy (manual, automatic reactive,
automatic proactive), purpose (performance, infrastructure capacity, cost, power
consumption) and method (replication, redimensioning, migration). This classifi-
cation gives a fast and simple view of mechanisms using for elasticity. However,
because of space limitation, this one does not detail in specific aspects that it de-
scribes.

Two year later, another approach to elasticity classification is suggested by
Najjar et al. [63]. It introduces an analysis grid to classify state-of-the-art elastic-
ity management solutions based on three main axes: strategy (quality goal, policy,
mode), actions (type, granularity) and architecture (centralization, decentraliza-
tion). Some axes in this grid interfere with some classes in the work of Galante.
For instance, the mode in [63] completely matches the method in [60]. A valu-
able contribution of this paper is the considering SLA-awareness aspect of elas-
ticity with various kinds of service level objectives (SLOs) such as QoS, quality

25

CHAPTER 3. ELASTICITY

of business (QoBiz) and quality of experience (QoE).
The most recent survey that tries to resolve a taxonomy of elasticity is Coutinho

et al.’s work based on a systematic review [64]. They focus their concern in anal-
ysis tools and evaluation metrics for elasticity. It also conducts a comprehensive
work on its review procedure with some interesting statistical results. However
their taxonomy for existing elastic solutions is quite simple with combination of
two methods (horizontal scaling/replication, vertical scaling/resizing and replace-
ment, migration) and models (reactive, proactive/predictive). It is unified with
classifications of [60] and [63] except introduction of the replacement mecha-
nism. This mechanism allows replacing less powerful servers by more powerful
ones in clouds where on-the-fly resizing approach is not supported.

Figure 3.1: Analysis grid of elasticity solutions

Figure 3.1 demonstrates our taxonomy that combines holistically from the
three mentioned approaches. The analysis grid of Najjar is expanded to include
the classifications from [60, 64]. If traversing from top to bottom of any branches,
an existing elasticity solution can be arranged into one of leaves of this branch.
Thereby all elasticity state-of-the-art can be captured and distributed to the leaves.
However a solution can implement many mechanisms, thus we can combine two
or multiple leaves to have more fine-grained classification. For example, Amazon
Auto Scaling [65] is a proprietary elasticity solution that implements the automatic
reactive mode and based on replication method.

In comparison to the three taxonomies, we add one more class, the “Level”,
to the “Granularity” class of the “Action” axe, to cover multi-grained elasticity

26

3.2. CLASSIFICATION

solutions which is main focus of this thesis. As our research in elasticity and
other related work are presented more easily if arranged into the “Action” axe, we
leave discussing about this axe later in Section 3.3. The remaining of this section
is dedicated to describing about the other axes of this comprehensive analysis grid
as well as their state-of-the-art.

3.2.1 Strategy
It is necessary to identify strategies in elasticity decision-making process. These
strategies can be drawn from purposes which the applied elasticity mechanisms
need to be achieved such as performance, cost, power consumption, quality or in-
frastructure capacity expanding. It also can be derived from policies (ECA rules,
goal-based or utility and cost functions) specifying how to obtain strategic pur-
poses or from modes (manual, automatic reactive or predictive) stipulating man-
ners the elastic system interacts with the Clouds.

Performance is the most concern among the mentioned purposes. Much re-
search in elasticity relate to performance measurement [66, 67, 68, 69, 70, 71].
In these ones response time and CPU utilization are two of the most used perfor-
mance metrics [63]. Using elasticity for optimizing cost of both cloud providers
and customers also attracts the attention of some research groups [72, 73, 74, 75,
76], whereas reducing power consumption is a driving motivation of [21, 77].
In Grid computing, computing resources stay in its datacenter that limits resource
provisioning capability. In context of cloud bursting, this limitation is pushed back
because application staying in its private cloud can borrow additional resources
from public cloud when the demand for computing capacity spikes. The capabil-
ity to increase infrastructure capacity is one of purposes that able to be reached by
elasticity [78, 79]. The SLA-awareness strategies also need to be concerned, espe-
cially in QoS, QoBiz and QoE. QoS is an objective quality measurement stated in
a contract called Service Level Agreement (SLA). In context of Cloud computing,
this contract can be signed between either a CP with its cloud provider user (CP-U
or CAP, i.e. SaaS provider) or a CAP with its CAU. Using elasticity to ensure QoS
is widely discussed in [67, 70, 76, 81]. In contrast of QoS, QoBiz is a subjective
quality measurement including factors which are business considerations such as
provider satisfaction or revenue. It concerns matters directly affecting the CP and
CAP, which are pricing policy, billing time unit, penalties of SLA violation. We
found [69, 71, 76, 80] which are solutions cope with QoBiz. Unlike QoS and
QoBiz, QoE focuses on experience of customers about services that they used.
However this quality goal are not being received adequate attentions. It is men-
tioned as a potential field of research in [81] and addressed on the network issue
of Cloud gaming in [82].

Event-Condition-Action (ECA) is a simple way to obtain elasticity based on

27

CHAPTER 3. ELASTICITY

rule-based control. Elasticity decisions are executed when specific events are cap-
tured and particular conditions are satisfied. These conditions often relate to the
handling of metrics around their thresholds. Defining correct thresholds to avoid
oscillations is the most challenging problem of this approach. Applying multi-
ple [83] or dynamic [84] thresholds are some of solutions of this issue. Numerous
elasticity solutions, both in industry and academy such as [16, 21, 65, 71], of-
fer ECA because of its simplicity. Goal-based policy tells system a desired state
to which system should reach after elasticity decisions. Using goal-based pol-
icy, firstly an overall model about system must be constructed and studied by the
system itself. As benefits from elasticity is not enough to compensate the efforts
spent to build the system, this research trend is still unresolved. Utility function
uses preferences to weight attributes of a service or product which satisfies a cus-
tomer in many levels. Cost function is simply an opposite meaning of utility func-
tion. System has to decide either maximize its utility or minimize its cost. Using
these functions can capture preferences of three main players in cloud ecosystem,
which are CP, CAP and CAU. [69, 72, 76, 80] are within research works based on
this theory.

Manual mode means users have to intervene in monitor and decision-making
process of elasticity operations. Cloud providers have to provide at least an API
for interactions. Although automation is not strictly required, manual handling
causes annoyance once complexity of system increases. Human is not able to
carefully monitor or trace a huge and complex system without any mistakes or
boredom. Elastic decisions, sometimes repeated, are tedious and error-prone if
carried out by human. In academic research, Elastin [86] and Work Queue [87]
offer resource manual management. While Rackspace and GoGrid [85] are cloud
providers who implement manual policy for elasticity. On the other hand, auto-
matic policy tries to reduce human intervention as much as possible. This way
often implies the implementation of an autonomic elasticity manager which con-
trols autonomic behaviors of the entire system. Otherwise, application itself must
be recoded or upgraded to be elasticity ready. Reactive solutions are usually based
on ECA-rule policy and commonly provided by cloud providers such as Amazon
Auto Scaling, Rightscale [16], Scalr [17] as well as academic works [88, 89, 90,
91]. Proactive mode uses predictive techniques to forecast trends of upcoming
workload and scale elastic system according to these trends. These techniques of-
ten apply the analytic/statistical maths and heuristics based on historical load data
or load pattern inferred from a period of time. Proactive methods need to take into
account overhead caused by predictive algorithms themselves. While it is easy
to find plenty of studies in this specific aspect [17, 92, 93, 94, 95], the predictive
solutions are received slowly in the industry since the missing of benchmark tools
to evaluate which are better ones.

28

3.2. CLASSIFICATION

3.2.2 Architecture
With regard to architecture, general organization of elasticity system is taken into
consideration, which falls into three categorizations: centralization, decentraliza-
tion. Among the two, centralized architecture is used in almost elasticity solu-
tions. We utilize the multi-component MAPE architecture usually used in auto-
nomic elasticity solutions to demonstrate a possible example of the centralized
architecture as in Figure 3.2. In this type of architecture, elasticity components
stay together in an autonomic manager. The system monitoring is performed re-
motely by the elasticity managers itself or outsourced to third party tools, which
in both cases locate outside the managed elements. Main inherent issue of this
architecture is that the autonomic manager is a point of bottleneck in the system.

Figure 3.2: The centralized architecture as a variant of MAPE-K architecture

Multi-agent system [96] is usually found in the decentralized architecture.
In this kind of architecture, agents are implemented on the managed elements.
The agents are responsible for mitigating burden for the elasticity manager by
carrying out most of autonomic and elastic works such as monitoring, analysis,
planning and execution. Responsibility of the manager is to communicate with
cloud providers for resource provisioning in response to elasticity requests from
the agents [97]. Each managed element can contain one or multiple agents to man-
age some kind of resource units such as VM, CPU, memory, etc. These agents,
called CUA (capacity and utility agent) in [98], probe and snoop the multi-grained
resources to reflect a current picture of system based on resource parameters and

29

CHAPTER 3. ELASTICITY

workload characteristics. In another research, Chen et al. develop an elasticity
solution using combination of utility function and multi-agent based architecture
to obtain the cost minimizing purpose [72]. A possible example about locations
and missions of each component of the decentralized architecture is illustrated in
Figure 3.3, also through using of the MAPE-K architecture.

Figure 3.3: The decentralized architecture as a variant of MAPE-K architecture

3.2.3 Scope

Scope is an easy-to-understand classified way specifying where elasticity opera-
tions occur. All three layers of Cloud service model, i.e. IaaS, PaaS, SaaS, can
host elasticity solutions. Elasticity is mostly implemented on the IaaS level with
basic actions as adding new resources and releasing unused ones with regard to
inconstancy of workload. Resources can be in coarse-grained form as VM or
fine-grained unit as lightweight container, CPU or memory. Amazon, RackSpace,
GoGrid and many other cloud providers offer elasticity IaaS. Much aforemen-
tioned elasticity research in this thesis can also be categorized into this kind of
scope, some of them are [45, 77, 93, 94, 95].

Elasticity PaaS pays more attention to scaling software container, software
component of platform itself or database. Any kinds of software containers can
be applied elasticity from Java war, OSGi bundle to EJB container. Lightweight
container is a kind of special resource. It can be either a scaling resource at IaaS
level if it is deployed directly on PM and bare-metal or at PaaS level if it de-
ployed on VMs on the Cloud. Google App Engine, Heroku Platform [29] and
Microsoft Azure are cloud providers who more or less provide elasticity PaaS to

30

3.3. ELASTICITY ACTIONS

their customers. Elastin, Aneka [79] or Cloud Hosting Provider [78] are academic
implementations of PaaS platforms supporting elasticity.

Some applications natively supports elasticity since there are some features
integrated into these software from the very beginning. These features relate to
parallel processing in terms of tasks, threads and data or load balancing-supported
mechanisms. Unfortunately, not many applications own these enhancements, es-
pecially the legacy applications which are not Cloud-ready since inception. These
applications need to be improved by doing some code changes that make them
Cloud-ready and enable their elasticity capability as well. Using wrapper is an-
other help for the legacies. Wrapper which “wraps” the legacy applications into
elasticity-enabled cloud containers or components is a non code-change method
used in [106, 107, 108]. Elasticity solutions for particular kinds of application
are also available in the context of messaging [21, 100, 101], stream process-
ing [102, 103, 104], or MPI [105].

3.3 Elasticity Actions
As mentioned in Section 3.2, this section devotes to the “Action” axe where we
position our research about multi-level fine-grained elasticity there. This axe de-
scribes actions issued by elasticity decisions based on strategic algorithms to pro-
vision or deprovision cloud resources. There are two manifestations of an elastic-
ity action:

• Method: type of action that an elasticity manager can perform or offer to
obtain expected resources or forsook them. There are three main methods
showing dimensions of expansion of resources, which are horizontal scale
(replication), vertical scale (resizing, replacement) and migration.

• Granularity: affected scopes of elasticity actions. The scopes can be either
tiers (one or multiple software tiers) or levels (one or multiple levels of re-
source granularity). An application may have one or multiple tiers based on
complexity of its components. On the one hand, Apache itself is a stand-
alone application with one tier, often called the web tier. On the other hand,
LAMP is a software model for multi-tier applications usually relating to
Linux, Apache, MySQL and PHP. This model implies implementation of
three tiers which are web tier (Apache), application server tier (PHP appli-
cation servers such as Zend 1) and storage tier (MySQL). The level refers
to variety in size of resource units. A resource may in coarse-grained level
(VM, PM) or in fine-grained one (container, database, CPU).

1http://www.zend.com/en/products/zend server

31

CHAPTER 3. ELASTICITY

We apply the analysis grid on the combination of the “Method” and “Tier”
classes of this axe to “trap” the current elasticity works more relevant to our re-
search in this thesis. This consequently leads to a need to have a new class (the
“Level”) added to the analysis grid, which tries to resolve new issues of elasticity
(see Chapter 4).

3.3.1 Horizontal Scaling on Various Tiers
The horizontal scale refers to using replication to multiple resource units. It is
the most used method for elasticity in cloud environment. Improving scalabil-
ity, availability and performance are within benefits of replication. To avoid SLA
violation because of increasing workload, CPs or CAPs have to add instances
or replicas of appropriate resource thanks to replication. Furthermore, they also
ought to remove these replicas when the workload decreases. These instances
usually are VMs, containers or applications. On the CP-Us or CAUs side, they
need to vary the leased instances according to the resource demand of their ap-
plications for improving performance or saving cost. Evidently, changes at the
CP-Us or CAUs side can only be performed if the CPs or CAPs offer them the
corresponding scaling features. Elasticity actions can simultaneously affect many
tiers of an application which implements multi-tier architecture. Following is so-
lutions using replication as elasticity action which affects one or multiple tier of
applications.

Fito et al. [78] present an SLA-aware resource management solution specially
for web tier. This elasticity solution adds or removes web server replicas in ac-
cordance to dynamic load. Revenue of cloud providers is studied and maximized
based on economic variables and functions. Zhao et al. [109] focus on database
tier replication when trigger corrective actions based on SLA performance us-
ing his proposed framework. The corrective actions scale the database to reduce
SLA violations. A solution for SaaS providers based on cost-aware is discussed
in [74] by Liu et al. taking into account user requests and the current workload.
The authors consider the solution as a problem of optimization with minimizing
SLA violations to satisfy customers and maximizing profit for cloud provider.
In order to achieve these objectives in reasonable time, a genetic algorithm called
CSRSGA is developed and a validating simulation-based experiment is conducted
using replication of EC2 instances. In contrast to the Liu work, the elasticity solu-
tion proposed by Hasan et al. [67] is completely agnostic to the cost-awareness of
renting the VMs. In this work, the authors develop IACRS, a rule-based elasticity
system that is more sophisticated than traditional ECA rule-based policies. In ad-
dition to its complex rules and metrics, the algorithm also employs an advanced
mechanism of four thresholds. Based on these thresholds, the authors introduce
a set of heuristic rules that infer when it is necessary to invoke or extinguish re-

32

3.3. ELASTICITY ACTIONS

sources from the Cloud using replication method. However this solution only
consider per tier SaaS application.

Next, we discuss works presenting holistic horizontal scaling managers which
pay attention to multi-tier applications. Han et al. [73] use cost-aware criteria
to analyze and detect bottlenecks which could happen within a 5-tier cloud ap-
plication. The authors propose CAS algorithm analyzing application behaviors
to handle changing workloads to the five tiers. Thereby the CAS scales up and
down the bottleneck tiers adaptively, mainly by adding/removing the amount of
VMs needed to restore the response time to the desired threshold. In [111], a novel
caching and replication infrastructure is presented by Perez-Sorrosal et al. in order
to handle the workload variation. The infrastructure facilitates the elastic deploy-
ment and scalability of multi-tier architectures by adding and removing resources
to change capacity at runtime without service interruption. Iqbal et al. [110] is
one of elasticity research on two-tier applications composing of a web server tier
and a database tier. This paper distinguish two kinds of workloads causing stress
on different tiers, which are static requests targeting on web server and dynamic
ones aiming at both web and databases. The tier causing bottleneck is detected
by a heuristic algorithm and additional VMs are added to this tier. Authors use
predictive mode for both scale-in and scale-out decisions.

All the studies in this section use replication action to trigger elasticity behav-
ior in one or multiple tiers of cloud applications. The drawback of this approach is
appearance of a load balancer which reroutes the requests made after the replica-
tion finishes. The load balancer distributing the requests to new replicas may cause
overhead because of some internal processing operations. Almost load balancing
services must be restarted to recognize the new replicas or to capture the changed
model of system, thus puts even more overhead and slows elasticity. Furthermore,
load balancer itself is a bottleneck, indisputably.

3.3.2 Vertical Scaling on Various Tiers
Vertical scale refers to resizing or reconfiguration of resources to adapt with fluc-
tuations of workload. The resources are not replicated or cloned, they bulge out
instead. Adding or removing memory or CPU cores to or from VMs is a sim-
ple example of vertical scale. Obviously, operations relating to resizing hardware
resources must be authorized by cloud providers, especially the public ones. Un-
fortunately, not many providers allow such the operations [66]. Instead of that,
they offer fixed-size instances, called flavors. For instance, Amazon has several
kinds of VMs with different combination of hardware configurations such as mi-
cro, medium, large. Microsoft Azure launches a broader range of instance types
including A and D series. When workload varies, the adaptive changing from a
less resource VM (smaller flavor) to a more resource one (bigger flavor) is called

33

CHAPTER 3. ELASTICITY

“replacement”, a variant of resizing (or redimensioning). Replacement method
is indeed an interim choice when cloud providers does not support adjusting re-
sources of VMs or containers.

In some occasional cases, the cloud providers allows resizing the vCPUs,
memory or network bandwidth of VMs. Even so, the hot resizing on runtime
is still not accepted. In this situation, the hot resizing may be performed by some
advanced techniques for VM such as ballooning in inflating/deflating memory or
Xen credit scheduler [114] in adjusting number of vCPU and CPU time share [92].
With lightweight container technologies like Docker, OpenVZ or LXC, the similar
things can be done by accessing the low-level cgroups settings. However, research
on this aspect of container elasticity is really rare. With applications, resizing is a
standard method in adding or removing data or control structures (i.e. structural
dimensioning) in order to exploit resources available in VMs. This technique re-
lates to tuning the parallelism of processes, threads [115] or MPI execution nodes
of an application [105]. Elastin [86], a framework using a compiler to combine
different program versions into a single application that we can switch between
the versions at runtime without rebooting the application, can be considered as
structural dimensioning.

Migration may be classified into the horizontal scale or in an independent
class. When workload surges, some VMs, for instances, should be moved into
bigger physical machines to have more resource satisfying the increasing demand.
These old VMs and perhaps smaller PMs then are removed, thus not increase total
number of VMs in the entire system. We consequently have the VMs located in
stronger PMs where there are enough resources for the given demand. That is
why we can put migration in horizontal scaling class. At the other end, when the
workload declines, VMs may be collocated in order to reduce number of PMs,
hereby saving energy and cost. The replacement method is a type of migration,
but the VM does not move out of PM. In the point of VM view, the applications
inside the old VM may be migrated to the new one (bigger or smaller depending
on workload, for instance), thus replacement is a branch of migration in some
cases. Although research on the horizontal scale are less than the vertical scaling,
it is indeed not too hard to find in the literature. The remaining parts of this section
identifies some of them.

Dawoud et al. in their research series about elastic VM [112, 113] for cloud re-
source provisioning introduces a vertical scaling architecture in comparison with
Multi-instance architecture (horizontal scale). They compare two architectures
based on both analytical queuing model and characteristic implementation. Their
experiments on web and database tiers result in less response time and provision-
ing overhead for vertical scale, thus reduce SLA violations. Whereas Dawoud
separately considers the elastic VM and Multi-instance architectures, an indus-
trial solution, called OnApp Cloud [116], offer both replication and resizing that

34

3.4. THE UNRESOLVED ISSUES

bring more flexibly to elasticity decisions.
A predictive elasticity system, called PRESS [147], uses Fast Fourier Trans-

form (FFT) to identify repeating patterns (signatures) used for its prediction. The
CPU resource is re-configured using the Xen Credit CPU Scheduler. For reduc-
ing power consumption, CloudScale [77] takes advantage of modern processors
which can switch and operate at different voltages dynamically. Without affecting
the SLA, CloudScale can increase or decrease the CPU frequency or voltage, thus
optimizes energy consumption. GoGrid develops a memory scaling tool which
allows vertical scale in a fast and easy way, but a rebooting is required. Tran, in
his thesis [114], describes a coordinate resource mechanism which provides both
horizontal and vertical elasticity. With horizontal one, he adjust capacity of VM’s
vCPU and memory using Xen Credit CPU Scheduler and memory ballooning, re-
spectively. The evaluation shows that using the coordinate mechanism can reduce
performance overhead and increase virtualized and physical resource usage.

3.4 The Unresolved Issues

It must be recognized that the current elasticity solutions from the cloud providers
and the academic research have partly resolved many challenges of elasticity.
Nevertheless, as the cloud systems and its ecosystem are continuing on devel-
opment, it poses new challenges and open issues which need to be addressed.

3.4.1 Resource Availability

It is a matter of fact that resource capacity of a cloud provider is limited by phys-
ical servers in its datacenter. It leads to a sooth that the cloud providers have to
impose strict resource limitation on their customers, which neglects the infinitive
resource premise [133]. For example, Amazon EC2 only allows 20 simultaneous
requests for on-demand instances and 100 spot instances per region [60]. Mi-
crosoft Azure limits 50 VMs and 150 input endpoints per cloud service. Although
using multicloud could be a solution for resource limitation, resource-intensive
highly scalable applications will soon deplete the resources distributed dynami-
cally for them.

A solution for cloud customers to overcome the number of VM limitation
imposed by cloud providers could be utilization of the vertical scaling to resize
the fixed VM. Likewise, using lightweight container such as Docker inside VMs
to scale at component or application level is a suggestion worthy to be taken into
consideration. In general, applying elasticity on fine-grained levels of resources
would slow down the resource depletion.

35

CHAPTER 3. ELASTICITY

3.4.2 Resource Granularity
Horizontal elasticity action broadly supported by current cloud providers. They
usually allow fixed-size VMs to be scaled out depending on current workload de-
mand. On the contrary, vertical elasticity is offered sparingly by the providers.
Even if redimension is supported, resizing VM resources on the fly is prohibited.
GoGrid allows its customers to increase RAM of VMs, but requires a VM re-
boot. Although EC2 introduces a wide range of VM instances with different sizes
and configurations to simulate vertical scaling when needed (VM replacement or
substitution), VM restart is still a must.

The coarse-grained scaling with fixed-size VMs often leads to resource pro-
visioning overhead resulting in the over-provisioning. Research on elastic VM
of Dawoud et al. [112, 113] about fine-grained scaling or of Rodero-Merino et
al. [71] about VM substitution to simulate resizing have partly resolved this chal-
lenge. However, cloud providers is most likely prefer providing horizontal scaling
with fatty VMs, research on combination of elasticity actions on multiple levels of
resource granularity (at both coarse and fine-grained levels) is necessary. Further-
more, the lightweight container technologies introduce a thinner approach than
VM, which could make elasticity actions more fine-grained.

3.4.3 Startup Time
Provisioning a VM in an elasticity scaling often takes sometimes to complete.
This unavoidable time, namely startup or spin-up time, varies from one to dozen
of minutes. In the ideal elasticity, resource should be provisioned instantaneously.
Therefore start-up time may affect the speed and efficiency of elasticity mech-
anisms in handling highly dynamic workloads. Applying a predictive elasticity
could be a good solution because VMs are pre-provisioned based on forecasting
the workload. However, the predictive approach is often more complicated and
historical behavior of workload must be well-studied in advance. Forecasting er-
rors may still occur, resulting in unused resources which steal money from cloud
customers.

Reactive scaling is still useful for unplanned events such as a flash crowd or
slashdotting when a popular website links to a smaller site, causing an unpre-
dictably massive increase in traffic. In this situation, a vertical scaling up or a
container-level scaling out could be a solution (if possible) to gain rapid elasticity.

3.4.4 Rising of Container-based Virtualization
Given a fact that conventional virtualization comes with overhead and cloud providers
are unlikely to offer adjusting their VMs at runtime, therefore, container-based

36

3.5. SYNTHESIS

virtualization with technologies such as Docker, LXC could be an alternative.
Although research on container-based as an object for elasticity is still rare, an
easy-to-see benefit is that it reduces spin-up time of replicas because of its smaller
image size in comparison to VM image. Moreover the container managers usu-
ally have well-managed mechanisms for resource allocation, the vertical scaling
for lightweight containers is a realistic scenario. Wrapping software components
in the containers is an efficient solution not only for workload isolation but also
for component security. A research on container wrapping using Docker is about
software consolidation [124].

3.4.5 Composability
Cloud application is often comprised of multiple software components or mod-
ules. A component provides some outputs for other components but it also needs
some inputs from other sources. This creates a flow of processes and data. Ma-
jority of elasticity actions directly or indirectly affect these components. If one of
the components becomes a performance bottleneck, we might only need to scale
it firstly. Elasticity actions should focus on a particular component each time it is
triggered. However dependencies among components also need to be taken into
account.

3.5 Synthesis
In this chapter, we have presented a comprehensive research and works on elastic-
ity classified by using the analysis grid. We have also discussed a representative
range of approaches related to elasticity actions in two aspects: method and gran-
ularity. As we have mentioned, there are some new issues that remain unsolved by
the current elasticity approaches. In the next chapter, we detail our contribution in
definition of a novel elasticity approach that aims to resolve these issues.

37

CHAPTER 3. ELASTICITY

38

Chapter 4

MULTI-LEVEL FINE-GRAINED
ELASTICITY

Contents
4.1 Definition . 39

4.2 Related Work . 41

4.3 Requirements of Autonomic Elasticity Managers 45

4.4 Synthesis . 47

This chapter devotes itself to our first contribution in this thesis: the multi-level
fine-grained approach for elasticity.

