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Résumé

Les observations astronomiques nous permettent d’étudier l’univers et de comprendre les

phénomènes qui le gouvernent. La matière visible dans l’univers émet des ondes à des

fréquences très diverses, réparties sur tout le spectre électromagnétique (domaines radio,

submillimétrique, infrarouge, visible, ultraviolet, X et gamma). Ces ondes nous renseignent

sur certaines caractéristiques physico-chimiques des éléments observés (nature, tempéra-

ture, mouvement, etc.). Des télescopes couvrant différentes plages de fréquences sont néces-

saires pour observer l’ensemble du spectre électromagnétique. Les radio-télescopes, sensi-

bles aux ondes (sub)millimétriques, sont principalement dédiés à l’observation de la matière

froide présente dans le milieu interstellaire. Le milieu interstellaire est le berceau des étoiles

et son étude est essentielle pour comprendre les différentes étapes de la vie des étoiles.

La fréquence maximale d’observation des radio-télescopes est en augmentation depuis la

fabrication des premiers radio-télescopes dans les années 1930. Récemment, des radio-

télescopes capables de détecter des signaux dans l’infrarouge lointain, au delà de 1 THz, ont

été développés. Ces avancées technologiques ont été motivées, entre autres, par la présence,

dans le milieu interstellaire, de molécules et d’ions uniquement observables à des fréquences

supérieures à 1 THz. Pour observer des raies avec une haute résolution spectrale, les radio-

télescopes sont équipés de récepteurs hétérodynes. Ce type de récepteur permet d’abaisser

la fréquence de la raie spectrale observée tout en conservant ses caractéristiques (une raie

observée à 1 THz peut, par exemple, être décalée à une fréquence de 1 GHz). Cette tech-

nique permet d’observer des raies avec une très haute résolution spectrale et c’est pourquoi

les récepteurs hétérodynes sont largement utilisés pour les observations de raies spectrales

aux fréquences GHz et THz. Dans les récepteurs hétérodynes, un oscillateur local (OL) émet

un signal monochromatique à une fréquence très proche de celle du signal observé. Les

deux signaux sont superposés à l’aide d’un diplexeur et transmis à un mélangeur. Ce dernier

réalise le battement des deux signaux et génère un signal identique au signal observé mais

à une fréquence plus faible.

Durant ma thèse, j’ai travaillé sur la construction, la caractérisation et l’amélioration d’un

récepteur hétérodyne à 2.6 THz. Cette fréquence d’observation (2.6 THz) est l’une des plus

hautes atteintes par les récepteurs hétérodynes THz existant actuellement, ce qui constitue

un défi technologique très important. Dans le but de caractériser et d’améliorer ce récepteur,

je me suis concentré sur trois aspects essentiels :

1. La stabilité : C’est l’une des caractéristiques principales des récepteurs hétérodynes.

Elle est liée au bruit généré par le récepteur et détermine le temps pendant lequel le

récepteur peut intégrer le signal reçu sans avoir besoin d’être recalibré. Meilleure est

la stabilité du récepteur, plus longtemps il peut intégrer le signal observé et plus le
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Résumé

bruit de la mesure est atténué. La stabilité d’un récepteur peut être caractérisée par

la variance d’Allan. Dans ma thèse, je distingue les variances d’Allan totale et spec-

trale. La variance d’Allan totale permet d’estimer la stabilité en puissance du récepteur

sur l’ensemble de sa bande passante. La variance d’Allan spectrale donne une estima-

tion de la stabilité de la forme du spectre (on considère la variation des canaux de

fréquences les uns par rapport aux autres). À l’aide de ces deux types de variances

d’Allan, j’ai pu calculer la stabilité de notre récepteur et conclure qu’avec notre os-

cillateur local à 600 GHz elle est comparable à celle d’autres récepteurs hétérodynes

internationaux comme GREAT et HIFI. En mesurant la stabilité des différents éléments

du récepteur, j’ai pu en déduire que l’oscillateur local à 1.4 THz et l’alimentation de

notre mélangeur étaient les principales sources d’instabilités.

2. Le diplexeur : Cet élément permet de coupler le signal observé avec celui de l’oscillateur

local (OL). Le but du diplexeur est de transmettre le maximum de puissance du sig-

nal observé et suffisamment de puissance de l’OL pour permettre un fonctionnement

optimal du mélangeur. Le diplexeur le plus couramment utilisé aux fréquences THz

est un film semi-réfléchissant en Mylar®. Il transmet généralement environ 90 % du

signal observé et réfléchit environ 10 % du signal de l’OL. À des fréquences inférieures

à 1 THz, les OL émettent assez de puissance pour que 10 % suffisent au fonction-

nement du mélangeur. Pour notre récepteur à 2.6 THz, cette méthode n’est pas en-

visageable car les OL standards n’émettent pas assez de puissance. J’ai donc conçu,

testé et amélioré un autre type de diplexeur, un interféromètre de Martin-Puplett. Cet

interféromètre utilisant deux grilles polarisantes, deux miroirs en toit et un miroir el-

lipsoïdal pour focaliser le signal de l’OL, peut théoriquement transmettre à la fois le

signal observé et celui de l’OL avec très peu de pertes. J’ai donc conçu et caractérisé les

différents éléments de l’interféromètre avant de les assembler et de mesurer l’efficacité

globale de l’interféromètre. Cela m’a permis d’obtenir une transmission de 76 % du

signal de l’OL et d’estimer la transmission du signal observé à 79 % environ. Cet inter-

féromètre est donc opérationnel pour être utilisé dans notre récepteur hétérodyne à

2.6 THz. De plus, les mesures des différents éléments de l’interféromètre m’ont permis

de déterminer quels éléments généraient le plus de pertes. Ainsi, le remplacement des

grilles polarisantes devrait permettre une amélioration de l’efficacité de notre inter-

féromètre de Martin-Puplett à 2.6 THz.

3. Le réseau de phase : Il est utilisé pour diviser le faisceau de l’OL en plusieurs faisceaux

et permettre la fabrication de récepteurs hétérodynes à plusieurs pixels. Les récepteurs

hétérodynes ne comportent généralement qu’un seul pixel. Pour augmenter le nombre

de pixels, il est nécessaire d’utiliser plusieurs mélangeurs qui doivent, chacun, recevoir

un signal de l’OL couplé avec une partie du signal observé. Pour permettre la création

d’un récepteur hétérodyne multi-pixel, j’ai conçu et testé un nouveau type de réseau de
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phase, que nous avons appelé Réseau de phase global, permettant de diviser le faisceau

de l’OL en plusieurs faisceaux. J’ai développé un programme numérique pour calculer

des profils de réseaux de phase permettant de générer le nombre souhaité de faisceaux

avec une excellente efficacité. Les profils de phase générés par ce programme n’ont pas

de contrainte géométrique, à la différence des réseaux de phase actuellement utilisés

aux fréquences THz, les réseaux de Dammann qui ont une géométrie discrète, et les

réseaux de Fourier qui ont une géométrie continue. Les Réseaux de phase globaux que

j’ai développés peuvent être non-périodiques et pourraient également avoir d’autres

applications, comme modifier la forme d’un faisceau. J’ai réalisé deux prototypes de

Réseaux de phase globaux divisant le faisceau de l’OL en quatre faisceaux et fonction-

nant à 600 GHz. Les deux prototypes sont basés sur le même design, mais l’un fonc-

tionne en transmission (il est en TPX®, un plastique assez transparent à 600 GHz),

et l’autre, en laiton, fonctionne en réflexion. J’ai pu vérifier et améliorer l’efficacité

théorique de ces prototypes avec FEKO, un logiciel de simulation électromagnétique.

Les deux prototypes ont été réalisés par une société extérieure et testés dans notre

laboratoire à 600 GHz. J’ai mesuré une efficacité de 76 ± 2 % pour le prototype en

réflexion, et 62±2 % pour le prototype en transmission. Ces valeurs sont très bonnes

et la correction d’une erreur d’usinage sur le réseau en transmission devrait encore

augmenter son efficacité. L’efficacité de ces prototypes de Réseaux de phase globaux

est parmi les meilleures au monde pour les fréquences THz, et de prochains prototypes

à 1.4 THz et 2.6 THz sont prévus.

Finalement, le travail accompli durant cette thèse de doctorat constitue une étape impor-

tante vers la réalisation d’un récepteur hétérodyne multi-pixel à 2.6 THz utilisant un in-

terféromètre de Martin-Puplett comme diplexeur, et possédant de très bonnes caractéris-

tiques de stabilité et de sensibilité. Ce futur récepteur hétérodyne pourrait être utilisé dans

d’importants projets internationaux comme CIDRE, Millimetron, CCAT, GUSSTO ou THEO.

Mots clés : Récepteur hétérodyne, térahertz, THz, Martin-puplett, variance d’Allan, réseau

de phase, stabilité, multi-pixel, oscillateur local, diplexeur, optique gaussienne, quasiop-

tique, réseau de Dammann.
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Abstract

(Sub)Millimeter-telescopes are often used to observe the interstellar medium in the uni-

verse and they enable us to study the stellar life cycle. To detect and study some important

molecules and ions, we need receivers able to observe at frequencies above 1 THz. Re-

ceivers working at such high frequencies are quite new and the 2.6 THz heterodyne receiver

I built and characterized during my PhD represents the state-of-the-art of THz heterodyne

receivers. I especially focused on three important aspects of this receiver: its stability, the

superimposition of the local oscillator signal (LO) and the observed signal by a diplexer, and

the splitting of the LO signal by a phase grating. The stability was calculated with the Allan

variance and I found that the two elements limiting the stability of our receiver were the

1.4 THz local oscillator and the mixer bias supply. The Martin-Puplett interferometer (MPI)

diplexer I designed, built and tested is able to transmit 76 % of the LO power at 2.6 THz and

we estimate a transmittance around 79 % for the observed signal. This MPI is operational

and ready for the next generation of heterodyne receivers. Splitting the LO signal is essen-

tial to build heterodyne receivers with several pixels, which allows us to get spectra of the

universe at many positions in the sky simultaneously. I have developed a new kind of grat-

ing, called Global gratings, and I made two prototypes of these Global phase gratings able

to split the LO beam into four beams. These two phase grating prototypes, a transmissive

and a reflective one, were optimized for 610 GHz and showed, respectively, an efficiency of

62±2 % and 76±2 %. These excellent results validate the design and fabrication processes

of this new kind of grating. In conclusion, the work accomplished during this PhD consti-

tutes an important step toward the realization of a very stable and highly sensitive 2.6 THz

multi-pixel heterodyne receiver using a MPI diplexer.

Key words: Heterodyne receiver, THz, Martin-Puplett, Allan variance, phase grating, stabil-

ity, multi-pixel, local oscillator, diplexer, Gaussian optics, quasioptics, Dammann grating.
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Chapter 1

Introduction

Nearly all astronomical observations rely on electromagnetic waves. Our knowledge of the

Universe has long been based on optical observations. However, since the last century, enor-

mous technological advances enabled us to observe nearly the whole frequency spectrum.

The emergence of radio transmissions led to the development of astronomical receivers for

radio and sub-millimeter waves. At these frequencies, we are especially sensitive to the emis-

sion of cold matter, principally located in the interstellar medium (ISM). The ISM contains

molecular clouds where stars and planetary systems are created. Therefore, radio and sub-

millimeter astronomical receivers are essential to understand the stellar life cycle. They also

allow us to study the composition of molecular clouds in the Universe. Until now, technolog-

ical progress continuously increased the maximum observation frequency of sub-millimeter

receivers. Very recently, the first receivers above 1 THz have been built. Such receivers are

used to explore the far-infrared gap which is the frequency range located between infrared

and THz frequencies (figure 1.1). This frequency range has, so far, been little observed by

astronomers and it is one of the last parts of the spectrum remaining mostly unexplored.

FIGURE 1.1: Transmission of the atmosphere over the spectrum
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As shown on figure 1.1, far infrared radiation is mostly absorbed by the Earth atmosphere,

due to the presence of water vapor. Thus, all receivers observing at frequencies above 1 THz

must operate from very high altitudes (high mountain, plane, stratospheric balloon or satel-

lite).

Two kinds of receivers exist at THz frequencies. Bolometers, which measure the total power

received over a large frequency range; and heterodyne receivers, which can generally achieve

a very high spectral resolution and are especially used for spectral line observations. At

millimeter and sub-millimeter wavelengths, it is possible to detect rotational or vibrational

lines of many molecules, as well as fine structure lines of ions. The observation of molecular

transitions allows us to determine many physical and chemical characteristics of molecular

clouds. The THz spectrum, which remains partly unexplored, contains a few very important

lines not observable at lower frequencies (except for OH): N+ (1.46 THz), C+ (1.90 THz),

OH (2.51 THz), HD (2.68 THz) and OI (4.75 THz).

• The fine structure line of N+ at 1.46 THz is the third strongest cooling line in our galaxy,

as observed by the telescope COBE. N+ is a marker of the warm ionized medium.

• C+ has also been observed by COBE. It is the strongest line of our galaxy and the most

important ISM cooling line in the frequency range of COBE. C+ is seen in all the phases

of the ISM: the ionized medium, the cold neutral medium and the moderately dense

molecular medium.

• Deuterium is one of the primordial elements which has been exclusively created in

the Big Bang. In the universe, the D/H (deuterium/hydrogen) ratio decreases, as

deuterium is burned by stars but never created. Thus, the D/H ratio is a measure of

the history of star formation since the creation of the Universe. Measurements of HD

can be used to calculate the D/H ratio, or if the ratio is known, HD can be used as a

tracer for H2.

• The OH molecule is a fundamental tracer for the understanding of the oxygen chem-

istry and the formation of water. The abundance of OH is linked to that of H2O and

O2 in the ISM. Thus, OH observations are essential to study the numerous aspects of

the interstellar chemistry for oxygen and water.

• Neutral atomic oxygen OI can be used to trace diffuse molecular gas and it is also

a major coolant of the dense interstellar medium. Moreover, it is used to study the
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Chapter 1. Introduction

physical conditions in the photo-dissociation regions (PDR) around massive young

stars.

Therefore, the interest in observing these spectral lines motivates the development of het-

erodyne receivers above 1 THz.

This PhD thesis was initially dedicated to the CIDRE project, a heterodyne receiver whose

goal was to observe HD and OH at 2.68 THz and 2.74 THz. As these frequencies are mostly

absorbed by the atmosphere, CIDRE was planned to be carried by a stratospheric balloon,

to observe the interstellar medium from an altitude of 40 km. The CIDRE project was sus-

pended for budget reasons in 2014. However, this PhD remained dedicated to the devel-

opment and improvement of a 2.6 THz multi-pixel prototype heterodyne receiver, because

similar receivers will be required for future radio-telescope projects, like Millimetron [1],

CCAT [2] and GUSSTO. A satellite project named THEO (THz heterodyne observatory) has

been recently proposed by Gerin and Wiedner (Paris Observatory, LERMA). The target lines

of this instrument are C+, N+ and OI, and its development will directly benefit from this

PhD work. The development of a heterodyne receiver at such high frequencies is technically

very challenging.

During my PhD, I developed, built and characterized a 2.6 THz prototype receiver that rep-

resents the state-of-art of THz heterodyne receivers. In particular, I studied three aspects of

my prototype heterodyne receiver:

1. The stability of the receiver and its components.

2. The optics, by designing, building and testing a Martin Puplett interferometer.

3. The distribution of the local oscillator beam, for which I designed and tested two phase

grating prototypes.

The next chapter (chapter 2) starts with an introduction of heterodyne receivers, followed

by a complete description of our 2.6 THz receiver and a detailed presentation of the other

chapters of this thesis. Then, the three main subjects of my thesis, listed above, are developed

in detail in chapters 3, 4 and 5. Each of these chapters focuses on a specific aspect of our

2.6 THz heterodyne receiver. Finally, this thesis finishes with a conclusion of my work in

chapter 6.
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Chapter 2

Terahertz heterodyne receivers

2.1 Motivation

Heterodyne receivers have revolutionized radio astronomy and receivers for higher and

higher frequencies have been built. Recently the first heterodyne receivers above 1 THz

have been built and tested. For my thesis, I have built characterized and improved a proto-

type receiver at 2.6 THz for the next generation of space-borne telescopes.

This chapter provides the reader with background information concerning THz heterodyne

receivers, useful to understand the other chapters of this thesis. This chapter is divided into

different parts. It starts with a brief description of existing heterodyne receivers above 1 THz.

Then, I describe the functioning and main characteristics of standard heterodyne receivers,

and I detail the different elements constituting THz heterodyne receivers. Finally, the last

part of this chapter contains a complete description of our 2.6 THz heterodyne receiver, and

a presentation of the different aspects of my thesis.

2.2 THz heterodyne receivers in astronomy

2.2.1 Main characteristics of heterodyne receivers

Heterodyne receivers are an essential part of radio-astronomy and have lead to a wealth

of discoveries. In contrast to bolometers, they usually have a very high spectral resolution
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and are ideally suited to observe line emissions, from which we can deduce the physical and

chemical conditions of the interstellar medium.

2.2.2 Overview of existing THz heterodyne receivers

Several THz heterodyne receivers operating above 1 THz are already working on ground

based and space based telescopes, some of them are listed below and are shown in figure 2.1.

They are all using HEB mixers (cf. section 2.4.1), except the first one, KAO’s receiver, which

was using a Schottky diode mixer, less sensitive but covering a larger bandwidth than HEBs.

• The Kuiper Airborne Observatory (KAO) started observing in 1975 and it has been

operating during 20 years, before being replaced by SOFIA. It was carrying a 91 cm

diameter primary reflector and was operating from a plane. The heterodyne receiver

of KAO was able to observe from 700 GHz to 3 THz (cf. Röser [3]).

• The Receiver Lab Telescope (RLT) has been intermittently operating since 2002 from

an altitude of 5525 meters, on Cerro Sairecabur, in Chile. It has been the first ground

based telescope to observe at frequencies above 1 THz (cf. Marrone et al. [4]).

• CONDOR (CO N+ Deuterium Observations Receiver) was the first ground based het-

erodyne receiver to be tested on a large telescope, the APEX 12m telescope, in 2006. It

observed at frequencies between 1.25 THz and 1.53 THz [5][6]. The APEX telescope is

also located in the Chilean Andes (Llano de Chajnantor) at an altitude of 5105 meters.

• The HIFI (Heterodyne Instrument for the Far-Infrared) instrument of Herschel satellite

started observing in early 2010, from space [7][8][9]. It covers frequency ranges

between 488 GHz and 1272 GHz, and between 1430 GHz and 1902 GHz.

• The GREAT (German REceiver for Astronomy at Terahertz frequencies) [10] and up-

GREAT [11] instruments are two heterodyne receivers which have been operating on

SOFIA airplane observatory [12], since 2012 and 2015 respectively. These two het-

erodyne receivers cover different frequency windows between 1.25 THz and 4.7 THz.

• The Stratospheric THz Observatory (STO) [13] has an heterodyne receiver embedded

below a stratospheric balloon which can observe from an altitude of 38 km. A new

version of this balloon, STO-2 [14] will be launched in late 2015 and will be able to

observe three frequency bands centered on 1.4 THz, 1.9 THz and 4.7 THz.
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(A) KAO (B) RLT (C) APEX

(D) Herschel (E) SOFIA (F) STO

FIGURE 2.1: Pictures of different heterodyne receivers operating above 1 THz
Credits:

(A): NASA
(B): D. Marrone ( )

(C):
(D): ESA (Image by AOES Medialab)

(E):
(F): Christopher Walker/U.S. Antarctic Program

2.3 General principle of heterodyne receivers

2.3.1 The heterodyne principle

Heterodyne receivers mix the sky signal (also called radio frequency (RF) signal) with an

artificial monochromatic signal created by the local oscillator (LO). The mixing allows the

sky signal to be shifted to a different frequency without losing any amplitude or frequency

information (figure 2.2).

This feature is particularly interesting in THz astronomy because it enables us to down-

convert a radio frequency (RF) signal observed at a few THz, to a few GHz, and process it

more easily and with a better spectral resolution. The down-conversion is produced by the

combination of the two main components of the heterodyne receiver, the mixer and the local

oscillator (LO):
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FIGURE 2.2: Principle of the heterodyne detection

• The LO generates a signal at a frequency fLO close to the frequency of the observed

RF signal ( fRF ). The frequency of the signal emitted by the LO must be well known

and as monochromatic as possible.

• The mixer is a non-linear device which receives and combines both RF and LO sig-

nals. At the output of the mixer, we only select the harmonic corresponding to the

frequency difference between the two signals, and call it intermediate frequency (IF)

signal ( fI F = | fLO − fRF |).

If the LO signal is very stable (in frequency and in power) and almost monochromatic, the IF

signal will be the same as the RF signal, but at a frequency corresponding to | fLO − fRF |, for

fundamental mixers (figure 2.2). However, the LO and RF signals need to be superimposed

before being sent to an unbalanced fundamental mixer, which is achieved with a coupling

element called diplexer. A beam splitter is often used. It reflects a small part of the LO signal

(usually around 10 %) and transmits most of the RF signal (usually 90 %).

Finally, the IF signal at the output of the mixer needs to be amplified, filtered, and processed

with a spectrometer to obtain a spectrum. Figure 2.3 shows a more detailed schematic of a

heterodyne receiver, with a beam splitter diplexer.
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FIGURE 2.3: Schematic of a heterodyne receiver

2.3.2 Sensitivity of heterodyne receivers

2.3.2.1 Noise temperature

The sensitivity of a radio receiver is often measured in terms of noise temperature. The

lower the noise temperature, the more sensitive the receiver. The noise temperature of a

receiver corresponds to the noise power generated by the receiver in a bandwidth B.

Te =
P

kB
, (2.1)

where P is the noise power at the output of the receiver (in Watts), k the Boltzmann’s constant

(k = 1.380 × 10−23 J.K−1), Te the noise temperature in Kelvins, and B the bandwidth in

Hertz. For experimental reasons, it is more convenient to express the noise power (P) by its

equivalent noise temperature (Te).

All the components of a heterodyne receiver have a noise temperature which has an influence

on the total noise temperature of the receiver. The elements before the first amplifier are

the components which noise temperature is the most critical (ie. optics, mixer, cables etc.).

Therefore, they mostly determine the total noise temperature of the heterodyne receiver.

The noise temperature of the receiver is calculated according to the following formula:

Tnoisetot = Tnoise1 +
Tnoise2

G1
+

Tnoise3

G1G2
+ ...+

TnoiseN

G1...GN
, (2.2)

where Tnoisei is the noise temperature and Gi is the available gain of each stage of the receiver.

We see from this formula that the first stages before the cryogenic amplifier, which has a
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gain G >> 1, have the most important effect on the total noise temperature of the receiver

Tnoisetot .

2.3.2.2 Measurement of the noise temperature

To measure the noise temperature of a receiver we usually use the Y-factor method, which

is described a bit further in this section. We measure the output power of the receiver when

the RF signal comes from loads at different temperatures (generally 77 K and 300 K). The

output power is directly proportional to the noise temperature of the load plus the noise

temperature of the receiver:

P = GkB(Te + Tload), (2.3)

where P is the measured power at the output of the receiver in Watts, k the Boltzmann’s

constant, B the bandwidth in Hertz and G the total amplification gain of the receiver. Te

and Tload are, respectively, the noise temperature of the receiver and the noise temperature

of the observed RF load, in Kelvins. As described in the articles from Callen and Welton

[15], Kerr et al. [16] and Kollberg and Yngvesson [17], the noise temperature of a black

body is different from the its physical temperature, especially at frequencies above 1 THz.

To accurately deduce the noise temperature Tload of a load at a physical temperature T , we

use the Callen and Welton formula:

Tload = T





hf
kT

exp
�

hf
kT

�

− 1



+
hf

2k
, (2.4)

where, h and k are the Planck and Boltzmann constants, and f the frequency at which we

observe the load.

