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Résumé : L'objectif principal de cette thèse est
l'exploration  du  recalage  d'images  à  l'aide  de
champs  aléatoires  de  Markov  d'ordres
supérieurs,  et  plus  spéciquement  d'intégrer  la
connaissance  de  transformations  globales
comme  une  transformation  rigide,  dans  la
structure  du  graphe.  Notre  cadre  principal
s'applique  au  recalage  2D-2D  ou  3D-3D  et
utilise une approche hiérarchique d'un modèle
de champ de  Markov  dont  le  graphe est  une
grille régulière.  Les variables cachées sont les
vecteurs de déplacements des points de contrôle
de la grille.

Tout d'abord nous expliquerons la construction
du graphe qui permet de recaler des images en
cherchant  entre  elles  une  transformation  ane,
rigide, ou une similarité, tout en ne changeant
qu'un potentiel sur l'ensemble du graphe, ce qui
assure une exibilité lors du recalage. Le choix
de  la  métrique  est  également  laissée  á
l'utilisateur et ne modie pas le fonctionnement
de notre algorithme. La diculté fut d'encoder la
connaissance  globale  de  la  transformation
linéaire  dans  des  cliques  ou  hyperarêtes,  qui
sont  par  nature  locales.  En travaillant  sur  les
propriétés de ces transformations et en utilisant
la structure régulière de la grille de points de
contrôle,  nous  avons  réussi  à  dénir  des
contraintes simples et locales, qui si elles sont
vériées sur l'ensemble des cliques, assurent que
la transformation trouvée appartient au champ
de  recherche  souhaité.  Ces  cliques  sont
composés de trois ou quatre points.

L'optimisation est un problème dans notre cas et
les algorithmes classiques ne sont pas adaptés.
Nous  avons  eu  recours  à  une  méthode  de
décomposition qui coupe le problème principal
en sous-problèmes gérables et essaie d'accorder
les  sous-solutions  trouvées.  La  décomposition
duale permet donc de gérer les hyper-arêtes du
graphe et garantit l'obtention du minimum exact
de  la  fonction  pourvu  que  l'on  ait  un  accord
entre  les  esclaves.  Un  graphe  similaire  est
utilisé pour réaliser du recalage 2D-3D.

Ensuite,  nous  fusionnons  le  graphe  précédent
avec un autre graphe construit pour réaliser le
recalage  déformable.  Le  graphe  résultant  de
cette fusion est plus complexe et, an d'obtenir
un  résultat  en  un  temps  raisonnable,  nous
utilisons  une  méthode  d'optimisation  appelée
ADMM  (Alternating  Direction  Method  of
Multipliers)  qui  a  pour  but  d'accélérer  la
convergence de la décomposition duale.  Nous
pouvons alors résoudre simultanément recalage
ane et  déformable, ce qui  nous débarrasse du
biais potentiel issu de l'approche classique qui
consiste  à  recaler  anement  puis  de  manière
déformable.  Il  existe  d'autres  manières  de
fusionner les cliques du précédent graphe avec
un  modèle  classique  de  recalage  déformable.
Nous donnons un exemple permettant de recaler
de  manière  déformable  une  image  tout  en
déformant  une  sous-partie  de  l'image  de
manière rigide.
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Abstract : The main objective of this thesis is
the  exploration  of  higher  order  Markov
Random  Fields  for  image  registration,
specifically to encode the knowledge of global
transformations, like rigid transformations, into
the  graph  structure.  Our  main  framework
applies to 2D/2D or 3D/3D registration and use
a  hierarchical  grid-based  Markov  Random
Field model where the hidden variables are the
displacements vectors of the control points of
the grid.
We first present the construction of a graph that
allows  to  perform  linear  registration,  which
means  here  that  we  can  perform  affine
registration,  rigid  registration,  or  similarity
registration  with  the  same  graph  while
changing only one potential. Our framework is
thus  modular  regarding  the  sought
transformation and the metric used. Inference is
performed  with  Dual  Decomposition,  which
allows to handle the higher order hyperedges
and which ensures the global optimum of the
function is reached if  we have an agreement
among the slaves. A similar  structure is also
used to perform 2D/3D registration.

Second, we fuse our former graph with another
structure  able  to  perform  deformable
registration.  The  resulting  graph  is  more
complex  and  another  optimisation  algorithm,
called  Alternating  Direction  Method  of
Multipliers is needed to obtain a better solution
within reasonable time. It is an improvement of
Dual  Decomposition  which  speeds  up  the
convergence. This framework is able to solve
simultaneously  both  linear  and  deformable
registration which allows to remove a potential
bias  created  by  the  standard  approach  of
consecutive registrations.
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Chapter 1

Introduction

This thesis lies at the intersection of Computer Vision and Medical Image
Analysis. The work itself and the algorithms presented here are not speci�c
to medical images but the tests and the examples come from the medical world.
The main reason is that, despite important advances, many algorithms which
work for natural images are not adapted to medical images, therefore registra-
tion is still a challenging problem. Registration is the problem of aligning two
images in the same space. One can seek di�erent kinds of registration between
images by allowing di�erent sets of transformations: a�ne transformations,
rigid, similarities, projective, deformable. In this work, we will regroup a�ne,
rigid, and similarities under the name linear registration. A similarity mea-
sure is used to quantify the registration quality. The choice of the similarity
measure is important and depends on the modality of the images. An opti-
mization procedure is performed to reach the minimum (or at least a local
minimum) of the objective function, in either a discrete or continuous setting.

In this introductory chapter, in section 1.1 we give a brief description of
the context of this work. Next, in section 1.2, we present the main ideas of
this work. We conclude this chapter with an overview of the work done during
this thesis in section 1.3.

1.1 Thesis Clinical Context

Medical Image Analysis is a booming research area because of the increasing
number of patients and images. For example, the number of cancer patients
and cancer mortality has increased by 10% between 2008 and 2012. Those
patients need a regular follow-up of the evolution of their disease, which means
more exams and more images to analyse. Despite this real need and the
huge amount of algorithms and papers in this research area, most of the
medical doctors do not use automatic softwares and rely on their own skills.
Indeed, the results of the algorithms should reach an incredible precision and
robustness to be considered and used on a daily basis by doctors, while at
the same time the quality of the images may vary a lot due to technical or
human mistakes. The three main areas of research in Medical Image Analysis
are registration, segmentation, and physiological modeling.
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Registration means aligning two images. It allows to study temporal
changes like a disease progression. It can be either long-term (scoliosis, tu-
mour) or short-term, (breathing, during surgery). It is also paramount when
we need to fuse di�erent informations from di�erent modalities like anatomical
and functional information. Registering many images from di�erent patients
is required to construct an atlas to understand the variability among a popu-
lation.

Segmentation means �nding the contour of an object, like an organ that
we want to study. For example, the segmentation of the left ventricle of the
heart after and just before a beat gives the stroke volume. Low contrast,
noise, and artefacts due to the acquisition are common di�culties encoun-
tered. Image-based segmentation relies mainly on the value of the voxels of
the image, shape-based is initialized with a template, and atlas-based uses a
set of training segmented images for guidance. Atlas-based and shape-based
methods need an initial good registration.

Physiological modeling means building a simpli�ed version of an object in
order to see how it behaves or interacts with other objects. The interaction
we seek to model may be biomechanical or physiological. Instead of just
following a disease progression, one could predict its evolution and thus adapt
the therapy. The aim is to better understand human physiology and have a
personalized medicine.

We understand now that registration is in the front end of many applica-
tions: fusion, intervention and treatment planning [49], computer-aided diag-
nosis [63], surgery simulation [74], atlas building [76], radiation therapy [151],
anatomy segmentation [160] and so on and so forth. It is used for all the body
parts: brain [71], eyes [121], lung [24], breast [58], abdomen [54], prostate,
entire body [132], cervical, wrist, vascular structures [140], bones, knee [30]
and spine [14].

Some reviews can be found on medical image registration [4,39,55,61,139],
on softwares for multimodal images [136], or on some speci�c anatomic parts
like the heart [101] and the brain [159], or on similarity measures [114].

Several free softwares are available on the Internet: ITK [66], Insight Seg-
mentation and Registration Toolkit, a well-known C++ library, 3D Slicer for
image analysis and visualisation [35, 50, 113], Elastix [81] both 3D Slicer and
Elastix are based on ITK), FLIRT [73] has a source code in C++, is part
of FSL and only available on Linux, ANTS [149, 150] the Advanced Normal-
ization Tools for image registration with di�erent transformation models and
similarity measures. Comparison are available in [80,136,161].

To be used in so di�erent applications, we need a highly versatile regis-
tration algorithm: it should be fast to be used during surgical operation and
adapt to any type of modalities.
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1.1.1 Image Modalities

Since the discovery of X-rays in 1895, medical doctors rely more and more on
medical imaging to understand the structure and the activity of the organs
they cannot directly see. These are the two main purposes of medical imaging.
The structural modalities allow to visualize the positioning of the di�erent
organs or tissues while the functional modalities aim to understand the activity
of an organ through physiological changes.

X-rays

X-rays are a kind high frequency electromagnetic radiation. Bones and teeth
absorb X-ray e�ciently and are then clearly visible on a radiography. A ra-
diography is a very common exam, the image is obtained on an X-ray detector
of a patient illuminated with a short X-ray pulse. The absorption of X-rays
is di�erent as they pass through the di�erent tissues of the body. A contrast
agent can be injected into the patient to highlight di�erent structures like the
cardiovascular system. X-rays are ionizing radiations so a long or repeated
exposure can provoke burns or cancers.

Computed Tomography (CT)

Computed Tomography scans rely on X-ray imaging. A series of beams is
taken at di�erent angle around the patient. Each beam produces a 2D image
in a speci�c direction and all of these are used to reconstruct a 3D volume.
CT scans are well contrasted and high resolution images. As they are based
on X-rays they present a risk. They expose the patient to between 150 and
1,100 times the amount of radiation of a conventional X-ray.

Ultrasound

Ultrasound is a non-invasive, cheap imaging procedure, and is totally harmless.
Therefore it is commonly used to visualize babies in utero but it is also used to
visualize internal body structures. A probe sends waves of ultrasound which
are re�ected di�erently depending on the tissue properties. Computing the
time the waves need to return to the probe gives the depth of the di�erent
kind of tissues. The main noise in ultrasound images is called speckle and is
caused by the interferences of the di�erent waves.

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging is a non-invasive technique (at least, the con-
trary has not been proven) with a high resolution. A powerful magnetic �eld is
produced by a superconducting electromagnet. The magnetic �eld magnetizes
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the tissues by aligning their spin magnetic moments. Weaker oscillating mag-
netic �elds are then applied at the appropriate resonance frequency and cause
the targeted atoms to emit a radio frequency signal. The targeted atoms need
a non-zero spin magnetic moment to resonate, which is the case for hydrogen
atoms. As they are present in large quantity in the body tissues like in water,
they are chosen as the targeted atoms most of the time. MRI is particularly
used to visualize the nervous system, muscles, the heart and tumours, but not
bones because they do not contain enough hydrogen atoms. MRI is usually
preferred over CT since it does not use any ionizing radiation. However, it is
more expensive, time-consuming and claustrophobia-exacerbating.

Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging is a functional imaging technique.
It relies on the magnetization of red blood cells and was discovered by Seiji
Ogawa in [107]. In active areas there is an increase in the blood oxygen
consumption and an increase of the blood �ow to compensate: it is called
the BOLD signal (Blood Oxygen Level Dependent). Yet deoxygenated red
blood cells contain a molecule sensitive to Magnetic Resonance. The changes
induced to the magnetic �eld by this molecule are detected and give the precise
position of where the blood is highly consumed. fMRI is paramount for tumour
surgery planning to identify the areas which are a�ected (tumour areas require
lots of blood because they reproduce constantly and then tend to dry out the
areas around) and the areas which are the most important for the activity of
the organs.

Positron Emission Tomography (PET)

PET imaging allows to measure in 3D the metabolic or molecular activity of
an organ, hence it is a functional imaging technique. It relies on the positrons
emitted by a nuclear product injected into the body. The positrons emit two
photons when it is annihilated which allow to know precisely the 3D position of
the annihilation. As positrons are anti-matter particles, they are annihilated
as soon as they are emitted by the nuclear product. Thus we know exactly the
position and the concentration of the nuclear product. The nuclear product
has a short half-life and is injected directly in the bloodstream. Most of the
time the nuclear product is �uor 18 incorporated into a molecule similar to
glucose, so that it will attach to tissues like the brain, the cardiac muscle
or cancerous tissues. Di�erent tissues or organs can be targeted by di�erent
isotopes. Of course, the procedure is invasive and potentially dangerous due
to the use of radioactive particles.
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1.2 Thesis Scienti�cal Context

A graph is a representation of a set of objects called the nodes or vertices,
which may interact by pairs. The interaction is represented by an edge on
the graph. A graph is a powerful structure capable of modeling interactions
between elements. For example social networks, phylogenetic trees, and e-
sport matchmaking structures are represented by graphs and many tools seek
to predict the unknown parts of those graphs. In Computer Vision they are
also commonly used to model the interactions of pixels or voxels of an image.
Each voxel is a node of the graph and each node is linked by an edge to its
closest neighbour. The number of neighbours depends on the complexity of
the problem.

But the interaction is limited to couple of nodes, therefore some constraints
which involve a higher number of nodes cannot be modeled with a graph.
To avoid this limitation, we need a hypergraph, which is an extension of a
graph containing hyperedges, sometimes called cliques in computer vision.
An hyperedge is simply a link between more than two nodes.

1.3 Thesis Overview

This thesis is divided into 3 main chapters. In chapter 3 we will detail our
model to perform linear registration within a discrete Markov Random Field
framework. We will prove our model with local constraints can guarantee that
we stay in the set of the global transformations we seek. We will also explain
how Dual Decomposition works, why we are using this optimization algorithm
and this decomposition.

Our linear graph is extended and combined with another graph to handle
simultaneously linear and deformable registration in chapter 4. The purpose
of this model is to tackle simultaneously linear and deformable registration.
Usually, linear registration is computed as a �rst step and then deformable
registration is performed. This sequential procedure can create a bias. Our
framework removes this bias by solving both problems at the same time. How-
ever, this new graph is more complex than the original one and the pairwise
term is not submodular. Therefore we will explore some potential algorithms
to solve the problem.

Chapter 5 will focus on 2D/3D registration and how our previous graph
structure can adapt to the problem of plane selection. We will adapt our
structure and our strategies considering the di�erent setting and show how
modular it is.

The thesis is concluded in chapter 6 with a discussion on the presented
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work, its implications, and suggestions concerning research direction in the
future.



Chapter 2

Markov Random Fields and

Optimization

In this chapter we will remind some useful mathematical notions and algo-
rithms.

2.1 Graphs and Hypergraphs

A graph G = (V,E) is a set of nodes V and a set of edges E. If the elements
of E are couples of terms of V , then G is a directed graph. If the elements of
E are pairs, then G is an undirected graph. Here, we will consider undirected
graphs, that each edge is a pair of distinct nodes {i, j} (no self-loop) and
that each edge is associated with a non-negative weight wi,j. If there is no
edge between two nodes, we consider its weight to be zero by extension. The
neighbourhood N (i) of a node i is the set of all nodes j that are connected
to i by an edge:

N (i) = {j ∈ N, {i, j} ∈ E}. (2.1)

A simple way to describe a graph is by giving its adjacency matrix W . W it
the n× n matrix, where n = |V |, de�ned by:

Wi,j = wi,j. (2.2)

Example

LetG1 be the undirected graph de�ned byN = {a, b, c, d} andE = {{a, b}, {a, d}, {c, b}, {c, d}}.
The edge weights are set to wa,b = 2, wa,d = 1, wc,b = 0.5, and wc,d = 1. We
represent G1 in Fig. 2.1 and its adjacency matrix is:




0 2 0 1

2 0 0.5 0

0 0.5 0 1

1 0 1 0




The adjacency is used to de�ne the Laplacian matrix L which is paramount to
compute many other properties of the graph (spectral gap, spectral clustering)
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Figure 2.1: Visualization of the graph G1.

as: L = D−W where D is the degrees matrix. D is a diagonal matrix where
Di,i =

∑
j∈N (i) wi,j ∀i. Despite this simple de�nition, L is a true Laplacian is

the sense of function analysis.

Usually, the nodes represent entities and the edges represent links between
these entities. The graph represents the complexity of the interactions be-
tween the di�erent entities. Graphs are widely used to solve a huge variety of
problems. For example, social and street networks are naturally represented
by a graph and used to optimise the tra�c. Planar graph theory is used to
minimize the number of integrated circuit required for di�erent tasks. Graph
colouring is used for task management or to optimize the allocation of radio
frequencies.

A hypergraph is an extension of a graph. Hypergraphs were �rst intro-
duced in [9]. Instead of having edges representing a link between two nodes,
we have hyperedges representing a link between three or more nodes. Math-
ematically, a hypergraph G = (V,E,H) is a set of nodes V , a set of edges
E, and a set of hyperedges H. An element e of H is a set of nodes and is
associated with a positive weight we. The key idea is to encode the fact that
several nodes share a common property.

Example

Let G2 be the undirected hypergraph de�ned by N = {a, b, c, d} and H =

{{a, b, c}, {b, c, d}}. The edge weights are set to wa,b,c = 1, and wb,c,d = 2. We
represent G2 in Fig. 2.2
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Figure 2.2: Hypergraph G2 with two hyperedges e1 = {a, b, c} and e2 =

{b, c, d}.

2.2 Markov Random Fields

A growing number of graph-based approaches have been developed in Com-
puter Vision. They can easily model di�erent problems by representing dif-
ferent objects and their dependencies, and there exist many algorithms to
perform inference. Moreover, in several cases, it can be proven that the solu-
tion is exact as long as the potential functions satisfy some properties.

A marginal distribution of a single variable Xi, where X = {Xi} is a set
of discrete variables with a joint mass function ρ, is:

PXi
(xi) =

∑

x′\x′i=xi

p(x′). (2.3)

A Markov Random Field (MRF) is a probabilistic graphical model that
represents a set of random variables and their dependencies through an undi-
rected graph. Let G = (V,E) be an undirected graph, V the set of nodes, E
the set of edges, and X = Xv, v ∈ V a set of random variables associated to
the nodes of the graph. G and X form a Markov Random Field if the local
Markov property is satis�ed:

Xu ⊥⊥ XV \{N (u)∪u}|XN (u) ∀u ∈ V. (2.4)

In practice it means a variable is independent of all others conditionally to its
neighbourhood.

Let us de�ne a clique c as a set of nodes where every pair is linked by
an edge. A maximal clique is a clique such that, if we add another node, the
resulting set is not a clique any more. When X follows a MRF, the joint density
p(x) = p(X = x) which denotes the probability of the random variables X
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taking a speci�c con�guration x, can be factorized over the maximal cliques
of the graph:

p(x) =
1

Z

∏

c∈C
φc(xc), (2.5)

where C is the set of maximal cliques in G. xc is the subset of variables which
belongs to the clique c and a potential function φc(x) is de�ned over c. That is
the mathematical de�nition of a clique. In computer vision, "clique" is often
used as a synonym of hyperedge. In the rest of the thesis, we will use "clique"
with this non-exact meaning.

Markov Random Fields were introduced in Computer Vision by [47]. They
provide a probabilistic framework where knowledge can be integrated in the
graph structure. For example for an image, the nodes will represent the pixels
of the image and the edges will link a node to its closest neighbours. The
hidden variable, or label we seek to recover may be discrete or continuous.
The problem can be formulated as a maximum a posteriori (MAP) estimation:

x? = arg min
x

p(x). (2.6)

We can write the probability as a Gibbs distribution:

p(x) =
1

Z
exp(−E(x)), (2.7)

with Z is a normalization constant and E(x) is the energy de�ned on the
graph as:

E(x) =
∑

c∈C
θc(xc) (2.8)

2.3 Stochastic Processes

Until 1920 statisticians used the method of moments for estimating distribu-
tions. This method is fast and easy to understand. The moments are the
expected values of powers of the random variable we study, like the mean and
the variance. The moments of a population are estimated by computing the
moments of the data sample. This method works well for simple cases but not
for more advanced problems. That is why Fisher introduced the maximum
likelihood estimation.