4.1 Definition
In the last section, some new challenges and open issues of elasticity have been
pointed out. An elasticity solution now should not only provide the efficient scal-
ing but also consider using resources economically. We have also discussed a
couple of potential solutions to partly resolve these issues. In general, our sug-
gestions primarily focus on applying elasticity actions on multiple levels of re-
source granularity, which include all hardware, virtualization and software layers
within boundaries of solution. In addition, the more fine-grained elasticity solu-
tions should be used with priority as much as possible. We define here a new
approach, namely multi-level fine-grained elasticity, which covers advantages of
our suggestion.

Definition 1 (Multi-level fine-grained elasticity) Multi-level fine-grained
elasticity implies implementation of scaling actions on multiple types of resources.

39

CHAPTER 4. MULTI-LEVEL FINE-GRAINED ELASTICITY

Each resource type is a dimension of adaptation process and possesses its own
elasticity properties. If a resource type has containment relationships with other
resource types, like in the case of a lightweight container having hosted by a VM,
elasticity can be considered at multiple levels. At each level, more fine-grained
elasticity methods should be considered with priority if possible.

Figure 4.1 is a map presenting potential resource types of a conventional cloud
system which are distributed into multiple levels with respect to the containment
relationship. The list of resource types, which are objects of elasticity actions, is
not exhaustive.

Figure 4.1: Multi-level resource types

On the cloud system, VMs are hosted on PMs at datacenters of IaaS providers.
Each VM is allocated a set of resources including vCPU, RAM or I/O devices
which may be objects of vertical scaling up/down. Especially, each VM in public
clouds may contain lightweight containers (e.g. Docker, LXC, etc.) which can be
scaled out with its entire set of resources (e.g. vCPU, RAM, etc). These resources
of containers, in turn, may be adjusted to obtain the vertical scaling in/out. Soft-
ware container such as Application servers (Tomcat, JOnAS) or OSGi platforms
(Karaf, Equinox) is a kind of special resource. It can be deployed on both VMs or
lightweight containers to provide execution environment and essential libraries for
specific types of applications. A cloud application is often complex and consisted
of multiple software components. These software components can be run directly
on VMs (e.g. install an Apache server on a VM). In some cases, software contain-
ers may be required for installation of software components (e.g. a .war file with
servlets needs a Tomcat server for running). With software consolidation, a soft-
ware component or software container can be packed into a lightweight container
to be more isolate and secure. Thereby, two software components or containers
(may be at the same type) can be collocated inside the same VM. We see that
the flexible mix of resource types opens an unlimited combining capability for
elasticity actions.

When the elasticity actions target more fine-grained resources, we say that

40

4.2. RELATED WORK

these actions are using more fine-grained methods. Definition 1 suggests that
more fine-grained elasticity methods should be considered with priority if possi-
ble. With regards to Figure 4.1, more fine-grained scaling resources are located
at the upper positions of the map (from the top to bottom). Thence the software
components or software containers should be the priorities and then considering
technologies of virtualization such as lightweight container or VMs. The order
of scaling resource types at the same level is resolved based on if we can apply
vertical scaling (on RAM, memory, I/O devices) or structural scaling (on software
component).

Although this new approach is very promising in resolving a part of the new
elasticity issues in theory, it is necessary to know where is our elasticity approach
in comparison to related work. According to [62], to evaluate a multi-level elas-
ticity approach, we need to consider at least the following aspects:

• Autonomic mechanism: How to have autonomic scaling? What adaptation
process have been used?

• Resource type: the adaptation process affects which set of resource types?
(and at which levels?)

• Resource granularity: How is granularity of elasticity actions on the given
set of resources? Which scaling method used in a specific elasticity action
(horizontal, vertical or structure scaling)?

In next section, we use criteria in these questions to elaborate works similar
to our approach. It means all state-of-the-arts of the “Level” class in the elasticity
analysis grid (see Figure 3.1), which have the combining utilization of both hori-
zontal and vertical scaling on various levels of resource granularity, are taken into
account.

4.2 Related Work
As mentioned, elasticity actions may be classified into smaller classes according
to granularity. Granularity is scope impacted by elasticity actions which could
range from a tiny file to multiple coarse-grained machines [34]. If divided by log-
ical separation of application or the way of organizing the code, we have scaling
actions on various tiers as discussed in Sections 3.3.1 and 3.3.2. If taking into
account the physical location of applications or where the code runs, we have
scaling actions on different resources allocated on various levels as discussed in
Section 4.1. These levels are various from the coarse-grained physical server, VM
to the lightweight ones like container, application or even more fine-grained such

41

CHAPTER 4. MULTI-LEVEL FINE-GRAINED ELASTICITY

as amount of memory and number of vCPU cores. Naturally, there is not much
research on vertical scale because of strict regulations from cloud providers. Re-
search on vertical scale affecting multiple levels of resource granularity are even
rarer. Thus we consider elasticity solutions applying both horizontal and vertical
scaling methods in this section.

As migration is also a scaling action, elasticity can be obtained using migra-
tion scaling. Server consolidation/deconsolidation used in the cloud systems [103,
117, 134, 135] is a simple type of elasticity. It is used at cloud providers side to
allocate and migrate VMs across physical servers to improve infrastructure uti-
lization ratio. This technique guarantees the physical servers are well used, result-
ing in energy and cost saving for the providers, as long as the SLA is satisfied.
A consolidation manager regularly monitors resource usage of PM/VM and their
workload. The elasticity can be obtained by collocating VMs to the same PM
which best fits to the workload or migrate VMs to bigger nodes which might serve
better for load-balancing. The PM can be scaled by turning on, turning off or re-
suming which are forms of scaling out/in. Although elasticity actions for server
(de)consolidation is often on two levels of resources (PM and VM), they consider
only coarse-grained resource types. Thus minimizing the VM migration cost is
also an issue of server consolidation. Using multi-level fine-grained elasticity ap-
proach, (de)consolidation can be performed on more fine-grained resource types
such as lightweight container. The elastic VM also should be used to decrease
number of migrations, thereby mitigate migration cost.

Autonomic mechanism: Consolidation manager
Resource Type: PM and VM
Resource granularity: PM scaling out/in, VM migration

Another work related to consolidation is an elasticity solution based on En-
tropy system [118]. Entropy [119] is a resource manager providing deployment
and migration of VMs in clusters. It calculates migration plans based on many of
inputs and constraints to optimize energy consumption. As Entropy depends on a
constraint solver to satisfy the constraints and conditions, it takes time to pack and
migrate a large number of VMs. To resolve this issue, the elastic Entropy system
uses Entropy workers to manage random groups of Entropy instances (installed in
each VM). An Entropy server provision these Entropy workers to ensure elasticity
for Entropy system. This implementation brings to a significant improvement in
performance as well as in reducing error rates in comparison to the traditional En-
tropy system. Like other consolidation solutions, the elasticity actions is mainly
on PM and VM. Noting that the Entropy worker is introduced as an object for
scaling, but in fact elasticity actions are put on VM (1 Entropy worker hosted in 1
VM). This costs a whole VM for Entropy worker which occupies space of regular

42

4.2. RELATED WORK

Entropy instances. Thus our approach suggests a more fine-grained approach by
wrapping the Entropy workers into lightweight containers. This saves room for
the Entropy instances.

Autonomic mechanism: Entropy server integrating the MAPE-K autonomic loop
Resource type: PM and VM
Resource granularity: PM scaling out/in, VM scaling out/in (only Entropy work-
ers)

Nguyen et al. [120] consider three levels of resources representing by PM, VM
and application environment (AE) in a research about resource management. The
authors of this paper use a Local Decision Module (LDM) associated to an AE to
monitor the AE itself. Based on information such as system load and available re-
source, the LDM adds or removes VMs to scale the AE accordingly. On the other
hand, a Global Decision Module are responsible for installing the AE into VMs
and VMs onto physical servers. Migration plan is calculated based on resolution
of constraints using constraint solver, thus somewhat retards the elasticity actions.
Like the elastic Entropy, the AE is a kind of resource (software container). How-
ever the LDM cannot scale the AE itself, the elasticity action is indeed put on VM.
A lightweight container to wrap the AE could be a good solution in this situation.

Autonomic mechanism: Decision Modules
Resource type: PM and VM
Resource granularity: PM scaling out/in, VM scaling out/in

SmartScale [121], Cloudify [15] and soCloud [136] are Cloud platforms sup-
porting elasticity. They perform both horizontal and vertical scales by changing
number of VMs and adding/removing resources assigned to these VMs. The op-
timal VM size is calculated based on the corresponding throughput of application
and then the platforms specify number of instances to optimize the throughput
utilization. Unlike SmartScale, both Cloudify and soCloud can do scaling at soft-
ware component level which leads to a shorter scaling time. Its components follow
principle of the Service Component Architecture (SCA). However workload iso-
lation among components is not mentioned in the soCloud paper.

Autonomic mechanism: Cloud platform integrating MAPE-K autonomic loop
Resource type: VM, VM resources and Software Component (only soCloud)
Resource granularity: VM scaling out/in, VM scaling up/down, Software Com-
ponent out/in (only soCloud)

CRAMP [122] is a cost-efficient resource allocation solution for multiple web

43

CHAPTER 4. MULTI-LEVEL FINE-GRAINED ELASTICITY

applications with predictive scaling. Scaling algorithm of CRAMP predicts aver-
age load of application servers to add or remove VMs of the application server tier
as well as deploy or undeploy web applications from the VMs. Isolation is per-
formed by wrapping these applications into OSGi bundles [28] running on Apache
Felix OSGi container [123]. This solution takes advantage of bundle portability
which helps deploy and undeploy the bundles easily. Moreover, OSGi container
can manage bundle versioning, thus switching between file configurations of dif-
ferent bundle versions can be done unopposed. However, an OSGi container like
Felix only manages bundles installed inside it. It is blind with OSGi bundles lo-
cated in other containers (same host) or in other hosts. Therefore, replication or
migration of OSGi bundles across multiple hosts (VMs or PMs) is a challenging
task. Because of this reason, CRAMP can only deploy and undeploy OSGi bun-
dles locally for scaling. Furthermore, OSGi is a kind of container dedicated to
Java applications, thereby it limits flexibility of the solution.

Autonomic mechanism: Global controller and Resource Allocator
Resource type: VM and Software Container (OSGi)
Resource granularity: VM scaling out/in, simple Software Container out/in

We know that software consolidation (collocated software) should be applied
to SaaS/PaaS cloud model as an efficient energy and cost saving solution [124].
However if multiple applications run on the same host, it might cause the resource
contention (CPU, memory or network bandwidth). Therefore the isolation and
security of collocated applications are important things. If CRAMP uses OSGi
container to isolate application, He et al. [125] introduces Elastic Application
Container (EAC) as a lightweight solution to wrap applications into elastic con-
tainers which are managed by Elastic Application Server (EAS) in each host (PM
or VM). An EAC do not require a guest OS to run applications like a VM does,
thus it is a more lightweight approach than VM. The authors claim that using the
EAC reduces overhead which is an inherent characteristic of VM-based approach
as well as shortens migration time in comparison to both static and live VM mi-
gration. We see that the elasticity solution targets both VM and application levels.
However scaling mechanism for VM is mentioned very briefly. At application
level, it indirectly affects applications through a type of lightweight container (the
EAC). Although EAC has its own set of resources but the vertical scaling of EAC
is not mentioned in the paper.

Autonomic mechanism: EAC Cloud controller
Resource type: Lightweight Container (EAC)
Resource granularity: Lightweight Container out/in and migration

44

4.3. REQUIREMENTS OF AUTONOMIC ELASTICITY MANAGERS

By dividing service into smaller pieces, Mohamed et al. [127] introduce Intel-
ligent Managed Micro-Container (IMMC) that allows migrate or replicate small
pieces of software among VMs in the Cloud. The pieces of software packed into
the micro-containers are enhanced with the resiliency of cellular organisms as-
suring FCAPS (fault, configuration, accounting, performance and security) con-
straints described for each service.

Autonomic mechanism: IMMC deployment framework
Resource type: Software Container (Micro Container)
Resource granularity: Software Container scale out/in and migration

Imai et al. [126] also provide a solution for elasticity in the Cloud on two
levels of resources (VM, software container) using both VM and application mi-
grations. The authors focus mainly on migration and consolidation at application
level using SALSA mobile actors. By using actor migration, applications com-
posed of SALSA actors can be easily reconfigured at runtime regardless of the
network type. Containerization of an application or a part of application (i.e. soft-
ware components) is performed through these actors which have a similar role like
OSGi container in the CRAMP solution. However this solution requires rewriting
applications in SALSA actor language, which is always a time-consuming and
error-prone task.

Autonomic mechanism: SALSA monitor and Node manager
Resource type: VM and Software Container (SALSA Actor)
Resource granularity: VM scaling out/in, Software Container migration

In summary, the mentioned related work all have drawbacks which could be
improved by multi-level fine-grained elasticity. Thus our approach is a necessary
complement to obtain the rapid and efficient elasticity.

4.3 Requirements of Autonomic Elasticity Managers
To support implementation of elasticity solutions on the Cloud, it needs to have
research on autonomic elasticity managers which satisfy three most basic require-
ments as follows [145].

Autonomy: In the cloud environment, applications are often consisted of mul-
tiple software components. Moreover workloads to each of components are var-
ious and unpredictable. An effective elasticity solution must follow closely the
fluctuation of the load to have timely responses. Such a mechanism cannot be
operated manually. Therefore an autonomic manager should exist with sensors

45

CHAPTER 4. MULTI-LEVEL FINE-GRAINED ELASTICITY

and effectors on its managed elements. This autonomic manager should be able
to cover all operations of the MAPE-K reference control loop (monitor, analyze,
plan, execute and knowledge).

Scalability: is a prerequisite of elasticity. It sustains increasing of workloads
using additional resources. However it does not consider temporal aspects of how
fast, how often, and at what granularity scaling actions could be performed. It does
not consider how the actual resource demands are fitted well to the provisioned
resources at any point in time [62]. Anyway the cloud applications being provided
and their resources should be able to scale. There are multiple scaling mechanisms
for elasticity, which have been discussed in Chapter 3.

Adaptivity: Workloads of cloud applications are dynamic. An autonomic
elasticity manager should be able to adapt dynamically to the changes of work-
load and system models. The adaptation reflects closely to the current demands,
avoiding the over-provisioning unnecessary resources or under-provisioning re-
quired ones.

These three requirements are necessary and general for almost elasticity ap-
proaches. With a platform supporting multi-level fine-grained elasticity, extra re-
quirements must be fulfilled.

Rapidness: An autonomic elasticity manager should compute and provision
the required resource capacity fast enough to respect the QoS requirements. How-
ever these operations must be done accurately enough. An operation preserves the
QoS requirements are always better than an optimal decision which takes longer
to run. The rapidness of elasticity relates closely to terms of Speed and Accuracy
which are defined as follows.
Speed: speed of a scaling up is the time needed for an elasticity system to escape
from its under-provisioned state. Likewise speed of a scaling down is the time
it takes to escape from the over-provisioned state. The speed relates closely to
techniques used for scaling actions.
Accuracy: accuracy of scaling is the absolute difference between allocated re-
source and actual resource demand.

Component fine-grained hierarchical description and deployment: Com-
posability is one of challenges of elasticity as pointed out in Section 3.4. An
autonomic elasticity manager should be able to describe cloud applications as set
of interconnected components which might have containment or runtime relation-
ships. With its autonomy it should deploy applications automatically and resolve
dependencies and constraints dynamically. Scaling actions may come simulta-
neously, thus software components could be deployed concurrently. Elasticity
actions should prioritize more fine-grained components because deployment of
smaller components saves cost and reduces overhead.

Multi-Cloud Deployment: Elasticity actions could be expanded to multiple
software components and infrastructures which might be implemented on differ-

46

4.4. SYNTHESIS

ent types of clouds. However it is a hard problem because the heterogeneous
cloud implies no uniform and standard. Therefore an autonomic elasticity man-
ager must own a language used to describe not only PaaS or SaaS services but also
cloud infrastructures that PaaS and SaaS run on. By this way, the elasticity actions
spanning multiple clouds (e.g. migration scaling) will be performed easier.

Genericity: Cloud applications are intrinsically complex and cloud ecosystem
is heterogeneous. The descriptive language used in an elasticity solution has to be
generic enough to abstract various resource types and their relationships. By this
way, we can reuse definition of elasticity objects and need not to spend much
effort for design the elasticity rules or policies.

Extensibility: A growing number of PaaS and SaaS services have been be-
ing integrated into cloud environments. Many new cloud providers introduce and
launch their own IaaS services. Internet of Things (IoT) aims to bring myriad
“things” to the Cloud context. Solutions to monitor autonomic system are con-
stantly evolved as well. Elasticity solutions will also evolve continuously to adapt
to those changes. Thus an autonomic elasticity manager should have an open
mechanism to support extensibility when needed.

Roboconf platform such an autonomic elasticity manager supporting multi-
level fine-grained elasticity approach will be detailed in next chapters as our con-
tribution to this thesis.

4.4 Synthesis
In this chapter, we propose and detail our novel multi-level fine-grained approach
for elasticity. This approach allows to resolve open issues of current elasticity so-
lutions. A representative range of related work have also discussed. Requirements
of an autonomic elasticity manager to efficiently support our approach have been
pointed out. In the next chapters (Chapter 5 and 6), we will go to our second con-
tribution in describing the Roboconf platform, an ACCS operating as an elasticity
manager.

47

CHAPTER 4. MULTI-LEVEL FINE-GRAINED ELASTICITY

48

Chapter 5

MODEL OF ROBOCONF
APPLICATIONS

Contents
5.1 Introduction . 50

5.2 A Motivating Use Case . 50

5.3 Model of Roboconf Applications 51

5.4 Description of Roboconf Applications 56

5.4.1 The Application Descriptor 56

5.4.2 The Graph . 57

5.4.3 Instance Description 58

5.4.4 The Graph Resources 59

5.5 Roboconf Domain Specific Language 60

5.5.1 Configuration Files and Fine-grained Hierarchical DSL 60

5.5.2 Reusability in the Roboconf Model 61

5.5.3 Roboconf DSL Dedicated to the Rules of Elasticity . . 64

5.6 Synthesis . 69

As introduced, Roboconf is a platform supporting multi-level fine-grained
elasticity. In this chapter, we detail Roboconf in providing a Domain Specific
Language (DSL) to design complex distributed applications in multicloud as the
first sub-contribution of our second contribution. Such applications are ready to be
applied elasticity actions of the multi-level fine-grained approach. An application
model and its concepts will also be presented.

49

CHAPTER 5. MODEL OF ROBOCONF APPLICATIONS

5.1 Introduction

Today, the multi-cloud computing appears as a promising paradigm to support dis-
tributed applications in large scale. Multicloud computing is the use of multiple
independent cloud environments that do not require a priori agreement between
cloud providers or third parties. The design, portability and deployment of dis-
tributed applications in a multi-cloud environment is a very complex task and a
real challenge, because there is not an uniform, simple and complete way to de-
sign applications that will run in heterogeneous cloud environments. Developers
of cloud applications spend a lot of time to prepare, install, and configure their
applications. In addition, after the development and deployment, applications can
be moved from one cloud provider to another, which leads to problems of porta-
bility of applications. Currently, the state of the art has shown that there is no
consensus on the style and architecture model supporting the development of dis-
tributed applications in the multi-cloud environment. These works have clearly
shown considerable gaps to provide a simple and effective solution to address ma-
jor challenges in designing distributed applications for a multi-cloud environment.

In this chapter we provide an overview of the design model of a Roboconf
application. Then we present the problems and needs related to the design of it.
This chapter presents the model used to support the design, specification, imple-
mentation and assembling Roboconf applications. A Roboconf application can be
composed of one or multiple components. The model for Roboconf applications
can describe each execution unit and the configuration properties associated with
them. This model specifies the organization and the dependence between compo-
nents within the architecture of a Roboconf application. Non-functional require-
ments (i.e. configuration constraints, placement, elasticity, hardware and software
features) can be expressed on each execution unit via the model. We implement
our approach by introduction of a motivating use case in the next section.

5.2 A Motivating Use Case

Let consider a company which wants to enjoy the benefits of Cloud computing.
This company has an e-commerce application represented here by the RUBiS
benchmark [141]. RUBiS is a JEE application based on servlets, which imple-
ments an auction web site modelled after eBay. RUBiS defines interactions such
as registering new users, browsing, buying or selling items. To run this appli-
cation, the administrator of company decides to use a web server provided by
Apache HTTPD, an application server provided by Tomcat, and a set of database
servers provided by MySQL. Apache relies on “mod jk” connector to forward re-
quests to Tomcat, via its AJP 13 connector. Let’s consider a scenario where the

50

5.3. MODEL OF ROBOCONF APPLICATIONS

company has the following requirements. Most of its clients (users who connect to
its application) are located on the one hand in France (near Marseille) and on the
other hand in Brazil (Sao Paulo). The company organizes data into two categories:
business-critical (e.g. those which concern money) and non-critical (e.g. those
which concern sold items). The former must be located on company premises,
which is composed of a virtualized machine (provided by VMware vSphere) and
a native machine. The virtualized machine runs the database which is in produc-
tion while the native machine runs a backup. Regarding non-critical data, they
are hosted (with the other application components) within any public clouds (the
most cheapest one which is near the clients of company). The company capitalizes
on competition among cloud providers and fully benefits from them. According
to VM prices charged on cloud market, the company runs its application within
two distinct clouds: Amazon EC2 and Microsoft Azure. Concerning the admin-
istration of the application, the administrator of company practices a fine-grained
administration such as manipulating a .war package in a Tomcat server or a servlet
in the .war package which is in the Tomcat container.

Furthermore, sometimes he needs to deploy an entire stack or just a part of
the stack. For example, in the case of an intrusion on the VM hosting a Tomcat
application server, does he need to redeploy the overall stack? If the intrusion
is at the .war package level, only the deployment of the corresponding package
and its servlets are needed. If the problem comes from a single servlet, only this
servlet should be taken into account. Another need is the reconfiguration of the
application, partly or entirely during its lifetime, especially in moving a portion
from a cloud to another one. Figure 5.1 depicts this scenario. This example depicts
a trend as to be shown in the 2014 State of the Cloud Survey, “the hybrid and
multi-cloud implementations continue to be the end goal for the enterprise: 74%
of enterprise respondents have a multi-cloud strategy, and 48% are planning for
hybrid clouds.” [142].

In summary, this practical use case intuitively points out the following fea-
tures from the ACCS which attempts to conveniently administer it. (1) The ACCS
should be able to provide both hybrid and multi-cloud deployment features, with
the target clouds unknown in advance. (2) It should provide a hierarchical lan-
guage for expressing the use case in order to allow a fine-grained administration.

5.3 Model of Roboconf Applications
Roboconf is designed to see a distributed application as a set of “components”,
and as a group of “instances” of these components. Let’s take as an example the
three-tier distributed application “Apache-Tomcat-MySQL”. “Apache” is a com-
ponent, while an installation of Apache on a particular machine is an instance.

51

CHAPTER 5. MODEL OF ROBOCONF APPLICATIONS

Figure 5.1: A multi-cloud deployment of the RUBiS benchmark

Another installation of Apache on another machine is another instance. Besides,
Roboconf is built to see distributed application as a group of components that
each one exchanges a group of simple data among each other. Data can be string
or structured data. Components of a distributed application are composed of vari-
ables as for example the IP address or the port used. Parts of those variables
may be needed by other components of the application, they are named “exported
vars”, while variables coming from other components of the application are named
“imported vars”. Moreover, definition of a component can be inherited by defini-
tion of another according to object-oriented design. It inherits all import/export

52

5.3. MODEL OF ROBOCONF APPLICATIONS

vars and default values. For instance, Tomcat component can inherit properties
of a generic “Application Server” component. Now that we have a far view of an
application, let’s explain more precisely what are its components. In the above
example, Apache in this case simply imports variables coming from Tomcat: the
IP and port of application server. As we said earlier, we define elements (compo-
nent and instance) as having a set of properties, and having exported and imported
variables. In this case of Apache there are only imported variables. A sample of
Apache component under Roboconf descriptive language could be as the follow-
ing:

Apache { # Apache Load Balancer (a comment)
installer: puppet;
imports: Tomcat.portAJP, Tomcat.ip;

}

This small portion is made up of several regions. The installer: A component
property mandatory and designates the Roboconf plug-in that will handle the life
cycle of component instances. In this example, we are using “puppet” implemen-
tation. The imports lists the variables this component need to be resolved before
starting. Variable names are separated by commas. They are also prefixed by the
component that exports them. As an example, if Tomcat exports the ip variable,
then a depending component will import Tomcat.ip. On the other hand, MySQL
does not import data from other components, it is the one exporting data which
are its IP and port. A definition of MySQL could be as following:

MySQL { # MySQL database
installer: bash;
exports: ip, port = 3306;

}

Here has a minor different from the exports which lists the variables this com-
ponent makes visible to other components. The “ip” is a special variable name
whose value will be set dynamically by Roboconf. All the other variables should
specify a default value.