As example, we used realistic values of G, B and Te and plotted the evolution of P as a

function of Tload (figure 2.4). Two measurement points, Tload = 77 K and 300 K, allow to

draw a line which intersects the abscissa axis at T=-1000 K. At P = 0, we easily deduce from

equation 2.3 that Te = −Tload . So, Te = 1000 K corresponds to the noise temperature of the

receiver in this example (with B=1 GHz and G=1E6).
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FIGURE 2.4: Measurement of the noise temperature of a heterodyne receiver

The Y factor method

To measure the noise temperature of a receiver, the Y factor method is usually used. The Y

factor is calculated with the measured power at the output of the IF chain when the receiver

sees a hot load and a cold load as RF signal. The ratio of the two powers defines the Y factor,

as shown in the equation:

Y =
Phot

Pcold
=

Thot + Te

Tcold + Te
, (2.5)

where Phot and Pcold are the power values measured at the output of the IF chain when the

receiver sees a hot load and a cold load, and Te is the noise temperature of the receiver. Thot

and Tcold are the noise temperatures of the hot and cold loads, calculated with the Callen

and Welton formula (equation 2.4). Then, we can deduce:

Te =
Thot − Y Tcold

Y − 1
. (2.6)

We usually use liquid nitrogen to cool down a black body to 77 K to make the cold load, and

we use a black body at ambient temperature as hot load. At THz frequencies, black bodies

are usually made with absorbers, such as those from Eccosorb®. This method is fast and

accurate (if the hot and cold temperatures are different enough (like 77 K and 300 K)), and

it is not required to know the characteristics of the elements of the receiver. Therefore, it is

the most used method to determine the noise temperature of heterodyne receivers.
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2.4 Description of the different elements of a THz heterodyne

receiver

2.4.1 The mixer

The mixer is a non-linear device which mixes the LO and RF signals to down-convert the

observed RF signal to a lower frequency, called intermediate frequency (IF). An antenna,

connected to the mixer, is generally used to receive the RF and LO signals. This antenna can

have a large frequency bandwidth (like log-spiral antennas), or be frequency selective (like

twin-slot antennas or horns). Several non-linear devices are used as mixers. The three most

common mixers used in THz heterodyne receivers are Schottky diodes, SIS (Superconductor-

Insulator-Superconductor) junctions, and HEBs (Hot Electron Bolometer). These different

kinds of mixers are presented below with their characteristics, frequency ranges, and appli-

cations.

2.4.1.1 Down-conversion of the two RF side-bands

When the unbalanced standard mixer down-converts the RF spectrum, two side-bands,

around the LO frequency, are down-converted. The lower side band (LSB), which is be-

low the LO frequency, and the upper side band (USB), which is above the LO frequency, are

both down-converted to the same IF band (figure 2.5).

FIGURE 2.5: Down-conversion of the RF side bands

When the two side bands are down-converted, they are superimposed in the IF band. Re-

ceivers where both side bands are down-converted are called double-sideband (DSB) re-

ceivers.
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2.4.1.2 The pumping of mixers

Mixers are non-linear devices, which means that the relation between their current and

voltage is non-linear. However, the relation between their input and output power is usually

linear (when the input power level is not too high). They must receive enough LO power

to be in a very sensitive state and efficiently mix the LO and RF signals to generate the

IF signal. When they are in this state, we say that they are pumped. A mixer is correctly

pumped when the conversion of the RF electromagnetic signal into the IF electrical signal

is the most efficient. The pumping level has an influence on the sensitivity of the mixer.

Different mixers, such as Schottky diodes, SIS junctions or HEBs do not require the same

amount of LO power to be pumped. Sometimes, it can be problematic to find a LO which

generates enough power to correctly pump a mixer, especially at frequencies above 1 THz.

2.4.1.3 The Schottky diode mixer

Schottky diode mixers can be used at frequencies from several GHz up to several THz, and

have the huge advantage of being operational at room temperature. However, their sensi-

tivity can be improved by cooling them down, where they reach their optimal performance

around 20 K (cf. Chattopadhyay et al. [18]). However, they need to be pumped with a

high LO power, in the range of hundreds of µW to a few mW, which is their main limita-

tion. Schottky mixers can also be used as harmonic mixers, which means that they can mix

the RF signal with harmonic multiples of the LO signal. The frequency of the IF signal can

correspond to fI F = |k. fLO − l. fRF |, where k, l ∈ N. Schottky diode mixers have a large

bandwidth of several GHz. The latest results obtained with Schottky diode mixers designed

and manufactured at LERMA showed a DSB noise temperature of 870 K at 557 GHz at am-

bient temperature. By cooling the mixer down to 134 K, this noise temperature was reduced

by approximately 200 K (cf. Maestrini et al. [19] and Treuttel et al. [20]). At frequencies

around 1 THz, harmonic Schottky diode mixers currently have a DSB noise temperature of

4000 K, at room temperature, as shown by the article from Thomas et al. [21].

A Schottky mixer has been used in the first heterodyne receiver above 1 THz (cf. Röser

[3]). However, the next heterodyne receivers used cryogenic mixers, which have a lower

noise temperature and require less LO power than Schottky mixers. Today, Schottky diode

mixers are mainly used to analyze planets’ atmospheres, where we do not need the high
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sensitivity of SIS or HEB mixers. For such missions, their higher operating temperature is a

big advantage because they do not require to be cooled down by cryogenic liquids, which

evaporate with time. Pictures of a Schottky mixer circuit, and of a pair of Schottky diodes

are shown in figure 2.6.

FIGURE 2.6: SEM picture of a LERMA-LPN 600 GHz subharmonic mixer (A), and of an
anti-parallel pair of Schottky diodes (B)

(Credits: Alain Maestrini)

2.4.1.4 The SIS mixer

Superconductor-Insulator-Superconductor (SIS) junctions are very sensitive mixers at sub-

millimeter wavelengths. However, as most SIS mixers use niobium or niobium nitride as

superconducting material, they only work up to approximately 1.3 THz, twice the voltage

gap of niobium. Practically, they are used as mixers for frequencies below 1 THz, where

they are the most sensitive mixers. They have an excellent noise temperature (ie. 30 K at

100 GHz and 85 K at 500 GHz, cf. Carter et al. [22] and Chattopadhyay et al. [18]), and must

be cooled down to approximately 4 K with liquid helium. Their bandwidth can be greater

than 4 GHz and they need to be used with an LO which emits around 40 µW to 100 µW.

As they offer the best sensitivity below 1 THz, they are used in nearly all sub-millimeter

telescopes, such as ALMA [23] and NOEMA [24].

2.4.1.5 The HEB mixer

Hot Electron Bolometer (HEB) mixers are currently the most sensitive mixers for frequen-

cies above 1.3 THz. They need to be cooled down to approximately 4 K and can reach a
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FIGURE 2.7: Picture of a SIS mixer
(Credits: Faouzi Boussaha)

bandwidth of 3 or 4 GHz. They have a noise temperature better than Schottky mixers (ap-

proximately 1200 K between 1.4 THz and 1.9 THz for HIFI [8]). They only require 1 or

2 µW of LO power to be pumped, a lot less than Schottky and SIS mixers. It enables them

to be used with high frequency LO which only emit a few µW. They are a good alternative to

Schottky diode mixers for high THz frequencies, when a high sensitivity is needed, or when

there is not a lot of LO power available. All actual heterodyne receivers for astronomy above

1 THz use HEB mixers. HEB mixers have been used in HIFI [8] on the Herschel satellite,

and are used on GREAT [10] and upGREAT [11], which operate from SOFIA airplane.

FIGURE 2.8: Pictures of a HEB
(Credits: Gregory Gay)

2.4.2 The local oscillator

The local oscillator (LO) is one of the main components of a heterodyne receiver. It has

to generate a very stable quasi-monochromatic signal to pump the mixer and to be mixed

with the RF signal to produce the IF signal. Moreover, to pump the mixer, it has to emit

enough power, which is sometimes difficult above 1 THz. There are several kinds of LO, with

different characteristics. The most widely used is the frequency multiplier chain, and the
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most promising at high THz frequencies is the quantum laser cascade. These two different

LOs are described below.

2.4.2.1 The frequency multiplier chain

Frequency multiplier chains are the most widely used LOs in THz heterodyne receivers (fig-

ure 2.9 shows a frequency multiplier chain from Virginia Diodes Inc. (VDI)). An input low

frequency signal (a few tens of GHz) is multiplied and amplified by the multipliers and am-

plifiers of the chain to generate the final LO signal. The input signal can be generated by

a Gunn diode or a frequency synthesizer. However, each multiplier of the chain loses some

power. As a result, at frequencies higher than 2 THz, multiplier chain LOs do not generate

more than a few µW.

FIGURE 2.9: Example of a frequency multiplier chain LO from VDI
(Picture from Hesler et al. [25])

The article from Hesler et al. [25] describes the latest performances of frequency multiplier

chain LOs, up to 3 THz (figure 2.11 shows the output power achieved with frequency mul-

tiplier chains and QCLs). Frequency multiplier chains can operate at room temperature and

are usually very stable and monochromatic. As multiplier chains use waveguides, the output

is usually radiated by a horn, which gives a linearly polarized Gaussian beam. Moreover, it

is possible to tune the output frequency of multiplier chains by approximately 10 % to 20 %,

allowing the observation of several frequency lines with the same heterodyne receiver. So,

frequency multiplier chains are very reliable, flexible and are used in most heterodyne re-

ceivers for frequencies below 3 THz.
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2.4.2.2 The quantum cascade laser

Quantum Cascade Lasers (QCLs) are mostly aimed to replace frequency multiplier chains as

LOs at frequencies higher than 3 THz. Figure 2.10 shows a zoomed picture of a QCL made

by the MPQ (Materials and Quantum Phenomena) laboratory.

FIGURE 2.10: Picture of a QCL
(Courtesy of Carlo Sirtori, MPQ laboratory)

THz QCLs need to operate at cryogenic temperatures, usually between 10 K and 70 K (cf. Ren

et al. [26]) which is less convenient than frequency multiplier chains. Moreover, QCL are not

very frequency stable, are difficult to phase lock and are usually not continuously tunable

(cf. Ren et al. [27]). As QCLs’ beam is not very Gaussian, the coupling with the mixer is not

perfect and has losses. Figure 2.11 shows the output power of QCL and frequency multiplier

chains as a function of frequency.

FIGURE 2.11: Output power of different kinds of LOs as a function of frequency
(Picture from Hesler et al. [25])
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Today, QCLs are only used as LOs for frequencies above 2.5 THz, where frequency multiplier

chains do not emit enough power to pump the mixer. However, as the technology of QCLs

evolve, it should be possible, in a near future, to have more stable QCLs with an operating

temperature above 77 K, which would make them more convenient to use as LOs.

2.4.3 The diplexer

Most SIS and HEB mixers have only one input antenna for both LO and RF signals In this

case, a diplexer is used to superimpose the RF and LO signals before they reach the mixer.

This element is very important because its losses have a direct impact on the sensitivity of the

whole receiver. It must efficiently superimpose the two signals and lose as little RF power as

possible, while the LO power transmitted to the mixer must still be high enough to pump it.

Two major diplexers are used in THz heterodyne receivers, the beam splitter and the Martin

Puplett interferometer (MPI). The beam splitter is more convenient to use, but it loses a lot

of LO power, while the MPI is more complicated to align but has less LO losses. These two

diplexers are presented below, and the MPI is described in detail in Chapter 4, as it is an

important part of our 2.6 THz heterodyne receiver.

2.4.3.1 The beam splitter

The most commonly used diplexer in heterodyne receivers is a beam splitter. It can split an

incoming beam into a reflected beam and a transmitted beam. In the case of a heterodyne

receiver, it receives both LO and RF beams, and reflects the LO beam while it transmits the RF

beam. Beam splitters for THz frequencies are often made of Mylar. Depending on the thick-

ness of the Mylar, the power reflection and transmission coefficients vary with frequency.

Usually, the beam splitter is chosen to have a power reflection of the LO beam around 5 %

or 10 %, while the RF beam is transmitted at 90 % or 95 %. This method is very convenient

because the beam splitter is easy to align, and transmits most of the RF signal, which is what

we are interested in for astronomical observations. However, at high frequencies, multiplier

chain LOs do not emit a lot of power and it is difficult to pump the mixer. So, losing 90 %

or 95 % of the LO power becomes a problem. Other more complex diplexers with a better

efficiency exist, like the Martin Puplett interferometer (MPI), presented below.
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2.4.3.2 The Martin Puplett Interferometer

The Martin Puplett interferometer (MPI) is a diplexer which can superimpose the LO and

RF signals with very little losses, for both signals. The functioning of the MPI is extensively

described in chapter 4, because it is an important part of our 2.6 THz heterodyne receiver.

The MPI is composed of two wire grids, G1 and G2, and two roof-top mirrors T1 and T2, as

shown in figure 2.12. An ellipsoidal mirror (MLO) is added to focus the LO signal.

FIGURE 2.12: Picture of a MPI designed at the Observatory of Paris

The MPI has already been used as diplexer in several major heterodyne receivers, such as

GREAT [10] and CONDOR [5]. However, as it is a lot more difficult to align than a simple

beam splitter, it is only used in THz heterodyne receivers for high frequencies, where there

is little LO power available.

2.4.4 The IF chain and the spectrometer

At the output of the mixer, the intermediate frequency (IF) signal needs to be amplified and

filtered before being processed by a spectrometer. The first amplifier, just after the mixer, is

usually a low noise cryogenic amplifier because it is important to add as little noise to the IF

signal as possible. Then, ambient temperature low noise amplifiers (LNA) and a bandpass

filter are often used to amplify further the IF signal and filter it. Finally, a spectrometer is used

to analyze the down-converted spectrum of the IF signal. Because of recent technological

developments, digital Fourier transform spectrometers (DFTS) have become the standard

spectrometers for heterodyne receivers. A DFTS uses an analog to digital converter (ADC)

card to digitize the input signal, and a FPGA to perform a fast Fourier transform (FFT) of

the data, in real time. The spectral data can be directly transmitted to a computer. With

the increasing speed of the FPGAs and ADC cards, DFTS are improving fast and some 5 GHz
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bandwidth DFTS are currently available (ie. the second generation of DFTS from Omnisys

company).

FIGURE 2.13: Picture of a DFTS, from Radiometer Physics company

2.5 Our 2.6 THz heterodyne receiver

2.5.1 Description of our 2.6 THz heterodyne receiver

During this PhD, I built, tested and improved a 2.6 THz heterodyne prototype receiver (fig-

ure 2.14), whose elements are described below.

• The LO: I use a 2.6 THz frequency multiplier chain from VDI (Virginia diodes Inc.)

which emits a maximum of 2 µW.

• The mixer: For our tests, we used a HEB using a log spiral antenna which was designed

and produced at LERMA and LPN laboratories and works well for frequencies up to

several THz (cf. Delorme et al. [28] and Lefèvre et al. [29]). It uses a NbN (niobium

nitride) bridge on a silicon substrate and is phonon cooled. However, the final mixer

will be a HEB with a twin-slot antenna optimized for 2.5 to 2.7 THz. In both cases,

we add a silicon lens in front of the HEB to focus the signal.

• The mixer bias supply: The bias supply for the HEB has been manufactured at LERMA,

according to the plans elaborated at SRON to build the bias supply for the HIFI instru-

ment of the Herschel satellite.

• The diplexer: A Martin Puplett interferometer (MPI) is used as diplexer. I have specif-

ically designed it for our 2.6 THz receiver and it is extensively described in chapter 4.
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• The intermediate frequency (IF) chain: The IF chain is composed of a cryogenic am-

plifier, two warm amplifiers a bandpass filter and some attenuators to avoid saturating

the last amplifier and reduce possible standing waves. The low noise cryogenic am-

plifier was bought from Caltech university. Between 300 MHz and 4 GHz, and at a

temperature of 21K, it has a gain of 35 dB to 43 dB and a noise temperature below

4 K. The warm amplifiers were bought from Miteq (model: AFS3-00100600 13-10P-4)

and have a gain of 33dB to 33.5dB in our frequency range at ambient temperature.

The [0.5 - 1.5] GHz bandpass filter selects the range where our receiver is the most

sensitive.

• The spectrometer: I use a DFTS bought from RPG which has 8192 channels and a

bandwidth of 1.5 GHz.

• The cryostat: I use a wet cryostat filled with liquid Helium.

• Windows and IR filters: I use a 1mm thick HDPE (High density polyethylene) win-

dow for the cryostat followed by two sheets of Zitex® G104 as infra-red filter (The

transmission properties of Zitex® were studied by Benford et al. [30]).

This configuration has been used for most of the experiments described in this thesis, with

two occasional changes: The 2.6 THz LO has been sometimes replaced by a 1.4 THz or a

600 GHz LO, and a beam splitter diplexer was used with these lower frequency LO.

FIGURE 2.14: Picture of our heterodyne receiver
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2.5.2 Main aspects of this PhD

During this PhD, I built this prototype THz heterodyne receiver and I focused on 3 crucial

and very challenging aspects.

• The stability of the receiver: As this parameter is one of the most important char-

acteristics of heterodyne receivers, I developed a specific program and made multiple

experiments in order to accurately characterize the stability of the different parts of

our receiver. This study will enable me to correct and replace the least stable elements

and greatly increase the stability of our heterodyne receiver (cf. chapter 3).

• The LO-RF coupling: To be able to superimpose the LO and RF signals with very little

losses, I designed, built and tested a MPI diplexer optimized for our 2.6 THz LO. In

chapter 4, I describe the design and tests of our MPI and the characterization of all its

components.

• The beam splitting: Usually, heterodyne receivers have a single pixel and only mea-

sure the spectrum in one region of the sky. To prepare for the future of powerful

multi-pixel receivers, I dedicated the last part of my PhD to this challenging aspect. A

multi-pixel receiver requires the LO signal to be split into several beams, in order to

feed several mixers. To achieve this goal, I designed, simulated and built two phase

grating prototypes to split the LO signal into 4 beams at 600 GHz (cf. chapter 5).

This is a major step toward the achievement of a fully operational multi-pixel 2.6 THz

heterodyne receiver.
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Stability of the heterodyne receiver

3.1 Introduction

3.1.1 Motivation

Astronomical receivers are characterized by their observing frequency range, their band-

width, their spectral resolution, etc. Their performance is described by their sensitivity, but

their stability is not always mentioned even though it is a very important characteristic. A

stable receiver can integrate observation data over a long time while the noise contained in

the observations is reduced. An unstable receiver, in contrast, often needs to be re-calibrated.

The stability, that can be expressed in terms of Allan minimum time, as we shall see below,

is therefore a very important parameter. The stability determines the optimum integration

time for a particular instrument.

In this chapter, I will explain why it is important to know the optimal integration time of

a receiver for radio-astronomical observations. Then, we will look at the relation between

the noise and the optimal integration time, and how we can determinate both by using the

Allan variance. The second section of the chapter describes the Allan variance theory and

presents the two kinds of Allan variances used in this thesis: the total power Allan variance

and the spectral Allan variance. Then, in the third section, I measure the Allan variance of

our heterodyne receiver to deduce its optimal integration time.
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3.1.2 Influence of the noise on the optimal integration time

3.1.2.1 The radiometer formula

All measurements have random noise (or white noise) which is usually produced by the mea-

suring instrument and by the measured phenomenon. By repeating the same measurement

and averaging the results, the random noise can be reduced. The radiometer formula 3.1

describes how the white noise of a measurement decreases with the integration time and

the bandwidth of the measurement.

σ∝ 1p
B × T

, (3.1)

where σ, B and T are, respectively, the standard deviation (or rms noise), the bandwidth

and the integration time of the measurement. However, this formula is only valid if the

instrument only produces white noise.

3.1.2.2 Different kinds of instrumental noise

The noise level of a data set is described by its deviation (σ) or its variance (σ2). The

bigger the deviation (or the variance), the higher the noise level. The radiometer formula

(equation. 3.1) states that when the integration time increases, the standard deviation of the

data decreases, so does the white noise level. Most instruments do not only produce white

noise, but also low frequency noise. The power spectrum S( f ) of a signal is proportional to

the squared Fourier transform of the measured signal along time:

S( f )∝ |F [x(t)]|2 (3.2)

Where F is the Fourier transform, x(t) the data values along time, and f the frequency.

The noise generated by an instrument can be divided into three classes, the white noise,

the Flicker noise and the drift noise. They are characterized by their power spectrum, S( f ),

which is proportional to f −α, as ilustrated by figure 3.2. Where α ∈ [0 , 3]. These noises

are represented in figure 3.1 and described below:
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• The white (or random) noise: S( f ) = f 0. It has the same amplitude at all frequencies

and is random. It can be reduced by increasing the integration time of the receiver, as

described by the radiometer formula (equation. 3.1).

• The Flicker noise: S( f ) = f −1. Its amplitude decreases with frequency. It is usually

produced by electronic devices and it is independent of the integration time (it does

not increase nor decrease).

• The drift noise: S( f ) = f −α, where 2≤ α < 3. Its amplitude is high at low frequencies

and quickly decreases at higher frequencies. It is produced by slow variations (ie.

mechanical, thermal, gain fluctuations etc.), and it increases with integration time.

(A) White noise (B) Flicker noise (C) Drift noise

FIGURE 3.1: Examples of white, Flicker and drift noises along time

FIGURE 3.2: Power spectrum S( f ) of the different noise signals and of their sum

3.1.2.3 Summary

Generally, increasing the integration time of the data samples reduces the white noise but

increases the drift noise, while it does not affect the Flicker noise level. The optimal inte-

gration time corresponds to a trade off between drift and white noises. Evaluating the total

noise level and the contribution from each of these three noises over time can enable us to
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determine the optimal integration time. To achieve this goal, the Allan variance is a very

useful parameter.

3.2 The Allan variance

3.2.1 Background and theory

The Allan variance was first developed by D. W. Allan [31] in 1966. During the following

years, it has become a widely used tool in radio-astronomy to evaluate the stability of in-

struments. The Allan variance (σ2
A) is directly related to the total noise level present in the

data set measured by the instrument. So, when plotting the Allan variance as a function of

the integration time, the lowest noise level is reached for the integration time corresponding

to the smallest value of Allan variance. In figure 3.3, we plotted the evolution of the Allan

variance depending on the integration time of the three noises (white, Flicker and drift)

listed in the previous section (figure 3.1).

FIGURE 3.3: Allan variance of the 3 noises signals (logarithmic scale)

When using a log-log plot, the Allan variance of each type of noise has a specific slope. The

coefficient of this slope, β , is equal to α−1. Where α is the exponent of the power spectrum

of the considered noise. The values of α corresponding to the white, Flicker and drift noises

are, respectively, 0, 1 and 2 ≤ α < 3. That is why the Allan variance curves of these noises

have the following slope coefficients: β = −1, β = 0 and 1 ≤ β < 2. In the case of white

noise alone, the Allan variance (σ2
A) is proportional to the square of the deviation given by

the radiometer formula (equation 3.1).
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The Allan variance of the total signal, composed of the three noises, is the purple curve

(figure 3.3). For short integration times, the Allan variance mostly follows the white noise

curve, because it is the dominant noise. At longer integration times, the white noise becomes

negligible compared to the Flicker and drift noises, and the Allan variance increases due

to the effect of the drift noise. The lowest noise level is obtained for an integration time

corresponding to the minimum of the curve (where the Allan variance is the lowest), around

30 ms in our example. We call this optimal integration time or Allan time (TA). However,

when the minimum is not clearly visible on the curve, a good estimation of the Allan time is

when the Allan variance deviates from the radiometric line (White noise Allan variance) by

a factor
p

2. Curves without distinct minimum can occur when the Flicker noise is important

and the flat zone around the minimum of the Allan variance curve is quite large. The Allan

variance is very useful to analyze the stability of an instrument because it enables us to

clearly identify the 3 noises, and to exactly determine the optimum integration time.

3.2.2 Allan variance theory

The Allan variance theory is well described by Allan [31], Barnes [32], Schieder and Kramer

[33] and Kooi [34]. The Allan variance of an instrument is defined by the Allan variance

of data samples taken by this instrument when measuring a constant input signal (a load at

constant temperature for example).

We consider a continuous data set composed of N contiguous data samples x i (i ∈ [1 , N])),

where the pauses between the measurements are negligible. The integration time of each

data sample is τ. We look at subsets of K samples, each with an integration time of T = Kτ,

where K is the number of x i samples considered. The N samples are split into M adjacent

groups of K samples each (M = ⌊N/K⌋, where ⌊ ⌋ represents the f loor function). Each

group is averaged and the calculated mean (Xn(K)) corresponds to the data measured by

the instrument during an integration time T = Kτ.

Xn(K) =
1
K

K
∑

i=1

x(nK+i). (3.3)

And finally, the Allan variance (σ2
A) is calculated as:
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σ2
A(T ) =

〈(Xn+1(K)− Xn(K))
2〉

2
, (3.4)

σ2
A(T ) =

1
2(M − 1)

M−1
∑

n=1

(Xn+1(K)− Xn(K))
2 . (3.5)

To plot the Allan variance as a function of the integration time, we need to calculate σ2
A for

different values of K (the number of samples averaged in one group). We iterate K from 1

to N/2 to calculate the Allan variance for integration times from τ to Nτ/2. The successive

Allan variance values calculated for different integration times (T = Kτ) constitute the Allan

variance plot, as shown in figure 3.4

FIGURE 3.4: Schematic showing how the Allan variance is calculated by considering differ-
ent groups of data samples. The Allan variance plot uses a log-log scale

3.2.2.1 Bandwidth influence on the Allan variance

The Allan variance also depends on the frequency bandwidth B of the measurement. As

the bandwidth is increased (by averaging the signal of several channels of a spectrometer

for example), the white noise is reduced. As a result, the Allan time (TA) becomes smaller

because the intersection between the white noise and drift noise curves occurs at a shorter

integration time. This relation is expressed by the following formula:

T ′A
TA
=

�

B

B′

� 1
β+1

, (3.6)

where β is the slope of the drift noise on the Allan variance plot, B and B′ are two different

bandwidths used to measure the same device, TA and T ′A are the two corresponding Allan

times.

