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1 Introduction

1.1 Motivation

Saving energy is one of the most important energy issues of our time. The worldwide
energy demand has risen during the past years. As an example the consumption in
the European Union (EU) has increased from 1999 to 2004 by 10.8% (Bertoldi and
Atanasiu, 2006). In contradiction to this development the amount of available resources
is decreasing. Furthermore, the world population is in the growth and accordingly
the energy demand will increase during the coming years.This makes energy saving a
necessity.

One way to achieve this is to influence and change the behavior of the human popula-
tion (Bertoldi and Atanasiu, 2006). E.g. the private electricity consumption accounts
for approximately 27% of the worldwide electricity consumption (International En-
ergy Agency, 2008). At this point, energy can be saved. To adapt the users’ behavior
to the new challenges of energy saving it is necessary to provide them with a trans-
parent report of their energy usage. From (Ehrhardt-Martinez et al., 2010) we know,
that it is possible with a report to reduce the energy consumption by 9%-18%. With
such a reduction of the energy consumption the carbon dioxide emission will also be
reduced.

Currently the user of electric appliances in households only has access to information
on the total energy consumption. A detailed report of the individual consumption
of the appliances in the household is not yet available. The recently sold electricity
meters, installed at the central entry point in the household, only provide a history of
the total consumption. These meters cannot provide information on active appliances
and their individual energy consumption (VDE, 2010). In order to save energy, users
of the equipment need to change their consumption behavior. This requires more
detailed electricity information. This system should not cost too much in order to
increase consumer acceptance.

So it is important to develop a low cost energy measurement and analysis system. This
system provides the consumer with more information. It is important that these infor-
mation include how much and when each appliance consumes energy. This information
could be presented in a detailed energy bill at the end of each month. The comparison
with other appliances of the same type could reveal the out-dated equipment consum-
ing too much energy. With that, the efficiency of the appliances in the household will
be increased. To receive these information a monitoring system should be developed,
which disaggregate the energy consumption of the individual appliances.

1.2 Systems, Approaches and Applications

There are different types of monitoring systems. Currently, many of the monitoring
systems available on the market have to be directly connected to the appliance (digital-
Strom, 2012). They measure the individual consumed power and transmit these data
via a communication network such as the internet. This approach is called Intrusive
Appliance Load Monitoring (IALM), because the electrical installation has to be mod-
ified for each appliance. The installation of the IALM technique in a household is

2



1.2 Systems, Approaches and Applications

shown in Fig. 1.1(a). It is shown, that for each appliance a separate meter must be
exist (digitalStrom, 2012).

However, IALM has many practical disadvantages. One disadvantage of IALM is, that
the installation of the system requires considerable effort. To shorten the installation
procedure and to reduce the costs another non-intrusive technique should be used. A
system is required that is located at a central location in a household. The system must
measure the entire (aggregated) electrical power consumption of the house. Therefore
it is desirable to use only one measuring device at a central location point in each
house, in this case at the building entry point. Using signal analysis algorithms, this
signal can be separated into the individual load profiles of the appliances. This is
called disaggregation. The methods and approaches in the field of disaggregation are
described with the definition of Non-Intrusive Appliance Load Monitoring (NALM)
(Najmeddine et al., 2008). The installation of the NALM technique in a household is
shown in Fig. 1.1(b). This approach will be investigated in this thesis.

IALM

Appliance 1
Moni-
toring

Appliance 2
Moni-
toring

Appliance 3
Moni-
toring

Appliance 4
Moni-
toring

Appliance 5
Moni-
toring

Grid old
Counter

(a) Intrusive Appliance Load Monitoring (IALM).
For each appliance a separate monitoring system
exist. These systems are plugged between the ap-
pliances and the sockets. That lead to a high in-
stallation effort.

NALM

Appliance 1 Appliance 2

Appliance 3

Appliance 4

Appliance 5

Grid Smart
Meter

(b) Non-Intrusive Load Monitoring (NALM).
Only at a central point in the household the aggre-
gate power consumption is measured. Disaggre-
gation algorithms are disaggregating the energy
consumption into the individual consumptions of
each appliances.

Figure 1.1 – Two methods for measuring the energy consumption of electrical appli-
ances in residential buildings.

NALM requires the measurement data from a central point in the home. Power me-
ters measure at the entry point of residential buildings the total energy consumption.
Previous systems, the old Ferraris-Meters, integrate the power consumption over the
year and provide the customer with only one annual consumption bill. Through this
integration, information is lost. In recent years, so-called smart meters have become
increasingly popular. This now offer the opportunity to record the energy consumption
in intervals of seconds. For the disaggregation the data of smart meters can be used.
However, customers are currently reluctant to have such smart meters installed (VDE,
2010). This is mainly due to the costs involved. Furthermore, not many consumers
realize the benefit of a smart meter. In order to give the consumers an incentive to
get smart meters installed at their homes, it is necessary to clarify the advantages of
the device. By the use of smart meters, further advantages arise.

3



1 Introduction

Accurate data regarding the energy consumption patterns of appliances is essential
if power supply companies want to manage power grid fluctuations more effectively.
To obtain this data, smart meters must be installed in all households. Smart meters
measure the data needed for the smart grid. The consumers’ acceptance of smart
meters is also essential for the success of smart grid. Smart meters are able to mea-
sure real and reactive power in one-second intervals. This information is crucial to
electric supply companies. With this information the electric supply companies can
compute the power factor (cos(ϕ)) with higher precision than before. This way they
can predict the load profiles of their appliances more accurately. With the prediction
of the load profiles it will also possible to include the renewable energy resource more
efficiently (Kazakidis et al., 2012). Another benefit is the faster and easier detection
and localization of malfunctions in the power grid.

In addition, this system should help companies to optimize their load profiles and
reduce energy costs. To adapt process control systems to cost-effective load profiles,
for example, might be possible. By monitoring the energy consumption at a central
location in the company, it will be possible to detect and predict malfunctions of large
machines without stopping them. This will make it much easier to plan and adapt
maintenance cycles to production processes. By dealing with large loads in industry,
the term Non-Intrusive Load Monitoring (NILM) is often used. Since our approach
is first applied to smaller household appliances, we will use NALM in the following
text.

In general, there are two types of algorithms for NALM systems. The first one re-
quires a database in which all possible appliances of households are listed. This is
called manual setup (MS). The second system using automatic setup (AS). This sys-
tem automatically gathers the information needed for functioning when it is installed.
The research community is working on both types. There exists different approaches
which use MS or AS. These are described in chapter 3. In this thesis a system with
MS will be presented.

1.3 Research of the ReSP

The Signal Processing Research Group (RESP) is part of the faculty of Electrical and
Computer Engineering of the University of Furtwangen. The research group has been
working for four years with the solution of problems in the field NALM. In two re-
search projects solutions for this area were developed. The issue of the research project
Smart Metering1 was the development and the implementation of the disaggregation
of electrical appliances in residential buildings under contribution of NALM. In the
context of this project, many works have been executed (Bier, 2010; Klein, 2011; Vogts,
2011). Another project is stronger address to the issues of analysis and visualization
of the disaggregated data. This starts at the end of the year. In the field of algo-
rithm development, the RESP is working with the research group of the TROP from
University of Haute-Alsace.

1Founded by the State of Baden-Wuerttemberg
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1.3 Research of the ReSP

The research area NALM at RESP can be divided into several fields of work. The main
parts are the data acquisition, the event detection, the feature extraction, the pattern
recognition, the tracking of the power consumption and the visualization of the results
for the consumer. This chapter should give an overview of the whole research field at
ReSP. Thus the reader should get a view of the wide field of smart metering.

The research has the goal to disaggregate the appliances in the load curve of residential
buildings. For that, robustness algorithms should be developed. So the research field is
divided in more parts (Benyoucef et al., 2010a,b, 2011a). Fig. 1.2 shows the structure
of the research parts.

1. Creation of a database with measurements of individual appliances and measure-
ments of households and companies.

t Development of measurement systems for one phase/ multiple phases.

t Verification of the electrical characteristic of the measurement system.

t Sore the measurements in the database.

2. To find the switching on- and off-events of the appliances an event detector
should be developed.

3. Modeling of the appliances and feature extraction.

t Using different time levels.

t Creation of "‘finger prints"’ of the appliances for a first analyzes.

t Analyze the behavior and the signals of different appliances.

4. Development of a classifier. This should classify the appliances which are switched
on.

5. Development of a tracking algorithm which is used to calculate the power con-
sumption of the appliances after they are classified.

6. The appliances in household can be divided into different groups. The merging
of individual appliances to complex automates should be performed.

7. Results visualization. The results should be visualized that the consumer gets a
transparent report of the energy usage.

At first, different measurement systems were developed to measure one phase and
multiple phases. With those systems there were measured different appliances. These
measurements were needed for the following development of the disaggregation al-
gorithms. From measurements there will be extracted characteristics and models
of classes from appliances. Based on the models of the appliances detection- and
classification-algorithms will be developed. After the development the results are pre-
sented to the consumer. This thesis includes first topics of the research project which
are described in the next section.
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Measurement 

System

Event

Detector

Database

with

Measure-

ments

List of the consumed energy 

of the appliances

Classifier

Tracking

Feature 

Extraction

List of the classified 

appliances

List of the detected 

switching events

Visualization

Secondary Information

(Time, Temperature, …)

Combination to 

complex loads
List of complex appliances

Figure 1.2 – Overview of the research area NALM at ReSP.

1.4 Problem Statement in the Thesis

In the previous section the research project Smart Metering was described. In this
thesis, I worked on a part of the questions. The work in this thesis deals with the first
issues.

1. Create Database with measurements of appliances in residential buildings. With
these measurements the behavior of the appliances should be analyzed. Fur-
ther these measurements should be used to develop and verify the developed
disaggregation algorithms.

2. Development of an event detection algorithm to find the switching events of the
appliances in the load profile.

3. Development of a classifier to classify a part of appliances.

The main part of that thesis is the development of an own measurement system, an
event detection algorithm and a classification algorithm. The structure of that system
is shown in Fig. 1.3. It is part of the whole disaggregation system illustrated in Fig. 1.2.
The block Measurement System measures the entire signals of residential buildings.
The signals are conditioned. It is possible to calculate other signals like active or
reactive power from them. The recorded measurements are stored in a database.
After that the block Event Detector detects the switching on- and off-events of the
appliances. If a switching on-event is detected, the block Classifier is classifying the
appliances. Both blocks, event detector and classifier create a list of their outputs.

1.5 Structure of the Thesis

This thesis is divided into seven chapters. After the introduction and the motivation
of that work the research project is described. The approach of this thesis, which is
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1.5 Structure of the Thesis

Measurement 

System

Event

Detection

Database

with

Measure-

ments

ClassificationFeature Extraction
List of the classified 

appliances

List of the detected 

switching events

Conditioning 

the Signals

1. Block: Measurement System

2. Block: Event Detector

3. Block: Classifier

Entire 

Signals

Figure 1.3 – Part of the system for the disaggregation of appliances. It shows the
measurement system, the event detector and the classifier. Working on
these three blocks is part of that thesis.

divided into three parts, will be shown.

Chapter 2 gives a short overview about signal processing and pattern recognition.
The evaluation of classifiers is presented. For this several quality criteria are defined.
Several types of classifiers are presented. It will be discussed which one is the best to
solve the problem. At the end of the chapter, methods will be presented to analyze
signals. It based on a time frequency analyzes. In the further chapter this method will
be used.

The next chapter 3 describes the State of the Art of NALM Systems. The general
framework for such a system is presented. It consists of the data acquisition, the
feature extraction and the load identification. It will be shown an overview of some
approaches of the last 20 years, where the first ideas for the NALM were founded. The
usage of these approaches for this project is discussed.

Chapter 4 describes the own work of the thesis. It shows the signals, which are used for
the disaggregation. A model of the appliances in the load profile is developed. Based
on that model the signals are derived. In this work the power signals are used for the
disaggregation. The measurement process with disturbances is described. After that
the motivation to build an own measurement system is presented. After the system
was developed and analyzed own measurements were carried out. These measurements
are used for the algorithm development (Bier et al., 2013). The measurements were
analyzed. Different features which are used in the following chapter are extracted. The
chapter closes with the description of a filter structure. This filter is used to minimize
disturbances from the grid.

The next chapter 5 describes the event detection as part of the disaggregation chain.
The event detector is used to find the switching on- and off-events of the appliances.
After the problem statement was defined, different methods were analyzed. Three
approaches were developed. The first one based on a high-pass filter. The filter masks
are derived from the gradient and Laplace operator. The second method using also
a filter structure but with a more complex mask. The last algorithm uses a time

7
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frequency method. All approaches are simulated and implemented. The detection
rates for real measurement of the three algorithms were compared (Bier et al., 2013).

In chapter 6 a first method for the classification of appliance is presented. Different
structures of artificial neural networks are used to classify the appliance. An approach
is shown which use an ADALINE structure to extract the harmonics of the signals.
This harmonics can be used to classify the appliances. A second approach uses different
multilayer perceptrons. The ANNs are described. The simulation results are presented.
At the end of the chapter the classification results using real measurement are presented
(Bier et al., 2012).

The thesis is closed with chapter 7. It will be shown a conclusion and a perspective of
the following work as part of the research project Smart Metering.
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2 Pattern Recognition for NALM

In this chapter an overview of the nomenclature in pattern recognition is presented.
Pattern Recognition is the ability to find similarities, regularities, structures, repeti-
tions and/or principles in a set of data.

2.1 General Definitions

The term pattern recognition was founded in engineering, whereas the term machine
learning comes from computer science. Both terms describe the same. Both play
a central role in more general areas such as artificial intelligence or data mining.
Data mining extracts information from databases. It is the main part of regression,
clustering and classification. Regression is a statistical method. The main goal of
this method is to find relations between one depended and one or more independent
variables. Clustering is an approach to recognize similarities in data sets. The founded
groups are called clusters. If the individual groups are already known, the classification
is used, to assign previously unassigned elements into a particular class.

We assume, we have measured a data-set x. Now we like to develop a machine, which
gets these vector x as input. The machine should provide an output variable for
different input vectors. Thus, better results are achieved in practical applications,
an entire data set with N entries x1, ...xN is handed to the system. This is called
the training set. It is used in most cases to adjust the parameters of the adaptive
model. Suppose further that we have the target vector t for each input vector. For
example, this may have been determined from observations. The results of the learning
algorithm can be represented as a function y(x). The precision of this function is set in
the training phase. This is also referred as learning phase. If the model is trained, new
unknown data-sets can be identified. These are called test-sets. The ability, to identify
new data-sets, which differs minimal from the training data, is called generalization.
This is an important point in pattern recognition, because in practical use the training
set can’t represent all possible input vectors. One danger is the generalization adapting
to the test data. This means, that the method used the test data memorize. This is
called over-fitting. This needs to be counteracted in training phase, which is usually
done with another data-set, used for validation. It is called validation data-set.

In practical applications, the data are preprocessed. These can be transformed into
other spaces. This is done solving the problem there easier. The transformation is
called feature extraction. Feature extraction is also used to increase the computational
speed. In real-time applications individual features can be extracted from large data-
sets. This reduces the complexity of the model and thus the computation time. So
the goal is to find features that solve optimally the pattern recognition problem and
provide a reduction of the computational effort.

In pattern recognition distinction is made between 2 learning methods. There are
applications where the input vector and the corresponding output vector are known.
These applications are called supervised learning problems. If the corresponding output
vector are unknown this is called unsupervised learning problems.

In this thesis the disaggregation problem is solved using pattern recognition methods.
To find the switching events of the appliances a classifier is used. This should classify
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2.2 Types of Classifiers

whether an event exist or not. The second classifier should classify different types of
appliances. The learning phases are supervised.

2.2 Types of Classifiers

Classifiers consist of a decision function f(x) = xTw and a classification function
g(f(x)) = sign (f(x) + Θ). In the most cases for the classification function a decision
threshold maker is used. Linear problems can be solved using linear classifier. If the
problem is non-linear, a non-linear classifier must be used to solve it.

As already mentioned, classifiers can be divided in types of their learning. Through
the measurements performed in this work (cf. chapter 4) both input and output vector
are known. For this reason only methods presented here, which are in the group of
supervised learning classifiers. These methods can be divided into three groups.

The first group represents the parametric distribution based classifiers. They are
based on the model assumptions regarding the characteristics of the pattern source,
respectively on the probability density function. Is the function unknown it must
be estimated. In the most practical cases a normal distribution is sufficient. Each
distribution contains parameters which must be estimated from the sample pattern.
A well-known representative of this group of classifiers is the Bayes classifier. This is
based on the Bayes decision rule.

The second group represents non-parametric classifiers. These are model a Probability
Density Function (PDF) without knowing the function in detail. The non-parametric
classifiers include those who used for the classification directly the learning samples.
A well-known classifier is the k-nearest neighbor.

The third classification category is based on function approximation. Parameters also
have to be adapted for the training of function approximation classifiers. The key differ-
ence to parametric and non-parametric classifiers is that no distributions are modeled.
Representatives are the polynomial classifier and the neural network classifier.

In this thesis classifiers should be used to classify appliances in the load profile of
residential buildings. The PDF of the switching time and the working cycles of the
appliances are unknown. For this reason a function approximation classifier should
be used in this thesis. In chapter 6 this is described in detail. The approach uses an
artificial neural network.

2.3 Evaluation of Classifiers

This section describes how the quality of a classifier will be statistically determined.
The definitions here are based on the classification of events from appliances but can
also be applied analogously to other systems of pattern recognition.

A classifier assigns patterns to classes based on certain characteristics. These patterns
may be similar, but need not be exactly identical. If the patterns vary greatly from one
another, the classifier will generally make errors. Thus assign a pattern to a wrong class
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2 Pattern Recognition for NALM

(e.g. for the event detection, detects an event where none is or analogous detected no
event where one is). From the relative frequency of these errors quantitative measures
to assess an event detector can be derived. There are two cases for detection: an event
has been detected or not. The quality measures introduced here describe the binary
case. In the following different quality criteria are presented.

2.3.1 Confusion Matrix

To evaluate a classifier, a number of cases must be applied. In which, at least, one
should have in hindsight knowledge of the true class of the switching times. For the
classification of an event four cases can be defined

1. True Positives (TP): An event exists and the classifier has detected it.

2. False Negatives (FN): An event exists but the classifier hasn’t detected it.

3. False Positives (FP): No event exists but the classifier has detected one.

4. True Negatives (TN): No event exists and the classifier hasn’t detected one.

In the first and fourth case, the classifier has detected properly appliances. In the
other two cases, an error was detected. Now, for the evaluation of the algorithms the
occurrence of the respective four cases are counted. For this purpose, a contingency
table 2.1 (also called confusion matrix) is set.

Event NO Event
Detected TP FP
NOT Detected FN TN

Table 2.1 – Contingency table, for the example of the event detector.

Derived from the contingency table different quality criteria can define for the evalu-
ation of the ED.

2.3.2 Statistical Quality Criteria

From the confusion matrix different criteria to evaluate the behavior of the classifier
can be derived. For this purpose, relative frequencies are calculated. This contains the
values TP , FP , TN and FN for each parameter value. To evaluate the ED, different
evaluation measures are defined. These are defined for a specific threshold.

t Recall: TP
TP+FN

t Precision: TP
TP+FP

t Fallout: FP
TN+FP

For a first evaluation of the quality of our classifiers different rates are introduced
(Klein et al., 2013; Anderson and Berges, 2012). These are specifically defined on the
existing problem here. The individual decisions are now described in detail (for the
example of the event detection).

12



2.3 Evaluation of Classifiers

2.3.2.1 Recall, True Positive Rate

We consider a detected event êj a true positive (TP) when there exists an ei such
that

‖ei − êj‖ < ethr, i = 1, . . . , Ne (2.1)

with a time threshold ethr. The threshold allows for correction of small delays between
the measured data and the actually detected events. From the total number of detected
events we get the number of true positives NTP ≤ Ne. The True Positive Rate (TPR)
is the relation of number of true positives and true number of events

TPR =
TP

Ne
. (2.2)

The TPR is therefore the recall applied to the TP. It answers the question: How many
events are rigth detected? Another designation for the TPR is Sensitivity. This name
is used for the evaluation of classifiers. The TPR is thus the conditional probability
that an event has occurred and has been recognized by the classifier P (ej |ej).

2.3.2.2 Precision, Positive Predicted Value

The PPV is the precision applied to the TP. It is calculated from the quotient of
TP and the sum of TP and FP. The PPV gives a relation between right and wrong
recognized event.

PPV =
TP

TP + FP
(2.3)

2.3.2.3 Combined Measures

The precision and the recall only say in general not so much. For the detection of
all events the TPR reached 100% and the detection of all relevant event the PPV
reached 100%. Therefore, in some practical cases, the pre-defined two quality criteria
are plotted against each other. For the determination a value of the decision function
a specific threshold can be defined.

t Breack-Even-Point: threshold, where the Recall=Precision

t m F-Score: is calculated as the harmonic mean of precision and recall, F −
Score = 2 · Precision·RecallPrecision+Recall ; F − Score = 2 · TP

TP+FP+TP+FN .

t maximal F-Score: threshold where F-Score=max

13
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2.3.3 Determining a Rate

The individual rates are mutually interdependent. This means that it is not possible
to optimize all performance criteria independently. For this purpose, the two extreme
cases of classifiers can be considered:

t Liberal Classifier, here almost all events are detected. The sensitivity is maximal.
This, however, decreases the PPV, as many events are detected in the noise.

t Conservative Classifier, shows almost no events are detected. The parameters
were chosen so that the PPV is very large. However, this has an impact on the
TPR, which assumes lower values in this case.

The error FP , which makes the classifier, can be calculated from the TPR and PPV.

FP =
Ne · TPR · (1− PPV )

PPV
(2.4)

What type should be used by classifier thus depends on its application. The definition
used here for the classifier and the associated choice of parameters are defined at the
end of the chapter 5.5.1.

2.4 Time Frequency Analyze

One way to extract features from time signals is to transform the signal into the
frequency domain. In this section a method is presented to transform the signals.
This method is used later for the development of the event detection and classification
algorithms.

2.4.1 Fourier Transformation

One known method to transform signals into frequency domain is the Fourier Transfor-
mation (FT). This is an integral transform and contains a harmonic oscillation e−j2πft

as integral kernel. It is a method of Fourier analysis. The FT allows it to transform a
continuous, periodic signal x(t) into its continuous spectrum. Thus, the similarity of
the signal x(t) with the harmonic wave of the frequency f is determined.

X(f) =
1

T

T∫
x(t) · e−j2πftdt (2.5)

This can be interpreted according to Parseval as a convolution of the spectrum with
the Dirac impulse at the point v = f . In this theoretical assumption, the observation
period is infinite. Therefore, in the spectrum no leakage effect occurs.

X(f) = 〈X(v),δ(f − v)〉 (2.6)
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2.4 Time Frequency Analyze

Through the use of the entire signal, it is assumed that this is a time-invariant signal.
For practical purposes in this work, this is a disadvantage. The Fourier integral cannot
resolve non-stationary signals. Thus, changes in the waveform cannot be resolved.
There must be found a method that dissolves non-stationary signals.

2.4.2 Short-Time Fourier Transformation

2.4.2.1 Transformation

Signals for the disaggregation are non-stationary in most cases. It is searched for a
method which permits time-varying representation of the frequency distribution of a
signal. Such a method is the Short-Time Fourier Transformation (STFT).

X(τ,f) =

∫
x(t)w(t− τ)e−j2πftdt (2.7)

The continuous signal is multiplied by a window function w. The choice of a window
function reduces the leakage effect. For the considered time interval the window shows
values unequal 0. Known window functions are the Hamming-, Hann- or Gaussian-
window. The values of the windowed time signal are then transformed analogously to
the FT in frequency domain. The choice of window size affects the resolution in the
time domain and frequency domain. However, the resolutions are disproportional. This
relationship can be described about the uncertainty principle. That means, a resolution
as high as possible in the time domain e.g. for event detection leads to a blurred
resolution in the frequency domain. If one wishes to obtain a good frequency resolution,
this again leads to a blurred resolution in the time domain. For the subsequent use of
the STFT in this work, the choice of the window length has a great importance.

Fig. 2.1 shows the principle of the STFT. The result X(τ,f) of the STFT is a matrix.
This contains the spectral values of the signal depending on the analysis time t and
frequency f .

x(t)

t
τ

Figure 2.1 – Principle of the STFT. The signal is subjected stepwise at the times
t = τ by a windowed FT. For each considered time, the FT provides all
frequencies up to half the sampling frequency.
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2.4.2.2 Power Density Spectrum

For a presentation and analysis of the results, the matrix X is limited. In most cases,
the amplitude values are used for the analysis. For this, the individual components of
the matrix must be squared. This represents the spectral density. When the spectral
density is indicated over a specified frequency range, this resulting in the Power Density
Spectrum (PDS)

PDS =
1

fs
· 2 · 1

ωL
|X(τ,f)|2 . (2.8)

The three-dimensional representation of the PDS is called spectrogram. If we want
to know the signal energy at a given time t, it must be integrated over the frequency
components. Eq. (2.9) show this. The calculation of the double integral determines
the total signal energy as presented in eq. (2.10).

||x(t− τ)||2 =

∫
PDS(τ,f)df (2.9)

||x(t)||2 =

∫ ∫
PDS(τ,f)dτdf (2.10)

In the following, an example is shown which should show the advantage of the STFT
against FT. We assume there are two appliances, a linear and a non-linear. At the
beginning the linear appliance is switched on. In the half of the measurement, at
0.5 s the non-linear appliance is switched on. The non-linear appliance has to the
fundamental wave (50Hz) also some harmonics. These are 100Hz, 150Hz and 200Hz.
Fig. 2.2 shows the simulation results of the FT and the STFT. In the first row the
time signal is shown. With the FT the whole signal is transformed into frequency
domain. The results is presented in the second row. The fundamental wave and the
harmonics of the second appliance are shown. But there is now information about
the switching times. In the third row the results using the STFT is presented. The
frequency components are plotted over the time. After 0.5 s it is shown that a second
appliance is switched on. Using the STFT it is also possible to detect the time of a
switching event whereas the FT only calculates the harmonics.