In terms of model and configuration files, Roboconf has the following con-
cepts. The application descriptor contains meta-information of the application
such as name, version qualifier and description. The graph is in fact a set of
graphs. It defines software components which range broadly from the (virtual)
machine, cloud platform to the application package. The graph defines contain-
ment relations and runtime relations. Two kinds of relations are defined as fol-
lows: (1) Containment means a component can be deployed over another one.
As an example, a Tomcat server can be deployed over a VM. Or a web applica-
tion (.war) can be deployed over a Tomcat server. (2) Runtime relations refer to

53

CHAPTER 5. MODEL OF ROBOCONF APPLICATIONS

components that work together. For instance, a web application needs a database.
More specifically, it needs the IP address and the port of the database. Generally,
this information is hard-coded. Roboconf can instead resolve them at runtime and
update components through the configuration or management APIs (e.g. JMX,
REST). As an example, Apache, Tomcat and MySQL can be deployed in paral-
lel. Tomcat will be deployed but will not be able to start until it knows where is
the database. Once the database is deployed and started, Roboconf will update
Tomcat configuration so that it knows where is MySQL. This is what runtime
dependencies make possible. If the graph defines relations between components,
instances represent concrete components. Like a Java class, a Roboconf com-
ponent is only a definition. It needs to be instantiated to be used. Predefined
instances aim at gaining some time when one wants to deploy application parts.
As an example, the deployer could have defined a Tomcat component in the graph,
and have four instances, one deployed on machine A, and another on machine B
and other two on machine C. These would be four instances of the same compo-
nent. The rules that apply to them are deduced from the graph, but they have their
own configuration.

Roboconf is also designed to see an application as hierarchy of components.
The main motivation of hierarchy is to allow Roboconf to exactly keep track of
where instances are implemented in the system. It helps Roboconf to make right
decisions in dynamic deployment as mentioned in the motivating example. A
natural example of parent/children relationships among components of an OSGi
application is depicted following:

An Azure VM
VM_AZURE {

installer: iaas;
children: Karaf;

}
Karaf: OSGi container
Karaf {

installer: bash;
exports: ip, agentID = 1;
children: Joram, JNDI;

}

Joram: OSGi JMS service
Joram {

installer: osgi-bundle;
exports: portJR = 16001;
imports: Karaf.agentID,

Karaf.ip;
}
JNDI: naming service
JNDI {

installer: osgi-bundle;
exports: portJNDI = 16401;
imports: Karaf.agentID,

Karaf.ip;
}

There is a new important field: children which lists the components that can be
instantiated and deployed over this component. In the example above, it means we
can deploy Karaf over a VM instance. In turn, Joram and JNDI can be deployed

54

5.3. MODEL OF ROBOCONF APPLICATIONS

over instances of Karaf. While hierarchical model resolves the containment re-
lations (i.e. vertical relationship) and the export/import variables model respon-
sible for disentangling the runtime relations (i.e. horizontal relationship) among
components, a bi-color Graph put everything together in a DSL introduced more
details in next section. At runtime, the Graph is used to determine what can be
instantiated, and how it can be deployed. Software components include the de-
ployment roots (e.g. VMs, devices, remote hosts), databases, application servers
and application modules (e.g. .war, .zip, etc). They list what the deployers want to
deploy or possibly deploy. What is modelled in the graph is really a user choice.
Various granularity can be described. It can goes very deeply in the description
(Figure 5.2) or bundle things together such as associating a given .war with an
application server. Multi-IaaS is supported by defining several root components.
Each one will be associated with various properties (e.g. IaaS provider, VM type,
etc.). It is worth noting that an instance in a hierarchy can be located using an
absolute path in the Roboconf application model. For example, the “Joram1” ap-
plication instance running on “Karaf1” OSGi container inside a “VMEC2” virtual
machine can be referred to by the path “/vmec2/karaf1/joram1”.

Figure 5.2: Illustration of a fine-grained description of components

55

CHAPTER 5. MODEL OF ROBOCONF APPLICATIONS

5.4 Description of Roboconf Applications

5.4.1 The Application Descriptor

A Roboconf project must contain a descriptor directory with an application de-
scriptor inside. This descriptor must be named “application.properties”. It con-
tains basic information related to the application itself. A example of application
descriptor for the motivating use case as follows. Properties are explained in the
comments.

Application Descriptor for Roboconf

The application name (required)
It should be readable by a human.
application-name = RUBiS-J2EE

The application qualifier (required)
It can be a version number, a build ID, whatever.
It should be readable by a human.
application-qualifier = snapshot

The description of application (optional)
application-description = The description of \

your application

The DSL ID (optional)
For the moment, Roboconf only knows 1 DSL,
but it may support other standards or definitions later.
application-dsl-id = roboconf-1.0

The main graph file (required)
A graph definition may contain several files.
This property indicates the one to read first.
graph-entry-point = main.graph

The main instances file (optional)
An instance definition may be made up of several files.
This property indicates the one to read first.
instance-entry-point = definition.instances

56

5.4. DESCRIPTION OF ROBOCONF APPLICATIONS

5.4.2 The Graph
A Roboconf project must contain an graph directory with the definition of a graph.
As a reminder, like a Java class, a Roboconf component is only a definition. It
needs to be instantiated to be used. By convention, graph definitions are expected
in files with the “graph” extension. A component starts with the component name,
followed by an opening curly bracket. Components can be defined in any order.
Components of the RUBiS example may appear as follows.

The VM
VM {

installer: iaas;
children: MySQL, Tomcat, Apache;

}

MySQL database
MySQL {

installer: puppet;
exports: ip, port = 3306;

}

Tomcat
Tomcat {

installer: puppet;
exports: ip, portAJP = 8009;
imports: MySQL.ip, MySQL.port;

}

Apache Load Balancer
Apache {

installer: puppet;
imports: Tomcat.portAJP, Tomcat.ip;

}

Components can be defined in separate files and in any order. This is achieved
thanks to the “import” keyword. Graph definitions can mix imports and compo-
nents declaration, or, it can only contain imports.

import graph-part-1.graph;
import graph-part-2.graph;

MyComponent{
whatever

}

57

CHAPTER 5. MODEL OF ROBOCONF APPLICATIONS

Import can also be marked as optional. In this case, the instance will be able
to start even if the imported variables are not resolved. As an example, in a cluster
mode, a cluster member may need to know where are the other members.

ClusterMember {
exports: varA, varB;
imports: ClusterMember.varA (optional),

ClusterMember.varB (optional);
}

It is also possible to group imports thanks to the wildcard symbol. As an
example, the previous imports could simply be written as follows.

imports: ClusterMember.* (optional);

Besides, “extends” property indicates this component extends another compo-
nent. A component that extends another one inherits its exports, its imports, its
installer and its recipes. An extending component can override the value of an in-
herited element. It can also add new variables (for export or for import). It cannot
remove inherited elements.

The graph model allows to define multi-container and distributed topologies.
We can go from the machine (VM, device...) to an application component (e.g. a
Web Application). However, and even if the model could support it, it is not con-
sidered as a good practice to define system requirements as graph nodes. If an ap-
plication server needs a JVM or a library to run (such as Python), deployer should
not rely on Roboconf to install it. It is not that you could not achieve it with a Bash
script or something else. But it may be better to pre-install and configure such de-
pendencies directly in the virtual images. As an example, there are mechanisms in
Java Virtual Machines such as endorsed and policies that would be painful to con-
figure with Roboconf. And, again, the problem here is not Roboconf, but the way
the deployer would implement it with a Roboconf plug-in (Bash, Puppet, etc.).
This has been experimented with NodeJS application. Write a Bash script that re-
spect Roboconf requirements (be idempotent) that installs NodeJS and NPM was
quite painful to do. Pre-installing them on virtual images was much more conve-
nient. System requirements should not be deployed with Roboconf. They should
be deployed and configured in the virtual images.

5.4.3 Instance Description
A Roboconf project may contain an instance directory with the definition of in-
stances. By convention, instance definitions are expected in files with the “in-
stances” extension. An instance starts with the 2-word keyword “instance of”

58

5.4. DESCRIPTION OF ROBOCONF APPLICATIONS

followed by the name of the component. As mentioned, instances must be defined
hierarchically. A concrete example of an instance of VM component which hosts
an instance of Tomcat component is depicted as follows. It notes that the Tomcat
default port is overridden in this case (8081 instead of 8080).

instance of Vm_Tomcat {
name: Tomcat VM1;

instance of Tomcat {
name: Tomcat;
port: 8081;

}
}

The Tomcat instance is defined inside a VM instance. Defining it else where
would result in an error. Like components, instance definitions can be split into
several files. It is indeed possible to import other instance definitions. Instances
definitions may only contain imports or may mix imports and instances declara-
tion as follows.

import database.instances;
import servers.instances;

instance of MyApp {
whatever

}

5.4.4 The Graph Resources
The graph definition has already been introduced. However, it does not answer
the question: how does Roboconf deal with deployment configuration? Clearly,
the graph model is artificial, thus one can put whatever he wants in it. The real
logic processing will be handled by a Roboconf plug-in (e.g. Bash or Puppet).
These plug-ins will use resources, associated with a component, to deploy real
software. Therefor, for every component in the graph, a project must contain a
sub-directory with the same name than the component. The file structure for the
RUBiS application looks like follows.

59

CHAPTER 5. MODEL OF ROBOCONF APPLICATIONS

MyApp
descriptor

application.properties
graph

main.graph
VM
Tomcat
MySQL
Apache

instances
...

These sub-directories will contain the component resources. These resources
will be used by the Roboconf plug-in identified by the installer name. The kind of
resources to put depends on the plug-in. As an example, if the Tomcat component
uses the puppet installer, then its resource directory will contain a Puppet module.
If it uses the bash installer, then it will contain bash scripts. Plug-ins are extensions
for Roboconf, thus we can imagine various type of plug-ins. Roboconf plug-ins
are discussed more detailed in Section 6.2.3. Writing the plug-in configurations
is what takes most of the time. Roboconf includes a Maven plug-in so that people
will be able to reuse graph model and resources among projects.

5.5 Roboconf Domain Specific Language

5.5.1 Configuration Files and Fine-grained Hierarchical DSL

As mentioned in Section 5.4.4, an application deployed by Roboconf should pro-
vide at least three files. The first is a descriptor application file containing the
main Roboconf configuration. This file describes the application itself such as
name, description, location of the main model files, etc. Second one is an acyclic
graph describing both vertical and horizontal relationships among components of
the application. The components can be software components to install, or VMs
to deploy on, etc. Along to the graph file, users also need to provide all resources
necessary to deploy the component (e.g. scripts, software packages, configura-
tion files). The IaaSes on which the VM will be created are also defined in the
resource directories of components in the corresponding “target.properties” files.
We can choose VMs with pre-defined configuration such as “m1.large” of Ama-
zon EC2 or “Standard A2” of Microsoft Azure. Or we can customize to create
dedicated configurations in the case of private clouds or on-premise hosts. On
runtime, Roboconf will provision the VMs based on these defined configurations.

60

5.5. ROBOCONF DOMAIN SPECIFIC LANGUAGE

An example of the target.properties files for EC2 IaaS can be as follows.

These properties are specific to Amazon Web Services
target.id = ec2
ec2.endpoint = eu-west-1.ec2.amazonaws.com
ec2.access.key = YOUR_EC2_ACCESS_KEY
ec2.secret.key = YOUR_EC2_SECRET_KEY
ec2.ami = Your AMI identifier (ami-...)
ec2.instance.type = t1.micro
ec2.ssh.key = Your SSH Key
ec2.security.group = Your Security Group

Figure 5.3a depicts components of the motivating use case described in hier-
archical and fine-grained manner using Roboconf DSL. Final one is an instance
file that lists all the initial instances. It means graph components will be pre-
instantiated, ready to be deployed. The fact the instances are defined does not
mean they will be deployed or started automatically but they will be already de-
fined and configured. In this file, the instances must be defined hierarchically.
If the graph defines a root component R with a child C, then an instance of C
must be defined in an instance of R. The instance may also declare properties to
override component properties. As an example, if a Tomcat component exports a
port property with the default value 8080, the instance may override it (e.g. with
8081). An example of this file for the three-tier application is found in Figure 5.3b
where an instance of Apache, one instance of MySQL, two instances of Tomcat
and one instance of Rubis deployed on different clouds. Roboconf provides a
DSL which is inspired from the CSS grammar. It was preferred over XML (easy
but heavy), JSON (not user-friendly) and YAML (error prone when many levels
of indentation). Its main force is to keep the thing simple, with the minimal set of
characters to write. We developed an Eclipse plug-in operating as an editor pro-
viding semantic checking and syntax highlighting for the Roboconf DSL. So far,
the system can understand the distributed application that users want it to deploy.
The details about deployment process is discussed in next two subsections.

5.5.2 Reusability in the Roboconf Model
This section explains several ways of creating reusable graph portions. It is quite
helpful to use and write reusable recipes. As a user, it is convenient to not have to
write all the application description and all the recipes for its components. Robo-
conf has solutions to ease reusability. The first option is that a component can
extend another one. It means the extending component will inherit all the prop-
erties and the recipe of the component it extends. We can extend the MySQL
component to have a similar component in the RUBiS example as follows.

61

CHAPTER 5. MODEL OF ROBOCONF APPLICATIONS

MySQL {
exports: ip, port = 3306;
installer: puppet;
There is a directory called
MySQL with a Puppet module.

}

My-Client-Database {
extends: MySQL;
exports: port = 3307;
exports: username = something;

}

In this example, we have two components which are exactly the same, except
they do not have the same name. This helps to distinguish them in terms of roles
and behavior. We can associate different rules about monitoring and autonomy.
An extending component can also override property values. In the My-Client-
Database component, the default value of the port variable is 3307 instead of
3306. And as usual, instances can override the default values of their component.
Extending components can also define new variables such as the “username” vari-
able.

It is possible to split graph definitions into several files. For every application,
there is one main file. By using the import keyword, this main file can import
other definitions. These definitions can be in the same application or they can be
in another Roboconf project. Other Roboconf projects can be included by using
Roboconf Maven plug-in. Local imports are defined as follows.

import file-name;
import dir1/dir2/file-name;

Remote imports are only handled through the Roboconf Maven plug-in. Re-
mote imports rely on Maven artifacts and repositories. This may seem constrain-
ing. However, Maven is a usual build tool, widely used and with lots of integration
here and there. An important thing to highlight is that remote imports are resolved
and copied in the application at build time. So, a packaged application contains
all the definitions and the recipes it needs. This guarantees that if the Roboconf
configuration is released, we will be able to take it in 10 years and it will still be
working. No matter if the repositories of remote imports disappeared. Remote
import can be defined in Roboconf DSL as follows.

import application-artifact-id/file-name;
import application-artifact-id/dir1/dir2/file-name;

62

5.5. ROBOCONF DOMAIN SPECIFIC LANGUAGE

(a)

An Azure VM
VM_AZURE {

installer: iaas;
children: Tomcat,

Apache, MySQL;
}
An EC2 VM
VM_EC2 {

installer: iaas;
children: Tomcat,

Apache, MySQL;
}
A VMware VM
VM_VMWARE {

installer: iaas;
children: Tomcat,

Apache, MySQL;
}
MySQL
MySQL {

installer: puppet;

exports: ip, port = 3306;
}
Tomcat with Rubis
Tomcat {

installer: puppet;
exports: ip,

portAJP = 8009;
children: Rubis

}
Apache Load Balancer
Apache {

installer: puppet;
imports: Tomcat.portAJP,

Tomcat.ip;
}
RUBiS WAR Application
Rubis {

installer: java-servlet;
imports: MySQL.port,

MySQL.ip;
}

(b)

A VM Azure with Apache
instanceof VM_AZURE {

name: vm-azure-apache;

instanceof Apache {
name: apache;

}
}
A VM EC2 with Tomcat
instanceof VM_EC2 {

name: vm-ec2-tomcat-1;

instanceof Tomcat {
name: tomcat-1;
instanceof Rubis {

name: rubis-1;
}

}
}

A VM VMware with Tomcat
instanceof VM_VMWARE {

name: vm-vmware-tomcat-2;

instanceof Tomcat {
name: tomcat-2;

}
}
A VM VMware with MySQL
instanceof VM_VMWARE {

name: vm-vmware-mysql;

instanceof MySQL {
name: mysql;

}
}

Figure 5.3: Example of a Roboconf DSL: (a) graph and (b) instance files for 3-tier
deployment

63

CHAPTER 5. MODEL OF ROBOCONF APPLICATIONS

Reusable parts can be shared inside our community. But it is also possible
to define its own reusable parts (e.g. in a company that would like to enforce
some practices and configurations). There is quite a lot of possibilities offered by
this system. Roboconf recipes can be defined and maintained anywhere. Official
recipes are hosted on Github, every recipe having its own Git repository. It is up
to users to determine whether they want to use them, create new ones, or even,
create their own recipe repository. This is indeed an option some organizations
may retain.

5.5.3 Roboconf DSL Dedicated to the Rules of Elasticity
The rules of elasticity for a cloud application also can be expressed using the fine-
grained Roboconf DSL. The DSL are languages associated to a specific problem
domain. The language provides dedicated high-level concepts for the elasticity of
Roboconf application. This language allows to easily express rich conditions and
correlation of events. We can express rules over a period of time. These mech-
anisms and expressiveness of the simplified language reduce efforts to develop a
elastic system able to respond to complex situations.

Concepts

Our elasticity DSL is a language guided by events which means that the system
triggers actions based on events specified in the rules. Each event is associated
with a context. The context of the event is transmitted to the rules associated with
it. The conditions and actions of the rules can access information in the context
of the event. The elasticity language based on two basic concepts:

• Creation of events: this is the specification of an event in the language of
elasticity, which causes the Roboconf system to trigger whenever this event
occurs. Figure 5.4 shows syntax to create an event in Roboconf DSL. This
offers capability for the developer to create its own events to monitor.

• Reactions to the events: provide guidance to describe how to achieve certain
elasticity goals when specific conditions are met.

[EVENT measure-extension measure-name]
[measures]

Figure 5.4: Syntax to create an event in Roboconf DSL

64

5.5. ROBOCONF DOMAIN SPECIFIC LANGUAGE

This command indicates an event triggering a measure that an agent will have
to perform regularly on its machine. An agent can use several options to measure
something. The option or extension used to perform the measure is indicated on
the same line with the measure name. Each measure is performed independently
of the others. It means every result matching the rule results in a message sent to
the DM. The agent measures and notifies when needed and it has not to interpret
these measures. This is responsibility of the autonomic modules of the DM. The
measure-extensions currently supported includes LiveStatus, REST and File. The
LiveStatus [35], which is the protocol used by Nagios [36] and Shinken [37],
allows to query a local Nagios or Shinken agent. An agent also can query a REST
service. The result can be interpreted as an integer or as a string. The local file
system is the third one can be checked by the agent. Depending on the existence
of a file or a directory, or based on the absence of a given file, a notification will
be sent to the DM. Developers can create a new measure-extension and integrate
it into Roboconf source code.

Syntax

Figure 5.5 shows the general syntax of an event reaction in our dedicated lan-
guage.

[REACTION measure-name reaction-handler]
Optional parameters for the handler

Figure 5.5: Syntax of an event reaction in Roboconf DSL

A reaction is triggered when one or more conditions are met. These condi-
tions are defined in the corresponding reaction-handlers. Measures which are sent
from the measure-name event are a source to calculate comparable metrics such
as response time, cpu usage, mem usage, etc. Table 5.1 lists operators used in the
elasticity conditions. Roboconf provides an interface class for developers to cre-
ate their own reaction-handlers or overwrite built-in ones. There are 5 available
built-in reaction-handlers described as follows.

• Log is to log an entry without any parameters. It is used mainly for debug.

• Mail is to send an email. It accepts only one parameter which is an email
address.

• Replicate-Service is to replicate a component instance (including instances
of VM, container and service component) from a source to a destination.

65

CHAPTER 5. MODEL OF ROBOCONF APPLICATIONS

Table 5.1: List of Operators

Operator Numeric Only
= no

== no
< yes
> yes
<= yes
>= yes

Source and destination can be in the same machine depending on the ab-
solute pathname of the replicating instance. It takes a series of source-
destination couples of instance names as parameters. These couples are
separated by commas. This reaction is usually used in the horizontal scale.

• Delete-Service is to undeploy and remove a component instance that is not
necessary anymore or just been replicated. It takes an instance absolute
pathname as parameter.

• Expand-Service is to expand a instance vertically such as adding CPU,
memory to appropriate components (usually instances of compartment com-
ponents such as VM, lightweight containers). It takes an instance absolute
pathname, a resource unit (currently supported vCPUCore, vCPUShare,
memUsage, diskUsage, networkUsage) and quantity of this resource unit
(positive means extending, negative means shrinking) as parameters. This
reaction is usually used in the vertical scale.

As an example, to remove a specific instance WebappA hosted in a container
Tomcat1 running on a virtual machine VM1, we need to provide the absolute
pathname (/VM1/Tomcat1/WebappA) of this instance as follow.

[REACTION low-RT-1 Delete-Service]
/VM1/Tomcat1/WebappA

The supporting for multi-level fine-grained elasticity

Roboconf owns a multi-level fine-grained DSL, thus the elasticity DSL is also
inherited this characteristic. Consider our three-tier motivating application de-
scribed in Section 5.2. At the execution, each component has specific needs of
scaling as required by the developer. Depending on the vertical or horizontal elas-
ticity type defined by the developer, the components can be individually resized

66

5.5. ROBOCONF DOMAIN SPECIFIC LANGUAGE

or creating more component instances in different VMs or by allocating more or
less computing resources. Thus, the elasticity may be expressed at different levels
by different types of users (developers, administrators).

Second, the developer needs to express the elasticity requirements at different
levels of resource granularity, whose specifications will be applied at different
levels, as opposed to the usual approaches in the allocation and reallocation of
resources. To achieve this, the elasticity controls must be supported at different
levels following:

• Application level: the requirements of elasticity can be applied on the over-
all availability of the application.

• Software Component level: the developer can specify different requirements
in function of the component type. For example, the nature of the require-
ments for a processing unit component may be different from that of a front-
end component.

• Infrastructure level: the system admin may have different concerns in opti-
mizing their infrastructure by applying elasticity policies on PMs or VMs.

To demonstrate for the multi-level fine-grained elasticity language of Robo-
conf, we take the motivating example to demonstrate implementations of the hor-
izontal and vertical built-in reaction-handlers as follows. The illustration of the
reaction chain is shown in Figure 5.6.

[I] To replicate the entire stack of /VM1/Tomcat1/WebappA (all three in-
stances):

[REACTION high-RT-1 Replicate-Service]
/VM1/Tomcat1/WebappA /VM2/Tomcat2/WebappB

It is worth noting that if an empty VM2 already exists, it will be reused and
“filled” with a new Tomcat2 containing a new WebappB. Otherwise, a new entire
stack will be created.

[II] To remove a specific instance WebappB of the stack /VM2/Tomcat2/WebappB,
we need to provide the absolute path of this instance:

[REACTION low-RT-1 Delete-Service]
/VM2/Tomcat2/WebappB

[III] To replicate a specific instance WebappA of the stack /VM1/Tomcat1/WebappA
to under the Tomcat2 (/VM2/Tomcat2/) and name it WebappC:

[REACTION high-RT-2 Replicate-Service]
/VM1/Tomcat1/WebappA /VM2/Tomcat2/WebappC

67

CHAPTER 5. MODEL OF ROBOCONF APPLICATIONS

Figure 5.6: Illustration of reactions in a multi-level fine-grained manner

[IV] To remove the entire stack /VM2/Tomcat2/WebappC, we only need to
provide the absolute path of the root instance which is VM2 in this case:

[REACTION low-RT-2 Delete-Service]
/VM2

It is also worth noting that the VM2 and its children (Tomcat2, WebappC)
will be gracefully stopped, undeployed and removed from the system orderly and
automatically. In the case of migration, we combine both “Replicate-Service” and
“Delete-Service” rules. For instance, after [III]:

[V] To migrate a specific instance WebappA of the stack /VM1/Tomcat1/WebappA
to under the Tomcat2 (/VM2/Tomcat2/) and name it WebappC:

Replicate the WebappA first
[REACTION low-RT Replicate-Service]
/VM1/Tomcat1/WebappA /VM2/Tomcat2/WebappC
Then remove the WebappA
[REACTION low-RT Delete-Service]
/VM1/Tomcat1/WebappA

[VI] To increase number of vCPU allocated for VM1 (adds 2 units):

[REACTION high-CPU-usage Expand-Service]
/VM1 vCPUCore 2

68

5.6. SYNTHESIS

5.6 Synthesis
In this chapter, application model of Roboconf have been described. A Roboconf
application is the composition of software components, infrastructure components
(called target) and their corresponding instances and resources. We have also in-
troduced the Roboconf DSL as a method to describe complexity and containment
relationship of the applications. A part of Roboconf DSL dedicated to the rules
of elasticity has been developed to fully support the multi-level fine-grained elas-
ticity (and not only this approach). In the next chapter, detailed architecture and
other elasticity-support features of Roboconf will be discussed.

69

CHAPTER 5. MODEL OF ROBOCONF APPLICATIONS

70

Chapter 6

THE ROBOCONF PLATFORM

Contents
6.1 Introduction . 72

6.2 Architecture of the Roboconf platform 72

6.2.1 Design Details of the Roboconf Platform 73

6.2.2 Roboconf Targets . 74

6.2.3 Roboconf Plug-ins 77

6.2.4 Extension of the Roboconf Platform 79

6.3 Deployment Process . 80

6.3.1 Instance Life Cycle 80

6.3.2 Instance Synchronization 81

6.3.3 Initial Deployment Process 83

6.3.4 Reconfiguration Process 84

6.4 Elasticity Management as an Autonomic System 85

6.4.1 Monitoring Phase . 87

6.4.2 Analyzing Phase . 88

6.4.3 Planning Phase . 88

6.4.4 Executing Phase . 88

6.5 Synthesis . 88

This chapter presents the second sub-contribution of our second contribution
on architecture and implementing aspects of the Roboconf platform which not
only allows to deploy, run and manage the Roboconf applications (presented in
Chapter 5) but also supports multi-level fine-grained elasticity.