When a given phenomenon has no accurate model, we can try to build
a statistical one as precise as possible and based on the observations we can
make. Let us note y the measured data, m the chosen model, and x the
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parameters of the model, which are the labels in the MRF framework. y are
the observable and m is the MRF structure. One solution is to �nd the most
probable values of x oncem is �xed and y is observed. So we want to maximise
the probability of x knowing m and y:

max
x

P (x|m, y). (2.9)

By application of Bayes' theorem, the problem is transformed into a Max-
imum a posteriori (MAP) estimation:

max
x

P (x|m, y) = max
x

P (y|m,x)× P (x|m)

P (y|m)
. (2.10)

P (y|m,x) is called the likelihood and measures how well the data and the
predicted model �t. P (x|m) is the a priori for given set of parameters. P (y|m)

the evidence is the sum of events representing y and is independent of the
hidden variable x. We usually suppose that the parameters are uniformly
distributed, which means P (x|m) is constant, so the maximum a posteriori is
equivalent to the maximum of likelihood:

max
x

P (x|y) = max
x

P (y|x). (2.11)

2.4 A Review of MRF optimization algorithms

Here we present some well-known optimization algorithms used on graphs
because we will use or mention them in other chapters. The problem has
been modeled into a graph. We want to assign a label lp from the label set
L to each node p. For each node, there is a unary function, depending on
the label, which gives a cost corresponding to the assignment of that label
to that node. For each edge, there is a pairwise function, which gives a cost
corresponding to the assignment of a couple of labels to the couple of nodes
linked by the edge. A pairwise function is frequently modeled by a square
matrix whose size is the number of labels. Here, we will focus on undirected
graphs and not hypergraphs. Thus, the energy of the MRF is:

E(x) =
∑

p∈V
Up(lp) +

∑

(p,q)∈E
Vp,q(lp, lq), (2.12)

where x = {lp}p∈V , lp is the label corresponding to the node p, Up(lp) denotes
the unary potentials of node p, and Vp,q(lp, lq) denotes the pairwise potentials
between the nodes p and q. We search for the minimum of the energy and its
argument:

x? = arg min
x

E(x). (2.13)
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2.4.1 Viterbi Algorithm

The Viterbi algorithm is used to predict the most probable sequence of hidden
variables x that produced the sequence of observations y. The observations
and the model are supposed to be known. The Viterbi algorithm works for
chains of nodes or trees.

In graph theory, a tree is an undirected, acyclic and connected graph. It
looks like the branching of a tree. We choose one node to be the root of the
tree; the nodes (except the root) which are connected to only one other node
are called the leaves of the tree. For this sort of graphs, message passing gives
an exact solution and is also called forward-backward algorithm. We �rst
de�ne a message from a leaf a to node b as:

∀lb ∈ L,ma→b(lb) = min
la∈L

(Ua(la) + Va,b(la, lb)). (2.14)

Then we de�ne a message from a non-leaf node c to another node d:

∀ld ∈ L,mc→d(ld) = min
lc∈L

(Uc(lc) + Vc,d(lc, ld) +
∑

b∈N (c)\d
mb→c(lc)). (2.15)

A message may be viewed as the update of the unary potentials by taking
into account the potentials of the sending node. The algorithm starts by
sending messages from the leaves until they arrive in the root. The information
contained in the root:

∀lr ∈ L,mr(lr) = Ur(lr) +
∑

b∈N (r)

mb→r(lr)) (2.16)

is equal to the minimum of the energy of the whole tree for the di�erent labels
in the root node. We now know the most likely hidden variable of the root,
which corresponds to the minimum of the energies. To determine the hidden
variables of the other nodes, we simply have to look back at the minima we
chose during the computation of messages.

2.4.2 Belief Propagation

Belief propagation or sum-product message passing is used to perform infer-
ence and to compute the marginals of the nodes of the graph. It is exact
on trees, but gives good approximation on general graphs unlike the Viterbi
algorithm. The idea is similar to the Viterbi algorithm as is relies on passing
messages from nodes to nodes, updating the potentials and choosing the min-
imum of the marginals to select the label for each node. Very fast and e�cient
solutions have been developed as it is very general and gives good approxima-
tions even for general graphs for which it is called Loopy Belief Propagation
and has no mathematical properties.
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Belief propagation it a general algorithm, but may not converge when the
graph contains cycles. Naively, the number of messages is exponential in the
size of the largest clique, but optimization methods have been developed to
be more e�cient, like Potetz [115] which reaches linearity in the size of the
largest clique for a class of potential functions.

2.4.3 Graph Cuts

A graph cut is a partition of the nodes of a graph into two sets. It is de�ned for
graphs whose edges are associated to a weight. The cost of the cut is the sum of
the weights of the edges which are destroyed by the cut. Formally, let us note S
and T the two subsets forming the partition of V . The cut-set of the cut is the
set of edges which have one node in S and one in T : {(u, v) ∈ E|u ∈ S, v ∈ T}.
A common problem is to �nd the minimum cut or min-cut of a graph. A cut
is minimum if there is no other cut whose cost is smaller. A s-t cut is a speci�c
kind of cut where two predetermined nodes called the source, s, and the sink t,
are not in the same subset. It is an important notion in �ow network because
the max-�ow min-cut theorem shows that the cost of a s-t min cut is equal
to the maximum �ow in a network �ow. The theorem was proven in 1956
independently by two teams, Ford and Fulkerson, and Elias, Feinstein, and
Shannon. Intuitively, if the graph represents a net of pipes with only one entry
point called the source, and one exit point called the sink, then the maximum
�ow we can reach is equal to the bottleneck pipe. An e�cient algorithm in
polynomial type was proposed in [43]. It is an iterative algorithm that, at
each step tries to increase the current solution which is a possible �ow by
exploring one by one every node.

This algorithm can easily solve a binary MRF. Indeed, let us de�ne two
new nodes which will represent the two potential labels. These nodes will be
the source and the sink. Let us add two edges per node, one linking the node
to the source, the other one linking the node to the sink. After the min-cut,
the regular nodes (i.e. neither the source nor the sink) in the same subset as
the source are assigned to the �rst label, those in the same subset as the sink
are assigned to the second label.

The values of the binary pairwise and the unary potentials have to be
encoded into this new graph. Let us imagine that our original graph contains
only two nodes a and b, that the two labels are 0 and 1, and the potentials
are de�ned by the functions Ua(x), Ub(x), Va,b(x, y). The nodes in the same
subset as the source will be assigned the label 0, the nodes with the sink
will be assigned the label 1. The modi�ed graph which will be used with the
Ford-Fulkerson theorem will be the graph on Fig. 2.3. Let us put, at least for
a �rst step, those potentials:
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Figure 2.3: Graph cut graph settings.

A = Ua(1) +
+Va,b(0, 0) + Va,b(1, 1) + Va,b(1, 0)− Va,b(0, 1)

2
(2.17)

B = Ub(1) +
−Va,b(0, 0) + Va,b(1, 1)− Va,b(1, 0) + Va,b(0, 1)

2
(2.18)

C =
−Va,b(0, 0)− Va,b(1, 1) + Va,b(1, 0) + Va,b(0, 1)

2
(2.19)

D = Ua(0) + Va,b(0, 0) (2.20)

E = Ub(0). (2.21)

Now a s-t cut will correspond to the corresponding energy of the assign-
ment on the original graph. But the algorithm needs positive weights, oth-
erwise it may fall into endless loops. If A, B, D or E is negative, there are
simple manipulations to change the graph. For example, if A is negative and
D positive, we can add the opposite of A to D and put A to 0; if they are both
negative, the new A will be equal to the opposite of D and the new D will be
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equal to the opposite of A. These operations do not change the corresponding
energy as there are four possible s-t cuts, two of which cut the A edge, while
the two others cut the D edge. After these operations, A, B, D and E are
positive. So we only have one condition on our energy functions which comes
directly from the positivity of C:

Va,b(0, 0) + Va,b(1, 1) <= Va,b(1, 0) + Va,b(0, 1). (2.22)

This type of function is called submodular and the notion can easily be ex-
tended to non-binary functions [88]. Submodular functions have originally
been de�ned on sets of objects for game theory and economics. As the two
graphs are equivalent and as the Ford-Fulkerson algorithm is exact, the so-
lution is the global optimum. [88] proved that, with graph cuts, the global
optimum of the energy is reached if the MRF function is submodular. The
procedure we showed for a very simple graph can obviously be extended to
bigger graphs. Graph cuts is restricted to a class of energy : when E is sub-
modular and xi is a boolean, the minimum can be found in polynomial time
thanks to the graph cuts algorithm (see [70] or [88]).

Graph cut based algorithms have been designed to handle multilabel MRFs
in [13]: α-expansion and α − β-swap. For α-expansion, the idea is to change
progressively the labels by trying them one by one. At each step, the current
assignment of every node is considered as the same label, the old label, while
a new one called α is proposed. The graph cut is realised with only those
two labels. For α − β-swap, at each iteration a couple of labels is chosen
and the nodes can change their label between those two. Torr et al. [144]
showed those algorithms could solve even higher order energies in polynomial
time, if the potential were a metric (for α-expansion) or a semi-metric (for
α− β-swap). The fusion move algorithm was introduced by Lempitsky et al.
in [96]. It consists of �nding the best combination of two potential labelling
of the whole space. α-expansion is then a special fusion move, where one of
the labelling is the constant α on the whole space.

Several methods have been developed to accelerate the optimization [152]
or to handle dynamics MRFs [83], for example to handle interactive object
segmentation [12]. Some authors extended the graph cuts to non-submodular
functions, like Kolmogorev and Rother in [87]. They reparametrize the po-
tential to reach a normal form. Then, they create a graph, which contains
two nodes for each variable, xi and ¬xi. The algorithm, called Roof Duality
or QPBO (Quadratic Pseudo-Boolean Optimisation) only gives a partial la-
belling, some nodes are still unknown, but it has some good properties known
as Weak autarcy and Partial optimality. Those properties allowed Rother et
al. [126] to extend Roof Duality to try to complete the partial solutions in
some cases. Grabcut [125] is an algorithm based on graph cuts to perform
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image segmentation while only drawing a simple box around the object, where
they also optimize the convergence.

2.4.4 Spectral clustering

When there is no unary potential, one can use spectral clustering. A popular
objective function used in spectral clustering is to minimize the normalized
cut [135]. The cost of a cut is :

cut(A,B) =
∑

u∈A,v∈B
w(u, v)

where A and B are the two parts of the graphs, and w is the weight func-
tion of the edges. This cost favours little cuts. Let us note assoc(A, V ) =∑

u∈A,v∈V w(u, v) where V is the set of all nodes. This measures the total
connection from nodes in A to nodes in the graph. The normalized cut is :

Ncut(A,B) = cut(A,B)

(
1

assoc(A, V )
+

1

assoc(B, V )

)

The idea of spectral clustering is to use the similarity matrix, or the laplacian
matrix, and to �nd interesting properties thanks to their eigenvectors. A
known algorithm was developed by Ng et al. in [106]. Given a similarity
matrix of all the couples, calculate the laplacian matrix and its eigenvectors.
Those eigenvectors de�ne points in Rn which can be more easily clustered and
give the clustering of the initial objects.

2.4.5 Probabilistic clustering

In Bulò et al. [17], the authors try to cluster points without partitioning them.
Let W be the empirical likelihood matrix, and Y be the matrix of the unknown
cluster membership. They try to minimize :

min ‖W − αY TY ‖2

s.t. α ∈ R,
∑

i

Yi,j = 1 ∀j, Yi,j ≥ 0 ∀i, j

They solve it thanks to the Baum-Eagon inequality, which, for some polyno-
mials, give a growth transformation.

2.4.6 Order Reduction Techniques

The order of the energy can be reduced by adding new variables. Ramalingam
et al. proved we could transform submodular multi-labels energy functions
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into submodular boolean functions in polynomial time [119], but that it was
impossible for order higher than 4.

In [124], Rother et al. remarked that the potential function over a clique
is often sparse, which means many con�gurations are considered bad and so,
have the same value, and that the good con�gurations were often similar.
So they try to parameterize compactly the energy, to minimize the number
of variables. They transformed the minimizing sparse higher-order energy
function into an equivalent quadratic minimization problem.

Ishikawa introduced in [67] a method to convert the minimization problem
of any higher-order binary energy to that of a pairwise and unary energy. He
then used fusion moves in [68] for higher order energies. The fusion move could
be very e�cient if we are able to propose a good solution at each step. He did
so using the gradient of the energy. Recently [69], he showed that there were
numerous methods to reduce a higher order energy, and that the method could
in�uence the solving by the algorithm. So he pointed out some conditions such
that a function is minimizable in polynomial time using graph cuts. Gallagher
et al. developed that idea in [46]. Their algorithm called Order Reduction
Inference, searches over a set of reduction methods to minimize the di�culty
of the optimization problem.

Recently, Kahl and Strandmark [77] generalized Roof Duality to polyno-
mials of any degree. Avoiding to reduce the function to a quadratic pseudo-
boolean one gives them tight bounds.

2.4.7 Fast Primal-Dual

The discrete problem can be written as a linear integer program, and then
be relaxed into a continuous problem. The continuous problem is generally
easier to solve because the technique are very well-known, but the solution
found has to be sent back in the discrete domain, and thus, may be far away
from the true discrete optimum. That is the case of Fast Primal-Dual or
Fast-PD. In [93], Komodakis et al. introduced the primal-dual schema to
Computer Vision and Markov Random Fields optimization. Primal or Dual
approaches take the problem and try to optimize a solution. Here, the idea is
to �nd and update a pair (x, y) of primal and dual solutions of the problem,
which gives us a framing of the value of the solution. This framing is called
the primal-dual gap. When the ratio y/x is smaller than a value f , we say
the solution is an f -approximation to the optimal solution. Practically, the
algorithm iterates until a pair of solution satis�es a pre-de�ned constraint f .
Every iteration consists in solving a max-�ow problem for a certain graph
which depends on the current primal-dual pair of solutions. As it uses the
graph cuts algorithm explained previously 2.4.3, Fast-PD requires submodular
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functions to give mathematical guarantees. And the speed of the algorithm
depends on the complexity of the max-�ow problem. Fast-PD uses the pair
of primal-dual solutions from the previous iteration to reduce the number of
augmenting paths required. Finally, if the pairwise of the original graph is a
metric, Fast-PD is certi�ed to be as precise as α-expansion and faster.

2.4.8 Graph Decomposition

According to Alahari [2], most MRF have a simple part and a di�cult part.
His idea is to solve and �x the easy part �rst, to have more time to detail the
di�cult part of the MRF. Dividing a complex graph into smaller and much
easier to solve ones has been tried. Wainwright et al. [155] tried to decompose
the graph in a convex combination of trees (Tree Reweighted). Optimizing
the problems independently on the trees give an upper limit of the optimum,
which is all the more tight as the trees have a compatible optimal structure.
Kolmogorov developed a new version of the previous algorithm called Sequen-
tial Tree Reweighted in [85] which has better convergence guaranties.

The main problem is the synthesis of the di�erent subgraphs, when they
do not agree on the label which should be assigned. In order to force them
into agreeing, Komodakis and Paragios [90] developed a cycle-repairing algo-
rithm, to �x any inconsistent cycles that may appear during optimization.
The repairing helps to tighten the relaxation and gives better results.

[91] presented a master-slave based framework. The graph (or hyper-
graph) and the energy function are divided in several parts which are solved
individually by the slaves. The master see the results and change the division
of the energy function until an agreement is found. This algorithm is called
Dual Decomposition, and will be detailed in 3.3.

Batra et al. presents a new way to decompose a graph [6]. In order to
minimize the coordination work necessary to harmonize the subgraphs (the
master work in the previous paragraph), they give more complex work to the
subproblems (the slaves). They construct their subgraphs in a wider set, called
Outer-Planar Graphs. Finding a spanning family of such graphs seems quite
easy in practice. The harmonization is realized by message passing between
subgraphs.

2.4.9 Extensions to hypergraphs

Hypergraphs are a very di�cult problem. Some of the previous algorithms
had been extended to work for hypergraphs, but generally the computation
time increases too.
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In [145], Torr et al. use unsupervised segmentation to create textons (or
image segments), using several Mean-Shift, thus limiting the number of points
of the image (a texton contains a lot of pixels). Higher order terms of the
energy try to have all the pixels of a texton with the same label, but with a
decreasing energy (two pixels labelled di�erently is worse than only one). It is
called the Robust Pn Model, compared to the Pn Model, where the cost is the
same as soon as one pixel is labelled di�erently than the rest of the texton.
HO terms are really restrictive, such that order can be easily reduced thanks
to a few variable. Second order energy is then optimized using move making
algorithms.

In [158], Werner proposed a max-sum di�usion algorithm as a generaliza-
tion of n-airy LP relaxation, and to tighten relaxations. He uses the marginal
polytope to de�ne a way to add hyperedges without changing the problem
while tighten, pace by pace, the relaxation.

Dual Decomposition and the related algorithms can handle hypergraphs
but the hyperedges must be solved at some points. So the slaves solvers must
deal with them, either with a speci�c algorithm like those we are reviewing,
or with exhaustive search if the slave is small enough.

The use of factor graph [75, 99] allows to run message-passing algorithms
on the factorized graph but the size of the graph and the number of iterations
to reach convergence increase drastically.

2.4.9.1 Spectral Methods

Zhou et al. [165] extend the spectral clustering method to hypergraphs. The
energy is inspired by the normalized cuts as :

argminδSvol(δS)(
1

vol S
+

1

vol Sc
)

where S is a set of the nodes, Sc is the complement of S, vol(δS) represent
the weight of the cut hyperedges, and vol(S) is the weight of the hyperedges
in S. This problem is then relaxed and written as a matrix multiplication of
the form fT∆f . ∆ is then called the hypergraph Laplacian, and a method
close to the 2D one is applied. Huang et al. [64] use that framework to realize
video object segmentation. They use over-segmentation to create the nodes
and motion cues to calculate the hyperedges. The results are encouraging.

In [31], Duchenne et al. proposed a tensor-based algorithm for graph
matching. They formulate their problem with an assignment matrix X and
a similarity tensor H, as searching maxH ⊗1 X ⊗2 X ⊗3 X. The solution is
found thanks to a higher-order power method developed in [120].
Zass and Shashua made a strong conditional independence assumption of the
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matching [162], so the similarity matrix S is a power of the probability assign-
ment matrix X : S = ⊗dX, with d the size of the hyperedges.

2.4.9.2 Order reduction

The order of the energy can be reduced by adding new variables. Ramalingam
et al. proved we could transform submodular multi-labels energy functions
into submodular boolean functions in polynomial time [119], but that it was
impossible for order higher than 4.

In [124], Rother et al. remarked that the potential function over a clique
is often sparse, which means many con�gurations are considered bad and so,
have the same value, and that the good con�gurations were often similar.
So they try to parameterize compactly the energy, to minimize the number
of variables. They transformed the minimizing sparse higher-order energy
function into an equivalent quadratic minimization problem.

Ishikawa introduced in [67] a method to a convert the minimization prob-
lem of any higher-order binary energy to that of a pairwise and unary energy.
He then used fusion moves in [68] for higher order energies. The fusion move
could be very e�cient if we are able to propose a good solution at each step.
He did so using the gradient of the energy. Recently [69], he showed that
there were numerous methods to reduce a higher order energy, and that the
method could in�uence the solving by the algorithm. So he pointed out some
conditions such that a function is minimizable in polynomial time using graph
cuts. Gallagher et al. developed that idea in [46]. Their algorithm called Or-
der Reduction Inference, searches over a set of reduction methods to minimize
the di�culty of the optimization problem.

Recently, Kahl and Strandmark [77] generalized Roof Duality to polyno-
mials of any degree. Avoiding to reduce the function to a quadratic pseudo-
boolean one gives them tight bounds.

