
HAL Id: tel-01315151
https://theses.hal.science/tel-01315151

Submitted on 12 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to a methodology for service systems
modeling and engineering through a model driven
approach : architecture, transormation, and model

simulation
Hassan Bazoun

To cite this version:
Hassan Bazoun. Contribution to a methodology for service systems modeling and engineering through
a model driven approach : architecture, transormation, and model simulation. Reactive fluid environ-
ment. Université de Bordeaux, 2015. English. �NNT : 2015BORD0166�. �tel-01315151�

https://theses.hal.science/tel-01315151
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR DE

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DES SCIENCES PHYSIQUES ET DE L’INGENIEUR

SPÉCIALITÉ PRODUCTIQUE

Par Hassan BAZOUN

Contribution to a methodology for service systems modeling and

engineering through a model driven approach

Architecture, transformation, and model simulation

Sous la direction de : Yves Ducq

(Co-directeur : Gregory Zacharewicz)

Soutenue le 20 octobre 2015

Membres du jury :

M. CHEN, David Professeur Université de Bordeaux Président

M. CHAPURLAT, Vincent Professeur Ecole des Mines d'Alès Rapporteur

M. TRAORE, Mamadou Kaba Maître de Conférences Université Blaise Pascal Rapporteur

M. DUCQ, Yves Professeur Université de Bordeaux Directeur de thèse

M. ZACHAREWICZ, Gregory Maître de Conférences Université de Bordeaux Co-directeur de thèse

M. BOYE, Hadrien Ingénieur, HARDIS Group Chef de projet

M. SROUR, Zein Docteur, Ancien directeur de HARDIS Ouest

Invité

,

ii

Titre :

Contribution à une méthodologie pour la modélisation des systèmes de services et d'ingénierie

grâce à une approche dirigée par les modèles: l'architecture, la transformation et la simulation

du modèle.

Résumé :

Cette thèse se situe dans le contexte de l’importante mutation stratégique qu’opère l’Industrie

européenne face à l’émergence de nouveaux Marchés. Une caractéristique majeure de ces

nouveaux Marchés est la grande variabilité des besoins clients. Cette mutation remplace le

produit manufacturé, au cœur des stratégies Métier, par ses services d’accompagnement, en

réponse aux nouvelles exigences des clients. Ainsi, les processus Métier, initialement pensés,

construits et pilotés autour du produit, doivent aujourd’hui être revus et complétés de manière

à intégrer les services. C’est cette question que veut traiter la thèse, à travers une proposition

d’architecture d’ingénierie des services dirigée par les modèles, supportée par un

environnement logiciel appelé SLMToolBox qui permet la semi automatisation d’une partie

de la gestion du cycle de vie d’un service (modélisation, simulation et évaluation de

performances). Ce travail de recherche était dans le cadre de projet MSEE, un projet européen

de recherche et développement en collaboration avec 18 partenaires de 9 pays européen. Le

but de ce projet est de faire évoluer le concept de SSME (Service Science Management and

Engineering) vers des systèmes de production et des usines du futur, i.e. d'un point de vue

méthodologique, pour adapter, modifier et étendre les concepts de SSME pour les rendre

applicables à des entreprises traditionnellement orientées vers une production orientée produit

et d'un point de vue implantation, d'instancier les architectures et les plateformes orientées

vers les services liés au futur internet pour des systèmes globaux de production de services.

La thèse à apporter plusieurs résultats (MDSEA, Etended Actigram Star EA*, Transformation

de modele, simulation, et SLMToolBox) pour répondre aux besoins de servitization.

Le MDSEA apporte un cadre méthodologique générique inspiré de l’Ingénierie Dirigée par

les Modèles et dont le bénéfice principal est de permettre d’exprimer le traitement de toute

question relative au cycle de vie d’un service, au travers de modèles spécifiés à divers niveaux

d’abstraction, et reliés entre eux par des mécanismes de transformation de modèle.

Chacun de ces niveaux de modélisation nécessite des langages de modélisation spécifiques.

Cette architecture suggère 3 niveaux d’abstraction : (1) un niveau appelé BSM (pour Business

Service Model) où sont spécifiés les modèles conceptuels de processus Métier orientés

Service à l’aide d’un langage conçu à cet effet, nommé EA* (pour Extended Actigram Star) et

inspiré du langage GRAI Extended Actigram ; (2) un niveau appelé TIM (pour Technology

Independent Model) où sont spécifiés les modèles détaillés de ces mêmes processus à l’aide

du langage BPMN (Business Process Modeling Notation), modèles obtenus par

transformation de modèle EA* en BPMN ; et (3) un niveau appelé TSM (pour Technology

Specific Model) où sont spécifiés les modèles avec les choix technique spécifique au

développement et génération de code. MDSEA ne se limite ainsi pas aux seuls aspects liés

aux IT mais aussi aux aspects liés ressources humaines et matérielles devant être prises en

compte, créées ou encore achetées pour mettre en œuvre le service attendu et le gérer au long

de son cycle de vie.

Extended Actigram Star (EA*) est un langage de modélisation de processus business,

développé dans le cadre de cette thèse et inspiré du langage GRAI Extended Actigram. La

syntaxe abstraite et concrète de ce langage est décrite de manière détaillée.

iii

La transformation de modèle est basée sur le « mapping » entre méta modèles. Le mapping a

appliqué est défini après avoir étudié le langage source et langage cible. Puis on a

implémenté les règles de transformation en utilisent « ATLAS Transformation Language »

ATL. La transformation de modèle nous permet dans le cadre de MDSEA de passer d’un

niveau d’abstraction vers un autre. Deux transformations des modelés sont développées

pendant la thèse : EA* vers BPMN et BPMN vers DEVS.

La simulation est un outil d'assistance à l'ingénierie, comme au management ou encore au

pilotage de systèmes complexes, DEVS est aussi reconnu comme un concept formalisé et

largement usité pour la modélisation et la simulation du comportement de système basé sur

une hypothèse de comportement à événements discrets. J’ai travaillé sur les règles de

transformation de modèle BPMN 2.0 vers DEVS afin d'en permettre la simulation. Cette

simulation a pour objet d'évaluer les performances en termes de coût de de temps mais évoque

aussi des performances en termes de qualité et de flexibilité. Ces transformations sont à la

base d'une sémantique opérationnelle de BPMN i.e. des règles, éventuellement assorties de

probabilités d'évolution, décrivant comment un concept de modélisation interagit avec

d'autres concepts et évolue en conséquence d'un état au suivant si l'on adopte une vision

dynamique basée sur un modèle à états / transitions et événements comme DEVS. Le modèle

finale DEVS est simulé au travers des profils de simulation.

L’outil SLMToolBox intègre les langages adoptés, implémente les règles de transformation

de modèle, et offre un environnement de simulation, d’évaluation des performances et

d’animation des résultats. Il vient donc en support aux analystes Métier qui, en collaboration

avec les experts des différents domaines Métier, peuvent ainsi décrire et évaluer leurs

systèmes de services courants (modèles AS-IS), mais aussi concevoir et évaluer de nouveaux

services (modèles TO-BE). SLMToolBox est une application Eclipse RCP (Rich Client

Platform). C’était développé en java et en utilisent des « Framework » différents :

EMF/Ecore (Génération de code et représentation des modèles), EEF (pour gérer les

« properties » des objets graphiques), Graphiti (développement des editors graphiques), ATL

(Transformation des modèles). La SLMToolBox est un des résultats apprécié dans le projet

MSEE. Plusieurs réunions ont eu lieu à Bruxelles pour la création d’une communauté

scientifique autour de la SLMToolBox. Le but de cette Communauté est de reprendre le

développement de la SLMToolBox pour l’adapter aux besoins différents des clients dans

plusieurs domaines. Grace à cette communauté, le SLMToolBox était utilisé dans plusieurs

projets (comme NOSCIFel dans le domaine de transport…).

Mots clés :

Servitization, System de Service, MDSEA, Extended Actigram Star, Transformation de

modèle, SLMToolBox, Simulation DEVS.

Title:

Contribution to a methodology for service systems modeling and engineering through a model

driven approach: Architecture, transformation, and model simulation.

Abstract:

In today’s world of business, manufacturers are facing many challenges. Business strategies

iv

are changing and manufacturers are entering new markets and striving to meet new and

changing customer needs. Manufacturers are outsourcing more components and services to

suppliers around the world, restructuring their internal operating and information systems, and

re-engineering production processes to eliminate waste and lower costs. They are changing

the nature of their organizations by partnering with other companies in complex supply chains

and business networks that now extend globally. Manufacturing is being redefined by changes

in market place and how companies react to them. As a result, many manufacturers wanted to

make the shift to services as a solution, but they find themselves trapped in the world of

products. At the end of the nineties, the concept of Service in Manufacturing appeared and the

evolution from an economy of products towards an economy of services surrounding products

became more and more important in manufacturing. The process of creating value by adding

services to a tangible product has first been called “servitization”. Based on the problematic of

Servitization and service system engineering and in order to reduce effort and time in service

system engineering, this thesis (as being part of the MSEE project) contributed in the

development of solutions. The contribution of the thesis’s result can be classified into related

and connected pillars. The first pillar is the participation in the development of the Model

Driven Service Engineering Architecture (MDSEA) which permits Virtual Manufacturing

Enterprises (VME) to model their service systems (AS-IS and TO-BE models) starting from

modeling the system from business experts angle and then adding more details to reach the

developers and technical experts angle. The second pillar is the development of a modeling

and simulation tool, the SLMToolBox. This tool is a partial implementation of MDSEA and

its name Service Lifecycle Management ToolBox implies a role in the service’s lifecycle. The

third pillar is the development of a DEVS graphical editor and simulator integrated in the

SLMToolBox.

Keywords:

Servitization, Service System, MDSEA, Extended Actigram Star, Model Transformation,

SLMToolBox, DEVS Simulation.

v

Acknowledgment

After three years working on this thesis, I would like to thank the IMS laboratory for

accepting me as part of their team. A Big thanks to Dr. Yves Ducq and Dr. Gregory

Zacharewicz for the support and help they offered. Without them I would not be able to finish

or even start this thesis. They were always available for my questions which were many at the

beginning (when I was lost on how to start) and the end during the writing of the final

manuscript. Another special thanks to Hadrien Boye my project manager at Hardis Group

during my three years. I learned from Hadrien a lot about organizing my work, how to build

my answers and look for solutions, and most important how to always search for the bright

side of our work. Without the help of Hadrien I would not be able to deliver the work with the

same quality. Besides, I would like to thank my colleges at Hardis with whom we shared a lot

of good moments that gave me a positive force to finish this work.

Thanks to my uncle Zein Srour and it’s because of his support and help I finished my masters

and PHD studies in France. I learned a lot from you on how to always keep walking under

whatever circumstances, to be positive and that hard work pays at the end. You were the

source of motivation and light when the journey started to get darker. Thank you for

everything you have done for me. Also thanks to all members of my uncle’s family at Nantes

for the good times we spent together.

Being a PHD student is not always about being late at work trying to keep it up with deadlines

for scientific articles or finding solutions after weeks of being moving around in circles. It’s

also about having good friends with whom you spend funny, happy and relaxed moments.

Thanks to Ali, Gilberto, Elise, Yaaroub, Varvara, Chouppi, Homam, Charlene, Joe, Bianca,

Mouna… and from Lebanon Jana, Tigo, Nassim, Ali B., Ali W., Yazback…

A special Thanks to Clara, the one who gave me everything, she was my best friend, the love

in my life and the family I needed. She stood beside me in the darkest moments of the journey

and helped me to overcome it with success.

Last but not least, a big thanks to my family in Lebanon, my parents (Fatmeh and Hussein),

Dima, Mariam, Amer, Mohammed, Mano, uncles, aunts and cousins for all the love and

support you gave me and are still giving.

This thesis is dedicated to my mother for everything she has done and for here unconditional

love, to the memory of my grandmother who left us one month before defending my thesis,

and to the memory of my father who can rest now after I finished what he started.

vi

GENERAL INTRODUCTION AND PROBLEM TO SOLVE: FROM SERVICE TO SERVICE MODELING IN
VIRTUAL MANUFACTURING ENTERPRISE CONTEXT .. 1

1. CONTEXT ... 1

2. PRINCIPLES OF SERVICE AND SERVICE SYSTEM MODELING ... 2

2.1 FROM SERVICE TO SERVITIZATION .. 2
2.1.1 Characterization of a service ... 3
2.1.2 Product service and PSS ... 3

2.2 MSEE SERVITIZATION CONCEPTS .. 4
2.2.1 Extended Product (EP) ... 4
2.2.2 Product+Service and Product2Service ... 5
2.2.3 Service Life cycle Management ... 5

2.3 FROM ENTERPRISE TO MANUFACTURING SERVICE ECOSYSTEM ... 6
2.3.1 From a single Manufacturing Enterprise to a Virtual Manufacturing Enterprise 6
2.3.2 From Virtual Manufacturing Enterprise to Manufacturing Service Ecosystem 7

2.4 SERVICE SYSTEM AND SERVICE SYSTEM LIFE CYCLE MANAGEMENT .. 8
2.4.1 Service System ... 8
2.4.2 Service System Life cycle Management (SLM) ... 9
2.4.3 Servitization and Service System evolution ... 11

2.5 MODELING OF SERVICE SYSTEM .. 12
2.5.1 Why to model Service System? .. 12
2.5.2 Modeling Service System using System Theory ... 13
2.5.3 Definition of the languages to describe and represent the Models .. 15

2.6 ARCHITECTURE FOR SERVICE SYSTEM ENGINEERING .. 17
2.6.1 Service system engineering ... 17

3. MANUFACTURING SERVICE ECOSYSTEM (MSEE) PROJECT .. 17

3.1 MSEE RESULTS ... 18
3.1.1 MSEE Generic Assets ... 18
3.1.2 MSE-Specific Assets ... 18
3.1.3 VME-Specific Assets ... 19

4. CONTRIBUTION OF THE THESIS ... 19

5. ORGANIZATION ... 20

STATE OF THE ART ... 22

1. ENTERPRISE MODELLING... 23

1.1 CIMOSA ... 23
1.1.1 Approach ... 23
1.1.2 Overview .. 24

1.2 GIM ... 26
1.2.1 GIM phases .. 26

1.3 ARIS ... 29
1.3.1 Concept of ARIS architecture ... 29

1.4 CONCLUSION ON ENTERPRISE MODELING ... 29

2. ENTERPRISE INTEROPERABILITY .. 30

2.1 DEFINITIONS ... 30
2.2 DIMENSIONS ... 31
2.3 APPROACHES AND FRAMEWORKS.. 32

2.3.1 IDEAS interoperability framework ... 32
2.3.2 LISI approach ... 34
2.3.3 ATHENA interoperability framework ... 35

2.4 CONCLUSION ON ENTERPRISE INTEROPERABILITY .. 37

vii

3. MODEL DRIVEN DEVELOPMENT .. 38

3.1 MDA .. 38
3.1.1 Overview .. 38
3.1.2 MDA for Reuse and Interoperability .. 39

3.2 MDI ... 40
3.3 CONCLUSION ON MODEL DRIVEN DEVELOPMENT .. 41

4. MODELLING LANGUAGES .. 42

4.1 GRAI EXTENDED ACTIGRAM .. 42
4.2 BPMN .. 42
4.3 DEVS FORMALISM .. 44

4.3.1 Atomic DEVS .. 44
4.3.2 Coupled DEVS .. 45

4.4 CONCLUSION ON MODELING LANGUAGES .. 45

5. SIMULATION TOOLS .. 46

5.1 BUSINESS PROCESS SIMULATION TOOLS ... 46
5.1.1 ARIS Simulation ... 46
5.1.2 Protos .. 46
5.1.3 Arena ... 47
5.1.4 Jbpm .. 47
5.1.5 Bonita Open Solution ... 48
5.1.6 Evaluation .. 48

5.2 DEVS SIMULATION TOOLS .. 49
5.3 CONCLUSION ON SIMULATION TOOLS .. 49

MODEL DRIVEN SERVICE ENGINEERING ARCHITECTURE (MDSEA), EXTENDED ACTIGRAM STAR
(EA*), AND MODEL TRANSFORMATION .. 51

1. SERVICE SYSTEMS’ MODELING AND MODEL DRIVEN APPROACH .. 52

2. MDSEA .. 52

2.1 BUSINESS SERVICE MODEL (BSM) .. 55
2.2 TECHNOLOGY INDEPENDENT MODEL (TIM) .. 55
2.3 TECHNOLOGY SPECIFIC MODEL (TSM) .. 55
2.4 PROPOSED MODELLING LANGUAGES ... 56

3. EXTENDED ACTIGRAM STAR (EA*) .. 57

3.1 SCOPE ... 57
3.2 OVERVIEW ... 58
3.3 ABSTRACT SYNTAX ... 58

3.3.1 Structure .. 59
3.4 GRAPHICAL REPRESENTATIONS AND NOTATIONS .. 71
3.5 CONNECTIVITY CONSTRAINTS .. 74

4. MODEL TRANSFORMATION .. 75

4.1 PROBLEM ... 75
4.2 METAMODEL APPROACH .. 76
4.3 MAPPING OF CONCEPTS .. 78

4.3.1 Results in the frame of MDSEA .. 78
4.3.2 Results outside the frame of MDSEA (Generalization) .. 83

4.4 EXAMPLE ... 86

5. CONCLUSION ... 90

SIMULATION AND MODEL TRANSFORMATION FROM BPMN TO DEVS ... 91

1. INTRODUCTION ... 92

2. PROBLEM .. 93

viii

3. DEVS ... 94

3.1 BASIC DEVS CHARACTERISTICS ... 94
3.2 SIMULATION OF DEVS MODEL ... 94

4. TRANSFORMATION BPMN TO DEVS .. 95

4.1 DEVS METAMODEL ... 96
4.2 TRANSFORMATION RULES .. 96

4.2.1 BPMN Task to DEVS Atomic Model ... 97
4.2.2 BPMN Event to DEVS Atomic Model .. 98
4.2.3 BPMN Gateway to DEVS Atomic Model .. 103
4.2.4 BPMN Lane, Pool, and SubProcess to DEVS Coupled Model ... 105
4.2.5 BPMN Flow to DEVS Coupling ... 105

5. DEVS SIMULATION .. 105

5.1 EXECUTION ... 106
5.2 SIMULATION’S PROFILE AND RESULTS ... 108
5.3 ANIMATION .. 110

6. EXAMPLE ... 112

7. CONCLUSION ... 114

SLMTOOLBOX .. 115

1. SYSTEM OVERVIEW ... 116

1.1 CONTEXT AND PURPOSE .. 116
1.2 SYSTEM VISION AND TOP LEVEL REQUIREMENTS ... 117
1.3 LOGICAL ARCHITECTURE .. 118
1.4 ACTORS AND ROLES .. 119

1.4.1 Business Actors .. 119
1.4.2 Domain Specific Actors .. 120

1.5 END-TO-END SCENARIOS ... 120
1.5.1 Scenario 1: Design a new service within a single enterprise ... 120
1.5.2 Scenario 2: Design & deploy a new service within a VME ... 121

2. TECHNICAL OVERVIEW .. 122

2.1 TECHNICAL MODULES ... 122
2.2 APPLICATION MODULES... 124

3. IMPLEMENTATION OF MDSEA IN THE TOOLBOX ... 126

3.1 MODELLING ARCHITECTURE OVERVIEW .. 126
3.2 SERVICE MODELLING FEATURES ... 127

3.2.1 Summary of modelling editors .. 127
3.2.2 GraiGrid Editor .. 128
3.2.3 ExtendedActigramStar Editor (BSM Level) .. 129
3.2.4 UML Editor .. 129
3.2.5 BPMN Editor .. 130

3.3 MODEL TRANSFORMATION FEATURES .. 130

4. IMPLEMENTATION OF SIMULATION IN THE TOOLBOX .. 131

4.1 DEVS EDITOR ... 131
4.2 SIMULATION PROFILE .. 132
4.3 SIMULATE DEVS MODEL ... 132
4.4 ANIMATE DEVS DIAGRAM ... 133
4.5 SIMULATION REPORT .. 133

5. INDESIT USE CASE ... 134

5.1 THE USE CASE EXPERIENCE: FROM PRODUCTS TO SERVICES (AS-IS SITUATION) .. 134

ix

5.2 THE PRODUCT+SERVICE IDEA: THE CAREFREE WASHING SERVICE (TO-BE SITUATION) .. 138
5.3 SERVICE FUNCTIONALITIES ... 139
5.4 NEW ECOSYSTEM FOR TO-BE SITUATION (VE) ... 140
5.5 SCENARIOS AND OBTAINED MODELS .. 141

5.5.1 Design a single service for Indesit ... 142
5.5.2 Design a composite service within the Indesit VME .. 146

5.6 CONCLUSION ON THE INDESIT USE CASE ... 152

6. CONCLUSION ... 153

GENERAL CONCLUSION AND PERSPECTIVES ... 154

1. GENERAL CONCLUSION ... 155

2. PERSPECTIVES ... 158

REFERENCES .. 159

ANNEX-1-METAMODELS .. 167

ANNEX-2-SIMULATION REPORT ... 169

ANNEX-3-ATL AND XSLT CODE .. 175

ANNEX-4 USE CASE DIAGRAMS .. 179

x

Figure 1 The Extended Product Concept, adopted from (Thoben et al. 2001) 4
Figure 2 Servitization process .. 5
Figure 3 Service Life Cycle ... 6

Figure 4 Virtual Manufacturing Enterprise .. 7
Figure 5 Business Ecosystem Concept ... 7
Figure 6 Manufacturing enterprise vs. service in manufacturing virtual enterprise 8
Figure 7 Service delivery system ... 9
Figure 8 Service System lifecycle phases vs. Service System life - adapted from Bernus

(1995) ... 10
Figure 9 Virtual Manufacturing Enterprise in different phases of SLM 11

Figure 10 The structure of a system ... 14
Figure 11 MSEE as a system of systems .. 15
Figure 12 Enterprise Modelling mapped to the OMG 4 level architecture 16
Figure 13 CIMOSA Modelling Approach ... 25
Figure 14 GIM approach .. 27

Figure 15 Order of models realization ... 28
Figure 16 Enterprise Interoperability Framework .. 32
Figure 17 IDEAS Interoperability Framework .. 34
Figure 18 LISI reference model ... 35

Figure 19 Athena Interoperability Reference Architecture .. 36
Figure 20 Structure of the AIF ... 37

Figure 21 OMG’s Model Driven Architecture ... 39
Figure 22 Reference model for MDI .. 41

Figure 23 GRAI Extended Actigram for ‘Painting Check Process’ .. 42
Figure 24 The MDSEA architecture applied in a service network of two enterprises 54
Figure 25 MDSEA vs MDA ... 55

Figure 26 Abstract Syntax of Extended Actigram Star .. 59
Figure 27 BaseElement .. 60

Figure 28 Process UML object diagram .. 61
Figure 29 Flow ... 62
Figure 30 ControlFlow ... 63

Figure 31 SupportFlow Example ... 64
Figure 32 ExtendedActivity ... 66

Figure 33 Resource ... 67
Figure 34 LogicalOperator ... 68

Figure 35 Connector ... 70
Figure 36 check material quality example ... 70
Figure 37 Transformation architecture of EA* to BPMN .. 77
Figure 38 Different steps for transformation .. 77
Figure 39 BSM Modelling strategy .. 79

Figure 40 EA* to BPMN collaboration .. 79
Figure 41 EA* e-marketplace purchase process .. 88
Figure 42 BPMN e-marketplace purchase process .. 89
Figure 43 Relation Simulator-Model (b) .. 106

Figure 44 DEVS Message .. 107
Figure 45 Simulation Algorithm .. 108

Figure 46 Calculating probabilities .. 109
Figure 47 Calculating time and cost ... 110
Figure 48 Animation simplified algorithm ... 111

xi

Figure 49 Animation feature .. 112
Figure 50 DEVS e-marketplace purchase process ... 113
Figure 51 initialize simulation profile .. 113
Figure 52 SLMToolBox - Context within the service lifecycle ... 116

Figure 53 Purpose: phases of the service lifecycle to support ... 117
Figure 54 SLMToolBox Logical Architecture ... 118
Figure 55 System Actors .. 119
Figure 56 Design a new service within a single enterprise .. 120
Figure 57 Design & deploy a new service within a VME.. 121

Figure 58 Modelling Environment - Technical Architecture Overview 124
Figure 59 Application modules .. 125

Figure 60 Modelling architecture’s overview .. 127
Figure 61 Create new wizard ... 131
Figure 62 DEVS editor ... 132
Figure 63 Simulation profile .. 132
Figure 64 Simulation .. 132

Figure 65 Animation .. 133
Figure 66 Indesit Ecosystem .. 137
Figure 67 Use case AS-IS Servitization level .. 137
Figure 68 Use Case TO-BE Servitization level ... 139

Figure 69 Overall service concept (EA*) ... 142
Figure 70 General view (EA*) ... 143

Figure 71 High level system architecture (UML) .. 144
Figure 72 Care free washing machine website (UML) .. 145

Figure 73 WM usage data (UML) .. 146
Figure 74 Smart Detergent Provisioning (EA*) ... 147
Figure 75 Smart Detergent Provisioning (GraiGrid) .. 148

Figure 76 Performance indicators (1) ... 149
Figure 77 Performance indicators (2) ... 149

Figure 78 Performance indicators (3) ... 150
Figure 79 RAW Smart Detergent Provisioning (BPMN) .. 151
Figure 80 Rearranged Smart Detergent Provisioning (BPMN) ... 151

Figure 81 Enriched Smart Detergent Provisioning (BPMN) ... 152
Figure 82 context, problem, and contributions .. 157

Figure 83 BSM Core Metamodel ... 167
Figure 84 TIM Core Metamodel .. 168

Figure 85 ATL Lazy Rule: EA* Process to BPMN Process .. 175
Figure 86 ATL helpers ... 176
Figure 87 XSLT example 1 .. 177
Figure 88 XSLT example 2 .. 178
Figure 89 Global view .. 179

Figure 90 Service Ideation process .. 179
Figure 91 Product-Service System Design ... 180
Figure 92 Product and Service Design ... 180
Figure 93 Service System Design .. 181

Figure 94 Service System Design .. 181

xii

Table 1 Evaluation of Business Process Simulation Tools .. 49
Table 2 Model attributes .. 60
Table 3 BaseElement attributes .. 60

Table 4 Process attributes ... 61
Table 5 FlowElement attributes ... 62
Table 6 Flow attributes ... 62
Table 7 OutputInputFlow attributes ... 63
Table 8 ControlFlow attributes .. 63

Table 9 SupportFlow attributes .. 64
Table 10 FlowNode attributes .. 64

Table 11 ExtendedActivity attributes ... 65
Table 12 AtomicExtendedActivity attributes ... 66
Table 13 StructuralExtendedActivity attributes ... 66
Table 14 Resource attributes .. 66
Table 15 Human attributes ... 67

Table 16 Material attributes ... 67
Table 17 IT attributes ... 67
Table 18 LogicalOperator attributes... 68
Table 19 Diverging attributes ... 68

Table 20 DivergingAnd attributes .. 69
Table 21 ConvergingAnd attributes ... 69

Table 22 Converging attributes .. 69
Table 23 DivergingOr attributes .. 69

Table 24 ConvergingOr attributes .. 69
Table 25 InternalConnector attributes .. 71
Table 26 ExternalConnector attributes ... 71

Table 27 ProcessConnector attributes .. 71
Table 28 Organization attributes .. 71

Table 29 Graphical Representations... 72
Table 30 Flow Constraints ... 74
Table 31 EA* to BPMN - Mapping (Collaboration Diagram) ... 80

Table 32 EA* to BPMN - Mapping (Collaboration Diagram) ... 82
Table 33 EA* to BPMN - Mapping (Collaboration Diagram) ... 83

Table 34 BPMN Task to DEVS Atomic Model ... 97
Table 35 BPMN Receive Task to DEVS Atomic Model ... 98

Table 36 BPMN Send Task to DEVS Atomic Model .. 98
Table 37 BPMN Start Event to DEVS Atomic Model ... 99
Table 38 BPMN Message Start Event to DEVS Atomic Model .. 99
Table 39 BPMN Timer Start Event to DEVS Atomic Model .. 100
Table 40 BPMN None Intermediate Event to DEVS Atomic Model 101

Table 41 BPMN Message Intermediate throw Event to DEVS Atomic Model 101
Table 42 BPMN Message Intermediate catch Event to DEVS Atomic Model 102
Table 43 BPMN End Event to DEVS Atomic Model .. 102
Table 44 BPMN Message End Event to DEVS Atomic Model ... 103

Table 45 BPMN Multiple End Event to DEVS Atomic Model ... 103
Table 46 BPMN Exclusive Gateway to DEVS Atomic Model ... 104

Table 47 BPMN Parallel Gateway to DEVS Atomic Model ... 105
Table 48 BPMN SubProcess to DEVS Coupled Model .. 105
Table 49 BPMN Flow to DEVS ... 105

xiii

Table 50 SLMToolBox - Modelling editor’s overview ... 128

Résumé substantiel en français

Cette thèse se situe dans le contexte de l’importante mutation stratégique qu’opère l’Industrie
européenne face à l’émergence de nouveaux Marchés. Une caractéristique majeure de ces
nouveaux Marchés est la grande variabilité des besoins clients. Cette mutation remplace le
produit manufacturé, au cœur des stratégies Métier, par ses services d’accompagnement, en
réponse aux nouvelles exigences des clients. Ainsi, les processus Métier, initialement pensés,
construits et pilotés autour du produit, doivent aujourd’hui être revus et complétés de manière
à intégrer les services. C’est cette question que veut traiter la thèse, à travers une proposition
d’architecture d’ingénierie des services dirigée par les modèles, supportée par un
environnement logiciel appelé SLMToolBox qui permet la semi automatisation d’une partie de
la gestion du cycle de vie d’un service (modélisation, simulation et évaluation de
performances). Ce travail de recherche était dans le cadre de projet MSEE, un projet européen
de recherche et développement en collaboration avec 18 partenaires de 9 pays européen. Le but
de ce projet est de faire évoluer le concept de SSME (Service Science Management and
Engineering) vers des systèmes de production et des usines du futur, i.e. d'un point de vue
méthodologique, pour adapter, modifier et étendre les concepts de SSME pour les rendre
applicables à des entreprises traditionnellement orientées vers une production orientée produit
et d'un point de vue implantation, d'instancier les architectures et les plateformes orientées vers
les services liés au futur internet pour des systèmes globaux de production de services.
La thèse à apporter plusieurs résultats (MDSEA, Etended Actigram Star EA*, Transformation
de modèle, simulation, et SLMToolBox) pour répondre aux besoins de servitization.

Figure 1 MDSEA

Enterprise B Enterprise A

IT
Domain

Organisation
human Physical

means IT
Domain

Organisation
human Physical

means

Business Service Model (BSM)

Technology Independent Model
(TIM)

Technology Specific Model
(TSM)

Business Service Model (BSM)

Technology Independent Model
(TIM)

Technology Specific Model
(TSM)

Services in Virtual Enterprises Services in Virtual Enterprises

Interoperability at the model level

Interoperability at the service
system level

Interoperability at the model level

Interoperability at the model level

Le MDSEA apporte un cadre méthodologique générique inspiré de l’Ingénierie Dirigée par les
Modèles et dont le bénéfice principal est de permettre d’exprimer le traitement de toute question
relative au cycle de vie d’un service, au travers de modèles spécifiés à divers niveaux
d’abstraction, et reliés entre eux par des mécanismes de transformation de modèle.
Chacun de ces niveaux de modélisation nécessite des langages de modélisation spécifiques.
Cette architecture suggère 3 niveaux d’abstraction : (1) un niveau appelé BSM (pour Business
Service Model) où sont spécifiés les modèles conceptuels de processus Métier orientés Service
à l’aide d’un langage conçu à cet effet, nommé EA* (pour Extended Actigram Star) et inspiré
du langage GRAI Extended Actigram ; (2) un niveau appelé TIM (pour Technology
Independent Model) où sont spécifiés les modèles détaillés de ces mêmes processus à l’aide du
langage BPMN (Business Process Modeling Notation), modèles obtenus par transformation de
modèle EA* en BPMN ; et (3) un niveau appelé TSM (pour Technology Specific Model) où
sont spécifiés les modèles avec les choix technique spécifique au développement et génération
de code. MDSEA ne se limite ainsi pas aux seuls aspects liés aux IT mais aussi aux aspects liés
ressources humaines et matérielles devant être prises en compte, créées ou encore achetées pour
mettre en œuvre le service attendu et le gérer au long de son cycle de vie.