27



Chapter 3. Stability of the heterodyne receiver

3.2.3 Total power and spectral Allan variance

Two kinds of stabilities have been investigated with the Allan variance, the total power

and the spectral ones. The total power Allan variance estimates the noise level of a power

measurement over the instrument’s bandwidth. The spectral Allan variance considers the

variations between different frequency channels. It corresponds to the Allan variance of

the difference between two frequency channels separated by a spectral distance B. As our

heterodyne receiver is designed to observe spectral lines, we are mostly interested in its

spectral stability.

3.2.3.1 Total power Allan variance

The total power Allan variance describes the noise of a total power measurement over a

given frequency range. For astronomical observations, this stability is mostly needed when

we observe continuum emission, such as black body radiation, which emits over a frequency

range larger than the instrument’s bandwidth. Our heterodyne receiver will be mostly used

to observe spectral lines, so the spectral Allan variance is more important. However, we need

to calibrate our receiver with a calibration load. So, we must be sure that its total power

Allan time is long enough to have good enough gain stability between two calibrations.

3.2.3.2 Spectral Allan variance

The spectral Allan variance evaluates the variation of the difference between distinct fre-

quency channels. It tells us if the power of each frequency channels is stable compared to

that of another frequency channel (ie. it measures the deformation of the spectrum along

time). To measure the spectral Allan variance we need a spectrometer. Then, the Allan

variance calculation uses the power difference between two channels. If the power of all

channels varies by the same amount, it affects the total power stability but not the spectral

stability. However, if the power measured by the channels varies independently of its neigh-

bours, the spectral stability will be affected. The spectral stability is important for spectral

line measurements. When we observe a spectral line, we need to compare the power of

this spectral line to the adjacent frequency channels which do not receive any signal. The

power difference between the channels which receive the signal of interest and the adja-

cent channels which receive a background signal determines the power amplitude of the
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observed frequency line. So, we need a good spectral stability to integrate the spectrum and

to determine the difference between these channels accurately (with little noise).

3.2.4 The calculation algorithm

To calculate the Allan variance, different software exist, such as Alavar, which is a freeware,

created by Alaa Makdissi [35]. However, for the data produced by our DFTS, I needed to

calculate thousands of Allan variances (one for each frequency channel). This is not possible

with Alavar, so I wrote a Matlab program that uses our DFTS data as input, and calculates

its total power and spectral Allan variances. This Matlab program is based on the Allan

variance equations presented in section 3.2.2. Moreover, it takes advantage of Matlab matrix

manipulation and parallel computing to calculate many variances in a reasonable amount

of time. To check its validity, I compared the Allan variance curve calculated by Alavar with

the curve calculated by my program, for identical sets of data. Two examples are shown in

figure 3.5.

(A) Allan variance of signal 1 (B) Allan variance of signal 2

FIGURE 3.5: Allan variance of two signals, calculated with Alavar and with my Matlab
program

In both programs, the calculated Allan variance is the normalized Allan variance:

σ2
A

< x(t)>2
. (3.7)

This normalization allows us to only consider the relative variations of the signal and not its

absolute level, when calculating the Allan variance. Therefore, we can compare the noise

level of different signals by comparing their normalized Allan variance plots. We see that

the Allan variance calculated by my program is exactly the same as the Allan variance given

by Alavar. We can conclude that my Allan variance program is reliable to calculate the Allan

variance of our measurements.
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3.3 Stability of our heterodyne receiver

Our heterodyne receiver is composed of a local oscillator (LO), a coupling element (beam

splitter or Martin Puplett interferometer), a Hot Electron Bolometer (HEB) mixer, an in-

termediate frequency (IF) chain and a digital Fourier transform spectrometer (DFTS) (fig-

ure 3.6). Our heterodyne receiver and its components are described in detail in section 2.5.

FIGURE 3.6: Schematic of our heterodyne receiver set-up

I added the components of our receiver successively and measured the stability of the set-up

at different stages. It enabled me to measure the stability of different groups of elements and

identify the least stable ones. It can allow us to increase the stability of the whole receiver

by improving or changing these elements. I also measured the Allan variance (total and

spectral) of the whole receiver to know its optimal integration time.

3.3.1 Warm intermediate frequency chain and DFTS

The warm intermediate frequency (IF) chain is composed of two warm amplifiers operating

at ambient temperature and a bandpass filter (figure 3.6). Some attenuators (not shown

on the figure) were put between the amplifiers to avoid standing waves. The warm ampli-

fiers have a gain of 33 dB to 33.5 dB. Some attenuators were put before and between the

amplifiers in order to avoid saturating the last amplifier. The IF signal generated by the het-

erodyne receiver was read by a digital Fourier transform spectrometer (DFTS) and a power

meter. I first measured the temperature influence on the gain of the warm amplifiers. Then,

I measured the total power and spectral Allan variances of the set-up composed of the warm

IF chain plus the DFTS and the power meter.
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3.3.1.1 Temperature influence on the gain of the warm amplifiers

I used a commercial noise source with an ENR (Excess Noise Ratio) of approximately 15 dB

to generate the input signal. It was amplified by the two warm amplifiers and I measured the

output power with a power meter, through a 0.5 GHz - 1.5 GHz bandpass filter. It enabled

me to measure the dependence of the amplifiers’ gain on temperature, between 0.5 GHz and

1.5 GHz, as shown in figure 3.7.

FIGURE 3.7: Evolution of the gain of the 2 amplifiers as a function of temperature

We clearly see that the temperature has a huge influence on the amplifiers’ gain. The gain

decreases by 0.045 dB (or 1.0 %) per amplifier and per degree. I tested separately the noise

source and the power meter to make sure they were not the cause of the changes. This result

tells us that we need to make sure that the temperature of the amplifiers is very stable in

order to have a good total power stability at the output of the IF chain.

3.3.1.2 Stability of the warm amplifiers

I connected a 50 Ω load at the input of the warm amplifiers and measured the output power,

after the bandpass filter, with the DFTS and a power meter (figure 3.8).

FIGURE 3.8: Set up of the experiment to measure the stability of the warm IF chain
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Total power Allan variance

I compared the power measured by the power meter and the sum of the powers measured

by all the channels of the DFTS, from 0.5 GHz to 1.5 GHz. On figure 3.9, we see the total

power measured by the two devices as a function of time. The maximum power change

measured by the power meter over the 6h20 min of the experiment is 0.9 µW. According

to the previous section, this gain variation of 1.2 % for the two amplifiers, corresponds to a

temperature variation of 0.6 °C. This temperature shift is very small but still clearly visible

on the plot. Morevover, it is consistent with the evolution of the outside temperature. The

measurement started in the morning, the temperature had reached its minimum and started

to increase (so the gain of the amplifiers started to decrease).

The power measurements of the DFTS and the power meter are very similar, so, we can

consider that both devices are reliable and perform accurate measurements.

FIGURE 3.9: Total power read by the DFTS and the power meter along time

To know the stability of the warm IF chain, I calculated the Allan variance of the signals

measured by the power meter and the DFTS. In the case of the power meter, I calculated

the Allan variance of the power signal measured after the [0.5 1.5] GHz bandpass filter. In

the case of the DFTS, I calculated the Allan variances of the power signals measured by all

the frequency channels, which are 0.18 MHz wide. Then, I grouped and averaged these

Allan variances in order to get nine curves representing the means of the Allan variances

of all the frequency channels belonging to nine 100 MHz wide intervals, from 495 MHz to

1394 MHz. We see in figure 3.10 the total power Allan variance measured by the power

meter (fig. 3.10a) and the total power Allan variances measured by the DFTS and averaged

(fig. 3.10b). The mean Allan time for the spectral channels is close to 270 s, while the Allan

time measured by the power meter for the complete bandwidth (from 0.5 to 1.5 GHz) is

10 s.
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The different Allan times of the spectral channels and the power meter are due to the dif-

ferent bandwidth considered for each instrument (0.18 MHz for each DFTS channel against

1 GHz for the total bandwidth seen by the power meter). According to the equation 3.6, a

smaller bandwidth results in a greater Allan time, for a given instrument or set-up.

(A) Total power Allan variance measured by the
power meter

(B) Total power Allan variance of each channel of
the DFTS

FIGURE 3.10: Total power Allan variance measured by the power meter and the DFTS

In their article, Berg et al. [36] describe some interesting total power Allan variance mea-

surements of HEB mixers between 0.6 THz and 1.9 THz. The Allan times they measured for

different HEBs vary from 100 ms to 3 s, for a bandwidth of 30 MHz. By using equation 3.6

we calculate that, for our DFTS’ channels of 0.18 MHz, it corresponds to an Allan time of 8

to 250 seconds. As the total power Allan time of the warm IF chain and the DFTS is greater

than 250 seconds (for 0.18 MHz wide channels), we conclude that the warm IF chain and

the DFTS should not limit the stability of our receiver.

Spectral Allan variance

The spectral Allan variance was calculated for all the channels of the DFTS comprised be-

tween 0.5 and 1.5 GHz. I performed the subtraction of two channels separated by a spectral

distance∆ν and calculated the Allan variance of this difference. Then, for each value of∆ν

I calculated the mean of the Allan variances of all the channel subtractions.

Figure 3.11 shows the spectral Allan variance of the warm IF chain and the DFTS. The spec-

tral Allan variance was calculated for different spectral distances, from 1 MHz to 500 MHz.

For spectral distances smaller than 50 MHz, the Allan time is greater than 4000 seconds.

But for ∆ν = 100 MHz and ∆ν = 500 MHz, the Allan time is approximatively 4000 sec-

onds. Frequency channels separated by a larger spectral distance evolve more differently

than channels near to each other. That is why the Allan time is shorter for a spectral dis-

tance of 500 MHz than for smaller values of ∆ν. These results are consistent with the Allan
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FIGURE 3.11: Spectral Allan variance for different spectral distances

time given by RPG, the company which sold us the DFTS. They measured an Allan time of

3000 s for a spectral distance ∆ν = 1 GHz, between 1 MHz wide channels.

GREAT [10] is a heterodyne instrument of the SOFIA telescope. GREAT also uses a HEB

mixer to observe between 1200 GHz and 1900 GHz, and the spectral Allan time of the

whole instrument is between 100 and 200 seconds. To obtain these results, they considered

0.85 MHz wide frequency channels separated by 750 MHz. Our heterodyne receiver is sim-

ilar to GREAT and I measured a spectral Allan time of 4000 s, for slightly smaller frequency

channels. Therefore, we can expect that the spectral Allan time of the receiver will not be

limited by the warm IF chain and the DFTS.

3.3.1.3 Conclusion

I measured the total power and spectral Allan variances of a set-up composed of the warm

IF chain plus the DFTS and the power meter (figure 3.8). I noticed that the temperature

variations were influencing a lot the warm amplifiers’ gain, and could reduce the stability

of the set-up. The power meter measured a total power Allan time of 10 seconds for a

bandwidth of 1 GHz, while the DFTS measured an average total power Allan time of 270

seconds for each of its 0.18 MHz wide frequency channels. I also measured the spectral Allan

variance of the set-up. For a spectral distance between two frequency channels of 1 MHz to

500 MHz, the spectral Allan time was equal to 4000 seconds or more.

According to the total power Allan time of HEB mixers measured by Berg et al. [36] and the

spectral Allan time of the GREAT instrument [10], the spectral and total power Allan times

of our receiver should not be limited by the warm IF chain and the DFTS.
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3.3.2 Stability of the bias circuit and the cryogenic amplifier

I completed the previous set-up by adding the cryostat containing the cryogenic amplifier

and the HEB mixer, as shown in figure 3.12. The cryogenic amplifier has a gain comprised

between 36 dB and 43 dB in the bandwidth [0.5 - 1.5] GHz. The bias supply for the HEB

has been manufactured at LERMA. See section 2.5 for a more detailed description of the

components of our receiver.

FIGURE 3.12: Set-up of the experiment to measure the stability of the cryogenic amplifier
and the HEB bias supply

At first, I only turned on the cryogenic amplifier and biased the HEB with the bias supply.

To operate as a mixer, the HEB needs to be biased with a voltage usually between 0.6 mV

and 1 mV. When the bias voltage is above 5 mV, the HEB is in a resistive state and starts to

behave like any other resistor. To measure the stability of the bias supply, I put the HEB in

a resistive state by biasing it with a voltage of 8 mV. Therefore, the only additional noise

sources, compared to the previous measurement, are the cryogenic amplifier and the bias

supply.

3.3.2.1 Total power Allan variance

We see in figure 3.13 that the total power Allan time of the set-up (IF chain + HEB bias

supply), measured by the DFTS is 7 s. The Allan time is calculated as the integration time

where the Allan variance diverges of a factor
p

2 from the radiometric line (dashed line), as

explained in section 3.2.1.

By comparing the Allan time of 7 seconds obtained here and the 270 seconds obtained

with the warm amplifiers and the DFTS, we can conclude that a huge instability appeared,

probably because of the cryogenic amplifier or the HEB bias supply. The cryogenic amplifier
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FIGURE 3.13: Total power Allan variance of the IF chain + HEB bias supply

was measured separately and its Allan time was very long (hundreds of seconds). So, I

suspect the bias supply to be the cause of the instabilities reducing the total power Allan

time of the set-up.

3.3.2.2 Spectral Allan variance

I used the DFTS to measure the spectral Allan variance of the set-up for spectral distances

of 1 MHz to 500 MHz between frequency channels (figure 3.14). The measured Allan time

is greater than 700 s for channel distances lower than 50 MHz and it is equal to about 153

seconds for channel distances of 100 MHz and 500 MHz. This result shows that the addition

of the cryogenic amplifier and the bias supply also reduced the spectral Allan time.

FIGURE 3.14: Spectral Allan variance of the IF chain + HEB bias supply
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3.3.2.3 Conclusion

The addition of the cryogenic amplifier and the HEB bias supply greatly increased the insta-

bility of the set-up. The total power Allan time has been divided by 39 while the spectral

Allan time has been divided by a factor 26. As the cryogenic amplifier has already been

tested and showed a really good stability, we are suspecting the bias supply to be the cause

of this instability.

3.3.3 Stability of the local oscillator and the HEB mixer

I added a local oscillator (LO) to pump the HEB, and a beam splitter so the HEB can mix

the LO signal with the hot load signal (figure 3.15). For this set-up, different LO at different

frequencies were used, with the same HEB. It enabled us to compare the stability of the

different LOs. Figure 3.16 is a picture of the experiment.

FIGURE 3.15: Set-up of the experiment to measure the stability of the LO and HEB mixer

3.3.3.1 600 GHz LO with a frequency synthesizer

I pumped the HEB with a 600 GHz frequency multiplier chain LO. The initial signal was

produced by a frequency synthesizer, then multiplied and amplified by the multiplier chain.

The HEB was polarized with the bias supply to 0.8 mV, which is in the range where the HEB

is the most sensitive. It is a usual operating bias point for our HEB.
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FIGURE 3.16: Picture of the experiment to measure the stability of the LO and HEB mixer

3.3.3.1.1 Total power Allan variance

As shown in figure 3.17, the total power Allan time of the receiver with the 600 GHz LO is

between 10 and 15 seconds for 0.18 MHz channels in the range [0.5 - 1.5] GHz.

FIGURE 3.17: Total power Allan variance of the receiver with a 600 GHz multiplier chain
LO

This Allan time is close and even slightly longer than the Allan time measured previously

without the LO. It means that The 600 GHz LO is not limiting the total power stability of the

receiver.

3.3.3.1.2 Spectral Allan variance

The spectral Allan time (figure 3.18) measured for the whole receiver with the 600 GHz LO

is about 80 seconds for 0.18 MHz channels separated by 500 MHz. However, for different
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pumping levels and at different polarization bias voltages, we obtained different Allan times,

from 50 to 200 seconds approximately (still for a spectral distance of 500 MHz). This spectral

Allan time is slightly shorter, but still comparable, to what we found without the LO. It

suggests that the LO could reduce the stability of the receiver but it is not certain.

FIGURE 3.18: Spectral Allan variance of the receiver with a 600 GHz multiplier chain LO

3.3.3.1.3 Conclusion

The 600 GHz multiplier chain LO with the frequency synthesizer do not significantly reduce

the total power and spectral Allan time of the receiver. This set-up corresponds to a complete

heterodyne receiver operating at 600 GHz. The total power Allan time is between 10 and

15 seconds for 0.18 MHz channels, and the spectral Allan variance is about 80 seconds for

0.18 MHz channels separated by 500 MHz. These Allan times are comparable to those of

other THz heterodyne receivers such as GREAT [10] and HIFI [37]. At 1200 GHz, GREAT

as a spectral Allan time of 100 seconds for 0.85 MHz wide frequency channels separated by

750 MHz, and at 640 GHz, HIFI as a total power Allan time between 7 and 14 seconds for

1.6 MHz channels.

3.3.3.2 1.4 THz LO with a frequency synthesizer

I used the same HEB, at the same polarizing bias voltage (0.8 mV) as before, with a multiplier

chain LO operating at 1.4 THz. I tuned the output power of the LO in order to pump the HEB

at the same level as with the 600 GHz LO chain. On figure 3.19, each curve corresponds

to the normalized power measured by different DFTS channel along time. Surprisingly, we
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notice that the power received by the different channels evolve differently along time. For

some channels, this variation can even reach tens of % in less than 1 hour.

FIGURE 3.19: Normalized IF power of the receiver with a 1400 GHz multiplier chain LO

3.3.3.2.1 Total power Allan variance

The total power Allan time measured with the DFTS channels is comprised between 3 and

5 seconds, depending on the channels’ frequency, as shown on picture 3.20.

FIGURE 3.20: Total power Allan variance of the receiver with a 1400 GHz multiplier chain
LO

3.3.3.2.2 Spectral Allan variance

The spectral Allan time is really short, around 6 seconds for a spectral distance of 500 MHz

between the considered channels. It corresponds to a very important stability reduction,

compared to the measurements at 600 GHz. The 1400 GHz LO seems to have an important

spectral stability problem.
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FIGURE 3.21: Spectral Allan variance of the receiver with a 1400 GHz multiplier chain LO

3.3.3.2.3 Conclusion

With the 1400 GHz LO, the receiver has a slightly lower total power Allan time than with

the 600 GHz LO, but a really lower spectral Allan time. As shown in figure 3.19, the power

variation shown by the channels of the DFTS indicates an important spectrum instability

of the LO. This instability could come from the 1.4 THz multiplier chain itself, or from the

frequency synthesizer. The same frequency synthesizer has been used with the 600 GHz LO,

and we did not see such problem. However, if the synthesizer has a high noise level, some

unwanted harmonics and unstable could be multiplied and amplified by the 1.4 THz chain,

and not by the 600 GHz.

3.4 Conclusion

I wrote an Allan variance calculation program, optimized for our DFTS spectral data, and I

developed a specific measurement process to accurately measure the stability of the different

components of a heterodyne receiver. It enabled me to measure the stability of our receiver

and its components at 600 GHz and 1.4 THz. I added the different elements of the receiver

one by one and measured the stability of the set-up at different stages, in order to determine

the stability of the different components. The total power Allan variance was used to mea-

sure the stability of the total power of the IF signal, while the spectral Allan variance was

used to measure the spectral stability of the IF signal.
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In conclusion, with the 600 GHz LO, the total power and spectral stability results were com-

parable to those of other heterodyne receivers, such as GREAT and HIFI. Moreover, by mea-

suring the total power and spectral Allan variances of all the components I have been able

to identify the HEB bias supply as the component that limits the total power stability, and

the 1.4 THz LO as the limiting element for the spectral Allan variance. These results will

enable us to improve or change the unstable elements we have identified and to improve

the stability of our whole heterodyne receiver.
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The Martin Puplett Interferometer

(MPI)

4.1 Motivation

In a heterodyne receiver, the radio-frequency (RF) signal from the sky is mixed with the local

oscillator (LO) signal in a mixer. This mixing creates an intermediate frequency (IF) signal,

which corresponds to the RF signal whose frequency has been down-converted. This down-

conversion enables the IF signal to be amplified and processed, and provides heterodyne

receivers with a very good spectral resolution, which is very important for radio-astronomy

observations. The heterodyne detection principle is illustrated by figure 4.1, and explained

in detail in section 2.3. Fundamental unbalanced mixers are the most frequently used in

astronomy. They have only one input port, so the RF and LO signals need to be optically

superimposed before they reach the mixer input. This superposition is usually achieved with

a beam splitter. At frequencies above 1 THz, a typical beam splitter transmits about 90 % of

the power and reflects 10 %. It produces a good superposition of the two signals, but loses

a lot of LO power (figure 4.1). However, the mixer needs to receive enough LO power to

efficiently generate the IF signal.

At frequencies lower than 1.5 THz, LOs emit enough power to be used with a beam splitter,

as we can afford to lose 90 % of the LO power. However, at higher frequencies, most LOs

emit very little power (a few µW) and we need to couple the LO more efficiently to the

mixer. An interesting solution to superimpose the RF and LO signals without losing much
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FIGURE 4.1: Schematic showing the down-conversion of the RF signal’s frequency and the
use of a beam splitter

power is to use a Martin Puplett interferometer. This solution has already been used in

several major heterodyne receivers, such as CONDOR [5] and GREAT [10]. As we have a

2.6 THz LO which emits 2 µW and we want to build a heterodyne receiver at this frequency,

we decided to design a Martin Puplett interferometer (MPI) for our prototype receiver. To

design the different elements of the MPI, we used Gaussian beam optics, which describe well

the propagation and different characteristics of Gaussian beams at THz frequencies. The

first part of this chapter is dedicated to Gaussian beam optics and provides the necessary

background to understand the design of the MPI elements. In the other parts of the chapter,

I explain how a MPI works and how our MPI was designed, built and tested. The different

parts of this chapter are listed below:

• Presentation of Gaussian beam optics.

• Principle of the Martin Puplett interferometer (MPI).

• Design of of the different elements of our MPI.

• Test of our MPI (for each component and the for whole interferometer).

4.2 Gaussian beam optics

4.2.1 Context and motivation

In geometrical optics, the radiation’s wavelength is considered as negligible compared to the

dimensions of the system’s components (lenses, mirrors, apertures etc.). This approxima-

tion usually works well for optics and for frequencies down to the mid-infrared. However, in
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the far-infrared, at frequencies between tens of GHz and several THz, the radiation’s wave-

length becomes closer to the dimensions of the system’s elements. The considered system

is then called quasioptical. In this frequency domain the diffraction of the beam by the sys-

tem’s elements become more important, and the geometrical optics approximation cannot

be used anymore. Instead, we use the Gaussian beam optics equations, which are based

on the paraxial wave equation, and accurately describe the propagation of Gaussian beams.

Gaussian optics for quasioptics are extensively described in the book Quasioptical Systems

from Goldsmith [38], and also in the PhD thesis of Golish [39]. At THz frequencies, most

laboratory sources use feedhorns and emit beams with a nearly Gaussian amplitude distri-

bution. That is why we can consider our beams as Gaussian and use the Gaussian beam

optics to design and simulate our quasioptical systems. Gaussian optics is also widely used

to describe laser beams propagation because their radial dimension can be quite small (tens

or hundreds of times the wavelength). In this section I introduce the basic concepts and

formulas of Gaussian beam optics, which I used to design some elements of the MPI.

4.2.2 Electric field distribution of a Gaussian beam

This section presents the basis of Gaussian beam optics. A more detailed description is

given in Appendix A. For a complete demonstration, see Goldsmith [38] and Davis [40].

The distribution of the electric and magnetic field vectors in vacuum and inside materials

is accurately described by the Maxwell’s equations. We consider a monochromatic paraxial

electromagnetic radiation field (paraxial means that the beam propagates close to the optical

axis of the system, and makes a small angle with this optical axis). Under these conditions,

the electric field of the radiation satisfies the Helmholtz equation.

∇2E(x , y, z) + k2E(x , y, z) = 0, (4.1)

where ∇2 is the Laplacian operator, E is the electric field, µ and ε are respectively the per-

meability and permittivity. k is the wave number (k = 2πν
p
εµ) and ν is the frequency

of the radiation. After some mathematical transformations described in appendix A, we fi-

nally obtain the expression of the normalized electric field distribution for the fundamental

Gaussian mode:

45



Chapter 4. The Martin Puplett Interferometer

E(r, z) =

√

√ 2
πω2

exp

�

−r2

ω2
− jkz − jπr2

λR
+ jφ0

�

, (4.2)

where r is the radial distance to the propagation axis (r =
p

x2 + y2), ω is the radius of

the beam and R its radius of curvature (figure 4.2). The radius ω of the beam corresponds

to the radial distance at which the electric field is divided by e compared to its value on the

axis of propagation. Both ω and R vary with z, the position on the propagation axis. λ is

the wavelength of the radiation and φ0 is the Gaussian beam phase shift, also called Gouy

phase shift. It corresponds to the phase shift between the considered Gaussian beam and

a plane wave at the same frequency. Equation 4.2 describes the propagation of Gaussian

beams along the propagation axis (z) at any radial distance distance r from the axis. The

expression of the electric field is normalized so
∫∞

0 |E|
22πr.dr = 1. The different physical

parameters characterizing Gaussian beams can be deduced from this equation, as shown in

appendix A. The most important equations are listed in the following section.