71

CHAPTER 6. THE ROBOCONF PLATFORM

6.1 Introduction
In the cloud computing market, many operators provide different cloud services
from infrastructure or IaaS services such as Amazon, Windows Azure, Rackspace
to fully functional platform services or PaaS like Google App Engine, Cloud-
Bees, OpenShift. However, the heterogeneity of these platforms and infrastructure
makes the deployment of service-oriented applications from one cloud provider
to another difficult. It is the same for its management because these platforms
require the use of proprietary APIs. Additionally, applications may have spe-
cific requirements of price, quality of service, availability, geolocation, databases,
middleware. It is difficult for application developers to find an answer to all their
requirements from a single cloud provider. Roboconf is a multi-cloud services
platform that meets the requirements of autonomic elasticity manager identified
in Section 4.3. Beside ability to describe any kinds of applications (genericity)
and to concurrently deploy software components on multiple clouds, Roboconf
implements the MAPE-K autonomic loop to support reconfiguration, scaling and
adaptation. Owning mechanisms that supports for multi-level fine-grained elas-
ticity, Roboconf brings rapidness to elasticity actions. Finally, Roboconf is also
easy to extend with providing many interfaces for plug-in integration.

In next sections, we will describe Roboconf architecture and detail its mod-
ules. We present the deployment process and reconfigurability of the platform.
Finally, we present Roboconf methods and mechanisms to manage elasticity as an
autonomic system.

6.2 Architecture of the Roboconf platform
Roboconf is a distributed multi-cloud platform based on service-oriented architec-
ture (i.e. SoA). The design of a distributed and robust system is a difficult issue.
The architectural considerations therefore play an important role in the design
of the Roboconf platform. The architecture covers the overall structure, organi-
zation, expression of nonfunctional requirements, management for both business
applications and the platform itself.

In addition to the architectural problems, the main problems in the design of
the platform come from the distribution. The interaction among software compo-
nents is based on the communication layer. There exist different modes of inter-
action such as synchronous and asynchronous communications. Problems related
to the composition and software components are central elements in the design
of multi-cloud Roboconf platform, both for its structure and for business appli-
cations deployed on it. In a multi-cloud environment, the management in case
of failure of Roboconf platform and its hosted applications raises the problem of

72

6.2. ARCHITECTURE OF THE ROBOCONF PLATFORM

maintaining and persistence the coherence of the states. Life cycle management
of applications includes functions such as configuration, deployment, monitoring,
reaction to changes in the runtime environment, and reconfiguration. Sponta-
neous requirements and fast growing cloud environments lead to considering the
automation (Autonomic computing) of management tasks. The architectural fea-
tures of Roboconf platform go beyond what is currently offered. Thus the Robo-
conf platform provides an effective and simple way to deploy, run and manage
multi-cloud applications. In addition, it supports mechanisms and approaches to
satisfy the requirements posed for modern autonomic elasticity managers.

6.2.1 Design Details of the Roboconf Platform
Roboconf is a distributed solution to deploy distributed applications. It is an open-
source software licensed under the terms of the Apache license version 2.0. It
is a deployment framework for multi-cloud, but not only. It allows to describe
distributed applications and handle deployment automatically of the entire appli-
cation or a part of it. The objective of this framework is to be improvable with a
micro kernel which is the core of Roboconf. This kernel implements all neces-
sary mechanism to plug new behaviours for addressing new applications and new
execution environments. Moreover, Roboconf supports scaling natively. Its main
force is the support of dynamic (re)configuration. This provides a lot of flexibil-
ity and allows elasticity deployments. Roboconf is made up of several modules.
A simplified drawing of Roboconf architecture is depicted in Figure 6.1 and ex-
plained more detailed as follows.

Deployment Manager: (or DM) is an application in charge of managing VMs
and the agents (see below). It acts as an interface to the set of VMs or devices.
New cloud environments can be integrated into Roboconf using target handlers.
It is also in charge of instantiating VMs in the IaaS and physical devices such as
embedded boards. It is responsible for implementing sub-modules of the Robo-
conf autonomic loop (see Section 6.4). The DM also offers an API using REST/J-
SON technology.

Agent: is a software component that must be deployed on every VM and
device on which Roboconf wants to deploy or control something for bootstrap-
ping. Agents use plug-ins to delegate the manipulation of software instances.
The plug-ins can be life cycle management ones that support different implemen-
tation languages or frameworks such as Bash, Puppet, OSGi, Java, etc. It also
can be a federated PaaS plug-ins such as a Heroku driver. Roboconf kernel is
kept lightweight and the plug-ins can be flexibly plugged into the core. Roboconf
agents communicate with each other through an asynchronous messaging server.

Messaging Server: is the key component acting as distributed registry of im-
port/export variables that enable communications between the DM and the agents.

73

CHAPTER 6. THE ROBOCONF PLATFORM

Roboconf includes the message definitions, the interface to interact with a given
messaging server and their implementations. The DM and the agents always com-
municate asynchronously through this server. So far RabbitMQ [32] is the only
messaging server used for Roboconf but any AMQP [33] messaging ones can be
a candidate.

Instance Manager: is developed as a Roboconf module to delegate software
life-cycle management on different software platforms and monitor software in-
stances themselves.

Artifact and Image repositories: are responsible for distribution of software
packages (i.e. artifact) and images (VM or container), respectively. Artifact repos-
itories can be managed locally or retrieved from public repositories such as Maven
center or NPM. Image repository is a database to map each required image of each
target to corresponding infrastructure components. The required image can be an
image available in the image marketplace provided by IaaS or a pre-built one cre-
ated manually or automatically (e.g. using Dockerfile [30] or Vagrantfile [31]).

DSL: is a domain specific language developed to describe components of a
Roboconf application and relationships among them (see Section 5.5). A part of
Roboconf DSL dedicates to describing the rules of elasticity.

Admin console: is required to control the entire platform mainly through the
DM. Roboconf comes with a shell-based console and an AngularJS web applica-
tion providing various user interfaces to interact with the DM through REST. It
contains utilities to transform Java beans into JSON.

6.2.2 Roboconf Targets
As mentioned, Roboconf is about applications. Applications are made up of in-
stances, each instance having a component which defines its behavior with re-
spect to other components. Some of these components designate machines, being
virtual or physical. Lightweight containers such as Docker are included in this
definition as well. These specific “scoped” instances recognized by the installers
of their components are called targets. Roboconf can deploy an application on
various targets. This includes cloud infrastructures (IaaS) or other kinds of tar-
gets. It can even deploy a part of an application on a given IaaS and some other
parts on other IaaS (cloud bursting). This makes Roboconf suitable for hybrid de-
ployments. Thus, an applications can be deployed in the cloud, in the self-hosted
information system or even on the embedded systems (e.g. connected devices,
Internet of Things). Target features may vary from one infrastructure to another.
These features are implemented depending on requirements of users. Obviously,
they can be extended if necessary.

To create, delete, and more generally, manage the life cycle of such a machine,
Roboconf target installer needs additional information. As an example, creating a

74

6.2. ARCHITECTURE OF THE ROBOCONF PLATFORM

Figure 6.1: Simplified architecture of Roboconf

machine on Amazon Web Services or creating a Docker container is not exactly
the same thing (not the same means, not the same API, not the same libraries). To
specify the configuration and the library to perform the configuration, a scoped in-
stance must be associated with a target. A target includes the identifier of a “target
handler” library and some properties to indicate how to configure the machine. A

75

CHAPTER 6. THE ROBOCONF PLATFORM

target is defined by:

• A handler, which points to a target handler (an OSGi bundle to deploy in
Roboconf).

• A name (optional), that will be more explicit for users.

• A description (optional), that will help users to understand it.

• Various properties, that depend on the handler.

Beyond its properties, a target aims at being associated with scoped instances.
This association is made per application. Every time designing and creating a new
Roboconf application, the associations between its scoped instances and targets
should be configured. It is also possible to set a given target as the default for
a given application. When a scoped instance is not associated with any targets,
and that we try to deploy something on it, then Roboconf will use this default
target to deploy the instance. Multi-IaaS (for hybrid cloud) is handled by defining
several scoped instances and by associating them with different targets. Thus,
one can target an Openstack infrastructure, while another one can be deployed on
Amazon Web Services.

Deployment targets can be defined and associated with applications by either
at runtime using the web console or at design time using predefined targets. In
both ways, it needs to make sure that corresponding target handlers of OSGI bun-
dles had been already installed and started before. With the web console, this
includes several steps:

• Creating and editing the properties of a target.

• Deleting a target, provided it is neither currently used nor referenced by an
application.

• Associating a target with a specific instance of a given application.

• Defining a target as the default one for an application.

With the latter way, it is possible to embed predefined targets in deployment
archives. Notice that these targets and their associations can be modifiable with
the web console latter. For every predefined target, the definition follows the same
schema. In the graph model, root components are associated with hardware ele-
ments. This can be virtual machines, existing machines or devices. These root
components must be associated with the target installer. When Roboconf parses
the model, it will recognize this installer and then search for the IaaS configu-
ration. It means the resource directory associated with this root component may

76

6.2. ARCHITECTURE OF THE ROBOCONF PLATFORM

contain a target.properties file. All the predefined instances of this same compo-
nent will use this target. Subsequently created instances will use the default one
associated with the application.

The DM will analyze the properties and deduce corresponding target handlers
to pick up. It will then take the right client library to create the VM. Most of the
target implementations of Roboconf rely on virtual images (or AMI or appliance).
It means Roboconf creates a VM from a template and properties given in the IaaS
properties. A definition (in target.properties file) of a target abstracting properties
of Amazon EC2 VM is demonstrated in Figure 6.2a. A complete description of
supported properties for Amazon EC2 VM and definitions of other targets offi-
cially advocated by Roboconf (OpenStack, EC2, MS Azure, VMWare, Docker,
Apache JCloud, Embedded, In-memory) can be referenced in Appendix.

It is also possible to define an elastic IP address. It is not a good idea to set
it in the target.properties, although it works. Indeed, all the VM instances created
from this target configuration will try to use the same elastic IP. Since Amazon
does not allow it, only the last created VM will be associated with this IP. In a
general matter, VM instances can inject target parameters through their defini-
tions. These properties must start with “data.” followed by the target property.
Therefore it is much better to define the elastic IP in the instance definition, as
shown in Figure 6.2b.

6.2.3 Roboconf Plug-ins
Roboconf agents use plug-ins to manage the life cycle of instances. As a reminder,
Roboconf agents are deployed either on VMs, or on devices. In any case, they are
supposed to be deployed remotely with respect to the DM. An instance represents
a concrete software component, that will interact with instances of other compo-
nents deployed with Roboconf. The life cycle of an instance is composed of the
following phases:

• initialize: check the prerequisite are available on the machines of agents.

• deploy: receive from the DM the files to deploy and deploy them effectively.

• start: start the deployed instance. At this moment, imports from other com-
ponents are resolved. Other components are notified that a new instance is
running and receive new exports.

• update: components this instance depends on have changed. Imports are
updated and it may require an update of the configuration files.

• stop: stop the deployed instance. Other components are notified an instance
is stopped and update their imports.

77

CHAPTER 6. THE ROBOCONF PLATFORM

Configuration file for EC2
handler = iaas-ec2
name =
description =

EC2 URL
ec2.endpoint =

Credentials to connect
ec2.access.key =
ec2.secret.key =

VM configuration
ec2.ami =
ec2.instance.type = t1.micro
ec2.ssh.key =
ec2.security.group =

(a)

instance of VM {
name: VM1;
data.ec2.elastic.ip:
your-elastic-ip;

Put children
instances next...

}

(b)

Figure 6.2: a) Roboconf target definition of Amazon EC2 VM; b) example of
configuring an elastic IP for a EC2 VM instance

• undeploy: delete the deployment files from the machine. Even be unde-
ployed, the instance is still in the model. When an instance is registered in
the model but that it is not running or even deployed, it is marked as not
deployed. Therefore, it can have predefined instances in your application
even if they are not running or deployed.

A Roboconf plug-in handles the complete life cycle of an instance. This means
a plug-in implements all the life cycle steps. From a concrete point of view, con-
figuring Roboconf plug-ins is what will take most of the time. Writing the Robo-
conf model (application description, graph definition and initial instances) is fairly
easy and is achieved quickly. Every plug-in required resources located into the di-
rectory associated with a graph component. As an example, let’s assume we may
have a following component.

Apache_Load_Balancer {
installer: puppet;

}

This implies there will be a directory called Apache Load Balancer which will
contain at least one Puppet module. The fact it is a Puppet module is due to the

78

6.2. ARCHITECTURE OF THE ROBOCONF PLATFORM

Puppet installer. If we had used the Bash plug-in, the directory would contain
bash scripts. What files are expected depend on the plug-in itself. Basically, plug-
ins are the way Roboconf can be extended. Thus, it is possible to write its own
plug-ins to integrate and share a given behavior.

6.2.4 Extension of the Roboconf Platform

The cloud platform provides some extendable dimensions:

• Roboconf plug-in: A Roboconf plug-in is an extension for a Roboconf
agent. There are some built-in plug-ins for Roboconf agents. The Script
plug-in handles various scripts language including Bash, Shell, PERL, Python,
etc. The Puppet plug-in interacts with Puppet agents. The File plug-in han-
dles simple file manipulations. The Logger plug-in is a basic extension that
only logs actions. The Roboconf plug-in is an OSGi bundle with specific
meta-data. Roboconf uses iPojo to simplify OSGi development. A new
plug-in needs to implement a PluginInterface interface (see Appendix).

• Roboconf deployment target: A deployment target designates a platform
or a solution on which Roboconf can deploy software. Currently available
targets include cloud infrastructures (AWS, Openstack...), Docker, etc. A
deployment target is supported through an OSGi bundle with specific meta-
data. Developers have to implement a TargetHandler interface for each new
deployment target (see Appendix).

• Roboconf monitoring handler: A monitoring handler is an extension of
the monitoring module at the side of Roboconf agent. These handlers are
in charge of polling or verifying resources on the machines of agents. They
are used for autonomic management. Currently available handlers include
File, Nagios and Rest. A monitoring handler is an OSGi bundle with spe-
cific meta-data. New monitoring handlers can be added to Roboconf by
implementing a MonitoringHandler interface class (see Appendix).

• Roboconf elasticity rule: To provide highly extensibility, Roboconf allow
users to define elasticity rules specifying to each cloud application. Fur-
thermore, Roboconf allows redundantly elasticity rules at multiple levels of
resource granularity to ensure that failure of one of these mechanisms at a
level has minimum impact to overall efficiency. A new elasticity rule can
be added to Roboconf using the DSL dedicated to the rules of elasticity as
described in Section 5.5.3.

79

CHAPTER 6. THE ROBOCONF PLATFORM

6.3 Deployment Process

6.3.1 Instance Life Cycle
Roboconf applications do not have a life cycle. What does the life cycle of a
distributed application mean? Assuming we start the application, it means all its
parts are started. But some parts may be optional, the application may work with-
out them. Besides, what is the state of the application when one of its vital part
falls? For these reasons, it was decided to not associate a life cycle with a Robo-
conf application. Instead, such an application supports the following operations:

• Addition: load and add a new application to the list of managed applications.

• Shutdown: a commodity operation to undeploy all the parts of the applica-
tion.

• Removal: remove the application from the managed applications. This is
only possible when all the application parts have been undeployed.

Eventually, there are several operations to perform on the applications parts. In
Roboconf, applications parts are called instances. An instance is associated with
a component, itself defined in the graph model. An instance is a specific piece
of software, running and working within the scope of a Roboconf application. It
can be an application server, a database, an applicative module or even a VM.
Instances do have a life cycle as shown in Figure 6.3.

Some of the steps are said unstable (or transitive): deploying, starting, stop-
ping and undeploying will end up with a stable state (either not deployed, deployed
- started and deployed - stopped). The transitive states are used to report infor-
mation to the user. Indeed, deploying (or starting, or stopping, or undeploying)
an application can be a long-running operation. The unresolved state is reserved
to non-root instances. Before a deployed instance can be started, its dependencies
are verified. If they are all satisfied (Roboconf knows where they are and that they
were started), then the instance can be started. Otherwise, it will remain in the
unresolved state until its dependencies are resolved. Once they are all satisfied,
Roboconf will automatically start the instance. Thus when an instance is in this
state, it will start as soon as all its dependencies are resolved.

The problem state is a little bit specific. It is reserved for root instances (often
VM). If a started root instance has not sent a heartbeat for some time, the root
instance will go into the problem state. If a heartbeat arrives, it will go back into
the deployed - started state. If a root instance is in the problem state, it means
either that the agent encountered a problem, that the VM has network issues, or
that the messaging server had a problem. It does not mean application parts do not
work. Another difference of root instances is that they do not reach the deployed -

80

6.3. DEPLOYMENT PROCESS

stopped state. They are either deployed and started, or not deployed. They cannot
go through the intermediate states.

Let’s now illustrate the life cycle of an instance with an example. We will take
the LAMP example (Apache load balancer, Tomcat and MySQL). We will focus
on the Tomcat server.
1. We have created and started a VM for the Tomcat server.
2. We now create an instance in our model to declare a Tomcat server. State is not
deployed which allows to declare instances without deploying them.
3. We deploy it. Its state first jumps to deploying. Once it is deployed, the state
switches to deployed - stopped.
4. We start it. It goes to the unresolved state.
5. If all its imports are resolved (i.e., a MySQL database was deployed and
started), then it can go to the starting state before ending (normally) in the de-
ployed - started state. Otherwise, it will remain in the unresolved state until a
MySQL database is started. Let’s suppose a MySQL database was started. The
state of the Tomcat instance is deployed - started.
6. Let’s stop the MySQL database. Roboconf changes the Tomcat state to unre-
solved again. All the other instances that depend on this Tomcat instance will also
update their life cycle if necessary (chain reaction). Restart the MySQL instance
and the Tomcat will go back into deployed - started state.
7. We stop the Tomcat server. State goes through stopping before ending with de-
ployed - stopped.
8. We undeploy the instance. State goes through undeploying before ending
with not deployed.

The life cycle of application instances is managed through the DM. A user that
wants to modify the state of an instance will have to use the REST API. This API
can modify the state of an instance, or modify states in bulk mode.

6.3.2 Instance Synchronization

As discussed, before we can start an instance, its dependencies must be resolved.
If all its imports are resolved, then it can go to the starting state before ending in
the deployed - started state. Otherwise, it will remain in the unresolved state until
all instances on which it depends started. Exchanging the export/import variables
is done by the Agent, and only the message server is used in the process. The
instances subscribe to and publish on topics in these message server. If henceforth
the system runs into a stable state in a long term, the DM is indeed not necessary
and can be suspended or shut down. The communication protocol for instance
synchronization is demonstrated as follows.

81

CHAPTER 6. THE ROBOCONF PLATFORM

Figure
6.3:L

ife
cycle

ofa
R

oboconfinstance

82

6.3. DEPLOYMENT PROCESS

foreach export:
subscribe to "$applicationName.import.$exportName"
publish exported vars on "$applicationName.export.
$exportName"

foreach import:
subscribe to "$applicationName.export.$importName"
publish notification on "$applicationName.import.
$importName"

(when listening to new messages,) if receive notification
-> publish exported vars on "$applicationName.export.
$exportName"

Using the asynchronous message server and thanks to the previous process, the
system is able to configure in any order. Note that the “sub channel” field defined
in the Instance and Type is used in the process below. For example instead of pub-
lishing on or subscribing to a channel named “$applicationName.export.$exportN-
ame”, it publishes/subscribes to “$applicationName.export.$exportName.$subCh-
annelName”.

Below is an example demonstrating the synchronization protocol of a config-
uration exchange between an Apache and a Tomcat. In Figure 6.4a, the Apache
begins the configuration process first, and Tomcat begins some time later. In-
stances are colored in orange and topics are in yellow.

In Figure 6.4b, the Tomcat starts the process first, and the Apache starts after.
When an instance is removed or updated, a similar process as the one above is
used to remove the instance and its configuration from the application or update
other dependent instances, respectively.

6.3.3 Initial Deployment Process
We use the three-tier RUBiS example to understand the way Roboconf deploy-
ment works. As mentioned, dependencies between components is presented in
Figure 5.2. In an IaaS elasticity scenario, multiple Tomcat nodes can be added/re-
moved to adapt to traffic, but it requires a dynamic reconfiguration of the Apache
node in order that “mod proxy” knows about all the available Tomcat nodes.
Roboconf is told to deploy Apache, MySQL and Tomcat on three separate VMs
that similar to Figure 5.3b. This includes updating the configuration files as soon
as dependencies can be resolved (e.g. when it is aware of the MySQL IP/port,
Roboconf will send them to the Tomcat node, so it can update its configuration
and start). The application components (MySQL, Tomcat, Apache) are defined
as Figure 5.3a. The VM is supposed to support the deployment of either Apache,
Tomcat or MySQL components and each component is described in terms of im-
ports/exports. With this description, Roboconf knows when a deployed compo-

83

CHAPTER 6. THE ROBOCONF PLATFORM

Figure 6.4: Communication protocol for instance synchronization

nent can be started. It is when all its imports are resolved! Roboconf is in fact
responsible for import/export exchanges between components, and life cycle man-
agement (e.g. start the component when imports are resolved).

6.3.4 Reconfiguration Process
It often happens when everything is running, we need to create a new instance to
adapt to changes from environment. It means the running system needs to indicate
the component to instantiate, give it a name and define where it should go. In this
particular example, due to an increasing workload a new Tomcat instance hosted
by a VM instance has to be added automatically. We can either reuse an existing
or create another VM instance. In this scenario, we take the latter. The Robo-
conf DSL provides set of autonomic rules to respond to the detected changes. The

84

6.4. ELASTICITY MANAGEMENT AS AN AUTONOMIC SYSTEM

[EVENT nagios peak-load]
GET services
WaitObject: $HOSTNAME CPU load
WaitCondition: CPU load > 80
WaitTrigger: check

[REACTION peak-load Replicate-Service]
/vmec2/tomcat1

Figure 6.5: Example of an autonomic rule of Roboconf DSL: (above) at the agent
side, (bottom) at the DM side

agents measure anomalies frequently and send notifications to the DM. The DM
responds to the notifications using corresponding imperative rules. Figure 6.5 de-
picts a rule that we apply for the example. At the agent side, we use LiveStatus
which is the protocol used by Nagios and Shinken. The LiveStatus query retrieves
measures of CPU load from a local Nagios or Shinken agent, if this parameter is
over 80%, a notification will be sent to the DM. In turn, the DM applies the han-
dler “Replicate-Service” to respond to the notification resulting in adding an entire
new path “/vmec2/tomcat1”. Both instances of this path, the “vmec2” and “tom-
cat1” will be added to the application model. It is one more example emphasizing
hierarchy of the Roboconf DSL. At the very beginning of the adding process, both
the two new are not started, and not even deployed. The DM is asked to deploy
and start them. First, the DM provisions the VM. Once it is up, the DM sends the
deployment command to the VM and a new Tomcat instance is deployed over it.
The Roboconf agents then publishes the exports (i.e. a new Tomcat instance with
a port and IP address). Since the Apache load balancer imports such components,
it is notified a new Tomcat arrived. The agent associated with the Apache VM
invokes a Roboconf plug-in to update the configuration files of the Apache server.
Therefore, the load balancer is now aware of two Tomcat servers. If configured
in round-robin, it will invoke alternatively every Tomcat server when it receives a
request. It is worth noting that real magic with Roboconf is the asynchronous ex-
change of dependencies between software instances whereas the deployment and
life cycle actions are delegated to plug-ins.

6.4 Elasticity Management as an Autonomic System
The context of the execution environment for applications deployed across multi-
ple clouds can change quickly in minutes or even seconds. To manage a system
in this changing so quickly, it is essential to react dynamically and automatically

85

CHAPTER 6. THE ROBOCONF PLATFORM

to regulate events that occur or anticipate them. Autonomic systems and process
control concepts can be used to implement a system that knows its own state and
reacts to the change. The essential part of such a system is the controller that is
external to the observed environment. The responsibilities of an elasticity con-
troller are to monitor the system, analyze the metrics, plan actions and execute
them. This is known as a control loop name MAPE-K (Monitoring, Analysis,
Plan, Executing, Knowledge - see Section 2.2.2) introduced by IBM.

The Roboconf cloud platform manages elasticity to multiple levels in the same
way. In fact, the management of elasticity in Roboconf does not focus on a spe-
cific layer of the cloud. Roboconf uses resources through the abstraction layers
provided by the DM.Roboconf offers the capacity scaling for applications by al-
locating/deallocating resources as needed. For example, the Roboconf platform
can add more resources if it detects a deterioration in the performance of the ap-
plication. However, if resources are underutilized, shrinking might be necessary.
This feature is managed as an autonomic control loop by Roboconf platform.

In practice, cloud resource supply is not instantaneous. Provisioning a new
server may take a few minutes [140]. As described in Section 3.3, the verti-
cal scaling often occurs more rapidly than the horizontal one. Moreover, using
lightweight containers instead of coarse-grained VMs accelerates the provision-
ing time. The elasticity mechanism is based on the Roboconf DM that has an
intelligence mechanism allowing it to allocate resources in a timely manner. As
described above, the Roboconf elasticity mechanism follows the phases of the
control loop.

We propose the autonomic management as an integrated feature of Roboconf,
which consists of two parts. On one side, agents retrieve metrics on their local
node. These metrics are compared against some values given in the configuration
of agent. If they exceed, equal or are lower than given values, depending on
the configuration rules, agents send a notification to the DM. On the other side,
when the DM receives such a notification, it checks its configuration to determine
which actions to undertake. These actions can range from a single log entry, to
email notification or even replicating a service on another machine. Figure 6.6
sums up the way autonomic management works. While detection is delegated to
the agents, reactions are managed by the DM.