Figure 2 Extended Actigram Star

Extended Actigram Star (EA*) est un langage de modélisation de processus business,
développé dans le cadre de cette thèse et inspiré du langage GRAI Extended Actigram. La
syntaxe abstraite et concrète de ce langage est décrite de manière détaillée.

Figure 3 Transformation de model

La transformation de modèle est basée sur le « mapping » entre méta modèles. Le mapping a
appliqué est défini après avoir étudié le langage source et langage cible. Puis on a implémenté
les règles de transformation en utilisent « ATLAS Transformation Language » ATL. La
transformation de modèle nous permet dans le cadre de MDSEA de passer d’un niveau
d’abstraction vers un autre. Deux transformations des modelés sont développées pendant la
thèse : EA* vers BPMN et BPMN vers DEVS.

La simulation est un outil d'assistance à l'ingénierie, comme au management ou encore au
pilotage de systèmes complexes, DEVS est aussi reconnu comme un concept formalisé et
largement usité pour la modélisation et la simulation du comportement de système basé sur une
hypothèse de comportement à événements discrets. J’ai travaillé sur les règles de transformation
de modèle BPMN 2.0 vers DEVS afin d'en permettre la simulation. Cette simulation a pour
objet d'évaluer les performances en termes de coût de de temps mais évoque aussi des
performances en termes de qualité et de flexibilité. Ces transformations sont à la base d'une
sémantique opérationnelle de BPMN i.e. des règles, éventuellement assorties de probabilités
d'évolution, décrivant comment un concept de modélisation interagit avec d'autres concepts et
évolue en conséquence d'un état au suivant si l'on adopte une vision dynamique basée sur un
modèle à états / transitions et événements comme DEVS. Le modèle finale DEVS est simulé
au travers des profils de simulation.

X
S
L

Figure 4 Editeur DEVS

L’outil SLMToolBox intègre les langages adoptés, implémente les règles de transformation de
modèle, et offre un environnement de simulation, d’évaluation des performances et d’animation
des résultats. Il vient donc en support aux analystes Métier qui, en collaboration avec les experts
des différents domaines Métier, peuvent ainsi décrire et évaluer leurs systèmes de services
courants (modèles AS-IS), mais aussi concevoir et évaluer de nouveaux services (modèles TO-
BE). SLMToolBox est une application Eclipse RCP (Rich Client Platform). C’était développé
en java et en utilisent des « Framework » différents : EMF/Ecore (Génération de code et
représentation des modèles), EEF (pour gérer les « properties » des objets graphiques), Graphiti
(développement des editors graphiques), ATL (Transformation des modèles).

Figure 5 SLMToolBox Architecture Logique

Service Lifecycle Management Tool

MDSEA Metamodels

Modelling
Editors

Model
Transformation

Engineering
Simulation

Monitoring
& Control
KPI design

La SLMToolBox est un des résultats apprécié dans le projet MSEE. Plusieurs réunions ont eu
lieu à Bruxelles pour la création d’une communauté scientifique autour de la SLMToolBox.
Le but de cette Communauté est de reprendre le développement de la SLMToolBox pour
l’adapter aux besoins différents des clients dans plusieurs domaines. Grace à cette communauté,
le SLMToolBox était utilisé dans plusieurs projets (comme NOSCIFel dans le domaine de
transport…).

Mots clés :

Servitization, System de Service, MDSEA, Extended Actigram Star, Transformation de
modèle, SLMToolBox, Simulation DEVS.

General Introduction and
Problem to Solve: From

Service to Service
Modeling in Virtual

Manufacturing Enterprise
Context

1

1. Context

Around one in ten (9.8 %) of all enterprises in the EU-27’s non-financial business economy

were classified to manufacturing in 2009, a total of 2.0 million enterprises. The manufacturing

sector employed 31 million persons in 2009, generated 5.812 billion Euro of turnover and

1.400 billion Euro of value added. By these measures, manufacturing was the second largest

of the NACE sections within the EU-27’s non-financial business economy in terms of its

contribution to employment (22.8 %) and the largest contributor to non-financial business

economy value added, accounting for one quarter (25.0 %) of the total. Furthermore, SMEs

were identified as the backbone of manufacturing industry in Europe. Micro, small and

medium enterprises provided around 45 % of the value added by manufacturing while they

accounted for around 59 % of manufacturing employment [EFFRA, 2013].

In today’s world of business, manufacturers are facing many challenges. Business strategies

are changing and manufacturers are entering new markets and striving to meet new and

changing customer needs. Manufacturers are outsourcing more components and services to

suppliers around the world, restructuring their internal operating and information systems, and

re-engineering production processes to eliminate waste and lower costs. They are changing

the nature of their organizations by partnering with other companies in complex supply chains

and business networks that now extend globally. Manufacturing is being redefined by changes

in market place and how companies react to them. Some key drivers of change are working

across international markets:

 New and more demanding customers

 More demanding stakeholders

 Intense competition

 The pace of innovation and development of new technologies

As a result, many manufacturers wanted to make the shift to services as a solution, but they

find themselves trapped in the world of products. Their systems, procedures and practices are

all structured to support the design and delivery of products, yet increasingly their customers

are demanding services and solutions. A revolution has occurred worldwide in the business of

manufacturing. Business is responding to the globalization of industrial markets, production

systems, supply networks, and competition. Manufacturers no longer see their activities

simply in terms of transforming raw materials into components or finished products. Today

manufacturing is a system encompassing all the activities that are required to deliver products

that meet customer needs and that extends from research, development, design, and

engineering to production, finance, sales, marketing, and after sales service. In simple words,

manufacturers have started shifting towards servitization in order to compete in the market.

Servitization, the term coined by [Vandermerewe, 1988], is now widely recognized as the

process of creating value by adding services to products. Since the late 1980s its adoption as a

competitive manufacturing strategy has been studied by a range of authors [Baines, et al.,

2007] [Oliva & Kallenberg, 2003] [Slack, 2005] who have specifically sought to understand

the development and implications of this concept. The intuitive understanding of service is

gotten by comparing it with the word product. Products are physical entities that are

manufactured from raw materials. Services are non-physical entities that are the applications

2

of knowledge and skills for the benefit of a party [Vargo and Lusch, 2004]. The most famous

characteristics of services distinguishing them from products are intangibility, heterogeneity,

inseparability and perishability, now known as the IHIPs [Gummesson, 2007].

For the European manufacturing industry of the future, servitization is regarded as one of the

most important trends. Innovative combinations of tangible products with intangible

knowledge oriented services make the resulting solution more attractive and beneficial for the

user and the consumer especially high wages regions which cannot compete on international

scales.

2. Principles of Service and Service System modeling

This chapter introduces the principles and concepts of Service and Service System’s

modeling, development, operation, and governance. For this reason we will start by exploring

the main characteristics of Service and Service System in the domain of Manufacturing. Then

the Service Life cycle Management concept is introduced.

2.1 From service to servitization

Studies and researches in Service’s domain have been mostly devoted to support tertiary

sector domains (e.g. banking & finance, tourism, trade, public administration), with an

obvious focus on ICT. Demand for high customization and growing competition has led to the

situation that satisfying customer needs only through tangible products from the core business

activities is no longer possible [Johnston et al, 2008]. At the end of the nineties, the concept of

Service in Manufacturing appeared and the evolution from an economy of products towards

an economy of services surrounding products became more and more important in

manufacturing. A bundling of physical goods and services is required to augment the

complexity on the customer side. Increasing attention has to be given to understand the

customer problem and create a suitable solution. Services are added to the tangible product in

order to support certain phases of its life-cycle (e.g. call center, customer support etc.). They

can be provided by the same company offering the tangible product or by a third party.

Furthermore, the services can be included in the price of the physical good or invoiced

separately. Therefore, the services have to be closely connected to a tangible product, but they

don’t have to be necessarily supplied with it.

This evolution is called Servitization and its most tangible effect is the development of

Product Service Systems (PSS). The process of creating value by adding services to a

tangible product has first been called “servitization” by [Vandermerwe and Rada, 1988]. They

describe the increasing customer demand-driven offering of product-service “bundles”

(consisting of goods, services, support, knowledge and self-service) by modern corporations

to create a competitive edge. This requires looking at customer needs as a whole, demanding

for new relationships between suppliers and customers. In the beginning, the provision of

services has been regarded as a side-show by manufacturing companies. The main value

creation was attributed to the tangible product, while services have been added for marketing

purposes [Gebauer and Friedli 2005]. However, in many cases services have become as

important for the customer as the product itself, so that they are a main differentiating factor

for the customer. As a recent development, a larger portion of the added value for the

customer is coming from the services, reducing the tangible product to a part of the whole

offer [Gebauer et al. 2006]. Different levels of servitization can be identified, reaching from

the traditional manufacturer of tangible products, over the provision of service add-ons to the

provision of products as a service.

3

 Characterization of a service 2.1.1

The definition of a Service is very difficult. We extracted from the survey of the literature we

performed, one definition we estimate significant: “Service is the application of competence

for the benefit of another. Service involves at least two entities, one applying competences

and another integrating the applied competences with other resources and determining benefit

(value co-creation). We call these interacting entities service systems” (Spohrer et al.).

Most of the time a service is opposed to a good. The following list characterizes a service

(Lovelock, 2004):

 A service is not owned, but there is a restricted access.

 Services have intangible results.

 Customers are involved in the service production process.

 Other persons than the customers can be involved in the service process as

stakeholders, sub-contractors, etc…

 Quality in a service is difficult to control.

 Service cannot be stored.

 Service delivery lead time is crucial.

 Service delivery integrates physical and electronic way.

Since a decade, new research thinking has been emerging, trying to systematize the multi-

disciplinary knowledge involved in service systems. On their web page, IBM describes

service science as “a growing multi-disciplinary research and academic effort that integrates

aspects of established fields like computer science, operations research, engineering,

management sciences, business strategy, social and cognitive sciences, and legal sciences”.

In the computer science domain, Service Oriented Architectures (SOA) [Perrey, 2003], have

revolutionized information systems, by providing software engineers with powerful

methodologies and tools for decomposing complex systems into autonomous components.

The final aim of such an evolution is to support enterprise vital processes and workflows, by

simple orchestrations and compositions in the hand of business specialists.

 Product service and PSS 2.1.2

A product-service is often called a service supplied in addition to a product thus increasing its

value for the customers (Furrer, 1997). We can refer also to the SUSPRONET European

project (Product services in the need area “Information and Communication”, by Charter,

Adams and Clark, Suspronet report (October 30
th

, 2004), which gives the following

definitions:

 Product service as a value proposition that consists of a mix of tangible products and

intangible service designed and combined so that they are jointly capable of fulfilling

integrated final customer needs.

 Product-Service System (PSS) as the product-service including the network and

infrastructure needed to ‘produce’ a product-service.

A typology of product-service systems has been proposed by different authors that considers

three PSS variants [Behrend et al, 2003] [Brezet et al, 2001] [Zaring, 2001]

 The first variant is product-oriented services. Here, the business model is still

dominantly geared towards sales of products, but some extra services are added.

4

 The second main variant is user-oriented services. Here, the traditional product still

plays a central role, but the business model is not anymore geared towards selling

products. The product stays in ownership with the provider, and is made available in a

different form, and sometimes shared by a number of users.

 The last variant is result-oriented services. Here, the client and provider in principle

agree on a result, and there is not a pre-determined product involved, i.e. that the

product is just a mean to sell a service but the customer pays for the service and not

for the product. For instance, most of mobile phone providers offer the phone to sell

communication time.

An Industrial Product-Service System (IPS2) is characterized by an integrated and

mutually determined planning, development, provision and use of product and service shares

including its immanent software components in Business-to-Business applications and

represents a knowledge-intensive socio-technical system. Certainly, at the present time, the

income generated by the sale of services and product-service systems sales is higher than that

generated by product sales. Nevertheless, the evolution towards PSS is neither immediate nor

obvious. It implies managerial and organizational changes that are often out of reach for most

Small Manufacturing Enterprises (SMEs) or even large industrial companies. In the next

section we will analyze the PSS in the domain of Manufacturing and its development process

(Servitization).

2.2 MSEE Servitization Concepts

Clearly the servitization of manufacturing companies covers different levels of service

provision and consequently different stages can be followed to evolve (MSEE, deliverable

52.1). Traditionally in the manufacturing domain, we are used to consider the product as the

core element of the service to customers. But due to the market pressure, it is necessary to

offer to the customers more services linked to the product, either new services linked to

existing products, or new innovate services linked to specific products developed around these

services. An appropriate concept to link products, product related services and users’ need is

the “Extended Product” (EP) (Thoben et al. 2001).

 Extended Product (EP) 2.2.1

The Extended Product concept belongs to the category of Product-Service System. The

Extended Product is characterized by a layer model based on manufacturing product and

defining the process extensions (Figure 1). The Extended Product is a complex result of

tangible and intangible components.

Figure 1 The Extended Product Concept, adopted from (Thoben et al. 2001)

The Core Product is the physical product that is offered to the market; while the Product Shell

describes the tangible “packaging” of the product. Supporting Services are intangible

additions, which facilitate the use of the product (e.g. adaptive preventive maintenance plans

or mobility guarantees). The resulting Extended Product would be a specific solution

satisfying the customers demand. As the solution can become very complex, several business

Supporting Services

Tangible Product Shell

Core Product (Tangible)

Differentiating Services

5

partners may be collaborating for the provision of the EP in the frame of an Ecosystem. Thus,

the following aspects define the EP concept (Thoben et al. 2001):

 Combination of a physical product and associated services.

 Intangible extensions that are information and knowledge, extensive collaboration of

enterprises in groups / networks to provide value adding services.

 Product+Service and Product2Service 2.2.2

The different stages of product and service provision are shown in Figure 2.

Figure 2 Servitization process

The first stage is the selling of a product (Tangible Product). The second stage which

initializes the servitization process and the evolution toward “Product+Service”, starts by

adding a simple service (Product and supporting service). In this scenario, the simultaneous

offering of the tangible product (Core Product and Shell) extended with proper tailored

services is developed. In this case, both physical products and services contribute to the

revenues, their balance needs to be adaptively determined and continuous innovation of

services assumes a key competitive advantage. For example, a washing machine manufacturer

will add a device on the machine-tool to check continuously the functioning of the machine).

The third stage (Product and differentiating service) is an evolution of the previous one. The

service is more elaborated and increases the differentiation. If we use the washing machine

example, we can propose to sell the machine plus a service which guaranties a high

percentage of availability of this machine. Finally, The fourth stage, Product2Service

scenarios are in contrast sharply decoupling manufacturing of goods and selling of services,

where in most cases physical goods remain the property of the manufacturer and are

considered as investment, while revenues come uniquely from the services (e.g. the previous

washing machine manufacturer doesn’t sell the machine-tools but sells hours of running of the

machine-tool).

 Service Life cycle Management 2.2.3

Service Life cycle Management (SLM) is a concept derived from PLM (Product Lifecycle

Management). PLM is concerned with the management of entire life cycle of a product

focusing on all product data relating to its design, production, support and ultimate disposal at

the end of the life cycle. Similar to PLM, SLM aims at managing all service data relating to

its design, implementation, operation and final disposal. The various phases are (Figure 3):

Tangible

Product

Product+

Service

Product2

Service

Product and

supporting

Services

Product and

differentiating

Services

Product as a

Service

6

Figure 3 Service Life Cycle

 Service identification: identify service’s domain, objectives, and challenges for a

transition according the Servitization process.

 Service concept: identify and define main concepts.

 Service requirement: identify, describe and model end-users required service.

 Service design: design, specify and simulate the provided service.

 Service delivery: describes how the designed service will be delivery.

Between the various phases some feedback loops could happen, in order to answer better to

the requirement of the previous phase.

2.3 From Enterprise to Manufacturing Service Ecosystem

In this subchapter we analyze the evolution of the Manufacturing Service System along the

various transitions from stage 1 to stage 4 (see Figure 2). In the servitization process the

hypothesis is to start from one manufacturing enterprise. We will do a distinction between the

transition from stage 1 to stage 2 and 3 on one side and the transition to stage 4 which is

certainly more complex.

 From a single Manufacturing Enterprise to a Virtual Manufacturing Enterprise 2.3.1

Extension of products in terms of Product+Service will concern physical products as well as

the associated accessories or services. Thus, depending on the type and core competencies

required to supply the associated services, it will be necessary to involve several business

partners collaborating very closely towards the common goal of making the sale of the

package attractive, sharing risks and resources (Figure 4). An industrial model for

collaboration to exploit the various opportunities without the implementation of a strong

integration is a Virtual Manufacturing Enterprise (VME).

Service
Identification

Service
Concept

Service
Requirement

Service
Design

Service delivery

Service Lifecycle

Service Life (time)

7

Figure 4 Virtual Manufacturing Enterprise

A VME is an organizational form that marshals more resources than it currently has on its

own, using collaborations both inside and outside of its boundaries, presenting itself to the

customer as one unit. It is a set of (legally) independent enterprises that share resources and

skills to achieve a mission/goal. The main difference between Supply Chain and VME is the

type of relation between the enterprises (more integrated in Supply Chain) but also the fact

that the VME will be adapted each phase of the SLM.

 From Virtual Manufacturing Enterprise to Manufacturing Service Ecosystem 2.3.2

The evolution toward Product2Service is certainly more complex and needs the cooperation

of several types of enterprises and organizations in order to develop a strong potential of

innovation. The reason is to answer to the strong competition on the market, therefore it is

necessary to continuously adapt and improve the VME. To enrich the potentiality of the

VME, it is necessary to group different and heterogeneous entities like large OEMs, SMEs,

Technical centers, Universities, research centers, individual professionals, employees, citizens

and consumers etc. Such an organizational form is called in MSEE project, a Manufacturing

Service Ecosystem (MSE). This MSE is left free to evolve and to network as it likes more,

just following the market evolutionary law that it is the fittest species which survive. The

MSE around supports and encourages this emergent and evolutionary approach by providing

those entities with the necessary services round the product (Figure 5). Anyway it will be

necessary to give a limit in the expansion and also some rules in order to maintain coherence.

Figure 5 Business Ecosystem Concept

8

2.4 Service System and Service System Life cycle Management

Services are produced by a Service System which could assume, as we have described

previously different organizational forms such as VME or MSE.

 Service System 2.4.1

Service science aims to provide theory and practice around service innovation based on the

notion of “joint value creation” among different roles offering and consuming services in a

system. In the description of Servitization, we reach to the conclusion that the creation of an

Innovative Service is favored and in some cases requires a set of enterprises, research centers,

customers etc. It is necessary starting from one manufacturing enterprise which sells one

product to create a “System composed of various entities” that we call a MSE (Figure 5).

Service system is considered to be the basic unit, in which entities perform actions to their

mutual benefit. A service system consists of people and technologies that adaptively compute

the knowledge about changing values in the system and adjust to it according (Chesbrough,

2006). To define a Service System in the domain of Manufacturing, we will use a comparison

between the production of a product (Product System) and the production of a service

(Service System) (Figure 6).

Figure 6 Manufacturing enterprise vs. service in manufacturing virtual enterprise

A Product System is composed of an organization which produces a product and delivers a

Product to the Customer. This organization could be a set of enterprises, for example one

being an OEM (Original Equipment Manufacturer) and the other being sub-contractors (i.e.

Supply Chain). We call this organizational form a “Manufacturing Enterprise” and it is

represented in figure 6 by a rectangle with a dotted line. There are relations between the

“Manufacturing Enterprise” and customers, but this type of relations is more knowledge

exchanges and sometimes they are not strictly necessary. For instance, in the case of the

manufacturing “on demand”, the collaboration between the Manufacturing enterprise and the

customer is absolutely necessary and it is implemented by several exchanges of data,

information and knowledge (e.g. about the product, its management, its usage, its

maintenance, its disposal).

In a Service System which produces a Service, the customer is an integrated part: it is

impossible to produce a service if the customer is not at the center of the loop (even if in a

manufacturing enterprise, the customer can be involved at the beginning of the loop) and data-

information-knowledge is constantly shared between producer and consumer. In addition, a

9

very important phase is the realization/delivery of the service.

The service delivery system corresponds to the systematic and coherent organization of all the

physical and human elements of the interface customer/enterprise necessary to the realization

of service provisions whose commercial characteristics and quality levels of appreciation have

been determined before (Boughnim, 2005) (Figure 7). The three elements required to deliver

a service on a functional point of view are the customer, the contact people and the physical

support.

Figure 7 Service delivery system

 Service System Life cycle Management (SLM) 2.4.2

As a basis, MSEE proposes to adopt the ISO 15704 (2000) standard which defines generic

entity/system life cycle phases and evolution of the Service System in time. We have chosen

this standard because it has a great influence in Enterprise Modelling languages and

approaches that are used for each phase and is recognized by ISO. This standard has been

developed by ISO TC184 SC5/WG1 (Modeling and architecture) on the basis of several

enterprise architectures and methodologies (CIMOSA, PERA [Williams, 1996], GERAM

[Williams, 1995], GRAI…). The main steps of this standard have been adapted to Service

System lifecycle in the frame of the MSEE project:

 Service System identification: identify domain and existing component, objectives,

challenges for a transition from product to service (or product + service).

 Service System concept: identify and define main concepts (models, functions, and

values) to create service around a product.

 Service System requirement: identify, describe and model end-users required service

system.

 Service System design: design, specify and simulate the system that will provide that

service.

 Service System implementation: describe how the designed service system will be

realized, delivered and implemented physically with all components.

 Service System operation: service system is operational for use by customers, this

includes service consumption and interaction with customers, monitoring, evaluation,

and maintenance.

 Service System decommission: end of the system service to remove and destruct it and

recycle its components.

10

Figure 8 Service System lifecycle phases vs. Service System life - adapted from Bernus

(1995)

Figure 8 illustrates how an implemented Service System evolves in time (Service System

lifecycle phases vs. Service System life). From Identification to Implementation, service

system is designed and engineered following lifecycle phases. When a Service System is put

in operation after implementation, it could be re-engineered several times during its life.

Small changes might only need some redesign and implementation actions. Important changes

might need to restart at concept phase to identify new/additional concepts and then to re-

engineer part of or the whole service system following the lifecycle. At the end activities are

also needed to disassemble and decommission the service system. A very important subject

will be the link between the PLM and the Service System Life cycle Management particularly

when we reach the phase of the reconfiguration of the product and related services.

So, the structure of the VME could be different in the Design phase than in the Delivery phase

and also of course the partners involved as shown in figure 10 below. For instance universities

and research centers will be more involved in the ideation and design phase than in the

realization phase.

Service system
Identification

Service system
Concept

Service system
Requirement

Service system
Design

Service system
Implementation

Service system
Operation

Service system
Decommission

Service System Lifecycle

Service System Life

Service system
reengineering and
evolution

11

Figure 9 Virtual Manufacturing Enterprise in different phases of SLM

 Servitization and Service System evolution 2.4.3

With respect to the servitization four levels are identified to mark different stages in a

servitization process of an enterprise: (1) Extended product, (2) Product +service, (3) Product

to service, (4) Product as a service.

According to this process, several transitions are possible even if one company could decide

to reach only stage (2) or (3) and not mandatory stage (4):

 (1) to (2): Supporting services are identified, defined, realized, and they are offered

together with the product.

 (2) to (3): Special kinds of services are identified, defined, realized, and these services

are recognized by the customer as benefits that differentiate the product from

competitors. Such approach requires an environment in which the customer plays an

important role with other stakeholder.

 (3) to (4): The product is rented to customers and remains the ownership of the

enterprise, the service alone is to sell to the customer.

The process of evolution is quite complex. In fact if we start from the stage (1), we could have

a System enterprise which will be in an AS IS situation. Based on an innovation process, the

enterprise decides to create a service and for that will move to a TO BE situation by

cooperating with others System Enterprises (suppliers of services, manufacturers of

devices,….) in order to form a Virtual Enterprise (VE). Depending on the market situation or

others factors, the Virtual Enterprise which is in a new AS IS situation, will evolve by

extending its activities (based on complex innovation process due to the need to become

competitive on the market), requiring the cooperation with Technical centers, Research

centers, consultants, plus the implication of other organization as Financial establishments.

Such an evolved virtual enterprise requires a new situation (new TO BE) which is more easily

Service
ideation

phase

Service
Development

phase

Service
realisation

phase

Service life cycle

Virtualisation

Virtualisation

Virtualisation

Virtual organisation for
service ideation

Virtual organisation for
service development

Virtual organisation for
service realisation

Real
organisations

Virtual organisation for
service design

Service
design
phase

Virtualisation

12

achieved by a MSE.

The conclusion on the description of the servitization process is that the modeling techniques

for Service Systems must allow not only the modeling of enterprise’s system, but also a

system of systems, meaning the VE or even the MSE which generated it. In such a case, it

will be necessary, by comparing AS IS and TO BE models at each stage, to determine the

evolution of the Service System, and in particularly the:

 IT system

 Organization and Humans supporting this organization,

 Physical means as Machines, new devices or physical material.

In order to support the various transitions in the Servitization Process we propose a modeling

support for the Service System with Concepts, Models, Tools and Methodology. This support

must guide the evolution of the Service System in order to facilitate the determination of the

components of the TO BE Service System starting from the AS IS situation.

2.5 Modeling of Service System

 Why to model Service System? 2.5.1

We have already defined a Service System which could be a single manufacturing enterprise,

a Virtual Manufacturing Enterprise (VME). In comparison, VME has precise objectives to

reach in each phase of the SLM, although the Manufacturing Ecosystem is a group of

companies without precise dedicated objectives to reach. For instance, a cluster of companies

and research centers could be considered as an ecosystem but a particular composition of

some members of this cluster in a dedicated project is a VME.

A Service System has the same structure as a Product System of a manufacturing enterprise,

but is oriented towards the realization of a service. We need various functions as commercial,

planning, accounting, strategy, etc… The difference is the production of Services combined

with Products which should be analyzed carefully. We propose to be inspired for Service

System modeling by Enterprise Modelling concepts, models, methods and tools. The

advantage of this Enterprise Modelling approach is to be able to identify precisely the

elements of the models (the concepts or the constructs of the model) using reference models

and then to represent, to describe these concepts with adapted languages in order to deliver

enterprise models. These enterprise models can be represented with several points of views:

functions, decisions, business process, IT.

Enterprise modelling techniques allows in particular:

 Facilitating the understanding of enterprise systems and improving communication

and knowledge sharing between various stakeholders,

 Representing AS-IS (existing situation) and TO-BE (future situation) systems in terms

of functions, business processes, physical system, decision system and IT system, and

capturing business users requirements,

 Elaborating a diagnosis of AS IS i.e. strong points and points to improve, using

specific rules and taking in account the strategy of the enterprise in terms of product

and service proposition,

 Specifying the future system at various levels of abstraction through a model driven

approach

13

The concept of system plays an important role in Enterprise Modelling and by extension in

Service System. In Enterprise modelling it is necessary to consider two views: a global view

which allows capturing the global structure in order to understand the objectives and a local

view for modeling detailed elements but in a coherent way with the global view.

Herbert Simon, one of the founder of System Theory, has written that “you can never know

an enterprise or an organization, if you are not able to understand it as a whole but also if you

are not able to represent the details and also to establish a link between the two views” (i.e.

the global one and the local one). Thus, the use of System theory allows to design, to

understand and to represent the Service System. However, it is necessary to describe and

represent these models. So, it is necessary to use one or several languages depending of the

nature of the concepts to represent and the point of view to represent. To define these

languages we will use an approach inspired by Model Driven Approach recommended by

OMG (Ref: Object Management Group) which is the leader for the development of

languages. We will consider also ISO International standard (EN/ISO 19440:2006).

 Modeling Service System using System Theory 2.5.2

In this section we will introduce the system theory as being the starting point for building

service systems or system of systems.

2.5.2.1 System Theory

The system theory is the result of the research works done by many authors among whose we

can refer to Herbert Simon, Jean-Louis Le Moigne and many others. The characteristics of

these research works was that the same concepts (System theory concepts) were applied in

various disciplines: biology, physics, economy, organization, computer sciences, cybernetics.

From all these works, we can propose a reference model for Service System and several

requirements for VME modelling.

A system is characterized by 5 properties.

 A system is composed of a limited set of elements having attributes and relations

between them, forming a particular structure. So the first question to model a system

is: “What are the elements and the relations between them”. In the case of a Service

System, it is necessary to identify the basic components as the products, the services,

the manufacturing means, the IT resources, etc... It is recommended to start by a

global description of these elements then according the needs to perform a detailed

description.

 These elements of a system and the structure contribute to reach one or several

common objectives, in our case the objectives of the Service System. They could be

economic objectives or technical objectives or social objectives. In MSEE, the

objectives are related to the production of services based on manufactured product.

The achievement of the objectives will be evaluated by performance indicators.

 In order to reach these objectives the structure of the elements must support

several functions. In MSEE, the functions can be related to the creation of services,

the management of the resources, the purchasing of services or components, etc.

 A system has a boundary which delimits the elements which belongs to the Service

Systems and those which are outside. Sometime it is easier to determine the elements

inside the system by determining the elements outside of the system. The elements

outside the system compose the environment of the system and also allow the

definition of the system’s borders. In MSEE it will be very important to determine the

14

component belonging to the Ecosystem and the components outside in order to

determine the behavior. This environment has the ability to modify the system

properties. For example the market is the environment of the Enterprise System and it

will influence the behavior of the Enterprise System.

 Finally a system is dynamic, which means that it evolves according to time. The

servitization process is typically a process of evolution. This capacity of evolution is

the last property of a system.

A modification of one property of a system can lead to the modification of various possible

status of a system. So, a system can be represented by the Figure 10 below:

Figure 10 The structure of a system

These concepts are a valuable reference for the modelling of one enterprise. But in the frame

of servitization and evolution toward a virtual enterprise or an Ecosystem, several enterprises

or organizations must collaborate in order to form a complex Service system. This leads to

the concept of system of systems. This system of systems has the same properties as a single

system, i.e. a structure of elements, functionalities, coherent objectives, an environment, and

its own evolution.

The concept of system of systems could be represented in Figure 11. However, even if this is

difficult to represent, figure 11 must indicate that between the systems there is more than

common objectives. Otherwise, the complete organization is not a system. So, the system of

system must integrate common functions, structure and evolution. Based on this definition,

the system theory aims to represent (to model) the realities of a system, concretes or

abstract, highlighting at the same time global and detailed representation of this system.

STRUCTURE

EVOLUTION

FUNCTIONS

O

B

J

E

C

T

I

V

E

S

E

N

V

I

R

O

N

M

E

N

T

15

Figure 11 MSEE as a system of systems

 Definition of the languages to describe and represent the Models 2.5.3

2.5.3.1 Principles

Among the various approaches used for the definition of the languages, we propose to use as a

reference, the OMG 4 level architecture (Object Management Group) described on Figure 12.

At level M0, we find the real world; it means all the concrete components which allow

building a particular enterprise or a particular Service System. At level M1, we find the

abstract model which describes conceptually all the components of the real world based. This

representation will be based on concepts/constructs interconnected to represent processes,

information, decision, resources, Performance Indicators, etc…. It is necessary to use several

concepts to represent the real world and to determine relations between the concepts. In fact

we use a language to elaborate the model of the reality. The relation between the two levels is

called Abstraction because the representation at level M1 is a conceptual view of the reality:

the models. At level M2, we find the basic concepts/constructs which allow building the

language. At level M3, the basic components of concept/constructs are defined.

STRUCTURE

EVOLUTION

FUNCTIONS

E
N
V
I

R
O
N
M
E
N
T

ST
R

U
C

TU
R

E

EV
O

LU
TI

O
N

FU
N

C
TI

O
N

S

E N V I R O N M E N T

STRUCTURE

EVOLUTION

FUNCTIONS

Coherent
OBJECTIVES

E
N
V
I

R
O
N
M
E
N
T
STR

U
C

TU
R

E

EV
O

LU
TIO

N

FU
N

C
TIO

N
S

ENVIRONMENT

MSEE

16

Figure 12 Enterprise Modelling mapped to the OMG 4 level architecture

This sub-chapter deals with issues at the levels M3 and M2. It will define and provide

modeling language(s) that will be used to create models to represent and specify service

systems at the detailed level. The principles to define enterprise language constituents are

discussed in the next section. The approach to follow to define enterprise modeling concepts

and constructs is outlined in chapter 3. The set of concepts and constructs that form the

proposed service system modeling language of MSEE is presented in chapters 4 to 6.