4.2.3 Gaussian beam characteristics

4.2.3.1 Beam waist and radius

Gaussian beams described by the Gaussian beam optics’ equations never converge to a point

with an infinitely small radius, as in geometrical optics. Gaussian beams converge until their

radius, ω, reaches a minimum radius called beam waist (ω0), then they start to diverge

(figure 4.2).

FIGURE 4.2: Characteristics of a Gaussian beam

By knowing the beam waist, we can calculate the beam radius of the beam along the prop-

agation axis with the equation:
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ω =ω0

√

√

√

1+

�

λz

πω2
0

�2

, (4.3)

where z is the position on the propagation axis and λ the wavelength of the beam. The

position z=0 is located at the beam waist.

4.2.3.2 Amplitude and power repartition

The amplitude of Gaussian beams is maximum on the axis of propagation and decreases

when the radial distance r to this axis increases, as shown in figure 4.3. This radial amplitude

distribution is Gaussian, and is described by the following equations:

|E(r, z)|
|E(0, z)| = exp
�

−
� r

ω

�2
�

, (4.4)

P(r, z)

P(0, z)
= exp
�

−2
� r

ω

�2
�

, (4.5)

where E is the electric field amplitude and P the power of the beam. We also see in fig-

ure 4.3 that, at a distance r =ω from the propagation axis, the power of the Gaussian beam

corresponds to e−2 = 0.135 times the power on the propagation axis.

FIGURE 4.3: Relative power of the beam along the radius r

To design the elements of a quasioptical system (mirrors, lenses, gratings etc.), we need

to know what fraction of the total Gaussian beam power (FP) will reach the element. For

example, we want to make sure that a mirror is large enough to reflect more than 99.9 % of

the incoming beam. Equation 4.6 is used to calculate the fractional power (F P(r)) included

in a circular aperture with a radius r:
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F P(r) =

∫ r

0 P(r)2πr.dr
∫∞

0 P(r)2πr.dr
= 1− exp
�

−2
� r

ω

�2
�

. (4.6)

FIGURE 4.4: Fractional power included in a disk of radius r

We see in figure 4.4 that when a beam is truncated by a circular aperture with a radius of

2ω (diameter of 4ω), 99.97 % of the Gaussian beam power is transmitted. That is why,

when designing quasioptical systems, the minimum length or diameter of the elements is

often 4ω, to be sure that they will receive almost all the initial Gaussian beam power, even if

they are not perfectly aligned. In equation 4.6, only the truncated power of the fundamental

order Gaussian beam is considered. The truncated power of all the Gaussian beam modes

could be higher.

4.2.3.3 The radius of curvature

At the beam waist position, the radius of curvature of the beam is infinite, because the

wavefront is plane. At other positions on the propagation axis, the radius of curvature R

becomes smaller because the wavefront is curved (cf figure 4.2). The radius of curvature of

the Gaussian beam can be calculated for every position z on the propagation axis with the

equation:

R= z +
1
z

�

πω2
0

λ

�2

. (4.7)

4.2.3.4 The farfield divergence angle

After the beam waist, the Gaussian beam diverges and its radius increases. We define the

farfield divergence angle θ as the asymptotic growth angle of the beam radiusω as a function
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of the distance z from the beam waist (see figure 4.2). This divergence angle is calculated

with the equation below:

θ = lim
z→∞

tan−1
�

ω

z

�

= tan−1
�

λ

πω0

�

. (4.8)

4.2.3.5 The Rayleigh length

The Rayleigh length (ZR) corresponds to the distance from the beam waist at which the

beam radius is ω = ω0
p

2. At distances z < ZR from the beam waist, the beam’s growth is

slow and the Gaussian beam is considered as collimated.

ZR =
πω2

0

λ
. (4.9)

4.2.3.6 Other useful equations

Other useful equations can be deduced from equations 4.3 and 4.7:

ω0 =
ω
È

1+
�

πω2

λR

�2
and, z =

R

1+
!

λR
πω2

�2
. (4.10)

4.2.4 Conclusion

At sub-millimeter wavelengths, laboratory sources often use feedhorns and emit beams

whose shape is very close to Gaussian beams. Gaussian beam optics provide useful equations

to accurately describe the propagation of quasioptical beams along the propagation axis. I

used some of the Gaussian beam equations to design the Martin Puplett interferometer for

our 2.6 THz prototype heterodyne receiver.

49



Chapter 4. The Martin Puplett Interferometer

4.3 Description of the MPI

4.3.1 Input of the MPI

Most mixers need to receive the LO and RF signals superimposed and with the same polariza-

tion, in order to efficiently produce the IF signal. When using a Martin Puplett interferometer

(MPI), the superposition of the LO and RF signals is done by the first wire grid G1. However,

after G1, the LO and RF signals have orthogonal polarizations. The purpose of the MPI is to

rotate one of the polarizations by 90° without much losses, so both LO and RF signals have

the same polarization at the output of the MPI. The MPI is composed of a second wire grid,

G2, and two roof-top mirrors, T1 and T2, (figure 4.5).

FIGURE 4.5: MPI with two grids, to be used as diplexer in a heterodyne receiver

Wire grids have the particularity of polarizing electromagnetic waves. A correctly dimen-

sioned wire grid reflects the ~E field parallel to its wires and transmits the ~E field perpendic-

ular to its wires. As the LO signal is already polarized (vertically or horizontally), we set the

grid G1 in order to completely reflect it. The RF signal is usually not polarized, so half of it

is transmitted by G1, and the other half is reflected and lost (most mixers only detect one

polarization anyhow). As shown in figure 4.5, the grid G1 is able to superimpose the LO

signal with half of the RF signal, but their polarizations are orthogonal. As the mixer needs

the two input signals to have the same polarization, a MPI is used to rotate the polarization

of one of them by 90°.
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4.3.2 Detailed description of the elements of the MPI

The rotation of the polarization of one of the MPI’s input signals is achieved by the association

of two roof-top mirrors and a wire grid. In order to understand this polarization rotation, it

is necessary to describe the functioning of the roof-top mirrors and of the free standing wire

grids. A good description of the MPI and its elements can be found in the book Millimetre-

Wave Optics, Devices and Systems, from Lesurf [41] and in the book Quasioptical Systems :

Gaussian Beam Quasioptical Propogation and Applications from Goldsmith [38].

4.3.2.1 The free standing wire grid

A polarizing grid is composed of parallel metal wires, whose diameter and spacing must

be small compared to the wavelength of the signal. If this requirement is respected, the

grid polarizes the incoming signal by efficiently reflecting the ~E field parallel to its wires

and transmiting the ~E field perpendicular to its wires. As a result, the polarizations of the

transmitted and reflected signals are orthogonal. In the MPI, the grid G2 is used as a beam

splitter to divide the incoming RF and LO signals (figure 4.5). The reflected and transmitted

signals must be equally powerful, which requires the wires of G2 to be 45° inclined, with

respect to the linear polarization of the incoming beams. However, the MPI grid G2 is not

perpendicular to the input signals, but makes an angle β = 45° (figure. 4.5). So, we have to

take into account the projected angle of the grid’s wires on the input signal’s plane. Figure 4.6

shows this projection and we can deduce the relation between the polarizing angle θ and

the real inclination angle of the MPI grid’s wires, θ ′.

θ ′ = tan−1(tan(θ )cos(β)) (4.11)

And, with β = 45°, θ ′ = tan−1(tan(θ )/
p

2) (4.12)

As we want G2 to have a polarization angle θ = 45°, the wires of G2 must have an inclination

angle θ ′ = 35.26°.
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FIGURE 4.6: Projected inclination angle of the MPI grid’s wires

4.3.2.2 The roof top mirrors

The roof-top mirrors T1 and T2 are composed of two orthogonal flat faces. In the MPI, the

roof-top mirrors are used to reflect the signals reflected or transmitted by the grid G2, back to

G2 (figure 4.5). Each input signal reaching a roof-top mirror is reflected twice (once on each

face). Its polarization stays unchanged but the direction of the signal is inverted (because

it is reflected), as illustrated in figure 4.7. As a result, in the referential of the beam, its

polarization is unchanged, but in the referential of the MPI the polarization is rotated by 2θ .

The signals reaching T1 and T2 have a polarization angle of θ = ±45°. After being reflected

by the roof-top mirrors, their polarization is rotated by 90°. Therefore, the signals which

have initially been transmitted by G2 are reflected by G2 and the signals initially reflected

by G2 are transmitted by G2.

FIGURE 4.7: Change of the polarization produced by a roof-top mirror
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Finally, the LO and RF signals which have been transmitted from G1 to G2, integrally reach

the output of the MPI after having been split by G2, reflected by T1 and T2, and recombined

by G2.

4.3.3 The rotation of the polarization in the MPI

The description of the roof-top mirrors and the polarizing grids explains why the totality of

the RF and LO signals sent to G2, at the input of the MPI, is present at the output of the

MPI and reaches the mixer. The rotation of the polarization of one of the input signals of

the MPI is achieved by translating the roof-top mirror T2. The translation changes the path

difference ∆Z between the two arms of the MPI (∆Z = ||G2 − T1| − |G2 − T2||) and can

modify the polarization of any signal going through the MPI:

• If ∆Z = nλ, the polarization of the signal going through the MPI is not changed.

• If ∆Z = (n+ 1
2)λ, the polarization of the signal going through the MPI is rotated by

90° at the output of the MPI.

• For other values of the ∆Z , the polarization of the signal going through the MPI is

elliptic at the output of the MPI.

where n ∈ N and λ is the wavelength of the signal.

As the LO and RF signals have slightly different frequencies, there are path differences ∆Z

which are equal, at the same time, to n1λLO and to (n2 +
1
2)λRF , (with n1, n2 ∈ N). As a

result, these path differences ∆Z do not rotate the polarization of the LO signal but rotate

the polarization of the RF signal by 90°. For the detail of the calculation of the polarization

rotation by the MPI, see appendix B.

4.3.4 The bandwidth of the MPI

The LO signal has a very narrow bandwidth, so we can almost consider it as a monochromatic

signal. The RF signal we receive from the sky, on the contrary, covers all the spectrum.

However, the MPI cannot rotate the polarization of the totality of the RF spectrum by 90°.

As explained in section 4.3.3, the path difference between the 2 arms of the MPI, ∆Z , is
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optimized to only rotate by 90° the polarization at one frequency ( fRF ) of the RF signal. The

polarization of the rest of the RF spectrum, covering different frequencies ( fr f ), is differently

rotated. The polarization of the RF signal determines the efficiency of the mixer, so it is

important to know the response of the MPI over the RF spectrum.

The grid G2 divides the RF signal into two equal power signals, s1 and s2, whose polarizations

are p1 = 45° and p2 = −45°. At the output of the MPI, s1 and s2 are superimposed, and the

amplitude A of the output signal is:

A=
A0

2

�

1+ cos

�

2π(δn− 1
2)δ f

∆ f

��

|| ~ev ||+
A0

2

�

1− cos

�

2π(δn− 1
2)δ f

∆ f

��

|| ~eh||, (4.13)

where δ f = fLO − fr f , and fr f is a frequency of the RF spectrum. δn ∈ N, ∆ f = fLO − fRF ,

with fRF the frequency for which the MPI was optimized, and fLO the LO frequency. A0 is

the amplitude of the RF signal at the input of the MPI. The vectors corresponding to the

vertical and horizontal polarizations are ~ev and ~eh. We are only interested in the horizontal

polarization of the RF signal because, in this example, it is the polarization of the LO signal.

So we can plot the power transmission (transmittance) of the horizontal component of the

output signal:

T =
1
2

�

1− cos

�

2π(δn− 1
2)δ f

∆ f

��

. (4.14)

FIGURE 4.8: Bandwidth of the MPI for the horizontal component of the RF signal
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Figure 4.8 shows the transmittance of the horizontal component of the RF signal when vary-

ing δ f /∆ f = ( fLO − fr f )/( fLO − fRF ), for δn = 1. We see on this plot that the transmit-

ted power is maximum for δ f /∆ f = 1 + 2k, (k ∈ Z). We can verify that, for fr f = fRF ,

δ f /∆ f = 1. So, the transmittance of the MPI is maximum at the RF frequency for which

the path difference ∆Z was optimized, which is consistent with our previous calculations.

The -3 dB bandwidth of the MPI corresponds to the range where the transmittance is better

than -3 dB:

δ f /∆ f ∈ [0.637,1.363] + 2k, (k ∈ Z).

For example, if ∆ f = 1.5 GHz, we will have fLO − fr f ∈ [0.96, 2.04] + 3k GHz. So, in

this case, the part of the RF spectrum transmitted by the MPI with less than 3 dB losses is

between 0.96 GHz and 2.04 GHz, with a period of 3 GHz.

4.4 Design of our MPI

Our MPI has been designed to work with our 2.6 THz LO. Because of its very low output

power (2 µW), a usual beam splitter induces too many losses and a MPI is a good solution

to superimpose the LO and RF signals without losing too much LO power. The intermediate

frequency (IF) of the MPI ( fLO− fRF ) was chosen to be centered on 1.5 GHz, as it corresponds

to the middle of our mixer’s bandwidth. This value of IF requires a path difference ∆ Z =

10 cm between the two arms of the MPI, and the -3 dB bandwidth of the MPI corresponds to

the range [0.96 GHz , 2.04 GHz]. Our MPI is composed of the two roof-top mirrors (T1 and

T2) and the polarizing grid (G2), which are the main components of the MPI. In addition,

we also have another polarizing grid (G1) which superimposes the RF and LO signals at the

input of the MPI, and an ellipsoidal mirror (MLO) to focus the LO beam before G1. The

schematic of this MPI is shown in figure 4.9, where a cold load is used to generate the RF

signal. A picture of our MPI is shown in figure 4.10.

4.4.1 Calculation of the ellipsoidal mirror (MLO)

Our 2.6 THz LO emits a Gaussian beam with a waist of 0.21 mm and we need to feed our

mixer with a beam whose waist is 1.5 mm. As the signal emitted by the LO is very diverging,

we decided to focus it with an ellipsoidal mirror before it reaches the MPI. The ellipsoidal
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FIGURE 4.9: Schematic of our MPI setup

FIGURE 4.10: Picture of our Martin Puplett Interferometer

mirror (MLO) was specifically designed to match the (simulated) beam pattern of the HEB

at 2.6 THz. The optical path from the MLO to the mixer (located at the output of the MPI)

is z = 490 mm. According to the quasioptical formula 4.15, we know that our beam needs

to have a radius ω = 12.1 mm on the ellipsoidal mirror MLO to generate a beam waist of

1.5 mm 49 cm further, at the input of the mixer.

ω(z) =ω0

√

√

√

1+

�

zλ

πω2
0

�2

= 12.1 mm. (4.15)

With the same formula, we deduce that we need a distance z= 69.1 mm between the LO and

the MLO to have a beam radius of 12.1 mm on the MLO. With these parameters, I was able to

calculate the characteristics of the required ellipsoidal mirror (MLO). An ellipsoidal mirror is
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a part of an ellipsoid of revolution, so it is characterized by its two radii of curvature, which

are calculated with the following formula:

R(z) = z +
1
z

�

πω2
0

λ

�2

. (4.16)

So, we have R(69.1) = R1 = 69.1 mm and R(490) = R2 = 498 mm, which are the two radii

of curvature of the MLO. As we know that the angle θ between the incoming and reflected

beams is 90°, it enables us to calculate the shape of the MLO. The ellipsoidal surface of

the mirror is the surface created by the red line when we rotate the ellipse, represented on

figure 4.11, around its major axis. On figure 4.11 the distances |F1P| and |F2P| correspond

to the two radii of curvature R1 and R2.

FIGURE 4.11: Schematic of the ellipsoidal mirror (MLO)

Equation 4.15 also enabled me to calculate the beam radius at the position of each optical

element (mirrors and grids), to ensure that the beam completely reaches each element and

no power is lost (Table 4.1). I made sure that the size of the optical elements was 4 times

bigger than the radius of the beam, as explained in section 4.2.3.2. In table 4.1, ωini is the

radius of the beam at the first element of the segment and ωend is the radius of the beam at

the last element of the segment. The column Distance indicates the length of each segment.

We see that the HEB mixer receives two beams with a slightly different radius, it is due to

the fact that the two arms of the MPI do not have the same length.
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MPI segment ωini (mm) Distance (mm) ωend (mm)

LO – MLO 0.21 69.00 12.07
MLO – G1 12.07 100.00 9.65
G1 – G2 9.65 100.00 7.24
G2 – T1 7.24 50.00 6.05
G2 – T2 7.24 100.00 4.87
T1 – G2 6.05 50.00 4.87
T2 – G2 4.87 100.00 2.65

G2 – HEB 4.87 140.00 1.93
G2 - HEB 2.65 140.00 1.95

TABLE 4.1: Radius of the beam on each element of the MPI

4.4.2 Calculation of the grids’ required characteristics

4.4.2.1 Absorbance of free standing wire grids

We need to consider the power absorption (absorbance) of the grids. Volkov et al. [42]

measured it and found less than 1 % at a few hundreds of GHz. So, the absorbance seems to

be quite low and almost negligible. So, for this theoretical study I considered the absorbance

of the grids negligible. Therefore, we have R// ≈ 1− T// and R⊥ ≈ 1− T⊥.

However, the absorbance of the parallel polarization is expected to increase with the fre-

quency (cf. Goldsmith [38, page 193]), because it depends on the surface resistance of the

metallic wires. As the parallel polarization is mostly reflected by the grid, this increased

absorbance should mostly affect the reflected signal, and not the transmitted one. Some

experimental results, presented in section 4.6, are in favour of this hypothesis.

4.4.2.2 Transmittance of the grids for normally incident beams

The polarizing wires grids of the MPI, G1 and G2, are very important because their polarizing

efficiency has an important impact on the total MPI’s efficiency. In this section I determine

their required characteritics to efficiently polarize a 2.6 THz signal.

Typical free standing wire grids for THz frequencies are made of tungsten wires (sometimes

gold plated), whose diameter is a, and whose spacing is g. The grids’ properties are evalu-

ated for 2 different polarizations: when the ~E field is perpendicular to the grid’s wires, and

when it is parallel (figure 4.12).
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FIGURE 4.12: Perpendicular and parallel ~E polarizations

For these two configurations, I used the formulas presented in the paper from Blanco et al.

[43] to calculate and plot the transmittance of a grid, with different parameters. T⊥ is

the transmittance of the grid when the ~E field is perpendicular to the wires, and T// is the

transmittance of the grid when the ~E field is parallel to the wires. A perfect polarizing grid

would have T// = 0 and T⊥ = 1, and we want our grids to be as close to these values as

possible. In this section I consider that the absorbance of the grids is negligible, as explained

in section 4.4.2.1. Therefore, we have the following relation between the transmittance T

and the reflectance R, for both perpendicular and parallel polarizations:

R// ≈ 1− T// and R⊥ ≈ 1− T⊥. (4.17)

The formulas from Blanco et al. [43] enabled me to calculate the transmittance coefficients

expected for wire grids with a regular spacing. The mathematical model used in the article

from Blanco et al. seems quite reliable because it has been compared to the results measured

by Volkov et al. [42] and with the theoretical study of Suratteau and Petit [44]. To know

the influence of the wires’ diameter (a) on the grid’s efficiency, I plotted the transmittance

of the grid for different values of a/g (figure 4.13).

We easily notice that when a/g = 0.14, the perpendicular polarization (E⊥) is well trans-

mitted, but the parallel polarization (E//) is not completely reflected. When a/g = 0.29,

both polarizations are less transmitted (and more reflected). As a result, to have an efficient

behavior of the grid (E⊥ well transmitted and E// well reflected), it is better to have a ra-

tio a/g between 0.25 and 0.29. We also notice on figure 4.13 that the ratio between the

wire spacing g and the wavelength of the signal λ has an effect on the grid’s efficiency. On

59



Chapter 4. The Martin Puplett Interferometer

FIGURE 4.13: Transmittance of polarizing grids for different values of a and g

figure 4.14, I plotted the transmittance of the grid for a/g = 0.25 and a/g = 0.29 and for

values of g/λ inferior to 0.5.

FIGURE 4.14: Transmittance of the grid over g/λ

Figure 4.14 shows that the power efficiency of the grid is better than 98 % (T⊥ > 98 % and

R// > 98 %) when g/λ < 0.25, for a/g ∈ [0.25 0.29]. In conclusion, the ratios g/λ and

a/g are the two parameters we should take into account to choose our MPI grids.

4.4.2.3 Transmittance of the grids for oblique incident beams

The two grids of our MPI, G1 and G2, make an angle β = 45° with the incident beams.

This parameter also has to be taken into account to predict the efficiency of our grids. The

incidence angle artificially reduces the spacing g between the wires, but the wires’ diameter

stays identical, so the quotient a/g increases. According to figure 4.13, when a/g increases

T// and T⊥ decrease. So, the 45° incidence angle reduces the transmittance of both perpen-

dicular and parallel polarizations. This effect can be calculated with the same theoretical
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equations as before (cf. Blanco et al. [43]), by dividing the spacing between the wires, g, by
p

2. So, for a 45° incidence angle, the best a/g ratio to have optimum grid parameters for

both polarizations is:

a/g ∈ [0.25 0.29]p
2

⇐⇒ a/g ∈ [0.18 0.21]. (4.18)

4.4.2.4 Selection of our MPI grid

An efficient grid, with a 45° orientation angle, should have a ratio a/g between 0.18 and

0.21, and a ratio g/λ smaller than 0.3 (where a is the wires’ diameter, g the wire spacing

and λ the wavelength of the beam). The best solution for frequencies up to 3 THz would

be: a = 5 µm and g = 25 µm. It corresponds to a/g = 0.2, and it gives at 2.6 THz, T//

= 0.2 % and T⊥ = 99.6 %. However, because of availability and cost reasons, we had to

compromise and chose a slightly less efficient grid. The solution we chose was to order the

grids G1 and G2 with a = 10 µm and g = 35 µm. It gives g/λ = 0.30 and a/g = 0.29.

Figure 4.15 describes the theoretical efficiency of our MPI grids at 600, 1400 and 2600 GHz,

for a normal incidence and a 45° incidence angle.

FIGURE 4.15: Transmittance of the grid at our frequencies (600, 1400 and 2600 GHz)

At 2.6 THz, the grids we chose (a = 10 µm and g = 35 µm) should have the following

transmittance characteristics:

Normal incidence: T⊥ = 97.3 % and T// = 0.9 %

45° incidence: T⊥ = 94.8 % and T// = 0.6 %
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4.4.2.5 Conclusion

The wire grids we chose show a good theoretical efficiency, except for the perpendicular

polarization at 45° and at a frequency of 2.6 THz, where the efficiency drops to 94.8 %. In

the future, more efficient grids would be desirable to increase the efficiency of our MPI.

4.5 Test and evaluation of each individual component of the MPI

Losses on the RF signal reduce the sensitivity of the whole heterodyne receiver. That is why

it is very important to reduce the MPI losses as much as possible. A beam splitter used at

lower frequencies usually loses between 5 % and 10 % of the RF signal, and we want the

MPI at 2.6 THz to have less than 20 % losses. In order to evaluate and reduce the MPI

losses, it is necessary to evaluate the losses of each component, before assembling the MPI

and measuring its total efficiency.

4.5.1 The ellipsoidal mirror (MLO)

4.5.1.1 Roughness of the MLO

The reflection losses of an ellipsoidal mirror are not easily measurable because the waist

of the beam changes due to the focusing, so the coupling with the detector is not the same

before and after the mirror. That is why, we measured the surface accuracy and roughness of

the mirror and compared it with theoretical design to evaluate its performance. We used a

profilometer (Dektak 8), with a resolution of 10 nm, to measure the roughness of the mirror’s

surface. To calculate the roughness, the profilometer measured the vertical variations over

a distance of 1 mm on the surface of the mirror. We took about 10 measurements of 1 mm

on the mirror’s surface to have a good estimation of its roughness. We always measured

an rms roughness Rq below 600 nm (and an average roughness Ra below 500 nm). The

roughness of the mirror is responsible for the scattering of the beam. According to Ruze’s

formula (eq. 4.19), the power losses due to the scattering of a 115 µm wavelength (2.6 THz)

signal on a metallic surface, whose maximal rms roughness is smaller than 600 nm, are

Scat teredPower < 1− ex p

�

−
�

4πRq

λ

�2
�

= 0.4 %. (4.19)
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As a conclusion, the losses due to the mirror’s roughness can be considered as negligible at

2.6 THz (and at lower frequencies).

4.5.1.2 Shape of the MLO

I also studied the shape of the mirror and characterized it with a manual three dimensional

machine (Brown and Sharp), whose accuracy is 4 µm. The dimensions of the MLO mirror

are 88.8 mm for its major axis, and 62.5 mm for its minor axis. I measured the depth profile

along the major axis of the MLO and compared it with the theoretical design (figure 4.16).