2.4.9.3 Hypergraphs decomposition

As graphs were divided in subgraphs to calculate the energy, hypergraphs can
be decomposed too. In [145], Torr et al. use unsupervised segmentation to
create textons (or image segments), using several Mean-Shift, thus limiting
the number of points of the image (a texton contains a lot of pixels). Higher
order terms of the energy try to have all the pixels of a texton with the same
label, but with a decreasing energy (two pixels labelled di�erently is worse
than only one). It is called the Robust Pn Model, compared to the Pn Model,
where the cost is the same as soon as one pixel is labelled di�erently than
the rest of the texton. HO terms are really restrictive, such that order can be
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easily reduced thanks to a few variable. Second order energy is then optimized
using move making algorithms.

In [158], Werner proposed a max-sum di�usion algorithm as a generaliza-
tion of n-airy LP relaxation, and to tighten relaxations. He uses the marginal
polytope to de�ne a way to add hyperedges without changing the problem
while tighten, pace by pace, the relaxation.

Hypergraph partitioning in VLSI design

The creation of integrated circuits containing thousands of components is
called Very Large Scale Integration. The circuits is modelled by a hyper-
graph. We want to separate the circuits into di�erent parts, while minimising
the interactions between the parts, so engineers early used hypergraph parti-
tioning.

A well-known, iterative improvement algorithm to partition is called Fiduccia-
Mattheyses algorithm (see [18] for details and possible improvements). It is
initialized with a random cut. At each pass, every node can change its place
in the partition, and a gain is associated with every move. Each pass contains
a loop of steps. At each step, gains are updated, the best one is chosen and
the related move is done. The moved node is �xed in the rest of the pass. The
inner loop stops when all the nodes are �xed. The best con�guration seen
during the inner loop is chosen of a departure point for the next pass. The
algorithm stops when the energy has not been changed during a pass.

In [3], Kayaaslan et al. review some approaches to solve the partitioning
problem. The dual of a hypergraph is a hypergraph where nodes and edges
are reversed. The Clique-net graph transforms a hyperedge into a clique, but
cannot assign perfectly the initial cost. The Net-intersection graph (NIG)
represents a hypergraph H = (U,N) as a graph G = (V,E) such that the
nodes of G are the hyperedges of H and the edges of G links two nodes if the
corresponding hyperedges shared a hypernode in H. They use the last one and
realize a vertex separation. To partition the hypergraph in several parts, they
use Recursive Bipartitioning, which is commonly used in that domain.

A game theory perspective

In [111], Pellilo and Bulò question the fact that clustering is often thought of
as partitioning. They say clustering is more about grouping points which are
similar, so outliers may remain alone, and some points can belong to several
clusters. From this point, they construct a k-players game [16], where k is
the order of the interaction between the points. Each player chooses a point
and they received a reward proportional to the similarity of the k points,
and nothing if they have the same point. Thanks to game theory, he is able
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to evaluate the best strategies which regroup the points having the higher
similarities, i.e. a cluster.

2.5 Markov Random Fields for Image Registra-

tion

Image registration algorithms aims to �nd a transformation T that best aligns
two images I, J : Ω ⊂ Rd 7→ R. d is the dimension of the image, usually two
or three and Ω is the image domain. The image I will be deformed by the
transformation T to �t the image J . I is called the source or moving image, J
is called the target or �xed image. We call I ◦T the deformed image. The set
of transformations that is explored depends on the applications (deformable,
rigid, a�ne). We seek to �nd the best transformation T̂ considering an energy
or cost function E created to evaluate how well the target image J and the
deformed image I ◦ T �t.

T̂ = argminTE(T ). (2.23)

As we saw before, the Bayes' theorem says that minimizing the energy is
equivalent to maximizing the posterior distribution P (T |I, J). The energy
function contains two parts. The �rst part measures the �tting of the two
images, while the second part is a regularization term that depends on the
transformation set we are searching in. The second part may be always zero, is
the algorithm explores exhaustively a small set of transformations, or may be
essential to make the problem well-posed, like for deformable transformations.

2.5.1 Similarity Measures

In medical imaging, common similarity measures are pixel-based (or voxel-
based), which means we superimpose the two images and compare the values
of the intensity of the pixels or voxels. We describe here some of them. The
�rst two, SAD and SSD are monomodal measures, which means they are used
to compare images from the same modality. Multimodal measures are used
for images of di�erent modalities. Some are general and can adapt to di�erent
pairs of modalities, many of them are derived from the mutual information.
Some are speci�c to a couple of modalities, like LC2, and should be performing
better than mutual information on that speci�c couple.

In the following paragraphs, I and J are the two images we compare
and Ω is the image domain, which means the coordinates of the points for
which we have the values of both the images. In practice, the coordinates
of the voxels do not coincide, so the voxel values of at least one image are
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interpolated. The procedures to follow when we do not have the values of
both the images (normalization, extrapolation) depends on the problem and
will not be discussed here. Depending of the de�nition, the measure requires to
be maximised or minimised. In practice, we will always minimise our energy,
and just take the opposite if needed.

Sum of Absolute Di�erences

SAD is a basic similarity measure used for monomodal images. It compares
the intensities of the pixels and penalizes when they are di�erent.

SAD(I, J) =
∑

x∈Ω

|I(x)− J(x)|. (2.24)

It is a fast and simple way to compare two images but may be unreliable
because of changes of luminosity for example. It may be used with other
methods to improve the precision of the results.

Sum of Squared Di�erences

SSD is similar to SAD but uses an L2 norm.

SSD(I, J) =
∑

x∈Ω

(I(x)− J(x))2. (2.25)

Normalized Cross-Correlation

Cross-Correlation is a similarity measure between two signals. It is a basic
statistical approach that assumes a linear relation between the two signals.
It is similar to the convolution of two functions. In image registration, it is
de�ned as:

CC(I, J)(u, v) =

∑
(x,y)∈Ω(I(x, y)− J(x− u, y − v))

(
∑
I(x, y)2

∑
J(x− u, y − v)2)0.5

, (2.26)

where (x, y) are the coordinates of points in the image domain Ω, (u, v) are
the translation parameters. The maximum of the energy is obtained for the
best translation parameters. A fast way to compute it is developed in [97].

Mutual Information

Mutual Information was introduced in [153]. It measures the statistical de-
pendency between two variables. Let us remind that statistical dependency
and causality are two di�erent concepts. If X and Y are two discrete ran-
dom variables, P (X = x) and P (Y = y) the probabilities of events x and y,
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P (X = x, Y = y) the joint probability of events x and y, then their mutual
information is de�ned as:

MI(X, Y ) =
∑

x,y

P (X = x, Y = y) log
P (X = x, Y = y)

P (X = x)P (Y = y)
. (2.27)

Mutual information is positive and symmetric. It is equal to zero if and only
if the two variables are independent. It increases as the dependency increases.

To compare images, we consider the grey values of the two images as
random variables. Because of the huge quantity of values, we split the grey
values into a prede�ned number of bins (16, 32 or 64 usually). We wanted to
take into account changes in the luminosity, as it was a limitation of SAD and
SSD. Mutual information does not associate bins of the same value directly.
On the contrary, the measure evaluates if there is an assignment of the bins of
the two images. It means that if the second image is the same one as the �rst
image in which colors have been swapped (for example blue is yellow, green
is purple, and orange is white), then the mutual information will be equal to
zero.

Normalized Mutual Information

We can use the de�nition of entropy H(X) = −∑x P (X = x) logP (X = x)

to express the mutual information as:

MI(X, Y ) = H(X) +H(Y )−H(X, Y ), (2.28)

where H(X, Y ) is the joint entropy of X and Y . We see that MI(X,X) =

H(X) so in order to compare the mutual informations of di�erent variables,
we de�ne the Normalized Mutual Information as:

NMI(X, Y ) =
MI(X, Y )

2
√
H(X)H(Y )

. (2.29)

Then the value is between 0 and 1.

Linear Correlation of Linear Combination

Linear Correlation of Linear Combination (LC2) is a similarity measure that
was introduced in [156] for CT-ultrasound registration. It was latter shown
in [157] to perform also well for MRI-ultrasound registration. This couple of
modalities, CT and Ultrasound, or X-rays and Ultrasound similarly, is very
di�cult to registrate, because these two modalities show di�erent structures
and it is not handled very well by classical multimodal measures. Indeed,
Computed Tomographies show the structure of the body but Ultrasound show
also where the structure changes. It may be a change a texture in an organ,
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Figure 2.4: The LC2 metric tries to simulate a US image from the CT image.

or a change of organ, and there the intensity of the Ultrasound is high. So it
makes sense to compare the intensity in the Ultrasound with the gradient of
the CT to take that particularity into account. After explaining with more
details the physics behind the two modalities, the authors of [156] determine
the intensity of the ultrasound should be compared to a linear combination
of the intensity and of the gradient of the image, plus a constant term. It
is similar to simulating an ultrasound image from the CT image with the
simulated intensity de�ned as:

xi = αpi + βri + γ, ∀i (2.30)

where xi represent the simulated intensity of the point i, pi is the intensity
in the CT image, ri is the gradient in the CT image and α, β, andγ are three
unknown weighting parameters. An example of a such a simulation is shown
in Fig. 2.4, where each square has its own parameters.

The unknown parameters are dependent of the organ, so they are not
constant on the image. They are not even constant on an organ, because
the gradient should be important on the edges but not in the middle where
it mostly comes from noise during the image acquisition. Practically, the
parameters are computed for di�erent patches on the image. In their exper-
iments [157], they search for the best size of the patch. We recommend to
choose patches of about 15mm for linear registration. To compute the best
set of parameters for a patch, we want to minimize:

n∑

i=1

‖(xi − ui)‖2, (2.31)
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where ui is the intensity in the ultrasound and where the pixels of the patch
are indexed by 1 · · ·n. If we pose

M =



p1 r1 1
...

...
...

pn rn 1


 , (2.32)

then we want to minimize:
∥∥∥∥∥M



α

β

γ


−



u1
...
un



∥∥∥∥∥

2

(2.33)

Therefore the solution is:
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 .(2.34)

Finally, we can compute the LC2 measure with the formula:

1−
∑n

i (xi − ui)2

n× V ar(u)
, (2.35)

where V ar(u) is the variance of the intensities {ui, 1 ≤ i ≤ n}. This measure
is to be maximised.

2.5.2 Our MRF Framework

In this thesis, we explain di�erent MRF problems that we optimize to �nd
the best displacement at each iteration. We detail this procedure and how the
successive iterations are connected here.

2.5.2.1 The Data Term

At each iteration, a rectangular grid (in 2D or 3D) of control points is su-
perimposed on the moving image. In Fig. 2.5 the control points are the red
intersections. For each control point, we seek to determine the best displace-
ment vector (the label of the corresponding node(s)) among a set of labels L.
Let p be a control point and lp a potential label. To evaluate the data term,
we want to compute the similarity measure of two patches in the source and
the target images. The patch is de�ned as a rectangle whose dimensions are
the spacing of the grid. We use the patch centred at the control point in the
source image as in Fig. 2.6, we note it Bp. We want to know where it �ts in
the target image, so the second patch is centred at the control point p plus
the translation corresponding to the label lp, we note it Blp . Several patches
for di�erent labels can be seen in Fig. 2.6.
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Figure 2.5: A grid of control points is superimposed to the image. The points
are chosen at the red intersections.

2.5.2.2 Free Form Deformations

As we saw, the similarity measures are voxel-based, and their computation
time is an issue. Moreover, the data cost is not smooth so we do not want
to compute a gradient. Thus, we use a discrete approach. When the best
displacements of the control points is found, at the end of an iteration, the
movement of all the points of the moving image is approximated using splines.
This model is very common in medical imaging and is called Free Form De-
formations (FFD). It was introduced in Computer Graphics in [130] and
gained interest in Medical Imaging since its coupling with cubic-B Splines
in [29,95,127].

The main advantages of the FFD is its simplicity and smoothness, as it
can model, with few points, complex deformation �elds. The resulting trans-
formation of cubic-B Splines is generally smooth and preserves the topology.
To make sure it is always the case, we impose the maximum displacement
of every control point is no greater than 0.4 times the grid spacing. A proof
regarding the preservation of the topology may be found in [21,128].

2.5.2.3 Iterations in our MRF Framework

The discrete approach only allows a small number of displacement vectors for
each control points, so many iterations are performed during which a larger
search space of displacement is explored. In practice, large displacements
are available at the �rst iteration to have a large search space, then the dis-
placements are decreased, in size, during the other iterations until we reach
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(a) Source image (b) Target image

Figure 2.6: The comparison of the data term: (a) A patch, in blue, is centered
around the big control point in red. (b) Di�erent patches are shown for
di�erent displacements vectors, around the control point in red. They are to
be compared with the patch in the source image.

generally a sub-voxel precision. The deformation �elds are composed through
the di�erent iterations.

Moreover, the quality of the images is often decreased at the beginning to
the iterations to speed-up the computation, in a coarse-to-�ne manner. The
resolution increases and is the best possible for the �ner iterations.



Chapter 3

Linear Registration

3.1 Introduction

Linear transformations include rotations, skewings, scalings, and translations.
In this chapter, when we will say "linear registration", we will mean a�ne,
rigid or similarity registration. These transformations are global and do not
model local changes.

Linear registration is an important step in image processing pipelines. It is
used in computer vision, video surveillance, medical imaging, and for military
purposes. Di�culties come from the di�erence of the sensors which took the
images, from the camera viewpoints and from the changes through time. The
diversity of images makes it impossible to have a universal method that could
handle all registration problem. When an algorithm or a procedure is chosen,
it should take into account signal to noise ratio, the registration accuracy
needed, the type of deformations, and every speci�c parameter which depends
on the application and which is of importance. But there are two main families
of registration methods: feature-based or geometric methods and image-based
or iconic methods.

The importance of registration and the constant need for improvement
regarding accuracy and speed caused it to be an old but still active research
area. The �rst survey paper on registration [15,79] focused on image correla-
tion methods. Feature-based methods have been detailed in [168].

3.1.1 Feature-based Methods

A manual way to perform linear registration is to determine a set of control
points in the two images. If the number of constraints imposed by the set of
control points is bigger than the degree of freedom of the transformation we
seek, then we use smoothing methods like least square regression or iterative
algorithms like RANSAC [40]. This is also the main idea of feature-based or
geometric methods. First, distinctive points like salient contours are detected
in both images. These points are called features and can be signi�cant regions,
lines, or points. Second a correspondence between the two features sets of
the two images is performed. The particularities of the images we mentioned
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before is to be taken into account while choosing the feature descriptor and the
similarity measure to create the assignment. Spatial relationship must also be
part of the descriptors as there must be a coherence in the assignment. Third
the best transformation is estimated based on this correspondence. Finally
the transformation and the resampling is applied to the source image to �t
the target image.

The choice of the feature descriptors is a key element of the algorithm.
They should be robust regarding the quality or the degradation of the image
and they have to be able to discriminate enough the control point to perform
a suitable assignment. They have to be invariant to the di�erent acquisition
conditions (viewpoints, illuminations, cameras) so the assignment between the
two images is possible. Moreover the control points should be spread all over
the image to estimate accurately the transformation. The feature can either
be based on a point, a line or a region.

The point features group uses very speci�c geographic points like road
crossings [57] or centroids of water regions, line intersections [142], local ex-
trema of wavelet transforms [42] (for satellite images), and corners [62]. [123]
o�ers a review on corner detectors. One of the most famous is Harris corner
detector [59]. The idea is to put a small window around an area. If and
only if the point is close to a corner, then when we move in any direction, we
should have a large change in intensity. In practice, we compute the Sum of
Squared Di�erences between the small window (which is a copy of the area)
and patches around the initial area. Harris detector is invariant to rotation,
intensity shifts and scales but not to spatial scale. This issue has been ad-
dressed in [103] which searches for the best scale to compare the corners.
Other ways to detect corners and which do not use gradient exist like the
robust SUSAN method [137] which computes the area of the same color as
that of the central pixel.

The line features group relies again on structures like roads [98] or anatom-
ical structures [154], or mathematical lines like contours. Well-known methods
like Canny detector [20] are e�cient to detect line features. More detectors
are described in [167].

The region features group includes structures which have been detected by
segmentation algorithms [56]. It also includes the most used feature descrip-
tors. Scale-invariant feature transform (SIFT) [100] uses descriptors contain-
ing local information from the image which describes the image as indepen-
dently as possible regarding scale, viewpoint and luminosity. It is a robust
method used in object detection, video tracking, 3D modelling, images stitch-
ing and so on and so forth. Speeded Up Robust Features (SURF) [7] is an
extension of SIFT which uses Haar wavelets and which is faster to compute.
Histogram of oriented gradients (HOG) [26] supposes the local form of an
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object can be described by the distribution of the intensity of the gradient or
by the direction of the contours. They are computed over a dense grid of cells
all over the image, which is one major di�erence with SIFT. It is particularly
e�cient to detect people.

The correspondence of control points is done using the euclidean norm
in the feature space. Di�erent optimization methods are employed to search
among the set of control points, like k-d trees or Best-bin-�rst [8] search
method. Once the feature correspondence has been performed, we have to
retrieve the transformation from the pairs of corresponding control points.
For linear registration, the problem is well-posed and a least square �t gives
the best solution.

The transformation that maps one point set to another given descriptors-
driven correspondences is then estimated using either iterative methods [10],
robust estimators [19, 141] or multiple hypothesis estimation/validation ones
like Ransac [41] and its numerous variants [146]. These methods produce
state of the art results in computer vision due to the fact that real-scenes
often consist of numerous well identi�ed and discriminative interest points.
On the other hand these methods fail miserably in biomedical imaging simply
because the identi�cation of reliable interest points is not that evident while
at the same time associating discriminative descriptors is problematic. The
aforementioned concerns are ampli�ed when considering multimodal imaging.

3.1.2 Image-based Methods

Feature-based methods require enough distinctive objects to work. That is
often the case for natural images. For other images which do not contain
so many details, like for medical images, image-based methods are necessary.
These methods aims at comparing directly areas of the images. One of the
limitation is the rectangular window which is most often used for the area. For
linear registration which is often associated to a large displacement, it may be
di�cult to �t the window. Historically, these methods used cross-correlation
(CC) [5, 118], Fourier methods to get rid of noise, or mutual information for
multimodal images.

When a similarity measure has been de�ned globally on the whole image,
it "only" remains to �nd the global maximum (or minimum for dissimilarity
measure). For linear registration, the maximum number of parameters is
12. Even if it is small, an exhaustive search on a large range of values is
computationally too costly. In special cases where the number of degrees of
freedom can be drastically reduced, if it is translation only, or if we have
speci�c information regarding the movement [65], exhaustive search is a good
solution because it gives the global minimum. Gradient descent methods like
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Gauss-Newton or Levenberg-Marquardt [129] are often used for more complex
functions. In the paper introducing MI [153], the authors used the classical
gradient descent optimization method for mutual information. Marginal Space
Learning (MSL) was introduced to detect 3D anatomical structures [163]. The
idea is to divide the search space and search for a subset of the transformation
parameters one at a time. A comparison of this approach with a full exhaustive
search has been made in [164].

Local methods establish a subset of image correspondences (often using
local/block matching according to a given metric for a subset of the image do-
main) and then �t optimally the best linear model using inference techniques
earlier presented for the case of geometric methods [110]. Global methods [72]
use conventional similarity metrics like SAD, NCC, SSD, MI and seek the pa-
rameter set that corresponds to their lowest potential that is often determined
through a gradient-driven optimization method. Their main strength is com-
putational e�ciency, while their main limitations refer to lack of robustness
(sensitive to the initial conditions), lack of modularity (optimization depends
on the linear model) and the fact that they can handle only di�erentiable
objective functions. Simplex methods [131], cutting planes methods [84] or
more recently discrete optimization ones [166] overcome to some extend the
above mentioned limitations while su�ering from computational complexity
and precision.

Casting computer vision problems as labeling ones through the use of
Markov Random Field (MRF) theory has gained great attention since [47]
advocated the use of such frameworks for image restoration. The main ad-
vantages of this family of optimization methods stem from its e�ciency and
optimality guarantees. On the other hand, their main disadvantage is their in-
ability to handle e�ciently complex interactions between the latent variables.