2.4.3 S-Transformation

The S-transformation (also known as Stockwell-Transform) is a relatively new proce-
dure in the field of time-frequency analyze. It was described by Stockwell first in 1996
(Stockwell et al., 1996). The S-Transformation (ST) is a modified form of the STFT.
They differ in the window function. By the ST the window function is frequency
dependent. The length of the window scales inversely with frequency.
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Figure 2.2 – Simulation results of the FT and the STFT for two different switched
appliances. In the first row the input signal is shown. In the second row
the FT of the input signal is shown and in the last row the results of the
STFT is shown.

Using a frequency dependent window in the time domain, the ST is calculated for a
time continuous signal x(t) as

ST (τ,f) =

∞∫
−∞

x(t)ω(τ − t,f)e−j2πftdt (2.11)

This equation corresponds to the known formula for the STFT (cf. (2.7)). But it has
a window function, which is depending from the frequency f .

The ST looks promising as analysis method, but was not pursued in detail in the work.
It will be shown later that the STFT for each method is sufficient. This method can
be used for later work. Just when other signals are used as described in that work.

2.5 Conclusion

In this chapter the essential terms of pattern recognition are described. For the dis-
aggregation of appliances a supervised learning method is used in this work. For this
reason, an overview of the most common classifiers in this area is given. In order to
make a statement about their quality, different criteria were defined. Based on the
confusion matrix, the true positive rate and the positive prediction value were derived.
Also combined measures are presented.
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At the end of the chapter a method is presented with which features can be extracted.
This is based on a time-frequency analyzes. Based on the FT the STFT is described.
This method is used later in the work. A modification of the STFT has been presented
for a further work. This is the ST.
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3 State of Art for NALM

In the following chapter the state of art for Non-Intrusive Appliance Load Monitoring
(NALM) systems will be described. It will be presented an overview of the most impor-
tant disaggregation systems. A detailed description of the state of art for the different
algorithms for the event detection and the classification will be presented separately in
their chapters 5 and 6. Also an overview of the current available monitoring systems
will be presented.

3.1 State of Research

As shown in chapter 1, the disaggregation of electrical appliances is divided into two
parts, the Intrusive Appliance Load Monitoring IALM and the Non-Intrusive Appli-
ance Load Monitoring NALM. For that project we use the NALM approach. An
important criterion to distinguish between the algorithms, which are described in that
chapter is, whether they need a learning phase or not.

The first approaches for a NALM system based on the investigation of the appliances
in the steady state. The method is called Steady State analyze. There follows other
approaches that examine the signals in the transient response. The methods based on
the analyze of the transient response are called Transient State analyze. In both an-
alyzing methods, the individual approaches have been divided for years (Najmeddine
et al., 2008). At the beginning and during this work an intense research on methods
for NALM was done. Due to the high research interest in this field, numerous re-
search groups have deepened in this area worldwide in the last decade. Nowadays, a
subdivision in the two aforementioned groups of the steady state and transient state
is insufficient. There are methods that use a combination of both. Also, there are
methods which use other methods of analysis. An overview of the methods for NALM
is shown in Fig. 3.1. In the following, the individual methods are described in more
detail.

Non-Intrusive Appliance Load Monitoring NALM

Steady State
investigation between

the swichting events

Transient State
investigation of the

switching events

Fundamental 

(Time Domain)

Harmonics 

(Frequency Domain)

Transients

(µs – ms)

 Periodic Time

(ca. 20ms)

Newer Approaches
using other features

Figure 3.1 – Overview of Methods for NALM. The methods can be divided into three
groups. The traditional ones are the Steady State and the Transient State
analyze. In the last years other approaches are developed which deals not
directly in these two fields. They can be placed in the third group.
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3.1.1 Steady State

The first NALM-approach was developed by George Hart at the Massachusetts Insti-
tute of Technology (MIT). In the 1980s, he wanted to analyze the load of residential
buildings (Hart, 1992). He had early discovered, that it must be possible, to detect
the individual with the eyes visible switching events, with an algorithm. His system
recorded active and reactive power in intervals of one second. After filtering, these
results can be shown as a rectangular signal depending on the switching status of the
appliances. The height of the steps in the power signal allows detection of the ap-
pliance. For that, before and after a switching event was measured. In that phase,
the appliances were built up. Therefore the definition of the steady state was estab-
lished. Thus the steady state analysis is before and after a switching event, which are
described by transients. The analysis of the transients were neglected by Hart. For
detecting multiple loads, it is important, that for each rising edge caused by switching
on an appliance, a corresponding falling edge is recorded. An example of such a signal
is given in Fig. 3.2.

waterheater

toaster

refrigerator

∆P

∆T

lamp

lamp

hairdryer

P(t-∆T)

P(t)

Figure 3.2 – Example of the power consumption of a household. Different appliances
were switched on and off.

After the measurements of the appliances, the appliances were divided into different
groups. Therefore, these were divided into clusters in the active and reactive space
(PQ-Space). For each cluster of a switching on event, the point symmetric cluster of
the switching off event were defined. In practice every switching event were allocated
to the next center of a cluster.

The NALM approach of Hart has shown in field test, that only appliances with a huge
power consumption are well classified. Furthermore synchronous switching events of
linear and non linear loads are not classified. Also different appliances with the same
load profile cannot be classified. A further disadvantage of this approach is, that
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dependent from the low sampling frequency, fast switching events (phase angle control)
cannot be detected.

The next approach here presented, was developed from Powers and Margossian (Powers
et al., 1991) in 1991. They measured the load profile of residential building. With the
aid of special information of appliances (e.g. periodical events of some appliances)
they had generated characteristic load curves of appliances. For that the algorithm
calculates the energy consumption of each appliance. Furthermore a-priori information
of the appliances which located in the residential buildings are be collected. This
process takes several years. The algorithms combine the measured values and the
information of the appliances. The values were measured in intervals of 15min. Thus
that approach is vague related to the fast switching events.

1998 Pihala has developed a system in Finland, based on the approach of Hart (Pihala,
1998). It was a MS-NALM-System, which were implemented on a desktop PC. This
system needed database values with the differences of the power profile of different
appliances. In an interval of one second, 12 electrical variables were measured at each
phase. In addition to the power differences, the start and end values of the power
of each time interval were stored in the database. At the same time, the name of
each appliance, which were connected on the phase were stored in the database. With
that it was possible to classify more complex appliances (automate) with a predefined
correctness.

The next algorithm needs at the beginning again some complex measurements. Marceau
and Zmeureanau (Marceau and Zmeureanu, 2000) had analyzed seven large-scale ap-
pliances in Canada in 2000. Therefor they have measured for more weeks the apparent
power of residential buildings on the two phases in Canada. After that, they have
created a statistical profile of each appliance. The interval of the sampling rate was
16 s. The switching events were classified with the highest probability. The assumption
was, that between that 16 s only one appliance was switched.

In Germany a system was developed in 2006. It based on the approach of Hart. It
was developed by Baranski at the University of Paderborn (Baranski, 2006). The
basis of his approach was the assumption, that the old ferraris counters are placed in
the households for the next years. For this reason he built an optical measurement
system. With that the velocity of the disc wheel were measured. With that method
the instantaneous power can be calculated. Similar to the approach of Hart, that
system has the disadvantage, that only a resolution in time interval of some seconds
can be realized. Through the integration over the time of the signal, the transients
of appliances cannot be detected. The group of appliances can be detected with that
approach were similar with the group of the approach of Hart. With the approach of
Baranski every detected event were clustered under the assumption, that every cluster
has only one event. The center of each cluster was combined with the model of an
appliance. Ideally should the sum of the switching events be zero, so the sequences
were finished. For this reason the sum of the power differences of the switching on
and off events of the appliances should also be zero. In addition a data vector for each
appliance should be existing. For the identification of the models of the appliances
he uses an generic algorithm. The analysis of the results of that approach has shown
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some weaknesses. Baranski explains that result in order that it was not possible to
distinguish between the appliances in the feature space.

To recognize simultaneously switching events of more appliances, it is possible to an-
alyze the harmonics of the current. For that the time signal current were transformed
with the Fourier Transformation in the frequency space. One work for that approach
was founded 2005 in Japan. Nakano (Nakano, 2005) has developed a system to analyze
the harmonics. The research group at the Central Institute of Electric Power Indus-
try (CRIEPI) and the Tokyo University of Agricultural and Technology (TUAT) have
measured the energy consumption of individual appliances and of residential build-
ings. With the created data set a support vector machine was trained, to recognize
the events of the appliances. The power of the harmonics and the correspondent reac-
tive values were used for the prediction. The results has an error of 20% in comparison
to the real measured values (Nakano, 2005).

Every of this six described systems needs a database, with information of the appli-
ances. The installation and start up of those systems needs a high effort of measure-
ments. All approaches were created for the classification of large-scale appliances.

3.1.2 Transient State

A second possibility to analyze the signals is the observation of the transients of the
switching events of the appliances. Many disadvantages of the steady state analysis,
like only the classification of large-scale appliances, can be eliminated by analyzing the
transients of the switching events. When turning on or off an appliance, characteristic
oscillations in the voltage and current signal may occur. The shape of those oscillations
is dependent on the inner structure and the operation mode of the appliance. The
distorted reactive power, the product of the distorted voltage and the distorted current,
are mainly caused by non-linear loads, for example, switching power supplies. In
contrast, linear but non-real loads like motors consume reactive power.

Lee established that the sum of the currents at higher frequencies can reach up to
150% of the current in the fundamental wave of the power grid (Lee et al., 2003).
Thus to determine the energy consumption of an appliance, it is crucial to regard the
higher frequencies as well. Not only the current has harmonics. It is also possible, that
the signal voltage has distortions. In fact, the distortions at the voltage are smaller as
in the current but Cox et al. show in 2006, that the harmonics of the voltage are good
to characterize the switching events (Cox et al., 2006). He uses the voltage between
phase and zero potential and the voltage between zero-potential and ground. In the
last case the higher harmonics are good for the classification.

Steven Leeb was the first one, who works at the classification using the transients of the
signal (Leeb et al., 1995). Another approach using transients developed Shaw (Shaw,
2000). Building on this, in 2003 Lee (Lee et al., 2003) and Laughman (Laughman
et al., 2003) developed a first approach. They use not only the steady state analysis.
They use a combination of the steady state and the transient analysis to classify the
appliances. For the simplification of that approach, it was assumed, that the signal
voltage is an ideal sinusoidal. Thus the distortions of the voltage were neglected.
Only the harmonics of the current were used. The approach consists of measuring
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the signals with a sample rate of 8 kHz and windowing the signal in time of one
period of the fundamental wave. The overlap of the windows were 15%. For the US
Grid with 60Hz fundamental wave, 120 measured values per second were measured.
Therefore the power of every harmonic get one value. With that approach appliances
with similar active power consumption but with different harmonics were divided into
different groups. For the classification of the transients of the appliances, a pattern
recognition algorithm was developed. That algorithm based on the correlation of the
switching on signal with all possible mean switching events of the appliances. With the
measured values a regression with the mean values of the transients were calculated.
The criterion is the gradient of the straight line. Is the gradient higher than one, then
the two vectors are similar.

As mentioned before, Lee and Laughman had used a combination of the steady state
and the transient state analysis. It was shown, that with this approach the classi-
fication was improved. This knowledge was also used by Lam et al. (Lam et al.,
2004). Unlike as Lee, Lam has not developed a database with the different appliances.
He has stored characteristic attributes of the load curve of different appliances in the
database. For this a new taxonomy was developed. Which are better as the classical
characteristic in that area (Lam et al., 2007). For that, the signals of the current and
the voltage were compared for each period. Is the phase between these two signals
similar, the bisecting line of the first quadrant comes out, for the resulting trajectory.
If the signals have different phase angle, an ellipse will be created. Under the usage of
semiconductors the trajectories gets additional distortions. Lam et al. has extracted
characteristics from that signals, e.g. area, curvature etc. These characteristics were
clustered. This clusters were better in reference to the characteristics of the appliances
(Lam et al., 2007).

The last approach, which is here presented, was developed by Onoda (Onoda et al.,
2000). He likes to recognize appliances with integrated electronic frequency converter.
They have no similar power consumption. Thus they have no similar signals. Of total
six appliances, the harmonics and the phase shift were measured. Different algorithms
were tested. The best one was a boosting algorithm (Onoda et al., 2000).

The algorithms presented here based on the analyze of the transient or a combination
of the steady state and the transient state. The approaches are developed for a small
group of appliances. In the next section newer approaches are presented.

3.1.3 Newer Approaches for NALM Systems

2012 an approach for prediction of load curves was presented by Kazakidis et al.
(Kazakidis et al., 2012). The prediction should be done at an interval of 1 h. As
feature vector he used the active power, the temperature and the current time. For
the prediction an artificial neural network was used. The system was tested by a
small data-set but with good results. It is estimated only the total load consumption.
A disaggregation which appliances used how much energy was not reached in this
work. However, it shows that Artificial Neural Network (ANN) can be used for the
disaggregation.
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A work in the area of demand response was published by He (Dawei He et al., 2013) in
2013. He developed a hardware and software. For the disaggregation simple features
are used. The feature space includes the RMS value of the current, the mean value of
the power, the fundamental phase angle, the variation of the RMS and the 3rd and 5th
harmonics. He uses a self organizing map (based on a artificial neural network) for the
clustering of the appliances. But he didn’t describe in detail the rates of the clustering.
He analyzed only waveforms of individual appliances. Superimposed waveforms have
not been studied. He admits to detect simple appliances. There are appliances with
high power consumption specified. The individual appliances are well detected. The
detection rates for individual appliances are given between 77% to 99%.

For the identification of load profiles in the smart Grid, Fernandes (Fernandes et al.,
2013) used an ANN method last year. The approach is more in the field of system
development. The group like to build a system, which send the consumer a monthly
bill of the separated consumed energy of the appliances over the internet. For the
disaggregation the group uses a simplified approach. The feature vector consists of
the harmonics of the current up to the 15th harmonic. They tested the ANN classifier
on measurement of 6 appliances with 252 individual measurements for the validation.
The approach works well with a precision for each appliance up to 93%. The approach
would have studied for more appliances. This would achieve a generalization for the
entire household.

Also, a recent approach represents the group of Paradiso (Paradiso et al., 2013), 2013.
They also used an ANN for the classification and a feature vector with the power
signals. It refers more to the communication interface as the disaggregation. Also, the
classification rates are very low. However, this is also due to the choice of this method
not fit the measured appliances. There are a variety of automate measured. For
evaluating of the system a low data-set is used. This does not allow a good statistical
analysis and a comparison of the approach.

An approach based on a unsupervised method is presented in (Pattem, 2012). The
feature vector includes the power P . For the clustering a hidden-Markov-model is
used. The method is not described in detail. For the verification of the approach the
REDD data-set was used (cf chapter 4.4.1). So the approach was developed for low
power signatures. The approach reach a disaggregation rate between 56% and 67%
for the different households. This is very low for a reliable disaggregation system.

An approach for a real-time system is presented by Ruzelli 2010 (Ruzzelli et al., 2010).
He used current transducers to measure only the current. With an idealized voltage
he calculated as features the power and derived other values from this. For evaluation
of the system 3 appliances were investigated. The integration interval is 1 s. For the
device he gets a detection rate of 84%. For the classification he uses an ANN.

3.2 State of Technology

Since the beginning 2010 it is statutory in Germany (Bundesministeriums der Justiz,
2005) to assemble Smart Meters in new buildings. Currently available systems on the
market are transfer the values of the power in intervals of 15min. Rarer are systems
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that transfer the values of the power in intervals of seconds. Known smart meter
producer are EasyMeter, Itron and Landis+Gyr. EasyMeter provides a Smart meter
which can measures in an interval of 1 s.

The current systems are monitoring the whole energy consumption. The systems
provides the power signals P , Q and S. For this reason, it is not possible to declare
the individual consumption of each appliance. For a development of a system which
can be included in current smart meter hardware the usage of the power signals should
be preferred.

3.3 Conclusion

In that chapter an overview of the world-wide work in the research area NALM is
presented. Since the beginning of the research in the 1980s, different approaches were
developed. They can be divided classical into the steady state and transient state
analyze. But in the last years many approaches were investigated which based on
both or which uses other criteria for the disaggregation. Based on the methods own
approaches should be developed. At the end of the chapter an overview of existing
smart meter hardware is presented.
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This chapter describes the measurement system and the measured signals which are
used for NALM. At first a model is described. This model includes the appliances
in the load profile of residential buildings which is a part of the grid. The measured
signals are described. From them other signals can be derived. The data processing
chain with the influences of noise is described. Thereafter, individual databases that
exist today are presented. It is discussed how these can be used for this work. There
follows a description of the self-developed measurement system and the analyze of
them. For the later development of disaggregation algorithms own measurements were
carried out. These are listed and analyzed. At the end of the chapter a method will
be presented, which is used to prepare the data. It is a pre-filter of the signal using a
non-linear filter structure.

4.1 Introduction

For the development of disaggregation algorithms measurements are required, whose
statistic is known. In the last chapter it was described that a disaggregation can
be divided into several blocks. As shown in Fig. 4.1 for the event detection an event
detector is used. This is described in chapter 5. Chapter 6 describes the classification of
the appliances in the load profile. However, before we can begin with the development
of these two blocks, the signals for the disaggregation must be measured and analyzed
(Benyoucef et al., 2012b).

For this reason, a measurement system was developed at the beginning of the work,
which allows to record own measurements. These measurements are analyzed and used
for the development of the event detector and classifier algorithms. If the measure-
ments are known, then a statistical evaluation of the algorithms can be done. For this
work, the signals are measured at the entry point. The physical signals which can be
measured are the time continuous signals voltage u(t) and current i(t). From these
two values other signals for the disaggregation can be derived.

4.2 System Model

At first, the model is described which present the appliances in the load profile of
residential buildings. The derivation of various signals, which can be used for the
disaggregation, is shown. Based on that model a normalization of the signals must be
done.

4.2.1 Appliance Model

To describe the on and off cycles of the appliances, the model of a real voltage-source
was taken. Fig. 4.2 shows such a source (extern grid) with different appliances (intern
home).

The grid can be modeled as a voltage source, with a voltage us(t) and a impedance
Zs. Zs represents the source impedance and can occur physically by grid losses. The
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Figure 4.1 – Structure for the disaggregation of appliances in the load profile of resi-
dential buildings. The first block is described. The measurement system
measures the entry signals u(t) and i(t). After the calculation of other
signals and a pre-conditioning of them, these signals will be stored in a
database. Later they can be used for the development of the algorithms
for the event detector and the classifier.
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Figure 4.2 – Model for the appliances in the load profile of a residential building. The
household is part of the external grid which can be modeled as a real
voltage source and the resistance of the grid losses.
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different appliances can be modeled as impedance Z1 to ZM where M is the number
of active appliances. The total impedance ZL of all appliances can be calculated as

ZL =
1∑M

m=1
1
Zm

.

The voltage across the appliances uL(t) can be calculated as

uL(t) = us(t)− uZs(t).

The total current of all appliances is calculated as

i(t) =
M∑
m=1

im(t)

For the development of the algorithms the following assumptions were made:

t It will be assumed, that the external voltage source is constant. There are no
distortions in the grid and the effective value of the sinus with f = 50Hz has
230V.
us(t) = 230V · cos(ω1t+ ϕu1)

t The second assumption is, that the external resistor of the grid is constant
Zs = const.

First, a linear resistive load is assumed. If a pure active resistance R or its inverse
conductance G is connected to an AC voltage source with sinusoidal voltage u(t) =
û cos (ωt+ ϕu), it follows according to Ohm’s law for the current i(t) = î cos (ωt+ ϕi).
These are the physical quantities which can be measured at the central point in the
household. The measurement system shall capture and store these values.

Now, we know the basic signals which can be measured. Based on these, the signals
we use in this work for the disaggregation should be derived. It has been reported in
the state of art chapter 3 that many methods use the averaged values of the power
signals. This has the advantage that a real-time system can be realized with a smaller
sampling rate. As a result, it is possible to use existing hardware of smart meters 1 for
a first check of the developed algorithms in a real case. At the beginning algorithms
should be developed to get as input the power signals. The instantaneous power p(t)
of a linear resistive load is calculated from the product of the time-dependent current
and voltage

p(t) = u(t) · i(t) = û î cos2 (ωt+ ϕu) = U I [1 + cos (2ωt+ 2ϕu)] . (4.1)

The power which is paid by the consumer is called active power. The active power P
is calculated through the integration of a period from the instantaneous power2. This
leads to a down-sampling of the signal. Thus, the cutoff frequency of the signal is

1e.g. EasyMeter model Q1D sample rate, 1 s
2Here is assumed that the signal is quasi stationary in a period.
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change. The integrated signal P has a frequency of 50Hz or a time period T between
the measured samples of 20ms.

P =
1

T

T∫
0

p(t)dt = UI = UeffIeff = I2
effR = U2

eff

1

R
(4.2)

Reactive power Q arises when the two-terminal circuit has inductive or capacitive
elements. For a pure inductance, the time-dependent power results to

pL(t) = û̂i cos (ωt+ ϕu) cos (ωt+ ϕu −
π

2
) = −UI sin (2ωt+ 2ϕi). (4.3)

Analogously results the power for a pure capacitance to

pC(t) = UI sin (2ωt+ 2ϕi). (4.4)

So far, only the services of two-terminal circuit were examined which real power and
reactive power added. In the following a system will be described, which can consist
of a combination of R, C and L. This has the consequence that the phase difference
ϕ = ϕu − ϕi between the signals of current and voltage can take values in the range
−π/2 ≤ ϕu − ϕi ≤ π/2. For the time-dependent power results

p(t) = UI cos (ϕu − ϕi) + UI cos (2ωt+ ϕu + ϕi). (4.5)

By deforming the equation (4.5) one obtains

p(t) = UI cos (ϕu − ϕi) [1 + cos (2ωt+ 2ϕi)]− UI sin (ϕu − ϕi) sin (2ωt+ 2ϕi). (4.6)

By integration the instantaneous power (4.6) over one period, we obtain for the active
power

P = UI cos (ϕu − ϕi) (4.7)

and for the reactive power

Q = UI sin (ϕu − ϕi). (4.8)

Multiplies only the two rms values of current and voltage we obtain the so-called
apparent power S. It corresponds to the hypotenuse of the power triangle, which can
be calculated directly from the active and reactive power.

S = UI =
√
P 2 +Q2 (4.9)
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In the appendix A.1 is a summary of the most important signals for this work. The
algorithms in chapter 5 and 6 gets these three signals for the detection and classification
of the appliances.

Looking at non-linear loads, it is clear that distortions in the current are available.
These distortions are called harmonics. By means of the Fourier Transformation can
represent all periodic signals from the sum of individual harmonic functions. Thus, we
are modeled the current i(t) as a complex current consisting of the superposition of
different harmonic currents. In this thesis, the harmonics are not used. Because we are
used the integral signals P, Q and S as described later. Therefore, it is not discussed
further here. During the development of our own measurement system the harmonics
of the current will be analyzed. This is necessary because the measurement should also
be used for further work. A description of the harmonics is in the appendix A.4.

4.2.2 Normalization of the Signals P, Q and S

Now we consider the model of the real voltage source closer. The resistor of the grid
ZS and the impedance ZL of the appliance forms a voltage divider. This creates a
dependence between ZS and the power consumption of individual appliances. If more
appliances in the household be actively pursued, the total parallel resistance ZL will
be lower. Thus, a higher current flows. The voltage drop across the parallel appliances
decreases. Thus, the power consumption drops. From this, it follows that the real
power consumption of the appliances varies depending on their number.

These voltage fluctuations can be considerable. Fig. 4.3 shows an example of the
effective voltage for a real test pattern. As can be seen, the effective value of the
voltage decreases if some appliances are switched on (e.g. at time 6 s, 11.5 s or 26 s).
If appliances are switched off (e.g. at time 21.5 s, 31 s or 35.2 s), the effective value of
the voltage is increasing.

This makes it clear that a normalization to the supply voltage (US) must be performed.
Otherwise there is a risk that there will be unnecessary errors in the detection of the
events or the subsequent classification of the appliances.

This problem was already described by Hart (Hart, 1992). The normalization should
be represented formally for the example of the apparent power S. For the other
two powers (P and Q) this is carried out analogously. For the supply voltage US =
230V is assumed. This corresponds to the nominal value for the European grid. The
normalized voltage calculated from the ratio of the squares of the supply voltage and
the actual measured effective voltage UL.

