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The main objective of this thesis is the exploration of higher order Markov Random Fields for image registration, specifically to encode the knowledge of global transformations, like rigid transformations, into the graph structure. Our main framework applies to 2D/2D or 3D/3D registration and use a hierarchical grid-based Markov Random Field model where the hidden variables are the displacements vectors of the control points of the grid. We first present the construction of a graph that allows to perform linear registration, which means here that we can perform affine registration, rigid registration, or similarity registration with the same graph while changing only one potential. Our framework is thus modular regarding the sought transformation and the metric used. Inference is performed with Dual Decomposition, which allows to handle the higher order hyperedges and which ensures the global optimum of the function is reached if we have an agreement among the slaves. A similar structure is also used to perform 2D/3D registration.

Tout d'abord nous expliquerons la construction du graphe qui permet de recaler des images en cherchant entre elles une transformation ane, rigide, ou une similarité, tout en ne changeant qu'un potentiel sur l'ensemble du graphe, ce qui assure une exibilité lors du recalage. Le choix de la métrique est également laissée á l'utilisateur et ne modie pas le fonctionnement de notre algorithme. La diculté fut d'encoder la connaissance globale de la transformation linéaire dans des cliques ou hyperarêtes, qui sont par nature locales. En travaillant sur les propriétés de ces transformations et en utilisant la structure régulière de la grille de points de contrôle, nous avons réussi à dénir des contraintes simples et locales, qui si elles sont vériées sur l'ensemble des cliques, assurent que la transformation trouvée appartient au champ de recherche souhaité. Ces cliques sont composés de trois ou quatre points. L'optimisation est un problème dans notre cas et les algorithmes classiques ne sont pas adaptés. Nous avons eu recours à une méthode de décomposition qui coupe le problème principal en sous-problèmes gérables et essaie d'accorder les sous-solutions trouvées. La décomposition duale permet donc de gérer les hyper-arêtes du graphe et garantit l'obtention du minimum exact de la fonction pourvu que l'on ait un accord entre les esclaves. Un graphe similaire est utilisé pour réaliser du recalage 2D-3D.

Ensuite, nous fusionnons le graphe précédent avec un autre graphe construit pour réaliser le recalage déformable. Le graphe résultant de cette fusion est plus complexe et, an d'obtenir un résultat en un temps raisonnable, nous utilisons une méthode d'optimisation appelée ADMM (Alternating Direction Method of Multipliers) qui a pour but d'accélérer la convergence de la décomposition duale. Nous pouvons alors résoudre simultanément recalage ane et déformable, ce qui nous débarrasse du biais potentiel issu de l'approche classique qui consiste à recaler anement puis de manière déformable. Il existe d'autres manières de fusionner les cliques du précédent graphe avec un modèle classique de recalage déformable. Nous donnons un exemple permettant de recaler de manière déformable une image tout en déformant une sous-partie de l'image de manière rigide.

Second, we fuse our former graph with another structure able to perform deformable registration. The resulting graph is more complex and another optimisation algorithm, called Alternating Direction Method of Multipliers is needed to obtain a better solution within reasonable time. It is an improvement of Dual Decomposition which speeds up the convergence. This framework is able to solve simultaneously both linear and deformable registration which allows to remove a potential bias created by the standard approach of consecutive registrations.
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Introduction his thesis lies t the intersetion of gomputer ision nd wedil smge enlysisF he work itself nd the lgorithms presented here re not spei( to medil imges ut the tests nd the exmples ome from the medil worldF he min reson is thtD despite importnt dvnesD mny lgorithms whih work for nturl imges re not dpted to medil imgesD therefore registrE tion is still hllenging prolemF egistrtion is the prolem of ligning two imges in the sme speF yne n seek di'erent kinds of registrtion etween imges y llowing di'erent sets of trnsformtionsX 0ne trnsformtionsD rigidD similritiesD projetiveD deformleF sn this workD we will regroup 0neD rigidD nd similrities under the nme liner registrtionF e similrity meE sure is used to quntify the registrtion qulityF he hoie of the similrity mesure is importnt nd depends on the modlity of the imgesF en optiE miztion proedure is performed to reh the minimum @or t lest lol minimumA of the ojetive funtionD in either disrete or ontinuous settingF sn this introdutory hpterD in setion IFI we give rief desription of the ontext of this workF xextD in setion IFPD we present the min ides of this workF e onlude this hpter with n overview of the work done during this thesis in setion IFQF 1.1 Thesis Clinical Context wedil smge enlysis is ooming reserh re euse of the inresing numer of ptients nd imgesF por exmpleD the numer of ner ptients nd ner mortlity hs inresed y IH7 etween PHHV nd PHIPF hose ptients need regulr followEup of the evolution of their diseseD whih mens more exms nd more imges to nlyseF hespite this rel need nd the huge mount of lgorithms nd ppers in this reserh reD most of the medil dotors do not use utomti softwres nd rely on their own skillsF sndeedD the results of the lgorithms should reh n inredile preision nd roustness to e onsidered nd used on dily sis y dotorsD while t the sme time the qulity of the imges my vry lot due to tehnil or humn mistkesF he three min res of reserh in wedil smge enlysis re registrtionD segmenttionD nd physiologil modelingF egistrtion mens ligning two imgesF st llows to study temporl hnges like disese progressionF st n e either longEterm @soliosisD tuE mourA or shortEtermD @rethingD during surgeryAF st is lso prmount when we need to fuse di'erent informtions from di'erent modlities like ntomil nd funtionl informtionF egistering mny imges from di'erent ptients is required to onstrut n tls to understnd the vriility mong popuE ltionF egmenttion mens (nding the ontour of n ojetD like n orgn tht we wnt to studyF por exmpleD the segmenttion of the left ventrile of the hert fter nd just efore et gives the stroke volumeF vow ontrstD noiseD nd rtefts due to the quisition re ommon di0ulties enounE teredF smgeEsed segmenttion relies minly on the vlue of the voxels of the imgeD shpeEsed is initilized with templteD nd tlsEsed uses set of trining segmented imges for guidneF etlsEsed nd shpeEsed methods need n initil good registrtionF hysiologil modeling mens uilding simpli(ed version of n ojet in order to see how it ehves or interts with other ojetsF he intertion we seek to model my e iomehnil or physiologilF snsted of just following disese progressionD one ould predit its evolution nd thus dpt the therpyF he im is to etter understnd humn physiology nd hve personlized mediineF e understnd now tht registrtion is in the front end of mny ppliE tionsX fusionD intervention nd tretment plnning RWD omputerEided digE nosis TQD surgery simultion URD tls uilding UTD rdition therpy ISID ntomy segmenttion ITH nd so on nd so forthF st is used for ll the ody prtsX rin UID eyes IPID lung PRD rest SVD domen SRD prostteD entire ody IQPD ervilD wristD vsulr strutures IRHD onesD knee QH nd spine IRF ome reviews n e found on medil imge registrtion RDQWDSSDTIDIQWD on softwres for multimodl imges IQTD or on some spei( ntomi prts like the hert IHI nd the rin ISWD or on similrity mesures IIRF everl free softwres re ville on the snternetX su TTD snsight egE menttion nd egistrtion oolkitD wellEknown gCC lirryD Qh lier for imge nlysis nd visulistion QSDSHDIIQD ilstix VI oth Qh lier nd ilstix re sed on suAD pvs UQ hs soure ode in gCCD is prt of pv nd only ville on vinuxD ex IRWDISH the edvned xormlE iztion ools for imge registrtion with di'erent trnsformtion models nd similrity mesuresF gomprison re ville in VHDIQTDITIF o e used in so di'erent pplitionsD we need highly verstile regisE trtion lgorithmX it should e fst to e used during surgil opertion nd dpt to ny type of modlitiesF ine the disovery of Erys in IVWSD medil dotors rely more nd more on medil imging to understnd the struture nd the tivity of the orgns they nnot diretly seeF hese re the two min purposes of medil imgingF he struturl modlities llow to visulize the positioning of the di'erent orgns or tissues while the funtionl modlities im to understnd the tivity of n orgn through physiologil hngesF X-rays Erys re kind high frequeny eletromgneti rditionF fones nd teeth sor Ery e0iently nd re then lerly visile on rdiogrphyF e rE diogrphy is very ommon exmD the imge is otined on n Ery detetor of ptient illuminted with short Ery pulseF he sorption of Erys is di'erent s they pss through the di'erent tissues of the odyF e ontrst gent n e injeted into the ptient to highlight di'erent strutures like the rdiovsulr systemF Erys re ionizing rditions so long or repeted exposure n provoke urns or nersF Computed Tomography (CT) gomputed omogrphy sns rely on Ery imgingF e series of ems is tken t di'erent ngle round the ptientF ih em produes Ph imge in spei( diretion nd ll of these re used to reonstrut Qh volumeF g sns re well ontrsted nd high resolution imgesF es they re sed on Erys they present riskF hey expose the ptient to etween ISH nd IDIHH times the mount of rdition of onventionl EryF Ultrasound ltrsound is nonEinvsiveD hep imging proedureD nd is totlly hrmlessF herefore it is ommonly used to visulize ies in utero ut it is lso used to visulize internl ody struturesF e proe sends wves of ultrsound whih re re)eted di'erently depending on the tissue propertiesF gomputing the time the wves need to return to the proe gives the depth of the di'erent kind of tissuesF he min noise in ultrsound imges is lled spekle nd is used y the interferenes of the di'erent wvesF Magnetic Resonance Imaging (MRI) wgneti esonne smging is nonEinvsive tehnique @t lestD the onE trry hs not een provenA with high resolutionF e powerful mgneti (eld is produed y superonduting eletromgnetF he mgneti (eld mgnetizes the tissues y ligning their spin mgneti momentsF eker osillting mgE neti (elds re then pplied t the pproprite resonne frequeny nd use the trgeted toms to emit rdio frequeny signlF he trgeted toms need nonEzero spin mgneti moment to resonteD whih is the se for hydrogen tomsF es they re present in lrge quntity in the ody tissues like in wterD they re hosen s the trgeted toms most of the timeF ws is prtiulrly used to visulize the nervous systemD muslesD the hert nd tumoursD ut not ones euse they do not ontin enough hydrogen tomsF ws is usully preferred over g sine it does not use ny ionizing rditionF roweverD it is more expensiveD timeEonsuming nd lustrophoiEexertingF Functional Magnetic Resonance Imaging (fMRI) puntionl wgneti esonne smging is funtionl imging tehniqueF st relies on the mgnetiztion of red lood ells nd ws disovered y eiji ygw in IHUF sn tive res there is n inrese in the lood oxygen onsumption nd n inrese of the lood )ow to ompensteX it is lled the fyvh signl @flood yxygen vevel hependentAF et deoxygented red lood ells ontin moleule sensitive to wgneti esonneF he hnges indued to the mgneti (eld y this moleule re deteted nd give the preise position of where the lood is highly onsumedF fws is prmount for tumour surgery plnning to identify the res whih re 'eted @tumour res require lots of lood euse they reprodue onstntly nd then tend to dry out the res roundA nd the res whih re the most importnt for the tivity of the orgnsF Positron Emission Tomography (PET) i imging llows to mesure in Qh the metoli or moleulr tivity of n orgnD hene it is funtionl imging tehniqueF st relies on the positrons emitted y nuler produt injeted into the odyF he positrons emit two photons when it is nnihilted whih llow to know preisely the Qh position of the nnihiltionF es positrons re ntiEmtter prtilesD they re nnihilted s soon s they re emitted y the nuler produtF hus we know extly the position nd the onentrtion of the nuler produtF he nuler produt hs short hlfElife nd is injeted diretly in the loodstremF wost of the time the nuler produt is )uor IV inorported into moleule similr to gluoseD so tht it will tth to tissues like the rinD the rdi musle or nerous tissuesF hi'erent tissues or orgns n e trgeted y di'erent isotopesF yf ourseD the proedure is invsive nd potentilly dngerous due to the use of rdiotive prtilesF 1.2. Thesis Scientical Context 7 1.2 Thesis Scientical Context e grph is representtion of set of ojets lled the nodes or vertiesD whih my intert y pirsF he intertion is represented y n edge on the grphF e grph is powerful struture ple of modeling intertions etween elementsF por exmple soil networksD phylogeneti treesD nd eE sport mthmking strutures re represented y grphs nd mny tools seek to predit the unknown prts of those grphsF sn gomputer ision they re lso ommonly used to model the intertions of pixels or voxels of n imgeF ih voxel is node of the grph nd eh node is linked y n edge to its losest neighourF he numer of neighours depends on the omplexity of the prolemF fut the intertion is limited to ouple of nodesD therefore some onstrints whih involve higher numer of nodes nnot e modeled with grphF o void this limittionD we need hypergrphD whih is n extension of grph ontining hyperedgesD sometimes lled liques in omputer visionF en hyperedge is simply link etween more thn two nodesF 1.3 Thesis Overview his thesis is divided into Q min hptersF sn hpter Q we will detil our model to perform liner registrtion within disrete wrkov ndom pield frmeworkF e will prove our model with lol onstrints n gurntee tht we sty in the set of the glol trnsformtions we seekF e will lso explin how hul heomposition worksD why we re using this optimiztion lgorithm nd this deompositionF yur liner grph is extended nd omined with nother grph to hndle simultneously liner nd deformle registrtion in hpter RF he purpose of this model is to tkle simultneously liner nd deformle registrtionF sullyD liner registrtion is omputed s (rst step nd then deformle registrtion is performedF his sequentil proedure n rete isF yur frmework removes this is y solving oth prolems t the sme timeF rowE everD this new grph is more omplex thn the originl one nd the pirwise term is not sumodulrF herefore we will explore some potentil lgorithms to solve the prolemF ghpter S will fous on PhGQh registrtion nd how our previous grph struture n dpt to the prolem of plne seletionF e will dpt our struture nd our strtegies onsidering the di'erent setting nd show how modulr it isF he thesis is onluded in hpter T with disussion on the presented 

Graphs and Hypergraphs

e grph G = (V, E) is set of nodes V nd set of edges EF sf the elements of E re ouples of terms of V D then G is direted grphF sf the elements of E re pirsD then G is n undireted grphF rereD we will onsider undireted grphsD tht eh edge is pir of distint nodes {i, j} @no selfEloopA nd tht eh edge is ssoited with nonEnegtive weight w i,j F sf there is no edge etween two nodesD we onsider its weight to e zero y extensionF he neighourhood N (i) of node i is the set of ll nodes j tht re onneted to i y n edgeX

N (i) = {j ∈ N, {i, j} ∈ E}.
@PFIA e simple wy to desrie grph is y giving its djeny mtrix W F W it the n × n mtrixD where n = |V |D de(ned yX

W i,j = w i,j . @PFPA Example vet G 1 e the undireted grph de(ned y N = {a, b, c, d} nd E = {{a, b}, {a, d}, {c, b}, {c, d}}F he edge weights re set to w a,b = 2D w a,d = 1D w c,b = 0.5D nd w c,d = 1F e represent G 1 in pigF PFI nd its djeny mtrix isX     0 2 0 1 2 0 0.5 0 0 0.5 0 1 1 0 1 0    
he djeny is used to de(ne the vplin mtrix L whih is prmount to ompute mny other properties of the grph @spetrl gpD spetrl lusteringA 

Markov Random Fields

e growing numer of grphEsed pprohes hve een developed in gomE puter isionF hey n esily model di'erent prolems y representing difE ferent ojets nd their dependeniesD nd there exist mny lgorithms to perform infereneF woreoverD in severl sesD it n e proven tht the soluE tion is ext s long s the potentil funtions stisfy some propertiesF e mrginl distriution of single vrile X i D where X = {X i } is set of disrete vriles with joint mss funtion ρD isX

P X i (x i ) = x \x i =x i p(x ).
@PFQA e wrkov ndom pield @wpA is proilisti grphil model tht represents set of rndom vriles nd their dependenies through n undiE reted grphF vet G = (V, E) e n undireted grphD V the set of nodesD E the set of edgesD nd X = X v , v ∈ V set of rndom vriles ssoited to the nodes of the grphF G nd X form wrkov ndom pield if the lol wrkov property is stis(edX

X u ⊥ ⊥ X V \{N (u)∪u} |X N (u) ∀u ∈ V.
@PFRA sn prtie it mens vrile is independent of ll others onditionlly to its neighourhoodF vet us de(ne lique c s set of nodes where every pir is linked y n edgeF e mximl lique is lique suh thtD if we dd nother nodeD the resulting set is not lique ny moreF hen follows wpD the joint density p(x) = p(X = x) whih denotes the proility of the rndom vriles X tking spei( on(gurtion xD n e ftorized over the mximl liques of the grphX

p(x) = 1 Z c∈C φ c (x c ), @PFSA
where C is the set of mximl liques in GF x c is the suset of vriles whih elongs to the lique c nd potentil funtion φ c (x) is de(ned over cF ht is the mthemtil de(nition of liqueF sn omputer visionD 4lique4 is often used s synonym of hyperedgeF sn the rest of the thesisD we will use 4lique4 with this nonEext meningF wrkov ndom pields were introdued in gomputer ision y RUF hey provide proilisti frmework where knowledge n e integrted in the grph strutureF por exmple for n imgeD the nodes will represent the pixels of the imge nd the edges will link node to its losest neighoursF he hidden vrileD or lel we seek to reover my e disrete or ontinuousF he prolem n e formulted s mximum posteriori @weA estimtionX

x = arg min x p(x).
@PFTA e n write the proility s qis distriutionX

p(x) = 1 Z exp(-E(x)),
@PFUA with Z is normliztion onstnt nd E(x) is the energy de(ned on the grph sX

E(x) = c∈C θ c (x c ) @PFVA

Stochastic Processes

ntil IWPH sttistiins used the method of moments for estimting distriuE tionsF his method is fst nd esy to understndF he moments re the expeted vlues of powers of the rndom vrile we studyD like the men nd the vrineF he moments of popultion re estimted y omputing the moments of the dt smpleF his method works well for simple ses ut not for more dvned prolemsF ht is why pisher introdued the mximum likelihood estimtionF hen given phenomenon hs no urte modelD we n try to uild sttistil one s preise s possile nd sed on the oservtions we n mkeF vet us note y the mesured dtD m the hosen modelD nd x the prmeters of the modelD whih re the lels in the wp frmeworkF y re the oservle nd m is the wp strutureF yne solution is to (nd the most prole vlues of x one m is (xed nd y is oservedF o we wnt to mximise the proility of x knowing m nd yX max x P (x|m, y). @PFWA fy pplition of fyes9 theoremD the prolem is trnsformed into wxE imum posteriori @weA estimtionX

max x P (x|m, y) = max x P (y|m, x) × P (x|m) P (y|m) .
@PFIHA P (y|m, x) is lled the likelihood nd mesures how well the dt nd the predited model (tF P (x|m) is the priori for given set of prmetersF P (y|m) the evidene is the sum of events representing y nd is independent of the hidden vrile xF e usully suppose tht the prmeters re uniformly distriutedD whih mens P (x|m) is onstntD so the mximum posteriori is equivlent to the mximum of likelihoodX

max x P (x|y) = max x P (y|x). @PFIIA

A Review of MRF optimization algorithms

rere we present some wellEknown optimiztion lgorithms used on grphs euse we will use or mention them in other hptersF he prolem hs een modeled into grphF e wnt to ssign lel l p from the lel set L to eh node pF por eh nodeD there is unry funtionD depending on the lelD whih gives ost orresponding to the ssignment of tht lel to tht nodeF por eh edgeD there is pirwise funtionD whih gives ost orresponding to the ssignment of ouple of lels to the ouple of nodes linked y the edgeF e pirwise funtion is frequently modeled y squre mtrix whose size is the numer of lelsF rereD we will fous on undireted grphs nd not hypergrphsF husD the energy of the wp isX

E(x) = p∈V U p (l p ) + (p,q)∈E
V p,q (l p , l q ), @PFIPA where x = {l p } p∈V D l p is the lel orresponding to the node pD U p (l p ) denotes the unary potentials of node pD nd V p,q (l p , l q ) denotes the pairwise potentials etween the nodes p nd qF e serh for the minimum of the energy nd its rgumentX

x = arg min x E(x).
@PFIQA

Viterbi Algorithm

he iteri lgorithm is used to predit the most prole sequene of hidden vriles x tht produed the sequene of oservtions yF he oservtions nd the model re supposed to e knownF he iteri lgorithm works for hins of nodes or treesF sn grph theoryD tree is n undiretedD yli nd onneted grphF st looks like the rnhing of treeF e hoose one node to e the root of the treeY the nodes @exept the rootA whih re onneted to only one other node re lled the leves of the treeF por this sort of grphsD messge pssing gives n ext solution nd is lso lled forwrdEkwrd lgorithmF e (rst de(ne messge from lef a to node b sX

∀l b ∈ L, m a→b (l b ) = min la∈L (U a (l a ) + V a,b (l a , l b )).
@PFIRA hen we de(ne messge from nonElef node c to nother node dX

∀l d ∈ L, m c→d (l d ) = min lc∈L (U c (l c ) + V c,d (l c , l d ) + b∈N (c)\d
m b→c (l c )). @PFISA e messge my e viewed s the updte of the unry potentils y tking into ount the potentils of the sending nodeF he lgorithm strts y sending messges from the leves until they rrive in the rootF he informtion ontined in the rootX