FIGURE 4.16: Shape difference between the manufactured MLO and the theoretical design

The shape difference Zex p − Zth is quite small at the center of the mirror and increases

near the edges. The radius of the Gaussian beam received by the MLO is ω = 12.1 mm,

as calculated in section 4.4.1. As the angle between the mirror and the beam is 45°, the

radius projected on the major axis of the MLO is 12.1 ×
p

2 = 17.1 mm. As explained in

section 4.2.3.2, 98.90 % of the beam power is included in a circle with a radius of 1.5ω

(25.6 mm), and 99.97 % of the power is included in a circle with a radius of 2ω (34.2 mm).

So, most of the beam (98.9 %) will be reflected by the center of the mirror, where the

shape difference is smaller than 5 µm. As a result, the mirror is in accordance with our

requirements in terms of roughness and shape accuracy.

4.5.2 The polarizing grids

The wires grids of the MPI, G1 and G2, are very important because they must efficiently

separate two polarizations of the signal. The part of the signal whose polarization is parallel

to the wires is reflected, while the part of the signal whose polarization is perpendicular to
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its wires is transmitted. Our two wire grids are made with tungsten wires and were manu-

factured by the university of Erlangen. They have an internal diameter of 52 mm (which is

larger than 5ω at that position) and should have the dimensions calculated in section 4.4.2:

Wires with a diameter a = 10 µm and a wire spacing g = 35 µm. We first observed the grids

with a scanning electron microscope (SEM), to know their real dimensions. Then, I tested

them to characterize their efficiency.

4.5.2.1 Observation with a scanning electron microscope

With the SEM observation, we were able to determine that the diameter of the grids’ wires

is a = 10.0 µm (figure 4.17) and the average spacing is g = 36.7 µm (figure 4.18).

FIGURE 4.17: Thickness of the grids’ wires

FIGURE 4.18: Spacing of the grids’ wires

The wire grids have the expected diameter (a = 10 µm), but the average wire spacing is

a bit larger than expected (37 µm instead of 35 µm). We can also see in figure 4.18 that

the wire spacing is quite irregular. This can be problematic as the spacing irregularities can

affect the grids’ efficiency.
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4.5.2.2 Effects of the irregular wire spacing on the polarizing efficiency

As the spacing irregularities can reduce the efficiency of the polarizing grids, it is useful to

know the relation between the grid’s efficiency and the wire spacing deviation.

Beunen et al. [45] measured the standard deviation σ of their grids’ wire spacing (with

10 µm diameter wires). They found that this deviation σ is usually between 9 µm and

10 µm, and it tends to increase when the wire spacing decreases. With the SEM, we mea-

sured the standard deviation of our MPI grid (with a small sample of 30 wires) and found

σ = 9.8 µm. This value is consistent with this paper and indicates that the spacing irregu-

larities of our MPI grids correspond to the normal manufacturing error of free standing wire

grids.

Shapiro and Bloemhof [46] measured the effect of the standard deviation on the grid’s effi-

ciency. They considered the ratio σ/g and showed that T// increases along with σ/g. Their

study was carried out at lower frequencies (up to 490 GHz) and for 25 µm diameter wires.

Shapiro et al. showed that between a very regular spacing (σ/g = 0.07) and a more irreg-

ular spacing (σ/g = 0.23), T// increases by approximately 100 %. This relation is expected

to scale with wavelength, so we can apply this study to our grids at 2.6 THz. For our MPI

grids, I calculated σ/g = 9.8/37 = 0.26. So, we can expect the value of T// to be about

110 % higher than the parallel transmittance of an ideally spaced grid.

T//ir reg = T//ideal + T//ideal × 110 %= 2.1× T//ideal . (4.20)

4.5.2.3 Testing of the polarizing wire grids

The testing of the grids can enable us to characterize their polarizing efficiency and deduce

expected losses for the MPI. I used the 2.6 THz LO to generate the signal. A polarizing

grid was used to remove the cross polarization of the LO (which was measured to be about

6 %) and the ellipsoidal mirror MLO was used to focus the signal. The detector I used is an

infrared bolometer cooled down to 4.2K which is very accurate (with an accuracy of a few

nW). I also needed to chop the signal with a shutter as the bolometer can only measure a

pulsed signal. I put the MPI grid I wanted to characterize between the bolometer and the

polarizing grid. The schematic of this experiment is shown in figure 4.19. The polarizing
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grid is set to only select the main polarization of the LO (which is vertical). By measuring the

power received by the IR bolometer for when the wires of the MPI grid were horizontal and

vertical (with respect to the MPI support), I was able to deduce T// and T⊥. I characterized

the MPI grids for a normal incidence (90°) and for a 45° incidence (as it is in the MPI). The

results of this experiment are:

Normal incidence: T⊥ = 95± 1 % and T// = 3± 1 %

45° incidence: T⊥ = 95± 1 % and T// = 2± 1 %

FIGURE 4.19: Schematic of the experiment set up to characterize the MPI grid

The incertainty of these measurements (±1 %) is mostly due to the slow drift of the LO power

during the test, and to the air absorbance. The optical path is quite long (about 50 cm) and

the water vapor in the air absorbs between 20 % and 40 % of the signal’s total power at

2.6 THz (cf. section 4.5.4). So, air draughts can also create some power changes.

4.5.2.4 Conclusion

Table 4.2 shows the measured and simulated (cf. section 4.4.2) efficiency values for our MPI

grids at 2.6 THz. The theoretical values of T// and T⊥, for a normal incidence and a 45° angle

incidence, are calculated in section 4.4.2.4. I also took into account the theoretical effects

of the irregular wire spacing on T//, which are described in section 4.5.2.2. At 2.6 THz,

the irregular wire spacing produces an increase of 110 % of T//, which corresponds to a

multiplication by a factor 2.1. The experimental values of T// and T⊥, for a normal and a

45° angle incidence, are presented in section 4.5.2.3. The absorbance of the metal wires is

expected to be very low (1 % or less) for the transmitted signal, so it has not been taken into

account in this calculation (cf. section 4.4.2.1).
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Theoretical transmittance (%) Measured transmittance (%)

T//(0
◦) 0.9× 2.1= 1.9 3± 1

T⊥(0
◦) 97 95± 1

T//(45◦) 0.6× 2.1= 1.3 2± 1
T⊥(45◦) 95 95± 1

TABLE 4.2: Synthesis of the grids’ theoretical and measured transmittances

Finally, as shown by Table 4.2, the measured and simulated results are very close. It suggests

that the theoretical analysis of the grid, based on the theoretical equations from Blanco et al.

[43], the 45° incidence angle consideration, and the effects of the irregular spacing, is quite

accurate.

4.5.3 Efficiency of the roof-top mirrors

The roof-top mirrors are made of two flat orthogonal faces. As it is quite easy to machine

flat faces, we do not have any doubt concerning the surface roughness of these mirrors (they

are almost optically polished). However, an uncertainty arises concerning the roof line (the

junction of the two faces). The beam reaching a roof-top mirror must be reflected twice

so its polarization can be inverted. If a portion of the beam reaches the roof line, it can

either be reflected once, or twice but in a wrong direction (because the flat faces are slightly

curved near the roof-line). So, the rays reflected by the roof-line can be considered as lost.

I measured a 15 % efficiency improvement in our MPI when the roof-top mirrors were not

centered on the incoming beam (so the roof line was not illuminated). Consequently, in our

MPI I made sure that the incoming beam was reaching a face of the roof-top mirrors, and

not the roof line.

4.5.4 Air absorbance

The water vapor contained in the air absorbs some parts of the spectrum. It is important

to know the transmittance spectrum of the air to avoid using the frequencies where the

air is very absorbent. Moreover, because the air becomes quite absorbent for frequencies

above 1 THz, a heterodyne receiver observing above 1 THz would need to operate from

a high altitude (plane, stratospheric balloon, satellite). At these altitudes, the MPI can be

considered to be in a vacuum and does not suffer any water vapor losses. So, to know the
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efficiency of our MPI (and possibly compare it with the efficiency of a beam splitter), we

need to remove the air absorbance from the results.

4.5.4.1 Calculation of the precipitable water vapor (pwv)

I used the software am (atmospheric model) developed by Scott Paine [47] to calculate the

theoretical air transmittance in our lab. The absorbance of the air depends on the precip-

itable water vapor (pwv) contained in the given path length. This parameter is calculated

from the relative humidity (RH), the temperature of the air (T) and the considered path

length (L). This calculation is described in appendix B.3. Finally, I obtain the final formula

giving the pwv (in mm) as a function of L, T, and RH. With T, in Kelvins, RH in % and L in

meters.

pwv(RH, L, T ) = 1.323× RH.L
T
× exp
�

17.67(T − 273.15)
T − 29.65

�

(4.21)

For an optical path length of 50 cm, an average temperature of 25 °C and an average relative

humidity of 30 %, I plotted the transmittance spectrum of the atmosphere from 100 GHz to

3 THz (figure 4.20). The values of temperature and relative humidity were chosen because

the correspond to the average values we measured in our lab, and the length of the optical

path approximately corresponds to the length of the MPI’s optical path.

FIGURE 4.20: Atmospheric transmittance for a 50 cm optical path, 30 % of relative humidity
and a temperature of 25 °C
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4.5.4.2 Theoretical evaluation of the air absorbance in our MPI

In the case of our MPI, the path length (L = 0.5 m) is fixed, but T and RH change over

time. In winter, the outside temperature decreases and RH increases, and in summer it is

the contrary. These changes induce a variation of the pwv contained in the air. Along the

year, the pwv in our lab (and outside) globally varies between 2 µm and 6 µm, which is well

represented on the plot, figure 4.21. At 2.6 THz, for a 50 cm optical path, the theoretical

transmittance of the air lies between 83 % when pwv = 2.3 µm and 61 % when pwv =

5.8 µm.

FIGURE 4.21: Atmospheric transmittance for a 50 cm optical path at 25 °C

4.5.4.3 Conclusion

This simulation shows the strong absorption of water vapor in air at THz frequencies and

the important variations of this absorption with temperature and relative humidity. Finally,

the easiest solution to remove the air absorbance from the MPI’s transmittance is to compare

the beams produced by the ellipsoidal mirror (MLO) with and without the MPI. To have the

same size, both beams have to be measured at the same distance (L = 50 cm) from the

MLO. The beam going through the MPI is attenuated by the air and the MPI, while the other

beam is only attenuated by the air. By subtracting the intensity of both beams, I am able to

accurately determine the real transmittance of the MPI, without the air absorbance.
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FIGURE 4.22: Set-up of the experiment to measure the efficiency of the whole MPI

4.6 Efficiency of the whole MPI

4.6.1 Presentation of the experiment

After having tested each component of the MPI individually, I tested the whole MPI. Extreme

care was taken to align the different elements because I measured that, at 2.6 THz, an in-

clination angle as small as 0.1° of the mirrors could induce a few % losses at the output of

the MPI. I used a 2.6 THz LO source from VDI (Virginia Diodes Inc.) which emits approxi-

mately 2 µW. The signal emitted by the LO is mainly vertically polarized but also contains

6 % of horizontally polarized signal (we call it cross-polarization). A very sensitive cryo-

genic bolometer from IRLabs was used to measure the power of the LO signal after different

elements of the MPI. A grid, called G3, fixed on a rotating support was also used to select

the vertical or horizontal polarizations of the signal, and remove the cross-polarization. The

experiment’s set-up is shown in figure 4.22.
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4.6.2 Different steps of the experiment

During the experiment, I added the different elements of the MPI one by one, and measured

the received power at different steps of the assembly. This allowed me to discriminate the

losses due to each element. The different assembly steps are shown in figure 4.23.

FIGURE 4.23: Consecutive steps of the MPI assembly

I always measured the power at the same distance from the ellipsoidal mirror MLO, to mea-

sure the same beam size and have comparable results. The distance between the MLO and

the bolometer was set to 43.5 cm because it approximately corresponds to the position of

the beam waist. The IR bolometer is very accurate, and I estimate an accuracy of ±1 % for

my power measurements, due to the positioning of the bolometer, the air fluctuations, and

the possible drift of the LO power.
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4.6.2.1 Step 1: Signal reflected by the MLO

I reflected the LO signal with the ellipsoidal mirror MLO and used the grid G3 to only trans-

mit the vertical polarization to the bolometer (figure 4.23-1). The power measured is the

reference and it will be used to calculate the efficiency of the MPI.

4.6.2.2 Step 2: Signal reflected by G1

Grid G1 has vertical wires which reflect most of the vertical polarization and transmit most

of the horizontal polarization (figure 4.23-2). I measured that 91.5± 1 % of the vertically

polarized signal was reflected by G1 (R// = 91.5 ± 1 %). According to section 4.5.2.3,

T// = 2±1 %, so in the absence of losses, we should have R// = 98±1 %. So, approximately

6 % of the power is missing, and it could be caused by the absorbance of the grid’s wires.

When I measured the transmittance of the grids, I assumed that the absorbance was inferior

or equal to 1 %. However, in reflection the field is mostly parallel to the wires and the

current induced in the grid’s wires is much stronger, so the absorbance losses are expected to

be higher, especially at high frequencies. As we found no articles describing the absorbance

losses of polarizing grids at high THz frequencies, we are intending to characterize this effect

in the near future.

• The losses due to G1 are L2= 8.5± 1 %.

4.6.2.3 Step 3: Signal reflected and transmitted by G2

I added the grid G2 with a polarizing angle of 45° (figure 4.23-3). The power transmitted

by G2 was 49±1 % and the power reflected was 47±1 %, compared to the signal measured

in the previous step. According to section 4.5.2.3, the measured transmittance of grid G2 is

T⊥ = 95± 1 % and T// = 2± 1 %. So, without any absorbance, and for a perfect polarizing

angle of 45°, the transmitted power should be 95/2+ 2/2 = 48.5± 1 %, and the reflected

power, 98/2+ 5/2 = 51.5± 1 %. The difference between the predicted and the measured

reflectance of the grid G2 is certainly be due to the wires’ absorbance and/or to a small error

in the polarizing angle of the grid. It corresponds to 4± 2 % losses.

• The losses due to G2 at the output of the MPI are expected to be L3 = 2× 4± 2 % (the

signals meet the grid G2 twice).
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4.6.2.4 Step 4: Signal reflected by T1 and T2

I measured the power at the output of the MPI with both roof-top mirrors at the same distance

of 5 cm from G2 (figure 4.23-4). The measured losses of G2 and the two roof-top mirrors

are equal to 8 ± 1 % (compared to the signal measured in step 2). It corresponds to the

estimated losses L3 of grid G2 alone, so we can deduce that the roof-top mirrors’ losses are

negligible.

By translating the mirror T2 (along the beam’s direction), the polarization of the signal at

the output of the MPI is changed (between horizontal, elliptic and vertical polarizations).

We need to get a linearly polarized signal (vertical or horizontal) at the output of the MPI.

So, I used G3 to, successively, select these two polarizations and I adjusted T2 to get the

maximum power. I achieved the same efficiency for both polarizations and had only 2 %

cross-polarization losses.

• The losses due to T1 and T2 are negligible and there is a 2 % cross polarization at the

output of the MPI, for the vertical and horizontal polarizations. It also confirms the losses

of grid G2: L3= 8± 1 %

4.6.2.5 Step 5: Signal at the output of the MPI

Finally, I moved T2 further from G2 to finalize the MPI assembly (figure 4.23-5). T2 was

positioned at 10 cm from G2 while T1 stayed at a distance of 5 cm from G2. I measured the

power at the output of the MPI, with and without G3. I measured an additional power loss

of 3± 1 % and an additional cross polarization of 3± 1 %, compared to step 4.

An explanation for the total power loss is the air absorbance. The path of the beam reaching

T2 was increased by 10 cm. By using the software am from Paine [47] (cf. section 4.5.4),

I calculated that this path increase corresponds to an additional air absorbance of 5 % of

the considered beam. It represents a reduction of 2.5 % of the total power at the output of

the MPI, which is consistent with my measurement. The increase of the cross polarization is

caused by two effects. The air absorbance has weakened the signal coming from T2, so the

coupling with the signal coming from T1 is not as efficient as before because the amplitudes

of the signals from the two MPI sidearms recombine with different levels. Moreover, when
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the two beams recombine after G2, they now have a different size (because of the path

difference), making the coupling even less efficient.

• The losses due to the air absorbance are L5 = 3 ± 1 %, and the increase of the cross

polarization at the output of the MPI is 3± 1 %.

4.6.3 Conclusion

Finally, by comparing the measured beam power at the input (cf. step 1), and at the output

(cf. step 5) of the MPI, I calculated a total power transmittance of 81± 1 % and a polarized

transmittance of 76 ± 1 %. It corresponds well to the total power and polarized transmit-

tances obtained by considering the losses of all the individual elements measured from step

2 to step 5:

TTot power = (1− L2)× (1− L3)× (1− L5) = 82± 2 %. (4.22)

TPolarized = TTot power × (1− 0.05) = 78± 2 %. (4.23)

Where L2= 8.5± 1 %, L3= 8.0± 1 % and L3= 3.0± 1 %.

FIGURE 4.24: Schematic showing the losses of the different elements of the MPI

The losses of the different elements of the MPI are gathered in figure 4.24. As the RF signal

is transmitted by the grid G1, and not reflected, there will be less losses. So, the expected

efficiency of the MPI for the RF signal is 84 % for the total power and 79 % for the polarizing
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efficiency. These results are quite good, especially at 2.6 THz where the alignment is very

critical.

4.7 Conclusion

Usually, a beam splitter is used to superimpose the LO and RF signals before they reach the

mixer of a heterodyne receiver. However, this technique requires lots of LO power and our

2.6 THz LO does not emit enough power to correctly pump our HEB mixer after having been

reflected by a beam splitter. That is why we decided to build a Martin Puplett interferometer

(MPI), which can superimpose both RF and LO signals with theoretically very little losses.

The mixer needs to receive the LO and RF signals superimposed and with the same polariza-

tion. The superposition of the LO and RF signals is done by a first polarizing wire grid. Then,

the rotation of the polarization of only one of the two signals is done by the MPI, composed

of a second polarizing wire grid and two roof-top mirrors. Our MPI also used an ellipsoidal

mirror to focus the LO beam. The design of this mirror was based on Gaussian beam optics

equations, which were presented in the first part of this chapter. The polarizing wire grids

are crucial elements of an MPI and their characteristics have an important impact on the effi-

ciency of the MPI. A theoretical model enabled me to determine the required characteristics

for our grids at 2.6 THz. Then, the testing of the grids allowed me to confirm the theoretical

model, as the measured characteristics of the grids were close to the calculated ones. After

evaluating all the components of the MPI individually, I finally assembled them to set up the

MPI. The test of the MPI suggested that at 2.6 THz, the absorbance of polarizing grids with

10 µm diameter tungsten wires is not negligible, unlike what is usually assumed at lower

frequencies. Finally, our MPI was able to transmit the LO beam with 76 % efficiency in the

required polarization, and should, simultaneously, transmit the RF signal with an efficiency

close to 79 %. These results are good, especially at 2.6 THz where the alignment of the

components is extremely critical. As a result, this MPI is operational and efficient enough to

be used as a diplexer in our 2.6 THz heterodyne receiver. In the future, the replacement of

the polarizing grids by more efficient ones will allow us to increase the efficiency of the MPI.
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5.1 Background and theory

5.1.1 Motivation

Early THz heterodyne systems concentrated on high spectral resolution and large band-

width (with many spectral channels), but they usually only had one spatial pixel (i.e. HIFI

instrument on Herschel satellite [8]). Recently, arrays of heterodyne receivers have been

developed to simultaneously measure spectra at several positions in the sky. In heterodyne

receivers, each pixel has a mixer. So, observing with several pixels involves pumping all

these mixers with an LO. The most efficient way of doing it is to split the LO beam into

several beams to specifically illuminate each mixer. Phase gratings are the perfect tool for

achieving this goal.

In this chapter, I start by presenting the different kinds of existing phase gratings for THz fre-

quencies: stepped gratings and Fourier gratings. Then, I describe a more general approach I

developed in order to design any kind of phase grating. We called the gratings created with

this new approach Global gratings. In the last part of the chapter, I describe the design, sim-

ulation, manufacturing, and testing processes which enabled me to make two Global grating

prototypes.

76



Chapter 5. Phase gratings

5.1.2 Presentation of the phase gratings

A phase grating is an element which locally changes the phase of an incoming beam. In the

case of a transmissive element (lens), the variation of its thickness creates a proportional

phase variation within the beam. In the case of a reflective element (mirror), the depth

variations of the illuminated surface generate the same proportional phase variations. As

a result, the different parts of the incoming beam which have been phase shifted interfere,

and the constructive interferences generate new beams. That is why phase gratings can be

used to divide the incoming LO beam into several output beams, as shown on figure 5.1.

FIGURE 5.1: Reflective and transmissive phase gratings

Several heterodyne receivers already use phase gratings to observe with several pixels, such

as CHAMP [48] (since 1998), SMART [49] (since 2001), Desert STAR [50] (since 2003),

upGREAT [11] (since 2015).

5.2 The stepped phase gratings

5.2.1 Overview of the stepped phase gratings

The Dammann grating is a two dimensional array of identical rectangular cells. It is only

composed of one level steps, as illustrated by figure 5.2, while multilevel gratings are made

of multiple level steps. The latter are more complicated to design and to manufacture but

can achieve higher efficiencies. The stepped grating concept can be applied to transmissive

or reflective materials, so it is possible to make stepped lenses or mirrors. Stepped phase

gratings have been used as LO multiplexers in several radio telescopes. The CHAMP in-

strument uses two stepped phase gratings to feed 2x8 mixers with two LOs, at frequencies
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around 500 GHz (cf. Güsten et al. [48]). The Dammann grating (DG) is the simplest stepped

phase grating, and has been first designed and created in 1977 by Dammann and Klotz [51].

FIGURE 5.2: Examples of Dammann grating designs, splitting the input beam into 2 beams
(a), and 4 beams (b)

A typical set-up for a multi-beam generation by a phase grating is shown on figure 5.3. The

first lens is used to focus the diverging beam emitted by the LO. The DG is positioned at the

minimum waist position of the first lens, where the Gaussian beam has a planar wavefront.

As the refractive index of the DG is higher than the air’s index, the part of the beam go-

ing through the steps is phase shifted compared to the part of the beam going through the

grooves. It induces a phase modulation within the beam, which creates destructive and con-

structive interferences. Then the resulting radiation pattern can be observed in the output

focal plane of the second lens. Multistep gratings work like Dammann gratings, but several

phase shifts can be introduced to increase the efficiency.

FIGURE 5.3: Optical setup of a phase grating
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5.2.2 Theory of Dammann gratings

The electromagnetic wave propagation is defined by Maxwell’s equations. However, under

several conditions listed in appendix C.1, we can approximate Maxwell’s equations with a

Fourier transform to calculate the far-field generated by a surface field distribution within a

given aperture (here the phase grating).

The theory of Dammann gratings (DG) has been described by several authors, such as Mait

et al. [52], O’Shea et al. [53] and, of course, Dammann and Klotz [51]. The theoretical

calculation of the far-field produced by a DG is briefly presented below, and described in

appendix C.2. We consider the case of a transmissive one-dimensional DG, only composed

of periodic grooves, as in figure 5.2a. The period of the DG has been normalized to ∆u= 1,

where u is the position on the grating profile. The DG is a binary grating which implies a

phase step difference of π, so its transmission is T (u) = ±1. In the case of periodic gratings,

the diffraction pattern is discrete and composed of beams of several beams emitted at specific

angles. These angles are calculated with the grating’s equation:

nλ =∆u.sin(θn), (5.1)

where n ∈ Z is the considered diffractive order, ∆u is the real spatial period of the grating

(not normalized), and θn is the angle between an n-order beam’s direction and the normal

of the grating, as illustrated in figure 5.4.

FIGURE 5.4: Output beams of all possible diffraction orders

In practice, the diffracted beam’s order is not infinite as it is limited with respect to the

angular range [-90°, 90°]. So, the real diffracted orders produced by the grating are:
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n= ±
�

∆u.sin(θn)

λ

�

, (5.2)

where θn ∈ [-90°, 90°] and ⌊ ⌋ is the floor() function.

5.2.3 Test of a transmissive Dammann grating

We bought a DG from the company Tydex Optics (figure 5.5). This grating is made of high

resistivity float zone silicon (HRFZ-Si) and it works in transmission. This grating was de-

signed to generate 2 beams separated by an angle 2θ = 40° at a frequency of 1.39 THz. The

frequency of 1.39 THz rather than 2.6 THz was chosen because the LO power at 2.6 THz is

too little to allow accurate tests. Moreover, it has a parylene anti-reflective coating on both

faces, to reduce the losses.