Notice: for the VME (more limited and with a clear purpose, the service in our case), we

could use all the abstraction levels from M1 to M4. For MSE (very large and heterogeneous

with no specific targets), we will limit to M1 for tangible and intangible assets (virtualization

= abstraction M1)

2.5.3.2 Modelling language concepts and constructs

At the level M2, (Figure 12) a set of modeling concepts and constructs will be identified and

defined (see chapter 4). The following definitions are adopted:

 A concept is a generic ‘idea’ representing a particular interest of modeling. Examples

of modeling concepts are: activity, process, decision, event, etc.

 A construct is an element used for modeling, which is defined from a concept and

enhanced with a set of attributes. A construct has template and/or graphical

representations.

 A modeling language consists in a set of constructs and the relationships between

those constructs.

The adopted approach is as follows:

 Identify a list of main concepts of service system modeling capable of capturing

required service system characteristics.

 Identify and define relationship between the set of adopted modeling constructs (class

diagram).

 Define a template per modeling construct to describe and characterize the modeling

Basic components of

the

concepts/constructs

concepts/constructs for the

language

Model of the reality

using a language

A particular Service System

or a part of

meta-model

model

"the real world"

meta-meta

model

M0

M1

M2

M3

[Adapted f rom OMG, Bézivin, Aber Wrach /16-20 Septembre 2002]

17

concept.

 Map modeling constructs to existing modeling languages (or to suggest developing

new ones).

At level M1, we find the models described based on the languages chosen at level M2.

2.6 Architecture for Service System Engineering

In today’s constantly changing market, Service System must be constantly adapted to the

evolution of the market. Design and implementation of Service System is not one shot and

static activity anymore but dynamically evolve to meet customer needs. We call this process

Service System Engineering.

 Service system engineering 2.6.1

A service system varies from its most simple form (e.g. the maintenance system for machine

tools) to more complex ones such as for example ‘an electric car renting system in Paris’, or

the whole Apple ecosystem in which a system of systems interacts via value creations. As

explained previously, a service system is a collection of interrelated components that are

organized for a service related purpose, i.e. to design, to produce, to manage and to deliver

services to customers. In the context of product-based services in virtual enterprise, a service

system consists of any combination of resources belonging to three domains: IT domain,

Organization/Human domain (including management and organization), and Physical

Means domain (including machine, robot and any other material handling devices). In MSEE,

Service System Engineering aims at designing and implementing Service Systems following a

structured methodological approach, providing a set of concepts, modelling languages,

models and methods. It provides various representations of a service system at different levels

of abstraction to support the design, production, management and delivery of services.

3. Manufacturing Service Ecosystem (MSEE) Project

MSEE is an Information and Communication Technology (ICT) integrated project, funded by

the European Commission in call Factories of the Future (FoF) of the 7th Framework

Program. The general objective "Virtual Factories and Enterprises" focuses on end-to-end

integrated ICT solutions that enable innovation and higher management efficiency in

networked enterprise operations. The MSEE project promotes new concepts, methods, and

tools for innovative collaborative services between various partners.

The MSEE 2015 Vision stems upon two complementary pillars, which have characterized the

last 10 years of research about Virtual Organizations, Factories and Enterprises: Service

Oriented Architectures (SOA) and Digital Business Ecosystems (DBE).

The first Grand Challenge for MSEE project is to make SSME (Service Science, Management

and Engineering) evolve towards Manufacturing Systems and Factories of the Future from:

 Methodological viewpoint to adapt, modify, extend SSME concepts so that they could

be applicable to traditionally product-oriented enterprises;

 Implementation viewpoint to instantiate Future Internet service oriented architectures

and platforms for global manufacturing service systems.

The second Grand Challenge for MSEE project is to transform current manufacturing

hierarchical supply chains into manufacturing open ecosystems:

18

 Define and implement business processes and policies to support collaborative

innovation in a secure industrial environment;

 Define a new collaborative architecture for ESA, to support business-IT interaction

and distributed decision making in virtual factories and enterprises.

3.1 MSEE Results

The MSEE project produced several interesting scientific/technical outcomes which are duly

described in the rest of this book. As an executive summary, we could classify them in three

broad categories: MSEE generic assets, MSE specific assets, and VME specific assets.

 MSEE Generic Assets 3.1.1

MSEE Generic Assets are to be used by manufacturing enterprises to improve the relevance

and role of services in their business:

 Maturity, Positioning and Change Management: manufacturing enterprises are able to

approach the MSEE world by gradually understanding their maturity levels with

respect to service innovation and collaboration. The most suitable intervention areas

and MSEE assets are identified and proposed in a game-like approach.

 Service Strategy and Business Models: a service innovation strategy and relevant new

Business Models need to be carefully analyzed and evaluated before putting them in

operations. MSEE offers a suite of methods and tools to drive manufacturing

enterprises towards a more mature, aware and engineered servitization of their

business.

 Reference Architecture for ESA: MSEE reference architecture is an evolution of the

Service Delivery Platform aiming at defining three main levels for FI inspired

Enterprise Systems (the level of the single enterprise, the level of business ecosystems

and the level of the Internet of the Future) as well as two main alignment-

interoperability flows, the former for models-knowledge, the latter for services-

platforms.

 SLM Integration Platform: this 3rd generation platform includes and integrates

platforms, applications and services along the Service Lifecycle, such as the Service

Ideation, Service Modelling, Service Development, Service Delivery, Service Mobile

platforms and the value added services for Service Operations (e.g. IoT Manager,

Marketplace, Team Building, Feedback Management, Production Planning, Product

Maintenance). A generic platform for Business Intelligence has been also recently

integrated. The four SLM Platforms instantiated in our test cases are also including

additional applications and assets necessary for the integration of their business

processes.

 MSE-Specific Assets 3.1.2

MSE-Specific Assets, which aim to improve the collaboration along the product-service

lifecycle, by setting-up, managing and governing a Manufacturing Service Ecosystem (MSE):

 MSE Management and Governance: an MSEE MSE is a non-hierarchical

collaboration form whose organizational structure, decisional processes and

management procedures are flexible, dynamic, in some cases non-deterministic, to

allow the necessary agility required by service innovation.

 Service Ideation in MSE: the final aim for the existence of an MSEE MSE is to create

an incubation and acceleration environment for new ideas of services, to be easily

19

evolved into concrete assets.

 Virtualization of MSE Tangibles / Intangibles: the heterogeneity of the resources of an

MSEE MSE should be dominated by common unified representation of such diverse

artefacts, i.e. virtualization and representation as a service, so that they could be used

and exploited by service marketplaces.

 MSE IT Platform (IEP): as the open source one-stop shop for all the members of an

MSEE MSE , able to offer IT support to MSE operational business processes

governance, collaborative service ideation models and management of virtualized

representations of the MSE assets.

 VME-Specific Assets 3.1.3

VME-Specific Assets aims to improve the service engineering maturity, by setting- up,

managing and governing service-driven Virtual Manufacturing Enterprises (VME):

 Servitization Framework for VMEs: manufacturing companies willing to pursue a

servitization project via a VME collaboration need to identify and select the most

suitable strategy as well as the most proper methods, tools and IT. The MSEE

servitization framework, including role- and competency-based models, provides

MSEE with models and tools to select the best partners for servitization and set-up

efficient and effective VMEs.

 VME-oriented Service Life Cycle: the implementation of a Service along its lifecycle

(i.e. design, development, testing, deployment, operations’ dismission) implies the

constitution of several different VMEs linked together by a common Service Lifecycle

Management model, which, in the case of manufacturing companies, needs to be

integrated from organizational and temporal viewpoints with the pre-existing Product

Lifecycle Management model.

 Service Modelling Architecture for VME (MDSEA - Model Driven Service

Engineering Architecture): this reference architecture allows VMEs to model and

refine their service design and development processes through several different

abstraction levels, starting from the business perspective and proceeding top down

along three main action lines, namely Organization, Physical Means and IT. Business

criteria and indicators are also modelled and accompany the service models in their

refinements and transformations.

 Service Modelling Toolbox (previously SLM Toolbox): this open source IT

component encompasses editors, knowledge and model bases as well as KPIs

repositories, following the top-down decomposition of a service and its implementing

system.

4. Contribution of the thesis

Based on the problematic of Servitization and service system engineering and in order to

reduce effort and time in service system engineering, this thesis (as being part of the MSEE

project) contributed in the development of solutions. The contribution of the thesis’s result

can be classified into related and connected pillars.

The first pillar is the participation in the development of the Model Driven Service

Engineering Architecture (MDSEA) which permits Virtual Manufacturing Enterprises (VME)

to model their service systems (AS-IS and TO-BE models) starting from modeling the system

20

from business experts angle and then adding more details to reach the developers and

technical experts angle. We propose the principles, concepts, and languages for Service

System’s modeling which will not only generate IT applications and services but also define

other components (Organization/human and Physical Means) which will support all Service

Life Cycle phases. The method models the service system from several views and using

specific standard and non-standard modeling languages. One of these languages, the

Extended Actigram Star (EA*) was redeveloped in the frame of this thesis based on an

older language, the GRAI Extended Actigram. The EA* is used in the MDSEA methodology

as a collaborative business process modeling language at high abstraction levels. In addition,

model transformations are specified, developed, and implemented. Since MDSEA is

composed of several abstraction levels, model transformations are needed in order to move

from one level to another.

The second pillar is the development of a modeling and simulation tool, the SLMToolBox.

This tool is a partial implementation of MDSEA and its name Service Lifecycle Management

ToolBox implies a role in the service’s lifecycle. The SLMToolBox offers several features for

its different actors. Various domain specific graphical editors are developed or integrated

which gives the opportunity to users to model diagrams corresponding to a specific modeling

language to be used in the MDSEA methodology. Also, Performance indicators can be

modeled and added to specific diagrams. The different features are to be detailed in a single

chapter.

The third pillar is the development of a DEVS graphical editor and simulator integrated in

the SLMToolBox. DEVS diagrams can be either developed from scratch or the result of a

transformation from BPMN diagrams to DEVS diagrams. After developing the diagram and

inserting the two performance indicators to simulate (time and cost), simulation can be

executed. The results are in the form of a pdf report and animations of these results can be

executed also.

5. Organization

Chapter 2 is a state of the art of principal concepts which constitute the base our research

work strongly depended. Enterprise modeling and interoperability are explored in order to

provide an insight on the work in previous projects and researches. Then Model driven

Developments such as MDA and MDI are presented which will later represent a basic

inspiration in our work. After that three modeling languages are sighted: GRAI Extend

Actigram, BPMN, and DEVS. Both GRAI Extended Actigram and BPMN being related to

business process modeling, while DEVS representing simulation formalism to study the

system’s behavior. Finally, a set of business processes and DEVS simulation tools are sighted

giving a briefing of major tools available and their different criteria.

Chapter 3 is our contribution to service modeling. It presents the Model Driven Service

Engineering Architecture (MDSEA) which is targeted to the representation of service systems

and the management of certain aspects in the service’s lifecycle. Besides, we propose the

Extended Actigram Star (EA*) process modeling language, that we specified and developed

based on the GRAI Extended Actigram language.

Chapter 4 is related to service engineering and in specific service simulation. In this chapter

we explain the importance of simulating service’s behavior. In addition we present a DEVS

editor/simulator we developed and which is targeted to simulate business processes in service

systems. Details on simulation’s execution are detailed.

21

Chapter 5 is a representation of the SLMToolBox that is regarded as one of our main

contributions. In this chapter we present the SLMToolBox, a modeling and simulation tool

developed as a partial implementation of MDSEA. Context, objectives, architecture, features,

and modeling editors are explained.

Chapter 6 is a general conclusion and defines future perspectives to be conducted in future

work. These perspectives are based on ideas for evolving certain features of the

SLMToolBox.

State of the Art

23

This chapter is a lecture on basic concepts and subjects that influenced our research work

and formed a base to develop new ideas, methods, and tools. The topics in this chapter are the

following: enterprise modeling, enterprise interoperability, model driven development,

modeling languages, and simulation tools. This chapter will present the Model Driven Service

Engineering Architecture (MDSEA) and Extended Actigram Star (EA*) developed in the

frame of this thesis.

1. Enterprise Modelling

Enterprises operating in most industrial and service sectors face a number of business

challenges that exceed the scope of the daily operations and routine activities. Examples are

continuous process improvements for increased efficiency, adjustments of the enterprise

strategy to new market demands, changing business models due to new competition, new

regulations and bylaws requiring operational changes, or technological innovations leading to

changes customer behavior and new processes. In many cases improving business process

alone is not sufficient for addressing problems of this nature. The overall situation of the

enterprise has to be taken into account including relations between strategic goals, business

rules, work process organization structures, products, services, It infrastructure, etc.

Enterprise Modeling addresses these kinds of challenges. The area of enterprise modeling in

general is concerned with techniques, methods, and tools for modeling organizations and for

finding and preparing potential improvements. This section is a lecture of basic enterprise

modeling approaches and architectures that resulted from continuous research and industrial

activities.

1.1 CIMOSA

CIMOSA "Computer Integrated Manufacturing Open System Architecture" [Zelm et al, 1995]

[Vlietstra, 1996] is an enterprise modelling framework which aims to support the enterprise

integration of machines, computers and people. The framework is based on the system life

cycle concept, and offers a modelling language, methodology and supporting technology to

support these goals. CIMOSA generic building blocks and modelling macros support model

engineering through business users rather than IT professionals. CIMOSA is based on a

process oriented modelling approach describing all enterprise activities in a common way.

Such activities include manufacturing processes on the shop floor, as well as management and

administrative processes. CIMOSA modelling covers the life cycle phases of operational

system from business requirements definition to system implementation description, operation

and model maintenance even enabling model based operation control and monitoring.

 Approach 1.1.1

 CIMOSA provides a framework for guiding Computer Integrated Manufacturing (CIM) users

in enterprise system’s design and implementation, and CIM vendors in system component

development. It provides a descriptive methodology supporting the System Life Cycle.

CIMOSA does not provide a standard architecture to be used by the whole manufacturing

industry, but rather a Reference Architecture from which Particular Architectures can be

derived which fulfil the needs of particular enterprises. The Reference Architecture provides

constructs for structured description of business requirements and for C1M system design and

implementations. CIMOSA compliant enterprise systems support organizational and

operational flexibility, extensive use of multi-disciplinary enterprise information (knowledge)

and graceful system integration. Through the business modelling framework a generic

modelling concept is provided which is applicable to enterprises in many industries. Model

24

execution in heterogeneous manufacturing and IT environments is supported by the

implementation of an integrating infrastructure. CIMOSA supports new paradigms in

enterprise management enabling explicit description of enterprise processes at different levels

of abstraction for strategic, tactical and operational decision support. Applying CIMOSA

modelling methodology should results in complete descriptions of enterprise domains and

their contained Business Processes including relationships to external agencies (suppliers,

customers, even government regulatory bodies, etc..). This enterprise model is stored on and

manipulated by the relevant information technology base of the enterprise. CIMOSA allows

modelling of the enterprise to be done incrementally rather than following an overall top-

down approach. It structures the enterprise operation into a set of interoperating Domain

Processes exchanging results and requests. Different views of the manufacturing enterprise

content and structure are required to satisfy the needs of the different users of such

architecture. CIMOSA provides the necessary constructs to enable these multiple views to be

created and manipulated by those users who have specialist knowledge of their particular field

but are not experts in IT.

 Overview 1.1.2

To satisfy the above issues of Management of Change, Flexibility and Enterprise Integration

CIMOSA provides three inter-related concepts:

 Modelling Framework (Reference Architecture, Particular Architecture, and

Enterprise Model).

 System Life Cycle and Environments (Engineering and Operation).

 Integrating Infrastructure.

CIMOSA recognizes previous efforts in enterprise integration especially in the manufacturing

industry and draws from the experienced gained in enterprise modelling and computer

systems integration.

1.1.2.1 Modelling Framework

CIMOSA Modelling Framework provides guidance to enable end users to model enterprises

and its associated CIM system. CIMOSA modelling approach is based on a Reference

Architecture from which Particular Architectures and Enterprise Models can be developed.

The structuring and decoupling of user concerns from implementation constraints provided by

the framework contributes to enterprise flexibility. The Modelling Framework provides a

structure which clarifies relations between parts that make up the enterprise operational

system (Information Technology and Manufacturing Technology Components) and methods

and software tools that are required to describe, simulate and operate such industrial system.

25

Figure 13 CIMOSA Modelling Approach

When modelling an enterprise there are many aspects and viewpoints to be examined that

cannot be structured in one dimensional framework. CIMOSA identifies a three-dimensional

framework offering the ability to model different aspects and views of an enterprise:

 Genericity dimension concerned with the degree of particularization. It goes from

genuine building blocks to their aggregation into a model of a specific enterprise

domain. This dimension differentiates between Reference and Particular Architecture.

 Modelling dimension provides the modelling support for the System Life Cycle

starting from statements of requirements to a description of the system

implementation.

 View dimension concerned with system behavior and functionality. This dimension

offers the user to work with sub-models representing different aspects of the enterprise

(function, information, resource, organization).

1.1.2.2 Enterprise Model

According to the structure provided for the particular architecture, CIMOSA models capture

business knowledge in terms of

 Domain Processes and Enterprise Activities representing detailed local functionality.

 Business Processes representing intra process behavior.

All required inputs and produced outputs (information, control, resources and organizational)

are identified. Modelling is done through instantiation of generic building blocks and partial

models. Inside an enterprise, tasks (Domain Processes) are organized into sub-tasks (Business

Processes, Enterprise Activities, Functional Operations) which need to be realized to achieve

business objectives. Domain Processes are triggered through requests or events and are

capable of exchanging information with domains external to the enterprise. In order to

represent tasks and actions performed within an enterprise, CIMOSA offers the terms

"processes", "activities" and "operations", where operations define the lowest level of

26

granularity. The level of detail to be described in the model is at user’s discretion and not

dictated by CIMOSA.

CIMOSA differentiates between AS-IS and TO-BE modelling. Modelling of an existing

implementation will start with bottom up description of the current operation. Abstraction of

AS-IS description and applying modifications would lead to the specification of TO-BE

model’s requirements and design and analysis of its intended behavior. No specific

methodology has been prescribed by CIMOSA leaving freedom for iterations as required

between decomposition and aggregation as well as between modelling levels.

1.2 GIM

GIM (GRAI Integrated Modeling) [Chen et al, 1996] belongs to the set of methods that form

the GRAI methodology whose principle objective is performance improvement of both

industrial and service enterprises. GIM is based on the GRAI Methodology, particularly on

the GRAI conceptual model, formalisms that translate the GRAI conceptual model and GRAI

general approach. GIM is the module of the GRAI methodology that allows modelling an

enterprise or a part of it in order to improve performance. Based on the GRAI general

approach, figure 14 represents the GIM approach and its different phases.

 GIM phases 1.2.1

1.2.1.1 Initialization phase

This phase allows to prepare the study and to develop a detailed program to be approved by

specialists. GRAI specialist will lead the study and may be assisted by one or more assistant.

In this initialization phase, a group is specified to control the objectives of the study and the

delineation of the area under study. The study is prepared by establishing a very specific

schedule. GIM study includes meetings and interviews with decision makers.

27

 Figure 14 GIM approach

Initialization Phase

Functional

View

Physical

System

Process

View
Decisional

System
Information

System

Modelling Phase

As Is Model

Strong Points

Points to be modified

Diagnosis Phase

Functional

View
Physical

System
Process

View
Decisional

System
Information

System

Design Phase

To Be Model

Objectives of the

study

 Action Plan

Development of

action plan phase

 Implantation

Target system

Actual system

28

1.2.1.2 Modeling phase

This phase allows modeling of existing system. It includes the realization of the functional

view, the three systems (physical, decision making, informational) and the process view. The

order in which the model is developed is significant (Figure 15). It starts with the Functional

View, and then Physical System and Decisional System are realized in parallel. At the end,

the process view is realized and the model of information system is derived from the various

realized modules.

Figure 15 Order of models realization

1.2.1.3 Diagnosis phase

Models diagnosis aims to detect not only areas to be improved but also strength ones. The

previous phase has already led to improvements. At the end of each meeting, it is possible to

compare the models obtained with the synthetic group (top-down) and information collected

after interviews. Sometimes models do not match; the synthesis group had a point of view

while the terrain modeling shows that the situation is different. Presenting models of the

existing system to the synthesis group is of objective to propose improvements based on

experience, knowledge of the field of study and discussion among the members of the

synthetic group. Final models obtained at the end of the modeling phase have already helped

to make improvements to the existing system which also may in some cases be implemented

immediately without waiting for the end of the study. It is possible to say that the final version

of the models describe a stabilized situation. Nevertheless, a summary of all areas to be

improved is delivered.

1.2.1.4 Design phase

The objective of this phase is to develop models of the target system, models that respond to

the objectives defined by the study and can meet the "areas to be improved" identified in the

previous phase while retaining the strengths identified. Several solutions are proposed in this

phase and only one comprehensive solution should be chosen based on an assessment of the

objectives.

1.2.1.5 Development of action plan phase

The implementation of GRAI methodology corresponds to an objective that has been defined

by the General Management. The action plan depends on objectives of the study and the “to

be” model developed in the design phase. The action plan is later implemented in the system

in order to obtain the target system which is the subject of the whole study.

Functional

View

Physical

System
Process

View

Decisional

System

Information

System

29

1.3 ARIS

ARIS (Architecture for Integrated Information Systems) developed by A. W. Scheer, is both a

generic modelling framework generic and a modelling tool of business processes [Scheer,

1993] [Scheer, 2002] [Scheer et al., 1994]. It mainly focuses on software engineering and on

aspects organizational design for integrated systems within the company. Modelling of

business processes and all relating factors and domains is seen as a critical and decisive

competitive factor by ARIS. The objective of ARIS is to define standardized general concepts

(so-called architectures) for IT systems and modelling methods development.

 Concept of ARIS architecture 1.3.1

The design of ARIS is a based on an integration concept which is derived from the analysis of

business processes. The ARIS framework is structured in terms of five different views

(organization, data, control, function and output) and three abstraction layers (Requirements

definition, design specification and implementation description.). The purpose is to ensure a

consistent description from business management-related problems all the way down to their

technical implementation.

1.3.1.1 Views

Organization view

The organization view presents the hierarchical organization structure. It is created in order to

group responsible entities or devices executing the same work object. This is why the

responsible entities “human output”, responsible devices, “financial resources” and “computer

hardware” are allocated to the organization view.

Data view

The data view comprises the data processing environment as well as the messages triggering

functions or being triggered by functions. Preliminary details on the function of information

systems as data media can be allocated to data names. Information services objects are also

implicitly captured in the data view. However, they are primarily defined in the output view.

Control view/Process view

This view displays the respective classes with their view-internal relationships. Relationships

among the views as well as the entire business process are documented in the control or

process view, creating a framework for the systematic inspection of all bilateral relationships

of the views and the complete process description.

Function view

The processes transforming input into output are grouped in the function view. The

designations “function”, “process” and “activity” are used synonymously. Due to the fact that

functions support objectives, yet are controlled by them as well, objectives are also allocated

to the function view – because of the close linkage. In application software, computer-aided

processing rules of a function are defined. Thus, application software is closely aligned with

“functions”, and is also allocated to the function view.

Output views

The output view contains all physical and non-physical input and output, including funds

flows.

1.4 Conclusion on Enterprise Modeling

There is no explicit consideration on interoperability issues in CIMOSA modelling

30

framework. However, CIMOSA can be a contribution for integrated paradigm to establish

interoperability. The CIMOSA Framework is a good reference framework, but lacks

expressiveness for multiple dependencies of types of view, for evolving concepts, contents

and capabilities and for capturing context. Knowledge sharing and representation is poorly

supported. On the other hand GIM modelling framework introduces the decision

dimension/view which is not taken into account in other modelling frameworks. The

decisional aspect is important to establish interoperability in the context of collaborative

enterprises. To interoperate in such an environment, decision-making structure, procedure,

rules and constraints need to be clearly defined and modelled so that decentralized and

distributed decision-making can be performed. The GRAI Framework has strong support for

performance indicator management and decision making, but has limited scope and

expressiveness and lacks platform integration. On the other side the different views of the

ARIS-concept include variable modelling languages, e.g. EPC for illustrating the

collaborative business processes. But there are extensions needed concerning the requirements

of modelling collaborative enterprises like new role-concepts or the problem of depicting

internal and external views of the same business process. ARIS has strong top-down process

modelling and integration capabilities, but lacks expressiveness, view management and

language constructs for other aspects, and does not support the “big picture” created by other

approaches.

2. Enterprise Interoperability

Since the beginning of 2000s, the European Commission has proposed to identify the

problematic/approach relating to the development of enterprise software applications. Many

research projects have contributed to Enterprise Interoperability (EI) development that mainly

concentrates on EI architectures, models, methodologies, and operational solutions. Based on

the results of these research projects, numerous enterprise interoperability solutions have been

tested and implemented to help enterprises to connect and to collaborate with their business

partners in an extended and networking enterprise.

2.1 Definitions

In [Chen et al, 2002] and [Chen et al, 2004] authors had reviewed several definitions on

interoperability. Interoperability is the ability of a system to understand another system and

use its functionalities. The word ‘‘inter-operate’’ implies that one system performs an

operation on behalf of (or for) another system. From software engineering point of view,

interoperability means that two co-operating software systems can easily work together

without a particular interfacing effort. It also means establishing communication and sharing

information and services between software applications regardless of hardware platform(s). In

other words, it describes whether or not two pieces of software from different vendors,

developed with different tools, can work together. The definition of Interoperability in IEEE

is “the ability of two or more systems or components to exchange information and to use the

information that has been exchanged” [IEEE, 1990]. According to [IDEAS, 2003], Enterprise

interoperability is achieved if the interaction can, at least, take place at the three levels: data,

application and business process. These definitions describe interoperability from various

different aspects: interoperability’s behavior, information interoperability, or software

application interoperability. In addition, the definition from IDEAS focuses not only on

information interoperability, but also on business processes interoperability.

From these definitions we can regard Enterprise Interoperability as the ability to communicate

and exchange information, use exchanged information, and access functionalities of a third

31

system.

However, some researches considered that these definitions need to be extended to cover the

additional interoperability issues in the enterprises. As a result, some new definitions of

Enterprise Interoperability were given in different projects. Enterprise Interoperability

Research Roadmap (EIRR) define Enterprise Interoperability as “a field of activity with the

aim to improve the manner in which enterprises, by means of Information and

Communications Technologies (ICT), interoperate with other enterprises, organizations, or

with other business units of the same enterprise, in order to conduct their business. This

enables enterprises to, for instance, build partnerships, deliver new products and services,

and/or become more cost efficient” [Charalabidis et al., 2008].

European Interoperability Framework defines interoperability as “the ability of information

and communication technology (ICT) systems and of the business processes they support to

exchange data and to enable the sharing of information and knowledge” [IDABC, 2008]. It

also indicates “Interoperability is the ability of disparate and diverse organizations to interact

towards mutually beneficial and agreed common goals, involving the sharing of information

and knowledge between the organizations via the business processes they support, by means

of the exchange of data between their respective information and communication technology

(ICT) systems” [IDABC, 2008].

These definitions involve interoperability between organizational units and business processes

and units either within distributed enterprises or within an enterprise network. In a word,

Enterprise Interoperability is perceived as a capacity of two or more enterprises, including all

the systems within their boundaries and the external systems that they utilize or are affected

by, in order to cooperate seamlessly, in an automated manner, in depth of time for a common

objective [ENSEMBLE, 2011] [Gonçalves et al., 2012].

2.2 Dimensions

To better understand the Enterprise interoperability concept, to define and position our

research theme, it is necessary to study various dimensions of enterprise interoperability.

Those dimensions representing problems, issues and concerns of EI research and development

are usually structured and represented in enterprise interoperability frameworks. Figure 16

shows the INTEROP Enterprise interoperability Framework (now CEN/ISO 11354 standard)

[Chen et al., 2006] with its three main dimensions.

32

Figure 16 Enterprise Interoperability Framework

This framework consists of three basic dimensions:

 Interoperability concerns which defines the content of interoperation that may take

place at various levels of the enterprise (data, service, process, business).

 Interoperability barriers which identifies various obstacles to interoperability in

three categories (conceptual, technological, and organizational)

 Interoperability approaches which represent the different ways in which barriers can

be removed (integrated, unified, and federated).

Interoperability concerns and interoperability barriers can constitute the interoperability

problem space. The intersection of an interoperability barrier and an interoperability concern

is the set of interoperability problems having the same barrier and concern. In order to

constitute the solution for the interoperability problem, the interoperability approaches are

imperative.

2.3 Approaches and Frameworks

 IDEAS interoperability framework 2.3.1

The IDEAS interoperability framework (figure 17) was developed by IDEAS project. The

framework was intended to reflect the view that ‘‘Interoperability is achieved on multiple

levels: inter-enterprise coordination, business process integration, semantic application

integration, syntactical application integration and physical integration’’. In the business

layer, all issues related to enterprise’s organization and management are addressed. It includes

the way an enterprise is organized, how it operates to produce value, and how it manages its

relationships (internally with its personnel and externally with partners, customers and

suppliers). Interoperability at this level should be seen as the organizational and operational

ability of an enterprise to factually cooperate with other enterprises. The business layer

includes the decisional model, the business model and business processes. The decisional

model of an enterprise defines what/how decisions are taken and the degree of responsibility

Busines

s

Process

Service

Data

Federate

d
Unified

Integrate

d

Conceptual Organizational Technology

Interoperability

concerns

Interoperability

approaches

Interoperability

barriers

33

of each operating unit, role and position. The business model is the description of the

commercial relationships between an enterprise and the way it offers products or services to

the market. Business processes are the set of activities that deliver value to one’s customers

[Athena, 2003]. The knowledge layer is concerned with acquiring, structuring and

representing the collective/personal knowledge of an enterprise. It includes knowledge of

internal aspects such as products, the way the administration operates and controls, how the

personnel is managed and so on, but also of external aspects such as partners and suppliers,

laws and regulations, legal obligations and relationships with public institutions.

Interoperability at knowledge level should be seen as the compatibility of the skills,

competencies and knowledge assets of an enterprise with those of other enterprises. This layer

addresses the methods and tools that support the elicitation, gathering, organization and

diffusion of business knowledge within an enterprise. The Knowledge layer includes several

models. The organizational model can define the roles within – for example – the internal

organization, the value chain, and a network of enterprises or a constellation. A skills-

competency model defines the capability of an organization and of its employees to perform a

certain job under certain working conditions. Enterprise’s knowledge assets are the capital of

the organization formalized in terms of procedures, norms, rules and references. The ICT

systems layer is concerned with the ICT solutions that allow an enterprise to operate, make

decisions, and exchange information within and outside its boundaries. The overall execution

of the enterprise application will be orchestrated by the business process model identified in

the top layer and formally (i.e. unambiguously) represented and stored in the middle

(knowledge) layer. Interoperability at ICT systems level should be seen as the ability of an

enterprise’s ICT systems to cooperate with those of other external organizations. It is

concerned with the usage of ICT to provide interoperation between enterprise resources (i.e.

software, machines and humans). The interoperation has to be established by the supply of

information through inter- and intra-system communication. The ICT layer includes various

areas such as solution management, workplace interaction, application logic, process logic

and data logic. Solution management is about the tools and procedures required to administer

an enterprise system. This includes role and policy management monitoring and simulation

tools. Workplace interaction refers to the interaction of the human user with the system,

which could be described through input, output and navigation. Application logic describes

the computation carried out by an enterprise system to achieve a business result. Process logic

is the order (i.e. step-by-step) in which an application (or a subset) is carried out. Data logic

describes what data is required and produced by an enterprise system during its lifecycle. This

includes repository services and content management. The semantic dimension cuts across the

business, knowledge and ICT layers. It is concerned with capturing and representing the

actual meaning of concepts and thus promoting understanding. The holistic perspective on

interoperability requires considering semantics on each layer of an enterprise. For enterprises

that want to collaborate with each other and that need interoperability on a specific layer, it is

34

Figure 17 IDEAS Interoperability Framework

of prime importance to create a mutual understanding [Athena, 2003]. To ensure that

semantics are exchangeable and based on a common understanding, ontology and annotation

formalism for meaning can be used. Quality attributes is a supplementary dimension of the

framework. Business considerations determine qualities that must be accommodated in a

system. These qualities are over and above that of functionality, which is the basic statement

of the system’s capabilities, services and behaviors. The considered attributes are: security,

scalability, portability (both data and applications), performance, availability, and evolution. It

must be underlined that the achievement of any quality attribute will have an effect,

sometimes positive and sometimes negative, on the achievement of other quality attributes

[IDEAS, 2002].