Despite the fact that discrete optimization spans a great range of applica-
tions, it is rarely used to tackle global linear registration; to the best of our
knowledge, only [166] has attempted to estimate global transformations with
the use of MRFs. This was due to the fact that sampling e�ciently the pa-
rameter space of linear transformations is not that trivial, while at the same
time the connectivity of the graph becomes problematic. Indeed, in theory
all image pixels should be connected with the graph representing the linear
latent variables.

The registration problem is formulated with the use of the MRF theory.
It casts a discrete label assignment problem where the labels correspond to a
quantized set of possible displacements. In contrast to [166], the search space
is smaller and tractable. Higher-order interactions between the variables are
used to allow the encoding of the properties of global linear transformations.
Di�erent higher-order constraints are proposed for varying degrees of freedom
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of linear transformation models. Our main contribution lies in showing how
local second- and third-order constraints can be used to ensure global transfor-
mation properties. A dual-decomposition scheme is used to infer the optimal
displacements.

3.2 Graphical Model

Given a source image and a target image, we seek to estimate the linear trans-
formation that best aligns the source image to the target. The transformation
is parametrized through the use of a deformation grid superimposed onto the
source image. The deformation of the source image is governed by the move-
ment of the control points. The goal is to �nd the displacements of the control
points so that the global transformation of the whole image is a linear trans-
formation. To �nd the displacement of a control point, we compare a patch
of the target image centered at this control points with patches of the source
image around the corresponding control point.

We use higher order MRFs to formulate our problem in a discrete context.
The problem is represented by a hypergraph G = (V,C), where V denotes
the set of nodes that encode the latent variables (grid node displacement)
and C the set of cliques (or hyperedges) that encode higher-order interactions
between the variables. There are no edges in this hypergraph, so E is empty.
V forms a grid of control points superimposed to the source image we want
to register. Let L = {l1, . . . ln} be the set of labels, where each element
corresponds to a potential displacement vector. The algorithm associates a
label lp to each control point p, so that the �nal result best aligns the two
images. The energy of the MRF can be written as:

EMRF =
∑

p∈V
Up(lp) +

∑

c∈C
Hc(lc), (3.1)

where lp is the label corresponding to the node p, Up(lp) denotes the unary
potentials, lc = {lp, p ∈ c}, is the set of labels assigned to the nodes in the
clique or hyperedge c and Hc(lc) denotes the higher order potentials.

3.2.1 Unary potentials

Let p be a control point and lp be the label associated to the control point
p. Let Bp be the patch corresponding to the center point p in the source
image, and Blp the patch corresponding to the image point p translated by
the displacement vector lp, in the target image. The unary potential quanti�es
how well the patch Bp matches the patch Blp :

Up(lp) = ρ(Bp, Blp), (3.2)
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where ρ, is an arbitrary intensity-based similarity measure. Being discrete, the
proposed model is gradient-free and can encompass a wide choice of similarity
measures, from SAD to statistical measures for multimodal registration like
MI [153].

3.2.2 Higher order potentials

In order to constrain the global linear property of the transformation through
local constraints, we exploit the property of linear transformations to preserve
the barycentre. Let us denote by (p, q, r) three aligned control points in a
clique c and (lp, lq, lr) their respective labels. We denote (P) the following
condition:

~lp + ~lr − 2 ∗ ~lq = ~0. (3.3)

In order to guarantee that the transformation is linear, the violation of the
condition (P) must be penalized. Thus, the higher potential is de�ned as:

Hc(lc) = Φ(~lp + ~lr − 2 ∗ ~lq), (3.4)

where Φ() is a cost function de�ned as:

Φ(x) =

{
0 if x = 0

∞ otherwise.
(3.5)

The λ-clique potential encodes di�erent kind of constraints depending on
the number of degrees of freedom of the global linear transformation we seek
to recover. Let us denote the 4 points of the λ-clique as s, t, u, and v (as
shown in Fig. 3.1) and s′ = s+ ls, t′, u′, and v′ their respective images. In all
three cases (a�ne, rigid, and similarity), the condition (P) should hold true
for the three points of the diagonal, s, t, and u. Additionally, we have:

For similarity registration: The images of the points s, u, and v should
form an isosceles right triangle, with the image of v being the vertex of the
right angle,

Hc(lc) = Φ((~s′ − ~v′).(~u′ − ~v′))

+Φ(‖(~s′ − ~v′)‖ − ‖(~u′ − ~v′)‖). (3.6)

The �rst part of the equation checks the orthogonality and the second part
checks the two sides have the same norm.

For rigid registration: The isosceles triangle formed by the points s, u,
and v should have the same size as the one formed by the respective images
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of the points. This leads to the de�nition of the following condition:

Hc(lc) = Φ((~s′ − ~v′).(~u′ − ~v′))

+Φ(‖(~s′ − ~v′)‖ − ‖(~u′ − ~v′)‖)
+Φ(‖(~s′ − ~v′)‖ − ‖(~s− ~v)‖). (3.7)

The additional third term penalizes di�erences in size between the triangle
before and after the transformation.

(a) (b)

Figure 3.1: The di�erent cliques in 3D: (a) A λ-clique contains 4 control points
forming a λ-shape. There is one λ-clique on each face of the cube. (b) The 9
cliques containing the central control point in blue.

3.2.3 Graph construction

Let us now detail the construction of the graph G. The set of cliques C
contains all the triplets consisting of collinear and neighbours points along
each dimension of the grid. C also contains λ-cliques which are quadruplets,
containing 3 points along a diagonal of the grid and the corner point, such that
the 4 points form a T (see Fig. 3.1). The presence of λ-cliques is necessary for
the global properties of the linear transformation to hold. The proof is given
in 3.2.4.

In 2D, each point belongs to three horizontal cliques and three vertical
cliques. The graph contains one λ-clique positioned in one corner.

In 3D, each point belongs to three cliques along each axis (see Fig. 3.1).
The grid forms a cube and each face contains one λ-clique, therefore C contains
6 λ-cliques. Each λ-clique is similar to the one de�ned in the 2D case.

3.2.4 Mathematical Proof

Here, we prove for the 2D case, that if every clique satisfy the condition (P)
(including the corresponding points in the λ-clique), then the transformation
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Figure 3.2: The grid in 2D.

is exactly an a�ne transformation. In the 2D a�ne case, the constraints we
impose are: the condition (P) on every horizontal and vertical clique, and on
the diagonal in the λ-clique.

Lemma 3.2.1. If the images of two control points along a dimension of the

grid (horizontally or vertically) are de�ned, then the images of all the points

on the line they form are de�ned.

Proof. The condition (P) guarantees that the points in a clique are aligned,
and that the middle point is preserved. That means we have one equation for
each clique. If the line contains n points, we have (n − 2) cliques. When 2

points are �xed, there remains as many equations as free points. The equations
are clearly independent (the corresponding matrix is triangular with non-zero
value on the diagonal), so the system contains exactly one solution: all the
images are de�ned.

Theorem 3.2.2. If the images of three non-aligned points of the grid are

de�ned, then there is one and only one image grid satisfying the condition (P)

on all the cliques.

Proof. Let us suppose those three non-aligned points are the points ((0,0),
(0,1), (1,0)) (see �g. 3.2). Let us remind that the a�ne transformation satis�es
the condition (P) on all the cliques, so there is at least one solution. We prove
it is the only one by constructing it.
According to the lemma, the images of the points on the x-axis (similarly
on the y-axis) are de�ned by the image points of (0,0) and (0,1) (similarly
(0,0) and (1,0)). Let us now consider the three points in the λ-clique ((2,0),
(1,1), (0,2)). Since the images of the points (2,0) and (0,2) are known the
middle point is de�ned. This middle point (1,1) along with the point (0,1)
((1,0) similarly) de�ne the images of all the points on the lines (y=1) ((x=1)
similarly) thanks to the lemma.
We now have two image points for all the remaining horizontal and vertical
lines, so we know the whole image grid.
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Figure 3.3: A λ-clique contains 4 control points forming a T-shape. There is
one λ-clique on each face of the cube.

By de�nition our constraints are less strong than the ones of an a�ne
transformation. The theorem demonstrates that our grid construction has
as many degrees of freedom as an a�ne transformation, i.e. 3 points can be
independently chosen in 2D, so our constraints de�ne an a�ne transformation
of the grid.

3.2.4.1 Extension to 3D

In 3D, the same idea holds, but we have an additional degree of freedom.
To be precise, only four λ-cliques are enough if they are well chosen, even if
we mentioned six λ-cliques in the method. The four λ-cliques are positioned
on four di�erent faces of the cube such that three of the λ-cliques share a
common point (the point called v in the λ-cliques as shown in �g. 3.3), the
origin (0,0,0) of the grid for example. If we have the image of the four points
((0,0,0), (0,0,1), (0,1,0), and (1,0,0), it de�nes a unique a�ne transformation
in 3D. We construct the unique grid with the images of those points. As in
2D, the three faces sharing the origin are automatically de�ned. The fourth
face, share at least two orthogonal edges with the three �rst faces. Again, we
have all the conditions of the 2D case, so the fourth face is de�ned. Now, two
opposed faces of the cube are de�ned, so each line orthogonal to those faces
contains two imposed points. The lemma applies to all those lines and so the
3D grid is formed.

3.2.4.2 Extension to similarity and rigid case

Similarity is a subset of a�ne transformations. We have to eliminate shears
and make sure the scaling factor is the same along the di�erent axes. Those
are the two condition de�ned by the λ-clique in the similarity case, by the
right isosceles triangle. Rigid transformations is a subset of similarity without
homothetic transforms, which corresponds to the last additional constraint.
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Figure 3.4: A potential grid transformation with only the alignment constraint
on all the hyperedges de�ned.

Figure 3.5: A potential grid transformation with only the alignment constraint
on many triplets.

3.2.4.3 Some counterexamples

For a better understanding of the need of all the previous elements, we exhibit
here some counterexamples of grid deformations when we remove one of those
elements. If we remove the distance constraint on all the triplets, the problem
gains many degrees of freedom and a 2D grid may be deformed like this 3.4.
Increasing the number of hyperedges will not solve this problem as projective
transformations follow this constraint too 3.5. Without the λ-clique, other
cases may appear like 3.6, which is not a projective transformation.

3.2.5 Extension to the projective case

There are two di�erent ways to extend our framework to projective transfor-
mations. Let us remind two properties of homographies or projective trans-
formations. First the image of a line, a plane, or a space is a line, a plane or
a space respectively. Second the cross-ratio or anharmonic ratio is preserved.
The cross-ratio of 4 distinct and aligned points A, B, C, and D is de�ned as:

r =
AC ×BD
BC × AD. (3.8)

If we only want to use the preservation of lines, then we must use a huge
number of cliques. Indeed, as we saw previously 3.6, the current number of
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Figure 3.6: A potential grid transformation without the λ-clique constraint.

hyperedges was not su�cient to prevent other transformations. So we would
need many cliques that will make the optimization a lot more di�cult.

If we use the cross-ratio, we can design a very similar graph to the one
before. The hyperedges now contain 4 aligned points and we need a diagonal
hyperedge, similar to the λ-clique. By the same constructive proof, we can
show we can only accept projective transformations. But the problem, in our
framework, comes from the label set. Indeed, a discrete label set does not
allow projective transforms which are not a�ne, as long as we keep a hard
constraint on the hyperedge potential.

With a continuous label set, this new graph is able to handle projective
transforms. Using a continuous label set would require di�erent solvers but is
possible.

3.3 Optimization algorithm

To solve the MRF, we use the Dual Decomposition [92]. The main idea consists
in decomposing a global di�cult problem into smaller solvable subproblems
(referred to as slaves) and then extracting a solution by cleverly combining the
solutions from these subproblems. In this case, the di�culty of the inference
of the optimization displacements lies in the presence of the higher order
cliques. Here, the graph is decomposed into trees that constitute the set of
subproblems. The only requirement for the choice of the subproblems is that
they cover (at least once) every node and hyperedge of the hypergraph G.

3.3.1 Dual Decomposition algorithm

Decomposition is an old [28] and general approach [11] to solve a problem
by splitting it into smaller subproblems and solving them separately either
consecutively or simultaneously. The original motivation was to solve very
large problems which were too complex for other techniques. For example
decomposition methods can also handle problems which could not be solv-
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able for memory reasons, it can speed up via parallel computation or solve
problems in a distributed way. Separable problem is the most trivial case of
decomposition method because there is no need to recombine the solutions
of the subproblems. The expectation-maximisation algorithm is a decompo-
sition of the parameters and the log-likelihood. Schur complement method
is also a decomposition method in the sense that the method can solve the
initial equation by only computing inverses of smaller matrices.

We will consider the following problem with the coupling variable y:

min
xi,y

∑

i

fi(xi, y). (3.9)

It is equivalent to the master problem:

min
y

∑

i

φi(y), (3.10)

where the two subproblems are φi(y) = minxifi(xi, y). This is a primal decom-
position of the problem and can be solved by subgradient methods, cutting-
plane, or Newton method if φi is di�erentiable for all i.

Dual decomposition is similar to primal decomposition but requires to
introduce a Lagrangian. Let us now consider the problem:

min
x

∑

i

fi(x). (3.11)

We then introduce auxiliary variables xi to decouple the problem into this
equivalent version:

min
x,xi

∑

i

fi(xi). (3.12)

such that xi = x (3.13)

Now we form the dual problem. The Lagrangian is:

g(λi) = min
xi,x

∑

i

fi(xi) +
∑

i

λi(xi − x), (3.14)

where {λi} is the set of lagrangian multipliers. As we search the maximum of
this function over the set of lagrangian multipliers, we deduce we must have∑

i λi = 0. Therefore we can rewrite the dual as:

g(λi) = min
xi

∑

i

fi(xi) + λi(xi). (3.15)
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Finally we call the following decoupled equation of the dual problem the mas-
ter:

max∑
i λi=0

g(λi) =
∑

i

gi(λi), (3.16)

and those are the subproblems, or slave subproblems:

gi(λi) = min
xi

fi(xi) + λi × xi. (3.17)

The master problem is convex (in the variable λi) and is solved using a pro-
jected subgradient method. The optimization procedure iterates between solv-
ing the slaves and sending the solutions to the master, which updates the slaves
parameters according to λi = Proj(λi + αt∇gi(λi)), where t is the iteration,
αt a prede�ned positive step parameter, ∇ is a projected subgradient, and
Proj() indicates a projection over the feasible set

∑
i λi = 0.

3.3.2 Choice of the Slave Decomposition

The strategy employed to combine the solutions of the di�erent subproblems
is of great importance. It should be able to handle con�icting suggestions
from the slaves for the same node. As we showed before, a master problem
acts as a coordinator between the slave subproblems. It gathers the solutions
of all subproblems and adds penalties based on the levels of agreement for
every node. For example, when two slaves A and B disagree about a node N ,
i.e. they proposed respectively the labels la and lb for this node N , a penalty
is added to the choice they made, and the choice the other slave made is
awarded in the cost function: the cost function of the slave A is increased by
a coe�cient α if it chooses the label la for the node N again, and decreased
by the same amount if it chooses label lb, so that the slave A will explore new
solutions and, most probably, include the label lb the other slave B suggested.

In our case, a slave problem is de�ned for each line parallel to a coordinate
axis, and a slave for each T-clique. An example of the di�erent slaves in 2D is
illustrated in �g. 3.7. Every clique and each node is then part of a slave so we
recover the hypergraph. One slave is a tree, the others are chains, so it is very
easy and fast to solve. One additional advantage of this optimization method
is the independence of the slave problems, which allows a parallelization of
the computation.
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Figure 3.7: The decomposition of the original problem in slave subproblems
in 2D: one for each line, one for each T-clique.

3.4 Experimental Validation

3.4.1 Implementation Details

We use a multiresolution registration in a coarse-to-�ne manner. The dif-
ferent iterations are used to re�ne the label space. The deformation grid,
which is the result of the algorithm, is reset after each iteration and the re-
sulting displacement �elds are incrementally composed on the image. We use
a strict constraint on the higher order terms, so, at each iteration, the result-
ing displacement is exactly among our space search (a�ne, similarity or rigid
registration in our di�erent experiments). This ensures, by composition, that
the �nal displacement is exactly a�ne, rigid or a similarity.

The grid size contains 3n points, where n is the dimension of the space, and
might be increased, up to 5n in our experiments. We started with few control
points because we expected large deformations. The label set is composed
of 5n displacement vectors. These displacement vectors are regularly spaced
on a grid centered at the 0-displacement vector. The maximal length of the
displacement vectors is 0.4 multiplied by the distance between two control
points along each axis. This length is iteratively reduced, such that �rst
iterations account for large displacements while latter iterations account for
small displacements. We used up to 8 iterations in our experiments.

Our algorithm is implemented in C++. The results were obtained using a
64 bits machine with a Intel Xeon W3670 processor and 16 Go of RAM.
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Figure 3.8: On the left, the dense label set in 2D contains all the discretized
labels on a square. On the right, the sparse label set in 2D contains a subset
of the dense label set: only vectors on main axes and main diagonals.

3.4.1.1 Choice of the Label Set

The choice of the label set is important. It must allow a large number of
transformations in the space we require. There are two usual label sets used
in deformable registration, one is called dense, the other is called sparse. They
are both de�ned as the discretization of a small area. The dense set contains
all the discrete vectors contained in a square in 2D or in a cube in 3D. The
sparse set contains a subset of the precedent one, with only the vectors on the
main axes and on the main diagonals. Both sets are shown in Fig. 3.4.1.1.

We want to allow as many transformations as possible. For translations,
there is no constraint as all the control points would require the same dis-
placement vector. For skews, we only need displacement vectors along a line
so we have enough labels in both label sets. But for scales and rotations the
sparse labels do not contain enough displacement vectors. To be precise, there
is no scale or rotation allowed by the sparse set (except the identity). So we
used, and recommend to use the dense label set if we want to seek an a�ne
transformation or a similarity.

For rigid registration, we have another additional constraint which may be
a problem if the images have di�erent dimensions along the di�erent axes. Let
us remind the control grid is superimposed on the moving image. If the moving
image is, for example, 10x20 centimetres, then the movement of the points
along the second dimension are larger (there is a higher range) than those on
the �rst dimension because the second dimension is bigger. If the dense label
set contains enough displacement vectors, then some solutions exist. But there
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is an easy way to increase the number of possibilities with a smaller label set:
we keep the dense framework but the size of the rectangle in which we de�ne
the displacement vectors depends on the size of the image (see an example on
Fig. 3.9). For our 20x10cm image, we take the vectors on a (b)x(2b) rectangle,
where b depends on the iteration of the registration as usual, an example is
shown in Fig. 3.10. We have now an adapted label set for rigid registration.
We will use this one in our experiments on rigid registration. Of course it
can be used for a�ne registration, but is not necessary. It did not show
improvements on the dense label set for the a�ne registration experiments,
so we used the usual dense label set.

Figure 3.9: The rigid label set we used for rigid registration is very similar to
the dense label set but the proportions of the square are similar to those of
the image to allow more transformations.

Figure 3.10: To rescale this rectangular image, the horizontal displacement
vectors are longer than the vertical displacement vectors.
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Figure 3.11: The di�erent transformations are, from left to right: a 20 degrees
rotation, a scale along the y-axis only, a shear, a combination of a 10 degrees
rotation with a 120% scale and a combination of a shear with a 80% scale.
First row shows the deformed image, second row the comparison with the
target image, and last row the comparison between the result and the target
images.

3.4.2 2D Study

We tested our method on a huge set of simulated data. We perform a�ne
transformations of a head image. We then register this deformed image to
the original image. The transformation parameters are uniformly drawn from
certain ranges. Rotations lies between 0 and 20�; scales are chosen among
80, 90, 100, 110 and 120% ; translations reach 30mm and the shearing angle
reach ± 15�. These transformation parameters will be denoted P1. We will
also denote P2 the subset of parameters without shears, and P3 the subset of
P2 without scales. P1 is a set of 5625 a�ne transformations, P2 a set of 1125
similarities, and P3 a set of 225 rigid transformations. We used the Sum of
Absolute Di�erence (SAD) similarity measure. The average runtime is about
10 seconds. On many images, a part was missing due to the transformation,
mostly to the scale factor. Results are shown in table 3.1 and some examples
are shown in Fig. 3.11.
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Parameters set SAD A�ne Similarity Rigid
P1 44.58 13.04 - -
P2 43.39 8.23 9.97 -
P3 37.23 6.57 8.57 8.77

Table 3.1: Results of the 2D study on a large sample of transformations of a
head image. Second column shows the global SAD between the two images
before registration, the others columns show the SAD after registration for
the di�erent frameworks we tested (a�ne, similarity and rigid cases).