Unorm =
U2
S

U2
L

(4.10)

With the normalized voltage a scaling of the power is carried out (a detailed description
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Figure 4.3 – Effective voltage across the appliances of a real measurement. Based on
the voltage divider (ZS and ZL) the value of the voltage varies depending
on the active appliances.

is found in (Hart, 1992)). This is calculated as

Snorm = S · Unorm (4.11)

Snorm = S ·
(
US
UL

)2

(4.12)

A computational example should clarify the effects of voltage fluctuations more in
detail. Take the measurement from Fig. 4.3. After 11 s an appliance is switched on
with a nominal power of 1985VA. Together with the appliances already in progress the
nominal power results in 2940VA. With a constant voltage source, therefore, a current
of 12.78A would flow. As can be seen the effective voltage decreases approximately to
207V. Accordingly, the actual power consumption reached a value of 2380.5VA. It is
missing about 630.39VA from nominal power. This represents 19%. For a practical
application, this value is too high. So it must be performed the normalization. With
eq. (4.12) the power is normalized to

Snorm = S · Unorm

Snorm = 2380.5VA ·
(

230V
207V

)2

Snorm = 2938.89VA

The normalized power consumption consistent with the nominal value of the appliances
now. The normalization was performed later for all measurements.
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4.3 Real Measurements

Until now we have assumed that the measured signal is ideal. However, during a
measurement errors will be occurring. These have different physical reasons.

The measured signals u(t) and i(t) are analogous time-continuous variables. These
must be conditioned because the measured signal is changed by measuring. One pos-
sibility is that the measurements are additively superimposed by noise which comes
from the measurement system. Another influencing factor is the processing of data in a
PC. By the AD conversion, the continuous-time signal is converted into a discrete-time
signal. The range of values is finite so quantization errors occur.

Our model for the real measurement is shown in Fig. 4.4. In the following, the two
named factors will be further investigated. Their impact on the disaggregation is
discussed.

AD

n(t)

p(n)p(t)s(t)

Figure 4.4 – Modell of a real measurement. The signal s(t) are superimposed by noise
n(t). By digitizing a further change is made to the signal.

4.3.1 Additive White Gaussian Noise

Additive white Gaussian Noise (AWGN) describes a channel model. It has a constant
noise power spectral density and is therefore called white. The signal amplitudes in
the time level consists of a gaussian distribution. The signal s(t) are superimposed
additively by the noise n(t). The measured signal p(t) is

p(t) = s(t) + n(t). (4.13)

White noise is produced e.g. by the random voltage across electrical components in
a electrical circuit. Therefore, especially for the development of an own measurement
system is to ensure a good noise cancellation.

4.3.2 Signal to Noise Ratio

In all technical applications useful signals are superimposed by noise. The intensity of
the noise determines the technical quality of the signal. In the worst case it can lead
that the useful signal doesn’t provides a useful value.

A criteria for the evaluation of the superimposed signal with noise is the so-called
signal-to-noise-ratio SNR. The signal-to-noise-ratio for an intensity signal can be de-
fined as the relation of the signal power Ps and the noise power Pn over the same
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system bandwidth.

SNR =
Ps
Pn

(4.14)

The power loss over a resistance R is defined e.g. as P =
U2
eff

R . For the analysis
of the system we assume normalized resistance (R = 1Ω) so that we do not need to
include that resistance term while measuring power or energy of a signal. We can then
calculate the power of a periodical signal as the integral of the spectral power density
of the signal PS(f) over the bandwidth B. If we assume white noise the power of noise
can be calculated as the integral of the power spectral density PN (f) over the same
bandwidth B.

SNR =

∫ B
0 Ps(f)df∫ B
0 Pn(f)df

(4.15)

In physics, signal amplitudes move frequently over several orders of magnitude. There-
fore, it is sometimes useful to indicate the SNR in logarithmic form

SNR = 10 · log10

(
PS
Pn

)
. (4.16)

Eq. (4.16) is defined in general for a intensity signal. For other signal types, a further
definition of the SNR must be chosen. In image processing the SNR of the image is
defined as the quotient of the average gray value A and the standard deviation σ of
the gray value. It is also calculated logarithmically as

SNR = 10 · log10

(
A

σ

)
. (4.17)

For the disaggregation, the average gray scale value can be interpreted as half of the
signal amplitude of the appliance.

4.3.3 Quantization Error

By an analog digital conversion, a time-continuous signal is converted into a time-
discrete signal. Thereby the data processing in a computer is made possible. Because
of the finite number of states the results must be rounded. This will cause error. These
are referred as quantization error. The quantization error eq is calculated from the real
input value p and the quantized value of p̂

eq = p− p̂. (4.18)

The error cannot be larger than the quantization interval. In most cases, a linear quan-
tization is selected with interval width ∆. If it is rounded to the nearest quantization,
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the error is always between

−∆

2
< eq ≤

∆

2
. (4.19)

The quantization error will occupy us later, when the entire measurement system
is presented. The maximum quantization error indicates how small be the power
consumption between the individual appliances may be to differentiate them.

4.4 Measurement System

For the development of a disaggregation solution and the later statistical verification
of the system it is necessary to have multitude of measurements. In the literature a
value of over 1000 events is listed (Bishop, 2006). In this section an overview of current
available data sets is given. The usage in that work is discussed. After that the problem
statement for the development of an own measurement system is presented. At last
the development and verification of this is described.

4.4.1 Existing Databases

As already described, a system for the disaggregation should be developed, which
should be implemented in a smart meter system later. For the development of the
algorithms it can be possible to use data from a smart meter. Researchers however
argue that most of the commercially available meters show a variation of 10% to 20%
in data measurements (Zeifman and Roth, 2011). Additionally current smart meter
have a limited hardware. Whereby a too low sampling rate is achieved. Therefore,
for the development of a disaggregation system other data must be used. For this
reason, several research groups have created their individual databases with an own
measurement system.

In the previously described method (cf. chapter 3) it is usually not discussed in detail
the data-set. But for a comparison of the different methods this is necessary. Some
newer approaches from research groups already show data-sets with a good documen-
tation. They provide them for a global development of disaggregation solutions.

Kolter and Johnsen presented a database called Reference Energy Disaggregation Data
Set (REDD) in 2011 (Kolter and Johnson, 2011). They have measured different houses
in USA. They differ based on the sampling rate between three types of data-sets.
The raw data was sampled with fs = 15 kHz. Therefor the voltage and current are
measured. This high sampling rate allows a higher-frequency analysis of signals. But
it also leads to a very high amount of data. For this reason only a small part of this is
freely available. The second data-set is down-sampled from the raw data and for the
voltage an ideal signal is assumed. The third data-set includes the power signals of 10
homes over 119 days. These data are sampled with fs = 1Hz.

In 2012, a further data-set was presented by Anderson et al. It is called BLUED
(Anderson and Berges, 2012; Anderson et al., 2012). They have measured a household
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with 24 individual circuits. So it is possible to compare the results with the individual
power consumption of the appliances. It should be stated here that a lot of manual
tuning effort was needed to generate the BLUED database. However, this database
has some limitations because it has been shown that there exist variations between the
time stamps in the documentation and the real switching events in the measurements.
These variations make an analysis of the developed algorithms very difficult.

In 2013, a data-set was presented from Makonin for Canadian households (Makonin
et al., 2013). The data were measured for one year and includes 11 measurements for 21
sub-meters. The measurements were measured with an interval of 1min. This is very
low for the development of disaggregation algorithms. Because of the low sampling
rate, the transient will no longer show up correctly. This database can be used later if
the power of appliances has to be calculated.

For a later work these data-sets can be used to compare the developed algorithms.
Also the data can be used to compare the own measurements.

4.4.2 Problem Statement

At the beginning of this work measured data were not sufficiently available. Therefore,
the development of an own measurement system was decided. This has also the ad-
vantage that the measurements can be carried out individually. By developing an own
platform, it is possible to measure individual appliances. For this reason we describe a
way of generating measurements with minimal manual tuning and data matching but
with best possible match of the timestamps. The measurement system should achieve
the following requirements

1. Development of a measurement system which can measures three and one-phase
appliances. In residential buildings the most appliances have one phase. But
some appliances like motors have three phases. It should be possible to measure
both.

2. Measuring voltages with an effective value of 230V.

3. Measuring of currents with a maximum effective value of 63A. For the most
residential buildings in Germany is this the nominal value at the entry point.

4. Measuring of appliances with a power consumption of 5W. From chapter 3 we
know approaches which deal with the disaggregation of appliances with a high
power consumption. In this work, an approach should be presented which can
also detect appliances with smaller power consumption. Small-scale appliances
less than 5W should not be disaggregated because their influence to save energy
is negligible.

5. Optimum flexibility in measurement. It should be measured in control cabinets.
Therefore, the wiring effort must be kept as small as possible.

In order to ensure greater flexibility, two systems have been developed. One is a single-
phase measurement box. This was developed to quickly measure individual appliances.
The second measurement box was designed for three-phase measurement. It is included
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into a test bench. In the next section the test bench system with the hardware are
presented. The measurement boxes are analyzed.

4.4.3 3-Phase Measurement System

The idea of the test bench system is to measure the energy consumption of appliances
while recording their switching cycles. It consists of a measurement box (MB) used
to measure voltage and current, a switching/detection box (SDB) used to control
appliances and the storage of the measurement with a data acquisition card (DAC)
and a PC. The block diagram is shown in Fig. 4.5. The components are described
later. The system can be used in two scenarios:

DAC / PC

Switching/Detection 

Box (SDB)

Measurement      

Box (MB)

Ap. 1 Ap. 10

L1 NL3L2

Figure 4.5 – Three phase test bench system. It is possible to simulate scenarios in the
laboratory. It is also possible to record real measurements in residential
buildings.

Simulation of Measurements With the system it is possible to simulate the
switching events of appliances. Here the SDB toggles the appliances in predefined
sequences. The measurement box continuously measures voltage and current. The
measurements and the sequence are recorded to the PC. This scenario is intended for
the laboratory because it allows for quickly generating a big data-set within a relatively
short amount of time.

Real-World Measurements This scenario is intended in residential buildings. Here
the appliances of the house have to be connected to the SDB. With internal sensors
the SDB will detect whenever the owner uses a connected appliance and store this
information on the PC. These real-world measurements depend on the behavior of the
consumers in the household and are much more realistic than a simulated one.

4.4.3.1 Measurement Boxes

For a higher flexibility of the hardware, at the beginning of the work, two measurement
boxes were developed (Benyoucef et al., 2010b,c). These boxes transform the grid
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signals to measurable values for the DAC. Based on the act of requirement 1, that
one- or three-phases must be measured, they should measures voltages and currents
on one phase or up to three phases (L1, L2, L3) and the current of the neutral wire (N)
of a residential building. From these signals it is possible to compute the secondary
signals (e.g. P , Q, or S) for the disaggregation (Najmeddine et al., 2008). The safely
measurable peak values are 325 V (against N) for the voltage and 89 A for the current3

defined in requirements 2 and 3.

The voltage is measured via a resistive voltage divider and a galvanic decoupling net-
work to protect the measurement system from voltage peaks. The current is measured
with current transducers. This has the advantage that the installation of the residen-
tial buildings does not have to be changed for the measurements. So requirement 5 is
fulfilled. The block diagram of the measurement box for one phase is shown in Fig.
4.6.

L1 N

V

V

Measurement System

u(t)

i(t)

Figure 4.6 – Measurement principle of the measurement boxes for one phase.

To prevent aliasing both boxes have low-pass filters inside. For a higher flexibility of
the measurements we have defined two different cut-off frequencies for the low-pass
filters. The choice of box depends on the required sampling rate and the available
storage space (memory). The parameters of the boxes are as follows:

t 3-Phase Measurement Box 1

v voltage gain Gv = 0.015 V/V

v voltage cut-off frequency fc = 800 Hz

v current gain Gi = 0.26 V/A

v current cut-off frequency fc = 1.3 kHz

t 3-Phase Measurement Box 2

v voltage gain Gv = 0.025 V/V

v voltage cut-off frequency fc = 4 kHz

v current gain Gi = 0.15 V/A

3This corresponds to the effective values U = 230V and I = 63A which is suitable for most European
households.
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v current cut-off frequency fc = 4 kHz

We defined that the measurement system should detect appliances with an energy
consumption greater than 5W (requirement 4) which means that most appliances in
the household can be measured. For this reason it is sufficient to detect current changes
of 21.7mA.

The signals are measured with the DAC4 with a resolution of 16 Bit. In the best case,
this results in a resolution of 63 A

216
= 0.961 mA corresponding to 0.961mA · 230V =

0.22W. So the maximum quantization error (cf. eq. (4.19)) is less than 0.11W. Also
appliances with an energy consumption below 0.22W cannot be detected with this
system. A second limit of the resolution is the current transducers. They have a lower
limit in the area of some Milliamps.

Altogether the concept of the measurement boxes and the whole test bench meet the
requirements 1-5. A photo of the two boxes are shown in Fig. 4.7. It follows the
analyze of the transfer characteristic of the hardware.

(a) 3-Phase measurement box 1 (b) 3-Phase measurement box 2

Figure 4.7 – Three phase measurement boxes. The signals u(t) and i(t) are conditioned
for the AD-conversion. It is possible to measure the signals from all three
phases.

The transfer characteristic of the measurement boxes consists of linear distortions
modeled by the amplification G and the phase shift ϕ. The phase shift must be sub-
tracted if the harmonics are analyzed. We assume that additional noise is superposing
the signal. This noise comes from the thermal noise of the electronic components or
the coupling of external disturbances. The noise of a system is modeled by the signal-
noise-ratio SNR. Additionally there are nonlinear distortions which are parameterized
by the distortion factor k. For the later verification of the algorithms it is necessary to
know these characteristics of the boxes. With that knowledge it is possible to reduce
the errors in the detection and classification algorithms.

For the analyze of the boxes the input and output signal should be know. The mea-
surement procedure of the signals is shown in Fig. 4.8. For the evaluation of each
parameter a defined signal s(t) was applied to the input of the system. By measuring

4NI6361
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the output signal y(t), the parameter could be determined. As input signal, a sinu-
soidal signal is selected with different frequencies and amplitudes. The parameters are
analyzed in the following.

Measurement 

Box
s(t) y(t)

IN OUT

Figure 4.8 – Analyzing the measurement system. With the pre-defined input signal
s(t) and the measured output signal y(t) the transfer characteristic of the
measurement box can be determined.

Magnitude and Phase The first linear distortion is the frequency dependent gain.
It influences the output of the box Y (f)5 by the multiplication of the input signal
P (f) (voltage or current) and the gain G(f)

Y (f) = G(f) · P (f). (4.20)

The second linear distortion is the phase shift ϕ of the input signal.

Y (f) = P (f) · ejϕ(f) (4.21)

The magnitudes of the phase were measured for the two boxes. The difference between
the channels of the phases L1, L2 and L3 comes from the tolerance of the electronic
components, which are used in the measuring box. As an example, Fig. 4.9 and 4.10
shows the Bode diagram of the first box for the voltage and current channels. The
maximum of the voltage gain is approximately GdB = −36 dB (G = 0.01585 V/V). The
difference to the originally intended value of G = 0.015 V/V comes from the tolerances
of the electronic components. The cut-off frequency is approximately at fc = 790 Hz.
For the current channels, the gain is GdB = −11.4 dB (G = 0.269 A/V). The difference
to the originally intended value of G = 0.26 A/V comes also from the tolerances of the
electronic components. The cut-off frequency is approximately at fc = 1.3 kHz (at a
gain of −14,4 dB). The high-pass characteristic of the current channels comes from the
behavior of the current transducers. It can be neglected because the cut-off frequency
is lower as the frequency of the fundamental wave of 50 Hz.

As a second example Fig. 4.11 and 4.12 shows the Bode diagram of the second box’s
for the voltage and current channels. The differences to the calculated values are
the same as for the first box. The voltage gain of the second box is approximately
GdB = −32 dB (G = 0.0251 V/V). The current gain of the second box is approximately
GdB = −16,7 dB (G = 0.146 A/V). Both channels have their cut-off frequency at
4 kHz.

5Signal in frequency domain.
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Figure 4.9 – Bode diagram of the voltage channels of the 1st measurement box
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Figure 4.10 – Bode diagram of the current channels of the 1st measurement box.

Additionally for all channels the phase shift is presented. Because in this work only
integrated signals are used for the disaggregation the phase shift can be neglected. But
for further work using the fundamental signals it must be considered. So judging from
the linear distortions both boxes are within their desired tolerance range of ±10 %.
This value depends from the electronic components which are used.
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Figure 4.11 – Bode diagram of the voltage channels of the 2nd measurement box.
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Figure 4.12 – Bode diagram of the current channels of the 2nd measurement box.

Nonlinear Distortion For a further work the fundamental signal u(t) and i(t) can
be used for the disaggregation. Some approaches use the harmonics for the disaggre-
gation. Nonlinearities in the electronics may cause distortions to those harmonics so
it is important to know the behavior of the measurement boxes. A characterization of
the harmonic distortion can be done with the distortion factor k

k =

√
h2

2 + h2
3 + ...+ h2

n

h2
1 + h2

2 + h2
3 + ...+ h2

n

(4.22)
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where hx are the root mean square values of the harmonics. h1 is the rms-value of the
fundamental wave. The analysis of the boxes shows that the nonlinear distortion for
the voltage channels is under 0.01 %. The distortion factor for the current channels
is below 0.001 %. So they have no significant influence on the analysis of the higher
harmonics of the input signals and can be neglected.

SNR The measurements have shown that the noise of the signal is white. For this
reason the power of noise can be calculated as the integral of the power spectral density
PN (f) over the same bandwidth B.

The SNR for the boxes are calculated with eq. (4.16). The bandwidth were approxi-
mately the frequency range between the 20Hz and the cut off frequency of the boxes.
The SNR are shown in Table 4.1. It can be seen that the current channels have a better
SNR than the voltage channels. This comes from the different electronic components.
For the desired measurements the SNR values are sufficient.

Box Channels SNR
1 v(t) > 15 dB
1 i(t) > 31 dB
2 v(t) > 15 dB
2 i(t) > 33 dB

Table 4.1 – SNR of the two boxes

So all in all the analyze of the boxes have shown that these have no significant influence
to the measurement. They can be used to measure the signals of the appliances and
to create an own data-set for the development of the disaggregation algorithms.

4.4.3.2 Switching and Detection Box

The switching and detection box (SDB) is a fundamental part of the test bench system.
The SDB has two main functions:

1. In the laboratory environment it can generate switching events for connected
appliances. This means that it is possible to measure voltage and current while
keeping track of the operational states of the appliances.

2. If the measurement system is used to evaluate the algorithms in the households,
appliances are used by the inhabitants. In this case the SDB can detect the
switching cycles with internal current sensors.

Two SDBs were developed. The first one is shown in Fig. 4.13(a). It SDB has 10
standard outlets with 16A to connect up to 10 appliances. It is designed to draw
an input current of up to 63 A. The second SDB is shown in Fig. 4.13(b). It has 8
standard outlets and one three-phase also with an input current of up to 63 A. To this
SDB 9 appliances can be connected. To have a better flexibility by the measurements
in the laboratory both boxes can be supplied with 63A, 32A or 16A. For this different
adapters were developed.
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(a) Switching and detection box 1,
consist of 10 standard outlets.

(b) Switching and detection box 2,
consist of 8 standard outlets and a
three phase outlet.

Figure 4.13 – Switching and detection boxes.

4.4.4 One-Phase Measurement System

In the previous section, the test bench was presented. With that different scenar-
ios can be measured. This test bench includes two three-phase boxes which can be
connected directly to the entry point. However, since quick measurements should be
carried out on individual appliances a further box was developed. This can be con-
nected directly between an individual appliance and the power outlet. With this box,
single-phase measurements can be performed on individual appliances. The electronics
corresponds to the 3-phase measurement box 1. For this reason, in this thesis should
not be discussed on the investigation of the behavior. Fig. 4.14 shows the one-phase
measurement box. The conditioned signals analogous are converter with the DAC.

4.4.5 Validation of the Measurements

In section 4.4.3.1 the system parameters of the measurement boxes were analyzed. For
the calculation of the individual parameters, the input signal must be known. For this,
a sine wave with amplitude of 2 values was used. In the laboratory, only a sine wave
with 1A could be generated. This corresponds to a simulation of a consumer with
about 230W. However, in households, appliances with higher consumption are used
(cf. tab. 4.3). For this reason the MS has been validated with reference measurements
of a power meter. As a power meter, a device made by Fluke6 was used.

The Fluke measures the signals voltage and current directly and calculates the power
signals P , Q and S and the harmonics of the current calculate. The calculated values

6Fluke 1760 Three-Phase Power Quality Analyzer
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Figure 4.14 – One Phase measurement box. The box can be plugged directly between
the appliance and the power outlet.

are stored in an internal memory. Depending on the sample rate, it can record data
from 1 hour-1 month.

At the beginning of the measurement reference measurements were performed for the
validation of the Measurement System (MS). Therfor in the Fluke was connected
in parallel with the MS. Fig. 4.15 shows an example of a real measurement. The
active power P is presented in the first row. Two appliances (with a great and a small
energy consumption) were switched on and off. It is shown, that the Fluke and the
MS measures similar values. The second row it was zoomed in. It is shown that the
Fluke integrates over a greater period. The result is that fast changes are no longer
displayed
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Figure 4.15 – Example of a measurement with the Fluke and the own developed mea-
surement system.

Similarly, the power signals Q and S were evaluated. They have a similar behavior.
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The validation of the MS with the Fluke power meter shows that the MS can measures
also power consumption of greater appliances. After the validation of the MS, the
measurements described below were performed.

4.5 Measurements

In the previous section the development of an own measurement system was described.
With this system it is possible to perform own measurements on different appliances
for the development of disaggregation algorithms. This database should be as repre-
sentative as possible to cover the appliances in residential buildings. At the same time,
a corresponding variety of similar appliances should be present. This is to investigate
whether there are variations between the different appliances of a class. The database
will serve as a reference database for the comparison of old and new algorithms. At the
beginning separation of appliances into different classes has been performed. Depend-
ing on which class an appliances can be classified, can later draw conclusions about its
switching cycles.

4.5.1 Appliances in Residential Buildings

Different measurements of individual appliances were done. The appliances can divided
into different groups of their behavior.

1. Classification of appliances according to their switching states.
Depending on the complexity of the appliances, these can be divided into groups
of their switching states. Simple resistive loads (lamps, toaster, water heater ...)
have two switching states. This can be easier detected, as automates. These
groups can be divided even further. E.g. the automates can be divided into a
group of autonomous setup (dishwasher, washing machine) and a group manual
setup (TV, radio). Table 4.2 shows the appliances in the household, divided into
groups of the switching behavior.

2. Classification of appliances according to their power consumption.
As described in chapter 3.1.1 many approaches describes the detection of major
appliances. Accordingly, for future approaches it makes also sense to divide
the appliances into groups of their power consumption. Tab. 4.3 shows the
classification of the appliances into their power consumption in the residential
building.

3. Classification of appliances according to their local position.
Appliances can be divided into groups of their local position in the house. By
secondary information probabilities can be established whether an appliance is
currently switched on or not. E.g. it is very likely if the light was turned on in
the evening in the living room, then the TV is turned on.

4. Classification of appliances according to their day use.
A further classification of appliances can be made according to their daily use.
In this case also a secondary information probabilities can be established. E.g.
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it is more likely that the bathroom light in the morning is switched on, as in the
basement.

Typ Manual Autonomous
1. on-off appliances,
2 states

lamps, toaster, water heater, PC-
monitor

refrigerator, freezer,
water pump

2. on-off appliances,
3 states

hairdryer, toaster with additional
funtion

electrical oven (more
states)

3. automates laundry dryer, vacuum cleaner,
mixer, oven, burner, washing
machine, dishwasher, microwave
oven, VCR, TV, coffee machine

boiler with several
heating levels, air
conditioner

Table 4.2 – Overview of the important appliances in residential buildings, divided into
the type and the switching behavior.

Power Consumption
(relatively costs)

Appliances

15.8% refrigerator, freezers, air conditioner
12.2% PC, communication electronic
11.5% water heater, boiler
11.1% light lamps
11.1% TV, radio, Hi-Fi
10.1% Drying
8.4% cocking
5.4% dishwasher
5.1% washing machine
9.3% others

Table 4.3 – Overview of the important appliances in residential buildings, divided into
the type of their power consumption (NRW, 2006).

4.5.2 Own Measurements

Appliances should be disaggregated directly from the signal. The use of secondary
information is not part of this work. For this reason the classification of appliances
according to points 1 and 2 is investigated. For future work statistical information
can be used to improve the monitoring system. For that the classification based on
the point 3 and 4 can be used. Currently in the database there are measurements of
individual appliances and pattern measurements.

4.5.2.1 One-Phase Measurements Stand Alone

In the presented databases (cf. chapter 4.4.1) are mostly only available measure-
ments of total households. Individual measurements of individual appliances are only
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few available. For this reason, the power consumption of individual appliances were
recorded at the beginning of the measurements. Overall 400 measurements of indi-
vidual appliances in 15 households were done. Same appliances differ for example in
their size, manufacturer or date of manufacture. The appliances were measured with
the measurement box described in chap 4.4.4. Based on the classification of Tab. 4.2
different scenarios were measured. For appliances of type 1 multiple switching cycles
were switched manually. The same way was done with appliances of type 2. For com-
plex appliances (automates) of the type 3 several functions have been run. E.g. for the
washing machine different stages of the washing programme. A listing of all measured
appliances is given in the appendix A.2. These measurement were used to analyze
the behavior of the appliances and their variance between the individual classes. The
analyze is presented in the following section 4.6.

4.5.2.2 One-Phase Measurements Simulation

A first set of measurements was collected for the verification of an event detection
algorithm under laboratory conditions. The sequence files to switch the appliances
on and off consist of a random sequence (uniformly distributed). The sequence were
generated with switching times greater than 0.2 s (this is the time delay between PC,
DAC and the SDB). Since the measurements should be used for the development of the
event detector, appliances from different classes (cf. Tab. 4.3) are used. The appliances
were a water heater (with apparent power of S = 953 VA), a freezer (50 VA), a hand
held mixer (75 VA), a hair-dryer (360 VA), a mixer (36 VA), an incandescent lamp
(40 VA), a heater oven (1022 VA), an energy saving lamp (15 VA), a second hair dryer
(599 VA) and a radio (3.8 VA).