 LISI approach 2.3.2

LISI (levels of information systems interoperability) approach is regarded as the first

significant initiative of Enterprise Interoperability. It is developed by C4ISR Architecture

Working Group (AWG) during 1997. The purpose of LISI is to provide the US Department of

Defense (DoD) with a maturity model and a process for determining joint interoperability

needs, assessing the ability of the information systems to meet those needs, and selecting

pragmatic solutions and a transition path for achieving higher states of capability and

interoperability [C4ISR, 1998]. A critical element of interoperability assurance is a clear

prescription of the common suite of requisite capabilities that must be inherent to all

information systems that desire to interoperate at a selected level of sophistication. Each

35

level’s prescription of capabilities must cover all four enabling attributes of interoperability

known as PAID, namely: procedures, applications, infrastructure (hardware, communications,

security and system services) and data.

Figure 18 LISI reference model

The LISI reference model also provides the common vocabulary and structure needed to

discuss interoperability between systems. At each level, a word or phrase highlights the most

important aspect of PAID needed to achieve that level. For example, a system targeting

interactions with other systems working at Level 3 (domain level in an integrated

environment) must build toward the specific set of capabilities that underlie the PAID

thresholds of the LISI reference model at level 3 (domain level procedures, groupware

applications, access to world wide networks and domain data models). Although each

attribute (PAID) is significant and must be considered in defining a level of interoperability,

the significance and relative impact of the contributions from each attribute varies by level

[C4ISR, 1998]. Besides this LISI reference model, a LISI interoperability maturity model and

a practical assessment process for determining the interoperability maturity level of a given

system or system pair is also defined. For more detail, see [C4ISR, 1998]. The LISI approach,

although built with generic concepts and models, is focused on developing interoperability in

US military sector. However, it is also used as a basis to elaborate other interoperability

maturity models such as for example organizational maturity model [Clark and Jones, 1999]

and enterprise interoperability maturity model [Athena, 2005].

 ATHENA interoperability framework 2.3.3

The ATHENA Interoperability Framework (AIF) provides a compound framework and

associated reference architecture for capturing the research elements and solutions to

interoperability issues that address the problem from different perspectives of the enterprise.

2.3.3.1 Interoperability reference architecture

The ATHENA Interoperability Framework defines an interoperability reference architecture

that relates the modelling solutions coming from the three different research areas of

ATHENA, namely enterprise modelling, architectures and platforms, and ontology. The

36

following figure illustrates the reference architecture that focuses on the provided and

required artifacts of two collaborating enterprises.

Figure 19 Athena Interoperability Reference Architecture

Interoperations can take place at the various levels:

 Interoperability at the enterprise/business level should be seen as the organizational

and operational ability of an enterprise to factually co-operate with other, external

organizations in spite of e.g. different working practices, legislations, cultures and

commercial approaches.

 Interoperability of processes aims to make various processes work together. A process

defines the sequence of the services (functions) according to some specific needs of a

company.

 Interoperability of services is concerned with identifying, composing and executing

various applications (designed and implemented independently). Services are an

abstraction and an encapsulation of the functionality provided by an autonomous

entity.

 Interoperability of information/data is related to the management, exchange and

processing of different documents, messages and/or structures by different

collaborating entities.

For each of these levels we prescribe a model-driven interoperability approach where models

are used to formalize and exchange the relevant provided and required artefacts that must be

aligned and made compatible through negotiations and agreements.

 Collaborative enterprise modelling concerns the exchange and alignment of

knowledge models for describing the processes, organizations, products and systems

in the collaboration context.

 Modelling of cross-organizational business processes focuses on defining process

views that describes the interactions between two or more business entities.

 Flexible execution and composition of services is concerned with identifying,

Enterprise/

Business

Processes

Services

Information/

Data

Enterprise/

Business

Processes

Services

Information/

Data

Collaborative Enterprise

Modelling

Cross-Organizational

Business Processes

Flexible Execution and

Composition of Services

Information

Interoperability M
o
d

el
-D

ri
v
en

-I
n

te
ro

p
e
ra

b
il

it
y

S
em

a
n

ti
cs

 a
n

d
 O

n
to

lo
g
ie

s

37

composing and executing various applications.

 Information interoperability is related to management, exchange and processing of

different documents, messages and other information structures.

To overcome the semantic barriers which emerge from different interpretations of syntactic

descriptions, precise, computer processable meaning must be associated with the models

expressed on the different levels. It has to be ensured that semantics are exchangeable and

based on common understanding in order to enhance interoperability. This can be achieved

using ontologies and an annotation formalism for defining meaning in the exchanged models.

The model-driven interoperability and the semantics and ontologies approaches to

interoperability cut across the four levels and focus on integration of the corresponding

interoperability approaches at these levels.

2.3.3.2 Structure of the framework

The ATHENA Interoperability Framework (AIF) is structured into three main parts:

Figure 20 Structure of the AIF

 Conceptual integration which focuses on concepts, metamodels, languages and model

relationships. The framework defines an interoperability reference architecture that

provides us with a foundation for systemizing various aspects of interoperability.

 Applicative integration which focuses on methodologies, standards and domain

models. The framework defines a methodology framework that provides us with

guidelines, principles and patterns that can be used to solve interoperability issues.

 Technical integration which focuses on the software development and execution

environments. The framework defines a technical architecture that provides

development tools and execution platforms for integrating processes, services and

information.

2.4 Conclusion on Enterprise Interoperability

In this section, several enterprise interoperability frameworks have been studied. These

frameworks differ in their definition of interoperability depending on the angle (view) from

which interoperability is examined. IDEAS defined Interoperability as the “ability of

interaction between enterprise software applications”. In the LISI approach, interoperability

38

was defined as “the ability of systems, units, or forces to provide services to and accept

services from other systems, units, or forces, and to use the services exchanged to enable them

to operate effectively together”. Finally the Athena interoperability framework expressed

interoperability as the following “interoperability occurs when there is the capacity of

satisfactorily performing one or more operations not withstanding that control mechanisms,

objects and/or tools do not belong to the same owner and/or technological and normative

paradigm”.

3. Model Driven Development

Model Driven Development (MDD) is a software engineering paradigm where models are the

core asset. They are used to specify, simulate, test, verify, and generate code for application to

be built. Since models are the central artifacts in MDD, the quality of generated code and

software is directly dependent on the quality of models. Ideas and business needs are collected

at high abstraction levels and represented into models. These models are later transformed

into code in lower abstraction levels.

3.1 MDA

 Overview 3.1.1

Model Driven Architecture (MDA) has been defined and adopted by the Object Management

Group (OMG) in 2001, and updated in 2003 [OMG, 2003]. It is designed to promote the use

of models and their transformations to consider and implement different systems. The MDA

has three major goals, which are portability, interoperability and reusability. The MDA starts

with the well-known and long established idea of separating the specification of the operation

of the system from the details of the way the system uses the capabilities of its software

execution platform (e.g. J2EE, CORBA, Microsoft .NET and Web services). The MDA builds

on six basic concepts -- System, Model, Architecture, Viewpoint, View and Platform. System

means existing or planed system, which may include a program, a single computer system or

some combination of parts of different systems. Model is a description or specification of the

system modelled and its environment for some certain purpose. Architecture is a specification

of the parts and connectors of the system and the rules for the interactions of the parts using

the connectors. Viewpoint is a technique for abstraction using a selected set of architectural

concepts and structuring rules. View is a representation of the system from the perspective of

a chosen viewpoint. Platform is a set of subsystems and technologies that provide a coherent

set of functionality through interfaces and specified usage patterns, which any application

supported by that platform can use without concern for the details of how the functionality

provided by the platform is implemented.

39

Figure 21 OMG’s Model Driven Architecture

The MDA defines four levels according to different viewpoints, which go from general

considerations (conceptual level) to specific ones (implementation level).

 CIM Level (Computation Independent Model) is a view of a system from the

computation independent viewpoint. It focuses on the whole system and its

environment. It is also named “domain model”. It describes all work field models

(functional, organizational, decisional, process, etc.) of the system with a vision

independent from implementation.

 PIM Level (Platform Independent Model) is a view of a system from the platform

independent viewpoint. It models the sub-set of the system that will be implemented,

but does not show the details of its use of its platform. It might consist of enterprise,

information and computational viewpoint specifications.

 PSM Level (Platform Specific Model) is a view of a system from the platform specific

viewpoint. It takes into account the specificities related to the development platform. It

combines the specifications in the PIM with the details that specify how that system

uses a particular type of platform.

 Coding Level (Implementation) is last level, consisting in coding enterprises

applications (ESA: Enterprise Software Application). It is also a specification, which

provides all the information needed to construct a system and to put it into operation.

As the name shows, “Model-driven” means using models to direct the course of

understanding, design, construction, deployment, operation, maintenance and modification.

Thus, the models of these four levels can be transferred to others under certain order and

rules. Model transformation is the process of converting one model to another model of the

same system. For example, model transformation from PIM to PSM, the input to the

transformation is the marked PIM (a certain mapping assigned) and the mapping

(specification for transformation under a particular platform). The result is the PSM and the

record of transformation.

 MDA for Reuse and Interoperability 3.1.2

As mentioned in the overview, MDA provides a systematic architecture to model a system,

which can bring amount of advantages including reduction of development cost and

complexity and increase of interoperability and reuse. As the enhancement of interoperability

and reuse is the most promoted advantages of the MDA [OMG, 2003], and also major

concern of this research, so this section will describe how MDA supports interoperability and

40

reuse. Concerning the MDA for reuse, most of the time, it takes place at these levels or

between these levels. For example, reuse of the work field models from an existing CIM to

other CIMs; reuse of entities and data types from a PIM to other PIMs; Use of UML profile

entities and data types in many PIMs; Reuse of a given PIM as the model for many differing

PSMs and implementations; reuse functional module in one PSM to other functional module

within this PSM or to other PSMs; and etc. The examples show that the models being reused

are general, flexible. They are only focus on one specific problem, and they remove the

distraction and complexity. In a word, to reuse the model entities and types defined in an

existing MDA model as the basement for other different business environments, technologies

or platforms implementation can reduces development time and effort. Concerning MDA for

interoperability, from intra-system MDA model point of view, the interoperability ability of

MDA is not so obvious. However, from inter-system point of view, it will be very clear. As

the MDA model transformation shows that, the model transformation starts from PIM to

PSM, than to implementation depending on different techniques and platforms. Because PIM

model is an abstract model contains enterprise, information and computational viewpoint

specifications and includes the mappings to the implementation technology, if two system

implementations are derived from the same PIM, then a bridge between these two

implementations can be generated based on those known and standardized clues. In this way,

the bridge enables the interoperability between these two system implementations. This

example shows that to reuse the existing entities, types with a given PIM to guide a new

implement across different technologies or platforms, a mapping or relationship among those

implementations is concealed. Then, because the MDA around open, supported standards

allows all models, data types and entities to be represented in a single, consistent manner, the

interoperability of those implementations can be achieved.

Actually, to reuse or to map the model in PIM model showed in the example is just one way

to achieve the interoperability. The interoperability can be achieved in even more abstract

level, such as remove the business duplicate issues in CIM level, or in more detail level, such

as adjust the function module in PSM level. The agile MDA model allows developer to

realize the interoperability in different levels. This must be the original idea of Model Driven

Interoperability, which will be introduced in next section.

3.2 MDI

As previous section mentioned, the MDA provides a way for developing modern enterprise

applications and software systems, meanwhile, it also provides a better way of addressing and

solving interoperability issues compared to earlier non-modelling approaches. In addition,

from an interoperability point of view, most of the enterprises build their information system

by using MDA, so it seems that MDA is a good solution for overcoming the interoperability

barriers [Ullberg et al., 2007]. As a result, the researchers believe that an interoperability

framework based on MDA can provide guidance on how model driven development (MDD)

should be applied to address interoperability. Thus, Model Driven Interoperability (MDI)

framework is created for how to apply Model Driven Development (MDD) in software

engineering disciplines in order to support the business interoperability needs of an enterprise

[Elvesæter et al., 2007]. It is a model driven method that considers interoperability problems

at the enterprise model level instead of only at the coding level. It provides a foundation,

consisting of a set of reference models. Figure 22 shows the reference model of MDI

approach which performs different abstraction in each MDA levels. Between each level of

models, the successive model transformations are carried out to reduce the gap existing

between enterprise models and code level. The models at the various levels may be

semantically annotated (such as reference ontology) which helps to achieve mutual

41

understanding on all levels. The mutual understanding also helps to achieve model

interoperability horizontally between different enterprises’ model in homologous level.

Figure 22 Reference model for MDI

 The concepts of this method were realized in the Task Group 2 (TG2) of INTEROP-NoE

project by defining an approach inspired by the OMG MDA concepts [Bourey et al., 2007].

The goal of MDI is to tackle the interoperability problems at each abstraction level defined in

MDA and to use model transformation technique to link both vertically the different levels of

the MDA abstraction and horizontally the corresponding models of the systems to

interoperate. The main goal of MDI, based on model transformation, is to allow a complete

follow-up from the expression of requirements to the coding of solutions and also to provide a

greater flexibility thanks to the automation of these transformations.

In the context of TG2, experimentations have been realized and in particular the feasibility

study to transform GRAI Methodology [Chen et al., 1997] [Doumeingts et al., 2001] Models

to UML models between CIM and PIM levels [Bourey et al., 2007]. These works are

complemented by additional works realized in the context of ATHENA [ATHENA, 2003] to

define UML profiles to take into account also the Service Oriented Architectures (SOA) at the

PIM level [Gorka et al., 2007].

3.3 Conclusion on Model Driven Development

Model Driven approach is essential to allow the implementation of services in coherence with

its definition at the business level using enterprise models. MDA defines the modeling levels

and specifies the goals to reach at each level but without mentioning how to model or which

modeling language to be used. In addition, interoperability barriers represent a key issue for

the development of collaborative networks and for the exchange of data between networked

organizations but they are only tackled at all abstraction level by MDI. Therefore, it is

ESA 1
Interoperability

Model (TCIM)

Interoperability

Model (BCIM)

Interoperability

Model (PIM)

Interoperability

Model (PSM)

Interoperability

code

ESA 1

ESA 1

ESA 1

ESA 1

ESA 2

ESA 2

ESA 2

ESA 2

ESA 2

Transformation

Transformation

Transformation

Transformation

Transformation

Transformation

Transformation

Transformation

Transformation

Transformation

Transformation

Transformation

Top CIM

Level

Bottom CIM

Level

PIM

Level

PSM

Level

Code

Level

Enterprise E1 Enterprise E1 CIO

42

necessary to develop a dedicated model driven approach defining accurately each modeling

level with proposing modeling languages, interoperability and the transformation mechanisms

from one level to another.

4. Modelling Languages

4.1 GRAI Extended Actigram

GRAI Extended Actigram is a process modeling language developed in the frame of GRAI

methodology. It offers many constructs to model different Enterprise functions and

operations. This formalism, which is an extension of IDEF0 [NIST, 1993], makes it possible

to model Enterprise functions with a high semantic level. GRAI Extended Actigrams are

composed of Activities and Control Flow, Resource Flow, Input Flow, and Output Flow, like

IDEF0, but they also provide logical operators in order to synchronize flows between

activities. In GRAI Extended Actigrams, flows can be characterized as Product or Information

flows. Two kinds of resources are taken into account: Human or Material. Figure 23 shows an

example of a ‘Painting Check Process’ in order to present the different types of constructs that

it is possible to use when creating GRAI Extended Actigrams.

Figure 23 GRAI Extended Actigram for ‘Painting Check Process’

This formalism doesn’t provide any kind of formal specification necessary for farther

development or implementation activities.

4.2 BPMN

The Business Process Modeling Notation (BPMN) [OMG-2 2011] is a standard defined by

the Object Management Group (OMG) for modeling business processes. The development of

BPMN was influenced by the demand for a graphical notation that complements the BPEL

[Andrews T. et al] standard for executable business processes BPMN was first developed by

the Business Process Management Institute (BPMNI), now merged with OMG, and released

to the public in May, 2004. BPMN was adopted as an OMG standard in February, 2006. The

primary goal of the BPMN effort was to provide a notation that is readily understandable by

all business users, from the business analysts that create the initial drafts of the processes, to

the technical developers responsible for implementing the technology that will perform those

processes, and finally, to the business people who will manage and monitor those processes.

BPMN targets both business analysts and software architects to collaboratively design, deploy

and monitor business processes. It enables analysts to freely design the processes and

developers to add necessary technical details afterwards. Due to its maintenance by the Object

Management Group (OMG) and its adoption as an ISO standard (ISO 19510:2013), BPMN

also meets the requirement to use a generally accepted notation, which guarantees certain

sustainability. Although BPMN offers a wide range of modelling elements, it also defines a

basic set of core elements, which simplifies the modelling and understanding of complex

43

business processes

BPMN defines a Business Process Diagram (BPD), which is based on a flowcharting

technique tailored for creating graphical models of business process operations. A Business

Process Model, then, is a network of graphical objects, which are activities (i.e., work) and the

flow controls that define their order of performance. A BPD is made up of a set of graphical

elements. The elements were chosen to be distinguishable from each other and to utilize

shapes that are familiar to most modelers. For example, activities are rectangles and decisions

are diamonds. Graphical aspects of the notation are organized into specific categories. This

provides a small set of notation categories so that the reader of a BPD can recognize the basic

types of elements and understand the diagram. Within the basic categories of elements,

additional variation and information can be added to support the requirements for complexity

without dramatically changing the basic look-and-feel of the diagram. The five basic

categories of elements are: Flow Objects, Data, Connecting Objects, Swimlanes, and

Artifacts. Flow objects are the main graphical elements to define the behavior of a business

process. It consists of activities, gateways, and events. Data is represented with the four

elements Data Objects, Data Inputs, Data Outputs and Data Stores. Connecting objects as the

name implies are used to connect the activities and other elements with each other using

different arrows which represent messages and associations between them. This core set of

elements define the control flow perspective of processes. There are four connecting Objects:

Sequence Flows, Message Flows, Associations, and Data Associations. Different modeling

elements are grouped through Swimlanes which are pools and lanes. A Pool is used to

represent process participants while lanes are used to partition these participants and their

activities from one to another. A process participant can either be organizational entities

within an organization or different organizations for collaboration in a process. Mostly,

organizational perspective is provided by using Swimlanes constructs. Artifacts are used to

provide additional information about the Process. There are two standardized Artifacts, but

modelers or modeling tools are free to add as many Artifacts as necessary. There could be

additional BPMN efforts to standardize a larger set of Artifacts for general use or for vertical

markets. The current set of Artifacts includes: Group and Text Annotations.

Modern business process modelling languages like BPMN offers more constructs to represent

real-world situations than their predecessors, e.g. IDEF [NIST 1993] or Petri nets [Narahari,

1999]. BPMN offers 50 modelling constructs, ranging from Task and Sequence Flow to

Compensation Associations and Transaction Boundaries [zur Muehlen et al]. However, the

apparent increase in expressiveness is accompanied by an increase in language complexity.

The apparent complexity of the BPMN standard seems to be similar to the UML standard,

which raises a number of questions: Are BPMN users able – and willing – to cope with the

complexity of the language? Does the separation into core and extended constructs provided

by the specification hold in modelling practice? And – really – how exactly is BPMN used in

practice? Authors in [zur Muehlen et al] tried to answer these questions by analysing BPMN

diagrams collected from different data sources. Authors observed that the distribution of

BPMN constructs shows that BPMN – as many natural languages – has a few essential

constructs, a wide range of constructs commonly used, and an abundance of constructs

virtually unused. Based on this observation, they concluded that training and usage guidelines

can be designed to reduce the complexity of the language to inexperienced analysts and to

deliberately build such models that can safely be assumed to depict the core essence of a

process without adding too much complexity.

http://link.springer.com/search?facet-creator=%22Y.+Narahari%22

44

4.3 DEVS Formalism

Since the early 1970s, the modeling and simulation (M&S) Community has tried to define

different formalisms for varied systems specifications. The DEVS formalism was defined to

bring coherence and to unify the field of discrete-event M&S with formal rigor and an

underlying system’s theoretical framework. DEVS stands for Discrete EVent System

specification, a formalism introduced first by Bernard Zeigler [Zeigler 1976]. A DEVS model

processes an input event trajectory and –according to that trajectory and its own initial

conditions– it provokes an output event trajectory.

 Atomic DEVS 4.3.1

An atomic DEVS model is defined by the following structure:

𝑀 = (𝑋, 𝑌, 𝑆, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝜆, 𝑡𝑎)

where:

 X is the set of input event values

 Y is the set of output event values

 S is the set of state values

 𝛿𝑖𝑛𝑡 : S → S is the internal transition function

 𝛿𝑒𝑥𝑡 : 𝑄 × 𝑋 → 𝑆 is the external transition function

Q = {(s, e) : s ∈ S, e ∈ [0, ta(s)]} is the total state set, and e is the elapsed time since

the last transition

 λ: 𝑆 → 𝑌 is the output function

 ta: 𝑆 → 𝑅0
+ ∪ ∞ are functions which define the system dynamics.

For a discrete event model described by an atomic DEVS M, the behavior is uniquely

determined by the initial total state (𝑠0, 𝑒0) ∈ 𝑄 and is obtained by means of the following

iterative simulation procedure. Each possible state s (s ∈ S) has an associated Time Advance

computed by the Time Advance Function ta(s): 𝑆 → 𝑅0
+. The Time Advance is a non-negative

real number saying how long the system remains in a given state in absence of input events.

Thus, if the state adopts the value s1 at time t1, after ta(s1) units of time (i.e. at time ta(s1) + t1)

the system performs an internal transition going to a new state s2. The new state is calculated

as s2 =𝛿𝑖𝑛𝑡(𝑠1). Function 𝛿𝑖𝑛𝑡 (𝛿𝑖𝑛𝑡 : S → S) is called Internal Transition Function. When the

state goes from s1 to s2 an output event is produced with value y1 = λ (s1). Function λ (λ: S →

Y) is called Output Function. In that way, the functions ta, 𝛿𝑖𝑛𝑡 t and λ define the autonomous

behavior of a DEVS model. When an input event arrives the state changes instantaneously.

The new state value depends not only on the input event value but also on the previous state

value and the elapsed time since the last transition. If the system arrived to the state s2 at time

t2 and then an input event arrives at time t2+e with value x1, the new state is calculated as s3 =

𝛿𝑒𝑥𝑡(s2, e, x1) (note that ta(s2) > e). In this case, we say that the system performs an external

transition. Function 𝛿𝑒𝑥𝑡 (𝛿𝑒𝑥𝑡 : 𝑄 × 𝑋 → 𝑆) is called External Transition Function. No output

event is produced during an external transition. After an external transition, the model is

rescheduled and the process starts again, setting the elapsed time e to 0.

The behavior of an Atomic DEVS model is identified by the following:

45

 The time advance function (ta) which controls the timing of internal transitions, and

usually this function just return the value of sigma

 The internal transition function which specifies the next state of the system after the

time (sigma) given by ta has elapsed.

 The external transition function which specifies how the system changes state when an

input is received. It places the system in new state and consequently a new sigma thus

scheduling it for a next internal transition

 The output function which generates an external output just before an internal

transition takes place.

In summary, sigma holds the time remaining to the next internal transition. This is precisely

the time advance value to be produced by ta. In the absence of external events, the system

stays in the current state for the time given by sigma. The time advance function can take any

real number between 0 and ∞. A state for which ta(s) = 0 is called transient state. While if

ta(s) = ∞, s is said to be a passive state.

 Coupled DEVS 4.3.2

A coupled DEVS N is specified by a 7-tuple:

𝑁 = (𝑋, 𝑌, 𝐷, {𝑀𝑖}, {𝐼𝑗}, {𝑍𝑗,𝑘}, 𝛾)

Where

 X is the input set

 Y is the output set

 D is the set of component indexes

 {𝑀𝑖|𝑖 ∈ 𝐷} is the set of components, each 𝑀𝑖 being an atomic DEVS

 {𝐼𝑗|𝑗 ∈ 𝐷 ∪ {𝑠𝑒𝑙𝑓}} is the set of all influencer sets

 {𝑍𝑗,𝑘|𝑗 ∈ 𝐷 ∪ {𝑠𝑒𝑙𝑓}, 𝑘 ∈ 𝐼𝑗 } is the set of output to input translation functions, where

𝑍𝑗,𝑘: 𝑋 → 𝑋𝑘 , 𝑖𝑓 𝑗 = 𝑠𝑒𝑙𝑓

𝑍𝑗,𝑘: 𝑌𝑗 → 𝑌, 𝑖𝑓 𝑘 = 𝑠𝑒𝑙𝑓

𝑍𝑗,𝑘: 𝑌𝑗 → 𝑋𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝛾: 2𝐷 → 𝐷 is the select function

Sets X and Y are produced sets which formalize multiple I/O ports. Each atomic DEVS in the

network is assigned a unique identifier in the set D. This corresponds to model names or

references in a modelling language. The coupled-DEVS N itself is referred to by means of

𝑠𝑒𝑙𝑓 ∉ 𝐷. This provides a natural way of indexing the components in the set {𝑀𝑖} and to

describe the sets {𝐼𝑗}, which isexplicitly describes the network structure, and {𝑍𝑗,𝑘}.

4.4 Conclusion on Modeling Languages

GRAI Extended Actigram and BPMN are two business process modeling languages with a

difference in the information and the level of details represented in their models. GRAI

Extended Actigram doesn’t possess a public formal specification or a standard metamodel

that can be used for development purposes. In addition BPMN doesn’t propose the

46

representation of specific performance indicators such as time and costs. On the other hand,

DEVS formalism is a modeling and simulation (M&S) formalism, with well formulated

specification and designated to capture and simulate the behavior of systems on time and cost

bases.

5. Simulation Tools

5.1 Business Process Simulation Tools

Business processes are in a continuous improvement cycle in which design and redesign play

an important role. Various possibilities to change a process are present and the best alternative

design should replace the current process. Making an intuitive choice may lead to unpleasant

surprises and lower process performance instead of yielding the expected gains. Simulation is

one of the techniques suitable for the support of redesign. The simulation of business

processes helps in understanding, analyzing, and designing processes. With the use of

simulation the (re)designed processes can be evaluated and compared. Simulation provides

quantitative estimates of the impact that a process design is likely to have on process

performance and a quantitatively supported choice for the best design can be made

 ARIS Simulation 5.1.1

ARIS Simulation is a professional tool for the dynamic analysis of business processes. It is an

integral part of the ARIS Toolset; processes recorded in the ARIS Toolset are used as the data

basis for business process simulation. ARIS Toolset is developed by IDS Scheer AG (see

www.ids-scheer.nl) and can be classified as an enterprise modelling tool with a strong

emphasis on business processes. Enterprise modelling is supported by a number of different

views (process, function, data, organization and product) and the modelling approach called

ARIS House. The process modelling part supports the definition of business processes

represented in Event-driven Process Chains (EPCs). Other modelling techniques supported in

the ARIS House are, e.g. value chains (also to model the control flow), organization charts (to

model relationships between resources), EPCs and function allocation diagrams (for

supplementary information such as data and systems). The simulation functionality shows

whether the specified processes are executable at all and it answers questions about

throughput times and utilization levels of the resources, etc. When starting a simulation, the

simulation module of the tool is started and the model is transferred. The simulation toolbar

shows buttons for start and stop, one time step and simulation steps and options for

animations. The simulation results are available in Excel spreadsheets and include statistics on

events, functions, resources, processes and costs. Only raw data is available.

 Protos 5.1.2

Protos is a modelling and analysis tool developed by Pallas Athena and it is mainly applied

for the specification of in-house business processes. Protos is suitable to model well-defined

Petri Net structures. Nevertheless, it also permits free hand specifications of business

processes without formal semantics, e.g. to support initial and conceptual modelling. When

formal Petri Net semantics have been applied, translation to various other process-based

systems is feasible as well, e.g. to the workflow management system COSA and the workflow

analyzer Woflan.

The main use of Protos is to define models of business processes as a step towards either the

implementation of quality management systems, the redesign of a business process,

communication enhancement between process stake holders or the implementation of

workflow management systems. The process can be analyzed with respect to data, user and

47

control logic perspective, and by making use of simulation. The simulation engine is

implemented in Protos version 7.0. The existing engine of the Petri Net based tool ExSpect

has been integrated in the Protos environment and it facilitates the simulation of the business

process as has been specified in the Protos model before. In addition to the standard process

specification, simulation data can be added for tasks, connections and resources such as the

(stochastic) processing time and the number of resources required. Furthermore, process

characteristics are added such as the arrival pattern for cases and the number and length of

simulation runs. The simulation result can be obtained from an Excel spreadsheet and

includes mean and 90% and 99% confidence interval of utilization rates, waiting times,

service times, throughput times and costs.

 Arena 5.1.3

Arena is a general purpose simulation tool developed by Rockwell Automation. The Arena

product family consists of a Basic Edition for uncomplicated processes and a Professional

Edition for more complex large scale projects in manufacturing, distribution, processes,

logistics, etc. The Professional Edition also provides (and allows definition of) templates for

complex repetitive logic, e.g., for packaging and contact centers.

When opening the tool, a number of process panels are available, e.g., for basic and advanced

processes and for reporting. The model can be created by drag and drop from the process

panel to the model window. By double-clicking on the icons, options for the different building

blocks can be set such as delay types, time units and the possibility to report statistics. Many

more building blocks are available and can be attached when necessary.

When a model has been created and is completely specified (from the Arena viewpoint) and it

is syntactically correct, it can be simulated. Warm-up and cool down periods can be specified,

as well as run length and confidence intervals.

Several statistics are provided by default, but the larger part needs to be added manually by

adding record building blocks where necessary. In a previous study, [de Vreede et al]

considered the suitability of Arena to simulate business processes. They stated that a weak

point in simulating business processes is the time consuming and complicated process to

create simulation models. They took advantage of the possibility to develop their own

template with predefined building blocks, which they considered to be successful in several

simulation studies they carried out.

 Jbpm 5.1.4

JBoss Jbpm is a very flexible business process engine which is available under the open

source LGPL license2. The core of Jbpm is a light-weight, extensible workflow engine

written in pure Java that allows you to execute business processes using the latest BPMN 2.0

specification. It can run in any Java environment, embedded in your application or as a

service. On top of the core engine, a lot of features and tools are offered to support business

processes throughout their entire life cycle.

BPM makes the bridge between business analysts, developers and end users, by offering

process management features and tools in a way that both business users and developers like

it. Domain-specific nodes can be plugged into the palette, making the processes more easily

understood by business users. Jbpm supports adaptive and dynamic processes that require

flexibility to model complex, real-life situations that cannot easily be described using a rigid

process. We bring control back to the end users by allowing them to control which parts of

the process should be executed, to dynamically deviate from the process, etc. jBPM is also not

48

just an isolated process engine. Complex business logic can be modeled as a combination of

business processes with business rules and complex event processing. Jbpm can be combined

with the Drools project to support one unified environment that integrates these paradigms

where you model your business logic as a combination of processes, rules and events. Jbpm5

is the latest community version of the Jbpm project. It is based on the BPMN 2.0

specification and supports the entire life cycle of the business process (from authoring through

execution to monitoring and management). The current Jbpm5 snapshot offers open-source

business process execution and management, including:

 Embeddable, lightweight Java process engine, supporting native BPMN 2.0 execution

 BPMN 2.0 process modelling in Eclipse (developers) and the web (business users)

 Process collaboration, monitoring and management through the Guvnor repository and

the web console

 Human interaction using an independent WS-HT task service

 Tight, powerful integration with business rules and event processing

 Bonita Open Solution 5.1.5

BonitaSoft is a leading BPMS solutions (workflow) proposed in open source mode, located in

France, China and the USA and is represented in more than 20 countries through its network

of partners. BonitaSoft is the publisher of Bonita Open Solution, a platform BPMS (business

process modelling simulation). Bonita Open Solution BPM suite is the most world

downloaded open with more than 500,000 downloads in early 2011.

It combines three solutions in one: an innovative Studio for process modelling, a BPM and

workflow engine, and a user interface. Standard simulation capability available in Bonita

Open Solution allows loading parameters and provides execution simulation reports.

 Evaluation 5.1.6

The evaluation of the previous simulation tools is based on four basic aspects: BPMN2.0

compatibility, Simulation capabilities (possibility to simulate time and cost aspects, use of

different simulation scenarios, and animation or replay of the simulation), Result analysis

capabilities (statistical results and easy to read formats), and product’s license type (open

source). The following table summarizes an evaluation of the tools with respect to the defined

criteria.

