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Résumé

Dans cette thèse, nous étudions plusieurs structures neuronales à différentes échelles
allant des synapses aux réseaux neuronaux. Notre objectif est de développer et
analyser des modèles mathématiques, afin de déterminer comment les propriétés des
synapses au niveau moléculaire façonnent leur activité, et se propagent au niveau du
réseau. Ce changement d’échelle peut être formulé et analysé à l’aide de plusieurs
outils tels que les équations aux dérivées partielles, les processus stochastiques ou
les simulations numériques.

Dans la première partie, nous calculons le temps moyen pour qu’une particule
brownienne arrive à une petite ouverture définie comme le cylindre faisant la jonction
entre deux sphères tangentes. La méthode repose sur une transformation conforme
de Möbius appliquée à l’équation de Laplace. Nous estimons également, lorsque
la particule se trouve dans un voisinage de l’ouverture, la probabilité d’atteindre
l’ouverture avant de quitter le voisinage. De nouveau, cette probabilité est exprimée
à l’aide d’une équation de Laplace, avec des conditions aux limites mixtes. En util-
isant ces résultats, nous développons un modèle et des simulations stochastiques
pour étudier la libération vésiculaire au niveau des synapses, en tenant compte de
leur géométrie particulière. Nous étudions ensuite le rôle de plusieurs paramètres
tels que le positionnement des canaux calciques, le nombre d’ions entrant après un
potentiel d’action, ou encore l’organisation de la zone active.

Dans la deuxième partie, nous développons un modèle pour le terminal pré-
synaptique, formulé dans un premier temps comme un problème de réaction-diffusion
dans un microdomaine confiné, où des particules browniennes doivent se lier à de
petits sites cibles. Nous développons ensuite deux modèle simplifiés. Le premier
modèle couple un système d’équations d’action de masse à un ensemble d’équations
de Markov, et permet d’obtenir des résultats analytiques. Dans un deuxième temps,
nous developpons un modèle stochastique basé sur des équations de taux poisson-
niens, qui dérive de la théorie du premier temps de passage et de l’analyse précédente.
Ce modèle permet de réaliser des simulations stochastiques rapides, qui donnent les
mêmes résultats que les simulations browniennes naïves et interminables.

Dans la dernière partie, nous présentons un modèle d’oscillations dans un réseau
de neurones, dans le contexte du rythme respiratoire. Nous developpons un mod-
èle basé sur les lois d’action de masse représentant la dynamique synaptique d’un
neurone, et montrons comment l’activité synaptique au niveau des neurones conduit
à l’émergence d’oscillations au niveau du réseau. Nous comparons notre modèle à
plusieurs études expérimentales, et confirmons que le rythme respiratoire chez la
souris au repos est contrôlé par l’excitation récurrente des neurones découlant de
leur activité spontanée au sein du réseau.
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Abstract

In the present PhD thesis, we study neuronal structures at different scales, from
synapses to neural networks. Our goal is to develop mathematical models and their
analysis, in order to determine how the properties of synapses at the molecular level
shape their activity and propagate to the network level. This change of scale can be
formulated and analyzed using several tools such as partial differential equations,
stochastic processes and numerical simulations.

In the first part, we compute the mean time for a Brownian particle to arrive
at a narrow opening defined as the small cylinder joining two tangent spheres. The
method relies on Möbius conformal transformation applied to the Laplace equation.
We also estimate, when the particle starts inside a boundary layer near the hole, the
splitting probability to reach the hole before leaving the boundary layer, which is
also expressed using a mixed boundary-value Laplace equation. Using these results,
we develop model equations and their corresponding stochastic simulations to study
vesicular release at neuronal synapses, taking into account their specific geometry.
We then investigate the role of several parameters such as channel positioning, the
number of entering ions, or the organization of the active zone.

In the second part, we build a model for the pre-synaptic terminal, formulated
in an initial stage as a reaction-diffusion problem in a confined microdomain, where
Brownian particles have to bind to small target sites. We coarse-grain this model
into two reduced ones. The first model couples a system of mass action equations to
a set of Markov equations, which allows to obtain analytical results. We develop in a
second phase a stochastic model based on Poissonian rate equations, which is derived
from the mean first passage time theory and the previous analysis. This model allows
fast stochastic simulations, that give the same results than the corresponding naive
and endless Brownian simulations.

In the final part, we present a neural network model of bursting oscillations in the
context of the respiratory rhythm. We build a mass action model for the synaptic
dynamic of a single neuron and show how the synaptic activity between individual
neurons leads to the emergence of oscillations at the network level. We benchmark
the model against several experimental studies, and confirm that respiratory rhythm
in resting mice is controlled by recurrent excitation arising from the spontaneous
activity of the neurons within the network.
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Introduction

Recent mathematical physics, stochastic modeling and analysis are now actively con-
cerned with questions related to cellular biology and neuronal structures. Synaptic
microdomains are an example which is at an intermediate scale between the molecu-
lar and the neuronal network level. These neuronal structures are underlying funda-
mental and yet not completely understood functions, such as learning and memory,
breathing, sleeping, and many more.
Motivated by understanding and analyzing these structures, which are continuously
investigated in both experimental and theoretical neuroscience, I developed in this
PhD thesis various models, asymptotic analysis and numerical simulations to study
how properties at the molecular level (synapse) propagate to the network level (neu-
ral networks). I developed and analyzed mathematical models using methods based
on asymptotic of partial differential equations, stochastic processes and numerical
simulations.
In the introduction I will first present the mathematical framework that I used, then
I will briefly introduce the biological background, and finally I will present the main
results that I obtained in this PhD.

Part I: Mathematical modeling of synapses at the
molecular level

Diffusion properties of molecules searching for small targets or narrow passages have
been studied under the generic term of narrow escape problems that I now summa-
rize. I will then briefly present the biological background for synaptic transmission,
followed by my model to compute the release probability.

The narrow escape problem

The narrow escape problem in diffusion theory is to calculate the narrow escape
time (NET) of a Brownian particle to a small absorbing window on the otherwise
reflecting boundary of a bounded domain (Fig. 1). It was first introduced in the
context of the theory of sound [200, 157], and was applied more recently for the
determination of biological cells function to take into account the cells particular
geometrical structures [85]. Indeed, the NET is ubiquitous in molecular and cellular
biology, including stochastic models of chemical reactions [80, 35], modeling the
early steps of viral infection in cells [115, 86], the regulation of diffusion between
the mother and daughter cells during division [65, 61], and many other models [84].
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The main goal in the NET problem is to develop asymptotic methods to compute

×

Ω

×××××××××

ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩ

∂Ωa

Figure 1: The narrow escape problem. A Brownian trajectory is reflected on
the boundary of a spherical domain Ω, and is absorbed at a small circular target
site ∂Ωa (red).

the NET explicitly in various geometries of cellular structures. A Brownian particle
is described by the stochastic equation

Ẋ =
√

2Dẇ (1)

where D is the diffusion coefficient and ẇ is white noise. The mean time < τ > (x)
for a Brownian particle starting at position x to reach at small absorbing domain
∂Ωa located on the boundary ∂Ω is the solution of the mixed boundary value problem
for the Laplace equation [85]























D∆uε(x) = −1 for x ∈ Ω

∂uε

∂n
(x) = 0 for x ∈ ∂Ω \ ∂Ωa

uε(x) = 0 for x ∈ ∂Ωa.

(2)

The difficulty here is to construct an asymptotic solution uε(x), in the limit when
the ratio

ε =
|∂Ωa|
|∂Ω| (3)

tends to zero. The NET diverges as the absorbing part of the boundary shrinks, thus
rendering the computation a singular perturbation problem. The computation is
related to the calculation of the principal eigenvalue of the mixed Dirichlet-Neumann
problem for the Laplace equation [85, 84, 174].
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Asymptotic analysis of the narrow escape problem

There are two different approaches to solve equation 2 that I discuss now.
A first approach is based on the Neumann’s function, and Helmholtz integral

equation [174]. To calculate the NET (eq. 2) in domain Ω, this method uses the
Neumann function N(x, ξ), solution of the boundary value problem:















∆xN(x, ξ) = −δ(x − ξ) for x, ξ ∈ Ω

∂N(x, ξ)

∂n(x)
= − 1

|∂Ω| for x ∈ ∂Ω, ξ ∈ Ω.
(4)

Using Green’s identity to derive an integral representation for uε for ξ in Ω, we have
the representation,

uε(ξ) =
1

D

∫

Ω
N(x, ξ)dx +

∫

∂Ωa

N(x, ξ)
∂uε

∂n
dSx +

1

|∂Ω|
∫

∂Ω
uε(x)dSx, (5)

and the average of the NET over the boundary is solution of the Helmholtz integral
equation

∫

∂Ωa

N(x, ξ)
∂uε

∂n
dSx = − 1

|∂Ω|
∫

∂Ω
uε(x)dSx for ξ ∈ ∂Ωa. (6)

For ξ outside of the boundary layer located near the absorbing hole ∂Ωa, this rep-
resentation allows computing the leading order approximation of the NET. For ex-
ample, the NET in a three-dimensional domain Ω, when the target is a circular
absorbing window ∂Ωa of radius a centered at 0 on the boundary ∂Ω (Fig. 1), is
given by [85]

uε(x) =
|Ω|

4aD

[

1 − L(0) +N(0)

2π
a ln a +O(a)

]

, (7)

where L(0) and N(0) are the principal curvatures of the surface at the center of the
absorbing boundary ∂Ωa. The third order asymptotic expansion can be found when
Ω is a sphere [27] using the matched asymptotic approach (see below). When the
absorbing window is located at a corner of angle α in dimension 2, then [85]

uε(x) =
|Ω|
Dα

[

ln
1

ε
+O(1)

]

. (8)

This method has also been extended to the NET on Riemannian manifolds [181,
179, 180, 87].

In [201, 202] an asymptotic framework, based on combining matched asymp-
totic expansions and potential theory, was developed to analyze PDE problems
with strong local changes in the boundary conditions. In this approach, a bound-
ary layer solution is constructed near the absorbing the boundary of small size ε
[201, 202]. This approach requires a sufficiently smooth boundary in a neighbor-
hood of the absorbing window. The method consists in stretching the domain near
the absorbing window, which allows expanding the solution in power of ε and re-
veals the leading-order boundary layer solution. The solution in the outer region
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(outside the boundary layer) can then be matched with the boundary layer solution
to find the asymptotic solution of the NET. This method was developed mainly in
[27, 201, 202, 203, 107]. In three dimensions, the method was used in [202], where
the boundary layer problem is computed from the classical electrified disk problem
[91].

Brownian escape through a small cusp: The dire strait prob-
lem

Contrary to freely accessible small targets (Fig. 1), the mean time of a Brownian
particle to reach a target located within a narrow cusp, the Dire Strait Time (DST),
is much longer [83] (Fig. 2). Finding asymptotic expressions for such search times

A

×

Ω̄
××××××××××××××××××××

¯̄̄̄̄̄ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩ

∂Ω̄a

B

Σ̄R
¯̄̄̄̄̄̄̄̄̄̄ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣRRRRRRRRRRRRRRRRRRRRRRR

∂Σ̄R,a

Figure 2: Brownian trajectories escaping through a small absorbing win-
dow at cusp-like geometries. A: A Brownian trajectory is reflected between two
tangent spheres (blue and green), and is absorbed at a small absorbing ribbon (red)
at the end of a cusp-like geometry. B: The domain is a ball connected smoothly to
a funnel-shaped cusp, with radius of curvature R at the cusp.

remains challenging both numerically and analytically. Numerically, because it re-
quires very long simulations, leading to many inaccuracies, and this is not even suf-
ficient to guess asymptotic formulas. From an analytical point of view, the classical
methods developed for the narrow escape problems do not apply. Indeed, the cusp
geometry at the small hole creates singularity that prevents the use of Neumann’s
functions [84, 85, 86]. To circumvent this difficulty, the cusp can be de-singularized
using conformal mapping, which allows using the matched asymptotics approach
in the image domain to determine the solution [82, 75]. An overview of the main
results for the NET/DST are presented in chapter 1.
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Asymptotic solution of the dire strait problem

The new results presented in chapter 2 of this thesis relies on the construction of
an asymptotic solution of equation 2 when the small absorbing target is located
at the end of a cusp (see Fig. 2A-B). The analytical computation of these search
times presents several difficulties due to their particular cusp-like geometry, that I
overcame using the Möbius conformal mapping and asymptotics of elliptic PDEs.
The first result is the asymptotic approximation of the NET in the domain of Fig. 2A
delimited by two tangent spheres, where the target is a small ribbon of height ε
joining the two spheres (red). For the 2D problem, I used the following Möbius map

f(x) =
1

x
= ω, (9)

to send the cusp region in the initial domain Ω into a long rectangular domain Ω̃.
Using matching asymptotics in Ω̃, I obtained the expansion of the solution

uε(x) =

√
2R|Ω|

2D
√
ε

(

1 −
√

2Rε
Re(x)

|x|2
)

, (10)

where R is the radius of the green ball (Fig. 2A). We found the leading order term

〈τ〉 =

√
2R|Ω|

2D
√
ε

(1 + o(1)) . (11)

For the three-dimensional problem in domain Ω̄ (Fig. 2A), the rotational symmetry
of the problem allows the reduction to a two-dimensional one in the previous domain
Ω. Using again the mapping function f (eq. 9) and setting uε(x) = vε(ω), I obtained
the mapped equation in domain Ω̃:

|ω|4∆vε(ω) +
|ω|2

Re(ω)

(

(

Im(ω)2 − Re(ω)2
) ∂vε

∂s
(ω) + 2 Re(ω) Im(ω)

∂vε

∂t
(ω)

)

= − 1

D
for (ω) ∈ Ω̃ (12)

∂vε

∂n
(ω) = 0 for ω ∈ ∂Ω̃ \ ∂Ω̃a

vε(ω) = 0 for ω ∈ ∂Ω̃a.

Using matching asymptotics, I determined the asymptotic formula for the DST of
a Brownian particle to a small ribbon that connects a ball and its tangent plane
(Fig. 2A):

〈τ〉 =
|Ω̄|

4πDε
, (13)

where |Ω̄| is the volume of the 3D domain and ε is the height of the ribbon, whose
surface is Srib =

√
2Rε3/2. This formula is valid for a general domain, as long as the

cusp geometry is preserved.
The second result corrects the formula for the search time for a Brownian particle

17



Introduction

to escape through a narrow cusp located at the end of a funnel in a three dimensional
bounded domain Σ̄R (eq. 2, FIG. 2B) [83]. The radius of curvature at the cusp is R,
and the absorbing boundary is a small disk of radius ε. The rotational symmetry
of the domain in cylindrical coordinates (ρ, φ, z) allows again the reduction to a
two-dimensional problem in the domain ΣR = Σ̄R ∪ {φ = 0}:

∂2u

∂ρ2
(ρ, z) +

1

ρ

∂u

∂ρ
(ρ, z) +

∂2u

∂z2
(ρ, z) = − 1

D
for (ρ, z) ∈ ΣR

∂u

∂n
(ρ, z) = 0 for (ρ, z) ∈ ∂ΣR \ ∂ΣR,a (14)

u(ρ, z) = 0 for (ρ, z) ∈ ∂ΣR,a.

In the domain Σ1, with radius of curvature one at the cusp, the Möbius transforma-
tion is given by:

f(ξ) =
ξ − αε

ξ + αε
, (15)

αε =
√

ε (1 + ε/4),

which maps Σ1 into a narrow banana-shaped domain Γ. Setting ω = f(ξ) = reiθ,
Equation (14) is mapped into

|1 − ω|4
4α2

ε

∆vε +
|1 − ω|2

αε(1 − |ω|2)

[

∂vε

∂r

∂r

∂ρ
+
∂vε

∂θ

∂θ

∂ρ

]

= − 1

D
for ω ∈ Γ

∂vε

∂n
(ω) = 0 for ω ∈ ∂Γ \ ∂Γa (16)

vε(ω) = 0 for ω ∈ ∂Γa.

Solving asymptotically equation (16) using matching asymptotics gives the solution
in the image domain

vε(θ) =
|Σ̄1|

Dπε
√
ε

(sin(θ) + π − θ) (17)

+
α2

ε

15D

[

2 ln

(

1 − cos(θ)

2

)

− 2 (1 + cos(θ)) +
3

cos(θ) − 1
+

3

2

]

.

The new formula for the NET is:

uε =
|Σ̄R|

√
R

Dε
√
ε

+O(1), (18)

where R is the radius of curvature at the cusp.
Because the DST is a rare event, the probability density function of the time

spent in a domain prior to escape, in the limit of small target size, is dominated by
a single exponential decay [175]. The exponential rate is therefore the flux into the
absorbing target. This single exponential result allows coarse-graining microscopic
model of reaction-diffusion into Markovian jump processes, where the rate is the
flux on the absorbing boundary equal to the reciprocal of the DST. Before showing
how the asymptotic computations presented here are applied in the neurobiological
question I was interested in, I shall now briefly introduce some basic notions about
synaptic transmission.
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Background for synaptic transmission and neuronal organi-
zation

There are about 1011 neurons in the human brain, each containing about 103 synapses,
a structure that permits a neuron to pass an electrical or chemical signal to another
cell. Synapses are essential to neuronal functions. Chemical synapses are divided
into three different parts, the pre-synaptic terminal (a portion of the signal-passing
neuron), the synaptic cleft, and the post-synaptic terminal (a portion of the target
neuron) (Fig. 3). The role of the various geometries of synapses is still unclear,
though their morphological changes in cognitive pathology such as in epilepsy and
autism spectrum disorders, indicate that they may be involved in regulating elabo-
rated neuronal functions. The structure-function approach in modeling and analyz-
ing these structures can possibly be the key to bridge the gap between the molecular
and the cellular scales.

A chemical synapse transmits an electrical signal (an action potential, AP),
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receptors
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AP

Figure 3: Functional organization of chemical synapses. The synapse is com-
posed of a pre-synaptic terminal, where an incoming action potential leads to the
opening of voltage gated calcium channels (blue). The consecutive entry of calcium
ions (orange) triggers the fusion of vesicle with the synaptic membrane, and the lib-
eration of neurotransmitters (purple) in the synaptic cleft. The neurotransmitters
diffusing in the cleft can find specific receptors (fuschia) located in the post-synaptic
terminal (green). The binding of neurotransmitters on these receptors triggers the
conversion of the chemical signal into an electrical signal in the post-synaptic neuron.
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driven by the quick rise and fall of the membrane potential of the presynaptic neuron,
to the postsynaptic neuron through a complex molecular process. An incoming AP
leads in the presynaptic terminal to the opening of voltage-gated-calcium-channels
(VGCC) and to the entry of calcium ions. The VGCC are located at the Active
Zone (AZ), a dense region apposed to the post-synaptic neuron, where some vesi-
cles are attached to the presynaptic membrane, waiting for fusion (docked vesicles).
The calcium ions must bind to specific molecules on the docked vesicles to trigger
their fusion with the synaptic membrane, and the liberation of neurotransmitters
in the synaptic cleft. The neurotransmitters diffusing in the cleft can bind specific
receptors located in the post-synaptic terminal. The binding of neurotransmitters
on these receptors triggers the conversion of the chemical signal into an electrical
signal in the post-synaptic neuron.

The frequency at which neuronal APs are produced is known as the neuron’s
firing rate. This process of information transfer is stochastic, and the probability
of vesicular release (the release probability) is a crucial factor in the regulation of
signal propagation in neuronal networks. Indeed, the reliability of neurotransmitter
release can be highly variable: experimental data from electrophysiological record-
ings, molecular and imaging studies have demonstrated that synaptic terminals can
individually modify their neurotransmitter release probability dynamically, through
local regulation.

Modeling the synaptic compartments

Modeling the synaptic terminals and the synaptic cleft has been a challenge for
decades. The synaptic cleft is a small gap between the pre- and postsynaptic termi-
nals, where neurotransmitters are released from the pre-synaptic vesicles and diffuse
to bind to specific receptors located on the post-synaptic neuron. Computational
studies using diffusion models have shown that the geometrical components of the
cleft, such as cleft height and localization of vesicular release, shapes the post-
synaptic current [207, 122]. More recent studies, using Monte-Carlo simulations
[59] or narrow escape theory (NET) [86], have estimated the probability to bind to
receptors on the post-synaptic neuron. This probability is very low, which is com-
pensated by a large number of neurotransmitters [190].

Binding of neurotransmitters on receptors trigger the opening of channels located
in the post-synaptic terminal. Models of diffusion in the post-synaptic terminal have
accounted for its geometry such as a bulbous head connected to the dendrite through
a thin neck. This microstructure can contain few to thousands of calcium ions, and
its geometry allows to compartmentalize them, as shown by using coarse-grained
reaction-diffusion models of Langevin equations [78, 88, 76].

The first empirical formula for estimating the release proba-
bility

In their pioneering work, the electrophysiologists Katz and Miledi [101, 102] suc-
ceeded to link the release probability Pr for a vesicle to the number of available
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release sites NF and the quantal size q, which is the smallest signal that can be
transmitted to the post-synaptic neuron, coming from the release of a single vesicle:

Pr = qNF , (19)

and proposed a model for synaptic facilitation (SF) based on the accumulation of
calcium in the pre-synaptic terminal. Further studies have shown that other bio-
physical mechanisms such as binding to calcium buffers would affect this model.

Several models [130, 150] are now based on reaction-diffusion equations that
describe in details the chemical reactions involved in the terminal, and reproduce
numerically some relevant aspects of transmission and plasticity. Nevertheless, these
non-stochastic models ignore the spatial heterogeneity, temporal fluctuations or dif-
fusional barriers. They do not account for the particular organization of the AZ, or
the specific geometry of the terminal and the distribution of vesicles. A recent model
of the AZ [103] uses Monte-Carlo simulations to understand how the organization of
calcium channels influences the release probability, but without taking into account
the geometry of the docked vesicles. They conclude that channels must be localized
at some distance from the vesicles in order to agree with experimental data. The
relative distribution of the vesicles compared to VGCC geometry remains poorly
understood [150, 145, 169]

Toward a new model for the release probability based on the
dire strait time computation

The major characteristics influencing the release probability at a synapse is thought
to be the number and organization of the vesicles and VGCC at the AZ, and the
number and types of calcium buffers, which are specific proteins in the terminal that
bind calcium ions to regulate their concentration in the cell. The relative position
of the calcium channels and the vesicles is not completely answered. Indeed, to
observe their organization, a nanometer precision would be needed, which is not yet
achieved even by the most advanced superresolution microscopy.

To address the question of the influence of the relative position of channels rel-
atively to vesicles, I present in the second part of chapter 2 a model of vesicular
fusion triggered by the diffusion of calcium ions in the pre-synaptic terminal. In
the terminal, calcium ions enter mainly through calcium channels (N or P/Q-types)
located within the AZ. They trigger the release of a docked vesicle by binding to
target molecules (such as synaptotagmin) located close to a complex of proteins con-
necting the synaptic membrane and the vesicular membrane Fig. 4 (SNARE protein
complex). The arrival of several ions at the target triggers the fusion of the vesicles
with the terminal membrane, and ultimately to vesicular fusion, which models the
synaptic response [186]. Although the binding of few calcium ions (from 4 to 8) is
enough to trigger fusion, it is still an open question to understand how these ions
find such small molecular sites and how the mean time and probability depends
on the local geometry and calcium channel location. The organization of the AZ
is thought to play a major role in modulating the synaptic response: are vesicles
densely packed or far from each other? are channels clustered? Do they co-localize
with vesicles? we have proposed several answers to these questions using analytical
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solutions of the model equations and associated stochastic simulations.
To investigate the possible mechanism underlying the modulation of the synap-
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A B

Figure 4: Modeling SNARE complex activation by calcium ions. A:
Schematic representation of the protein organization connecting the vesicles and
the pre-synaptic membrane. Calcium ions enter through ionic channels. They dif-
fuse to activate key proteins such as synaptotagmin and SNARE Complex located
between the vesicle and synaptic membrane. The binding of several ions is required
to activate the SNARE Complex. B: Model of SNARE activation. The Brownian
particle (green ball) has to find its target site (red cylinder) trapped between a plane
(blue) and a tangent sphere (orange).

tic response, I built a diffusion model to estimate the first time for diffusing particles
(calcium ions) to find small target molecules hidden in a cusp between the pre-
synaptic terminal membrane and the vesicular membrane (geometry of Fig. 4B),
depending on the AZ organization (Figure 5A). The novelty in my approach is to
consider the particular geometry of the vesicles, attached to the synaptic membrane
through the SNARE complex. I model this geometry using a sphere (the vesicle)
tangent to a plane (the synaptic membrane).

To model calcium ions, I neglect their charge, and represent their motion us-
ing Brownian particles. The activation of the SNARE complex is modeled by the
arrival of several Brownian particles under the vesicles, in a domain delimited by
a small cylinder joining the sphere and the plan, and centered at their tangential
point (Fig. 4B, target cylinder in red). With this configuration, the target site is
located at the end of a cusp, and the activation time problem falls into the DST for
the geometry presented above, eq. 13, Fig. 2. Because the distance of the calcium
channels to the center of the vesicle can vary, I also investigated how this change
can affect the probability of vesicular release, in a model of square lattice vesicular
organization (Figure 5A).

Computing the release probability from the Splitting proba-
bility

The analysis of the DST reveals that equation 13 gives relevant results only when a
Brownian particle starts outside a boundary layer (BL) near the cusp. Nevertheless,
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A
A.Z.

B

Ω̄PΩ̄P

Figure 5: Model of vesicular release activation in the pre-synaptic terminal.
A: Active Zone organization. Vesicles (green) are regularly distributed on a square
lattice. Calcium channels (red) are uniformly distributed in the AZ. B: Elementary
3-dimensional domain representing the boundary layer around the vesicle. I compute
the splitting probability for an ion starting in the bottom of the domain, to reach
the target (red) before leaving the BL through the orange boundary. The other
boundaries are reflecting.

the co-localization of channels and vesicles was observed at several synapses [133]
and is thought to be an important source of heterogeneity in the release probability.

In complement with the formula 13, I investigated the time and proportion of
particles reaching the target when the initial position starts is in a boundary layer
close to the target. Using analysis and numerical approximations, I computed the
splitting probability p(x) for a Brownian particle starting at point x inside the BL
to reach its target, before leaving the BL. The splitting probability p(x) satisfies the
mixed boundary-value Laplace equation [100, 174, 189]:
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∆p(x) = 0 for x ∈ Ω̄P

p(x) = 1 for x ∈ ∂Ω̄P,a

p(x) = 0 for x ∈ ∂Ω̄P,out

∂p

∂n
(x) = 0 for x ∈ ∂Ω̄P \

(

∂Ω̄P,a ∪ ∂Ω̄P,out

)

,

(20)

where Ω̄P (Fig. 5B) represents the elementary BL domain, ∂Ω̄P,a (red) is the part
of the boundary representing the target, and ∂Ω̄P,out (orange) the border by which
the particle leaves the BL.

Using asymptotic analysis and numerical approximation, I found an analytical
approximation ps(r) for the splitting probability to reach the absorbing window
before leaving Ω̄P :

ps(r) = 1 −
1 − 9.8

R2ε

H3

1 − 2Rε

H2

(

1 − 2Rε

r2

)

, (21)

where r is the distance between the channel and the vesicle, R is the radius of a
vesicle, 2H is the distance between two vesicles and ε is the height of the ribbon
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target. Numerical simulations show a nice agreement between the asymptotic for-
mula and Brownian simulations for different values of R, H and ε.

By neglecting the dynamics of calcium ion unbinding events, I was able to com-
pute the release probability of a vesicle, pact(r,N), which is the probability to find at
least T particles inside the target, when N particles enter through a channel located
at a distance r from the vesicle. Because the probability to find exactly k ions out
of N follows the Binomial distribution B(N, p(r)), I obtain that

pact(r,N) = 1 −
T −1
∑

k=0

(

N

k

)

p(r)k (1 − p(r))N−k , (22)

where p is the probability for one particle to reach the target before leaving Ω̄P .
Using the approximation eq. (21), I found an explicit expression for the probability
of activation pact(r,N) after a single channel opens.

In conclusion, these formulas indicate that the probability of vesicular release
depends drastically on the calcium channel location, decreasing from 1 to practically
0 in only few nanometers. Moreover, the vesicular organization of the AZ is also
a determinant factor, due to the local geometry of the target underneath a vesicle.
When channels are uniformly distributed, a sparse distribution of vesicles at the AZ
requires a high number of entering ions in order to trigger fusion. However, when
channels are co-localized with vesicles, the activation probability is significantly
increased. A reliable synapse requires a nanometer precision of the channel location,
but this high requirement can be compensated by increasing the initial number of
ions.
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Part II: Coarse-grained multiscale simulations of
molecular dynamics

Reaction-diffusion problems in confined microdomains where particles have to bind
to small target sites can be coarse-grained into Markovian jump processes [79] using
the NET/DST approximation. This approach takes advantage of the fact that the
arrival process of Brownian particles moving in a large bounded domain to a small
absorbing target is Poissonian, with a rate equals to the total flux in the absorb-
ing boundary [138, 174, 175]. This rate is the reciprocal of the NET/DST, and
captures many of the geometrical features of the domains. Coarse-graining binding
and unbinding using a Markov jump approach is a key step for analyzing stochastic
chemical reactions, circumventing inherent difficulties of the full reaction-diffusion,
formulated as coupled partial differential equations that are much harder to solve.

Performing stochastic simulations of diffusion processes at a molecular level in
confined microdomains is also challenging. Few to many particles have to be simu-
lated and tracked and several spatial scales are involved and in particular when they
have to bind small targets. Naive stochastic simulations of Brownian particles are
inefficient, due to the long time for finding a small target, which is a rare event. Fol-
lowing simultaneously all diffusing particles prevents an effective use of an adaptive
time step near the small target, which leads to endless simulations. On the other
hand, solving the associated partial differential equations is difficult due to the time
dependent boundary conditions. In chapter 3, I propose two different approaches
to simulate effectively diffusion processes in microdomains, based on the NET/DST
presented in chapter 2, and on the coarse-graining into Markovian jump processes.

Modeling calcium dynamics in neuronal synapses

In chapter 3, I use my model for the release probability (chapter 2) in the context
of a more general model for the pre-synaptic terminal that I shall describe now.
Following an AP, VGCCs located at the AZ open, leading to the entry of calcium
ions in the terminal. These ions diffuse in the terminal and reach different targets
such as synaptotagmin located underneath a vesicle, or some calcium buffers. They
can otherwise be extruded from the terminal by pumps, or leave through the neck.
As previously explained, the binding of 4 to 8 calcium ions on the small molecular
targets located underneath a docked vesicle activates a complex molecular machin-
ery, which leads to fusion. As presented in chapter 2, the success of this process
depends on the relative position between the vesicles and the channels, and their
organization at the surface.

At equilibrium, calcium concentration is very low in the terminal, containing
only a few ions. The entry of thousands of ions leads to a transient peak of calcium,
leading to vesicular fusion. The concentration goes back to equilibrium in tens of
ms. The release probability depends mainly in the shape and amplitude of this peak,
which motivates the study of this transient regime. However, the resolution of the
reaction-diffusion system of equations that describes the evolution of the number of
particles in the terminal and the associated release probability is not easy. To imple-
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ment Brownian simulations, the terminal is modeled as a ball smoothly connected
to a short cylinder (neck), and although calcium are charged ions, they are modeled
as Brownian particles (Fig. 6). The small size of the targets and the particular cusp
geometry at each vesicle prevent the efficient use of a naive Brownian simulation. To
circumvent this difficulty, I built a stochastic description based on rate equations,
and a system of mass-action equations coupled to a Markov chain. I shall describe
first the reaction-diffusion system of equations that describes the evolution of the
number of particles in the terminal.

The reaction-diffusion system of equation

The classical reaction-diffusion system of equations in the domain Ω representing the
presynaptic terminal, describes the density of free particles in the terminal (M(x, t)),
the density of buffer sites with (B(1)(x, t)) and without (B(0)(x, t)) bound calcium
ions and the density of targets with j bound vesicles: S(j)(x, t), j ∈ 0..T , where T
is the number of ions needed to trigger fusion. The system of equation is
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∂M(x, t)

∂t
= − ∇ · JM(x, t) − k0M(x, t)B(0)(x, t) + k−1B

(1)(x, t)

− kSM(x, t)
T
∑

j=0

S(j)(x, t)

∂B(0)(x, t)

∂t
= − ∇ · J

(0)
B (x, t) − k0M(x, t)B(0)(x, t) + k−1B

(1)(x, t)

∂B(1)(x, t)

∂t
= − ∇ · J

(1)
B (x, t) − k−1B

(0)(x, t) + k0M(x, t)B(1)(x, t)

∂S(0)(x, t)

∂t
= − kSM(x, t)S(0)(x, t),

∂S(i)(x, t)

∂t
=kSM(x, t)

[

S(j−1)(x, t) − S(i)(x, t)
]

, i = 1..T − 1

∂S(T )(x, t)

∂t
=kSM(x, t)S(T −1)(x, t),

(23)

where the fluxes are defined by

JX(x, t) = −D∇X(x, t), for X ∈ {M,B(0), B(1)}. (24)

The constant k0 (resp. k−1, resp. kS) represents the binding to the buffers (resp.
the unbinding to the buffers, resp. the forward reaction rate on the target). The
initial conditions for B(0)(x, t), B(1)(x, t) and S(j)(x, t), j ∈ 0..T , are

B(0)(x, 0) = B0(x), B(1)(x, 0) = 0. (25)

S(0)(x, 0) = S0(x), S(j)(x, 0) = 0 for 1 ≤ j ≤ T . (26)

and the boundary conditions are reflective on all the boundary ∂Ω.
The initial and boundary conditions for M(x, t) are the initial reactant density
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c0(x), absorption at the absorbing boundary, and flux given by the motion of the
reflective boundary,

M(x, 0) = c0(x) for x ∈ Ω(t) (27)

M(x, t) = 0 for x ∈ ∂Ωa(t) (28)

JM(x, t) · ν(x) = 0 for x ∈ ∂Ωr(t) \ SAZ (29)

JM(x, t) · ν(x) =
Jtot(t)

SAZ
for x ∈ SAZ . (30)

Jtot is the flux of paticles entering through the channels. The boundary of the
domain Ω is partitonned into three parts: one containing the pumps and the bottom
of the neck denoted ∂Ωa(t), which absorbs particles, and the remaining surface of
the domain, denoted ∂Ωr(t). The surface SAZ represent the AZ where vesicles
are located near the small target. This ensemble of reaction-diffusion equations
described the entrance of ions in a pre-synaptic terminal and the distribution of
fused vesicles can be read in the variable

∫

Ω S(T )(x, t)dx.

+

Ca2+

Ca2+

Ca2+

Calcium ions

Buffers

Vesicles

Calcium channels

Calcium pumps

AZ

Figure 6: Schematic representation of the pre-synaptic terminal. The ter-
minal is modeled as a sphere (head) connected to a cylinder (thin neck). Calcium
ions are Brownian particles (orange spheres) that enter through calcium channels
located at the AZ (orange). They are reflected everywhere on the boundary except
at the pumps (red) and at the upper part of the cylinder. They can be extruded
through pumps or bind buffers (green spheres) and the small targets underneath the
vesicles (vesicles in blue).
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Two reduced models for calcium dynamics in neuronal synapses

To reduce our full model of the pre-synaptic terminal, I used previous computations
of the NET/DST [85, 70] and their consecutive Poissonian rates, to coarse-grain
into rates the Brownian dynamics of particles and their arrival underneath vesicles,
buffers, pumps and their exit through the neck.

Note that the arrival of a Brownian particle to a small target is not any more
Poissonian when the particle starts in a boundary layer near the target. Hence, I
cannot coarse-grain the entry of calcium through channels located at the AZ using
a Poissonian rate. To circumvent this difficulty, I divided the domain into two sep-
arated compartments: the boundary layer surrounding the docked vesicles and the
bulk outside of the boundary layer. The flux of ions between the two compartments
can be deduced from the study in chapter 2, were I computed the probability to
reach the target before reaching the bulk, and the DST to reach the target from the
bulk. Using these considerations I built two reduced models that I described below,
a stochastic model based on rates equations and a system of mass-action coupled to
a Markov chain.

Stochastic description based on rate equations

The stochastic model allows stochastic simulations without entering into a full Brow-
nian simulations. In the bulk compartment, the evolution of the number of free
and bound particles, Nf and Nb, is computed using the following rates: the ar-
rival of Brownian particles to a small target. The binding times are exponentially
distributed with a rate λ equals to the reciprocal of the NET/DST τ :

λ =
1

τ
. (31)

When there are N independent Brownian particles in Ω, the rate constant for the
first binding time T to a target site is λ(N) = λN. I discretized the time with a step
∆t (small enough), and at each time t, I replaced the simulation of the Brownian
trajectories by the Poissonian arrival events τX to the small target X ( X ∈ {buffers,
pumps, vesicles, exit}). At each small site available, the rate is λNf(t)∆t, when there
are exactly Nf (t) free particles.

The conditional probability that a binding event occurs between time t and t+∆t
when there are Nf (t) particles is:

P(t ≤ T < t+ ∆t|Nf (t)) =
Nf (t)

τX
∆t. (32)

Finally, the released rate of a particle to a buffer binding site is Poissonian with rate
k−1∆t.

In the boundary layer compartment, I considered the flux of particles entering
through the channels, and separated the particles into the fraction reaching the
bulk, and the fraction arriving underneath a vesicle, using the splitting probability
presented in chapter 2. Specifically, at each discretized time t, zero to few particles
are entering through the channels. Each particle can either arrive underneath a
vesicle with probability ps(r) (eq. 21, Fig. 7), or go to the bulk compartment with
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Figure 7: Coarse-grained Markov-Mass action model: the mass action equa-
tions in the bulk are coupled to the Markov chain in the AZ, that models the arrival
of single particles to the target sites until the threshold T is reached. The influx of
calcium ions J(t) goes to the AZ with probability ps (eq. 21), and to the bulk with
probability 1 − ps.

probability 1 − ps(r), which depends on the channel/vesicle organization. Using
these two compartments, I tracked the number of particles bound on each vesicle and
computed the stochastic release times for different parameters and AZ organization.
This approach allows fast simulations that gives the same results but are much faster
than naive and endless Brownian simulations.

A system of mass action equations coupled to a Markov chain

The second model couples a system of mass-action equations in the bulk, to a Markov
chain in the boundary layer (Fig. 7). From this model, some analytical derivations
are even possible. The number of free and bound particles in the bulk Nf and Nb

are described by mass-action, which is a system of differential equations:


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
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








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
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
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


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
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



dNf

dt
(t) =k−1Nb(t) − k0(B0 −Nb(t))Nf(t) +

lV
∑

l=1

(

1 − ps(x
l)
)

J(t)

−


kpNp + kes +
NDock
∑

i=1

(

1 − pi
T (t, (xl)l)

)

kS



Nf(t)

+ T
NDock
∑

i=1





lV
∑

l=1

ps(x
l)q(xl, i)J(t) + kSNf (t)



 pi
T −1(t, (x

l)l)

dNb

dt
(t) = − k−1Nb(t) + k0(B0 −Nb(t))Nf(t),

(33)

where k0 =
1

τbuffers

, kp =
1

τpumps

, kS =
1

τvesicles

, kes =
1

τexit

. B0 is the total number

of buffer sites, k−1 is the unbinding rate from buffers, lV is the number of channels,
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Np is the total number of pumps, NDock is the number of docked vesicles and J(t)

is the flux of particle entering through one channel. The term
lV
∑

l=1

(

1 − ps(x
l)
)

J(t)

describes the flux of particles entered through the channels that join the bulk. The

term
NDock
∑

i=1

(

1 − pi
T (t, (xl)l)

)

kSNf (t) represents binding of particles coming from the

bulk on the docked vesicles not yet released. Finally, the last term represents the
flux of T ions entering the bulk after the fusion of vesicles.

In the boundary layer, the binding to the target sites located on the vesicles is
described by a Markov Chain, where pi

k(t, (xl)l), k ∈ 0..T i ∈ 1..NDock represents the
probability to have k particles bound on vesicle i, and where channels are positioned
at (xl)l=1..lV :




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dpi
0(t, (x

l)l)

dt
= −





lV
∑

l=1

ps(x
l)q(xl, i)J(t) + kSNf(t)



 pi
0(t, (x

l)l)

dpi
k(t, (xl)l)

dt
=





lV
∑

l=1

ps(x
l)q(xl, i)J(t) + kSNf(t)



×
(

pi
k−1(t, (x

l)l) − pi
k(t, (xl)l)

)

dpi
T (t, (xl)l)

dt
=





lV
∑

l=1

ps(x
l)q(xl, i)J(t) + kSNf(t)



 pi
T −1(t, (xl)l).

(34)

The term
∑lV

l=1 ps(xl)q(xl, i)J(t) represents the fraction of particles binding to vesi-
cle i immediately following their entry through channel l, summed over all the lV
channels. The initial conditions at time t = 0 are:

Nf (0) = 0 (35)

Nb(0) = 0 (36)

pi
k(0, (xl)l) = δk,0. (37)

Finally, the normalization is

∀i ∈ [1, NDock],
T
∑

0

pi
k(t, (xl)l) = 1. (38)

The system of ODEs 33-34 allows to compute the release probability pi
T (t, (xl)l) for

vesicle i. I compared results of the two models in the case of a single channel and
a single docked vesicle, for a uniform distribution of the channel and for different
values of the total number of buffers B0 (Fig. 8). I found a very good agreement
between the two methods.

I solved analytically the system of equations 34 for each target site i, and
for a channel distribution (xl)l. I considered that the flux of particles entering in
the boundary layer is gi(t, (xl)l) =

∑lV
l=1 ps(xl)q(xl, i)J(t) + kSNf(t). The mean

probability that k particles are bound at time t on vesicle i, averaged over the
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Figure 8: Time course of calcium in the pre-synaptic terminal and target
activation, in the case of a uniform distribution of channels. A: Time
evolution of the number of free calcium (normal line) and buffered calcium (dotted
line) for different values of the number of buffer sites. B: Comparison between
the stochastic model based on rates equations (red), and the system of mass-action
coupled to a Markov chain (blue). I compare both the number of free (normal line)
and buffered (dotted line) calcium for 200 buffer sites.

distribution of the channels, is given for k ∈ [0, T − 1]:

pi
k(t) = < pi

k(t, (xl)l) >(xl)l
(39)

=
∫

S
lV
AZ

1

k!

(∫ t

t0

gi(u, (xl)l)du
)k

exp
(

−
∫ t

t0

gi(u, (xl)l)du
)

f((xl)l)dx1...dxlV ,

and for k = T :

pi
T (t) = < pi

T (t, (xl)l) >(xl)l
(40)

=
∫

S
lV
AZ

exp
(

−
∫ t

t0

gi(u, (xl)l)du
)

∑

k≥T

1

k!

(∫ t

t0

gi(u, (xl)l)du
)k

f((xl)l)dx1...dxlV ,

where f((xl)l) represents the probability density function of the repartition of chan-
nels.

In summary, I derived here for the first time a coarse-grained simulation based
on the asymptotic computation of the DST, which allows replacing Brownian sim-
ulations by a Poissonian rate model. The second approach couples a continuum
ensemble of particles with a discreet ensemble of events described by a set of Markov
equations.

These two models of the presynaptic terminal reveals two different regimes in
the release probability: a short-rime regime (< 10 ms) where a large fraction of
vesicles are released due to the direct entry of calcium through the channels, and a
long regime where the release probability is strongly dependent on calcium buffers.
This approach can be used for any system of reaction, where the rare accumulation
of few particles in a domain containing many of them can trigger a cellular event
by binding to a fixed number of targets. These simple approaches allow running
efficient simulations and even get analytical results.
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Part III: Modeling bursting oscillations in neuronal
networks for the generation of pre-Bötzinger Com-
plex rhythms

This is the last section of my PhD that concerns modeling and simulations of syn-
chronous oscillations, that emerge in a network of asynchronous neurons.