Overall 10,000 switching events with the different appliances were measured. In chapter
5 and 6 these measurements are used to develop the event detection and classification
algorithms.

The measurements were done in the laboratory. In the following some pictures of the
measurement systems work are shown in fig 4.16.

(a) The whole system with different appli-
ances.

(b) Pc, ADC, measurement box 1 and switch-
ing detection box.

Figure 4.16 – Pictures of a performed measurement in the laboratory.
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4.5.2.3 Measurements in Residential Buildings

During the period of the thesis measurements were performed in two households. The
measurements were performed directly at the entry point of the households for all
three phases. These are households with 5 respectively 4 persons. A total of 50 days
were recorded. The measurements were performed for a first classification method
(cf. chapter 6.3). This data is used to compare different methods for the disaggrega-
tion. Images of the measurement setup as well as some signal curves are listed in the
appendix A.3.

4.6 Analysis of the Appliance Signals

For the later disaggregation it is to be examined, which features can be used for the
classification. Based on the findings of chapter 3 and the analyze of own laboratory
measurements different features were examined. With the analyzed data and the
extracted features the disaggregation algorithms can be developed. In the following
the features which have been investigated in this work are described.

t Transient Response. The switching on moment of the power Signals P, Q and S
should be investigated whether these signals can be used as a feature to classify
the appliances.

t P, Q and S. If appliances have the same instantaneous power it can be possible
to use the active or reactive power to distinguish between these appliances.

t Steady State Behavior. In Tab. 4.2 different groups of appliances were defined.
The complex automates should be analyzed whether it is possible to classify
them using the power signals.

t Harmonics. The harmonics of the current signal can be used for the classification
of the appliances. In this work only the integral signals P, Q and S are used for
the disaggregation. So the harmonics of the current were not analyzed in detail.
A short overview of the principle the harmonics is in the appendix A.4.

4.6.1 Transient Response

Each appliance takes some time until it has reached the steady state after switching on.
In State of Art (cf. chapter 3) it was described, that the time of transient response is
between 20ms-3 s. This time depends on the physical structure of the appliance. Easy
on-off appliances of the first type are faster at steady state as complex automates. This
is due to that the automates usually need to be initialized before operation. They also
require more time to load the internal energy stores. Here is to be investigated how
the transient response, based on the power signals, can be used for the classification.

It should be investigated whether a generalization of the transient response of a par-
ticular type of appliances exists. For this purpose the measurements from chapter
4.5.2.1 were evaluated at the beginning of the work. In the following some examples
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are discussed. Fig. 4.17 shows the transient response of 4 different types of appliances.
After 0.5 s the appliances were switched on.

Fig. 4.17(a) shows the transient responses of several water heaters. These are among
the first type the on-off appliances. The water heaters reach the steady state after
1-2 samples. There is also no overshoot. The shape of the transient response of all
measured water heaters is identical. Only the power consumption varies.
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(a) Transient response of several water
heaters.
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(b) Transient response of several refrigerators.
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(c) Transient response of several microwaves.
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(d) Transient response of several lamps.

Figure 4.17 – Different transient responses of appliances.

In fig. 4.17(b) the transient response of several refrigerators are shown. These have a
distinctive transient. Which clearly differs from the water heater. At the beginning is
an overshoot of approximately 200ms. Then again comes a higher power consumption.
This is between approximately 0.8 s-2 s. Then all devices reach their steady state. This
behavior is typical for refrigeration and freezers. This is related to the internal structure
of the compressor. The individual refrigerators differ only in their power. The shape is
identically. It can be seen that the age of the appliances has no influence on the shape
of the transient response. The 20 years old refrigerator has a similar shape as the 2
year old one. Thus, the behavior can be well generalized. The maximum amplitude is
reached after 2 samples.

In Fig. 4.17(c) the transient responses of several microwaves is presented. The mi-
crowave is among the third type of appliances. The transient responses of the mi-
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4 Analyse of the Signals for NALM

crowaves have a significant overshoot. But in comparison to the refrigerator this is
very narrow. The maximum of the overshoot is reached after 2-3 samples.

The last type of appliances which is presented here are several lamps. The transient
response is shown in Fig. 4.17(d). It will be distinguish between light bulbs and
energy saving lamps. It is shown, that the light bulbs has a similar overshoot like the
microwave. The energy saving lamp has a longer time a higher consumption. This
comes from the internal power supply of the lamp.

The specification of the power consumption of the appliances is a nominal value. Here
the transient responses of four different types of appliances are shown. So it is not
possible to compare this value.

The transient response of other appliances is to be found in the appendix A.5. It
has been shown that the transient response can be used to distinguish between the
different types of appliances. It has been found that the transient response does not
vary upon the age of the appliances or from the manufacturer. Only the amplitude
values vary. The transient response based on the power signal can therefore be used
as feature for the classification (cf. chapter 6).

4.6.2 P, Q and S of the Appliances

Another possibility to classify appliances is using the three different power signals as
feature. Fig. 4.18 shows the active, reactive an apparent power of 4 appliances.

These appliance are in different groups (defined in Tab. 4.2). The water heater has
only an active part of power as shown in Fig. 4.18(a). It is an ohmic consumer and
has no reactive power. The power consumption of the light bulb is presented in Fig.
4.18(d). It shows that the light bulb has also only an active power. The microwave
Fig. 4.18(c) and the refrigerator 4.18(b) has also an reactive power part. Q is positive
so the appliances have an inductive behavior.

In Fig. 4.17 the transient responses of the same appliances were shown. It was shown,
that the microwave and the lamp have a similar overshoot. Now we see that it is
possible to distinguish between these two groups of appliances. If we have classify one
of these to appliance we can use Q to verify the results. If it is near zero it is a lamp.
But when it is unequal zero its more likely a microwave.

So the signal P, Q and S can be used for the classification. But for the event detector,
developed in chapter 5 it could be a problem because the part of Q is for some appliance
to small.

4.6.3 Steady State Behavior of Automates

In Tab. 4.2 the appliances were divided into their switching states. There are on-off
appliances, which may be switched manually or autonomously. In general, these have
only two switching states. With the features previously described these types can be
distinguish from each other. Fig. 4.19 shows the on-off cycles of a refrigerator and
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(a) P, Q and S of a water heater. P and S are
dominant. Q has no influence.
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(b) P, Q and S of a refrigerator. This appli-
ance has all three power parts.
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(c) P, Q and S of a microwave. This appliance
has all three power parts.

0 0.5 1 1.5 2
-40

-20

0

20

40

60

80

100

120

140

time [sec]

S
 [V

A
]

 

 

P
Q
S

(d) P, Q and S of a lamp. P and S are domi-
nant. Q has no influence.

Figure 4.18 – Active (P), reactive (Q) and apparent power (S) of different appliances.

a lamp. The refrigerator was switched automatically whereas the lamp was switched
manually.

0 10 20
0

500

1000

1500

2000

time [min]

S
 [V

A
]

0 10 20 30 40
0

50

100

time [sec]

S
 [V

A
]

Figure 4.19 – Example of switching cycles from on-off appliances. On the left side the
power consumption of an automatically switched refrigerator is shown.
On the right side the power consumption of a manually switched lamp
is shown.
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4 Analyse of the Signals for NALM

Automates are not so easy to classify, because they have a complex internal structure.
These consist internally again of simple on-off appliances. For example a washing
machine consists of a motor, a heater element and the internal control electronic. Fig.
4.20 shows an operational procedure of a washing machine. Overall the machine works
for 95min. At the beginning after 5min the heating phase is shown. The other cycles
comes from the motor. Based on the previous described feature, the classifier would
detect more different appliances.
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Figure 4.20 – Cycle-operating of a washing machine. It can be modeled as a combina-
tion of a water-heater, motor and control electronic.

Another example of an automate is shown in Fig. 4.21. It shows the power consump-
tion of a dish washer. The working cycle is 80min. Several heating phases are shown.
Similar to the washing machine, the classifier would detect different appliances.
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Figure 4.21 – Cycle-operating of a dishwasher. It can be modeled as a combination of
a water-heater, motor and control electronic.

This work deals with the detection of events in the load profile. Also appliances should
be classified in a broad load profile. The classification of automates will not be covered.
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To classify these, models must be developed. For their development, the recorded and
here presented measurements can be used.

4.7 Filtering of the Signals

From the analyze of the measurement system and pre-measurements we know that
the measured signal is superimposed from different distortions (cf. chapter 5.2). At
this point, a filter was used, which should pre-filters the signals. Especially the short
distortions (peaks) from the grid should be reduced. This can later lead to undesirable
errors in the disaggregation.

One way of noise reduction can be achieved by low-pass filtering. High-frequency com-
ponents are cut above the cutoff frequency fc. A low-pass filter is a linear filter. This
leads also that frequency components of the original signal can be filtered out. This
results in a smoothing of the switching on events of the appliances. Thus, the signifi-
cant switching on events, which are used for the event detection and the classification,
would be falsified. Therefore, a nonlinear filter was chosen for further work. This
should be filtering the peaks from noise, but let the switching on event unchanged.

By averaging the signal it is possible to filter them. In statistics, different mean values
for the distribution of a signal exist. These are

t Arithmetic Mean, is a mean value calculated from the quotient of the sum of all
measured values and the number of them.

t Mode, is by an empirical frequency distribution the most common value,

t Median, is a mean for distributions in statistics. It is the value which stays in
the middle of the measured values when they are sorted by their size.

The arithmetic mean is linear and for the pre-defined requirements does not used. The
mode is the expression with the highest probability for a discrete random variable.
Since only a few values are available for filtering (milliseconds between each event),
the mode is not suitable here. The median is not linear. It is robust against outliers
in the signal and is among others in the image processing as median filter to sort gray
values in signals. The median filter is to be used here to filter the signal.

The filtered signal P ′(n) is calculated from the power signal P (n) to

P ′(n) = median {P (n, n+ 1, ..., n+ (m− 1))} = ñ (4.23)

where m is the number of values over which the signal is filtered. For different m, ñ
becomes

ñ =

{
nm/2+nm/2+1

2 , if m even

nm+1/2, if m odd
(4.24)

By an increase of m, the signal will be filtered more. Fig. 4.22 shows a simulation of
the median filter with different values of m. In the first row the input signal is shown.
It is a peak at sample 3. In the second row the output of the median filter is shown.
In the first column the median filter with m = 1 is shown. There is no change in the
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signal. In the second column the median filter with m = 2 is shown. The value of the
peaks is no halved but over two samples. In the last two column the outputs of the
median for m = 3 and m = 4 are shown. The peak is completely filtered now.
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Figure 4.22 – Simulation of a median filter. The first row presents the input signal. In
the second row the median filter outputs are shown.

What is the influence of the median filter for real changes in the signal like a switching
on event? To answer this question a second simulation was done. In Fig. 4.23 the
behavior of the median filter with different m of a step was analyzed. It is shown that
the median filter with an odd value for m has no influence to the step. The median
filters with an even value like m = 2 or m = 4 are change the input signal. The first
value of the step is halved. From the first simulation we know, that the value of m
must be greater than m = 2 to reduce faults from peaks with one sample. If a median
filter is used with an even value of m the gradient of the switching on event is changed.
From these reasons the optimal value of m based on the simulation is m = 3;
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Figure 4.23 – Simulation of a median filter. The first row presents the input signal. In
the second row the median filter outputs are shown.

The median filter was implemented and the measured signals from 4.5 were filtered.
An example is shown in Figure 4.24. Here, a power signal from a real measurement
was filtered with median filter with different values m = 1,2,3,4. It is shown, that the
peak from noise at 105 s is decreasing but the events from the appliances (e.g. at 190 s
and 225 s) are not filtered.

The median value at point n is calculated from the values of n until n+m− 1. This
leads to a shift of the original signal by m/2. That means, the detected events are
shifted of m/2 from the point n. This offset (which in the median calculation used
here is minimal, because only small m are used) must be considered in the subsequent
calculation.
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Figure 4.24 – Filter characteristic of the median filter. Example of a real measurement
with a peak as distortion and different switching events of appliances.

4.8 Conclusion

This chapter discusses the first part of disaggregation chain. It deals with all parts of
the signal acquisition and the description of the signals used for the disaggregation.
The conditioning of the signals for the following event detection and classification is
also an essential part of this chapter.

This chapter describes the signals that can be used for the disaggregation. For this a
system model was developed. This shows the appliances in the load profile of residential
buildings. The household is part of the Smart Grid. NALM means, that the signals
are measured at a central point. In our case at the household entry point. From the
physical variables u(t) and i(t) further signals can be calculated. The derivation of
the power signals P, Q and S were described. A normalization of these signals has also
been described by the model. This was necessary to eliminate the influence of the grid
resistance.

Disturbances which occur due to the measurement were described. Firstly, the influ-
ence of noise has been described on the measurements. By the measurement, white
noise is superimposed additively. Another influencing factor is the digitization of ana-
log continuous-time signal. At the AD conversion quantization errors occur. Both
factors determine the minimum resolution at which appliances can still be detected.
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Since the beginning of the work were no measurements available. For this reason own
measurements were performed. These measurements are later used for the development
and statistical evaluation of disaggregation algorithms. I have defined requirements,
which should fulfill the measurement system. Based on these requirements, the mea-
surement system has been developed. It was followed by the statistical analysis of
measurement systems.

Following the development of the measurement system own data were recorded. For
this purpose, several individual appliances in residential buildings were measured. Also
pattern measurements were simulated. With the measurements the behavior of the
individual appliances in the load profile were analyzed. Different criteria (such as
transient, harmonic, ...) were analyzed. Also could be detected by the plurality of
appliances, whether they did not differ by manufacturer.

At the end of the chapter a filter has been presented. With that the output signals
were pre-filtered. This filter should minimize peaks, which are caused by distortions
in the grid. But the waveform should not be distorted. For filtering the signal, a
median filter was used. The filter was adjusted to the signal. The ideal filter length
was determined. The filter was simulated and verified by real measurements.

The measurements in the database are from residential buildings. However NALM can
also be useful in the industrial environment. For this purpose, additional appliances
must be measured which arise in the industry. Since the measuring system can measure
currents up to 63A further measurements can be performed up to this value.
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In this chapter, the event detection is described for the disaggregation as a prepro-
cessing for classification. An overview will be presented of current methods of event
detection in digital signal processing. Algorithms are then derived which can be used
for the event detection in NALM. The functionality of the algorithms is simulated.
At the end of the chapter the algorithms are tested for usability and the quality of
the detection rate is discussed. Therefor the results of the event detection for real
measurements are presented.

5.1 Introduction

Events are changes in the mean level of signal curves or time series. It will be dis-
tinguish between different kinds of events, continuous and abrupt. In the English
literature the detection of events in multidimensional signals is called Edge Detection.
Edge detection is found e.g. in image processing for the segmentation of elements. It
exist different mathematical methods to identify discontinuities in the image. Edge
Detection is also found in computer and machine vision. The detection of events in
one dimensional signal is called Step Detection (Sowa et al., 2005) (don’t confuse with
walk detection). The signals used in this work for the disaggregation have as parame-
ters only the time t. So they are one-dimensional. Therefore, we should speak of step
detection. But in the methods of NALM it has established the name Event Detection
(ED) (Najmeddine et al., 2008). So in this work we speak from Event Detection to
identify discontinuities in the measured signals for the disaggregation.

The Event Detection (ED) is necessary, because a real time system should be de-
veloped. In a real time system for NALM, the signals u(t) and i(t) are measured
continuously (cf. chapter 4). Therefore, the disaggregation must be performed online.
In the state of art, different methods for a continuously classification were presented.
For these events detection is not necessary. The event itself is a feature in the feature
space for classification. But, a continuously classification of the signals demands in
a higher calculation effort and the requirements to the hardware are increasing. The
result is, that the costs of the system will be increase and the acceptance of such a
system in the population will be decrease. In current smart meter systems it is not
possible to make a continuously classification. For these reasons, the disaggregation is
done offline for these methods which using only a classification. But in this work, the
use of disaggregation on current smart meter systems should be investigated. There-
fore, a pre-processing and a reduction in the measurement data have to be performed.
For this reason for a real time system it is necessary to recognize the switching events
continuously. Through the detections of the switching on events it is possible to classify
directly at the switching on point. As a result the calculation effort for the classification
is decreasing.

The event detection is a main part of the disaggregation system presented in this
work. After the measurement and conditioning the signals (cf. 4) the second main
block of the disaggregation-chain follows. The block is called Event Detector, consists
of the event detection algorithms and is shown in Fig. 5.1 as part of the whole system
(Benyoucef et al., 2011b). The input signals of the event detector are the time series of
the power signals (P, Q, S) described in chapter 4. This allows a temporal resolution

60



5.2 Problem Statement

of the signal from 20ms. The switching on- and off-cycles of appliances in the overall
load profile results in an abrupt change in the power signal. These changes must be
detected by the event detector. The output of the event detector provides the time-
stamps of the switching cycles to the following classifier. The classifier then leads on
to the detected point, the classification of the appliances.
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Entire 
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Figure 5.1 – Disaggregation system: the event detector.

An example of a real measurement is shown in Fig. 5.2. General in NALM it must be
distinguish between 2 kinds of events:

t switching on events, where the appliance is switched on. This event is important
for the classification of the appliance, and

t switching off events, where the appliance is switched off. The detection of the
switching off events is necessary for the tracking and the calculation of the power
consumption of the appliances. After a switching on event is detected and the
appliance is classified, the power is integrated over the time until the switching-
off event. Hence the consumed energy of the appliance is calculated. In a bill,
these calculated energy consumption can be shown the resident of the household.
This can be used to calculate the individual energy consumption of each appli-
ance. Analogous to the switching on events, it is possible to detect some error
events. Nevertheless, a switching off event is always a direct cut in the energy
consumption.

The tracking of the energy consumption is not part of this work. For this reason, it
will not be strongly distinguish between these two types of events for the derivation of
the algorithms. Where it is necessary to distinguish between the two types of events
it will be done explicit.

5.2 Problem Statement

As just described, there are various types of events. The signal can be superposed with
disturbances. This results in errors in event detection. The disturbances have different
physical properties. Firstly, they are created by noise, which are superimposed on the
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Switching ON Events

Switching OFF Events

Overshoot

Figure 5.2 – In NALM two kinds of events exist, switching-on and switching-off events.
The figure shows an example of a real measurement. In this case a water-
heater, a hair-dryer, a refrigerator and a radio were switched on.

signal in the measurement by the measuring system (cf. chapter 4). Another type
of interference caused by the different physical behavior of the electronic appliances.
Similarly, disturbances can be injected by the grid. In order to develop an event de-
tector, which is robust against disturbances, it is necessary to know them. By research
in the literature (Canny, 1986) and own preliminary investigations and measurements,
the following basic types of events with disturbances were identified. In Figure 5.3
these are represented graphically. They show

a) an idealized on/ off-event of an appliance. Here the steady state is reached after a
sample (fs = 50Hz), and no fault can be detected. In this scenario the ED should
recognize ideally only a switching on event (at t1) and a switching off event (at t2).

b) a ramp-like profile. However, the measurements and preliminary studies have
shown, that there are no devices that require more than 3 samples (similar to
60ms cf. chapter 4) to detect a significant increase in the power. Ramps with a
lower gradient occur in more complex appliances such automates like TV. A detec-
tion of switching as this is undesirable due to the later computational complexity
in classification. The gradient of the ramp may vary depending on the appliance.

c) an oscillatory disturbance that occurs through overshoots. After a switch-on event
an overshoot can cause. These can be detected by the ED as turn on or off multiple
appliances. The overshoots have a physical cause, the structure of the consumer.
E.g. it requires a time until the internal power storage of the power supplies of
the appliances are recharged. An overshoot does not occur for switching off events.
Because appliances are separated hard from the grid.
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5.2 Problem Statement

d) disturbances caused by peaks. Individual measurement values are detected as out-
liers. This is not to detect as switching-on or switching-off event should be specified
for the ED. By the measurements, it was found that such disturbances can be caused
by the grid. A possibly pre-filtering of the signal minimizes these problems. One
method, the median filer was described in the past chapter 4.7.

e) interference from noise. White noise is caused by the measurement (cf. chapter
4). Is the noise amplitude greater as the power amplitude of the appliance, the
switching events of the appliances are disappear in the noise.
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Figure 5.3 – Possible switching events with and without disturbances.

Based on those 5 types of possible states the following three assumptions are defined
for the development of an event detector:

1. Find the switching on and off events of appliances with a power consumption
between 5W and 3680W.

2. Detection of abrupt changes in the power signal. From the measurements we
know, that the appliances needs between one and three samples to reach their
maximum of energy. Slower gradients with ∆P < 5W should not be detected
as an event.

3. The two disturbances from Fig. 5.3d and 5.3e should be minimized.

t Case e, peaks from the grid are eliminated with the median filter (cf. chapter
4.7).
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t Distortions from noise (AWGN cf. 4.3.1) should be reduced by the event
detector.

5.3 Methods

The approaches of the event detection are divided in the literature (Basseville and
Nikiforov, 1993) into two groups. It will be distinguish between Online change detec-
tion methods and Offline change detection methods. When the data arrives and when
the event detection must be performed as, then online algorithms are usually used
(Basseville and Nikiforov, 1993). Then it becomes a special case of sequential analysis.
In the other case, offline algorithms are applied to the data potentially long after it
has been received. Most offline algorithms for step detection in digital data can be
categorized as top-down, bottom-up, sliding window, or global methods. The meth-
ods presented here are from the field of online change detection method. They were
selected for subsequent implementing to a real-time system. These methods have the
assumption that the measured signal is a random process. The methods come from
different areas of electrical engineering. During their research, many methods have
been found in the field of image processing. The applicability to the present prob-
lem is discussed here. Furthermore, methods are presented which are already used in
NALM systems.

„Nonintrusive Appliance Load Monitoring (NALM)“ Approach of George
W. Hart 1992 (Hart, 1992) As in the state of art 3.1.1 described, Hart works on
the disaggregation of appliances in the load profile of residential buildings. For the
event detection, he uses the power signals. He performs a normalization to the mains
voltage. The normalized power is transferred to the ED. It detects the time and the
amplitude value of the event. To calculate the power leap he waits some time until
the steady state is reached. This leads to peaks and overshoot occurring as noise are
not detected. The tolerance, in which the signal may oscillate in steady state is about
15W (or 15VAR). To minimize noise, he integrates the values at steady state. He uses
this mid value to perform a differentiation of the signal. These delta values it leads
to a classification function with threshold value. Depending on the set threshold, he
classified the calculated value as an event. The threshold value Hart places either on
the level of power consumption of the appliances to be discovered. In his algorithm
described for large appliances. The temporal resolution of the switching events is a
few seconds until to 15min.

This method can detect events well if the appliances have few states. It was designed for
appliances who have a relatively high energy consumption (greater 35W). A detailed
description of the procedure and the parameter set used could not be determined
because the detailed description of (Hart, 1985) at MIT was not present. Switching
times of less than 1 s are not detected by the small sample rate. This method provides
an easy way to detect events by differentiation of the signal. That is why it was picked
as the first method to be evaluated. The method was developed for a specific group
of appliances. Therein lies its weakness. In this thesis, appliances should also be
detected with low energy consumption. Therefore, this method needs to be optimized.
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However, significant improvements are still to be included. The improved algorithm is
described in 5.4.2.

„Using a Pattern Recognition Approach to Disaggregate the Total Elec-
tricity Consumption in a House into the Major End-Uses“ Approach of L.
Farinaccio and R. Zmeureanu (Farinaccio and Zmeureanu, 1999) The ap-
proach of Farinaccio and Zmeureanu based on two approaches. The first one is the
approach already presented by Hart (Hart, 1992). The second approach is the Heuris-
tic End-Use Load Profiler, developed by Quantum Consulting in California (Powers
et al., 1991). Like Hart, training data are first taken to obtain the signature of every
electrical appliance. They assume that no appliances at the same time run. They set
for each appliance a proprietary algorithm, whose goal is to identify certain charac-
teristics reproducibly again. They distinguish between the on-, run-up and off-events.
It is not directly performed an ED with subsequent classification of the appliance.
Further, the signal is continuously compared with the individual characteristic curves,
which corresponds to the principle of a correlation. If the consumption changes within
a year, some of the algorithms must therefore be adjusted again.

The method is based partly on the approach of Hart and thus has its strengths and
weaknesses. Because of the high threshold, it has a low error rate. At the same time
only appliances with large consumption can be detected. Even with a superposition of
multiple appliances no new cycles can be detected. This approach is not suitable due
to its many requirements for a practically oriented ED.

„Cumulative Sum Charts and Charting for Quality Improvement.“ Ap-
proach of Douglas M. Hawkins and David H. Owell (Hawkins and Olwell,
1998) The cumulative sum (CUSUM) examined changes in a sequential measure-
ment or data sequence. It is a method of analysis of the statistical process and quality
control. It has its origins in the prediction of stock prices. In 1998, Orwell and Hawkis
described this method. It is not just the pure cumulative sum of the data values, but
the cumulative sum of the differences between the data values x and the predefined
data values w. Formally, this means Sn = max(0,Sn−1 + xn − wn), n is the current
measured value. To see now whether it is a rising, falling or unchanged function, a
so-called V-mask is now drawn. Initially, two not very distant points from each other
are determined. This means in particular that set a point {n, Sn − h} first. From
this then a line with a certain slope k = 1

2∆ is drawn. Thereafter, the position of the
second predetermined point is determined. This is below the line, this indicates an
increasing change. For the descending change starting at the point {n, Sn + h} and
−k. This produces the eponymous V shape.