49

Table 1 Evaluation of Business Process Simulation Tools

 Tool

Criteria ARIS Protos Arena Jbpm Bonita

BPMN2.0 Compatible

time/cost simulation

Simulation scenarios

Simulation animation

Statistical results

Easy to read formats

Open source

 Not supported

 Partially supported

 Supported

5.2 DEVS Simulation Tools

Electing a target DEVS tool for model transformation requires a literature review of current

DEVS Simulation tools. The DEVS group standardization maintains on its website the

updated list of most used DEVS tools known by the DEVS community [Wainer 2013]. In

[Hamri and Zacharewicz 2012], the authors have given a brief description and comparison of

popular tools.

ADEVS was the first DEVS tool developed in C++ by the Arizona University. It consists in

an ad-hoc simulator. DEVS abstract classes should be extended by users to define atomic and

coupled models, and then the simulation can be launched. The drawback resides in the fact

that users need programming skills to code the models.

DEVSJAVA is a Java framework in which the kernel simulator is ADEVS. It supports also

modelling and simulation of DEVS with variable structures. However, at atomic level, the

user should implement the corresponding DEVS behavior in Java (in our opinion the user

has not enough skills to program his atomic models).

CD++ Builder is a DEVS modelling and simulation environment that integrates interesting

features and facilities for the user. It allows modelling and simulation of other DEVS

formalisms (cell-DEVS, Quantized-DEVS, etc.). It provides a DEVS graphical editor to

model coupled and atomic models, and to encapsulate them through components for further

reuse. Other DEVS tools are dedicated to specific areas. VLE, this is a C++ M&S framework

that integrates heterogeneous models from different scientific fields. This integration is based

on the agent paradigm. In addition, JDEVS is the Java implementation of a DEVS formal

framework. It supports multi-modelling paradigms based on DEVS. It ensures the

interoperability among the reused components. Also SIMSTUDIO can be considered, it is

focused on a simplified DEVS editor for DEVS non Expert. The authors also investigate

LSIS_DME that is focused on a graphical interface and code source generation in order to

complete the model by complex Java functions.

5.3 Conclusion on Simulation Tools

The evaluation of business process simulation tools presented in this section is based on the

50

criteria we need in our work for the development or integration of a simulation tool. ARIS,

PROTOS, and ARENA are discarded due to the lack of two basic criteria: BPMN2.0

compatible and open source. In the other hand, BONITA (open source) doesn’t provide any

animation support and it is not possible to integrate with other tools (eclipse based tools). A

Jbpm eclipse plugin permits the integration of a Jbpm simulator with an eclipse based tool but

this plugin doesn’t support any animation feature. In addition, the examination of DEVS

Simulation tools has faced functional and technical problems because of the absence of any

support or user and technical manuals. These tools were difficult to use and were not adapted

to our needs.

Model Driven Service
Engineering Architecture

(MDSEA), Extended
Actigram Star (EA*), and
Model Transformation

52

The previous chapters (chapter 1&2) have introduced the context of this thesis, existing

problems we are targeting, and basic concepts in the domain of our research work. This

chapter will start providing answers in the domain of servitization and Service System’s

modeling. Model Driven Service Engineering Architecture is presented and its principles,

concepts, and modeling languages for Service System’s modeling are detailed.

1. Service Systems’ Modeling and Model Driven Approach

A Service System has the same structure like that of a Product System in a manufacturing

enterprise, but it is oriented towards the realization of a service rather than product. How to

model service systems and based on what concepts and methods? Service System modeling

can be inspired from Enterprise Modelling concepts, models, methods and tools.

The advantage of Enterprise Modelling approach is the ability to precisely identify models’

elements (concepts or constructs) using reference models and then to represent and describe

these concepts with adapted languages in order to deliver enterprise models. These enterprise

models can be represented with several points of views: functions, decisions, business

process, and IT. Enterprise modelling’s techniques allows:

 understanding of enterprise systems and improving communication and knowledge

sharing between various stakeholders,

 Representing AS-IS (existing situation) and TO-BE (future situation) systems in terms

of functions, business processes, physical system, decision system and IT system, and

capturing business users requirements,

 Elaborating a diagnosis of AS IS strong points and points to improve, using specific

rules and taking into account the enterprise’s strategy in terms of product and service

proposition

 Specifying the future system at various levels of abstraction through a model driven

approach

The concept of system plays an important role in Enterprise Modelling and by extension in

Service System Modeling. One of the important lessons learned from applying Enterprise

modelling in industry is the necessity to adapt two views: a global view which allows the

capturing of global structure and understanding objectives and a local view which allows the

modeling of detailed elements in a coherent way with the global view. Herbert Simon [March

et Simon, 1963], one of the founder of System Theory, has claimed that “you can never know an

enterprise or an organization, not only if you are not able to understand it as a whole but also if

you are not able to represent its details and establish a link between its two views” (global and

local views). Based on the understanding of System theory, we can comprehend the behavior of

service systems and how to design, understand and represent Service Systems. The representation

of these systems is based on models, which implies the necessity of modeling languages adapted

to the nature of concepts and point of views to represent. We propose in the following section the

Model Drive Service Engineering Architecture (MDSEA) inspired from the various enterprise

modeling approaches presented in chapter 2 and based on field experience accumulated while

implementing Enterprise modeling in enterprises.

2. MDSEA

The Model Driven Service Engineering Architecture (MDSEA) is inspired from MDA/MDI.

53

This methodology is proposed in the frame of the MSEE project [MSEE, 2011] that defines

its first Grand Challenge as making SSME (Service Science, Management and Engineering)

evolving towards Manufacturing Systems and Factories of the Future. MDSEA provides an

integrated methodology dealing with modelling languages at various levels of abstraction to

support service models and Service System’s design and implementation. A relationship

between MDSEA modelling levels and the Service System lifecycle phases (user-

requirements, design and implementation) is established. One of the important innovations in

MDSEA is to define the integration between domain components (IT, Organization/Human

and Physical Means) at the Business Service Model (BSM) level in order to ensure that these

integration aspects will be spread out at the other levels. In this sense, this is therefore

considered as an adaptation and an extension of MDA/MDI approaches to the engineering

context of product related services in virtual enterprise environment.

On the basis of MDA/MDI, the proposed MDSEA defines a framework for service system

modelling around three abstraction levels: Business Service Model (BSM), Technology

Independent Model (TIM) and Technology Specific Model (TSM) as presented in figure 24

Vertical decomposition: towards alignment from business to operational

Figure 24 shows that the interest of such architecture is on one hand to design and implement

a service product and on the other hand to produce the dedicated service system coherent with

business service models, represented using enterprise models. By examining TIM and TSM

levels, we can observe how the methodology is differentiating between three kinds of

resources categorized into IT, Human and Physical Means. The reason of such categorization

is to tackle the different requirements of resources at the implementation stage of the service

system. The implementation of resources detailed in TSM models allow the implementation

of service systems and related service product through a cloud of services, i.e. a system in

which the service provider (an enterprise inside the network) is not always recognized by the

customer who is only focused on the service. The service maintenance, and decommission

activities can also be ensured by different companies in the network without a real recognition

by the customer. However, the dedicated virtual organization has also the property rights on

the provided services

It is important to mention that the service system represented at each level of MDSEA is the

same system but more or less detailed and taking into account more or less implementation

constraints.

54

Figure 24 The MDSEA architecture applied in a service network of two enterprises

Horizontal alignment: towards an interoperability to ensure efficient collaboration between

service network

Figure 24 shows the Collaboration between two enterprises collaborating together in order to

produce a service. Collaboration between different entities can happen at different MDSEA

abstraction levels (BSM, TIM, and TSM). The BSM models allow to represent the TO BE

models of both entities and to align the interoperability of practices in terms of business

processes models and decisions models. In MDSEA, interoperability is a Key factor for

enterprises’ collaboration. Enterprise models ensure not only interoperability of practices, but

also between human resources and IT systems supporting these practices.

Figure 25 presents the three abstraction levels proposed by MDSEA and their correspondence

in MDA.

Enterprise B Enterprise A

IT

Domain
Organisation

human
Physical

means
IT

Domain
Organisation

human
Physical

means

Business Service Model (BSM)

Technology Independent Model

(TIM)

Technology Specific Model

(TSM)

Business Service Model (BSM)

Technology Independent Model

(TIM)

Technology Specific Model

(TSM)

Services in Virtual Enterprises Services in Virtual Enterprises

Interoperability at the model level

Interoperability at the service

system level

Interoperability at the model level

Interoperability at the model level

55

Figure 25 MDSEA vs MDA

2.1 Business Service Model (BSM)

BSM specifies the models, at the global level, describing the service running inside a single

enterprise or inside a set of enterprises as well as the links between these enterprises. The

models at the BSM level must be independent to the future technologies that will be used for

the various resources and must reflect the business perspective of the service system. In this

sense, it’s useful, not only as an aid to understand a problem, but also it plays an important

role in bridging the gap between domain experts and the development experts who will build

the service system. The BSM level allows also defining the link between the production of

products and the production of services.

2.2 Technology Independent Model (TIM)

TIM delivers models at a second level of abstraction independent from the technology used to

implement the system. It gives detailed specifications of the structure and functionality of the

service system which do not include technological details. More concretely, it focuses on the

operational details while hiding specific details of any particular technology in order to stay

independent from any technology, used for the implementation. At TIM level, the detailed

specification of a service system’s components are elaborated with respect to IT,

Organization/Human and Physical means involved within the production of the service. This

is important to mention that in comparison to MDA or MDI or SOMA (Service Oriented

Modelling and Architecture), the objective of MDSEA is not only IT oriented and then this

requires enabling the representation of human and technical resources from the BSM level. At

TIM level, the representations must add some information in comparison to BSM models.

2.3 Technology Specific Model (TSM)

TSM enhances the specifications of the TIM model with details that specify how the

implementation of the system uses a particular type of technology (such as, for example IT

applications, Machine technology or a specific person). At TSM level, the models must

provide sufficient details to allow developing or buying suitable software applications,

hardware components, recruiting human operators / managers or establishing internal training

plans, buying and realizing machine devices, for supporting and delivering services in

interaction with customers. For instance for IT applications, a TSM model enhance a TIM

model with technological details and implementation constructs that are available in a specific

Business Service Model

(BSM)

Technology Independent Model

(TIM)

Technology Specific Model

(TSM)

Computation Independent Model

(CIM)

Platform Independent Model

(PIM)

Platform Specific Model

(PSM)

MDSEA MDA

56

implementation platform, including middleware, operating systems and programming

languages (e.g. Java, C++, EJB, CORBA, XML, Web Services, etc.). Based on the technical

specifications given at TSM level, the next step consists in the realization and the

implementation of the designed service system in terms of IT components (Applications and

Services) Physical Means (machine or device components or material handling), and human

resources and organization ensuring human related tasks/operations.

2.4 Proposed Modelling Languages

Based on the modelling levels just previously described, the methodology MDSEA proposed

to associate relevant modelling languages at each level in order to represent confidently the

existing system and the future service product and service system. To achieve this goal, the

standards for process modelling are gaining more and more importance, which gave rise to

several process modelling languages and tools to enhance the representation of enterprise

processes. The level of abstraction required is important to choose the suitable modelling

language.

It is obvious to say that the first specification step of a service to be established between two

partners is crucial. At the BSM level, the modelling language must be simple to use, powerful

and understandable by business oriented users. Moreover, this (or these) language(s) must

cover process and decision with coherent models. The choice is affected by the capacity of the

language to propose a hierarchical decomposition (global view to detailed ones); this is

especially required at this level. Indeed, business decision-makers often have a global view of

the running system and need languages allowing this global representation with few high level

activities (process or decisions). This global view must be completed by more detailed

activities models elaborated by enterprise sector responsible. These models are connected to

top level models in a hierarchical and inclusive way. These are the principles of systemic and

system theory which must be taken into account in the choice of the languages.

But it is also obvious that the choice of modelling languages is also subjective, depending on

the experience of the languages’ practitioners and on the wide dissemination of these

languages within enterprises.

As for process modelling at business level, several languages exist. Extended Actigrams Star

(EA*), extended from GRAI extended Actigram [Grangel 2008], that was itself derived from

IDEF0 [NIST 1993], was chosen to model processes at BSM level due to its independence

regarding IT consideration, its hierarchical decomposition and the fact it can model three

supported resources: material, human and IT. It has been developed as an answer to previous

issues encountered with GRAI extended actigram language regarding its interoperability. It

intends to capture business process models at a high semantic level, independently from any

technological or detailed specifications. Service Oriented Modelling and Architecture

principles [Bell M. 2008] developed by IBM were also considered, but these languages are

more IT oriented and thus were far away from our requirements. Moreover, GRAI Grid

[Doumeingts G. 1998] was selected for modelling governance in a service system. GRAI Grid

aims at proposing a cartography of company’s decisions which controls business processes, as

proposed for instance in the ISO 9000-2008 standard. The interest of GRAI Grid is to

represent all decisions and their coordination, from the strategic to the operational levels. This

representation is very important for business users because the results of decision making are

also at the origin of performance evolution and achievement.

At the TIM level, BPMN 2.0 [OMG-2 2011] was chosen in particular because this language

57

offers a large set of detailed modelling construct, including IT aspects and benefits from the

interoperability of many BPM IT platforms allowing the deployment and automated

transformation to execution of BPMN processes. Moreover, BPMN enables also to represent

human and technical resources which are required in the MDSEA principles of representation.

BPMN has also the advantage to provide a meta-model developed by OMG which facilitates

the implementation of the language. GRAI nets are proposed in order to detail the decision

processes in coherence with the decisions identified in the GRAI Grid but with adding

technical and organization information as the decision rules, the decision makers, and the

decision support modules.

3. Extended Actigram Star (EA*)

Section 3.2 has explained and detailed MDSEA as a methodology for modeling service

systems and assisting the shift of manufacturers towards servitization. In addition, as

mentioned earlier MDSEA specifies the modeling languages to be used at every abstraction

level (BSM, TIM, and TSM). The modeling of business processes at BSM is to be managed

using the Extended Actigram Star (EA*) we developed for this purpose. This section

introduced the EA* modeling language developed during this thesis for the purpose of

modeling business processes.

3.1 Scope

The primary goal of Extended Actigram Star is to provide a common and explicit graphical

notation for business process modelling. Such language is targeted to business oriented

people, who need to describe and communicate high level business processes involving

enterprises resources with the help of a simple and explicit formalism. In comparison to other

initiatives such as BPMN2.0, Extended Actigram relies on a reduce set of graphical objects

and focus on the “business” aspects of enterprise processes. By its simple and accessible

syntax, Extended Actigram Star intends to reduce the gap between the ideation and the design

of business process.

Extended Actigram Star has been developed in the frame of the European Integrated Project

MSEE (Manufacturing Service Ecosystem). This modelling language takes its origins in the

GRAI methodology, for enterprise modelling and “decision centric” analysis. GRAI includes

the original “GRAI Extended Actigram” modelling language (presented in section 2.4.1), for

business processes. The language didn’t possess an abstract syntax but several ones developed

in the frame of academic researches and projects. In addition, the specification of GRAI

Extended Actigram was not sufficiently formal.

The work performed on Extended Actigram Star consisted to re-engineer the original

modelling language on a “meta model” architecture basis and to improve the usability of the

language in the domain of Manufacturing Services (Model Driven Service Engineering

Architecture) and its interoperability with other formalisms (e.g.: BPMN). Extended Actigram

Star facilitates the modelling of business process in an enterprise offering a dynamic view of

the process being modelled. It is addressed to business users responsible of the creation of the

first model, business people responsible of the management, and to technical developers

responsible of the development of business process modelling tools.

As a graphical modelling language, Extended Actigram Star will provide business users and

analysts standards to visualize business processes in an enterprise, and thus with a

comprehensible and easy way to handle these processes.

58

Thus, Extended Actigram Star is a proposition of a new, more developed version of GRAI

Extended Actigram. It is based on a specific development strategy:

 Keep the core principles of GRAI Extended Actigram.

 Add new concepts in order to support abstraction, and to ease the implementation of

software for model manipulation and transformation.

3.2 Overview

Business process is a structured, measured set of activities designed to produce a specific

output for a particular customer or market. It implies a strong emphasis on how work is done

within an organization, in contrast to a product focus’s emphasis on what. A process is thus a

specific ordering of work activities across time and space, with a beginning and an end, and

clearly defined inputs and outputs: a structure for action. Taking a process approach implies

adopting the customer’s point of view. Processes are the structure by which an organization

does what is necessary to produce value for its customers [Davenport, 1993].

The world of business processes has changed dramatically over the past few years. Processes

can be coordinated from behind, within and over organizations’ natural boundaries. A

business process now spans multiple participants and coordination can be complex.

Business process models can help business actors to handle the problems of heterogeneity,

complexity, and flexibility in layered operational Enterprise Architectures and across the

enterprise knowledge spaces of network life-cycles.

Extended Actigram Star language is suitable to collect knowledge about processes at the

business level rather than other modelling language. This consideration is based on past

experience of experts “from the field”. This can be partially explained by its simplicity

regarding other languages, which includes much more constructs and based on a more “IT

Oriented” modelling approach.

3.3 Abstract Syntax

The diagram below is a Class diagram representation of the EA* Conceptual model, with its

different sub packages, elements composing it, and their relations.

59

Figure 26 Abstract Syntax of Extended Actigram Star

 Structure 3.3.1

Extended Actigram Star elements are divided into three sub packages:

 Package – Root: it contains the root element of the Extended Actigram star Language

(Model)

 Package – General Elements: this package contains the generic classifiers of the

language (“Flow Element” and “Process”) and factors out common attributes of the

language constructs.

 Package – Core Concepts: this package contains the building blocks (“constructs”) of

Extended Actigram Star models.

3.3.1.1 Package: Root

3.3.1.1.1 Construct: Model

Model is the root element of the Extended Actigram Star Conceptual model. It is composed of

a process which is the subject to be modelled and might be composed of other processes

belonging to the same domain of study.

60

Table 2 Model attributes

Class name Model

Inherits from BaseElement (see BaseElement)

Attribute Type Description / Usage

process Reference Is a reference to an object of type

Process.

Organizations[0..*] Reference Set of organizations responsible for the

realization of the process.

3.3.1.2 Package: General Elements

3.3.1.2.1 Abstract Construct: BaseElement

BaseElement is the most generic class of the Extended Actigram Star meta model. It is an

abstract supper class, from which all other concepts inherit several common attributes.

Table 3 BaseElement attributes

Class name BaseElement

Inherits from None

Attribute Type Description / Usage

id String It is the unique id of an object; it is

used for referencing each instance of

this class.

name String The name of the object

code String to be identified

description String Object’s description

The diagram below represents the BaseElement class, its attributes and the classes directly

inheriting from it.

Figure 27 BaseElement

3.3.1.2.2 Construct: Process

Process is an essential concept of the language. It is a set of related, structural or atomic

activities logically chained and triggered by flows and eventually using operators and

connectors. Elements constituting a Process can be divided in two categories: nodes

file:///D:/these_Desktop/thése/Manuscript/chapters/chapter_4.docx%23_Abstract_Construct:_BaseElement

61

(FlowNode) and flows (Flow). A Process is represented by one diagram. The following figure

is a graph representation of a process and its decomposition.

Figure 28 Process UML object diagram

The graph can be summarized in the following points:

 P1 represents the process to be modelled.

 P1 is composed of two ExtendedActivities: Act1 and Act2.

 Act1 is a structural ExtendedActivity connected to Process P2 (“isA” association

relation).

 Act2 is an atomic ExtendedActivity, and can’t be composed of other FlowElements.

 P2 is composed of three atomic ExtendedActivities: Act3, Act4, and Act5.

Table 4 Process attributes

Class name Process

Inherits from BaseElement

Attribute Type Description / Usage

FlowElements [0…

*]

Reference A Process is composed of

FlowElements which represent all

objects used to visualize a Process

(ExtendedActivities,

LogicalOperators, Resources and

Connectors)

3.3.1.2.3 Abstract Construct: FlowElement

FlowElement is the core of Extended Actigram Star conceptual model. It emphasizes the

notion of sequence within a process with all the conditions that govern this sequence.

FlowElement can be of two types:

 Flow: establish the connection between one node and another.

 FlowNode: are connectable elements which can be linked to one another by means of

a Flow. Thus, a FlowNode can be a source or target of a flow.

62

FlowElement class is a generic class of all the objects that constitute a process. As a result,

every object which appears in a process diagram is a FlowElement.

Table 5 FlowElement attributes

Class name FlowElement

Inherits from BaseElement

Attribute Type Description / Usage

none

3.3.1.3 Core Elements

3.3.1.3.1 Abstract Construct: Flow

A Flow is the link connecting two FlowNodes; it represents the exchange of objects

(information, products, resources, etc.) between ExtendedActivities, LogicalOperators,

Connectors and Resources. Each instance is characterized by a “Source” and a “Target”.

Besides, a flow is able to activate or initiate an ExtendedActivity, depending on the value

assigned to “isTrigger” attribute.

Table 6 Flow attributes

Class Name Flow

Inherits from FlowElement

Attribute Type Description / Usage

isTrigger Boolean The triggering characteristic

determines if a flow is capable to

trigger an activity or not. It is of a

Boolean type

triggerInfo String to be identified

source Reference The source of the Flow

Target Reference The target of the Flow

Figure 29 Flow

3.3.1.3.2 Construct: OutputInputFlow

An OutputInputFlow depicts the logical sequence between two elements. It inherits its

attributes from the Flow class.

63

 Table 7 OutputInputFlow attributes

Class Name OutputInputFlow

Inherits from FlowElement

Attribute Type Description / Usage

none

3.3.1.3.3 Construct: ControlFlow

A ControlFlow describes the conditions or rules that govern the execution of an

ExtendedActivity. It inherits its attributes from the Flow class.

Figure 30 ControlFlow

In Figure 30 the InternalConnector “design office” sends designs to the “cutting shirts”

structural ExtendedActivity. These designs describe the rules of how the shirts should be cut

in the “cutting shirts”. The flow in figure 30 is a ControlFlow.

Table 8 ControlFlow attributes

Class Name ControlFlow

Inherits from FlowElement

Attribute Type Description / Usage

none

3.3.1.3.4 Construct: SupportFlow

A SupportFlow indicates that the flow is supporting the realization of an activity or of a

process. Each instance of the SupportFlow whose source is not a Material Resource, has a

“resourceRole” which can be:

 responsible for: The IT or Human resource (source of the SupportFlow) is responsible

for the supported ExtendedActivity. It represents a general role like manager or

customer in case of Human resources, or information system in case of IT resource

 participates in: The resource (source of the SupportFlow) participates in the execution

of the supported ExtendedActivity without being responsible for it.

A SupportFlow whose source is a Material Resource has only “participates in” as

resourceRole. Several resources can support the same ExtendedActivity, the SupportFlows

connecting these resources and the target ExtendedActivity should obey a single constraint:

Only one of these SupportFlows can possess a resourceRole whose value is “responsible for”.

This constraint is due to the fact that only one resource (IT or Human) can be responsible for

a resource while the others would be participants.

64

Figure 31 SupportFlow Example

Figure 31 is an Example of Process composed of:

 Structural ExtendedActivity named “customer’s login” which manages the login of

customers into an online marketplace.

 Human resource named “customer” who is responsible for the execution of the

“customer’s login”

 IT resource named “IT system” which participates in the execution of the “customer’s

login”

Table 9 SupportFlow attributes

Class Name SupportFlow

Inherits from FlowElement

Attribute Type Description / Usage

resourceRole Enumeration “responsible for” or “participates in”

3.3.1.3.5 Abstract Construct: FlowNode

A FlowNode is a generic concept which defines one of the 4 basic elements that compose a

Process:

 ExtendedActivity

 LogicalOperator

 Connector

 Resource

FlowNodes are regarded to be the building blocks of a Process. These blocks are connected

using Flows (Flow). FlowNodes can be target or source of a Flow. Connections between

FlowNodes are governed by a set of constraints (Flow constraints) depending on its types

Table 10 FlowNode attributes

Class name FlowNode

Inherits from FlowElement

65

3.3.1.3.6 Abstract Construct: ExtendedActivity

ExtendedActivity represents the functional unit of a Process. Structural ExtendedActivities

can be decomposed into other ExtendedActivities while atomic ones can’t. An

ExtendedActivity can start/end the process execution. A process can have several

starting/ending Extended Activities in case of parallel execution.

Table 11 ExtendedActivity attributes

Class name ExtendedActivity

Inherits form FlowNode, Process

Attribute Type Description / Usage

isStarting Boolean A Boolean value indicating if the

ExtendedActivity is a starting

Activity or not

isEnding Boolean A Boolean value indicating if the

ExtendedActivity is an ending

Activity or not

mission String to be identified

functionalRules String to be identified

minCost Double to be identified

maxCost Double to be identified

averageCost Double to be identified

minTimeDelay Double to be identified

maxTimeDelay Double to be identified

averageTimeDelay Double to be identified

Some attributes are marked as “to be identified” since their exact usage is not still identified.

These attributes are implemented but not used while modelling a process until the moment

and their usage will be identified with respect to the process’s simulation requirements.

The diagram below represents the ExtendedActivity class and its relations.

Attribute Type Description / Usage

none

66

Figure 32 ExtendedActivity

3.3.1.3.7 AtomicExtendedActivity

AtomicExtendedActivity is an ExtendedActivity which is not decomposed into other

flowElements. It inherits its attributes from the ExtendedActivity abstract class.

Table 12 AtomicExtendedActivity attributes

3.3.1.3.8 StructuralExtendedActivity

StructurralExtendedActivity is an ExtendedActivity which can be decomposed into other

flowElements. In addition to attributes inherited from the ExtendedActivity abstract class it

possesses a reference to a Process.

Table 13 StructuralExtendedActivity attributes

3.3.1.3.9 Abstract Construct: Resource

Resource represents all kinds of resources and used by a process during transformation or

which has played a role in the process execution. Resource can be of three kinds:

 Human: a human who participated in the execution of an ExtendedActivity by

delivering his competences or taking a role in the execution.

 Material: a material used by an ExtendedActivity such as camions, machines…

 IT: a computer software playing a role in the execution of an ExtendedActivity

A Resource is an abstract class which extends the FlowNode class.

Table 14 Resource attributes

Class name Resource

Inherits from FlowNode

Attribute Type Description / Usage

UnitaryCost Double to be identified

location String to be identified

capabilities String to be identified

The following diagram represents the Resource abstract class and its three types.

Class name AtomicExtendedActivity

Inherits from ExtendedActivity

Attribute Type Description / Usage

none

Class name StructuralExtendedActivity

Inherits from ExtendedActivity

Attribute Type Description / Usage

isA Reference A StructuralExtendedActivity is a

Process which in its turn contains

flowElements that compose the

activity

67

Figure 33 Resource

3.3.1.3.10 Construct: Human

Human resources are humans who support the process execution or responsible for a process.

Table 15 Human attributes

Class name Human

Inherits from Resource

Attribute Type Description / Usage

none

An example of a Human resource is an employee called David whose role is to use a scanner

in an ExtendedActivity responsible for scanning materials.

3.3.1.3.11 Construct: Material

Material resource represents technical resources and machines involved in the process

execution.

Table 16 Material attributes

Class name Material

Inherits from Resource

Attribute Type Description / Usage

none

An example of a Material resource is the scanner used in the previous example.

3.3.1.3.12 Construct: IT

IT resources represent all computer software playing a role in the execution of a process

Table 17 IT attributes

Class name IT

Inherits from Resource

Attribute Type Description / Usage

none

An example of an IT resource is software used by an employee to manage the storage of

materials in a depot.

68

3.3.1.3.13 Abstract Construct: LogicalOperator

LogicalOperators are used to control how the Process flows through different types of Flows

as they converge and diverge within a Process. If the flow does not need to be controlled, then

a LogicalOperator is not needed. LogicalOperators allow or disallow passage of flows which

can be merged together on input or split apart on output.

Table 18 LogicalOperator attributes

Class name LogicalOperator

Inherits from FlowNode

Attribute Type Description / Usage

none

The following diagram represents LogicalOperator and its types.

Figure 34 LogicalOperator

3.3.1.3.14 Construct And

The And LogicalOperator is a generic class for DivergingAnd and ConvergingAnd classes.

Table 19 Diverging attributes

Class name And

Inherits from LogicalOperator

Attribute Type Description / Usage

none

3.3.1.3.15 Construct: DivergingAnd

DivergingAnd takes one flow as input and has at least two flows as output. The output paths

will all start at different or similar time.

69

Table 20 DivergingAnd attributes

Class name DivergingAnd

Inherits from And

Attribute Type Description / Usage

none

3.3.1.3.16 Construct: ConvergingAnd

ConvergingAnd has at least two input flows and it has one output flow. All input flows should

terminate before the output flow continues.

Table 21 ConvergingAnd attributes

Class name ConvergingAnd

Inherits from Converging

Attribute Type Description / Usage

none

3.3.1.3.17 Construct Or

The Or LogicalOperator is a generic class for ConvergingOr and DivergingOr classes.

Table 22 Converging attributes

Class name Or

Inherits from LogicalOperator

Attribute Type Description / Usage

none

3.3.1.3.18 Construct: DivergingOr

DivergingOR allows one and only one input flow and has at least two output flows. Only one

of its output flows can start execution.

Table 23 DivergingOr attributes

Class name DivergingOr

Inherits from Or

Attribute Type Description / Usage

none

3.3.1.3.19 Construct: ConvergingOr

ConvergingOr has at least two input flows and it has one output flow. Any of the input flows

have to be terminated before the output flow continues.

Table 24 ConvergingOr attributes

Class name ConvergingOr

Inherits from Converging

Attribute Type Description / Usage

none

3.3.1.3.20 Abstract Construct: Connector

Connectors are used to represent the origin or the destination of a flow when the origin or the

destination is outside the current diagram. Possible types are: ProcessConnector,

InternalConnector, or ExternalConnector.

70

In order to provide a clear definition of Connectors and differentiate between its types the

“domain of study” should be clearly defined

Domain of study represents the borders of the process to be modelled.

 If a target or source of a flow is outside the domain of study it is regarded as an

ExternalConnector.

 If a target or a source of a flow belongs to the domain of study but it is not modelled

since it is not of a great interest to the modeler, it is regarded as InternalConnector.

 If a target or a source of a flow belongs to the domain of study but it is modelled, it is

regarded as a ProcessConnector.

The following diagram represents the Connector class and its three types.

Figure 35 Connector

Figure 36 check material quality example

Figure 36 is an EA* diagram represents a process of checking the quality of all imported raw

materials from supplier in a shoes fabrication industry. The supplier supplies the industry with

raw material (leather and rubber), and then the quality of these materials is checked (good or

low quality). If the material’s quality is low, it would be rejected. Else it would be send to the

shoes fabrication process.

The domain of study of this process is the shoes production starting from checking material’s

quality, to designs, fabrication, delivery etc…

71

3.3.1.3.21 Construct: InternalConnector

The InternalConnector indicates that the origin or the destination belongs to the domain of

study but it is not modelled. In Figure 36, the “reject material” is an InternalConnector which

represents a process whose role is to reject all low quality materials. The process belongs to

the domain of but it is not modelled yet.

Table 25 InternalConnector attributes

Class name InternalConnector

Inherits from Connector

Attribute Type Description / Usage

none

3.3.1.3.22 Construct: ExternalConnector

The ExternalConnector indicates that the origin or the destination doesn’t belong to the

domain of study and it might be modelled or not. In figure 36 the “supplier” is represented by

an ExternalConnector since it doesn’t belong to the domain of study.

Table 26 ExternalConnector attributes

Class name ExternalConnector

Inherits from Connector

Attribute Type Description / Usage

none

3.3.1.3.23 Construct: ProcessConnector

The ProcessConnector indicates that the origin or the destination belongs to the domain of

study and that it is modelled. In figure 36 the “shoes fabrication” process is represented by a

ProcessConnector since it belongs to the domain of study and modelled.

Table 27 ProcessConnector attributes

Class name ProcessConnector

Inherits from Connector

Attribute Type Description / Usage

processReference Reference A reference to the Process referenced

by this connector

3.3.1.3.24 Construct: Organization

Organization permits to represent organizations participating in the realization of a process.

An organization is responsible for specific FlowNodes in a process.

Table 28 Organization attributes

Class name Organization

Inherits from BaseElement

Attribute Type Description / Usage

flowNode[0..*] Reference Set of FlowNodes which the

organization is responsible for

3.4 Graphical Representations and Notations

This section is made up of a table that summarizes the mapping between Extended Actigram

Metamodel classes and the graphical representations of the GRAI Extended Actigram.