Models and oscillations in neural networks

Oscillatory activity in a group of neurons is characterized by a synchronization of
their firing patterns that results in an almost periodic activity. This activity consists
in bursting times, when all neurons fire together, followed by quiet times. Oscilla-
tions in neural networks are widespread within the brain, in different circuits such
as the ones for breathing, chewing, swallowing, whisking, locomotion..., but also
in circuits involved in behaviors such as memory, sleep or consciousness, and they
may also play a role in neural development. How to generate oscillations in neural
networks? How to synchronize the neurons? The first pioneering works in modeling
neural network oscillations [196] are based on two complementary modeling tech-
niques. Some models are highly detailed to capture the complexity of individual
neurons [197, 195], and can contain several compartments (dendrite, soma, axon)
and/or different types of voltage gated channels. This allows to integrate various
stimulation conditions and inputs in a reasonable way. It is then possible to inves-
tigate many effects such as network size and connectivity.

Other models [44, 205, 28, 99] are based on reduced equations and simplified
phenomenological equations. The reduction can affect the number and types of
neurons or some characteristics of their anatomy, which leads ultimately to mean-
field equations. The main challenge is to keep enough details about the physiological
parameters, and to use the analysis to make predictions about the effects of param-
eter changes that can be tested experimentally.

In further modeling approaches, other distinctions were made between models,
depending on whether the oscillations arise within the individual neurons and then
synchronize across the network [17, 43, 23, 24, 16], or emerge at the population level
[206]. These last models are usually minimal models, which are not informative
about how the spike times of individual neurons relate to the network oscillations.
More recent models present a combination of the two, based or not on Hodgkin-
Huxley neurons [93, 194, 164, 22, 21].

Neural networks models for the pre-Bötzinger Complex

The pre-Bötzinger Complex (preBötC) is the neuronal network responsible for breath-
ing at rest in mammals. This oscillatory network shows rhythmic activity in in vitro
conditions, where bursting and silent periods alternate (Fig. 9). Although it has
been discovered more than twenty years ago [184], the exact mechanism responsible
for this neural activity remains controversial [53]. An early hypothesis was that
the neuronal activity is initiated by pacemaker neurons synchronized via excitatory
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synaptic connections [110]. Pacemaker neurons can be defined as neurons that can
generate intrinsically oscillatory bursts of action potential, even when they are iso-
lated from their neural network, in the absence of any synaptic input. For example,
neurons that control the heart rate are pacemakers. In the modeling approach of
the preBötC activity, the main minimal model for pacemaker neurons is based on a
single-compartment Hodgkin-Huxley (HH) formalism, with the addition of a sodium
current characterized by a fast activation and slow inactivation, that generates and
terminates the bursting activity [166, 23, 24, 193].

However, electrophysiological studies have shown that inhibiting pacemaker

Figure 9: Rhythmic activity in the pre-Bötzinger Complex. Medullary slice
containing the preBötC. Traces at right show a whole-cell recording from a rhythmi-
cally active neuron in the preBötC (upper), and inspiratory activity recorded from
the hypoglossal nerve (lower). extract from [184]

neurons in the preBötC do not suppress bursting [46, 140]. This lead to the group-
pacemaker hypothesis, where respiratory rhythm is thought to emerge from recur-
rent neuronal connections, without intrinsic neuronal bursting [53]. A first model
[164, 176] tested this hypothesis and propose a mean-field model, where bursts are
generated by the synaptic activation of a calcium current. The bursting activity of
the network is then stopped by the slow inactivation of a sodium current, as mod-
eled for pacemaker neurons. Nevertheless, to obtain an oscillatory rhythm, a regular
spiking activity must be present in the neurons to activates the synaptic current.
In my model that I shall describe below, I propose to test the group-pacemaker hy-
pothesis at the preBötC, by generating emerging network oscillations without any
regular activity at the neuronal level.

Model of robust network oscillations driven by synaptic dy-
namics in the pre-Bötzinger Complex

In chapter 4, I present a model to test the group-pacemaker hypothesis in the pre-
BötC. This model captures the activity of individual neurons within the network
and show how the spontaneous ectopic spiking of neurons leads to the emergence
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of oscillations at the network level. The network oscillations and synchronization
between neurons are only due to the synaptic dynamic at the neuronal level.

In our model, synaptic facilitation, that enhances neuronal excitability, converts
ectopic spontaneous spiking of few neurons into synchronized spiking of the whole
network through their recurrent connections, that creates bursting. Synaptic de-
pression (SD), that decreases the synaptic strength of a neuron, is expressed by
each neuron. SD stops their spiking activity, which silences progressively the net-
work and stop the bursting event, to enter in a quiet period. Our model differs
from previous efforts to test the pacemaker hypothesis [164]. In that model, the
induction of bursts in the network is triggered by the regular spiking activity of a
large fraction of the neurons. Moreover, burst termination and the quiescent pe-
riod between bursts comes from the intrinsic property of neurons, through a current
with slow inactivation expressed by all neurons, which recall the pacemaker neuron
models. In our model, oscillations appear as a network property emerging from
spontaneous neuronal activity without involving pacemaker neurons, or neurons ex-
pressing a rhythmic activity. This project has been carried out in collaboration with
Gilles Fortin and John. A. Hayes (INAF) for the experimental part.

To test the emergence of a rhythm in the preBötC, I built a neuronal network
where the electrical activity of each neuron is modeled using the classical Hodgkin-
Huxley (HH) system for the voltage of the membrane potential (Eq. 41). Each
neuron exhibits a spontaneous spiking activity represented by the addition of a
noise source term σẆ in the HH model. I considered a network of 400 neurons,
which is in the range observed experimentally. For each neuron k ∈ J0, 400K, the
HH model is:







































C
dV k(t)

dt
= − INa(nk, V k) − IK(nk, V k) − IL(V k)

+
∑

j connected to k

Isyn,j(x
j , yj

free, y
j
dock, V

j) + σẆ

dnk(t)

dt
= αn(1 − nk) − βnn

k,

(41)

where V k represents the membrane potential of neuron k, and INa, IK and IL are
respectively the classical sodium, potassium and leak currents.

∑

j connected to k

Isyn,j

represents the sum over all the neurons connected to neuron k, of the transmitted
synaptic currents. To determine the neuronal connections, I ordered the neurons on
a square lattice, and connected them sparsely within the network, using a connection
probability P(i → j) that decays with distance (Eq. 42, Fig. 10A):

P(i → j) = exp(−d(i, j)2/(2s2)). (42)

The synaptic current Isyn,j transmitted from neuron j to neuron k is proportional
to the amount of fused vesicles at neuron j’ synapses. To compute this current,
I derived a model of the pre-synaptic terminal based on the law of mass action
(Eq. 44), that accounts for synaptic facilitation and depression. This model is based
on the biological description of the time course of vesicles within the pre-synaptic
terminal [186, 161].
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Figure 10: Modeling the pre-Bötzinger Complex. A: Example of a neuronal
network (400 neurons) where neurons are located on a square lattice. The connec-
tions can be higher than 10 (red), between five and ten (blue), or less than five
(green). Neurons with no input or output are marked in green, without any cycle
around, such as number 16. B: Model of the synaptic vesicle cycle. Schematic rep-
resentation of the pre-synaptic button: vesicles are divided into two pools, diffusing
(green) and docked at the Active Zone (red) with transient ones (purple). After
fusion, vesicles recover and enter the recycling pool.

To model the synaptic dynamic of the neurons, I used as a basis the classical
facilitation-depression model of synapses [199, 198]. For the facilitation part, this
standard model introduces a facilitation factor x, which is elevated by each spike by a
certain amount and decays between spikes. The variable x could reflect, for example,
the concentration of calcium ions (responsible for neurotransmitter release), that
increases when a spike arrives in the presynaptic terminal and decreases because of
calcium extrusion between two spikes. For each neuron j, the facilitation parameter
xj(t) follows the dynamic:

dxj

dt
=

X − xj

τf

+ k(1 − xj)H(V j − T ).

I describe now our model for depression at synapses. Synaptic depression is de-
scribed classically as the depletion of vesicles following activation [186]. The classical
model for depression assumes that the synapse has a finite amount of resources, and
the rate of synaptic depression depends on the resource’s availability [199]. Each
pre-synaptic spike activates a fraction of resources which then quickly inactivate.
Nevertheless in this model, presynaptic stimulation through a spike train produces
a regime of stationary EPSPs postsynaptically after a few spikes, which does not
result in burst termination due to full depletion of available vesicles. To circumvent
this difficulty, I built a model that account for the depletion of docked vesicles using
a mass-action law model describing the state of the synaptic vesicles at time t.

In the terminal, vesicles can be in three different states: diffusing freely in
the bulk (yj

free), docked to the membrane (yj
dock), or recovering after fusion (yj

rec)
(Fig. 10B). The amount of freely diffusing vesicles yj

free is balanced between the in-
ward flux of vesicles arriving from the recovery state, and the outward flux of vesicles
binding to the membrane. This last flux is proportional to the fraction of available
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Figure 11: Network rhythmic activity Raster plot for the network generated in
figure 10A. Each dot represent an AP. During 100 sec, the synchronous rhythmic
patterns alternate between active and silent periods.

docking sites, and the fraction of vesicles freely diffusing. Similarly, the fraction of
docked vesicles yj

dock is given by the balance of inward vesicles binding to the mem-
brane, and of the flux of released vesicles following a stimulation. Assuming that
the total number of vesicles is fixed in the terminal, I get the conservation equation:

yfree + ydock + yrec = 1. (43)

Finally, the complete system of equations is:
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− 1
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free

[

1 +
xj −X

X
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]

dyj
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=
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τdock
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dock − yj
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)
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free

[

1 +
xj −X

X
H(V j − T )

]

− 1
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yj

dock

xj −X

X
H(V j − T ).

(44)

τdock (resp. τrec, resp. τrel) represents the mean time to attach to the membrane (resp.
to recover, resp. to release the vesicles). The maximal number of vesicles attached to
the membrane is ymax

dock, and H is the Heaviside function such that H(V j −T ) is equal
to one during an action potential, and zero otherwise. The synaptic current Isyn,j

is proportional to the amount of fused vesicles during an action potential (starting
at time t0): it0(t) = (yj

dock(t) − yj
dock(t0))H(V j − T ), see eq. 44. For each neuron,

I obtain a system of five equations, and through the synaptic current transmitted
from one neuron to another, the system contains 400×5 paired equations. I observe
that neurons synchronize, and the network expresses oscillatory pattern (Fig. 11),
with a frequency that depends on the various parameters of the system. The model
predicts that synaptic dynamics, based on facilitation and depression, and sponta-
neous neuronal activity can generate periodic bursting patterns within populations
of neurons that match in vitro preparations (Fig. 9, Fig. 11), without the need for
underlying neuronal rhythms.

The model was benchmarked against several key experimental studies of the
preBötC. First, I tested the robustness of the model by depolarizing the resting
membrane potential of the entire network. For this procedure, the model accounts
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for several experimental observations, and was able to reproduce the experimentally
measured periods and burst duration reported in [142]. Second, I studied the effect
of deleting random neurons on the network activity, and observed a decrease in the
rhythm period that matches the experimental slow-down of the rhythm in the face
of cumulative lesion of constituent neurons reported in [72]. The third step was to
investigate the consequences of gradually decreasing synaptic strength, which mimic
the application of the AMPA receptor blocker NBQX. Our model nicely reproduced
the slow-down of the rhythm observed in [136]. Finally, I determined the minimal
number of stimulations for burst induction in my model, and found that stimulating
few neurons were sufficient to trigger a burst, a result that is in keeping with the
observed preBötC ability to evoke ectopic bursts via focal stimulation of a few con-
stituent neurons [96]. The good performance of the model in all these procedures
confirms that the interburst interval is controlled by recurrent excitations arising
from the remaining spontaneous activity within the network.

My collaborators have tested several predictions of the model to quantify de-
pression in the preBötC, and they revealed by electrophysiological recordings that
synaptic facilitation and depression occurs at preBötC synapses on time-scales that
influence rhythmic population activity. They showed that a balance of facilitation
and depression contributes to oscillatory synaptic activity on time-scales and inten-
sities that affects respiratory rhythm generation.
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Organization of the thesis

This thesis is organized as follows:
Part I, Chapter 1-2 In chapter 1, I present a rapid overview of the main results

about the NET/DST in two and three-dimensions, and a new computations for the
DST in cusp-like geometry. In chapter 2, I present the computation for the DST
in a particular cusp-like geometry, where the small target is a ribbon connecting a
sphere tangent to a plan. I apply this result to model vesicular release probability
in the pre-synaptic terminal.

Part II, Chapter 3 In chapter 3, I build a stochastic model of calcium dynamics
in the presynaptic terminal that I coarse-grain into a Poissonian rate Model, and
a Mass-action model coupled to a Markovian equations. A complete review about
modeling calcium dynamic in neuronal microdomains is presented in appendix to
Part II.

Part III, Chapter 4 In chapter 4, I present a model of an oscillatory neuronal
network in the pre-Bötzinger Complex. This model predicts that the oscillations
at the network level are driven by synaptic properties of the neurons. The model
was tested against several conditions experienced by the network. Our predictions
concerning the synaptic dynamic of the neurons were confirmed experimentally [112].
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Abbreviations and notations

AP: Action Potential

AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

AZ: Active Zone

BD: Burst Duration

BL: Boundary Layer

CP: Cycle Period

EPSC: Excitatory Post-Synaptic Current

eEPSC: evoked Excitatory Post-Synaptic Current

EPSP: Excitatory Post-Synaptic Potential

DST: Dire Strait Time

H(.): Heaviside function

HH: Hodgkin-Huxley

IBI: Inter-Burst Interval

MFPT: Mean First Passage Time

NBQX: 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione

NET: Narrow Escape Time



Abbreviations and notations

preBötC: pre-Bötzinger Complex

PSD: Post-synaptic density

RP: Recycling Pool

RRP: Readily Releasable Pool

SD: Synaptic Depression

SF: Synaptic Facilitation

SNARE: Soluble N-éthylmaleimide-sensitive-factor Attachment protein Receptor

VGCC: Voltage Gated Calcium Channels

XIIn: Hyppoglossal nerve
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Part I

Mathematical modeling of
synapses at the molecular level





Chapter 1

Brownian search for targets
hidden in cusp-like pockets:
Progress and Applications

Published in Guerrier C and Holcman D “Brownian search for targets hidden in
cusp-like pockets: Progress and Applications” European Physical Journal ST 223,
pp 3273-3285 (2014)

We report here recent progress in computing the search time for a stochastic
particle to find a small target hidden in cusp-like pockets. The target is a small
segment in dimension two, a small hole or a narrow ribbon in dimension three,
placed at the end of a cusp. The asymptotic analysis of the diffusion equation
reveals the role of the local geometry, and a mathematical difficulty comes from the
boundary layer near the target. The methods are conformal mapping and matching
asymptotic. We present applications in cell biology where cellular activation occurs
when a diffusing particle finds a hidden site. This is the case during vesicular fusion
initiated after a protein located between the vesicular and cell membranes binds to
several diffusing calcium ions. Another example is a drug activation site located
inside a deep molecular pocket. The analytical formulas clarify the role of small
parameters.

1.1 Introduction

Finding a small hidden target by a protein, an ion or a molecule is ubiquitous in
molecular and cellular biology, and it represents a key limiting step for activation
of a cellular process. For example, proteins need to find active sites hidden in the
interior of a larger molecular complex. This is the case for the hemoglobin or the
penicillin-binding proteins, and many others where active sites are hidden inside
in the complex organization of α and β−sheet structures. For the hemoglobin, a
ligand, such as β−lactam antibiotic, has to bind to a small site hidden inside the
molecule and indeed, ligand recognition requires that strands should be antiparallel
in the active site area [123]. Another example where finding a small target is relevant
in cell biology is the diffusion of molecules, RNAs or proteins between the mother
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and the daughter cell during cell division [84]. The diffusion time is controlled by
the arrival of Brownian particles to the cylindrical neck connecting the two cells
and it determines the amount of molecules that will be exchanged between them.
Interestingly, the mean time for a thin rod to turn in a narrow tube or for a protein
to rotate in a thin two-dimensional band is also very long and characterizes a strand
to become parallel or anti-parallel.
Contrary to freely accessible small targets, the mean time for a Brownian particle
to reach a target located at a narrow cusp is much longer. Finding asymptotic
expressions for such search times remains challenging numerically and analytically.
Numerically, because it requires very long simulations, leading to many inaccuracies,
and this is not even sufficient to guess asymptotic formulas. From an analytical point
of view, the classical methods developed for the narrow escape problems do not apply
[84, 85, 86].
We report recent progress about asymptotic computation of the mean time for a
Brownian particle diffusing in a bounded domain to find a small hidden target
located at a cusp geometry on the boundary, which otherwise reflects the particle
(Fig. 1.1). This time is referred in the literature as the Dire Strait Time (DST)
[82, 83] and differs from the classical narrow escape time (NET), which is the time
for a diffusing particle to find a small site located on a smooth part of the boundary.
A major difference between the DST and the NET is reflected in the method for
computing asymptotically each search time. In both cases, this computation involves
solving the Poisson equation with small Dirichlet and large Neumann parts: the
NET methods are matched asymptotic [201, 202, 203] or Green’s function [85], but
these methods fail to compute the DST because the cusp creates a new boundary
layer. For the DST, the method mixes asymptotic analysis and conformal mapping.
Furthermore, the analysis in dimension three is possible when there are symmetries
that allow the analysis to two dimensions. However in both searches, because they
are rare events, the probability density function of the time spent τ̄ in a compartment
prior to escape, in the limit of small target size, is dominated by a single exponential
decay

pτ̄ (t) ∼ τ̄−1 exp{−t/τ̄}. (1.1)

The exponential rate τ̄−1 is therefore the flux into the absorbing target. This single
exponential result allows coarse-graining microscopic model of reaction-diffusion into
Markovian jump processes, where the rate is the flux on the absorbing boundary
equal to the reciprocal of τ̄ . This rate encompasses the entire geometry to a single
parameter, and can be used to simplify detailed stochastic simulations of biological
pathways by replacing long stochastic trajectories with Poissonian injection rate.
Finally, the local shape of the target does matter for the search time, as revealed
both by analytical and numerical methods [8, 9, 38, 66, 81]. For example, an elliptic
versus circular disc changes the leading order of the search time, and the exit time
to two tangent discs versus a single disc of similar surface is different [85].

This report is organized as follows: in section 1.2, we present several examples
motivated by cellular biology in which computing the DST is a key to understand
the role of small targets. In section 1.3, we present a general classification for targets
hidden in cusps. We also discuss the case of an absorbing band at the cusp between
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Figure 1.1: Schematic description of the exit search through a cusp.

a plane and a sphere (Fig. 1.2D).

1.2 Examples for the search of a hidden target in
cellular and molecular biology

1.2.1 Mother-daughter cell

An intermediate stage during cell division consists of the asymmetric dumbbell shape
(Fig. 1.2A) made between the mother and daughter cells, separated by a long con-
necting neck that can change over time. During this stage, some of the genetic
material is transferred from the mother to the smaller daughter cell compartment.
Diffusion through the cusps connecting the neck is the main determinant of the
exchange rate and of the selection of fast diffusing particles during this transient
regime [60]. Moreover, in the absence of any active mechanism, the back flow in-
duced by diffusion from the daughter to the mother cell can be drastically slowed
down, due to an asymmetry in the curvature of the connecting neck between cells.
Thus the transition rates between the mother and the daughter can differ by sev-
eral orders of magnitude as the geometry at the cusp changes. This asymmetrical
diffusion effect can explain some of the findings reported experimentally in [60]: as
the curvature at the connection between the cells and the neck varies over time, it
changes the diffusion fluxes, as indicated by first passage time formulas that we shall

45



Chapter 1. Brownian search for targets hidden in cusp-like pockets: Progress and

Applications

A B

C D E

Figure 1.2: Schematic cusp targets in cell biology characterized by the
DST. A: Model of diffusion between the mother and daughter cell through a cusp
and narrow neck. B: Search by a molecule of a binding site, hidden in a cusp
geometry. C: Rotation of a rod-like molecule in a cylindrical narrow domain. The
rotation can only occur in an extreme position, representing a cusp in the phase
space. D: The binding of several calcium ions (green) to a group of molecules
located at the cusp (red) between the docked vesicle (orange) and the neuronal
membrane (blue), induces vesicular release at the pre-synaptic terminal. E: The
particular shape of the post-synaptic dendritic spine can be represented by a bulky
head connected to a thin neck. Ions entering at the PSD on the top of the head
escape the spine at the bottom of the neck.
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describe below (see Eq. 1.18 and [84]). In conclusion, small asymmetric diffusion
fluxes permit to isolate the mother from the daughter cells prior to reaching steady
state. Had steady state diffusion been reached before the two cells separated, the
probability density function of diffusing particles would be uniform in the domain,
and the amount of particles in both cells would be proportional to their volumes.

1.2.2 Finding a binding site in a protein: The example of
hemoglobin

Active sites of complex molecules, such as hemoglobin, can be hidden inside a com-
plex molecular organization (Fig. 1.2B). To become activated, a ligand has to bind
to a small site hidden inside the molecule and indeed, ligand recognition requires
that strands are well positioned in the active site area. This phenomenon was ob-
served for large antibiotic molecules such as the penicillin-binding proteins [123]: the
catalytic funnel reveals an elongated binding cleft, where the active site is hidden.
When the site can switch between an active and inactive state, the effective rate
constant changes drastically [84].

1.2.3 Rotation of a needle in a confined band

A Brownian needle in a strip can model a stiff DNA fragment moving in a very
confined chromatin structure. For example, under severe stress, the DNA of the
bacterium Deinococcus radiodurans, the most radioresistant organism, undergoes
a phase transition in reorganizing its genome into tightly packed toroids, which
may facilitate DNA repair [119]. Three-dimensional analyses [120] reveal a com-
plex network of double membranes that engulf the condensed DNA, suggesting that
two-dimensional domains lying between parallel walls may play a significant role in
DNA repair. The role of the distance between the parallel walls can be evaluated in
the computation of the mean time for a needle to rotate in such environment (see
Eq. 1.15). A similar example is a planar strip or a three dimensional cylinder: when
a needle is only slightly shorter than the strip width, its turning around becomes a
rare event, because there is not much room in the configuration space for the ver-
tical position (Fig. 1.2C). Thus the computation of the mean time to turn around
becomes a Dire Strait problem [85], which does not fall under the previously studied
NET in planar geometry [85, 201, 202, 203, 66, 7, 30, 175].

1.2.4 Cusp activation between a vesicle and the pre-synaptic
membrane of a neuron

Another illustration of cusp geometry that controls cellular processes from the molec-
ular level is calcium diffusion near a vesicle located in the pre-synaptic terminal.
Indeed calcium diffusion determines the probability of vesicular release (Fig. 1.2D),
which should depend on the distance between the initial calcium entrance at chan-
nels and the docked vesicle position. Specifically, after ions enter the pre-synaptic
terminal through calcium channels, they have to bind to specific proteins located at
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the junction between the vesicle and the membrane that we shall modeled here as a
ribbon (red in Fig. 1.2D). Interestingly, the probability of vesicular release can vary
over six order of magnitude for the same synapse, a phenomenon that is still not
clearly understood [106, 169]. The particular cusp geometry formed by the vesicle
and the pre-synaptic membrane might be a key to resolve this drastic probability
modulation [70].

1.3 Classification of the NET and DST in dimen-
sion two and three

1.3.1 Stochastic equation

A Brownian particle escapes through a narrow cusp located on the surface of a
bounded domain Ω (see the example in Fig. 1.1). The motion is described by the
stochastic equation

Ẋ = b(X) +
√

2Dẇ (1.2)

where b is the drift, D is the diffusion coefficient and ẇ is white noise. We will
consider b = 0 (for non-zero drift, new Non-Poissonian escape rates have recently
been discussed in [37]). The DST τ̄(x) for a particle starting at position x is the
solution of [173]

D∆τ̄(x) = −1 for x ∈ Ω
∂τ̄

∂n
(x) = 0 for x ∈ ∂Ω \ ∂Ωa (1.3)

τ̄(x) = 0 for x ∈ ∂Ωa,

where ∂Ω (resp. ∂Ωa) is the boundary (resp. the absorbing part of the boundary).

1.3.2 Dire strait formula in dimension 2

We now summarize classical results about the NET and DST from a domain Ω in
the plane, for a small absorbing arc ∂Ωa of length a of the boundary ∂Ω. The ratio
between the arclength of the absorbing boundary and the arclength of the entire
boundary is a small parameter

ε =
|∂Ωa|
|∂Ω| =

a

|∂Ω| ≪ 1. (1.4)

When ∂Ωa is a sub-arc of a smooth boundary, the first order in ε of the NET from
any point x in Ω to ∂Ωa, denoted by τ̄x→∂Ωa

, is independent of x outside a small
vicinity of ∂Ωa (called a boundary layer), and we have

τ̄x→∂Ωa
=

|Ω|
πD ln

1

ε
+O(1), (1.5)
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Figure 1.3: Classification of cusp targets. Target tangent A, perpendicular B
and at the end C of a cusp. Changing the order of approximation of the cusp D.

where O(1) depends on the initial distribution of x [202, 175]. In particular, if Ω is
a disc of radius R, then for x at the center of the disc,

τ̄x→∂Ωa
=
R2

D
[

ln
πR

a
+ 2 ln 2 +

1

4
+O(ε)

]

, (1.6)

and averaging with respect to a uniform distribution of x in the disc [85]

τ̄ =
R2

D
[

ln
πR

a
+ 2 ln 2 +

1

8
+O(ε)

]

. (1.7)

Formula 1.5 indicates that the flux through a hole in a smooth wall on a flat mem-
brane surface (e.g., a corral) is regulated by the following parameters: the area |Ω|,
the diffusion coefficient D, and the aspect ratio ε (Eq. 1.4). This asymptotic formula
can be used to estimate the residence time of a receptor inside the post-synaptic
density, a main factor governing short-term synaptic plasticity [84].
For a Brownian motion on a sphere of radius R, described in the spherical coor-
dinates (θ, φ) where (x, y, z) = (R sin θ cosφ,R sin θ sinφ,R cos θ), the NET to an
absorbing circle centered at the north-south axis (θ = 0) near the south pole with a
radius a = R sin δ/2 ≪ 1, is given by

τ̄x→∂Ωa
=

2R2

D ln
sin θ

2

sin δ
2

, (1.8)

where δ ≤ θ ≤ π [84]. Formula 1.8 can be used to estimate the rate of accumulation
at one pole of proteins moving on the membrane surface during embryo development
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[146] .
When the absorbing window in a plane is no longer on a smooth surface, but located
at a corner of angle α, then ([85])

τ̄x→∂Ωa
=

|Ω|
Dα

[

ln
1

ε
+O(1)

]

. (1.9)

Formula 1.9 indicates that control of flux is regulated also by the access to the
absorbing window afforded by the the angle of the corner leading to the window.
If the absorbing window is located at a cusp, then τ̄x→∂Ωa

grows algebraically, rather
than logarithmically. In the domain bounded by two tangent circles (Fig. 1.3A), the
lifetime is

τ̄x→∂Ωa
=

|Ω|
(d−1 − 1)D

(

1

ε
+O(1)

)

, (1.10)

where d < 1 is the ratio of the radii [85]. Formula 1.10 indicates that a drastic
reduction of flux can be achieved by putting an obstacle that limits the access to
the absorbing window by forming a cusp-like passage. In addition, when ∂Ωa is
located at the end of a narrow neck with radius of curvature Rc (Fig. 1.3C-D), the
DST is given in [84, 75] as

τ̄x→∂Ωa
=

π|Ω|
2D
√

a/Rc

(1 + o(1)) for a ≪ |∂Ω|. (1.11)

Formula 1.11 can be used to estimate the effective diffusion coefficient from a model
of disk obstacles located on a lattice [84, 75].
The DST can also be computed on a surface of revolution generated by rotating
a curve around an axis of symmetry. For example, the rotation of the curve in
Fig. 1.3C around its axis of symmetry leads to a three dimensional domain similar
to Ω in Fig. 1.1. We use the representation of the generating curve

y = r(x), 0 < x < Λ

where the x-axis is horizontal with x = Λ at the absorbing end AB. We assume
that the parts of the curve that generate the funnel have the form

r(x) = O(
√

|x|) near x = 0

r(x) = a+
(x− Λ)1+ν

ν(1 + ν)ℓν
(1 + o(1)) for ν > 0 near x = Λ, (1.12)

where a = 1
2
AB is the radius of the gap, and the constant ℓ has dimension of length.

For ν = 1 the parameter ℓ is the radius of curvature Rc at x = Λ. The DST from
the head to the absorbing end AB is given by the following algebraic decay [83]

τ̄x→∂Ωa
∼ S(Λ)

2D

(

ℓ

(1 + ν)a

)ν/(1+ν)

ν1/(1+ν)

sin
νπ

1 + ν

, (1.13)
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where S is the entire unscaled area of the surface. In particular, for ν = 1 the
DST 1.13 reduces to

τ̄x→∂Ωa
∼ S

4D
√

a/2ℓ
. (1.14)

The case ν = 0 corresponds to a conical funnel with an absorbing circle of small
radius a (see [83]). For a sphere, Eq. 1.14 reduces to 1.8. Formulas 1.11–1.14 indicate
that an efficient control of the flux can be achieved by putting the absorbing window
at the end of a narrow symmetric or asymmetric funnel. This type of funnel can
be formed by crowding obstacles on the membrane surface [75], which results in
an effective coarse-grained diffusion coefficient on the surface, different from the
microscopic diffusion coefficient. Finding the NET in the flat plane when the cusp
locally behaves like y(x) = Axα + o(xα+1) with α > 2 remains an open problem (see
Fig. 1.3C-D).
The turning around of a needle of length l confined to a planar strip which is only
slightly wider (length l0) than the length of the neck can be reduced to a two-
dimensional DST problem through a funnel (see Fig. 1.2C and Sect. 1.2.3 for a
specific description of biological motivations). The DST for the needle to turn 180◦

is given by [85]

τ̄ =
π(π/2 − 1)

Drl0
√
ε

√

DX

Dr

(

1 +O(
√
ε)
)

. (1.15)

where ε =
l0 − l

l0
≪ 1, DX is the longitudinal diffusion constant along the axis of the

needle and Dr the rotational constant (see [71, 152, 153] for a specific description
of the Brownian motion of anisotropic objects such as a needle in two dimensions).
Formula 1.15 shows that when the free space between two planes decreases, the
effective diffusion constant, proportional to the reciprocal of τ̄ , experiences a second
order phase transition characterized by a discontinuity of the derivative of the effec-
tive diffusion constant for the rotation. When the length l reaches and exceeds the
critical value l0, the diffusion constant vanishes. This result explains the crucial role
of the chromatin organization in maintaining the genome integrity after radiation.
Another illustration of the DST can be found in the problem of diffusion escape from
a dendritic spine membrane, or from cell during its division. Dendritic spines can be
modeled as domains with a bulky head connected to an essentially one-dimensional
strip (or cylinder) of small radius a and length L (Fig. 1.2E). The connection of the
head (Ω1) to the neck (Ω2) can form either an angle or a smooth funnel. The bound-
ary of the domain reflects Brownian trajectories and only the end of the cylinder
∂Ωa absorbs them. In the three-dimensional case the Dirichlet boundary ∂Ωa is a
small absorbing disc at the end of the cylinder. The domain Ω1 is connected to the
cylinder at an interface ∂Ωi, which in this case is a circle. It was shown in [83] that
the DST from x ∈ Ω1 to ∂Ωa is given by

τ̄x→∂Ωa
= τ̄x→∂Ωi

+
L2

2D +
|Ω1|L

|∂Ωa|D . (1.16)

Formula 1.16 shows the role of the narrow neck in the diffusion flux regulation.
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1.3.3 Dire strait formula in dimension 3

We recall now some known mean time asymptotic expressions for the NET in a
three-dimensional domain Ω when the target is a circular absorbing window ∂Ωa of
radius a centered at 0 on the boundary ∂Ω. It is given by [85]

τ̄x→∂Ωa
=

|Ω|
4aD

[

1 − L(0) +N(0)

2π
a ln a+O(a)

]

, (1.17)

where L(0) and N(0) are the principal curvatures of the surface boundary at the
center of the absorbing boundary ∂Ωa. The third order asymptotic expansion can be
found on a sphere [27]. This formula is contrast with the DST asymptotics obtained
for a target hidden in a three dimensional cusp. When the target is a small absorbing
window ∂Ωa of radius a located at the end of a funnel (Fig. 1.1), the asymptotics is

τ̄x→∂Ωa
=
(

R

a

)3/2 |Ω|
RD (1 + o(1)) for a ≪ R, (1.18)

where the R is the radius of curvature of the rotated curve at the end of the funnel
[83]. This formula corrects by a factor 1/2 the previous one reported in [84, 83]. The
dependency in the radius of curvature at the cusp explains how geometry controls the
diffusion flux from the mother to the daughter cell, as explained above in subsection
1.2.1. This asymptotics can also be used to estimate the search time for a hidden
target inside a molecule (see Section 1.2.2)
Finally, the last asymptotic formula we shall present has application to estimate the
probability of vesicular release at synapse for a model of calcium diffusion. The cusp-
like geometry between a sphere and a surface (Section 1.2.4 and [70] and Fig. 1.2D).
The two-dimensional projection near the cusp is represented in Fig. 1.3B. The DST
a three-dimensional cusp, located at the end of a funnel when the absorbing cross
section is perpendicular to the cusp is given by

τ̄x→∂Ωa
=

|Ω|
4πDa +O(1). (1.19)

The absorbing boundary forms a small ribbon of height a with surface Srib =
√

2 R1R2

|R2−R1|a
3/2 where R1 and R2 are the radii of curvature at the cusp. This re-

sult is presented below in subsection 1.3.5.

1.3.4 Derivation of the DST for a three-dimensional cusp
located at the end of a funnel

We now present the main steps to compute the DST (formula 1.18) for a target
located at the end of a cusp (Fig. 1.1). We use a conformal mapping to map the
domain Ω that contains a small absorbing window ∂Ωa of diameter a located at the
end of the funnel, which is connected smoothly to a three dimensional ball. The
radius of curvature at the funnel is R and the diffusion coefficient is D. The sym-
metric cusp can be parameterized in cylindrical coordinates (ρ, z) (ρ is the distance
to the 0z axis) by

ρ(z) =
1

R
z2 +

a

2
, (1.20)
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for z small. In dimensionless variables x = Rx′, τ̄(x) = u(x′), the domain Ω is
mapped on Ωdless, ∂Ωa into ∂Ωdless,a and |Ω| = R3|Ωdless|, a = Rǫ, D = R2D. The
DST Eq. 1.4 becomes:

D∆u(x′) = −1 for x′ ∈ Ωdless (1.21)
∂u

∂n
(x′) = 0 for x′ ∈ ∂Ωdless \ ∂Ωdless,a

u(x′) = 0 for x′ ∈ ∂Ωdless,a,

In cylindrical coordinates (ρ, ψ, z), due to symmetry, the equation reduces to

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+
∂2u

∂z2
= − 1

D
for (ρ, z) ∈ Ωdless (1.22)

∂u

∂n
(ρ, z) = 0 for (ρ, z) ∈ ∂Ωdless \ ∂Ωdless,a

u(ρ, z) = 0 for (ρ, z) ∈ ∂Ωdless,a.

Using Mobius mapping

f(ξ) =
ξ − αǫ

ξ + αǫ

, (1.23)

where ξ = ρ+ iz, we map the two-dimensional domain Ω2D = Ωdless ∩ {ψ = 0} into

Γ (Fig. 1.4), where αǫ =
√

ǫ (1 + ǫ/4). The domain Ω2D is thus mapped into two
concentric circles, and the absorbing part of the boundary ∂Ω2D,a into the segment
∂Γa = [−1; −1+

√
ǫ] of length

√
ǫ. The cusp is mapped on a narrow hot-dog shaped

domain, and the other part of the domain is mapped on a small region, located at
angle O(

√
ǫ) (Fig. 1.4). Eq. 1.22 becomes in polar coordinates ω = r eiθ = f(ξ) with

0

Γ

∂Γa

r

O(
√
ε)

θ

1-

√
ε

Figure 1.4: Mapped Domain. The two-dimensional projection Ω2D of domain
Ωdless (dimensionless domain coming from Ω, Fig. 1.1) is mapped through the Mobius
function f(ξ) = ξ−αǫ

ξ+αǫ
into Γ.

v(r, θ) = u(f−1(ω)),

|1 − ω|4
4α2

ǫ

∆v +
|1 − ω|2

αǫ(1 − |ω|2)

[

∂v

∂r

∂r

∂ρ
+
∂v

∂θ

∂θ

∂ρ

]

= − 1

D
for (r, θ) ∈ Γ. (1.24)
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To solve Eq. 1.24 in Γ, we proceed as in [75] and neglect the variation in the r-
variable, because r = 1 + O(

√
ǫ) and thus v(r, θ) ≈ v(θ) with absorbing boundary

condition at π (v(π) = 0) and a boundary reflection is imposed on the upper part
(v′(c

√
ǫ) = 0), where the constant c = O(1). We find

v′′(θ) +
sin(θ)

cos(θ) − 1
v′(θ) = − α2

ǫ

D(cos(θ) − 1)2
. (1.25)

which is solved as [70]

v(θ) =
|Ωdless|
Dπǫ

√
ǫ

(sin(θ) + π − θ)

+
α2

ǫ

15D

[

2 ln

(

1 − cos(θ)

2

)

− 2 (1 + cos(θ)) +
3

cos(θ) − 1
− 3

2

]

,(1.26)

where α2
ǫ = O(ǫ). Thus, the mean first passage time τ̄x→∂Ωa

from a point x inside
the domain Ω located outside of the cusp to the absorbing target is obtained by
placing the initial point at the angle θ = c

√
ǫ in Eq. 1.26. We obtain

τ̄x→∂Ωa
=

|Ω|
√
R

Da√
a

+O(1), (1.27)

where R is the curvature at the cusp, D is the diffusion coefficient and |Ω| is the
total volume of the domain. This formula corrects by a factor 2 the asymptotic
expansion for the DST derived in [84, 85, 83].

1.3.5 Dire strait to a ribbon

To model the probability and the mean time for an ion to find a small target located
between a membrane and a vesicle (Fig. 1.2D and Sects. 1.2.4 and 1.3.4), we ap-
proximate the local geometry by two tangent balls of radii R1 and R2 (R1 << R2).
We summarize here recent progress on computing the escape time for a Brownian
particle to a small ribbon, which consists of a cylinder with small height a << 1,
located between the two spheres (see Fig. 1.2D and Fig. 1.3B for two-dimensional
projection). In that context, the classical narrow escape results presented in the
above sections do not apply. Using the symmetry of the domain, the analysis can be
reduced to two-dimensions. In projection, the absorbing ribbon consists of a segment
(∂Ωa) joining the two discs (see Fig. 1.3B). Equation 1.4 in cylindrical coordinates
(r, z) becomes

∂2τ̄

∂r2
(r, z) +

1

r

∂τ̄

∂r
(r, z) +

∂2τ̄

∂z2
(r, z) = − 1

D for (r, z) ∈ Ω (1.28)

∂τ̄

∂n
(r, z) = 0 for (r, z) ∈ ∂Ω \ ∂Ωa

τ̄(r, z) = 0 for (r, z) ∈ ∂Ωa.

It is possible to obtain an analytical solution using the inversion mapping ω =
f(ξ) = 1/ξ where ξ = r + iz [70],

τ̄(r, z) =
|Ω|

4πDa

(

1 − 2Ra
(

r

r2 + z2

)2
)

, (1.29)
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where R =
R1R2

R2 − R1
. The DST is the mean first passage time τ̄x→∂Ωa

estimated for

r = 0 in Eq. 1.29:

τ̄x→∂Ωa
=

|Ω|
4πDa +O(1). (1.30)

This result is quite surprising: the leading order term does not depend on the
curvature at the cusp and diverges like 1

a
, which is the divergence behavior obtained

for a small circular hole. However, the difference is the surface of the ribbon equals
to Srib(a) =

√
2Ra3/2.

1.4 Conclusion

We have summarized here results about the DST, which is the search time by a
Brownian particle of a small target hidden in a cusp. These analytical formulas
reveal the role of the local geometrical structure at a molecular level, and show the
role of small parameters in controlling diffusion fluxes.
The computation of the DST for cusps of arbitrary shapes remains difficult and
very few results exist so far. The presented formulas can be extended in some cases
when a drift term is added [37], but in most cases it remains open. The drift term
can account for both passive hydrodynamics flow or active transport, such as cargos
transported by motors along microtubules. It can also represent the statistical
transport driven by electro-diffusion forces.
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Chapter 2

Search time for a small ribbon and
application to vesicular release at
neuronal synapses

Published in Guerrier C and Holcman D “Search time for a small ribbon and appli-
cation to vesicular release at neuronal synapses” SIAM MMS, 13(4), pp 1173-1193
(2015) (2015)

The arrival of a Brownian particle at a narrow cusp located underneath a ball
is a model of vesicular release at neuronal synapses, triggered by calcium ions.
The asymptotic computation of the arrival time presents several difficulties that
can be overcome using conformal mappings and asymptotic analysis of the model
equations. Using a regular expansion of the solution of the Laplace equation in the
mapped domain, we compute the solution involving both small and large spatial
scales. We derive novel asymptotic formulas for Brownian escape through cusps in
both two and three dimensions. The range of validity of the asymptotic formulas
is challenged by stochastic simulations. Finally, we apply the analysis to estimate
the vesicular release probability at pre-synaptic terminals and in particular, we
suggest that vesicular organization imposes a severe constraint on calcium channel
localization: diffusing calcium ions can trigger vesicular release only in a specific
range of positions that we provide.

2.1 Introduction

The search time by a Brownian particle, for a small target hidden inside a narrow
cusp, is usually much longer than for a freely accessible target located on a smooth
surface. This difference in time is quantified by the mean first passage times [83,
84, 85]. Asymptotic expressions are difficult to obtain due to geometrical difficulties
that cannot be resolved by classical methods [203, 85, 114, 154]. This situation is
however ubiquitous in cell biology: it can represent the search for an active site
located inside a complex protein, or for an ensemble of interacting proteins located
between circumvoluted membranes. For example, a key step in synaptic transmission
between neurons is the release of a vesicle from the pre-synaptic terminal [54, 97, 127,
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145, 211]. This event is triggered by calcium ions entering through voltage-gated
channels [97]. Although the detailed mechanism of this process remains unclear, a
key molecular step is the binding of the diffusing calcium ions to specific proteins
such as synaptotagmin, located between the membranes of the docked vesicle and
the synaptic terminal. Vesicular release has also been investigated using stochastic
numerical simulations [33, 127, 129, 177, 63].