Figure 3.12: Two examples of registration, the source and the target are
superimposed

3.4.3 IBSR dataset

We test our method on 3D images using manual segmentations. Seven MRI
images of the brain are registered, and for all of them, manual expert seg-
mentation are available. The data is part of the Internet Brain Segmentation
Repository (IBSR), provided by the Center for Morphometric Analysis at Mas-
sachusetts General Hospital (available at http://www.cma.mgh.harvard.edu/ibsr).
The T1-weighted images have been positionally normalized into the Talairach
orientation (rotation only). We selected one data set as the template and reg-
ister it to the remaining six data sets. Two examples of the registration are
given in 3.4.3. The transformation found by our method is then used to warp
the corresponding segmentation, which is �nally compared to the segmenta-
tion of the template, using DICE score, the sensitivity and the speci�city,
given in Fig. 4.

3.4.4 Comparison with MedInria

First, we used an annotated 3D MR-T1 (Magnetic Resonance images pro-
duced by spin-lattice relaxation) calf muscle dataset in order to compare the
proposed method against the publicly available image analysis MedInria soft-
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Image DICE Sensitivity Speci�city
Brain 1 93,4477 92,0727 99,5325
Brain 2 88,8486 85,8105 99,3105
Brain 3 90,9922 79,5661 97,0576
Brain 4 85,9011 88,8448 98,3108
Brain 5 89,4162 86,6715 99,3257
Brain 6 80,4629 80,3937 98,1771
Average 88,1781 85,5599 98,6190

Table 3.2: Results of the brain registration evaluated on manual segmenta-
tions. Given is the DICE score, the sensitivity and the speci�city.

Figure 3.13: Comparison of a registration, �rst ligne is our algorithm, second
line is MedInria algorithm. Di�erent slices of the same image are shown on
di�erent columns. Our registration is more accurate.
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Image DICE Sensitivity Speci�city
Before registration 70 71 95
Our registration 81 84 96

MedInria registration 71 73 95

Table 3.3: Results of the a�ne registration evaluated on manual segmenta-
tions of calf muscles MRI. Given is the DICE score, the sensitivity and the
speci�city.

ware. We register interpatient images. We report the DICE, the sensitivity
and the speci�city of the segmentations, before and after registration. We
used the algorithm named Baloo [109], for a�ne registration, with the SSD
similarity measure, with 5 iterations, 1 "coarsest pyramid level" and 1 "�nest
level".

The results are shown in table 3.3 and Fig. 3.14 compares the repartition of
the DICE for the two methods. One visual comparison is showed in Fig. 3.4.4.
Those results show that our algorithm performs better than MedInria regis-
tration in this dataset. The execution time was about 3 seconds for MedInria,
and about 8 seconds for our algorithm.

Figure 3.14: Comparison of the DICE between our method and MedInria
software. The proposed algorithm is more accurate than MedInria.

3.4.5 RIRE database

We test our method performing a series of 3D multimodal registrations of
brain images (CT (Computed Tomography), MR-PD (Proton Density), MR-
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Figure 3.15: Qualitative evaluation of registration. Source and target images
are shown using di�erent color bands. Axial views before (top) and after
(bottom) registration are shown. The images have been successfully aligned.

T1, and MR-T2 (spin-spin relaxation)) provided by The Retrospective Image

Registration Evaluation Project (RIRE)1. The CT images have a resolution of
512× 512× 29 and a physical voxel size of 0.65× 0.65× 4 mm, while the MR
images have a resolution of 256 × 256 × 26 and a voxel size of about 1.25 ×
1.25×4 mm. We performed CT to MR registrations for 7 patients (Patient001
to Patient007, with a total of 21 registrations). We employed a histogram-
based estimation of Normalized Mutual Information (NMI) using 32 bins as
the similarity measure. We show in Fig. 3.4.5 a slice of the 3D volumes before
and after registration. We also show in table 3.5 di�erent results obtained
with our algorithm for di�erent multimodal similarity measures.

We compare our results with FLIRT (results provided by [104]), Elastix
[82], Simplex [131], and another MRF method [166] in table 3.4. This last
paper reports the results and implementation details for Simplex, Elastix and
Zikic's method. The accuracy of the registration is evaluated by computing
the Fiducial Registration Error (FRE) for 10 �ducial points. All results are
available on the RIRE website. The running time for the proposed approach,
when using NMI, was approximately 2 minutes. The other methods run on
our machine in approximately 5 minutes. Let us note that we report here
the previously published results for the other methods, and not the results
that we obtained when running them. This is because we were not able to

1Available at: http://www.insight-journal.org/rire/
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Mean error
Modality Simplex Elastix Zikic FLIRT Ours

PD 3.889 4.174 3.901 2.267 2.180
T1 1.124 1.186 1.157 1.656 4.255
T2 1.931 1.903 1.724 2.227 1.923

Table 3.4: Results of the 3D multimodal CT-MR registrations on patient data
of the RIRE database. We report the mean FRE (in mm) after registration
using the Simplex, Elastix, Zikic MRF, FLIRT, and our method.

Mean error
Modality NMI(32 bins) NMI(16 bins) MI(32 bins)

PD 2.180 2.258 2.260
T1 4.255 4.030 2.247
T2 1.806 4.419 2.250

Table 3.5: Results obtained with the proposed method for di�erent metrics,
and di�erent number of histograms bins used for the metric estimation. The
adopted similarity measure, NMI with 32 bins, is indeed the most suitable
measure to our problem.

accurately reproduce them.
In their article, Zikic et al. [166] left out one image (P03 with MR-PD)

because none of the methods could register it. We include it back for com-
parison. Our method is competitive with state of the art methods in terms of
quality of results and speed. Our score is poor when registering the MR-T1
images because we signi�cantly fail to align one image, which considerably
increases the mean error.

3.4.6 Clinical Application

The registration of 3D ultrasound with MRI is a challenging task because
of the di�erences of those two modalities. But it is also a standard medical
procedure to have a pre-operative MRI, which gives a precise image of the
body, and intra-operative US, because this is the only kind of imagery that
can be done during a surgery. The better the registration is, the more accurate
the surgeon will be able to operate the patient.

To perform a fast and accurate registration during the intervention, sur-
geons usually use magnetic sensors, but their use require time, space and
precision. To remove these limitations, we propose here a fully automatic
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framework to perform the registration.

For this speci�c couple of modalities, classic similarity measures like Sum
of Squared Di�erences, Normalized Mutual Information or Correlation Ratio
are not adapted. Some measures have been designed for speci�c organs, then
they lack modularity. A promising and generic measure was developed in [122].
This measure compares US to both the MRI intensity and its gradient. In [156]
a measure called Linear Correlation of Linear Combination (LC2 or LC2) is
designed using a �ne understanding of the US and CT measures. We explained
this method in 2.5.1.

We applied our method to a medical pipeline. First a global position-
ing of the ultrasound on the MRI space is performed. In the general case,
an exhaustive search can be performed, but most of the time some a priori
knowledge can, and should be used to accelerate the search. For example, in
a database of liver ultrasounds, the positions of the patients are very similar.
So the global positioning can focus on a subarea of the whole space. Secondly,
a rigid registration using our framework developed in [34] is used. Before the
whole procedure, a mask is generated on the �y on the ultrasound image to
take only into account the voxels which have information and to remove the
useless black background of the image. Those experiments were done on a
Intel Core i7-4790 CPU with 32 Go of RAM. To evaluate our results, we man-
ually created �ducial points on the two images and we compute the Target
Registration Error (TRE). All distances are in mm.

3.4.6.1 MRI and CT dataset

We �rst tested our algorithm on a database of 6 pairs of images, MRI and CT
of the same patient. We used the Normalized Mutual Information measure
because it is more adapted to this couple of modalities, so we could test the
algorithm independently of the LC2 measure. The images had approximately
the same orientation but the dimensions were greatly di�erent, so that the
translations required to register the images reached 200mm in one dimension.
So we design the global positioning to test a wide range of translations but
no rotations. Our search area for each axis was [-200,+200] with a spacing
of 20mm. The mean execution time was about 30 seconds. Then we did the
rigid local registration using the MRF model. We did 13 iterations and began
with a 30mm search range. The search range is decreased at each iteration
by a factor of 0.67. The mean execution time was about 100 seconds. We
show the results of those two steps in the table 3.6 and some visual results in
Fig. 3.4.6.1. Four points were chosen to do the ground truth. We show the
standard deviation σ in both cases.
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Table 3.6: TRE in mm after global positioning and local rigid registration,
and the standard deviation at the end of the algorithm.

Patient Global Local σ

P1 12 9 4.9
P2 22 9 2.2
P3 15 11 4.2
P4 12 10 2.3
P5 13 9 2.4
P6 26 15 5.9

Figure 3.16: Comparison of CT, on the left, and MRI, on the right, of two
di�erent patients after the registration.
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Table 3.7: TRE after global positioning.
Patient Global
P1 14
P2 29
P3 54
P4 59
P5 27
P6 19
P7 44
P8 4
P9 44

3.4.6.2 US and CT images

We then tested our algorithm on a database of 9 pairs of US and CT images.
We used the LC2 measure as described earlier. The images have totally dif-
ferent orientation. We used a search range around the ground truth of 20mm
in every axis and we varied the orthonormal basis along two angles between
-35 and +35 degrees. We removed the ground truth from the search area.
We show the resulting TRE after the global positioning in table 3.7, which
shows it was accurate enough to start the rigid algorithm, and an example of
registration in Fig. 3.4.6.2. The execution time was about 400 seconds.

We then tested the rigid registration with the parameters like we did with
the previous dataset. We also compared the two measure NMI and LC2.
As expected, the NMI measure performed very bad. As for LC2, we found
two high TRE for patients P1 and P3: visually, the results are good but are
di�erent from the ground truth. It happened because the two images are taken
at two opposite moments of the breath cycle, and our result and the ground
truth did not focused on the same area. The quality of the registrations is not
very precise because of the quality of the US images, which presented many
artefacts as on Fig. 3.18.

We tested our discrete MRF formulation to solve the problem of multi-
modal registration of US and MRI images. The global positioning does not
take too much time as long as images are downsampled and as the search area
is limited. The local registration shows good results that would be improved
by deformable registration, but the quality of the images may prevent such a
more precise registration.
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Table 3.8: TRE in mm before and after rigid registration.
Patient Initialization LC2 NMI
P1 10 54 40
P2 17 9 17
P3 20 37 52
P4 33 11 41
P5 13 13 13
P6 35 5 39
P7 23 10 22
P8 26 9 42
P9 24 7 33

Figure 3.17: Example of registration, the source ultrasound on top, the de-
formed image in the middle, and the target at bottom.
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Figure 3.18: One of the ultrasound of the database. The quality limits the
accuracy of the registration.

3.5 Discussion

In this chapter, we have presented a discrete MRF formulation to solve the
problem of linear registration, using a local higher order graphical model with
hidden variables being the displacement vectors of the control points. The
proposed formulation is modular with respect to the similarity criterion and
the nature of the linear transformation (rigid, similarity, a�ne and could be
extended to projective). Moreover, it is computationally e�cient by means of
its relative local nature and the designed search space. The performance of
the method on several data set along with comparisons with state of the art
methods demonstrate the interest of our approach.

We tried to extend our concept to 3D point cloud. The �rst problem is
that we lose the grid structure. Implicitly, our grid structure allows to reduce
the dimensionality of the problem on the hyperedges. Indeed, as the points
are aligned on the grid, we only have to verify that the barycentre is preserved
in this one dimensional subspace. Hence we only require 3 points. For a point
cloud, the points are randomly distributed and then we cannot use the same
trick as before. Thus, the condition we have to check is the 3D placement
of the points of the hyperedge. Mathematically, the whole transformation is
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encoded in the displacement of the points of the hyperedge. We then need
5 points in each hyperedge. The purpose of our problem can only be an
approximation now, so we use a soft constraint that checks if the movements
of the 5 points is coherent, and we create enough hyperedges to transmit the
information to the whole point cloud. In practice, the computation on the
cliques takes a longer time, and there is many more cliques that makes the
convergence nearly impossible. So we abandoned this potential extension.

With this framework, we are able to perform linear registration with a
Markov Random Field. In the next chapter, we will �nd a way to mix a
deformable model with our linear model to solve complex registration prob-
lems.



Chapter 4

Combining Linear and Deformable

Registration

4.1 Introduction

Wementioned previously the importance of registration. The previous chapter
was focusing on linear registration. This one will focus on deformable regis-
tration. It is a much more complex problem, and usually in medical imaging,
there is no real truth to evaluate the deformable registration as even extremely
accurate registrations by professionals do not include the inner transforma-
tions of tissues and organs.

In this section, we classify the di�erent algorithms according to the trans-
formation model chosen, then the type of similarity criterion (described in 2.5.1
and 3.1), and �nally we brie�y discuss about the di�erent optimisation strate-
gies. For a more complete review, see [138].

4.1.1 Transformation Model

There are di�erent constraints that may be imposed on the displacement
of the image. The two main categories are realistic models, which have or
try to have a physical or an anatomical mean, and those which are inspired
by interpolation theory. According to [105], the physical category can be
subdivided into �ve: elastic model, viscous �uid �ow model, di�usion model,
curvature registration, and �ows of di�eomorphisms.

Elastic model describes materials elastic objects. It uses the Navier-
Cauchy equation. The main assumptions are small deformations and a linear
dependency between stress and strain. This model is used for many engineer-
ing materials like structural analysis and is often solved with �nite elements.
The second subcategory models the image as a viscous �uid, and the associ-
ated equation is Navier-Stokes equation. This equation models the behaviour
of most of the �uids: Newtonian �uids to be precise, those whose stress is linear
in the strain rate. This model was introduced in medical imaging in [22, 23].
Di�usion model relies on the di�usion equation. It was introduced in [143]
and inspired by Maxwell's demon, which was a thought experiment to break



60 Chapter 4. Combining Linear and Deformable Registration

the second law of thermodynamics. The demon apply forces on the membrane
where the image is not constant. The membrane is one-way. It is an iterative
process of small displacements. Regularization is based on Gaussian smooth-
ing. The forces are usually computed using the SSD measure but NMI has
been encoded in this framework in [147]. Curvature was introduced by Fis-
cher and Modersitzki [38]. It does not penalize a�ne transformations. Finally,
�ows of di�eomorphisms is based on the Lagrange transport equation [23,148].

Interpolated deformation models interpolate the displacement of the whole
image using only the movement of a small set of voxels of the image. This
small set of points are called control points. They may be placed randomly
on the image [134] or regularly on a grid like for FFD we developed in 2.5.2.2.

Of course, this problem is mathematically ill-posed so a regularization is
paramount to have a proper framework.

4.1.2 Optimisation Strategy

The optimisation strategies are generally split into two groups: continuous and
discrete. Continuous methods use the space as it was continuous while discrete
methods relies on a subset of values to avoid gradient strong irregularities due
to artefacts, local extrema or simply to reduce the computation. Sometimes
the border is fuzzy because continuous methods are applied for problems with
only a discrete set of measures, for example if we consider the pixellisation of
images, then interpolation is used to consider the image space to be complete
and regular.

Continuous methods usually relies on the gradient. That is the strong
point of continuous function. Most methods rely on an update rules:

θi+1 = θi + αigi(θi), (4.1)

where i is the iteration parameter, θ is the vector of parameters i.e. the
unknown, and gi is the search direction. The most common approaches
are gradient-descent, conjugate gradient, Powell's method [116], Newton-type
methods, Levenberg-Marquardt [33], Stochastic gradient descent [36].

Continuous methods are sensitive to local extrema and initial conditions.
Moreover, they are not modular regarding the similarity criterion and the
transformation model. Discrete methods overcome these limitations but they
lack precision because the solution space is sampled. The more it is samples,
the better accuracy is achieved, but also the most time it takes to compute.
We already detailed several discrete algorithms in 2.4. Let us add that tech-
niques like Fast-PD and Tree Reweighted Sequential [86] are based on Linear
Programming. Instead of trying the original NP-hard problem, they use a LP
relaxation.
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4.2 Graphical Model

The main idea to solve this problem was to use the higher order cliques de�ned
in the previous chapter and a classical MRF graph that performs deformable
registration. So the basic formulation is the same as before, but the structure
of the graph is not. We remind shortly the formulation.

We model the simultaneous linear and deformable registration problem
through a hypergraph G = (V,E,C), where V denotes the set of nodes, E
the set of edges, and C the set of higher order cliques. Let L = {l1, . . . ln} be
the set of labels that corresponds to a quantized version of the solution space,
and lp denotes the label assigned to node p. The algorithm associates a label
lp to each control point p, in order to align the two images. The energy of the
MRF can be written as:

EMRF =
∑

p∈V
Up(lp) +

∑

(p,q)∈E
Vp,q(lp, lq) +

∑

c∈C
Hc(lc) , (4.2)

where Up(lp) denotes the unary potentials, Vp,q(lp, lq) denotes the binary po-
tentials, lc = {lp, p ∈ c}, is the set of labels assigned to the nodes in the clique
c and Hc(lc) denotes the higher order potentials.

We want to separate and determine simultaneously the linear and de-
formable transformations. To do that, we decompose the displacement of
each control point into a linear and a deformable part. A possible way is
to put the two part of the displacement into the same node as before. This
would keep the same number of nodes, but the label set would be the square
of what it was before, and thus may be intractable. Instead, in order to infuse
that knowledge into our MRF framework, we will duplicate (see Fig. 4.1) the
original grid of control points: the �rst part will encode the linear displace-
ments, the second part will encode the deformable displacements. Therefore,
each control point is represented by two corresponding nodes of the graph, one
representing its linear displacement, the other one representing its deformable
displacement. That duplication allows to keep a reasonable number of nodes
(twice as many as before) and the same number of labels, and therefore to
greatly decrease the computational cost of performing inference in the graph.
A similar decomposition was used in [133] for the x- and y- axes. We applied
that idea for the linear and non-linear parts of the displacement here. Let us
note V 1 the nodes in the �rst part of the duplicated graph (linear part), and
V 2 those in the second part (deformable part):

V = V 1 ∪ V 2. (4.3)

For clarity, we will �rst explain the structure of the graph and then detail
the values of the potentials. For the same reason, the diagrams in this part
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Figure 4.1: The graph contains two parts, each point of the grid is duplicated
into two nodes, one in each part. We show here a 2D example for ease of
visualization.

are for 2D-2D registration. The extension to 3D-3D is quite obvious and the
written explanations apply to both cases.

4.2.1 Graph Construction

Each control point on the images correspond to two nodes, so the original grid
is duplicated. The idea is to have the information about the linear transfor-
mation in V 1, hence we will �nd there the hyperedges (triplets and λ-clique)
de�ned in 3, and the deformable transformation encoded in V 2, consequently
we will �nd the usual grid with smoothing terms. A major di�erence is the
data term. Indeed, we need to know the total displacement of a control point
to evaluate the similarity measure, so we need to know both the linear dis-
placement and the deformable displacement. The data term is now evaluated
as a pairwise function linking a pair of duplicated nodes. Finally, we must
remember that a deformation like a global translation is not penalized by
smoothing terms, because this kind of displacement is allowed. However we
want the total linear displacement to be in the linear part so we must create a
penalty in the deformable part, such that the algorithm would always rather
put a translation into the linear part than in the deformable part. We put a
little penalty over the length of the deformable displacement in the deformable
part V 2. The complete graph is shown here 4.2.

Let us now de�ne C, the set of cliques. In our framework, the cliques have
very di�erent goals. Those in V 2 ensure the smoothness of the deformable
displacements. So there is an edge between between each pair of neighbour
nodes, which form a grid as used for computing deformable displacement alone
as in [127]. Moreover, each node in V 2 have an unary potential so deforming
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Figure 4.2: The complete graphical model for simultaneous linear and de-
formable registration in 2D (some triplets are omitted for clarity). Pairwise
potentials are represented by black links connecting graph nodes; graph nodes
that are related by triplets are grouped by ellipses, while the λ-clique is shown
in green.

linearly the image in this part of the graph is penalized. The cliques in V 1

ensures that the linear displacements of all the points form a coherent linear
transformation of the image. What is left to be detailed is the data term.
The data term should capture the interactions between pairs of linear and
deformable displacements so each pair of duplicated nodes (one in V 1, one in
V 2) will be linked by an edge.