According to the investigations of (Hawkins and Olwell, 1998) this method is well
suited to detect monotonic inclines and declines. It is also robust against white noise.
Major drawback of this method is the detection of events or steep inclines. Similarly,
it is poorly suited for the detection of complicated signal patterns. This method is
more suitable to determine long-term changes in the signal. This approach violates
the second condition. It is not possible to detect abrupt changes in the signal. Hence
this method was not pursued due to its weaknesses.
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„A Computational Approach to Edge Detection,“ Approach of Canny 1986
(Canny, 1986): Another approach is the use of filters for the detection of events.
A basic example in this area is the approach of John Canny. In 1986, he established
three general sets of correct recognition, which are mainly used in image processing
today. They are as follows:

1. Good detection of an event. This is equivalent to maximizing the signal-to-noise
ratio.

2. Good localization. The points which are detected as an event should be close to
the center of the real event.

3. One event should be recognized only once to avoid errors.

According to Canny events and their location should be easily identified if you stick
to these principles. Also noise or shades (in pictures) should not be falsely detected
as information. In summary, Canny (Canny, 1986) rated his method good for the
detection of events in two-dimensional signals. It has a low error rate in terms of
not detected events. Due to these strengths, there is one widespread method of event
detection in image processing. His weaknesses are, according to (Canny, 1986) in
the noise sensitivity. This approach violates the third condition. It has a poor noise
cancellation. Another problem is the reliable detection of features that do not consist
of simple steps, examples are ramps, roofs or peaks. This approach is promising in
its fundamentals but contains some weaknesses. Later research groups took up this
approach and improved it.

„On Optimal Linear Filtering for Edge Detection“ Approach of Didier Demigny
(Demigny, 2002) The approach of Demigny is very similar to the approach of
Canny (Canny, 1986). His work is based on Canny’s three principles of good detec-
tion, good localization and detection of an event only once. The difference to Cannys
work is that he uses not a single but various stages function as the input pulses of
different widths d. Thus, the formulas presented by Canny are change. The next
point Demigny has an optimal filter defined. Instead, he has created a table with some
coefficients to help with the selection. But this is not discussed in detail.

The approach is strongly applied to those of Canny and thus also its advantages and
disadvantages. The selection of the pulse as a step function means that this method is
rather designed for 2-dimensional signals (in that case images). Since a filter based on
algorithm already been found by the method of Canny, this method was not pursued
further because of the weaknesses to condition 3.

„Optimal Edge-Based Shape Detection.„ Approach of Hankyu Moon, Rama
Chellappa and Azriel Rosenfeld; 2002 The group of Moon (Moon et al., 2002)
has been viewed several approaches and has come to the target that a differential cal-
culation should provide optimal results for the event detection with noise suppression.
For this purpose, they used the DODE function (Derivative Of the Double Exponen-
tial, also known as Laplace distribution). For the input function, a similar function of
Canny approach (Canny, 1986) was defined. To this, with the amplitude α for x ≥ 0 a
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noise term was also added. It was AWGN. Next, the addition, of the root mean square
of the difference between input and output signal, and the output noise response is
minimized. After the derivation of the spectral densities (Moon et al., 2002) this leads
to the Wiener filter. This is considered herein to optimal filter and used in the struc-
ture of the Canny approach (Canny, 1986). The transformation must be adapted to
each object to be recognized.

Since this approach is based on the principles of Canny it is also optimized for appli-
cations in image processing. Therefore, it aims more on 2-dimensional signals. The
major disadvantage of this algorithm is the necessary knowledge of the object to be
detected (Moon et al., 2002). Similarly, the threshold of the classification function
must be adjusted each time new. These a-priori information unusable this approach
to be developed here for the ED. This approach violates the first condition.

„Detecting and Localizing Edges Composed of Steps, Peaks and Roofs “
Approach of Perona and Malik 1990 (Perona and Malik, 1990): This ap-
proach is a further development of the previously proposed approach of Canny. Due to
shading or noise occurs in Cannys approach still mistakes. Similarly, all other functions
except stages poorly recognized. For these reasons, Perona and Malik have improved
Cannys approach in 1990. They have retained the principles, but they have, e.g. mak-
ing changes in the filter selection. The following results are presented briefly. They
are using a square filter structure and not a one filter structure. They also used two
different filters. A filter is responsible for the odd part of the input signal. This reacts
on stairs or rectangular functions. The other filter responds to the even part. These
are, for example, peaks or ramp functions. After several attempts, Perona and Malik
came to the realization that for the odd filter a twice derived Gaussian window, and
for the even filter the Hilbert transform of this should be used. This filter structures
have been included in the base formulas of Canny, with some minor changes. This
changes are described and discussed in detail in chapter 5.4.3.1.

Malik and Perona evaluate their approach as follows (Perona and Malik, 1990). To
strengthen the approach of Canny that events are well detected, added even more
benefits. The noise sensitivity decreases as compared to Canny. As a result, the
error rate decreases. This extended approach can detect ramps and also peaks. This
approach looks promising. Initial evaluations in the laboratory have shown that the
algorithm detects events well. This approach fulfills the predetermined assumptions
1-3. It is therefore promising for event detection. For these reasons, it is described and
analyzed in chapter 5.4.3.1 with other methods for their usability as an ED algorithm
for NALM.

STFT The methods shown previously, use for event detection the time series. An-
other possibility of the detection of events can be the analysis of the signal in the
frequency domain. The spectral properties of the signal can be calculated using the
Fourier transform (Kammeyer and Kroschel, 2012). Analyzing a time-varying signal
may be performed with an enlargement of the FT, the so called STFT. This method
can be used to detect changes in signals (Moukadem et al., 2013).
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The methods presented here are concerned with the detection of events in the signal
paths. The advantages and disadvantages of the method are briefly described here.
The method will be divided into 4 groups. The first group conducts research in the
area NALM. The first approach was developed by Hart and by other groups used such
as Farinaccio for event detection. The second approach used the CUSUM method. The
third group used some methods for event detection from the field of image processing.
Based on the approach of Canny other researchers work in this field. Perona, Malik,
Demingy and Moon have the method further improved and adapted to their questions.
The last group deals with the analyze of the signal in frequency domain. Therfor the
STFT can be used.

In the following three approaches are analyzed more in detail. They will be improved
for our problem, to detect events for the disaggregation. At first an improvement of
the approach of Hart will be developed. It based on a filter structure using high-pass
filter. The second approach used also a filter but a more complex one. It based on
the approach of Perona. The last method to approach events is based on the STFT,
to find frequency components for the detecting of events.

5.4 Event Detection Algorithm

In this section the derivation of the algorithms for the event detection is described.
First, an extended form of the Hart approach is described. This performs a differen-
tiation of the signal. The implementation into a filter structure is described. Then
the approach of Perona is derived. This uses also a filter structure for the detection
of events but with a more complex filter function. Finally, an approach is described
using the STFT for a time frequency analyze of the signals. The detection rates of the
three approaches are simulated with idealized signals. At the end, the quality criteria
of the algorithms are presented and discussed by using real measurements.

5.4.1 General Structure of the Event Detector

The structure of an event detector is in the most cases the same. It can be divided
into two blocks which consists of the decision function and the classification function.
As described in chapter 2.3 the decision function assigns each input to a correspond-
ing numerical value as output. The classification function then assigns the decision
function value to a class label. In our case it is a binary classification problem

t An event is detected or

t an event is not detected.

In figure 5.4 the block diagram of the processing chain is given. The input signals are
the conditioned output signals P, Q and S. For the decision function the three described
approaches are used. The classification function is a threshold decision maker. This
then places the decision function value for the three approaches the label event or no
event too. The output of the event detector is the trigger for the classifier.
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Figure 5.4 – Block diagram of the event detector as part of the disaggregation chain.

For the description of the algorithm the active power P is used. But it is also possible
to use the reactive or apparent power or a combination of them for the detection of
events. The best signal in sense of optimizing the detection rates will show in section
5.5.2.

5.4.2 High-Pass Filter for the Event Detection

Through the frequency analysis it is known that rapid changes in the signal contains
of high-frequency components. Slow changes have correspondingly low frequencies.
A high-pass filtering may thus emphasize abrupt changes in the signal and allow the
detection of event.

The first approaches of NALM use a differentiation of the signal for event detection.
This has been applied in several approaches and should be further analyzed here.

5.4.2.1 Approach of Hart

The first algorithm for NALM based on the approach of Hart (Hart, 1992). He used a
differentiation of the signal to detect events in the load profile. The algorithm presented
here calculates delta values of the signals power for the event detection. The values of
the differentiation are calculated for time continuous signals as

∆p(t) =
p(t)− p(t−∆t)

∆t
. (5.1)

∆p(t) is the current delta value of the power at time t. p(t) is the (aggregate) current
power consumption of the appliances. p(t−∆t) is the power value in the past where
∆t is a user-defined time period.

Other approaches wait with the differentiation of the signal until the appliance has
swing out (Hart, 1992). The steady state, can often take several seconds, as is known
from the preliminary studies. The approach presented here should be optimized so that
an event is detected immediately as possible. In the optimal case, ∆t should be chosen
as small as possible. Under the consideration of the possible waveforms from Fig. 5.3
only case b) is critical. A ramp where the gradient is small would not be recognized
properly. However, this case can be excluded from the preliminary studies described
above. All other cases would be detected by the sliding window as an event. For a
sampled signal the time of a continuous signal p(t) becomes p(n · Ts) with t = n · Ts.
Ts = 1

fs
is the period between two measured samples, fs is the sampling frequency.
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By normalizing Ts to the sampling frequency we get P (n) as the new sampled signal.
Under the assumption, that the time between the two measured values are minimized,
T becomes 1. Then eq. (5.1) becomes

∆P (n) = P (n)− P (n− 1). (5.2)

This equation was implemented by Hart. The main disadvantage of Hart’s approach
is, that disturbances which have a greater amplitude than ∆P (n) are also detected as
an event. So this approach has a poor noise cancellation. This approach is the base
for the following idea to use a high-pass filter for the event detection.

5.4.2.2 High-Pass Filters from Image Processing

The differentiation of the signal is similar like high-pass filtering. To reduce the faults
from noise, other high-pass (HP) filters with different structures should be analyzed. In
image processing it gives different operators to detect events in one or two dimensional
signals. Every filter consist of a kernel which is called mask. The outputs of these
filters are the convolution integral of the mask f and the input signal P (t). For a
better comparison of the different methods, the nomenclature of the ∆ is also used as
output of this filter. The output of the HP filter ∆PHP is calculated as

∆PHP (t) = (f ∗ P ) (t) =

∫
f(τ) · P (t− τ)dτ. (5.3)

At the beginning of the development the best known operators in the field of image
processing were investigated. Depending on the application, they can be applied to
one or two dimensional signals. In the following these processes are briefly described.

t The Sobel-Operator is a simple edge detection filter. It is frequently used in
image processing. It is used there as the convolution operator in the so-called
Sobel-Algorithm. This computes the first derivative of the pixel brightness values.
At the same time the filter smoothes orthogonal to the direction of derivation.
The algorithm uses a convolution by means of a 3x3 matrix (convolution matrix)
for generating a gradient signal from the original signal. This high frequencies
in the signal are shown as high output values. The areas of greatest intensity
are where the brightness of the original image has the most changes and thus
represents the largest edges. Therefore, after the convolution with the Sobel
operator is a threshold function applied.

t The Roberts-Operator is a simple edge detection algorithm of image processing. It
is one of the oldest operators. The operator was presented by Lawrence Roberts
(Roberts, 1963) in 1963. It calculates the difference between the lying crosswise
pixels. Therefore, this operator is also referred to as Roberts cross operator.
The output signal is to be calculated quickly and easily. However, the operator
is poorly suited for noisy images.
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t The Laplace-Filter is a filter for edge detection. It approximates the Laplacian
operator. This operator based on the second derivation.

All these operators differ in their filter cores. For the problem described here a linear
one-dimensional high-pass filter is searched. The first two operators are derived by
the so-called gradient method. The last one is based on the derivation of the Laplace-
operator. Except for the Laplace filter all approaches have been developed for two-
dimensional signals. Therefore for the one-dimensional signal own filter masks had to
be derived.

5.4.2.3 The Gradient Operators

In image processing two-dimensional filters are used to detect edges in images. For
the edge detection, the signal can be considered as a measured value function p(n,m).
Then edges are steep gradients in p. Thus the derivative of the function is the key for
edge detection. The gradient of a continuous, differentiable, two-dimensional function
p(n,m) is defined as:

∆p(n,m) =
∂

∂n
[p(n,m)] en +

∂

∂m
[p(n,m)] em (5.4)

n and m are the continuous space coordinate. en and em are the corresponding unit
vectors. We obtain a vector of magnitude and direction. This indicates the maximum
first derivative and its direction in the nm − Level. Based on this definition, we are
now looking for approximations. This should specify the derivation of the continuous
function p(n,m) by local differential developments of the corresponding stationary
discrete function. Here the measured values of the source signal are weighted within
a local window and then used for gradient formation. Dependent on the selected
operation the result is assigned to a certain measuring point of the local window. So
it is an operation that generates the results step by step using the measured values.

We first choose the smallest possible window size 2x2. This provides an easy way of
linking the measurement point. It is called the left-side differentiation.

∆n [p(n,m)] = p (n,m)− p(n− 1,m) (5.5)
∆m [p(n,m)] = p(n,m)− p(n,m− 1) (5.6)

The approximation of the derivative operator on a discrete signal leads to the differ-
ence operator. This neutralized constant signal parts and highlights measured value
differences. For the calculation of the gradient for a two-dimensional signal the two
results must be added together.

Up here the derivation of a gradient operator for a two-dimensional signal was observed.
Now the special case of a gradient for a one-dimensional signal is to be considered.
This simplifies eq. (5.4). For the derivation of the one-dimensional case in n-direction
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eq. (5.4) becomes

∆p(n) =
∂

∂n
[p(n)] en (5.7)

Eq. (5.7) should be used in the following to derive the first two operators. The
approximation of the derivative operator on the discrete-time signal is given by

∆n [p(n)] = p(n)− p(n− 1). (5.8)

The filter mask for this operator is

f =

(
1
−1

)
=
(
1 −1

)T
. (5.9)

This forms the smallest possible mask length. It is the easiest way of linking mea-
surements and is referred to as the left-side difference. Eq. (5.8) refers mainly to
the difference equation of Hart (cf. eq. 5.2) and thus also has its disadvantages. An
important is that the noise is not minimized. But there occurs still a further effect. By
the left-side difference, we see that the result includes the actual measurement value
p(n) and the last measured value p(n − 1). This is but then again assigned the time
value n, as a measured value in between does not exist. The gradient is thus shifted
to the measurement signal. In this case by n/2. This effect does not interfere at first,
but must be taken into account when determining the switching time of the event.

To avoid this effect it can be defined a differential operator, which includes a mask with
three values. These operators are called central differences. Let us consider directly
the one-dimensional case. The difference equation is

∆2n [p(n)] = p(n+ 1)− p(n− 1) (5.10)

The operator for this equation does not include the actual value of n. It includes,
in contrast to the first definition of each direction a distance from one measurement
value. The response of the operators ∆2n on an ideal event has also a width of two
values. The localization accuracy is therefore worse than by the two value mask. The
filter mask for this gradient operator has three values

f∆2n =

 1
0
−1

 =
(
1 0 −1

)T
. (5.11)

This one dimensional mask is alike to the two dimensional Sobel Mask. Moreover, the
mask size of 3 values improves the effect of reducing noise.

From the measurement it is known, that appliances need 1 until 3 samples to reach
the steady state. To handle this eq. (5.10) is extended over one value.

∆3n [p(n)] = p(n+ 1)− p(n− 2) (5.12)

We get a left side difference. Here the value from two times in the past and the next
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value from n are used to calculate the gradient. The mask from eq. (5.12) is

f∆3n =


1
0
0
−1

 =
(
1 0 0 −1

)T (5.13)

All operators discussed so far are based on differences of weighted averages. Subse-
quently, another definition for the derivation of a mask will be described.

5.4.2.4 Laplace-Operator

The operators described above are discrete local operators. These are defined on the
basis of the continuous gradient. Now a mask should be determined more in detail
based on the continuous Laplace operator. For a two dimensional signal it is defined
as

∇2p(n,m) =
∂2

∂n2
[p(n,m)] +

∂2

∂m2
[p(n,m)] . (5.14)

The operator is used in the so-called Laplacian filter, which is widely used in image
processing. The discrete Laplace operators react very strongly to corners, lines, line
ends and isolated points in the signal. Thus condition 2 would be achieved. How-
ever, this behavior can be unsatisfactory in a noisy signal which would be against the
assumption 3. We will see this in the simulations later.

Eq. (5.14) is defined for a two dimensional signal. For a time discrete one dimensional
signal the first derivative of eq. (5.14) is for two measured values

∆n1 = p(n)− p(n− 1) (5.15)
∆n2 = p(n+ 1)− p(n) (5.16)

where ∆n1 is the left-side difference and ∆n2 is the right-side difference of measured
point n. For the twice derivation, the two gradient values eq. (5.15) and eq. (5.16)
are differentiated again. The gradient at measured point n is now

∆2
n1 = ∆n2 −∆n1 = p(n+ 1)− p(n)− [p(n)− p(n− 1)]

∆2
n1 = p(n+ 1)− 2 · p(n) + p(n− 1) (5.17)

The mask for the discrete one-dimensional Laplace operator can be derived from eq.
(5.17). The mask is

fLap =

 1
−2
1

 =
(
1 −2 1

)T
. (5.18)

73



5 Event Detection and Detector

There are 3 HP filters were presented. The masks of the filters are shown in Fig. 5.5.
Two masks based on the gradient operator. f∆2n and f∆3n point-symmetric. The mask
based on the Laplacian Operator fLap is axis-symmetric. We will see later, that this
symmetrical relationship has an influence for the differentiation between a switching
on and off event.
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Figure 5.5 – Masks of the three high-pass filters. The masks f∆2n and f∆3n based on
the gradient operator. These are point-symmetric. The laplace mask fLap
based on the Laplace Operator. This mask is axis-symmetric.

5.4.2.5 Simulation of the High-Pass Filters

The masks previously defined based on gradient and Laplacian operators. As de-
scribed, these have a better noise reduction compared to the approach of Hart. In the
following simulations are carried out, which should analyze the theoretical foundations.
Based on the system characteristics the effect of superimposed noise on the detection
rate has been investigated for the individual masks.

The noise is AWG (cf. chap 4.3.1). The noise power of n is calculated as a function of
the standard deviation σ

ndB = 10 · log10

(
σ2

1W

)
. (5.19)

The noise power is given logarithmic. It refers to 1W. The simulations were done
with different noise powers. From eq. (5.19) σ can be derived.

σ =

√
10

ndB
10 (5.20)

Dependend from the signal amplitude and the intensity of the noise the SNR (cf.
chapter 4.3.2) can be calculated. For a noise power of ndB = −0.8505 the SNR is
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calculated with eq. (5.20) and eq. (4.17) as

σ =

√
10

ndB
10 =

√
10

−0,8505
10 = 0,9067

SNR = 10 · log10

(
A

σ

)
= 10 · log10

(
2.5

0,9067

)
= 2,75

The results of the simulation with different noise levels are shown in Fig. 5.6. In the
first row the input signal of the filters is shown. The signal has a amplitude of 5W.
To cycles with 4 evens are shown. The input signal is superimposed by AWGN. In the
first column an idealized signal is shown. Here the SNR→∞. In the second column,
the noise power was increased. The SNR is still 2.7572. The events are still visible
to the eye. In the third column σ is further increased. It is increasingly difficult to
identify the individual events yet. The SNR is still 1.5. In the second line the output
of the filter with the filter mask according to eq. (5.11) is to see. The third line shows
the output of the filter with the mask of eq (5.13). In the last line the output of the
Laplacian filter according to equation (5.18) is shown. The first and second filters is
detected the events for the SNR of 2.7. The Laplace filter here has been significant
problem. For a SNR of 1.5, all three filters have a poor detection rate. Based on the
simulated evaluation shows that the mask f∆3n has best properties in terms of the
defined assumptions 1 and 3.

All three methods can also distinguish between an on- and off-event. The two gradient
methods are point-symmetric. These have for a rising event a positive and for a falling
event a negative output value of the filter. The filter with the Laplace operator is axis-
symmetric. It obtained positive and negative values for both rising and falling events.
However, here the sign is reversed. With a corresponding classification function it is
possible for all three methods to differentiate between an on and off events.

In the previous simulation, the gradient of the events was ∆ = 5
1 . That means,

an appliance with 5W power consumption achieved the steady state in one sample.
However in the second assumption other gradients were determined. This assumes
that there are appliances which need 2 or 3 samples to obtain the steady state. Here
the gradient is then ∆ = 5

2 and ∆ = 5
3 . The simulation in Fig. 5.7 analyzed which

mask detects this gradient best. In the first row the idealized signal is shown. Now
with different gradients for the switching on event. In the rows 2 until 4 the outputs
of the three filters are shown. The smaller the gradient of the switching on event is,
the low the output amplitudes of the individual filters. Only the filter with f∆3n mask
reached at the lowest gradient, the maximum output amplitude 5W. This shows again
that the f∆3n mask has the best properties in terms of assumption 2.

The simulated filters are suitable to detect events. It has been found that events are
also detected when the signal is superposed with noise. Because of the short filter
length they are well suited for implementation in real-time system. However, in the
simulations also be seen that when the Signal to Noise Ratio (SNR) is too small a
relatively high number of False Positives (FP) are detected. In the following section a
further filter will be presented. This promises, due to a complex structure of the filter
function, a further reduction of the FP for the same detection rate as the HP filters.
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(a) An idealized waveform
with SNR→ ∞
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(b) The signal with AWGN
and SNR = 2,75
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(c) The signal with AWGN
and SNR = 1,54

Figure 5.6 – Simulation of the high-pass filter. The first row presents the signal with
AWGN. The second row the output of the filter with f∆2n mask (5.11).
Third row output of the advanced filter with f∆3n mask (5.13) and the
fourth row present the output of the filter with fLap mask (5.18).

5.4.3 Complex Filter Structure

The past approaches based on the idea, that events are characterized by different val-
ues of the input signal. The differences can be calculated by the gradient approach.
There are no mathematically specified demands were made for the behavior of the op-
erators. In this section, a method is presented which is based on detailed mathematical
formulations.

5.4.3.1 Approach of Canny

Canny (Canny, 1986) has formulated three assumptions for the development of his
filter structure. These are

t Good detection, there should be a high probability to detect real events and a
low probability to detect non-events.
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Figure 5.7 – Output of the filters for different gradients of the events.

t Good localization, the detected point should be as close as possible to the center
of the real event.

t Only one response to a single event, this is close to the first criterion when there
are two responses to the same event, one of them must be considered false.

The filter stucture dependent on the analyzed waveform. It is depended from the signal
form. So wether it is symmetric or antisymmetric. This can take some simplifications
which lead to the equations given below. The previously described three sets of good
detection, localization and error minimization are used to find the optimal filter. Canny
defined the SNR, the localization and error minimization. The optimum filter is a
correlation filter. The SNR is calculated as

SNR(t) =

∣∣∣∫ +W
−W p(−t)f(t) dt

∣∣∣
n0

√∫ +W
−W f2(t) dt

(5.21)

Where f(t) is the impulse response of the filter. p(t) is the input signal of the filter
and describes the respective step. The window width is 2W and returns the length of
the impulse response of the filter. In the denominator of the square value of the noise
is calculated on the assumption that the impulse response of the filter is finite and
that the noise is AWGN. This is then multiplied by an arbitrary noise coefficients n0.
Using the convolution integral and the assumption that the stage is at t = 0, will be
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calculated the response of the filter to the level in the counter. The good localization
is calculated as

Localization(t) =

∣∣∣∫ +W
−W p′(−t)f ′(t) dt

∣∣∣
n0

√∫ +W
−W f ′2(t) dt

(5.22)

Eq. (5.22) calculates the distance between the real and the detected area. The goal
is now to minimize this distance. For the derivation the functions which have already
been used in the calculation of the SNR is used. To arrive at an optimal result, the
product of the two equations 5.21 and 5.22 must be maximized:∣∣∣∫ +W

−W p(−t)f(t) dt
∣∣∣

n0

√∫ +W
−W f2(t) dt

·

∣∣∣∫ +W
−W p′(−t)f ′(t) dt

∣∣∣
n0

√∫ +W
−W f ′2(t) dt

!
= max (5.23)

Because the noise power density in the enumerator n0 can not be minimized, the
denominator must be maximized. This is satisfied if the filter function corresponding
to the same input signal. This is fulfilled by the condition:

f(t) = G(−t) in [−W,W ] (5.24)

The waveform of the filter was then determined empirically as a function of the input
signal by Canny. He has examined different filter functions and comes to the conclusion
that the use of the first derivative of the Gaussian function is the most suitable filter.
However, there is the problem that any point which is higher than its neighbor, is
detected as an event. This means that there are too many false detections due to
noise. In this regard, the method has weaknesses.