Interestingly, the probability of vesicular release varies over six orders of magni-
tude for some synapses [106, 169], the exact mechanism of which remains elusive.
To investigate the possible mechanism underlying this large range of modulation,
we build here a diffusion model to estimate the time for diffusing particles (calcium
ions) to find hidden small targets (proteins). We study the effect of several param-
eters on the search time, such as the initial position of the channels, the size, and
the position of the activating molecules. A random particle searching for a small

A

C

R2

R1

Ω

×

×

z

r0
∂Ωa

1×

0
∂Ωa

ra
+

z1
z2

+
+

0 sa
s

t

− 1
2R1

− 1
2R2

D

Ω̃

∂Ω̃a

R2

R1

∂Ω′

a

Ω′

×

×

∆B

Figure 2.1: Search in a cusp. A: A Brownian trajectory is reflected on the
boundary of two tangent spheres (blue and green) until it finds a small ribbon
target (red). The ribbon is a small cylinder that connects the two tangent spheres.
B: Two-dimensional projection of the ribbon target: the domain Ω′ is obtained by
projecting the three-dimensional domain Ω̄ in a plane containing the ∆−axis. C-D:
Conformal mapping of the domain Ω into Ω̃. The map is ω = f(ξ) = 1/ξ. Circles
of radius a centered in (0, a) are mapped into straight lines of ordinate t = −1/2a:
the gray dashed circle in C is transformed into a line in D.

target is a Dire Strait Time (DST) problem, as described in [75, 83, 84, 85]. The
principle of computing the DST relies on solving a mixed boundary value problem
for the Laplace equation with a geometrical cusp at the boundary. The present
method combines asymptotic expansion of the solution and conformal mapping to
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resolve the cusp singularity. Once the cusp singularity is de-singularized, we com-
pute the solution by a regular matching asymptotic expansion for the inner (inside
the cusp) and outer solution. Using symmetries in dimension three, the analysis
can be reduced to two dimensions, allowing again the use of conformal maps. We
apply this procedure several times and derive asymptotic expansions for the search
time in two and three dimensions. The parameter getting asymptotically smaller
here is the size of the small target (size of the binding molecule). One of the most
striking results we obtained here is formula (2.39). This formula gives the DST of
a Brownian particle to a small ribbon that connects a ball and its tangent plane
(FIG. 2.1A):

〈τ〉 =
|Ω̄|

4πDε
, (2.1)

where |Ω̄| is the volume of the domain and D is the diffusion coefficient. ε is the
height of the ribbon whose surface is Srib = 2π

√
2Rε3/2, where R is the radius of

ball. This formula is valid for a general domain, as long as the cusp geometry is
preserved.

The manuscript is organized as follows: in section 2.2, we compute the escape
time when the target is a narrow absorbing band at a cusp located between a plane
and a sphere. We solve the Laplace equation with Dirichlet boundary conditions at
the cusp and reflecting conditions otherwise. We use a Möbius transformation to
map the domain into a rectangle, and derive formula in dimensions two and three.
The range of validity of the asymptotic formulas is investigated using Brownian sim-
ulations. In the third and final section, we apply the asymptotic method to estimate
the spread of calcium ions near vesicles in the pre-synaptic terminal. We relate the
probability of vesicular release to the distance of calcium channels in a model of
square lattice vesicle organization. We also estimate the rate of arrival for calcium
ions to small protein sites, involved in triggering vesicular release. Finally, we discuss
consequences of clustering channels near vesicles. In the appendix, we compute the
Brownian escape time when the target is at the end of a three-dimensional cusp in a
funnel-shaped domain. The Möbius transformation maps the domain into a banana
shape domain. The final asymptotic formula corrects by a factor 2 the previous one,
derived in [83].

2.2 Search for a small two-dimensional cusp lo-
cated between two tangent spheres

A Brownian particle is described by the stochastic equation

Ẋ =
√

2Dẇ (2.2)

where D is the diffusion coefficient and ẇ is white noise.
The Brownian search for a small target, located between an almost flat line and a
circle membrane corresponds to an escape through a narrow cusp in a two dimen-
sional bounded domain (Ω′, FIG. 2.1B). The domain Ω′ lies between two tangent
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disks of radii R1 and R2 (R1 << R2). The target is the two segments of length ε
(ε << R1) joining the two disks (∂Ω′

a (red) in FIG. 2.1B). The axial symmetry along
∆ (FIG. 2.1B) allows to reduce the domain Ω′ to the half-domain Ω (FIG. 2.1C).
To estimate the escape time in the two-dimensional domain Ω, we solve the boundary
value problem

D∆u(x) = −1 for x ∈ Ω (2.3)
∂u

∂n
(x) = 0 for x ∈ ∂Ω \ ∂Ωa

u(x) = 0 for x ∈ ∂Ωa,

using the conformal mapping

f(ξ) =
1

ξ
= ω, (2.4)

which maps the cusp region into a rectangular domain. The coordinate ξ = r + iz
is transformed into ω = s + it while the domain Ω is mapped into Ω̃ (FIG. 2.1D).
The boundary of Ω is mapped as follows: the green and blue half-circles are mapped
onto horizontal lines (same colors in FIG. 2.1C-D) located at t1 = −1/(2R1) and
t2 = −1/(2R2) respectively. The z-axis is mapped onto itself (black). The absorbing
boundary is parameterized by

∂Ωa = {(ra, z)|ra =
√

2Rε (1 + o(1)) and z1 ≤ z ≤ z2}, (2.5)

where R = R1R2/(R2 −R1) and

z1 =
R2

R2 − R1
ε (1 + o(1)) (2.6)

z2 =
R1

R2 − R1
ε (1 + o(1)). (2.7)

The points P1 = (ra, z1) and P2 = (ra, z2) are mapped into

f(ra + iz1) =
1√
2Rε

(1 + o(
√
ε)) − i

1

2R1
(2.8)

f(ra + iz2) =
1√
2Rε

(1 + o(
√
ε)) − i

1

2R2
. (2.9)

Hence, the absorbing boundary is mapped at the first order on a straight vertical
line located at

sa =
1√
2Rε

=
1√
ε̃
. (2.10)

2.2.1 Asymptotic computation of the mean time in two di-
mensions

To map the boundary value problem eq. (2.3), we set u(ξ) = v(ω), and we have

∆u(ξ) = |f ′(ξ)|2∆v(ω). Because f ′(ξ) = − 1

ξ2
and |f ′(f−1(ω))|2 = |ω|4, equa-
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tion (2.3) is transformed into

|ω|4∆v(ω) = − 1

D
for ω ∈ Ω̃ (2.11)

∂v

∂n
(ω) = 0 for ω ∈ ∂Ω̃ \ ∂Ω̃a

v(ω) = 0 for ω ∈ ∂Ω̃a.

To determine the solution, we scale the variable ζ =
s

sa

= s
√

2Rε and derive an

equation for Y (ζ, t) = v(ω) for which eq. (2.11) becomes

(

ζ2

ε̃
+ t2

)2 (

ε̃
∂2Y

∂ζ2
(ζ, t) +

∂2Y

∂t2
(ζ, t)

)

= − 1

D
for (ζ, t) ∈ [0, 1] ×

[ −1

2R2
,

−1

2R1

]

∂Y

∂t

(

ζ,− 1

2R1

)

=
∂Y

∂t

(

ζ,− 1

2R2

)

=
∂Y

∂ζ
(0, t) = 0 (2.12)

Y (1, t) = 0.

A regular expansion of Y in power of ε̃ = 2Rε is

Y (ζ, t) = Y0(ζ, t) + ε̃Y1(ζ, t) + ε̃2Y2(ζ, t) + ... (2.13)

and gives in equation (2.12)

ζ4

ε̃2

∂2Y0

∂t2
(ζ, t) +

1

ε̃

(

ζ4∂
2Y1

∂t2
(ζ, t) + ζ4∂

2Y0

∂ζ2
(ζ, t) + 2ζ2t2

∂2Y0

∂t2
(ζ, t)

)

+

(

ζ4∂
2Y1

∂ζ2
(ζ, t) + t4

∂2Y0

∂t2
(ζ, t) + ζ4∂

2Y2

∂t2
(ζ, t) + 2ζ2t2

∂2Y0

∂ζ2
(ζ, t) + 2ζ2t2

∂2Y1

∂t2
(ζ, t) +

1

D

)

= O(ε̃).

The leading order O(ε−2) is

∂2Y0

∂t2
(ζ, t) = 0, (2.14)

hence using the boundary conditions in eq. (2.13), we obtain that Y0 is independent
of t. The second order term O(ε−1) gives the equation:

ζ4∂
2Y1

∂t2
(ζ, t) + ζ4∂

2Y0

∂ζ2
(ζ) = 0. (2.15)

Integrating this equation over t between − 1
2R1

and − 1
2R2

and using the boundary
condition in (2.13), we obtain:

∂2Y0

∂ζ2
(ζ) = 0, (2.16)

and thus, Y0(ζ) = Aζ + B, where A and B are two constants. Using the absorbing
boundary condition in (2.13), Y0(ζ) = A(ζ − 1) and finally

v(s, t) = A
(

1 − s
√

2Rε
)

. (2.17)
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Figure 2.2: Brownian statistics for the escape time at a narrow cusp. A:
Example of Brownian trajectory in Ω′, with parameters R1 = 0.02µm, R2 = 1.5µm,
ε = 0.001µm, D = 20µm2.s−1. The square is a magnification of the trajectory
near the cusp. B: Mean escape time (2000 runs) (red, ± confident interval 95 %),
optimal matlab fit (magenta) and the analytical formula (blue) in two-dimension,
for ε between 2.10−5 and 1.10−3, (same parameters as in A). The fitting coefficients
are a = 35.59 10−3 and b = 305.6 10−3 (Adjusted R-square: 0.9996) compared to
the analytical estimation a = 35.57 10−3. The term O(1) is 307.3 10−3. C: The
solution u(r, 0) in the initial three-dimensional domain with ε = 0.0005 (top) and
0.001 (bottom). The parameters are similar to A. There are two main regions:
the boundary layer and the outer region. D: Same as B for the three-dimensional
domain. The fitting coefficient is a = 55.24 10−3 (Adjusted R-square: 0.9992),
compared to the analytical estimate a = 56.24 10−3.
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To determine the constant A, we use the compatibility condition obtained by inte-
grating (2.3):

−|Ω|
D

=
∫

Ω
∆u(x)dx =

∫

∂Ωa

∂u(y)

∂n
dSy. (2.18)

The normal derivative is

∂u

∂n ∂Ωa

= −∂u

∂r ∂Ωa

= −∂s

∂r

∂v

∂s ∂Ω̃a

= −A
√

2Rε

2Rε
(1 +O(ε)) = − A√

2Rε
(1 +O(ε)).

Thus with eq. (2.18), we get

|Ω|
D

=
∫

∂Ωa

A√
2Rε

dS = ε
A√
2Rε

(2.19)

which gives

A =

√
2R|Ω|
D

√
ε
, (2.20)

and finally,

v(s, t) =

√
2R|Ω|
D

√
ε

(

1 − s
√

2Rε
)

. (2.21)

We conclude that the escape time is

u(r, z) =

√
2R|Ω|
D

√
ε

(

1 − r

r2 + z2

√
2Rε

)

, (2.22)

where the leading order term is

〈τ〉 =

√
2R|Ω|
D

√
ε

(1 + o(1)) =

√
2R|Ω′|

2D
√
ε

(1 + o(1)) . (2.23)

This analytical result is valid in a large range, as shown using Brownian simulations
(FIG. 2.2A-B): the analytical curve (blue) is compared to Brownian simulation
results (red) and a fitted approximation (f(x) = a√

x
) (magenta).

2.2.2 A three-dimensional escape to a narrow ribbon

In three dimensions, the domain Ω̄ is obtained by rotating Ω′ around the axis ∆
(FIG. 2.1A-B). We solve eq. (2.3) in domain Ω̄, where the absorbing boundary is
the ribbon of height ε, located between the two spheres. In cylindrical coordinates
(r, θ, z), the domain Ω̄ is invariant in θ. Integrating eq. (2.3) according to θ reduces
the problem to a two dimensional one in Ω:

∂2u

∂r2
(r, z) +

1

r

∂u

∂r
(r, z) +

∂2u

∂z2
(r, z) = − 1

D
for (r, z) ∈ Ω (2.24)

∂u

∂n
(r, z) = 0 for (r, z) ∈ ∂Ω \ ∂Ωa

u(r, z) = 0 for (r, z) ∈ ∂Ωa.
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The inversion ω = f(ξ) = 1/ξ sends the coordinate system ξ = (r, z) into ω = (s, t),
where

r =
s

s2 + t2
, z = − t

s2 + t2
, (2.25)

and

∂s

∂r
(s, t) = t2 − s2 and

∂t

∂r
(s, t) = 2st. (2.26)

In Ω̃, we set u(ξ) = v(ω) and eq. (2.24) becomes

(s2 + t2)2∆v(s, t) +
s2 + t2

s

(

∂s

∂r

∂v

∂s
(s, t) +

∂t

∂r

∂v

∂t
(s, t)

)

(2.27)

= − 1

D
for (s, t) ∈ Ω̃

∂v

∂n
(s, t) = 0 for (s, t) ∈ ∂Ω̃ \ ∂Ω̃a

v(s, t) = 0 for (s, t) ∈ ∂Ω̃a.

The structure of the solution is similar to the one of section (2.2.1): it is composed
of a inner layer near the absorbing boundary s = sa, and an outer solution far away.

The scaling variable ζ =
s

sa
, sa =

1√
2Rε

=
1√
ε̃

, and Y (ζ, t) = v(s, t) = v( ζ√
2Rε

, t)

can be used in the entire domain. The scaled equation becomes

(

ζ2

ε̃
+ t2

)2 (

ε̃
∂2Y

∂ζ2
(ζ, t) +

∂2Y

∂t2
(ζ, t)

)

(2.28)

+
ζ2

ε̃
+ t2

ζ

(

(t2 − ζ2

ε̃
)ε̃
∂Y

∂ζ
(ζ, t) + 2ζt

∂Y

∂t
(ζ, t)

)

= − 1

D
.

We look for a solution using a regular expansion

Y (ζ, t) = Y0(ζ, t) + ε̃Y1(ζ, t) + ε̃2Y2(ζ, t) + ... (2.29)

which transforms equation (2.28) into

1

ε̃2

[

ζ4∂
2Y0

∂t2

]

+
1

ε̃

[

ζ4∂
2Y1

∂t2
+ ζ4∂

2Y0

∂ζ2
+ 2ζ2t2

∂2Y0

∂t2
− ζ3∂Y0

∂ζ
+ 2ζ2t

∂Y0

∂t

]

= O(1).

The first order in O(ε−2) is

ζ4∂
2Y0

∂t2
= 0, (2.30)

and using the boundary conditions in (2.27), we find that Y0 is independent of t. At
order O(ε−1), we get

ζ4∂
2Y1(ζ, t)

∂t2
+ ζ4∂

2Y0(ζ)

∂ζ2
− ζ3∂Y0(ζ)

∂ζ
= 0. (2.31)
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Integrating over t, and using the boundary conditions in (2.27), we obtain

ζ4∂
2Y0

∂ζ2
− ζ3∂Y0

∂ζ
= 0. (2.32)

It follows that Y0(ζ) = Aζ2 + B where A and B are two constants. Using the
absorbing boundary condition in (2.27), we get Y0(ζ) = A(1 − ζ2). To conclude, the
leading order approximation depends on the s−variable only and

v(s) = A(1 − 2Rεs2). (2.33)

To compute the remaining constant A, we compute

∂u

∂n ∂Ω̄a

= −
[

−
(

s2 − t2
) ∂v

∂r

]

r=1/
√

2Rε

=

[

( 1

2Rε
− t2

) 4RεA√
2Rε

]

≈ 2A√
2Rε

(1 +O(
√
ε)),

and
∫

∂Ω̄a

∂u

∂n
dS = 2π

√
2Rε

∫ ε

0

∂u

∂r
dz = 4πAε, (2.34)

and using the compatibility condition

−|Ω̄|
D

=
∫

Ω̄
∆u(x)dx =

∫

∂Ω̄a

∂u(y)

∂n
dSy. (2.35)

Thus

A = − |Ω̄|
4πDε

, (2.36)

and the solution v is

v(s) =
|Ω̄|

4πDε

(

1 − 2Rεs2
)

. (2.37)

In the initial variable (FIG. 2.2C):

u(r, z) =
|Ω̄|

4πDε

(

1 − 2Rε
(

r

r2 + z2

)2
)

. (2.38)

The mean time to the ribbon is obtained by setting s = 0 in (2.37):

〈τ〉 =
|Ω̄|

4πDε
. (2.39)

The range of validity of this formula is examined using Brownian simulations in
FIG. 2.2D. The search time to a narrow ribbon is surprisingly different to the one
for a funnel cusp ([83], see Appendix), as it does not depend on the curvature at the
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cusp and it diverges to infinity with
1

ε
, as ε tends to zero. This divergence is the

same as in the narrow escape for a small hole [83, 84, 85]. We note however that the
surface of the ribbon is Srib = 2π

√
2Rε3/2, which increases with a different power

law than for a regular circular small hole of radius ε. Formula (2.39) is valid for
a general domain, not only the geometry between two spheres, as long as the cusp
geometry is preserved. It would be interesting to extend formula (2.39) to higher
order cusp

z = A
(

r

l

)ν

+ o(rν) (2.40)

where ν > 2 and A, l are two characteristic lengths.

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+ Synaptic vesicle

Synaptotagmin

SNARE Cx

A

B
A.Z.

C
A.Z.

Figure 2.3: Schematic representation of calcium ions binding to proteins
and distribution of vesicles in the Active Zone. A: Calcium ions enter through
ionic channels and diffuse to activate key proteins, such as synaptotagmin and
SNARE Complex located between the vesicle and synaptic membrane. The binding
of several ions is required to activate the SNARE machinery [94]. B-C: Active
Zone organization. Vesicles (green) are regularly distributed on a square lattice.
Calcium channels (red) can be uniformly distributed in the AZ. (B) or form clusters
(C).
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2.3 Diffusion to proteins located underneath a pre-
synaptic vesicle

We now apply the analytical results derived in the previous sections to estimate
the probability that diffusing calcium ions find a small region located underneath a
vesicle, when they are initially located at a given distance on the surface membrane
(FIG. 2.3). This scenario models a key step in synaptic transmission: when calcium
ions are flowing across Voltage-Gated Calcium Channels, in the pre-synaptic ter-
minal, a certain fraction of them make their way underneath a docked vesicle. At
such place, they can bind to fundamental molecules or calcium-dependent proteins
such as synaptotagmin, a family of proteins (SNARE Complex) located between the
vesicle and the pre-synaptic membrane (FIG. 2.3A), leading ultimately to vesicular
fusion. Although the exact number of calcium ions needed for this process is small,
from 4 to 8, it is still an open question to understand how these ions find such
small molecular sites and how the mean time and release probability depend on the
local geometry and calcium channel location. Because the distance of the calcium
channels to the center of the vesicle can vary, the goal of the present computation
is to base the release probability on key parameters of calcium diffusion in the nan-
odomain between docked vesicles. We shall also explore here how the distribution of
vesicles in clusters or uniformly distributed in the active zone (AZ) modulates the
release probability.

The model to compute the probability of vesicular release is the following: when
several ions hit the narrow ribbon underneath a vesicle, this event triggers the
release. As we shall see, this event depends on the relative position of the calcium
channels with the vesicles, their organization and the initial number of calcium ions.
Indeed, the previous analysis shows that exocytosis cannot be triggered by calcium
ions diffusing far away from the vesicles. For example, in a pre-synaptic terminal
of volume 1 µm3 [208], one diffusing calcium ion located in the pre-synaptic bulk
will enter the region underneath the vesicle in approximatively 4 sec, as computed
from eq. (2.39) with an effective diffusing coefficient that accounts for crowding
D = 20µm2.s−1 [13], and ε = 10−3µm. If the terminal contains 7 docked vesicles,
the ion reaches any vesicle in approximatively 570 ms. This estimate of 570 ms is
two orders of magnitude higher than the time scale of exocytosis, which occurs in
less than a millisecond following calcium entry into the pre-synaptic terminal [211].
This dimensional analysis reveals that exocytosis is triggered mainly by calcium ions
located in the neighborhood of a vesicle. We conclude that when calcium ions exit
the neighborhood of the docked vesicles, they should not contribute anymore to the
vesicular release probability.

2.3.1 Splitting probability of a Brownian ion to hit a vesic-
ular ribbon versus entering the pre-synaptic bulk

The splitting probability here is the probability for a Brownian ion to hit the small
ribbon below the vesicle before it reaches a distance 2R away from the membrane,
where it is considered to be lost inside the pre-synaptic bulk. To compute this
probability, we shall account for the geometry of the AZ at the pre-synaptic terminal:
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it is approximated as a flat three-dimensional domain, containing vesicles regularly
distributed on the membrane surface, spaced apart at a distance 2H (FIG. 2.3B-
C). The activation site for vesicular release is the small two-dimensional ribbon of

R

2R

ΩP
C

×

×

z

r0
∂ΩP,a

∂ΩP,outB
0 sa

s

t

− 1
2R

1
4R

C

Ω̃P ∂Ω̃P,a

Figure 2.4: Schematic representation of a thin lattice vesicular domain. A:
Modeling the AZ. A flat domain containing spherical obstacles (vesicles) is divided
into elementary domains (Ω̄P ). Diffusing particles (calcium ions) are absorbed at the
cusp (red) and at the top (orange) where ions are lost in the three-dimensional do-
main. Ions are reflected in all other boundary parts. B: Two-dimensional projection
of the elementary domain Ω. Ions are reflected on the purple and blue boundaries
and are absorbed on the orange and red regions. C: Mapping of the domain ΩP

using f(ξ) = 1/ξ. The color code between regions and their images in domains ΩP

and Ω̃P are in correspondence.

height ε ≪ R, as already mentioned in section 2.2.2 (FIG. 2.4A red). The AZ
is divided into elementary squares Ω̄P (see FIG. 2.4A). Ions are absorbed at the
cusp (FIG. 2.4A red) and at the upper-part of the domain (FIG. 2.4A orange),
and are reflected otherwise. The probability p3D(x) for a Brownian ion starting at
position x = (x, y, z) to reach the ribbon before the upper part of the 3D-domain
Ω̄P (FIG. 2.4A) satisfies the mixed boundary-value Laplace equation [100, 174, 189]

∆p3D(x) = 0 for x ∈ Ω̄P (2.41)

p3D(x) = 1 for x ∈ ∂Ω̄P,a

p3D(x) = 0 for x ∈ ∂Ω̄P,out

∂p3D

∂n
(x) = 0 for x ∈ ∂Ω̄P \

(

∂Ω̄P,a ∪ ∂Ω̄P,out

)

.

The domain, composed of vesicles centered on a square lattice, is not invariant by
rotation around any axis. Nevertheless, the results of the previous sections motivate
the restriction of our analysis to the fundamental square domain ΩP (FIG. 2.4B). In
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cylindrical coordinates (r, θ, z), the three-dimensional problem (2.41) in Ω̄P becomes

∂2p3D

∂r2
(r, z) +

1

r

∂p3D

∂r
(r, z) +

∂2p3D

∂z2
(r, z) = 0 for (r, z) ∈ ΩP (2.42)

p3D(r, z) = 1 for (r, z) ∈ ∂ΩP,a

p3D(r, z) = 0 for (r, z) ∈ ∂ΩP,out

∂p3D

∂n
(r, z) = 0 for (r, z) ∈ ∂ΩP \ (∂ΩP,a ∪ ∂ΩP,out) .

We neglect the change in the geometry along the angle θ, which should give a term

of order O(1). Using the conformal mapping f(ζ) =
1

ζ
, we map the domain ΩP into

Ω̃P (see eq. (2.4), FIG. 2.4C). The mapping ω = (s, t) = f(ζ), where ζ = r + iz,
transforms horizontal lines r = α, α ∈ R (resp. vertical lines z = β, β ∈ R) into
circles of radius 1

2α
and centered at (s, t) = ( 1

2α
, 0) (resp. 1

2β
and (s, t) = (0, 1

2β
)). In

particular, the interval at the cusp (r =
√

2rε) is mapped into a portion of a circle
of radius 1

2
√

2Rε
, centered at

(

1
2
√

2Rε
, 0
)

. The first order approximation is a segment

s = sa = 1√
2Rε

, t ∈
[

0,− 1
2R

]

. We set p3D(r, z) = v3D,in(s, t). In the scaling variable

ξ =
s

sa

, the regular expansion of the solution

Y3D,in(ξ, t) = v3D,in(s, t) (2.43)

is

Y3D,in(ξ, t) = Y 0
3D,in(ξ, t) + ε̃Y 1

3D,in(ξ, t) + ... (2.44)

where the small parameter is ε̃ = 2Rε. This is precisely equation (2.30) and at first
order in O(ε−2) with the boundary conditions in (2.42), we obtain that the leading
order term Y0 is independent of t. At order O(ε−1), the equation for Y 0

3D,in becomes:

ξ4∂
2Y 0

3D,in

∂ξ2
− ξ3∂Y

0
3D,in

∂ξ
= 0, (2.45)

and hence Y 0
3D,in(ξ) = Aξ2 +B where A and B are two constants. Thus, the solution

v3D,in is

v3D,in(s) = As2 +B. (2.46)

We are left with the constants A and B to be determined. We shall compute here
the probability p3D(r, 0) where the initial starting point is located on the surface
z = 0. The splitting probability p3D has the general form

p3D(r, z) = A
r2

(z2 + r2)2
+B (2.47)

and

p3D(r, 0) =
A

r2
+B. (2.48)
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Figure 2.5: Approximation of the splitting probability p3D(r, 0). A-B: The
splitting probability p3D(H, 0) function of the domain size H for R and ε fixed (A),
then for varying ε and fixed H and R (B). The fitting are obtained using matlab,
a = 3767 (A) and b = 0.1485 (B). C-D: Comparison of the splitting probability
computed from Brownian simulations (blue) and the numerical approximation (ma-
genta, eq. (2.54)) (red in FIG. 2.4A). We vary the distance to the absorbing (red)
boundary). The radius of a vesicle is R = 20 nm, and the diffusion coefficient for
calcium is D = 200µm2.s−1. The initial position of the Brownian particle r goes
from

√
2Rε to

√
2H and H takes the following values (C, H = 25, 30, 40, 90, ε = 1).

We also show p3D(r, 0) for different values of ε (D, ε = 0.5, 0.7, 1, H = 30). We use
2000 runs per simulations.
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We now use the boundary conditions and some approximation to determine these
constants A and B. First, the absorbing boundary condition at the cusp in (2.42)
gives that

p3D(r, 0) = 1 −A
(

1 − 2Rε

r2

)

, (2.49)

and the constant A depends on the refined geometry of the domain and the distances
H , R and ε.

To determine A, we first assume that the value p3D(H, 0) is known and express
the splitting probability as a function of p3D(H, 0) = p(ε, R,H) in eq. (2.49). We
obtain

p3D(r, 0) = 1 − 1 − p(ε, R,H)

1 − 2Rε

H2

(

1 − 2Rε

r2

)

. (2.50)

We now determine numerically p(ε, R,H) when H , R and ε are changing. We start
by changing H for fixed values R and ε. We ran stochastic simulations and obtain
with a best fit procedure the following interpolation

p(ε, R,H) ≈ a(R, ε)

H3
, (2.51)

where the function a(R, ε) depends on ε and R (see FIG. 2.5A). Similarly, we obtain
by varying ε and fixing H and R the following estimation (FIG. 2.5B)

p(ε, R,H) ≈ b(R,H)ε. (2.52)

Finally, the dependency in the radius R can be obtained by rescaling the domain.
Combining eqs. (2.51-2.52), we propose that

p(ε, R,H) = α
R2ε

H3
, (2.53)

where the constant α is fitted numerically using Matlab. We obtain α ≈ 9.8. Thus,
the splitting probability p3D(r, 0) to reach the absorbing window before the upper
part of the thin layer z = 2R is approximated by

papprox
3D (r, 0) = 1 −

1 − 9.8
R2ε

H3

1 − 2Rε

H2

(

1 − 2Rε

r2

)

. (2.54)

The range of validity of this formula is investigated in FIG. 2.5C-D, showing the nice
agreement between the asymptotic formula and Brownian simulations for different
values of H and ε.
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2.4 Discussion: estimation of the vesicular release
probability

In this final section, we apply the result obtained in the section 2.3.1 about the split-
ting probability, to estimate the variability of the vesicular release process. Indeed,
we can now compute the probability

pact(r,N) = P(T ions have reached the synaptotagmin|N ions, distance r),(2.55)

that a finite number T of calcium ions (we consider T = 3, 4 and 5 ions) bind
a molecule such as synaptotagmin, when N calcium ions have entered through a
channel. The synaptotagmin molecules are positioned between a vesicle and the
synaptic membrane and calcium channels are at a distance r from the center of the
closest vesicle.

If we neglect the dynamics of calcium ion unbinding events, the probability
pact(r,N) is thus the one to find at least T ions inside the ribbon. Because the prob-
ability to find exactly k ions out of N follows the Binomial distribution B(N, p3D(r)),
we obtain that

pact(r,N) =
∑

k≥T

(

N

k

)

p3D(r)k (1 − p3D(r))N−k (2.56)

= 1 −
T −1
∑

k=0

(

N

k

)

p3D(r)k (1 − p3D(r))N−k .

Using approximation eq. (2.54), we obtain an explicit expression for the probability
of activation pact(r,N) after a single channel opens. The probability pact depends on
the channel locations, decreasing from one to almost zero in only a few nanometers
(FIG. 2.6A-B). This result can explain the large variability in the release probability
as calcium channel position can vary over time.

Moreover, the organization of vesicles in the AZ determines the release proba-
bility. Indeed, when vesicles are sparsely distributed (FIG. 2.6A, H = 100 nm) and
100 ions have entered, then to obtain a 80% release probability (pact = 0.8), the
distance between the vesicle and the channels must be smaller than 24 nm, which
has to be compared to the 20 nm radius of the vesicle. This result shows that the
co-localization of channels with a vesicle is a key feature determining a high release
probability. However, for high vesicular crowding (FIG. 2.6B, described by choos-
ing the distance H = 35 nm) and 100 ions have entered, then the probability pact

is higher than 0.9, regardless of the initial position of the channels, suggesting that
vesicles are certainly released. We predict that a high crowding of vesicles should
be associated with a high release probability.

Channels can be organized in cluster or uniformly distributed and this is also a
major determinant governing release probability. Indeed, channels clustering in our
model is accounted for by an increase in the number of entering ions. When vesicles
are sparsely distributed, the 24 nm distance required to obtain a release probability
pact = 0.8 when 100 ions are entering through one channel, is increased to 61 nm
for 500 ions. This effect results from the local geometry of the ribbon underneath
the vesicle. When the number of ions is low, this maximal distance to guarantee
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Figure 2.6: Consequences on the release probability of calcium channel
location and vesicular crowding at the AZ. A-B: Probability to find three,
four or five calcium ions (full, dashed and dotted lines respectively) underneath a
vesicle, in the case of sparse vesicular distribution: H = 100 nm, A; and in the
case of crowding of vesicles at the AZ: H = 35 nm, B. The relation depends on the
initial number of calcium ions. The diameter of the pre-synaptic vesicles is fixed
at R=40 nm (grey dashed circle), the diffusion coefficient for free calcium ions is
DCa = 200µm2s−1. The height of the absorbing boundary is ε = 1nm (red dashed
line). C-D: Maximal channels distance rmax,pact

(N) to activate the vesicle with a
probability pact ≥ 0.8 (blue) and 0.2 (green), when there are N initial ions, for
H = 100 nm C and H = 35 nm D. We fix the threshold to 3, 4 or 5 calcium
ions. The gray dashed line represents the maximal distance to the vesicle in the
elementary domain:

√
2H .
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pact = 0.8 does not vary much when the activation threshold T increases from 3 to
5; however, for 500 ions, this distance changes significantly over 15 nm.

To better understand how the maximal distance rmax,pact
(N) between channels

and vesicles varied with the number N of entering ions, for a fixed probability
pact, we plotted rmax,pact

(N) in FIG. 2.6C-D. For a sparse distribution of vesicles,
characterized by the distance H = 100nm, a vesicle is activated with a probability
pact = 0.8 (resp. pact = 0.2), when 1200 ions are entering at a distance 100 nm (resp.
450 ions), and 340 ions at a distance 50 nm (resp. 125 ions). This result has to
be compared to the 200 - 500 nm diameter of the AZ [187]. Consequently, a sparse
distribution of vesicles at the AZ requires a high number of entering ions in order to
trigger fusion, which can be achieved when channels are clustered. However, when
channels are co-localized with vesicles, the activation probability pact is significantly
increased: indeed 450 ions are necessary for activation for pact = 0.2 at a distance
100 nm. When the probability increases to 0.8, the distance reduces to 58 nm.
Thus, a synapse with high release probability requires a nanometer precision of the
channel location. However, this high requirement can be compensated by increasing
the number of initial ions: with 2000 ions, the maximum distance is relaxed to 140
nm. On the contrary, in a pre-synaptic terminal crowded at its surface with vesicles
(characterized by H = 35 nm), very few initial ions are needed for an efficient release.
Indeed, 50 ions are enough to activate a vesicle with probability 0.8, wherever the
channels are located in AZ (FIG. 2.6D). The number of calcium ions estimated for
reliable release could be affected by calcium buffers located within the nanometer
layer of the AZ, but not in the bulk as discussed above.

2.5 Conclusion

To conclude, the present asymptotic analysis of the model equations and their cor-
responding stochastic simulations provide a robust tool to study diffusion in cellular
nanodomains and in particular in the pre-synaptic terminal of neuronal synapses.
We reported here that channel positioning, the number of entering ions, and the
organization of the AZ are key factors governing the search by diffusing ions to
relevant proteins that trigger vesicular release. Channel clustering provides a way
to increase the initial number of calcium ions at a specific location. According to
the present results, we found that vesicles located near channel clusters will be re-
liably activated at distances of tens of nanometers. We speculate that releasing a
sequence of vesicles at the same location might be an unrealistic scenario due to
relocalization of the channels following vesicular fusion [169, 170]. The present ap-
proach complements previous numerical studies by specifically addressing the role
of the three-dimensional geometry between a vesicle and the synaptic membrane for
diffusing calcium ions to trigger vesicular release [33, 127, 129].

Finally, we reported here that a uniform distribution of calcium channels is as-
sociated with a low release probability. For vesicles positioned near a small amount
of calcium channels, a train of stimulations will most likely activates several vesi-
cles. Thus changing the AZ organization, or the colocalization of calcium channels
with respect to vesicles, can modify the synaptic response. After several stimu-
lations this redistribution of channels can influence short-term synaptic plasticity,
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located at the end of a funnel

the mechanism of which could be further investigated using the present modeling
approach.

2.6 Appendix A : Revisiting the Dire Strait Search
in a three-dimensional cusp located at the end
of a funnel

In this appendix, we compute the time for a Brownian particle to escape through a
narrow cusp located at the end of a funnel in a three dimensional bounded domain
(Σ̄R, FIG. 2.7A). The mean first passage time (MFPT) ũ(x) starting at position x

is solution of

D∆ũ(x) = −1 for x ∈ Σ̄R (2.57)
∂ũ

∂n
(x) = 0 for x ∈ ∂Σ̄R \ ∂Σ̄R,a

ũ(x) = 0 for x ∈ ∂Σ̄R,a,

where D is the diffusion coefficient and ∂Σ̄R (resp. ∂Σ̄R,a) is the boundary (resp.
the absorbing part of the boundary). We compute asymptotically the solution u(x)
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Figure 2.7: Domain with a funnel-shaped cusp. A: Initial domain Σ̄R consists
of two geometrical features: a large domain or a ball and a small narrow cusp. R is
the radius of curvature at the cusp. B: Σ is the projection of the three-dimensional
domain Σ̄1, in the plane ψ = 0 (cylindrical coordinates). C: The two-dimensional
projection Σ is mapped using a Möbius transformation (the boundary parts with a
given color is mapped with the one of the same color in the image domain).

for problem (2.57), using the conformal mapping method. The geometry of the
domain Σ̄R is the following: it contains a small absorbing window ∂Σ̄R,a of diameter
E located at the end of the funnel connected smoothly to a three dimensional ball.
The domain Σ̄R can be as large as wanted. The radius of curvature R at the
boundary shapes the funnel, as shown in FIG. 2.7A. The symmetric cusp can be
parametrized in the cylindrical coordinates (ρ, ψ, z) (ρ is the distance to the z-axis)
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by

ρ(z) =
1

2R
z2 +

E
2
, (2.58)

for z small. In dimensionless variables x′ = Rx and ũ(x′) = u(x), the equation is
written as

D∆u(x) = −1 for x ∈ Σ̄1 (2.59)
∂u

∂n
(x) = 0 for x ∈ ∂Σ̄1 \ ∂Σ̄1,a

u(x) = 0 for x ∈ ∂Σ̄1,a.

The domain Σ̄R is mapped on the its image Σ̄1, |Σ̄R| = R3|Σ̄1|, E = Rε,L = Rl,
and D = R2D. Due to the rotational invariance, in cylindrical coordinates (ρ, ψ, z),
the solution of the two-dimensional problem in the domain {ψ = 0} (see FIG. 2.7B)
satisfies

∂2u

∂ρ2
(ρ, z) +

1

ρ

∂u

∂ρ
(ρ, z) +

∂2u

∂z2
(ρ, z) = − 1

D
for (ρ, z) ∈ Σ (2.60)

∂u

∂n
(ρ, z) = 0 for (ρ, z) ∈ ∂Σ \ ∂Σa

u(ρ, z) = 0 for (ρ, z) ∈ ∂Σa.

2.6.1 Mapping the cusp domain with a Möbius transforma-
tion into a narrow Banana

The key step to the asymptotic computation is the Möbius transformation that maps
domain Σ̄1 into a narrow domain, where the mapped equation reduces to a single
variable:

f(ξ) =
ξ − α

ξ − β
, (2.61)

where ξ = ρ+ iz is the variable in the original domain, that maps the domain Σ into
two concentric circles. The pair (α, β) lies symmetric on the real axis Re(z) = 0. We
obtain their values using the conditions α = −β and (1 + ε/2 − α) (1 + ε/2 − β) =
1. Finally, we obtain

αε =
√

ε (1 + ε/4) =
√
ε(1 +

1

8
ε+ o(ε)), (2.62)

f(ξ) =
ξ − αε

ξ + αε
. (2.63)

The domain Σ (FIG. 2.7B) is mapped into Γ (FIG. 2.7C), and the boundary parts
∂Σa is mapped on the segment ∂Γa = [−1; −1 +

√
ε] of length

√
ε. The cusp is

mapped on the narrow hot-dog shaped domain, and the other external part of the
domain is mapped on the small green region (FIG. 2.7C), concentrated at an angle
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θ of order
√
ε. To map eq. (2.60) into to the new domain, we use ω = reiθ = f(ξ)

and u(ξ) = vε(ω). The conformal map changes the Laplace equation into

∆u(ξ) = |f ′(ξ)|2∆v(ω) (2.64)

f ′(ξ) =
2αε

(ξ + αε)2
=

(1 − ω)2

2αε

. (2.65)

The first order derivative is

∂u

∂ρ
=

∂vε

∂r

∂r

∂ρ
+
∂vε

∂θ

∂θ

∂ρ
(2.66)

=

(

1 − r2

2αε
cos(θ) +

r

αε
(r cos(θ) − 1)

)

∂vε

∂r
+
r2 − 1

2αεr
sin(θ)

∂vε

∂θ
,

and the variable ρ is now expressed by

ρ = αεRe
(

ω + 1

1 − ω

)

= αε
1 − |ω|2
|1 − ω|2 = αε

r2 − 1

2r cos(θ) − 1 − r2
. (2.67)

Equation (2.60) is mapped into

|1 − ω|4
4α2

ε

∆vε +
|1 − ω|2

αε(1 − |ω|2)

[

∂vε

∂r

∂r

∂ρ
+
∂vε

∂θ

∂θ

∂ρ

]

= − 1

D
for (r, θ) ∈ Γ (2.68)

∂vε

∂n
(r, θ) = 0 for (r, θ) ∈ ∂Γ \ ∂Γa

vε(r, θ) = 0 for (r, θ) ∈ ∂Γa.

To solve asymptotically equation (2.68) in Γ, we neglect the variation in the r-
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Figure 2.8: Profile of the solution vε for escape in the three dimensional
funnel-shaped cusp A: Solution vε in the mapped domain for ε = 10−2 (top) and

2.10−2 (bottom), with R = 1, D = 0.2 and |Σ̄1| =
4

3
π53. There are two regions:

the boundary layer and the outer region. B: Analytical formula (Blue) for the DST
(eq. (2.76)) versus Brownian simulations (red). We used 2000 runs for values of
ε in the range 0.01 to 0.1. The parameters are described in A. The optimal fit
using Matlab (Magenta) gives a = 2650 is comparable with the estimation from the
analytical formula a = 2618.
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variable because r = 1 + O(
√
ε) and thus vε(r, θ) ≈ vε(θ) with absorbing boundary

condition at π (vε(π) = 0) and reflection inside the upper part (v′
ε(c

√
ε) = 0), where

the constant c = O(1). Equation (2.68) reduces to:

v′′
ε (θ) +

sin(θ)

cos(θ) − 1
v′

ε(θ) = − α2
ε

D(cos(θ) − 1)2
, (2.69)

the general solutions of which has the form

vε(θ) = A (sin(θ) − θ) +B +
α2

ε

15D

[

2 ln(1 − cos(θ)) − 2 cos(θ) +
3

cos(θ) − 1

]

,(2.70)

where the two constants A and B are found from the boundary conditions. From
vε(π) = 0, we get

vε(θ) = A (sin(θ) + π − θ) (2.71)

+
α2

ε

15D

[

2 ln

(

1 − cos(θ)

2

)

− 2 (1 + cos(θ)) +
3

cos(θ) − 1
+

3

2

]

.

To estimate the other constant A, we use the compatibility condition [83] obtained
by integrating equation (2.59) over the initial domain

−|Σ̄1|
D

=
∫

Σ̄1

∆u(x)dx =
∫

∂Σ̄a,1

∂u

∂n
(y)dSy . (2.72)

Using expression (2.71) for the solution vε, we get

∂u

∂n ∂Σ̄a,1

= −∂u

∂z ∂Σ̄a,1

= −∂u

∂z ∂Σa

= −
[

r cos(θ) − 1

αε
+

(1 − r2) cos(θ)

2αεr

]

∂vε

∂θ
θ=π,r∈[−1;−1+

√
ε]

=
2

αε
(1 +O(

√
ε))

∂vε

∂θ θ=π,r∈[−1;−1+
√

ε)
= −4A

αε
(1 +O(

√
ε)).

Thus,

∫

∂Σ̄a,1

∂u

∂n
(ρ, z)dS = −2π

4A

αε

∫ ε/2

0
ρdρ = −2π

4A

αε

ε2

8
= −Aπε2

αε

= −Aπε√ε(1 +O(
√
ε)).

Using the compatibility condition (2.72), we get

Aε =
|Σ̄1|

Dπε
√
ε

(2.73)

and

vε(θ) =
|Σ̄1|

Dπε
√
ε

(sin(θ) + π − θ) (2.74)

+
α2

ε

15D

[

2 ln

(

1 − cos(θ)

2

)

− 2 (1 + cos(θ)) +
3

cos(θ) − 1
+

3

2

]

.

78



2.7. Appendix B: Simulating the NET in two and three dimension.

The solution and the extension of the boundary layer [6] are represented in FIG. 2.8A.
The mean first passage time 〈τ〉 from the domain is computed for trajectories start-
ing outside the cusp, located in the mapped domain by the starting angle θ = c

√
ε:

〈τ〉 =
|Σ̄1|
Dε

√
ε

+O(1). (2.75)

In dimensional units, we obtain

〈τ〉 =
|Σ̄R|

√
R

DE
√

E
+O(1), (2.76)

where R is the curvature at the cusp, D the diffusion coefficient and |Σ̄R| the total
volume of the domain. This formula corrects by a factor 2 the asymptotic expansion
for the Dire Strait Time derived in [83, 84, 85, 86]. The asymptotic formula (2.76)
seems to be valid in a large range of the absorbing radius E as shown in FIG. 2.8B,
where the analytical formula is directly compared to Brownian simulations.

2.7 Appendix B: Simulating the NET in two and
three dimension.

We present in this appendix a method to realize numerical Brownian simulations in
two and three dimensions, in confined geometries.