4.2.1.1 Unary Potentials

To ensure the algorithm prefers large linear displacements instead of large
deformable ones, we employ a unary potential penalizing the norm of the
vector of the displacement vector.

Up(lp) = ‖lp‖. (4.4)

This potential is de�ned for every node in V 2, where lp corresponds to a
deformable displacement.

4.2.1.2 Pairwise Potentials

Regularization Term

A regularization term operating between nodes in V 2 is necessary in order
to ensure the deformable registration is smooth. This can be achieved by
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penalizing the vector di�erences between neighboring nodes:

Vp,q(lp, lq) =
‖q − p− lp + lq‖
‖q − p‖ , (4.5)

where p and q represent two neighbour control points, both in V 2.

Data Term

In order to quantify the alignment of the two images, we employ a patch-based
similarity criterion, or we compare a patch from the source image Bp,q with
a patch in the target domain Blp+lq that is chosen based on the composition
of the a�ne and deformable part of the deformation. In order to model the
composition of the two parts, it is necessary to use a pairwise term involving
the corresponding nodes p and q in the two parts of the graph. The data term
is de�ned as:

Vp,q = ρ(Bp,qBlp+lq) . (4.6)

4.2.1.3 Higher Order Terms

The higher order potentials are de�ned as in Chapter 3. Triplets and λ-clique
ensure the linearity of the transformation. An example of those cliques for a
2D grid for a 2D registration is shown in Fig. 4.2.

4.2.2 Optimization algorithm

To solve the MRF, we use DD-ADMM [1]. Dual Decomposition [92] consists
in decomposing a global di�cult problem into smaller solvable subproblems
(referred to as slaves) and then extracting a solution by cleverly combining
the solutions from these subproblems. DD-ADMM is an improvement of Dual
Decomposition which accelerates the convergence. In this case, the di�culty
of the inference of the optimization displacements lies in the presence of the
higher order cliques. Here, the graph is decomposed into trees that constitute
the set of subproblems and into a grid. The only requirement for the choice of
the subproblems is that they cover (at least once) every node and hyperedge
of the hypergraph G.

Formerly, we had tried several algorithms to perform the optimisation like
Loopy Belief Propagation and Tree Reweighted Belief Propagation. The hard
constraint made it very di�cult for those usual algorithms. And the factor
graph was huge because of the higher order hyperedges. The label set was the
square of what it was before and the execution time reached several days for
Belief Propagation for example.
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Figure 4.3: Two di�erent slaves in 2D. One for horizontal and vertical lines
in the a�ne part. In 3D another slave would be required for the z-axis, for a
total of 5 slaves..

4.2.2.1 Alternating Descent by Method of Multipliers Algorithm

ADMM replaces the Maximum A Posteriori computation by a quadratic prob-
lem, at each iteration, so it penalises strongly any disagreement. Compared
to DD, the Augmented Lagrangian with a quadratic problem is:

g(λi) = min
xi,x

∑

i

fi(xi) +
∑

i

λi(xi − x) +
η

2

∑

i

‖xi − x‖2, (4.7)

where η is a weighting factor. The traditional resolution method to compute
the augmented lagrangian alternate between the joint minimisation of the
function and an update of the multipliers [60, 117]. [1] proposes to use the
Alternating direction method of multipliers [45, 53], which replaces the joint
maximisation by a single Gauss-Seidel step.

The main di�erence is each slave must compute a quadratic problem, and
not a maximum a posteriori. [1] gives some mathematical guarantees but we
have lost many compared to DD. Principally, we have lost the certitude that,
when an agreement is reached among the slaves, we are sure it is the global
optimum for DD. It is not the case any more for ADMM. The article also give
insight on how to compute the quadratic subproblems. In our case, it reduces
to adding a quadratic penalty to the unary terms which is di�erent at each
iteration but which does not change fundamentally the optimizers.

4.2.2.2 Choice of the Slaves Decomposition

In our case, in V 1, a slave problem is de�ned for each line parallel to a coor-
dinate axis in the linear part of the grid. In 2D we have the two slaves shown
in 4.2.2.2. Thoses slaves contain parralel chains of triplets which are conse-
quently independent from each other. They may be easily solved by higher
order message passing or exhaustive search. We used exhaustive search where
the computation is greatly accelerated by precomputation by removal of im-
possible combinations.
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Figure 4.4: The slave containing the λ-clique in 2D.

There is also one slave for the λ-cliques 4.4. In 2D, there is only one clique
so exhaustive search is fast. In 3D, there are four λ-cliques. Three of them
share nodes but exhaustive search is still the fastest way to solve we found.
By intelligently separating the constraints, we reduced the slave to explore
the combination on six nodes forming a triangle.

The last slave contains all the nodes of the graph but only the edges of V 2

and the edges encoding the data term. In this big slave, those edges contain
one node (in V 1) link to nothing else. Thus we can send a message from it to
the other end of the edge, like in Message-Passing algorithm, to put all needed
information into the unary of the node in V 2. Then we have a simple slave
and we optimize it using the Fast-PD algorithm [93]. With this decomposition
(4 in 2D, 5 in 3D), DD-ADMM uses a master-slave framework similar to Dual
Decomposition: the master send solvable subproblems to the slaves, which
handle the subproblems and send back a solution 4.6.

4.3 Experimental Validation

4.3.1 Implementation Details

The algorithm uses an iterative coarse-to-�ne re�nement process. The quality
of the image is reduced at the �rst steps to accelerate the computation. The
label space is successively re�ned to explore a large number of displacements
while keeping a reasonable execution time. The label space corresponds to a
discretization of potential displacement vectors, regularly distributed on a grid
around the 0-displacement vector. The maximal length of the displacement
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Figure 4.5: The deformable slave contains all the pairwise potentials of the
graph. We send a message from the nodes only linked by an edge (containing
the data term), then we can solve the problem using Fast-PD because the
other pairwise, the smoothing term, is submodular.

Figure 4.6: The master-slave framework for our simultaneous problem in 2D.
There are four slaves (�ve in 3D). The master gives a subproblem and each
slave answers with a solution.
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vectors is 0.4 multiplied by the distance between two control points along each
axis. The length is iteratively reduced along the iterations. We used up to 7
iterations in our experiments. The successive label space re�nement allows to
keep the number of labels quite small, 33 or 53, while reaching sub-millimetre
registration accuracy. The grid contains 33 control points at the �rst iterations
and is increased to 93.

The algorithm is implemented in C++. The tests were performed on a
64 bits machine with a Intel Xeon W3670 processor and 16 Go of RAM. The
mean running time for 3D volumes was about 160 seconds when using the
similarity criterion SAD.

4.3.2 A�ne Transformed Images

We use a database of abdomen 3D CT images, containing 6 images of the same
patient at di�erent moments. Two organs have been manually segmented by
medical doctors, the sigmoid and the bladder. The image dimension is about
512*512*121 with a physical spacing of 0.92*0.92*4 mm, with small varia-
tions on the images. We perform several a�ne transformations of one image.
We then applied a small deformation �eld to the transformed image. This
deformation �eld is small in the sense it should not contain any global linear
transformation. We then try to register these deformed images to the origi-
nal one. Rotations lies between 0�and 5�and translations reach 20mm. We
performed 22 di�erent transformations, with a Sum of Absolute Di�erences
(SAD) similarity measure. We want to compare the a�ne transformation we
�nd with the one we initially applied. So we �xed 6 points in the images at
some extremities of the bodies, and compute the mean distance between the
two transformations. Our results show a mean distance of 2.61 mm. Most
of the error come from rotations which are not captured by the data term.
The results could be improved by using a rotation invariant measure. One
example of registration is shown in Fig. 4.7.

4.3.3 Real Images

We then use intra-patient images from the same database to compare our
method with a sequential linear and deformable registration. So images are
initially aligned with a linear registration. Then we apply a deformable reg-
istration algorithm, DROP [52]. In parallel, we apply our algorithm. We
compare the DICE we get from the two methods. Our results show a small
improvement (cf. 4.1) of the DICE.
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(a) (b)

Figure 4.7: A registration, the two images are superimposed in di�erent
colours: (a) Before registration. (b) After registration.

DICE Bladder Sigmoid
Before registration 45.61 39.383

Consecutive registration 78.15 68.55
Our registration 78.47 68.64

Table 4.1: Results of the DICE of two organs while comparing our simultane-
ous registration with a consecutive one.

4.4 Discussion

In this paper, we have a discrete MRF formulation to solve the problems of
linear and deformable registrations simultaneously, using a local higher order
graphical model acting with hidden variables being the displacement vectors
as labels. The proposed formulation can deal with arbitrary similarity crite-
rion, it is modular with respect to the nature of the linear transformation and
exhibits computational e�ciency due to its relative local nature and the de-
signed search space. We use a multilevel strategy, in a coarse-to-�ne manner.
The performance of the method on 3D multi-modal medical data along with
comparisons with state of the art methods demonstrate its potential for appli-
cations. Opposed to the usual sequential linear/deformable registration, our
scheme is based on a sound mathematical framework, even if our experiments
do not show the bias. This bias may be a problem for other kind of images
or problem, for which our algorithm would reach its true potential. Moreover
this approach is fast compared to state of the art methods.
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Figure 4.8: The object is roughly segmented, in the yellow area, and the grid
of control points is superimposed on the image.

We also showed it was possible to combine linear and deformable registra-
tion and explored ways to do the optimisation. This opens a new range of
possibilities of applications in 2D/3D registration in the next chapter or to
separate linear and deformable registration in the same image as we brie�y
explain here.

4.4.1 Linear Within Deformable Registration

Now we present another way to combine linear and deformable registration.
Another matter of interest for medical applications is to perform a global
deformable registration with a subimage which should be rigidly or a�nely
deformed. Indeed, we know that the bones structures, for example, cannot be
deformed (unless they are broken, so it is true most of the time). To improve
the registration or to avoid artefacts, we could integrate this knowledge in the
process. It can be easily performed with the linear structure we constructed
and the classical deformable grid. For the sake of clarity, the images shown
represent a 2D/2D registration. The algorithm extends very simply for 3D/3D
registration.

We create a rough segmentation of the object whose transformation is
linear. This area contains the higher order hyperedges necessary to the linear
registration, we call it the linear area. This area do not need the smoothing
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Figure 4.9: The graph contains a sub-part inspired by the linear registration.

pairwise between the inner nodes because the regularization is taken into
account by the higher order terms. But we need a regularization between
the outer nodes of the linear area and the rest of the graph: the pairwise
regularization. The rest of the graph only contains smoothing pairwise terms
between the nodes. The new graph is shown in Fig. 4.9

To compute the displacement of the whole image, we use interpolation.
Those in the linear area are interpolated using linear transformation, because
the displacement of this part of the image is linear. The rest of the points are
interpolated using B-splines.

The optimization can be performed with the same strategy we used pre-
viously: the grid with Fast-PD or message passing algorithm, the hyperedges
with exhaustive search, and a master-slave decomposition to assemble those
parts.





Chapter 5

2D-3D registration

5.1 Introduction

2D/3D image registration is used in many clinical applications such as image-
guided surgery, when a pre-operative 3D image and an intra-operative 2D
view are to be merged to guide the surgeons. While there has been much
work on 3D/3D and 2D/2D registrations, 2D/3D has received attention more
recently [102]. There are di�erent kinds of 2D/3D registrations, like the reg-
istration of a 2D image to a 3D shape [25], the registration of a projective 2D
image (for example for X-Ray), or of a sliced image (for example when ultra-
sound are used). We will focus on the latter case in this paper. Searching the
in-plane deformations simultaneously is necessary because the internal struc-
tures move due to breathing, beating heart and the medical intervention itself.
These create large elastic deformations and make the registration extremely
challenging.

5.2 Related work

A variety of methods has been proposed to deal with this problem. Many
intensity-based and gradient-based methods use local iterative optimizations
techniques such as gradient descent [44] or best neighbour search method [94]
but they are very dependent on the initial position. [27] presents a feature
based method that performs slice to volume registration, using several slices
in order to improve the quality of the results. [51] tracks intra-operative MRI
slices of prostate images with a pre-operative MRI volume. This monomodal
registration (MRI intra-operative slices to MRI pre-operative volume) is de-
signed to provide patient tracking information for prostate biopsy performed
under MR guidance. [32] proposes a method to register endoscopic and laparo-
scopic ultrasound images with pre-operative computed tomography volumes
that potentially could work in real time. It is based on a new phase correla-
tion technique called LEPART and it manages only rigid registration. Phase
correlation was used in [32] reporting quasi real time results on laparoscopic
ultrasound to CT images registration. [108] presents a �exible framework for
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intensity based slice-to-volume non-rigid registration algorithms that was used
to register histological sections images to MRI of the human brain.

Casting computer vision problems as labelling ones through the use of
Markov Random Field (MRF) theory has gained great attention since [48]. [37]
presents a MRF framework in high dimension to which we compare our results.

Our framework aims at reducing the dimensionality of the search space in
a local pairwise discrete MRF. So we represent a physical control point into
two nodes of the MRF graph, one representing the search of the 2D space,
the other the in-plane deformations. So the number of labels is reduced and
fastens the optimization algorithm. The framework is intensity based and
independent of the metric that is being used, so it can be adapted to di�erent
image modalities or new measures [112].

5.3 Graphical Model

Given a 2D source image I and a 3D target volume J , we want to �nd the slice
π̂[J ] of the volume J that best matches the image I. In-plane deformations can
a�ect the image I, those deformations are modeled by a 2D deformation �eld
T̂D that is inferred during the optimization process. It is possible to consider
more general deformations, i.e. 3D deformations, but for our applications, the
medical doctors were interested in showing the deformed 2D image and the
chosen slice, hence our choice.

Our discrete formulation of the problem uses an undirected graph G =

(V,C). V is the set of nodes which corresponds to the control points su-
perimposed on the 2D image. C is the set of cliques or hyperedges and is
composed of two parts C = CD ∪CR. The nodes represent the control points
of a quasi-planar grid that models the in-plane deformations and the current
best selected plane simultaneously. We used a quasi-planar model because
it allows more �exibility and produces better results than an exactly planar
plane selection. The deformations are modeled in a Free Form Deformation
(FFD) framework. The label set L corresponds to a set of 3D displacement
vectors L = {li = (dx, dy, dz)}i, indicating the position of the control point in
the 3D space (the plane selection is deduced from the position of the displaced
control points).

Cliques in CD are triplets of vertices with a triangular shape (see in
Fig. 5.3) and they are associated with the data terms. The cliques in CR
are horizontal and vertical cliques of three aligned points (see in Fig. 5.3),
similar to those de�ned in the previous section. The control points are dis-
placed by assigning them di�erent labels until an optimal position is found.
Let us now de�ne the corresponding high order functions.
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(a) (b)

Figure 5.1: The di�erent type of cliques: (a) The green area Ω is one of the
triangular cliques (i, j, k) ∈ CD and is used to compute the data term. (b) Ver-
tical clique (i1, j1, k1) ∈ CR and horizontal clique (i2, j2, k2) ∈ CR examples.
They are used to regularize the grid and give a quasi-planar solution.

The energy to minimize regroups data terms Dijk associated to triangular
triplets in CD and regularization terms Rijk associated to triplets in CR. The
�rst ones encode the matching cost while the later ones act as regularizers: to
ensure the control points keep a regular and quasi-planar grid structure. The
energy of the MRF is thus de�ned as:

EMRF =
∑

(i,j,k)∈CD

Dijk(li, lj, lk) + β
∑

(i,j,k)∈CR

Rijk(li, lj, lk), (5.1)

where li is the label associated to the node i, and β is a weighting parameter
balancing the contributions of the similarity and geometric terms.

5.3.1 Data Term

The data term is de�ned over a set of triangular cliques as in Fig. 5.3. Its for-
mulation is independent of the similarity measure ρ and is computed for each
clique d = (i, j, k) ∈ CD using the 2D source image I and the corresponding
plane πd[J ] extracted from the target volume J , de�ned by the three control
points of the clique. For a given similarity measure ρ, the data term associated
with the clique d is thus de�ned as:

Dijk(li, lj, lk) =
∑

Ωd

ρ(I(x), πd[J ](x))dx, (5.2)

where x ∈ Ωd and Ωd corresponds to the triangular area de�ned by the con-
trol points of clique d over the plane πd[J ], after applying the corresponding
displacement vectors (identi�ed by the labels li, lj, andlk) to the control points.
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5.3.2 Regularization Term

5.3.2.1 Planar Consistency

Planar consistency can be easily enforced through a discrete approximation
of the second-order derivatives of the grid. Here, the condition is similar as
previously in Chapter 3, but because of the soft constraint, as soon as the
second iteration, the grid may not be exactly aligned, so we have to conserve
the current position of the control points in our equation. The condition is
thus:

(pi + li) + (pk + lk)− 2× (pj + lj) = ~0. (5.3)

Based on this idea, we de�ne the following energy term using the euclidean
norm of the resulting vector, normalized with the original distance between
the control points d:

RA
ijk(li, lj, lk) =

‖(pi + li) + (pk + lk)− 2× (pj + lj)‖2

d2
(5.4)

5.3.2.2 In-plane Deformation Smoothness

As usual with FFD, we require a distance preserving approach. We impose the
original distances between the control points of the grid is preserved during
the whole algorithm. Let us de�ne φij as the ratio of the euclidean distance
between the displaced points pi+li and pj+lj and the original distance between
their initial positions po,i and po,j, which gives the following equation:

φij =
‖(pi + li)− (pj + lj)‖

‖po,i − po,j‖
. (5.5)

We need our regularizer to ful�ll two conditions. First, we need it to be
symmetric with respect to the displacement of the points, i.e. to penalize
with the same cost when the control points are closer or more distant. This
is achieved by posing:

Φij = (1− φij)2 + (1− 1

φij
)2 (5.6)

Second, we need the energy to be zero when the points are preserving dis-
tances and bigger than zero otherwise. The precedent expression ful�ls both
conditions for a couple of control points, so for a given clique (i, j, k), we de�ne
the second part of the regularizer as:

RB
ijk(li, lj, lk) =

Φij + Φjk

2
(5.7)
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The equation that regularizes our grid is a combination of both parts

Rijk(li, lj, lk) = (1− α)RA
ijk(li, lj, lk) + α×RB

ijk(li, lj, lk) (5.8)

where α is a weighting factor. The proposed objective function can be either
optimized through its mapping to a factor graph or using higher order opti-
mization methods like dual decomposition. We have adopted the factor graph
approach and implemented it using OpenGM2 library [78].

5.4 Experiments

Despite the reasonable dimension of the label space, the use of factor graphs
limits the number of labels that can be used during inference. In order to
overcome this limitation we adopt a pyramidal approach where grid size is
decremented in every pyramid level. For each grid resolution, some iterations
of the registration algorithm are performed. We choose the optimal set for
each one and update the control point positions while varying the size of the
displacement vectors that form the label space to improve the search space
sampling.

It should be noted that the planarity constraint is imposed in a soft man-
ner. Furthermore, due to the incremental approach, errors can be accumulated
and lead to inconsistent planar transformations. Therefore, regularization
terms do not guarantee that the �nal solution is a plane. In order for the grid
to be a plane, we project every control point to the regression plane estimated
from the current position of these points. This projection corresponds to a
2D FFD that gives a good approximation of the deformation �eld.

Evaluation and comparison of the method was performed over the 2D/3D
monomodal MRI heart dataset presented in [37]. It consists of 10 di�erent
temporal series of 20 bidimensional slices each one, that must be registered
with a volumetric MRI, giving a total of 200 registration cases. For a complete
description of the dataset refer to [37]. Plan estimation was evaluated mea-
suring the error between the ground truth and the estimated planes (planes
were represented by a 6-DOF rigid transformation, with 3 translation and 3
rotation parameters (Tx, Ty, Tz, Rx, Ry, Rz)).