∀l r ∈ L, m r (l r ) = U r (l r ) + b∈N (r) m b→r (l r ))
@PFITA is equl to the minimum of the energy of the whole tree for the di'erent lels in the root nodeF e now know the most likely hidden vrile of the rootD whih orresponds to the minimum of the energiesF o determine the hidden vriles of the other nodesD we simply hve to look k t the minim we hose during the omputtion of messgesF 2.4.2 Belief Propagation felief propgtion or sumEprodut messge pssing is used to perform inferE ene nd to ompute the mrginls of the nodes of the grphF st is ext on treesD ut gives good pproximtion on generl grphs unlike the iteri lgorithmF he ide is similr to the iteri lgorithm s is relies on pssing messges from nodes to nodesD updting the potentils nd hoosing the minE imum of the mrginls to selet the lel for eh nodeF ery fst nd e0ient solutions hve een developed s it is very generl nd gives good pproximE tions even for generl grphs for whih it is lled voopy felief ropgtion nd hs no mthemtil propertiesF felief propgtion it generl lgorithmD ut my not onverge when the grph ontins ylesF xivelyD the numer of messges is exponentil in the size of the lrgest liqueD ut optimiztion methods hve een developed to e more e0ientD like otetz IIS whih rehes linerity in the size of the lrgest lique for lss of potentil funtionsF 2.4.3 Graph Cuts e grph ut is prtition of the nodes of grph into two setsF st is de(ned for grphs whose edges re ssoited to weightF he ost of the ut is the sum of the weights of the edges whih re destroyed y the utF pormllyD let us note S nd T the two susets forming the prtition of V F he utEset of the ut is the set of edges whih hve one node in S nd one in T X {(u, v) ∈ E|u ∈ S, v ∈ T }F e ommon prolem is to (nd the minimum ut or minEut of grphF e ut is minimum if there is no other ut whose ost is smllerF e sEt ut is spei( kind of ut where two predetermined nodes lled the soureD sD nd the sink tD re not in the sme susetF st is n importnt notion in )ow network euse the mxE)ow minEut theorem shows tht the ost of sEt min ut is equl to the mximum )ow in network )owF he theorem ws proven in IWST independently y two temsD pord nd pulkersonD nd ilisD peinsteinD nd hnnonF sntuitivelyD if the grph represents net of pipes with only one entry point lled the soureD nd one exit point lled the sinkD then the mximum )ow we n reh is equl to the ottlenek pipeF en e0ient lgorithm in polynomil type ws proposed in RQF st is n itertive lgorithm thtD t eh step tries to inrese the urrent solution whih is possile )ow y exploring one y one every nodeF his lgorithm n esily solve inry wpF sndeedD let us de(ne two new nodes whih will represent the two potentil lelsF hese nodes will e the soure nd the sinkF vet us dd two edges per nodeD one linking the node to the soureD the other one linking the node to the sinkF efter the minEutD the regulr nodes @iFeF neither the soure nor the sinkA in the sme suset s the soure re ssigned to the (rst lelD those in the sme suset s the sink re ssigned to the seond lelF he vlues of the inry pirwise nd the unry potentils hve to e enoded into this new grphF vet us imgine tht our originl grph ontins only two nodes a nd bD tht the two lels re H nd ID nd the potentils re de(ned y the funtions U a (x)D U b (x)D V a,b (x, y)F he nodes in the sme suset s the soure will e ssigned the lel HD the nodes with the sink will e ssigned the lel IF he modi(ed grph whih will e used with the pordEpulkerson theorem will e the grph on pigF PFQF vet us putD t lest for (rst stepD those potentilsX pigure PFQX qrph ut grph settingsF

A = U a (1) + +V a,b (0, 0) + V a,b (1, 1) + V a,b (1, 0) -V a,b (0, 1) 2 @PFIUA B = U b (1) + -V a,b (0, 0) + V a,b (1, 1) -V a,b (1, 0) + V a,b (0, 1) 2 @PFIVA C = -V a,b (0, 0) -V a,b (1, 1) + V a,b (1, 0) + V a,b (0, 1) 2 @PFIWA D = U a (0) + V a,b (0, 0) @PFPHA E = U b (0).

@PFPIA

xow sEt ut will orrespond to the orresponding energy of the ssignE ment on the originl grphF fut the lgorithm needs positive weightsD othE erwise it my fll into endless loopsF sf AD BD D or E is negtiveD there re simple mnipultions to hnge the grphF por exmpleD if A is negtive nd D positiveD we n dd the opposite of A to D nd put A to HY if they re oth negtiveD the new e will e equl to the opposite of h nd the new h will e equl to the opposite of eF hese opertions do not hnge the orresponding energy s there re four possile sEt utsD two of whih ut the A edgeD while the two others ut the D edgeF efter these opertionsD AD BD D nd E re positiveF o we only hve one ondition on our energy funtions whih omes diretly from the positivity of

CX V a,b (0, 0) + V a,b (1, 1) <= V a,b (1, 0) + V a,b (0, 1).
@PFPPA his type of funtion is lled sumodulr nd the notion n esily e exE tended to nonEinry funtions VVF umodulr funtions hve originlly een de(ned on sets of ojets for gme theory nd eonomisF es the two grphs re equivlent nd s the pordEpulkerson lgorithm is extD the soE lution is the glol optimumF VV proved thtD with grph utsD the glol optimum of the energy is rehed if the wp funtion is sumodulrF he proedure we showed for very simple grph n oviously e extended to igger grphsF qrph uts is restrited to lss of energy X when i is suE modulr nd x i is oolenD the minimum n e found in polynomil time thnks to the grph uts lgorithm @see UH or VVAF qrph ut sed lgorithms hve een designed to hndle multilel wps in IQX αEexpnsion nd α -βEswpF por αEexpnsionD the ide is to hnge progressively the lels y trying them one y oneF et eh stepD the urrent ssignment of every node is onsidered s the sme lelD the old lelD while new one lled α is proposedF he grph ut is relised with only those two lelsF por α -βEswpD t eh itertion ouple of lels is hosen nd the nodes n hnge their lel etween those twoF orr et lF IRR showed those lgorithms ould solve even higher order energies in polynomil timeD if the potentil were metri @for αEexpnsionA or semiEmetri @for α -βEswpAF he fusion move lgorithm ws introdued y vempitsky et lF in WTF st onsists of (nding the est omintion of two potentil lelling of the whole speF αEexpnsion is then speil fusion moveD where one of the lelling is the onstnt α on the whole speF everl methods hve een developed to elerte the optimiztion ISP or to hndle dynmis wps VQD for exmple to hndle intertive ojet segmenttion IPF ome uthors extended the grph uts to nonEsumodulr funtionsD like uolmogorev nd other in VUF hey reprmetrize the poE tentil to reh norml formF henD they rete grphD whih ontins two nodes for eh vrileD x i nd ¬x i F he lgorithmD lled oof hulity or fy @udrti seudoEfoolen yptimistionA only gives prtil lE ellingD some nodes re still unknownD ut it hs some good properties known s ek utry nd rtil optimlityF hose properties llowed other et lF IPT to extend oof hulity to try to omplete the prtil solutions in some sesF qrut IPS is n lgorithm sed on grph uts to perform imge segmenttion while only drwing simple ox round the ojetD where they lso optimize the onvergeneF 2.4.4 Spectral clustering hen there is no unry potentilD one n use spetrl lusteringF e populr ojetive funtion used in spetrl lustering is to minimize the normlized ut IQSF he ost of ut is X

cut(A, B) = u∈A,v∈B w(u, v)
where e nd f re the two prts of the grphsD nd w is the weight funE tion of the edgesF his ost fvours little utsF vet us note assoc(A, V ) = u∈A,v∈V w(u, v) where is the set of ll nodesF his mesures the totl onnetion from nodes in e to nodes in the grphF he normlized ut is X

N cut(A, B) = cut(A, B) 1 assoc(A, V ) + 1 assoc(B, V )
he ide of spetrl lustering is to use the similrity mtrixD or the lplin mtrixD nd to (nd interesting properties thnks to their eigenvetorsF e known lgorithm ws developed y xg et lF in IHTF qiven similrity mtrix of ll the ouplesD lulte the lplin mtrix nd its eigenvetorsF hose eigenvetors de(ne points in R n whih n e more esily lustered nd give the lustering of the initil ojetsF 2.4.5 Probabilistic clustering sn fulò et lF IUD the uthors try to luster points without prtitioning themF vet e the empiril likelihood mtrixD nd e the mtrix of the unknown luster memershipF hey try to minimize X

min W -αY T Y 2 sFtF α ∈ R, i Y i,j = 1 ∀j, Y i,j ≥ 0 ∀i, j
hey solve it thnks to the fumEigon inequlityD whihD for some polynoE milsD give growth trnsformtionF 2.4.6 Order Reduction Techniques he order of the energy n e redued y dding new vrilesF mlingm et lF proved we ould trnsform sumodulr multiElels energy funtions into sumodulr oolen funtions in polynomil time IIWD ut tht it ws impossile for order higher thn RF sn IPRD other et lF remrked tht the potentil funtion over lique is often sprseD whih mens mny on(gurtions re onsidered d nd soD hve the sme vlueD nd tht the good on(gurtions were often similrF o they try to prmeterize omptly the energyD to minimize the numer of vrilesF hey trnsformed the minimizing sprse higherEorder energy funtion into n equivlent qudrti minimiztion prolemF sshikw introdued in TU method to onvert the minimiztion prolem of ny higherEorder inry energy to tht of pirwise nd unry energyF re then used fusion moves in TV for higher order energiesF he fusion move ould e very e0ient if we re le to propose good solution t eh stepF re did so using the grdient of the energyF eently TWD he showed tht there were numerous methods to redue higher order energyD nd tht the method ould in)uene the solving y the lgorithmF o he pointed out some onditions suh tht funtion is minimizle in polynomil time using grph utsF qllgher et lF developed tht ide in RTF heir lgorithm lled yrder edution snfereneD serhes over set of redution methods to minimize the di0ulty of the optimiztion prolemF eentlyD uhl nd trndmrk UU generlized oof hulity to polynoE mils of ny degreeF evoiding to redue the funtion to qudrti pseudoE oolen one gives them tight oundsF 2.4.7 Fast Primal-Dual he disrete prolem n e written s liner integer progrmD nd then e relxed into ontinuous prolemF he ontinuous prolem is generlly esier to solve euse the tehnique re very wellEknownD ut the solution found hs to e sent k in the disrete dominD nd thusD my e fr wy from the true disrete optimumF ht is the se of pst rimlEhul or pstEhF sn WQD uomodkis et lF introdued the primlEdul shem to gomputer ision nd wrkov ndom pields optimiztionF riml or hul pprohes tke the prolem nd try to optimize solutionF rereD the ide is to (nd nd updte pir (x, y) of priml nd dul solutions of the prolemD whih gives us frming of the vlue of the solutionF his frming is lled the primlEdul gpF hen the rtio y/x is smller thn vlue f D we sy the solution is n f Epproximtion to the optiml solutionF rtillyD the lgorithm itertes until pir of solution stis(es preEde(ned onstrint f F ivery itertion onsists in solving mxE)ow prolem for ertin grph whih depends on the urrent primlEdul pir of solutionsF es it uses the grph uts lgorithm explined previously PFRFQD pstEh requires sumodulr funtions to give mthemtil gurnteesF end the speed of the lgorithm depends on the omplexity of the mxE)ow prolemF pstEh uses the pir of primlEdul solutions from the previous itertion to redue the numer of ugmenting pths requiredF pinllyD if the pirwise of the originl grph is metriD pstEh is erti(ed to e s preise s αEexpnsion nd fsterF 2.4.8 Graph Decomposition eording to elhri PD most wp hve simple prt nd di0ult prtF ris ide is to solve nd (x the esy prt (rstD to hve more time to detil the di0ult prt of the wpF hividing omplex grph into smller nd muh esier to solve ones hs een triedF inwright et lF ISS tried to deompose the grph in onvex omintion of trees @ree eweightedAF yptimizing the prolems independently on the trees give n upper limit of the optimumD whih is ll the more tight s the trees hve omptile optiml strutureF uolmogorov developed new version of the previous lgorithm lled equenE til ree eweighted in VS whih hs etter onvergene gurntiesF he min prolem is the synthesis of the di'erent sugrphsD when they do not gree on the lel whih should e ssignedF sn order to fore them into greeingD uomodkis nd rgios WH developed yleErepiring lgoE rithmD to (x ny inonsistent yles tht my pper during optimiztionF he repiring helps to tighten the relxtion nd gives etter resultsF WI presented msterEslve sed frmeworkF he grph @or hyperE grphA nd the energy funtion re divided in severl prts whih re solved individully y the slvesF he mster see the results nd hnge the division of the energy funtion until n greement is foundF his lgorithm is lled hul heompositionD nd will e detiled in QFQF ftr et lF presents new wy to deompose grph TF sn order to minimize the oordintion work neessry to hrmonize the sugrphs @the mster work in the previous prgrphAD they give more omplex work to the suprolems @the slvesAF hey onstrut their sugrphs in wider setD lled yuterElnr qrphsF pinding spnning fmily of suh grphs seems quite esy in prtieF he hrmoniztion is relized y messge pssing etween sugrphsF 2.4.9 Extensions to hypergraphs rypergrphs re very di0ult prolemF ome of the previous lgorithms hd een extended to work for hypergrphsD ut generlly the omputtion time inreses tooF sn IRSD orr et lF use unsupervised segmenttion to rete textons @or imge segmentsAD using severl wenEhiftD thus limiting the numer of points of the imge @ texton ontins lot of pixelsAF righer order terms of the energy try to hve ll the pixels of texton with the sme lelD ut with deresing energy @two pixels lelled di'erently is worse thn only oneAF st is lled the oust n wodelD ompred to the n wodelD where the ost is the sme s soon s one pixel is lelled di'erently thn the rest of the textonF ry terms re relly restritiveD suh tht order n e esily redued thnks to few vrileF eond order energy is then optimized using move mking lgorithmsF sn ISVD erner proposed mxEsum di'usion lgorithm s generlizE tion of nEiry v relxtionD nd to tighten relxtionsF re uses the mrginl polytope to de(ne wy to dd hyperedges without hnging the prolem while tightenD pe y peD the relxtionF hul heomposition nd the relted lgorithms n hndle hypergrphs ut the hyperedges must e solved t some pointsF o the slves solvers must del with themD either with spei( lgorithm like those we re reviewingD or with exhustive serh if the slve is smll enoughF he use of ftor grph USDWW llows to run messgeEpssing lgorithms on the ftorized grph ut the size of the grph nd the numer of itertions to reh onvergene inrese drstillyF 2.4.9.1 Spectral Methods hou et lF ITS extend the spetrl lustering method to hypergrphsF he energy is inspired y the normlized uts s X rgmin δS vol(δS)( 1 vol S + 1 vol S c ) where is set of the nodesD S c is the omplement of D vol(δS) represent the weight of the ut hyperedgesD nd vol@A is the weight of the hyperedges in F his prolem is then relxed nd written s mtrix multiplition of the form f T ∆f F ∆ is then lled the hypergrph vplinD nd method lose to the Ph one is ppliedF rung et lF TR use tht frmework to relize video ojet segmenttionF hey use overEsegmenttion to rete the nodes nd motion ues to lulte the hyperedgesF he results re enourgingF sn QID huhenne et lF proposed tensorEsed lgorithm for grph mthingF hey formulte their prolem with n ssignment mtrix nd similrity tensor rD s serhing max H ⊗ 1 X ⊗ 2 X ⊗ 3 XF he solution is found thnks to higherEorder power method developed in IPHF ss nd hshu mde strong onditionl independene ssumption of the mthing ITPD so the similrity mtrix is power of the proility ssignE ment mtrix X S = ⊗ d XD with d the size of the hyperedgesF 2.4.9.2 Order reduction he order of the energy n e redued y dding new vrilesF mlingm et lF proved we ould trnsform sumodulr multiElels energy funtions into sumodulr oolen funtions in polynomil time IIWD ut tht it ws impossile for order higher thn RF sn IPRD other et lF remrked tht the potentil funtion over lique is often sprseD whih mens mny on(gurtions re onsidered d nd soD hve the sme vlueD nd tht the good on(gurtions were often similrF o they try to prmeterize omptly the energyD to minimize the numer of vrilesF hey trnsformed the minimizing sprse higherEorder energy funtion into n equivlent qudrti minimiztion prolemF sshikw introdued in TU method to onvert the minimiztion proE lem of ny higherEorder inry energy to tht of pirwise nd unry energyF re then used fusion moves in TV for higher order energiesF he fusion move ould e very e0ient if we re le to propose good solution t eh stepF re did so using the grdient of the energyF eently TWD he showed tht there were numerous methods to redue higher order energyD nd tht the method ould in)uene the solving y the lgorithmF o he pointed out some onditions suh tht funtion is minimizle in polynomil time using grph utsF qllgher et lF developed tht ide in RTF heir lgorithm lled yrE der edution snfereneD serhes over set of redution methods to minimize the di0ulty of the optimiztion prolemF eentlyD uhl nd trndmrk UU generlized oof hulity to polynoE mils of ny degreeF evoiding to redue the funtion to qudrti pseudoE oolen one gives them tight oundsF 2.4.9.3 Hypergraphs decomposition es grphs were divided in sugrphs to lulte the energyD hypergrphs n e deomposed tooF sn IRSD orr et lF use unsupervised segmenttion to rete textons @or imge segmentsAD using severl wenEhiftD thus limiting the numer of points of the imge @ texton ontins lot of pixelsAF righer order terms of the energy try to hve ll the pixels of texton with the sme lelD ut with deresing energy @two pixels lelled di'erently is worse thn only oneAF st is lled the oust P n wodelD ompred to the n wodelD where the ost is the sme s soon s one pixel is lelled di'erently thn the rest of the textonF ry terms re relly restritiveD suh tht order n e esily redued thnks to few vrileF eond order energy is then optimized using move mking lgorithmsF sn ISVD erner proposed mxEsum di'usion lgorithm s generlizE tion of nEiry v relxtionD nd to tighten relxtionsF re uses the mrginl polytope to de(ne wy to dd hyperedges without hnging the prolem while tightenD pe y peD the relxtionF Hypergraph partitioning in VLSI design he retion of integrted iruits ontining thousnds of omponents is lled ery vrge le sntegrtionF he iruits is modelled y hyperE grphF e wnt to seprte the iruits into di'erent prtsD while minimising the intertions etween the prtsD so engineers erly used hypergrph prtiE tioningF e wellEknownD itertive improvement lgorithm to prtition is lled piduiE wttheyses lgorithm @see IV for detils nd possile improvementsAF st is initilized with rndom utF et eh pssD every node n hnge its ple in the prtitionD nd gin is ssoited with every moveF ih pss ontins loop of stepsF et eh stepD gins re updtedD the est one is hosen nd the relted move is doneF he moved node is (xed in the rest of the pssF he inner loop stops when ll the nodes re (xedF he est on(gurtion seen during the inner loop is hosen of deprture point for the next pssF he lgorithm stops when the energy hs not een hnged during pssF sn QD uysln et lF review some pprohes to solve the prtitioning prolemF he dul of hypergrph is hypergrph where nodes nd edges re reversedF he gliqueEnet grph trnsforms hyperedge into liqueD ut nnot ssign perfetly the initil ostF he xetEintersetion grph @xsqA represents hypergrph H = (U, N ) s grph G = (V, E) suh tht the nodes of q re the hyperedges of r nd the edges of q links two nodes if the orresponding hyperedges shred hypernode in rF hey use the lst one nd relize vertex seprtionF o prtition the hypergrph in severl prtsD they use eursive fiprtitioningD whih is ommonly used in tht dominF A game theory perspective sn IIID ellilo nd fulò question the ft tht lustering is often thought of s prtitioningF hey sy lustering is more out grouping points whih re similrD so outliers my remin loneD nd some points n elong to severl lustersF prom this pointD they onstrut kEplyers gme ITD where k is the order of the intertion etween the pointsF ih plyer hooses point nd they reeived rewrd proportionl to the similrity of the k pointsD nd nothing if they hve the sme pointF hnks to gme theoryD he is le to evlute the est strtegies whih regroup the points hving the higher similritiesD iFeF lusterF 2.5 Markov Random Fields for Image Registration smge registrtion lgorithms ims to (nd trnsformtion T tht est ligns two imges ID J : Ω ⊂ R d → RF d is the dimension of the imgeD usully two or three nd Ω is the imge dominF he imge I will e deformed y the trnsformtion T to (t the imge JF I is lled the soure or moving imgeD J is lled the trget or (xed imgeF e ll I • T the deformed imgeF he set of trnsformtions tht is explored depends on the pplitions @deformleD rigidD 0neAF e seek to (nd the est trnsformtion T onsidering n energy or ost funtion E reted to evlute how well the trget imge J nd the deformed imge I • T (tF