2.7.1 Simulating Brownian trajectory using Euler scheme in
confined domains.

The trajectory of a Brownian particle with a diffusion coefficient D can be repre-
sented by the solution of the stochastic differential equation:

Ẋ(t) =
√

2Dẇ(t) for t > 0, (2.77)

X(0) = x0 (2.78)

where ẇ(t) is white noise. To discretize such equation for 0 ≤ t ≤ T , we consider
the lattice tk = t0 +k∆t with ∆t = T

N
. According to Ito’s definition of the stochastic

integral, the solution X(t) is the limit as ∆t → 0 of the solution of the Euler scheme
[183]:

XN(t+ ∆t) = XN(t) +
√

2D∆t ξ(t), (2.79)

where ξ(t) are independent standard Gaussian variables N (0, 1) for each t on the
lattice.
To perform simulations in dimension 2 and so on, one can simply consider the Euler
Scheme for the discretized vector X = (X1(t), X2(t)) on the numerical mesh:

XN
1 (t+ ∆t) = XN

1 (t) +
√

2D∆t ξ1(t) (2.80)

XN
2 (t+ ∆t) = XN

2 (t) +
√

2D∆t ξ2(t), (2.81)
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where ξj(t) are independent standard Gaussian variables N (0, 1) for each t on
the lattice and each j ∈ {1, 2}.

In the case of Brownian particles evolving in confined domains, we have to con-
sider the behavior of the particles at boundaries that can be either reflecting or ab-
sorbing. To simulate a reflecting boundary, we consider the classical Snell-Descartes
reflection principle [173]. Hence, a trajectory that hits the boundary is reflected
according to the tangent plane to the boundary at the hitting point. To simulate
an absorbing boundary, we simply truncate the trajectory at the first time it hits
the absorbing part of the boundary [173].

When simulating rare events such as the DST, one should be particularly careful
in the choice of the time step ∆t. Indeed, in the simulations the very long first
passage times are usually very sensitive to ∆t. We propose now a method to choose
such time step, when the Brownian particle has to reach a small target.

2.7.2 Choosing the optimal time step ∆t

When a Brownian particle has to reach a small target of size a, the time step of the
simulation is limited by a. Indeed to insure a correct Brownian simulation and that
the discretized trajectory does not jump over the binding site, the time step ∆t of
the simulations should be restricted by the target size. A criteria is that the mean
square displacement should be less than a fraction of the target size a:

〈|X(t + ∆t) − X(t)|2〉 = 2dD∆t ≤ α2a2, (2.82)

where d is the dimension of the Brownian motion. In dimension 2, for α = 0.4, DCa =
200µm2s−1 and a = 0.001µm, ∆t = 10−10 ms which would lead to simulation time
of several weeks to estimate the NET. Hence, imposing such a small ∆t decreases
drastically the efficiency of the simulations. It is possible to circumvent partially this
difficulty by using an adaptive time step and creating an artificial larger hole, outside
which the simulation can be much faster. In a disk of radius R, the strategy is the
following (Fig. 2.9): away from the small target, the time step can be chosen such
that the corresponding mean square displacement between two steps is smaller than
∆xmax = αR, which gives ∆tmax ≤ α2R2

4D
. This time step ∆tmax is chosen outside a

ball centered in the hole, and of radius rmax ≥ R + 5∆xmax (Fig. 2.9). Close to the
hole, the mean square displacement should be ∆xmin = αa, and thus ∆tmin ≤ α2a2

4D
,

inside a ball of radius rmin ≥ a + 5∆xmin centered in the hole (Fig. 2.9). In the
annulus A(rmin, rmax) between the balls of radii rmin and rmax, a linear interpolation
of the mean square displacement can be chosen

∆x = v∆xmin + (1 − v)∆xmax, v ∈ [0, 1]. (2.83)

The annulus A(rmin, rmax) is thus partitioned into sub-domains obtained by inter-
secting balls of different radii.

The convergence of the simulations can then be checked by comparing the results
of the arrival time for smaller time steps when an asymptotic value has been reached.
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armin

rmax

∆tmin ≤ (αa)2

4D∆tmax ≤ (αR)2

4D

∆tmid

×

R

Figure 2.9: Strategy to choose the adaptive time step for a two-dimensional
disk. Far from the target (r > rmax), the time step ∆tmax depends on the radius
of the disk. Close to the target (r < rmin), the time step depends on the radius of
the hole. The evolution of the mean square displacement between rmin and rmax is
linear. The threshold rmin and rmax can be chosen considering that more than 99 %
of a Gaussian function belongs to an interval of size ten times the variance.
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Coarse-grained multiscale
simulations of molecular dynamics





Chapter 3

Multi-scale methods and
simulations of Brownian particles
reaching small targets to compute
the time distribution of vesicular
release at neuronal synapses

The difficulties of simulating diffusion processes at a molecular level in cell mi-
crodomains are due to the multiple scales involving nano- to micrometers. Indeed,
few to many particles have to be simulated and simultaneously tracked while ex-
ploring large portions of the cellular space, but also while binding small targets such
as buffers or active sites. All these different spatial scales create rare events, due to
the long time for finding a small target, which is the bottleneck in long simulations.
Naive stochastic simulations involving many Brownian particles are computation-
ally greedy and inefficient, and solving the associated partial differential equations is
difficult due to the time dependent boundary conditions and the very heterogeneous
geometrical constraints. The PDEs approach is also limited by the change of regimes
from continuum to discrete, when a few particles are involved. We present here two
reduced modeling approaches that allow fast computing of diffusing fluxes in mi-
crodomains. The first approach is based on new Markov-Mass action law equations,
where a Markov chain is coupled to continuous differential equations. The second
is based on the narrow escape and Poissonian rate approximation to coarse-grain
simulations. The main application concerns diffusion in synapses where we compute
the arrival time of calcium to small targets and predict the distribution of vesicular
release following a single stimulation.

3.1 Introduction

A key procedure in computing statistical quantities and predicting cellular responses
from molecular events, is to derive models and to design associated stochastic simu-
lations of many Brownian particles. Those particles usually interact through binding
events, and through the activation of specific sites. The challenges are several: in
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principle long time simulations are expected because stochastic particles have to
find small targets in a heterogeneous geometry containing large bulk, narrow pas-
sages and hidden sites. Moreover, the physical description of the particles motion
involves many coupled stochastic equations in such geometry, leading to costly, long
and inefficient numerical simulations. However, solving this ensemble of stochastic
equations provides fundamental insights into the cellular processes, that are usually
not yet resolved in live cell microscopy.

Past examples include hybrid simulations involving the connection between dis-
crete and continuous events in simplified geometries [42, 56, 58]. This approach
avoids to simulate a large number of particles in an infinite space. The difficulty is
to code the appearance and disappearance of particles, which consists in computing
at each simulation step the probability density function in the neighborhood (in the
continuum) of an artificial boundary between the two regions.

We present here two reduced approaches based on the principle of replacing a
system of PDE by a Markov chain coupled to a system of differential equations, and
a molecular stochastic simulation by a Poissonian rate model. The first approach
consists in a reduced model of molecular binding where we replace a complex system
of coupled diffusion-reaction equations, too complicated to be resolved because it
involves small targets and time dependent boundary conditions, by a Mass-action
law system coupled to a Markov chain. This model accounts for the transition from
the continuous to the discrete level, where a small and finite number of particles are
necessary to activate a small target site and thus triggers a cellular event, a process
that represents a change of scale. The second method we shall present coarse-grains
traditional Brownian trajectories simulation into Gillespie’s simulations, using rates
that are estimated asymptotically by the narrow escape theory (NET) [85, 70].
Indeed, the arrival rate of a Brownian particle to a small target is well approximated
by a Poissonian distribution.

We apply these two approaches to compute the distribution of the release time of
a vesicle in the pre-synaptic terminal of a neuronal cell. This process called vesicular
release, involves tracking ions binding at small targets positioned underneath a vesi-
cle, when hundreds of ions are initially entering the synaptic domain following the
propagation of an action potential [98]. For the past 20 years, a large modeling ef-
fort to understand vesicular release led to available Monte Carlo algorithms [104, 57]
that allow to track individual particles and to simulate reaction-diffusion of discrete
molecules in complex spatial environments [134]. Calcium-induced vesicular release
was studied using MCell [3] and recently it was shown that the stochastic opening
kinetics of the VGCCs are the main contributor to the variability observed in the
release probability [134]. An other mathematical modeling study [204] predicts that
a certain type of calcium channel (Ca(V)2.2) can create calcium nanodomains, that
can activate a calcium-fusion sensor located on the proximal face of synaptic vesicles.

The paper is organized as follows: first, we present our model for the dynamic
of calcium concentration in the pre-synaptic terminal. We describe the reaction-
diffusion model and its limitations that prevented us to use it. This part is followed
by our two reduced models. The first one is a Markov model coupled to a system of
mass action law equations, and the second is stochastic, based on rate equations. We
compare the results given by the two models that are in good agreement. Finally,
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consequences for neuronal synaptic transmission are discussed.

3.2 Multi-scale model of diffusing ions in pre-synaptic
terminal

Although multi-scale modeling of diffusing particle is generic in cell biology, we
focus here on a specific example to build coarse-grained models. This example is
the dynamic of calcium ions in the pre-synaptic terminal of neuronal cells.

3.2.1 Modeling calcium dynamic in the pre-synaptic termi-
nal

The pre-synaptic terminal of a neuron contains vesicles that are released following an
action potential, but the exact pathway and underlying molecular mechanisms are
still under investigation. The molecular processes involved in vesicular release start
after an action potential has triggered the opening of voltage-gated calcium channels
(VGCCs), followed by calcium flow into the pre-synaptic domain. When several
ions have succeeded by diffusion to find small molecular targets (synaptotagmin
and many others) underneath a vesicle, a complex molecular machinery is activated
leading to vesicular fusion with the cell membrane and neurotransmitters release
[186]. Calcium ions can also bind and unbind to buffer molecules located in the
bulk of the pre-synaptic terminal. Finally, they can be extruded through small
pumps located on the surface of the domain or can exit at the end of the terminal,
although this process is not completely documented. The success of the process
where calcium ions find the target molecules by diffusion, depends also on the relative
position between vesicles and channels and on their organization on the surface
[106, 169, 103].

We model the pre-synaptic terminal geometry as a sphere (head) smoothly con-
nected to a short cylinder (neck) (Fig. 3.1A). Vesicles are located in a region called
the Active Zone (AZ), a small surface of the domain boundary that contains also
VGCCs. VGCCs can be uniformly distributed on the AZ, or can form clusters.
Calcium ions enter through VGCCs, and although they are charged, they are mod-
eled as Brownian particles. The terminal also contains calcium buffer molecules and
pumps, modeled as spherical binding sites located respectively inside the head and
at the boundary. All ions, called also here particles, exit the domain when they are
extruded through pumps or when they reach the end of the neck. Upon hitting a
pump, a particle is absorbed during an extrusion time τpump, during which the pump
is deactivated [88]. To trigger vesicular fusion, we assume that four to six calcium
ions need to find the small target located at the junction between the vesicle, mod-
eled as a sphere, and the surface membrane. This molecular target is represented
by a small ribbon of height ε, located underneath the vesicle, which defines a geo-
metrical cusp (Fig. 3.1B). After vesicular fusion, calcium ions previously bound to
the target are released into the terminal.

The central question that motivates this analysis and the stochastic simulations is
the following: how to compute the release probability of a vesicle and the distribution
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Figure 3.1: Schematic representation of the pre-synaptic terminal. A: The
terminal is modeled as a sphere (head) connected to a cylinder (thin neck). Calcium
ions are Brownian particles (green spheres) that enter through calcium channels
located at the AZ (orange). They are reflected everywhere on the boundary except
at the pumps (purple) and at the upper part of the cylinder where they are absorbed.
They can be extruded through pumps and bind buffers (purple spheres) or the small
targets underneath the vesicles (blue). B: Magnification of a docked vesicle at the
AZ. Calcium ions (green spheres) enter through calcium channels (orange). They
can bind the small ribbon target (red) located underneath a vesicle (blue).
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of release events following an AP? And how does it depend on key parameters such
as the relative distribution of channels and vesicles, the buffer concentration, or the
minimal number T of bound particles (ions) necessary to trigger fusion? We start
by a general description of the reaction-diffusion process, followed by some coarse-
grained approximation that allow to perform realistic computations and simulations.

3.2.2 Reaction-diffusion equations for calcium in pre-synaptic
terminal

The continuum description for the number of particles is based on a reaction-
diffusion system of equations developed in [78, 80]. The density of particles (calcium
ions) M(x, t) can be computed from the Fokker-Planck equation [171]. We partition
the boundary of the domain Ω into two parts: one containing the pumps and the
bottom of the neck ∂Ωa(t) which absorb particles, while the remaining surface of
the domain ∂Ωr(t) reflect ions. The surface representing the AZ is denoted SAZ

(Fig. 3.1A). At the AZ, the vesicles are represented by spheres tangent to SAZ , and
the target molecules are represented by a small ribbon located near the tangential
point (see section 3.2.1 and Fig. 3.1B).

We introduce the variables B(j)(x, t), (j ∈ {0, 1}), that represent the density of
buffers at point x containing j bound particles at time t. The buffers are modeled
as Brownian particles with a diffusion coefficient DB. The total density of buffers
at point x at time t is

Btot(x, t) = B(0)(x, t) +B(1)(x, t). (3.1)

The total number of buffers in the pre-synaptic domain is Btot =
∫

Ω Btot(x, t)dx,
which is fixed. We assume that the forward and backward reaction rates, k0 and k−1,
are constant and independent of the densities. The other variables to be introduced
are the density of targets S(j)(x, t), (0 ≤ j ≤ T ) with j bound particles, where T is
the number of bound particles necessary for activation. The targets are fixed in the
domain, and hence the total density of targets at point x is

S0(x) =
∑

j

S(j)(x, t). (3.2)

We shall neglect the unbinding from the targets, and assume that the forward reac-
tion rate kS is constant. A more detailed model taking into account cooperativity
at the buffer binding sites, and the number of already bound particles at a target is
presented in Appendix 3.7.

The reaction-diffusion equations for the density of free particles, M(x, t), of
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buffers B(j)(x, t) and of active targets S(j)(x, t) are given by (see [78] for a derivation)

∂M(x, t)

∂t
= −∇ · JM(x, t) − k0M(x, t)B(0)(x, t) + k−1B

(1)(x, t)

−kSM(x, t)
T −1
∑

j=0

S(j)(x, t) + TkSM(x, t)S(T −1)(x, t)

∂B(0)(x, t)

∂t
= −∇ · JB(0)(x, t) − k0M(x, t)B(0)(x, t) + k−1B

(1)(x, t) (3.3)

∂B(1)(x, t)

∂t
= −∇ · JB(1)(x, t) − k−1B

(0)(x, t) + k0M(x, t)B(1)(x, t)

∂S(0)(x, t)

∂t
= −kSM(x, t)S(0)(x, t),

∂S(i)(x, t)

∂t
= kSM(x, t)

[

S(j−1)(x, t) − S(i)(x, t)
]

, i = 1..T − 1

∂S(T )(x, t)

∂t
= kSM(x, t)S(T −1)(x, t),

where the fluxes are defined by

JX(x, t) = −D∇X(x, t), for X ∈ {M,B(0), B(1)}. (3.4)

The initial conditions are

B(0)(x, 0) = Btot(x), B(1)(x, 0) = 0. (3.5)

S(0)(x, 0) = S0(x), S(j)(x, 0) = 0 for 1 ≤ j ≤ T . (3.6)

A target is activated by the binding of T particles. The system of equations 3.3 is a
reaction-diffusion model of the transient calcium chemical-reaction in Ω. The initial
and boundary conditions for M(x, t) are the initial reactant density, absorption at
the absorbing boundary, and fluxes at the reflecting boundary:

M(x, 0) = c0(x) for x ∈ Ω

M(x, t) = 0 for x ∈ ∂Ωa(t) (3.7)

JM(x, t) · ν(x) = 0 for x ∈ ∂Ωr(t) \ SAZ

JM(x, t) · ν(x) =
Jtot(t)

SAZ
for x ∈ SAZ .

Jtot(t) is the flux of particles entering through the channels. A description of the
flux of particles entering through one channel, J(t), is given in subsection 3.4.1.
Using this description, and in the case of lV channels present at the AZ, the flux
of particles entering becomes Jtot(t) = lV J(t). The initial boundary conditions for
B(0)(x, t) and B(1)(x, t) are reflecting on all the boundary ∂Ω. The geometric effect
of target distribution is expressed in S0(x). The particular shape of the targets
is quite delicate to account for, as they are small ribbons located at a cusp-like
geometry (Fig. 3.1B). There are no moving internal boundaries, because the support
of S(j)(x, t) at all times is that of S0(x).
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Finally, the number of activated vesicles is given by

Nact(t) =
∫

Ω
S(T )(x, t)dx. (3.8)

In summary, this ensemble of reaction-diffusion equations describes the entrance
of ions in a pre-synaptic terminal. This model already makes the approximation that
pumps are replaced by fully absorbing holes, and doesn’t allow to study the effect
of calcium channels organization at the AZ. Moreover, there are several difficulties
with this system of equation: first the analysis for the transient regime is not easy,
second the location of the target in cusp leads to analytical and numerical difficulties.
Thus, instead of analyzing or trying to simulate this difficult set of equations, we
shall propose two alternatives and reduced models. The first is based on a new
Markov-Mass action coupled system of equations, and the second is numerical based
on coarse-graining diffusion to narrow target by Poissonian rates [84].

3.3 Markov-Mass action model for bridging the
discrete-continuum levels

Brownian particles and small targets can be described by a coarse-grained model
where particles are described by differential equations (continuum) for the their
number, while the binding to the targets is described by a Markov chain. We first
describe our modeling of the AZ organization, followed by the Markov and the mass
action equations, used later on to compute the vesicular release probability.

3.3.1 Model of target site organization at the AZ

The model starts when the Brownian particles enter the domain Ω through open
channels located at points Pch at the AZ. The inward flux through one channel at
time t is J(t) (an example of calcium influx is presented in section 3.4.1). Following
the entrance, there are two fate for the particles. They either hit the small target
sites underneath a sphere (vesicle) or they reach the bulk where they are lost in
the undifferentiated state of many particles. These possibilities can precisely be
computed from the splitting probability ps that a particle hits a small target before
entering the bulk [70]. We shall now describe our model for the AZ organization
(Fig. 3.2).

We consider that there are NDock spheres (vesicles) of radius rves positioned on
a square lattice (Fig. 3.2A-B) of length 2H . The surface SAZ of the AZ is

SAZ = 4H2NDock. (3.9)

When H ≥ Hc (Hc = 0.07 µm), the spheres are sparsely distributed, and for
H ≤ Hcc (Hcc = 0.03 µm), we consider that we are in dense distributed regime.
The target sites are small cylinders between the bottom of the sphere and the plane
(red in Fig. 3.1B and 3.2A). We subdivide the AZ into squares SQ of length 2H
surrounding each sphere. To characterize the splitting probability ps that a particle
reaches any target on the AZ before reaching the bulk, we define a region called
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Figure 3.2: Organization of the Active Zone (AZ). The AZ is divided into
elementary squares SQ, where a vesicle (a sphere) is docked (A). The boundary layer
around a sphere is the volume define as the rectangular cuboid around the sphere
with lower face SQ (orange square in A), height 2rves and upper face tangent to the
sphere (gray square in A). The bulk is defined as the volume above the boundary
layer, which is the complement of the bounadry layers of all the spheres. Brownian
particles (calcium ions) enter through channels located at point Pch (A), and escape
the boundary layer through the gray surface. Each square SQ can be subdivided into
triangular subunits Si

q (B), where we compute numerically the probability that a
particle reaches the closest target (C-E, blue), the second closest (green or magenta),
and so on. The length is H = Hc and we use different values for the angle θ. The
colors in B and C-E correspond.
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boundary layer near each sphere, defined as a rectangular cuboid with face SQ

and height 2rves, that engulf the spheres (Fig. 3.2A). The bulk is define as the
complement of the boundary layer above the AZ, which is the ensemble of boundary
layers of all the spheres. After a Brownian particle enters through a channel located
at point Pch on the AZ, it can either reach a target site or leave the boundary layer
around the spheres, through the face opposite to the AZ (gray in Fig. 3.2A). The
splitting probability that a particle reaches any target before leaving the boundary
layer, considering an infinite lattice full of spheres was computed in [70]:

ps(Pch) = 1 −
1 − A

r2
vesε

H3

1 − 2rvesε

H2

(

1 − 2rvesε

r(Pch)2

)

, (3.10)

where A = 9.8 and r(Pch) is the distance to the closest target site. To determine the
specific target that a particle will bind, we subdivide each square SQ near a sphere
into 8 sub-triangles (Si

q)i=1...8 (Fig. 3.2B). Using symmetry we restrict our analysis
to triangle S1

q . For an initial point Pch ∈ S1
q (Fig. 3.2B), we estimate numerically the

probability q(Pch, i1) that the entering particle bind to the closest target i1, (blue in
Fig. 3.2A), to the second closest i2, q(Pch, i2) (green or magenta) and so on, as the
distance r(Pch) increases. We recall that the normalization identity is

NDock
∑

i=1

q(Pch, i) = 1. (3.11)

To compute numerically the distribution q(Pch, i), we decompose the triangle S1
q in

uniform blocks parameterized in polar coordinates (rk, θk)k, run 200 simulations for
each k and fit the results using a routine procedure in Matlab (Fig. 3.2, the color
code in B and C-E are the same). We neglect the probability to bind to the 5th-
closest target and farther. This numerical result allows to compute the probability
q(Pch, i) to reach specifically the target site i, when starting from point Pch.

Finally, the fraction of particles entering through a channel positioned at Pch,
that reaches a target i, is ps(Pch)q(Pch, i). Hence, the flux fraction coming from
channel l located at xl and arriving to target i, J i(xl, t) = J(t)ps(xl)q(xl, i), depends
on the channel position xl and the target i.

3.3.2 A Markov chain to describe target activation

We shall now describe the Markov equations governing the target activation at the
AZ. For a stationary channel distribution f(x), the mean flux of particles originating
from a channel that will arrive to a target is the average over the distribution

J i(t) =< J i(x, t) >x=
∫

SAZ

J(t)ps(x)q(x, i)f(x)dx. (3.12)

When there are NDock independent targets sites and lV channels located at positions
~x = (x1, ...,xlV ), then for each target site i, the probability Pri{k, t, ~x} that k
particles are bound at time t can be computed from a Markov chain that we shall
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describe now. In this model, once a particle (ion) binds to a target, it cannot unbind.
Thus the transition probability from the state where there are k − 1 bounds to the
state k during t and t+ ∆t is due to the flux of particles originating from the bulk
plus the one from open channels. In that case,

Pri{k, t+ ∆t, ~x} = Pri{k − 1, t, ~x}




lV
∑

l=1

J i(xl, t) + kSNf (t)



∆t

+ Pri{k, t, ~x}


1 −




lV
∑

l=1

J i(xl, t) + kSNf(t)



∆t



 ,

where kS is the rate of arrival from the bulk and Nf(t) the number of free particles
in the bulk at time t.

A target is activated when there are exactly T−bound particles. In the limit
∆t goes to zero, we obtain for each target 1 ≤ i ≤ NDock the Markov chain for the
probabilities

pi
k(t, ~x) = Pri{k, t, ~x},

dpi
0(t, ~x)

dt
= −





lV
∑

l=1

J i(xl, t) + kSNf (t)



 pi
0(t, ~x)

dpi
k(t, ~x)

dt
=





lV
∑

l=1

J i(xl, t) + kSNf (t)





(

pi
k−1(t, ~x) − pi

k(t, ~x)
)

(3.13)

dpi
T (t, ~x)

dt
=





lV
∑

l=1

J i(xl, t) + kSNf (t)



 pi
T −1(t, ~x),

where the last equation for pi
T describes the absorbing state for k = T . The initial

conditions at time t = 0 are

∀i ∈ [1, NDock], pi
k(0, ~x) = δk=0. (3.14)

Finally, the normalization condition is

∀i ∈ [1, NDock],
T
∑

k=0

pi
k(t, ~x) = 1. (3.15)

The time τ i
T to the threshold T at target i is the first time that T particles are

located at the target and it is also the last binding time of a particle when T − 1
particles are already at the site. In the context of vesicular release, τ i

T is the time
when the vesicle is released. The distribution of release time for the target i is given
by

Pr{τ i
T < t|~x} = pi

T (t, ~x), (3.16)

hence the probability density function fτ i
T

, ~x of the release times is given by

fτ i
T

, ~x(t) =
dpi

T (t, ~x)

dt
=





lV
∑

l=1

J i(xl, t) + kSNf (t)



 pi
T −1(t, ~x) (3.17)
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and the mean release time is

τ̄ i
T =

∫ ∞

0
tfτ i

T
, ~x(t)dt. (3.18)

3.3.3 The Mass action equations for the ion in the bulk

The dynamics of particles in the bulk is described by the differential equations for
the number of free Nf (t) and bound particles Nb(t). Binding (resp. unbinding)
occurs with a rate k0 (resp. k−1, section 3.2.2). The total number of buffer sites
Btot is fixed, but at time t, the number of available sites is Bf (t) = Btot −Nb(t). To
model the extrusion of particles through pumps, the leaving through the neck and
the binding to the target sites, we use that the arrival time of a Brownian particle
to a small target is well approximated by a Poissonian process [175], which allows to
replace the diffusion equation 3.3 by simple ordinary differential equations. Thus,
particles are extruded by Np pumps located on the surface of the domain Ω with a
rate constant kp, leave the domain with a rate ka, and bind to target sites with a rate
kS (Table 3.1). Thoses rates can be estimated using the NET theory ([70, 85, 84]
and section 3.4.2).

To derive the equations, we note that the total number of free target sites is
given by, for each target i:

T −1
∑

k=0

pi
k(t, ~x) = 1 − pi

T (t, ~x) . (3.19)

Thus, the total number of free sites are

NDock −
NDock
∑

i=1

pi
T (t, ~x) . (3.20)

The influx of ions entering the bulk is
(

lV −∑lV
l=1 ps(xl)

)

J(t).
In summary, the number of free particles in the bulk Nf , and the number of

buffered ions Nb satisfies the mass-action equations:

dNf

dt
= k−1Nb − k0(Btot −Nb)Nf(t) +



lV −
lV
∑

l=1

ps(x
l)



 J(t)

−


kpNp + ka + kS



NDock −
NDock
∑

i=1

pi
T (t, ~x)







Nf(t) (3.21)

+ T
NDock
∑

i=1





lV
∑

l=1

J i(xl, t) + kSNf (t)



 pi
T −1(t, ~x)

dNb

dt
= −k−1Nb + k0(Btot −Nb)Nf .

The first two terms in the first equations are the classical unbinding and binding
of calcium ions to buffers. The third terms represents the fraction of ions coming
from the channels directly to the bulk. The fourth term corresponds to calcium
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ions that are leaving the bulk by being extruded by pumps, by reaching the end of
the neck and due to the binding at the target sites. Finally the last term account
for the release of bound ions into the bulk following a release event. Indeed, after
a release event, the T bound particles are released into the bulk, leading to an
increase of Nf of T particles (eq. 3.17). The second equation is the classical mass
action law for the number of bound buffers. The ensemble of equations 3.13-3.21
with the probability pi

T (t, ~x) constitutes the Markov-Mass action description for the
vesicular release based on calcium molecular dynamics.

3.3.4 Solving the coupled Markov equations

To solve equations 3.13 for each target site i, and for a specific channel distribution
~x, we rename the flux of particles by

gi(t, ~x) =
lV
∑

l=1

ps(x
l)q(xl, i)J(t) + kSNf (t). (3.22)

We solve the equations by a direct integration between t0 and t, starting from the
probability pi

0(t):

pi
0(t) = A0 exp

(

−
∫ t

t0

gi(u, ~x)du
)

. (3.23)

The general solution for k ∈ [0, T − 1] is:

pi
k(t, ~x) =

k
∑

j=0

Aj

(k − j)!

(∫ t

t0

gi(u, ~x)du
)k−j

exp
(

−
∫ t

t0

gi(u, ~x)du
)

, (3.24)

and for the final step:

pi
T (t, ~x) = AT − exp

(

−
∫ t

t0

gi(u, ~x)du
) T −1
∑

j=0

T −1−J
∑

k=0

Aj

k!

(∫ t

t0

gi(u, ~x)du
)k

, (3.25)

where (Ak)k∈[0,T ] are constants. Using the initial conditions 3.14, we get:

Ak = δk0 (3.26)

for k ∈ [0, T − 1], and

AT = 1, (3.27)

which gives:

pi
k(t, ~x) =

1

k!

(∫ t

t0

gi(u, ~x)du
)k

exp
(

−
∫ t

t0

gi(u, ~x)du
)

, (3.28)

and

pi
T (t, ~x) = 1 − exp

(

−
∫ t

t0

gi(u, ~x)du
) T −1
∑

k=0

1

k!

(∫ t

t0

gi(u, ~x)du
)k

(3.29)

= exp
(

−
∫ t

t0

gi(u, ~x)du
)

∑

k≥T

1

k!

(∫ t

t0

gi(u, ~x)du
)k

. (3.30)
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The probability that k particles are bound at time t averaged over the distribution
of channels is given for k ∈ [0, T − 1]:

pi
k(t) = < pi

k(t, ~x) >~x (3.31)

=
∫

S
lV
AZ

1

k!

(∫ t

t0

gi(u, ~x)du
)k

exp
(

−
∫ t

t0

gi(u, ~x)du
)

f(~x)dx1...dxlV ,

where SlV
AZ is the product of lV copies of the AZ. For k = T :

pi
T (t) = < pi

T (t, ~x) >~x (3.32)

=
∫

S
lV
AZ

exp
(

−
∫ t

t0

gi(u, ~x)du
)

∑

k≥T

1

k!

(∫ t

t0

gi(u, ~x)du
)k

f(~x)dx1...dxlV ,

where f(~x) is the probability density function of channels repartition. We shall
simulate these equation and compare the result to a stochastic simulation approach
that we describe now.

3.4 Exhaustive Brownian simulations of ions

An alternative approach for analyzing calcium dynamics with a finite number of
targets and a large amount of buffers is to perform classical Brownian simulations,
where we follow in time all single trajectories and binding events. However, this
approach is quite greedy and inefficient. We now describe the main steps of such
algorithm and our approach to coarse-grain it into a much faster numerical method
based on Poissonian rates, where the narrow escape methodology [84] is used to
obtain an expression for the mean arrival time to a target hidden in a cusp [70].
Long stochastic simulations are now replaced by a Gillespie algorithm.

3.4.1 Stochastic simulations

Ion trajectories are modeled as independent Brownian particles, with a diffusion
coefficient D, when they are not bound to buffers:

Ẋk =
√

2Dẇk, for k = 1..N, (3.33)

where wk are i.i.d Brownian motions of variance 1 and mean zero. The Euler’s
scheme X(t + ∆t) = X(t) +

√
2D∆t ξ where ξ is Gaussian, is used for simulations.

Geometry of the domain

The pre-synaptic terminal of neuron is approximated by a bulbous head, connected
to the axon by a thin neck (Fig. 3.1). We represent the head as a sphere of radius
R, continued by a cylinder of radius rneck and height lneck representing the neck (see
Table 3.2 for the empirical values). Calcium ions are Brownian particles entering the
terminal through channels located at the AZ and diffuse within the domain. The
AZ is represented by a surface SAZ , where vesicles are docked. The organization of
the AZ was previsouly described in section 3.3.1.
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Boundary conditions

The boundary ∂Ω contains a reflective ∂Ωr and absorbing ∂Ωa part. Diffusing
particles are reflected at ∂Ωr according to the classical Snell-Descartes reflection
principle. The absorbing part of the boundary ∂Ωa is composed of the end of the
neck, and of the pumps, modeled by spheres of radius rpump uniformly distributed
along ∂Ω (Fig. 3.1). Upon hitting a pump, a particle is absorbed during a mean
time τpump. During this extrusion time, the boundary becomes reflective [88], and
hence the boundaries ∂Ωa and ∂Ωr are time-dependent.

Binding to buffers

Because the Smoluchowski’s limit of the Langevin equation does not account for
the velocity, when a particle is bound to a buffer represented by a potential well
(see description in [88] and [78]), we place the ion at the buffer position during an
exponential waiting time, the rate of which is the backward rate (reciprocal of the
mean time to escape the energy barrier of the well). The buffer binding site is a
sphere of radius rbuff . The buffers are distributed uniformly within the terminal,
and can diffuse with a diffusion coefficient DB. The binding of an ion on a buffer
site occurs when the Brownian particle hits the small sphere ∂B(rbuff ). For each
bound ion, the probability to unbind is computed from the backward binding rate
of calcium on the buffer, k−1, and it is given by

P (τub ∈ [t, t+ ∆t]) ≈ k−1∆t. (3.34)

After a particle unbinds, it is positioned outside the boundary layer of the binding
site, about few (such as 3) radii away from the site [88, 78], and resumes its stochastic
motion.

Activating the small targets

Activation of a vesicle is modeled here by the cumulative binding of particles to the
target site. The target site is a narrow cylinder joining the plane and a tangent sphere
representing the vesicle (Fig. 3.1B). When a particle hits the target, it increments
the number of bound particles. When T particles are bound, we assume that the
vesicle is released (vesicular fusion).

Influx of ions

The initial influx of ions through the voltage-gated calcium channels is driven in
a neuronal cell by an AP [73, 178]. Using a simplified Hodgkin-Huxley model for
calcium current, the membrane depolarization following an action potential (AP) is
modeled using an applied current Iapp. The equations are classical and summarized
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below.

C
dV

dt
= −INa(V, n) − IK(V, n) − IL(V ) − ICa(V,m, h) + Iapp (3.35)

dx

dt
= 0.1αx(1 − x) − βxx, for x = n, m, h,

V (0) = V0

n(0) = n0

m(0) = m0

h(0) = h0,

where

INa = gNap
3(0.89 − 1.1n)(V − ENa)

IK = gKn
4(V − EK)

ICa = gCam
3h (Vm − ECa)

IL = gL(V − EL)

p =
αp

αp + βp

αk =
1

τk

θk − Vm

e
θk−Vm

τk − 1
, βk = ηke

− Vm+65
σk , for k = n, m, h, p.

The initial values V0, n0, m0, h0 are the equilibrium solutions of the ODE and the
different parameters are summarized in Table 3.3. The result of this classical routine
is to generate a transient ICa(t). The arriving of an AP is modeled by applying a
current Iapp = 50 mV during 1 ms that depolarizes the membrane potential V . This
depolarization creates sodium, potassium, calcium and leak currents that shape the
AP. The corresponding calcium current (Fig. 3.3) lasts 2.75 ms, with a maximal
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Figure 3.3: Total calcium flux entering the domain through one channel.
The calcium current is generated using eq. 3.35, with parameters described in Ta-
ble 3.3. The full width at half maximum η is 580 µs. 80 ions enter into the domain.

value of ICa,max = 36.2 nA, and a full-width at half maximum η = 580µs. The total
charge is Q = 0.025 fC. This current corresponds to the entry of 80 calcium ions
injected in the domain.
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3.4.2 Coarse-grained stochastic dynamics with Poissonian
rates

Instead of running a Brownian simulations, we shall now coarse-grain the model
using rates that we shall describe now. Indeed, the arrival time of a Brownian
particle to a small target is well approximated by a Poissonian process [175], the
rate of which is computed from the NET for the cases at hand [70, 85, 84]. The
coarse-graining consists in replacing the Brownian simulations by a rate process.
Instead of following each stochastic trajectories, we disregard the motion of ions
in the bulk. Indeed, the main goal of these simulations is to track rare events of
binding to small targets (SNARE-binding sites of radii 1 nm for a synaptic domain),
which is well approximated by an exponential law of mean the NET. We can thus
replace the motion of particles by rates processes. We now present the Poissonian
rates used in the simulations.

Rates of Arrival to small buffers and of escape from the domain

The arrival rate of a Brownian particle to small binding sites that are uniformly
distributed over the domain Ω is Poissonian [175, 81]. The buffer are positioned
at independent sites, modeled by small spheres. The mean first arrival time τ̄B of
a Brownian particle to a small spherical target of radius r in the domain Ω, with
diffusion coefficients D for the particle and DB for the buffer, is given by [173]

τ̄B =
|Ω|

4π(D +DB)r
. (3.36)

The binding times are exponentially distributed with a rate equal to the reciprocal
of the binding time

k0 = 1/τ̄B. (3.37)

When there are Nf independent Brownian particles, the rate constant for the first
binding event is

λ(Nf ) = k0Nf . (3.38)

The conditional probability that a binding event occurs between time t and t+ ∆t,
when there are Nf particles is P(t ≤ Tb < t + ∆t|Nf ) = λ(Nf )∆t. The arrival
probability during ∆t at each buffer site available Nb(t) is k0Nf (t)∆t, when there
are exactly Nf(t) free particles. The release rate to a binding site is also Poissonian
with probability k−1∆t (see section 3.2.2).

The number of particles (ions) is not fixed, but decays in time due to the escape
occurring either at some part of the domain (the end of the neck) or at the pumps,
summarized into the boundary ∂Ωa(t). Assuming that |∂Ωa(t)| ≪ |∂Ω|, then the
NET ensures that the escape at the end of the neck is Poissonian, which is the
reciprocal of the mean escape time [82], given by

τ̄a =
|Ωh|

4Drneck

+
lneck|Ωh|
Dπr2

neck

+
l2neck

2D
, (3.39)
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where D is the particles diffusion coefficient and the geometry of the domain is
described in Fig. 3.1 and consists of a head, of volume |Ωh| and a cylindrical neck
with parameters rneck and lneck. The entire domain is Ω = Ωh ∪ Ωneck. When there
are Nf (t) particles in Ω at time t, the probability pa(t) that a particle leaves through
the neck between t and t+ ∆t is

pa(t,∆t) =
Nf(t)

τa

∆t. (3.40)

We do not model at this stage the dynamics of the Np pumps, that occupy a small
fraction of the boundary, there are modeled as pure absorbers and thus the extrusion
rate is Poissonian with a mean time

τ̄pump =
|Ωh|

4Drpump
. (3.41)

where rpump is the radius of a pump. The probability ppump(t) that a particle arrives
between time t and t+ ∆t is

ppump(t,∆t) =
Nf (t)

τpump

∆t. (3.42)

However, when a particle binds to a pump, it is extruded for a deterministic time
τpump during which no other particle can be trapped. To finish, we note that
crowding by obstacles in the pre-synaptic terminal of a neuron is taken into ac-
count by reducing the effective diffusion coefficient. Calcium diffusion coefficient is
DCa,f = 200 µm2s−1 [121], but the effective diffusion coefficient can be reduced to
DCa,c = 20 µm2 s−1 in dendrites to account for crowding and obstacles [13]. The
NET presented here are computed using D = DCa,c (Table 3.1).

Rates of arrival to the target site

The fraction of particles entering through a channel positioned at x, that reaches a
target i, is ps(x)q(x, i) (section 3.3.1). We approximate the conditional mean time
to exit the boundary layer before reaching any of the target (see section 3.3.1) by
the escape time from a band of width 2rves:

τ̄ =
(2rves)2

2DCa,f
(3.43)

where DCa,f is the diffusion coefficient for particle moving inside the boundary layer
of the AZ. Using the parameter of Tables 3.1 and 3.2 ([121, 208]), we obtain τ̄ ≈
4 10−3 ms. To estimate the conditional binding time τ̄b with respect to the distance r,
we generated stochastic Brownian numerical simulations in an infinite checkerboard
with H = 90 nm. We find from our numerical approximation that the time τ̄b is
linear with respect to the distance r to the closest vesicle, and thus

τ̄b = p1r + p2, (3.44)

where p1 = 7.34 10−2 msµm−1 and p2 = 2.1 10−4 ms (fitted using Matlab).
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Finally, because ions present in the bulk and hence located outside the boundary
layer of the vesicle can also bind to the targets, with a Poissonian rate, we use the
narrow escape theory [70] to get an estimate

〈τT arget〉 =
|Ωh|

4πDCa,cε
, (3.45)

where |Ωh| is the volume of the head and ε is the height of the ribbon defining
the target sites. Finally, the probability pT arget(t) to bind a target from the bulk,
between t and t+ ∆t is

pT arget(t) =
Nf (t)

τT arget

∆t. (3.46)

The ensemble of rate formula described in this section will be used now in fast
stochastic simulations to compute the time course of calcium dynamics in the pre-
synaptic terminal and to estimate vesicular release.

3.4.3 Stochastic simulations with the Poissonian rate and
the Markov-Mass action law models

We compare the numerical results obtained from the stochastic model based on rate
equations (section 3.4.2), and from the Markov-Mass action model which gives a
system of ODE coupled to a Markov chain (section 3.3), in the case of a uniform
distribution of the channels on the Active Zone.
Using the Poissonian rates described above for the stochastic model (section 3.4.2),

we use a Gillespie’s type algorithm to simulate the response to a single influx of
particles lV J(t) (Fig. 3.4). The influx from a single channel J(t) is described in
section 3.4.1. We investigate the influence of the number of buffer sites in the bulk
(Fig. 3.4), and observe that the mean number of activated sites decreases to reach
a plateau.

3.4.4 Computing the distribution of release times for a uni-
form channel distribution

Using the two methods described above about coarse-graining stochastic equations
into rate simulations and deriving a Markov-Mass action system, we now compute
the probability distribution of the release time for target i, τ i

T , when channels are
uniformly distributed (eq. 3.16).

Using the rate simulation approach, we compute the empirical distribution of
vesicular release time τ i,k

T (x) for the kth-realization when a channel is located at
position x and use the convergence of the empirical sum to the expectation, as an
estimator

τ̄ i
T (x) = lim

N→∞

1

N

N
∑

k=1

τ i,k
T (x), (3.47)

We find that the distribution of release time τ i
T (x) is bimodal (Fig. 3.4D): the first

peak corresponds to the vesicular release by ions that are coming directly from the
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Figure 3.4: Calcium time course in the pre-synaptic terminal and vesicu-
lar release activation. Channels are uniformly distributed. A: Number of free
(continuous) and buffered (dotted) ions for 0 (blue) and 150 (green) buffer sites.
The curves represent the mean over 150 simulations obtained using the rate model.
B: Comparison between the stochastic rate model (blue) and Markov-Mass action
chain (red). The curves represent the number of free (continuous) and buffered
(dotted) ions when there are 200 buffers. They are averaged over 150 simulations
for both models. C: Mean number of activated targets with respect to the number
of buffers, for the stochastic (blue) and the Markov-Mass action (red) models. D:
Histogram of vesicular release time for the stochastic (blue), and the Markov-Mass
action model (red) when there are no buffer sites.
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channel influx, while the second peak is due to release from the random arrival of
ions located in the bulk to the vesicular target sites, until T − 1 sites per vesicle
are occupied. This large distribution follows the entrance of ions from channels
activated by an AP, so that vesicles are already occupied by some ions.

To compute the fraction of particles reaching a target, we recall that the flux of
particles reaching a target i and coming from the opening of a channel is given in
eq. 3.12 by

J i(t) = < J i(x, t) >x=
∫

SAZ

J(t)ps(x)q(x, i)f(x)dx (3.48)

= J(t)
∫

SAZ

ps(x)q(x, i)f(x)dx, (3.49)

where we average over the position of channels in the AZ. To further determine the
flux to the target sites, we need to account for the relative distribution of channels
with respect to vesicle. The AZ is divided into elementary squares where vesicles
are centered at the lattice points (section 3.3.1, Fig. 3.2A-B). Due to symmetry, we
subdivide each square SQ

i into elementary triangles (Sq
i
j)j=1..8 (Fig. 3.2B). Hence

the surfaces are related by |SAZ| = NDock|SQ
1| = 8NDock|Sq

1
1|, and for a uniform

distribution of channels

f(x) =
1

|SAZ|1SAZ
. (3.50)

We assume that for a given channel location, the closest target receives all the
particles, i.e. ∀x, i, q(x, i) = 1 if i is the closest target to x, and 0 otherwise.
Hence, the fraction of particles reaching a target i does not depend anymore on the
target i, and is given by

Fions =
∫

SAZ

ps(x)q(x, i)f(x)dx =
1

|SAZ|
∑

j

∫

Sj
Q

ps(x)q(x, i)dx (3.51)

=
1

|SAZ|
∫

Si
Q

ps(x)dx (3.52)

=
1

NDock |Sq
1
1|
∫

Sq
1
1

ps(x)dx. (3.53)

Using the expression for the splitting probability (eq. 3.10), we find that the leading
order term in ε for the fraction Fions of particles reaching a target, when there is
only one channel is

Fions =
rvesε

NDockH2

[

π ln

(

2H√
2rvesε

)

+
(

Arves

H
− 2(K + 1)

)

]

+O(ε2 ln(ε)), (3.54)

where K =
∑

n≥0
(−1)n

(2n+1)2 ≈ 0.9160 (see Appendix 3.8 for a detailed computation).
When there are lV channels uniformly distributed, the mean fraction is simply
lV Fions.