72

Table 29 Graphical Representations

Concept Condition Graphical Notation Description
Flow

Attribute “isTrigger” is

set to false

It is a normal arrow

oriented from source to

target

Attribute “isTrigger” is

set to true

It is a thick arrow

oriented from source to

target

OutputInputFlow

It’s target/source is an

ExtendedActivity

The arrow can be

connected to the

ExtendedActivity at its

right/left corners

ControlFlow

It’s target is an

ExtendedActivity

The arrow can be

connected to the

ExtendedActivity at its

upper corner

SupportFlow

Attribute resourceRole is

set to “responsible for”

The arrow can be

connected to the

ExtendedActivity at its

bottom corner

Attribute resourceRole is

set to “participates in”

The dashed arrow can be

connected to the

ExtendedActivity at is

bottom corner

ExtendedActivity

AtomicExtendedActivity

A rectangle with the

name of the activity in the

middle

StructuralExtendedActivit

y

A rectangle with the

name of the activity in the

middle and plus sign at

the right bottom.

73

Attribute “isStarting” is

set to true

A green circle located at

the left bottom corner of

the activity

Attribute “isEnding” is

set to true

A red circle located at the

left bottom corner of the

activity

Attributes “isStarting”

and “isEnding” are set to

true

A green and red circles

located at the left bottom

corner of the activity

Resource

Human

Material

IT

Logical Operator

DivergingOr

The “O” represents the

OR feature. The peak to

the left represents

divergence

ConvergingOr

The “O” represents the

OR feature. The peak to

the right represents

convergence

DivergingAnd

The “&” represents the

AND feature. The peak to

the left represents

divergence

ConvergingAnd

The “&” represents the

AND feature. The peak to

the right represents

convergence

74

Connector

ExternalConnector

A circle with thick border

indicating that it is

external and with the

name or a description of

the referenced process in

its middle.

InternalConnector

A circle with the name or

a description of the

referenced process in its

middle

ProcessConnector

A hexagon with the name

or a description of the

referenced process

Organization

3.5 Connectivity constraints

Well-Formedness (or static semantics) defines the rules (constraints) that govern relations

between classes. In Extended Actigram Star language, several rules and constraints are

defined which govern the relations and connections between different FlowElements. In order

to represent these constraints:

 Textual annotations can be associated with the UML metamodel at design level.

 OCL can be used at design and implementation level.

The following table summarizes the rules that apply to the utilization of Flow, depending on

the target and the source objects that are to be connected.

Table 30 Flow Constraints

 Target

Source

 ExtendedActivity LogicalOperator Resource Connector

Extended

Activity

OutputInputFlow(trigger)

ControlFlow (trigger)

SupportFlow

OutputInputFlow N.A. OutputInputFlow

Logical

Operator

OutputInputFlow(trigger)

ControlFlow (trigger)
OutputInputFlow N.A. OutputInputFlow

Resource SupportFlow N.A. N.A. N.A.

Connector
OutputInputFlow (trigger)

ControlFlow (trigger)
OutputInputFlow N.A. N.A.

N.A. = Not Applicable

(trigger) = is an optional characteristic of a flow.

75

Triggering characteristic

A Flow can trigger an ExtendedActivity, but with constraints depending on its source, target,

and flowRole:

 The target of a flow must be an ExtendedActivity.

 The flow must be OutputInput or Control.

 A support flow cannot be a triggering flow.

4. Model Transformation

The MDA guide [OMG, 2003] defines a model transformation as “the process of converting

one model to another model of the same system”. [Kleppe et al, 2003] defines a

transformation as the automatic generation of a target model from a source model, according

to a transformation definition. A transformation definition is a set of transformation rules that

together describe how a model in the source language can be transformed to a model in the

target language. A transformation rule is a description of how one or more constructs in the

source language can be transformed to one or more constructs in the target language. The aim

of model transformation is to carry out automated translations within and between modeling

languages. Model Driven Service Engineering Architecture (MDSEA) regards model

transformation as an essential aspect for accomplishing interoperability. It defines a

framework for model transformations based on vertical and horizontal transformations.

Several transformations had been identified, specified and implemented in the SLMToolBox

modeling tool. These transformations insured the automatic passage from one abstraction

level to another (MDSEA abstraction levels) and assisted the simulation of business

processes. MDSEA define the modeling languages to use at each abstraction level. Two

business process modeling languages have been identified: Extended Actigram Star (EA*)

originating from GRAI Extended Actigram [add reference] and BPMN [add reference]. These

two modeling languages are used at two different separated abstraction levels. The need of a

model transformation is crucial, in order to transform EA* models developed at one

abstraction level into BPMN models at another level.

4.1 Problem

ASICOM was a French funded project, whose goal was to build a platform that enables

interoperability among industrial partners. Model transformation was a key solution to

interoperability issues. In the frame of this project, transformations from GRAI Extended

Actigram models to UML activity diagrams and BPMN models [OMG-2, 2011] were tested

and evaluated. The ASICOM team has encountered several problems during their research,

based on the current GRAI Extended Actigram language version which was not designed

within a MDA approach and thus imposes limits on the transformation of models generated

by this language. It did not possess an official MOF metamodel, but several metamodels

developed in the frame of academic researches and projects. In addition, as explained earlier

the specification of GRAI Extended Actigram was not sufficiently formal to allow the

transformation into other formalisms. In this section we present the transformation from EA*

(the new developed version of GRAI Extended Actigram) models to BPMN models.

On the other side, MDSEA starts at the strategic level of companies that want to evolve

towards service-oriented business methods. The “to-be” business specific model is specified

and developed at the BSM level. Later, detailed functional definition model is developed at

76

the TIM level, and a practical implementation model at TSM level. The passage from one

High level to another lower level should be implemented at the basis of model reuse and

enrichment. One major problem that is frequently identified in the enterprises is the gap

between people visions to describe the process. The process can be either defined for creating

physical product or services. It opposes on one side the business view and on the other the

technical one. Some efforts between have been produced to reduce this gap. BSM models

vary from TIM models due to the different modelling languages used at each level. Business

processes at BSM level are modelled using the Extended Actigram Star language while at

TIM level business processes are modelled using Business process modelling notation

(BPMN). These two different modelling languages are based on different metamodels, and

thus different specific constructs. This reveals a need to transform BSM models into TIM

models and in its turn TIM models into TSM ones.

4.2 MetaModel Approach

The objective is to transform BSM source models into a TIM target Models. One of the most

used transformation techniques is the “Metamodel Approach” [Bourey JP. 2007]. Figure 37

particularizes the “Metamodel” approach to the context of transformation of EA* models into

BPMN2.0 models.

Step 1 of the transformation, and a mandatory pre-requisite, is the formalization of the source

and target meta-models (respectively EA* metamodel and BPMN2.0 metamodel). Ecore

(which is part of Eclipse EMF) is an implementation of a simplified form of MOF [OMG

2006] and is used to define source ant target metamodels. In addition XML Metadata

Interchange (XMI) [OMG 2000] is used to save source and target models.

Step 2 of the transformations methodology marks the beginning of the actual design of the

transformations by defining the model mappings that relate the concepts of each meta-model.

From a syntactic point of view, the mapping is a morphism that must ensure the consistency

of source and target models, and is created relating each element of the source with a

correspondent element in the target (1-to-1, 1-to-n, or m-to-n) while leaving both intact. In

transformations, the source model is transformed using a function that applies a mapping to

produce a different target model. This function can be expressed either explicitly, using

graphs, sets, tuples, or even mapping tables relating multiple or single constructs and stored in

a physical location; or implicitly in the developer’s mind. However, in both cases is necessary

to implement them using a transformation language (step 3).

77

Figure 37 Transformation architecture of EA* to BPMN

Figure 38 Different steps for transformation

 Model transformation is an important activity in Model-Driven Engineering, and OMG

recognized this by issuing the Query/Views/Transformations (QVT) request for proposals to

seek an answer compatible with its MDA standard suite. Many contributions were submitted

which led to several transformation languages with support for automatic model

Formalize

MetaModels

Define mapping

Implement mapping

Execution

Preparatory Step Transformation design Execution step

XS

LT

AT

L

78

transformation execution. Some of these are based on the Object Constraint Language (OCL),

like QVT itself and ATL [Jouault et al, 2008], which despite not being a standard is one of the

most used, having a large user’s base. Nevertheless, as enumerated in [Czarnecki & Helsen

2006], others can also be used and applied to the implementation of the model mappings, e.g.

Xtend/Xpand, UMLX, AToM3, MTL, etc. As analyzed by [Agostinho 2011], some of the

above languages are ideal for the representation structural mappings, others for semantic

maps, providing good human traceability, while others are more formal and mathematical

based. However, none provides the capability or the APIs to translate explicit mappings into

executable code. Mappings implemented with them are normally static and any change

obliges to manually rewrite code. Benefiting from a good JAVA integration that enables to

address the above problems in the future and having a considerable amount of support

through online communities, ATL has been the elected language for MDSEA mappings

implementation.

4.3 Mapping of Concepts

The mapping of concepts proposed for the transformation creates correspondences and links

between concepts and their relations from EA* to BPMN language. It is a translation of

constructs and their relations from one metamodel to another. As a result, deep analysis and

understanding of the EA* and BPMN metamodels, represent the main key to start in

translation and drawing the links. Investigating the concepts and frame of transformation from

EA* to BPMN models resulted in two different types of mapping. The first type is more

concerned in transformation within the frame of MDSEA methodology, while the second is a

more general transformation that passes the borders and limits of MDSEA. This section

presents the two kind of results obtained (conceptual).

 Results in the frame of MDSEA 4.3.1

In MDSEA the mapping of concepts is constrained by the modelling rules of EA* at the BSM

level. BSM is composed into:

 BSM Top level: a general view of the system to be modelled.

 BSM bottom level: a decomposed and more detailed view.

Modelling a business process at BSM level started at the top level with a general view of the

process, and then this process is decomposed into several more detailed processes. This

modelling strategy takes the form of a pyramid as explained in figure 39. Modelling starts

from top to bottom, a first EA* process representing general view of the business process is

modelled. Later this general view is decomposed into several more detailed processes.

Figure 40 represents the applied scenario in order to transform an EA* diagram into a BPMN

diagram in the frame of MDSEA. The business process is first modeled at the BSM top level

from a general view. Then the resulted EA* diagram is manually decomposed at the BSM

bottom into two separate diagrams. These two diagrams are later transformed using the “EA*

to BPMN2.0 model transformation” into a BPMN diagram each. The resulted BPMN

diagrams are then regrouped together manually by the user at TIM top level.

79

Figure 39 BSM Modelling strategy

Figure 40 EA* to BPMN collaboration

4.3.1.1 EA* to BPMN Collaboration Diagram – Mapping

The following table summarizes the mapping of EA* concepts to BPMN concepts. The

mapping is accompanied with conditions which governs the creation of relations.

BSM
EA*: General view

EA*: decomposed view 1 EA*: decomposed view 2

 BSM 2 TIM

TIM
BPMN: decomposed view 2 BPMN: decomposed view 1

BPMN: Collaboration

Manual

decompositio

n

Manual

decompositio

n

Automatic Model

Transformation

Automatic

Model

Transformation

1 2

3 4

5

P11.2 P12.1 P11.1 P12.2

P1.1 P1.2

P1

BSM

80

Table 31 EA* to BPMN - Mapping (Collaboration Diagram)

EA* Condition BPMN2.0

Model Definitions

Process Process, Participant

ExtendedActivity Structural Sub Process

Atomic & supported by Human UserTask

Atomic & supported by IT (no human

interaction)

ServiceTask

DivergingOr Diverging Exclusive

Gateway

ConvergingOr Converging Exclusive

Gateway

DivergingAnd Parallel Gateway

ConvergingAnd Parallel Gateway

MaterialResource Material Data Object

HumanResource Responsible for Lane

Participates in Resource (added to the list

of resources of a task)

ITResource Responsible for Lane

Participates in Resource (added to the list

of resources of a task)

Organization Lane

Control Flow

If the source is an ExternalConnector or

InternalConnector and target is an “atomic”

ExtendedActivity

MessageFlow

If the source is an ExternalConnector or

InternalConnector and target is a

“structural” ExtendedActivity

Catching Message Event,

Message flow, and

Sequence Flow

If the source is a ProcessConnector or

ExtendedActivity

DataObject, and

associations

OutputInputFlow If the source is an ExternalConnector or

InternalConnector (and target is an atomic

ExtendedActivity)

MessageFlow

If the source is an ExternalConnector or

InternalConnector (and target is a structural

ExtendedActivity or LogicalOperator)

Catching Message Event,

Message Flow, and

Sequence Flow

If the source is a ProcessConnector,

ExtendedActivity, or LogicalOperator (and

target is an ExtendedActivity or

ProcessConnector or logical operator)

SequenceFlow

If the source is a structural

ExtendedActivity or logical operator (and

target is an ExternalConnector or

InternalConnector)

Throwing Message Event,

Message Flow, Sequence

Flow

If the source is an atomic ExtendedActivity

(and target is an External or

InternalConnector)

MessageFlow

81

SupportFlow If source is a material resource Association

ExternalConnector Participant (Pool)

ProcessConnector Call Activity

InternalConnector Participant (Pool) (Black

Box)

4.3.1.2 EA* to BPMN Collaboration Diagram – Transformation Rules

Atomic ExtendedActivity

 A Human resource is responsible for the realization of the ExtendedActivity. In

this case the atomic ExtendedActivity is mapped to a UserTask.

 An IT resource is responsible for the realization of the ExtendedActivity. In this

case the atomic ExtendedActivity is mapped to a ServiceTask.

Resource

 The value of the resourceRole is “responsible for”. In this case the resource

(Human or IT) is mapped to a lane, in which the supported ExtendedActivity

belongs to the lane.

 The value of the resourceRole is “participates in”. In this case the resource

(Human or IT) is added to the list of resources to the supported

ExtendedActivity.

ControlFlow

 Source is an ExternalConnector or InternalConnector and target is an “atomic”

ExtendedActivity. In this case it is mapped to a MessageFlow.

 Source is an ExternalConnector or InternalConnector and target is a “structural”

ExtendedActivity. This case is a “1 to n” relation, in which the “Control” Flow

is mapped to a combination of MessageFlow, catching MessageEvent, and a

SequenceFlow.

 Source is a ProcessConnector or ExtendedActivity. It is a “1 to n relation”, in

which the “Control” Flow is mapped to a combination of DataObject and two

Associations.

OutputInputFlow

 Source is an ExternalConnector or InternalConnector and target is an atomic

ExtendedActivity. In this case the “OutputInput” Flow is mapped to a

MessageFlow.

 Source is an ExternalConnector or InternalConnector and target is a structural

ExtendedActivity or LogicalOperator. This case is a “1 to n” relation, in which

the “Control” Flow is mapped to a combination of MessageFlow, catching

MessageEvent, and a SequenceFlow.

 Source is a ProcessConnector, ExtendedActivity, or LogicalOperator and target

is also one of these three options. In this case it is mapped to SequenceFlow.

 Source is a structural ExtendedActivity or LogicalOperator, and target is an

ExternalConnector or InternalConnector. This case is a “1 to n” relation, in

which the “Control” Flow is mapped to a combination of MessageFlow,

82

throwing MessageEvent, and a SequenceFlow.

 Source is an atomic ExtendedActivity and target is an ExternalConnector or

InternalConnector. In this case it is mapped to a MessageFlow.

SupportFlow

 Source is a Material resource. In this case it is mapped to an Association.

4.3.1.3 EA* to BPMN Process Diagram – Model Mapping

The following table summarizes the mapping of EA* concepts to BPMN concepts. The

mapping is accompanied with conditions which governs the creation of relations.

Table 32 EA* to BPMN - Mapping (Collaboration Diagram)

EA* Condition BPMN2.0

Model Definitions

Process Process

ExtendedActivity Structural Sub Process

Atomic & supported by Human UserTask

Atomic & supported by IT (no human

interaction)

ServiceTask

DivergingOr Diverging Exclusive

Gateway

ConvergingOr Converging Exclusive

Gateway

DivergingAnd Parallel Gateway

ConvergingAnd Parallel Gateway

MaterialResource Material Data Object

HumanResource Responsible for Lane

Participates in Resource (added to the list

of resources of a task)

ITResource Responsible for Lane

Participates in Resource (added to the list

of resources of a task)

Organization Lane

Control Flow If the source is a ProcessConnector or

ExtendedActivity

DataObject, and

associations

OutputInputFlow If the source is a ProcessConnector,

ExtendedActivity, or LogicalOperator (and

target is an ExtendedActivity or

ProcessConnector or logical operator)

SequenceFlow

SupportFlow If source is a material resource Association

ExternalConnector Not mapped

ProcessConnector Call Activity

InternalConnector Not mapped

83

4.3.1.4 EA* to BPMN Process Diagram – Transformation Rules

Process

 An EA* Process is mapped to a BPMN2.0 Process, this Process won’t be

represented graphically by a pool (in contrast to Collaboration BPMN2.0

diagrams)

ControlFlow

 if the source is a ProcessConnector or ExtendedActivity (Atomic or Structural),

then it is mapped to a sequence flow

 if condition 1 is not applicable then a ControlFlow is not mapped

OutputInputFlow

 Source is a ProcessConnector, ExtendedActivity, or LogicalOperator and target

is also one of these three options. In this case it is mapped to SequenceFlow

 if condition 1 is not applicable then an OutputInputFlow is not mapped

SupportFlow

 if source is a material resource, then it is mapped to an Association

 if source is of another type, then it is not mapped

Connector

 If the connector is a ProcessConnector then it is mapped to a CallActivity. Any

other type of connectors is not mapped

 Results outside the frame of MDSEA (Generalization) 4.3.2

In the previous section we presented the mapping and transformation rules of EA* model into

BPMN process and collaboration models. These mappings and rules were the work results in

the frame of MDSEA and thus coherent with the MDSEA modeling methodology explained

earlier. In this section we present a mapping and transformation rules from EA* to BPMN

regardless of the MDSEA rules and method in an attempt for a general transformation and not

limited to MDSEA.

4.3.2.1 EA* to BPMN Collaboration Diagram – Mapping

The following table summarizes the mapping of EA* concepts to BPMN concepts. The

mapping is accompanied with conditions which governs the creation of relations.

Table 33 EA* to BPMN - Mapping (Collaboration Diagram)

EA* Condition BPMN2.0

Model Definitions

Process Process, Participant(Pool)

ExtendedActivity Structural Sub Process

Atomic & supported by Human UserTask

Atomic & supported by IT (no human

interaction)

ServiceTask

DivergingOr Diverging Exclusive

Gateway

84

ConvergingOr Converging Exclusive

Gateway

DivergingAnd Parallel Gateway

ConvergingAnd Parallel Gateway

MaterialResource Material Data Object

HumanResource Resource (added to the list

of resources of a task)

ITResource Resource (added to the list

of resources of a task)

Organization Process, Participant(Pool)

Control Flow

If the source is an ExternalConnector or

InternalConnector and target is an “atomic”

ExtendedActivity

MessageFlow

If the source is an ExternalConnector or

InternalConnector and target is a

“structural” ExtendedActivity

Catching Message Event,

Message flow, and

Sequence Flow

If the source is a ProcessConnector or

ExtendedActivity

DataObject, and

associations

OutputInputFlow If the source is an ExternalConnector or

InternalConnector (and target is an atomic

ExtendedActivity)

MessageFlow

If the source and target are of type “atomic“

ExtendedActivity and don’t belong to the

same organization

MessageFlow

If the source is an atomic ExtendedActivity

(and target is an External or

InternalConnector)

MessageFlow

If the source is a ProcessConnector,

ExtendedActivity, or LogicalOperator (and

target is an ExtendedActivity or

ProcessConnector or logical operator) and

source and target belong to the same

organization

SequenceFlow

If the source is an ExtendedActivity,

ProcessConnector, or LogicalOperator (and

target is an ExtendedActivity or

ProcessConnector or logical operator) and

source and target don’t belong to the same

organization

Throwing Message Event,

Message Flow, Sequence

Flow

If the source is a structural

ExtendedActivity or logical operator (and

target is an ExternalConnector or

InternalConnector)

Throwing Message Event,

Message Flow, Sequence

Flow

If the source is an ExternalConnector or

InternalConnector (and target is a structural

ExtendedActivity or LogicalOperator)

Catching Message Event,

Message Flow, and

Sequence Flow

85

SupportFlow If source is a material resource Association

ExternalConnector Participant (Pool) (Black

Box)

ProcessConnector Call Activity

InternalConnector Participant (Pool) (Black

Box)

4.3.2.2 EA* to BPMN Collaboration Diagram – Transformation Rules

Atomic ExtendedActivity

 A Human resource is responsible for the realization of the ExtendedActivity. In

this case the atomic ExtendedActivity is mapped to a UserTask.

 An IT resource is responsible for the realization of the ExtendedActivity. In this

case the atomic ExtendedActivity is mapped to a ServiceTask.

ControlFlow

 Source is an ExternalConnector or InternalConnector and target is an “atomic”

ExtendedActivity. In this case it is mapped to a MessageFlow.

 Source is an ExternalConnector or InternalConnector and target is a “structural”

ExtendedActivity. This case is a “1 to n” relation, in which the “Control” Flow

is mapped to a combination of MessageFlow, catching MessageEvent, and a

SequenceFlow.

 Source is a ProcessConnector or ExtendedActivity. It is a “1 to n relation”, in

which the “Control” Flow is mapped to a combination of DataObject and two

Associations.

OutputInputFlow

 Source is an ExternalConnector or InternalConnector and target is an atomic

ExtendedActivity. In this case the “OutputInput” Flow is mapped to a

MessageFlow.

 Source and target are of type “atomic” ExtendedActivity and don’t belong to the

same organization. In this case it is mapped to a MessageFlow.

 Source is an atomic ExtendedActivity and target is an External or

InternalConnector. In this case it is mapped to a MessageFlow.

 Source is a ProcessConnector, ExtendedActivity, or LogicalOperator, target is

also one of these three options, and both source and target belong to the same

organization. In this case it is mapped to SequenceFlow.

 Source is an ExtendedActivity, ProcessConnector, or LogicalOperator, target is

also one of these three options, and source and target don’t belong to the same

organization. This case is a “1 to n” relation, in which the “Control” Flow is

mapped to a combination of MessageFlow, throwing MessageEvent, and a

SequenceFlow.

 Source is a structural ExtendedActivity or LogicalOperator, and target is an

ExternalConnector or InternalConnector. This case is a “1 to n” relation, in

which the “Control” Flow is mapped to a combination of MessageFlow,

throwing MessageEvent, and a SequenceFlow.

86

 Source is an ExternalConnector or InternalConnector and target is a structural

ExtendedActivity or LogicalOperator. This case is a “1 to n” relation, in which

the “Control” Flow is mapped to a combination of MessageFlow, catching

MessageEvent, and a SequenceFlow.

SupportFlow

 Source is a Material resource. In this case it is mapped to an Association.

4.4 Example

The concept of electronic marketplace (e-marketplace) has been based on grouping new

and/or used products coming from several sellers on a unique internet platform and under the

same e-commerce catalog. It needs to be assumed that it is solely a trading platform (it is an

intermediate), the e-market itself does not sell nor buy directly physical products or services

traded on the platform. On one hand e-marketplaces and supplier directories are B2B Internet

platforms. Several enterprises took this opportunity to extend their offer. In France, major e-

selling platforms are moving progressively to integrate this service offer such as CDiscount,

Rue du Commerce, La Redoute, Brandalley, and PixMania who have initiated this e-

commerce configuration since 2010. This selling concept fits the service orientation. It

proposes two service interfaces, one dedicated to sellers and one to clients. A solution of

export product catalog is embarked on marketplaces for a win/win strategy. The seller can

reuse its catalog and be part of several marketplaces.

The example introduced in this section presents one of the processes value chains realized

within an e-marketplace collaborative network. It details the process of purchasing products

using a marketplace website. The marketplace is maintained by a broker agent that offers

services for customers who choose, configure, and buy their products online. On the other

hand, sellers are targeting customers and selling their products via the broker. As a result a

collaborative network, formed of the broker website, sellers, and delivery companies, is

offering a service to online customers. The business model is assisted in its transformation for

generating the service platform that will be implemented. The following is an example of a

private sale e-marketplace purchase process model which was modeled and transformed by

using the SLMToolBox. It formalizes the business considerations captured with the EA*

language (figure 41), then, in order to prepare the definition of the electronic platform, the

SLMToolbox has transformed the model to BPMN 2.0 diagram (figure 42) according to the

rules described in section 3.4.3.1.1. In details, in this model, the customer logs into with his

user account, browses available brands, chooses a brand, browses brand’s available product,

and configures his product (color, size, etc.). When the customer terminates the configuration,

the broker agent verifies product's availability and delivery details from the seller company.

These details will be transferred to the customer, who will decide to validate his basket or not.

Then he can either pay for his products or go back to choose other products. The figures show

that the SLMToolBox transformation has been able to identify the partners and to isolate the

services they solicit or generate. In the BPMN model (Figure 42) the lanes on the upper side

represent the B2C link and service required. On the lower side the lanes represent the

collaborative network within a B2B relation where a competition is done between sellers to

provide better proposition to client demand (e.g. about the delivery time and price). The goal

was to detail the service system to set up between partners and identify the service product to

be exchanged between them. The sequence of action is clearly defined in an unambiguous

model. In particular, the data type to be exchanged is identified and the synchronization of the

partners in the process flow can be used in order to orchestrate the services process between

partners in the service system. Nevertheless, the transformation from EA* diagram to BPMN

87

diagram, is a passage from the bottom BSM level to top TIM level and thus to a different and

a more specific level of details. As a result, the obtained BPMN diagram should be enriched

at the top TIM level to satisfy the requirements of this level. The new structure is missing

some technical information that will come from technical constraint of the level even if the

tool prepares the objects to handle these concepts some semantic enrichment cannot be done

automatically.

88

Figure 41 EA* e-marketplace purchase process

89

Figure 42 BPMN e-marketplace purchase process

90

5. Conclusion

In this chapter we presented the Model Driven Service Engineering Architecture (MDSEA)

which is targeted to the representation of service systems and the management of certain

aspects in the service’s lifecycle. We detailed the three abstraction levels of MDSEA and the

proposed modeling languages at each level. Besides, we introduced the Extended Actigram

Star (EA*) process modeling language, that we specified and developed based on the GRAI

Extended Actigram language. The scope and overview of the language were presented in

addition to the languages abstract and graphical syntaxes. The last section of the chapter

consisted of a model transformation from EA* to BPMN in the frame of MDSEA. The

transformation architecture and mappings were introduced with a case study example.

While this chapter was concerned with service modeling and model transformation, the next

chapter will target service engineering, and in particular simulation in the frame of MDSEA.

Simulation and Model
transformation from

BPMN to DEVS

92

This chapter will illustrate service engineering in the frame of MDSEA, and in particular it

will present the simulation of service systems based on the DEVS formalism and model

transformation..

1. Introduction

Industrial enterprises have gradually moved their goals towards production of physical

products supplemented by intangible services to differentiate themselves in a compatible

market. The study of these services, their set up, and the evaluation of their efficiency is a

rising research domain. To remain competitive, a company must differentiate itself from other

competitors. Since improving the product’s performance can reach some limits, one open

solution is to improve the enterprise service system and redefine its business processes.

Simulation of business processes answers this issue through analyzing these processes and

concluding of they meet the desired objectives.

Simulation is the imitation of the operation of a real-world process or system over time

[Banks et al, 2006]. The act of simulation necessitates representing specific characteristics or

behaviors of a system. Simulation is used in several contexts (natural, human, technological,

business, etc…). It offers a complete or partial study of the system in question, representing

its characteristics, behaviors, interactions, communication with external environment.

Scientists and engineers have long used models to better understand the system they study, for

analysis and quantification, performance prediction and design. Real-world’s systems are

translated into models as virtual systems in order to conduct virtual experiments (simulation).

Depending on the purpose of simulation, in some cases performance indicators are defined for

a system in order to deduce its progress to achieve its goals. In the world of manufacturing

and business, simulation is starting to gain an increasing role and attention for its major role in

decision making, risk studies, performance analysis and business model validation. Key

performance indicators (KPIs) help an organization define and measure progress toward

organizational goals. Once an organization has analyzed its mission, identified all its

stakeholders, and defined its goals, it needs a way to measure progress toward those goals.

KPIs are typically used for that purpose as measurements that are quantifiable, agreed to

beforehand, and reflect the critical success factors of an organization. They will differ

depending on the organization. From this perspective, a business model can be simulated

while measuring the identified KPIs.

Once a service is designed or modeled, its implementation may be capable of delivering the

desired output but not for the expected cost or within the desired timeframe. Also, a service

that has been designed may be functional but may not be optimal. The analysis and

understanding at the design stage of the service help in its optimization. Simulation is the

process of virtualizing real world models in order to test their correctness, effectiveness and

efficiency in response to specific problem space. It is composed of experiments in order to

determine how the system can be improved, evolved, and to interpret how future changes will

affect the modeled system. After problem definition, abstraction and modelling, the model can

then be run and tested to assess its behavior in particular circumstances, i.e. when particular

objects and entities in the model are given particular values. Results are then interpreted,

analyzed, and then decisions to reach model and system optimization. A simulation model

should incorporate the performance dimensions one is interested in. In most cases it should be

possible to simulate time and cost aspects. Other relevant performance dimensions are quality

and flexibility.

93

The questions that researchers and engineers have tried to answer were not targeted on the

benefits and positive outcomes of simulation, but rather it focused more on “what kind of

systems to simulate?”, “how to conduct simulation?”, and “what frameworks and tools to

use?” This section is concerned with business process simulation in the frame of MDSEA. It

defends and introduces the use of DEVS formalism and presents how simulation is

conducted in MDSEA.

2. Problem

Model Driven Service Engineering Architecture (MDSEA) defines three abstraction levels

(BSM, TIM and TSM) and specifies the modelling languages to use for modelling a service

system. The defined modelling languages lead to a distinction between static and dynamic

service system modelling. Static model is more structural than behavioral, helps in depicting

static constituents of the system, rigid as it is time independent view of a system, and can’t be

changed in real time. On the other hand, a Dynamic model is a representation of the behavior

of the static components of the system, and consists of a sequence of operations, state

changes, activities, and interactions. Dynamic model is flexible as it can change with time as

it shows what an object does with many possibilities that might arise in time. Business

Process Modelling (BPM) [Cardoso et al. 2013] results in a representation of an

organization’s business processes to be analyzed and improved [Weske 2007]. Business

process’s models provide a suitable dynamic view, but frequently missing the temporal

dimension to express output performance such as an expected cost or a desired duration. In

detail, the impact of correct or incorrect behavior of complex models over time is not clearly

visible using static view. This issue can be solved by running a business process simulation

for analyzing and understanding the business process model according to its dynamic. In

MDSEA, two modelling languages are used for business process modelling: Extended

Actigram Star at BSM level ant BPMN at TIM level. At BSM level, the level of information

is general and more addressed to business models and details. These business models

developed at the BSM level lack some detailed specifications of the structure and

functionality of the service system important for running accurate simulations. As a result,

BPMN models developed at TIM levels are chosen to be the subject of simulation to study the

behavior of the service system being developed. BPMN models developed in the

SLMToolBox need to be transformed to a simulation models in order to be simulated and

analyzed.

In [Zacharewicz et al, 2008] an automatic transformation of a Workflow into a G-DEVS

model has been defined. In the context of BPMN to DEVS transformation, authors in

[Cetinkaya et al, 2012] and [Mittal et al, 2012] presented a Model Driven Development

(MDD) framework for modelling and simulation (MDD4MS). In this framework they defined

a model to model transformation from BPMN as a conceptual modelling language to DEVS

as a simulation model specification. BPMN and DEVS Meta-models were presented. In

addition, a set of transformation rules were defined in order to transform BPMN models into

DEVS models. According to these rules, some BPMN concepts (Pool, Lane, SubProcess)

were mapped to DEVS coupled component, while Task, Event (Start, End, and Intermediate),

and Gateway were mapped to DEVS atomic component.

Comparing the BPMN metamodel defined with the latest version of BPMN 2.0 metamodel

[OMG-2, 2011] we can conclude that several concepts are missing and thus were not

transformed into their corresponding DEVS concept. Authors didn’t mention the different

types of BPMN Tasks (User Task, Manual Task, Service Task…) and BPMN Intermediate

Events (Message, Signal…) that can be mapped differently when transformed into DEVS

94

concepts. The difference would be in the number of states forming each DEVS Atomic

Model. Based on these remarks, the work presented in this paper takes into consideration

these points in an attempt to benefit from previous work and propose new mapping and

transformation rules.

3. DEVS

DEVS [Zeigler, 2000] (presented earlier in section 2.4.3) is the most general formalism for

discrete event system modelling. It allows representing any system provided that it performs a

finite number of changes in finite intervals of time. Thus, not only Petri–Nets, State–charts,

Event–Graphs and other discrete event languages but also all discrete time systems can be

seen as particular cases of DEVS [Zeigler, 1993].