T = argmin T E(T ).
@PFPQA es we sw eforeD the fyes9 theorem sys tht minimizing the energy is equivlent to mximizing the posterior distriution P (T |I, J)F he energy funtion ontins two prtsF he (rst prt mesures the (tting of the two imgesD while the seond prt is regulriztion term tht depends on the trnsformtion set we re serhing inF he seond prt my e lwys zeroD is the lgorithm explores exhustively smll set of trnsformtionsD or my e essentil to mke the prolem wellEposedD like for deformle trnsformtionsF 2.5.1 Similarity Measures sn medil imgingD ommon similrity mesures re pixelEsed @or voxelE sedAD whih mens we superimpose the two imges nd ompre the vlues of the intensity of the pixels or voxelsF e desrie here some of themF he (rst twoD eh nd h re monomodl mesuresD whih mens they re used to ompre imges from the sme modlityF wultimodl mesures re used for imges of di'erent modlitiesF ome re generl nd n dpt to di'erent pirs of modlitiesD mny of them re derived from the mutul informtionF ome re spei( to ouple of modlitiesD like vgPD nd should e performing etter thn mutul informtion on tht spei( oupleF sn the following prgrphsD I nd J re the two imges we ompre nd Ω is the imge dominD whih mens the oordintes of the points for whih we hve the vlues of oth the imgesF sn prtieD the oordintes of the voxels do not oinideD so the voxel vlues of t lest one imge re interpoltedF he proedures to follow when we do not hve the vlues of oth the imges @normliztionD extrpoltionA depends on the prolem nd will not e disussed hereF hepending of the de(nitionD the mesure requires to e mximised or minimisedF sn prtieD we will lwys minimise our energyD nd just tke the opposite if neededF Sum of Absolute Dierences eh is si similrity mesure used for monomodl imgesF st ompres the intensities of the pixels nd penlizes when they re di'erentF

SAD(I, J) = x∈Ω |I(x) -J(x)|.
@PFPRA st is fst nd simple wy to ompre two imges ut my e unrelile euse of hnges of luminosity for exmpleF st my e used with other methods to improve the preision of the resultsF Sum of Squared Dierences h is similr to eh ut uses n L 2 normF

SSD(I, J) = x∈Ω (I(x) -J(x)) 2 .
@PFPSA Normalized Cross-Correlation grossEgorreltion is similrity mesure etween two signlsF st is si sttistil pproh tht ssumes liner reltion etween the two signlsF st is similr to the onvolution of two funtionsF sn imge registrtionD it is de(ned sX

CC(I, J)(u, v) = (x,y)∈Ω (I(x, y) -J(x -u, y -v)) ( I(x, y) 2 J(x -u, y -v) 2 ) 0.5 , @PFPTA
where (x, y) re the oordintes of points in the imge domin ΩD (u, v) re the trnsltion prmetersF he mximum of the energy is otined for the est trnsltion prmetersF e fst wy to ompute it is developed in WUF Mutual Information wutul snformtion ws introdued in ISQF st mesures the sttistil deE pendeny etween two vrilesF vet us remind tht sttistil dependeny nd uslity re two di'erent oneptsF sf X nd Y re two disrete rnE dom vrilesD P (X = x) nd P (Y = y) the proilities of events x nd yD P (X = x, Y = y) the joint proility of events x nd yD then their mutul informtion is de(ned sX

M I(X, Y ) = x,y P (X = x, Y = y) log P (X = x, Y = y) P (X = x) P (Y = y) .
@PFPUA wutul informtion is positive nd symmetriF st is equl to zero if nd only if the two vriles re independentF st inreses s the dependeny inresesF o ompre imgesD we onsider the grey vlues of the two imges s rndom vrilesF feuse of the huge quntity of vluesD we split the grey vlues into prede(ned numer of ins @ITD QP or TR usullyAF e wnted to tke into ount hnges in the luminosityD s it ws limittion of eh nd hF wutul informtion does not ssoite ins of the sme vlue diretlyF yn the ontrryD the mesure evlutes if there is n ssignment of the ins of the two imgesF st mens tht if the seond imge is the sme one s the (rst imge in whih olors hve een swpped @for exmple lue is yellowD green is purpleD nd ornge is whiteAD then the mutul informtion will e equl to zeroF Normalized Mutual Information e n use the de(nition of entropy H(X) =x P (X = x) log P (X = x) to express the mutul informtion sX

M I(X, Y ) = H(X) + H(Y ) -H(X, Y ),
@PFPVA where H(X, Y ) is the joint entropy of X nd Y F e see tht M I(X, X) = H(X) so in order to ompre the mutul informtions of di'erent vrilesD we de(ne the xormlized wutul snformtion sX

N M I(X, Y ) = M I(X, Y ) 2 H(X)H(Y ) .
@PFPWA hen the vlue is etween H nd IF Linear Correlation of Linear Combination viner gorreltion of viner gomintion @vgPA is similrity mesure tht ws introdued in IST for gEultrsound registrtionF st ws ltter shown in ISU to perform lso well for wsEultrsound registrtionF his ouple of modlitiesD g nd ltrsoundD or Erys nd ltrsound similrlyD is very di0ult to registrteD euse these two modlities show di'erent strutures nd it is not hndled very well y lssil multimodl mesuresF sndeedD gomputed omogrphies show the struture of the ody ut ltrsound show lso where the struture hngesF st my e hnge texture in n orgnD pigure PFRX he vgP metri tries to simulte imge from the g imgeF or hnge of orgnD nd there the intensity of the ltrsound is highF o it mkes sense to ompre the intensity in the ltrsound with the grdient of the g to tke tht prtiulrity into ountF efter explining with more detils the physis ehind the two modlitiesD the uthors of IST determine the intensity of the ultrsound should e ompred to liner omintion of the intensity nd of the grdient of the imgeD plus onstnt termF st is similr to simulting n ultrsound imge from the g imge with the simulted intensity de(ned sX

x i = αp i + βr i + γ, ∀i @PFQHA
where x i represent the simulted intensity of the point iD p i is the intensity in the g imgeD r i is the grdient in the g imge nd α, β, andγ re three unknown weighting prmetersF en exmple of suh simultion is shown in pigF PFRD where eh squre hs its own prmetersF he unknown prmeters re dependent of the orgnD so they re not onstnt on the imgeF hey re not even onstnt on n orgnD euse the grdient should e importnt on the edges ut not in the middle where it mostly omes from noise during the imge quisitionF rtillyD the prmeters re omputed for di'erent pthes on the imgeF sn their experE iments ISUD they serh for the est size of the pthF e reommend to hoose pthes of out ISmm for liner registrtionF o ompute the est set of prmeters for pthD we wnt to minimizeX

n i=1 (x i -u i ) 2 , @PFQIA
where u i is the intensity in the ultrsound nd where the pixels of the pth re indexed y 1 • • • nF sf we pose

M =    p 1 r 1 1 F F F F F F F F F p n r n 1    , @PFQPA then we wnt to minimizeX M   α β γ   -    u 1 F F F u n    2 @PFQQA herefore the solution isX   α β γ   = (M T M ) -1 M T    u 1 F F F u n    =   p 2 i p i r i p i p i r i r 2 i r i p i r i n   -1   p i u i r i u i u i   .
@PFQRA pinllyD we n ompute the vgP mesure with the formulX

1 - n i (x i -u i ) 2 n × V ar(u) , @PFQSA
where V ar(u) is the vrine of the intensities {u i , 1 ≤ i ≤ n}F his mesure is to e mximisedF 2.5.2 Our MRF Framework sn this thesisD we explin di'erent wp prolems tht we optimize to (nd the est displement t eh itertionF e detil this proedure nd how the suessive itertions re onneted hereF 2.5.2.1 The Data Term et eh itertionD retngulr grid @in Ph or QhA of ontrol points is suE perimposed on the moving imgeF sn pigF PFS the ontrol points re the red intersetionsF por eh ontrol pointD we seek to determine the est displeE ment vetor @the lel of the orresponding node@sAA mong set of lels LF vet p e ontrol point nd l p potentil lelF o evlute the dt termD we wnt to ompute the similrity mesure of two pthes in the soure nd the trget imgesF he pth is de(ned s retngle whose dimensions re the sping of the gridF e use the pth entred t the ontrol point in the soure imge s in pigF PFTD we note it B p F e wnt to know where it (ts in the trget imgeD so the seond pth is entred t the ontrol point p plus the trnsltion orresponding to the lel l p D we note it B lp F everl pthes for di'erent lels n e seen in pigF PFTF

pigure PFSX e grid of ontrol points is superimposed to the imgeF he points re hosen t the red intersetionsF 2.5.2.2 Free Form Deformations es we swD the similrity mesures re voxelEsedD nd their omputtion time is n issueF woreoverD the dt ost is not smooth so we do not wnt to ompute grdientF husD we use disrete pprohF hen the est displements of the ontrol points is foundD t the end of n itertionD the movement of ll the points of the moving imge is pproximted using splinesF his model is very ommon in medil imging nd is lled pree porm heE formtions @pphAF st ws introdued in gomputer qrphis in IQH nd gined interest in wedil smging sine its oupling with uiEB plines in PWDWSDIPUF he min dvntges of the pph is its simpliity nd smoothnessD s it n modelD with few pointsD omplex deformtion (eldsF he resulting trnsE formtion of uiEB plines is generlly smooth nd preserves the topologyF o mke sure it is lwys the seD we impose the mximum displement of every ontrol point is no greter thn HFR times the grid spingF e proof regrding the preservtion of the topology my e found in PIDIPVF 2.5.2.3 Iterations in our MRF Framework he disrete pproh only llows smll numer of displement vetors for eh ontrol pointsD so mny itertions re performed during whih lrger serh spe of displement is exploredF sn prtieD lrge displements re ville t the (rst itertion to hve lrge serh speD then the disE plements re deresedD in sizeD during the other itertions until we reh @A oure imge @A rget imge pigure PFTX he omprison of the dt termX @A e pthD in lueD is entered round the ig ontrol point in redF @A hi'erent pthes re shown for di'erent displements vetorsD round the ontrol point in redF hey re to e ompred with the pth in the soure imgeF generlly suEvoxel preisionF he deformtion (elds re omposed through the di'erent itertionsF woreoverD the qulity of the imges is often deresed t the eginning to the itertions to speedEup the omputtionD in orseEtoE(ne mnnerF he resolution inreses nd is the est possile for the (ner itertionsF Chapter 3 Linear Registration

Introduction

viner trnsformtions inlude rottionsD skewingsD slingsD nd trnsltionsF sn this hpterD when we will sy 4liner registrtion4D we will men 0neD rigid or similrity registrtionF hese trnsformtions re glol nd do not model lol hngesF viner registrtion is n importnt step in imge proessing pipelinesF st is used in omputer visionD video surveillneD medil imgingD nd for militry purposesF hi0ulties ome from the di'erene of the sensors whih took the imgesD from the mer viewpoints nd from the hnges through timeF he diversity of imges mkes it impossile to hve universl method tht ould hndle ll registrtion prolemF hen n lgorithm or proedure is hosenD it should tke into ount signl to noise rtioD the registrtion ury neededD the type of deformtionsD nd every spei( prmeter whih depends on the pplition nd whih is of importneF fut there re two min fmilies of registrtion methodsX fetureEsed or geometri methods nd imgeEsed or ioni methodsF he importne of registrtion nd the onstnt need for improvement regrding ury nd speed used it to e n old ut still tive reserh reF he (rst survey pper on registrtion ISDUW foused on imge orrelE tion methodsF petureEsed methods hve een detiled in ITVF 3.1.1 Feature-based Methods e mnul wy to perform liner registrtion is to determine set of ontrol points in the two imgesF sf the numer of onstrints imposed y the set of ontrol points is igger thn the degree of freedom of the trnsformtion we seekD then we use smoothing methods like lest squre regression or itertive lgorithms like exeg RHF his is lso the min ide of fetureEsed or geometri methodsF pirstD distintive points like slient ontours re deteted in oth imgesF hese points re lled fetures nd n e signi(nt regionsD linesD or pointsF eond orrespondene etween the two fetures sets of the two imges is performedF he prtiulrities of the imges we mentioned efore is to e tken into ount while hoosing the feture desriptor nd the similrity mesure to rete the ssignmentF ptil reltionship must lso e prt of the desriptors s there must e oherene in the ssignmentF hird the est trnsformtion is estimted sed on this orrespondeneF pinlly the trnsformtion nd the resmpling is pplied to the soure imge to (t the trget imgeF he hoie of the feture desriptors is key element of the lgorithmF hey should e roust regrding the qulity or the degrdtion of the imge nd they hve to e le to disriminte enough the ontrol point to perform suitle ssignmentF hey hve to e invrint to the di'erent quisition onditions @viewpointsD illumintionsD mersA so the ssignment etween the two imges is possileF woreover the ontrol points should e spred ll over the imge to estimte urtely the trnsformtionF he feture n either e sed on pointD line or regionF he point fetures group uses very spei( geogrphi points like rod rossings SU or entroids of wter regionsD line intersetions IRPD lol exE trem of wvelet trnsforms RP @for stellite imgesAD nd orners TPF IPQ o'ers review on orner detetorsF yne of the most fmous is rrris orner detetor SWF he ide is to put smll window round n reF sf nd only if the point is lose to ornerD then when we move in ny diretionD we should hve lrge hnge in intensityF sn prtieD we ompute the um of qured hi'erenes etween the smll window @whih is opy of the reA nd pthes round the initil reF rrris detetor is invrint to rottionD intensity shifts nd sles ut not to sptil sleF his issue hs een dE dressed in IHQ whih serhes for the est sle to ompre the ornersF yther wys to detet orners nd whih do not use grdient exist like the roust ex method IQU whih omputes the re of the sme olor s tht of the entrl pixelF he line fetures group relies gin on strutures like rods WV or ntomE il strutures ISRD or mthemtil lines like ontoursF ellEknown methods like gnny detetor PH re e0ient to detet line feturesF wore detetors re desried in ITUF he region fetures group inludes strutures whih hve een deteted y segmenttion lgorithms STF st lso inludes the most used feture desripE torsF leEinvrint feture trnsform @spA IHH uses desriptors ontinE ing lol informtion from the imge whih desries the imge s indepenE dently s possile regrding sleD viewpoint nd luminosityF st is roust method used in ojet detetionD video trkingD Qh modellingD imges stithE ing nd so on nd so forthF peeded p oust petures @pA U is n extension of sp whih uses rr wvelets nd whih is fster to omputeF ristogrm of oriented grdients @ryqA PT supposes the lol form of n ojet n e desried y the distriution of the intensity of the grdient or y the diretion of the ontoursF hey re omputed over dense grid of ells ll over the imgeD whih is one mjor di'erene with spF st is prtiulrly e0ient to detet peopleF he orrespondene of ontrol points is done using the euliden norm in the feture speF hi'erent optimiztion methods re employed to serh mong the set of ontrol pointsD like kEd trees or festEinE(rst V serh methodF yne the feture orrespondene hs een performedD we hve to retrieve the trnsformtion from the pirs of orresponding ontrol pointsF por liner registrtionD the prolem is wellEposed nd lest squre (t gives the est solutionF he trnsformtion tht mps one point set to nother given desriptorsE driven orrespondenes is then estimted using either itertive methods IHD roust estimtors IWDIRI or multiple hypothesis estimtionGvlidtion ones like ns RI nd its numerous vrints IRTF hese methods produe stte of the rt results in omputer vision due to the ft tht relEsenes often onsist of numerous well identi(ed nd disrimintive interest pointsF yn the other hnd these methods fil miserly in iomedil imging simply euse the identi(tion of relile interest points is not tht evident while t the sme time ssoiting disrimintive desriptors is prolemtiF he forementioned onerns re mpli(ed when onsidering multimodl imgingF 3.1.2 Image-based Methods petureEsed methods require enough distintive ojets to workF ht is often the se for nturl imgesF por other imges whih do not ontin so mny detilsD like for medil imgesD imgeEsed methods re neessryF hese methods ims t ompring diretly res of the imgesF yne of the limittion is the retngulr window whih is most often used for the reF por liner registrtion whih is often ssoited to lrge displementD it my e di0ult to (t the windowF ristorillyD these methods used rossEorreltion @ggA SDIIVD pourier methods to get rid of noiseD or mutul informtion for multimodl imgesF hen similrity mesure hs een de(ned glolly on the whole imgeD it 4only4 remins to (nd the glol mximum @or minimum for dissimilrity mesureAF por liner registrtionD the mximum numer of prmeters is IPF iven if it is smllD n exhustive serh on lrge rnge of vlues is omputtionlly too ostlyF sn speil ses where the numer of degrees of freedom n e drstilly reduedD if it is trnsltion onlyD or if we hve spei( informtion regrding the movement TSD exhustive serh is good solution euse it gives the glol minimumF qrdient desent methods like qussExewton or vevenergEwrqurdt IPW re often used for more omplex funtionsF sn the pper introduing ws ISQD the uthors used the lssil grdient desent optimiztion method for mutul informtionF wrginl pe verning @wvA ws introdued to detet Qh ntomil strutures ITQF he ide is to divide the serh spe nd serh for suset of the trnsformtion prmeters one t timeF e omprison of this pproh with full exhustive serh hs een mde in ITRF vol methods estlish suset of imge orrespondenes @often using lolGlok mthing ording to given metri for suset of the imge doE minA nd then (t optimlly the est liner model using inferene tehniques erlier presented for the se of geometri methods IIHF qlol methods UP use onventionl similrity metris like ehD xggD hD ws nd seek the pE rmeter set tht orresponds to their lowest potentil tht is often determined through grdientEdriven optimiztion methodF heir min strength is omE puttionl e0ienyD while their min limittions refer to lk of roustness @sensitive to the initil onditionsAD lk of modulrity @optimiztion depends on the liner modelA nd the ft tht they n hndle only di'erentile ojetive funtionsF implex methods IQID utting plnes methods VR or more reently disrete optimiztion ones ITT overome to some extend the ove mentioned limittions while su'ering from omputtionl omplexity nd preisionF gsting omputer vision prolems s leling ones through the use of wrkov ndom pield @wpA theory hs gined gret ttention sine RU dvoted the use of suh frmeworks for imge restortionF he min dE vntges of this fmily of optimiztion methods stem from its e0ieny nd optimlity gurnteesF yn the other hndD their min disdvntge is their inE ility to hndle e0iently omplex intertions etween the ltent vrilesF hespite the ft tht disrete optimiztion spns gret rnge of ppliE tionsD it is rrely used to tkle glol liner registrtionY to the est of our knowledgeD only ITT hs ttempted to estimte glol trnsformtions with the use of wpsF his ws due to the ft tht smpling e0iently the pE rmeter spe of liner trnsformtions is not tht trivilD while t the sme time the onnetivity of the grph eomes prolemtiF sndeedD in theory ll imge pixels should e onneted with the grph representing the liner ltent vrilesF he registrtion prolem is formulted with the use of the wp theoryF st sts disrete lel ssignment prolem where the lels orrespond to quntized set of possile displementsF sn ontrst to ITTD the serh spe is smller nd trtleF righerEorder intertions etween the vriles re used to llow the enoding of the properties of glol liner trnsformtionsF hi'erent higherEorder onstrints re proposed for vrying degrees of freedom of liner trnsformtion modelsF yur min ontriution lies in showing how lol seondE nd thirdEorder onstrints n e used to ensure glol trnsforE mtion propertiesF e dulEdeomposition sheme is used to infer the optiml displementsF 3.2 Graphical Model qiven soure imge nd trget imgeD we seek to estimte the liner trnsE formtion tht est ligns the soure imge to the trgetF he trnsformtion is prmetrized through the use of deformtion grid superimposed onto the soure imgeF he deformtion of the soure imge is governed y the moveE ment of the ontrol pointsF he gol is to (nd the displements of the ontrol points so tht the glol trnsformtion of the whole imge is liner trnsE formtionF o (nd the displement of ontrol pointD we ompre pth of the trget imge entered t this ontrol points with pthes of the soure imge round the orresponding ontrol pointF e use higher order wps to formulte our prolem in disrete ontextF he prolem is represented y hypergrph G = (V, C)D where V denotes the set of nodes tht enode the ltent vriles @grid node displementA nd C the set of liques @or hyperedgesA tht enode higherEorder intertions etween the vrilesF here re no edges in this hypergrphD so E is emptyF V forms grid of ontrol points superimposed to the soure imge we wnt to registerF vet L = {l 1 , . . . l n } e the set of lelsD where eh element orresponds to potentil displement vetorF he lgorithm ssoites lel l p to eh ontrol point pD so tht the (nl result est ligns the two imgesF he energy of the wp n e written sX

E M RF = p∈V U p (l p ) + c∈C H c (l c ), @QFIA
where l p is the lel orresponding to the node pD U p (l p ) denotes the unry potentilsD l c = {l p , p ∈ c}D is the set of lels ssigned to the nodes in the lique or hyperedge c nd H c (l c ) denotes the higher order potentilsF

Unary potentials

vet p e ontrol point nd l p e the lel ssoited to the ontrol point pF vet B p e the pth orresponding to the enter point p in the soure imgeD nd B lp the pth orresponding to the imge point p trnslted y the displement vetor l p D in the trget imgeF he unry potentil qunti(es how well the pth B p mthes the pth B lp X