The autonomic configuration is in fact defined in application projects. It means
every project has its own rules and reactions. In this perspective, the project struc-
ture is enriched with a new directory, called autonomic. With the descriptor, graph
and instances directories, it makes the fourth. The autonomic directory expects
two kinds of files.

• Measures files include a set of measures to perform by the agent. Such
a file is associated with a given component in the graph. Hence, we can

86

6.4. ELASTICITY MANAGEMENT AS AN AUTONOMIC SYSTEM

consider the autonomic rules as an annotation on a component in the graph.
These files must be named <component name>.measures.

• Rules files define the actions to undertake by the DM when a measure has
reached a given limit. Such a file is associated with the whole application.
It must be named rules.cfg.

Figure 6.6: Roboconf autonomic loop for elasticity

6.4.1 Monitoring Phase
Deployed cloud applications are monitored and their configurations can be ad-
justed based on the metrics collected by the Monitoring sub-module that is in-
tegrated both on the agents (to monitor instances inside VMs) and the DM (to
monitor the Roboconf platform itself). The monitoring component is both inva-
sive and non-invasive applications. It is intrusive because it can instrument the
application and execution environment at runtime. It is non-intrusive because it
can monitor the phenomena outside the application such as network traffic, the
percentage of CPU used, the amount of memory consumed.

As modules of Roboconf has been developed as OSGi bundles, the monitoring
of the DM and the agent distributions can be relied on Apache Karaf. The OSGi
bundles do not embed anything related to monitoring. But Karaf exposes a JMX
interface which can be used to retrieve information and manage the OSGi servers.
JMX access can be completed with the web consoles and shell access. Monitoring
applications would be done by third-party distributed system monitors such as
Ganglia or Nagios. These tools can be integrated into Roboconf by implementing
the MonitoringHandler interface (see Section 6.2.4). Currently Roboconf supports
the File, Nagios and Rest as monitoring mechanisms at the agent side.

87

CHAPTER 6. THE ROBOCONF PLATFORM

6.4.2 Analyzing Phase
The monitored data is analyzed by the sub-module Analyzer. The users, depend-
ing on their intentions, can apply analytic algorithms or statistical models along
to historical data retrieved from Knowledge databases (Cassandra in this work) to
elaborate the data in this phase. The analyzed data can be used to update backward
the Knowledge.

6.4.3 Planning Phase
Given the situation, the sub-module Planner will conduct the planning phase in
order to create an action plan to bring the metric values to normal. This plan may
be based on a set of rules governing the operations the DM (reactive) or a sophis-
ticated model that works on the restoration of the system behavior (proactive).

6.4.4 Executing Phase
In the executing phase, the DM delegates to the agents with corresponding plug-
ins to perform the actions decided in the planning phase. Once implemented, these
actions will cause a change in the behavior of the system that will be notified to
the DM in the control loop.

We will introduce an algorithm to orchestrate elasticity in planning phase,
which takes advantage of the fine-grained multi-level provisioning and scaling
supported by Roboconf in Chapter 7.

6.5 Synthesis
In this chapter, we described the architecture and the implementation of our Robo-
conf platform to take into account the architectural requirements of distributed
applications in a multi-cloud environment. We offer the platform as a multi-cloud
service to deploy, run and manage distributed applications. We not only described
each component of the Roboconf architecture but also discussed the implemen-
tation choices and the technologies used to implement them. Roboconf takes as
input the description of a whole application in terms of “components” and “in-
stances”. Components can be seen as object definitions, while instances are ob-
viously instances of these objects. From this model, it then takes the burden of
launching VMs, deploying software on them, resolving dependencies dynamically
among software components, updating their configuration and starting the whole
stuff when ready.

Roboconf handles instance life cycle: hot reconfiguration (e.g. for elasticity

88

6.5. SYNTHESIS

issues) and consistency (e.g. maintaining a consistent state when a component
starts or stops, even accidentally). This relies on a messaging queue (currently
RabbitMQ). Application parts know what they expose to and what they depend
on from other parts. The global idea is to apply to applications the concepts used
in component technologies like OSGi. Roboconf achieves this in a non-intrusive
way, so that it can work with legacy software. Application parts use the message
queue to communicate and take the appropriate actions depending on what is de-
ployed or started. These appropriate actions are executed by common plug-ins
such as bash, puppet or customized ones such as java-servlet, osgi-bundle. Robo-
conf is a distributed technology, based on AMQP and REST/JSON. It is both
IaaS and PaaS-agnostic. Many well-known IaaS are supported including Open-
Stack, Amazon Web Services, Microsoft Windows Azure, VMware vSphere, a
plug-in to deploy Docker container as well as a “local” deployment plug-in for
on-premise hosts. In the PaaS aspect, not only potential type of applications are
tensely brought up to the Cloud such as OSGi or IoT but also state-of-the-art
PaaS are purposefully included such as Heroku Platform, Google App Engine and
CloudBees. Roboconf satisfies most of state-of-the-art requirements of a mod-
ern multi-cloud platform such as component fine-grained hierarchical description,
dynamic dependency resolution, concurrent component deployment, multi-cloud
distributed deployment, genericity, extensibility, scalability and reusable/config-
urable deployment plans.

89

CHAPTER 6. THE ROBOCONF PLATFORM

90

Chapter 7

EVALUATION OF THE
MULTI-LEVEL FINE-GRAINED
ELASTICITY WITH ROBOCONF

Contents
7.1 Multi-level Elasticity . 92

7.1.1 Experiment Setup . 92

7.1.2 Test Scenario . 92

7.1.3 Scaling Algorithm 94

7.1.4 Result . 97

7.2 Multi-level Fine-grained Elasticity 99

7.2.1 Experiment Setup . 99

7.2.2 Test Scenario . 100

7.2.3 Scaling Algorithm 100

7.2.4 Result . 103

7.3 Synthesis . 106

In this chapter, we assess the multi-level fine-grained elasticity approach with
Roboconf platform. We use Roboconf hierarchical DSL to naturally describe
structure of the motivating application as described in Section 5.2. We propose
novel elasticity algorithms for two experiments showing efficiency when imple-
menting multi-level fine-grained elasticity. These algorithms can be implemented
by the autonomic modules of Roboconf and interpreted by Roboconf DSL dedi-
cated to elasticity rules as mentioned in Section 5.5.3.

91

CHAPTER 7. EVALUATION OF THE MULTI-LEVEL FINE-GRAINED
ELASTICITY WITH ROBOCONF

7.1 Multi-level Elasticity
Scaling mechanisms for the motivating application are partly mentioned in the
Section 5.5.3 under Roboconf elasticity language. In this section, we conduct an
experiment applying a multi-level scaling algorithm used for conducting elasticity
on a variant of this application.

7.1.1 Experiment Setup
This experiment related to the elasticity context applying to the J2EE application.
With application tier, we use in initials two Tomcat servers dedicating to serve
two different webapps: WebappA and WebappB. The “mod proxy” is used to
build a cluster of Apache servers in order to avoid yet another bottleneck. Each
of Apache server implements the “mod jk” serving as a load balancer in front of
the Tomcat servers. This experiment focuses on elasticity of application tier, thus
without loss of generality, the database is shared among webapps and hosted on
a single MySQL server. All the VMs used in this system have been implemented
on our private OpenStack cloud, which are configured intentionally to have sim-
ilar configuration to Microsoft Azure Standard A2 instances with 2 cores and
3.5 GB memory. Each Tomcat created in the elastic reactions is a Amazon EC2
m3.medium with 1 core and 3.75 GB memory. The managed system is called Sys-
tem Under Test (SUT) that we use CLIF server [38], a distributed load injector,
to create load profile and generate workload for the SUT in order to observe how
the system reacts to changes of average response time (ART). These reactions are
empowered by autonomic rules aforementioned in Section 5.5.3. The topology of
this scenario is depicted in Figure 7.1 with Roboconf as the autonomic system.

7.1.2 Test Scenario
The loads are injected into an entrance of the Apache cluster which is a virtual
IP. Then this cluster distributes the loads to the corresponding webapps through
the Tomcat servers. On the one hand, the WebappB often gets low load, thus has
a load profile as in Figure 7.2 with 50 virtual users who try to send HTTP GET
requests to the WebappB and then stop to “think” a couple of time randomly.
Behaviors of the virtual users are captured from real-world operations using a
capturing tool of the CLIF server. The owner of the WebappB need not any elastic
mechanism provided by Roboconf. On the other hand, the WebappA usually re-
ceives high load and thus has a load profile as shown in Figure 7.2, which is also
designed by the CLIF server. The WebappA usually takes the burden of about 450
virtual users who have similar behaviors as in the case of WebappB. The owner
of the WebappA requires Roboconf to ensure an acceptable performance for his

92

7.1. MULTI-LEVEL ELASTICITY

Figure 7.1: Topology of the J2EE test using CLIF load injector

webapp. Therefore, he demands an elastic load balancing solution to guarantee
an ART as low as possible as stated in the SLA. To isolate workload among the
webapps, we install Tomcat and the webapps into Docker containers. A container
template hosting the Tomcat-WebappA is saved as Docker image for reusing in
scaling decisions. When the ART varies, this solution includes provisioning a
whole new /VM/Docker/Tomcat-WebappA instance (See rule [I] in Section 5.5.3)
or replicating only the .../Docker/Tomcat/WebappA container instance (rule [III])
while scaling out as well as removing the instances (rule [IV]) or migrating the
webapps (rule [V]) while scaling in with minimum side effects to overall system.

The polling periods is set to 10 seconds that means the ART of all requests
from all users are collected each 10 seconds. This gathered data are sent to the
Roboconf monitoring and analyzer modules to be aggregated and further ana-
lyzed. The analyzed information then are delivered to the planner module to gen-
erate new configuration for the system based on ECA rules. The ECA rules decide
whether the system should create an entire application server (a VM) or only repli-
cate a container of webapp instance. To simplify the experiment, we only consider
the horizontal scaling at VM and container levels.

93

CHAPTER 7. EVALUATION OF THE MULTI-LEVEL FINE-GRAINED
ELASTICITY WITH ROBOCONF

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 50 100 150 200 250 300 350 400 450 500 550 600

N
u
m

b
er

 o
f

V
ir

tu
al

 U
se

rs

Duration (s)

Load Profile of WebappA
Load Profile of WebappB

Figure 7.2: CLIF load profiles of the WebappA and WebappB

7.1.3 Scaling Algorithm

The multi-level scaling algorithms used for this experiment is shown from Algo-
rithm 1 to Algorithm 5. To avoid oscillation, these algorithms apply restrictions to
prevent multiple creating of new VMs or new instances in a short period of time
(Restriction 1). At least the system needs to wait until it gets knowledge about the
new one before another can be created automatically. It is called synchronization
time which includes the VM provisioning (from a VM image including the re-
quired Docker, Tomcat, Webapp) and reconfiguration time for the existing Apache
(to know the attendance of the new Tomcat) in the case of provisioning an entirely
new VM. With replicating or migrating a Docker container hosting a Webapp in-
stance, the synchronization time only contains the latter one. Another considered
rule is to prohibit the migration/replication of an instance to spots where also are
on-peak time (Restriction 2). Table 7.1 lists the main symbols used throughout
the algorithms.

94

7.1. MULTI-LEVEL ELASTICITY

Table 7.1: Symbols Used in Scaling Algorithms

Parameter Description
ta The observed response time of the application a
ζaV M Set of VMs which host the application a
ζaC Set of Containers which contain the application a

Tu
a , T

l
a Upper bound Tu

a and lower bound T l
a of the required response time of application a

u(VMa
i , r) Utilization of resource r in the VM i hosting the application a

u(Ca
i , r) Utilization of resource r in the Container i containing the application a

uu(r) The threshold of utilisation for scaling up resource r.
ul(r) The threshold of utilisation for scaling down resource r.

c(Ca
i), c(VM

a
i) Running cost of container Ca

i or VMa
i

c(Ca
i , r), c(VM

a
i , r) Running cost of one unit of resource r of container Ca

i or VMa
i

Algorithm 1: MS (Multi-level Scaling)
1: while (the application is still running)

2: Monitor ta & tb in current time frame
3: if (ta > T ua) then

4: if (tb < T ub) then MSOC()
5: else MSOVM()
6: else if (ta < T la) then

7: if (tb > T lb) then MSIC()
8: else MSIVM()
9: end if
10: end while

In the Algorithm 1, Roboconf captures the observed response time ta and tb

of the application a and b in each time frame (line 2). Then it based on the
corresponding value of ta and tb to give the appropriate scaling decisions. The
algorithm triggers a multi-level scaling out at container level (MSOC - see Algo-
rithm 2) whenever the ta is larger than the upper bound of its required response
time T ua and, to satisfy the Restriction 2, the tb is less than its upper bound of the
required response time T ub (lines 3 and 4). In the case tb larger than T ub , a multi-
level scaling out at VM level (MSOVM - see Algorithm 3) is triggered (line 5).
In the scaling in case, MSIC (Algorithm 4) and MSIVM (Algorithm 5) are used
with the corresponding values of ta and tb (lines 6 to 8).

95

CHAPTER 7. EVALUATION OF THE MULTI-LEVEL FINE-GRAINED
ELASTICITY WITH ROBOCONF

Algorithm 2: MSOC (Multi-level Scaling out at container level)
1: Measure ta, u(ζaVM , r), u(ζbV M , r)
2: ζVMC = ζaVM
3: while (ta > T ua && ζVMC 6= φ)
4: for (i=0 ; i < |ζVMC |; i++)
5: calculate EUR(VMa

i)
6: end for
7: Select VMa

i with the smallest EUR(VMa
i)

8: if (VMa
i .hasEnoughResources()) then

9: ζaC.update{C
a
j }

10: if (!ζaVM.exist(VM
a
i)) then

11: ζaVM.update(VM
a
i)

12: end if
13: ζVMC = { }
14: end if
15: if (ζVMC 6= φ) then ζVMC.remove(VMa

i)
16: end if

17: Measure ta, u(ζaVM , r), u(ζbV M , r)
18: end while

With MSOC, the criterion of efficiency of resource utilization (EUR) needs
to be calculated to select the VM candidates able to host the new container of an
application (lines 4 to 6). The EUR is the product of a weighted positive constant
α, a product of resource utilization ratio of the VM u(VMa

i , r) of each resource
r and a resource running cost of the VM c(VMa

i) (Expression 1). To become
the selected one, the VM should have the smallest EUR and has enough required
resources for a container.

Expression 1:
EUR(VMa

i) = α.(
∏
r=vCPU,memory,diskStorageu(VM

a
i , r)).c(VM

a
i)

Algorithm 3: MSOVM (Multi-level Scaling out at VM level)
1: if (|ζaVM ∩ ζbV M | < VMmax) then
2: ζaVM.add(VM

a
i)

3: ζaC.update(C
a
j)

4: end if

96

7.1. MULTI-LEVEL ELASTICITY

Algorithm 4: MSIC (Multi-level Scaling in at container level)
1: if (ζaC 6= φ) then
2: ζaC.remove(C

a
j)

3: for (i=0;i < |ζaVM ∩ ζbV M |; i++)

4: check each VM in ζaVM ∩ ζbV M if it
does not contain any containers

5: if a VM is empty: ζaVM.remove(VM
a
i)

6: end for
7: end if

Algorithm 5: MSIVM (Multi-level Scaling in at VM level)
1: if (ζaVM 6= φ && ζbV M 6= φ) then
2: ζaVM.remove(VM

a
i)

3: end if

There are some notices in the other algorithms. With MSOVM, the maximum
number of VMs (VMmax) that allowed to create in the entire system needs to be
taken into consideration (line 1). With MSIC, after removing a container, if it is
the last container of a VM, the VM itself should be removed as well (lines 3 to
6). With MSIVM, a VM can only be removed when it is not the last one hosting
either application a or b (line 1).

The very first 10-minute snapshot of the experiment with these algorithms is
shown in Figure 7.3 and results are discussed deeply in the next section.

7.1.4 Result
Figure 7.3 shows the ART of both webapps and the corresponding reflections
from the Roboconf to fluctuations of the response time. In addition, the figure
also reports the changes in number of Tomcat servers while running the test case.
The max response time of WebappA is set to 800ms, it means if the ART goes
over this limitation, creating new Tomcat server or replicating the Webapp request
should be made. In contrast, if the ART goes under min response time (200ms), a
removing or migrating decision should be triggered.

We see that the ART of WebappA peaked at the 40th second because of ag-
gressive accesses of the 450 virtual users simultaneously. At the point “A1”, a
command to create a new Tomcat server was triggered instead of a replication
due to a peak (400ms) happening in WebappB. The max and min response time
of WebappB, which are not shown in Figure 7.3, were set to 400ms and 100ms,
respectively. After this request, the framework silently observed the SUT without
any further requests until it gets knowledge about the new server. This synchro-
nization time finished at the 180th second (the point “A2”), thus the WebappA

97

CHAPTER 7. EVALUATION OF THE MULTI-LEVEL FINE-GRAINED
ELASTICITY WITH ROBOCONF

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 100 200 300 400 500 600
 0

 1

 2

 3

 4

A1

A2 B1
B2

C1
C2

D1

D2

R
es

p
o

n
se

 T
im

e
(m

s)

N
u

m
b

er
 o

f
T

o
m

ca
t

V
M

s

Duration (s)

WebappA Avg Response Time
WebappB Avg Response Time

Number of Tomcat VMs
Max Response Time of WebappA
Min Response Time of WebappA

Figure 7.3: Autonomic responses with fluctuation of average response time of
webapps

users continued experiencing slow accesses during 2 minutes 20 seconds more. At
point “B1”, once again the ART of WebappA was larger than the max limitation
whereas the ART of WebappB was getting low. It is suitable to make a replication
of WebappA (/VM1/Docker1/Tomcat1/WebappA) to under Tomcat2 and name it
WebappA 2 (/VM2/Docker2/Tomcat2/WebappA 2). The synchronization time for
creating the WebappA 2 was about 20 seconds which offered about 2 minutes bet-
ter than the case of creating a new Tomcat server. Moreover, we avoided creating
a totally new VM resulting in saving resources and money. In reverse, the system
performed two times of the scaling in: a request to remove a Tomcat3 server at
the point “C1” (which had been created at the point “A2”) and a request to remove
the Tomcat1 server at the point “D1” (which had been there from the beginning).
The synchronization in both cases were almost the same (more or less than 10
seconds, finish at the points “C2” and “D2”) because we do not care about the
shutting down time of a VM. In spite of that, the result of this elasticity is the save
of two VMs (from 3 VMs at the point “C1” to 1 VM at the point “D2”) while the
system were in low-load period.

The violation rate of the observed response time in the first 10 minutes using

98

7.2. MULTI-LEVEL FINE-GRAINED ELASTICITY

the MS algorithm can be calculated as follows.

VMS =
∑ synchronization time

600
.100% =

140 + 20 + 10 + 10

600
.100% = 30%

We also conduct the same experiment on Roboconf with the algorithms imple-
mented only at VM-level (without the Algorithms 2 and 4). The main difference
is the synchronization time between the point “B1” and “B2” is longer (around 2
minutes 20 seconds). Likewise, the violation rate of the observed response time in
the first 10 minutes without using the MS algorithm can be calculated as follows.

VwoMS =
∑ synchronization time

600
.100% =

140 + 140 + 10 + 10

600
.100% = 50%

As we see when the workload changes extremely, the violation rate reduces
significantly from 50% in the case of not using the MS algorithm to 30% in the
case of using the MS one. Moreover, we can conclude that using the container-
level scaling reduces the provisioning overhead in comparison to VM-level scal-
ing (20 seconds in average in comparison to 140 seconds in average, respectively).
Since the changes in load of a website usually happen, applying the multi-level
scaling for elasticity brings forward cost saving and significant performance im-
provement as well.

7.2 Multi-level Fine-grained Elasticity

In this section, we conduct an experiment with another variant of the application
in Section 7.1. We combine fine-grained vertical scaling algorithms with the ones
introduced in Section 7.1.3.

7.2.1 Experiment Setup

This experiment is performed with the same J2EE application. The system setup
for the experiment with the CLIF server is similar to the one depicted in the Fig-
ure 7.1, except the configuration of VMs and Docker containers. All the VMs
used are configured on our OpenStack cloud with 2 cores and 9 GB memory. As
we will only consider the utilization of memory in the Docker containers, each
Docker container for WebappA and WebappB is allowed to use 4GB and 3GB of
its hosting VM, respectively. While workload for WebappB is neglect, workload
for WebappA is significant and shown in Figure 7.4.

99

CHAPTER 7. EVALUATION OF THE MULTI-LEVEL FINE-GRAINED
ELASTICITY WITH ROBOCONF

7.2.2 Test Scenario
At the first minute, there are two VM1 and VM2 in the SUT. The VM1 hosts
a container of WebappA and a container of WebappB. This VM allocated 7GB
(4GB of WebappA and 3GB of WebappB) for both containers. The second VM
hosts only a container of WebappB which consumed 3GB of memory. The ini-
tial state (I) of the experiment is demonstrated in Figure 7.5. The memory of
Docker container can be adjusted on the fly by modifying cgroup files of each
container [143]. The SUT keeps injecting workload from 150 virtual users until
the 60th second, then CLIF server doubles workload each 3 minutes. To simplify
the experiment, we only consider the vertical scaling at container levels and hor-
izontal scaling at both VM and container levels. The vertical scaling at PM and
VM levels can be consulted in the work of Dawoud et al. [112, 113].

 0

 150

 300

 450

 600

 750

 0 60 120 180 240 300 360 420 480 540 600

N
u
m

b
er

 o
f

V
ir

tu
al

 U
se

rs

Duration (ms)

Load Profile of WebappA

Figure 7.4: CLIF load profiles of the WebappA

7.2.3 Scaling Algorithm
In this section, we introduce multi-level fine-grained scaling algorithms which
can be combined with the ones in Section 7.1.3. In this experiment, we replace
the Algorithm 1 by Algorithm 6 which only considers the scaling of WebappA.

100

7.2. MULTI-LEVEL FINE-GRAINED ELASTICITY

Figure 7.5: Initial state of the experiment with two VMs 9GB memory

Algorithm 6: MFS (Multi-level Fine-grained Scaling)
1: while (the application is still running)
2: Monitor ta in current time frame
3: if (ta > T ua) then
4: MFSUC()
5: end if
6: while (ta > T ua)
7: MSOC()
8: MSOVM()
9: end while

10: if (ta < T la) then
11: MSIVM()
12: MSIC()
13: MFSDC()
14: end if
15: end while

In the Algorithm 6, Roboconf captures the observed response time ta of the
application a in each time frame (line 2). Then it based on the corresponding value
of ta to give the appropriate scaling decisions. The algorithm triggers a multi-level
fine-grained scaling up at container level (MFSUC - see Algorithm 7) whenever
the ta is larger than the upper bound of its required response time T ua (lines 3 and

101

CHAPTER 7. EVALUATION OF THE MULTI-LEVEL FINE-GRAINED
ELASTICITY WITH ROBOCONF

4). When the MFSUC fails its mission, then the scaling out at container and VM
levels are performed consecutively (lines 6 to 9). With scaling down, the MFS
algorithm aims to remove as many VMs, containers and container resources of
the WebappA as possible, while still trying to held the response time between
T la and T ua and consider the present of WebappB. The algorithm first performs
the VM-level scaling in to save the cost per unit of increased response time (line
11). The VM-level scaling in keeps running until the removing a VM would
violate response time target. The MFS algorithm then conducts the container-
level scaling in (line 12). The container-level scaling in also keeps running until
the removing a container would again violate response time target. Finally, the
resource-level scaling down of the WebappA containers is performed (line 13)
and discussed later in this section.

Algorithm 7: MFSUC (MFSU at container level)
1: Measure ta, u(ζaC , r)
2: while (ta > T ua && Lr 6= φ)
3: Lr = { }
4: for (i=0;i<|ζaC |;i++)
5: if (u(Cai , r) > uu(r) &&

VM(Cai).hasEnoughResources()) then
6: Lr.add(Cai)
7: calculate RRR(Cai , r)
8: end if
9: end for
10: Select Cai with the smallest RRR(Cai , r)
11: Add one unit of resource r to Cai
12: Measure ta, u(ζaC , r)
13: end while

With MFSUC, the scaling up is triggered when utilization of resource r in
a container Ca

i is over the threshold of utilization for scaling up the resource r.
Evidently, the VM containing the Ca

i must have enough the required resources
(line 5). Moreover, the ratio of remaining resources r in the containers of We-
bappA (RRR) needs to be calculated to select the container candidates needed to
be added an additional unit of the considering resource (2GB memory, in this ex-
periment) (line 7). The RRR is the product of a weighted positive constant β, an
exploitable rate of resource (1-u(Ca

i , r)) and a resource running cost of the con-
tainer c(Ca

i) (Expression 2). To become the selected one, the container ought to
have the smallest RRR and its hosting VM must have enough required resources
for an additional unit.

Expression 2:
RRR(Cai , r) = β.(1-u(Cai , r)).c(C

a
i)

102

7.2. MULTI-LEVEL FINE-GRAINED ELASTICITY

With MFSDC, this algorithm selects a resource r with the largest RRR(Ca
i , r)

(Expression 2) and removes one unit of r from the container Ca
i . This guarantees

shrinking of the container with the largest free resources. The very first 10-minute
snapshot of the experiment with these algorithms is shown in Figure 7.6 and re-
sults are discussed in the next section.

7.2.4 Result

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 50 100 150 200 250 300 350 400 450 500 550 600
 0

 1

 2

 3

 4

R
es

p
o
n
se

 T
im

e
(m

s)

N
u
m

b
er

 o
f

V
M

s

Duration (ms)

WebappA Avg Response Time
Number of VMs used for WebappA

WebappA Max Response Time
WebappA Min Response Time

Figure 7.6: Autonomic responses with fluctuation of average response time of
WebappA using MFS algorithm

Figure 7.6 shows the ART of the WebappA and the reflections from the Robo-
conf to fluctuations of the response time. We see clearly three peaks corresponding
to three triggering of the MFS algorithm. Thereby, the SUT is undergone three
state changes as shown in Figure 7.7.