The results for various values of lV , for channels uniformly distributed on a lattice
with NDock = 8 targets [208], are presented in Table 3.4. The linear relation between
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the number of channels and the fraction of particles reaching the targets under
vesicles indicates that the channel organization (clustered or uniformly distributed)
has no influence on the number of particles (ions) reaching the targets. Indeed,
for lV channels and n particles entering through a single channel, in the case of a
uniform distribution of channels, the mean number of particles that reach the targets
is nlV Fions. When the lV channels are organized in p clusters uniformly distributed,
containing each (lV,i)i=1..p channels, then the mean number of particles reaching the
targets is the sum

p
∑

i=1

nlV,iFions = nlV Fions. (3.55)

3.4.5 Computing the distribution of release times for a uni-
form channel distribution

We compute the probability that k ions are bound to the target proteins underneath
a vesicle at time t, averaged over the distribution of channels. We consider that the
closest target receives all ions. The probability of having a vesicle with an empty
target site is exactly the zero order probability of the Markov chain (see eq. 3.23),
thus

pi
0(t) =

∫

S
lV
AZ

exp



−
∫ t

t0

lV
∑

l=1

ps(x
l)q(xl, i)J(u) + kSNf (u)du



 f(~x)dx1...dxlV

=
1

|SAZ|lV exp
(

−kS

∫ t

t0

Nf(u)
) [∫

SAZ

exp
(

−ps(x)q(x, i)
∫ t

t0

J(u)du
)

dx

]lV

(3.56)

=
1

|SAZ|lV exp
(

−kS

∫ t

t0

Nf(u)
)

[

|SAZ \ Si
Q| + 8

∫

S1
q1

exp
(

−ps(x)
∫ t

t0

J(u)du
)

dx

]lV

where SlV
AZ is the product of lV copies of the AZ. Similarly, for k = 1..T−1 (eq. 3.33):

pi
k(t) =

1

k!|SAZ|lV exp
(

−kS

∫ t

t0

Nf(u)
)∫

S
lV
AZ





lV
∑

l=1

ps(x
l)q(xl, i)

∫ t

t0

J(u)du+ kS

∫ t

t0

Nf (u)du





k

× exp



−
lV
∑

l=1

ps(x
l)q(xl, i)

∫ t

t0

J(u)du



 dx1...dxlV . (3.57)

For each target i, using the partition of SAZ into Si
Q and SAZ \ Si

Q. We get,

pi
k(t) =

1

k!|SAZ|lV exp
(

−kS

∫ t

t0

Nf(u)
) lV
∑

j=1

(

lV
j

)

|SAZ \ S1
Q|lV −j × (3.58)

∫

S1
Q

j





j
∑

l=1

ps(x
l)
∫ t

t0

J(u)du+ kS

∫ t

t0

Nf(u)du





k

exp



−
j
∑

l=1

ps(x
l)
∫ t

t0

J(u)du



 dx1...dxj .

Finally, the mean activation probability, pi
T (t) is given by:

pi
T (t) = 1 −

T −1
∑

k=0

pi
k(t). (3.59)
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Because these probabilities pi
k are independent of i, the probability that k particles

are bound at time t to any target is pk(t) = p1
k(t) for k = 0..T .

We now compare the analytical expression of the probabilities with the stochastic
simulations (150 runs), for 10 different values of the number of buffers (from 0 to
600) and for an activation threshold T = 5. The values of lV are (3, 12, 24), while we
keep the total number of ions entering the domain fixed. We compare the analytical
probabilities 3.58 and the stochastic simulations at time t1 = 5.3ms, just after the
last entry of ions from a channel. We notice in the stochastic simulations that the
probabilities pk(t1) do not depend much on the number of buffers, as the number of
ions arriving from the bulk between t = 0 and t = t1 (averaged over all runs) is very
small 0.88 ± 0.12. We thus neglect the flux from the bulk kSNf(t) in the total flux
to the target in the analytical expression. Thus, the probabilities that k particles
are bound at time t1 are well approximated from relation 3.56, leading to

p0(t1) =
1

|SAZ|lV

[

|SAZ \ Si
Q| + 8

∫

S1
q1

exp (−ps(x)Q) dx

]lV

(3.60)

and for k = 1..T − 1 (eq. 3.33) by

pk(t1) =
1

k!|SAZ |lV
lV
∑

j=1

(

lV
j

)

|SAZ S1
Q|lV −j × (3.61)

∫

S1
Q

j





j
∑

l=1

ps(x
l)Q





k

exp



−
j
∑

l=1

ps(x
l)Q



 dx1...dxj,

whereQ =
∫ t1

0 J(u)du is the total charge entering through one channel (section 3.4.1).

0 2 4
−0.2

0

0.2

0.4

0.6

0.8

1

 P
ro

ba
. k

 io
ns

 b
ou

nd
, p

k(t
1)

Number of ions on the vesicles, k

  A

0 1 2 3 4 5
0

200

400

600

800

N
um

be
r 

of
 v

es
ic

le
s

Number of ions on the vesicle

  B

Figure 3.5: Distribution of ions on target sites after the transient injection
of calcium ion. A: Comparing the stochastic simulation of the rate model (error
bars) and the analytical results from the Markov-Mass action model (stars), for
lV = 3 (red and blue), lV = 12 (magenta and cyan) and lV = 24 (yellow and green).
B: Histogram of the number of ions on the vesicles at the end of the short transient
regime (t = 5.3 ms) for the stochastic simulations, with 200 buffer sites and the
parameters in Tables 3.1 and 3.2 (150 runs). The total number of vesicles in the
histogram is 1200. Note that n=5 corresponds to the sum of fused vesicles.

106



3.5. Discussion and Conclusion

We have estimated these integrals numerically and obtained a good agreement
while comparing them with numerical simulations (Fig. 3.5A). Finally Fig. 3.5B show
the distribution of vesicle containing 0,1,2,3,4 ions and the cumulative distribution
of those that have fused (T=5).

3.5 Discussion and Conclusion

We presented two models and computational approaches to analyze the coupling
of Brownian ions from a continuum ensemble with a discrete ensemble of events
described by a set of Markov equations. The first model couples mass action law
to a Markov chain and the second uses the Narrow Escape Theory to coarse-grain
Brownian simulations into a Gillespie’s approach combined with Poissonian rates
(Fig. 3.4).

These two approaches can be used for any large ensemble of particles, where
they interact in the continuum but can also trigger the activation of a sub-system,
monitored by the accumulation of few particles to a given threshold. In addition,
both procedures allow running fast simulations with precise analytical descriptions.
In a biological context, these computing procedures reflect the change of scale from
the molecular to the cellular level.

To illustrate the applicability of these two methods, we focused on the distri-
bution of vesicular release at synapses from calcium dynamics. Both approaches
converge to the conclusion that there are two regimes for vesicular release: one at
short time scale (less than 10 ms) following the direct opening of the calcium chan-
nels where a large fraction of vesicles are released, while in the second period, the
distribution is strongly depend on the interaction with buffer molecules and can
last hundreds of milliseconds. The emergence of these two phases can also explain
asynchronous quantal release reported in [168], without introducing any additional
time constant at a molecular level [134].

The present approach can be generalized to describe short-term plasticity at a
molecular level, see also [103, 150]. It might also be possible to include calcium
channel motion as recently observed [170].
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3.6 Tables

Table 3.1: Biophysical parameters used in simulations. Extracted from literature
for the Parallel fiber to Purkinje cell synapse, and estimated from the model (sec-
tion 3.4.2).

Parameter Description Value
D Calcium diffusion coefficient 200 µm2s−1 [121]
DCa,c Calcium diffusion coefficient + crowding 20 µm2s−1 [88]
DB Buffer diffusion coefficient 20 µm2s−1 see [129]
k−1 Buffer unbinding constant 500 ms
τBuff Buffer mean binding time 1.8 sec (computed from the model)
k0 = 1

τBuff
Rate of binding to buffers 0.56 sec−1

τT arget Mean time to bind to a ribbon target 3.6 sec (computed from the model)
kS = 1

τT arget
Rate of binding to targets 0.28 sec−1

τa Mean time to leave through the neck 0.659 sec (computed from the model)
ka = 1

τa
Rate of leaving throught the neck 1.52 sec−1

τpump Mean time to bind to a pump 11.3 sec (computed from the model)
kp = 1

τpump
Rate of binding to pumps 0.089 sec−1

τIn,pump Inactivation time of a pump 9 ms [88]
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3.6. Tables

Table 3.2: Geometrical parameters used in simulations. Extracted from literature
for the Parallel fiber to Purkinje cell synapse.

Parameter Description Value
R Radius of the pre-synaptic terminal 0.6 µm [209]
NBuff Buffer quantity/type [0-700]
rBuff Radius of the buffers binding site 0.001 µm [88]
rves Radius of the vesicle 0.02 µm [208]
ε Height of the ribbon target 0.001 µm
rneck Radius of the pre-synaptic neck 0.1 µm[208]
lneck Length of the pre-synaptic neck 0.15 µm[208]
SAZ Surface of the AZ 0.13 µm2 [208]
NDock Mean/maximal number of Docked vesicles 8 [208]
NP ump Quantity of pumps 10
rpump Radius of the pumps binding site 0.001 µm [88]
lV Quantity of calcium channels [3-24]
# Ca # Ca entered after 1 AP [10-80], estimated from [129, 139]
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Table 3.3: Hodgkin-Huxley

Parameter Description Value
C Capacitance 1 µF.cm−2

gNa Conductance of Na2+-current 120 mS.cm−2

ENa Equilibrium potential of Na2+-current 50 mV
τm Parameter for m 10 ms
θm Parameter for m −40 mV
ηm Parameter for m 4
σm Parameter for m 18
gK Conductance of K+-current 36 mS.cm−2

EK Equilibrium potential of K+-current −77 mV
gL Conductance of leak current 0.3 mS.cm−2

EL Equilibrium potential of leak current −54.4 mV
τn Parameter for n 10 ms
θn Parameter for n −55 mV
ηn Parameter for n 0.125
σn Parameter for n 80
gCa Conductance of Ca2+-current 14.5 10( − 9) mS.cm−2

ECa Equilibrium potential of Ca2+-current 140 mV
τm Parameter for m ms
θm Parameter for m mV
ηm Parameter for m
σm Parameter for m
τh Parameter for h ms
θh Parameter for h mV
ηh Parameter for h
σh Parameter for h
V0 Initial value for V -65.0974
n0 Initial value for n 0.3162
m0 Initial value for m 4.5649.10−45

h0 Initial value for h 1

Table 3.4: Fraction of particles reaching a target for different channel number lV

lV Simulated mean ± std Theoretical value lV F
3 0.0158 ± 0.0043 0.0160
12 0.0628 ± 0.0090 0.0642
24 0.1264 ± 0.0135 0.1283
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3.7 Appendix A: A refined model of diffusing ions
in the pre-synaptic terminal

We present in this appendix a refinement of the models detailed in sections 3.2.2
and 3.3. We consider that the ribbon is now divided into Ns target sites, which
allows to take into account the availability of each site at a target. We also con-
sider that buffers has Nb,s binding sites that express cooperativity, as for example
when considering the binding of calcium ions on calmodulin. We first present the
corresponding system of partial differential equations, and then the corresponding
reduced Markov-Mass action law equations.

3.7.1 PDEs description

As for the previous model equations, the density of particle M(x, t) satisfies the
Fokker-Planck equation [171], and the boundary of the domain Ω is partitioned into
two parts, ∂Ωa(t) (absorbing) and ∂Ωr(t) (reflecting). SAZ represents the AZ.

We introduce the variables B(j)(x, t), (0 ≤ j ≤ Nb,s), that represent the number
of buffer in a volume about x that contains j bound particles at time t. The
number of occupied binding sites on these proteins is jB(j)(x, t) and the number of
free binding sites is (Nb,s−j)B(j)(x, t). Obviously, at all times the mass conservation
is

Nb,s
∑

j=0

∫

Ω
B(j)(x, t) = Btot,

where Btot is the total number of proteins in the domain, which is fixed. We consider
the forward reaction rates for the binding of one particle on an available site, when j
particles are already bound, kj, (0 ≤ j ≤ Nb,s − 1) and the backward reaction rates
for the unbinding of one of the j bound particles, k−(j), (1 ≤ j ≤ Nb,s). We assume
that those rates are independent of the densities. We will further consider a forward
binding rate when j particles are already bound, k̃j, that already include the number
of available sites. kj and k̃j can be connected through the relation k̃j = (Nb,s − j)kj.

In the same way, we will consider the backward binding rates
(

k̃−(j)

)

j
that include

the number of already bound particles, k̃−(j) = jk−(j).

The density of target S(j)(x, t) (0 ≤ j ≤ T ) with j bound particles was intro-
duced in section 3.2.2. We consider that the target is divided into Ns different sites,
which allows to take into account the site occupancy at each target. We assume
that the sites are identical and independent, and that the binding constant to a site
is ksn. The threshold for target activation is T .

The reaction-diffusion equations for the number of free particles, M(x, t), the
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buffer B(j)(x, t) and the active targets S(j)(x, t) are

∂M(x, t)

∂t
= −∇ · JM(x, t) −M(x, t)

Nbs−1
∑

j=0

k̃jB
(j)(x, t) +

Nbs
∑

j=1

k̃−(j)B
(j)(x, t)

−M(x, t)
T −1
∑

j=0

ksn(Ns − j)S(j)(x, t) + TM(x, t)ksn(Ns − T + 1)S(T −1)

∂B(0)(x, t)

∂t
= −∇ · JB(0)(x, t) + k̃−(1)B

(1)(x, t) −M(x, t)k̃0B
(0)(x, t)

∂B(j)(x, t)

∂t
= −∇ · JB(j)(x, t) + k̃−(j+1)B

(j+1)(x, t) − k̃−(j)B
(j)(x, t) (3.62)

+M(x, t)
(

k̃j−1B
(j−1)(x, t) − k̃jB

(j)(x, t)
)

, j = 1..Nbs

∂B(Nbs)(x, t)

∂t
= −∇ · JB(Nbs)(x, t) − k̃−(Nbs)B

(Nbs)(x, t) +M(x, t)k̃Nbs−1B
(Nbs−1)(x, t)

∂S(0)(x, t)

∂t
= −M(x, t)ksnNsS

(0)(x, t)

∂S(i)(x, t)

∂t
= M(x, t)ksn(Ns − i+ 1)S(i−1)(x, t) −M(x, t)ksn(Ns − i)S(i)(x, t), i = 1..T − 1

∂S(T )(x, t)

∂t
= M(x, t)ksn(Ns − T + 1)S(T −1)(x, t)

where the fluxes are defined by

JX(x, t) = −D∇X(x, t), for X ∈ {M,
(

B(j)
)

j
}. (3.63)

The initial conditions are

B(0)(x, 0) = Btot(x), B(j)(x, 0) = 0 for 1 ≤ j ≤ Nbs. (3.64)

S(0)(x, 0) = S0(x), S(j)(x, 0) = 0 for 1 ≤ j ≤ T . (3.65)

The initial and boundary conditions for M(x, t) are as in section 3.2.2 the initial
reactant density, absorption at the absorbing boundary, and flux given by the motion
of the reflective boundary:

M(x, 0) = c0(x) for x ∈ Ω(t)

M(x, t) = 0 for x ∈ ∂Ωa (3.66)

JM(x, t) · ν(x) = 0 for x ∈ ∂Ωr \ SAZ

JM(x, t) · ν(x) =
Jtot(t)

SAZ
for x ∈ SAZ

(3.67)

Jtot(t) is the flux of particles entering through the channels. The initial boundary
conditions for

(

B(j)
)

j
are reflective on ∂Ω.

3.7.2 Markov-Mass action model

We now derive the Markov equation for each target and the mass action equations
for the number of free particles in the bulk, considering that the ribbon is divided
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into Ns target sites that are identical and independent, and that buffers have Nb,s

binding sites that express cooperativity.

Equations for the Markov chain

As for the previous model (section 3.3), we consider lV channels, located at positions
~x = (x1, ...,xlV ). For each target site i, the probability Pri{k, t, ~x} that k particles
are bound at time t can be computed from a Markov chain. We assume here that
once a particle is bound to the target, it cannot be released. The binding rate
from the bulk is ksn, and the target is activated when there are exactly T−bound
particles. We consider the flux of particles arriving to a site located at target i,
entered at point xl when k sites are occupied at i: J i(xl, t, k). As all the sites at
a target are independent, we have J i(xl, t, k) = (Ns − k)J i(xl, t), where J i(xl, t)
represents the flux of particle arriving at one site.

We obtain for each target 1 ≤ i ≤ NDock the Markov chain, with pi
k(t, ~x) =

Pri{k, t, ~x},

dpi
0(t, ~x)

dt
= −Ns





lV
∑

l=1

J i(xl, t) + ksnNf (t)



 pi
0(t)

dpi
k(t, ~x)

dt
= (Ns − k + 1)





lV
∑

l=1

J i(xl, t) + ksnNf (t)



 pi
k−1(t)

−(Ns − k)





lV
∑

l=1

J i(xl, t) + ksnNf(t)



 pi
k(t)

dpi
T (t, ~x)

dt
= (Ns − T + 1)





lV
∑

l=1

J i(xl, t) + ksnNf(t)



 pi
T −1(t), (3.68)

where the last equation for pi
T describes the absorbing state for k = T . The initial

conditions at time t = 0 are:

pi
k(0) = δk0. (3.69)

Finally, the normalization is

∀i ∈ [1, Ns],
T
∑

0

pi
k(t) = 1. (3.70)

Mass action equations in the bulk

We describe the dynamic in the bulk using differential equations for the number of
free particles Nf (t) and the number of buffer proteins with j particles bound Bj(t),
0 ≤ j ≤ Nb,s. The number of bound particles Nb(t) is then:

Nb(t) =
Nb,s
∑

j=1

jBj(t). (3.71)
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To derive the system of equation for Nf and (Bj)j, we note that the number of

free sites at target i, Si
f(t) is given by

Si
f (t) =

T −1
∑

k=0

(Ns − k)pi
k(t, ~x)

= Ns(1 − pi
T (t, ~x)) − E

i(t, ~x), (3.72)

where E
i(t, ~x) =

∑T −1
k=0 kp

i
k(t, ~x) is the expectation of the number of occupied sites

at target i.
The influx of ions entering the bulk Jbulk is given by:

Jbulk(t) = Jtot(t) −
lV
∑

l=1

NDock
∑

i=1

T
∑

k=0

J i(xl, t, Ns − k)pi
k(t, ~x)

= Jtot(t) −
lV
∑

l=1

NDock
∑

i=1

J i(xl, t)Si
f(t). (3.73)

The release of bound ions into the bulk following a release event is, as in sec-
tion 3.3,

T
NDock
∑

i=1

dpi
T (t, ~x)

dt
. (3.74)

The mass action equations in the bulk, for the number of free particles Nf and
the number of buffers with j bound particles Bj, j = 0..Nb,s is:

dNf

dt
=

Nb,s
∑

j=1

k̃−(j)Bj(t) −
Nb,s−1
∑

j=0

k̃jBjNf (t) + Jbulk(t)

−


kpNp + ka + ksn

NDock
∑

i=1

Si
f (t)



Nf (t)

+ T
NDock
∑

i=1

dpi
T (t, ~x)

dt
(3.75)

dB0(t)

dt
= k̃−(1)B1 −Nf k̃0B0

dBj(t)

dt
= −k̃−(j)Bj + k̃−(j+1)Bj+1 −Nf k̃jBj +Nf k̃j−1Bj−1, j = 1..Nb,s − 1

BNb,s
= Btot −

Nb,s−1
∑

j=0

Bj.

Solving the Markov equations

We solve the system of equations 3.68 for each target i. The flux of particles in
the boundary layer reaching one site is gi(t) =

(

∑lV
k=1 J

i(xl, t) + ksnNf (t)
)

. We can

solve by mathematical induction the equations between t0 and t, starting from pi
0(t):

pi
0(t) = A0 exp

(

−Ns

∫ t

t0

gi(u)du
)

. (3.76)
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The solution pi
k(t), for k ∈ [0, T − 1] is:

pi
k(t) =

k
∑

j=0

(−1)j+kAj

k−1
∏

l=j

(Ns − l)

(k − j)!
exp

(

− (Ns − j)
∫ t

t0

gi(u)du
)

, (3.77)

and for pi
T (t):

pi
T (t) = AT +

T −1
∑

j=0

(−1)j+TAj

T −1
∏

l=j+1

(Ns − l)

(T − 1 − j)!
exp

(

− (Ns − j)
∫ t

t0

gi(u)du
)

, (3.78)

where (Ak)k∈[0,T ] are the integration constants. Using the initial conditions 3.69, we
get:

Ak =

k−1
∏

l=0

(Ns − l)

k!
(3.79)

for k ∈ [0, T − 1], and

AT =

T −1
∏

l=0

(Ns − l)

(T − 1)!

T −1
∑

j=0

(

T − 1

j

)

(−1)j+T −1

Ns − j
. (3.80)

3.8 Appendix B: Detailed computation of the mean
fraction of particles reaching any target, Fions
presented in section 3.4.4

In this appendix section, we present the detailed computation of Fions , the mean
fraction of particles reaching any target in the case of a uniform distribution of
channels. We remind that we do the approximation that the closest target receives
all the particles, i.e. ∀x, i, q(x, i) = 1 if i is the target closest to x, and 0 otherwise.
The AZ is divided into elementary squares, SAZ =

⋃

Q SQ (Fig. 3.2A), and |SAZ| =
8NDock|S1

q |. For a uniform distribution of channels, f(x) = 1
|SAZ |1SAZ

and hence the
mean fraction of particles reaching a target is:

∫

SAZ

ps(x)q(x, i)f(x)dx =
1

|SAZ|
∑

j

∫

Ωj
P

ps(x)q(x, i)dx

=
1

|SAZ|
∫

SQ

ps(x)dx

=
1

NDock|Sq
1|
∫

Sq
1
ps(x)dx
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We compute the leading order term in ε of the previous integral. In polar coordinates
(r, θ) we get

1

|S1
q |
∫

S1
q

ps(x)dx

=
2

H2

∫ π/4

0

∫ H/ cos(θ)

√
2rvesε

1 −
1 − 9.8

r2
vesε

H3

1 − 2rvesε

H2

(

1 − 2rvesε

r2

)

rdrdθ

=
[2rvesε

H4

(

9.8
rves

H
− 2

)

+O(ε2)
]

(

H2

2
+O(ε)

)

+
2

H2

[

2rvesε+
(2rvesε)2

2H2

(

2 − 9.8
rves

H

)

+O(ε3)

]

∫ π/4

0

∫ H/ cos(θ)

√
2rvesε

1

r
drdθ

=
[

rvesε

H2

(

9.8
rves

H
− 2

)

+O(ε2)
]

+
2

H2

[

2rvesε+
(rvesε)2

H2

(

2 − 9.8
rves

H

)

+O(ε3)

]

∫ π/4

0
ln

(

H

cos(θ)

)

− ln
(√

2rvesε
)

dθ

=
[

rvesε

H2

(

9.8
rves

H
− 2

)

+O(ε2)
]

+
2

H2

[

2rvesε+
(rvesε)2

H2

(

2 − 9.8
rves

H

)

+O(ε3)

] [

π

4
ln

(

H√
2rvesε

)

− K

2
+
π ln(2)

4

]

=
[

rvesε

H2

(

9.8
rves

H
− 2

)

+O(ε2)
]

+
2

H2

[

2rvesε+
(rvesε)2

H2

(

2 − 9.8
rves

H

)

+O(ε3)

] [

π

4
ln

(

H√
2rvesε

)

− K

2
+
π ln(2)

4

]

=
πrvesε

H2
ln

(

2H√
2rvesε

)

+
rvesε

H2

(

9.8rves

H
− 2(K + 1)

)

+O(ε ln(ε)),

where K =
∑

n≥0
(−1)n

(2n+1)2 ≈ 0.915 is the Catalan constant. We finally obtain the
mean fraction Fions of particles reaching any target, when there are lV channels:

Fions =
lV rvesε

NDockH2

[

π ln

(

2H√
2rvesε

)

+
(

9.8rves

H
− 2(K + 1)

)

]

+O(ε ln(ε)). (3.81)
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Chapter 4

Robust network oscillations during
mammalian respiratory rhythm
generation driven by synaptic
dynamics

Published in Guerrier C, Hayes JA, Fortin G and Holcman D “Robust network
oscillations during mammalian respiratory rhythm generation driven by synaptic
dynamics. ” Proc. Natl. Acad. Sci. 112(31), pp 9728-33 (2015)

How might synaptic dynamics generate synchronous oscillations in neuronal net-
works? We address this question in the preBötzinger Complex (preBötC), a brain-
stem neural network that paces robust, yet labile, inspiration in mammals. The
preBötC is composed of a few hundred neurons that alternate bursting activity with
silent periods, but the mechanism underlying this vital rhythm remains elusive. Us-
ing a computational approach to model a randomly connected neuronal network
that relies on short-term synaptic facilitation (SF) and depression (SD), we show
that synaptic fluctuations can initiate population activities through recurrent ex-
citation. We also show that a two-step SD process allows activity in the network
to synchronize (bursts) and generate a population refractory period (silence). The
model was validated against an array of experimental conditions, which recapitu-
late several processes the preBötC may experience. Consistent with the modeling
assumptions, we reveal, by electrophysiological recordings, that SF/SD can occur
at preBötC synapses on timescales that influence rhythmic population activity. We
conclude that nondeterministic neuronal spiking and dynamic synaptic strengths in
a randomly connected network are sufficient to give rise to regular respiratory-like
rhythmic network activity and lability, which may play an important role in gener-
ating the rhythm for breathing and other coordinated motor activities in mammals.

Significance Statement
The mechanism underlying mammalian respiratory rhythm generation in the pre-
Bötzinger Complex is still under debate. Here, we developed a simulation model
to show that a synaptic depression/facilitation mechanism sufficient for neurons
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to generate network rhythms, without the need for intrinsically rhythmic neurons.
Simulations of the model under several normal or pathological conditions the living
system experiences, together with critical electrophysiological experiments, converge
to show that randomly connected neuronal networks with synaptic dynamics under-
lie rhythmic activity. This study provides a generally applicable mechanism for
other central pattern generator systems that are less well understood.

4.1 Introduction

Central pattern generators (CPGs) are neuronal circuits that generate coordinated
activity in the absence of sensory input [67]. One such mammalian CPG, the pre-
Bötzinger complex (preBötC), gives rise to the eupneic respiratory rhythm [184,
53]. Located in the medulla, the preBötC preserves a spontaneous respiratory-like
rhythm when isolated in transverse slices, but the precise nature of the cellular
and synaptic mechanisms underlying rhythmogenesis remains elusive [53, 143, 140,
110, 132]. An early hypothesis was that the neuronal activity is driven by in-
trinsically bursting pacemaker neurons synchronized via excitatory synaptic con-
nections [184, 110, 23, 24]. However, electrophysiological and modeling studies
[132, 160, 46, 164] now suggest the rhythm emerges through stochastic activation
of intrinsic currents conveyed by recurrent synaptic connections, without the need
for pacemaker neurons [53, 143, 46, 25, 111]. In either case, excitatory synapses are
required for rhythm generation; the possibility that synaptic properties also underlie
periodic burst initiation and termination is yet to be demonstrated.

Synaptic transmission relies on the release of vesicles, which can be modulated
at the presynaptic terminal. Synaptic depression (SD), based on vesicular release,
consists of decaying release probability after sustained activity, which subsequently
decreases excitability within the underlying connected network. Conversely, synap-
tic facilitation (SF) enhances vesicular release probability and promotes neuronal
synchronization. These synaptic dynamics are critical for short-term synaptic plas-
ticity, and here they are explored in the context of preBötC rhythm generation.

We first consider a randomly connected network where each neuron is modeled
using a generalized Hodgkin-Huxley system of equations, and exhibits spontaneous
spiking activity based on a random process, but the neurons do not have intrinsic
bursting mechanisms. These neurons are sparsely connected within a realistically
sized network by excitatory synapses. The distinction of this model, from previous
preBötC models, is that synapses express SF and SD that is implemented using two
separate pools of vesicles, and creates dynamic synapses. The first pool is the read-
ily releasable pool (RRP) and the other is the recycling pool (RP) [161] modeled
with mass-action kinetics. Synaptic dynamics has been repeatedly used to describe
changes in spike rates in neural network populations [49] and emergence of gamma
oscillations [16]. Furthermore network connectivity can also participate to define
bursting or the oscillation frequency in neural networks [196, 45].

We show here that random networks connected with these synaptic properties,
with random spiking, are sufficient for periodic bursting and examine a variety of
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experimental scenarios testing this model. The present model shows that an ensem-
ble of excitatory neurons driven by synaptic dynamics can generate population-wide
rhythmic activity and behaves in a manner similar to the preBötC under different
conditions observed in vitro. Finally, we show experimentally that excitatory inputs
to preBötC neurons often exhibit dynamically changing excitatory postsynaptic cur-
rents (EPSCs) supporting the modeled concept that SF/SD occurs on a timescale
relevant to influence respiratory periods.

4.2 Results

4.2.1 Robust rhythmic activity generated in the model net-
work.

To investigate whether rhythmic activity can emerge from randomly connected neu-
rons with dynamic synapses, we simulated the membrane potential (V ) in 400
neurons (Materials and Methods), comparable to the number of preBötC rhythm-
generating neurons [72]. For each neuron, the key active properties are the RP
and RRP for synaptic vesicles (Fig. 4.1A), whereas neuronal spikes are governed by
Hodgkin-Huxley equations and driven by random membrane noise. The network
has a structure where the neurons were laid on a 2D grid with a Gaussian distance-
based connection probability with respect to each neurons neighbors [151] and is
within the bounds of previous experimental observations [160, 25, 51]. The average
number of output connections per neuron was 3.7, and the mean total number of
connections was 7.5 (Fig. 4.1B, and SI Appendix, Fig. 3.S1A, s = 0.9, Eq. 4.2), which
represents a neuron-to-neuron connection probability of about 2%. The connection
probability required to obtain rhythmicity, with these cellular parameters, is in the
range 1.2-2.5% (Discussion and SI Appendix, Fig. 3.S2).

In the absence of any external input, we found that local spontaneous spiking
can generate rhythmic activity among the population (Fig. 4.1C, S1B), and like in
experimental studies [25], the model reproduced the cycle-to-cycle variability both
in the identity of the neurons leading successive population bursts (Movie S1) and
the timing jitter of individual neuronal spike patterns across cycles. The bursts
lasted on average 708 ± 140 ms and were followed by silent periods lasting on aver-
age 5.1 ± 1.2 sec (SI Appendix, Fig. 3.S1C and D), which is in the range observed
for inspiratory cycles in vitro [53] (SI Appendix, Fig. 3.S3).

To further characterize bursting in this model, we illustrate the four principal
state variables of a neuron with respect to time (Fig. 4.1D-E): its voltage V , its fa-
cilitation variable x, and the normalized depression-related variables Yfree and Ydock.
The fraction of vesicles in the RP (Yfree) is quite stable, oscillating between 80%
and 98% of its maximum value, while the fraction of docked vesicles in the RRP
(Ydock) fluctuates between 20% and 100% of its filled state. Thus the RRP alternates
between an empty and full state, where the mean maximum number of vesicles is
4.5. When the percentage of vesicles in the RRP (Ydock) reaches its minimal value,
the bursting period ends, leading to a decrease in the facilitation variable (x) that
relaxes back to equilibrium (Fig. 4.1E). On the contrary, x increases exponentially
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Figure 4.1: The preBötzinger complex model and resulting network activ-
ity. A: Schematic representation of the presynaptic bouton: vesicles are divided
into two pools: diffusing (green) and docked at the active zone (AZ, red) with re-
covering ones (purple). After fusion, vesicles recover and enter the recycling pool.
B: Example of a neuronal network (400 neurons) where neurons are located on a
square lattice. The connections can be higher than 10 (red), between 5 and 10
(blue), or less than 5 (green). Neurons with no input or output are marked by green
crosses, with no circles around. C: Upper) Raster plot for spiking neurons generated
in Fig. 4.1B. During 100 s, the synchronous rhythmic patterns alternate between
active and silent periods. Lower) Time-dependent plot of the number of spikes in the
network, computed in time windows of 100 ms. The y axis is zoomed to observe the
preburst increase in the number of spikes. D: Time-dependent plot of the voltage

V , the facilitation variable x, and the scaled variables Yfree =
yfree

ymax
free

, Ydock =
ydock

ymax
dock

for a single neuron chosen randomly from the network (the mean bursting duration
is 777 ± 98 ms, and the mean interburst interval is 5.2 ± 1.0 s). E: Magnification
of V , x, Ydock and Isyn for the neuron in Fig. 4.1D, during 1.5 s (same simulation as
C and D).
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when each population burst begins (Movie S2), which, associated with the decrease
in Ydock is reflected by a transient increase and subsequent decrease in the amplitude
of synaptic currents during the bursts (Isyn, Fig. 4.1E). Each neuron within the net-
work that reaches its minimum ymin

dock enters a refractory state that shuts down its
synaptic transmission (SI Appendix, Fig. 3.S1E and F). This minimum value leads
to burst termination across the population because recurrent excitation ceases. As
synapses recover, a subsequent burst can begin when several connected neurons
spike in a short time interval to facilitate postsynaptic neuronal activation. This
nonlinearly promotes spiking activity to spread through neighboring neurons and
invade the entire network (Movie S2 and S3). These features were characteristic
of additional networks with similar topologies and each network resulted in similar
cycle periods (CPs), burst durations (BDs) and interburst intervals (IBIs) of 5.5 ±
1 s, 694 ± 138 ms, and 4.8 ± 1 s, respectively (n = 10 networks), which is in the
range observed in vitro. Additionally, the CP and BD can be altered by changing
synaptic parameters (SI Appendix, Figs. 3.S4 and 3.S5), and the spiking frequency
during a burst (normally up to 60 Hz) can be modified by changing the HH-model
parameters (SI Appendix, Fig. 3.S6). Altogether, this suggests that a large range of
in vitro and in vivo data can be accounted for by this model.

4.2.2 Rhythmic activity depends on the number and strength
of connected neurons.

With some neurodegenerative diseases, brainstem neurons die and are not replen-
ished [68]. Similar conditions in rats cause sleep apneas that could lead to death
without intervention [128]. To investigate the role of network size in our model, we
randomly removed neurons as shown in Fig. 4.2A. When 12.5% of the network neu-
rons were removed (50 neurons, SI Appendix, Fig. 3.S7), the network activity was
not perturbed. When 25% (100 neurons) of the network was removed, the rhythm
started to be affected, whereas bursts became erratic when this fraction reached 31%
(125 neurons, Fig. 4.2Aa-b), and disappeared when more than 44% of neurons were
removed (≥ 175 neurons, SI Appendix, Fig. 3.S7). Lesioning 175 neurons resulted in
a CV of ∼ 1 indicating a very unstable rhythm, and lesions beyond that eliminated
all spontaneous bursts. Normalizing the number of lesioned neurons to the total
required for complete rhythm cessation resulted in exponential increases in the CPs
and variability (Fig. 4.2Ac), comparable to those obtained in previous physiological
in vitro experiments [72, 52]. The proportion of lesioned neurons required to stop
bursting is nevertheless higher than observed experimentally in vitro (Discussion
and SI Appendix, SI Appendix, Fig. 3.S7E). The BD (about 670 ms) was not sta-
tistically changed by reduction of the network size by 50, 100, and 125 neurons,
whereas the CP increased from 5.5 ± 1.1 s to 7.1 ± 2.2 s to 10.2 ± 5.3 s to 15.5 ±
13.3 s, respectively. If CP depends on the number of neurons within the population,
it could be because each lesioned cell creates holes in the network that put at risk
the spread of activity within the population (Movies S4 and S5). In addition, these
lesions also effectively decrease the number of inputs to each remaining neuron and
thus the strength of inputs to each of them.
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Figure 4.2: Modeled characteristics of burst induction comply with physi-
ology. A: Effect of deleting random neurons on the network rhythm. a) 125 neurons
( 31% of the network) have been removed. b) Corresponding mean membrane po-
tential over the whole lesioned network. c) Comparison between simulated (blue)
and experimental lesions (red, extracted from [72]) of increasing numbers of preBötC
neurons (see also SI Appendix, Fig. 3.S7). B: Consequences of gradually decreasing
synaptic strength. Comparison between simulations (blue) and experimental results
(red, extracted from [136]). The initial synaptic strength, controlled via KI in the
model and via [NBQX] in the experimental protocol, is gradually decreased (see
also SI Appendix, Fig. 3.S8). C: Hyperpolarizing and depolarizing the network from
its resting state (green arrowhead) leads, respectively, to slower more variable and
accelerated more regular rhythms in simulated (blue) and experimental conditions
(red, extracted from [142]), see also SI Appendix, Fig. 3.S9. D: Response of the
network to increasing stimulations. a) Probability of stimulus evoked population
bursts as a function of the number of randomly stimulated neurons (n=1-17) and
the number of stimuli per train (n=1-6 pulses). b) Left: Mean V over the whole
network for spontaneous and stimulated bursts (n=9 neurons, 6 pulses at 60 Hz,
starting at t=550 ms, red arrowhead). Right: Magnification of the burst induction.
The vertical calibration bar applies to all burst, each having a baseline potential of
-65 mV.
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To test the role of unitary synaptic strength, in contrast to the spread of exci-
tatory transmission through the network, we simulated a decrease in the maximum
synaptic transmission from 100% to 65%, to mimic pharmacological blockade of
AMPA receptors, until population burst cessation with the full 400 neuron network
(Fig. 4.2B and SI Appendix, Fig. 3.S8). The results were similar to experimental
conditions [136] and were notably similar to Fig. 4.2Ac with respect to the expo-
nential divergence of cycle period as well. The latter point further suggests that the
net strength of connections between neurons are of principal importance for burst
induction, and thereby, rhythm generation.

4.2.3 Depolarizing neurons increases the rhythm frequency.

The preBötC is the target of many neuromodulators, the balance of which can affect
the tonic excitability of the network [34]. To investigate how tonic changes in V af-
fect bursting, we modulated the neuronal excitability by adding an applied current
(Iapp) to the current balance equation of the entire network. Positive Iapp is equiv-
alent to increasing extracellular [K+]. After hyperpolarization (Iapp = -0.5 pA),
the IBI and variability in rhythm increases drastically (Fig. 4.2C and SI Appendix,
Fig. 3.S9), while depolarizing the network (Iapp = 0.75 pA) decreased the CP and
variability in rhythm. At higher depolarization, the frequency of bursting reaches a
plateau principally constrained by the refractoriness in the model (CPplateau = 3.5 ±
0.1 s, BDplateau = 560 ± 227 ms compared to control values Iapp = 0 pA: CP = 5.1
± 0.8 s, BD = 660 ± 161 ms). These values are comparable to the ones reported in
physiological experiments [142] for CP = 5.7 ± 0.5 s and CPplateau = 3.5 ± 0.2 s, with
no notable decreases in BD and spike frequency. In the case of hyperpolarization,
we detected very few bursts after 1500 s, corresponding to CP = 240.6 ± 185.7 s,
which is comparable to the long CP (143.2 ± 3.9 s) reported in [142]. We conclude
that changing the tonic excitability in our model has drastic consequences on CP
owing to changes in IBI but not BD, in agreement with previous experimental data.

At hyperpolarized potentials we also observed, during the IBI or immediately
preceding bursts, patterns of activity reminiscent of burstlets, described in the pre-
BötC as rhythmic bouts of low-rate spiking (SI Appendix, Fig. 3.S10) [95]. These
patterns did not involve SF/SD like in full-network bursts (SI Appendix, Fig. 3.S11).
They rested on tens of spiking neurons but cannot properly be considered burstlets,
as the latter involve ∼90% of preBötC neurons. Rather, these simulated patterns
constitute low amplitude events that may seed burstlets and pre-inspiratory activity
[95].

4.2.4 Few active neurons are sufficient to trigger population
bursts.

Another important feature of the preBötC network is its rapid responsiveness to
phasic inputs from central or peripheral (reflex) origins, [137, 147, 185]. Therefore,
we sought to evaluate the minimal number of concurrently active neurons necessary
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for initiating a preBötC network response. To do so, we depolarized a variable num-
ber of randomly chosen neurons with graded trains of stimulation (1-6 stim/train, 50
µs, 60 Hz). We quantified the probability of evoked bursts for the respective condi-
tions (Fig. 4.2D, SI Appendix section 2.8). When 17 neurons (4.25% of the network),
were stimulated with a single stimulus, or with a two-stimulus train, it was possible
to induce a burst with a low probability ≤ 15%. However, using trains of five to
six stimuli, the probability was higher than 80% and in these cases, decreasing the
number of stimulated neurons revealed that 5-10 neurons were sufficient to induce
network bursts. The early phase of the evoked burst, manifesting the propagation of
excitatory synaptic inputs in the network (Movie S3), was similar to that of spon-
taneously occurring bursts (Fig. 4.2Db), in agreement with the group-pacemaker
hypothesis [46, 164, 159] and burstlet-dependent generation of bursts [95]. Finally,
these results are in keeping with the recent physiological demonstration in slice
preparations that targeting four to nine preBötC neurons with glutamate uncaging
was sufficient to induce ectopic endogenous-like bursts [96].

4.2.5 Short-term synaptic plasticity in the preBötC inspi-
ratory rhythm generator.

To support the possibility that SD, and also SF, may be occurring in vitro on time-
scales that could impact normal respiratory rhythms, we recorded synaptic responses
in inspiratory preBötC neurons in slice preparations (Fig. 4.3A) evoked by electri-
cal stimulation of preBötC commissural axons [48] (Fig. 4.3B). The experiments
were performed in the presence of picrotoxin and strychnine (5 µM) suppressing
GABAergic and glycinergic synaptic currents known to be dispensable for rhythm
generation [160, 20, 92] to best reproduce the predominant glutamatergic synaptic
transmission of the model. We concurrently reduced the extracellular [K+] from
8 to 3 mM to minimize spontaneous population activity after identifying recorded
inspiratory neurons (Fig. 4.3C), and these recordings did not exhibit unclamped
spikes (SI Appendix, Fig. 3.S12). For electrical stimulation we used trains (2- to 5-s
duration) of repetitive (10-30 Hz) stimuli. The intensity of stimulation was set so
that at low frequency (1/9 s) the stimulus resulted in about 50% EPSC failures.