U p (l p ) = ρ(B p , B lp ), @QFPA
where ρD is n ritrry intensityEsed similrity mesureF feing disreteD the proposed model is grdientEfree nd n enompss wide hoie of similrity mesuresD from eh to sttistil mesures for multimodl registrtion like ws ISQF 3.2.2 Higher order potentials sn order to onstrin the glol liner property of the trnsformtion through lol onstrintsD we exploit the property of liner trnsformtions to preserve the ryentreF vet us denote y (p, q, r) three ligned ontrol points in lique c nd (l p , l q , l r ) their respetive lelsF e denote @A the following onditionX

l p + l r -2 * l q = 0.
@QFQA sn order to gurntee tht the trnsformtion is linerD the violtion of the ondition @A must e penlizedF husD the higher potentil is de(ned sX

H c (l c ) = Φ( l p + l r -2 * l q ), @QFRA
where Φ() is ost funtion de(ned sX

Φ(x) = 0 if x = 0 ∞ otherwiseF @QFSA
he λElique potentil enodes di'erent kind of onstrints depending on the numer of degrees of freedom of the glol liner trnsformtion we seek to reoverF vet us denote the R points of the λElique s sD tD uD nd v @s shown in pigF QFIA nd s = s + l s D t D u D nd v their respetive imgesF sn ll three ses @0neD rigidD nd similrityAD the ondition @A should hold true for the three points of the digonlD sD tD nd uF edditionllyD we hveX For similarity registration: he imges of the points sD uD nd v should form n isoseles right tringleD with the imge of v eing the vertex of the right ngleD

H c (l c ) = Φ(( s -v ).( u -v )) +Φ( ( s -v ) -( u -v ) ).
@QFTA he (rst prt of the eqution heks the orthogonlity nd the seond prt heks the two sides hve the sme normF For rigid registration: he isoseles tringle formed y the points sD uD nd v should hve the sme size s the one formed y the respetive imges of the pointsF his leds to the de(nition of the following onditionX

H c (l c ) = Φ(( s -v ).( u -v )) +Φ( ( s -v ) -( u -v ) ) +Φ( ( s -v ) -( s -v) ).
@QFUA he dditionl third term penlizes di'erenes in size etween the tringle efore nd fter the trnsformtionF @A @A pigure QFIX he di'erent liques in QhX @A e λElique ontins R ontrol points forming λEshpeF here is one λElique on eh fe of the ueF @A he W liques ontining the entrl ontrol point in lueF

Graph construction

vet us now detil the onstrution of the grph GF he set of liques C ontins ll the triplets onsisting of olliner nd neighours points long eh dimension of the gridF C lso ontins λEliques whih re qudrupletsD ontining Q points long digonl of the grid nd the orner pointD suh tht the R points form @see pigF QFIAF he presene of λEliques is neessry for the glol properties of the liner trnsformtion to holdF he proof is given in QFPFRF sn PhD eh point elongs to three horizontl liques nd three vertil liquesF he grph ontins one λElique positioned in one ornerF sn QhD eh point elongs to three liques long eh xis @see pigF QFIAF he grid forms ue nd eh fe ontins one λEliqueD therefore C ontins T λEliquesF ih λElique is similr to the one de(ned in the Ph seF 3.2.4 Mathematical Proof rereD we prove for the Ph seD tht if every lique stisfy the ondition @A @inluding the orresponding points in the λEliqueAD then the trnsformtion pigure QFPX he grid in PhF is extly n 0ne trnsformtionF sn the Ph 0ne seD the onstrints we impose reX the ondition @A on every horizontl nd vertil liqueD nd on the digonl in the λEliqueF Lemma 3.2.1. If the images of two control points along a dimension of the grid (horizontally or vertically) are dened, then the images of all the points on the line they form are dened.

Proof. he ondition @A gurntees tht the points in lique re lignedD nd tht the middle point is preservedF ht mens we hve one eqution for eh liqueF sf the line ontins n pointsD we hve (n -2) liquesF hen 2 points re (xedD there remins s mny equtions s free pointsF he equtions re lerly independent @the orresponding mtrix is tringulr with nonEzero vlue on the digonlAD so the system ontins extly one solutionX ll the imges re de(nedF Theorem 3.2.2. If the images of three non-aligned points of the grid are dened, then there is one and only one image grid satisfying the condition (P) on all the cliques.

Proof. vet us suppose those three nonEligned points re the points @@HDHAD @HDIAD @IDHAA @see (gF QFPAF vet us remind tht the 0ne trnsformtion stis(es the ondition @A on ll the liquesD so there is t lest one solutionF e prove it is the only one y onstruting itF eording to the lemmD the imges of the points on the xExis @similrly on the yExisA re de(ned y the imge points of @HDHA nd @HDIA @similrly @HDHA nd @IDHAAF vet us now onsider the three points in the λElique @@PDHAD @IDIAD @HDPAAF ine the imges of the points @PDHA nd @HDPA re known the middle point is de(nedF his middle point @IDIA long with the point @HDIA @@IDHA similrlyA de(ne the imges of ll the points on the lines @yaIA @@xaIA similrlyA thnks to the lemmF e now hve two imge points for ll the remining horizontl nd vertil linesD so we know the whole imge gridF pigure QFQX e λElique ontins R ontrol points forming EshpeF here is one λElique on eh fe of the ueF fy de(nition our onstrints re less strong thn the ones of n 0ne trnsformtionF he theorem demonstrtes tht our grid onstrution hs s mny degrees of freedom s n 0ne trnsformtionD iFeF Q points n e independently hosen in PhD so our onstrints de(ne n 0ne trnsformtion of the gridF 3.2.4.1 Extension to 3D sn QhD the sme ide holdsD ut we hve n dditionl degree of freedomF o e preiseD only four λEliques re enough if they re well hosenD even if we mentioned six λEliques in the methodF he four λEliques re positioned on four di'erent fes of the ue suh tht three of the λEliques shre ommon point @the point lled v in the λEliques s shown in (gF QFQAD the origin @HDHDHA of the grid for exmpleF sf we hve the imge of the four points @@HDHDHAD @HDHDIAD @HDIDHAD nd @IDHDHAD it de(nes unique 0ne trnsformtion in QhF e onstrut the unique grid with the imges of those pointsF es in PhD the three fes shring the origin re utomtilly de(nedF he fourth feD shre t lest two orthogonl edges with the three (rst fesF eginD we hve ll the onditions of the Ph seD so the fourth fe is de(nedF xowD two opposed fes of the ue re de(nedD so eh line orthogonl to those fes ontins two imposed pointsF he lemm pplies to ll those lines nd so the Qh grid is formedF 3.2.4.2 Extension to similarity and rigid case imilrity is suset of 0ne trnsformtionsF e hve to eliminte shers nd mke sure the sling ftor is the sme long the di'erent xesF hose re the two ondition de(ned y the λElique in the similrity seD y the right isoseles tringleF igid trnsformtions is suset of similrity without homotheti trnsformsD whih orresponds to the lst dditionl onstrintF pigure QFRX e potentil grid trnsformtion with only the lignment onstrint on ll the hyperedges de(nedF pigure QFSX e potentil grid trnsformtion with only the lignment onstrint on mny tripletsF 3.2.4.3 Some counterexamples por etter understnding of the need of ll the previous elementsD we exhiit here some ounterexmples of grid deformtions when we remove one of those elementsF sf we remove the distne onstrint on ll the tripletsD the prolem gins mny degrees of freedom nd Ph grid my e deformed like this QFRF snresing the numer of hyperedges will not solve this prolem s projetive trnsformtions follow this onstrint too QFSF ithout the λEliqueD other ses my pper like QFTD whih is not projetive trnsformtionF 3.2.5 Extension to the projective case here re two di'erent wys to extend our frmework to projetive trnsforE mtionsF vet us remind two properties of homogrphies or projetive trnsE formtionsF pirst the imge of lineD plneD or spe is lineD plne or spe respetivelyF eond the rossErtio or nhrmoni rtio is preservedF he rossErtio of R distint nd ligned points eD fD gD nd h is de(ned sX

r = AC × BD BC × AD .
@QFVA sf we only wnt to use the preservtion of linesD then we must use huge numer of liquesF sndeedD s we sw previously QFTD the urrent numer of pigure QFTX e potentil grid trnsformtion without the λElique onstrintF hyperedges ws not su0ient to prevent other trnsformtionsF o we would need mny liques tht will mke the optimiztion lot more di0ultF sf we use the rossErtioD we n design very similr grph to the one eforeF he hyperedges now ontin R ligned points nd we need digonl hyperedgeD similr to the λEliqueF fy the sme onstrutive proofD we n show we n only ept projetive trnsformtionsF fut the prolemD in our frmeworkD omes from the lel setF sndeedD disrete lel set does not llow projetive trnsforms whih re not 0neD s long s we keep hrd onstrint on the hyperedge potentilF ith ontinuous lel setD this new grph is le to hndle projetive trnsformsF sing ontinuous lel set would require di'erent solvers ut is possileF

Optimization algorithm

o solve the wpD we use the hul heomposition WPF he min ide onsists in deomposing glol di0ult prolem into smller solvle suprolems @referred to s slvesA nd then extrting solution y leverly omining the solutions from these suprolemsF sn this seD the di0ulty of the inferene of the optimiztion displements lies in the presene of the higher order liquesF rereD the grph is deomposed into trees tht onstitute the set of suprolemsF he only requirement for the hoie of the suprolems is tht they over @t lest oneA every node nd hyperedge of the hypergrph GF

Dual Decomposition algorithm

heomposition is n old PV nd generl pproh II to solve prolem y splitting it into smller suprolems nd solving them seprtely either onseutively or simultneouslyF he originl motivtion ws to solve very lrge prolems whih were too omplex for other tehniquesF por exmple deomposition methods n lso hndle prolems whih ould not e solvE le for memory resonsD it n speed up vi prllel omputtion or solve prolems in distriuted wyF eprle prolem is the most trivil se of deomposition method euse there is no need to reomine the solutions of the suprolemsF he expettionEmximistion lgorithm is deompoE sition of the prmeters nd the logElikelihoodF hur omplement method is lso deomposition method in the sense tht the method n solve the initil eqution y only omputing inverses of smller mtriesF e will onsider the following prolem with the oupling vrile yX

min x i ,y i f i (x i , y).
@QFWA st is equivlent to the mster prolemX

min y i φ i (y), @QFIHA
where the two suprolems re φ i (y) = min x i f i (x i , y)F his is priml deomE position of the prolem nd n e solved y sugrdient methodsD uttingE plneD or xewton method if φ i is di'erentile for ll iF hul deomposition is similr to priml deomposition ut requires to introdue vgrnginF vet us now onsider the prolemX

min x i f i (x).
@QFIIA e then introdue uxiliry vriles x i to deouple the prolem into this equivlent versionX

min x,x i i f i (x i ). @QFIPA suh tht x i = x @QFIQA
xow we form the dul prolemF he vgrngin isX

g(λ i ) = min x i ,x i f i (x i ) + i λ i (x i -x), @QFIRA
where {λ i } is the set of lgrngin multipliersF es we serh the mximum of this funtion over the set of lgrngin multipliersD we dedue we must hve i λ i = 0F herefore we n rewrite the dul sX g(λ i ) = min

x i i f i (x i ) + λ i (x i ).
@QFISA pinlly we ll the following deoupled eqution of the dul prolem the msE terX

max i λ i =0 g(λ i ) = i g i (λ i ),
@QFITA nd those re the suprolemsD or slve suprolemsX

g i (λ i ) = min x i f i (x i ) + λ i × x i .
@QFIUA he mster prolem is onvex @in the vrile λ i A nd is solved using proE jeted sugrdient methodF he optimiztion proedure itertes etween solvE ing the slves nd sending the solutions to the msterD whih updtes the slves prmeters ording to λ i = P roj(λ i + α t ∇g i (λ i ))D where t is the itertionD α t prede(ned positive step prmeterD ∇ is projeted sugrdientD nd P roj() indites projetion over the fesile set i λ i = 0F

Choice of the Slave Decomposition

he strtegy employed to omine the solutions of the di'erent suprolems is of gret importneF st should e le to hndle on)iting suggestions from the slves for the sme nodeF es we showed eforeD mster prolem ts s oordintor etween the slve suprolemsF st gthers the solutions of ll suprolems nd dds penlties sed on the levels of greement for every nodeF por exmpleD when two slves A nd B disgree out node N D iFeF they proposed respetively the lels l a nd l b for this node N D penlty is dded to the hoie they mdeD nd the hoie the other slve mde is wrded in the ost funtionX the ost funtion of the slve A is inresed y oe0ient α if it hooses the lel l a for the node N ginD nd deresed y the sme mount if it hooses lel l b D so tht the slve A will explore new solutions ndD most prolyD inlude the lel l b the other slve B suggestedF sn our seD slve prolem is de(ned for eh line prllel to oordinte xisD nd slve for eh EliqueF en exmple of the di'erent slves in Ph is illustrted in (gF QFUF ivery lique nd eh node is then prt of slve so we reover the hypergrphF yne slve is treeD the others re hinsD so it is very esy nd fst to solveF yne dditionl dvntge of this optimiztion method is the independene of the slve prolemsD whih llows prlleliztion of the omputtionF pigure QFUX he deomposition of the originl prolem in slve suprolems in PhX one for eh lineD one for eh EliqueF 3.4 Experimental Validation

Implementation Details

e use multiresolution registrtion in orseEtoE(ne mnnerF he difE ferent itertions re used to re(ne the lel speF he deformtion gridD whih is the result of the lgorithmD is reset fter eh itertion nd the reE sulting displement (elds re inrementlly omposed on the imgeF e use strit onstrint on the higher order termsD soD t eh itertionD the resultE ing displement is extly mong our spe serh @0neD similrity or rigid registrtion in our di'erent experimentsAF his ensuresD y ompositionD tht the (nl displement is extly 0neD rigid or similrityF he grid size ontins 3 n pointsD where n is the dimension of the speD nd might e inresedD up to 5 n in our experimentsF e strted with few ontrol points euse we expeted lrge deformtionsF he lel set is omposed of 5 n displement vetorsF hese displement vetors re regulrly sped on grid entered t the HEdisplement vetorF he mximl length of the displement vetors is HFR multiplied y the distne etween two ontrol points long eh xisF his length is itertively reduedD suh tht (rst itertions ount for lrge displements while ltter itertions ount for smll displementsF e used up to V itertions in our experimentsF yur lgorithm is implemented in gCCF he results were otined using TR its mhine with sntel eon QTUH proessor nd IT qo of ewF pigure QFVX yn the leftD the dense lel set in Ph ontins ll the disretized lels on squreF yn the rightD the sprse lel set in Ph ontins suset of the dense lel setX only vetors on min xes nd min digonlsF 3.4.1.1 Choice of the Label Set he hoie of the lel set is importntF st must llow lrge numer of trnsformtions in the spe we requireF here re two usul lel sets used in deformle registrtionD one is lled denseD the other is lled sprseF hey re oth de(ned s the disretiztion of smll reF he dense set ontins ll the disrete vetors ontined in squre in Ph or in ue in QhF he sprse set ontins suset of the preedent oneD with only the vetors on the min xes nd on the min digonlsF foth sets re shown in pigF QFRFIFIF e wnt to llow s mny trnsformtions s possileF por trnsltionsD there is no onstrint s ll the ontrol points would require the sme disE plement vetorF por skewsD we only need displement vetors long line so we hve enough lels in oth lel setsF fut for sles nd rottions the sprse lels do not ontin enough displement vetorsF o e preiseD there is no sle or rottion llowed y the sprse set @exept the identityAF o we usedD nd reommend to use the dense lel set if we wnt to seek n 0ne trnsformtion or similrityF por rigid registrtionD we hve nother dditionl onstrint whih my e prolem if the imges hve di'erent dimensions long the di'erent xesF vet us remind the ontrol grid is superimposed on the moving imgeF sf the moving imge isD for exmpleD IHxPH entimetresD then the movement of the points long the seond dimension re lrger @there is higher rngeA thn those on the (rst dimension euse the seond dimension is iggerF sf the dense lel set ontins enough displement vetorsD then some solutions existF fut there is n esy wy to inrese the numer of possiilities with smller lel setX we keep the dense frmework ut the size of the retngle in whih we de(ne the displement vetors depends on the size of the imge @see n exmple on pigF QFWAF por our PHxIHm imgeD we tke the vetors on (b)x(2b) retngleD where b depends on the itertion of the registrtion s usulD n exmple is shown in pigF QFIHF e hve now n dpted lel set for rigid registrtionF e will use this one in our experiments on rigid registrtionF yf ourse it n e used for 0ne registrtionD ut is not neessryF st did not show improvements on the dense lel set for the 0ne registrtion experimentsD so we used the usul dense lel setF pigure QFWX he rigid lel set we used for rigid registrtion is very similr to the dense lel set ut the proportions of the squre re similr to those of the imge to llow more trnsformtionsF pigure QFIHX o resle this retngulr imgeD the horizontl displement vetors re longer thn the vertil displement vetorsF pigure QFIIX he di'erent trnsformtions reD from left to rightX PH degrees rottionD sle long the yExis onlyD sherD omintion of IH degrees rottion with IPH7 sle nd omintion of sher with VH7 sleF pirst row shows the deformed imgeD seond row the omprison with the trget imgeD nd lst row the omprison etween the result nd the trget imgesF 3.4.2 2D Study e tested our method on huge set of simulted dtF e perform 0ne trnsformtions of hed imgeF e then register this deformed imge to the originl imgeF he trnsformtion prmeters re uniformly drwn from ertin rngesF ottions lies etween H nd PH¦Y sles re hosen mong VHD WHD IHHD IIH nd IPH7 Y trnsltions reh QHmm nd the shering ngle reh ± IS¦F hese trnsformtion prmeters will e denoted P 1 F e will lso denote P 2 the suset of prmeters without shersD nd P 3 the suset of P 2 without slesF P 1 is set of STPS 0ne trnsformtionsD P 2 set of IIPS similritiesD nd P 3 set of PPS rigid trnsformtionsF e used the um of esolute hi'erene @ehA similrity mesureF he verge runtime is out IH seondsF yn mny imgesD prt ws missing due to the trnsformtionD mostly to the sle ftorF esults re shown in tle QFI nd some exmples re shown in pigF QFIIF 48 Chapter 3. Linear Registration rmeters set eh e0ne imilrity igid

P 1 RRFSV IQFHR E E P 2 RQFQW VFPQ WFWU E P 3
QUFPQ TFSU VFSU VFUU le QFIX esults of the Ph study on lrge smple of trnsformtions of hed imgeF eond olumn shows the glol eh etween the two imges efore registrtionD the others olumns show the eh fter registrtion for the di'erent frmeworks we tested @0neD similrity nd rigid sesAF pigure QFIPX wo exmples of registrtionD the soure nd the trget re superimposed 3.4.3 IBSR dataset e test our method on Qh imges using mnul segmenttionsF even ws imges of the rin re registeredD nd for ll of themD mnul expert segE menttion re villeF he dt is prt of the snternet frin egmenttion epository @sfAD provided y the genter for worphometri enlysis t wsE shusetts qenerl rospitl @ville t httpXGGwwwFmFmghFhrvrdFeduGisrAF he IEweighted imges hve een positionlly normlized into the lirh orienttion @rottion onlyAF e seleted one dt set s the templte nd regE ister it to the remining six dt setsF wo exmples of the registrtion re given in QFRFQF he trnsformtion found y our method is then used to wrp the orresponding segmenttionD whih is (nlly ompred to the segmentE tion of the templteD using hsgi soreD the sensitivity nd the spei(ityD given in pigF RF