The first peak at the end of the first minute triggers a resource scaling up at
container level instead of a container scaling to bring the ART back to its desired
range. The reason is the MFSUC algorithm knows that the VM1 still has enough
memory resource (2GB) to allocate for the Docker container of the WebappA.
Provided that a Docker container only can increase one unit of memory (2GB)

103

CHAPTER 7. EVALUATION OF THE MULTI-LEVEL FINE-GRAINED
ELASTICITY WITH ROBOCONF

Figure 7.7: States of the experiment with MFS algorithm

each scaling-up time. The scaling synchronization time is about 5 seconds. This
time spends mainly for the Docker daemon running on the VM1 recognizes the
memory change. After the first scaling the SUT changes from the state (I) to the
state (II) (see Figure 7.7).

Three minute later, the second peak is razed by a container-level scaling out.
It is due to the fact that the VM1 does not have enough room to do a resource
scaling up. This scaling out takes around 20 seconds for synchronization. It is
mainly for Roboconf to know about new instances (including the second instance
of the WebappA), for the Apache Load Balancer to recognize the new Tomcat
and for Docker daemon in VM2 to understand its new container. The SUT at this
moment changes from the state (II) to state (III). At last, the third peak is resolved
by a fine-grained scaling up at container level as in the case of the first peak. The
VM2 is filled up by a conventional unit of 2GB memory which is added to the
container of the second instance of the WebappA. The state (III) becomes state
(IV) until the experiment finishes.

The violation rate of the observed response time in the 10 minutes of the ex-
periment using the MFS algorithm can be calculated as follows.

VMFS =
5 + 20 + 5

600
.100% = 5%

We can measure Virtual Machine Occupation of the SUT to evaluate the ef-
fectiveness of the algorithm in terms of resource management toward minimizing
the booked VM resource for the cloud customers. According to Tran [114], the
Virtual Machine Occupation Ωj of algorithm j is calculated as follows.

Ωj =
n∑
k=1

wk (7.1)

104

7.2. MULTI-LEVEL FINE-GRAINED ELASTICITY

With wk is the occupation of a resource type in a VM k (memory in our case)
over the experiment time. It is calculated by Equation 7.2 with a given cap of a
resource, we have 0< ck,i ≤ 9 (our VM has 9GB memory totally) in each duration
tk,i (in seconds) allocated to a virtual machine VMk.

wk =
n∑
i=1

ck,i.tk,i (7.2)

We see that the lower Ωj , the less waste for booked resource of VM. Low Ωj

confirms the effectiveness of a provisioning policy. The customer saves cost if the
scaling algorithm provides low Ωj in the experiment.

Apply the Equation 7.1 to the MFS algorithm with n=2 (VMs):

wVM1 = 7.60 + 9.180 + 9.180 + 9.180 = 5280

wVM2 = 3.60 + 3.180 + 7.180 + 9.180 = 3600

ΩMFS = 5280 + 3600 = 8880

For comparison, we also conduct the same experiment on Roboconf with
scaling-out algorithms implemented only at container level (without the Algo-
rithm 7). The main differences are shown in Figure 7.8 and can be explained by
state transitions depicted in Figure 7.9.

The first peak is resolved by a container-level scaling out because the amount
of unused memory (2GB) in the VM1 is not enough for creating a new container
(requires 4GB). Thus the MFS had to put the new container in the VM2 where
can provide enough room for it (6GB available so far). In the state (II), each VM
consumes 7GB memory and leave 2GB free. These two 2GB unused memory
become resource holes that cannot be used for scaling out WebappA because of
their small size. It leads to creation of an entire new 9GB VM3 which hosts a
new 4GB container of WebappA in the state (III). It takes around 140 seconds
for synchronization, mainly devotes for VM provisioning. This VM3 has enough
room for creating a new container to overcome the third peak. The experiment
ends in the state (IV) with 3 resource holes as shown in the Figure 7.9.

The violation rate of the observed response time in the 10 minutes of the ex-
periment without using full MFS algorithm can be calculated as follows.

Vwo−full−MFS =
20 + 140 + 20

600
.100% = 30%

Apply the Equation 7.1 to the MFS algorithm with n=3:

wVM1 = 7.60 + 7.180 + 7.180 + 7.180 = 4200

wVM2 = 3.60 + 7.180 + 7.180 + 7.180 = 3960

wVM3 = 4.180 + 8.180 = 2160

Ωwo−full−MFS = 5280 + 3600 + 2160 = 10320

105

CHAPTER 7. EVALUATION OF THE MULTI-LEVEL FINE-GRAINED
ELASTICITY WITH ROBOCONF

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 50 100 150 200 250 300 350 400 450 500 550 600
 0

 1

 2

 3

 4

R
es

p
o
n
se

 T
im

e
(m

s)

N
u
m

b
er

 o
f

V
M

s

Duration (ms)

WebappA Avg Response Time
Number of VMs used for WebappA

WebappA Max Response Time
WebappA Min Response Time

Figure 7.8: Autonomic responses with fluctuation of average response time of
WebappA without full MFS algorithm

From calculated results, when applying full MFS, the ART violation rate re-
duces significantly from 30% to 5%. This helps SaaS providers to avoid penalties
because of SLA violation. Moreover, full MFS makes PaaS providers use their
allocated VMs more efficient and saving (8880 < 10320). This can easily be seen
when the SUT had to use up three VMs in the case of not using full MFS, while
it was two in the case of using the full one, be considered in the same period of
time.

7.3 Synthesis
To assess efficiency of multi-level fine-grained algorithms for elasticity, we have
implemented two experiments with the RUBiS distributed application on Robo-
conf platform. The first experiment is to evaluate the multi-level elasticity (MS
algorithm) while the second one evaluate the combination between multi-level and
fine-grained approach (MFS algorithm). Both experiments have been conducted
on multi-cloud scheme. Results show that the two algorithms not only reduce
the provisioning time in scaling actions but also alleviate the SLA violation rate

106

7.3. SYNTHESIS

Figure 7.9: States of the experiment without full MFS algorithm

in terms of average response time of web application on the Cloud. To this end,
the full MFS showed a better performance than the not full one. Furthermore, the
MFS algorithm also increases the VM occupation, which helps IaaS providers and
customers cut costs as well as exploit their resources more efficiently.

107

CHAPTER 7. EVALUATION OF THE MULTI-LEVEL FINE-GRAINED
ELASTICITY WITH ROBOCONF

108

Chapter 8

EVALUATION OF THE
ROBOCONF PLATFORM

Contents
8.1 Experiments . 110

8.1.1 Experiment 1 . 110

8.1.2 Experiment 2 . 112

8.1.3 Experiment 3 . 113

8.1.4 The Overhead of Roboconf 116

8.2 Use Cases . 117

8.2.1 Enterprise Social Network (ESN) 117

8.2.2 Cloud Infrastructure for Real-time Ubiquitous Big Data
Analytics (CIRUS) 118

8.3 Synthesis . 121

To support effectively for the multi-level fine-grained elasticity, it is neces-
sary to have a stalwart ACS platform. Thus in this chapter, we evaluate Robo-
conf itself as an autonomic platform which supports for multi-level fine-grained
elasticity. Section 8.1 presents experiments to validate Roboconf features needed
for our proposed elasticity solution. Section 8.2 details use cases as prototypes
implemented from Roboconf application model and deployed in multi-cloud en-
vironments.

109

CHAPTER 8. EVALUATION OF THE ROBOCONF PLATFORM

8.1 Experiments
As mentioned in Chapter 6, Roboconf platform provides the following features
which are very positive supporters for elasticity: component fine-grained hier-
archical description, dynamic dependency resolution, concurrent component de-
ployment, multi-cloud distributed deployment, genericity, extensibility, scalabil-
ity, and dynamic reconfiguration of the deployment plans. To validate those non-
functional properties, we conducted a number of experiments with scenarios se-
lected from practical use cases. The elasticity experiments in Chapter 7 validated
the scalability and dynamic reconfiguration features. In this section, various other
experiments are implemented on different types of application to prove the re-
maining features of Roboconf.

8.1.1 Experiment 1

The first type of experiments validates Roboconf in terms of dynamic dependency
resolution and concurrent component deployment. To this end, we dissect Robo-
conf deployment process and compare it with state-of-the-art deployment plat-
forms: Cloudify, RightScale, and Scalr (that all support concurrent deployment
of VMs) in terms of deployment time. Deployment is repeated 8 times for each
platform and the means are reported.

Scenario and Requirements

For this experiment, we chose EC2 as the target cloud and Puppet as the Robo-
conf installer plug-in. We started with a simple LAMP application which is im-
plemented with all-in-one style on EC2 m3.medium VM instances (Ubuntu 12.04
with 1vCPU, 3.75GB RAM and 1x4GB SSD storage). The deployment is con-
sidered successful if user can connect and log into phpMyAdmin using any web
browsers and start to create a database. The deployment order follows Table 8.1.
As mentioned earlier, this experiment was performed on three deployment plat-
forms. Since each of them has its own states of life cycle, without loss of general-
ity, we distribute those states into two main phases based on classification of [12]:

• Booting phase: In this phase the deployment frameworks spend time to pro-
cess following actions: send “Deploy” requests from client (client interface
of deployment platform) to DM, DM processes the requests, transfer scripts
and other necessary files to itself then sends hiring requests to IaaS, IaaS
provisions and powers up needed VMs, run booting scripts (setup agents,
send information of booting machine back to DM).

110

8.1. EXPERIMENTS

Table 8.1: Deployment Order of the LAMP Application

Order Operation Order Operation
0 Provision + Boot VM 2 Start - Apache
1 Deploy - Apache 2 Start - MySQL
1 Deploy - MySQL 3 Start - phpMyAdmin
2 Deploy - phpMyAdmin Done!

• Operational phase: In this phase the deployment platforms consume time
to execute operational scripts (or recipes) run once a server is running, on
services or components. It may include states: preInstall (download tar-
ball or/and transfer scripts and necessary files to VM, prepare runtime en-
vironment, etc), install, postInstall (copy resources and configuration files
to right place, set permissions, etc), preStart (resolves dependencies), start,
postStart (update variables, configure monitoring), etc.

Figure 8.1: Deployment time with different deployment systems

Results

Figure 8.1 presents results of this experiment. In the operational phase, time is
measured until last component is installed. We can see that Roboconf outper-
forms the others in terms of total deployment time, with Scalr being the nearest
one (hence we only discuss about it). The runner-up, Scalr, took less time in the

111

CHAPTER 8. EVALUATION OF THE ROBOCONF PLATFORM

operational phase than Roboconf because it was not consuming time for dynamic
dependency resolution. In Roboconf, the dependency resolution is conducted
dynamically at runtime as mentioned in Section 6.3.2. In Scalr, dependencies
amongst components are resolved manually by configuring exchanged variables
in its Web UI. In fact, it is a tedious, error-prone and time consuming job. We
also found that in the booting phase, factors making difference are the process-
ing requests and setting up agents, while dependency resolution is mainly diverse
element in the operational phase.

8.1.2 Experiment 2
The second type of experiments demonstrates the advantage of the fine-grained
hierarchical description provided by Roboconf DSL and its component reusability.
For this experiment, EC2 was the target cloud.

Scenario and Requirements

We performed this experiment with an OSGi-based application (the JMS part of
the SPECjms2007 benchmark). Regularly, an OSGi application is implemented
on an OSGi container or platform (e.g. Karaf, Felix, Equinox) providing runtime
environment and management framework for OSGi bundles such as Joram, JNDI,
etc. We used two instances of EC2 m3.medium, each hosts two instances of the
Karaf container. Each Karaf of a VM is customized to choose either Felix or
Equinox as underlying OSGi platform and hosts an instance of Joram (an OSGi-
based JMS-supported server), or an instance OSGi-based JNDI or a OSGi JMS
client (publisher/subscriber). Deployment of Joram, JNDI and OSGi JMS clients
is handled by the “osgi-bundle” installer, specific to this type of application. We
chose Cloudify as comparative objective because it also offers scripting language
that can be used to express the structure of a distributed application. However,
Roboconf can describe the hierarchy of this application whereas Cloudify can
only see the application as a flat structure. The comparison between these two
views is shown in Figure 8.2.

Results

With its hierarchical DSL and extensibility, although both solutions need to write
6 sets of deployment and configuration (D&C) scripts for 6 components, Robo-
conf users only have to write one D&C script for EC2, one for Karaf and reuse
one for multiple OSGI bundles (Joram, JNDI, subscriber, publisher). In the case
of Cloudify, 6 D&C scripts are needed, each one for each component (EC2, Karaf,
Joram, JNDI, Subscriber, Publisher). Table 8.2 shows statistics about number of

112

8.1. EXPERIMENTS

Figure 8.2: OSGi application: Roboconf hierarchical view vs. Cloudify flat view

Table 8.2: Number of D&C Scripts of the OSGi Application

Number of Plan Roboconf Cloudify
EC2 1 1
Karaf 1 1
Joram/JNDI/Pub/Sub 1 4
Total 3 6

the D&C scripts for Roboconf and Cloudify, respectively. In this case, Cloudify
users have to write twice more D&C scripts than Roboconf ones. More details
about reusability of component descriptions in the Roboconf DSL can be con-
sulted back at Section 5.5.2.

8.1.3 Experiment 3
The third type of experiments gives some evidences for the correctness of Robo-
conf multi-cloud distributed deployment feature and its extensibility using target
and agent plug-ins.

Scenario and Requirements

We compare deployment time of a Storm cluster [128] (an Event Stream Pro-
cessing (ESP) application) on multi-cloud platforms using on the one hand the
Roboconf platform and on the other hand a manual D&C process following in-
stallation guide from original owner. Storm is a part of a global solution for big

113

CHAPTER 8. EVALUATION OF THE ROBOCONF PLATFORM

data analysis. Storm consists of Zookeeper cluster, Nimbus server, Storm super-
visors and requires installation of JZMQ, ZeroMQ and Python. Figure 8.3 shows
main components and inter-dependencies of the Storm cluster, which is equivalent
to a graph definition in Figure 8.4.

Figure 8.3: Components and inter-dependencies of the Storm cluster

The experiment was conducted in a multi-cloud environment combining two
public clouds (EC2 and Azure) and a private cloud (VMware vSphere). The
VM EC2 m3.medium instances are equipped with 1 core and 3.75 GB memory
while the VM Azure Standard A2 instances are with 2 cores and 3.5 GB memory.
Each VM in the VMware vSphere cloud is distributed 1 core and 2GB mem-
ory. The guest OS installed in all the VMs is Ubuntu 12.04. Three IaaS targets
for these clouds have been developed to provide coordination among the three
IaaS providers. Each target needs to implement one target handler interface of
the Roboconf Target Handler API (see Section 6.2.4). The LOCs (lines-of-code)
for the EC2 target is about 200, for the Azure is about 380, and for the VMware

114

8.1. EXPERIMENTS

The VM
VM {

installer: target;
children: storm_platform;

}

Storm base platform
storm_platform {

installer: script;
children: storm_nimbus, storm_worker;

}

Storm nodes

Storm master node (Nimbus, along with
zookeeper + stormUI)
storm_nimbus {

installer: script;
exports: ip;

}

Storm worker (slave) node
storm_worker {

installer: script;
imports: storm_nimbus.ip;

}

Figure 8.4: Component graph of the Storm cluster described under Roboconf DSL

vSphere is about 225 (see Appendix). Zookeeper cluster was installed on EC2
cloud, Nimbus server on Azure cloud and Storm supervisors on our VMware
vSphere data-center to take advantage of our computing strength. In this ex-
periment, the time for installing Storm manually is compared with the time to
automate its installation using Roboconf.

Results

The online installation guide of Storm cluster is 8-page length specific to Storm
itself and many external links to resource document of relevant dependent soft-
ware. One of the author’s colleague who had no knowledge about Storm and have
never attempted to install this software previously tried to do manual installations.

115

CHAPTER 8. EVALUATION OF THE ROBOCONF PLATFORM

Table 8.3: Execution Time and Additional Cost

Scenario Average execution time Overhead introduced
by Roboconf

Application 8.95 -
Application + Roboconf 9.05 1.12%

It took him about 6 hours the first time, 3 hours and 30 minutes the second time,
and up to 1 hour from the third one. Actions eating effort time were reading
imprecise instructions, resolving environmental issues, seeking/downloading the
required dependencies and debugging problems. On the Roboconf side, the same
work has been carried out by another colleague who also has never known about
Storm. With this approach, time devoted mainly for writing component descrip-
tions and D&C scripts of Zookeeper, Nimbus, Supervisors, JZMQ, ZeroMQ and
Python. About 120 LOC have been written for D&C scripts of all Storm compo-
nents. These D&C scripts can be found in Appendix.

After installation, Storm cluster can be managed (deploy, start, stop, undeploy,
update) via Roboconf and automatically connect to other applications. At the first
time, total development time for Storm cluster in Roboconf was about 2 hours
15 minutes. This time was divided into 30 minutes for design of components, 70
minutes for writing the scripts and 35 minutes for debugging and testing. If the
required packages are downloaded from the Internet, installation of Storm cluster
needs 20 minutes and it takes around 7 minutes if the packages are retrieved from
a local repository. The automation of the Storm cluster installation via Roboconf
empowers Storm developers able to deploy their existing applications on mul-
ticloud with slight changes and no need to understand details of Roboconf. It
warrants a repeatable procedure and can be used as a part of larger deployments
(e.g. Ubiquitous analytics).

8.1.4 The Overhead of Roboconf

To evaluate the overhead introduced by the Roboconf platform, 1000 requests
were generated and sent to the y-cruncher benchmark [129] to calculate the PI (π)
to a specified number of digits (50 in this experiment) after the decimal point. We
evaluated two cases: i) application deployed without Roboconf and ii) application
deployed with Roboconf. The experiment is conducted on the VM Azure Standard
A2 instances (2 cores and 3.5 GB memory). The requests sent were executed 20
times in both scenarios. Table 8.3 presents the results of the average execution
time of each scenarios as well as the additional costs brought by the Roboconf
platform.

116

8.2. USE CASES

From the results presented in Table 8.3, we can see that the overhead intro-
duced by the Roboconf platform is only 1.12%. This additional cost is gener-
ated mainly by monitoring module which collects information for the elasticity
autonomic mechanism. In summary, the overhead introduced by the Roboconf
platform is negligible given the aforementioned advantages.

8.2 Use Cases

Furthermore, Roboconf has been used for the deployment of two use cases of
practical projects: an Enterprise Social Network application (ESN) and a Cloud
infrastructure for real-time ubiquitous big data analytics (CIRUS).

8.2.1 Enterprise Social Network (ESN)

Linagora is a French IT service company developing and hosting enterprise mes-
saging solutions and identity management for their customers which are govern-
ment agencies and SMEs. Linagora hosts its solution on its own private cloud
managed with the OpenStack cloud management platform. The capacity of its
hosting center can be busted during peak load, by requesting additional resources
from a public cloud. As an open-source software editor, Linagora aims to provide
a SaaS platform for its multi-tenant ESN. For the current release of the Linagora
ESN, the main software components and runtimes are Node.js for running the
webapp, MongoDB for data storage, Redis for publish-subscribe asynchronous
messaging, ElasticSearch for text indexing as well as NPM and Git for module
deployment and update of the application. The components are distributed on sev-
eral Linux VMs for fault-tolerance and scalability on the Linagora private cloud
and its external public cloud (AWS). The next release of the ESN will include
more components such as LinShare for file transfer in organizations and Apache
James for users mailing, which is backed up by a Cassandra database. The ESN
components are globally managed with Roboconf for their quick provisioning and
for the VM horizontal scaling on the IaaS of Linagora. Roboconf was chosen by
Linagora instead of Cloudify and Scalr because firstly, it facilitates the continuous
delivery of the ESN SaaS and secondly, it enables to burst its private cloud with
the most affordable public IaaS on the market and without being vendor-locked.
Figure 8.5 shows the ESN architecture.

117

CHAPTER 8. EVALUATION OF THE ROBOCONF PLATFORM

Figure 8.5: The ESN architecture

8.2.2 Cloud Infrastructure for Real-time Ubiquitous Big Data
Analytics (CIRUS)

Ubilytics (ubiquitous big data analytics) [130] is one of the trendy topic in the In-
ternet of Things. For instance, it enables a smart-grid provider to forecast region-
wide load demand in the next minutes (1 min, 5 min, 15 min, 60 min) from the
instantaneous data (load, indoor and outdoor temperatures, etc.) collected from
individual smart plugs, thermometers and from history and habit of customers.
The dataset was provided by SAP for the DEBS 2014 Grand Challenge. It con-
tains measurements for 40 houses during 1 month. The size of the dataset is about
23 GB of raw data.

CIRUS is a self-adaptive PaaS infrastructure for real-time ubilytics, developed
by the LIG lab. The infrastructure is composed of components deployed both on
embedded boards and on an IaaS as depicted in Figure 8.6. On one hand, Robo-
conf manages the deployment of components such as OpenHAB/Eclipse Smart
Home (a popular and open-source home automation platform developed by the
Eclipse Foundation) on 20 embedded gateways (BeagleBone Black) and on 20
OpenHAB processes in EC2 VMs, which emulate the 40 houses as home automa-

118

8.2. USE CASES

tion boxes. On the other hand, Roboconf provisions Azure VMs and deploys on
them a couple types of MQTT brokers (e.g. Mosquitto [132]) or RabbitMQ), a
clustered Storm topology for real-time event stream processing, a clustered Cas-
sandra DBMS [131]) for temporal series storage and various dataviz as well as
dashboard web consoles for forecasters. As everyone knows, a demonstration,
a system tuning, a continuous integration or a benchmark experiment of a dis-
tributed system are composed of a set of repetitive tasks, which are fastidious.
Roboconf is very helpful in this context since it automates all the tasks and allows
the users to safely manipulate a part of the application, without breaking down the
rest. It also enables to stop running components and to release the VMs in order
to save money on the IaaS account of experimenter. Figure 8.6 shows the CIRUS
infrastructure implemented by Roboconf and its components are described as fol-
lows.

Figure 8.6: Real-time ubilytics scenario with Roboconf

IoT Gateways

For the sensor data collection, we have chosen the OpenHAB platform which pro-
vides an integration platform for sensors and actuators of the home automation.
The OpenHAB platform is based on the Eclipse Equinox OSGi platform [138].
The communication paradigm amongst the inner components of OpenHAB is

119

CHAPTER 8. EVALUATION OF THE ROBOCONF PLATFORM

Pub-Sub [137]. OpenHAB allows the users to specify DSL-based rules which
will be parsed by its rule engine to update the commands of actuator upon the
state changes of sensor using the OSGi Event Admin internal broker. The ECA
paradigm is used by OpenHAB for executing the home automation actions. The
OpenHAB rule engine evaluates and executes ECA rules which are written in a
DSL based on Eclipse XText and XTend. ECA rules are triggered on sensor value
changes, command emission and timer expiration. Events (e.g. state changes and
commands) can be “imported” or “exported” using bindings for MQTT, XMPP,
Twitter, etc. OpenHAB can be installed and run on embedded boards, some of
which are Raspberry Pi, Beaglebone Black and Intel Galileo. For the smart-grid
use case, we have developed a new OpenHAB plugin (called binding) in order to
replay the sensors log files containing the smart-plug measurements (e.g. times-
tamped load and work) of each house. OpenHAB-CIRUS is the packaging of
OpenHAB for the Ubilytics application including the plug-in and the data files.
This package is deployed on both embedded boards and virtual machines of the
Azure IaaS with one instance per house.

MQTT Brokers

MQ Telemetry Transport (MQTT) [148] is a transport data protocol for M2M net-
works. It is devised for supporting low-bandwidth and unreliable networks, as
illustrated by satellite links or sensor networks. MQTT follows the pub-sub pat-
tern between the sensors and one or more sinks like M2M gateways, etc. MQTT
is now an OASIS standard. The main robust and open-source implementations of
MQTT brokers are Mosquitto and RabbitMQ.

Speed Layer for Real-time Analytics

For the speed layer of the lambda architecture implemented in the smart-grid use
case, we have chosen the Apache Storm cluster. Storm is a real-time event-
stream processing system. It is designed to deploy a processing chain in a dis-
tributed infrastructure such as a Cloud platform (IaaS). Storm can be applied suc-
cessfully to the analysis of real-time data and events for sensor networks (real-
time resource forecasting, consumption prediction), log files system (monitor-
ing and DDoS attack detection), finance (risk management), marketing and so-
cial networks (trend, advertising campaign). Initially developed by Twitter, its
challengers are Apache S4 (Yahoo!), Spark Streaming, Millwheel (Google), and
Apache Samza (LinkedIn). For the ubilytics platform, we have developed a new
Storm input components (called spout) in order to generate sensor tuples from the
MQTT brokers by subscribing on the MQTT topics with one spout per house.

120

8.3. SYNTHESIS

Historical Data Storage

In the speed layer, the Storm topology needs to maintain some execution ongoing
state. This is the case for the sliding window average of sensor values. To do this
we use Storm with Cassandra for our real-time power consumption prediction.
Cassandra is an open source distributed database management system (NoSQL
solution). It is created to handle large amounts of data spread out across many
nodes, while providing a highly available service with no single point of failure.
Data model of Cassandra allows incremental modifications of rows.

Visualization Dashboard

For the forecast visualization, we have developed a simple dashboard display-
ing charts of current and forecast consumptions to supplier and consumers. The
dashboard is a simple HTML5 webapp using the Grafana, Bootstrap and Angu-
lar Javascript libraries. The webapp gets the data from the historical storage and
subscribes to real-time updates through a websocket.