The average error among all the registration cases is less than 0.0057rad
(0, 3265�) for rotation and less than 0.5386mm for translation parameters
(see Figure 5.2). Given that image resolution in z axis is lower than in x and
y, a bigger error is observed in the estimated translation for z coordinate.
Experiments were performed using 3 grid levels, with 5 iterations each one,
initial grid size of 40mm, maximum displacements of 25mm, 19 labels, α = 0.5

and β = 0.7. The average running time was around 80 seconds (on an Intel
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Xeon W3670 with 6 Cores and 16GB of RAM), where 57% of it corresponds
to energy computation and 33% to optimization. Fig. 5.2 compares the results
of our method with the results obtained using the algorithm proposed in [37].
Both mean and standard deviation errors of the estimated parameters are
reduced by our method, meaning that the results are more accurate and less
disperse than in the previous case. It shows that improving the quality of the
energy terms by increasing the order of the cliques, results in an improvement
of the �nal solution. It is important to remark that, for the same number of
grid levels and iterations, our new approach reported slightly better computa-
tional time, running on the same computer (average of 80 sec per registration
case for our method and 100 sec for the previous method). This di�erence
is mainly due to the over-parametrized label space (5-dimensional) adopted
by the previous method, that exponentially increments the number of labels
needed to sample an equivalent solution space.

Figure 5.2: (a) and (b) Error estimation of the plane parameters for the
method described here. (c) and (d) Error estimation for the method presented
in [37] for the same dataset with equivalent setup.
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Validation of in-plane deformation was performed over 20 registration
cases. The dataset provides manual segmentations S of the left endocardium
from a set of 20 slices. We register each slice with a starting from a random
position around the ground truth (using Gaussian noise with σr = 4.5 deg and
σt = 5mm for rotation and translation parameters respectively. The estimated
deformation �eld was applied to the corresponding initial segmentation and
it was compared with the ground truth using DICE coe�cient. The average
DICE before deformation was 0.85 while after deformation we obtained 0.91,
showing that in case of deformable organs like heart, deformation is important
to guarantee reliable results.

5.5 Discussion

The method is independent of the similarity measure; consequently, it has the
potential to be adapted to di�erent scenarios with variety of image modalities.
We compared our results with another method based on graph optimization,
that uses lower dimensional cliques but higher dimensional label space. We
showed that using higher order cliques we can model more powerful and ac-
curate energies that lead to more reliable results.

Future work must be conducted mainly in three directions. First, the val-
idation of the proposed formulation in real clinical scenarios (liver tumour
resection guidance and MRI/US guidance for prostate biopsy) is under inves-
tigation. It should be noted that such a task is complex due to the complete
absences of ground truth. Second, alternative optimization methods (in par-
ticular the ones acting directly on the objective function label space like dual
decomposition) might lead to better results and are under investigation. Last,
decoupling rigid and deformable parameters would allow us to have a better
control over the algorithm behaviour, while also decreasing the computational
complexity and reducing the hardness of the associated graphical model.

In this chapter, we showed another application of the triplets we de�ned
previously. It proved they can be used in other contexts and with some dif-
ferences we had mentioned in the method: hard or soft constraint and other
algorithms.





Chapter 6

Conclusion

In this thesis, we construct a new way to solve linear registration within a
higher order Markov Random Field framework, and we show di�erent meth-
ods to couple this graph with a standard deformable model. The original
motivation was to solve simultaneously linear and deformable registration to
remove a potential bias coming from the fact the usual way to solve it uses
a consecutive approach. We solve this problem and show our higher order
framework can also be integrated into other problems. In this thesis, we ad-
dress the registration task by solving two major concerns: how to perform
linear registration within a Markov Random Field framework, and how to
fuse this problem with deformable registration and how to solve it.

6.1 Contributions

Regarding the recent improvements of the optimization on Markov Random
Fields, principally the Dual Decomposition and its developments, we searched
for new applications that could be solved. Higher Order MRF already existed
but all could not be solved before. With the decomposition methods, the
number of solvable problems increase. With this view on optimization, we
wanted to design and solve new registration problems.

We model the linear registration problem in a graphical model framework
thanks to higher order terms. Those terms contain only local information and
do not know the whole set of parameters of the transformation but they glob-
ally ensure the transformation lies in the set we seek to retrieve. The MRF
registration tends to be as modular as possible regarding the pairwise poten-
tial, the similarity (or dissimilarity) measure, and the optimisation algorithm.
From this standpoint, we designed a higher order model which, with slight
changes, can handle a�ne, similarity or rigid transformations. We decompose
the problem in di�erent subproblems to use a decomposition technique called
Dual Decomposition. We test our method on di�erent problems and show
state of the art results.

Solving linear registration with MRF was not the ultimate goal, because
linear registration can already be solved with di�erent methods with excellent
results. Our aim was to perform simultaneously linear and deformable regis-
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tration. They are usually performed successively but that creates a bias of the
deformable registration towards the linear registration, and we want to get rid
of it. We achieve this by fusing the previous model with a deformable model.
The term "fuse" is very general as there are many ways to fuse two graphs,
and our �nal model is quite di�erent from the classic deformable model. For
example the data term is a pairwise term, which is obviously non-submodular
and has no property to be solved e�ciently. That is the reason why we need
again a decomposition method. As the graph is more complex than before,
we use DD-ADMM, which is an extension of Dual Decomposition, and we
design a clever decomposition to be able to avoid the problem of the pairwise
term that contains the data term. The results show our model is working and
apparently there was no bias to get rid of. We also show that the same ideas
we developed here can be used to fuse linear and deformable registration in
other ways and to solve the problem.

Furthermore, we propose a novel framework for 2D/3D registration. We
use the triplets with soft constraints as regularizers of a 2D grid moving in a 3D
space. With this soft constraint, we have to change the optimization. Indeed,
the hard constraint of the higher order has the advantage to limit the compu-
tation of our slaves, but also has the disadvantage to disrupt many classical
algorithms. At the opposite, the soft constraint would increase the compu-
tation of our slaves, but it does not disrupt any more classical algorithms,
which is why we turned back to a factor graph formulation. The results on a
challenging clinical setting demonstrate the e�ciency of our method.

To sum up, the main contributions of this thesis are the following:

• We propose a higher order graphical model that captures linear trans-
formations. The innovation comes from the design of the hyperedges
and their combination which is able to solve a global problem locally.
We show a decomposition able to optimize the problem. The model is
�exible and compares to state of the art methods.

• We develop a global approach to jointly solve linear and deformable
registration. We fuse our previous model with a deformable registration
Markov Random Field. The complexity of the graph increases but we
achieve good results thanks to DD-ADMM.

• We show an example on 2D/3D registration using the higher order terms
we design. We use a di�erent setup (soft constraint, factor graph) to
prove the �exibility of our framework and how it can adapt for di�erent
purposes.
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6.2 Future work

We mentioned that our linear framework could be extended to handle pro-
jective transformations. It would require many changes from the rest of our
framework because we would need a continuous framework to handle the va-
riety of transformations that are projections. Thus the data cost, which is
already taking most of the time of the whole algorithms to compute, should
be handled very e�ciently, resulting in a happy medium between precision
and computation time. That new model could handle projective 2D/3D reg-
istration for medical applications or on real images for drones location.

For linear registration alone, we used Dual Decomposition. The main
advantage of this algorithm is that if an agreement is obtained, we know this
is the optimal solution of the problem. Of course, it may not be reached.
It is the case for our �rst model, which converges in more than 90% of the
time. Usually, when it does not converge, we still know we are close (and
how close) to the minimal energy and a happy medium is chosen between
the solutions of the di�erent slaves. However it does not work in every cases.
Unfortunately, it does not work for our problem because it contains higher
order constraints that makes voting or similar methods totally ine�cient. Our
linear and deformable model is more complex and Dual Decomposition does
not achieve an agreement often enough. We used DD-ADMM but it does not
show the same mathematical securities as DD, which means it converges more
often but we have no guarantee that the agreement is the optimal solution.
We tried many optimization algorithms on this problem but they failed due
to the complexity of the graph. As new algorithms will probably emerge soon
to solve higher order problems, attention should stay on them to �nd and
compare them to DD-ADMM.

The second model fusing linear and deformable registration seems of great
interest for medical doctors. Partnership with a medical lab interested in
applications focusing on bones registration could lead to a software designed
for medical doctors. Similar problems should be solved with this framework,
as soon as medical applications will emerge.

Last but not at least, we designed our model to contain as few hyperedges
as possible and to stay symmetric. But that may not be the best choice of
hyperedges regarding results and optimization, especially when the size of the
grid and the label set increase. A learning approach, which already exist with
Dual Decomposition [89], could lead to a substantially di�erent design and it
could greatly enhance performance of the method.
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Chapter 7

Appendix

We include here a paper for 2D/3D registration we did in collaboration with
M. Enzo Ferrante, but which is not in the scope of this thesis because it does
not use higher order MRF. Concerning this paper, my work consisted in the
designing of the graph. My idea was to decouple the label set of one node
into two nodes, similarly to what I did to combine linear and deformable
registration, because the previous graph which had been designed could not
be solved correctly. The results are slightly worse than those with the higher
order model, probably due to the fact that those higher order model more
precisely the data term. Their drawback is an increase of the complexity of
the model and a need to use approximation to reach a solution.
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Abstract
Purpose: This paper introduces a novel decomposed graphical model to deal
with slice-to-volume registration in the context of medical images and image
guided surgeries.

Methods: We present a new non-rigid slice-to-volume registration method
whose main contribution is the ability to decouple the plane selection and the
in-plane deformation parts of the transformation - through two distinct graphs
- towards reducing the complexity of the model while being able to obtain si-
multaneously the solution for both of them. To this end, the plane selection
process is expressed as a local graph-labeling problem endowed with planarity
satisfaction constraints, which is then directly linked with the deformable part
through the data registration likelihoods. The resulting model is modular with
respect to the image metric, can cope with arbitrary in-plane regularization
terms and inherits excellent properties in terms of computational efficiency.

Results: The proof of concept for the proposed formulation is done using car-
diac MR sequences of a beating heart (an artificially generated 2D temporal
sequence is extracted using real data with known ground truth) as well as mul-
timodal brain images involving ultrasound and computed tomography images.
We achieve state of the art results while decreasing the computational time
when we compare with another method based on similar techniques.

Conclusions: We confirm that graphical models and discrete optimization tech-
niques are suitable to solve non-rigid slice-to-volume registration problems.
Moreover, we show that decoupling the graphical model and labeling it using
two lower dimensional label spaces, we can achieve state of the art results
while substantially reducing the complexity of our method and moving the
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approach close to real clinical applications once considered in the context of
modern parallel architectures.

Keywords Slice-to-Volume Registration · 2D-3D Registration · Discrete
Optimization · Graphical Models · Markov Random Fields

1 Introduction

The problem of slice-to-volume deformable image registration consists in align-
ing a sliced 2D image (e.g. Ultrasound or US) to its corresponding plane from
a 3D volume (e.g. Computer Tomography or CT). We call it deformable regis-
tration because the 2D image can be deformed during the registration process.

This problem finds applications in many medical image related contexts
such as computer aided-biopsy [19], motion correction for image reconstruction
[5], tumor ablation [22] and image-guided surgery (IGS) [23]. In the case of im-
age guided procedures, a pre-operative 3D image and several intra-operative
2D acquisitions are to be fused towards providing position and navigation
information to the surgeons. Nowadays, this fusion is mainly performed us-
ing two different tracking technologies: optical (OTS) and electromagnetic
(EMTS) tracking systems. In the first case, OTS requires a line-of-sight to
be maintained between the tracking device and the instrument to be tracked;
this fact can disturb doctors during their work and is not always convenient.
In the second case, EMTS does not have line-of-sight requirements but it is
very susceptible to distortion from nearby metal sources and presents limited
accuracy compared to optical tracking [4]. Moreover, nor OTS neither EMTS
can deal with deformations between intra and pre-operative images. In this
work, we propose to use 2D-3D slice-to-volume registration algorithms which
are purely image based to solve this challenging problem and overcome the
limitations presented by current technologies.

The problem of deformable image registration has been a pillar of com-
puter vision (optical flow) and medical imaging (image fusion), and therefore
one can cite numerous methods to perform 2D-2D and 3D-3D registration [11]
[1]. However, the problem of 2D-3D registration, and particularly the prob-
lem of slice-to-volume registration, deserves separate investigation and specific
methods development. While a single 2D slice contains less information than a
3D volume, the solution remains a 3D mapping function (a deformation field
in case of non-rigid registration or a transformation matrix in case of rigid
registration) as in the case of 3D-3D registration. This fact converts 2D to
3D slice-to-volume registration in a really challenging problem. The other case
of 2D-3D registration problems, where projective 2D images such as X-Ray
images are registered with volumetric images (CT for example) has received
more attention in the last years [18] [15] and is not covered in this paper.

A variety of methods has been proposed to deal with slice-to-volume reg-
istration. In [3], standard optimization approaches and heuristics (as Simplex
and Simulated Annealing algorithms) are applied on FluroCT to CT regis-
tration, testing with different intensity based similarity measures. [6] presents
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a feature based method that performs slice-to-volume registration, using sev-
eral slices in order to improve the quality of the results. [10] tracks intra-
operative MRI slices of prostate images with a pre-operative MRI volume. This
monomodal registration (MRI intra-operative slices to MRI pre-operative vol-
ume) is designed to provide patient tracking information for prostate biopsy
performed under MR guidance. A similar problem is tackled by [25] where a
two-step algorithm (rigid registration in the first step, and deformable registra-
tion in the second one) is applied to register three orthogonal intra-operative
MR slices with a pre-operative volume. [23] proposes a method to register
endoscopic and laparoscopic US images with pre-operative CT volumes. It is
based on a new phase correlation technique called LEPART and it manages
only rigid registration in quasi real time. [21] presents a flexible framework
for intensity based slice-to-volume non-rigid registration algorithms that was
used to register histological sections images to MRI of the human brain.

The main limitations of the aforementioned methods are their specificity to
the clinical context (they are derived and can be used for specific clinical ap-
plications), the requirement of anatomical segmentations in some of them that
increases their complexity and often their sequential nature where first plane
is selected and then in-plane deformation is determined. Graphical models are
powerful formalisms that could be amended to overcome these limitations.
Casting computer vision problems as labeling ones through the use of Markov
Random Field (MRF) theory has gained attention since [9]. It has been widely
used to solve non-rigid image registration in the last years [11] [16] [17], mainly
for 2D-2D or 3D-3D. In [26], a method based on MRFs to perform 2D-3D reg-
istration is presented, but it estimates just rigid transformations and works
with projective images. Regarding slice-to-volume registration using MRF, our
previous work [7] presents a MRF framework based on a high dimensional la-
bel space to solve this problem; we will refer to it as the overparameterized
method.

In this work, our aim is to introduce a low rank graphical model that
is able to simultaneously perform plane selection and estimate the in-plane
deformation between the 2D source image and the corresponding slice from
the 3D volume. We decouple a physical control point of a regular grid in two
nodes of the MRF graph, one taking labels from the plane selection label space
and the other one from the in-plane deformations label space. In that way, the
complexity of the model reduces to the square of the cardinality of the biggest
label space (instead of being quadratic in the product of the cardinalities of the
two spaces), with a slight increase of the graphical model connectivity. This
technique has been previously applied in 2D-2D registration [24]. The main
advantage is related to the fact that, while the number of nodes augment
linearly, the number of labels is decreased in a quadratic order.

The main contributions of our paper with respect to our previous work
[7] are therefore two-fold. Firstly, we propose a new way of decoupling the
plane selection and the in-plane deformation label spaces towards a novel low
rank model of order 3 (instead of a model of order 5 as in [7]); it results into
a more tractable problem in terms of getting the optimal solution. Secondly,
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Fig. 1 Structure of the decoupled graph. The green nodes (top grid) are included in VI

and orange ones (bottom grid) in VP modeling in-plane deformations and plane position
respectively. Edges connecting VI nodes are part of EI and those connecting VP nodes are
part of EP ; they are associated with regularization terms. Dotted lines represent cliques in
ED that encode the matching similarity measure. Using this information we can reconstruct
a deformed grid that is interpreted as a Free Form Deformation model. In the image we can
appreciate how we associate two nodes of the graph with one control point of the grid.

we obtain substantial decrease of the search space size (order of 10), allowing
much richer sampling of the label space, thus in theory more precise solutions.
Moreover, by decoupling the label spaces it is possible to explore both of them
with different sparseness levels.

The framework is intensity based and independent of the similarity mea-
sure, so it can be adapted to different image modalities or new measures. We
tested our approach on two different datasets: a monomodal dataset where 2D
MRI images of the heart are registered with MRI volumes, and another mul-
timodal dataset where 2D US images are fused with CT volumes [20]. Both
datasets were also used in [7].

The paper is organized as follows: in Section 2 we present the decoupled
MRF formulation together with a complete explanation about the label spaces
and the energy terms. In Section 3, the validation tests and results are pre-
sented and discussed. Finally, Section 4 concludes our paper and provides some
ideas on relevant future directions.

2 Method Description

Non-rigid slice-to-volume registration can be seen as an optimization problem.
We aim at optimizing an energy function by choosing the optimal plane (slice)
π̂[J ] from target volume J and the optimal deformation field T̂D as indicates
the following equation:

T̂D, π̂ = argmin
TD,π

D(I ◦ TD(x), π[J ](x)) +R(TD, π), (1)

where I is the source 2D image, D represents the data term and R the reg-
ularization term. Given the 2D source image I and the 3D target volume J ,
we seek the slice π̂[J ] from volume J that best matches the image I. We call
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it non-rigid registration because image I can be deformed by the deformation
field T̂D. The data term D measures the similarity between the source and the
target, while the regularization term imposes smoothness constraints on the
solution.

From this general optimization problem, we can derive different formula-
tions. In [7], we proposed a high-dimensional label space based approach con-
sidering local labels of dimension five (plane + in-plane deformations). One of
the main problems related to this high dimensionality is its consequently high
computational cost. In this work, we try to avoid this problem by decoupling
the label space in two different ones and reforming the structure of the graph
to still capture rigid plane displacements and in-plane deformation.

Our formulation consists in an undirected pairwise graph GD =< V,E >
with a set of nodes V = VI ∪VP and a set of edges E = EI ∪EP ∪ED. VI and
VP have a 4-neighbor grid structure and the same cardinality. Nodes in VI are
labeled with in-plane deformation labels, while labels used in VP represent the
plane position. Edges from EI and EP correspond to a conventional pairwise
neighborhood connection system for nodes in VI and VP respectively; they are
associated with regularization terms (EI corresponds to in-plane deformation
regularizers and EP to the plane selection regularizers). Edges in ED link every
node from VI to its corresponding node from VP , creating a graph with a sort
of three dimensional structure (see Figure 1); those terms associated to ED
encode the data terms (i.e. the similarity measure).

In order to get a better understanding of the model, we can think of a
single hypothetical grid similar to the one defined in [7], where every control
point pk from this grid is associated with two nodes from our approach, i.e.
vIk ∈ VI and vPk ∈ VP . This idea is depicted in Figure 1 and it will be useful
to understand the energy terms.

Label Space

We define two different label spaces, one associated with nodes in VI (called
LI) and the other one associated with nodes in VP (called LP ).

The first label space, LI , is a bidimensional space that models in-plane
deformation using displacement vectors lI ∈ EI = (dx, dy).

The second label space, LP , indicates the plane in which the corresponding
control point is located. It consists of labels lP associated to different planes.
In order to specify the plane and the orientation of the grid on it, we store an
orthonormal basis of this plane together with the position of a reference point
in this plane. Using this information, we can reconstruct the position of the
rest of the control points in the grid. This way of storing the planes, allow us
to implement different plane space sampling methods. In this work, we chose a
simple uniformly sampling around the current plane position, varying rotation
and translation parameters in a given range. This is an important advantage
of our method: we could use prior knowledge to improve the way we explore
the plane space, just by changing the plane space sampling method.
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To compute the final position of a control point we use both labels. First,
the corresponding label in LP defines a 3D point belonging to a plane space
with a given basis. Then, we use the corresponding label in LI to move the
point in the 2D plane thanks to its basis.