Comparison with MedInria

pirstD we used n nnotted Qh wEI @wgneti esonne imges proE dued y spinElttie relxtionA lf musle dtset in order to ompre the proposed method ginst the pulily ville imge nlysis wedsnri softE e test our method performing series of Qh multimodl registrtions of rin imges @g @gomputed omogrphyAD wEh @roton hensityAD wE pigure QFISX ulittive evlution of registrtionF oure nd trget imges re shown using di'erent olor ndsF exil views efore @topA nd fter @ottomA registrtion re shownF he imges hve een suessfully lignedF ID nd wEP @spinEspin relxtionAA provided y The Retrospective Image Registration Evaluation Project @siA1 F he g imges hve resolution of 512 × 512 × 29 nd physil voxel size of 0.65 × 0.65 × 4 mmD while the w imges hve resolution of 256 × 256 × 26 nd voxel size of out 1.25 × 1.25×4 mmF e performed g to w registrtions for U ptients @tientHHI to tientHHUD with totl of PI registrtionsAF e employed histogrmE sed estimtion of xormlized wutul snformtion @xwsA using QP ins s the similrity mesureF e show in pigF QFRFS slie of the Qh volumes efore nd fter registrtionF e lso show in tle QFS di'erent results otined with our lgorithm for di'erent multimodl similrity mesuresF e ompre our results with pvs @results provided y IHRAD ilstix VPD implex IQID nd nother wp method ITT in tle QFRF his lst pper reports the results nd implementtion detils for implexD ilstix nd iki9s methodF he ury of the registrtion is evluted y omputing the piduil egistrtion irror @piA for IH (duil pointsF ell results re ville on the si wesiteF he running time for the proposed pprohD when using xwsD ws pproximtely P minutesF he other methods run on our mhine in pproximtely S minutesF vet us note tht we report here the previously pulished results for the other methodsD nd not the results tht we otined when running themF his is euse we were not le to le QFSX esults otined with the proposed method for di'erent metrisD nd di'erent numer of histogrms ins used for the metri estimtionF he dopted similrity mesureD xws with QP insD is indeed the most suitle mesure to our prolemF urtely reprodue themF sn their rtileD iki et lF ITT left out one imge @HQ with wEhA euse none of the methods ould register itF e inlude it k for omE prisonF yur method is ompetitive with stte of the rt methods in terms of qulity of results nd speedF yur sore is poor when registering the wEI imges euse we signi(ntly fil to lign one imgeD whih onsiderly inreses the men errorF 3.4.6 Clinical Application he registrtion of Qh ultrsound with ws is hllenging tsk euse of the di'erenes of those two modlitiesF fut it is lso stndrd medil proedure to hve preEopertive wsD whih gives preise imge of the odyD nd intrEopertive D euse this is the only kind of imgery tht n e done during surgeryF he etter the registrtion isD the more urte the surgeon will e le to operte the ptientF o perform fst nd urte registrtion during the interventionD surE geons usully use mgneti sensorsD ut their use require timeD spe nd preisionF o remove these limittionsD we propose here fully utomti frmework to perform the registrtionF por this spei( ouple of modlitiesD lssi similrity mesures like um of qured hi'erenesD xormlized wutul snformtion or gorreltion tio re not dptedF ome mesures hve een designed for spei( orgnsD then they lk modulrityF e promising nd generi mesure ws developed in IPPF his mesure ompres to oth the ws intensity nd its grdientF sn IST mesure lled viner gorreltion of viner gomintion @LC 2 or vgPA is designed using (ne understnding of the nd g mesuresF e explined this method in PFSFIF e pplied our method to medil pipelineF pirst glol positionE ing of the ultrsound on the ws spe is performedF sn the generl seD n exhustive serh n e performedD ut most of the time some priori knowledge nD nd should e used to elerte the serhF por exmpleD in dtse of liver ultrsoundsD the positions of the ptients re very similrF o the glol positioning n fous on sure of the whole speF eondlyD rigid registrtion using our frmework developed in QR is usedF fefore the whole proedureD msk is generted on the )y on the ultrsound imge to tke only into ount the voxels whih hve informtion nd to remove the useless lk kground of the imgeF hose experiments were done on sntel gore iUERUWH g with QP qo of ewF o evlute our resultsD we mnE ully reted (duil points on the two imges nd we ompute the rget egistrtion irror @iAF ell distnes re in mmF 3.4.6.1 MRI and CT dataset e (rst tested our lgorithm on dtse of T pirs of imgesD ws nd g of the sme ptientF e used the xormlized wutul snformtion mesure euse it is more dpted to this ouple of modlitiesD so we ould test the lgorithm independently of the vgP mesureF he imges hd pproximtely the sme orienttion ut the dimensions were gretly di'erentD so tht the trnsltions required to register the imges rehed PHHmm in one dimensionF o we design the glol positioning to test wide rnge of trnsltions ut no rottionsF yur serh re for eh xis ws EPHHDCPHH with sping of PHmmF he men exeution time ws out QH seondsF hen we did the rigid lol registrtion using the wp modelF e did IQ itertions nd egn with QHmm serh rngeF he serh rnge is deresed t eh itertion y ftor of HFTUF he men exeution time ws out IHH seondsF e show the results of those two steps in the tle QFT nd some visul results in pigF QFRFTFIF pour points were hosen to do the ground truthF e show the stndrd devition σ in oth sesF shows it ws urte enough to strt the rigid lgorithmD nd n exmple of registrtion in pigF QFRFTFPF he exeution time ws out RHH seondsF e then tested the rigid registrtion with the prmeters like we did with the previous dtsetF e lso ompred the two mesure xws nd vgPF es expetedD the xws mesure performed very dF es for vgPD we found two high i for ptients I nd QX visullyD the results re good ut re di'erent from the ground truthF st hppened euse the two imges re tken t two opposite moments of the reth yleD nd our result nd the ground truth did not foused on the sme reF he qulity of the registrtions is not very preise euse of the qulity of the imgesD whih presented mny rtefts s on pigF QFIVF e tested our disrete wp formultion to solve the prolem of multiE modl registrtion of nd ws imgesF he glol positioning does not tke too muh time s long s imges re downsmpled nd s the serh re is limitedF he lol registrtion shows good results tht would e improved y deformle registrtionD ut the qulity of the imges my prevent suh more preise registrtionF le QFVX i in mm efore nd fter rigid registrtionF tient snitiliztion vgP xws
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pigure QFIUX ixmple of registrtionD the soure ultrsound on topD the deE formed imge in the middleD nd the trget t ottomF pigure QFIVX yne of the ultrsound of the dtseF he qulity limits the ury of the registrtionF

Discussion

sn this hpterD we hve presented disrete wp formultion to solve the prolem of liner registrtionD using lol higher order grphil model with hidden vriles eing the displement vetors of the ontrol pointsF he proposed formultion is modulr with respet to the similrity riterion nd the nture of the liner trnsformtion @rigidD similrityD 0ne nd ould e extended to projetiveAF woreoverD it is omputtionlly e0ient y mens of its reltive lol nture nd the designed serh speF he performne of the method on severl dt set long with omprisons with stte of the rt methods demonstrte the interest of our pprohF e tried to extend our onept to Qh point loudF he (rst prolem is tht we lose the grid strutureF smpliitlyD our grid struture llows to redue the dimensionlity of the prolem on the hyperedgesF sndeedD s the points re ligned on the gridD we only hve to verify tht the ryentre is preserved in this one dimensionl suspeF rene we only require Q pointsF por point loudD the points re rndomly distriuted nd then we nnot use the sme trik s eforeF husD the ondition we hve to hek is the Qh plement of the points of the hyperedgeF wthemtillyD the whole trnsformtion is enoded in the displement of the points of the hyperedgeF e then need S points in eh hyperedgeF he purpose of our prolem n only e n pproximtion nowD so we use soft onstrint tht heks if the movements of the S points is oherentD nd we rete enough hyperedges to trnsmit the informtion to the whole point loudF sn prtieD the omputtion on the liques tkes longer timeD nd there is mny more liques tht mkes the onvergene nerly impossileF o we ndoned this potentil extensionF ith this frmeworkD we re le to perform liner registrtion with wrkov ndom pieldF sn the next hpterD we will (nd wy to mix deformle model with our liner model to solve omplex registrtion proE lemsF Chapter 4

Combining Linear and Deformable Registration 4.1 Introduction e mentioned previously the importne of registrtionF he previous hpter ws fousing on liner registrtionF his one will fous on deformle regisE trtionF st is muh more omplex prolemD nd usully in medil imgingD there is no rel truth to evlute the deformle registrtion s even extremely urte registrtions y professionls do not inlude the inner trnsformE tions of tissues nd orgnsF sn this setionD we lssify the di'erent lgorithms ording to the trnsE formtion model hosenD then the type of similrity riterion @desried in PFSFI nd QFIAD nd (nlly we rie)y disuss out the di'erent optimistion strteE giesF por more omplete reviewD see IQVF

Transformation Model

here re di'erent onstrints tht my e imposed on the displement of the imgeF he two min tegories re relisti modelsD whih hve or try to hve physil or n ntomil menD nd those whih re inspired y interpoltion theoryF eording to IHSD the physil tegory n e sudivided into (veX elsti modelD visous )uid )ow modelD di'usion modelD urvture registrtionD nd )ows of di'eomorphismsF ilsti model desries mterils elsti ojetsF st uses the xvierE guhy equtionF he min ssumptions re smll deformtions nd liner dependeny etween stress nd strinF his model is used for mny engineerE ing mterils like struturl nlysis nd is often solved with (nite elementsF he seond sutegory models the imge s visous )uidD nd the ssoiE ted eqution is xvierEtokes equtionF his eqution models the ehviour of most of the )uidsX xewtonin )uids to e preiseD those whose stress is liner in the strin rteF his model ws introdued in medil imging in PPDPQF hi'usion model relies on the di'usion equtionF st ws introdued in IRQ nd inspired y wxwell9s demonD whih ws thought experiment to rek the seond lw of thermodynmisF he demon pply fores on the memrne where the imge is not onstntF he memrne is oneEwyF st is n itertive proess of smll displementsF egulriztion is sed on qussin smoothE ingF he fores re usully omputed using the h mesure ut xws hs een enoded in this frmework in IRUF gurvture ws introdued y pisE her nd wodersitzki QVF st does not penlize 0ne trnsformtionsF pinllyD )ows of di'eomorphisms is sed on the vgrnge trnsport eqution PQDIRVF snterpolted deformtion models interpolte the displement of the whole imge using only the movement of smll set of voxels of the imgeF his smll set of points re lled ontrol pointsF hey my e pled rndomly on the imge IQR or regulrly on grid like for pph we developed in PFSFPFPF yf ourseD this prolem is mthemtilly illEposed so regulriztion is prmount to hve proper frmeworkF 4.1.2 Optimisation Strategy he optimistion strtegies re generlly split into two groupsX ontinuous nd disreteF gontinuous methods use the spe s it ws ontinuous while disrete methods relies on suset of vlues to void grdient strong irregulrities due to rteftsD lol extrem or simply to redue the omputtionF ometimes the order is fuzzy euse ontinuous methods re pplied for prolems with only disrete set of mesuresD for exmple if we onsider the pixellistion of imgesD then interpoltion is used to onsider the imge spe to e omplete nd regulrF gontinuous methods usully relies on the grdientF ht is the strong point of ontinuous funtionF wost methods rely on n updte rulesX

θ i+1 = θ i + α i g i (θ i ),
@RFIA where i is the itertion prmeterD θ is the vetor of prmeters iFeF the unknownD nd g i is the serh diretionF he most ommon pprohes re grdientEdesentD onjugte grdientD owell9s method IITD xewtonEtype methodsD vevenergEwrqurdt QQD tohsti grdient desent QTF gontinuous methods re sensitive to lol extrem nd initil onditionsF woreoverD they re not modulr regrding the similrity riterion nd the trnsformtion modelF hisrete methods overome these limittions ut they lk preision euse the solution spe is smpledF he more it is smplesD the etter ury is hievedD ut lso the most time it tkes to omputeF e lredy detiled severl disrete lgorithms in PFRF vet us dd tht tehE niques like pstEh nd ree eweighted equentil VT re sed on viner rogrmmingF snsted of trying the originl xEhrd prolemD they use v relxtionF 4.2 Graphical Model he min ide to solve this prolem ws to use the higher order liques de(ned in the previous hpter nd lssil wp grph tht performs deformle registrtionF o the si formultion is the sme s eforeD ut the struture of the grph is notF e remind shortly the formultionF e model the simultneous liner nd deformle registrtion prolem through hypergrph G = (V, E, C)D where V denotes the set of nodesD E the set of edgesD nd C the set of higher order liquesF vet L = {l 1 , . . . l n } e the set of lels tht orresponds to quntized version of the solution speD nd l p denotes the lel ssigned to node pF he lgorithm ssoites lel l p to eh ontrol point pD in order to lign the two imgesF he energy of the wp n e written sX

E M RF = p∈V U p (l p ) + (p,q)∈E V p,q (l p , l q ) + c∈C H c (l c ) , @RFPA
where U p (l p ) denotes the unry potentilsD V p,q (l p , l q ) denotes the inry poE tentilsD l c = {l p , p ∈ c}D is the set of lels ssigned to the nodes in the lique c nd H c (l c ) denotes the higher order potentilsF e wnt to seprte nd determine simultneously the liner nd deE formle trnsformtionsF o do thtD we deompose the displement of eh ontrol point into liner nd deformle prtF e possile wy is to put the two prt of the displement into the sme node s eforeF his would keep the sme numer of nodesD ut the lel set would e the squre of wht it ws eforeD nd thus my e intrtleF snstedD in order to infuse tht knowledge into our wp frmeworkD we will duplite @see pigF RFIA the originl grid of ontrol pointsX the (rst prt will enode the liner displeE mentsD the seond prt will enode the deformle displementsF hereforeD eh ontrol point is represented y two orresponding nodes of the grphD one representing its liner displementD the other one representing its deformle displementF ht duplition llows to keep resonle numer of nodes @twie s mny s eforeA nd the sme numer of lelsD nd therefore to gretly derese the omputtionl ost of performing inferene in the grphF e similr deomposition ws used in IQQ for the xE nd yE xesF e pplied tht ide for the liner nd nonEliner prts of the displement hereF vet us note V 1 the nodes in the (rst prt of the duplited grph @liner prtAD nd V 2 those in the seond prt @deformle prtAX

V = V 1 ∪ V 2.
@RFQA por lrityD we will (rst explin the struture of the grph nd then detil the vlues of the potentilsF por the sme resonD the digrms in this prt pigure RFIX he grph ontins two prtsD eh point of the grid is duplited into two nodesD one in eh prtF e show here Ph exmple for ese of visuliztionF re for PhEPh registrtionF he extension to QhEQh is quite ovious nd the written explntions pply to oth sesF 4.2.1 Graph Construction ih ontrol point on the imges orrespond to two nodesD so the originl grid is duplitedF he ide is to hve the informtion out the liner trnsforE mtion in V 1D hene we will (nd there the hyperedges @triplets nd λEliqueA de(ned in QD nd the deformle trnsformtion enoded in V 2D onsequently we will (nd the usul grid with smoothing termsF e mjor di'erene is the dt termF sndeedD we need to know the totl displement of ontrol point to evlute the similrity mesureD so we need to know oth the liner disE plement nd the deformle displementF he dt term is now evluted s pirwise funtion linking pir of duplited nodesF pinllyD we must rememer tht deformtion like glol trnsltion is not penlized y smoothing termsD euse this kind of displement is llowedF rowever we wnt the totl liner displement to e in the liner prt so we must rete penlty in the deformle prtD suh tht the lgorithm would lwys rther put trnsltion into the liner prt thn in the deformle prtF e put little penlty over the length of the deformle displement in the deformle prt V 2F he omplete grph is shown here RFPF vet us now de(ne CD the set of liquesF sn our frmeworkD the liques hve very di'erent golsF hose in V 2 ensure the smoothness of the deformle displementsF o there is n edge etween etween eh pir of neighour nodesD whih form grid s used for omputing deformle displement lone s in IPUF woreoverD eh node in V 2 hve n unry potentil so deforming pigure RFPX he omplete grphil model for simultneous liner nd deE formle registrtion in Ph @some triplets re omitted for lrityAF irwise potentils re represented y lk links onneting grph nodesY grph nodes tht re relted y triplets re grouped y ellipsesD while the λElique is shown in greenF linerly the imge in this prt of the grph is penlizedF he liques in V 1 ensures tht the liner displements of ll the points form oherent liner trnsformtion of the imgeF ht is left to e detiled is the dt termF he dt term should pture the intertions etween pirs of liner nd deformle displements so eh pir of duplited nodes @one in V 1D one in V 2A will e linked y n edgeF 4.2.1.1 Unary Potentials o ensure the lgorithm prefers lrge liner displements insted of lrge deformle onesD we employ unry potentil penlizing the norm of the vetor of the displement vetorF

U p (l p ) = l p .
@RFRA his potentil is de(ned for every node in V 2D where l p orresponds to deformle displementF

Pairwise Potentials

Regularization Term e regulriztion term operting etween nodes in V 2 is neessry in order to ensure the deformle registrtion is smoothF his n e hieved y 64 Chapter 4. Combining Linear and Deformable Registration penlizing the vetor di'erenes etween neighoring nodesX V p,q (l p , l q ) = qpl p + l q qp , @RFSA where p nd q represent two neighour ontrol pointsD oth in V 2F

Data Term sn order to quntify the lignment of the two imgesD we employ pthEsed similrity riterionD or we ompre pth from the soure imge B p,q with pth in the trget domin B lp+lq tht is hosen sed on the omposition of the 0ne nd deformle prt of the deformtionF sn order to model the omposition of the two prtsD it is neessry to use pirwise term involving the orresponding nodes p nd q in the two prts of the grphF he dt term is de(ned sX V p,q = ρ(B p,q B lp+lq ) . @RFTA 4.2.1.3 Higher Order Terms he higher order potentils re de(ned s in ghpter QF riplets nd λElique ensure the linerity of the trnsformtionF en exmple of those liques for Ph grid for Ph registrtion is shown in pigF RFPF

Optimization algorithm

o solve the wpD we use hhEehww IF hul heomposition WP onsists in deomposing glol di0ult prolem into smller solvle suprolems @referred to s slvesA nd then extrting solution y leverly omining the solutions from these suprolemsF hhEehww is n improvement of hul heomposition whih elertes the onvergeneF sn this seD the di0ulty of the inferene of the optimiztion displements lies in the presene of the higher order liquesF rereD the grph is deomposed into trees tht onstitute the set of suprolems nd into gridF he only requirement for the hoie of the suprolems is tht they over @t lest oneA every node nd hyperedge of the hypergrph GF pormerlyD we hd tried severl lgorithms to perform the optimistion like voopy felief ropgtion nd ree eweighted felief ropgtionF he hrd onstrint mde it very di0ult for those usul lgorithmsF end the ftor grph ws huge euse of the higher order hyperedgesF he lel set ws the squre of wht it ws efore nd the exeution time rehed severl dys for felief ropgtion for exmpleF pigure RFQX wo di'erent slves in PhF yne for horizontl nd vertil lines in the 0ne prtF sn Qh nother slve would e required for the zExisD for totl of S slvesFF 4.2.2.1 Alternating Descent by Method of Multipliers Algorithm ehww reples the wximum e osteriori omputtion y qudrti proE lemD t eh itertionD so it penlises strongly ny disgreementF gompred to hhD the eugmented vgrngin with qudrti prolem isX

g(λ i ) = min x i ,x i f i (x i ) + i λ i (x i -x) + η 2 i x i -x 2 ,
@RFUA where η is weighting ftorF he trditionl resolution method to ompute the ugmented lgrngin lternte etween the joint minimistion of the funtion nd n updte of the multipliers THD IIUF I proposes to use the elternting diretion method of multipliers RSD SQD whih reples the joint mximistion y single qussEeidel stepF he min di'erene is eh slve must ompute qudrti prolemD nd not mximum posterioriF I gives some mthemtil gurntees ut we hve lost mny ompred to hhF rinipllyD we hve lost the ertitude thtD when n greement is rehed mong the slvesD we re sure it is the glol optimum for hhF st is not the se ny more for ehwwF he rtile lso give insight on how to ompute the qudrti suprolemsF sn our seD it redues to dding qudrti penlty to the unry terms whih is di'erent t eh itertion ut whih does not hnge fundmentlly the optimizersF 4.2.2.2 Choice of the Slaves Decomposition sn our seD in V 1D slve prolem is de(ned for eh line prllel to oorE dinte xis in the liner prt of the gridF sn Ph we hve the two slves shown in RFPFPFPF hoses slves ontin prrlel hins of triplets whih re onseE quently independent from eh otherF hey my e esily solved y higher order messge pssing or exhustive serhF e used exhustive serh where the omputtion is gretly elerted y preomputtion y removl of imE possile omintionsF pigure RFRX he slve ontining the λElique in PhF here is lso one slve for the λEliques RFRF sn PhD there is only one lique so exhustive serh is fstF sn QhD there re four λEliquesF hree of them shre nodes ut exhustive serh is still the fstest wy to solve we foundF fy intelligently seprting the onstrintsD we redued the slve to explore the omintion on six nodes forming tringleF he lst slve ontins ll the nodes of the grph ut only the edges of V 2 nd the edges enoding the dt termF sn this ig slveD those edges ontin one node @in V 1A link to nothing elseF hus we n send messge from it to the other end of the edgeD like in wessgeEssing lgorithmD to put ll needed informtion into the unry of the node in V 2F hen we hve simple slve nd we optimize it using the pstEh lgorithm WQF ith this deomposition @R in PhD S in QhAD hhEehww uses msterEslve frmework similr to hul heompositionX the mster send solvle suprolems to the slvesD whih hndle the suprolems nd send k solution RFTF