Event Processing Topology for Consumption Forecast

A Storm topology uses Cassandra to store the aggregated consumption values per
sensor and per house during a specified period (slices of |s| seconds). This allows
not to use the memory as storage. Indeed since the number of houses might be
very huge, the volume of data to handle also becomes huge. It is much more
efficient not to use the memory to avoid failures like “out of memory”. Further
predictions can be performed by reading from Cassandra the consumption values
previously stored. These predictions are also stored in Cassandra allowing to
evaluate the error rate.

The main advantages with this approach is that the consumption and prediction
values are persistent allowing to implement more elaborated prediction methods
by taking into account the previous records for the predictions and consumptions.
Secondly, storing these values in Cassandra allows to implement stateless bolts.
This facilitates to dynamically adjust the degree of parallelism of the bolts at run-
time depending on the workload in order to meet the performance objectives.

Figure 8.7 is an excerpt demonstrating the CIRUS components under Robo-
conf DSL.

8.3 Synthesis
In this chapter, the experimental evaluation is organized to validate the features
supporting for the multi-level fine-grained elasticity of Roboconf platform. The

121

CHAPTER 8. EVALUATION OF THE ROBOCONF PLATFORM

An Azure VM
VM_AZURE {

alias: VM Azure;
installer: iaas;
children: Storm_Cluster,

Cassandra;
}

A BeagleBone Black
BOARD_BEAGLEBONE {

alias: BeagleBone Black;
installer: embedded;
children: OpenHAB;

}

Storm Cluster for ESP
Storm_Cluster {

alias: Storm Cluster;
installer: bash;
imports: Nimbus.port,

Nimbus.ip;
children: Nimbus,

Storm_Supervisor;
}

OpenHAB: A Home
Automation Bus
OpenHAB {

alias: OpenHAB;
installer: puppet;
exports: ip,

brokerChoice = Mosquitto;
imports: Mosquitto.ip,

Mosquitto.port;
}
...

Figure 8.7: Components of CIRUS under Roboconf DSL

first experiment justifies Roboconf in terms of dynamic dependency resolution and
concurrent component deployment with a simple LAMP application. We measure
Roboconf deployment time and compare it with state-of-the-art deployment plat-
forms. At this end, Roboconf outperforms the others in terms of total deployment
time. The second one uses an OSGi-based application to show benefit of using a
hierarchical language like Roboconf DSL to describe multi-level applications. It
saves time and labor effort while working on reusable and inherited components.
The third experiment gives some evidence for the correctness of Roboconf multi-
cloud distributed deployment feature and its extensibility using target interfaces
and plug-ins. Like any other solutions, the Roboconf platform is likely to intro-
duce an additional overhead. The results obtained allow us to highlight Roboconf
as a low cost deployment platform. Compared to its benefits, this introduction of
overhead is negligible.

To assess the model of Roboconf applications, we presented two practical use
cases (ESN - an Enterprise Social Network application and CIRUS - a Cloud
infrastructure for real-time ubiquitous big data analytics) deployed in a multi-
cloud environment by Roboconf as proof-of-concept implementations.

122

Chapter 9

CONCLUSION AND
PERSPECTIVES

Contents
9.1 Summary . 123

9.2 Perspectives . 126

9.2.1 Enhancement of the Algorithms of Multi-level Fine-
grai-ned Elasticity 126

9.2.2 Variety of Resource Dimensions 126

9.2.3 Mitigation of Lightweight Container Migration Time . 126

9.1 Summary
Elasticity is one of the precious gifts coming from Cloud computing. However
there are some causes which make current elasticity solutions not be able to
thoughtfully resolve challenges of elasticity. First one comes from rapidly chang-
ing and heterogeneous environment of the Cloud itself. This implies introduction
of new cloud technologies which might not be standardized. Elasticity solutions
thus cannot foresee these new technologies being put into the Cloud day in and
day out and often get stuck in proprietary technologies. Second one is that cloud
applications are increasingly complex, which consist of multiple components de-
veloped, deployed and managed by different software platforms in various lan-
guages. This requires that elasticity solutions must take into consideration the
structure of the applications that they impact. The third one is that elasticity so-
lutions for huge and complex applications will quickly make rented resources be
depleted blurring the sense of an unlimited Cloud. Therefore efficient resource

123

CHAPTER 9. CONCLUSION AND PERSPECTIVES

utilization for scaling using smart algorithms on lightweight fine-grained resource
also plays a very important role.

After a comprehensive survey about elasticity research and solutions using
analytic grid, the class “Level” is proposed to be added to the elasticity taxon-
omy in order to supplement a missing concern about granularity of elasticity ac-
tions. The thorough analysis about elasticity research in general and the scaling
actions (horizontal, vertical and migration) used for elasticity in particular shows
that there still have a lot of new issues of elasticity needed to be resolved. Our
first contribution is the proposal of using the multi-level fine-grained elasticity as
a new approach to partly solve these newly rising issues which are the resource
availability, resource granularity, startup time, container-based virtualization and
composability. In our approach, resource objects and their granularity of elasticity
actions are especially concerned. We figured out that a resource type may have
containment or/and runtime relationships with other resource types. Thus the re-
source and its dependencies could be described hierarchically (in multiple levels)
at design time. It leads to a demand of considering the priority of resources on
which the elasticity actions should be applied (which resource types at which lev-
els). Our approach suggests that more fine-grained resource types should be taken
into account firstly because it costs less when implementing the smaller types of
resources. With our approach, resources are used more efficient and economi-
cal resulting in more resource available. Our approach also encourages applying
elasticity actions on the more fine-grained resources. This might take advantage
of the strength of newly virtualized resource types such as lightweight container
or elastic VM. These resource types reduce significantly the spin-up time resulting
in more speedy elasticity.

To support the multi-level fine-grained elasticity, we need to develop and use
an elasticity manager satisfying the extra requirements: rapidness, component
fine-grained hierarchical description and deployment, multi-cloud deployment,
genericity and extensibility. To do that, the elasticity manager needs to implement
an autonomic loop for dynamic scaling and adaptation. To this end, Roboconf
expresses the noticeable features of an ACCS, thus it is also an ACCS. Robo-
conf platform, such an autonomic elasticity manager, is introduced as our second
contribution. First, Roboconf introduces a hierarchical DSL which enables abil-
ity to describe complex cloud applications as set of components (software com-
ponents or infrastructure components). These components have containment or
runtime relationships declared in a Roboconf graph. The Roboconf DSL also
advocates constructing the elasticity rules which might implement the multi-level
fine-grained approach. These rules cause elasticity actions on different component
instances of targeted application. Second, the design detail of Roboconf platform
is described as set of modules. These modules offer the unique features which are
the component fine-grained hierarchical description, dynamic dependency reso-

124

9.1. SUMMARY

lution, concurrent component deployment, multi-cloud distributed deployment,
genericity, extensibility, scalability, and dynamic reconfiguration of the deploy-
ment plans. All these features advocate well for the multi-level fine-grained elas-
ticity. Roboconf Targets and Plug-ins are the mechanisms to extend Roboconf. It
helps integrate more modules to the software repositories of Roboconf. Roboconf
implement the MAPE-K autonomic loop to automate deployment and reconfigu-
ration of Roboconf applications. Using pub-sub paradigm to exchange dependent
variables among instances, Roboconf offers asynchronous deployment and dy-
namic reconfiguration. Elasticity management based on the autonomic modules
of Roboconf is also discussed.

Finally two series of experiments have been conducted to evaluate the multi-
level fine-grained elasticity approach and the Roboconf platform itself. Two ex-
periments in the first series propose the novel multi-level fine-grained elasticity
algorithms which can be described under Roboconf DSL for elasticity as well as
deployed and monitored by Roboconf autonomic platform. These experiments
have been performed with multiple levels of resource granularity such as VM,
lightweight container, software container, software component. The result of these
experiments show that the novel approach reduces resource startup time when us-
ing combination of both coarse-grained and fine-grained resources. This reduces
total resource provisioning time taken for an elasticity solution. It consequently
leads to the mitigation of SLA violation rate (in terms of average response time) as
well as the more efficient and economical use of rented resources. The second se-
rie includes three experiments conducted to evaluate the Roboconf platform itself
in term of various features that it offers to support the multi-level fine-grained elas-
ticity. The first experiment dissects Roboconf deployment process and compare it
with the state-of-the-art deployment platforms: Cloudify, RightScale, and Scalr.
The experiment gave the results showing that Roboconf outperforms the others in
terms of total deployment time. The second in the serie is to demonstrate the ad-
vantage of the hierarchically fine-grained description provided by Roboconf DSL.
Result of the experiment on design and deployment of an OSGi-based applica-
tion shows that Roboconf deployers need less time and effort than its competitor,
Cloudify platform, due to nature in the containment-relationship description and
its component reusability. The last one devotes to give some evidences for the
correctness of Roboconf multi-cloud distributed deployment feature and its ex-
tensibility using target and agent plug-ins. The advantage result is for Roboconf
when we compared both design and deployment time of Storm platform using
Roboconf and the original Storm manual installation guide. These works have
been evaluated using private clouds running on VMware vSphere and OpenStack,
as well as public ones including cloud providers such as Amazon EC2 and Mi-
crosoft Azure.

125

CHAPTER 9. CONCLUSION AND PERSPECTIVES

9.2 Perspectives

9.2.1 Enhancement of the Algorithms of Multi-level Fine-grai-
ned Elasticity

In this thesis, we limit ourself with elasticity strategies of reactive mode (see Fig-
ure 3.1). The reactive mode perfectly resolves phenomena which lead to uncon-
templated changes of workload such as slashdotting. As reactive mode is suitable
with every kind of workload, it is the choice for cases that workload cannot be
predicted or formulated under a shape function. However the predictive mode
still stands for cases that workload is stable over time or could be formulated. In
these cases, workload prediction helps calculating amount of time to pre-provision
VMs before actual scales occur. Thus elasticity actions are effective almost imme-
diately. In general, the predictive mode is more complex than the reactive one and
often incurs the risk of false prediction (both false positive and false negative) at
a certain rate. In spite of that, we believe that a combined solution of both modes
is necessary and would be a relevant future contribution.

9.2.2 Variety of Resource Dimensions
Our elasticity approach pays much attention to fine-grained resources, especially
the lightweight container. Currently, the conducted experiments on lightweight
containers consider to a resource dimension which is memory. To have better
evaluation of our algorithms and the implementing platform, it is necessary to
integrate more dimensions such as CPU share, number of vCPU, storage and net-
work bandwidth. The combination of multiple dimensions will increase the com-
plexity but it will bring our approach closer to reality. This provides more choices
for users to manage their elasticity solution on Roboconf platform.

9.2.3 Mitigation of Lightweight Container Migration Time
In our experiments about the multi-level fine-grained algorithms, we assume that
the Docker image of the application have been pre-integrated into the correspond-
ing VMI. This method is feasible for scaling stateless applications that their con-
tainer could be replicated anywhere without concerning about related ties such as
user sessions or behind databases. On the other hand, scaling stateful applications
is often related to capture the current state of an application instance into an im-
age and transfer the image to a destination where it will be invoked by another
instance. The time that migration process takes depends on the image size and
the migration technology. Thus the Docker daemon must wait until this process
finishes before the Docker container is actually created and started. Research on

126

9.2. PERSPECTIVES

mitigation the migration time is an open issue for applying the young lightweight
container technologies into practice.

127

CHAPTER 9. CONCLUSION AND PERSPECTIVES

128

Bibliography

[1] Kim Weins. Cloud Computing Trends: 2015 State of the Cloud Survey.
February 2015. http://www.rightscale.com/blog/cloud-
industry-insights/cloud-computing-trends-2015-
state-cloud-survey.

[2] Joseph C. R. Licklider. Topics for Discussion at the Forthcoming Meeting,
Memorandum For: Members and Affiliates of the Intergalactic Computer
Network. April 1963. http://www.kurzweilai.net/memorandum-
for-members-and-affiliates-of-the-intergalactic-
computer-network.

[3] Salesforce. ‘http://www.salesforce.com,” visited on November 2015.

[4] Amazon AWS. ‘https://aws.amazon.com/,” visited on November 2015.

[5] Amazon EC2. ‘http://aws.amazon.com/ec2/,” visited on November 2015.

[6] Google App Engine. ‘https://appengine.google.com/,” visited on November
2015.

[7] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[8] Fawaz Paraiso, Nicolas Haderer, Philippe Merle, Romain Rouvoy, and Li-
onel Seinturier. A federated multi-cloud paas infrastructure. In Rong Chang,
editor, IEEE CLOUD, pages 392–399. IEEE, 2012.

[9] Suzy Temate, Laurent Broto, Alain Tchana, and Daniel Hagimont. A High
Level Approach for Generating Models Graphical Editors. In Information
Technology: New Generations (ITNG), 2011 8th International Conference
on, pages 743–749. IEEE, 2011.

[10] Kyle Oppenheim and Patrick McCormick. Deployme: Tellmes Package
Management and Deployment System. In LISA ’00 Proceedings of the 14th
USENIX conference on System administration, pages 187–196. ACM, 2000.

129

http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2015-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2015-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2015-state-cloud-survey
http://www.kurzweilai.net/memorandum-for-members-and-affiliates-of-the-intergalactic-computer-network
http://www.kurzweilai.net/memorandum-for-members-and-affiliates-of-the-intergalactic-computer-network
http://www.kurzweilai.net/memorandum-for-members-and-affiliates-of-the-intergalactic-computer-network

BIBLIOGRAPHY

[11] Hyun J. La and Soo D. Kim. Dynamic Architecture for Autonomously
Managing Service-Based Applications. In Services Computing (SCC), 2012
IEEE Ninth International Conference on, pages 515–522. IEEE, 2012.

[12] Kung-Kiu Lau, Ling Ling, and Perla V. Elizondo. Towards composing soft-
ware components in both design and deployment phases. In 10th Interna-
tional Symposium, CBSE 2007, Medford, MA, USA, July 9-11, 2007. Pro-
ceedings, pages 274–282. Springer, 2007.

[13] Alain Tchana, Suzy Temate, Laurent Broto, and Daniel Hagimont.
TUNeEngine: An Adaptable Autonomic Administration System. Interna-
tional Journal of Soft Computing and Software Engineering, 3(3):524–535,
2013.

[14] AWS Elastic Beanstalk. ‘https://https://aws.amazon.com/fr/elasticbeanstalk/,”
visited on November 2015.

[15] Cloudify. ‘http://www.cloudifysource.org,” visited on November 2015.

[16] RightScale. ‘http://www.rightscale.com,” visited on November 2015.

[17] Scalr. ‘http://www.scalr.com,” visited on November 2015.

[18] EnStratus. ‘http://www.enstratius.com,” visited on November 2015.

[19] Jeffrey O. Kephart. Autonomic Computing: The First Decade. In ICAC ’11
Proceedings of the 8th ACM international conference on Autonomic com-
puting, pages 1–2. ACM, 2011.

[20] Peter Mell and Timothy Grance. The NIST definition of cloud computing.
Technical Report 800-145, National Institute of Standards and Technology
(NIST), September 2011.

[21] Ahmed El Rheddane. Elasticity in the Cloud. PhD Thesis, 2015.

[22] Linh Manh Pham, Alain Tchana, Didier Donsez, Noël de Palma, Vin-
cent Zurczak, and Pierre-Yves Gibello. An adaptable framework to de-
ploy complex applications onto multi-cloud platforms. In Cloud Comput-
ing (CLOUD), 2015 IEEE 8th International Conference on, pages 365–372.
IEEE, 2015.

[23] Linh Manh Pham, Alain Tchana, Didier Donsez, Vincent Zurczak, Pierre-
Yves Gibello, and Noel de Palma. Roboconf: a Hybrid Cloud Orchestrator
to Deploy Complex Applications. In Computing & Communication Tech-
nologies - Research, Innovation, and Vision for the Future (RIVF), 2015
IEEE RIVF International Conference on, pages 169–174. IEEE, 2015.

130

BIBLIOGRAPHY

[24] Microsoft Azure. ‘http://windowsazure.com,” visited on November 2015.

[25] OpenHAB. ‘http://www.openhab.org,” visited on November 2015.

[26] OpenStack. ‘https://www.openstack.org,” visited on November 2015.

[27] Jez Humble and David Farley. Continuous delivery: reliable software re-
leases through build, test, and deployment automation. Book, Addison-
Wesley Professional, July 2010.

[28] OSGi. ‘http://www.osgi.org,” visited on November 2015.

[29] Heroku Platform. ‘https://www.heroku.com/platform,” visited on November
2015.

[30] Docker. ‘https://www.docker.com,” visited on November 2015.

[31] Vagrant. ‘https://www.vagrantup.com,” visited on November 2015.

[32] RabbitMQ. ‘https://www.rabbitmq.com,” visited on November 2015.

[33] AMQP. ‘http://www.amqp.org,” visited on November 2015.

[34] M. Vardhan, D. K. Yadav, and D. S. Kushwaha. A service-oriented archi-
tecture framework for mobile services. In Complex, Intelligent and Software
Intensive Systems (CISIS), 2012 Sixth International Conference on, pages
389–394. IEEE, 2012.

[35] Livestatus. ‘https://mathias-kettner.de/checkmk livestatus.html,” visited on
November 2015.

[36] Nagios. ‘http://www.nagios.org,” visited on November 2015.

[37] Shinken. ‘http://shinken-monitoring.org,” visited on November 2015.

[38] CLIF Server. ‘http://clif.ow2.org,” visited on November 2015.

[39] Shuai Zhang, Shufen Zhang, Xuebin Chen, and Xiuzhen Huo. Cloud Com-
puting Research and Development Trend. In Future Networks, 2010. ICFN
’10. Second International Conference on, pages 93–97. IEEE, 2010.

[40] Jeremy Geelan. Twenty-one experts define cloud computing. Virtualization
Journal, January 2009. http://virtualization.sys-con.com/
node/612375.

131

http://virtualization.sys-con.com/node/612375
http://virtualization.sys-con.com/node/612375

BIBLIOGRAPHY

[41] Eric Knorr and Galen Gruman. What cloud computing really means.
InfoWorld, April 2008. http://www.infoworld.com/d/cloud-
computing/what-cloud-computing-really-means-031.

[42] T. Grandison, E. M. Maximilien, S. Thorpe, and A. Alba. Towards a For-
mal Definition of a Computing Cloud. In Services (SERVICES-1), 2010 6th
World Congress on, pages 191–192. IEEE, 2010.

[43] Paul McFedries. The cloud is the computer. IEEE Spectrum Online, Au-
gust 2008. http://spectrum.ieee.org/computing/hardware/
the-cloud-is-the-computer.

[44] M. Morari. Robust stability of systems with integral control. In Decision
and Control, 1983. The 22nd IEEE Conference on, pages 865–869. IEEE,
1983.

[45] Shicong Meng, Ling Liu, and Vijayaraghavan Soundararajan. Tide: achiev-
ing self-scaling in virtualized datacenter management middleware. In Pro-
ceedings of the 11th International Middleware Conference Industrial track,
pages 17–22. ACM, 2010.

[46] Yanyan Zhuang, Justin Cappos, Theodore S. Rappaport, and Rick McGeer.
Future Internet Bandwidth Trends: An Investigation on Current and Future
Disruptive Technologies. Technical Report Online, NYU, January 2013.

[47] Rackspace. ‘http://www.rackspace.com/cloud,” visited on November 2015.

[48] Ricky Ho. Between Elasticity and Scalability. Online, July
2009. http://horicky.blogspot.fr/2009/07/between-
elasticity-and-scalability.html.

[49] Dropbox. ‘https://www.dropbox.com/,” visited on November 2015.

[50] Nathanael Burton. OpenStack at the National Security Agency (NSA).
Keynote, April 2013. http://www.openstack.org/summit/
portland-2013/session-videos/presentation/keynote-
openstack-at-the-national-security-agency-nsa.

[51] NCREN. ‘https://k20.internet2.edu/organizations/research-education-
network/north-carolina-research-and-education-network-ncren,” visited on
November 2015.

[52] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan
Tsafrir. The Rise of RaaS: the Resource-as-a-Service cloud. Communi-
cations of the ACM, 57(7):76–84, 2014.

132

http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-031
http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-031
http://spectrum.ieee.org/computing/hardware/the-cloud-is-the-computer
http://spectrum.ieee.org/computing/hardware/the-cloud-is-the-computer
http://horicky.blogspot.fr/2009/07/between-elasticity-and-scalability.html
http://horicky.blogspot.fr/2009/07/between-elasticity-and-scalability.html
http://www.openstack.org/summit/portland-2013/session-videos/presentation/keynote-openstack-at-the-national-security-agency-nsa
http://www.openstack.org/summit/portland-2013/session-videos/presentation/keynote-openstack-at-the-national-security-agency-nsa
http://www.openstack.org/summit/portland-2013/session-videos/presentation/keynote-openstack-at-the-national-security-agency-nsa

BIBLIOGRAPHY

[53] Yucong Duan, Yuan Cao, and Xiaobing Sun. Various “aaS” of everything
as a service. In Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS Inter-
national Conference on, pages 1–6. IEEE, 2015.

[54] Minqi Zhou; Rong Zhang; Dadan Zeng; Weining Qian. Services in the
Cloud Computing era: A survey. In Universal Communication Symposium
(IUCS), 2010 4th International, pages 40–46. IEEE, 2010.

[55] Frank Leymann. Cloud Computing: The Next Revolution in IT. In Proc.
52th Photogrammetric Week. W. Verlag, pages 3–12. Springer Verlag, 2009.

[56] Alpha C. Chiang and Kevin Wainwright. Fundamental Methods of Mathe-
matical Economics. Book, McGraw-Hill Education, October 2004.

[57] OCDA. Master Usage Model: Compute Infrastructure as a
Service. Technical report, Open Data Center Alliance, 2012.
http://www.opendatacenteralliance.org/docs/
ODCA Compute IaaS MasterUM v1.0 Nov2012.pdf.

[58] Edwin Schouten. Rapid elasticity and the cloud. Online, Septem-
ber 2012. http://thoughtsoncloud.com/index.php/2012/09/
rapid-elasticity-and-the-cloud/.

[59] Reuven Cohen. Defining Elastic Computing. Online, September
2009. http://www.elasticvapor.com/2009/09/defining-
elastic-computing.html.

[60] G. Galante and L.C.E. de Bona. A survey on cloud computing elasticity. In
Utility and Cloud Computing (UCC), 2012 IEEE Fifth International Confer-
ence on, pages 263–270, November 2012.

[61] Rich Wolski. Cloud Computing and Open Source: Watching Hype meet
Reality. Online, May 2011. http://www.ics.uci.edu/˜ccgrid11/
files/ccgrid-11 Rich Wolsky.pdf.

[62] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in
cloud computing: What it is, and what it is not. In ICAC, pages 23–27,
2013.

[63] Amro Najjar, Xavier Serpaggi, Christophe Gravier, and Olivier Boissier.
Survey of elasticity management solutions in cloud computing. In Advances
and Trends in Cloud Computing, pages 235–263. Springer, 2014.

133

http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf
http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf
http://thoughtsoncloud.com/index.php/2012/09/rapid-elasticity-and-the-cloud/
http://thoughtsoncloud.com/index.php/2012/09/rapid-elasticity-and-the-cloud/
http://www.elasticvapor.com/2009/09/defining-elastic-computing.html
http://www.elasticvapor.com/2009/09/defining-elastic-computing.html
http://www.ics.uci.edu/~ccgrid11/files/ccgrid-11_Rich_Wolsky.pdf
http://www.ics.uci.edu/~ccgrid11/files/ccgrid-11_Rich_Wolsky.pdf

BIBLIOGRAPHY

[64] Emanuel F. Coutinho, Flavio R. D. C. Sousa, Paulo A. L. Rego, Danielo G.
Gomes, and Jose N. D. Souza. Elasticity in cloud computing: a survey. In
annals of telecommunications - annales des tlcommunications, 70(7-8):289–
309. Springer, 2015.

[65] AWS Auto Scaling. ‘https://aws.amazon.com/autoscaling/,” visited on
November 2015.

[66] Emiliano Casalicchio and Luca Silvestri. Mechanisms for SLA provision-
ing in cloud-based service providers. In Journal Computer Networks: The
International Journal of Computer and Telecommunications Networking,
57(3):795–810. ACM, 2013.

[67] M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S. L. D. Gudreddi.
Integrated and autonomic cloud resource scaling. In Network Operations
and Management Symposium (NOMS), 2012 IEEE, pages 1327–1334. IEEE,
2012.

[68] Jonathan Kupferman, Jeff Silverman, Patricio Jara, and Jeff
Browne. Scaling into the cloud. CS270-Advanced Operating Sys-
tems, 2009. http://www.cs.ucsb.edu/˜jbrowne/files/
ScalingIntoTheClouds.pdf.

[69] S. Genaud and J. Gossa. Cost-wait trade-offs in client-side resource pro-
visioning with elastic clouds. In Cloud Computing (CLOUD), 2011 IEEE
International Conference on, pages 1–8. IEEE, 2011.

[70] Paul Marshall, Kate Keahey, and Tim Freeman. Elastic site: Using clouds to
elastically extend site resources. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pages 43–
52. IEEE Computer Society, 2010.

[71] Luis Rodero-Merino, Luis M. Vaquero, Victor Gil, Fermin Galán, Javier
Fontán, Rubén S. Montero, and Ignacio M. Llorente. From infrastructure
delivery to service management in clouds. In Journal Future Generation
Computer Systems, 26(8):1226–1240. Elsevier Science, 2010.

[72] Junliang Chen, Chen Wang, Bing B. Zhou, Lei Sun, Young C. Lee, and
Zomaya AY. Tradeoffs Between Profit and Customer Satisfaction for Ser-
vice Provisioning in the Cloud. In HPDC ’11 Proceedings of the 20th in-
ternational symposium on High performance distributed computing, pages
229–238. ACM, 2011.