At 20 and 30 Hz, stimulation frequently resulted in population recruitment even
in our suppressed excitability. In three of seven preBötC neurons stimulated at
10 Hz, the amplitude of evoked EPSCs (eEPSCs) varied according to their timing
during the stimulus trains. Typically in these cells, the amplitude of successive eEP-
SCs in the train showed a rapid waxing phase followed by a slow waning phase so
that eEPSCs increased amplitude over the first few stimuli of the train and declined
thereafter during the train, resulting in the reoccurrence of transmission failures
at the end of subsequent trains (Fig. 4.3D). We quantified failures of transmission
during the trains of stimuli and observed that failures mirrored changes in EPSC
amplitudes (black histograms Fig. 4.3E and F), suggesting that the two phenomena
might be tied through a similar mechanism like the availability of vesicles at the
synapse as modeled here. The other four cells did not show any discernible mod-
ulation in eEPSC amplitude during the train (Fig. 4.3E gray). In these four cells,
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Figure 4.3: Experimental support for rapid accommodation of synaptic
strength. A: A transverse preBötC slice depicting key features of the in vitro
preparation (IO: inferior olive, NA: subcompact nucleus ambiguus, obex: caudal
termination of the IVth ventricle). B: The experimental strategy (see text for de-
tails). C: Top) On-cell voltage clamp recording, Middle) whole-cell voltage-clamp
recording, and Bottom) current-clamp recording. D: Upper) Five cycles of train
stimuli from the cell recorded in C, and Lower) The mean of the 5 cycles. Inset)
Details showing the eEPSCs overlayed at the indicated places within the trains.
E: solid-black histogram) Fraction of trials that failed to produce eEPSCs. Lower)
eEPSC amplitudes (black: N=3 neurons, n=5-16 trials; gray: N=4 neurons, n=4-10
trials). F: Same data as E normalized to the peak within each neuron’s mean train
(gray) with exponential fit overlays to the rising components (green/magenta) and
the falling components (red/blue) of the normalized data. The command potential
for all voltage-clamp recordings was -60 mV.
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the slope of the time-dependent change of eEPSC amplitude during the train was
significantly different from that of the aforementioned ones (-1.2±0.9 pA/s, n=4 vs
-20.1±8.3 pA/s, n=3, t-test: p=0.043). These stationary cells may belong to the
∼50% fraction of nonrhythmogenic inhibitory neurons within the preBötC [50] and
were not considered further.

For the recordings that exhibited dynamic synapses (Fig. 4.3E, black), normal-
izing their eEPSC amplitudes with respect to the maximal eEPSC of each neuron’s
mean train revealed a more consistent trend among the data than the raw data may
have initially suggested (Fig. 4.3F [gray], N=3, n=5-16 trials), with exponential fits
to their rising and falling components. The rising exponential suggests the pres-
ence of short-term SF, (as illustrated by x in Fig. 4.1E) and the falling exponential
consistent with short-term SD (an amalgamation of x and Ydock, Fig. 4.1E). These
electrophysiological data match the predicted model dynamics of Isyn in Fig. 4.1E
and would suggest that, together with the rest of the favorable modeling tests per-
formed here recapitulating experimental results [72, 136, 142, 96], the modeling
approach we exercised is applicable to the respiratory rhythm-generating network
in vitro.

4.3 Discussion

4.3.1 Can bursting oscillations be generated in neuronal
networks without any intrinsically rhythmic neurons?

We found that a neuronal network based on Gaussian-distributed sparse synaptic
connections can generate an endogenous rhythm initiated by neuronal noise. A key
feature of the network is the SF and SD dynamics. Here, SD was based on a two-
pool model where vesicles of one pool interact with the RRP and is a refinement of
the classical SD model [199].

Pacemaker neurons can generate an intrinsic oscillation based on their biophys-
ical properties such as persistent sodium current (INaP ). For INaP , this current
slowly inactivates to hyperpolarize and terminate bursts, whereas subsequent dein-
activation causes the next depolarization and burst [23, 165, 193], which sustains
rhythmic activity under certain parameter regimes. A calcium-activated nonspe-
cific cation current (ICAN), ubiquitous in preBötC neurons [46, 149], can also give
rise to intrinsic bursting activity [193, 192] and may contribute to SF in preBötC
neurons by enhancing excitatory postsynaptic potentials (EPSPs) [149]. However,
electrophysiological recordings [143, 46, 47, 148] revealed that endogenous rhythmic
activity was not driven by pacemaker neurons, as inhibiting them does not suppress
population bursting or change the frequency. This result led to the conclusion that
bursting oscillations could be generated by other mechanisms, such as the group-
pacemaker hypothesis [140, 132, 46, 159], where respiratory rhythm is thought to
emerge from the dynamics of synaptic input impinging on inspiratory neurons and
those interactions with intrinsic cellular properties.

Modeling approaches [164, 39] have shown that the cooperation of ICAN , acti-
vated by synaptic activity, coupled with activity-dependent outward currents, can
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generate periods of bursting separated by quiescent phases. These quiescent periods
can also be achieved by transient inactivation of an INaP similar to the one observed
in pacemaker neurons, which is equivalent to activating an outward current. How-
ever, that model requires intrinsic regular spiking to activate ICAN and initiate the
bursts even when the system is driven by synaptic noise, and ICAN -mediated SF
and depolarization-block dependent SD alone are not sufficient for regular bursting.

Here, we modeled a neuronal network that contains sparse connections and is
based on SF with a two-pool state for SD. Burst initiation relies on spontaneous
spiking of a small number of neurons that recruit the entire network by recurrent
excitation among neurons. The increase in SF in our model promotes the recurrent
excitation, similar to the ICAN evoked by intrinsic activity in ref [164], and observed
in electrophysiological recordings in vitro [148, 141]. To propagate to the entire
network, nearly synchronous firing must first occur in several neurons. This syn-
chronization may be caused by synaptic inputs coincidently converging onto small
groups of preBötC neurons or, in recurrently connected neurons, in a stochastic
manner, from the relief of the refractory period during the interburst interval. After
a few hundred milliseconds, the first part of SD takes over and stops each neuron
from transmitting synaptic activity. Population spiking subsequently terminates.
Finally, the second part of the SD, characterized by the entry of neurons in a refrac-
tory period to let synapses recover to equilibrium, prevents neurons from firing back
immediately. This behavior is in agreement with previous studies [96, 113]. The
next cycle starts after the neuronal refractory periods end and when noise-driven
spontaneous spiking occurs at several neurons. The end of the refractory period
and the beginning of the next burst (SI Appendix, Fig. 3.S1E) principally depend
on four factors: the rate of SF τf (see x in Fig. 4.1E), the effective degree of network
connectivity (Fig. 4.2A, SI Appendix, Figs. 3.S2 and 3.S7), the maximal synaptic
strength KI (Fig. 4.2B-S8), and the amount of spontaneous spiking (Fig. 4.2C-D-
S9). Changing any one of these factors affects the bursting frequency and regularity.

To conclude, our modeling confirms the group pacemaker hypothesis [46], where
eupneic respiratory rhythm is attributed to the cooperative interactions between
inspiratory neurons. The present results show that periodic inspiratory bursts can
emerge from recurrent neuronal connections and synaptic dynamics, without the
need of any underlying neuronal rhythm driven by pacemaker neurons or a subpop-
ulation of oscillatory firing neurons. Synaptic dynamics are thus a plausible mech-
anism of preBötC rhythmogenesis, even if other nonsynaptic mechanisms might be
involved to fully reproduce the range of respiratory behaviors.

4.3.2 Local network structure and dynamics.

Network connectivity within the preBötC could influence the dynamics of popu-
lation activity [176]. Other preBötC-related studies have used all-to-all coupling
[24] or various degrees of sparse networks [25, 52] including small-world topology
[132]. In this study, we modeled a realistic-sized preBötC network using random
connections between neurons with a distribution law that decays exponentially with
the distance between neurons (Fig. 4.1B, S2B). This decay has been used in several
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models such as the visual cortex (figure 5 from ref [2]) or the auditory cortex [131].
Connectivity between preBötC neurons could be as high as 13% when recorded in
local proximity (<∼60 µm) [160] whereas it could be as low as 1% as determined
from multielectrode array experiments [25]. Additionally, experiments with organ-
otypic slices suggest that a preBötC-like network could be organized into loosely
connected clusters, i.e., a small-world network [51].

Our choice of connectivity is broadly consistent with the three previous exper-
imental results [160, 25, 51] when the pair-to-pair coupling decays fast at large
distances. The decay of neuronal connectivity with the distance between neurons
prevents the emergence of nonhomogeneous connectivity in the network. Indeed, in
the classical Erdős-Rényi preBötC network model, increasing the coupling probabil-
ity leads to the occurrence of higher connected neurons, as studied in ref. [176]. The
connectivity map used in ref. [25] for a low coupling probability is nevertheless very
similar to the one used in our model. Varying the Gaussian distribution (parameter
s in Eq. 4.2, SI Appendix, Fig. 3.S2) shows that the rhythm is preserved only for s
in the range 0.8-1. With s ≤ 0.8 the IBI has large variability, and when s ≥ 1 waves
of APs at low frequency can emerge in the network (SI Appendix, Fig. 3.S2F and
Movie S6 and S7).

4.3.3 Role of synaptic depression in burst termination.

Synaptic depression is described classically as the depletion of vesicles following ac-
tivation [186]. Here we had to account for the depletion of both the RRP and the
RP so that vesicles can arrive with the proper dynamics, which is not contained
in the classical coarse-grained depression model where the rate of synaptic depres-
sion depends on the resource’s availability [199]. In the classical depression model,
presynaptic stimulation through a spike train produces a regime of stationary EP-
SPs postsynaptically after a few spikes, which does not result in burst termination
due to full depletion of available vesicles. The two-pool model where vesicles can
either be in the RRP or RP compartments resolves this difficulty: the arrival of
a presynaptic AP triggers fusion of vesicles from the RRP, and the postsynaptic
current is proportional to the amount of fused vesicles. Bursting termination in the
preBötC is still unknown and might be due to several different processes such as
synaptic depression, voltage-dependent/ion-activated outward currents [113], or, as
postulated in previous models, due to the deactivation of inward currents [23], or
a combination. In our model, burst termination is based on short-term SD, where
the ready-to-fuse vesicles are lacking. Indeed, they are released in the high firing
rate bursting that lasts several hundreds of milliseconds and take up to seconds
to recover, consistent with respiratory refractory periods observed experimentally
in vitro [96]. Our approach shows that bursting oscillations can be generated in
an ensemble of neurons connected by synapses, driven by depression/facilitation
dynamics, without the need for any underlying endogenously rhythmic pacemaker
neurons. In addition, the IBI is controlled by recurrent excitations arising from the
network’s spontaneous activity. This phenomenon may be quite generic and could
explain oscillations in other neuronal networks, where the mechanism remains un-

130



4.4. Materials and Methods

clear, such as the circuits for chewing, swallowing, whisking, locomotion or, indeed,
any coordinated ensembles of repetitively synchronous neuronal activities.

4.4 Materials and Methods

4.4.1 Electrophysiology.

All animal studies were done in accordance with the guidelines issued by the Eu-
ropean Community and have been approved by the research ethics committee in
charge (Comité d’éthique pour l’expérimentation animale) and the French Ministry
of Research.

Swiss mice (P0-P4) were anesthetized and dissected in artificial cerebrospinal
fluid (ACSF) containing (in mM): 132.5 NaCl, 8 KCl, 0.58 Na2HPO4, 8.5 NaHCO3,
30 D-glucose, 1.26 CaCl2, 1.15 MgCl2. Hindbrains were quickly removed and em-
bedded within a 4% agarose block and glued to the pedestal of a Leica microtome.
Transverse slices were cut from the medulla (450 µm thick) where the rostral sur-
face was 400-500 µm caudal to the caudal end of the facial nucleus in line with
the calibrated atlas of ref. [163]. Slices were then placed into a recording chamber
and held down by a platinum grid with nylon fibers. The slices were perfused with
30-31 ◦C extracellular ACSF for at least 30 min before patch recording commenced.
Picrotoxin (5 µM) and strychnine (5 µM) were bath-applied to block GABAA and
glycinergic synaptic currents. Evoked EPSCs (eEPSCs) were identified by patch-
recording preBötC respiratory neurons and electrically stimulating the midline of
the slice just dorsal to the midline aspect of the inferior olive (Fig. 4.3A and B)
using an ISO-Flex stimulation isolation unit (A.M.P.I.). The 8 mM [K+] was ex-
changed with 3 mM [K+] ACSF to suppress spontaneous population activity once a
recorded neuron was identified. For voltage-clamp recordings, we used a command
potential of -60 mV and recordings with unclamped spikes were discarded. Further
details are given in the SI Appendix, Materials and Methods.

4.4.2 Mathematical Modeling.

Neuronal network modeling. We model a neuronal network consisting of 20
x 20 (i.e. 400) connected neurons organized on a square lattice and account for
synaptic dynamic and voltage properties. To model the membrane potential of each
neuron, we use a simplified Hodgkin-Huxley model, where we consider the changes
in Na+, K+ and leak channels. The associated currents are INa, IK and IL. The
resting potential of each neuron is at a mean of -65.1 mV, distributed randomly
according to a Gaussian distribution with variance 0.2. To account for spontaneous
fluctuations of the membrane potential, we add a Gaussian noise source term Ẇ to
the potential with a variance σ. The general equation for one neuron is

CV̇ = −INa − IK − IL +
∑

j

Isyn,j + σẆ . (4.1)
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The synaptic current for each neuron is
∑

j

Isyn,j , which is the sum of the postsynap-

tic currents over all connected neurons (SI Appendix). These currents are computed
for each synapse from the short-term facilitation and depression properties, modeled
by two pools of vesicles (SI Appendix). These two pools generate two different time
scales for the synaptic depression. The model we adopted for the facilitation dynam-
ics is, however, classical, as developed in ref. [198]. Synaptic depression results from
the depletion of the RRP, where synaptic vesicles are gathered at the membrane
before fusion. We also account for the other pool of recycling vesicles (RP) that are
diffusing.
Computing the synaptic current. To compute the synaptic current between two
connected neurons, we use the synaptic model described above (SI Appendix). The
postsynaptic current I(t), due to an action potential generated in the presynaptic
neuron, is proportional to the amount of released vesicles.
Construction of the network connectivity. The connectivity map for the net-
work is implemented between every neuron. They are distributed on a square lattice
(Fig. 4.1B) and connected randomly according to the probability distribution

P(i → j) = exp(−d(i, j)2/(2s2)) (4.2)

for neuron i and j, where d(i, j) is the Euclidian distance between neurons i and j
normalized by the minimal distance between two neurons.
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Supplementary Information

C. Guerrier1, J.A. Hayes2, G. Fortin2, D. Holcman1

This SI is divided into 3 parts. In the first part, we complement the exper-
imental procedure, providing details about short-term depression analysis in the
preBötzinger Complex, and we provide specific information about the modeling as-
pect. We describe the dynamics of the membrane potential, synaptic facilitation and
the two step synaptic depression model. We further describe synaptic connections
between neurons. In the second part, we present additional simulations. The third
part describes the legends for the movies mentioned in the main text.

4.5 Complement on the Material and Methods

4.5.1 Experimental procedure

Swiss mice (P0-P4) were anesthetized and dissected in artificial cerebrospinal fluid
(ACSF) containing (in mM): 132.5 NaCl, 8 KCl, 0.58 Na2HPO4, 8.5 NaHCO3, 30
D-glucose, 1.26 CaCl2, 1.15 MgCl2. Hindbrains were quickly removed and embedded
within a 4% agarose block and glued to the pedestal of a Leica microtome. Trans-
verse slices were cut from the medulla (450 µm thick) where the rostral surface was
400-500 µm caudal to the caudal end of the facial nucleus in line with the calibrated
atlas of [163]. Slices were then placed into a recording chamber and held down by a
platinum grid with nylon fibers. The slices were perfused with 30 − 31 ◦C extracel-
lular ACSF for at least 30 min before patch recording commenced.

Tissue was visualized using a Nikon Eclipse upright microscope in IR-DIC config-
uration using a water-immersible 40x objective and a CoolSnap HQ2 camera (Pho-
tometrics, AZ) controlled by Micro-Manager [40]. Whole-cell patch recordings were
performed with a MultiClamp 700B, digitized by a 1440a Digidata, and controlled
by pClamp 10 (Molecular Devices, CA). The intracellular patch solution contained
(in mM): 123 K-gluconate, 21 KCl, 0.5 EGTA, 10 HEPES, 3 MgCl2. Picrotoxin
(5 µM) and strychnine (5 µM) were bath-applied to block GABAA and glycinergic
synaptic currents.

Evoked excitatory postsynaptic currents (eEPSCs) were identified by patch-
recording preBötC respiratory neurons and electrically stimulating the midline of
the slice just dorsal to the midline aspect of the inferior olive (Fig. 3A-B) using an
ISO-Flex stimulation isolation unit (A.M.P.I., Israel). Once a respiratory neuron was
identified, the bath [K+] was dropped to 3 mM to reduce spontaneous respiratory
activity. Low-intensity electrical pulses were applied for 100 µs duration approxi-
mately every 9 s and the intensity increased until >50% of the pulses resulted in
eEPSCs observed in the voltage-clamp recording. After that, we switched to gap-
free recording and periodically stimulated trains of variable length and frequency to
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investigate the postsynaptic response. The eEPSCs were identified and quantified
offline using PhysImage software (http://physimage.sourceforge.net/).

4.5.2 Hodgkin-Huxley Model of the membrane potential

To model the membrane potential of each neuron, we used a simplified Hodgkin-
Huxley model, where we considered the changes in Na+, K+ and leak channels. We
further added the synaptic currents generated from connected neurons. The resting
potential of each neuron was at a mean of −65.1 mV, distributed randomly accord-
ing to a Gaussian distribution with variance 0.2. To account for the spontaneous
fluctuations of the membrane potential, we added a Gaussian noise source term to
the potential with a variance σ. The equations are

CV̇ = Iapp − INa − IK − IL +
∑

j

Isyn,j + σẆ (4.3)

ṅ = αn(1 − n) − βnn (4.4)

where

INa = gNam
3
∞h(V −ENa)

IK = gkn
4(V − EK)

IL = gL(V − EL)

m∞ =
αm

αm + βm

αk =
1

τk

θk − V

e
θk−V

τk − 1
for k = n,m

βk = ηke
− V +65

σk

The variables m and n represent the opening of the Na+ and K+ channels respec-
tively. We used the following approximation for the closing of the Na+ channel
h = (0.89 − 1.1n). The synaptic current

∑

j

Isyn,j integrates the sum over all

connecting neurons that we shall describe next. The term Ẇ in eq. 4.3 rep-
resents the derivative of standard white noise. Indeed, in the discretized form,
W (t+ ∆t) −W (t) =

√
∆tZ where Z is a Gaussian variable of mean 0 and variance

1.

4.5.3 Model of the synaptic dynamics

To characterize the synaptic dynamics, we built a two pool model that accounted
for two different time scales of depression. Indeed, synaptic depression results from
the depletion of the readily releasable pool (RRP) (Fig. 1A), where synaptic vesicles
are gathered at the membrane before fusion. We also accounted for the other pool of
recycling vesicles (recycling pool, RP) that are diffusing. Finally after fusion, vesicles
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are not participating in any of the two previous pools. This state is described as
recovering. In the present model, we considered that the total amount of vesicles
at a synapse is constant. Thus the fraction yfree (resp. ydock) of vesicles in the RP
(resp. RRP), with the fraction of recovering vesicles yrec satisfies the conservation
equation

yfree + ydock + yrec = 1. (4.5)

Finally, the synaptic facilitation variable x reflects all possible mechanisms that
enhance vesicular release, and thus is associated with an increase in the release
probability [198]. It is given by

ẋ =
X − x

τf
+ k(1 − x)H(V − T ), (4.6)

where τf is the facilitation rate, X its value at equilibrium, and H is the Heaviside
function. The facilitation x increases due to the term k(1 −x) during an Action Po-
tential (AP), when the membrane potential V is above a threshold T (H(V−T ) = 1),
and relaxes back to equilibrium when V is below T (H(V − T ) = 0).

We shall now present the mass action equations that describe the vesicular ex-
changes between different pools. The amount of vesicles in the RP depends on the

arrival of vesicles from the recovering state, given by the flux Φ→RP =
yrec

τrec

, where

τrec is the delivery time. The outward flux of vesicles is proportional with the rate
constant τdock to the fraction of available sites (ymax

dock − ydock) at RRP, where ymax
dock is

the maximal number of sites in the RRP, and to the fraction of available vesicles in
the RP. Finally, the outward Φ→RRP is generated in the absence of an AP by the
intrinsic turn over, when the membrane potential is below a threshold T . However,
when the membrane potential is above the threshold T , Φ→RRP depends on the
facilitation variable x and we finally get

Φ→RRP =
1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

. (4.7)

Finally,

ẏfree = Φ→RP − Φ→RRP (4.8)

=
yrec

τrec
− 1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

.

The equation for the fraction ydock of vesicles in the RRP is given by the balances of
inward vesicles arriving from the RP, Φ→RRP (eq. 4.7), and on the flux of released
vesicles ΦRRP→, which vanishes in the absence of an AP. Following a stimulation,
it is proportional to the fraction ydock of vesicles in the RRP and to the facilitation
variable x with a rate τrel:

ΦRRP→ =
1

τrel

ydock

(

x−X

X

)

H(V − T ). (4.9)
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Balancing the fluxes Φ→RRP − ΦRRP→ leads to

ẏdock =
1

τdock

(ymax
dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

(4.10)

− 1

τrel
ydock

x−X

X
H(V − T ).

Finally, changes in the amount of recovering vesicles yrec is equal to the difference
of the fluxes Φ→RRP and Φ→RP, which leads to

ẏrec = ΦRRP→ − Φ→RP =
1

τrel

ydock
x−X

X
H(V − T ) − yrec

τrec

. (4.11)

In summary, using the conservation equation 4.5, we obtain the following system of
equations

ẋ =
X − x

τf
+ k(1 − x)H(V − T )

ẏfree =
1 − yfree − ydock

τrec
− 1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

(4.12)

ẏdock =
1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

− 1

τrel
ydock

x−X

X
H(V − T ).

4.5.4 Computing the synaptic current Isyn

To compute the synaptic current between two connected neurons, we used the synap-
tic model described above. The postsynaptic current i(t), due to an action potential
generated in the presynaptic neuron is proportional to the amount of released vesi-
cles (ydock(t) − ydock(t0)), where t0 is the time of the presynaptic AP. It is set to zero
when the RRP is empty.

To account for the inherent discrepancy between the continuous description of
the fraction of vesicles in the RRP and the actual discrete number, we imposed an
empty RRP when the variable ydock was below ymin

dock = 0.04. This minimal value for
ydock corresponds to a total of around twenty-five vesicles in the synapse and to a
mean maximal number of vesicles in the RRP of 4.5. The threshold ymin

dock was chosen
by plotting the variable ydock during a protocol where the membrane potential V was
constantly stimulated at 60 Hz for 2 seconds, which reflects the mean spike frequency
during bursting. The variable ydock decreased abruptly during the first 500 ms, and
then slowed down before reaching an asymptotic regime. From these considerations,
we chose the value of threshold ymin

dock in the intermediate regime, before ydock enters
its asymptotic regime (Fig. 3.S1F, the red line shows the asymptotic regime, when
the tangent of ydock(t) is equal to the limit value of the one at infinity, computed by
a numerical fit).

After a bursting event, we implemented a refractory period (RefP) reflecting that
in order for the synapse to recover and for a vesicle to be released, several vesicles
need to accumulate at the active zone. This refractory period is monitored using
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the facilitation variable x, and ends when it reaches the value xRefP = 0.31, close to
its equilibrium value X = 0.3 (eq. 4.6).
Finally, when a presynaptic AP arrived at a time t0, which does not fall into the
refractory period window, the synaptic current is

it0(t) = KI(ydock(t) − ydock(t0))H(V − T )H
(

ydock − ymin
dock

)

, (4.13)

where KI is a constant, which converts the proportion of fused vesicles during an
AP, into a postsynaptic current. For spikes arriving at times tk, the synaptic current
is for t ∈ [tk, tk+1],

Isyn(t) =







0 during a refractory period

itk
(t− τdel), else

(4.14)

where τdel = 1 ms is a delay.

4.5.5 Constructing the network connectivity

We present now the connectivity map for the network that we implemented between
neurons. Neurons were distributed on a square lattice (Fig. 1B) and were connected
randomly according to the probability distribution

P(i → j) = exp(−d(i, j)2/(2s2)) (4.15)

for neuron i and j and the parameter s, that is specified later on, and where d(i, j) is
the Euclidian distance between neurons i and j normalized by the minimal distance
between two neurons. For s = 0.9, the mean number of output connections per
neurons was around 3.7, and the mean total number of connections was around 7.5.

As presented in Fig. 3.S2, the probability to connect directly to one of the 8
proximal neighbors was around 0.3, whilst for the second square it dropped to 0.1.
More than 99 % of the network (around 396 neurons out of 400) were part of the
network. Thus only few neurons were completely isolated.

4.5.6 Summary of the network dynamics

For a neuronal network consisting of 20 x 20 (i.e. 400) neurons organized on a square
lattice, we modeled the synaptic properties and voltage as previously described. We
studied various network configurations (for various s) and also studied the effect of
changing the size. However, during each simulation, the connections will be kept
fixed. In summary, each neuron is then described by four differential equations
(one for the action potential and three for the synaptic dynamics, Fig. 3.S1, Movies
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Figure 3.S1: Histogram of the number of output connections per neuron,
and network rhythmic activity with 400 neurons. A: Histogram of the num-
ber of output connections per neuron associated to Fig. 1B. Here, the mean number
of output connections is 3.75. B: Mean voltage V, depression and facilitation aver-
age over the network. C: Bursting duration histogram (average over one network
monitored during 900 sec): the mean burst duration is 708 ± 140 ms. D: Interburst
interval histogram (mean : 5.1 ± 1.2 sec). The histogram of the interburst inter-
val displays two different peaks at T=4.3 sec and T=5.4 sec, which shows that the
rhythm is multimodal. E: Zoom on the voltage V , the facilitation variable x and
the two scaled depression variable Yfree = yfree/y

max
free and Ydock = ydock/y

max
dock for a

single neuron during sixteen seconds. The red bars represent the refractory period
coming after a burst. F: Dynamics of the depression variable ydock during a 60 Hz
stimulation lasting two seconds. The red line shows the asymptotic regime.
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S1-S2-S3)

C V̇i = −INa − IK − IL +
∑

j connected to i

Isyn,j + σẆ

ẋi =
X − xi

τf
+ k(1 − xi)H(V − T ) (4.16)

ẏfree,i =
1 − yfree,i − ydock,i

τrec
− 1

τdock
(ymax

dock − ydock,i) yfree,i

[

1 +
xi −X

X
H(V − T )

]

ẏdock,i =
1

τdock
(ymax

dock − ydock,i) yfree,i

[

1 +
xi −X

X
H(V − T )

]

− 1

τrel
ydock,i

xi −X

X
H(V − T ),

where i = 1..400. All the simulations are performed in MATLAB (Mathworks, MA),
using the RK4-ode solver with a step time ∆t = 0.05 ms, and with the set of parame-
ters described in Table 4.1. Results are expressed as mean ± S.E.M. MATLAB code
for this model is accessible on the authors’ website (http://www.bionewmetrics.org).

4.6 Complementary simulations

4.6.1 Decreasing the network connectivity gradually sup-
presses the endogenous rhythm.

To study the influence of scaling synaptic connections, we decreased the value of the
connectivity parameter s from 0.9 (initial network) to 0.7, (connection probability,
eq. 4.15 and Fig. 3.S2A), while keeping the neuronal resting membrane potentials
at the same values. We first investigated how the connecting probability was de-
creased for increased distances between neurons (Fig. 3.S2B). Each block represents
the probability to connect neighboring neurons: the first four closest are on bar 1
and so on (details on Fig. 3.S2B). In summary, as long as s ≥ 0.85 (mean num-
ber of output connections MCN = 3.2) the network dynamics is not much affected
(Fig. 3.S2C-D-E). However, lowering s below 0.75 leads to MCN = 2.3, the bursting
pattern remains, but the interburst intervals show a large variability, lasting in some
cases 25 sec instead of 5 sec. For s < 0.7, (MCN = 1.9), the rhythm disappears,
the network can generate bursts between silent periods that can last more than 100
seconds. This result is confirmed by the power spectrum analysis (Fig. 3.S2D). We
conclude here that a minimal network connectivity is required to induce periodic
bursting patterns.

The neuronal connectivity characterized here by the variable s is the key pa-
rameter governing the network rhythm. We could discern three different regimes
depending on the value of s: for s < 0.8, the network expresses irregular bursting
patterns, due to a high variability in the interburst interval duration. In that case,
the mean number of connections per neurons (MCN ) is below 3. This small amount
of connections prevents the propagation of Action Potentials (APs) within the net-
work, preventing the recruitment of neurons required for burst induction (Movie
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S6). When the connectivity parameter s is in the range 0.8 − 1, MCN varies ap-
proximatively between 3 and 5. The network expresses regular bursting patterns,
and APs propagate quickly within the whole network (Movie S3). Finally, when the
parameter s > 1, the MCN > 5, and network bursts cannot terminate (Fig. 3.S2F).
Interestingly, during these periods, the RRP never empties (Fig. 3.S2F). This re-
sults from the low spiking frequency (around 20 Hz) during bursting, which permits
a steady-state refilling of vesicles. This low frequency results from the high efficient
propagation of AP in the network, as illustrated in Movie S7. Indeed, an AP can
generate a wave of APs that crosses the entire network very quickly, followed by
another wave of depolarization, which prevents the recurrent excitation observed in
Movie S3. Thus a high connectivity between neurons leads to waves of APs in the
networks, as studied in [18].

4.6.2 Histograms of the interburst interval for four different
network realizations.

Neuronal network dynamics can also be characterized by the interburst interval.
Indeed, different network realizations with identical synaptic and electrophysiologi-
cal parameters lead to different interburst interval distributions, while the mean is
identical (Fig. 3.S3).
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Figure 3.S2: Effect of connectivity on the network rhythm A: Example of a
network (400 neurons) connected with parameter s = 0.75 (Materials and Methods).
B: Empirical distribution of neuronal connections. C: Mean membrane potential
for networks generated with s = 0.9, 0.85, 0.75 and 0.7, where the mean number of
output connections per neuron (MCN ) is 3.8, 3.2, 2.3 and 1.9 respectively. D: Power
spectrum of the mean membrane potential computed for the entire network. E:
Mean and CV of the burst duration, interburst interval and the period as a function
of s. F: Time dependent plot of the voltage and the scaled variables Yfree, Ydock and
x for a single neuron chosen randomly from the network in the case of a very high
network connectivity, when s = 1.1 (MCN = 6).
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4.6.3 Influence of the synaptic properties on the network.

To explore the parameter space in our model, we studied the influence of four key
synaptic parameters on the network rhythm: the facilitation time constant τf , the
vesicular fusion time τrel, the docking time τdock and the recovery time τrec (the synap-
tic dynamics is summarized in the system of eqs. 4.12 and the associated parameters
are reported in Table 4.1). Using a neuronal network containing 400 neurons, we
ran simulations similar to Fig. 1D and the results are shown in Fig. 3.S4. We eval-

−100

100

V
 (

m
V

)

τ
rec

 =500 ms

0

1

x

0

1

Y
fr

ee

0 100
0

1

Time (s)

Y
do

ck

  A

−100

100

V
 (

m
V

)

τ
dock

 =50 ms

0

1

x
0

1

Y
fr

ee

0 100
0

1

Time (s)

Y
do

ck

  B

−100

100

V
 (

m
V

)

τ
rel

 =60 ms

0

1

x

0

1

Y
fr

ee

0 100
0

1

Time (s)

Y
do

ck

  C

−100

100

V
 (

m
V

)

τ
f
 =250 ms

0

1

x

0

1

Y
fr

ee

0 100
0

1

Time (s)

Y
do

ck

  D

Figure 3.S4: Responses of the network and mean synaptic properties. We
have shown below the neuronal response, the graph for x (facilitation), Yfree (de-
pression 1), Ydock (depression 2). We changed the parameter written on top of each
sub-figure. The rest of the parameters are the ones in Table 1.

uated how the rhythm was altered when changing the four parameters (time scales)
described above and ran simulations for 100 sec, and varied the different time scales
(one at a time) while fixing the others. The results are shown in figure Fig. 3.S5.

The time constant for vesicular recovery τrec has almost no influence on the cy-
cle period and the burst duration (Fig. 3.S5A). The influence of the time scale for
switching from the RP to RRP (τdock) is also almost negligible, but decreasing τdock

to a value of 50 ms leads to a network desynchronization (Fig. 3.S4B and Fig. 3.S5B)
and disruption of the rhythm.

Increasing the time constant for the vesicular depletion in the RRP (τrel) from
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Figure 3.S5: Synaptic dynamics at the network level: Mean and CV of the
burst duration, the interburst interval, the cycle period (left y-axis, sec), and the
spiking frequency during bursts (right y-axis, Hz) as a function of τrec (A), τdock (B),
τrel (C) and τf (D). All the other parameters are the same as described in Table 1,
except ymin

dock (eq.10 of SI), which is computed for each value of τx. The network is
the same for each simulation.
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10 ms to 60 ms widely increases the cycle periods from 2.9 ± 0.6 sec to 10.7 ± 0.1
sec, and also the burst duration from 200 ± 100 ms to 772 ± 115 ms. In addition,
past the value τrel = 75 ms, the rhythm is unstable, with cycle periods of 75.1 ±
61.9 sec, and burst duration of 851 ± 138 ms (Fig. 3.S4C).

Finally, by increasing the time constant for the facilitation variable (τf), the cy-
cle period increases linearly. More interestingly, decreasing τf from 700 ms to 250
ms widely increases the cycle period and variability from 5.3 ± 0.8 sec to 16.1 ±
13.8 sec respectively. This increase is due to the difficulty in recruiting neighboring
neurons, as the facilitation variable x(t) drops to its steady state too quickly. How-
ever, the burst duration is stable, changing from 650 ± 100 ms to 666 ± 100 ms.

Technically, when we modified these four time constants, the dynamics of Ydock

(Ydock = Ydock

ymax
dock

) are changed and we had to modify the value of ymin
dock accordingly.

Indeed, the value of ymin
dock is chosen to represent the value of Ydock that accounts for

the emptiness of the RRP. This parameter is key in the transformation from the
continuous model and the discrete number of vesicles (SI Appendix, section “Com-
puting the synaptic current”). To choose ymin

dock for the previous set of parameters
(Table 4.1), we applied a 60 Hz stimulation protocol to a single neuron, and chose
for termination of release the first time for which the derivative of Ydock(t) is equal
to the limit value of the tangent at infinity, computed by a numerical fit. We ap-
plied the same procedure for each of the four time-related parameters. We then ran
simulations for each value during 300 sec while keeping the same neuronal network.
For τf = 50 ms, 100 ms, 250 ms and τrel = 75 ms, 100 ms, the cycle period was
above 10 sec, and we ran longer simulations for about 1500 sec to obtain enough
cycles.
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4.6.4 Modification of the spiking frequency during a burst.

The mean spiking frequency during bursts is around 60 Hz, and is stable under the
different conditions we imposed to the model. This frequency was not fixed, but
emerged as a results of the simulations with the parameters of the model described in
Table 1. To determine which parameters could control this frequency, we decreased
the re-polarization constants αn and βn in equation 4.4, that govern potassium
dynamics in the HH model. This results in slowing down the dynamic of the variable
n, which increases the refractory period of the AP. It also reduces the minimal
current Iapp needed to induce an AP. To compare the dynamics of the model for
different values of αn and βn, we also modify the amplitude of the voltage noise σ
and the synaptic strength KI : when parameters αn and βn are scaled by a factor
0.35 in eq. 4.4, the AP-threshold in the HH dynamic reduces from -21.6 mV to -28.4
mV. After we further reduce the amplitude of the noise σ eq. 4.3 from 0.4 to 0.2, and
the synaptic strength KI (eq. 4.13) from 2666 to 2250, we simulated the bursting
activity of the network and the results are presented in Fig. 3.S6, which affect the
network dynamics as follows:
-the spiking frequency is decreased during a burst, from 59 Hz to 34.8 ± 10 Hz,
-the mean number of spikes within a burst is decreased from 42 to 10.4,
-the burst duration is decreased from 694 ± 138 ms to 315 ± 225 ms,
-the cycle period has decreased from 5.5 ± 1 sec to 3.4 ± 1.7 sec.
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Figure 3.S6: Burst Spiking Frequency A: Time dependent plot of the voltage
V , the facilitation variable x, and the scaled variables Yfree, Ydock for a single neuron
chosen randomly from the network for a scaling of variables αn and βn of 0.35, with
parameter σ = 0.2 and KI = 2252 (the mean bursting duration is 315 ± 225 ms,
and the mean cycle period is 3.4 ± 1.7 s). B: Magnification of V , x, Ydock and Isyn

for the neuron of Fig. 3.S6A, during 1.5 s
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4.6.5 Effect of deleting random neurons on the network ac-
tivity.

We randomly suppressed different neurons (from 25 to 200 in a network of 400 neu-
rons) by removing their connections with the rest of the network. We ran, for each
number of removed neurons, three simulations for 100 sec. and for different ran-
dom network realizations. We found that the rhythm was not changed by adding
more simulations. However the rhythm period kept increasing when deleting more
neurons. When at least 125 neurons are suppressed, the rhythm period exceeds 15
seconds, and thus we increased the time window of simulation to 300 seconds to
observe many cycles. When removing 175 neurons, the number of bursts decreased
drastically, leading to quiet periods lasting more than 300 seconds, and to rhythm
disruption.

We compare in Fig. 3.S7 the rhythm period obtained by suppressing an increas-
ing number of neurons in the simulations, with lesioning by cumulative single-cell
laser ablation (Fig. 5c in [72]). Interestingly, we could fit both the experimental and
simulation data with a single exponential curve (Fig. 3.S7A), although we found
that a double exponential is a better approximation (dashed curve in Fig. 3.S7A).
The goodness of fit as measured by the summed square of residuals (SSE) = 0.002.
To compare the bursting period, we first normalized by the one obtained in the
absence of any neuronal removal. Since the number of removed neurons to rhythm
disruption was not known, we used our numerical simulations to estimate this num-
ber. We found that the rhythm was completely abolished between 150 and 175
neurons removed, and fixed 160 for a complete rhythm disruption (Fig. 3.S7A). We
represent the average time-dependent voltage changes over the neuronal popula-
tion (Fig. 3.S7B) and the associated power spectrum density (PSD) absolute value
(Fig. 3.S7C).

When no neurons are removed, (Fig. 3.S7C, red, x-axis is in logarithmic scale)
the absolute value of the PSD presents a main peak around f0 =0.2 Hz (fundamen-
tal frequency), followed by several peaks at different frequencies that are integer
multiples of f0 and represents the harmonics. This analysis shows that our system
is almost periodic, with a mean frequency around 0.2 Hz.When 50 neurons are re-
moved (12.5 % of the network), the network activity is not seriously damaged; with
100 neurons (25 % of the network), the rhythm starts to be affected and it dis-
appears by removing 175 neurons and more. The mean burst duration (interburst
intervals, periods) are plotted in Fig. 3.S7D. Interestingly, during neuronal lesioning,
the burst duration remains quite stable, with a mean spike frequency around 58.1
± 2 Hz during burst.

The fraction of lesioned neurons leading to burst termination in our model is
around 40%, whereas in [72], the estimated value coming from experiments was be-
tween 15 and 20 %, showing that our model is too robust. This robustness could
result from the mean-field modeling used for the synaptic dynamics, which does not
account for synaptic failures. To test this hypothesis, we modified this aspect of the
model, by introducing a release probability parameter Prel in the system of eqs. 4.12
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Figure 3.S7: Effect of deleting random neurons on the network activity.
A: Comparison between simulations (blue) and experimental results (red, extracted
from [72]). B: Mean membrane potential when 0, 50, 100, and 125 neurons are
removed, corresponding to 400, 350, 300 and 275 remaining neurons. C: Power
spectrum associated with B (logarithmic scale). D: Mean and CV of the burst
duration, interburst interval and rhythm period for several removed neurons. E:
Mean membrane potential when 0, 40, 60, 80 neurons are removed in a network of
400 neurons, with a release probability Prel=0.8.
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governing vesicular release:

ẋ =
X − x

τf
+ k(1 − x)H(V − T )

ẏfree =
1 − yfree − ydock

τrec
− 1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

(4.17)

ẏdock =
1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

− 1

τrel
ydock

x−X

X
H(V − T )H(r − Prel),

where r is a uniform random variable on [0, 1]. We used a value of this parameter
Prel=0.8. We simulated the network and we found the following changes: the cycle
period is increased from 5.0 ± 1 to 9.8 ± 4.1 sec. When removing 80 neurons, we
observe very few bursts with IBIs lasting more than 80 sec, and a clear disruption
of the rhythm (Fig. 3.S7E). We conclude that by introducing a stochastic release,
our model can now replicate the disruption of the rhythm with a similar robustness
as in lesioning experiments.

4.6.6 Consequences of gradually decreasing the synaptic strength.

To study the consequences of decreasing the synaptic strength, we decreased pa-
rameter KI in the model, which has an effect equivalent to applying [NBQX], an
antagonist of AMPARs that mediate synaptic transmission and underlie respiratory
drive in the preBötzinger Complex [136]. We implemented the numerical procedure
as follows: we chose a network with randomly connected neurons and ran simu-
lations over 300 seconds while decreasing values of KI , from 100% KI = 2666 to
60% KI = 1600 in steps of 2%. For values lower than 70%, we ran simulations
for 900 seconds to account for a sufficient amount of periods. We observed a steep
increase in the rhythm period, with no major changes in burst duration (Fig. 3.S8).
The rhythm started to be highly irregular at 68%, with interburst intervals lasting
more than 100 seconds, and disappeared around 60%. The curve is well-fitted by
a double exponential (dashed curve in Fig. 3.S8A, SSE = 0.94). To compare with
experimental data extracted from [136], we considered that the control conditions
in simulations (100% control) corresponds to 0.001 µM [NBQX]. We then scaled the
abscissa of the simulation plot so that the two curves best match (Fig. 3.S8A).
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Figure 3.S8: Consequences of gradually decreasing synaptic strength, com-
parison with experimental data. A: Comparison between simulations (blue) and
experimental results (red, extracted from [136]). Results are presented as mean ±
S.E.M. B: Mean potential over all the network for different values of the fraction
of the initial synaptic strength, controlled via KI . C: Power spectrum of the mean
membrane potential computed for several fractions of KI . D: Mean and CV of the
burst duration, interburst interval, and rhythm period for several fractions of KI .
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4.6.7 Depolarizing neurons increases the rhythm frequency.

Changing (depolarizing and hyperpolarizing) the membrane potential affects burst-
ing: to depolarize (hyperpolarize) neurons, we added (or subtracted) a current Iapp

to their current balance equation (Fig. 3.S9). This current is equivalent to increas-
ing the extracellular potassium concentration [K+] and the probability of ectopic
spikes. To compare experimental and simulation data, we scaled the abscissa and
superimposed the two curves, where 9 mM [K+] corresponds to control conditions
(I = 0, no additional current).

At 9 mM [K+], the correspondence between preBötC and XIIn activity is known
to be almost one-to-one [142], whereas at 6 mM and 3 mM [K+], Kam et al [95]
observed burstlets in the preBötC activity that do not show up in XIIn activity.
Burstlets are characterized by smaller amplitude than preBötC bursts. In our model,
for Iapp=-0.25 pA and Iapp=-0.5 pA, we observe periods of times during the inter-
burst interval where several neurons are spiking together but no population-wide
activity is generated (red line in Fig. 3.S10A).

This effect recalls the pre-inspiratory patterns observed in control conditions
(Iapp=0 pA, green line in Fig. 3.S10A): before each spike, a small group of tens
of neurons, that differs from one burst to another, spike together, and recruit the
entire network for a bursting event (Movie S3). Those neurons could represent the
pre-inspiratory neurons observed experimentally. We postulate that after hyperpo-
larization of the network (Iapp=-0.25 pA), those groups of neurons fail to recruit the
entire network; likely because of the hyperpolarization that makes recruitment more
difficult. These patterns, formed by small groups of tens of spiking neurons that
do not trigger a burst, show similarities with the burstlets observed experimentally
[95]. Nevertheless, burstlet activity observed in [95] is widespread in the preBötC
and not restricted to a small number of neurons like in our model.