Experimental Validation

Implementation Details

he lgorithm uses n itertive orseEtoE(ne re(nement proessF he qulity of the imge is redued t the (rst steps to elerte the omputtionF he lel spe is suessively re(ned to explore lrge numer of displements while keeping resonle exeution timeF he lel spe orresponds to disretiztion of potentil displement vetorsD regulrly distriuted on grid round the HEdisplement vetorF he mximl length of the displement pigure RFSX he deformle slve ontins ll the pirwise potentils of the grphF e send messge from the nodes only linked y n edge @ontining the dt termAD then we n solve the prolem using pstEh euse the other pirwiseD the smoothing termD is sumodulrF pigure RFTX he msterEslve frmework for our simultneous prolem in PhF here re four slves @(ve in QhAF he mster gives suprolem nd eh slve nswers with solutionF vetors is HFR multiplied y the distne etween two ontrol points long eh xisF he length is itertively redued long the itertionsF e used up to U itertions in our experimentsF he suessive lel spe re(nement llows to keep the numer of lels quite smllD 3 3 or 5 3 D while rehing suEmillimetre registrtion uryF he grid ontins 3 3 ontrol points t the (rst itertions nd is inresed to 9 3 F he lgorithm is implemented in gCCF he tests were performed on TR its mhine with sntel eon QTUH proessor nd IT qo of ewF he men running time for Qh volumes ws out ITH seonds when using the similrity riterion ehF 4.3.2 Ane Transformed Images e use dtse of domen Qh g imgesD ontining T imges of the sme ptient t di'erent momentsF wo orgns hve een mnully segmented y medil dotorsD the sigmoid nd the ldderF he imge dimension is out SIPBSIPBIPI with physil sping of HFWPBHFWPBR mmD with smll vriE tions on the imgesF e perform severl 0ne trnsformtions of one imgeF e then pplied smll deformtion (eld to the trnsformed imgeF his deformtion (eld is smll in the sense it should not ontin ny glol liner trnsformtionF e then try to register these deformed imges to the origiE nl oneF ottions lies etween H¦nd S¦nd trnsltions reh PHmmF e performed PP di'erent trnsformtionsD with um of esolute hi'erenes @ehA similrity mesureF e wnt to ompre the 0ne trnsformtion we (nd with the one we initilly ppliedF o we (xed T points in the imges t some extremities of the odiesD nd ompute the men distne etween the two trnsformtionsF yur results show men distne of PFTI mmF wost of the error ome from rottions whih re not ptured y the dt termF he results ould e improved y using rottion invrint mesureF yne exmple of registrtion is shown in pigF RFUF

Real Images

e then use intrEptient imges from the sme dtse to ompre our method with sequentil liner nd deformle registrtionF o imges re initilly ligned with liner registrtionF hen we pply deformle regE istrtion lgorithmD hy SPF sn prllelD we pply our lgorithmF e ompre the hsgi we get from the two methodsF yur results show smll improvement @fF RFIA of the hsgiF @A @A pigure RFUX e registrtionD the two imges re superimposed in di'erent oloursX @A fefore registrtionF @A efter registrtionF hsgi fldder igmoid fefore registrtion RSFTI QWFQVQ gonseutive registrtion UVFIS TVFSS yur registrtion UVFRU TVFTR le RFIX esults of the hsgi of two orgns while ompring our simultneE ous registrtion with onseutive oneF

Discussion

sn this pperD we hve disrete wp formultion to solve the prolems of liner nd deformle registrtions simultneouslyD using lol higher order grphil model ting with hidden vriles eing the displement vetors s lelsF he proposed formultion n del with ritrry similrity riteE rionD it is modulr with respet to the nture of the liner trnsformtion nd exhiits omputtionl e0ieny due to its reltive lol nture nd the deE signed serh speF e use multilevel strtegyD in orseEtoE(ne mnnerF he performne of the method on Qh multiEmodl medil dt long with omprisons with stte of the rt methods demonstrte its potentil for ppliE tionsF ypposed to the usul sequentil linerGdeformle registrtionD our sheme is sed on sound mthemtil frmeworkD even if our experiments do not show the isF his is my e prolem for other kind of imges or prolemD for whih our lgorithm would reh its true potentilF woreover this pproh is fst ompred to stte of the rt methodsF pigure RFVX he ojet is roughly segmentedD in the yellow reD nd the grid of ontrol points is superimposed on the imgeF e lso showed it ws possile to omine liner nd deformle registrE tion nd explored wys to do the optimistionF his opens new rnge of possiilities of pplitions in PhGQh registrtion in the next hpter or to seprte liner nd deformle registrtion in the sme imge s we rie)y explin hereF

Linear Within Deformable Registration

xow we present nother wy to omine liner nd deformle registrtionF enother mtter of interest for medil pplitions is to perform glol deformle registrtion with suimge whih should e rigidly or 0nely deformedF sndeedD we know tht the ones struturesD for exmpleD nnot e deformed @unless they re rokenD so it is true most of the timeAF o improve the registrtion or to void rteftsD we ould integrte this knowledge in the proessF st n e esily performed with the liner struture we onstruted nd the lssil deformle gridF por the ske of lrityD the imges shown represent PhGPh registrtionF he lgorithm extends very simply for QhGQh registrtionF e rete rough segmenttion of the ojet whose trnsformtion is linerF his re ontins the higher order hyperedges neessry to the liner registrtionD we ll it the liner reF his re do not need the smoothing pigure RFWX he grph ontins suEprt inspired y the liner registrtionF pirwise etween the inner nodes euse the regulriztion is tken into ount y the higher order termsF fut we need regulriztion etween the outer nodes of the liner re nd the rest of the grphX the pirwise regulriztionF he rest of the grph only ontins smoothing pirwise terms etween the nodesF he new grph is shown in pigF RFW o ompute the displement of the whole imgeD we use interpoltionF hose in the liner re re interpolted using liner trnsformtionD euse the displement of this prt of the imge is linerF he rest of the points re interpolted using fEsplinesF he optimiztion n e performed with the sme strtegy we used preE viouslyX the grid with pstEh or messge pssing lgorithmD the hyperedges with exhustive serhD nd msterEslve deomposition to ssemle those prtsF Chapter 5 2D-3D registration

Introduction

PhGQh imge registrtion is used in mny linil pplitions suh s imgeE guided surgeryD when preEopertive Qh imge nd n intrEopertive Ph view re to e merged to guide the surgeonsF hile there hs een muh work on QhGQh nd PhGPh registrtionsD PhGQh hs reeived ttention more reently IHPF here re di'erent kinds of PhGQh registrtionsD like the regE istrtion of Ph imge to Qh shpe PSD the registrtion of projetive Ph imge @for exmple for EyAD or of slied imge @for exmple when ultrE sound re usedAF e will fous on the ltter se in this pperF erhing the inEplne deformtions simultneously is neessry euse the internl struE tures move due to rethingD eting hert nd the medil intervention itselfF hese rete lrge elsti deformtions nd mke the registrtion extremely hllengingF 5.2 Related work e vriety of methods hs een proposed to del with this prolemF wny intensityEsed nd grdientEsed methods use lol itertive optimiztions tehniques suh s grdient desent RR or est neighour serh method WR ut they re very dependent on the initil positionF PU presents feture sed method tht performs slie to volume registrtionD using severl slies in order to improve the qulity of the resultsF SI trks intrEopertive ws slies of prostte imges with preEopertive ws volumeF his monomodl registrtion @ws intrEopertive slies to ws preEopertive volumeA is deE signed to provide ptient trking informtion for prostte iopsy performed under w guidneF QP proposes method to register endosopi nd lproE sopi ultrsound imges with preEopertive omputed tomogrphy volumes tht potentilly ould work in rel timeF st is sed on new phse orrelE tion tehnique lled vie nd it mnges only rigid registrtionF hse orreltion ws used in QP reporting qusi rel time results on lprosopi ultrsound to g imges registrtionF IHV presents )exile frmework for intensity sed slieEtoEvolume nonErigid registrtion lgorithms tht ws used to register histologil setions imges to ws of the humn rinF gsting omputer vision prolems s lelling ones through the use of wrkov ndom pield @wpA theory hs gined gret ttention sine RVF QU presents wp frmework in high dimension to whih we ompre our resultsF yur frmework ims t reduing the dimensionlity of the serh spe in lol pirwise disrete wpF o we represent physil ontrol point into two nodes of the wp grphD one representing the serh of the Ph speD the other the inEplne deformtionsF o the numer of lels is redued nd fstens the optimiztion lgorithmF he frmework is intensity sed nd independent of the metri tht is eing usedD so it n e dpted to di'erent imge modlities or new mesures IIPF

Graphical Model

qiven Ph soure imge I nd Qh trget volume JD we wnt to (nd the slie π[J] of the volume J tht est mthes the imge IF snEplne deformtions n 'et the imge ID those deformtions re modeled y Ph deformtion (eld TD tht is inferred during the optimiztion proessF st is possile to onsider more generl deformtionsD iFeF Qh deformtionsD ut for our pplitionsD the medil dotors were interested in showing the deformed Ph imge nd the hosen slieD hene our hoieF yur disrete formultion of the prolem uses n undireted grph G = (V, C)F V is the set of nodes whih orresponds to the ontrol points suE perimposed on the Ph imgeF C is the set of liques or hyperedges nd is omposed of two prts C = C D ∪ C R F he nodes represent the ontrol points of qusiEplnr grid tht models the inEplne deformtions nd the urrent est seleted plne simultneouslyF e used qusiEplnr model euse it llows more )exiility nd produes etter results thn n extly plnr plne seletionF he deformtions re modeled in pree porm heformtion @pphA frmeworkF he lel set L orresponds to set of Qh displement vetors L = {l i = (d x , d y , d z )} i D inditing the position of the ontrol point in the Qh spe @the plne seletion is dedued from the position of the displed ontrol pointsAF gliques in C D re triplets of verties with tringulr shpe @see in pigF SFQA nd they re ssoited with the dt termsF he liques in C R re horizontl nd vertil liques of three ligned points @see in pigF SFQAD similr to those de(ned in the previous setionF he ontrol points re disE pled y ssigning them di'erent lels until n optiml position is foundF vet us now de(ne the orresponding high order funtionsF @A @A pigure SFIX he di'erent type of liquesX @A he green re Ω is one of the tringulr liques (i, j, k) ∈ C D nd is used to ompute the dt termF @A erE til lique (i 1 , j 1 , k 1 ) ∈ C R nd horizontl lique (i 2 , j 2 , k 2 ) ∈ C R exmplesF hey re used to regulrize the grid nd give qusiEplnr solutionF he energy to minimize regroups dt terms D ijk ssoited to tringulr triplets in C D nd regulriztion terms R ijk ssoited to triplets in C R F he (rst ones enode the mthing ost while the lter ones t s regulrizersX to ensure the ontrol points keep regulr nd qusiEplnr grid strutureF he energy of the wp is thus de(ned sX

E M RF = (i,j,k)∈C D D ijk (l i , l j , l k ) + β (i,j,k)∈C R R ijk (l i , l j , l k ), @SFIA
where l i is the lel ssoited to the node iD nd β is weighting prmeter lning the ontriutions of the similrity nd geometri termsF 5.3.1 Data Term he dt term is de(ned over set of tringulr liques s in pigF SFQF sts forE multion is independent of the similrity mesure ρ nd is omputed for eh lique d = (i, j, k) ∈ C D using the Ph soure imge I nd the orresponding plne π d [J] extrted from the trget volume JD de(ned y the three ontrol points of the liqueF por given similrity mesure ρD the dt term ssoited with the lique d is thus de(ned sX

D ijk (l i , l j , l k ) = Ω d ρ(I(x), π d [J](x))dx, @SFPA
where x ∈ Ω d nd Ω d orresponds to the tringulr re de(ned y the onE trol points of lique d over the plne π d [J]D fter pplying the orresponding displement vetors @identi(ed y the lels l i , l j , andl k A to the ontrol pointsF 5.3.2 Regularization Term 5.3.2.1 Planar Consistency lnr onsisteny n e esily enfored through disrete pproximtion of the seondEorder derivtives of the gridF rereD the ondition is similr s previously in ghpter QD ut euse of the soft onstrintD s soon s the seond itertionD the grid my not e extly lignedD so we hve to onserve the urrent position of the ontrol points in our equtionF he ondition is thusX

(p i + l i ) + (p k + l k ) -2 × (p j + l j ) = 0.
@SFQA fsed on this ideD we de(ne the following energy term using the euliden norm of the resulting vetorD normlized with the originl distne etween the ontrol points dX

R A ijk (l i , l j , l k ) = (p i + l i ) + (p k + l k ) -2 × (p j + l j ) 2 d 2 @SFRA 5.3.2.

In-plane Deformation Smoothness

es usul with pphD we require distne preserving pprohF e impose the originl distnes etween the ontrol points of the grid is preserved during the whole lgorithmF vet us de(ne φ ij s the rtio of the euliden distne etween the displed points p i +l i nd p j +l j nd the originl distne etween their initil positions p o,i nd p o,j D whih gives the following equtionX

φ ij = (p i + l i ) -(p j + l j ) p o,i -p o,j .
@SFSA e need our regulrizer to ful(ll two onditionsF pirstD we need it to e symmetri with respet to the displement of the pointsD iFeF to penlize with the sme ost when the ontrol points re loser or more distntF his is hieved y posingX

Φ ij = (1 -φ ij ) 2 + (1 - 1 φ ij ) 2
@SFTA eondD we need the energy to e zero when the points re preserving disE tnes nd igger thn zero otherwiseF he preedent expression ful(ls oth onditions for ouple of ontrol pointsD so for given lique (i, j, k)D we de(ne the seond prt of the regulrizer sX

R B ijk (l i , l j , l k ) = Φ ij + Φ jk 2 @SFUA 5.4. Experiments 77
he eqution tht regulrizes our grid is omintion of oth prts

R ijk (l i , l j , l k ) = (1 -α)R A ijk (l i , l j , l k ) + α × R B ijk (l i , l j , l k ) @SFVA
where α is weighting ftorF he proposed ojetive funtion n e either optimized through its mpping to ftor grph or using higher order optiE miztion methods like dul deompositionF e hve dopted the ftor grph pproh nd implemented it using ypenqwP lirry UVF

Experiments

hespite the resonle dimension of the lel speD the use of ftor grphs limits the numer of lels tht n e used during infereneF sn order to overome this limittion we dopt pyrmidl pproh where grid size is deremented in every pyrmid levelF por eh grid resolutionD some itertions of the registrtion lgorithm re performedF e hoose the optiml set for eh one nd updte the ontrol point positions while vrying the size of the displement vetors tht form the lel spe to improve the serh spe smplingF st should e noted tht the plnrity onstrint is imposed in soft mnE nerF purthermoreD due to the inrementl pprohD errors n e umulted nd led to inonsistent plnr trnsformtionsF hereforeD regulriztion terms do not gurntee tht the (nl solution is plneF sn order for the grid to e plneD we projet every ontrol point to the regression plne estimted from the urrent position of these pointsF his projetion orresponds to Ph pph tht gives good pproximtion of the deformtion (eldF ivlution nd omprison of the method ws performed over the PhGQh monomodl ws hert dtset presented in QUF st onsists of IH di'erent temporl series of PH idimensionl slies eh oneD tht must e registered with volumetri wsD giving totl of PHH registrtion sesF por omplete desription of the dtset refer to QUF ln estimtion ws evluted meE suring the error etween the ground truth nd the estimted plnes @plnes were represented y TEhyp rigid trnsformtionD with Q trnsltion nd Q rottion prmeters (T x , T y , T z , R x , R y , R z )AF he verge error mong ll the registrtion ses is less thn HFHHSUrd @0, 3265¦A for rottion nd less thn HFSQVTmm for trnsltion prmeters @see pigure SFPAF qiven tht imge resolution in z xis is lower thn in x nd yD igger error is oserved in the estimted trnsltion for z oordinteF ixperiments were performed using Q grid levelsD with S itertions eh oneD initil grid size of RHmmD mximum displements of PSmmD IW lelsD α = 0.5 nd β = 0.7F he verge running time ws round VH seonds @on n sntel eon QTUH with T gores nd ITqf of ewAD where SU7 of it orresponds to energy omputtion nd QQ7 to optimiztionF pigF SFP ompres the results of our method with the results otined using the lgorithm proposed in QUF foth men nd stndrd devition errors of the estimted prmeters re redued y our methodD mening tht the results re more urte nd less disperse thn in the previous seF st shows tht improving the qulity of the energy terms y inresing the order of the liquesD results in n improvement of the (nl solutionF st is importnt to remrk thtD for the sme numer of grid levels nd itertionsD our new pproh reported slightly etter omputE tionl timeD running on the sme omputer @verge of VH se per registrtion se for our method nd IHH se for the previous methodAF his di'erene is minly due to the overEprmetrized lel spe @SEdimensionlA dopted y the previous methodD tht exponentilly inrements the numer of lels needed to smple n equivlent solution speF pigure SFPX @A nd @A irror estimtion of the plne prmeters for the method desried hereF @A nd @dA irror estimtion for the method presented in QU for the sme dtset with equivlent setupF lidtion of inEplne deformtion ws performed over PH registrtion sesF he dtset provides mnul segmenttions S of the left endordium from set of PH sliesF e register eh slie with strting from rndom position round the ground truth @using qussin noise with σ r = 4.5 deg nd σ t = 5mm for rottion nd trnsltion prmeters respetivelyF he estimted deformtion (eld ws pplied to the orresponding initil segmenttion nd it ws ompred with the ground truth using hsgi oe0ientF he verge hsgi efore deformtion ws HFVS while fter deformtion we otined HFWID showing tht in se of deformle orgns like hertD deformtion is importnt to gurntee relile resultsF 5.5 Discussion he method is independent of the similrity mesureY onsequentlyD it hs the potentil to e dpted to di'erent senrios with vriety of imge modlitiesF e ompred our results with nother method sed on grph optimiztionD tht uses lower dimensionl liques ut higher dimensionl lel speF e showed tht using higher order liques we n model more powerful nd E urte energies tht led to more relile resultsF puture work must e onduted minly in three diretionsF pirstD the vlE idtion of the proposed formultion in rel linil senrios @liver tumour resetion guidne nd wsG guidne for prostte iopsyA is under invesE tigtionF st should e noted tht suh tsk is omplex due to the omplete senes of ground truthF eondD lterntive optimiztion methods @in prE tiulr the ones ting diretly on the ojetive funtion lel spe like dul deompositionA might led to etter results nd re under investigtionF vstD deoupling rigid nd deformle prmeters would llow us to hve etter ontrol over the lgorithm ehviourD while lso deresing the omputtionl omplexity nd reduing the hrdness of the ssoited grphil modelF sn this hpterD we showed nother pplition of the triplets we de(ned previouslyF st proved they n e used in other ontexts nd with some difE ferenes we hd mentioned in the methodX hrd or soft onstrint nd other lgorithmsF Chapter 6

Conclusion

sn this thesisD we onstrut new wy to solve liner registrtion within higher order wrkov ndom pield frmeworkD nd we show di'erent methE ods to ouple this grph with stndrd deformle modelF he originl motivtion ws to solve simultneously liner nd deformle registrtion to remove potentil is oming from the ft the usul wy to solve it uses onseutive pprohF e solve this prolem nd show our higher order frmework n lso e integrted into other prolemsF sn this thesisD we dE dress the registrtion tsk y solving two mjor onernsX how to perform liner registrtion within wrkov ndom pield frmeworkD nd how to fuse this prolem with deformle registrtion nd how to solve itF 6.1 Contributions egrding the reent improvements of the optimiztion on wrkov ndom pieldsD priniplly the hul heomposition nd its developmentsD we serhed for new pplitions tht ould e solvedF righer yrder wp lredy existed ut ll ould not e solved eforeF ith the deomposition methodsD the numer of solvle prolems inreseF ith this view on optimiztionD we wnted to design nd solve new registrtion prolemsF e model the liner registrtion prolem in grphil model frmework thnks to higher order termsF hose terms ontin only lol informtion nd do not know the whole set of prmeters of the trnsformtion ut they gloE lly ensure the trnsformtion lies in the set we seek to retrieveF he wp registrtion tends to e s modulr s possile regrding the pirwise potenE tilD the similrity @or dissimilrityA mesureD nd the optimistion lgorithmF prom this stndpointD we designed higher order model whihD with slight hngesD n hndle 0neD similrity or rigid trnsformtionsF e deompose the prolem in di'erent suprolems to use deomposition tehnique lled hul heompositionF e test our method on di'erent prolems nd show stte of the rt resultsF olving liner registrtion with wp ws not the ultimte golD euse liner registrtion n lredy e solved with di'erent methods with exellent resultsF yur im ws to perform simultneously liner nd deformle regisE Chapter 6. Conclusion trtionF hey re usully performed suessively ut tht retes is of the deformle registrtion towrds the liner registrtionD nd we wnt to get rid of itF e hieve this y fusing the previous model with deformle modelF he term 4fuse4 is very generl s there re mny wys to fuse two grphsD nd our (nl model is quite di'erent from the lssi deformle modelF por exmple the dt term is pirwise termD whih is oviously nonEsumodulr nd hs no property to e solved e0ientlyF ht is the reson why we need gin deomposition methodF es the grph is more omplex thn eforeD we use hhEehwwD whih is n extension of hul heompositionD nd we design lever deomposition to e le to void the prolem of the pirwise term tht ontins the dt termF he results show our model is working nd pprently there ws no is to get rid ofF e lso show tht the sme ides we developed here n e used to fuse liner nd deformle registrtion in other wys nd to solve the prolemF purthermoreD we propose novel frmework for PhGQh registrtionF e use the triplets with soft onstrints s regulrizers of Ph grid moving in Qh speF ith this soft onstrintD we hve to hnge the optimiztionF sndeedD the hrd onstrint of the higher order hs the dvntge to limit the ompuE ttion of our slvesD ut lso hs the disdvntge to disrupt mny lssil lgorithmsF et the oppositeD the soft onstrint would inrese the ompuE ttion of our slvesD ut it does not disrupt ny more lssil lgorithmsD whih is why we turned k to ftor grph formultionF he results on hllenging linil setting demonstrte the e0ieny of our methodF o sum upD the min ontriutions of this thesis re the followingX

• e propose higher order grphil model tht ptures liner trnsE formtionsF he innovtion omes from the design of the hyperedges nd their omintion whih is le to solve glol prolem lollyF e show deomposition le to optimize the prolemF he model is )exile nd ompres to stte of the rt methodsF

• e develop glol pproh to jointly solve liner nd deformle registrtionF e fuse our previous model with deformle registrtion wrkov ndom pieldF he omplexity of the grph inreses ut we hieve good results thnks to hhEehwwF

• e show n exmple on PhGQh registrtion using the higher order terms we designF e use di'erent setup @soft onstrintD ftor grphA to prove the )exiility of our frmework nd how it n dpt for di'erent purposesF por liner registrtion loneD we used hul heompositionF he min dvntge of this lgorithm is tht if n greement is otinedD we know this is the optiml solution of the prolemF yf ourseD it my not e rehedF st is the se for our (rst modelD whih onverges in more thn WH7 of the timeF sullyD when it does not onvergeD we still know we re lose @nd how loseA to the miniml energy nd hppy medium is hosen etween the solutions of the di'erent slvesF rowever it does not work in every sesF nfortuntelyD it does not work for our prolem euse it ontins higher order onstrints tht mkes voting or similr methods totlly ine0ientF yur liner nd deformle model is more omplex nd hul heomposition does not hieve n greement often enoughF e used hhEehww ut it does not show the sme mthemtil seurities s hhD whih mens it onverges more often ut we hve no gurntee tht the greement is the optiml solutionF e tried mny optimiztion lgorithms on this prolem ut they filed due to the omplexity of the grphF es new lgorithms will proly emerge soon to solve higher order prolemsD ttention should sty on them to (nd nd ompre them to hhEehwwF he seond model fusing liner nd deformle registrtion seems of gret interest for medil dotorsF rtnership with medil l interested in pplitions fousing on ones registrtion ould led to softwre designed for medil dotorsF imilr prolems should e solved with this frmeworkD s soon s medil pplitions will emergeF vst ut not t lestD we designed our model to ontin s few hyperedges s possile nd to sty symmetriF fut tht my not e the est hoie of hyperedges regrding results nd optimiztionD espeilly when the size of the grid nd the lel set inreseF e lerning pprohD whih lredy exist with hul heomposition VWD ould led to sustntilly di'erent design nd it ould gretly enhne performne of the methodF
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• pémp ivienD otirs erisD nd rgios xikosF wodulr liner ioni mthing using higher order grphsF sn Appendix e inlude here pper for PhGQh registrtion we did in ollortion with wF inzo perrnteD ut whih is not in the sope of this thesis euse it does not use higher order wpF gonerning this pperD my work onsisted in the designing of the grphF wy ide ws to deouple the lel set of one node into two nodesD similrly to wht s did to omine liner nd deformle registrtionD euse the previous grph whih hd een designed ould not e solved orretlyF he results re slightly worse thn those with the higher order modelD proly due to the ft tht those higher order model more preisely the dt termF heir drwk is n inrese of the omplexity of the model nd need to use pproximtion to reh solutionF approach close to real clinical applications once considered in the context of modern parallel architectures.