3.1 Basic DEVS characteristics

The DEVS simulation is a mathematical paradigm with well-defined concepts of coupling of

components, hierarchical, modular model construction, support for discrete event

approximation of continuous systems and an object-oriented substrate supporting repository

reuse. DEVS is characterized by the following:

 The notion of time is well recognized in DEVS. Time is tracked through the

representation of the system (states and atomic models) and the running of a

simulation where simulators clocks are always updated in order to keep track of

the elapsed and actual times.

 Hierarchical compositions of models in order to define composite models.

DEVS possess Coupled and Atomic Models, where a coupled model is

composed of DEVS Models (Atomic or Coupled). This hierarchical composition

is essential for a component view modeling of a system (system is recognized as

a group of components)

 Separation between Model and Simulation concepts. Where a descriptive model

of the system’s behavior is developed independent of Simulation concepts

(Coordinators and Simulators).

3.2 Simulation of DEVS Model

One of the most important features of DEVS is that very complex models can be simulated in

a very easy and efficient way. The basic idea for the simulation of a coupled DEVS model can

be described by the following steps:

 Look for the atomic model that, according to its time advance and elapsed time, is the

next to perform an internal transition. Call it d* and let tn be the time of the mentioned

transition.

 Advance the simulation time t to t = tn and execute the internal transition function of

d*.

 Propagate the output event produced by d* to all the atomic models connected to it

executing the corresponding external transition functions. Then, go back to step 1.

One of the simplest ways to implement these steps is writing a program with a hierarchical

structure equivalent to the hierarchical structure of the model to be simulated. A routine called

DEVSsimulator is associated to each atomic DEVS model and a different routine called

95

DEVS-coordinator is related to each coupled DEVS model. At the top of the hierarchy there is

a routine called DEVS-root-coordinator which manages the global simulation time. The

simulators and coordinators of consecutive layers communicate with each other with

messages. The coordinators send messages to their children so they execute the transition

functions. When a simulator executes a transition, it calculates its next state and –when the

transition is internal– it sends the output value to its parent coordinator. In all the cases, the

simulator state will coincide with its associated atomic DEVS model state. The figure below

shows a hierarchical model (Coupled Model) being associated to a Coordinator and it reveals

how atomic Models are associated to (atomic) Simulators.

Figure 43 Relations Simulator-Model (a)

When a coordinator executes a transition, it sends messages to some of its children so they

execute their corresponding transition functions. When an output event produced by one of its

children has to be propagated outside the coupled model, the coordinator sends a message to

its own parent coordinator carrying the output value. Each simulator or coordinator has a local

variable tn which indicates the time when its next internal transition will occur. In the

simulators, that variable is calculated using the time advance function of the corresponding

atomic model. In the coordinators, it is calculated as the minimum tn of their children. Thus,

the tn of the coordinator at the top is the time at which the next event of the entire system will

occur. Then, the root coordinator only looks at this time, advances the global time t to this

value and then it sends a message to its child so it performs the next transition, and then it

repeats this cycle until the end of the simulation.

4. Transformation BPMN to DEVS

The DEVS-based simulation of BPMN models requires a transformation process. The

modelling elements of BPMN have to be mapped to DEVS components in order to be able to

simulate their behavior in a DEVS simulation environment. The transformation from BPMN

to DEVS is based on the metamodel approach (the same approach used for the transformation

from EA* to BPMN). For the mapping to be established and created it is important to well

define the source and target metamodels involved in this transformation. The BPMN 2.0

source metamodel is defined in [OMG-2 2011]. There is no standard metamodel for DEVS,

Coordinator

Coordinator

Simulator

Simulator

Simulator

Coupled Model

Atomic Model

Coupled Model

Atomic Model

Atomic Model

Root Coordinator

96

all metamodels are the result of research works done in universities and research group

without being standardized. From these efforts we can distinguish the work done in [Garredu

et al, 2012] which defined a DEVS metamodel based on Model Driven Engineering

specifications. The following section presents a DEVS metamodel used in the frame of the

transformation from BPMN to DEVS, and built from the understanding of the DEVS

formalism.

4.1 DEVS Metamodel

As seen in the section Classic DEVS Formalism, DEVS is formed basically from models

(atomic and coupled), ports (input and output), couplings (external-input, external-output, and

internal), transitions (internal and external), and states. there are two types of models: atomic

and coupled models. Both types have input and output ports which define entry and exit

points of the model and stores the values received/sent by/from models. Each model has a list

of Input Ports and Output Ports. If we analyze the atomic model definition from previous

section we can distinguish four main methods: internal transition, external transition, output,

and time advance. In addition to these methods, atomic model is characterized by the

possession of states. These states are connected via transitions which can be internal or

external transitions. As for the coupled model, it is a decomposition of DEVS models (atomic

or coupled) and Couplings connecting output and input ports. Three types of coupling

between ports: External Input Coupling (connection between input port of the coupled model

and an internal component), External Output Coupling (connection between internal

components and the output port of the coupled model), and Internal Coupling (connection

between internal components). Figure 44 is a simplified DEVS Metamodel proposed which

presents the basic classes used in the transformation.

Figure 44 DEVS simplified Metamodel

4.2 Transformation rules

The role of mapping in model transformation is to define links between concepts and relations

from both metamodels (BPMN and DEVS). In [Deniz et al. 2012], a first mapping was

proposed by the authors. Nevertheless, this early mapping didn’t distinguish all the various

types of tasks and events existing in BPMN 2.0 which differ with respect to the potential

situations a task might treat. To complete this approach, different types of tasks are detailed

Model

AtomicModel CoupledModel

State

InputPort OutputPort

Port

Coupling

ExternalInputCoupling ExternalOutputCoupling InternalCoupling

Transition

InternalTransition External transition

+states

+parent

1..*

1

+internalTransitions
0..* +externalTransitions

0..*

+internalCouplings

+externalOutputCouplings

+externalInputCoupling

+inputPorts

0..*+outputPorts

0..* +inPort1

+outPort1

97

(Receive task, Send Task, User Task, Service Task, and Manual Task); all of these tasks are

mapped to “DEVS Atomic Model” concept but with different local behavior. This is also

applied to intermediate events (Receiving and Sending Messages). In the following sections,

the mapping of concepts will be elaborated using graphical notations extracted from the

SLMToolBox editors.

 BPMN Task to DEVS Atomic Model 4.2.1

A BPMN Task is an atomic Activity within a process flow. A task is used when the work in

the process cannot be broken down to finer levels of details. Different types of tasks are

identified to separate the types of inherited behavior that tasks might represent.

BPMN Task

A Task is transformed into DEVS Atomic model possessing two states (the initial state S0

which is a passive state with an infinite sigma and a state S1 with sigma equals to D time

unit). These two states are connected with internal and external transitions.

Table 34 BPMN Task to DEVS Atomic Model

BPMN Task DEVS Atomic Model

BPMN Receive Task

A Receive Task is a simple task that is designed to wait for a message to arrive from an

external participant. Once the task has been received, the Task is completed. The Receive

Task is transformed to a DEVS Atomic Model possessing three states (an initial passive state

S0 with an infinite sigma, state S1 with also an infinite sigma, and a state S2 with sigma

equals to D time unit). The DEVS Atomic model is initially at its unit state waiting for an

external event. When a token arrives, the model changes its state from state unit to state S1

which in its tern will wait for another external event (message arrival). Upon receiving the

message, the model will change state from S1 to state S2 with sigma equals to D (time unit).

D represents the time needed for the execution of the atomic model after the reception of the

message.

98

Table 35 BPMN Receive Task to DEVS Atomic Model

BPMN Receive Task DEVS Atomic Model

BPMN Send Task

A Send Task is a simple task that is designated to send a Message to an external Participant

(relative to the process). Once the message has been sent, the task is completed. A Send Task

is transformed to DEVS Atomic Model possessing three states (an initial passive state S0 with

infinite sigma, a state S1 with sigma equals to D time unit, and a state S2 with sigma equal to

0). The DEVS Atomic model is initially at its inti state waiting for a token arrival. After the

token has arrived, the model changes state to state S1 which will take D (time unit) before the

model sends the message and changes its state to S2. The model will not wait since ta(S2) = 0

and will send a token before moving back to its initial state.

Table 36 BPMN Send Task to DEVS Atomic Model

BPMN Send Task DEVS Atomic Model

 BPMN Event to DEVS Atomic Model 4.2.2

An Event is something that “happens” during the course of a Process. These Events affect the

flow of the Process and usually have a cause or an impact and in general require or allow for a

reaction.

4.2.2.1 BPMN Start Event to DEVS Atomic Model

The Start Event indicates where a particular Process will start. In terms of Sequence Flows,

the Start Event starts the flow of the Process, and thus, will not have any incoming flows

BPMN None Start Event

None Start Event is a basic Start Event without any triggers. A Non Start Event is transformed

into a DEVS Atomic Model with two states (an initial state S0 with sigma equal to 0 and a

passive state S1 with an infinite sigma). The Atomic Model will send a token and then

changes its state to state S1.

99

Table 37 BPMN Start Event to DEVS Atomic Model

BPMN None Start Event DEVS Atomic Model

BPMN Message Start Event

A Message Start Event implies that A Message arrives from a Participant and triggers the start

of the Process. The Message Start Event is transformed to a DEVS Atomic Model with two

states (an initial passive state S0 with an infinite sigma and a state S1 with a sigma equals to

0). The DEVS Atomic Model is first in its passive state waiting for the arrival of message.

When the message arrives it changes its state to state S1, and since the waiting time is 0 it

send a token via the token Port and moves again to its passive state S0.

Table 38 BPMN Message Start Event to DEVS Atomic Model

BPMN Message Start Event DEVS Atomic Model

BPMN Timer Start Event

A specific time-date or a specific cycle (e.g., every Monday at 9am) can be set that will

trigger the start of the Process. The Message Start Event is transformed to a DEVS Atomic

Model possessing a single state S0 with a sigma equals to timer (time unit). The DEVS

Atomic Model will wait a time equals to timer before sending the token. After the token is

sent it will wait again for a time equals to timer before sending the next token.

100

Table 39 BPMN Timer Start Event to DEVS Atomic Model

BPMN Timer Start Event DEVS Atomic Model

4.2.2.2 BPMN Intermediate Event to DEVS Atomic Model

Intermediate Event indicates where something happens (an Event) somewhere between the

start and end of a Process. It will affect the flow of the Process, but will not start or (directly)

terminate the Process. There are twelve types of Intermediate Events in BPMN: None,

Message, Timer, Escalation, Error, Cancel, Compensation, Conditional, Link, Signal,

Multiple, and Parallel Multiple. There are two ways that Intermediate Events are used in

BPMN:

 An Intermediate Event that is placed within the normal flow of a Process can be used

for one of two purposes. The Event can respond to (“catch”) the Event trigger or the

Event can be used to set off (“throw”) the Event trigger.

 An Intermediate Event that is attached to the boundary of an Activity can be only used

to “catch” the Event trigger.

This section covers two types of intermediate events: None and throw/catch Message.

BPMN None Intermediate Event

The None Intermediate Event is defined as throw event but with a non-defined trigger to be

thrown (it is used for modelling methodologies that use events to indicate some change of

state in the Process). The None Intermediate Event is transformed to a DEVS Atomic Model

with two states (an initial passive state S0 with an infinite sigma and a state S1 with a sigma

equals to 0). The DEVS Atomic Model is first in its passive state waiting for the arrival of a

token. When the token arrives it changes its state to state S1, and since the waiting time is 0 it

send a token via the token Port and moves again to its passive state S0.

101

Table 40 BPMN None Intermediate Event to DEVS Atomic Model

BPMN None Intermediate Event DEVS Atomic Model

BPMN Message Intermediate Throw Event

Message Intermediate Throw Event is used to throw a message. The Message Intermediate

throw Event is transformed to a DEVS Atomic Model with three states (an initial passive state

S0 with an infinite sigma and states S1and S2 with a sigma equals to 0). The DEVS Atomic

Model is first in its passive state waiting for the arrival of a token. When the token arrives it

changes its state to state S1, and since the waiting time is 0 it send a message via the message

Port and moves to S2. Then the DEVS Model will send a token via the token port and changes

its state to the initial state.

Table 41 BPMN Message Intermediate throw Event to DEVS Atomic Model

BPMN Message Intermediate Throw

Event

DEVS Atomic Model

BPMN Message Intermediate Catch Event

Message Intermediate Catch Event is used to throw a message. The Message Intermediate

Catch Event is transformed to a DEVS Atomic Model with three states (an initial passive state

S0 with an infinite sigma, states S1with an infinite sigma, and S2 with a sigma equals to 0).

The DEVS Atomic Model is first in its passive state waiting for the arrival of a token. When

the token arrives it changes its state to state S1 and waits the arrival of a message. After the

message arrival, the DEVS Atomic Model changes its state to S2. Then it will send a token

via the token port and changes its state to the initial state.

102

Table 42 BPMN Message Intermediate catch Event to DEVS Atomic Model

BPMN Message Intermediate Catch

Event

DEVS Atomic Model

4.2.2.3 BPMN End Event to DEVS Atomic Model

End Event indicates where a Process will end. In terms of Sequence Flows, the End Event

ends the flow of the Process, and thus, will not have any outgoing Sequence Flows—no

Sequence Flow can connect from an End Event. There are different types of End Events that

indicate different categories of results for the process. When a token arrives at an End Event,

the result of the vent if any occurs and the token is consumed.

BPMN None End Event

The None End Event does not have a defined result. There is no specific Event Definition for

None End Events. The End Event is transformed to a DEVS Atomic Model with two states

(an initial passive state S0 with an infinite sigma and a state S1 with a sigma equals to 0). The

DEVS Atomic Model is first in its passive state waiting for the arrival of a token. When the

token arrives it changes its state to state S1.

Table 43 BPMN End Event to DEVS Atomic Model

BPMN None End Event DEVS Atomic Model

BPMN Message End Event

Message End Event indicates that a Message is sent to a Participant at the conclusion of the

Process. The Message End Event is transformed to a DEVS Atomic Model with two states (an

initial passive state S0 with an infinite sigma and a state S1 with a sigma equals to 0). The

DEVS Atomic Model is first in its passive state waiting for the arrival of a token. When the

token arrives it changes its state to state S1, and since the waiting time is 0 it send a message

via the message Port and moves again to its passive state S0.

103

Table 44 BPMN Message End Event to DEVS Atomic Model

BPMN Message End Event DEVS Atomic Model

BPMN Multiple End Event

Multiple End Event means that there are multiple consequences of ending the process. All of

them will occur such as sending multiple messages. If an End Event has more than one

associated Event Definition, then the event will be considered a Multiple End Event. The

Multiple End Event is transformed to a DEVS Atomic Model with states depending on the

event definitions associated to it (an initial passive state S0 with an infinite sigma and n states

S1…Sn with a sigma equals to 0). The DEVS Atomic Model is first in its passive state

waiting for the arrival of a token. When the token arrives it changes its state to state S1, and

since the waiting time is 0 it send a message via the message Port and moves to the next state

(if any). At the state Sn a message is sent via the message Port and then it changes state to the

initial passive state S0.

Table 45 BPMN Multiple End Event to DEVS Atomic Model

BPMN Multiple End Event DEVS Atomic Model

 BPMN Gateway to DEVS Atomic Model 4.2.3

Gateways are used to control how the Process flows (how Tokens flow) through Sequence

Flows as they converge and diverge within a Process. The term “gateway” implies that there

is a gating mechanism that either allows or disallows passage through the Gateway--that is, as

tokens arrive at a Gateway, they can be merged together on input and/or split apart on output

as the Gateway mechanisms are invoked.

BPMN Diverging Exclusive Gateway

A diverging Exclusive Gateway (Decision) is used to create alternative paths within a Process

flow. This is basically the “diversion point in the road” for a Process. For a given instance of

the Process, only one of the paths can be taken. The Diverging Exclusive Gateway is

transformed to a DEVS Atomic Model with two states (an initial passive state S0 with an

104

infinite sigma and state S1 with a sigma equals to 0). The DEVS Atomic Model is first in its

passive state waiting for the arrival of a token. When the token arrives it changes its state to

state S1, and since the waiting time is 0 it sends the token via the token Port and moves back

to the initial state S0. Several DEVS Internal Couplings are connected to the tokenOutPort but

only one coupling will continue the process (the one with a token).

Table 46 BPMN Exclusive Gateway to DEVS Atomic Model

BPMN Exclusive Gateway DEVS Atomic Model

BPMN Converging Exclusive Gateway

Converging Exclusive Gateway is used to merge alternative paths. Each incoming Sequence

Flow token is routed to the outgoing Sequence Flow without synchronization. The

Converging Exclusive Gateway is transformed to the same DEVS Atomic Model as the

Diverging one. The difference will be in the incoming/outcoming Internal Couplings

connected to/from Input/Output Port.

BPMN Parallel Gateway

A Parallel Gateway creates parallel paths without checking any conditions; each outgoing

Sequence Flow receives a token upon execution of this Gateway. For incoming flows, the

Parallel Gateway will wait for all incoming flows before triggering the flow through its

outgoing Sequence Flows. The Parallel Gateway is transformed to a DEVS Atomic Model

with states depending on the outcoming flows associated to it (an initial passive state S0 with

an infinite sigma and n states S1…Sn with a sigma equals to 0). The number of states n

depends on the number of outgoing flows. The DEVS Atomic Model is first in its passive

state waiting for the arrival of a token. When a token arrives and it is the last token to be

received it changes its state to state S1else it will stay in its recent state S0 waiting the arrival

of the last one. When the DEVS Atomic Model is in its state S1, it will send a token to the

OutputPort and then changes it state to the next state. At the state Sn a token is sent via the

OutputPort and then it changes state to the initial passive state S0.

105

Table 47 BPMN Parallel Gateway to DEVS Atomic Model

BPMN Parallel Gateway DEVS Atomic Model

 BPMN Lane, Pool, and SubProcess to DEVS Coupled Model 4.2.4

Lanes, Pools, and SubProcesses are objects whose internal details can be modeled using other

kinds of flowElements such as Activities, Gateways, and Events…These BPMN elements are

transformed into DEVS Coupled Model.

Table 48 BPMN SubProcess to DEVS Coupled Model

BPMN SubProcess DEVS Coupled Model

 BPMN Flow to DEVS Coupling 4.2.5

Sequence Flows and Message Flows are used for connecting Flow Objects to each other.

Sequence Flow is used to show the order of Flow elements in a Process, while Message Flow

is used to show the flow of Messages between two Participants that are prepared to send and

receive them. The following table presents the transformation of Sequence Flows and

Message Flows to DEVS Couplings with the conditions that control such transformation.

Table 49 BPMN Flow to DEVS

5. DEVS Simulation

As previously described, the Discrete EVent System Specification (DEVS) is a mathematical

BPMN Flow Condition DEVS

SequenceFlow If source and target belong to the same lane InternalCoupling

If source and target belong to different

Lanes or different Pools.

ExternalOutputCoupling,

ExternalInputCoupling,

InternalCoupling

MessageFlow ExternalOutputCoupling,

ExternalInputCoupling,

InternalCoupling

106

formalism for describing discrete event systems. The hierarchical and modular structure of a

DEVS model is reflected in the classical specification of the DEVS simulators [Zeigler et al.,

2000]. Each atomic model is associated with a simulator object. The simulator is controlled

by sending messages such as “compute next state” and “compute next output”, and it makes

requests such as “get time of next event”. A coordinator object is associated with each

network model, and the coordinator can respond to the same types of messages as the

simulator objects. The coordinator, as its name suggests, coordinates the execution of its

coordinator(s) and simulator(s). The Root Coordinator is responsible for the execution of the

simulation and it keeps track of results.

Figure 45 is a class diagram of DEVS Models and Simulators. It presents basic methods

contained in Simulators and Models.

Figure 43 Relation Simulator-Model (b)

5.1 Execution

Execution of DEVS simulations is based on a specific protocol that orchestrates the execution

of events. The protocol or scenario is based in the behavior of the root coordinator,

coordinators, and simulators. This section presents the execution scenario which is

implemented in the SLMToolBox (DEVS editor).

Root Coordinators and Simulators

The root coordinator is responsible for initializing the simulators’ clock and running the

simulation. The synchronization between different simulators is managed through the usage

of messages which play an essential role in the communication between these simulators.

Different types of messages are available for this purpose: IMessage (initialization message),

SMessage (internal transition message), XMessage (external transition message), and

YMessage (output message). Each message contains a time t and/or a Port p.

Model

AtomicModel

+lambda()
+deltaInt()
+deltaExt()
+ta()
+getInternalTransitions()
+getExternalTransitions()

CoupledModel

+getInternalCouplings()
+getExternalInputCouplings()
+getExternalOutputCouplings()
+getLinkedOutput()
+getLinkedInput()
+getLinkedInternalPort()
+getProbablePort()

AbstractSimulator

+nextEventTime
+lastEventTime
+elapsedTime

+init()
+internalTransition()
+externalTransition()
+transfer()
+handleMessage()

Coordinator Simulator

+model +parent

1 1

+subjectSimulators

1..*

107

Figure 44 DEVS Message

Simulation starts by initializing the simulation clock of all simulators:

 Root Coordinator sends an IMessage to its Coordinator to initialize the clock of all

simulators.

 Coordinator receives the IMessage sent by the Root Coordinator or its parent

Coordinator; it sends the message to all of its child simulators and coordinators. Then

it updates its lastEventTime (time of last event) to t and its nextEventTime (time of

next event) to the Minimum nextEventTime of its children simulators.

 Simulator receives the IMessage sent by its parent Coordinator, it sets its

lastEventTime to t and the nextEventTime to t + ta(s) where s is its initial state.

Then an internal transition message (SMessage) is sent by the Root Coordinator:

 Root Coordinator sends a SMessage with time t to its Coordinator.

 Coordinator receives the SMessage sent by the Root Coordinator or its parent

Coordinator, it then handles this message to a child simulator or coordinator whose

nextEventTime = t. Then it updates its nextEventTime (time of next event) to the

Minimum nextEventTime of its children simulators.

 Simulator receives the SMessage sent by its parent Coordinator; it sets its

lastEventTime to t and asks its atomic model to execute the lambda and deltaInt

functions. Then the simulator sets its nextEventTime to t + ta(s) where s is its active

state.

 Simulator signals his parent coordinator to handle a new YMessage which contains

information about the port holding the data to deliver and the lastEventTime.

 Upon receiving the YMessage, the parent Coordinator searches the target port tp

associated to the source port sp (contained in the YMessage) and asks the Abstract

Simulator (Coordinator or Simulator) associated to the Model (Atomic or Coupled)

containing the port tp to handle an XMessage.

 If the abstract simulator is a Coordinator, it searches the port linked (via an

ExternalInputCoupling) to the port tp (included in the XMessage). Then it asks the

Abstract Simulator (Coordinator or Simulator) responsible for the port to handle an

XMessage.

 Else if the abstract simulator is a Simulator, it will ask the associated atomic model to

execute the deltaExt function and set its last event to t and the nextEventTime to t +

ta(s) where s is its initial state.

Message

IMessage SMessage XMessage YMessage

108

Figure 45 Simulation Algorithm

5.2 Simulation’s profile and results

Business process simulation is based on several criteria or performance indicators which

should be identified before running any simulation. These indicators represent inputs to

simulation models which would be processed by the simulation engine. The performance

indicators implemented, studied and used in the developed DEVS Simulator are time and

cost. As a result, in order to simulate a process, the user is supposed to manually enrich the

No

No

Yes

Root Coordinator sends a

SMessage to its Coordinator

Child is a

Coordinator??

Coordinator receives the

SMessage, forwards it to its

children, and then updates its

clock

Simulator asks its Atomic Model to

execute its lambda and deltaInt

function and then it updates its

clock

No

Yes

Simulator Signals his parent

coordinator to handle a

YMessage

Coordinator receives the

YMessage, and sends an

XMessage to its responsible

child

Child is a

Coordinator??

Simulator asks its Atomic Model to

execute its deltaExt function and

then it updates its clock

Root Coordinator sends an

IMessage to its Coordinator

Child is a

Coordinator??

Coordinator receives the

IMessage, forwards it to its

children, and then updates its

clock

Simulator updates it clock.

Yes

109

DEVS model by time and cost estimations. Several values are needed before executing the

simulation otherwise the simulation will not proceed:

 Estimated cost for the execution of every DEVS Model.

 Estimated processing time for every State presented in the DEVS diagram.

 Probabilities of divergent internal couplings.

Later the user is responsible for the definition of a simulation profile which is regarded to be

essential for results analysis and interpretations. The Simulation profile is targeted to collect

user’s objectives just before running the simulation. These objectives depend on the

performance indicators to be analyzed throughout the simulation. In our DEVS Simulator, the

simulation profile consists of the number of instances to run and the optimal cost and time

estimated for the process. An instance corresponds to a full execution of the process starting

from its start event (entry point) and ending with its end event (exit point). The number of

instances will permit the process to take different paths in case of divergence and thus analyze

the costs and time needed of different paths. In addition, optimal costs and processing time (to

be defined by the user) represent the objectives of the user or the waited results from the

execution of the business process. Time and cost indicators will be interpreted by simulators

throughout the simulation process and the results will be delivered at the end of the simulation

to the user in form of a report.

Calculating time, cost, and Probabilities

Users estimate the cost of executing an Atomic Model, the processing time of states, and

probabilities of divergent couplings. Calculating the execution time and cost of the process

(from its entry to exit) is managed by the Root Coordinator. The root Coordinator runs several

consecutive instances corresponding to the number of instances defined by the user in the

simulation profile. Each instance is a complete execution which terminates by the process

reaching an end. The Root Coordinator keeps traces (in an xml output file) of executed States

and Models during the execution and organizes them in paths where every path corresponds

to an execution of an instance. Processing time and costs of each path are also stored in every

path. Figure 49 presents the algorithm implemented for running instances and generating the

xml output file. The generated xml output file is used to generate a pdf report that contains

graphs and simulation results.

Users define probabilities associated to Internal Couplings. These probabilities are relevant in

case of divergent Internal Couplings. Figure 48 is an extraction of a DEVS diagram with two

divergent Internal Couplings with probabilities 30% and 70%. The path to be taken during the

execution is determined depending on the probability associated to each Internal Coupling.

Figure 46 Calculating probabilities

A

B

110

In Figure 48 there are two probabilities 0.3 and 0.7. A random number between 0.0 and 1.0 is

generated using the Java Math library and its method Math.random(). If the random number

is less than 0.3 then path A is selected, else path B.

Figure 47 Calculating time and cost

5.3 Animation

Animating the simulation results is essential to explain the execution process and simulation

results obtained. Animation is based on the xml output file obtained after all simulation

instances had terminated. The purpose of the animation implemented in the SLMToolBox is

to highlight the paths executed during the simulation, the sequence of Models which were

executed, and the transitions from one state to another. The animation is based on changing

colors of graphical objects. Figure 50 presents a simplified algorithm for developing the

animation feature. Figure 51 is an extraction of the animation feature, it presents a step-by-

step animation.

No

Yes

counter = 0

processingTime = 0

cost = 0

Counter <

instanceNb

Start a path in the xml output file

Process reached

its end
Root Coordinator sends an

SMessage to his Coordinator

Yes Write active sate and next state

to activate to the xml output file

Update processing time

Update cost

Update clock

Update processing time
Update cost

Update clock

Write last states to output file

End of path in the xml output file

Prepare for the next instance

End of xml output file

Initialize the xml output file

No

111

 Step 1 is the diagram at its initial state before starting the animation

 Step 2 is the beginning of the animation where the first model and its active state are

highlighted.

 Step 3 reveals active states and model which are active after the execution of an

internal transition in the model capture incident and an external transition in the

classify incident.

Figure 48 Animation simplified algorithm

Yes

No

n

stateCounter =

states.size()

Animate the diagram

Update stateCounter

Set stateCounter to zero

Get all states available in the xml output file

Get the counter which indicates the state

being animated

112

Figure 49 Animation feature

6. Example

In section 3.3.4 we presented one of the processes value chains realized within a collaborative

e-marketplace network. The process was first modeled at BSM level using the EA* modeling

language and then it was transformed to BPMN model. In this section, we will transform the

obtained BPMN model into a DEVS model. The goal of this transformation is to simulate this

collaborative process in order to obtain more information on time needed for a user to browse,

choose, and buy a product using the e-marketplace. The simulation results will help business

engineers and analysts study better the user’s attitude. Different paths taken by the user can be

studied which can lead to the modification of certain features to facilitate the user’s surfing

through the e-marketplace

The BPMN to DEVS transformation feature implemented in the SLMToolBox is based on a

simplified mapping. As a result of this transformation, the DEVS diagram obtained after using

the SLMToolBox is represented in figure 52. Several transformation rules are not respected in

this simplified implementation and to be developed in future extensions of the SLMToolBox.

In the figure we can find that BPMN tasks of different types and gateways are all transformed

to Atomic DEVS Models formed of two states. In addition BPMN lanes are not transformed

or implemented in the transformation.

The obtained DEVS diagram needs to be enriched by the user before starting the simulation.

The inputs to be added by the user are the following:

 Processing time of states in DEVS Atomic Models

 Cost of DEVS Atomic Models

1

2

3

113

 Probability of divergent internal couplings (by default the probability is 100)

 Associated values and ports for External and Internal Transitions

Figure 50 DEVS e-marketplace purchase process

After enriching the DEVS diagram the user is supposed to initialize the simulation profile as

explained in the figure 53. In our example we entered 100 as number of instances and 600

seconds the time for a user to choose and buy his product (objective). The cost is not assigned

since the reason of the simulation is to study user’s behavior and the time spent throughout

the process. Now the user can start simulating the process and a report in pdf format is

created. The content of simulation reports obtained after the execution of the simulation is tib

explained later in chapter 5.

Figure 51 initialize simulation profile

114

7. Conclusion

In this chapter we presented DEVS to simulate service’s behavior and our contribution in the

development of a DEVS editor and simulator for business processes in service systems. We

started by defining the problem and the need for a model transformation from BPMN

models to DEVS models. We illustrated an introduction on the characteristics of the DEVS

formalism and the simulation of DEVS models. Then the transformation from BPMN to

DEVS models is detailed and the mapping is defined. In addition, we presented our work on

the simulation of DEVS models by defining the execution, profiles and results, and

animation of simulation results. At the end of this chapter an example of transformation

from BPMN to DEVS models and the simulation of the obtained result are illustrated.

In the previous chapters we talked about methodologies and theoretical results of work. The

next chapter presents the implementation part of this thesis, the SLMToolBox as a modeling

and simulation tool.

SLMToolBox

116

Chapters 3 and 4 presented the MDSEA methodology, EA* modeling language, and

transformation and simulation concepts in MDSEA. This chapter will present the

SLMToolBox as the applicative part of this thesis and a validation of the theoretical part.

SLMToolBox (Service Lifecycle Management Tool Box) is a software tool which supports an

organization to engineer new services or improve existing ones and to manage its life cycle.

The SLMToolBox is a modelling environment dedicated to the domain of service engineering.

It is based on the Model Driven Service Engineering Architecture (MDSEA) concepts and

supports the first phases of service engineering, in particular: service requirement and

service design. The software is developed in the frame of the IP European Project “MSEE”.

1. System overview

1.1 Context and purpose

The objective of the SLMToolBox is to support the phases related to service engineering,

within the “service lifecycle” model. It is important to make a clear difference between the

“context” in which the SLMToolBox is used and the phases of the service lifecycle it aims to

support. SLMToolBox will be used in the frame of enterprise projects which aim at

developing a new service or an improvement on a service, within an organization (composed

either by one single enterprise; or by several partners, in this case: a virtual manufacturing

enterprise). The tool will be used at the stage of “requirement” and “design” (figure 54) of the

service engineering process.

Figure 52 SLMToolBox - Context within the service lifecycle

During the requirement and design stage of the service, the tool will be used to describe in

details “how the service will behave” in the operation phase of its lifecycle (figure 54). As a

complement, it is possible to also describe the next phases of the service in its lifecycle:

 How (with which process /resources / tools) will the service be designed;

implemented?

 How the service will be decommissioned at the end of its lifecycle?

117

Figure 53 Purpose: phases of the service lifecycle to support

1.2 System vision and top level requirements

The main motivation for the development of the SLMToolBox could be formulated as the

following: “no reference tool for designing and managing service innovation projects

(Servitization process) currently exists. It affects European Manufacturers willing to invest on

service innovation: as they currently have to rely on various generic tools, mostly oriented on

business process management and software engineering domain”.