To investigate how hyperpolarization of the network modifies the rhythm’s dy-
namics, we plotted Poincaré maps of the cycle periods when Iapp = -0.25 pA over
1000 sec (Fig. 3.S10B, nine runns). We observed a wide, quasi-periodic distribution
comparable to the experimental results observed in ([95], Figure 1D), which was
different from the single cluster expected when the system is regularly periodic (Iapp

= 0 pA, Fig. 3.S10C). We conclude that hyperpolarization of the network modifies
the rhythm’s dynamics and an almost periodic regime appears as revealed by the
Poincaré maps.

To clarify the mechanism of these low amplitude events (red in Fig. 3.S10A) in
our study, we now show using numerical simulations (Fig. 3.S11) that contrary to
the burst activity, which extends through the neuronal network, during these events,
the synaptic properties (depression and facilitation) are not involved, preventing the
recruitment of the network.

151



Chapter 4. Robust network oscillations during mammalian respiratory rhythm

generation driven by synaptic dynamics

−0.5 −0.25 0 0.25 0.5 0.75

0

0.2

0.4

F
re

q 
(H

z)

I
app

 (pA)

 

 

 Experimental data
 Simulation

7 8 9 10 11 12
0

0.5

1

C
V

[K+]
0
 (mM)

 A

0 500 1000 1500
−70

−60

−50 Depolarization of I=−0.5 pA

−70

−60

−50 I=0 pA

−70

−60

−50

V
 (

m
V

) I=0.5 pA

0 50 100 150 200 250 300
−70

−60

−50

Time (sec.)

I=1.5 pA

 B

10
−2

10
−1

10
0

10
1

0

0.1

0.2

freq (Hz)

|P
S

D
|

 

   C
I=0 pA
I=0.5 pA
I=1.5 pA
I=−0.5 pA

−0.5 −0.25 0 0.25 0.5 0.75 1 1.25 1.5
0

5

10

15

D
ur

at
io

n 
(s

ec
)

 

 
Period
Interburst interval
Burst duration

−0.5 −0.25 0 0.25 0.5 0.75 1 1.25 1.5
0

0.5

1

C
V

Depolarization current (pA)

  D

Figure 3.S9: Consequence of a global neuronal depolarization on the net-
work rhythm. A: Comparison between experimental results published in [142]
(red) and simulations (blue). The experimental results are obtain by moving the
extra-cellular potassium concentration from 3 mM to 12 mM. To compare with the
simulations, we scaled the abscissa and superimposed the two curves, taking into
account that 9 mM corresponds to control conditions. The green circle represents
the mean frequency in control conditions (at 9 mM [K+], green arrowhead), which
differs during the experimental protocol. B: Mean potential over all the network for
different values of I. C: Power spectrum associated with C. D: Mean and CV of
the burst duration, interburst duration and rhythm period for several values of the
applied current Iapp.
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Figure 3.S10: Network-wide hyperpolarization A: Time dependent plot of the
number of spikes in the network when no current is applied (Iapp = 0 pA, top), and
when the network is hyperpolarized (Iapp = -0.25 pA, bottom). Note the increasing
spiking activity preceding the burst (green bars) in both plots. The red bars show
periods when several neurons are spiking together but fail to recruit the network,
which show similarities (but see text) with the burstlets observed experimentally.
B-C: Poincaré maps of the cycle periods of one random neuron when Iapp = 0 pA
(B) and Iapp =-0.25 pA (C). The network is recorded over 1000 sec (nine runs),
cycle periods are normalized by the mean period when Iapp = 0 pA, equal to 5.0 sec.
Notice the difference in the axes range in B and C.
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Figure 3.S11: Low amplitude events and synaptic properties. Low amplitude
events are observed when the network is hyperpolarized by Iapp=-0.25 pA. Time
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cannot trigger a burst. During low amplitude events the depression and facilitation
variables are not activated. Thus the synaptic properties are not involved in their
termination, in contrast to bursts.
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4.6.8 Minimal number of stimulations for burst induction.

To determine the minimal number of neurons necessary for inducing a network burst
(Fig. 2D), we depolarized an increasing number of randomly chosen neurons. In
practice, within the HH-model, we generated trains from 1 to 6 events consisting of
100 mV-depolarization during 0.05 ms with an interval separation of 17 ms between
the train (at 60 Hz). This 60 Hz-frequency corresponds to the endogenous spiking
dynamics. We started running the network at time t = 0 while we generated the
stimulation at time t=550 ms, where steady state is achieved. We then monitored for
2 seconds the activity. A burst was detected when 80% of the neurons were spiking
one second after initiation. We could then estimate the probability of bursting for
different numbers of pulses and stimulated neurons.

4.6.9 Inspiratory drive currents.

Experimentally, respiratory preBötC neurons receive a volley of inward synaptic
currents that typically last for hundreds of milliseconds, peak at more than 100
pA, occur at periodic intervals, and are referred to as inspiratory drive currents
(Fig. 3.S12).

100 pA

1 s

100 pA

200 ms

A

B

i

i

ii iii

ii iii

Figure 3.S12: Inspiratory drive currents in an experimentally-recorded pre-
BötC neuron A: Inspiratory drive currents in voltage-clamp configuration. The
command voltage was -60 mV, and this is an expanded view of the trace displayed
in the middle of Fig. 3C. B: Individual bursts (i., ii., iii.) are shown at a faster
timescale.
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4.7 Movie

Seven movies are provided as supplementary information. In each movie, the net-
work is organized in a square lattice (20×20 = 400 neurons), where each square of
the grid is the voltage V or the facilitation parameter x (Video S2) of a neuron, and
the right color bar encodes the amplitude of the variable. The plot at the bottom
of the movie is the average V over all the neuronal network. The time-dependent
color represents the progression in the movie. Each movie lasts 60 seconds with 25
frames per second. Gray squares represent neurons isolated from the network (no
input nor output connections).

4.7.1 Movie S1:

Time evolution of the membrane potential V in the network population during sixty
seconds (real time). Bursting events are generated in the entire network.

4.7.2 Movie S2:

Time evolution of the facilitation variable x in the network population during 20
seconds (slowed down 3 times). Each of the three bursts begins from a random
location in the network. Bursts are initiated when several neighboring neurons start
firing together. This movie confirms that neurons triggering bursts are not the same
from one burst to another. This proves that the burst is generated by random
neurons and confirm the absence of any pacemaker.

4.7.3 Movie S3:

This movie shows how the rhythm propagates within the network. We present the
time evolution of the voltage V during one burst lasting 1.5 seconds (slowed down
40 times).

4.7.4 Movie S4:

This movie shows the time evolution of the voltage V , after 125 neurons have been
removed from the network, over 60 seconds (real time). Isolated neurons with no
connections (in gray) make the propagation of bursts within the network more dif-
ficult.

4.7.5 Movie S5:

This movie shows a burst in the neuron network S4 (the voltage V ) during 1.5
seconds, and slowed down 40 times.

4.7.6 Movie S6:

Time evolution of the voltage V for a network with a small degree of connectivity,
generated with a parameter s = 0.75, monitored during 1.5 seconds and slowed down
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40 times. We observe the propagation of action potentials during a single burst.

4.7.7 Movie S7:

This movie shows the time evolution of the voltage V for a network with a higher
degree of connectivity, generated with a parameter s = 1.1 (compare to s = 0.9 in
movies S1-S5), during 1.5 seconds and slowed down 40 times. We note that however,
the bursting period lasts for tens of seconds or more as indicated in Fig. 3.S2F.
The results presented in this movie predicts that increasing the connectivity could
result in wave propagation. These results should be seen as a possible prediction of
neuronal connection changes.
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Tables

Table 4.1: Parameters of synaptic transmission

Parameter Description Value
x Facilitation variable
ydock First depression variable
yfree Second depression variable
X Equilibrium value of x 0.3
xRefP Threshold for refractory period 0.31
ymax

free Maximum value of yfree 0.82
ymax

dock Maximum value of ydock 0.18
ymin

dock Minimum value of ydock 0.04
k Facilitation parameter 0.08
τf Facilitation time constant 700 ms
τdock First time constant for ydock 738 ms
τrel Second time constant for ydock 47 ms
τrec Time constant for the recovery 3000 ms
τdel Delay of the synaptic response 1 ms
KI Synaptic strength 2666
s Connectivity 0.9
σ Amplitude of voltage noise 0.89 (pA.cm−2)2.ms−1

T Action Potential threshold −58 mV
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Table 4.2: Hodgkin-Huxley

Parameter Description Value
C Capacitance 1 µF.cm−2

gNa Conductance of Na2+-current 120 mS.cm−2

VNa Equilibrium potential of Na2+-current 50 mV
τm Parameter for m 10 ms
θm Parameter for m −40 mV
ηm Parameter for m 4
σm Parameter for m 18
gK Conductance of K+-current 36 mS.cm−2

VK Equilibrium potential of K+-current −77 mV
gL Conductance of leak current 0.3 mS.cm−2

VL Equilibrium potential of leak current −54.4 mV
τn Parameter for n 100 ms
θn Parameter for n −55 mV
ηn Parameter for n 0.125
σn Parameter for n 80
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Conclusion

In this thesis, I have studied neuronal structures at different scales through mathe-
matical analysis and modeling. The main tools I used are partial differential equa-
tions, elliptic equations, asymptotic analysis, stochastic processes and numerical
simulations. In the first part, I presented a method to compute the leading order
term of the mean first passage time to a narrow opening located between two tan-
gent spheres (DST). I used this idealized geometry to build a model of the Active
Zone at neuronal pre-synaptic terminals, to investigate the influence of channels and
vesicular organization on the release probability. In the second part, I combined my
previous result on the DST and my model of the Active Zone, to build a more gen-
eral model of the pre-synaptic terminal. I used that the mean first passage time to a
small target is Poissonian, to coarse-grain the classical PDE description of diffusive
processes into a system of ODE based on Poissonian rate equations. This approach
allows also to realize fast stochastic simulations by replacing the naive Brownian
simulations with Gillespie’s algorithm. Finally, I presented in the last part a model
and numerical simulations for the pre-Bötzinger Complex, the neuronal network
that paces inspiration in mammals. This model shows how synaptic properties at
the neuronal level, such as facilitation and depression, can trigger the emergence of
oscillations at the network level. The model was benchmarked against several ex-
perimental studies, and our prediction that pre-Bötzinger Complex neurons express
depression at time scales influencing respiratory rhythm was confirmed by experi-
mental measurements.

The analytical results for the DST computed in the first part of the thesis reveal
the role of the local geometrical structure for diffusion processes at a molecular level.
A further analytical development will be to add a drift term, to account for hydro-
dynamical flows or active transport of proteins in the corresponding microdomains.
In the case of the domain with a funnel-shaped cusp, an interesting future work will
be to compute the leading order term of the mean first passage time when the local
description of the cusp takes the form y = Axν , ν 6= 2. This small modification
of the geometry cannot be solved using the mapping function for ν = 2. Indeed,
while using this mapping function, increasing ν creates a cusp in the mapped re-
gion. One can also notice that increasing ν modifies the original domain, creating
a geometry that looks like the problem of a sphere connected to a cylinder, studied
in [83]. A new mapping function must be found here, that will have to account for
this transition between two different geometries.

The model of the Active Zone I developed using the DST analysis shows that
channel positioning, the number of entering ions and vesicular organization are cru-
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cial parameters governing vesicular release at the pre-synaptic terminal. Hence,
changing the Active Zone organization modifies the synaptic response. The relative
simplicity of this model could be criticized. In that, a possible development of the
model will be to add calcium channels motion at the Active Zone, as suggested by
recent experimental measurements.

The modeling approach developed in the second part of the thesis allows to
analyze the coupling between many Brownian particles evolving in a domain, which
is usually modeled using a continuum ensemble, with the activation of a process
by few Brownian particles, more likely to be represented by discrete events. The
combination of a system of ODE developed using rate theory with a set of Markov
equations, allows running fast simulations with precise analytical descriptions. From
a biological point of view, this procedure reflects the change of scale from the cellular
to the molecular level.

In the context of vesicular release at the pre-synaptic terminal, our modeling ap-
proach allows to investigate the role of various parameters on the release probability.
However, to predict some properties at a given synapse, this requires to have access
to several biophysical properties, sometimes hardly obtained from experiments, such
as the number of buffers, their type of motion, the number of ions entering through
one calcium channel, and so on. This comes with the fact that the aim of our study
is to propose coherent models for phenomena that are hardly accessible through
experimental measurements. An example is the relative distances between channels
and vesicles that take place at sub-micrometers dimensions, which imposes to infer
them from functional measurements.

A further development of the model will be to study paired-pulse facilitation,
and to understand if and how it is due to calcium accumulation in the terminal.
Indeed, the hypothesis that residual calcium concentration could be responsible
for paired-pulse facilitation [158] seems in opposition to our results concerning the
small influence of the number of calcium ions present in the bulk on vesicular release
probability.

Ultimately, this modeling approach can be extended to other activation processes
in neuronal microdomains, such as the Calcium/calmoduline-dependent protein ki-
nase II (CaMKII) activation in dendritic spines. Indeed, these proteins are thought
to play a key role in learning and memory formation in glutamatergic synapses,
because of their role in long-term potentiation induction, and also because of their
persistent activation after LTP induction. Activation of CaMKII is made through
calcium and calmoduline, a calcium buffer highly concentrated in spines. After
persistent stimulation, CaMKII has the particular property to autophosphorylate,
which permit the kinase to stay active for very long times, even after calcium con-
centration went back to its resting level. However, this autonomous activity is not
induced by a single pre-synaptic action potential, which activates CaMKII only
for a short time. The mechanism that permits this switch between two states of
activation at two different time scales is still unclear today [121]. A modeling ap-
proach as presented in part 2 will solve the change of scale from the molecular to the
cellular level, and allow to study the switching between the two different time scales.
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Finally, in the last part of the thesis, we study in the context of the pre-Bötzinger
Complex network, the change of scale from the neuronal to the network level. Indeed,
our modeling approach shows that bursting oscillations can emerge in an ensemble of
neurons, due to the synaptic activity of individual neurons. This phenomenon may
be quite generic and could explain oscillations in other neuronal networks where the
mechanism remains unclear, such as for example the circuits for chewing, swallowing,
whisking or locomotion.

The main limitation of this model relies on the lack of biophysical data at the
synaptic level, and concerning the connectivity between neurons. Recent experi-
mental studies have started to look at the synaptic properties of the pre-Bötzinger
Complex neurons, and further experimental results will allow to refine the model
[112].

In order to do a mathematical analysis of the model, which contains 2000 coupled
ordinary differential equations, a future work will be to derive a system of mean-field
equations. A key challenge for this derivation will be to understand how to take into
account the spatial aspect in the recruitments between neurons, which is crucial in
our model to obtain a periodic rhythm.

To summarize, our approach to study the change of scale from the molecular to
the network level can be used in many biological processes that include diffusion
in microdomains. It allows to propose hypotheses on phenomenon not accessible
yet through direct experimental measurements. These predictions should then be
refined using an experimental approach, and so on. This move back and forth
between experiments and modeling provides a very powerful tool to break into the
extremely complex challenges biological science faces today.
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Appendix A

Calcium dynamics in neuronal
microdomains: modeling,
stochastic simulations and data
analysis

Published in Guerrier C, Korkotian E and Holcman D “Calcium Dynamics in Neu-
ronal Microdomains: Modeling, Stochastic Simulations and Data Analysis” In Jaeger
D. jung R (eds.) Encyclopedia of Computational Neuroscience, pp 1-37 (2014)
Springer New York Heidelberg Dordrecht London

Calcium is ubiquitous in neuronal microdomains, but its regulation still remains
unclear due to the different time scales involved. This multiscale process is gener-
ated by the local cell geometry, the exchanger and channel rates that define calcium
residence time. This time is indeed crucial in several regulatory mechanisms such
as synaptic plasticity, receptor trafficking, spine morphology, long range calcium
spread, and many others. We describe here mathematical modeling and numeri-
cal simulations that have been used to obtain quantitative and qualitative results
about calcium time course from live cell imaging and electrophysiological record-
ings. Computational approaches allow studying calcium integration from short to
long time scales, which remains today a challenging problem to solve. We review
recent progress over the past years in modeling, analysis and simulations of cal-
cium dynamics in neuronal microdomains as well as the associated applications in
extracting information from live cell imaging.

A.1 Definition

Calcium is a key but ubiquitous messenger in cell physiology. Yet, direct electro-
physiological or light imaging measurements are limited by the intrinsic small nano-
to micro- meter space where chemical reactions occur and also by the small number
of molecules. Thus any fluorescence dye molecule added to measure the number of
calcium ions can severely perturb the endogenous chemical reactions. Over the years,
an alternative approach based on modeling, mathematical analysis and numerical
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simulations and data analysis

simulations has demonstrated that it can be used to obtain precise quantitative re-
sults about the order of magnitude, rate constants, the role of the cell geometry and
flux regulation across scales from channels to the cell level.
The aim of this chapter is to present physical models of calcium ions from the
molecular description to the concentration level, to present the mathematical tools
used to analyze the model equations. From such analysis, asymptotic formulas can
be obtained, which are usually valid for a certain range of parameters. However
these formulas allow exploring at low cost the parameter space. The methods to
analyze these equations are part of classical analysis of partial differential equations
and stochastic processes, which will not be reviewed here, see [171, 172]. We shall
present several models related to diffusion, where formulas can be derived and we
shall specify how these formulas are used to extract parameters from experimental
measurements. But in general models are far too complicated to lead to equations
that can be analyzed and, most of the time, numerical simulations have to be built.
Building rational simulations requires discretizing the physical equations and bridg-
ing the gap between the limits of the equations and the physical description that
they account for. We will present here several stochastic simulations, their rules,
limitations and tricks that have been developed over the years. As we shall see here,
any bottleneck in the equation can lead to heavy simulations running for days. In
that case, coarse-graining is a key step to reduce the complexity of the equation
so that some analysis can be obtained and can be used to check in some limit the
validity of the simulations.
All together physical modeling, mathematical analysis, numerical simulation and
their application to the statistical analysis of experimental data form an ensemble
of approaches that are used today to better understand molecular interaction in
nano- to microdomains. But the most striking convergence of these methods is to
derive physiological laws from their first physical principles. We shall present 1)
stochastic modeling of calcium ions and their trajectories, 2) modeling of local in-
teractions with discussion of the rate constants, 3) derivation of asymptotic formulas
for the residence of calcium in microdomains and dendritic spines, 4) modeling and
simulation of diffusion in a crowded three dimensional dendrite, 5) modeling calcium
in spines, 6) modeling the CaM activation pathway, and 7) a coarse grained model
based on Markov chain to estimate the probability that the number of calcium ions
bound to key molecule is reached. Finally, we shall discuss how these simulations
can be used to study physiological processes such as transient calcium ions in a den-
dritic spine, long term potentiation induction or what limits the spread of calcium
following synaptic stimulations.

A.2 Detailed Description

A.2.1 Neuronal microdomains

Neurons can be decomposed into several keys microdomains involved in specific
functions: dendrites integrate electrical signals, whereas dendritic spines are mi-
crocompartments receiving the postsynaptic terminal of excitatory synapses (Fig.
A.1). The pre-synaptic terminal is also a key compartment that controls calcium
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in relation to vesicular release. Dendrites further decompose into distal and apical
dendrites which seem to have different electrophysiological properties that can be
correlated with a difference in the structure. The soma and the axon are also sepa-
rate compartments. We show in Fig. A.1 different distinct compartments. Finally,
it was found that aspiny neurons can confine calcium for a time scale comparable
to dendritic spine [64]. Can organelles such as vesicles or endoplasmic reticulum
control calcium concentration?

Figure A.1: Neuronal microdomains. A: Electron microscopy of a synapse. The
Postsynaptic terminal is located on a dendritic spine (S) branched in the dendrite
(D). Around the axon (A) are located the Glial cells (G). B: Three-dimensional
EM reconstruction of two dendrites from the hippocampus. The PSDs of excitatory
synapses are marked in red and of inhibitory synapses in blue. Filopodia (marked F)
and mushroom spines (marked M) are clearly seen. C: All possible types of dendritic
spines using as example a 3D reconstructed hippocampal dendrite, 3 weeks old in
primary culture.

A.2.2 Diffusion in neuronal microdomains: stochastic mod-
eling

We start with a Brownian description of calcium ions. Indeed motion due to ther-
mal fluctuations is the main driving force for the motion of particles such as ions or
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molecules. Calcium motion has been well approximated as diffusion, which confirms
that the ionic charge is screened. This is not the case for calcium influx through
channels, where the nanometer space restriction is a dominant factor for the inter-
action between the channel charges and the ion [5, 41]. In cells, long distances are
overcome mostly by the diffusion process. For example free calcium ions diffuse in
dendritic spines or any neuronal microdomain in the dendrite or the axons [108]. At
the molecular level, diffusion of ions is described by a random walk. When an ion
meets any plasma membrane, it is reflected, or translocated inside an organelle at
pumps or exchangers. The transition from one region to another can be modeled
by specifying absorbing conditions in specific boundary regions, such as the fictive
separation between a dendrite and a spine.

Description of calcium stochastic trajectories

A calcium ion trajectory is described by the Smoluchowski’s limit in the large damp-
ing approximation of the Langevin equation. The position x at time t satisfies the
stochastic equation

γ [
.
x−V (x, t)] + F (x) =

√
2εγw, (A.1)

Here ε = kBT/m, where T is the temperature and kB the Boltzmann constant,
γ = 6πaη is the dynamical viscosity, where η is the viscosity coefficient per unit
mass and a is the radius of the ion. w is a random white noise modeling the thermal
fluctuations, and the electrostatic force is

F (x) = −ze∇xU0(x),

where U0 is the potential created by the site where the proteins are located. In
a first approximation, each protein creates a localized parabolic potential, where
the depth can be calibrated by using the backward binding rate and the radius by
using the forward binding rate [109]. The frictional drag force, −γ [

.
x−V (x, t)], is

proportional to the relative velocity of the ion and the cytoplasmic fluid. The field
of fluid V (x, t) induced by calcium ions will be discussed below.

The Langevin equations

We shall here explain the physical consideration behind the reduction to equation
A.1. For a dendritic spine containing N ions of different species (e.g., Ca++,Na+,Cl−,
and so on), xi(t) is the displacement vector of the i-th ion, mi is its mass, and zi is
its valence. x̃ = (x1,x2, · · · ,xN) is the coordinate of the N ions in configuration
space. We consider a given flow field V (x, t) (see description below) and that ions
interact with a fixed potential of the charges on the proteins, U0(x), and with the
variable potential of all other ions. The variable potential consists of both the
electrostatic ion-ion interaction potential, Uii(x̃), and the potential of Lennard-
Jones-type repulsions, ULJ(x̃) (that represents the finite size of the ions). The force
per unit mass on the i-th ion is

F i(x̃) = −zie∇xi
[U0(xi) + Uii(x̃)] − ∇xi

ULJ(x̃).

170



A.2. Detailed Description

The dynamics of the i-th ion is given by the Langevin equation

ẍi + γi [ẋi − V (xi, t)] + F i(x̃) =
√

2ǫiγi ẇi, (A.2)

where ǫi = kBT/mi, T is the temperature, γi = 6πaiηi is the dynamical viscosity, ηi

is the viscosity coefficient per unit mass, and ai is the radius of the ion. The frictional
drag force, −γ [ẋi − V (xi, t)], is proportional to the relative velocity of the ion and
the cytoplasmic fluid. The accelerations ẇi represent the thermal fluctuations of
the fluid. The relation between the velocity diffusion constant and the friction
coefficient,

Di =
kBT

miγi
,

is Einstein’s fluctuation-dissipation principle [171]. In the Smoluchowski limit of
large damping [171] the Langevin equation (A.2) reduces to

γi [ẋi − V (xi, t)] + F i(x̃) =
√

2ǫiγi ẇi, (A.3)

When neglecting the ion-ion interactions, we set ULJ(x̃) = Uii(x̃) = 0, so that
eq.(A.3) becomes

γi [ẋi − V (xi, t)] + F (xi) =
√

2ǫiγi ẇi, (A.4)

where
F (xi) = −zie∇xi

U0(xi).

Since we are interested in tracing only one species in the spine, namely, the concen-
tration of calcium, we assume that γi = γCa++ , mi = mCa++ , zi = z = 2. Under
these assumptions, equations (A.4) are independent and identical, so that their
transition probability densities are identical. We denote the transition probability
density function (pdf) of each ion by p(x, t | x0, t0) so that the calcium concentration
is

c(x, t) =
∫

Ωt

p(x, t | x0, t0)c0(x0) dx0,

where c0(x0) is the initial calcium density.

Specification of the hydrodynamical flow

The flow of the incompressible cytoplasmic fluid in spines is generated by the local
contraction of actin-myosin complexes saturated by calcium ions. We assume that
the flow field is derived from a potential φ(x, t) (see, e.g., [117]),

V (x, t) = ∇φ(x, t). (A.5)

The incompressibility condition, ∇ · V (x, t) = 0, reduces to the Laplace equation in
the head ΩH(t) of the spine at time t. The surface of the head, Σ(t), is partitioned
into the surface ΣH(t) of the spine head, that does include the surface common
with the neck, and the cap ΣN (t) of the surface of the head inside the neck, Σ(t) =
ΣH(t) ∪ ΣN (t). The Laplace equation in ΩH(t) is

∆yφ(y, t) = 0 for y ∈ ΩH(t), t > 0 , (A.6)
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with the boundary conditions

∂φ(y, t)

∂n

∣

∣

∣

∣

∣

y∈ΣH (t)

= −V (t),
∂φ(y, t)

∂n

∣

∣

∣

∣

∣

y∈ΣN (t)

= F (V (t)), (A.7)

where V (t) is the average velocity induced by the deformation of the head (see
eq.(A.8) below )[78], due to the sum of all the local contractions, and F (V (t)) is
the induced field velocity at the top of the neck ΣN (t): for a volume displaced per
unit time equal to 4πR2(t)V (t) in dimension 3 and 2πR(t)V (t), where R(t) is the
instantaneous radius of the head, then Ṙ(t) = −V (t). The flux through ΣN is
|ΣN |v(t), hence

v(t) = F (V (t)) =































4πR2(t)V (t)

|ΣN | in dimension 3

2πR(t)V (t)

|ΣN | in dimension 2

,

when the field is due to the contraction of myosin after 4 calcium ions are bound.
The total number of sites bound to 4 calcium is S(4)(t) and can be obtained by
solving a system of reaction-diffusion equations [78]. Finally the velocity at the
boundary is given by

V (t) = vQS
(4)(t), (A.8)

where vQ is a constant velocity. The quantities V (t) and F (V (t)) are stochastic
processes, that are proportional to the number of saturated proteins at any given
time t. The flow field can be expressed explicitly in terms of the functions V (t)
and F (V (t)) by Green’s function for the Neumann problem for Poisson’s equation
in a sphere (or a disk) through Stokes’ formula. Green’s function G(x,y, t) is the
solution (defined up to a constant) of the equation

−∆yG(x,y, t) = δ(x − y) − 1

|Ωt|
for x,y ∈ ΩH(t)

(A.9)
∂G(x,y, t)

∂ν(y)
= 0 for x ∈ ΩH(t), y ∈ Σ(t).

Multiplying equation (A.6) by G(x,y, t) and equation (A.9) by φ(y, t) and inte-
grating with respect to y over the domain, using Stokes’ theorem and the boundary
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condition (A.7), we get

φ(x, t) =
∫

y∈Σ(t)

∂φ(y, t)

∂n
G(x,y, t) dSy −

∫

y∈Σ(t)

∂G(x,y, t)

∂n
φ(y, t) dSy

+
1

VH

∫

ΩH (t)
φ(y, t)dy

=
∫

y∈Σ(t)

∂φ(y, t)

∂n
G(x,y, t) dSy +

1

VH

∫

ΩH (t)
φ(y, t)dy

= −
∫

ΣH(t)
V (t)G(x,y, t) dSy +

∫

ΣN (t)
F (V (t))G(x y, t)Sdy

+
1

VH

∫

ΩH (t)
φ(y, t)dy

= −V (t)
∫

ΣH (t)
G(x,y, t) dSy + F (V (t))

∫

ΣN (t)
G(x,y, t) dSy

+
1

VH

∫

ΩH (t)
φ(y, t)dy.

The flow field is given by

∇φ(x, t) = −V (t)
∫

ΣH

∇xG(x,y) dSy + F (V (t))
∫

ΣN

∇xG(x,y) dSy.

In the neck, due to the symmetries and the uniform initial conditions, we simplify
the flow field by assuming its velocity is parallel to the axis of the neck. It is given
by

∇φ(x, t) = V (x, t) = F (V (t))k,

where k is a unit vector along the axis of the neck. We note that according to (A.8),
as the number of saturated proteins increases the hydrodynamical flow begins to
dominate the diffusion. In [78, 88], we connected the strength of flow field to the
number of bound myosin molecules induced by calcium. This results in nonlinear
coupled partial differential equations, that can be solve numerically by stochastic
simulations.

Rate constants and molecular dynamics

We shall now recall how to model chemical reactions, described by the backward
and the forward binding rate, which are usually obtained in aqueous solution, where
diffusion is not limited by space. In confined micro-domains where the number of
ions involved can be small, the binding rates have to be reinterpreted.

Backward binding rate The mean time that two molecules react chemically is
modeled as the mean time the first molecule stays imprisoned in the potential well
of the second. The random time interval between the binding and the reappearance
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of the binding molecule into the free state is exponentially distributed with a rate
constant equal to the backward binding reaction. The exponentially distributed
waiting time for the backward reaction is based on Kramers’ theory of activated
barrier crossing, as described in [126]. Thus for transient chemical reactions, each
molecule reacting with a calcium ion has two consequences: first, the molecule can
become activated and second, the time course of calcium is delayed. The unbinding
events are modeled as Poissonian processes. Fixing a scale ∆t, the probability to
unbind is kb∆t (take a uniform variable and check whether it is above or below
kb∆t).

Forward binding rate The forward binding rate Kfor corresponds to the flux of
particles to the binding sites. Contrary to the backward binding rate, this rate does
not contain local properties only, but includes the effect of the global geometry of
the domain, where the chemical reaction occurs. Such a rate has been computed
at equilibrium by Smoluchowski and can be converted as the effective radius Ra of
a ball that mimics the binding site and so that the average probability that an ion
meets such ball is equal to the forward rate. The radius is calibrated according to
the formula

Kfor = 2πRaD[Ca2+], (A.10)

where [Ca2+] is the initial calcium concentration and D the diffusion constant. This
calibration can also be used to estimate the effective radius of a binding molecule
in a transient state, calibrated for the initial concentration condition. When the
binding sites are located on the boundary, the narrow escape formula should be
used [84].

A.2.3 Modeling the interaction of calcium ion with surface
or receptors

We shall now specify the interaction conditions between a calcium ion and a receptor
or a membrane, the model at a molecular and population level, and the physical
laws that can be derived from elementary physical principles.

Absorption

Absorption at surface ∂Ω is the process by which a particle is removed after it hits
∂Ω, which can be an artificial interface such as the one between a spine and the
dendrite, or an effective one such as a channel. Indeed, during a simulation, when
an ion hits such a surface, it disappears. In general, absorption on a surface is
modeled by killing the trajectories when it encounters or passes over the surface
∂Ω. Thus the probability density function to make a transition from x ∈ ∂Ω to any
point y during time t is zero: p(y, t|y) = 0.

Partial absorption

Partial absorption accounts for a probability that a particle arriving at a surface is
reflected with a probability p or absorbed with probability 1−p. This condition can
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be calibrated to describe the interaction between the moving particle and the binding
site of a receptor. This condition is formulated at a molecular level for stochastic
simulations, or with a probability density function to describe the macroscopic level.
This condition is called also radiation or reactive or Robin boundary conditions and
has been widely used to describe diffusion in a biological cell with chemical reactions
on its surface [1, 4, 10, 42, 135, 116, 191, 212].

Schematic description

The overdamped Langevin equation can be written as a stochastic equation

ẋ = a(x, t) +
√

2σ(x, t) ẇ. (A.11)

The process x(t) defined by equation (A.11) with partially absorbing boundaries can
be defined as the limit of Markovian jump processes generated by the Euler scheme

x∆t(t + ∆t) = x∆t(t) + a(x∆t(t), t)∆t

+
√

2σ(x∆t(t), t) ∆ + w(t,∆t) for t ≥ s (A.12)

x∆t(s) = x (A.13)

in the interval x > 0, for 0 ≤ t − s ≤ T , with ∆t = T/N, t − s = iT/N (i =
0, 1, . . . , N), where for each t the random variables ∆w(t,∆t) are normally dis-
tributed and independent with zero mean and variance ∆t. In dimension one, with
boundary at 0, the boundary behavior for the simulated trajectories that cross the

boundary, identified by x∆t(t)+a(x∆t(t), t)∆t+
√

2σ(x∆t(t), t) ∆w < 0, is described
by

x∆t(t+ ∆t) =















−(x∆t(t) + a(x∆t(t), t)∆t+
√

2σ(x∆t(t), t) ∆w) w.p. 1 − P
√

∆t

terminate trajectory otherwise.

(A.14)

Thus the exiting trajectory is normally reflected w.p.

R = 1 − P
√

∆t (A.15)

and is otherwise terminated (absorbed). The scaling of the termination probability
with

√
∆t reflects the fact that the discrete unidirectional diffusion current at any

point, including the boundary, is O
(

1/
√

∆t
)

[182]. This means that the number
of discrete trajectories hitting or crossing the boundary in any finite time interval
increases as 1/

√
∆t.

Partial reflecting condition in dimension larger than 2

The scheme (A.14) is generalized to diffusion with drift and anisotropic constant
diffusion matrix σ(t) in the half space, x1 > 0, with partial oblique reflection. The
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Robin boundary condition is recovered if and only if trajectories are reflected in the
direction of the unit vector

v =
σn

‖σn‖ , (A.16)

where n is the unit normal to the boundary. The radiation parameter κ(x, t) in the
d-dimensional Robin boundary condition and the absorbtion parameter P (x) are
related by

κ(x, t) = rP (x)
√

σn(t), x1 = 0, (A.17)

with r = 1/
√
π and σn(t) = nT σ(t)n. The relation (A.17) can also be adapted for

curved boundaries and applied to the tangent plane at each point of the boundary.
Indeed this is due to the fact that a smooth local mapping of the domain to a
half space with an orthogonal system of coordinates preserves the constant isotropic
diffusion matrix, though the drift changes according to Itô’s formula. In this case
the vector v coincides with the normal n.
The reflection law and the relation are new for diffusion in higher-dimensions. The
constant r for the Euler scheme is not the same as that for other schemes, e.g., for
a discrete random walk with radiation boundaries, r = 1/

√
2. The reflection can be

constructed explicitly. Indeed, the d-dimensional stochastic dynamic is

ẋ = a(x, t) +
√

2B(t) ẇ (A.18)

in the half space
Ω = {x = (x1, x2, . . . , xd) ∈ R

d : x1 > 0}
where w is a vector of d independent Brownian motions and when we assume that
the diffusion tensor σ(t) = B(t)BT (t) is uniformly positive definite for all t ≥ s.
We use henceforward the abbreviation σ(t) = σ. The radiation condition (A.35)
becomes

−J(y, t | x, s) · n = κ(y, t)p(y, t | x, s), for y ∈ ∂Ω, x ∈ Ω, (A.19)

where the components of the flux vector J(y, t | x, s) are defined by

Jk(y, t | x, s) = −[ak(y, t)p(y, t | x, s)] +
d
∑

j=1

∂

∂yj

[

σj,kp(y, t | x, s)
]

. (A.20)

The Fokker-Plank equation for the pdf of x(t) can be written as

∂p(y, t | x, s)

∂t
= −∇y · J(y, t | x, s) for all y,x ∈ Ω. (A.21)

If x ∈ Ω, but
x′ = x + A(x, t)∆t+

√
2B(t) ∆w(t,∆t) 6∈ Ω,

the Euler scheme for (A.18) with oblique reflection in ∂Ω reflects the point x′

obliquely in the constant direction of v to a point x′′ ∈ Ω, as described be-
low. First, we denote by x′

B the normal projection of a point x′ on ∂Ω, that is,
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x′
B = x′ − (x′ · n)n. Then we write the Euler scheme for (A.18) with partially

reflecting boundary as

x(t + ∆t) =































x′ for x′ ∈ Ω

x′′ w.p. 1 − P (x′
B)

√
∆t, if x′ 6∈ Ω,

terminate trajectory w.p. P (x′
B)

√
∆t, if x′ 6∈ Ω.

(A.22)

The value of the termination probability P (x′
B)

√
∆t, that varies continuously in

the boundary, is evaluated at the normal projection of the point x′ on the boundary.
The oblique reflection in the direction of the unit vector v (v1 6= 0) is defined by

x′′ = x′ − 2x′
1

v1
v. (A.23)

Note that x′′
1 = −x′

1 guarantees that the reflected point of a crossing trajectory is
inside the domain Ω. The fact that the normal components of x′′ and x′ are of equal
lengths makes the high-dimensional boundary layer analysis similar to that in one
dimension. Normal reflection corresponds to v = n = (1, 0, . . . , 0). We note that
for a point y ∈ Ω, we can write Pr{x′′ = y} = Pr{x′ = y′}, where

y = y′ − 2y′ · n

v1
v (A.24)

is the oblique reflection of y′ (see fig. A.2). If the scheme described above is not
used, a paradox can arise [182]: while the pdf of the solution of (A.12), (A.13)
converges to the solution of the FPE (A.32) and the initial condition (A.34), it does
not satisfy the boundary condition (A.35), leading to a boundary layer, due to the
diffusion approximations in the Markovian jump process.

Generic modeling of calcium ions at pumps or exchangers

Partial absorbing boundary condition can be used to model the behavior of calcium
ion near a channel or a pump. However cooperativity should be implemented for
each case at hand. For example, after entering inside an exchanger, an ion takes
a certain time to exit: this is modeled by changing a partial reflecting boundary
condition to a reflecting one as long as the ion is inside the exchanger.
Some pumps can work with several ions. As the intrinsic biophysical mechanism
of permeability is not necessarily understood, there is no consensus for a universal
coarse-graining scheme of ion extrusion. If two ions are required, we propose that
once the first ion enters the channel, it cannot move before another has hit the
binding area. If the second ion enters while the first one is not returned (after an
exponential waiting time), then the first one can be extruded. During that time, no
other ions can enter the channel.

Modeling calcium influx from channels: NMDA Receptors, AMPA Re-
ceptors and VSCC.

We shall now present examples of three classical channels such as NMDA, AMPAR
(GluR2-calcium permeable) and Voltage Sensitive Calcium Channel (VSCC) for
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Figure A.2: Reflection scheme. A simulated trajectory can get from x to y in a
single time step ∆t in two different ways: (i) directly from x to y, without crossing
the boundary, and (ii) by crossing the boundary from x to y′ and reflection in
the oblique direction v with probability 1 − P (y′

B)
√

∆t to y. The reflection law
(A.22)-(A.24) satisfies y′

1 = −y1.

simulating the flux of calcium inside neuronal cells. The flow of ions through open
channels has been studied using Langevin equation [41, 162]. The fluxes of ions can
be implemented numerically as follow.

Calcium influx through NMDAR Calcium influx through NMDA-channels
can be approximated by (p. 99 [105])

IN (t) = gN
e−t/τN,1 − e−t/τN,2

1 + 0.33[Mg2+]e−0.06Vm
(Vm − EN). (A.25)

where the conductance is gN = 0.16 nS, the Nernst potential EN = 0, Vm is the
membrane potential. When the potential Vm is fixed and the fraction of current
carried by calcium ions is 15%, we can simulate such a flux by injecting particles
at random times such that the instantaneous rate is the one obtained from relation
(A.25). Indeed, the entrance is a Poissonian process with a time dependent rate
λ(t + ∆t) = ICa(t)∆t

2e
. The number of entering ions is N(t)∆t = ICa(t)∆t

2e
, where

ICa(t)∆t =
∫ t+∆t

t IN(t)ds. An example of stochastic calcium ion entry is presented
in Fig. A.4 (discretized at a time step ∆t = 0.1 ms). In some dendritic spine
models [88, 78], the entrance dynamics is neglected and ions are initially placed at
channels, located at the top of the dendritic spine head. Typically, the total charge
is QN =

∫∞
0 I(s)ds, thus the fraction of calcium is QCa = 0.15 QN Coulomb. The

number of calcium ions entering is NN,Ca =
QCa

2e
, where the e is the electron charge.

Using parameters of table A.1, we obtain that QN = 6.38pC and thus there are
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about NN,Ca = 3000 ions entering in average inside a single NMDA receptor (for a
fixed mean voltage Vm = −65.1 mV).

Calcium influx through AMPAR The stochastic arrival of ions entering through
an AMPAR is computed exactly with the same method as for NMDA, except that
the mean flux is given by

IA = gA
t

τA
e−t/τA(Vm −EA), (A.26)

where gA = 0.3 nS, and the Nernst potential EA = 0 mV. The fraction of AMPAR
current carried by calcium ions is 1.4%, thus we find that the total charge is QA =
11.51 fC, leading to approximatively 500 ions.

Influx through VSCC Calcium influx through VSCC requires computing the
changes in the membrane potential depolarization. One possibility is to use the
simplified Hodgkin-Huxley model [73]. The voltage change follows the dynamics

C
dV

dt
= −INa(V, n) − IK(V, n) − IL(V ) − ICa(V,m, h) − γIN − ηIA

dx

dt
= 0.1αx(1 − x) − βxx, for x = n, m, h.

where the currents are

INa = gNap
3(0.89 − 1.1n)(V − ENa)

IK = gKn
4(V − EK)

ICa = gCam
3h (Vm − ECa)

IL = gL(V − EL)

with parameters

p =
αp

αp + βp

, αk =
1

τk

θk − Vm

e
θk−Vm

τk − 1
, βk = ηke

− Vm+65
σk , for k = n, m, h, p.

where γ and η are summarized in Table A.1. The total charge becomes QV = 0.6 fC,
which leads approximatively to 2000 ions entering through VSCC.

A.2.4 Stochastic simulation of calcium in a dendritic spine

The major benefit of stochastic simulations is to access the total number of bio-
chemical bonds induced by calcium ions on specific molecules and to quantify the
amount of structural changes occurring at the spine level. There are many other
consequences such as computing the hydrodynamics component that changes the
nature of the ion trajectories, or to distinguish the periods of calcium dynamics.
Novel coarse-grained equations are derived in [78].
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Space exploration

The geometric characteristics of ionic trajectories with the hydrodynamic flow are
distributed differently from pure diffusion [78] (see Fig.A.3). Not only the nature
of the movement is different but the hydrodynamic flow causes the ions to drift in
the direction of the neck and consequently the time they spend in the spine head is
reduced. As a consequence, the probability of a trajectory to leave through a pump
located in the head decreases. Similarly, the probability to return to the head from
the spine neck is reduced if it has to diffuse upstream, against the hydrodynamic
drag force. Thus the ionic trajectory stays inside the spine a shorter time in the
presence of the hydrodynamic flow, as compared to the time without it. As discussed
in [88], the total number of bound molecules can change as much as 30 percent with
and without the flow.

Figure A.3: The filling of space by 5 random trajectories in the spine with no
drift (a), and with drift (b). Each color corresponds to a trajectory. Proteins are

uniformly distributed in the spine head, and are represented by circles and crossed circles,

respectively. A trajectory starts at the top of the spine head where channels are located

and continues until it is terminated at the dendritic shaft or at an active pump. The

parameters for the simulation are δ1 = 0.02µm, δ2 = 0.01µm, KAM
back

= 104s−1 Kcal
back

=

2.103s−1, R = 0.5µm, d/2 = 0.21794µm, l = 1.5µm, Npumps = 10.