Keywords Slice-to-Volume Registration • 2D-3D Registration • Discrete Optimization • Graphical Models • Markov Random Fields 1 Introduction
The problem of slice-to-volume deformable image registration consists in aligning a sliced 2D image (e.g. Ultrasound or US) to its corresponding plane from a 3D volume (e.g. Computer Tomography or CT). We call it deformable registration because the 2D image can be deformed during the registration process. This problem finds applications in many medical image related contexts such as computer aided-biopsy [START_REF] Marks | Mri-ultrasound fusion for guidance of targeted prostate biopsy[END_REF], motion correction for image reconstruction [START_REF] Chandler | Correction of misaligned slices in multi-slice mr cardiac examinations by using slice-to-volume registration[END_REF], tumor ablation [START_REF] Penney | Overview of an ultrasound to ct or mr registration system for use in thermal ablation of liver metastases[END_REF] and image-guided surgery (IGS) [START_REF] José Estépar | Towards real time 2d to 3d registration for ultrasound-guided endoscopic and laparoscopic procedures[END_REF]. In the case of image guided procedures, a pre-operative 3D image and several intra-operative 2D acquisitions are to be fused towards providing position and navigation information to the surgeons. Nowadays, this fusion is mainly performed using two different tracking technologies: optical (OTS) and electromagnetic (EMTS) tracking systems. In the first case, OTS requires a line-of-sight to be maintained between the tracking device and the instrument to be tracked; this fact can disturb doctors during their work and is not always convenient. In the second case, EMTS does not have line-of-sight requirements but it is very susceptible to distortion from nearby metal sources and presents limited accuracy compared to optical tracking [START_REF] Birkfellner | Tracking devices[END_REF]. Moreover, nor OTS neither EMTS can deal with deformations between intra and pre-operative images. In this work, we propose to use 2D-3D slice-to-volume registration algorithms which are purely image based to solve this challenging problem and overcome the limitations presented by current technologies.

The problem of deformable image registration has been a pillar of computer vision (optical flow) and medical imaging (image fusion), and therefore one can cite numerous methods to perform 2D-2D and 3D-3D registration [START_REF] Glocker | Deformable medical image registration: setting the state of the art with discrete methods[END_REF] [1]. However, the problem of 2D-3D registration, and particularly the problem of slice-to-volume registration, deserves separate investigation and specific methods development. While a single 2D slice contains less information than a 3D volume, the solution remains a 3D mapping function (a deformation field in case of non-rigid registration or a transformation matrix in case of rigid registration) as in the case of 3D-3D registration. This fact converts 2D to 3D slice-to-volume registration in a really challenging problem. The other case of 2D-3D registration problems, where projective 2D images such as X-Ray images are registered with volumetric images (CT for example) has received more attention in the last years [START_REF] Markelj | A review of 3d/2d registration methods for image-guided interventions[END_REF] [15] and is not covered in this paper.

A variety of methods has been proposed to deal with slice-to-volume registration. In [START_REF] Birkfellner | Rigid 2D/3D slice-to-volume registration and its application on fluoroscopic CT images[END_REF], standard optimization approaches and heuristics (as Simplex and Simulated Annealing algorithms) are applied on FluroCT to CT registration, testing with different intensity based similarity measures. [START_REF] Dalvi | Fast feature based multi slice to volume registration using phase congruency[END_REF] presents a feature based method that performs slice-to-volume registration, using several slices in order to improve the quality of the results. [START_REF] Gill | Intraoperative prostate tracking with slice-to-volume registration in mri[END_REF] tracks intraoperative MRI slices of prostate images with a pre-operative MRI volume. This monomodal registration (MRI intra-operative slices to MRI pre-operative volume) is designed to provide patient tracking information for prostate biopsy performed under MR guidance. A similar problem is tackled by [START_REF] Xu | Multi-slice-tovolume registration for mri-guided transperineal prostate biopsy[END_REF] where a two-step algorithm (rigid registration in the first step, and deformable registration in the second one) is applied to register three orthogonal intra-operative MR slices with a pre-operative volume. [START_REF] José Estépar | Towards real time 2d to 3d registration for ultrasound-guided endoscopic and laparoscopic procedures[END_REF] proposes a method to register endoscopic and laparoscopic US images with pre-operative CT volumes. It is based on a new phase correlation technique called LEPART and it manages only rigid registration in quasi real time. [START_REF] Osechinskiy | Slice-to-volume nonrigid registration of histological sections to mr images of the human brain[END_REF] presents a flexible framework for intensity based slice-to-volume non-rigid registration algorithms that was used to register histological sections images to MRI of the human brain.

The main limitations of the aforementioned methods are their specificity to the clinical context (they are derived and can be used for specific clinical applications), the requirement of anatomical segmentations in some of them that increases their complexity and often their sequential nature where first plane is selected and then in-plane deformation is determined. Graphical models are powerful formalisms that could be amended to overcome these limitations. Casting computer vision problems as labeling ones through the use of Markov Random Field (MRF) theory has gained attention since [START_REF] Geman | Stochastic relaxation, gibbs distributions, and the bayesian restoration of images[END_REF]. It has been widely used to solve non-rigid image registration in the last years [START_REF] Glocker | Deformable medical image registration: setting the state of the art with discrete methods[END_REF] [16] [START_REF] Mahapatra | Nonrigid registration of dynamic renal mr images using a saliency based mrf model[END_REF], mainly for 2D-2D or 3D-3D. In [START_REF] Zikic | Linear intensity-based image registration by markov random fields and discrete optimization[END_REF], a method based on MRFs to perform 2D-3D registration is presented, but it estimates just rigid transformations and works with projective images. Regarding slice-to-volume registration using MRF, our previous work [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF] presents a MRF framework based on a high dimensional label space to solve this problem; we will refer to it as the overparameterized method.

In this work, our aim is to introduce a low rank graphical model that is able to simultaneously perform plane selection and estimate the in-plane deformation between the 2D source image and the corresponding slice from the 3D volume. We decouple a physical control point of a regular grid in two nodes of the MRF graph, one taking labels from the plane selection label space and the other one from the in-plane deformations label space. In that way, the complexity of the model reduces to the square of the cardinality of the biggest label space (instead of being quadratic in the product of the cardinalities of the two spaces), with a slight increase of the graphical model connectivity. This technique has been previously applied in 2D-2D registration [START_REF] Shekhovtsov | Efficient mrf deformation model for nonrigid image matching[END_REF]. The main advantage is related to the fact that, while the number of nodes augment linearly, the number of labels is decreased in a quadratic order.

The main contributions of our paper with respect to our previous work [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF] are therefore two-fold. Firstly, we propose a new way of decoupling the plane selection and the in-plane deformation label spaces towards a novel low rank model of order 3 (instead of a model of order 5 as in [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF]); it results into a more tractable problem in terms of getting the optimal solution. Secondly, Fig. 1 Structure of the decoupled graph. The green nodes (top grid) are included in V I and orange ones (bottom grid) in V P modeling in-plane deformations and plane position respectively. Edges connecting V I nodes are part of E I and those connecting V P nodes are part of E P ; they are associated with regularization terms. Dotted lines represent cliques in E D that encode the matching similarity measure. Using this information we can reconstruct a deformed grid that is interpreted as a Free Form Deformation model. In the image we can appreciate how we associate two nodes of the graph with one control point of the grid.

we obtain substantial decrease of the search space size (order of 10), allowing much richer sampling of the label space, thus in theory more precise solutions. Moreover, by decoupling the label spaces it is possible to explore both of them with different sparseness levels.

The framework is intensity based and independent of the similarity measure, so it can be adapted to different image modalities or new measures. We tested our approach on two different datasets: a monomodal dataset where 2D MRI images of the heart are registered with MRI volumes, and another multimodal dataset where 2D US images are fused with CT volumes [START_REF] Mercier | Online database of clinical mr and ultrasound images of brain tumors[END_REF]. Both datasets were also used in [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF].

The paper is organized as follows: in Section 2 we present the decoupled MRF formulation together with a complete explanation about the label spaces and the energy terms. In Section 3, the validation tests and results are presented and discussed. Finally, Section 4 concludes our paper and provides some ideas on relevant future directions.

Method Description

Non-rigid slice-to-volume registration can be seen as an optimization problem. We aim at optimizing an energy function by choosing the optimal plane (slice) π[J] from target volume J and the optimal deformation field TD as indicates the following equation:

TD , π = argmin T D ,π D(I • T D (x), π[J](x)) + R(T D , π), (1) 
where I is the source 2D image, D represents the data term and R the regularization term. Given the 2D source image I and the 3D target volume J, we seek the slice π[J] from volume J that best matches the image I. We call it non-rigid registration because image I can be deformed by the deformation field TD . The data term D measures the similarity between the source and the target, while the regularization term imposes smoothness constraints on the solution.

From this general optimization problem, we can derive different formulations. In [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF], we proposed a high-dimensional label space based approach considering local labels of dimension five (plane + in-plane deformations). One of the main problems related to this high dimensionality is its consequently high computational cost. In this work, we try to avoid this problem by decoupling the label space in two different ones and reforming the structure of the graph to still capture rigid plane displacements and in-plane deformation.

Our formulation consists in an undirected pairwise graph G D =< V, E > with a set of nodes V = V I ∪ V P and a set of edges E = E I ∪ E P ∪ E D . V I and V P have a 4-neighbor grid structure and the same cardinality. Nodes in V I are labeled with in-plane deformation labels, while labels used in V P represent the plane position. Edges from E I and E P correspond to a conventional pairwise neighborhood connection system for nodes in V I and V P respectively; they are associated with regularization terms (E I corresponds to in-plane deformation regularizers and E P to the plane selection regularizers). Edges in E D link every node from V I to its corresponding node from V P , creating a graph with a sort of three dimensional structure (see Figure 1); those terms associated to E D encode the data terms (i.e. the similarity measure).

In order to get a better understanding of the model, we can think of a single hypothetical grid similar to the one defined in [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF], where every control point p k from this grid is associated with two nodes from our approach, i.e. v I k ∈ V I and v P k ∈ V P . This idea is depicted in Figure 1 and it will be useful to understand the energy terms.

Label Space

We define two different label spaces, one associated with nodes in V I (called L I ) and the other one associated with nodes in V P (called L P ).

The first label space, L I , is a bidimensional space that models in-plane deformation using displacement vectors l I ∈ E I = (d x , d y ).

The second label space, L P , indicates the plane in which the corresponding control point is located. It consists of labels l P associated to different planes. In order to specify the plane and the orientation of the grid on it, we store an orthonormal basis of this plane together with the position of a reference point in this plane. Using this information, we can reconstruct the position of the rest of the control points in the grid. This way of storing the planes, allow us to implement different plane space sampling methods. In this work, we chose a simple uniformly sampling around the current plane position, varying rotation and translation parameters in a given range. This is an important advantage of our method: we could use prior knowledge to improve the way we explore the plane space, just by changing the plane space sampling method.

To compute the final position of a control point we use both labels. First, the corresponding label in L P defines a 3D point belonging to a plane space with a given basis. Then, we use the corresponding label in L I to move the point in the 2D plane thanks to its basis.

Objective Function

The energy that guides the optimization process is defined on the pairwise terms. Two types of edges represent regularization terms while the last one represents the data terms; the energy is thus defined as:

E(I, P, D) = min{γ (i,j)∈E I e I i,j (l I i , l I j )+α (i,j)∈E P e P i,j (l P i , l P j )+β (i,j)∈E D e D i,j (l I i , l P j )}, (2) 
where γ, α and β are positive weighting factors, e I i,j ∈ I are the in-plane regularizers (associated to edges in E I ), e P i,j ∈ P are the plane regularizers (associated with edges in E P ) and e D i,j ∈ D the data terms (associated with edges in E D ). l I i , l P i are labels from both label spaces L I and L P respectively. Data and regularization terms are detailed in the following sections.

Data Likelihood

The data term is defined for interconnected pairs of nodes (i, j) between the two graphs (where i ∈ V I , j ∈ V P ) and their corresponding labels l I ∈ L I , l P ∈ L P . It is encoded in the pairwise terms e D ∈ E D . As we described before, a plane and an in-plane deformation 2D-vector are associated with every control-point. Combining both labels, we calculate the final position of the control point p k and extract an oriented patch Ω k over the plane π k (centered in p k ) from the volume J, so that the similarity measure δ can be calculated between that patch and the corresponding area over the 2D source image:

e D i,j (l I i , l P j ) = Ω k δ(I(x), π k [J](x))dx. (3) 
The patch-based similarity measure δ (defined on the sub-domain Ω k ) can encompass a wide choice of intensity-based measures. One of the simplest and most used similarity measures is the Sum of Absolute Differences (SAD). It is useful in the monomodal scenario, where two images of the same modality are compared. Its formulation is:

e D SADi,j (l I i , l P j ) = Ω k | (I(x) -π k [J](x) | dx. (4) 
In multimodal scenarios, where different modalities are compared (e.g. CT with US images), statistical similarity measures such as Mutual Information (MI) are generally used since we cannot assume that corresponding objects have the same intensities in the two images. MI is defined using the joint Algorithm 1 Pseudo-code corresponding to the pyramidal approach based slice-to-volume registration 1: procedure 2D3DRegistration(I: Source,J:Target,T 0 :Initial guess) 2:

G ← initializeGraph(T 0 ) Initialize the graph in the position indicated by T 0 3: bestEnergy ← ∞ 4:

for i=1 to gridLevels do 5:

L ← updateLabelSpace(L, i) Update the label space for the given level 6:

for j = 1 to iterationSteps do 7:

newEnergy, newLabeling ← optimizeGraphicalModel(G, L) 8:

if newEnergy < bestEnergy then 9:

applyLabeling(G, newLabeling) 10: bestEnergy = newEnergy 11:

end if 12:

ref ineLabelSpace() 13:

end for 14:

end for 15:

return bestEnergy, G 16: end procedure intensity distribution p(i, j) and the marginal intensity distribution p(i) and p(j) of the images as:

e D MI i,j (l I i , l P j ) = - Ω k log p(I(x), π k [J](x)) p(I(x))p(π k [J](x)) dx. (5) 
As we could see in the previous examples, our framework can be endowed with any similarity measure defined on two bidimensional images. In this work, we use SAD for the monomodal heart dataset and MI for the multimodal brain dataset.

Regularization Terms

We define two different regularization terms, one regularizing the plane selection and the other one the in-plane deformation. The first regularization term penalizes the average distance between the nodes i, j ∈ V P and the plane corresponding to the neighboring one. If D π (p) indicates the point-to-plane distance between the point p and the plane π, we define the regularization term e P as the average of these distances for two neighboring points i, j and their corresponding planes:

e P i,j (l P i , l P j ) = 1 2 (D πj (p i ) + D πi (p j )). (6) 
where p i and p j are the positions after applying label l P i , l P j to p i , p j respectively. This value is 0 when both points lie the same plane.

The second regularization term controls the in-plane deformation and is defined between nodes i and j included in V I . We use a distance preserving approach which is symmetric, based on the ratio between the current position of the control points p i , p j and their original position p o,i , p o,j :

ψ i,j (l I i , l I j ) = || (p i + l I i ) -(p j + l I j ) || || (p o,i ) -(p o,j ) || . (7) 
Once defined ψ ij , we need our regularizer to fulfill two conditions: first, we want it to be symmetric with respect to the displacement of the points, i.e. to penalize with the same cost whenever the control points are closer or more distant; second, we need the energy to be zero when the points are preserving distances and bigger than zero otherwise. The following regularization term fulfills both conditions for a couple of nodes i, j ∈ V I labeled with labels l I i , l I j :

e I i,j (l I i , l I j ) = (1 -ψ i,j (l I i , l I j )) 2 + (1 -ψ i,j (l I i , l I j ) -1 ) 2 . (8) 
Note that both types of pairwise terms are not sub-modular since we include the current position of the points (which can be arbitrary) in their formulation and therefore sub-modularity constraint is not fulfilled.

Implementation Details

We adopt a pyramidal approach, using different grid resolution levels, from coarse to fine spacing between the control points. For each grid resolution, some iterations of the registration algorithm are performed, choosing the best possible set for each one and updating the control point positions with this information. During the inner iterations of one grid level, the size of the displacement vectors that form the deformation label space as well as the parameter variation of the plane label space are reduced in order to improve the search space sampling. A pseudocode of the algorithm is shown in Algorithm 1.

The pairwise graphical model is optimized using the Loopy Belief Propagation algorithm (other discrete optimization algorithms can be used as well) implemented in the OpenGM2 library [START_REF] Kappes | A comparative study of modern inference techniques for discrete energy minimization problem[END_REF]. In [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF], we used FastPD [START_REF] Komodakis | Fast, approximately optimal solutions for single and dynamic mrfs[END_REF] instead of Loopy Belief Propagation for optimizing our pairwise model, which is among the most efficient optimization algorithms. However, due to its construction (lifting of the duality gap minimization) FastPD requires in general (towards optimizing complexity) an equal number of labels for all nodes which is an issue in our setting given the different dimensionality of the graph spaces (3d and 2d). Furthermore, while it can converge to a minimum even for nonsubmodular graphs, it is known that the quality of the linear programming (LP) relaxation is far from being satisfied and therefore the solution itself might be a very bad local minimum. Message passing methods like Loopy Belief Propagation do not inherit the computational constraints of FastPD while it is known (at least experimentally) that do good job as well even with highly non-submodular pairwise functions. Fig. 2 12 registration cases of the same sequence, before and after registration. The overlapping images (in light blue we show the source image and in red the target) showed before registration corresponds to the source image and a slice taken from the volume at the initial position. The overlapping after registration corresponds to the deformed source image and the slice taken from the volume at the estimated plane position.

Validation & Results Discussion

We validate our method in two different scenarios and we compare the results with our previous method [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF]. The first one corresponds to a monomodal sequence of 2D MRI images randomly extracted from a 3D MRI temporal series of a beating heart. The second one is a multimodal brain dataset formed by 2D US images and 3D CT extracted from [START_REF] Mercier | Online database of clinical mr and ultrasound images of brain tumors[END_REF].

In order to compare both methods in a fair way, we exhaustively tested different parameter configurations (empirically for every dataset) on a grid of discretized values, and we took the best combination for each method.