Objective Function

The energy that guides the optimization process is defined on the pairwise
terms. Two types of edges represent regularization terms while the last one
represents the data terms; the energy is thus defined as:

E(I, P,D) = min{γ
∑

(i,j)∈EI

eIi,j(l
I
i , l

I
j )+α

∑

(i,j)∈EP

ePi,j(l
P
i , lPj )+β

∑

(i,j)∈ED

eDi,j(l
I
i , l

P
j )},

(2)
where γ, α and β are positive weighting factors, eIi,j ∈ I are the in-plane

regularizers (associated to edges in EI), ePi,j ∈ P are the plane regularizers

(associated with edges in EP ) and eDi,j ∈ D the data terms (associated with

edges in ED). lIi , lPi are labels from both label spaces LI and LP respectively.
Data and regularization terms are detailed in the following sections.

Data Likelihood

The data term is defined for interconnected pairs of nodes (i, j) between the
two graphs (where i ∈ V I , j ∈ V P ) and their corresponding labels lI ∈
LI , l

P ∈ LP . It is encoded in the pairwise terms eD ∈ ED. As we described
before, a plane and an in-plane deformation 2D-vector are associated with ev-
ery control-point. Combining both labels, we calculate the final position of the
control point pk and extract an oriented patch Ωk over the plane πk (centered
in pk) from the volume J , so that the similarity measure δ can be calculated
between that patch and the corresponding area over the 2D source image:

eDi,j(l
I
i , l

P
j ) =

∫

Ωk

δ(I(x), πk[J ](x))dx. (3)

The patch-based similarity measure δ (defined on the sub-domain Ωk) can
encompass a wide choice of intensity-based measures. One of the simplest and
most used similarity measures is the Sum of Absolute Differences (SAD). It is
useful in the monomodal scenario, where two images of the same modality are
compared. Its formulation is:

eDSADi,j
(lIi , l

P
j ) =

∫

Ωk

| (I(x)− πk[J ](x) | dx. (4)

In multimodal scenarios, where different modalities are compared (e.g. CT
with US images), statistical similarity measures such as Mutual Information
(MI) are generally used since we cannot assume that corresponding objects
have the same intensities in the two images. MI is defined using the joint
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Algorithm 1 Pseudo-code corresponding to the pyramidal approach based
slice-to-volume registration
1: procedure 2D3DRegistration(I: Source,J :Target,T0:Initial guess)
2: G← initializeGraph(T0) . Initialize the graph in the position indicated by T0

3: bestEnergy ←∞
4: for i=1 to gridLevels do
5: L← updateLabelSpace(L, i) . Update the label space for the given level
6: for j = 1 to iterationSteps do
7: newEnergy, newLabeling ← optimizeGraphicalModel(G,L)
8: if newEnergy < bestEnergy then
9: applyLabeling(G, newLabeling)

10: bestEnergy = newEnergy
11: end if
12: refineLabelSpace()
13: end for
14: end for
15: return bestEnergy, G
16: end procedure

intensity distribution p(i, j) and the marginal intensity distribution p(i) and
p(j) of the images as:

eDMI i,j
(lIi , l

P
j ) = −

∫

Ωk

log
p(I(x), πk[J ](x))

p(I(x))p(πk[J ](x))
dx. (5)

As we could see in the previous examples, our framework can be endowed
with any similarity measure defined on two bidimensional images. In this work,
we use SAD for the monomodal heart dataset and MI for the multimodal brain
dataset.

Regularization Terms

We define two different regularization terms, one regularizing the plane selec-
tion and the other one the in-plane deformation. The first regularization term
penalizes the average distance between the nodes i, j ∈ V P and the plane
corresponding to the neighboring one. If Dπ(p) indicates the point-to-plane
distance between the point p and the plane π, we define the regularization
term eP as the average of these distances for two neighboring points i, j and
their corresponding planes:

ePi,j(l
P
i , l

P
j ) =

1

2
(Dπj (pi

′) +Dπi(pj
′)). (6)

where pi
′ and pj

′ are the positions after applying label lPi , lPj to pi, pj re-
spectively. This value is 0 when both points lie the same plane.

The second regularization term controls the in-plane deformation and is
defined between nodes i and j included in VI . We use a distance preserving
approach which is symmetric, based on the ratio between the current position
of the control points pi,pj and their original position po,i,po,j :
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ψi,j(l
I
i , l

I
j ) =

|| (pi + lIi )− (pj + lIj ) ||
|| (po,i)− (po,j) || . (7)

Once defined ψij , we need our regularizer to fulfill two conditions: first, we
want it to be symmetric with respect to the displacement of the points, i.e.
to penalize with the same cost whenever the control points are closer or more
distant; second, we need the energy to be zero when the points are preserving
distances and bigger than zero otherwise. The following regularization term
fulfills both conditions for a couple of nodes i, j ∈ V I labeled with labels lIi , l

I
j :

eIi,j(l
I
i , l

I
j ) = (1− ψi,j(lIi , lIj ))2 + (1− ψi,j(lIi , lIj )−1)2. (8)

Note that both types of pairwise terms are not sub-modular since we in-
clude the current position of the points (which can be arbitrary) in their
formulation and therefore sub-modularity constraint is not fulfilled.

Implementation Details

We adopt a pyramidal approach, using different grid resolution levels, from
coarse to fine spacing between the control points. For each grid resolution,
some iterations of the registration algorithm are performed, choosing the best
possible set for each one and updating the control point positions with this
information. During the inner iterations of one grid level, the size of the dis-
placement vectors that form the deformation label space as well as the pa-
rameter variation of the plane label space are reduced in order to improve the
search space sampling. A pseudocode of the algorithm is shown in Algorithm
1.

The pairwise graphical model is optimized using the Loopy Belief Propa-
gation algorithm (other discrete optimization algorithms can be used as well)
implemented in the OpenGM2 library [12]. In [7], we used FastPD [14] in-
stead of Loopy Belief Propagation for optimizing our pairwise model, which
is among the most efficient optimization algorithms. However, due to its con-
struction (lifting of the duality gap minimization) FastPD requires in general
(towards optimizing complexity) an equal number of labels for all nodes which
is an issue in our setting given the different dimensionality of the graph spaces
(3d and 2d). Furthermore, while it can converge to a minimum even for non-
submodular graphs, it is known that the quality of the linear programming
(LP) relaxation is far from being satisfied and therefore the solution itself
might be a very bad local minimum. Message passing methods like Loopy Be-
lief Propagation do not inherit the computational constraints of FastPD while
it is known (at least experimentally) that do good job as well even with highly
non-submodular pairwise functions.
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Fig. 2 12 registration cases of the same sequence, before and after registration. The over-
lapping images (in light blue we show the source image and in red the target) showed before
registration corresponds to the source image and a slice taken from the volume at the initial
position. The overlapping after registration corresponds to the deformed source image and
the slice taken from the volume at the estimated plane position.

3 Validation & Results Discussion

We validate our method in two different scenarios and we compare the results
with our previous method [7]. The first one corresponds to a monomodal se-
quence of 2D MRI images randomly extracted from a 3D MRI temporal series
of a beating heart. The second one is a multimodal brain dataset formed by
2D US images and 3D CT extracted from [20].

In order to compare both methods in a fair way, we exhaustively tested
different parameter configurations (empirically for every dataset) on a grid of
discretized values, and we took the best combination for each method.

3.1 Heart Dataset

The MRI heart dataset consists of ten sequences of twenty bidimensional MRI
slices each one, that are registered with a MRI volume, giving a total of 200
registration cases. In order to generate them, as it was described in [7], we took
a temporal series of 20 MRI volumes of a beating heart, and we extracted ten
random trajectories of twenty slices Ii each one (one slice for every volume Mi).
Starting from a random initial rotation R0 = (Rx0 , Ry0 , Rz0) and translation
T0 = (Tx0

, Ty0 , Tz0), we extracted a 2D slice I0 from the initial volume M0.
In every sequence, the position of slice Ii was generated adding Gaussian
noise to the position of slice Ii−1 with σr = 3◦ and σt = 5 mm to every
translation (Tx, Ty, Tz) and rotation (Rx, Ry, Rz) parameters respectively.
It gives maximum distances of about 25 mm between the current and its
succeeding slice. The MRI resolution was 192 × 192 × 11 and the voxel size
was 1.25× 1.25× 8 mm3.

For every sequence, we initialize the registration adding the same noise
(with the same parameters than before) to the ground truth. During the reg-
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Fig. 3 Comparison of the error estimation for plane parameters (Rx, Ry , Rz) and (Tx,
Ty , Tz) for our decoupled method (figures (a) and (b)) and the overparameterized approach
presented by [7] (figures (c) and (d)). For presentation clarity, three outliers between 0.02
and 0.05 rad as well as one at 4 mm have been removed at Figures (c) and (b) respectively.

istration process, given two consecutive slices of the same sequence, the esti-
mated transformation for slice Ii was used as initialization for the registration
of slice Ii+1.

Rx Ry Rz Tx Ty Tz

Decoupled Method
Mean 0.0036 0.0024 0.0029 0.5403 0.2713 0.2966
SD 0.0034 0.0024 0.0024 0.4914 0.2296 0.2236

Overparameterized Method [7]
Mean 0.0051 0.0051 0.0031 0.4164 0.2874 0.4847
SD 0.0122 0.0134 0.0051 0.4720 0.2976 1.1546

Table 1 Error estimation for plane parameters (Rx, Ry , Rz) and (Tx, Ty , Tz) for our
decoupled method and the previous overparameterized approach presented in [7].

Figure 2 shows the overlapping between the source image and the corre-
sponding target plane, before and after registration, for 12 cases of one se-
quence. As we can observe in a qualitative way, the overlapping increases after
registration.

Figure 3 compares our results in a quantitative way with the ones obtained
using our previous method. We measure the error between the estimated trans-
formation parameters and the ground truth. The mean error was (0.0036,
0.0024, 0.0029) rad for rotation and (0.5403, 0.2713, 0.2966) mm for trans-
lation parameters, with a standard deviation of (0.0034, 0.0024, 0.0024) rad
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and (0.4914, 0.2296, 0.2236) mm respectively. The average running time was
around 60 seconds for every registration case. Using the method presented in
[7], we obtained (0.0051, 0.0051, 0.0031) rad and (0.4164, 0.2874, 0.4847) mm
for rotation and translation parameters error, and standard deviation equal
to (0.0122, 0.0134, 0.0051) rad and (0.4720, 0.2976, 1.1546) mm. Results are
presented in Table 1. Every registration case took around 220 seconds (almost
3.5 times more than our method). As we can see, the quality of the results was
preserved (and improved in some cases) while the computational time was re-
duced approximately 3.5 times (keeping equivalent grid and label space sizes,
sampling patch size and number of algorithm iterations).

Validation of in-plane deformation was performed over 20 registration cases,
deforming an initial segmentation of the left endocardium using the estimated
deformation field TDi . We measure the average DICE coefficient between the
segmentations, before and after deforming the initial one, to measure the im-
pact of the deformation in the registration process. The average DICE be-
fore deformation was 0.858 and after registration was 0.907, showing that our
method can capture in-plane deformations and select the correct plane at the
same time.

Common parameters used for both methods were 3 grid levels, 5 iterations
per level, initial control point distance of 40 mm and minimum sampling patch
size of 20 mm. In case of the decoupled model we use γ = 1, β = 0.2, α = 0.8,
41 labels in the plane label space and 91 labels in the deformations label
space. In case of the overparameterized model we use 13122 labels and α = 0.9
(for a complete understanding of these parameters refer to [7]). We run the
experiments on an Intel Xeon W3670 with 6 Cores, 64bits and 16GB of RAM.

3.2 Brain Dataset

The brain dataset consists of a pre-operative brain MRI volume (voxel size of
0.5× 0.5× 0.5 mm3 and resolution of 394× 466× 378 voxels) and 6 series of 9
US images extracted from the patient 01 of the database MNI BITE presented
in [20]. The size of the US images was 48 × 38 mm and the pixel resolution
0.3× 0.3 mm. The ventricles were manually segmented by specialists in both
modalities and used to calculate DICE coefficient and Contour Mean Distance
(CMD) to evaluate and compare the quality of the results. Initializations were
done following the same methodology that we described for the Heart Dataset
(Section 3.1).

Figure 4 summarizes the average DICE and CMD coefficients for each se-
ries. It shows that, using our decoupled method, the mean DICE increases
after the registration process an average of 0.0405, a little bit more than the
0.0380 obtained with [7] method. Regarding the CMD, the average decrement
for our method is 0.3654 mm while for the other one is 0.3943 mm. Even if our
new method performs better in average, we can observe that results are almost
equivalent in terms of DICE and CMD. However, there is a big difference in
terms of computing time: while our method is taking around 3 min per reg-
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Fig. 4 The figures show a quantitative comparison of the two methods, before (BR) and
after (AR) registration for the 6 sequences of brain data. Figures (a) and (c) show results
for our decoupled method (DICE and CMD respectively) while figures (b) and (d) show
results for the overparameterized approach presented in [7] (DICE and CMD respectively).

istration case, the overparameterized method takes around 10 min running in
the same computer using the same configuration. To perform the experiments
with both methods, we used the same configuration given by 3 grid levels,
initial control point distance of 8 mm, 4 iterations per level and minimum
sampling patch size of 13 mm. In case of the decoupled model, we set γ = 1,
β = 0.05, α = 0.2, 41 labels in the plane label space and 91 labels in the
deformations label space. For the overparameterized method we set α = 0.8
and 6174 labels. We run the experiments in the same Intel Xeon W3670 with
6 Cores, 64bits and 16GB of RAM used for the heart dataset.

3.3 Discussion & Comparison With Other Methods

As we have shown, our method is able to achieve state of the art results while
decreasing the computational time when we compare to another MRF based
method (namely [7]). In the monomodal case we reduce it from around 3.5 min
to 1 min while in the multimodal one we go from 10 min to 3 min, giving a
time factor reduction of about 3 times.

The main strength of the proposed formulation is the linear complexity
of the inference process with respect to the product of the label spaces. This
allows to go even further for challenging cases (brain tumor removal) where
precision is required to substantially increase the label space. This is not the
case for the approach presented in [7] due to the complexity of the label space.

An interesting point to discuss about is the 5-fold improvement in the
standar deviation error of parameter Tz that we obtain with the new method.
In [7], the justification for the poor performance of the method when estimating
Tz was told to be that image resolution in z axis was lower than in x and y. We
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Fig. 5 Results for one slice from four of the six brain sequences (each row correspond to
a different sequence). (a) Source 2D Ultrasound image. (b) Slice extracted from the MRI
corresponding to the initial position of the plane. (c) Deformed source image overlapped with
the estimated deformation field. (d) Blending between initial images (US and corresponding
MRI slice). (e) Blending between final images (Deformed US image and estimated MRI slice).
(f) Overlapping between initial segmentations. (g) Overlapping between segmentations after
registration.

think that the new algorithm is less sensitive to image resolution anisotropy
mainly because of the different way we explore the plane-selection label space
by allowing a deeper exploration when decoupling it without exponentially
increasing the amount of labels.

It is important to remark that both, the decoupled and overparameterized
methods, are highly dependent on the initialization given for the first slice of
the sequence. Since these algorithms optimize the energy based on a limited
search space (determined by the label space), if the solution is not reachable
from the intial position using the current label space, the algorithm will fail.
Another factor that is crucial for the success of the algorithm is the similarity
measure used to decide whether or not two patches coming from different
images correspond to the same anatomical structure. The study of different
similarity measures is outside the scope of this paper; however, note that in
order to use the method in other image modalities, it will be necesary to choose
an accurate similarity measure and calibrate the parameters accordingly.

Comparison with other methods in the field of slice-to-volume registration
is a complicated task, mainly because of the lack of public datasets. Here
we include some of the results reported by other state of the art methods
for their own datasets, in terms of accuracy and/or performance. In [10] for
example, authors report a mean Target Registration Error (TRE) lower than
1 mm when estimating rigid transformations in a monomodal MRI dataset of
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prostate images (for a pixel size of 1.5× 1.5× 3 mm). Random initializations
were generated by modifying the ground truth position with displacements
of 10 mm and rotations of 10deg maximum. The Matlab implementation of
their algorithm took between 36 sec and 107 sec depending on the algorithm
configuration. In [23], authors tested on a multimodal dataset formed by 2D
ultrasound and CT volumes of the heart. They report errors around 1.56 ±
0.78 mm when estimating rigid transformations on CT images with 0.6 mm
isotropic resolution, using initializations with uniformly random shifts in the
range −5 to 5 mm. They achieve quasi real time performance with execution
times around 4 sec. Another interesting example to compare with is the multi-
slice to volume registration case that tackles [25] applying it to MRI-guided
transperineal prostate biopsy. Authors report that deformable registrations
were accurate to within 2 mm in images with a slice spacing of 3.6 mm. The
execution time for the complete deformable registration algorithm is about
30 sec. Even if it is not possible to do a fair comparison mainly because of
the lack of standard benchmarks, by observing these examples we can clearly
remark that our results are in the state of the art level. Moreover, visual
assessment on the obtained results seems to confirm that these are satisfactory
in the context of a clinical setting.

In terms of complexity, it is interesting to remark the difference with re-
spect to our previous method. The optimization complexity/difficulty heavily
depends on the maximum number of label combinations that the pairwise
cliques can take (this is the bottle neck for most optimization algorithms). In
this perspective, the complexity of the overparameterized model is given by
O(|L|2), where |L| is the cardinality (number of labels) of the label space. In
our new approach, we introduce two label spaces L1 and L2 that decouple the
previous one. To give an idea about the reduction in the complexity of our new
model, let us say that |L| = |L1.L2|. Because of the way in which we construct
our decoupled graph (as it is indicated in Figure 1), it is straightforward to
show that the complexity of the new model reduces now toO(max(|L1|, |L2|)2).
Therefore, because of the decoupling strategy, the complexity of the model re-
duces to the square of the cardinality of the biggest label space (instead of
being quadratic in the cardinalities of the joint space), with a slight increase
of the graphical model connectivity. Consequently, while the number of nodes
augment linearly, the number of labels is decreased in a quadratic order.

4 Conclusions

We presented a new method to perform slice-to-volume registration based on a
decoupled model that associates two local graphs to the plane selection and the
in-plane deformations while imposing consistency through direct connections
between the corresponding nodes. In order to solve this problem, we seek the
plane and the in-plane deformation that best matches our energy function. It
is important to remark that we just look for the in-plane deformations given
the nature of the problems we are trying to solve (mainly image fusion for
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IGS), where it is not useful to find out-of-the-plane deformations at least for
visualization purposes, even if they can exist.

As we have shown in the previous section, our method achieves state of
the art results while decreasing substantially the time of computation when
it is compared to our previous MRF based method that uses a unique high
dimensional label space [7]. It confirms our initial hypothesis, meaning that
decoupling the graphical model and labeling it using two lower dimensional
label spaces, we can achieve the same results while reducing the complexity of
our method.

We have also shown that the method is robust with respect to the type
of images we are registering. Since slice-to-volume registration has multiple
applications, other problems are under investigation (it should be noted that
such a task is complex due to the complete absences of public ground truth).
To this end, two clinical scenarios are currently under investigation, the first
refers to liver tumor resection guidance, while the second to US guidance
during prostate biopsy through fusion of intra-operative ultrasound and pre-
operative CT/MR.

In order to improve the quality of the results, specially in multimodal cases,
feature engineering must be considered. Future work includes adapting and us-
ing features specifically designed for multimodal registration such as the LC2

presented in [8] and the MIND descriptor presented in [2]. Furthermore, en-
ergy regularizers inspired on precise biophysical modeling and tissue properties
could lead to accuracy improvements as well. The underlying idea is to adapt
the ”smoothness” constraint of the deformation model by explicitly taking into
account organ specific motion/deformation constraints like for example in the
context of liver biopsies or brain tumor ablation.

Finally, we are investigating new methods to improve the parameters esti-
mation procedure. Energy parameters estimation based on machine learning
techniques [13] have to be considered as a future work if we want to exploit at
the maximum level the potential of the proposed method.
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