Two stages of calcium concentration decay

Two very distinct decay rates of the fast extrusion periods have been reported in [124,
167]. The second decay period is identified as purely driven by random movement
and the time constant equals the first eigenvalue of the Laplacian on the spine
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domain, with the adequate boundary conditions. It was shown that the first period
corresponds to a fast calcium extrusion, measured in [124] with an exponential decay
rate λ = 0.14s−1 and is due to the diffusion of saturated buffers, binding kinetics of
endogenous buffers, diffusion of buffers, buffered calcium diffusion across the spine
neck, and the effect of the pumps. The first period dynamics is defined by the
fast binding to calcium stores [124, 167]. On the other hand, in the simulation
resulting from the model [88], based on fast spine motility, the first time period has
an exponential decay rate, constant λt = 0.16s−1 derived in [78]. The decay seems
to be a consequence of the dynamics created by the push effect, since stores were
neglected. Further studies that include large numbers of buffers should reveal the
precise contribution of buffers to the calcium fast decay rate, as compared to the
rate imposed by the spine contraction.

Multiscale modeling of connecting a continuum bath with single molecu-
lar dynamics There are various interesting multiscale modeling approaches where
the goal is to connect a discreet description of brownian particles with a continuum
[58, 56]. The conservation of fluxes at the connecting interface generates boundary
layer behavior that needs to be specifically studied.

Recipe for a successful stochastic simulation

• Choosing a time step for a simulation. The time step of a simulation
is critical: when it is too small, the simulations takes forever, while if it is
too large, then binding to buffers of a certain size a are missed. For a time
step ∆t and a diffusion coefficient D, a Brownian particle moving in three
dimensions jumps to a distance ∆x2 = 6D∆t. Thus the constraint |∆x| = a/4
provides an estimate for the time step. In general the size of the smallest
target defines the condition for the time step ∆t. In most cases, where target
sites are fixed, it is more interesting to refine the time step when a particle
enters its neighborhood.

• Positioning a particle that has unbound. In the Smoluchowski’s limit
equation (where there is no dynamic for the velocity), the coarse graining of
a potential well is usually done by freezing the position of the particle at the
binding position during an exponential waiting time, the rate of which is the
backward rate (reciprocal of the mean time to escape the well). After the
particle unbinding, where should the particle be positioned? Certainly not at
the absorbing boundary defining the well, otherwise the particle is immedi-
ately absorbed, unless the boundary condition is changed from absorbing to
reflecting during a certain refractory time. Another possibility is to position
the particle outside the boundary layer of the binding site: a small distance
away from the site (3 to 4 radii away). This is possible if the sites are not
surrounded by other absorbing sites. Inside a structure that contains a high
concentration of binding sites, a different simulation approach is needed: ei-
ther to derive a homogenized equation or the dynamics in the wells should not
be coarse-grained.
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• Partial absorption. When there are many absorbing sites located at close
proximity, nonlinear effects should be taken into account. It is possible to
derive homogenized boundary conditions: see for detail [190].

• Coarse-graining a simulation with the narrow escape rate. Instead of
running a full Brownian simulation where the position of each calcium ion and
calmodulin molecule is computed with Euler’s scheme, it is possible to coarse-
grain it into a rate model based on the narrow escape theory [85, 84]. The gain
of this procedure is to avoid lengthy simulation imposed by the smallest length.
In a Brownian simulation, due to the small calmodulin binding site of radius
RCaM = 2 nm, in order to ensure that the process does not jump over the site,
the MSD-formula leads to a time step of 10−6 ms (with DCa = 200 µm2 ms−1),
which would lead to days of simulations. To circumvent this difficulty, it is
possible to compute directly the rate of arrival of calcium ions to one of the
free calmodulin binding sites. The mean first binding time τ̄B of a Brownian
particle diffusing with diffusion coefficient D1 in a spherical domain Ω, to a
small spherical target (radius r) diffusing with coefficient D2 is τ̄B = |Ω|

4π(D1+D2)r
.

Due to the small size r, the binding times are exponentially distributed with
a mean λ1 = 1/τ̄B. For N independent calcium ions diffusing within Ω, the
first binding time Tb to a calmodulin site is distributed with rate

λ(N) = λ1N (A.27)

Thus, the probability that a binding event occurs between time t and t +
∆t is P(t ≤ Tb < t + ∆t) = λ(N)∆t. An application consists in replacing
the Brownian movement of calcium ions in a spine head by the binding rate
λ(N)∆t at each calmodulin site. We thus need to compute at each time step
the number N of free calcium in the spine.
Furthermore, calcium ions can escape a dendritic spine head Ωhead through
small pumps. To model this calcium escape, we use a similar method as
described above where we approximate the binding of calcium to a pump by
using the mean first passage time of a diffusing ion to a small target located
on the boundary. When there are N calcium ions, the first binding time is

µ(N) =
4RpumpDCaN

|Ω|head
. (A.28)

It is also possible to account for the competition with escaping through the
spine neck using the narrow escape formula for a spine (equation A.45). This
procedures accelerates the simulations and gives excellent results (fig. A.5).

In Figs. A.4-A.5, we present a simulation of calcium entry in a dendritic spine
binding to calmodulin, [69].

A.2.5 Diffusion laws in microdomains with small openings

Synaptic input creates calcium transients in single dendritic spines and dendrites
(Fig. A.6). We shall now present the modeling approach used to study calcium
transients.

182



A.2. Detailed Description

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

Time (ms)

# 
C

a2+

NMDA

# Ca2+/ms
 Ca2+ entry
(∆ t = 0.1 ms)

A

B Ca2+

Ca2+

Ca2+

++++++++++++++

Calcium ions

CaM

Activ CaM

Calcium channels

Calcium pumps

PSD

Figure A.4: Calcium entry and dynamics A: Time course of calcium entry inside
a spine throught a NMDA receptor. B: Schematic representation of the Calcium
and calmodulin (CaM) pathway inside a dendritic spines. [69].

Probability density function of an ion

The stochastic nature of the calcium motion requires a probabilistic approach. In-
deed, the location of an ion is not certain and the probability p(x, t) to find an ion
at time t at a position x satisfies the standard Fokker-Planck or diffusion equation

∂p

∂t
(x, t) = D∆p(x, t), (A.29)

where ∆ is the Laplacian operator and D is the diffusion constant in the cytoplasm.
The solution of equation A.29 requires specifying initial and boundary conditions,
and allows the entire characterization of a transient regime or the steady state
distribution of a single ion. For a general domain, the solution cannot be derived
analytically but it is possible to obtain long and short time asymptotic estimations.
As we shall see, these expressions provide the dependency with respect to many
geometrical parameters. When necessary, numerical simulations are used to obtain
the missing information. They are usually tedious to obtain and require careful
discretization of the domain, especially when small and large scales are present.
For many independent calcium ions, the concentration c(x, t) is given by c(x, t) =
Np(x, t), where N is the initial number of ions. Ignoring at this stage the effect of
any chemical reaction, the microdomain geometry Ω is the main determinant of the
characteristic time scale involved in diffusion. When the boundary decomposes into
two parts, ∂Ωa the absorbing part, made of key fast binding elements and ∂Ωr the
reflective part, then it is usually a critical aspect to quantify the mean time E(τ)
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Figure A.5: Calcium dynamics: comparing a Brownian simulation with a
coarse-grained rate model for the binding to calmodulin. A1 and A2 : Time
course of calcium for 3000 ions entering a dendritic spine through NMDA receptors
containing 200 calmodulin. The Brownian time step is ∆t = 3 10−6 ms (A1). For
the rate model, ∆t = 10−4 ms (A2). Ions diffuse freely in the synapse (dark blue),
can be bound to calmodulin (magenta) or can leave the spine (green). The curves
are compared with the total number of ions (black) and the total amount of calcium
in the spine (free plus bound) (in red). B1 and B2 : Activation of calmodulin during
the Brownian simulation (B1) and the rate model (B2). A calmodulin molecule can
be bound to zero, one, two, three or four calcium bound (black, dark blue, green,
magenta and red respectively).
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Figure A.6: Upper: Isolated calcium transients in a single dendritic spine.
Synaptic activity generates a transient calcium change in a spine and a whole den-
dritic segment, triggered by a back propagating action potential. Lower: Spon-
taneous calcium activity in neurons. Synchronized and not synchronized activity
as well as small (probably EPSPs), larger (probably single spike) and very large
events (burst of several spikes). The decay phase of calcium is approximated by
exponentials or sum of exponentials
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for an ion to reach ∂Ωa. The boundary conditions are

∂p(x, t)

∂n
= 0 on ∂Ωr,

c(x, t) = 0 on ∂Ωa,

The general solution of the diffusion equation can be formally expanded as

c(x, t) =
∞
∑

k=1

ckuk(x) exp(−λkt) (A.30)

where λk > 0 are the eigenvalues, uk, k = 1.. the eigenfunctions and ck are constant.
The general explicit computation of the solution of diffusion equations can be found
in [26, 31]. Although expression (A.30) justifies fitting a sum of exponentials to
experimental data, connecting the eigenvalues with the precise geometry is in general
very difficult, except in a few cases where the geometry contains a narrow passage
or small hole. This is the case for a dendritic spine or a narrow domain in dendrites.
When |∂Ωa| ≪ |∂Ωr|, the reciprocal of the mean time to escape a domain E(τ) is
the first eigenvalue [175]. Indeed, 1

λ0
is usually very large, so that there is a large

gap with the rest of the eigenvalue λ0 ≪ λ1, .. and thus the solution A.30 can be
further approximated by a single exponential for a time t ≫ 1

λ1
,

c(x, t) ≈ c0 exp(−λ0t). (A.31)

We conclude that for domains with narrow neck, the arrival of diffusing particles to
the small domain is almost Poissonian. This is a consequence of the geometry.

Transition probability density function with partial reflecting boundary
condition

The transition probability density function (pdf) of the limit process A.11, p(y, t | x, s) =
Pr{x(t) = y | x(s) = x}, is the solution of the FPE

∂p(y, t | x, s)
∂t

= −∂[a(y, t)p(y, t | x, s)]
∂y

+
∂2[σ(y, t)p(y, t | x, s)]

∂y2
, (A.32)

or equivalently,

∂p(y, t | x, s)
∂t

= −∂J(y, t | x, s)
∂y

for all y, x > 0,

where

J(y, t | x, s) = a(y, t)p(y, t | x, s) − ∂[σ(y, t)p(y, t | x, s)]
∂y

, (A.33)

is the flux. The initial condition is

p(y, t | x, s) → δ(y − x) as t ↓ s (A.34)
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and the radiation boundary condition is

−J(0, t | x, s) = κp(0, t | x, s), (A.35)

where κ is a constant related to the constant c and to the values of the coefficients
at the boundary. The no flux and Dirichlet boundary conditions are recovered if
c = 0 or c = ∞, respectively. The relation between the reactive “constant” κ(t) and
the absorbtion parameter P for the dynamics (A.11) on the positive axis with drift
and with a variable diffusion coefficient is

κ(t) = rP
√

σ(0, t), r =
1√
π
. (A.36)

The relation (A.36) is true for diffusion with variable coefficients. The value r =
1/

√
π is different than values obtained for other schemes, e.g., than the value r =

1/
√

2, predicted by the discrete random walk theory of radiation boundaries [29].
Values of r for other schemes are given in [42].

Exit diffusion rate from dendritic spines

We summarize in this section the approach used to derive asymptotic formulas for
the rate of diffusional exit from spines. A dendritic spine with a narrow neck has
very degenerate geometry [A.1], but the exit time of a diffusing particle which is
the reciprocal of the first eigenvalue, can be directly measured from fluorescence
imaging. We shall now recall the main formula for the exit rate that was obtained
in the context of the narrow escape (NET) and dire strait (DST) theory [85].
A free Brownian particle moves in a bounded domain D ⊂ R

d (d = 2, 3), whose
boundary ∂Ω is sufficiently smooth (the analysis in higher dimensions is similar to
that for d = 3). The Brownian trajectory x(t) is reflected at the boundary, except
for a small hole ∂Ωa, where it is absorbed, as shown in Fig. A.7. The reflecting part
of the boundary is ∂Ωr = ∂Ω−∂Ωa. The lifetime in Ω of a Brownian trajectory that
starts at a point x ∈ Ω is the first passage time τ of the trajectory to the absorbing
boundary ∂Ωa. The NET

v(x) = E[τ | x(0) = x] (A.37)

is finite under quite general conditions [173]. As the size (e.g., the diameter) of the
absorbing hole decreases to zero, but that of the domain remains finite, the NET
increases indefinitely. A measure of smallness can be chosen as the ratio between the
surface area of the absorbing boundary and that of the entire boundary, for example

ε =

(

|∂Ωa|
|∂Ω|

)1/(d−1)

≪ 1, (A.38)

provided that the isoperimetric ratio remains bounded,

|∂Ω|1/(d−1)

|Ω|1/d
= O(1) for ε ≪ 1. (A.39)
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The NET v(x) can be obtained by solving the Pontryagin-Andronov-Vitt (PAV)
mixed boundary value problem for the Poisson equation [156, 155, 173]

∆v(x) = − 1

D
for x ∈ Ω (A.40)

v(x) = 0 for x ∈ ∂Ωa (A.41)

∂v(x)

∂n(x)
= 0 for x ∈ ∂Ωr, (A.42)

where D is the diffusion coefficient and n(x) is the unit outer normal vector to the
boundary at x ∈ ∂Ω. For a circular window of radius a ≪ |∂Ω|1/2 (Fig. A.7)

Eτ =
|Ω|

4aD

[

1 +
L(0) +N(0)

2π
a log a + o(a log a)

] for a ≪ |∂Ω|1/2. (A.43)

The MFPT to the absorbing boundary at the end of the funnel of a solid of revolution
obtained by rotating the symmetric planar domain (A.7) ( see [84]of Section A.7) is
given by

τ̄ =
1√
2

(

ℓ+

a′

)3/2
V

ℓ+D
(1 + o(1)) for a′ ≪ ℓ+, (A.44)

where V = |Ω′| is the volume of the domain. The NET τ̄x→∂Ωa
of a diffusing particle

Figure A.7: Brownian escape from a spherical window.

from a three-dimensional domain Ω with a bottleneck in the form of a narrow circular
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Figure A.8: Residence time of calcium in dendritic spine. Left: effect of the
spine radius a on the exit time. right: effect of the spine length L.
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(A.45)

where Rc is the curvature at the cusp. The asymptotic expression is derived in
[82]. The order 1 term can be computed for the sphere using the explicit expression
of the Neumann-Green function [27]. When the spine radius is small, the leading
order term for the mean exit time (which is also the rate of diffusion extrusion)
was initially presented in [188]. This term accounts for the many returns of an
ion between the spine neck and head [12]. This term is not present when an ion
cannot return to the head once it enters the neck [108]. Because the other terms
in formula A.45 diverge to infinity, their contribution cannot be neglected and they
affect significantly the residence time of a diffusing particle in a dendritic spine (see
Fig. A.8). We conclude from these analytical formulas that the spine connection
determines the rate of extrusion. For short spines, all terms are significant.

Remarks The presence of a spine apparatus inside the spine might affect the
extrusion of calcium or any other diffusing molecules. In addition, molecular binding
affects calcium extrusion and the rate is no longer Poissonian.
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Influence of calcium buffers on the residence time of calcium in mi-
crodomains such as dendritic spines

The residence of calcium in a spine can be influence by other mechanisms than pure
diffusion. Binding and unbinding to calcium buffers affect the time course. In that
case, the entire system of partial differential equations (PDE) describing the process
should be solved. Only numerical simulations are available. The generic example is

Ca+Bfree

kf

⇋

kb

Ca−B, , (A.46)

which leads to the PDE system of equations

∂c

∂t
(x, t) = D∆c(x, t) − kinc(x, t)B(x, t) + kb[c-B](x, t), (A.47)

∂[c-B]

∂t
(x, t) = DB∆c(x, t)B(x, t) + kinc(x, t)B(x, t) − kb[c-B](x, t), (A.48)

c-B is the bound calcium that can diffuse with diffusion coefficient DB, but stays
confined in the spine head, while the calcium can be extruded at pumps or at the
spine neck, which translate into the following boundary conditions

∂c(x, t)

∂n
= 0 on ∂Ωr,

c(x, t) = 0 on ∂Ωa,

∂[c-B](x, t)

∂n
= 0 on ∂Ωr,

when there is cooperativity at pumps, more elaborated boundary conditions are
needed [73] and will be discussed later on. There is no general solution of such
equations. If binding is fast, since c(x, t) + [c-B](x, t)] = N0e

−λ1t, the decay rate
depends on the unbinding time, such that for a long enough time (so that bind-
ing occurred), the asymptotic decay rate is well approximated by a sum of two
exponentials

c(x, t) = Ae−λ1t +Be−kbt, (A.49)

where A and B are constants.

Residence time of calcium in dendritic spines with a hydrodynamics flow

Dendritic spines can change shape in a few hundreds milliseconds [55, 88], after
calcium ions flow in. This fast change of shape decreases the spine head volume.
Spine motility was proposed by Blomberg and al. [15] and the fast twitching move-
ment of the spine was anticipated by F. Crick in [32]. Spine fast contraction was
attributed to actin-myosin molecules or troponin-C, which were observed inside the
spine head. As in muscle cells, high concentrations of actin molecules indicate that
rapid movement can follow the arrival of calcium ions. It has been proposed in
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[88], that calcium ions set the spine in motion by initiating the contraction of actin-
myosin (AM) as they bind at active sites. Each molecule is assumed to give rise
to a local contraction. In a simplified model, all contractions add up to achieve
a global contraction, neglecting anisotropic contraction due to a delay interval be-
tween each molecule contraction. Once calcium ions enter the spine, they arrive to
the binding sites by diffusion and can bind there. When four calcium ions bind to
a single troponin-C protein, a local contraction of the protein occurs. Adding all
local contractions at a given time produces a global contraction and induces a hy-
drodynamic movement of the cytoplasmic fluid. Calcium trajectories are no longer
pure Brownian, but contain a drift and thus the probability to reach the dendritic
shaft through the spine neck is increased [88]. The model requires feedback of a
flow field v(x, t) on the velocity. The flow field can be computed using the Green’s
function of the spine domain [88]. Adding the effect of diffusion and hydrodynamics,
the transient escape rate is not necessarily a single exponential. The concentration
inside the spine follows

c(x, y, z, t) = C exp

{

−λ1t+
v̄2

0

4D
t

}

,

where the hydrodynamics decay time is

τ =
4D

v̄2
0

, (A.50)

where v̄0 is the initial average velocity [88]. Figure A.3 illustrates the effect of
adding a hydrodynamics drift on pure diffusion for the exploration of the spine
head. Contrary to the effect of buffer, the hydrodynamics effect shifts the extrusion
rate, but does not lead to a sum of exponentials.

Crowding model of a dendrite

Molecular crowding reduces diffusion and this effect can be estimated by computing
the effective diffusion coefficient of a Brownian particle moving between obstacles in
dimension 2. For obstacles positioned periodically, the effective coefficient of diffu-
sion decays nonlinearily with the density of obstacles [75]. This decay also depends
on the shape of the obstacles. The effective diffusion coefficient can be computed
asymptotically by conformal mapping [75]. In addition, when obstacles are po-
sitioned with additional variabilities, local narrow passages, funnels or dead ends
can be observed that lead to heterogeneity in the diffusion trajectories [62, 83, 84].
However due to the complexity of obstacle geometry, there is no achieved theory of
diffusion with obstacles in three dimensions.
We present here a local model and numerical simulations to study calcium diffu-
sion in a dendrite. The dendrite cytoplasmic medium is highly heterogeneous and
filled with many organelles. Thus the motion of a diffusing particle is affected by
many interactions with its environment. The functional consequences of these in-
teractions are difficult to access directly experimentally due to ubiquitous pathways
especially for calcium dynamics. In a reduced model of diffusion in dendrites, the
one-dimensional effective diffusion equation and an effective diffusion constant ac-
counts for the presence of heterogeneity in the medium.
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Modeling diffusion in a heterogeneous dendritic cytoplasm. To charac-
terize diffusion in a heterogeneous dendrite, containing various organelles such as
mitochondria, spine apparatus, endoplasmic reticulum and other structures, one
method [13] consists of coarse-graining a three dimensional cylindrical dendrite into
a one-dimensional effective diffusion equation in the limit where the space between
organelles is small. Diffusing ions can still move inside a dendritic domain Ω and
the nature of the motion is not impaired, and is well approximated by the Smolu-
chowski limit of the Langevin equation [172]: a particle at position X(t) at time t
is described by

Ẋ +
1

γ
∇Φ(X) =

√
2Dẇ(t), (A.51)

where Φ is a potential per unit of mass, γ is the friction coefficient, D is the aqueous
diffusion constant and w(t) is Gaussian white noise. The potential Φ represents the
effective force on the particle. When a moving molecule hits impenetrable organelles
Oi, it is reflected.
The distribution of independent molecules is characterized by the probability density
function (pdf) p(x, t) which satisfies the Fokker-Planck equation

∂p

∂t
= D∆p+ ∇[

1

γ
(∇Φ(X))p] (A.52)

in the domain Ω̃ = Ω \ ∪iOi, and a zero flux condition on the organelles and the
dendritic membrane ∂Ω̃:

J · n = −D∂p

∂n
+
p

γ

∂Φ

∂n
= 0, (A.53)

where J is the flux and n the outer normal of the domain Ω̃.
To account for the overall effect of crowding on diffusion, we adopt an approach based
on a compartmentalization of the dendritic domain and the narrow escape theory
[84], which provides the mean time for a Brownian particle to exit a domain through
a small absorbing opening. The dendrite is divided into periodic compartments of
length l and volume V , separated from their neighbors by a reflecting cross section,
except for a small opening of radius a. This compartment should be large enough
so that the organelle density is the same in each of them. The small openings allow
diffusing molecules to move across compartments. In contrast to previous models
where crowding has been described by spherical obstacles [13] that pose barriers
to diffusing molecules, crowding is modeled as a sequence of periodic compartments
and small openings at the boundaries of neighboring compartments. A compartment
k starts at position xk and ends at position xk+1. The number Nk(t) of particles in
compartment k changes according to the net flux across the small windows. The
flux is estimated by the small hole approximation (see [13] for details).
The concentration c(x, t) = N(x, t)/V (x, t) satisfies

∂c(x, t)

∂t
=

4l2D

V (x)

∂

∂x

[

a(x)
∂

∂x
c(x, t)

]

. (A.54)

192



A.2. Detailed Description

Similar equations have been derived in other contexts [212, 12, 10]. When the
parameters a(x) and V (x) are spatially independent, equation (A.54) simplifies to

∂c(x, t)

∂t
= Deff

∂2c(x, t)

∂x2
, (A.55)

where Deff = 4la
S
D, is the effective diffusion constant, and V = Sl with S the cross-

sectional area. The effective diffusion constant depends on two parameters: the
compartment length l and the size of the opening a.
The model parameters are determined by (i) measuring the ratio of diffusion con-
stants Deff/D and (ii) a calibration condition of the form l/a = 4. The calibration
condition expresses that the parameters l and a do not necessarily have direct phys-
iological meanings, and we can thus set one parameter arbitrarily within the limits
of the small hole approximation. Additional measurements of the diffusion constant
will then fix the other parameter. A Brownian simulation of diffusing ions around
an obstacle is presented in Fig. A.9. Other applications of reducing equations are
to compute the mean time for calcium ions or diffusing molecules to travel along
crowded dendrites or axons.

Calcium spread following high frequency stimulation The one dimensional
effective diffusion equation presented in the last paragraph allows analyzing calcium
spread originating from localized inputs such as synapses. At dendritic synapses cal-
cium can enter through NMDA-receptors. To estimate calcium spread as a function
of the synaptic input frequency, Ca2+-influx was simulated in the middle of a den-
dritic segment (Fig. A.10) with buffers and pumps (see [13] for the reaction-diffusion
equation). The different input frequencies are f = 5, 10, 20, 50, 80 Hz. Interestingly,
for input frequencies larger than 20 Hz, the calcium signal in the dendrite reaches
a stationary value. For high input frequencies (≥ 20 Hz) calcium spread does not
exceed 2.5µm (= 0.5×FWHM) as measured from the input source. Buffers and
pumps limit calcium spread to a few micrometers [13].

A.2.6 Calcium extrusion along a cylinder: Homogenization
of hole into a killing rate

Computing the final distribution of calcium ions between two possible fates is a
generic problem. It can be the proportion of bound calcium ions versus the num-
ber extruded or the fraction that reached the dendrite versus the fraction that got
pumped. We present a general approach based on homogenization to reduce the
complexity of this computation.

Homogenization of perforated by partially reflecting boundary

We approximate the flux through a reflecting boundary, perforated by many small
independent absorbing holes [11, 10]. For diffusion, the problem can be solved us-
ing the eigenvalues of the Laplace equation in the domain Ω with mixed Neumann

boundary conditions on ∂Ω − ∂ΩA and Dirichlet conditions on ∂ΩA =
N
⋃

i=1

Ai. If
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Figure A.9: Brownian simulations of uncaging experiments. A) Model glass
pipette. Shown is the initial particle distribution as taken from the experimental
data and the sampling volumes (white cylindrical disks) at different locations from
the uncaging spot. (B) Compartmentalized model dendrite. (C) Compartmental-
ized model dendrite with attached spine (dendrite geometry as in B with spine neck
radius: 0.3 µm, spine neck length 0.2µm, spine head radius 0.4 µm). (D) Com-
parison of 3D Brownian simulations with the uncaging experiments and the results
derived from the solutions of the 1D effective diffusion equation. The normalized
concentration profiles are shown for the glass tube (A), the dendrite (B) and the
dendrite with attached spine (C) at three locations from the uncaging spot. Adapted
from [13]

194



A.2. Detailed Description

Figure A.10: Lateral extent of calcium driven by high frequency stimu-
lation. A) Calcium diffusion in an aqueous solution contained in a pipette. (B)
Calcium diffusion in a crowded dendrite. The initial concentration is equal to about
600 particles and evaluates to about 470 particles per micron for a dendrite. (C)
Same settings as in (A) but with additional buffers (medium buffer concentration)
and pumps. (D) Same settings as in (B) but with additional buffers (medium buffer
concentration) and pumps. (E) Calcium was injected at 20 Hz for 1 s at the loca-
tion of the NMDAR in the middle of the dendritic segment as shown in the upper
and middle panel. The resulting spatiotemporal -profile in the dendrite is shown
in the lower panel. (F) Spatiotemporal profiles in the dendrite for different influx
frequencies at the location of the NMDAR. (G) Corresponding calcium spread in the
dendrite as measured by the full width at half maximum (FWHM) of the calcium
signal (adapted from [13]).
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the holes Ai are sufficiently far apart, the smallest eigenvalue λA
1 is asymptotically

the sum of the eigenvalues λAi
1 of the Laplace operator in Ω with mixed Neumann-

Dirichlet boundary conditions on ∂Ω −Ai and Ai, respectively, which can be calcu-
lated from the narrow escape theory [84]. For circular holes with fixed radius ε, we
have the formula

λAi
1 ≈ 4εD

|Ω| , λA
1 =

4εDN

|Ω| . (A.56)

The pdf of the Brownian motion in the perforated domain relaxes to a quasi steady
state and can be described by a single exponential decay in time with rate λA

1 and
a uniform quasi steady state distribution in Ω, except in boundary layers near Ai.
The total absorption probability flux on the boundary, λA

1 , is partitioned among

the holes with probabilities Pi = λ
Ai
1

∑N

i=1
λ

Ai
1

. If the holes are distributed with surface

density n(x) on ∂Ω, the normal absorption flux density is

J(x) · ν(x) =
4εDn(x)

|Ω| . (A.57)

The homogenization procedure consists in replacing the perforated holes by a radi-
ation condition that preserves asymptotically the same quasi steady state distribu-
tion. We replace the leading eigenfunction and eigenvalue of the Robin problem by
a Laplace equation with a small radiation function k(x),

D∆p(x) = −λp(x) for x ∈ Ω (A.58)

D
∂p(x)

∂ν
= −k(x)p(x) for x ∈ ∂Ω. (A.59)

Matching the flux density in (A.57) and (A.59), we obtain in dimensional coordinates

k(x) = 4εDp0(x)n(x) +O

(

ε2

L2
log

ε

L

)

. (A.60)

The quasi steady state pdf is

p0(x) =

(

1 +O(k̃0)
)

|Ω| ,

except in boundary layers near Ai.
After the first homogenization which consists in replacing a three dimensional dif-
fusion with total and/or partial absorption by a reduced diffusion equation in di-
mension one, with a killing rate k, the case of a cylindrical geometry can be treated
immediately. The one-dimensional case of a diffusion with uniform killing inside an
interval [77] with reflecting and absorbing endpoints has a survival pdf of a particle
satisfing the equation

∂p(x, t)

∂t
= −∇ · J(x, t) − kp(x, t)

(A.61)

p(L, t) = 0, p(x, 0) = ρ(x),
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where the probability flux density is given by

J(x, t) = −D ∂

∂x
p(x, t) + b(x)p(x, t). (A.62)

For long time asymptotic, the solution of equation (A.61) is approximated by the
first eigenfunction:

p(x, t) = p0(x)e−λ0t +O(e−λ0t), (A.63)

normalized by
∫ L

0
p0(x) dx = 1. (A.64)

When the killing term k is a constant, the eigenvalue problem is

D
∂2p(x)

∂x2
− k(x)p(x) = −λp(x)

(A.65)

p(L) = 0,
∂p(0)

∂x
= 0,

In case that k(x) = k = const, the first eigenfunction and eigenvalue are

p0(x) = Ω
cos(Ωx)

sin(ΩL)
, Ω =

π

2DL
, λ0 = D

π2

4L2
+ k.

The total flux J of killed diffusing particles is given by

J =
∫ L

0
k(x)p0(x)dx = k.

Particles splitting: absorbed versus arrived

To quantify how ions split between pumps located on the surface of a cylinder and
the ones that arrive at the end, we use the ratio

Rs =

∫

∂Ωa

J(x | y) · ν(x) dSx
∫

Ω
k(x)p(x | y) dx

=

∫

∂Ωi

Φ(x)dSx −
∫

Ω
k(x)p(x | y) dx

∫

Ω
k(x)p(x | y) dx

. (A.66)

that can be computed in the limit of a very thin cylinder. The flux and the killing
term are computed from solving the steady state using Fokker-Planck

0 = D∆p(x | y) − k(x)p(x | y) for x,y ∈ Ω. (A.67)

The boundary conditions are

p(x | y) = 0 for x ∈ ∂Ω,y ∈ Ωa

J(x | y) · ν(x) = 0 for x ∈ ∂Ω − ∂Ωa − ∂Ωi, y ∈ Ω, t > 0.

J(x | y) · ν(x) = −Φ(x) for x ∈ ∂Ωi.
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The time independent flux is Φ(x) ≥ 0. The external steady state flux of absorbed
particles is

Ja =
∫

∂Ωa

J(x | y) · ν(x)dSx. (A.68)

The total inward flux is

Ji =
∫

∂Ωi

J(x | y) · ν(x)dSx =
∫

∂Ωi

Φ(x)dSx. (A.69)

if the killing measure is uniform in the interval [0, L], then Rs(L) =
1

cosh(bL) − 1
,

where b =

√

Nχ

D
. The case where the killing is a Dirac k(x) = kδ(x − x1), located

at a single point x1, and k is a constant has been treated in [77]. Interestingly,
changing the distribution of killing from uniform to concentrated at one point has
a drastic effect on the final repartition of ions (see fig.2 [77])

A.2.7 Calcium cascade initiating cellular activation

The molecular implementations that describe the transformation of a transient signal
to cell activation is still unclear. We shall here present a threshold-based model:
when the number of bound molecules equal a given number, we suppose that a
cellular change is initiated. We present a Markov chain model that reduces the
geometrical complexity based on the narrow escape rate formula [175].

Probability to bind a fixed number of molecules during a transient process

To illustrate the need of a multi-scale approach to bridge the molecular to the cellular
scale, we recall that during Long Term Potentiation (LTP) induction, a transient
calcium signal is converted into a long term change in the synaptic properties [14,
125, 118, 121]. This process specifically involves a class of kinases (CaMKII) that
have complex local cooperative binding sites organized into a ring structure.
However, the first problem is to define the meaning of activation. For example, it
can either be that a single binding by a CaM(Ca)3 or CaM(Ca)4 molecules, or
several bonds, or one to six phophorylations. Once a criteria is chosen, it becomes a
computational question to estimate the probability Pk that k CamKII molecules are
activated and also compute statistical quantities such as the mean number < Nact >
of CaMKII that are activated following a transient calcium entry.
More complicated calcium patterns are also generated where calcium ions are flowing
inside a synapse. In that case, it is worthwhile to compute the number of bound
molecules before an arbitrary time t or the probability Pact(t) and the mean number
< Nact(t) > of activations before time t. These quantities are in practice difficult
to compute and depend on many parameters such as the dendritic spine geometry,
intrinsic property rate constants, the binding site interaction forces, their localization
and so on. There are two complementary approaches:

1. Coarse-grained Markov models: this approach is based on the narrow
escape methodology, where instead of accounting for the entire time dynamics
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within the complex geometry organization of the microdomain, a Poissonian
rate of arrival to small targets is used to approximate the target search and
finding. Various quantities of interest such as the activation probability, the
statistic for the number of bound CaMKII can be estimated [80, 35, 36, 74].

2. Brownian simulations. Contrary to the previous approach, it is not pos-
sible to obtain the exact dependency of the probability, rather this approach
is tedious and allows estimating any moment of interest for a given set of
parameters.

For a micro-structure such as a dendritic spine, there is no equilibrium, because the
steady state is zero. Thus the relaxation time is the time for a diffusing particle
to be extruded by diffusion, which is in the range of tens of ms, see [82]. The
probability for N CaMKII to be activated and the time to induction is the mean
time for this to happen during a repetitive stimulation. Because the calcium to
CamKII pathways requires CaM intermediates, there a no coarse grained model
yet [69]. To present the threshold method, we shall now present a simplified model
where a diffusing molecule can bind to a ligand. The probability to reach a threshold
has been developed in [35] and is reviewed here briefly.

Coarse-grained Markov models Traditional chemical kinetics, based on mass-
action laws or reaction-diffusion equations, give an inappropriate description of the
stochastic chemical reactions in micro-domains, where only a small number of sub-
strate and reactant molecules is involved. A reduced Markovian description of the
stochastic dynamics of the binding and unbinding of molecules is given in [80] and
applied in [35, 36]. Specifically, consider two finite species, the mobile reactant M
that diffuses in a bounded domain Ω and the stationary substrate S (e.g., a protein)
that binds M . The boundary ∂Ω of the domain Ω is partitioned into an absorbing
part ∂Ωa (e.g., pumps, exchangers, another substrate that forms permanent bonds
with M , and so on) and a reflecting part ∂Ωr (e.g., a cell membrane). In this model
the volume of M is neglected. In terms of traditional chemical kinetics the binding
of M to S follows the law

M + Sfree

kf

⇋

kb

MS, (A.70)

where kf is the forward binding rate constant, kb is the backward binding rate
constant, and Sfree is the unbound substrate. We assume in our model of the
reaction that the M molecules diffuse in Ω independently and when bound, are
released independently of each other at exponential waiting times with rate k−1.
To calculate the average number of unbound (or bound) sites in the steady state the
following reduced model is used. The number k(t) of unbound receptors at time t
is a Markovian birth-death process with states 0, 1, 2, . . . ,min{M,S} and transition
rates λk→k+1 = λk, λk→k−1 = µ = k−1. The boundary conditions are λS→S+1 = 0
and λ0→−1 = 0. Setting Pk(t) = Pr{k(t) = k}, the Kolmogorov equations for the
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transition probabilities are given by [80]

Ṗk(t) = − [λk + k−1(S − k)]Pk(t) + λk+1Pk+1(t) + k−1(S − k + 1)Pk−1(t)(A.71)

for k = (S −M)+ + 1, . . . , S − 1

with the boundary equations

Ṗ(S−M)+(t) = −k−1SP(S−M)+(t) + λ1P(S−M)++1(t)

ṖS(t) = −λSPS(t) + k−1PS−1(t)

and initial condition Pk,q(0) = δk,Sδq,0. In the limit t → ∞ the model (A.71) gives
the average number

〈k∞〉 =
S
∑

j=(S−M)+

jPj,

where Pj = lim
t→∞

Pj(t). Similarly, the stationary variance of the number of unbound

sites is σ2(M,S) = 〈k2
∞〉 − 〈k∞〉2, where 〈k2

∞〉 =
∑S

j=(S−M)+ j2Pj.
The rates λk are modeled as follows. For a single diffusing molecule, the time
to binding is the first passage time to reach a small absorbing portion ∂Ωa of the
boundary, which represents the active surface of the receptor, whereas the remaining
part of ∂Ω is reflecting. Due to the small target and to the deep binding potential
well the binding and unbinding of M to S are rare events on the time scale of
diffusion [175]. This implies that the probability distribution of binding times is
approximately exponential [173] with rate λ1 = 1/Eτ1, where the NET Eτ1 is the
MFPT to ∂Ωa. When there are S binding sites, k(t) of which are unbound, there are
N = [M −S+k]+ free diffusing molecules in Ω, where x+ = max{0, x}. The arrival
time of a molecule to the next unbound site is well approximated by an exponential
law with state-dependent instantaneous rate (see discussion in [80])

λk =
Nk

Eτ1
=
k(M − S + k)+

Eτ1
.

The results of the Markovian model (A.71) are

PS =
1

1 +
S−(S−M)+

∑

k=1

∏S
i=S−k+1 i(M − S + i)+

k!(Eτ1k−1)k

〈k∞〉 = PS

(S−M)+
∑

k=S−1

(S − k)+

∏S
i=S−k+1 i(M − S + i)+

k!(Eτ1k−1)k

〈k2
∞〉 = PS

(S−M)+
∑

k=S−1

[(S − k)+]2
∏S

i=S−k+1 i(M − S + i)+

k!(Eτ1k−1)k

σ2
S(M) = 〈k2

∞〉 − 〈k∞〉2 (A.72)

(see [80] for further details).
These formulas are used to estimate the fraction of bound receptors in photo-receptor
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outer segments and also to interpret the channel noise measurement variance in [80].
In [89] this analysis was used to estimate the number of bound AMPA receptors in
the post-synaptic density. A similar gated Markovian model was proposed in [19].
The reduced Markovian model is used for the calculation of the mean time of the
number of bound molecules to reach a given threshold T (MFTT). In a cellular
context, the MFTT can be used to characterize the stability of chemical processes,
especially when they underlie a biological function. Using the above Markov-chain
description, the MFTT can be expressed in terms of fundamental parameters, such
as the number of molecules, of ligands, and the forward and backward binding rates.
It turns out that the MFTT depends nonlinearly on the threshold T . Specifically,
consider M Brownian molecules that can bind to immobile targets S inside a mi-
crodomain, modeled generically by equation (A.70). The first time the number
[MS](t) of MS molecules at time t reaches the threshold is defined as

τT = inf{t > 0 : [MS](t) = T} (A.73)

and its expected value is τ̄T . Consider the case of an ensemble of the targets initially
free and distributed on the surface of a closed microdomain and assume that the
backward rate vanishes (k−1 = 0) and kf > 0. The dynamical system for the
transition probabilities of the Markov process MS(t) is similar to that above, but
for the absorbing boundary condition at the threshold T , which gives (A.71) [35].
When the binding is irreversible (k−1 = 0), τ̄T is the sum of the forward rates

τ irrev
T =

1

λ0
+

1

λ1
+ . . .+

1

λT −1

=
1

λ

T −1
∑

k=0

1

(M0 − k)(S0 − k)
. (A.74)

In particular, when M0 = S0 and M0 ≫ 1, (A.74) becomes asymptotically τ irrev
T ≈

T/λM0(M0−T ). In addition, when the number of diffusing molecules greatly exceeds
the number of targets (M0 ≫ S0, T ), (A.74) gives the asymptotic formulas

τ irrev
T ≈














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1

λM0

log
S0

S0 − T
for M0 ≫ S0, T

1

λS0

log
M0

M0 − T
for S0 ≫ M0, T

T

λM0S0
for M0, S0 ≫ T.

(A.75)

Figure A.11 shows the plot of τ irrev
T for several values of the threshold T , compared

to Brownian simulations in a circular disk Ω = D(R) with reflecting boundary,
except at the targets.

A.2.8 Discussion and conclusion

We have summarized here biophysical models at a molecular level, mathematical
analysis, and coarse-graining models to study calcium dynamics in cellular mi-
crodomains. The present approach can be implemented to better understand how
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Figure A.11: The MFTT. Left: trajectories of diffusing molecules in a mi-
crodomain containing five binding sites on the boundary. Right: the time τ irrev

T

is plotted as a function of the threshold T . We present the Brownian simulations
(dotted blue line, variance in black), the theoretical formula A.74 (dotted black
line) and its approximation A.75 (continuous blue line) for a circular disk in the
irreversible case (k−1 = 0). The other parameters are S0 = 15, M0 = 10 , ε = 0.05 ,
D = 0.1µm2s−1 and the radius of the disk R = 1µm (200 runs).

calcium dynamics can induce sophisticated processes such as Long Term Potentia-
tion or Depression, cellular process that are responsible for long lasting changes in
physiological properties. Yet what calcium is doing at synapses still remains unclear:
where calcium is accumulating, what is the number of activated CaMKII (it is not
exactly clear what is the meaning of being activated: it can be that a single site
is phosphorylated), and what other calcium activated molecules are important. We
presented as an example of complex calcium feedback how spine twitching can be
described at a molecular level. We also described Brownian and simplified simula-
tion of calcium and the CamKII pathway. The CamKII molecule can be modeled
as a simplified ring made of 6 balls. A calibration procedure is then use to deter-
mine the radius a of a sphere or disk in that matches the Smoluchowski formula.
We have not reviewed the presynaptic terminal, which is a critical microdomain
where calcium modulates the release of vesicles. Vesicular release is triggered by
calcium entrance at specific calcium channels [90]. The exact steps from the cal-
cium entrance to the vesicular release are still under investigation. The steps of
calcium diffusion have been investigated both experimentally and numerically. In
particular the distance from the channel to the vesicule is a key parameter. Channel
clustering also would be interesting to investigate. The possibility that channels
are not fixed and the membrane is constantly remodeled shows that this process is
quite complex. Interestingly, the release probability can be modulated by 6 orders
of magnitude [106, 169]. Simulations of pre-synaptic calcium are based on numer-
ically solving partial differential equations [127, 211, 210]; however, it is hard to
account for the cusp nature of the region between a vesicles and the plasma mem-
brane [144]. Analysing diffusion in cusps can be studied by mapping locally the
cusp conformally to a nonsingular domain or to use analytical computation [83, 70].
Another difficulty is to account for various varicosities, leading to divergences and a
multiscale analysis should be developed. Modeling approaches are already sheding
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new light on the unsolved debate about the role of dendritic spines in regulating
electrical versus chemical activity. It is certainly time to revisit the electrical prop-
erties of spines based on solving the full Poisson-Nernst-Planck equation. Chemical
properties should consider surface receptors trafficking as a chemical reservoir.

Table A.1: Calcium entry into dendritic spines

Parameter Description Value
Fraction of NMDAR-current carried by Ca2+ 15%
Total Charge entering IN (NMDAR) 6.38 .10−15 C
Calcium ions entering through NMDAR ≈ 3000 ions

gN NMDAR Conductance 0.16 nS
EN Equilibrium potential (NMDAR) 0 mV
τN,1 NMDAR time constant 11.5 ms
τN,2 NMDAR time constant 0.67 ms

Fraction of AMPAR-current carried by Ca2+ 1.4%
Total Charge entering IA (NMDAR) 11.51 .10−15 C
Calcium ions entering through NMDAR ≈ 500 ions

gA Conductance (AMPAR) 0.3 nS
EA Equilibrium potential (AMPAR) 0 mV
τA AMPAR time constant 0.2 ms

Total Charge entering IV (NMDAR) 0.64 .10−15 C
Calcium ions entering through VSCC ≈ 2000 ions
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