Heart Dataset

The MRI heart dataset consists of ten sequences of twenty bidimensional MRI slices each one, that are registered with a MRI volume, giving a total of 200 registration cases. In order to generate them, as it was described in [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF], we took a temporal series of 20 MRI volumes of a beating heart, and we extracted ten random trajectories of twenty slices I i each one (one slice for every volume M i ). Starting from a random initial rotation R 0 = (R x0 , R y0 , R z0 ) and translation T 0 = (T x0 , T y0 , T z0 ), we extracted a 2D slice I 0 from the initial volume M 0 . In every sequence, the position of slice I i was generated adding Gaussian noise to the position of slice I i-1 with σ r = 3 • and σ t = 5 mm to every translation (T x , T y , T z ) and rotation (R x , R y , R z ) parameters respectively. It gives maximum distances of about 25 mm between the current and its succeeding slice. The MRI resolution was 192 × 192 × 11 and the voxel size was 1.25 × 1.25 × 8 mm 3 .

For every sequence, we initialize the registration adding the same noise (with the same parameters than before) to the ground truth. During the reg- istration process, given two consecutive slices of the same sequence, the estimated transformation for slice I i was used as initialization for the registration of slice I i+1 . 1 Error estimation for plane parameters (Rx, Ry, Rz) and (Tx, Ty, Tz) for our decoupled method and the previous overparameterized approach presented in [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF].

Figure 2 shows the overlapping between the source image and the corresponding target plane, before and after registration, for 12 cases of one sequence. As we can observe in a qualitative way, the overlapping increases after registration.

Figure 3 compares our results in a quantitative way with the ones obtained using our previous method. We measure the error between the estimated transformation parameters and the ground truth. The mean error was (0.0036, 0.0024, 0.0029) rad for rotation and (0.5403, 0.2713, 0.2966) mm for translation parameters, with a standard deviation of (0.0034, 0.0024, 0.0024) rad and (0.4914, 0.2296, 0.2236) mm respectively. The average running time was around 60 seconds for every registration case. Using the method presented in [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF], we obtained (0.0051, 0.0051, 0.0031) rad and (0.4164, 0.2874, 0.4847) mm for rotation and translation parameters error, and standard deviation equal to (0.0122, 0.0134, 0.0051) rad and (0.4720, 0.2976, 1.1546) mm. Results are presented in Table 1. Every registration case took around 220 seconds (almost 3.5 times more than our method). As we can see, the quality of the results was preserved (and improved in some cases) while the computational time was reduced approximately 3.5 times (keeping equivalent grid and label space sizes, sampling patch size and number of algorithm iterations).

Validation of in-plane deformation was performed over 20 registration cases, deforming an initial segmentation of the left endocardium using the estimated deformation field T Di . We measure the average DICE coefficient between the segmentations, before and after deforming the initial one, to measure the impact of the deformation in the registration process. The average DICE before deformation was 0.858 and after registration was 0.907, showing that our method can capture in-plane deformations and select the correct plane at the same time.

Common parameters used for both methods were 3 grid levels, 5 iterations per level, initial control point distance of 40 mm and minimum sampling patch size of 20 mm. In case of the decoupled model we use γ = 1, β = 0.2, α = 0.8, 41 labels in the plane label space and 91 labels in the deformations label space. In case of the overparameterized model we use 13122 labels and α = 0.9 (for a complete understanding of these parameters refer to [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF]). We run the experiments on an Intel Xeon W3670 with 6 Cores, 64bits and 16GB of RAM.

Brain Dataset

The brain dataset consists of a pre-operative brain MRI volume (voxel size of 0.5 × 0.5 × 0.5 mm 3 and resolution of 394 × 466 × 378 voxels) and 6 series of 9 US images extracted from the patient 01 of the database MNI BITE presented in [START_REF] Mercier | Online database of clinical mr and ultrasound images of brain tumors[END_REF]. The size of the US images was 48 × 38 mm and the pixel resolution 0.3 × 0.3 mm. The ventricles were manually segmented by specialists in both modalities and used to calculate DICE coefficient and Contour Mean Distance (CMD) to evaluate and compare the quality of the results. Initializations were done following the same methodology that we described for the Heart Dataset (Section 3.1).

Figure 4 summarizes the average DICE and CMD coefficients for each series. It shows that, using our decoupled method, the mean DICE increases after the registration process an average of 0.0405, a little bit more than the 0.0380 obtained with [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF] method. Regarding the CMD, the average decrement for our method is 0.3654 mm while for the other one is 0.3943 mm. Even if our new method performs better in average, we can observe that results are almost equivalent in terms of DICE and CMD. However, there is a big difference in terms of computing time: while our method is taking around 3 min per reg- istration case, the overparameterized method takes around 10 min running in the same computer using the same configuration. To perform the experiments with both methods, we used the same configuration given by 3 grid levels, initial control point distance of 8 mm, 4 iterations per level and minimum sampling patch size of 13 mm. In case of the decoupled model, we set γ = 1, β = 0.05, α = 0.2, 41 labels in the plane label space and 91 labels in the deformations label space. For the overparameterized method we set α = 0.8 and 6174 labels. We run the experiments in the same Intel Xeon W3670 with 6 Cores, 64bits and 16GB of RAM used for the heart dataset.

Discussion & Comparison With Other Methods

As we have shown, our method is able to achieve state of the art results while decreasing the computational time when we compare to another MRF based method (namely [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF]). In the monomodal case we reduce it from around 3.5 min to 1 min while in the multimodal one we go from 10 min to 3 min, giving a time factor reduction of about 3 times.

The main strength of the proposed formulation is the linear complexity of the inference process with respect to the product of the label spaces. This allows to go even further for challenging cases (brain tumor removal) where precision is required to substantially increase the label space. This is not the case for the approach presented in [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF] due to the complexity of the label space.

An interesting point to discuss about is the 5-fold improvement in the standar deviation error of parameter T z that we obtain with the new method. In [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF], the justification for the poor performance of the method when estimating T z was told to be that image resolution in z axis was lower than in x and y. We think that the new algorithm is less sensitive to image resolution anisotropy mainly because of the different way we explore the plane-selection label space by allowing a deeper exploration when decoupling it without exponentially increasing the amount of labels.

It is important to remark that both, the decoupled and overparameterized methods, are highly dependent on the initialization given for the first slice of the sequence. Since these algorithms optimize the energy based on a limited search space (determined by the label space), if the solution is not reachable from the intial position using the current label space, the algorithm will fail. Another factor that is crucial for the success of the algorithm is the similarity measure used to decide whether or not two patches coming from different images correspond to the same anatomical structure. The study of different similarity measures is outside the scope of this paper; however, note that in order to use the method in other image modalities, it will be necesary to choose an accurate similarity measure and calibrate the parameters accordingly.

Comparison with other methods in the field of slice-to-volume registration is a complicated task, mainly because of the lack of public datasets. Here we include some of the results reported by other state of the art methods for their own datasets, in terms of accuracy and/or performance. In [START_REF] Gill | Intraoperative prostate tracking with slice-to-volume registration in mri[END_REF] for example, authors report a mean Target Registration Error (TRE) lower than 1 mm when estimating rigid transformations in a monomodal MRI dataset of prostate images (for a pixel size of 1.5 × 1.5 × 3 mm). Random initializations were generated by modifying the ground truth position with displacements of 10 mm and rotations of 10deg maximum. The Matlab implementation of their algorithm took between 36 sec and 107 sec depending on the algorithm configuration. In [START_REF] José Estépar | Towards real time 2d to 3d registration for ultrasound-guided endoscopic and laparoscopic procedures[END_REF], authors tested on a multimodal dataset formed by 2D ultrasound and CT volumes of the heart. They report errors around 1.56 ± 0.78 mm when estimating rigid transformations on CT images with 0.6 mm isotropic resolution, using initializations with uniformly random shifts in the range -5 to 5 mm. They achieve quasi real time performance with execution times around 4 sec. Another interesting example to compare with is the multislice to volume registration case that tackles [START_REF] Xu | Multi-slice-tovolume registration for mri-guided transperineal prostate biopsy[END_REF] applying it to MRI-guided transperineal prostate biopsy. Authors report that deformable registrations were accurate to within 2 mm in images with a slice spacing of 3.6 mm. The execution time for the complete deformable registration algorithm is about 30 sec. Even if it is not possible to do a fair comparison mainly because of the lack of standard benchmarks, by observing these examples we can clearly remark that our results are in the state of the art level. Moreover, visual assessment on the obtained results seems to confirm that these are satisfactory in the context of a clinical setting.

In terms of complexity, it is interesting to remark the difference with respect to our previous method. The optimization complexity/difficulty heavily depends on the maximum number of label combinations that the pairwise cliques can take (this is the bottle neck for most optimization algorithms). In this perspective, the complexity of the overparameterized model is given by O(|L| 2 ), where |L| is the cardinality (number of labels) of the label space. In our new approach, we introduce two label spaces L 1 and L 2 that decouple the previous one. To give an idea about the reduction in the complexity of our new model, let us say that |L| = |L 1 .L 2 |. Because of the way in which we construct our decoupled graph (as it is indicated in Figure 1), it is straightforward to show that the complexity of the new model reduces now to O(max(|L 1 |, |L 2 |) 2 ). Therefore, because of the decoupling strategy, the complexity of the model reduces to the square of the cardinality of the biggest label space (instead of being quadratic in the cardinalities of the joint space), with a slight increase of the graphical model connectivity. Consequently, while the number of nodes augment linearly, the number of labels is decreased in a quadratic order.

Conclusions

We presented a new method to perform slice-to-volume registration based on a decoupled model that associates two local graphs to the plane selection and the in-plane deformations while imposing consistency through direct connections between the corresponding nodes. In order to solve this problem, we seek the plane and the in-plane deformation that best matches our energy function. It is important to remark that we just look for the in-plane deformations given the nature of the problems we are trying to solve (mainly image fusion for IGS), where it is not useful to find out-of-the-plane deformations at least for visualization purposes, even if they can exist.

As we have shown in the previous section, our method achieves state of the art results while decreasing substantially the time of computation when it is compared to our previous MRF based method that uses a unique high dimensional label space [START_REF] Ferrante | Non-rigid 2d-3d medical image registration using markov random fields[END_REF]. It confirms our initial hypothesis, meaning that decoupling the graphical model and labeling it using two lower dimensional label spaces, we can achieve the same results while reducing the complexity of our method.

We have also shown that the method is robust with respect to the type of images we are registering. Since slice-to-volume registration has multiple applications, other problems are under investigation (it should be noted that such a task is complex due to the complete absences of public ground truth). To this end, two clinical scenarios are currently under investigation, the first refers to liver tumor resection guidance, while the second to US guidance during prostate biopsy through fusion of intra-operative ultrasound and preoperative CT/MR.

In order to improve the quality of the results, specially in multimodal cases, feature engineering must be considered. Future work includes adapting and using features specifically designed for multimodal registration such as the LC 2 presented in [START_REF] Fuerst | Automatic ultrasoundmri registration for neurosurgery using the 2d and 3d lc2 metric[END_REF] and the MIND descriptor presented in [START_REF] Bardera | High-dimensional normalized mutual information for image registration using random lines[END_REF]. Furthermore, energy regularizers inspired on precise biophysical modeling and tissue properties could lead to accuracy improvements as well. The underlying idea is to adapt the "smoothness" constraint of the deformation model by explicitly taking into account organ specific motion/deformation constraints like for example in the context of liver biopsies or brain tumor ablation.

Finally, we are investigating new methods to improve the parameters estimation procedure. Energy parameters estimation based on machine learning techniques [START_REF] Komodakis | Efficient training for pairwise or higher order crfs via dual decomposition[END_REF] have to be considered as a future work if we want to exploit at the maximum level the potential of the proposed method.
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  Fusion/Recalage d'images multimodales à l'aide de graphes d'ordres supérieurs Mots clés : Champs de Markov Aléatoires, Recalage, Décomposition Duale, Alternating Direction Method of Multipliers Résumé : L'objectif principal de cette thèse est l'exploration du recalage d'images à l'aide de champs aléatoires de Markov d'ordres supérieurs, et plus spéciquement d'intégrer la connaissance de transformations globales comme une transformation rigide, dans la structure du graphe. Notre cadre principal s'applique au recalage 2D-2D ou 3D-3D et utilise une approche hiérarchique d'un modèle de champ de Markov dont le graphe est une grille régulière. Les variables cachées sont les vecteurs de déplacements des points de contrôle de la grille.

  pigure PFIX isuliztion of the grph G 1 F sX L = D -W where D is the degrees mtrixF D is digonl mtrix where D i,i = j∈N (i) w i,j ∀iF hespite this simple de(nitionD L is true vplin is the sense of funtion nlysisF sullyD the nodes represent entities nd the edges represent links etween these entitiesF he grph represents the omplexity of the intertions eE tween the di'erent entitiesF qrphs re widely used to solve huge vriety of prolemsF por exmpleD soil nd street networks re nturlly represented y grph nd used to optimise the tr0F lnr grph theory is used to minimize the numer of integrted iruit required for di'erent tsksF qrph olouring is used for tsk mngement or to optimize the llotion of rdio frequeniesF e hypergrph is n extension of grphF rypergrphs were (rst introE dued in WF snsted of hving edges representing link etween two nodesD we hve hyperedges representing link etween three or more nodesF wthE emtillyD hypergrph G = (V, E, H) is set of nodes V D set of edges ED nd set of hyperedges HF en element e of H is set of nodes nd is ssoited with positive weight w e F he key ide is to enode the ft tht severl nodes shre ommon propertyF Example vet G 2 e the undireted hypergrph de(ned y N = {a, b, c, d} nd H = {{a, b, c}, {b, c, d}}F he edge weights re set to w a,b,c = 1D nd w b,c,d = 2F e represent G 2 in pigF PFP pigure PFPX rypergrph G 2 with two hyperedges e 1 = {a, b, c} nd e 2 = {b, c, d}F

  smge hsgi ensitivity pei(ity frin I WQDRRUU WPDHUPU WWDSQPS frin P VVDVRVT VSDVIHS WWDQIHS frin Q WHDWWPP UWDSTTI WUDHSUT frin R VSDWHII VVDVRRV WVDQIHV frin S VWDRITP VTDTUIS WWDQPSU frin T VHDRTPW VHDQWQU WVDIUUI everge VVDIUVI VSDSSWW WVDTIWH le QFPX esults of the rin registrtion evluted on mnul segmentE tionsF qiven is the hsgi soreD the sensitivity nd the spei(ityF pigure QFIQX gomprison of registrtionD (rst ligne is our lgorithmD seond line is wedsnri lgorithmF hi'erent slies of the sme imge re shown on di'erent olumnsF yur registrtion is more urteF smge of the 0ne registrtion evluted on mnul segmentE tions of lf musles wsF qiven is the hsgi soreD the sensitivity nd the spei(ityF wreF e register interptient imgesF e report the hsgiD the sensitivity nd the spei(ity of the segmenttionsD efore nd fter registrtionF e used the lgorithm nmed floo IHWD for 0ne registrtionD with the h similrity mesureD with S itertionsD I 4orsest pyrmid level4 nd I 4(nest level4F he results re shown in tle QFQ nd pigF QFIR ompres the reprtition of the hsgi for the two methodsF yne visul omprison is showed in pigF QFRFRF hose results show tht our lgorithm performs etter thn wedsnri regisE trtion in this dtsetF he exeution time ws out Q seonds for wedsnriD nd out V seonds for our lgorithmF pigure QFIRX gomprison of the hsgi etween our method nd wedsnri softwreF he proposed lgorithm is more urte thn wedsnriF 3.4.5 RIRE database

  le QFTX i in mm fter glol positioning nd lol rigid registrtionD nd the stndrd devition t the end of the lgorithmF tient qlol vol σ of gD on the leftD nd wsD on the rightD of two di'erent ptients fter the registrtionF le QFUX i fter glol positioningF tient .6.2 US and CT images e then tested our lgorithm on dtse of W pirs of nd g imgesF e used the vgP mesure s desried erlierF he imges hve totlly difE ferent orienttionF e used serh rnge round the ground truth of PHmm in every xis nd we vried the orthonorml sis long two ngles etween EQS nd CQS degreesF e removed the ground truth from the serh reF e show the resulting i fter the glol positioning in tle QFUD whih

Fig. 3

 3 Fig. 3 Comparison of the error estimation for plane parameters (Rx, Ry, Rz) and (Tx, Ty, Tz) for our decoupled method (figures (a) and (b)) and the overparameterized approach presented by [7] (figures (c) and (d)). For presentation clarity, three outliers between 0.02 and 0.05 rad as well as one at 4 mm have been removed at Figures (c) and (b) respectively.

Fig. 4

 4 Fig. 4 The figures show a quantitative comparison of the two methods, before (BR) and after (AR) registration for the 6 sequences of brain data. Figures (a) and (c) show results for our decoupled method (DICE and CMD respectively) while figures (b) and (d) show results for the overparameterized approach presented in [7] (DICE and CMD respectively).

Fig. 5

 5 Fig. 5 Results for one slice from four of the six brain sequences (each row correspond to a different sequence). (a) Source 2D Ultrasound image. (b) Slice extracted from the MRI corresponding to the initial position of the plane. (c) Deformed source image overlapped with the estimated deformation field. (d) Blending between initial images (US and corresponding MRI slice). (e) Blending between final images (Deformed US image and estimated MRI slice). (f) Overlapping between initial segmentations. (g) Overlapping between segmentations after registration.

  RH QFQ e λElique ontins R ontrol points forming EshpeF here is one λElique on eh fe of the ueF F F F F F F F F F F F F F RI QFR e potentil grid trnsformtion with only the lignment onE strint on ll the hyperedges de(nedF F F F F F F F F F F F F F F RP QFS e potentil grid trnsformtion with only the lignment onE strint on mny tripletsF F F F F F F F F F F F F F F F F F F F F F RP QFT e potentil grid trnsformtion without the λElique onstrintF RQ QFU he deomposition of the originl prolem in slve suprolems in PhX one for eh lineD one for eh EliqueF F F F F F F F F F RT QFV yn the leftD the dense lel set in Ph ontins ll the disretized lels on squreF yn the rightD the sprse lel set in Ph ontins suset of the dense lel setX only vetors on min xes nd min digonlsF F F F F F F F F F F F F F F F F F F F F F RU QFW he rigid lel set we used for rigid registrtion is very similr to the dense lel set ut the proportions of the squre re similr to those of the imge to llow more trnsformtionsF F RV QFIH o resle this retngulr imgeD the horizontl displement vetors re longer thn the vertil displement vetorsF F F F RV QFII he di'erent trnsformtions reD from left to rightX PH deE grees rottionD sle long the yExis onlyD sherD ominE tion of IH degrees rottion with IPH7 sle nd ominE tion of sher with VH7 sleF pirst row shows the deformed imgeD seond row the omprison with the trget imgeD nd lst row the omprison etween the result nd the trget imgesF RW QFIP wo exmples of registrtionD the soure nd the trget re superimposed

  

  

  

  

  

  

  

  

  

  

  mentioned tht our liner frmework ould e extended to hndle proE jetive trnsformtionsF st would require mny hnges from the rest of our frmework euse we would need ontinuous frmework to hndle the vE riety of trnsformtions tht re projetionsF hus the dt ostD whih is lredy tking most of the time of the whole lgorithms to omputeD should e hndled very e0ientlyD resulting in hppy medium etween preision nd omputtion timeF ht new model ould hndle projetive PhGQh regE istrtion for medil pplitions or on rel imges for drones lotionF
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Slice-to-Volume Deformable Registration

Efficient one shot consensus between plane selection and in-plane deformation Enzo Ferrante • Vivien Fecamp • Nikos Paragios Received: date / Accepted: date Abstract Purpose: This paper introduces a novel decomposed graphical model to deal with slice-to-volume registration in the context of medical images and image guided surgeries. Methods: We present a new non-rigid slice-to-volume registration method whose main contribution is the ability to decouple the plane selection and the in-plane deformation parts of the transformation -through two distinct graphs -towards reducing the complexity of the model while being able to obtain simultaneously the solution for both of them. To this end, the plane selection process is expressed as a local graph-labeling problem endowed with planarity satisfaction constraints, which is then directly linked with the deformable part through the data registration likelihoods. The resulting model is modular with respect to the image metric, can cope with arbitrary in-plane regularization terms and inherits excellent properties in terms of computational efficiency. Results: The proof of concept for the proposed formulation is done using cardiac MR sequences of a beating heart (an artificially generated 2D temporal sequence is extracted using real data with known ground truth) as well as multimodal brain images involving ultrasound and computed tomography images. We achieve state of the art results while decreasing the computational time when we compare with another method based on similar techniques. Conclusions: We confirm that graphical models and discrete optimization techniques are suitable to solve non-rigid slice-to-volume registration problems. Moreover, we show that decoupling the graphical model and labeling it using two lower dimensional label spaces, we can achieve state of the art results while substantially reducing the complexity of our method and moving the Center for Visual Computing (CVN), CentraleSupelec -Galen Team, INRIA 92295 Chatenay-Malabry, France Tel.: (+33) 01 41 13 16 30 E-mail: enzo.ferrante@ecp.fr -All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.