5.4.3.2 Improvement of Canny Filter by Perona

An improvement of the Canny approach is proposed by Perona (Perona and Malik,
1990). He used a quadratic filter structure and not a simple one as Canny. In addition,
two filters with the filter functions f1 and f2 are used, from which the output signals,
are added. Each of these filters is tuned to a different part of the signal. A filter is
responsible for the odd part. This reacts on stairs or rectangular functions. The other
filter responds to the even part. These are, for example, peaks or ramp functions. The
sum of the two outputs of the filters is squared. Formally, the output of the decision
function is

∆PPerona(t) =
2∑
i=1

(p(t) ∗ fi(t))2. (5.25)
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After several attempts, Perona came to the realization that for a even filter at best a
twice derived Gaussian window g(t) (5.26) is used (Perona and Malik, 1990).

g(t) = exp−
(t−µ)2

2σ2

g′(t) = −(t− µ)

σ2
exp−

(t−µ)2

2σ2

f1(t) = g′′(t) =
1

σ2

(
1

σ2
(t− µ)2 − 1

)
exp−

(t−µ)2

2σ2 (5.26)

This is a normal distribution with known parameters µ and σ. µ is the expected value
of the function. With the predefined assumption, that the event is at point t = 0, the
expected value becomes µ = 0. Consequently, the only parameter of the filter is the
standard deviation σ. This defines the width of the window. In a normal distribution
it is assumed that by µ± 3σ 99,7% all values are mapped. For the convolution means
that 99.7% of the energy of the window are included. For a practical application, the
length of the window on is defined as ±6σ. The window length is therefore variable
depending on the standard deviation being used. Perona founds out, that a filter
structure with a standard deviation of σ =

[
1 3

]
has the best results. So in this

thesis these three values are also for the mask of the filter. Fig. 5.8 shows the masks
of the filter for different the standard deviations in the interval of σ = 1, 2 and 3.
For the second odd filter f2 Perona has transformed the first filter f1 by the Hilbert
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Figure 5.8 – Function of the first filter with different standard deviation σ. The mask
is the second derivative from a Gaussian function.

Transform. The results were included in the basic structure of the approach of Canny
(Canny, 1986).

f2(t) = H {f1(t)} = H

{
1

σ2

(
1

σ2
(t− µ)2 − 1

)
exp−

(t−µ)2

2σ2

}
(5.27)
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The imaginary part of the Hilbert Transform of filter curve f2(t) is shown in Fig. 5.9.
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Figure 5.9 – Function of the second filter with different standard deviation σ. The
mask is the Hilbert transfrom of the second derivative from a gaussian
function.

Fig 5.10 shows the approach of Perona as a block diagram. The parameters of the
individual components are shown. After the decision function, the result of the addition
of ∆PPerona is passed to a classification function. This then leads analogously to the
first ED algorithm by the classification of the event.
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Figure 5.10 – Block diagramm of the approach from Perona with parameters.

Under the assumption that µ = 0 the equations (5.26) and (5.27) becomes

f1(n) =
1

σ2

(
n2

σ2
− 1

)
exp−

n2

2σ2 , (5.28)

f2(n) = H

{
1

σ2

(
n2

σ2
− 1

)
exp−

n2

2σ2

}
. (5.29)

These equation were implemented and simulated.
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5.4.3.3 Simulation of Peronas Filter

Analogous to the previously described high pass filter simulations the properties of the
Perona filter were simulated. As noise AWGN is assumed again. This is superimposed
to the useful signal with amplitude 5W. Different standard deviations σ were used.
Fig. 5.11 shows the simulation results. In the first row the signal with additive WGN
are shown. The second row shows the output of the first filter with second derived
Gaussian kernel. In the third row the output of the second filter is shown. Here the
Hilbert transform of the first filter structure are the filter kernel. The last row shows
the output of the decision function (cf. eq. (5.25)). The outputs of the filter show a
good detection of the events. Also with decreasing SNR detects the filter events and
suppresses the noise. For this simulation the center value for the standard deviation
of the suggestion from Perona σ = 2 was used.
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(a) An idealized waveform
with SNR→ ∞.
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(b) The signal with AWGN
with SNR = 2,74.
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(c) The signal with AWGN
with SNR = 1,51.

Figure 5.11 – Simulation of the Perona Filter. The standard deviation of the filter is
σ = 2. The first row presents the signal with AWGN. In the second and
third row the outputs of the two filters are shown (cf. (5.26), (5.27)).
The last row shows the output of the decision function (cf. (5.25)).

For a distinction whether it is a switching on or switching off event, the filter is limited.
By squaring the sum of the two outputs (cf. eq. (5.25)) this information is lost. The
output values of the filter are positive in both cases. For a practical solution, additional
information must be used. It would be possible to use the output of one of the two
individual filters f1 or f2. These have different signs for the outputs of the two events.

In Fig. 5.12 the behavior of the output of the filter is shown for different gradients
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of the switching event. Again, the three gradients ∆ = 5
1 ,

5
2 ,

5
3 , which have 1,2 and 3

samples were simulated analog to the first simulation. It can be seen that the filter
detects the events well. However, the amplitude of the output of the filter decreases
with a decreasing gradient.

0 10 20 30
0

2

4

6
SNR=Inf

0 10 20 30
-2

0

2
OutputF ilter1

0 10 20 30
-2

0

2

4
OutputF ilter2

0 5 10 15 20
0

2

4

6

8
OutputPerona Filter

0 10 20 30
0

2

4

6
SNR=Inf

0 10 20 30
-2

0

2
O utputF ilter1

0 10 20 30
-2

0

2

4
O utputF ilter2

0 5 10 15 20
0

2

4

6

8
O utputPerona Filter

0 10 20 30
0

2

4

6
SNR=Inf

0 10 20 30
-2

0

2
O utputF ilter1

0 10 20 30
-2

0

2

4
O utputF ilter2

0 5 10 15 20 25
0

2

4

6

8
OutputPerona Filter

Figure 5.12 – Output of the filters for different gradients of the events.

Canny and Perona have taken during their derivation two essential assumptions. A
good detection and the best possible noise reduction. However, an optimization of
both to its maximum is not possible. Either one has a good detection of the events or
a good noise reduction. In practice, therefore, an intermediate value must be found. In
the following the dependence of detection and noise reduction has been simulated.

Fig. 5.13 shows an ideal signal without noise. Two filter functions were simulated
based on the findings of Perona. For one, it is a narrow filter with σ = 1. This filter is
shown in Fig. 5.13(a). It is shown the input signal and the output of the filter. On the
right side the mask of the two filters are shown. This filter structure is very narrow
and detects the events very precisely. The same simulation but now with a standard
deviation of the filter mask of σ = 3 is shown in Fig. 5.13(b). This filter function
is much broader. As can be seen, the output function of the filter is broader. Thus,
the simulation meets consistent with the assumption and derivation. In Fig. 5.14 the
behavior of the filter for a noisy signal is shown. There the two filter masks with σ = 1
and σ = 3 was used again. Now, it can be seen that the narrowband filter has a lower
noise reduction with decreasing SNR. Figure 5.14(a) clearly shows that the two events
lost in the noise. This contrasts with the broad-band filters. The two events are still
detectable.
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(a) Output of the Perona filter for a filter function
with σ = 1.
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(b) Output of the Perona filter for a filter function
with σ = 3.

Figure 5.13 – Simulation of the Perona Filter with different length of the filter, de-
pended from the standard deviation σ of the gaussian function. Here an
idealized signal was used, were the SNR− >∞.
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(a) Output of the Perona filter for a filter function
with σ = 1.
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(b) Output of the Perona filter for a filter function
with σ = 3.

Figure 5.14 – Simulation of the Perona Filter with different length of the filter, de-
pended from the standard deviation σ of the Gaussian function. Here
an idealized signal was used, were the SNR = 1,43.

5.4.4 Short Time Fourier Transformation

The approaches described before are use the time series signal for the event detection.
Another possibility to detect events in a non stationary signal is a time frequency
analyzing method. For this purpose, the time signal must be transformed into the
frequency domain.

In chapter 2.4 some different methods were described to analyze a signal with whose
spectrum. By deriving the high-pass filter it has been described that abrupt changes in
the signal have high-frequency components. It should therefore be examined whether
these high-frequency spectral components can be used for event detection.

A possibility of transformation the signal in frequency domain provides the FT. But
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the time series is a non-stationary signal. While the FT does not provide information
about the temporal occurrence of frequency components in the signal, it can’t be used
for the transformation. The STFT is suitable for non-stationary signals where the
frequency characteristics change over time. Instead of calculating the spectrum of the
entire time signal, shorter time segments are converted into the spectral range. For
this, the signal p(t) is multiplied with a window function w and calculates the spectrum
for that signal.

STFT (τ,f) =

∞∫
−∞

p(t)w∗(τ − t)e−j2πftdt (5.30)

τ is the observed moment of the signal. In the most cases a real window w can be
used instead of the conjugate complex w∗. The STFT transforms the time series into
frequency domain and presents the spectral components over time. The time-discrete
form of the STFT is

STFT (m,f) =
∞∑

n=−∞
p(n)w(n−m)e−j2πfn. (5.31)

After the calculation of the spectrum of the signal at time τ , the Fourier coefficients
are added.

∆PSTFT (τ) =
N∑
f=1

STFT (τ,f) (5.32)

N is the number of coefficients and depends of the window length.

5.4.4.1 Simulation of the STFT

The first simulation was done with an idealized signal. As shown by the simulations
of the two filters previously simulated the SNR goes to SNR− >∞. It will examine
the extent to which the parameters of the STFT impact on the detection of evens. As
in chapter 2.4.2 described, the resolution in the time domain and the resolution in the
frequency domain are disproportionately. This depends on the length of the window
ω.

As window function a Hamming window was used. This reduces the leakage-effekt.
Fig 5.15 shows the results of the simulation for a Hamming window of size 10. In the
first row on the left side, the input signal is shown. An idealized signal without noise
and an amplitude of 5W. 4 switching events (2 on and 2 off) are shown. In the second
row the results of the STFT is shown. It is shown the spectrogram. Here, the power
density spectrum (cf. chapter 2.4.2.2) over time and the frequency is plotted.

It is well shown, that the intensity of the spectral components increase when a appliance
is switched on. Based on eq. (5.32) the delta value is calculated. Because only the
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upper frequency components contain information about abrupt changes in the signals,
only the high-frequency spectral components were added. The result is presented in the
last row of Fig. 5.15. By choosing the length of the narrow window 10, the detection
of the events in the time domain is relatively well. If the width of the window increases

Figure 5.15 – Simulation result for the STFT with a Hamming window of size 10. The
input signal is idealized without noise.

the detection would be decreasing. Therefore a better spectral resolution is achieved.
In Fig. 5.16 the results of an expanded window size with length 40 are presented. Now,
it can be seen that the time resolution is poor. However, in the spectral representation
of the STFT, the energy is better resolved. Even in the simulation of the Perona
approach 5.4.3.3 was found that a compromise between resolution in the time domain
and resolution in the frequency range must be taken here.

It is also noted that this approach does not distinguish between one and off events. This
property which is of importance in the time domain does not occur in the frequency
domain. Again for the distinction between on and off events secondary information
must be used. One possibility would be to investigate the spectral value of the constant
component of the detected event. Is this higher than before, it is an on event. Is this
less an off event has been detected.

In the second simulation, the noise component was increased. The standard deviation
of the WGN was chosen so that SNR = 3dB.

In Fig. 5.17 the simulation result of the STFT with a Hamming window of size 10
is shown. It can be seen that the noise now has significant influence on the detect
ability of events. It can be seen that with a suitable threshold the events are detected.
However, the disturbances caused by the noise are increasing.

The simulation results of the STFT with a wider window for a noisy signal are shown in
Figure 5.18. This shows the advantage of the wider window compared to the narrower.
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Figure 5.16 – Simulation result for the STFT with a Hamming window of size 40. The
input signal is idealized without noise.

Figure 5.17 – Simulation result for the STFT with a Hamming window of size 10. The
signal was superimposed by noise. It is shown, that the events can be
detected. But the influence of noise is increasing and FP are detected.

Although the localization of the events through the wide window is difficult but this
has a better noise reduction. The events are detected and the noise are reduced.

In the previous two simulations (HP and Perona filter) was still under investigation,
the behavior of the filter at a smaller gradient of the on events. It is clear that a
smaller gradient has less high-frequency components. Consequently, the energy, which

86



5.4 Event Detection Algorithm

Figure 5.18 – Simulation result for the STFT with a Hamming window of size 40.
The signal was superimposed by noise. It is shown, that the events are
detected.

is in the higher harmonics decrease. The simulation results of the STFT for different
gradients of the switching on event are shown in Fig. 5.19. As can be seen reaches the
energy by a gradient of ∆ = 5

1 a value of 1.2. This is shown in the first column. If the
gradient is halved (∆ = 5

2) the energy is decreasing by 2/3. As shown in the second
column. In the last column the gradient is ∆ = 5

3 . Now the energy has approximately
10% of the energy of the ∆ = 5

1 gradient. This is a major disadvantage of this method.
If the threshold is adapted to smaller gradients, the effect of the noise for the detection
will be increasing. This will lead to false detections.

The simulations show that this approach will be used under certain conditions, to
detect events. The choice of the window length is a crucial optimization criterion.
This will affect the detect ability and the suppression of the noise. Depending on
the threshold, steep gradients can therefore be readily detectable. Wherein decreasing
gradients are quickly lead to false detections.

5.4.5 Classification Function

In the past sections three algorithms for the decision function of the event detector
were presented. The second block of the event detector includes the classification
function (cf. Fig. 5.4). The decision function output values of the three approaches
are defined as:

t ∆PHP (t), as output of the High-Pass Filter (generalized for the 3 masks f∆2n ,f∆3n

and fLap)

t ∆PPerona(t), as output of the Peronas Filter
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Figure 5.19 – Simulation results of the STFT for different gradients of the switching
on event. On the left side the results for a gradient with ∆ = 5

1 is shown.
In the middle the gradient is ∆ = 5

2 and on the right side the gradient
is ∆ = 5

3 .

t ∆PSTFT (t), as output value of the Short-Time Fourier Transformation STFT

These values are used as input for the classification function to label an event or no
event.

5.4.5.1 Threshold for the Classifier

The simulations have shown that the output values of the decision functions have
different ranges. Now we need to interpret these values in this case to classify them.
In chapter 2 a simple classifier was presented. It is a threshold decision maker.

If ∆P (t) (generalization for ∆PHP (t), ∆PPerona(t) and ∆PSTFT (t)) is greater or
smaller than a defined threshold ∆Pth a switching on or off event at time t is de-
tected.

SwONev(t) =

{
1, ∆P (t) ≥ ∆Pth
0, else (5.33)

SwOFFev(t) =

{
1, ∆P (t) ≤ −∆Pth
0, else (5.34)

It should be noted that only the approach using a high-pass filter can distinguish
between falling and rising events. Eq. (5.34) presents the general case.
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The definition of the threshold plays an important role for the quality of the event
detector. If it is too large, there is a risk that events are no longer detected. The TPR
decreases. If the threshold is set too small, the TPR are increase. But faults which are
caused by noise also detected as events. Consequently, the False Positive Rate (FPR)
also increases and so the Positive Predicted Value (PPV) decreases. This dilemma was
described in chapter 2.3. The choice of ∆Pth thus determines whether it is a liberal
or conservative classifier.

5.4.5.2 Simulation of the Classifier

In this section the dependence of the detection rate from the threshold is simulated. As
decision function an high pass filter with f∆3n mask is used. For the simulation different
amplitude values were defined for the input signal. The amplitudes are A1 = 5W,
A2 = 10W and A3 = 15W. The ideal signal was superimposed by WGN. In the first
row of Fig. 5.20 the input signal is shown. The standard deviation of the noise is
σ = 1.778. For different amplitude values different SNR values are calculated (cf. eq.
(4.17)). These are SNRA1 = 1,48, SNRA2 = 4,49 and SNRA3 = 6,25. The output
signal of the decision function is shown in the second row in Fig. 5.20. It is shown,
that the noise amplitudes have values over 5W.
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Figure 5.20 – Input and output signal of the decision function. For the mask of the
high pass filter the f∆3n mask is used. The input signal has 3 amplitude
values A1 = 5W, A2 = 10W and A3 = 15W. With a standard deviation
of σ = 1.778 the SNRs for the different amplitudes are SNRA1 = 1,48,
SNRA2 = 4,49 and SNRA3 = 6,25.

The output signal was fed to the threshold decision makers. With increasing threshold
value ∆Pth the TPR is decreasing. This is shown in the first row in Fig. 5.21. The two
threshold crossings at 5W and 10W can also be seen. If all events should be detected,
the threshold must be minimized. In the second row of Fig. 5.21 correlation between
the PPV and the TPR is shown. By increasing the TPR the PPV is decreasing. For
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a practical application a threshold must be found where the TPR is still high but the
influence of noise is not yet large. This can maybe the break even point (cf. chapter
2.3.2.3).
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Figure 5.21 – Simulation results of the classifier function. In the first row the TPR in
dependence from the threshold ∆Pth is shown. In the second row the
PPV over the TPR is plotted.

In this section three approaches for the decision function of the event detector are
described and simulated. For the classification function the threshold decision makers
was described. In the following section the approaches are analyzed be real measure-
ments.

5.5 Results for the Event Detection

This section contains the statistical evaluation of the quality of the event detector. For
this the approaches are tested by real measurements. The individual process will be
compared with each other. At the end of the section an approach is defined which can
be implemented in a later smart meter system.

5.5.1 Experimental Procedure

For the evaluation of the algorithms the measurements described in chapter 4.5.2.2
were used. These are measurements of 10 different appliances. These have a power
consumption between 3.8VA and 1022VA. Overall 10,000 switching cycles were
recorded. The switching times are subject to a uniform distribution. Each appliance
is thus switched on and off by 500 times.
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All previously described methods have been implemented. The methods were tested
with different parameters. Different thresholds ∆Pth has been defined for the classi-
fication function. The analysis was repeated several times. To compare the results
with a known method of NALM the approach of Hart was also analyzed. With the
resulting the following statements can be made

t Analyze the PPV at a constant TPR

t comparing the absolute values of each method at the break even point

t analyze the FPR at the maximum TPR

5.5.2 Best Signal for the Event Detection

The signals which can be calculated from the measured signals u(t) and i(t) are the
active power (P), the reactive power (Q) and the apparent power (S) (cf. 4.2.1). These
signals are calculated and pre-filtered in the block measurement system. These are the
input values of the event detector. Now the best signal in sense of detection and noise
cancellation should be analyzed.

An example of a real measurement is shown in Fig. 5.22. In the first row the power
signals (P, Q and S) are presented. Where the first one is Q, the second is P and the
last one is S. In the second row the results of the filter output are shown. For this
example the HP filter with f∆3n mask is used.

The evaluation of the results has shown that the reactive power as input signal provides
the worst results. The reason is that some of the measured appliances have no or
negligible small reactance. Therefore, some switching on or off events have no reactive
power. But every power signal is superimposed by noise. The reactive power has the
worst SNR. From this reason the reactive power can’t used for the event detection as
input signal. The other signals P and S have similar results. So both can be used as
input signals. For the further work the active power P is used.

5.5.3 Results of the Event Detection Methods

In that section the three approaches are analyzed with real measurements. Fig. 5.23
shows an example of a real measurement and the outputs of the different algorithms.
In the first row the power signal P is shown. Different appliances were switched on
and off. In the second row the results of the three HP Filters are shown. In the third
row the output of the filter with Perona mask are presented. And in the last row the
sum off the higher harmonics calculated with the STFT are shown. The analyze were
done for all switching events.

A first method to compare the different event detection algorithms is using the break
even point. At this point the values of the TPR and PPV can be analyzed. Fig.
5.24 shows the PPV over the TPR of the three approaches. The threshold of all
three approaches ∆Pth were decreased. So with a smaller ∆Pth the TPR increase but
analogously the PPV are decrease. This is because more and more disturbances are
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Figure 5.22 – Example of a real measurement. In the first row the power signal Q, P
and S are shown. In the second row the output of the event detector
using a high pass filter with f∆3n mask for the three different input
signals is shown.

detected as an event. The better a method, the slower fall the PPV with increasing
TPR.

Fig. 5.24(a) shows the results of the HP Filter-Approach. Three different masks are
used, a Laplace-Operator [1 -2 1], a f∆2n mask [1 0 -1] and a f∆3n mask [1 0 0 -
1]. The best results are reached with the f∆2n- and f∆3n-mask. Because they have
the biggest area under the curve. Also the break even point is much higher as for
the Laplace mask. Fig. 5.24(b) shows the results of the Perona-Approach. For the
derivate Gaussian windows, different σ values are used. For our signals the best value
are σ = 2. The last Fig. 5.24(c) shows the results for the STFT. A Hamming-window
with different length w was used. Is the window to small, the noise has a high influence
to the PPV. Is the window to large, the noise is reduced, but not all events are detected.
The best window length for our signal is w = 50.

The optimal parameters for the measurements are used to compare the three methods
now. The three approaches are verified with these parameters. The results are shown
in Table 5.1. The table shows the different detection rates for the approaches; Hart,
HP-Filters (f∆2n-mask, f∆3n-mask and fLap-mask), Perona-Filter and the STFT. For
different TPR values the PPV values are presented. From these relativ rates the
absolute True Positives (TP) and FP values are calculated (cf. eq. (2.2) and (2.4)).
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Figure 5.23 – Outputs of the three approaches for a real measurement signal. In the
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row the output value of the STFT approach is shown.
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Figure 5.24 – PPV over TPR for the three approaches to find the optimal parame-
ter values. (a) Filter-Approach with three different masks, (b) Peron-
Approach with three different σ values and (c) STFT-Approach with
three different window length.

These values are shown in the last columns of the table.

The usage of an event detector depends on the application. The best results show
the Perona-Filter. With this filter it is possible to detect all events. By decreasing
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Approach Mask/ Parameter TPR PPV Ne TP FP
Hart

(
1 −1

)
85% 90% 10000 8500 944
90% 82% 10000 9000 1975
95% 70% 10000 9500 3875
100% 5% 10000 10000 180500

f∆2n

(
1 0 −1

)
85% 92% 10000 8500 944
90% 85% 10000 9000 1588
95% 75% 10000 9500 3000
100% 8% 10000 10000 109250

f∆3n

(
1 0 0 −1

)
85% 92% 10000 8500 739
90% 90% 10000 9000 1000
95% 80% 10000 9500 2250
100% 10% 10000 10000 85500

fLap
(
1 −2 1

)
85% 87% 10000 8500 1270
90% 70% 10000 9000 3857
95% 45% 10000 9500 11000
100% 3% 10000 10000 307166

Perona σ = 2 85% 95% 10000 8500 447
90% 94% 10000 9000 574
95% 72% 10000 9500 3500
100% 20% 10000 10000 38000

STFT ω = 50 85% 38% 10000 8500 13868
90% 28% 10000 9000 23142
95% 10% 10000 9500 81000
100% 0.1% 10000 10000 9080910

Table 5.1 – Results for the event detection methods.

the threshold more and more TP are detected. This approach has also the best noise
cancellation. By detecting 100% of all TP the PPV has a value of 20%. The second
best method is using a high-pass filter with f∆3n mask. This has the advantage that
it needs less space because of the number of values of the mask. Together with the
high pass filter with f∆2n mask these approaches are better as the events detection
method presented by Hart. So it was shown that it is possible to improve the quality
of the event detector. More events were detected by reducing the influence of noise.
The high pass filter with fLap mask and the approach using the STFT are not suitable
for our problem. These methods have a poor noise cancellation and cannot used in a
smart meter system.

5.6 Conclusion

In this chapter the event detection as a preliminary calculation for the classification was
described. An event detector was developed. Based on the work of Hart an improved
event detector was developed. This detector should have a higher detection rate and a
greater noise cancellation as the approach of Hart. This detector consists of two blocks.
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These are a decision function and a classification function. For the development of the
decision function algorithms different assumption were defined. The event detector
should detects events of appliances with a power consumption between 5W-3680W.
Abrupt changes in the times series with gradients of 5W should be detected. The last
assumption defines the decreasing faults which results from noise.

The signals passed to the event detector were analyzed. From the measurement we
know that the signal is superimposed by noise. Based on these disturbances an inves-
tigation of the state of art of event detection methods was done. Different methods
from NALM, image processing and other fields of signal processing were described.

The main part of that chapter was the development of event detection algorithms.
Three approaches were analyzed in detail.

The first one using a high-pass filter structure. Different masks were analyzed which
based on the gradient and the Laplacian operator. The behavior of the three mask
f∆2n , f∆3n and fLap were simulated. For this an idealized signal were used. This signal
was superimposed by noise. Also different gradients of the switching on event were
simulated. It was shown that the f∆3n mask has the best results.

The second approach based on a more complex filter structure. It is an approach based
on the work from Perona. A twice filter structure was used with a twice derivative
Gaussian function as mask for the first filter and the Hilbert transform of this as mask
for the second filter. This method was also simulated analogously to the simulation of
the HP filters. It was also shown that it is not possible to optimize the detection and
the noise cancellation.

The last method is different from the first and second approach. It doesn’t use a filter
structure. It based on a time frequency analyzing method. This approach using the
STFT for an analyze of the harmonics of the switching on event. Because the abrupt
events have higher components.

After the simulation of the approaches there were analyzed with real measurements. To
have a good statistical statement 10.000 switching cycles of different appliances were
used. It was shown, that the approach of Perona has the best results. It follows the
filter mask derived from the gradient operator. Both approaches have better results as
the approach of Hart. With the Perona mask the PPV is 12% better as the approach
of Hart for a TPR of 90%. The detecting of TP is greater as the rates from Hart.
Also these approaches have a better noise cancellation as the approach of Hart.