FIGURE 5.5: HRFZ Silicon Dammann grating from Tydex optics

5.2.3.1 Theoretical dimensions of the Dammann grating

This grating is made for a frequency of 1.39 THz (λ = 216 µm). According to the gratings’

equation 5.1, an angle 2θ = 40° between the output beams corresponds to a spatial period

of:

∆u=
λ

sinθ
= 632 µm. (5.3)

So the grooves and steps should both have a spatial period of 632 µm. The steps must

produce a path difference of λ/2 in order to create a phase shift of π rad. So, the height of

the steps, e, must satisfy the equation:
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e× (nSi − nair) =
λ

2
, (5.4)

and, e = 44.7 µm, (5.5)

where nSi = 3.417 is the refractive index of the HRFZ Silicon, and nair = 1. The diffraction

pattern of a 2 beam DG is investigated in more detail in appendix C.3. Equations 5.3 and 5.5

predict that a HRFZ Silicon DG producing 2 beams at -20° and +20° angles should have

44.7 µm high steps replicated with a period of 632 µm.

5.2.3.2 Measurement of the Dammann grating’s dimensions

We inspected the bought HRFZ Si Dammann grating by measuring it with a profilometer

(Dektak 8) and a scanning electron microscope. It enabled me to compare its real dimensions

with the theoretical ones, predicted by equations 5.3 and 5.5.

FIGURE 5.6: The Dammann grating edge viewed with a SEM

The picture from the SEM (figure 5.6) distinctly shows the steps of the grating covered by

the anti-reflective coating.

The profilometer has a resolution better than 1 µm and gives very detailed measurements of

the grating’s profile (figure 5.7). I measured a height of eex p = 45 µm and a spatial period of

∆ex p = 620 µm. These values are very close to the theoretical ones I calculated previously

(eth = 44.7 µm and ∆uth = 632 µm).
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FIGURE 5.7: The grating’s surface measured with a profilometer

5.2.3.3 Measurement of the Dammann grating’s efficiency

I used a 1.39 THz source from the company Virginia Diodes Inc. (VDI) which has a maximum

output power of 40 µW. I mounted the LO, a shutter (to modulate the signal), a lens, and

the DG on a rotating support (figures 5.8 and 5.9). In front of the support, a static Golay

cell power meter was used to measure the received power. By rotating the support, I was

able to characterize the shape of the output beams in the horizontal plane.

FIGURE 5.8: Schematic of the experiment to test the DG

Figure 5.10 shows the profile of the beams produced by Tydex’ Dammann grating. The angle

between the two beams is 40 ± 1°, as expected, and the maximum intensity of the beams

corresponds to 33±2 % and 32±2 % of the input beam’s intensity. The shape of the output

beams has been measured and it is very close to the shape of the input beam. The accuracy

of ±2 % is due to the optical alignment of the Dammann grating, the power drift of the

LO with time, and the accuracy of our Golay cell power meter. We can conclude that this

transmissive DG works as expected. The angles and the shape of the two output beams
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FIGURE 5.9: Picture of the experiment to test the DG

correspond to the predicted angles, only the total efficiency of this DG with 65± 2 % is less

than the 100 % theoretically expected (cf. appendix C.3).

FIGURE 5.10: Angle and power of the output beams

Several factors can make the real efficiency of the DG differs from its theoretical efficiency:

• Even with an anti-reflective coating, about 10 %-15 % of the input signal is reflected

by the surfaces of the grating, lost, or produces unpredictable multi-reflections inside

the grating (see section 5.5.4.3 for more details).

• The geometry of the grating is not perfect. Dimensional defaults can favor unwanted

orders like the beam at 0° which contains 2 % of the input power.

• Several parameters such as scattering, diffraction, absorption and shadowing are not

taken into account by the theory using the Fourier transform, and can further reduce
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the efficiency of the grating. More complete and accurate theoretical results are ob-

tained with electromagnetic simulations, as described in section 5.4.4.

5.3 The Fourier grating

The Fourier grating is a kind of phase grating which was first developed in 2001 by Graf and

Heyminck [54] [55]. It works as any other phase grating, but, unlike stepped gratings, it is

smooth, produces a continuous phase modulation and can usually reach a higher efficiency

than stepped gratings. The phase structure of Fourier gratings is designed by using finite

Fourier series, with about 13 coefficients per spatial dimension. The coefficients are calcu-

lated with a random search followed by an optimization process. Fourier gratings, being

smooth, are like stepped gratings with an infinite number of steps, which is a real improve-

ment. However, as they are generated by Fourier series, they are limited by the possibilities

of Fourier series. Fourier gratings cannot have sharp edges and must be periodic. Fourier

gratings have been mostly used in reflection and manufactured as Fourier mirrors. A use-

ful improvement, made by Heyminck et al. [55], has been to combine Fourier mirrors and

focusing mirrors (ellipsoidal or parabolic). It enabled them to remove the focusing element

between the LO and the Fourier grating, which contributed to a small reduction of the losses

and an easier alignment of the quasi-optical elements. Fourier gratings have been used in

several heterodyne receivers:

• The SMART instrument [49], embedded on KOSMA telescope, consists of two 2x4

pixel sub-arrays, operating at two different frequencies (490 GHz and 810 GHz).

• The upGREAT instrument [11], embedded on SOFIA [12] airplane, has two 7 pixel

arrays operating between 1.9 and 2.5 THz, and one 7 pixel array at 4.745 THz.

• The Desert STAR instrument [50] on the Heinrich Hertz telescope (HHT) [56] has 7

pixels operating at 345 GHz.
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5.4 The Global phase grating

5.4.1 General presentation

I have developed a general kind of phase grating, not restricted to discrete steps or Fourier

series. This phase grating can be non-periodic, have sharp edges, be completely smooth or

be stepped, and has no design constraints. It includes all kinds of phase grating design,

including Fourier and Dammann gratings. We call it Global phase grating. As it has more

possibilities than Fourier and Dammann gratings, it can usually reach a higher efficiency and

it can produce any kind of far-field pattern. As it can be non-periodic, it can also be adapted

to the shape (intensity and phase profiles) of the incoming beam. This feature could be useful

if we design a grating whose cells’ size is close to the beam size. The challenges of the Global

phase grating, compared to Fourier and Dammann gratings, are the required computing

power for the design, and the manufacturing process. Global gratings can have any shape,

be partly continuous and partly discrete for example. This diversity of shapes can be difficult

to manufacture. The shape of Global gratings is not represented by a mathematical function,

like the Rectangle function for Dammann gratings or the Fourier series for Fourier gratings.

5.4.2 Numerical calculation

5.4.2.1 Architecture of the main program

The numerical program I developed to calculate Global phase gratings’ profiles runs on Mat-

lab. It takes advantage of the numerous Matlab built-in functions and uses Matlab’s parallel

processing feature to increase the calculation speed. To design the grating, I start from the

desired far-field beam pattern and use a method based on the far-field to near-field transfor-

mation. The steps performed by the program are listed below and described in figure 5.11.

1. The desired radiation pattern is chosen by the user and it is composed of several Gaus-

sian beams positioned at the desired positions. Once it has been defined, the far-field

radiation pattern is mapped onto the aperture field of the grating via an inverse FFT.

2. The physical realization constraints are imposed (i.e. the finite size of the grating).
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3. The size of the input Gaussian beam used by the program corresponds to the size of

our LO beam once it has been collimated by a focusing element (lens or mirror). This

Gaussian beam is mapped onto the the aperture field of the grating via a FFT.

4. The phase profile of the Global phase grating is calculated as the difference between

the phase front of the incoming Gaussian beam and the phase profile required to gener-

ate the desired far-field pattern. The resulting phase profile is coupled to the Gaussian

amplitude profile of the incoming beam. The result corresponds to the aperture field

distribution produced by the grating.

5. An FFT is used to calculate the far-field pattern generated by this aperture field when

illuminated by the LO Gaussian beam.

6. The constraints on the output radiation pattern are imposed (shape of the beam, side

lobe level, etc.). The radiation pattern is compared to the desired radiation pattern to

calculate the efficiency of the phase profile.

These steps are repeated for each possible far-field phase distribution (cf. section 5.4.2.2),

then the phase profile producing the best radiation pattern is automatically selected. This

method produces the Global phase grating design, which can be non-periodic and have any

shape. The successive steps of the program are indicated on figure 5.11 by the numbers 1

to 6.

FIGURE 5.11: Schematic of the program calculating the phase profile of the Global grating
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5.4.2.2 Different phase distributions in the far-field beam pattern

The far-field beam pattern is composed of Gaussian beams positioned at different positions,

but all these beams do not need to have the same phase. Each individual beam must have

a uniform and constant phase front, because the mixer it feeds will be less efficient if the

incoming beam has a distorted phase front. However, as each beam feeds a different mixer,

they can all be phase shifted with one another (as long as there is no cross-correlation of

the beams required). This consideration gives an additional degree of freedom. Numerical

calculations seem to indicate that the phase profiles giving the best far-field patterns (close

to the desired one) are for beam phases of 0 or π rad. So, I decided to successively assign to

each beam of the desired far-field pattern, one of these two phase values. As a result, I get

2N possible far-field patterns (where N is the number of beams). This number can often be

reduced by symmetrical considerations. For each of the 2N (or less) iterations of the main

program, the efficiency of the grating is calculated. At the end, the most efficient grating

profile is selected.

This process is well illustrated by the design of a 4 beam far-field pattern. For this unique

far-field radiation pattern, 24 = 16 possible phase distributions exist, depending whether

each beam has a phase of 0 rad or π rad. These 16 phase distributions are reduced to 4 by

symmetrical considerations, and are identified in figure 5.12.

FIGURE 5.12: Desired 4 beam far-field patterns with 4 different phase distributions

These 4 different phase distributions within the desired far-field beam pattern are generated

by 3 different phase profiles with different efficiencies, as illustrated by figures 5.13, 5.14

and 5.15. The two first phase distributions (figures 5.12a and 5.12b) are produced by the

same phase profile, shown in figure 5.13b. The different phase distributions are produced

by a different positioning of the phase profile relative to the beam. When the phase profile

is centered on the beam axis the beam pattern shown in figure 5.12a is obtained. When the

phase profile is shifted from the beam axis of 1/8th of its period in the x and y directions,
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the beam pattern shown in figure 5.12b is obtained. Figures 5.13b, 5.14b and 5.15b show

the different far-field patterns produced by the corresponding phase profiles. The power

percentage of each beam indicates the efficiency of the phase grating. All far-field patterns

are perfectly symmetric in both horizontal and vertical directions. The desired beams are

the 4 most powerful ones which form a square in the middle of the far-field beam pattern

plots. The other smaller beams are unwanted higher order beams.

The first phase grating profile (figure 5.13a) corresponds to a Dammann grating, which

means that Dammann gratings are a particular solution of Global gratings. We also see in

figure 5.13b that its efficiency is not so good, as each of the 4 main beams only concentrates

20.3 % of the total power. It results in a total power efficiency of 81 %. The remaining 19 %

are split between the multiple unwanted higher order beams.

(A) Phase grating profile (B) Far-field beam pattern

FIGURE 5.13: Phase grating generating the far-field pattern of figs. 5.12a and 5.12b

The two other phase grating profiles (figures 5.15a and 5.14a) are partially continuous with

some sharp edges. So, these solutions do not belong to the Dammann grating nor the Fourier

grating families. We see in figures 5.14b and 5.15b that their efficiencies are better than the

one reached by the Dammann grating phase profile (figure 5.13a) and are, respectively,

94.6 % and 92.1 %.

(A) Phase grating profile (B) Far-field beam pattern

FIGURE 5.14: Phase grating generating the far-field pattern of fig. 5.12c

Finally, this code automatically finds the phase profile which generates the desired radiation

pattern the which contains the most power. In this example, the 4 beam radiation pattern
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(A) Phase grating profile (B) Far-field beam pattern

FIGURE 5.15: Phase grating generating the far-field pattern of fig. 5.12d

was best generated by the grating design shown in figure 5.14a. This phase grating has a

theoretical efficiency of 94.6 % for an angle of 12.6° between each beam and the x and y

axises. If we increase this angle, the unwanted higher order beams are at angles larger than

90° and disappear, which greatly improves the grating’s efficiency. For example, with the

same phase profile and an angle of 20° between the 4 beams and the x and y axises, the

grating reaches a theoretical efficiency of 99.99 %.

5.4.3 Conversion of a phase profile into a grating’s surface

A phase profile generated by the numerical program can be used to create, either, a trans-

missive or a reflective phase grating. This phase profile only has to be scaled differently,

depending whether we want to use it to create a transmissive or a reflective grating.

5.4.3.1 Surface of a transmissive grating

The relief of the transmissive grating modifies the phase front of the incoming beam because

its refractive index is different from the refractive index of the air. So, a phase shift is in-

troduced between different parts of the beam which do not travel along the same electrical

distance inside the grating. Equation 5.6 expresses the relation between the height of the

grating’s relief and the resulting phase modulation.

z =
φλ

2π.(ndielec − nair)
, (5.6)

where z is the height of the dielectric relief, ndielec is the refractive index of the dielectric,

nair = 1, and φ is the phase shift generated by the dielectric relief.
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If the grating is designed for a normal incident beam, the horizontal dimensions (along x and

y) of the grating remain the same as in the phase profile generated by the program. Only, the

vertical (along z) dimension of this profile needs to be scaled by the previous formula, and

the phase relief is converted into an amplitude relief. If the incident beam is not normal to

the grating, the surface of the grating profile also has to be scaled in the horizontal direction

to compensate for the incidence angle.

5.4.3.2 Surface of a reflective grating

The relief of the reflective grating modifies the phase front of the incoming beam by changing

the path length of different parts of the beam. A part of the beam reflected by a high relief

will travel a shorter distance in the air than a part of the beam reflected by a lower relief of

the mirror. So, a phase shift is introduced between different parts of the beam which do not

travel the same distance in the air. This phase modulation is proportional to twice the relief

amplitude of the grating, as expressed by the formula:

z =
φλ

4π
, (5.7)

where z is the amplitude of the mirror’s relief. However, this formula is only valid for an

incident beam normal to the mirror’s surface. As we do not want the diffracted beams to be

reflected back to the source, I designed our reflective grating to receive an oblique incident

beam.

We need to know the relation between the relief of the grating and the corresponding phase

shift. It is based on equation 5.7 but it also depends on the angle θ of the incident beam.

Figure 5.16 illustrates the case where two rays of an oblique incident beam, r1 and r2, are

reflected by the surface of a grating. They both make an angle θ with the normal of the

mirror. r2 is reflected by a high relief of the grating, while r1 is reflected by a low relief.

The path difference between the two rays is δtot = δ1 + δ2, and zobl is the depth between

the considered high and low parts of the surface’s relief. The path difference δtot can be

calculated with the following formula,

δtot = 2zobl .cos(θ ). (5.8)
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FIGURE 5.16: Reflection of the interfering beams on the surface of a phase grating

Then, the relation between the phase shift φ, the depth amplitude zobl , and the incidence

angle θ can be deduced:

zobl =
φλ

4π.cos(θ )
=

z

cosθ
. (5.9)

The vertical dimension of the phase profile needs to be scaled with equation 5.9, so the

phase relief of the grating profile is converted into an amplitude relief. However, as the

incident beam is oblique, we also need to scale the horizontal dimension of the phase profile

to compensate the angle. We assume that the incoming beam belongs to the plane xz, so the

grating has to be scaled along the x direction.

FIGURE 5.17: Example of a projected grating’s relief for an oblique incident beam

Figure 5.17 shows how the original phase profile is projected in order to work with an oblique

incident angle. The projection changes the shape of the original phase profile, and scales
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its horizontal and vertical dimensions. Both x and z dimensions are divided by cos(θ ).

The shape of the relief also needs to be modified so the relief reached by the oblique beam

corresponds to the initial phase profile relief reached by a normal incident beam. This scaling

and shape modification are done with the following formulas:

zobl =
z

cos(θ )
(5.10)

xobl =
x

cos(θ ) + zobl .sin(θ )
(5.11)

5.4.4 Electromagnetic simulations

5.4.4.1 Interest of electromagnetic simulations

Electromagnetic simulations were used to test grating designs produced by the numerical

program and to check the efficiency of the design. Electromagnetic simulations are very

useful because they take into account more parameters than the numerical program. As

electromagnetic simulation software are based on Maxwell’s equations, they are able to gen-

erate the far-field radiation pattern of a grating without using the FFT function, unlike the

numerical program. So, they can accurately simulate the radiation pattern of finite size grat-

ings. Moreover, electromagnetic simulations can take into account lots of parameters, such

as the materials’ losses, the direction of the source’s electric field, diffraction, scattering, the

multiples reflexions at the surface of a mirror, etc. It is also possible to modify some parts

of the grating’s design (due to some manufacturing requirements for example) and simulate

the new grating design to evaluate the impact of the changes on the grating’s efficiency.

Among the 3 different elecromagnetic software I tested (HFSS, CST and FEKO), FEKO dealt

better with the dimensions of the grating and the far-field calculations. So, FEKO is the

electromagnetic software I chose to simulate the efficiency of our phase grating designs.
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5.5 Reflective and transmissive phase grating prototypes

We decided to make two phase grating prototypes, a transmissive and a reflective one. They

both were designed to generate 4 beams out of one incoming Gaussian beam at 610 GHz. In

this section, I describe the design, simulation, check and test processes of two phase grating

prototypes, according to the following outline:

• Design considerations: Description of the requirements for the two prototypes (num-

ber and position of beams, angles, frequency, materials).

• Numerical calculation: Calculation of the phase profile which can efficiently generate

the 4 beams.

• Surface definition: The phase profile found by the numerical program is used to cal-

culate the relief’s dimensions of the grating prototypes.

• Electromagnetic simulations: The gratings’ surface is simulated with FEKO in order to

check and improve its efficiency.

• Mechanical design and manufacturing: 3D drawings of the prototypes are created and

sent to an external company for manufacturing.

• Geometrical verification: Check of the geometrical dimensions of the manufactured

gratings.

• Test of the gratings: Test of the phase grating prototypes’ efficiency.

• Conclusion.

In most of these subsections, I successively describe the results concerning the transmissive

grating and the reflective grating.

5.5.1 Design considerations for the two prototypes

The development of the phase grating started with the CIDRE project, whose heterodyne

receiver was planned to work with 4 pixels at a frequency close to 2.7 THz. For this project,

we needed to divide the LO signal into 4 beams to feed 4 HEB (Hot Electron Bolometer)
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mixers. As our 2.6 THz LO source does not emit a lot of power (about 2 µW), we needed a

very efficient phase grating. The CIDRE project has been suspended, but the development

of this new kind of phase grating continues, as it can be very useful for other heterodyne

projects or for the CIDRE project if its development is resumed.

We decided to make 2 phase grating prototypes, a transmissive and a reflective one. These

gratings were designed to generate a 4 beam radiation far-field pattern from one Gaussian

input beam, with the 4 output beams positioned in the 4 corners of a square. This pattern

was chosen because we already designed and made an array of 4 HEB mixers for the CIDRE

project. For easier testing and manufacturing, the prototypes were designed for 610 GHz

with large angles between the 4 beams. The angle of the output beams was set to 12.6° be-

tween each beam and the optical axis. The materials of the two prototypes were chosen

to comply with the manufacturing company’ requirements. The reflective grating was made

with brass (ductile and easy to mill) and the transmissive grating was made with TPX® poly-

methylpentene (PMP) plastic. High density polyethylene (HDPE) has a lower absorption but

as it is softer than TPX®, it would have been a lot harder to mill.

5.5.2 Numerical calculation

We applied the numerical program to the desired far-field beam pattern (4 beams positioned

in square). The results generated by the program were the 3 different phase profiles shown

in figures. 5.13, 5.15 and 5.14. We selected the most efficient of these phase profiles (fig-

ure 5.14), which has a theoretical efficiency of 94.6 %. This phase profile will be used to

create the transmissive and reflective gratings. In the case of the reflective grating, the inci-

dent beam, traveling in the xz plane, will reach the grating with an angle of 25°. To prevent

the sharp edges of the phase profile from cutting the incident beam and projecting shadows

on the grating’s surface, the phase design was rotated by 45°. As shown on figure 5.18, the

sharp edges are now along the x axis and do not project any shadow on the phase grating

when the input beam is in the xz plane.

As a result, the far-field beam pattern has also been rotated by 45° and is now diamond

shaped (figure 5.19).
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FIGURE 5.18: Reflective phase grating generating a 4 beam far-field pattern

FIGURE 5.19: Far-field generated by the phase profile of figure 5.18

5.5.3 Design of the transmissive and reflective phase gratings

5.5.3.1 Transmissive phase grating

As described in section 5.4.3.1, we need to scale the vertical dimension of the phase profile

to convert the phase modulation into a thickness modulation. The transmissive grating is

designed for a normal incident beam and will be made out of TPX®. According to the article

from Podzorov and Gallot [57], the refractive index of the TPX® at ambient temperature is

1.4565. This value allows us to use equation 5.6, and calculate the amplitude relief of the

grating.
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5.5.3.2 Reflective phase grating

As for the transmissive grating, we need to scale the vertical dimension of the phase profile

to convert the phase relief into an amplitude relief. For the reflective grating, we also need

to scale the phase profile in the horizontal direction to compensate for the angle of the

oblique incident beam, as explained in section 5.4.3.2. Electromagnetic simulations showed

us that large incident angles modify the amplitude and the reflection angle of each of the

diffracted beams, with respect to what is theoretically calculated by my numerical program

(cf. section 5.5.2). We did not find any satisfying explanation for this effect, but I tried to

minimize it by choosing a small incident angle, but large enough to make sure there will not

be too many alignment difficulties during the experiment. As a result, I chose an incident

beam angle of θ = 25° to the normal. Equation 5.9 is used to calculate the amplitude relief

of the grating’s surface. To compensate the effect of the incident angle, the grating profile

also has to be scaled in the horizontal direction. As the incoming beam lies in the xz plane,

the grating was scaled in the x direction by using equation 5.11.

5.5.4 Electromagnetic simulations

The software FEKO was used to perform the electromagnetic simulations of the phase grating

profiles. As explained in section 5.4.4, it enabled me to obtain more precise efficiency and

behavior results than with the numerical program. I was able to modify the geometry of

the gratings in order to improve their efficiency. The two grating prototypes are perfectly

periodic and their surface is made with the basis cell calculated by the numerical program,

duplicated along x and y directions. To create gratings larger than the incoming beam, it is

necessary to duplicate the basis cell hundreds of times. In my simulations, I approximated

the incoming Gaussian beam with a planar wave. This approximation is valid because the

cells are much smaller than the Gaussian beam size, and we can consider that the intensity

received by each cell is equally distributed over its surface. This planar wave approximation

enabled me to use a smaller grating by only duplicating the basis cell a few times, generally to

form a 5x5 cell array. By simulating the far-field produced by this smaller grating illuminated

with a planar wave, I was able to get accurate results of the diffracted beams’ intensity and

directivity. However, I could not get valid results concerning the beams’ size, because this

characteristic is related to the area of the grating illuminated by the incoming beam.
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5.5.4.1 Reflective phase grating

Electromagnetic simulations were used to compare the efficiency of the initial grating illu-

minated with a normal incident wave, and the efficiency of the scaled grating illuminated

with a 25° angle incident beam. This comparison is useful to determine the effect of the

incident beam angle on the grating’s efficiency, and it enabled me to correct some of these

effects to improve the grating’s efficiency.

Normal incident wave

I first simulated the far-field generated by the initial grating illuminated with a normal inci-

dent wave (figure 5.20).

FIGURE 5.20: Far-field pattern of the designed phase grating surface with a normal incident
plane wave, simulated with FEKO software

We see that the 4 beams are identical. To get the power percentage of each beam, I simulated

the reflection of the plane wave on a flat mirror with the same dimensions as the phase grat-

ing. Then, I divided the intensity of the 4 beams generated by the grating, by the intensity

of the beam reflected by the flat mirror. By summing the intensity of the 4 beams, I get a

total power efficiency of 89.2 % for this grating. It is close to the initial efficiency of 94.6 %

predicted by the numerical calculation (cf. section 5.5.2). The 5.4 % difference between

both results is due to the multiple side lobes generated by the grating in the electromag-

netic simulation. The numerical simulation only considers the power lost by the unwanted
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diffraction modes of the main beams, and not the side lobes. Thus it under-estimates the

total power losses of the grating.

Oblique incident wave

The angle of the incoming wave was set to 25° and I scaled the grating to adapt its relief to

this angle (in accordance with the method described in section 5.4.3.2). The electromag-

netic simulation showed an unexpected power disparity between the 4 beams of the far-field

pattern, as shown on figure 5.21. Moreover, the total power efficiency of the grating dropped

down to 84.8 %, which is 4.4 % below the power efficiency obtained with a normal incident

wave.

FIGURE 5.21: Far-field pattern of the designed phase grating with a 25° incident plane wave

I solved this disparity by adjusting the requested intensity for each beam in the numerical

program, in order to compensate the unbalance shown by the simulation. As a result, it also

changed the shape of the phase profile. Figure 5.22 shows the resulting changes in the phase

profile.

Figure 5.22 is a top view of the grating. We notice that the sharp edges have been modified.