134

http://www.cs.ucsb.edu/~jbrowne/files/ScalingIntoTheClouds.pdf
http://www.cs.ucsb.edu/~jbrowne/files/ScalingIntoTheClouds.pdf

BIBLIOGRAPHY

[73] Rui Han, Moustafa M. Ghanem, Li Guo, Yike Guo, and Michelle Osmond.
Enabling cost-aware and adaptive elasticity of multi-tier cloud applications.
In Journal Future Generation Computer Systems, 32(-):82–98. Elsevier Sci-
ence, 2014.

[74] Zhipiao Liu, Shangguang Wang, Qibo Sun, Hua Zou and Fangchun Yang.
Cost-Aware Cloud Service Request Scheduling for SaaS Providers. The
Computer Journal, Oxford University Press, 2013.

[75] Qian Zhu and G. Agrawal. Resource provisioning with budget constraints
for adaptive applications in cloud environments. In Services Computing,
IEEE Transactions on, 5(4):497–511. IEEE, 2012.

[76] V. Cardellini, E. Casalicchio, F. L. Presti, and L. Silvestri. SLA-aware Re-
source Management for Application Service Providers in the Cloud. In Net-
work Cloud Computing and Applications (NCCA), 2011 First International
Symposium on, pages 20–27. IEEE, 2011.

[77] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloud-
Scale: elastic resource scaling for multi-tenant cloud systems. In Proceeding
SOCC ’11 Proceedings of the 2nd ACM Symposium on Cloud Computing,
Article 5. ACM, 2011.

[78] Josep Oriol Fitó, Inigo Goiri, and Jordi Guitart. Sla-driven elastic cloud
hosting provider. In Parallel, Distributed and Network-Based Processing
(PDP), 2010 18th Euromicro International Conference on, pages 111–118.
IEEE, 2010.

[79] Rodrigo. N. Calheiros, Christian Vecchiola, Dileban Karunamoorthy, and
Rajkumar Buyya. The Aneka platform and QoS-driven resource provision-
ing for elastic applications on hybrid Clouds. In Journal Future Generation
Computer Systems, 28(6):861–870. Elsevier Science, 2012.

[80] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar. Cost-
Efficient and Application SLA-Aware Client Side Request Scheduling in
an Infrastructure-as-a-Service Cloud. In Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on, pages 213–220. IEEE, 2012.

[81] T. Hobfeld, R. Schatz, M. Varela, and C. Timmerer. Challenges of QoE
management for cloud applications. In Communications Magazine, IEEE,
50(4):28–36. IEEE, 2012.

[82] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hossfeld. An evaluation of
QoE in cloud gaming based on subjective tests. In Proceeding IMIS ’11

135

BIBLIOGRAPHY

Proceedings of the 2011 Fifth International Conference on Innovative Mo-
bile and Internet Services in Ubiquitous Computing, pages 330–335. IEEE
Computer Society, 2011.

[83] Tania Lorido-Botrán, José Miguel-Alonso, and Jose A. Lozano. Auto-
scaling techniques for elastic applications in cloud environments. Technical
Report, University of the Basque Country, September 2012.

[84] Anton Beloglazov and Rajkumar Buyya. Adaptive threshold-based approach
for energy-efficient consolidation of virtual machines in cloud data centers.
In Proceeding MGC ’10 Proceedings of the 8th International Workshop on
Middleware for Grids, Clouds and e-Science, Article 4. ACM, 2010.

[85] GoGrid. ‘http://www.gogrid.com/,” visited on November 2015.

[86] Iulian Neamtiu. Elastic executions from inelastic programs. In Proceeding
SEAMS ’11 Proceedings of the 6th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems, pages 178–183. ACM,
2011.

[87] D. Rajan, A. Canino, J. A. Izaguirre, and D. Thain. Converting a high per-
formance application to an elastic cloud application. In Cloud Computing
Technology and Science (CloudCom), 2011 IEEE Third International Con-
ference on, pages 383–390. IEEE, 2011.

[88] Mohamed Mohamed, Mourad Amziani, Djamel Belaid, Samir Tata, and
Tarek Melliti. An autonomic approach to manage elasticity of business
processes in the Cloud. In Journal Future Generation Computer Systems,
50(C):49–61. Elsevier Science, 2015.

[89] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang,
Sharad Singhal, Arif Merchant, and Kenneth Salem. Adaptive control of vir-
tualized resources in utility computing environments. In Proceeding EuroSys
’07 Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, pages 289–302. ACM, 2007.

[90] Rhodney Simoes and Carlos A. Kamienski. Elasticity management in pri-
vate and hybrid clouds. In Cloud Computing (CLOUD), 2014 IEEE 7th
International Conference on, pages 793–800. IEEE, 2014.

[91] Lydia Yataghene, Mourad Amziani, Malika Ioualalen, and Samir Tata. A
queuing model for business processes elasticity evaluation. In Advanced In-
formation Systems for Enterprises (IWAISE), 2014 International Workshop
on, pages 22–28. IEEE, 2014.

136

BIBLIOGRAPHY

[92] Mohamed N. Bennani and Daniel A. Menascé. Resource allocation for auto-
nomic data centers using analytic performance models. In Autonomic Com-
puting, 2005. ICAC 2005. Proceedings. Second International Conference on,
pages 229–240. IEEE, 2005.

[93] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient autoscal-
ing in the cloud using predictive models for workload forecasting. In Cloud
Computing (CLOUD), 2011 IEEE International Conference on, pages 500–
507. IEEE, 2011.

[94] Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees Shaikh. A cost-
aware elasticity provisioning system for the cloud. In Distributed Computing
Systems (ICDCS), 2011 31st International Conference on, pages 559–570.
IEEE, 2011.

[95] Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan Kostić, and Ri-
cardo Bianchini. Dejavu: accelerating resource allocation in virtualized en-
vironments. ACM SIGARCH Computer Architecture News, 40(1):423–436,
2012.

[96] L. Bellissard, Noël de Palma, A. Freyssinet, M. Herrmann, and S. Lacourte.
An agent platform for reliable asynchronous distributed programming. In
Reliable Distributed Systems, 1999. Proceedings of the 18th IEEE Sympo-
sium on, pages 294–295. IEEE, 1999.

[97] H. N. Van, F. D. Tran, and J. M. Menaud. SLA-Aware Virtual Resource
Management for Cloud Infrastructures. In Computer and Information Tech-
nology, 2009. CIT ’09. Ninth IEEE International Conference on, pages 357–
362. IEEE, 2009.

[98] T. C. Chieu TC and Hoi Chan. Dynamic resource allocation via distributed
decisions in cloud environment. In e-Business Engineering (ICEBE), 2011
IEEE 8th International Conference on, pages 125–130. IEEE, 2011.

[99] E. Kafetzakis, H. Koumaras, M. A. Kourtis, and V. Koumaras.
QoE4CLOUD: A QoE-driven multidimensional framework for cloud envi-
ronments. In Telecommunications and Multimedia (TEMU), 2012 Interna-
tional Conference on, pages 77–82. IEEE, 2012.

[100] Christophe Taton, Noël De Palma, Sara Bouchenak, and Daniel Hagimont.
Improving the performances of jms-based applications. International Jour-
nal of Autonomic Computing, 1(1):81–102, 2009.

137

BIBLIOGRAPHY

[101] Nam-Luc Tran, Sabri Skhiri, and Esteban Zimányi. Eqs: An elastic and
scalable message queue for the cloud. In Cloud Computing Technology and
Science (CloudCom), 2011 IEEE Third International Conference on, pages
391–398. IEEE, 2011.

[102] Smita Vijayakumar, Qian Zhu, and Gagan Agrawal. Dynamic resource pro-
visioning for data streaming applications in a cloud environment. In Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second Inter-
national Conference on, pages 441–448. IEEE, 2010.

[103] Thomas Knauth and Christof Fetzer. Scaling non-elastic applications using
virtual machines. In Cloud Computing (CLOUD), 2011 IEEE International
Conference on, pages 468–475. IEEE, 2011.

[104] Scott Schneider, Henrique Andrade, Bugra Gedik, Alain Biem, and Kun-
Lung Wu. Elastic scaling of data parallel operators in stream processing. In
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on, pages 1–12. IEEE, 2009.

[105] A. Raveendran, T. Bicer, and G. Agrawal. A framework for elastic execu-
tion of existing mpi programs. In Parallel and Distributed Processing Work-
shops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on,
pages 940–947. IEEE, 2011.

[106] Mohamed Mohamed. Generic Monitoring and Reconfiguration for Service-
Based Applications in the Cloud. PhD Thesis, 2014.

[107] L. Broto, D. Hagimont, Patricia. Stolf, Noël de Palma, and Suzy Temate.
Autonomic Management Policy Specification in Tune. In Proceeding SAC
’08 Proceedings of the 2008 ACM symposium on Applied computing, pages
1658–1663. ACM, 2008.

[108] Xavier Etchevers, Gwen Salaün, Fabienne Boyer, Thierry Coupaye, Noël
De Palma. Reliable Self-Deployment of Cloud Applications. In Proceed-
ing SAC ’14 Proceedings of the 29th Annual ACM Symposium on Applied
Computing, pages 1331–1338. ACM, 2014.

[109] Liang Zhao, Sherif Sakr, and Anna Liu. A framework for consumer-centric
sla management of cloud-hosted databases. IEEE Transactions on Services
Computing, 8(4):1–1, 2013.

[110] Waheed Iqbal, Matthew N. Dailey, David Carrera, and Paul Janecek. Adap-
tive resource provisioning for read intensive multi-tier applications in the

138

BIBLIOGRAPHY

cloud. In Journal Future Generation Computer Systems, 27(6):871–879.
Elsevier Science, 2011.

[111] Francisco Perez-Sorrosal, Marta Patĩno Martinez, Ricardo Jimenez-Peris,
and Bettina Kemme. Elastic si-cache: consistent and scalable caching in
multi-tier architectures. In Journal The VLDB Journal The International
Journal on Very Large Data Bases, pages 20(6):841–865. Springer Verlag,
2011.

[112] Wesam Dawoud, Ibrahim Takouna, Christoph Meinel. Elastic VM for
Cloud Resources Provisioning Optimization. In First International Confer-
ence, ACC 2011, Kochi, India, July 22-24, 2011. Proceedings, Part I, pages
431–445. Springer, 2011.

[113] Wesam Dawoud, Ibrahim Takouna, Christoph Meinel. Elastic virtual ma-
chine for fine-grained cloud resource provisioning. In 4th International Con-
ference, ObCom 2011, Vellore, TN, India, December 9-11, 2011. Proceed-
ings, Part I, pages 11–25. Springer, 2012.

[114] Giang Son Tran. Cooperative Resource Management in the Cloud. PhD
Thesis, 2014.

[115] D. Kumar, Z. Y. Shae, H. Jamjoom. Scheduling Batch and Heteroge-
neous Jobs with Runtime Elasticity in a Parallel Processing Environment.
In Parallel and Distributed Processing Symposium Workshops & PhD Fo-
rum (IPDPSW), 2012 IEEE 26th International, pages 65–78. IEEE, 2012.

[116] OnApp. ‘http://onapp.com/,” visited on November 2015.

[117] Inkwon Hwang and Massoud Pedram. Hierarchical Virtual Machine Con-
solidation in a Cloud Computing System. In Cloud Computing (CLOUD),
2013 IEEE Sixth International Conference on, pages 196–203. IEEE, 2013.

[118] Ahmed El Rheddane, Noël De Palma, Fabienne Boyer, Frédéric Dumont,
Jean-Marc Menaud, and Alain Tchana. Dynamic scalability of a consolida-
tion service. In Cloud Computing (CLOUD), 2013 IEEE Sixth International
Conference on, pages 748–754. IEEE, 2013.

[119] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and
Julia Lawall. Entropy: a consolidation manager for clusters. In Proceedings
of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual ex-
ecution environments, pages 41–50. ACM, 2009.

139

BIBLIOGRAPHY

[120] H. N. Van, F. D. Tran, and J. M. Menaud. Autonomic Virtual Resource
Management for Service Hosting Platforms. In Software Engineering Chal-
lenges of Cloud Computing, 2009. CLOUD ’09. ICSE Workshop on, pages
1–8. IEEE, 2009.

[121] S. Dutta, S. Gera, A. Verma, and B. Viswanathan. SmartScale: Automatic
Application Scaling in Enterprise Clouds. In Cloud Computing (CLOUD),
2012 IEEE 5th International Conference on, pages 221–228. IEEE, 2012.

[122] A. Ashraf, B. Byholm, I. Porres. CRAMP: Cost-efficient Resource Allo-
cation for Multiple web applications with Proactive scaling. In Cloud Com-
puting Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on, pages 581–586. IEEE, 2012.

[123] Felix. ‘http://felix.apache.org,” visited on November 2015.

[124] Alain Tchana, Noel Depalma, Ibrahim Safieddine, and Daniel Hagimont.
Software Consolidation as an Efficient Energy and Cost Saving Solution for
a SaaS/PaaS Cloud Model. In 21st International Conference on Parallel and
Distributed Computing, Vienna, Austria, August 24-28, 2015, Proceedings,
pages 305–316. Springer, 2015.

[125] Sijin He, Li Guo, Yike Guo, Chao Wu, M. Ghanem, and Rui Han. Elastic
Application Container: A Lightweight Approach for Cloud Resource Pro-
visioning. In Advanced Information Networking and Applications (AINA),
2012 IEEE 26th International Conference on, pages 15–22. IEEE, 2012.

[126] S. Imai, T. Chestna, and C. A. Varela. Elastic Scalable Cloud Computing
Using Application-Level Migration. In Utility and Cloud Computing (UCC),
2012 IEEE Fifth International Conference on, pages 91–98. IEEE, 2012.

[127] Mohamed Mohamed, Djamel Belaid, and Samir Tata. Self-Managed
Micro-containers for Service-Based Applications in the Cloud. In Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2013
IEEE 22nd International Workshop on, pages 140–145. IEEE, 2013.

[128] Apache Storm Cluster. ‘http://storm.apache.org/documentation/Setting-up-
a-Storm-cluster.html,” visited on November 2015.

[129] Y-cruncher Benchmark. ‘http://www.numberworld.org/y-cruncher/,” vis-
ited on November 2015.

[130] Linh Manh Pham, Ahmed El Rheddane, Didier Donsez, and Noël de
Palma. CIRUS: an elastic cloud-based framework for Ubilytics. In annals of

140

BIBLIOGRAPHY

telecommunications - annales des tlcommunications, 71(1-2):x–x. Springer,
2016.

[131] Apache Cassandra. ‘http://cassandra.apache.org,” visited on November
2015.

[132] Mosquitto. ‘http://mosquitto.org/,” visited on November 2015.

[133] Rostand Costaa and Francisco Brasileiro. On the amplitude of the elas-
ticity offered by public cloud computing providers. Federal University
of Campina Grande, Campina Grande, Tech. Rep., 2011. http://
www.lsd.ufcg.edu.br/relatoriostecnicos/TR-4.pdf.

[134] Qingjia Huang, Sen Su, Siyuan Xu, Jian Li, Peng Xu, and Kai Shuang.
Migration-Based Elastic Consolidation Scheduling in Cloud Data Center.
In Distributed Computing Systems Workshops (ICDCSW), 2013 IEEE 33rd
International Conference on, pages 93–97. IEEE, 2013.

[135] D. Breitgand and A. Epstein. Improving consolidation of virtual machines
with risk-aware bandwidth oversubscription in compute clouds. In INFO-
COM, 2012 Proceedings IEEE, pages 2861–2865. IEEE, 2012.

[136] Fawaz Paraiso, Philippe Merle, and Lionel Seinturier. soCloud: A service-
oriented component-based PaaS for managing portability, provisioning, elas-
ticity and high availability across multiple clouds. In Computing, pages 1–
27. Springer, 2014.

[137] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. In Journal ACM Comput-
ing Surveys (CSUR), 35(2):114–131. ACM, 2003.

[138] Eclipse Equinox. ‘http://www.eclipse.org/equinox/,” visited on November
2015.

[139] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin,
Ion Stoica, and Matei Zaharia. A view of cloud computing. Commun. ACM,
53(4):50–58, April 2010.

[140] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, and Kun Wang. A distributed
self- learning approach for elastic provisioning of virtualized cloud re-
sources. In Modeling, Analysis & Simulation of Computer and Telecom-
munication Systems (MASCOTS), 2011 IEEE 19th International Symposium
on, pages 45–54. IEEE, 2011.

141

http://www.lsd.ufcg.edu.br/relatorios tecnicos/TR-4.pdf
http://www.lsd.ufcg.edu.br/relatorios tecnicos/TR-4.pdf

BIBLIOGRAPHY

[141] RUBiS. ‘http://rubis.ow2.org,” visited on November 2015.

[142] Kim Weins. Cloud Computing Trends: 2014 State of the Cloud Sur-
vey. April 2014. http://www.rightscale.com/blog/cloud-
industry-insights/cloud-computing-trends-2014-
state-cloud-survey.

[143] Marek Goldmann. Resource management in Docker. September
2014. https://goldmann.pl/blog/2014/09/11/resource-
management-in-docker/.

[144] Andrew Whitaker, Richard S. Cox, Marianne Shaw, and Steven D. Gribble.
Rethinking the design of virtual machine monitors. In Computer, 38(5):57–
62. IEEE, 2005.

[145] Francesc D. Muñoz-Escoı́, José M. Bernabeu-Aubán. A Survey on Elastic-
ity Management in the PaaS Service Model. Technical Report, Universitat
Politècnica de València, February 2015.

[146] Stefan Poslad. Autonomous systems and Artificial Life. In Ubiqui-
tous Computing Smart Devices, Smart Environments and Smart Interaction,
pages 317–341. Wiley, 2009.

[147] Zhenhuan Gong, Xiaohui Gu, and J. Wilkes. PRESS: PRedictive Elastic
ReSource Scaling for cloud systems. In Network and Service Management
(CNSM), 2010 International Conference on, pages 9–16. IEEE, 2010.

[148] MQ Telemetry Transport. ‘http://mqtt.org,” visited on November 2015.

[149] Daniel Cukier. DevOps patterns to scale web applications using cloud ser-
vices. In SPLASH ’13 Proceedings of the 2013 companion publication for
conference on Systems, programming, & applications: software for human-
ity, pages 143–152. ACM, 2013.

142

http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2014-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2014-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2014-state-cloud-survey
https://goldmann.pl/blog/2014/09/11/resource-management-in-docker/
https://goldmann.pl/blog/2014/09/11/resource-management-in-docker/

Glossary

ACCS: Autonomic Cloud Computing System
ACS: Autonomic Computing System
CAP: Cloud Application Provider
CAU: Cloud Application User
CP: Cloud Provider
CP-U: Cloud Provider User
D&C: Deployment and Configuration
DevOps: Development and Operations
DSL: Domain Specific Language
ESN: Enterprise Social Network
ESP: Event Stream Processing
IoT: Internet of Things
PM: Physical Machine
QoBiz: Quality of Business
QoE: Quality of Experience
QoS: Quality of Service
SLA: Service-Level Agreement
SLO: Service-Level Objective
SoA: Service-oriented Architecture
SUT: System Under Test
VM: Virtual Machine
VMI: Virtual Machine Image
VMM: Virtual Machine Monitor

143

CHAPTER 9. GLOSSARY

144

Appendix

• Supported Targets:

OpenStack, EC2, MS Azure, VMWare, Docker, Apache JCloud, Embed-
ded, In-memory.

http://roboconf.net/en/user-guide/list-of-deployment-
targets.html

• Plugin Interface:

https://github.com/roboconf/roboconf-platform/blob/
master/core/roboconf-plugin-api/src/main/java/net/
roboconf/plugin/api/PluginInterface.java

• Target Handler Interface:

https://github.com/roboconf/roboconf-platform/blob/
master/core/roboconf-target-api/src/main/java/net/
roboconf/target/api/TargetHandler.java

• Monitoring Handler Interface:

https://github.com/roboconf/roboconf-platform/blob/
master/core/roboconf-agent-monitoring-api/src/main/
java/net/roboconf/agent/monitoring/api/IMonitoring-
Handler.java

• Implementation of EC2 and Azure Targets:

https://github.com/roboconf/roboconf-platform/blob/
master/core/roboconf-target-iaas-ec2/src/main/java/
net/roboconf/target/ec2/internal/Ec2IaasHandler.java

145

http://roboconf.net/en/user-guide/list-of-deployment-targets.html
http://roboconf.net/en/user-guide/list-of-deployment-targets.html
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-plugin-api/src/main/java/net/roboconf/plugin/api/PluginInterface.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-plugin-api/src/main/java/net/roboconf/plugin/api/PluginInterface.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-plugin-api/src/main/java/net/roboconf/plugin/api/PluginInterface.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-target-api/src/main/java/net/roboconf/target/api/TargetHandler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-target-api/src/main/java/net/roboconf/target/api/TargetHandler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-target-api/src/main/java/net/roboconf/target/api/TargetHandler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-agent-monitoring-api/src/main/java/net/roboconf/agent/monitoring/api/IMonitoring-Handler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-agent-monitoring-api/src/main/java/net/roboconf/agent/monitoring/api/IMonitoring-Handler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-agent-monitoring-api/src/main/java/net/roboconf/agent/monitoring/api/IMonitoring-Handler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-agent-monitoring-api/src/main/java/net/roboconf/agent/monitoring/api/IMonitoring-Handler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-target-iaas-ec2/src/main/java/net/roboconf/target/ec2/internal/Ec2IaasHandler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-target-iaas-ec2/src/main/java/net/roboconf/target/ec2/internal/Ec2IaasHandler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-target-iaas-ec2/src/main/java/net/roboconf/target/ec2/internal/Ec2IaasHandler.java

CHAPTER 9. APPENDIX

https://github.com/roboconf/roboconf-platform/blob/
master/core/roboconf-target-iaas-azure/src/main/j-
ava/net/roboconf/target/azure/internal/AzureIaasHa-
ndler.java

• Storm D&C Scripts:

https://github.com/roboconf/roboconf-examples/tree/
master/storm-bash/src/main/model

146

https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-target-iaas-azure/src/main/j-ava/net/roboconf/target/azure/internal/AzureIaasHa-ndler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-target-iaas-azure/src/main/j-ava/net/roboconf/target/azure/internal/AzureIaasHa-ndler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-target-iaas-azure/src/main/j-ava/net/roboconf/target/azure/internal/AzureIaasHa-ndler.java
https://github.com/roboconf/roboconf-platform/blob/master/core/roboconf-target-iaas-azure/src/main/j-ava/net/roboconf/target/azure/internal/AzureIaasHa-ndler.java
https://github.com/roboconf/roboconf-examples/tree/master/storm-bash/src/main/model
https://github.com/roboconf/roboconf-examples/tree/master/storm-bash/src/main/model

	Abstract
	Résumé
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	INTRODUCTION
	Context
	Motivation
	Contribution
	Document Organization

	CLOUD COMPUTING AND AUTONOMIC COMPUTING
	Theory of Cloud Computing
	Cloud Computing Characteristics
	Cloud Computing Models
	Actors in Cloud Ecosystem
	Virtualization on the Cloud
	Challenges

	Theory of Autonomic Computing
	Definition
	Autonomic Loop
	Autonomic Properties
	Autonomic Cloud Computing

	Synthesis

	ELASTICITY
	Definition
	Classification
	Strategy
	Architecture
	Scope

	Elasticity Actions
	Horizontal Scaling on Various Tiers
	Vertical Scaling on Various Tiers

	The Unresolved Issues
	Resource Availability
	Resource Granularity
	Startup Time
	Rising of Container-based Virtualization
	Composability

	Synthesis

	MULTI-LEVEL FINE-GRAINED ELASTICITY
	Definition
	Related Work
	Requirements of Autonomic Elasticity Managers
	Synthesis

	MODEL OF ROBOCONF APPLICATIONS
	Introduction
	A Motivating Use Case
	Model of Roboconf Applications
	Description of Roboconf Applications
	The Application Descriptor
	The Graph
	Instance Description
	The Graph Resources

	Roboconf Domain Specific Language
	Configuration Files and Fine-grained Hierarchical DSL
	Reusability in the Roboconf Model
	Roboconf DSL Dedicated to the Rules of Elasticity

	Synthesis

	THE ROBOCONF PLATFORM
	Introduction
	Architecture of the Roboconf platform
	Design Details of the Roboconf Platform
	Roboconf Targets
	Roboconf Plug-ins
	Extension of the Roboconf Platform

	Deployment Process
	Instance Life Cycle
	Instance Synchronization
	Initial Deployment Process
	Reconfiguration Process

	Elasticity Management as an Autonomic System
	Monitoring Phase
	Analyzing Phase
	Planning Phase
	Executing Phase

	Synthesis

	EVALUATION OF THE MULTI-LEVEL FINE-GRAINED ELASTICITY WITH ROBOCONF
	Multi-level Elasticity
	Experiment Setup
	Test Scenario
	Scaling Algorithm
	Result

	Multi-level Fine-grained Elasticity
	Experiment Setup
	Test Scenario
	Scaling Algorithm
	Result

	Synthesis

	EVALUATION OF THE ROBOCONF PLATFORM
	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	The Overhead of Roboconf

	Use Cases
	Enterprise Social Network (ESN)
	Cloud Infrastructure for Real-time Ubiquitous Big Data Analytics (CIRUS)

	Synthesis

	CONCLUSION AND PERSPECTIVES
	Summary
	Perspectives
	Enhancement of the Algorithms of Multi-level Fine-grai-ned Elasticity
	Variety of Resource Dimensions
	Mitigation of Lightweight Container Migration Time

	Bibliography
	Glossary
	Appendix