For a later implementation in a smart meter system one of the two filters with the
mask of Perona or f∆3n mask can be used.
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Chapter 4 describes the measurement system. With that system the measurements
for the development of the disaggregation algorithms were recorded. In the previous
chapter 5, the event detection was described. This is used to detect the events of the
appliances. In this chapter, the last block of disaggregation chain is described. This
is the classification of appliances in the load profile.

If an event is detected, a classification is performed at this point. The classifier then
assigns each event to a class of appliances. Fig. 6.1 shows the classification as part of
the disaggregation chain.

Measurement 

System

Event

Detection

Database

with

Measure-

ments

ClassificationFeature Extraction
List of the classified 

appliances

List of the detected 

switching events

Conditioning 

the Signals

1. Block: Measurement System

2. Block: Event Detector

3. Block: Classifier

Entire 

Signals

Figure 6.1 – Structure for the disaggregation of appliances in the load profile of resi-
dential buildings. Here the third block is described. The classifier assigns
each event to a class of appliances.

From the recorded measurements the input vector and the output vector are known.
For this reason, a supervised learning method is used. As classifier an artificial neural
network is used. At the beginning of the chapter, a theoretical introduction is given in
the area of ANN. For the classification different features can be used. In this work for
the features the power signals P , Q and S plus derived signals are used. To extract
features from the signal a special form of an ANN will be presented. At the end of
the chapter, two methods are presented for classification. The one is used to classify
a specific class of appliances. The structure of the ANN is simple. A more complex
ANN is used to classify the appliances from the measurements (cf. chapter 4.5.2.2).
For this purpose, different features are examined.

6.1 General Description of Neural Networks

6.1.1 Biological Systems

The human has a variety of cognitive abilities. These allow him to recognize complex
issues and develop solutions. Much of the research in the field of ANN was inspired
and influences by the knowledge of biological nervous systems. The fundamental part
in biological systems is the so-called neuron. A neuron is a small cell which receives
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electrochemical stimuli from several sources. To these inputs, it reacts with electric
pulses. These are delivered in turn to other neurons. The human brain consists
of about 1010 − 1012 neurons. These are connected in themselves. This high density
makes the brain into a complex fast-responding processing unit. Neurons are composed
of a cell nucleus, a cell body and several dendrites. These are connected via so-called
synapses with the outputs of other neurons. The output of the neuron, the so-called
axon, is also connected to other neurons. The schematic representation of a biological
neuron is shown in Fig. 6.2.

Axon

Cell

Body

Synapses

Cell

Nucleus
Dendrites

Figure 6.2 – Model of a biological neuron.

Neurons can be connected to thousands of other neurons. Exceeds the cumulative sum
of the input signals a certain threshold, the neuron fires. This means it will send via
the axon a series of action potentials. This impulse conduction can be executed in
a few milliseconds. The learning of the cell activities is called metabolic growth. It
affects the potential loads which generates a synapse. This can be thought of as a
weighting. What will we find in analogy with the ANN.

6.1.2 Historical Overview

The basic structure of artificial neural networks is similar to nerve cells, so called
neurons. The first approaches were founded by McCulloch and Pitts in 1943. They
described a net which can calculate all logical and arithmetical functions. 1947, they
point out that such a network can be used for spatial pattern recognition. Donald O.
Hebb in 1949 formulated his Hebb learning rule, which represents almost all neural
learning method in its general form. A famous work is from Rosenblatt (Rosenblatt,
1958). He developed the first neuron computer in 1958. The first adaptive neuron,
which calculates the weights under a learning rule was developed by Widrow and Hoff
(Widrow and Hoff, 1960) in the year 1960. This approach is described more in detail
in section 6.2.6. This network reached as the first wide commercial distribution. Ap-
plication found it in analog phones for real-time echo filtering. The neural network
learned with the delta rule. 1969 Marvin Minsky and Seymour Papert gave a detailed
mathematical analysis of the perceptron. They showed that important problems can-
not be solved. Among other things, XOR operators cannot be resolved and there are
problems in the linear separability. The result was a temporary end to the research
in the field of neural networks. A renaissance reached the ANN in the 1980s. 1985
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Hopfield published a solution of the traveling salesman problem by a Hopfield network.
In 1985, the backpropagation learning method was developed as a generalization of the
delta rule (Hopfield and Tank, 1985). Thus non-linearly separable problems through
multi-layer perceptrons are solvable. Minsky’s assessment was therefore refuted.

6.1.3 Applications for Artificial Neural Networks

ANN can be used for various applications. Here is an overview of the most common
applications are given. The descriptions are general in nature and thus generic. The
methods which are used in this thesis will be explained in more detail later in the
chapter.

Some ANN structure can learn to take patterns and save these. If you then present
them an associated pattern the stored one is recovered. Here, the associated pattern
can be the same, can have slight differences or can have massively differences from the
stored one. This kind of network is called associative memory.

ANN can be used for data compression. This is of interest when a large amount of
data is to be transmitted or stored. Here compute the ANN a mapping. This makes a
reduction of the input pattern. Through this compression pattern of the n-dimensional
space are transformed in the m-dimensional space, where m < n.

ANN can be used to assign an input pattern to a corresponding output. For example,
the different symptoms can then connect to an illness. The diagnosis of complex
systems is a common application area for expert system.

A prediction is used in many areas. An application example is the prediction of
electricity consumption. Thus, the power company can plan the energy reserves better.
The output of the ANN can have three states. First, something happens or not; second,
when something happens; or third, the probability of something happening. For an
acceptable accuracy a sufficient amount of examples is required for the ANN.

When data are combined from different sources, it is called multisensory data fu-
sion. This process includes determining, associating, correlating, estimating and com-
bining of data. One use would be the processing of sensor data, for example, Temper-
ature and humidity for use in the disaggregation.

In General ANN are well suited to solve perception tasks. One possibility is the
recognition of complex patterns, visual images of objects, voice recognition, hand-
written characters or waveforms of each electronic appliance. The ANN have great
potential in terms of the computing time for pattern recognition. Classical methods
such as Bayesian classifier is far exceeded by ANN.
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6.2 Artificial Neural Networks

6.2.1 Perceptron

Analogous to the biological neurons can be set up artificial structures. A simplified
model of the structure of an artificial neuron is shown in Fig. 6.3. It is called percep-
tron. On the right side the compact form of the neuron is shown.

x0 w0

x1 w1

xN wN

∑ z
f (·)

y = f (z)
x N y

Figure 6.3 – Model of an artificial neuron and its compact structure. This simple form
is called perceptron.

The inputs of the neurons are the values xi which is a vector of length N + 1. These
values may come from other neurons or from sensors. The first value x0 can be used
to set up the offset. The input values are weighted by the weights wi and afterward
added. The result z is mapped by a non-linear function f to the final result y. In terms
of the definitions in chapter 2 the first part is the decision function of the classifier and
the function f is the classification function. In the following the model is described in
vector notation. The input vector is described by

x =
[
x0 x1 · · · xN

]T
. (6.1)

Analogously the weight vector is given by

w =
[
w0,w1, · · · ,wN

]T
. (6.2)

The final output is therefore calculated as

y = f (z) = f

(
N∑
i=0

wixi

)
= f(xTw). (6.3)

As described before in some cases the input value x0 is used as an offset. Thus the
weight w0 becomes 1.
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6.2.2 Transfer Function

Equation (6.3) applying the non-linear image function is known as the transfer func-
tion. The easiest case is the step function which fires the neuron when a predefined
threshold is exceeded. If the threshold is not exceeded the neuron remains inactive.
The disadvantage of using the step function is that the function and its derivative are
discontinuous which may result in problems when computing the weights wi. That is
why in most cases the sigmoid function is used (Cichocki and Unbehauen, 1993). This
function is determined by the parameters α and β. It is given by

y = f (z) =
1

1 + e−α(z−β)
. (6.4)

In Fig. 6.4 some examples of the transfer functions are shown.
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Figure 6.4 – Transfer Functions: Sigmoid Function α = 1, β = 0 (—); Sigmoid Func-
tion α = 2, β = 1 (- -); Sigmoid Function α = 1, β = −1 (...); Step
Function (xxx).

The gradient of the sigmoid function is defined over the parameter α. The second
parameter β shift the sigmoid function. In the most cases the parameters are defined
as α = 1 and β = 0 (Kroschel et al., 2011). This equation is also called Fermi-Funtion.
The equation 6.4 becomes

y = f (z) =
1

1 + e−z
. (6.5)

6.2.3 Structure of Networks

There are several types of artificial neural networks with various structures. The three
basic types are separated into the feed forward structure, the feed back structure and
the lateral recurrent structure (Cichocki and Unbehauen, 1993). The signal flow of the
feed forward structure is from left to right as shown in Fig. 6.5. This structure will
be used later. The feed back structure is characterized by the use of feedback paths.
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An even more complex structure is the lateral recurrent structure which makes use of
several branches in each of the layers.

The forward structure structure consist of multiple layers. These have several percep-
trons. For this reason this type is also called Multi Layer Perceptron (MLP). The
structure is shown in Fig. 6.6. It is the most commonly used structure of an ANN.
Connections are allowed only between neurons of adjacent layers. There are three
distinct layers, namely the input layer, the hidden layers and the output layer.

Now that more neurons are used in multiple layers, the following index is defined.
Each neuron is determined by the layer k and the neurons index n. However, it is
important to ensure that different layers can have different number of neurons. The
activation of a neuron n in the layer k is denoted by o<k>n . The weight of the neuron
m in the layer k − 1 to the neuron n in the layer k is called wknm.

In contrast to the simple perceptron the step function cannot be used as transfer
function for the MLP. As already mentioned, this has to do with the differentiation of
the function. After the derivation of the learning function, we will see that the transfer
function must be continuously differentiable. Therefor a differentiable function defined
in the previous chapter must be used. In most cases this is a sigmoid function.

The outputs of the individual neurons can be derived from eq. (6.3). They are calcu-
lated as

o<k>n = f

(
Nk−1∑
m=0

w<k>nm o<k−1>
m

)
n = 1,...,Nk; k = 1,...,H (6.6)

Nk is the number of neurons in the k-th layer. o<k>0 is analogously to the perceptron
the bias and is set to a constant value. The output of the last layer y = o<H> is
successively calculated. For this, with the Eq. (6.6) the output is calculated from left
to right from the input vector x = o.

The sigmoid function tends to its asymptotic values. This is not achieved in practice.
For this reason, the function values are adjusted. Typical values are 0,1 and 0,9.
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Figure 6.6 – Multilayer Perceptron

6.2.4 Learning Algorithms

The weights wi plays an essential role for ANN. These parameters are typically imple-
mented not fixed in the neuron. They also cannot be calculated with a closed formula.
Instead, they are to learn in an iterative process based on training examples. This
goes back to the supervised learning. This then describes the adaptive nature of ANN.
In this learning process, the learning rule takes the central position.

In theory of ANN, there are a multitude of different models of learning rules. However,
can the most be attributed to a basic hypothesis. This was described by Hebb 1949
(Hebb, 1949) and is called Hebb learning rule. Thereafter, the weights change in
proportion to the correlated activity before and after the connection. The weights are
calculated as

∆w = µ · ŷ · x = µ · f
(
wTx

)
· x. (6.7)

Here ŷ = f(wTx) denotes as before the excitation of the neuron, fitting behind the
synapses. x is the stimulus, fitting before the synapses. µ is the size of each learning
step. After the trainings phase, the network should have the possibility to bring the
write output value to unknown input values. The training phase should seems as
follows:

t apply the input values

t process the input values (propagation)

t comparison of target and actual of the resulting output values

t if it is necessary, minimize the error by adapting the weights (e.g. Perceptron
learning rule, backpropagation or LMS)
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6.2.4.1 Learning Rule for the Perceptron

The perceptron learning rule represents a supervised learning process. The perceptron
will be presented training pairs

(
xj ,rj

)
, j = 1,...,P . Where xj is the feature vector

and rj is the associated class. The perceptron learning algorithm is kept simple. From
a data set an example (xj ,rj) is selected randomly. If the classification is correct the
algorithm should take the next pair. If not the learning step

∆wi = µ (yi − ŷi) · xj (6.8)

should be executed. yi is 1 when i = rj or in the other case 0. If the classification for
a learning sample j is performed correctly, the weights wi thus keep unchanged. If an
incorrect classification was done the algorithm will forget the wrong answer according
to the idea of Hebb’s rule (6.7). In return the desired response is learned.

Two criteria can be defined. The first terminated the learning process after a prede-
termined number of learning steps is reached. The second possibility is to exit the
learning process for a defined number of iterations without errors.

6.2.4.2 Learning Rule for the MLP

Until now the learning method was described for one perceptron. Now we describe a
method to learn the weights of a multilayer perceptron. With this learning rule, the
weights w<k>nm are adjusted. These should be set so that the trainings data are correctly
classified or with a minimal classification error. This method is called backpropagation
(Kroschel et al., 2011). For the derivation of the backpropagation algorithm, the delta
rule is extended. For all training data j = 1,...,s, the summed square classification
error is calculated

J =
1

2

s∑
j=1

NH∑
m=1

(
yjm − ŷm

(
xj
))2

. (6.9)

This depends on the weights w<k>nm currently set. J is like a p-dimensional (p is
the number of weights of the MLP) area in a p+1 dimensional weight error space.
The backpropagation algorithm is now trying to find a local minimum of the error
space. For this it uses the gradient descent method. The gradient descent is generally
usable, for the iterative process minimizing a function f(x). Here, a correction of the
arguments x along the strongest drop of F is performed at each iteration. This is
repeated until the gradient of F disappears. This is calculated as

∆w<k>nm = −µ · ∂J

∂w<k>nm

(6.10)
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Before the requirement to determination of ∆w<k>nm is developed, a simplification
should be made. The error, shown in (6.9) is the sum of the contributions of each
training example j. A learning method, which computes the gradients on the basis
of the total error is called a batch process. However ANN are adapted incrementally.
This means that the gradient is calculated for one training example. And after that
the adaptation step is performed. This procedure corresponds to the minimization of
a error function only dependent on the current training example.

Jj =
1

2

NH∑
i=1

(
yji − ŷi

(
xj
))2

(6.11)

The requirement for the adaption is given by

∆w<k>nm = −µ · δ<k>n · o<k−1>
m (6.12)

A detailed description of the derivation is published in (Bishop, 2006). The individual
parameters are

δ<k−1>
n = f ′

(
s<k−1>
n

)
· e<k−1>
n (6.13)

e<H>n = ŷn − yn (6.14)

e<k−1>
n =

Nk∑
m=1

w<k>mn δ<k>m k = 1,...,H (6.15)

where f ′ is the derivative of the activation function. Now, this shows that f must be
differentiable. This becomes clear where the name "backpropagation" is derived. The
activities o<k>n starting from the input to the output layer are calculated as a function
of the previous layer o<k−1>

m . The errors δ<k>n of the neurons are calculated back from
the errors of the neurons of the following layer δ<k+1>

m . Proportional to the calculated
error then the correction step for each weight ∆w<k>nm = −µ · δ<k>n ok−1

m is performed
on the neurons.

6.2.5 Design of a MLP

When dimensioning the MLP, the number of layers and the number of neurons in a
layer must be set. The number of neurons in the input and output layer is defined by
the particular requirement. The number of neurons in the input layer is defined by the
feature vector. This may consist of signals and parameters. The number of neurons
in the output layer is defined by the number of classes.

Whereas the choice of the number of neurons in the hidden layer is not trivial. Research
in this area is not yet far. Through experience and experimentation an optimal number
of neurons can be determined. Here, two limits must be observed. First, the number
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must not be too small. This has the effect that the network is not able to solve the
problem. Second, it must be ensured that the generalization is not waived. If too
many neurons in the hidden layer, it is possible that the network learn by heart the
problem. This can be countered with a reduction in the number of neurons and the
validation.

The MLP should have a sufficient number of layers to keep the residual error of the
classification small. In the literature it has been proven that a 3-layer perceptron
in principle sufficient to model any data / class distribution in p-dimensional space
(Bishop, 2006). A proof can be understood clearly by the following consideration.
The first layer separates any half-spaces. The second layer summarizes the resulting
half-spaces together by conjunct convex areas. The third (output) layer combines the
convex regions by disjunction to any concave quantities. Because these models in
general MLP consists not of more than three layers.

6.2.6 ADALINE

In the previous section, the simple perceptron and the complex MLP were derived. For
both, learning rules have been established which determine the weights. However, it is
also possible to determine the weights for an adaptively estimation of the parameters of
an unknown system. An Adaptive LinearNeuron, called ADALINE, is a combination
of a simple neuron with learning rule. It was developed by Widrow and Hoff 1960.
For the learning rule the Widrow-Hoff learning rule is used. A combination of more
ADALINE in different layers is called MADALINE.

6.2.6.1 Structure of an ADALINE

The ADALINE is a single layer network. The main difference to the perceptron is, that
it uses for the learning phase the output of the summation point zj for the adaptation
of the weights. Whereas the perceptron calculates the weights with the signal after
the activation function. In Fig. 6.7 an ADALINE is shown.

x0 w0

x1 w1

xL wL

∑ z y = f (z)

Learning Rule
Widrow-Hoff

Figure 6.7 – Adaline with Widrow-Hoff learning rule.
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6.2.6.2 Learning Rule ADALINE

As described before the Widrow-Hoff learning rule (also known as LMS-algorithm)
uses the output signal z for the estimation of the weights. This algorithm is used to
set the weights of the ADAptive LInear NEuron (ADALINE). The individual weights
of the neurons can be determined in many different ways. The common principle of all
known methods is to minimize the error e in order to determine the optimum weight
vector wopt. The block diagram for the computation of the error is shown in Fig. 6.8.

x wopt
z − e

yt

Figure 6.8 – Block diagram for the error e calculation.

For the minimization the same method is used as for the MLP learning rule. The
minimization is calculated with the gradient descent method. The optimum is reached
when the mean square error becomes minimal. For a weight vector of length two this
error is given by

e2 =
(
yt − z

)2
e2 =

(
yt − xTw

)2
e2 = (yt)2 − 2ytxTw + wTxxTw. (6.16)

Since the vectors x represent stochastic signals it is useful to use the expectation of the
mean square error. The optimum weight vector is computed by finding the minimum
of the derivative of equation (6.16). It is given by

wopt = R−1p. (6.17)

This equation is known as the Wiener-Hopf Equation with the auto-correlation matrix
R = E

{
xxT

}
of the input signal x. p is the cross-correlation vector of the desired

value yt and the input signal x. A detailed derivation of this principle is given in
(Haykin, 2002). The iterative solution becomes:

e(n) = y(n)− x(n)Tw(n) (6.18)
w(n + 1) = w(n) + µe(n)x(n) (6.19)

The step size µ must be estimated. One possibility for the estimation is to use the
eigenvalues of the signal. µ can be calculated by the eigenvalues (Kammeyer and
Kroschel, 2012)
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µ =
2

λmax
. (6.20)

λmax is the highest eigenvalue of the input signal. For a practical usage, the step size
should be smaller as the quotient of two with the biggest eigenvalue, to get a stable
convergence.

6.3 ADALINE for the Classification

In the previous section was extensively discussed the basics of ANN. In this section, a
first method is described with which it is possible to classify a group of appliances from
the total load profile of residential buildings. For this the household measurements from
4.5.2.3 are used. From Tab. 4.3 we known, that the refrigerators and freezer have a high
power consumption in the home. It should be derived features to classify them. For
this purpose the ADALINE is used. This is a very simple structure of ANN is selected
Benyoucef et al. (2012a). For the decision function the Mean Squared Error (MSE) is
used. The classification function consists of a decision threshold maker.

6.3.1 ADALINE for Parameter Estimation

From chapter 2.4 we know, that a periodical signal p(t) can be represented by the
Fourier series. It can be divided into a constant component A0 and the sum of the
harmonic oscillations. These oscillations can be divided into a sin- and cos-part. The
factors An and Bn can be interpreted as the amplitude values of the spectral compo-
nent. n is an integer and represents the n-th harmonic of the signal.

p(t) = A0 +

N∑
n=1

An cos (n · ωt) +Bn sin (n · ωt) (6.21)

The ADALINE can be used to estimate the parameters A0,A1,B1,...,AN and BN . Fig.
6.9 shows the structure of an ADALINE for the harmonics estimation. The signals
xn(t) are the input of the ADALINE. These are harmonic oscillations. ω = 2πf is the
frequency of the fundamental wave. They can be summarized in the input vector

x =



1
xA1(t)
xB1(t)

...
xAN (t)
xBN (t)


=



1
cos (n · ωt)
sin (n · ωt)

...
cos (n · ωt)
sin (n · ωt)


; n = 1,...,N (6.22)
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Now we are looking for the weight vector w. This can be interpreted as the amplitude
values of the spectral components. The weight vector is

w =
[
A0 A1 B1 · · · AN BN

]T (6.23)

p(t) is the desired output. The estimated signal is pest(t) = xTw. With the Widrow-
Hoff rule (cf. (6.19)) the error e will be minimized and the weights are calculated.

Widrow-Hoff

Learning Rule

)(tp

wA1

+

)1cos( t

)sin( tN 

)cos( tN 

)1sin( t

)(tx
)(te

)(tz

wBN

wAN

wB1

w0



1

Figure 6.9 – ADALINE for the harmonics estimation.

6.3.2 Simulation

The ADALINE was simulated. For the input signal p(t) the fundamental wave was
superimposed with the 2, 3 and 4 harmonic. sin- and cos-parts were used. Therefor the
desired weight vector should bew =

[
A0 = 0 A1 = 0 B1 = 2 A2 = 0 B2 = 3 A3 = 0 B3 = 1 A4 = 5

]T .
The frequency of the signals is f = 50Hz.

p(t) = 2 · sin(ωt) + 3 · sin(2 · ωt) + sin(3 · ωt) + 5 · cos(4 · ωt)

Eq. (6.19) was used to calculate the weights of the ADALINE. The step size was
estimated with the eigenvalue of the signal. Therefor eq. (6.20) was used.

µ =
2

λmax
=

2

139,6
= 0,0144

Fig. 6.10 shows the simulation of the parameter estimation. In the first row the input
signal p(t) is shown. In the second row the error e and in the last row the harmonics
are shown.
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Figure 6.10 – Results for the parameter estimation. In the first row the desired signal
is shown. In the second row it is shown that the error is decreasing so the
algorithm converges. In the last row the convergence of the harmonic
values are shown.

The algorithm converges. The termination criterion of the learning process is reach
when the MSE fall below a defined threshold e ≤ emin. For this simulation the
learning process should be stopped when the error falls below 0,001 (MSE = −30dB =
10 log (0,001)). Then the weight can be read. In Fig. 6.11 the weights after the
termination criterion are presented. The weight vector consists of the amplitude values
of the harmonics.

w =
[
0 0 2 0 3 0 1 5

]T
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Figure 6.11 – Weights of the ADALINE after the learning phase. The weights are
corresponds to the harmonics of the desired input signal p(t).
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6.3.3 Results

In the simulation, it was shown that the ADALINE can estimate the harmonics of
a periodic signal. These are used as features for the classification. In following this
approach should be applied to real measurements. The data set of the home measure-
ments includes 50 recorded days (cf. 4.5.2.3). Fig. 6.12 shows the power consumption
of approximately 43 hours.
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Figure 6.12 – Power consumption of a household. During the night phase the switching
events of the refrigerator are visible.

The ADALINE is to be used to classify the refrigerator from the total load profile.
The periodic cycles of the refrigerator are clearly visible in the night phase. In Fig.
6.13, the switching on phases of the first two seconds of the refrigerator, is shown. As a
comparison, the algorithm from Hart was implemented. This waits 2 s until it reaches
the steady state. Then it executes on the basis of load change the classification (Hart,
1992).

The approach based on the ADALINE should improve the classification by decreasing
the time period. The profile will have a short time to extract the features. The vector
which is used for the feature extraction includes only 25 samples. This is similar to
0.5 s. So the new approach based on ANN is of factor 4 better as the approach of Hart.
This has the main advantage, that the minimum time between two switching events
of appliances of decreasing.

Fig. 6.14 shows the learning phase of the ADALINE. In the first row the switching on
cycles of the refrigerator is shown. The error is shown in the second row. The last row
presents the estimated weights. By using eq. (6.20) and an eigenvalue of the signal
from 10,708 the maximum step size becomes µ = 0,0934. In this practical example a
step size with µ = 0,04 was used. The error is already covered by one switching cycle.
After 2 cycles the weights are final estimated.
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Figure 6.13 – Different switching on phases of a refrigerator, with the delta time of the
two approaches.
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Figure 6.14 – Results for the feature extraction with an ADALINE. With real switch-
ing cycles of the refrigerator the true values of the vector w are calcu-
lated.

For the decision function the MSE should be used. It is calculated as

MSE =
1

N

N∑
n=1

(ŵn − wn)2 (6.24)

MSEdB = 10 · log10

(
1

N

N∑
n=1

(ŵn − wn)2

)
(6.25)

wn is our known feature vector from the refrigerator. ŵn is the vector which includes
the harmonics of the current switching cycle. The MSE calculates the sum of the
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variance and the squared bias of the harmonic estimation. The MSE is the input
signal of the decision threshold maker (cf. classification function event detector 5.4.5).
This was used for the classification. If the MSE fall below a predefined threshold a
similar appliance like the refrigerator is classified. Otherwise an other appliance was
switched on.

Altogether 1235 switching on events of the refrigerator were measured in the recorded
time. The approach of Hart and the approach of ADALINE were implemented and
tested. The classification algorithm based on Harts approach (Hart, 1992) has classified
1080 (87.5 %) of the switching on events. The algorithm based on the ADALINE
approach has classified 1162 (94.1 %) of the switching on events. The results are
presented in Tab. 6.1.