They were initially straight and they are now curved in order to correct the unbalanced

beam pattern. Electromagnetic simulations show that this modified phase grating produces

a far-field beam pattern with four beams of equivalent intensities, as desired. These four

beams are shown on figure 5.23, and we can see that the power difference between them is

now less than 2 %.
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(A) Initial phase profile (B) Modified phase profile

FIGURE 5.22: Modification of the phase profile to compensate the power disparity between
the 4 beams

FIGURE 5.23: Far-field pattern of the designed phase grating with a 25° incident plane wave

The vector ~k indicates the direction of the input wave and ~E represents its electric field

direction. By summing the intensities of the 4 beams, we find a total efficiency of 82.5 %

for the simulated phase grating. This value is 6.7 % lower than the simulated efficiency for

the grating with a normal incident wave. We can deduce that, according to electromagnetic

simulations, the angle of the incident wave has an important effect on the grating’s efficiency,

and a grating designed for a normal incident wave has a better efficiency.

5.5.4.2 Transmissive phase grating

The simulation of the transmissive grating was problematic with FEKO because I was not

able to accurately simulate the propagation of a Gaussian beam inside a dialectric. Gen-

erating a Gaussian beam requires some computing power, and simulating its transmission

through a dielectric medium larger than the beam was not possible with our computers.

Thus, I was only able to accurately simulate reflective gratings. As both the transmissive
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and the reflective gratings are based on the same initial phase profile, I assumed that they

would give similar results. So, I approximated the transmissive grating with a reflective

grating illuminated by a normal incident plane wave (like the transmissive grating will be).

This simulation has already been presented in the previous section 5.5.4.1, and it gave 4

equivalent beams with a total efficiency of 89.2 % (figure 5.20). However, some additional

losses have to be considered, as the transmissive grating will absorb and reflect a part of the

incoming beam.

5.5.4.3 Expected absorption and reflection losses in the transmissive grating

The transmissive grating, made of TPX®, will generate some inevitable losses. A part of the

beam will be reflected at the surface of the grating, because TPX® does not have the same

refractive index as air. The beam going through the grating will be attenuated because TPX®

is not perfectly transparent at 610 GHz. We need to calculate the losses due to these two

contributions in order to properly evaluate the efficiency of the transmissive phase grating.

The power absorption coefficient of TPX® is α, in cm−1. The transmission TT PX of a thickness

z of TPX® is calculated with Lambert’s law (cf. Chantry et al. [58]):

TT PX = e−αz (5.12)

According to the article from Podzorov and Gallot [57], the power absorption coefficient of

TPX® at 610 GHz is about 0.16 cm−1. They also specify that they bought the TPX® from

the company Goodfellow, exactly like us. So, the absorption coefficient and refractive index

values they found should correspond very well to our TPX®.

The transmitted and reflected power at each side of the grating can be calculated by using

Fresnel’s formulas (cf. Born and Wolf [59, page 40]). The transmission, reflection and ab-

sorption coefficients are illustrated by figure 5.24, where n1 is the refractive index of air and

n2 the refractive index of TPX®. θ1 is the angle of the incident beam and θ2 is the angle of

the refracted beam. The TPX® grating has been designed to be used with a normal incident

beam, so the angles θ1 and θ2 will be very small and close to zero. I0 is the intensity of

the incoming beam, T12, T21, R12 and R21 are the power transmission and power reflection

coefficients at the interfaces n1 → n2 and n2 → n1. Tabs is the transmission coefficient of
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the material which directly depends on its absorption coefficient (α), as described by the

previous formula (Lambert’s law), and h is the average thickness of the grating.

FIGURE 5.24: Intensities transmitted and reflected at the grating’s interfaces

From Fresnel’s formulas, we are able to calculate the power transmitted by the first beam

(IT1) and the power reflected by the first interface (IR1). The other beams are produced by

the multiple internal reflections inside the grating. As the surface of the grating is not flat

we cannot predict where these beams will be reflected inside the material and where they

will come out. So, we consider the corresponding power as lost. The transmission coeffi-

cients (T12 and T21) depend on the electrical field polarization. However, for small angles,

Snell-Descartes’ law leads to the following approximation: n1θ1 ≈ n2θ2. This simplification

allows us to have the same transmission coefficients for all electrical field polarizations. The

corresponding simplified Fresnel formulas are:

T12 = T21 =
4n1n2

(n1 + n2)
2
= 0.965 (5.13)

R12 = R21 =

�

n1 − n2

n1 + n2

�2

= 0.035 (5.14)

Where n1 is the refractive index of the air and n2 is the refractive index of the TPX®. We can

now use these formulas to calculate the power percentage transmitted by the transmissive

grating:

IT1 = I0.T12.T21.Tabs = 0.932.I0.e−α.z (5.15)
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For a power absorption coefficient α = 0.16 cm−1 and an average thickness of 2 mm, the

total transmitted power is IT1 = 0.902.I0. So, about 90 % of the input power should be trans-

mitted by the transmissive grating, and 10 % will be lost, absorbed by the TPX®, reflected,

or transmitted after multiple reflections inside the TPX®.

5.5.4.4 Conclusion

Electromagnetic simulations with FEKO enabled me to get more precise estimations of the

efficiency of the reflective and transmissive grating prototypes. The reflective grating was

simulated with a 25° angle incident beam and the four output beams produced by the grat-

ing have approximately the same size and contain 82.5 % of the initial input beam power.

The transmissive grating was scaled to be simulated in reflection because transmissive sim-

ulations are not very accurate and reliable yet. The four output beams contain 89.2 % of

the initial input beam power. This better efficiency is explained because the incident beam

is normal to the grating. However, due to the absorption inside the transmissive grating and

the reflections at each interface (air-TPX® and TPX®-air), I expect to have 10 % additional

losses. So, the estimated efficiency of the transmissive grating is about 79 %.

5.5.5 Mechanical design

The relief of both prototypes was smoothed (interpolated with NURBS surfaces) and con-

verted into a 3D solid with the software Autodesk Inventor. To know what minimum size the

phase gratings should have, it is important to consider the size of the incoming beam. The

incoming 610 GHz collimated beam I will use with the phase grating has a waist comprised

between 5 mm and 10 mm, depending on the focusing element I will use. More than 99 %

of the input Gaussian beam energy is included inside a circle whose diameter is 4 times the

radius of the beam (as explained in section 4.2.3.2). So, I need to duplicate the basis grating

cell enough times to cover a surface larger than 4 times the radius. For the reflective grat-

ing, the cells are duplicated 20 times in both directions, generating a surface of 44.8 mm x

49.4 mm. The x dimension is a bit larger than the y dimension because the cell has been

scaled to take into account the oblique incident angle. For the transmissive grating, the basis

cell is duplicated 19 times in both directions, generating a grating surface with a diameter

of 42.6 mm. Both 3D models are shown on figure 5.25. These two 3D designs were sent to

the French company Vuichard to be manufactured.
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(A) Reflective grating (B) Transmissive grating

FIGURE 5.25: Final 3D designs of the 2 phase grating prototypes

5.5.6 Geometrical measurements of the 2 prototypes

5.5.6.1 Reflective phase grating

The reflective grating is made of brass and was milled with a 200 µm diameter ball-shaped

end mill. A picture of the reflective phase grating is shown on figure 5.26. We can notice

that the manufactured prototype is optically very close to the initial 3D design shown on

figure 5.25A.

FIGURE 5.26: Manufactured reflective phase grating

We measured the mirror with a microscope to have more precise pictures of its surface (fig-

ure 5.27). As we can see on figure 5.27b, the higher and lower parts of the grating do not

have the same width, while theoretically they should. The width difference measured with

the microscope is (1.12-0.80) = 0.32 mm, which is quite large. This difference was caused
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by a machining error which resulted in 30° inclined edges, between the lower and upper

parts, instead of vertical edges.

(A) Picture of a central region of the grating (B) Detail of the relief’s width (in mm)

FIGURE 5.27: Picture of the reflective phase grating taken with a microscope

Several scans of the mirror have been made with the profilometer, and the 2 most significant

are shown by figures 5.28 and 5.29. The scan in the x direction (figure 5.28) shows a very

good agreement with the theoretical profile. The maximum error in the vertical direction

(along z) is 2±1 µm and the maximum error in the horizontal dirction (along x) is 5±1 µm.

FIGURE 5.28: x scan of the grating’s surface

The scan in the y direction (figure 5.29) shows the important error already visible on the

microscope photo (figure 5.27b). The edges between the lower and upper parts are oblique

and not vertical as they should be. This difference is very important and the microscope

pictures show us that it is globally repeated for each cell over the grating’s surface. We

expect an important impact of this error on the grating’s efficiency. The company which

manufactured the grating confirmed that they did not define the end mill correctly in the

machining program, which resulted in oblique edges instead of vertical edges. The angle

of the oblique edges, compared to the vertical axis, is about 30°. As this error considerably
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changes the grating’s geometry and its efficiency, I simulated the far-field pattern created by

our reflective grating with oblique edges. The electromagnetic simulation of this modified

model is presented in section 5.5.7.

FIGURE 5.29: y scan of the grating’s surface

The roughness average of the reflective grating, Ra, has been measured below 0.4 µm, which

is very good and better than our requirements.

5.5.6.2 Transmissive phase grating

The geometry of the transmissive grating was not measured because TPX® is quite soft and

could be damaged by the very sharp peak of the profilometer. However, the microscope

pictures show a good regularity and the cells seem to correspond well to the 3D design

(figure 5.30).

(A) Transmissive phase grating (B) Phase grating zoomed

FIGURE 5.30: Pictures of the transmissive phase grating, made of TPX®

5.5.7 Electromagnetic simulation of the manufactured reflective grating

To match the reflective grating we have received from the manufacturer, I modified the shape

of the initial cell of the grating by inclining the vertical edges. I managed to create a modified
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design very close to the manufactured grating, with similar inclined edges, as illustrated by

figure 5.31b.

(A) Initial surface with vertical edges (B) Modified surface with oblique edges

FIGURE 5.31: Modification of grating’s shape in accordance with the manufactured grating

The modified cell was duplicated to generate the reflective grating surface, and simulated

with FEKO to evaluate the change in the far-field produced by the inclination of the edges.

The simulation produced the far-field radiation pattern showed on figure 5.32.

FIGURE 5.32: Far-field pattern generated by the grating with oblique edges

The 2 beams along the y direction are not modified (same angle and same intensity as with

the original grating design). However, the power falling in the two beams along the x di-

rection is lower than in the original beam pattern.. This simulation predicts that this shape

modification reduces the power of each of these 2 beams by 4.3 %. It gives a total efficiency

of 73.9 %, instead of the 82.5 % predicted for the original grating. Finally, this estimation

allows us to know what efficiency we can expect from this reflective grating with oblique
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edges. We can deduce from this simulation the efficiency we could achieve if the shape of

the grating were correct.

5.5.8 Test of the 2 prototypes

To test the two prototypes, I used a 610 GHz LO source to generate the signal, and a Golay

cell power meter to measure the power of the beams generated by the gratings. The LO

and the gratings were fixed on a rotating platform, so I could easily measure the horizontal

radiation pattern of the gratings by rotating the platform. I also set the Golay cell power

meter at the same distance from the focusing mirror, with and without the phase grating.

So, the beams it saw had always the same size and I compared the power received with and

without the phase grating to deduce the relative power of each beam, and the efficiency of

the grating.

5.5.8.1 Reflective phase grating

The set-up of the experiment is showed in figure 5.33. To measure the intensity and position

of the 2 beams positioned in the horizontal plane, I rotated the platform holding the LO and

the grating. To measure the 2 beams positioned in the vertical plane, I vertically translated

the Golay power meter and adjusted its inclination. Then, once the Golay power meter was

centered on each of these two beams, I rotated the platform to make an horizontal scan

of each beam. The accuracy of the measurements is ±1 % and takes into account of the

alignment difficulties and the possible power variations of the LO. The Golay power meter

was used with a lock-in amplifier to increase its accuracy.

The results of the experiment are showed in figure 5.34. The two horizontal beams (along

x direction, as in figure 5.32) contain 16 ± 1 % and 20 ± 1 % of the input beam power.

The 2 vertical beams (along y direction, as in figure 5.32) contain 20 ± 1 % of the input

beam power. The corresponding efficiency of this reflective phase grating is approximately

76 %, really close to the 73.9 % predicted by the electromagnetic simulation. Moreover, the

angles of the beams are very close to the theoretical ±12.6° expected for this phase grating.

Figure 5.34 shows the angles of the two beams in the horizontal plane: -12.4 and 13.2±0.2°.

The angles of the beams in the vertical plane were calculated from distance measurements

107



Chapter 5. Phase gratings

FIGURE 5.33: Set-up of the experiment to measure the efficiency of the reflective phase
grating

between the different elements of the set-up. These angles are less accurate, but very close

to expected ±12.6°: 11.6 and 12.4 ±− 0.5°.

FIGURE 5.34: Power and position of the 4 beams created by the reflective grating

Finally, we can conclude that the efficiency of the reflective phase grating is 76± 2 %, and

the fours beams are emitted at angles of ±12.6 ± 0.6°. As the efficiency reduction due to

the manufacturing error is estimated to about 8.6 %, we can expect the well manufactured

reflective grating to have an efficiency about 84 %.
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5.5.8.2 Transmissive phase grating

The set-up of the experiment to test the transmissive grating is shown in figure 5.35. I used

the same 610 GHz LO source and Golay cell power meter as for the test of the reflective

grating. I used a lens made of HDPE (High Density Polyethylene) to focus the LO signal.

The rotating platform was holding the LO, the focusing lens and the transmissive grating.

FIGURE 5.35: Set-up of the experiment to test the transmissive grating

By rotating the platform I was able to perform horizontal scans of the beams generated by

the phase grating. I measured the intensity and angle of the two beams generated in the

horizontal plane. Then, I rotated the transmissive grating by 90° to be able to scan the two

other beams. Figure 5.36 shows the intensity of the 4 beams generated by the transmissive

phase grating.

FIGURE 5.36: Power and position of the 4 beams created by the transmissive grating
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The two beams of the x scan (along the x direction, as on figure 5.32) are slightly more

intense than the two beams of the y scan (along the y direction, as on figure 5.32). The

accuracy of these measurements is±1 %, like for the test of the reflective grating. The angles

of the generated beams are very close to the expected 12.6°, with an angle difference smaller

than 0.3°. By summing the intensity of the four main beams, we get a total efficiency of

62±2 %. This efficiency is good but lower than expected: the electromagnetic simulation (in

reflection) and the expected transmission and reflection losses gave an expected efficiency

of 79 %.

Measurement of the TPX® absorption

To obtain the real absorption of our TPX®, I tested a flat sample whose thickness is close to

our grating’s average thickness. The sample was positioned between the LO and the Golay

cell power meter. I compared the power received by the power meter with and without the

sample. I rotated the sample between -20° and +20° because the losses change with the

beam angle. I measured losses varying between 6 % and 15 %, depending on the angle of

incidence. These losses variations have two causes: the power reflected at the interfaces

between the sample and the air depends on the angle of incidence of the beam, and the

interferences between the beams getting out of the grating after multiple internal reflections

also depend on the angle of incidence (cf. 5.5.4.3).

As the machined face of my grating prototype is not flat, the angle between the incident

beam and the grating is not constant over the surface and strongly depends on the relief.

That is why I expect a smaller variation of the losses with the beam incident angle. This

hypothesis is in accordance with my experiment because when I rotated the transmissive

grating, the transmittance variation did not exceed 2 %. Therefore, we can estimate that

the losses of the TPX® grating are between 6 % and 15 %, and not too dependent on the

angle of incidence of the beam. This result is in accordance with the 10 % losses estimated

for the TPX® grating in section 5.5.4.3.

Conclusion

We have approximately 17 % difference between the expected efficiency of the transmis-

sive grating prototype (79 %) and the measured one (62 ± 2 %). The different unwanted
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diffraction modes seem to be slightly higher than expected (like the mode at 0° which is at

2 %). These diffraction modes are not easily measurable as they are numerous and very

weak, but it seems that their intensity is about twice higher than expected. If all these un-

wanted modes are more intense, it could explain the additional losses. An error during the

manufacturing process and some inaccurate dimensions could be the cause of these modes.

So, we will try to measure the surface of the transmissive grating without damaging it with

the profilometer, and further investigate the simulation with FEKO, to be able to simulate

the grating in transmission.

5.5.9 Noise temperature measurement of the receiver with a phase grating

As the phase grating prototypes showed a very good efficiency, I was able to integrate the

transmissive grating in our heterodyne receiver and to measure the noise temperature of

the receiver at 610 GHz. The noise temperature is an important parameter of heterodyne

receivers because it determines their sensitivity. See section 2.3.2 for a description of the

noise temperature measurement. The goal of this experiment was to make sure that one

of the beams created by the phase grating could pump our HEB mixer, and that the phase

grating was not reducing the sensitivity of the receiver. I positioned the grating just before

the beam splitter, as shown on figure 5.37.

FIGURE 5.37: Set-up of the noise temperature measurement with the transmissive phase
grating

The LO beam was divided into 4 beams which were all reflected by the beam splitter. The 4

of them were superimposed with the hot or cold load signal which was transmitted by the

beam splitter. Finally, I positioned the HEB mixer to receive one of these four beams and I
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measured the IF power when the receiver was seeing a hot or a cold load. The difference

between these two power measurements enabled me to calculate the noise temperature

of the heterodyne receiver. I measured the noise temperature with and without the phase

grating to see if it induces a sensitivity loss for the receiver (figure 5.38).

FIGURE 5.38: Noise temperature of the receiver, with and without the phase grating

I obtained approximately the same noise temperature with and without the phase grating.

When using the HEB mixer, I need to bias it to a very sensitive point (with a low noise

temperature), but also to a stable point, in order to get reliable measurements. Bias points

fulfilling these requirements are usually located between 0.5 mV and 1 mV. Within this range,

I obtained a noise temperature of 1000 Kelvins which is acceptable for a HEB based hetero-

dyne receiver. This test proves that the phase grating prototypes do not have any effect on

the sensitivity of the receiver, and are ready to be included in our next 4 pixel heterodyne

receiver.

5.6 Conclusion

Phase gratings are used in most multi-pixel THz heterodyne receivers to split the LO sig-

nal into multiples beams and specifically illuminate each mixer. Phase gratings used in ac-

tual THz heterodyne receivers are either stepped gratings (cf. Dammann and Klotz [51]) or

Fourier gratings (cf. Graf and Heyminck [54] [55]). Both kinds of gratings are efficient to

generate a limited number of patterns (number and position of beams) and must be periodic.

To overcome these limitations, I created a new kind of phase grating, the Global phase grat-

ing. It does not have the constraints of stepped and Fourier gratings, and can theoretically

produce any kind of far-field pattern.
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Two Global phase grating prototypes were made to test the efficiency of this new kind of

phase grating. One prototype is a transmissive grating, made out of plastic (TPX®) and the

other is a reflective grating made out of brass. Both were designed to generate 4 beams at

610 GHz. The relief geometry of these prototypes is partly continuous and partly discrete.

So, this solution is specific to Global phase gratings and does not belong to stepped nor

Fourier grating families. After some electromagnetic simulations and 3D mechanical designs,

they were both manufactured and tested. I measured an efficiency of 76 ± 2 % for the

reflective grating, and 62 ± 2 % for the transmissive grating. Moreover, the efficiency of

the reflective grating has been reduced by a machining error. The efficiency of the correctly

machined grating is estimated to 84 %.

Finally, these two first phase grating prototypes are successful in dividing the LO beam into 4

approximately equal beams, with a good efficiency. The reflective grating, especially, shows

a very good efficiency. The noise temperature test also showed that the phase gratings were

not reducing the sensitivity of the receiver. Therefore, they are ready to be used in a multi-

pixel heterodyne receiver. The design and production of a 4 beam Global phase grating at

2.6 THz is planned, to be part of our multi-pixel heterodyne receiver.
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Conclusion

The goal of this PhD was to test, improve and characterize a 2.6 THz heterodyne receiver.

There are only a handful of heterodyne receivers at such high frequencies, and some aspects

are extremely challenging. During the PhD, I especially focused on three major aspects of

our prototype heterodyne receiver:

1. The stability of our heterodyne receiver and of its different elements.

2. The coupling between the LO and the RF signals with a Martin Puplett interferometer.

3. The splitting of the LO signal into several beams, in order to feed several mixers and

enable us to create a multi-pixel heterodyne receiver.

1) Stability: The quality of a heterodyne receiver is defined by two major characteristics, its

sensitivity and its stability. The sensitivity (or noise temperature) of our receiver is one of the

best worldwide (cf. Delorme et al. [28]), so I concentrated my work on the stability, usually

more difficult to measure and quantify. With a stable receiver, the noise integrates down over

long timescales. Unstable receivers only allow short integration times without increasing

the noise. The more stable the receiver is, the longer it can integrate the observed signal,

and the less noisy the measurements are. Because the Allan variance is directly related to

the noise present in an instrument’s measurement, I used it to calculate the stability of our

heterodyne receiver. I wrote an Allan variance calculation program, optimized for our digital

spectrometer’s data, and I developed a specific measurement process to accurately measure

the stability of the different components of our heterodyne receiver. I found that, with the
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600 GHz LO, the stability results are comparable to those of other heterodyne receivers, such

as GREAT and HIFI. By measuring the Allan variance of all the components of the receiver,

I have been able to identify the HEB bias supply and the 1.4 THz LO as the least stable

elements.

2) Optical coupling of LO and RF signals: At frequencies above 2 THz, multiplier chain local

oscillators (LOs) usually do not emit enough power to be used with a beam splitter and

efficiently pump a HEB mixer. To overcome this problem, we chose another diplexer for our

heterodyne receiver: a Martin Puplett interferometer (MPI). It can transmit the LO signal

a lot more efficiently than a beam splitter but it is more complicated to align. The MPI I

designed and built was able to transmit 76 % of the LO power at 2.6 THz at the desired

polarization, and we estimate a transmittance around 79 % for the RF signal. As a result,

this MPI is fully operational and can be used as a diplexer in a 2.6 THz heterodyne receiver.

3) Splitting of the LO signal: The future of heterodyne receivers will be in array receivers

which will allow us to get detailed spectra of the universe at many positions in the sky simul-

taneously. I have tackled one of the major challenges of focal plane arrays: the distribution

of the local oscillator (LO) to the mixers. Phase gratings are used in other THz receivers

to split the LO beam and feed several mixers. However, these existing phase gratings have

several limitations, such as the number of beams they can efficiently produce, and the shape

they can have. To overcome these limitations, I have developed a more versatile kind of

gratings, we called Global gratings, which can efficiently produce any number of beams, at

any position, with an efficiency equal or better than that of the existing phase gratings at THz

frequencies. I wrote a program to numerically calculate the profile of Global phase gratings,

and I developed an electromagnetic simulation process to test and improve the design of

the gratings. These numerical tools enabled me to design two phase grating prototypes to

efficiently split the LO beam into 4 different beams. These two phase grating prototypes, a

transmissive and a reflective one, were optimized for 610 GHz (because it is easier to man-

ufacture and to test than at 2.6 THz). The prototypes were tested with a 610 GHz LO and

I measured an efficiency of 76± 2 % for the reflective grating, and 62± 2 % for the trans-

missive grating. Moreover, the efficiency of the reflective grating is expected to be higher

once the machining error will be corrected. The efficiency of the correctly machined grating

is estimated to be 84 %. These two first Global phase grating prototypes were successful in

dividing the LO beam into 4 approximately equal beams. These excellent results validate
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the design and fabrication processes of this new kind of grating. Therefore, Global gratings

are ready to be used in the next generation of array receivers.

In conclusion, the work accomplished during this PhD constitutes an important step toward

the realization of a very stable and highly sensitive 2.6 THz multi-pixel heterodyne receiver

using a MPI diplexer. The future multi-pixel heterodyne receiver could be used in CIDRE, if

the project is resumed later, or significantly contribute to international space projects, like

Millimetron [1], CCAT [2], GUSSTO or THEO.
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Gaussian beam optics

A.1 Theory of the Gaussian beam optics

This section contains a theoretical explanation of Gaussian beam optics’ equations. For a

more complete description, see Goldsmith [38] and Davis [40].

A.1.1 The wave equation

The distribution of the electric and magnetic field vectors in vacuum and inside materials is

accurately described by the Maxwell’s equations. Under some conditions listed below, the

Maxwell’s equations can be used to express the wave equation for the electric field.

• The beam must propagate through an uncharged and non-conducting medium.

• The medium or material crossed by the beam must be linear, uniform, isotropic and

homogeneous (the permeability µ and the permittivity ε do not vary in the presence

of electric or magnetic fields).

All these conditions are easily fulfilled in vacuum or in free space, where the wave equation

for the electric field can be written as

∇2 ~E = εµ
∂ 2 ~E

∂ t2
, (A.1)
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where ∇2 is the Laplacian operator, ~E is the electric field of the wave, t is the time. In

vacuum, µ= µ0 and ε= ε0.