Approach Ne TP FP TPR PPV
Hart 1235 1080 262 87.5% 80.47%
ADALINE 1235 1162 13 94.1% 98.89%

Table 6.1 – Results for the classification. Two algorithms were analyzed. The results
of the approach of Hart are shown in the first line. The results using the
ADALINE approach are shown in the second line.

Both approaches have a good classification rate, whereas the approach based on ADA-
LINE has 6.6 % more switching events classified. Both approaches have also classifi-
cation errors. Thus the approach of Hart has 262 FPs, because there are appliances
with the same power consumption as the refrigerator. The ADALINE approach has
13 FPs, this depends on noise in the power signal. Thus, for the classification errors,
the ADALINE approach is much better as the approach of Hart Bier et al. (2012).

In Fig. 6.15 is an example for the results of the classification for a real measurement. In
Fig. 6.15(a) the results of the classification based on the approach of Hart are shown.
In Fig. 6.15(b) the results of the classification based on the approach of ADALINE
are shown. Between the time, where many appliances are switched on (approx. 19:00-
23:00 and on the other day between 6:00-7:00) the approach of Hart has some error
classifications. Whereas the approach based on ADALINE has no error classification.

6.4 MLP for the Classification

In the previous section an ANN were used to estimate parameters of the transient
response of individual appliances. As ANN an ADALINE was used. This can solve a
linear problem. For more complex problems a non-linear structure must be used. In
theory part, it has been described that a MLP satisfy this property. In this section, a
MLP should be used to classify different appliances.

Two different feature sets are described, which can be used for the classification. After
that the results are compared and discussed.
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(a) Classification based on the approach of Hart.
All TP in the sense of classifying the refrigerator
are reached. But also some FP are classified.
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(b) Classification based on the approach of ADA-
LINE. All TP in the sense of classifying the refrig-
erator are reached. And there are no FP.

Figure 6.15 – Example of the results for the classification. Approximately 12 h are
presented of the load profile of the measured household.

6.4.1 Features for the Classification

For the classification different features can be used. In that thesis two types of features
are presented and compared. The first one are the power signals P , Q and S. From the
switching on event ev of the appliance a defined sequence of samples n of the signals
are used for the classification. The input vector xa of an appliance a for the MLP is

xa =
[
P (eva) P (eva + 1) · · · P (eva + n− 1)

]T
. (6.26)

The second features are the output values from the STFT of the switching on phase
of the power signal. From the power sequence of 20 samples, the STFT is calculated.
If the window length is diversifying, the length of the STFT is varies. The results of
the STFT are squared, so we receive the power density values of the signal. With the
time discrete function of eq. (5.30), the input signal of the MLP becomes a Matrix

xa =



∞∑
n=−∞

p(n)w(n− 1)e−j2πfn

∞∑
n=−∞

p(n)w(n− 2)e−j2πfn

· · ·
∞∑

n=−∞
p(n)w(n−m)e−j2πfn


. (6.27)

m is the number of parts, where the input sequence is divided.
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6.4.1.1 Train the MLP

From chapter 2 we know that a learning process of a MLP can be divided into the
training, the validation and the test phase. Therefore the data-set is divided into three
parts. In practical use the main part of the data-set is used for training. For validation
and test the smaller rest is used. The signal flow diagram of an ANN is shown in Fig.
6.16.
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Figure 6.16 – Diagram of the signal flow from the training, validation and test of the
ANN.

The weights are calculated over the error from the outputs, where the input values are
the test data. During the test phase, with the validation data, the results are verified
with known outputs. After a predefined error value emin is decreased, the network is
tested with the test data, where the outputs are unknown.

6.4.2 Results of the Classification Method

For the classification a MLP is used. This has a feed forward structure. It has three
layers (this number is sufficient in most cases). The input layer consists of the different
feature vectors xa. The number of neuron for the hidden layer was determined itera-
tively. The optimal number of neurons in sense of optimization the TPR was 10. The
number of neurons in the output layer depends from the number of classes. Since we
have 10 appliances, the network has 10 output neurons. Every output images one of
the 10 appliances. The transfer function is a non-linear sigmoid function with α = 1.
This is necessary for the derivation of the learning rule.

Every feature set was divided into three parts. 70% of the data are used to train the
network, 15% are used for validation the network and the other 15% are used to test
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the network with an independent data set. For the training of the network and to
find the optimal weights, the back propagation learning rule was used. To solve the
numerical optimization of the learning rule, the Levenberg-Marquardt-Algorithm was
used.

For the analyze of the approach the measurements described in chapter 4.5.2.2 were
used. Altogether 10.000 patterns from 10 different appliances were classified. For a
better presentation of the results the classification rates are presented in two tables.
Tab. 6.2 shows the TPR for the first 5 appliances. Tab. 6.3 shows the TPR for the
last 5 appliances. The first three rows of the results consist of the feature with the
signal power. The best results were reached with the active power P . The length of
the sequence n is diversified. In the first row 10 samples (200ms) are used as input
vector. Then in the second row 15 samples (300ms) and in the third row 20 samples
(400ms) are used for the input vector. It is well shown that increasing the number
of sample n, the TPR increase. This comes from the different shape of the switching
on cycle of the appliances. The longer the input vector for the ANN is, the better
can correlate and distinguish between the trained appliances. For a real-time system,
the number n should be kept as small as possible. There are two reasons, firstly, the
computational effort should be as low as possible and on the other the time in which
two appliances can be switched on should also be small. With n = 20 samples it is a
good compromise, because the ANN has a TPR over all appliances of 97.1% and the
time in which no two appliances can be switched is less than 400ms.

Features Water Heater Handheld Mixer Freezer Hair Dryer 1 Mixer
P, n = 10 84.1% 85.7% 68.6% 95.8% 98.6%
P, n = 15 89.7% 93.8% 82.9% 97.4% 98.3%
P, n = 20 98.6% 98.6% 92.7% 98.6% 98.6%
STFT,
m = 2

94.2% 98.5% 88.8% 97.6% 100%

STFT,
m = 3

76.0% 93.0% 90.4% 98.4% 98.3%

STFT,
m = 4

94.1% 95.0% 95.2% 92.0% 100.0%

Table 6.2 – First part of the classification results for the measurements using a MLP.
Two features are compared.

Features Lamp Heater Energy Lamp Hair Dryer 2 Radio
P, n = 10 92.0% 90.6% 90.7% 80.5% 90.9%
P, n = 15 100% 89.4% 96.6% 95.5% 97.1%
P, n = 20 98.8% 94.3% 96.0% 96.1% 100%
STFT, m = 2 0.0% 94.9% 98.6% 88.5% 3.8%
STFT, m = 3 49.3% 81.8% 100% 77.6% 0.0%
STFT, m = 4 0.0% 92.0% 100% 80.0% 3.4%

Table 6.3 – TPR of the classification of the appliances with ANN and different input
features. Two features are compared.

In row 4 until 6 the TPR of the 10 appliances with the input vector of the second feature
are shown. In these three rows different resolutions of the spectrum are used as input
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vector. The signal was divided into m = 2, 3 and 4 parts. For some appliances this
feature is good for the classification. For appliances with a smaller power consumption
like radio or lamp, the feature is insufficient. Because the harmonics lost in the noise.

If we compare the two results from the feature power and spectrum it is shown, that
the two approaches has different TPR. To classify some appliances the first feature
has better results and to classify the other appliances the second feature has better
results. Overall a combination of both features should be used to increase the TPR of
the classification the appliances.

6.5 Conclusion

In this chapter approaches for the classification of appliances in the load profile have
been described. It is the last block of the processing chain, which has been analyzed in
this thesis. After the conditioning of the signals and the event detection the classifier
attaches the detected appliance to a class.

There are different kinds of classifiers. Since in this thesis a data set with reference
values was available, a supervised method was chosen. Based on preliminary studies
and the state of art an ANN was used. It was given a general overview of neural
networks. This includes the idea of the technical implementation of biological neurons.
Different applications of ANN were presented

There exist different structures of ANN. The simplest one is the perceptron. This was
described mathematically. Different transfer functions which fires the neuron were
presented. It is possible to link several neurons together. Another structure is the
MLP. This consists of several layers with different number of perceptrons.

Essential components of the ANN are the weights. To determine this from the data
set, for the perceptron and the MLP different learn algorithms were derived. The
learning rule for the perceptron is based on the Hebb rule. Whereas the learning rule
for MLP based on the gradient descent method. This method leads to backpropagtion
algorithm. As the final structure, an ANN has been described which can be used for
parameter estimation. It adapts its weights. For this reason it is called adaptive linear
neuron ADALINE.

After describing the theoretical basics on ANN, 2 classification approaches have been
described. The first approach uses a ADALINE structure to estimate the harmonics
of the transient response of appliances. The group of freezer and refrigerators should
be classified. For the decision function the MSE was used. The classification function
was a threshold decision maker. The approach was analyzed on 1235 switching events.
It was compared with the approach of Hart. It was shown, that the approach using
the ADALINE can improve the TPR by 6.6%. Even better is the improvement of
the PPV. The approach with the ADALINE has improved the PPV by 18.4% in
comparison to Hart.

For the second classification method, a MLP has been designed. The measurements
from 4.5.2.2 were used for the training, validation and test phase. Overall 10.000
patterns of 10 different appliances were used. Two feature vectors were used. The first
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is based on the power signals. The second feature vector contains the harmonic of the
switching on phase calculated with the STFT. It has been shown that it is possible to
classify very effective individual appliances with this approach. A combination of the
individual features results in a higher detection rate.
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7 Conclusion and Perspectives

The issue of energy monitoring has increased significantly in popularity in recent years.
This makes it possible to use energy more efficiently. With new approaches from
disaggregation the energy consumption should be reduced in residential buildings.
One way to do this is NALM. This has some advantages compared to an invasive
system. One important that the wiring effort is lower and thereby reduces the cost.

This thesis deals with problems in the area NALM. It is part of the research project
Smart Metering at the HFU. In this thesis three topics will be treated in more detail.

1. Measurement system and analyze of signals for NALM

2. Event detection

3. Classification

At the beginning of the thesis, general expressions were defined in chapter 2 in the
field of pattern recognition. Classifiers were presented. Since the measurements in this
thesis, included the input and the target function respectively, a supervised method
was selected. For the statistical analysis of algorithms, it is essential to define quality
criteria. Using these criteria, the individual approaches can be compared. At the end
of the chapter a method was presented, which enables an analysis of the signals in
frequency domain. Based on the FT, the STFT was derived. This allows to inves-
tigate non-stationary signals. A disadvantage of the STFT can be avoided with the
S-Transformation. This has also been described and may be used for later work.

The theme NALM has its beginnings in the 80’s of last century. Since that time, dif-
ferent approaches have been developed by several research groups worldwide. Chapter
3 gives an overview of different approaches. They can be classic divided into the
steady state analysis and the transient state analysis. New methods combine both
approaches or focusing on new analyzing methods. Therefore, the classical division
has been extended in this thesis.

For a statistical analysis of disaggregation algorithms it is necessary to have a multi-
tude of measurements. This must have good documentation of the time stamps from
the switching events. Since the beginning of this thesis was no suitable data-set ex-
ists, an own data-set should be created (cf. chapter 4). To record a data-set, an
own measurement system was developed. This can measures one- and three-phases
of the currents and voltages. The measuring system was statistically analyzed. Thus
it was demonstrated that there is no disturbing influence on the measurements. The
transfer characteristic corresponded to the specifications. The SNR is negligible and
the harmonics have no significant influence on the measurements. After analyze of the
measurement system first measurements were performed. The behavior of the appli-
ances was investigated. For this the transient response was compared. The individual
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7 Conclusion and Perspectives

powers P , Q, and S were investigated. By the end of the thesis are in the database,
three types of measurements.

t 400 individual measurements of appliances from 15 residential buildings.

t 10000 switching events from 10 different appliances. These differ in the variation
of their power consumption.

t 50 days residential buildings measurements of three phases.

The event detection was the second great part which has been worked in this thesis.
Switching on- and off-events of appliances lead to abrupt changes in the signal curve.
This event is very important for the disaggregation. At these points the later classifica-
tion will be divided the individual appliances in their classes. In chapter 5 fundamental
terms for the event detection are described. An overview of methods for event detec-
tion was given. In this thesis three methods for event detection were investigated in
detail. The first uses a high-pass filter structure. Based on the gradient operator
and the Laplace operator different filter masks were derived. The second method also
uses a filter structure. It is based on the mathematical description of the problem
and was described by Perona. The filter masks are complex and consist of a double
derived Gaussian function and their Hilbert transform. The third method is based on
the analysis of the signal in the frequency domain. For this purpose, the STFT was
used. This makes it possible to analyze time-varying signals. All three methods have
been simulated and implemented. The methods were compared with the well-known
approach of Hart. It is shown that the Perona filter has a significant improvement
over the approach of Hart. The noise reduction is much better and therefore not as
many FP are detected. As a result it has been shown in this thesis that the Perona
filter for event detection provides the best detection rates. For later implementation
in a real-time smart meter system, this filter should be used.

The last great chapter, which was processed in this thesis deals with the classification
of appliances. After the detection of a switching on event the classifier perform a
classification of the appliances at this point. In this work, a classification method
was sought which is in the group of supervised learning methods. From the state
of art and own preliminary studies, a classifier was chosen based on artificial neural
networks. Their structures allow a very fast parallel data processing. In chapter 6 a
detailed description of artificial neural networks is presented. There were presented two
methods for classification. The first one based on an ADALINE. This model estimates
the parameters of the switching on event of a refrigerator. This is passed as a feature
vector to the decision function. For this MSE was used. With a decision threshold
maker is then classified whether the device is a refrigerator or not. The method was
simulated and implemented. As a reference algorithm, the algorithm of Hart has been
used. The results show that the method based on ADALINE improves the detection
rates. The TPR increases by 6.6%. However, much better is the increase of the
PPV. This was increased by the new method by 18.4%. It has been shown that this
classification method achieves good improvement over known methods. The second
classification method is based on the use of a multilayer perceptron. For the verification
of that approach, a data-set was used consist of 10.000 measurements with 10 different
appliances. The MLP was trained with this data-set. Two different feature vectors
were used. One is based on the time signals of the power, the other uses the harmonics
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of the transient response calculated with the STFT. The results show that the MLP
is able to classify the most appliances. With very good TPR of about 95% it shows
that the feature P achieves the best rates. This chapter has shown that if a sufficient
data set is to available simple appliances can be detected well.

In this thesis the fundamental blocks MS, ED and CL have been processed. However,
further work is required for the development of a practical monitoring system which can
indirectly contribute to the reduction of electricity consumption. These have already
been described in the research project Smart Metering. In a following research project
which begins at the end of this year, two other PhD students should working on the
development of a deploy-able monitoring system. These should work on other problems
in the area of NALM. In the following an overview is shown of possible further work.
But this does not claim to completeness.

1. Classification of Complex Loads.
Intended to classify complex loads, the use of other feature vectors are examined.
Promising is the use of the S-Transform (Jimenez et al., 2014). It can be used for
the investigation of the harmonics of the current (Lin and Tsai, 2014). As already
described in the thesis, the S-Transform uses a frequency adjusted window. On
the signal level of voltage and current and other methods may be used. One
example is the use of V-I trajectories, described in (Hassan et al., 2014).

2. Classification using Secondary Information
For the problems of tracking and classification secondary information can be
used. This may include a-priori information. In the classification of the appli-
ance, the location and time of day was called as a criterion. Next, environmental
factors such as temperature or humidity may be used (Kazakidis et al., 2012).

3. Modeling and Combination of Complex Loads
The results in this thesis have been shown that simple on-off appliances with
different power consumptions can be well classified. From the preliminary inves-
tigations it is known that automates in the ground consist of on-off appliances.
For example, a washing machine consists of a heating element and a motor. For
this purpose, probabilistic models of the switching times of the appliances should
be created (Wichakool et al., 2014).

4. Tracking of the Power Consumption.
After the most alliances can be classified in the household, the power consump-
tion must be calculated. For this purpose, a study of method is necessary, which
assign a switching off event to a switching on event of an appliance. Thus, the
operating time can be determined which is used for the calculation of the power
consumption (Jung et al., 2012; Xu and Dong, 2012).

5. Visualization of the Results.
An effective energy saving is achieved only through a change in the behavior
of consumers. The monitoring system should show the consumers ways to save
energy and use energy more efficiently. For this purpose a transparent visual-
ization of the results is important. The results in this work and which will be
attained in the following may not only be presented to the consumer. It must
be made concrete proposals how energy can be saved (Goodwin et al., 2013).
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7 Conclusion and Perspectives

One possibility would be to identify inefficient appliances and in a second step
to present proposals for other energy-saving types.
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A Measurements and Measurement System

A.1 Signals for NALM

The following two tables list the most important signals for NALM are summarized.
Tab. A.1 shows the signal for a resistance R and the impedance Z. In Tab. A.2 the
signals for the inductance L and capacitance C is shown.

Description Resistance R Impedance Z
fundamental law u = R i
ohms law
absolute value I = GU = U/R I = Y U = U/Z
complex values I = GU = U/R I = Y U = U/Z

resistance R = U/I Z=U/I
complex Z = U/I = R+ jX

admittance G = I/U = 1/R Y = I/U = 1/Z
complex Y = I/U = 1/Z = G+ jB

phase angle ϕ = 0◦ ϕ = arctan(Q/P )
active factor cos(ϕ) = 1 cos(ϕ) = P/S = R/Z = G/Y
reactive factor sin(ϕ) = 0 sin(ϕ) = Q/S = X/Z =

−B/Y
active power P = UI P = UI cos(ϕ) = S cos(ϕ)
reactive power Q = 0 Q = UI sin(ϕ) = S sin(ϕ)

Table A.1 – Overview of the most important signals of a resistance R and an
impedance Z for passive sinusoidal current for a two-terminal network.

Description Inductance L Capacitance C
fundamental law u = L di/dt u = 1/C

∫
i dt

ohms law
absolute value I = −BlU = U/XL I = BCU = −U/XC

complex I = −jBlU = U/jXL I = jBCU = −U/jXC

resistance XL = ωL = U/I XC = −1
ωC = −U

I
complex j XL = jωL j XC = −1

j ωC

admittance BL = −1/(ωL) BC = ωC
complex j BL = 1/(jωL) j BC = j ωC

phase angle ϕ = 90◦ ϕ = −90◦

active factor cos(ϕ) = 0 cos(ϕ) = 0
reactive factor sin(ϕ) = 1 sin(ϕ) = −1

active power P = 0 P = 0
reactive power Q = UI Q = −UI

Table A.2 – Overview of the most important signals of an inductance L and a capaci-
tance C for a passive sinusoidal current two-terminal network.
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A.2 Measurements in the Laboratory

A.2 Measurements in the Laboratory

As described in chapter 4.5.2.2, measurements were performed in the laboratory. This
has the advantage that in a short time, a large data-set can be generated. These
provided a good documentation of the switching events. The measurements were used
for the development of the event detector and the classifier. They can also be used for
the development of further methods.

The individual measurements were stored in several files. An overview of the current
measurements is shown in Tab. A.3. The measurements with the 10.000 events, which
were used for the development of the ED and Cl having the index No = 1.x x =
1,...,10. There are still carried out further measurements, which vary in the number of
appliances and the switching events.

No Name of the Measurement Appliances Events
1.1 Cl–Szn_1–Measurement_1 10 1000 (500 On / 500 Off)
1.2 Cl–Szn_1–Measurement_2 10 1000 (500 On / 500 Off)
1.3 Cl–Szn_1–Measurement_3 10 1000 (500 On / 500 Off)
1.4 Cl–Szn_1–Measurement_4 10 1000 (500 On / 500 Off)
1.5 Cl–Szn_1–Measurement_5 10 1000 (500 On / 500 Off)
1.6 Cl–Szn_1–Measurement_6 10 1000 (500 On / 500 Off)
1.7 Cl–Szn_1–Measurement_7 10 1000 (500 On / 500 Off)
1.8 Cl–Szn_1–Measurement_8 10 1000 (500 On / 500 Off)
1.9 Cl–Szn_1–Measurement_9 10 1000 (500 On / 500 Off)
1.10 Cl–Szn_1–Measurement_10 10 1000(500 On / 500 Off)
2.1 ED–Szn_1–Measurement_1 fan heater 120 (60 On / 60 Off)
2.2 ED–Szn_1–Measurement_2 fan heater 360 (180 On / 180 Off)
2.3 ED–Szn_1–Measurement_3 fan heater 200 (100 On / 100 Off)
2.4 ED–Szn_1–Measurement_4 Lamp 360 (180 On / 180 Off)
2.5 ED–Szn_1–Measurement_5 Lamp 120 (60 On / 60 Off)
2.6 ED–Szn_1–Measurement_6 Lamp 120 (60 On / 60 Off)

Table A.3 – Overview of the current available measurements from the laboratory sim-
ulation.

The measurements were done with the own measurement system. Some pictures of
the measurements are shown in Fig. A.1.
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A Measurements and Measurement System

(a) Pc with ADC and measurement box 1 (b) SDB 1 in the left and some different ap-
pliances, e.g. freezer, lamp and oven

(c) the whole system with different appliances (d) the whole system with different appliances

Figure A.1 – Pictures of the measurement system. Using in the laboratory environ-
ment to create a big data-set of measurements in a short time.
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A.3 Measurements in Residential Buildings

A.3 Measurements in Residential Buildings

As described in chapter 4.5.2.3, measurements were performed in two residential build-
ings. The individual measurements were stored in several files. An overview of the
current measurements is shown in Tab. A.4. From a refrigerator 1235 switching events
exists. From the freezer which has a similar transient response as the refrigerator 1145
events exists. The two appliance are plugged on different phases. From this reason
there have no influence to each other.

No Name of the Measure-
ment

Freezer Events Refrigerator Events

1-9 Home_Measurement_1_x L3 160 L1 190
10-56 Home_Measurement_2_x L3 985 L1 1045

Table A.4 – Overview of the current available measurements from the households mea-
surements.

Figure A.2 – Measurement in a residential building. The senors are plugged directly
to the household entry point. The voltage and current of three phases
were measured.
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A Measurements and Measurement System

A.4 Harmonics of the Current

In chapter 4.6 the behavior of the measured appliances were analyzed. The signals
P , Q and S were used. It was shown the transient response as well as the individual
distributions of P , Q and S. As previously described these signals are the basis for the
development of the algorithms in this thesis. u(t) and i(t) should not be used. For the
reason that the high sampling rate is not achieved in today’s smart meters. But from
chapter 3 we also known that distortions in the current can be analyzed. For the sake
of completeness a short analyzing of the harmonics of the current is described here.
Based on this, new method can be developed in further work.

As an example, two different kinds of lamps are analyzed. First, we look at the
instantaneous power. Fig. A.3(a) shows the instantaneous power of the incandescent
lamp with 60W. The instantaneous power of the energy saving lamp with 15W is
shown in Fig. A.3(b).
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(a) Instantaneous power of incandescent lamp
60W.

0 10 20 30 40 50 60 70
-5

0

5

10

15

20

25

30

35

40
P

 [W
]

time [s]

(b) Instantaneous power of energy saving
lamp 15W.

Figure A.3 – Instantaneous power of a incandescent lamp and an energy saving lamp.

Based on the instantaneous power it is not directly possible to distinguish between
these two appliances. For this purpose it is necessary to use other features like the
harmonics of the current. A plot of the current signal of the two lamps is shown
in Figures A.4. The current profile of the incandescent lamp is sinusoidal whereas
the energy saving lamp has the profile of a switching power supply with short peaks.
From the current profile can be extracted different characteristics. Once the transient
characteristic. Furthermore, the typical time curve.

Another criterion for detecting active states of loads, is the analysis of the harmonics of
the current in steady state. This is accomplished by transforming the current profile
into the frequency domain. This can be done by using the STFT or if a variable
window is necessary by using the ST. Fig. A.5 shows the harmonics of the current for
the two lamps. In Fig. A.5(b), the energy-saving lamp clearly shows more significant
harmonics than the incandescent lamp in Fig. A.5(a). This is because the energy
saving lamp operates on a switched power supply, while the normal lamp only consumes
power on the fundamental wave. It is shown here that the harmonics can be used for
classification of appliances.
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Figure A.4 – Time series of the current for one class of appliances.
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(a) Incandescent lamp with a power consump-
tion of60W.
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(b) Energy saving lamp with a power con-
sumption of 15W.

Figure A.5 – Harmonics of current signal for one class of appliances.
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A.5 Transient Responses of Appliances

In the following some examples of thransient responses of different appliances in the
household are shwon.
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Philips 28PT4454

Figure A.6 – Power consumption of a TV. On the left side the transient response is
shown and on the right side a typical scenario of the usage of a TV is
shown. From 200 s until 250 s the TV was turned in stand-by mode.
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Figure A.7 – Power consumption of a coffee machine. On the left side the transient
response is shown its a normal on/ off appliance with two states.
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Figure A.8 – Power consumption of a electric iron. It looks similar like the coffee
machine. Both appliances has a heating element.
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Figure A.9 – Power consumption of a water pump. It has a significant overshoot. This
comes from the inductive behavior of this kind of appliance.
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Figure A.10 – Power consumption of a mixer. The mixer has 3 working levels with
different power consumption.
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Figure A.11 – Power consumption of a PC. A PC is a more complex appliance. The
power consumption depends from different criteria like CPU. From 250 s
until 300 s the PC was turned in stand-by mode.
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