A.1.2 The Helmholtz equation

We consider a monochromatic paraxial electromagnetic radiation (paraxial means that the

beam propagates close to the optical axis of the system, and makes a small angle with this

optical axis). Under this condition, the electric field of the radiation satisfies the Helmholtz

equation:

∇2E(x , y, z) + k2E(x , y, z) = 0, (A.2)

where k is the wave number (k = 2πν
p
εµ) and ν the frequency of the radiation. We assume

that the electric and magnetic fields are mutually perpendicular, and also perpendicular to

the axis of propagation. One of the solutions of the Helmholtz equation A.2 is a quasi-plane

wave propagating along the z axis:

E(x , y, z) = u(x , y, z)exp (− jkz), (A.3)

where u is a complex function defining the difference between a plane wave and the con-

sidered beam. We substitute the quasi-plane wave solution (equation A.3) in the Helmholtz

equation A.2:

∂ 2u

∂ x2
+
∂ 2u

∂ y2
+
∂ 2u

∂ z2
− 2 jk

∂ u

∂ z
= 0. (A.4)

A.1.3 The paraxial wave equation

The wave is propagating along the z axis, and, according to the paraxial approximation,

the amplitude u along the z axis changes slowly and is small compared to the variations of

u along the x and y axises. Therefore, we can consider the third term of equation A.4 as

negligible compared to the other terms. This enables us to simplify equation A.4, to finally

obtain the paraxial wave equation in cartesian coordinates:
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∂ 2u

∂ x2
+
∂ 2u

∂ y2
− 2 jk

∂ u

∂ z
= 0, (A.5)

and, in cylindrical coordinates:

∂ 2u

∂ x2
+
∂ 2u

∂ y2
− 2 jk

∂ u

∂ z
= 0. (A.6)

The paraxial wave equation A.5 has several solutions, known as Gaussian beam modes. One

of these solutions, especially used to determine the Gaussian beam optics equations, is the

fundamental Gaussian mode (equation A.7).

A.1.4 The fundamental Gaussian mode equation

This fundamental Gaussian mode, u(r, z), has a Gaussian amplitude distribution in the direc-

tion orthogonal to the propagation axis. It corresponds well to the Gaussian beams emitted

by our lab sources with feedhorns at THz frequencies. That is why the equations of Gaus-

sian beam optics are well adapted to characterize the propagation of Gaussian beams in

quasioptical systems.

u(r, z) = exp
�

− j
�

P(z) +
k

2q(z)
r2
��

, (A.7)

where r is the radial distance to the propagation axis (r =
p

x2 + y2), P(z) represents a

phase shift factor and q(z) is called the beam parameter. We substitute this expression of

u(r, z) in the paraxial equation in cylindrical coordinates (equation A.6):

− 2 jk

�

e− jP(z)

q
+
∂ e− jP(z)

∂ z

�

+
k2r2e− jP(z)

q2

�

∂ q

∂ z
− 1
�

= 0. (A.8)

This equation have to be valid for any r and z. As the first part only depends on z while the

second part depends on r and z, each of the two parts of this equation must be equal to zero.

This condition gives two relations:

∂ q

∂ z
= 1, (A.9)

119



Appendix A: Gaussian beam optics

and,
∂ e− jP(z)

∂ z
= − e− jP(z)

q
. (A.10)

A.1.5 Expression of the beam parameter

Equation A.9 has for solution: q(z) = q(z0) + (z − z0), where z0 is the beam waist location

on the z axis (see section 4.2.3.1 for the definition of the beam waist). We define z0 = 0,

therefore, we have:

q(z) = q(0) + z, (A.11)

where q(z) is a complex number which depends on the radius of curvature of the beam R(z),

and on its radiusω(z). The radiusω of the beam corresponds to the radial distance at which

the electric field is divided by e compared to its value on the axis of propagation. Both ω

and R vary with z. The beam parameter can be expressed as,

1
q(z)

=
1

R(z)
− jλ

πω2(z)
, (A.12)

where λ is the wavelength of the radiation. By injecting this expression of the beam param-

eter into equation A.7, we obtain:

u(r, z) = exp

�

− j

�

P(z) +
πr2

λR(z)

�

− r2

ω2(z)

�

, (A.13)

because k = 2π/λ. At z=0 and r=0, we have, u(0,0) = exp (− jP(0)). It enables us to

deduce the relative field radial distribution at z=0:

u(r, 0) = u(0, 0)exp

�

−r2

ω2
0

�

, (A.14)

where ω0 is the beam waist (which we usually consider positionned at z=0). At z=0, the

wavefront of the beam is planar, so the radius of curvature R is infinite. From equations A.11

and A.12, we can now deduce:
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1
q(z)

=
1

q(0) + z
and q(0) =

jπω2
0

λ
, (A.15)

which gives,
1

q(z)
=

1/q(0)

1+ z/q(0)
=

1
z

�

zλ
πω2

0

�2
− j λ

πω2
0

1+
�

zλ
πω2

0

�2
. (A.16)

A.1.6 The radius of curvature and the beam radius

By using equations A.16 and A.12, we finally deduce some really useful equations describing

the evolution of the radius of curvature and the radius of the beam along its propagation

axis:

R(z) = z +
1
z

�

πω2
0

λ

�2

, (A.17)

ω(z) =ω0

√

√

√

1+

�

λz

πω2
0

�2

. (A.18)

A.1.7 The phase shift factor

To deduce the complete expression of the fundamental Gaussian mode equation A.7, we

need to find the expression of the phase shift factor P(z). As demonstrated by Goldsmith

[38, page 15], we have:

e− jP(z)

e− jP(0)
=
ω0

ω(z)
e jφ0(z), (A.19)

where φ0 is the Gaussian beam phase shift, also called Gouy phase shift. It corresponds

to the phase shift between the considered Gaussian beam and a plane wave at the same

frequency.

tan(φ0(z)) =
λz

πω2
0

. (A.20)
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A.1.8 Final expression of the fundamental Gaussian mode

The equation the Gaussian beam phase shift A.19 is injected into equation A.13 to obtain

the complete expression of the fundamental Gaussian beam mode (we assume that P(0) = 0

and e− jP(0) = 1).

u(r, z) =
ω0

ω(z)
exp

�

−r2

ω2(z)
− jπr2

λR(z)
+ jφ0(z)

�

. (A.21)

A.1.9 Electric field distribution of a Gaussian beam

The fundamental Gaussian beam mode equation A.21 is used in the solution of the Helmholtz

equation A.3 to find the expression of the electric field distribution of a Gaussian beam along

its propagation axis.

E(r, z) =
ω0

ω(z)
exp

�

−r2

ω2(z)
− jkz − jπr2

λR(z)
+ jφ0(z)

�

. (A.22)

Finally, the electric field distribution is normalized, so
∫∞

0 |E|
22πr.dr = 1:

E(r, z) =

√

√ 2
πω2(z)

exp

�

−r2

ω2(z)
− jkz − jπr2

λR(z)
+ jφ0(z)

�

. (A.23)

The normalized electric field distribution of a Gaussian beam (equation A.23) enables us to

calculate the value of the electric field of the Gaussian beam at any position (r,z).

A.2 Gaussian beam characteristics

Several characteristics of Gaussian beams can be deduced from the equations of section A.1.

These characteristics are represented in figure A.1 and the equations describing them are

listed in table A.1.
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FIGURE A.1: Characteristics of a Gaussian beam

Characteristics Equations

E field normalized distribution E(r, z) =
q

2
πω2 exp
�

−r2

ω2 − jkz − jπr2

λR + jφ0

�

Beam radius ω =ω0

√

√

1+
�

λz
πω2

0

�2

Radius of curvature R= z + 1
z

�

πω2
0

λ

�2

Beam waist radius ω0 =
ω
s

1+
�

πω2
λR

�2

Distance to the beam waist z = R

1+
�

λR
πω2

�2

Relative power distribution
in the radial direction

P(r,z)
P(0,z) = exp
�

−2r2

ω2

�

Fractional power included
in an aperture of radius r

F P(r) = 1− exp
�

−2r2

ω2

�

Farfield divergence angle θ = tan−1
�

λ
πω0

�

Rayleigh length ZR =
πω2

0
λ

Gaussian beam phase shift φ0 = tan−1
�

λz
πω2

0

�

TABLE A.1: Gaussian beam optics’ main equations
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Functioning of the Martin Puplett

interferometer

B.1 Rotation of the polarization of the RF signal in the MPI

The MPI is composed of the grid G2 and the two roof-top mirrors, T1 and T2 (figure B.1).

The first grid G1 is only used to superimpose the LO and RF signals. The polarizations of

the signals sLO and sRF are orthogonal because the LO signal is reflected by the grid G1,

while the RF signal is transmitted. The goal of the MPI is to rotate the polarization of one

of the two signals. We consider the case where the polarization of the LO signal, initially

horizontal, is unchanged while the polarization of the RF signal, initially vertical, is rotated

by 90°. So both are horizontally polarized at the output of the MPI.

FIGURE B.1: MPI with two grids, to be used with an heterodyne receiver
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After being reflected and transmitted by G1, the LO and RF signals reach G2, which makes

an angle β = 45° with the optical axis. G2 splits each incoming signal into 2 signals with

the same power (one is reflected and the other is transmitted). It requires the wires of G2

to be 45° inclined. However, the MPI grid G2 is not perpendicular to the input signals,

but makes an angle β = 45°. So, we have to take into account the projected angle of

the grid’s wires on the input signal’s plane. Figure 4.6 shows this projection and we can

deduce that the wires of G2 must have an inclination angle θ ′ = 35.26° with the vertical

(cf. section 4.3.2.1). The two roof-top mirrors reflect both signals (initially transmitted and

reflected by G2) back to G2 (figure B.1). The specificity of roof-top mirrors is that they

reflect the signals without changing their polarization (in the referential of the beam), as

explained in section 4.3.2.2. However, in the referential of the MPI, the polarization of the

signals is rotated by 2θ = 90° when they reach the roof-top mirrors, where θ is the initial

polarization of the signals. So, the signal initially transmitted by G2 is reflected by G2, and

vice versa. Finally, both signals recombine after G2 at the output of the MPI. The translation

of the roof-top mirror T2 changes the path difference ∆Z between the two arms of the MPI

(∆Z = ||G2− T1|− |G2− T2||) and can modify the polarization of any signal going through

the MPI:

• If ∆Z = nλ, the polarization of the signal going through the MPI is not changed.

• If ∆Z = (n+ 1
2)λ, the polarization of the signal going through the MPI is rotated by

90° at the output of the MPI.

• For other values of the ∆Z , the polarization of the signal going through the MPI is

elliptic at the output of the MPI.

where n ∈ N and λ is the wavelength of the signal.

As the LO and RF signals have slightly different frequencies, there are path differences ∆Z

which are equal, at the same time, to n1λLO and to (n2 +
1
2)λRF , (with n1, n2 ∈ N). As a

result, these path differences∆Z do not rotate the polarization of the LO signal but rotate the

polarization of the RF signal by 90°. Figure B.2 shows how the MPI rotates the polarization

of the RF signal without changing the LO signal’s one.
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FIGURE B.2: Interferences at the output of the MPI and rotation of only the RF polarization

B.2 Bandwidth of the MPI

For a given path difference∆Z , only distinct frequencies of the RF spectrum, fRF , are rotated

by 90° by the MPI. The polarization of the rest of the RF spectrum stays the same or is ellip-

tical. We consider fr f any frequency of the RF spectrum and calculate how its polarization

is rotated by the MPI. The efficiency of the polarization rotation for different RF frequencies

fr f by the MPI allows us to calculate the bandwidth of the MPI. The path difference ∆Z

between the two arms of the MPI needs to satisfy:

∆Z = n1λLO =

�

n2 +
1
2

�

λRF , (B.1)

where n1 and n2 ∈ N, λLO and λRF are the wavelengths of the LO and RF signals respectively.

Once the RF signal is split by the grid G2, it produces the two signals s1 and s2 whose

polarizations are, respectively, 45° and -45°. We let A1 be the amplitude of the signal s1, and

A2 the amplitude of the signal s2 when they recombine at the output of the MPI. We consider

s1 at a point M where its amplitude is maximum, so we have A1 =
A0p

2
. With A0 the amplitude

of the initial incoming RF signal (before G2). The amplitude A2 of the signal s2 at M, for a

given path difference ∆Z (optimized for the frequency fRF ) depends on the frequency fr f

of the RF signal:

A2 =
A0p

2
× cos

�

2π∆Z

λr f

�

. (B.2)
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By using equation B.1, we can write,

A2 =
A0p

2
× cos

�

2πn1 fr f

fLO

�

. (B.3)

We now introduce the variable δ f = fLO− fr f , corresponding to the difference between the

LO frequency and a frequency fr f of the RF spectrum:

A2 =
A0p

2
× cos
�

2πn1( fLO −δ f )

fLO

�

=
A0p

2
× cos
�

2πn1δ f

fLO

�

. (B.4)

We define the frequency difference∆ f = fLO− fRF , where fRF is the RF frequency for which

the MPI is optimized:

∆ f = fLO − fRF = c.
λRF −λLO

λRFλLO
, (B.5)

where c is the speed of light.

By combining equations B.1 and B.5, and introducing the variable δn= n1−n2 (n1, n2 ∈ N),

we deduce,

∆ f =
fLO(δn− 1

2)

n1
. (B.6)

We finally inject this expression in equation B.4 and obtain,

A2 =
A0p

2
× cos

�

2π(δn− 1
2)δ f

∆ f

�

. (B.7)

As the s1 and s2 signals are polarized at 45° and -45° (due to G2), they both can be divided

into vertical and horizontal polarizations (|| ~ev || and || ~eh||).

A1 =
A0p

2

�

cos
π

4
|| ~ev ||+ sin

π

4
|| ~eh||
�

=
A0

2
|| ~ev ||+

A0

2
|| ~eh||. (B.8)

A2 =
A0p

2
× cos

�

2π(δn− 1
2)δ f

∆ f

�

h

cos
�

−π
4

�

|| ~ev ||+ sin
�

−π
4

�

|| ~eh||
i

. (B.9)
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A2 =
A0

2
× cos

�

2π(δn− 1
2)δ f

∆ f

�

|| ~ev || −
A0

2
× cos

�

2π(δn− 1
2)δ f

∆ f

�

|| ~eh||. (B.10)

At the output of the MPI, s1 and s2 are superimposed, so the amplitude A of the output signal

is composed of A1 and A2.

A=
A0

2

�

1+ cos

�

2π(δn− 1
2)δ f

∆ f

��

|| ~ev ||+
A0

2

�

1− cos

�

2π(δn− 1
2)δ f

∆ f

��

|| ~eh||. (B.11)

We are only interested in the horizontal polarization of the RF signal because, in this ex-

ample, it is the polarization of the LO signal. So we can plot the power transmission of the

horizontal component of the output signal (figure B.3):

T =
1
2

�

1− cos

�

2π(δn− 1
2)δ f

∆ f

��

. (B.12)

FIGURE B.3: Bandwidth of the MPI for the horizontal component of the RF signal

We can verify that, for fr f = fRF , δ f /∆ f = 1. So, the transmission of the MPI is maximum

at the RF frequency line for which the path difference ∆Z was optimized.

B.3 Water vapor absorption

The absorption of the air depends on the precipitable water vapor (pwv) contained in a

given path length. This parameter is calculated from the relative humidity (RH) and the

temperature of the air. The relative humidity and the temperature first enables us to calculate
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the saturated vapor pressure (es). To do so, we used the Bolton equation [60]which provides

an approximate value of the saturated vapor pressure at a given temperature. This formula

is accurate enough in our case, as its error is smaller than 0.3 % when the temperature stays

between -35 °C and 35 °C.

es = 611.2× exp
�

17.67(T − 273.15)
T − 29.65

�

, (B.13)

where T is in Kelvins, and es in Pascals. It easily allows us to calculate the partial vapor

pressure of water (PH2O) in the air:

PH2O =
RH × es

100
where RH is in %. (B.14)

With the ideal gas law, we calculate the number of moles of H2O contained inside a volume

of 1 m2 × L, where L is the length of the optical path in the air: PV = nRT .

• P is PH2O, the vapor pressure of water, in Pa

• T is the absolute air temperature, in Kelvins

• R is the universal gas constant (R = 8.314 J.K−1.mol−1)

• Vg = L × 1 m2

It enables us to write:

n=
PH2O.Vg

RT
, (B.15)

from which we deduce the mass of water vapor, M, contained in the volume Vg : M =

n× MH2O. Where M is in grams, and MH2O (= 18 g.mol−1) is the molar mass of water.

Dividing this mass M by the density of liquid water (1 g.cm−3) gives us the volume of liquid

water, Vl (in cm3), contained inside Vg . We only need to divide both volumes by 1 m2 to get

the thickness of precipitable water vapor (pwv), in cm, corresponding to the water vapor

column along the optical path, L, in meters. Finally, we obtain the final formula giving pwv

(in mm) as a function of L, T, and RH.
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pwv(RH, L, T ) =
611.2× RH × L ×MH2O × 10−3

8.314× T
× exp
�

17.67(T − 273.15)
T − 29.65

�

, (B.16)

pwv(RH, L, T ) = 1.323× RH.L
T
× exp
�

17.67(T − 273.15)
T − 29.65

�

, (B.17)

where T is the temperature in Kelvins, RH the relative humidity in % and L the optical path

length (in m).
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Theory of the Dammann grating

C.1 Approximation of the Maxwell’s equations

The electromagnetic wave propagation can be calculated with the Maxwell’s equations.

However, it involves really heavy and complicated calculations. So, this method is not ap-

propriate for iteratively determining the best phase profile to generate the desired farfield

beam pattern. In order to quickly calculate the beam pattern created by a phase profile, it

is possible to accurately approximate the Maxwell’s equations with easier methods, if some

requirements are respected. These requirements, listed in O’Shea et al. [53, Chapter 2], are

detailed below:

• The beam must propagate through an uncharged and non-conducting medium.

• The medium or material crossed by the beam (in the case of a transmissive grating)

must be homogeneous, uniform, isotropic and linear (the permeability µ and the per-

mittivity ε do not vary in the presence of electric or magnetic fields).

• The temporal component of the electric field can be ignored.

• The beam must propagate from an input plane, through an aperture plane where is

located the phase grating, to an evaluation plane, where the beam pattern is observed.

• The beam size at the position of the aperture plane is large compared with the wave-

length.
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• The distance between the aperture plane and the output plane is large compared with

the wavelength.

Under these requirements, the propagation of the electromagnetic waves can be calculated

with the Rayleigh-Sommerfeld integral equation. Moreover, when the distance between the

aperture plane (where is located the phase grating) and the output plane (where we observe

the beam pattern) is very large compared with the beam diameter (far-field approximation),

the Rayleigh-Sommerfeld equation can be simplified. The far-field diffraction pattern of any

object located in the aperture plane can, then, be calculated by using a Fourier transform.

In our case, all these requirements are respected and we are only interested in the far-field

beam pattern. So, to determine the phase profile which produces the desired far-field beam

pattern, the numerical program only relies on the Fourier transform (it uses the fast Fourier

transform method). Later, some electromagnetic simulations are performed with a dedicated

software, FEKO, based on the Maxwell’s equations. This method gives more accurate far-

field results but takes a much longer time. I used electromagnetic simulations to check,

adjust and improve a phase profile initially calculated by the numerical program.

C.2 Detail of the phase modulation generated by the Dammann

grating

The theory of the Dammann grating (DG) is useful to understand the other phase gratings.

It has been investigated by several authors, such as Mait et al. [52], O’Shea et al. [53] and, of

course, Dammann and Klotz [51]. We consider the case of a transmissive one-dimensional

Dammann grating, only composed of periodic grooves, as in figure 5.2a.

The transmission function of a one-dimensional Dammann grating (DG) is G(u). Where u is

the spatial coordinate on the surface of the DG. As the DG is periodic, it is more convenient to

consider only the transmission function T (u) over one period,∆u, as illustrated by figure C.1.

The period of the DG has been normalized to ∆u = 1. The DG is a binary grating which

implies a phase step difference ofπ, so T (u) = ±1 These phase changes positions are defined

by the transition points: z1, z2, ..., zNz
. In the case of an even number of transition points,

the transmission function T (u) can be defined by the following equation:
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FIGURE C.1: Transmission function of a single period even ordered Dammann grating

T (u) =
Nz−1
∑

k=1

(−1)k+1rect
�

u− (zk+1 + zk)/2

zk+1 − zk

�

. (C.1)

Then, if the DG is very large compared to its period and is larger than the incoming beam,

it can be considered as infinite. So, the transmission G(u) can be written:

G(u) = T (u) ∗ comb(u) = T (u) ∗
∞
∑

m=−∞
δ(u−m∆u) (C.2)

where∆u is the spatial period of the DG, δ the Dirac function, comb the Dirac comb function,

and ∗ the convolution sign. The diffraction pattern of the DG, u(x), is given by :

u(x) = iF F T[G(u).Ψ(u)] = g(x) ∗ψ(x), (C.3)

where Ψ is the field distribution of the incident beam and g(x) and ψ(x) are the inverse

Fourier transforms of G(x) and Ψ(x).

g(x) = t(x)
∞
∑

m=−∞
δ(x −m∆x). (C.4)

The diffraction pattern of the DG directly depends on t(x), the inverse Fourier transform of

T (u), the transmission function of the grating’s basis cell. In the case of a periodic grating,

the diffraction pattern is discrete and composed of several beams emitted at specific angles.

These angles are calculated with the grating equation:
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nλ =∆u.sinθn, (C.5)

where n ∈ Z is the considered diffractive order, ∆u is the real spatial period of the grating

(not normalized), and θn is the angle between the order and the normal of the grating. It is

illustrated by figure 5.4. In reality, we do not see the diffracted beams of an infinite number

of orders, because there cannot be any beam above the angle of 90°. So, the number of

visible diffraction orders is nmax = ⌊n⌋, where ⌊⌋ is the floor function.

FIGURE C.2: Output beams of all possible diffraction orders

The beams of discrete orders propagate at angles θn, therefore the Fourier transform of the

grating is only defined for x = n/∆u. As ∆u = 1, x = n. The Fourier transform of the unit

cell, t(n), defines the amplitude and relative phase of each diffracted beam whose order is

n≥ 1.

t(n) =

∫ 0.5

−0.5

T (u).e2iπun.du, (C.6)

t(n) =
Nz−1
∑

k=1

(−1)k+1

∫ zk+1

zk

e2iπun.du, (C.7)

t(n) =
1

2πn

Nz−1
∑

k=1

(−1)k+1[sin(αk+1)− sin(αk) + i(cos(αk)− cos(αk+1))], (C.8)

where αk = 2πnzk. The amplitude and phase of the order n = 0 beam is calculated by

replacing n inside the Fourier transform equation.

t(n= 0) =

∫ 0.5

−0.5

T (u).du, (C.9)
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t(n= 0) =
Nz−1
∑

k=1

(−1)k+1(zk+1 − zk). (C.10)

To calculate the efficiency of the grating, we use the following equation:

η(n) =
|t(n)|2
∑nmax

k=−nmax
|t(k)|2

, (C.11)

where nmax is the maximum number of diffraction orders of the grating. The efficiency

corresponds to the power of a given beam, divided by the power of all the visible beams.

C.3 Example of a 1x2 Dammann grating

In the case of a DG dividing 1 incoming beam into 2 diffracted beams, the transmission

function of the grating’s basis cell only has 4 transition points, as shown in figure C.3.

FIGURE C.3: Transmission function of a Dammann grating’s basis cell, producing 2
diffracted beams

The diffraction pattern of the grating’s basis cell is, for the orders n≥ 1:

t(n) =
1

2πn
[sin(α1)− 2sin(α2) + 2sin(α3)− sin(α4)

−i(cos(α1)− 2cos(α2) + 2cos(α3)− cos(α4))],

t(n) =
1

2πn
[−4sin(α2)] =

−2
πn

sin(2πn(−0.25)), (C.12)

t(n) =
2
πn

sin
�

πn

2

�

, (C.13)
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where α2 = −α3 = 2πn× (−0.25). For n= 0, we calculate: t(0) = z1 − 2z2 + 2z3 − z4 = 0

This example exactly corresponds to the transmissive Dammann grating we bought from

Tydex Optics (cf. section 5.2.3). In order to determine the theoretical efficiency of the DG,

we need to apply some physical parameters, such as the wavelength λ of the diffracted beam,

and the spatial period of the grating,∆u. As measured in the section 5.2.3, the period of the

grating is 640 µm, it has been designed to work at a wavelength of λ = 220 µm. According

to the grating equation C.5, it corresponds to a maximum number of order nmax = 2. From

the efficiency equation C.11, we deduce that:

• η(n= 0) = 0 %

• η(n= 1) = η(n= −1) = 50 %

• η(n= 2) = η(n= −2) = 0 %

For these specific values of λ and θ1, each beam of the +1 and -1 orders has a theoretical

efficiency of 50 %. For a slightly smaller θ1 angle, we would obtain nmax = 3, which would

reduce the efficiency of the +1 and -1 order beams because some power would be present

in the -3 and +3 order beams.
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