Stake holders willing to create or modify a service within an organization (either a single

enterprise or a virtual manufacturing enterprise) require:

 to specify, evaluate, communicate and design the system supporting the service and its

lifecycle

 appropriate formalisms (domain specific & easy to read)

 productive means ; Interoperable formats

In addition development teams attempting an optimized development of the IT part of a

service system (example: an online shirt configurator) need to:

 elaborate a solution which is directly connected to the initial requirements (e.g. :

integrates with the business processes of the company)

 concentrate on technical activities (e.g.: technical design, implementation …)

SLMToolBox is an integrated modelling tool, dedicated to manufacturing services lifecycle

management which will allow to:

118

 take benefit of a model based architecture: syntactic validation, transformation,

execution…

 maintain the coherence through the whole engineering process - from Business

requirements to IT implementation (modelling)

 anticipate / simulate the result of the service (engineering)

 design the governance of the service (monitoring & control)

Unlike other CASE tools (e.g.: UML modelling Tools, Business Process Management Tools

…) it will guide the development of new services and service systems in a coherent approach,

from the business perspective, to the design perspective.

The SLMToolBox has certain limitations since it does not provide support for:

implementation / coding software components, implementation of Business Intelligence

report, neither monitoring of service’s execution. The flexibility of the modelling architecture

is limited to the instantiation of the metamodels which are linked to the software at the

development time. It means that the structure and the template available to model services are

static. Therefore, a modification on the modelling languages and metamodels will necessitate

new coding activities through a new development phase.

1.3 Logical architecture

Figure 54 SLMToolBox Logical Architecture

The foundation of the SLMToolBox is based on the MDSEA modelling architecture. This

model centric approach provides the appropriate structure for elaborating service requirement

and design thanks to a set of specific metamodels – dedicated to the domain of manufacturing

services.

The first pillar of the architecture brings a set of modelling editors, enabling the user to

elaborate structured and graphical descriptions of the service and its aspects (IT, Human, and

Physical Means) – at the business level (BSM : Business Service Models) and the design level

(TIM : Technology Independent Models). As a complement, model transformation facilities

will leverage interoperability of the models and enforce consistence between the Business

requirements of the service and its design at TIM level.

Service Lifecycle Management Tool

MDSEA Metamodels

Mod

elling

Edito

rs

Mod

el

Tran

sfor

mati

on

Engine

ering

Simula

tion

Monito

ring &

Control

KPI

design

119

The second pillar aims at sustaining the modelling activities thanks to a methodological

support. Guidance will be provided to the user through the modelling activities of the service

via an appropriate service engineering methodology. Besides, some support will be provided

to assess the overall quality of the service at high level – at design time, thanks to appropriate

tools.

The third pillar is responsible for the simulation of business processes providing animation

and simulation reports (chapter 5).

The fourth pillar will support the definition of the service system’s governance, which will be

then implemented by the organization to continuously assess the performance of the service

according to the three decision levels of the organization (Strategic, Tactical, and

Operational), its functions and its detailed objectives.

1.4 Actors and roles

The MSEE IT System will provide several functionalities that will be used by different users.

In this section the roles of the actors involved in the activities of service requirement and

service design phases will be identified and described. This list is partially derived from the

actors identified at the level of the generic MSEE IT architecture. The roles describe bellow

define at a conceptual level the categories of user profiles concerned by the SLMToolBox

features. From the two modelling abstraction levels covered by the SLMToolBox (BSM and

TIM), it is trivial to derive two categories of actors which will contribute to the modelling

activities, in interaction with the Modelling Environment, provided by the SLMToolBox.

Figure 55 System Actors

 Business Actors 1.4.1

This category includes the actors which can collect the knowledge of the enterprise at the

business level.

 Business Analyst: is the actor that can collect the knowledge and the requirements at

the highest level of the enterprise. He is interested in the analysis of its enterprise /

ecosystem and the development of the service system at a global level.

120

 Domain expert: this actor is an expert of a specific domain inside the enterprise /

ecosystem. This can be one of the following: IT, Manufacturing, Organization. The

domain expert is able to bring specific knowledge and constraints related to its specific

domain. He can identify the impact of the servitization at an operational level and

proceed to the design of the modifications to implement in its domain.

 Domain Specific Actors 1.4.2

The “domain specific” modelling activities at TIM level will be handled or in the

responsibility of the corresponding domain actors: IT, Manufacturing, and Organization. This

category defines the actors related to one of the three specific domains of the service system.

 IT Expert: this actor can collect the knowledge and proceed to the design related to

the IT system of the enterprise / ecosystem (including: infrastructure, applications,

data repositories …).

 Manufacturing Expert: this actor can collect the knowledge and proceed to the

design related to the physical means of the enterprise / ecosystem (including:

manufacturing machines, supply chain, products design …)

 Organization Expert: this actor can collect the knowledge and proceed to the design

related to the organizational aspects of the enterprise / ecosystem (including: human

resources …).

1.5 End-to-end scenarios

The SLMToolBox essentially supports the “requirement” and “design” phases of service

engineering. The two following subsections illustrate two major scenarios, involving the main

features of the SLMToolBox, through specific use cases and their sequence.

 Scenario 1: Design a new service within a single enterprise 1.5.1

This first scenario depicts how the SLMToolBox will be used to design a new service, within

a single enterprise.

Figure 56 Design a new service within a single enterprise

121

This scenario is driven by three main use cases:

1. Model service requirement (supported by the SLMToolBox – BSM modelling features)

1. Reuse reference models : the business user has the possibility to browse the model repository

and search for a convenient reference model to start modelling the service requirements in a

BSM modelling project

2. A BSM model is initialized and enriched trough the template editor (for generic service

description) and extended with graphical models; the BSM models are stored within the

model repository, shared with the rest of the MSEE IT system. The overall modelling

process at BSM level follow the “BSM Service Modelling” method, derived from D11.2 –

“Service concepts, models and method: Model Driven Service Engineering”

3. The governance system of the service is modelled through the GraiGrid editor

4. The KPIs of the service are defined on the basis of the GRAI grid model

5. Business process are elaborated with the Extended Actigram Star language

6. Some of these processes can then be simulated in order to assess their execution time and

cost

2. Design service system (supported by the SLMToolBox – TIM modelling features)

1. The first step of the design phase is to retrieve the BSM models from the model repository

and to initialize a TIM modelling project, thanks to automatic model transformation

techniques

2. A TIM model is initialized and enriched trough the template editor (for generic service

description) and extended with graphical models ; the BSM models are stored within the

model repository, shared with the rest of the MSEE IT system

3. UML models are elaborated via the UML modeler

4. Extended Actigram star process models from the BSM modelling project can be

automatically transformed into BPMN process models, either “collaboration diagram” or

“process models”. The resulting BPMN models are attached to the current TIM modelling

project

5. BPMN process models can be modified / enriched by the user, within the TIM modelling

project

 Scenario 2: Design & deploy a new service within a VME 1.5.2

Figure 57 Design & deploy a new service within a VME

122

This scenario is driven by three main use cases:
1. Model service requirement (supported by the SLMToolBox – BSM modelling features)

1. The modelling activities at the BSM level are similar to the previous scenario. However, in

the context of a virtual enterprise, we assume that the modeller should be able to retrieve the

description of the assets of his partners. In practice, the user of the SLMToolBox is able to

connect to the Assets Repository, to browse and search for relevant assets to include in its

service models; so that he is able to “compose” a new service, on the basis of existing assets

exposed by the members of the VME.

2. Model service requirement (supported by the SLMToolBox – BSM modelling features)

1. The modelling activities at the TIM level are similar to the previous scenario. However, in

the context of a virtual enterprise, we assume that the modeller should be able to publish the

description of the service having been modelled; so that the VME is now aware of the

characteristics of the new service being developed. In practice, we propose that the

modelling activities of the “virtualization process” for tangible / intangible assets would be

supported by the SLMToolBox, until the assets description would be published on the Assets

repository.

2. Operational processes are modelled with the BPMN editor of the SLMToolBox

2. Technical overview

Figure 60 gives an overview of the several technical components that compose the modelling

environment of the SLMToolBox. We differentiate the “application components” which are

specifically implemented and are part of the domain of the service system modelling tool,

from the “technical components” which refers to existing development artifacts, like

framework, libraries and APIs. These technical components are uses as the basic building

blocks of the application and are issued from the technical analysis described in the previous

section.

2.1 Technical modules

Eclipse Platform

The Eclipse Platform remains the main technical foundation for the SLMToolBox

environment. Considering its background in research projects, the large community

supporting the development of the core platform and its rich ecosystem of plugins, the Eclipse

Platform [eclipse] is considered as one of the most viable open source solutions for building

domain specific modelling environments [Amyot et al, 2006].

EMF

The Eclipse Modelling Framework – EMF [EMF] provides a modelling infrastructure for

describing metamodels and editing models with the help of Ecore format and code generation

facilities. Furthermore, EMF is used as a foundation by numerous eclipse projects, which

address different aspects modelling activities (transformation, persistence, editing,

visualization …) and that can provide good support for the implementation of the main

features of the modelling environment.

EEF

While EMF natively provides basic editing facilities for Ecore models, the Extended Editing

Framework – EEF [EEF] aims at providing new services dedicated to editing and using more

appealing editing elements for EMF models. As EMF, EEF relies on a generative approach to

provide advanced editing services. This approach is particularly suited for domain specific

metamodels which do not define graphical formalisms to represent models. In the case of

http://link.springer.com/search?facet-author=%22Daniel+Amyot%22

123

MSEE, BSM and TIM metamodels are defined as the specific core of service system

modelling, and need to be editable via a rich interface, while no graphical formalism is

designed for the representation of BSM and TIM models. Thus, we propose to provide a set of

editing features, allowing visualizing the BSM and TIM models under the form of a tree view

and a set of forms to edit their structure and attributes. In this case, EEF performs as a good

candidate, to provide specific editing features for BSM and TIM model constructs.

Graphiti

As presented and evaluated in the previous section, Graphiti [Graphiti] offers powerful means

for building graphical diagrams editors upon EMF based domain models. Graphiti provides a

set of common user oriented features “out of the box” such as diagram layout, undo/redo

actions, keyboard shortcuts handling, rich graphical object design ; which allow the developer

to focus on domain specific code. Furthermore, it provides convenient extension points to

integrate Graphiti editors in a large Eclipse application.

Model repository integration

The modelling environment must offer storage capabilities in order to persist models along

their lifecycle, and to allow the capability to retrieve them and to update them. Moreover, as

some of the models (at TIM level) will be shared with the Generic Service Development

platform, the models should be persisted in a central repository accessed via both systems.

Finally, as multiple instances of the SLMToolBox and the Service Development Platform

may access the same models in a collaborative way, this repository has to handle cases such

as concurrent access and editing conflict resolution. The SLMToolBox will integrate the

“Model Repository” client component, which provides access to the MSEE model repository.

Assets repository integration

The access to the assets repository will be managed through a client plugin component,

integrated to the modelling environment of the SLMToolBox. Connection, browse, search,

retrieve, and publish actions will be managed through the manipulation of the REST API of

the assets repository via the client plugin.

124

Figure 58 Modelling Environment - Technical Architecture Overview

2.2 Application modules

App module

The application module is the main application container of the modelling environment of the

SLMToolBox. It is mainly responsible to compose and provide the graphical interface to the

user under the form of several views, being used to navigate through the modelling project

content and edit service system models. It coordinates the execution of the underlying features

of the modelling environment, and contains the logic of the graphical presentation of the

overall application. To fulfill its role, this module heavily relies on the eclipse core platform

API, to benefit from the artifacts it provides for standalone applications (views, explorers,

wizards …).

Model objects module

This module encompasses the definition of the model objects of the domain of the application

and their interrelationships. It provides an implementation of the conceptual model of the

application under the form of a set of java beans. This implementation is generated with the

EMF code generation features, from the definition of the metamodels in Ecore format at the

development time. This module plays a central role in the application as it provides the

objects instances to the other modules, responsible for processing, presenting and persisting

these objects.

Editors module

This module is responsible for providing independent graphical modelling editors to the

125

application. Two types of editors are provided:

 Graphical editors allow the editing of diagrams with the help of graphical elements,

related to a specific modelling language (for instance: ExtendedActigramStar). While

the diagrams are edited, the editor stores the diagram in a specific file and delegates

the persistence of the model data to the application service module. Each editor relies

on the Graphiti framework, in order to provide standard editing facilities and to offer a

rich set of graphical elements to the user.

 The second set of editors is designed for domain specific purpose and allows editing

BSM and TIM models. To deserve this goal, a tree view is provided to browse the

model content, and a set of property sheets to edit the attributes of the model objects.

As for the graphical editors, the persistence and the update of the model data is

delegated to the appropriate service in the application service module.

Figure 59 Application modules

Application services module

This module is responsible to handle the domain logic of the application, which is

independent from the presentation mechanisms and from the data storage features. It is

logically decomposed in four sub components:

 The model transformation component packages the transformation rules that apply to

the domain of service system modelling, along MDSEA principles. It relies on ATL to

provide model to model transformation routines and exposes its features to the

application module.

 The Import/Export component is responsible to handle the processes that are necessary

for importing standard models (example: BPMN models) in a service system model

project and exporting models in standard representations (example: USDL models).

editor.bsm

editor.tim

editor.eastar

editor.graigrid

editor.bpmn

editor.uml

editor.devs

editor app transformation

edit service.app

service.data

service.model service.util

126

For specific logic, related to the transformation of MDSEA models to a standard

representation, this component relies on the model transformation component.

 The Model Service component provides the basic services that are needed by the

editors, model transformations and import/export components to manipulate model

objects. This component acts as a façade and provides a unified interface to retrieve,

check, modify and create MDSEA model subsets.

3. Implementation of MDSEA in the ToolBox

3.1 Modelling architecture overview

MDSEA defines a set of constructs and relationships (described with “templates”) which are

specific to the domain of service system modelling at three modelling levels: BSM, TIM, and

TSM. For each abstraction level, MDSEA suggest a set of graphical modelling languages

(which are domain agnostic) in order to extend and complete the representation of the system

to be modelled under different perspectives (e.g.: decision structure, process, use cases…).

This type of modelling architecture is based on a “view model” pattern (or “viewpoints

framework”) [ISO/IEC/IEEE 42010 2011], Systems and software engineering — Architecture

description) as it defines a coherent set of views to be used in the construction of a

manufacturing service. The purpose of views and viewpoints is to enable humans to

comprehend very complex systems, to organize the elements of the problem and the solution

around domains of expertise, and to separate concerns. In the engineering of physically

intensive systems, viewpoints often correspond to capabilities and responsibilities within the

engineering organization. Both BSM (Business Service Models) and TIM (Technology

Independent Models) are structured in the same manner. A “core” model gathers a set of

generic (meta-) data in order to qualify the service to be modelled (specified / designed) ; this

“core” model refers to external graphical modelling languages (e.g. : UML) so that certain

aspects of the service model can be elaborated in more details with the help of graphical

languages. This structure allows to map “view specific” modelling languages (e.g.: GraiGrid,

UML Class Diagram) with “domain specific” constructs (i.e.: MDSEA BSM) without

introducing modifications or restrictions to the MDSEA metamodel. From the user point of

view, it allows the possibility to edit core information, independent from any specific

modelling language, and to retrieve and reuse this data under different views, accomplished

with the help of several graphical diagrams.

127

Figure 60 Modelling architecture’s overview

With this approach, MDSEA Core Constructs remain agnostic from any representation

formalism. Their implementation is realized by a core model, which acts as domain specific

(Service System Modelling) “glue” between several modelling languages. Thus, we can reuse

standard modelling languages without introducing modifications to their metamodel (e.g.:

BPMN, UML…). Graphical languages such as “ExtendedActigramStar” or “GraiGrid” can

continue to evolve, with (almost) no impact on MDSEA Core metamodels (i.e.: BSM).

3.2 Service modelling features

 Summary of modelling editors 3.2.1

The modelling environment supports the service system modelling activities by providing

editors for domain specific models (BSM, TIM) and related modelling languages to enhance

the description of the BSM and TIM models. In our functional approach, we propose to

provide a set of language specific modelling editors for each modelling language. The

following table gives an overview of the modelling editors to be included in the SLMToolBox

for each modelling level (BSM and TIM). These modelling editors are integrated within the

same environment and technical platform (Eclipse Juno) in order to maintain data

interoperability; coherence between models and improve the usability of the tool, from the

user perspective.

128

Table 50 SLMToolBox - Modelling editor’s overview

Modelling

Level
Goal Modelling Language Editor

BSM
Describe service at high

level
BSM Templates Specific Development

BSM
Describe simple business

processes
Extended Actigram Star Specific Development

BSM
Describe decisional

structures of the

organization
Grai Grid Specific Development

BSM
Describe Information

Structures
UML (Use Case, Class

Diagrams…)
Open Source Plugin

(PAPYRUS)

TIM
Describe service at high

level
TIM Templates Specific Development

TIM
Describe detailed

business processes
BPMN2.0

Open Source Plugin (BPMN2.0

Modeler)

TIM Specify the IT artefacts
UML (Use Case, Class

Diagrams …)
Open Source Plugin

(PAPYRUS)

 GraiGrid Editor 3.2.2

A virtual manufacturing enterprise (VME) is a temporary alliance of companies for the

lifetime of a joint production of service. VMEs are such entities, which, from the point of

view of their service to the customer, appears to be one entity, but in reality are formed from

several autonomous entities, or partners. The property that differentiates a virtual enterprise

from an ordinary value chain is the fact that there is a single locus, which takes full

responsibility for the entire value chain of its product or products, even though the task is

carried out by many participants and for that reason they cooperation must be harmonic.

The GRAI Grid modelling language is used for modelling the decisional structure of the

specific enterprise. The GRAI grid concept relies on the fact that any management decision

that needs to be taken will always be made with reference to a specific time horizon.

Managers typically define strategic, tactical, operational and real-time management levels.

These levels implicitly involve a hierarchy of decision functions structured according to

decision horizons or periods. These cells represent decision centers which can have two types

of connections: non-hierarchical and hierarchical connections. In a VME, the use of the Grai-

Grid allows to represent decisions concerning product and resource management and planning

in various enterprise entities. For this purpose, we introduce a new concept we call

“Collaborative Grai Grids”. These concepts permits to merge (combine) the Grai Grid of each

partner in order to provide a whole Grai Grid for the Virtual Enterprise. A Virtual

Manufacturing Enterprise (VME) integrates N manufacturing enterprises. The decisional

structure of each manufacturing enterprise is defined by a Grai Grid. In order to elaborate the

decisional structure of the VME, we propose to combine and to structure several grids. The

user of the SLMToolBox at BSM level is usually aware of the different decision structures

(Grai Grid) that belong to the VME partners and the dependencies between them. As a result

he is able to model this collaboration in a one combined Grai Grid.

In addition to modelling the decisional view of an organization or collaboration in a VME,

with GraiGrid editor the user is able to define the:

 objectives which are associated to the decision frames of the piloting system,

129

 decision variables as drivers on which the decisions can act to reach the « objectives »

 primary indicators [Carosi et al 2014] as quantifiable and measurable data which

measure the efficiency of an activity or a set of activity

The user will formalize these definitions on the basis of the GraiGrid modelling editor, which

will allow enriching the BSM models with the data related to the governance model of the

service system, select appropriate indicators from a reference list according to a set of search

criteria’s, and propose facilities to check the coherence (links and weights) of the triplets

{objective, drivers – decision variables, and primary indicators} for each decision center.

 ExtendedActigramStar Editor (BSM Level) 3.2.3

A VME is an organizational form that marshals more resources than it currently has on its

own, using collaborations both inside and outside of its boundaries, presenting itself to the

customer as one unit. It is a set of (legally) independent enterprises that share resources and

skills to achieve a mission/goal. In order to model these relations and collaborations between

partners, collaboration diagrams should be developed (were necessary) at the various

abstraction levels of the MDSEA (BSM-TIM-TSM). The Extended Actigram Star language

models business processes at the business level (BSM), it offers the concept of connectors

(InternalConnectors, ExternalConnectors, and ProcessConnectors) which represents

collaboration between entities within the same organization (single enterprise) or between

different organizations (partners in a VME). In certain cases (collaboration between partners)

users need a more presentable and readable presentation to demonstrate the collaboration.

The user of the SLMToolBox at BSM level is usually aware of the different processes that

belong to the VME partners and the dependencies between them. As a result he is able to

model this collaboration in a one detailed EA* diagram. Entities belonging to different

organizations are differentiated using the organization concept introduced in EA* and

implemented in the EA* editor.

In the same collaboration context the user of the SLMToolBox is able to connect to the Assets

Repository, to browse and search for relevant assets to include in its service models, so that he

is able to “compose” a new service, on the basis of existing assets exposed by the members of

the VME.

 UML Editor 3.2.4

Requirements: UML [OMG-1 2011] editing capabilities are required in order to capture the

“domain model” at the BSM level and elaborate TIM models. The UML modeller must

satisfy the following constraints:

 Integrate with the technical platform of the SLMToolBox (Eclipse Platform)

 Comply with UML2 standard XMI representation format

 Support the following UML diagram types: Use Case diagrams, Class Diagrams,

Component Diagrams, Sequence Diagrams, and Activity Diagrams.

Integration of Papyrus: Papyrus is a dedicated tool for modelling within UML2; it is open

source and based on the Eclipse environment. The key feature of Papyrus can be summarized

as follow:

 Eclipse UML2 compliance

 Full respect of the UML2 standard as defined by the OMG

 Full respect of the DI2 (Diagram Interchange) [OMG, 2012] standard

130

 Extendable architecture of Papyrus [papyrus] that allows users to add new diagrams,

new code generators, etc.

 Profile development support facilities for UML2 profiles

 BPMN Editor 3.2.5

In MDSEA, the Business Process Management Notation (BPMN) is used for Business

process modelling at the TIM level. A BPMN editor is required to be integrated in the

SLMToolBox which can integrate with the eclipse platform, conforms to the BPMN

specifications, and supply BPMN process and collaboration diagrams. The BPMN 2.0

Modeler provides an intuitive modelling tool for the business analyst, which conforms to

well-established Eclipse user interface design practices. It also provides visual, graphical

editing and creation of BPMN 2.0-compliant files with support for both the BPMN domain.

3.3 Model transformation features

The mapping of concepts proposed in previous chapters (4 and 5) is implemented using ATL

(Atlas Transformation Language). Then XSLT (eXtensible Stylesheet Language

Transformations) is used to create the graphical objects in order to open the transformed

diagrams in their corresponding graphical editors (BPMN and DEVS editors). Using this

combination of ATL and XSLT helps in separating the model concepts from graphical ones.

EA* to BPMN model transformation

Figure 63 presents the SLMToolBox creation wizard for the creation of new diagrams. User is

able to create BPMN diagrams in two ways: either to start from scratches and creates a new

bpmn diagram by the standard way, or to create a new diagram from an existing EA* one.

The second choice requires a set of implementations in order to make it possible. After the

user chooses the EA* diagram, an ATL transformation is applied which transforms the EA*

model contained in the diagram into a BPMN model. Now that the BPMN model is available,

it is important to generate its corresponding graphical objects. XSLT is used for such purpose

and generated the diagram part of the model. The result of The XSLT transformation will be a

BPMN diagram that can be opened using the BPMN modeler of the SLMToolBox. In annex 3

ATL and XSLT sample code are presented.

BPMN to DEVS model transformation

BPMN to DEVS transformation is implemented for simulation purposes. DEVS is the

formalism used to study if the objectives identified by the user could be accomplished by

business processes developed. The transformation from BPMN to DEVS is implemented and

developed using same implementation strategy used for EA* to BPMN transformation. As

BPMN diagrams DEVS diagrams can be created in two ways either from scratch or from an

existing BPMN diagram. ATL and XSLT are used for obtaining a final DEVS diagram that

can be viewed and simulated by the DEVS editor.

131

Figure 61 Create new wizard

4. Implementation of simulation in the ToolBox

The Toolbox possesses a simulation feature proposed in the frame of MDSEA. ToolBox

Users are able to visualize devs models using a devs editor developed for this purpose,

prepare models for simulation by defining a simulation’s profile, simulate diagrams, animate

diagrams based on simulation results, and provide a simulation report in pdf format.

4.1 DEVS Editor

The SLMToolBox possess a graphical editor based on the DEVS modelling language. For

every DEVS concepts there exists a corresponding graphical object. Users are able to develop

DEVS models from scratch or visualize a DEVS model resulting from the transformation of

BPMN models to DEVS models. The figure below presents a DEVS model developed inside

the SLMToolBox. DEVS concepts are available to the left of the editor in a palette of objects.

The editor offers a hierarchical representation through the decomposition of coupled models

into separate diagrams. Double clicking on a coupled model will open a new diagram which

represents the coupled model.

132

Figure 62 DEVS editor

4.2 Simulation profile

Simulation profile is necessary before starting any simulation. It defines basic aspects on

which the simulation depends and results comparison also. Three aspects are defined with the

simulation profile: number of instances to be simulated, user’s processing time and cost

waited by the user. The number of instances to be simulated signifies the number of times the

DEVS simulation model is going to be executed starting from its entry point to its exit point

(through its entire cycle). User’s processing time and cost are the user’s objectives at the end

of the process. Based on these objectives and the obtained simulation results, users are able to

proceed in the evaluation of their process.

Figure 63 Simulation profile

Figure 64 Simulation

4.3 Simulate DEVS model

The simulator is an implementation of classic DEVS. For the simulation to be well effected

133

the following requirements are demanded from the user:

 Initialize the simulation profile otherwise only one instance will be simulated, and the

processing time and cost are set to zero.

 Set the cost of every atomic model, processing time of every state, and identify the

active state of atomic models.

 Set the probabilities of internal couplings. In case of divergence, the path to be taken

by the simulator is based on the probabilities of internal couplings emerging from the

output port.

The user will choose to simulate as shown in figure 66. The simulator will run depending and

on the inputs identified before. The simulator works on several hierarchical levels, starting

from the first level which is the model to be simulated and the descending into the diagrams

attached to coupled models.

4.4 Animate DEVS diagram

Animation of DEVS diagrams is based on the results obtained from the simulation. The

animation indicates active states and models. “Ctrl + A” buttons are capable of showing a step

by step animation, starting from the first active state and model till reaching the last active

ones. Step by step animation will be realized by change of color as indicated in figure 67.

Figure 65 Animation

4.5 Simulation report

Annex 2 contains a simulation report produced by the SLMToolBox according to simulation

results obtained. The report (pdf format) contains a listing of the simulation profile (number

of instances and the user’s objective). Then information concerning the processing time are

presented which includes:

 Pie chart and bar graph of different obtained processing times during the simulation

 Highest processing time and its corresponding path (sequence of atomic models)

 Lowest processing time with its corresponding path

 Most probable processing time with its corresponding path

 Least probable processing time with its corresponding path

Finally the report states the cost’s part which contains:

134

 Pie chart and bar graph of different obtained cost during the simulation

 Highest cost and its corresponding path (sequence of atomic models)

 Lowest cost with its corresponding path

 Most probable cost with its corresponding path

 Least probable cost with its corresponding path

5. Indesit Use case

Methodologies, methods, and tools that resulted from MSEE research and development

activities are regarded as assets. These assets are used by the MSEE four industrial partners in

order to help them in their transformation and shifting process towards servitization. The four

industrial and manufacturer partners are regarded as use cases which have benefited from all

MSEE assets in their servitization process and on the other side validated the usage and utility

of these assets. Several assets have been developed during the MSEE project, but in the frame

of this thesis only two assets are concerned: MDSEA and SLMToolBox. The first asset

(MDSEA) aims at supporting business users and system engineers to model service-product

and service systems along the SLM lifecycle. The structured approach is defined to guide the

collecting of requirements, building models, design, and implementation. The second asset

(SLMToolBox) will provide the graphical editors necessary to model manufacturing services

and service systems from a “business perspective” (BSM) and a “functional perspective”

(TIM) for service engineering activities.

In the following sections, the Indesit use case is presented with an overview of its AS-IS/TO-

BE situations and the Carefree washing service to be produced in collaboration of other

partners. Then the models resulting from using our two proposed assets (MDSEA &

SLMToolBox) are presented.

5.1 The Use case experience: from Products to Services (AS-IS Situation)

The Indesit is actually the absolute leader in countries such as Italy, the United Kingdom and

Russia. It was founded in 1975 and is listed on the Milan Stock Exchange since 1987; the

company turnover for 2013 was 2.7 billion Euros. Headquarter has established in Fabiano

(Italy), a town in Marche region where it leads over 300 after-sale centers in 150 cities.

Actually Indesit has eight production sites (three in Italy, two in Poland and one in the United

Kingdom, Russia and Turkey) and 16,000 employees, including over 4,000 in Italy. Also,

Indesit established several commercial branches outside of Europe such as North and South

America, Far East, Middle East and Africa as well. This enterprise has a deep consideration

into the research and development of new products through spending around a third of

investments. For instance, the number of patents registered is growing by an average of 30% a

year, also over 600 people who work in this area (68% of whom are in Italy) reflects the

strategy of the enterprise in order to be a pioneer in this field. Indesit has been established

based on innovative appliance with technological solutions aim to do the housework in a

smart and efficient way in order to enable the customers to simplify and enjoy their time. In

this context, the selected enterprise represents the modern appliance with distinctive design

not only to adapt with customer life-style but also to help them to make their home a uniquely

rewarding experience through offering appliance ergonomic and silent running and intuitive

performance.

All products are currently designed and commercialized in a traditional way as physical

products. The product development cycle is strongly centred on product and the main

135

business processes are connected to the product stages (idea generation, feasibility, concept,

design, development, testing). During the last years, almost 1.400 new product codes were

created and innovation projects were product-oriented: 15 of them were focused on new

aesthetics or functions and 11 of them interested aesthetical or functional upgrades.

Selling the physical product for Indesit means that the customers usually go to a

retailer/distributor, see the product alternatives and choose the best one according to their

needs. Usually the retailer is a big shop specialized in house appliances or domestic items and

offer a wide variety of products, from mentioned enterprise and from its main competitors.

Products are presented in large exhibition spaces and located in different layouts. The more

common expositions use the grid-based layout or the round-based layout: the former allows

customers to see all products in line and explore them throughout a fixed path; the latter

creates a sort of island where the customer is free to move and go around. Actually the 85% of

sales is done in this way. Only in few cases (10%), customers use internet-based shops. Then,

the machine is delivered at home and installed by a technician. The customer uses the

machine as everybody knows, caring about the loading of the most proper cleaner soaps, the

knowledge of the washing programs and its choice, etc.

From Service point of view, Indesit offers only few supporting services such as: warranty, 24

hours assistance and assistance website. However, they are always sold in addiction to

product according to a basic Product+Service model and they are really simple, so

servitization is limited to the maintenance assistance and spare parts.

The current situation is hereinafter described. After purchasing the product, the customer

subscribes a traditional warranty contract of variable duration according to the customer‘s

choice (1-3 years). It assures:

 Free maintenance;

 Free spare parts;

 Free delivery at the nearest Assistance Center (when the product cannot be fixed at

home);

 Product substitution is it is not reparable;

 On-site intervention of an enterprise technician (only the first 6 months).

The warranty can be also extended (5 years) by a special warranty formula, which extends the

basic warranty to 5 years and also offers free on-site intervention, free spare parts also after

the first 6 months, and a 10% discount for the purchase of accessories or other aesthetical

parts. Furthermore, the customer can register its product on the dedicated website and

download the related documentations (warranty conditions, use manuals, etc.). It also offers a

special section containing the most common problems and the best solutions, and an on-line

shop to directly order spare parts or accessories. Moreover, a free number is 24hours

available. Concerning service ideation and development, services are actually conceived and

designed after the product in a separated way (product development cycle + service ideation

process). Usually first the product comes and then the related services are added to the already

existing product by minor changes. It implies that services are defined after the product

development. As a consequence, services are ―added‖ to an existing product by minor

changes (adding a new component, modifying the SW control to improve some functions,

changing the selling strategy, evolving the user interface, etc.). Services are conceived and

designed by the marketing staff: it aims to define the solution intended as a service while

R&D activities aim to define the ―solution‖ intended as a product. The two flows are

organized according to the same 4 stages: Generation, Screening, Exploration and Delivery.

136

The actual business model of use case is involved the following actors: Indesit, the customer,

the sales network (local dealers/retailers/distributors), suppliers, and Universities and research

centers. Hereafter their roles are described.

 Indesit is:

o Product designer and producer;

o Product seller;

o Technical Assistance Provider.

 Customer is:

o Product buyer;

o Product end-user;

o Warranty contract subscriber;

o Person requiring technical assistance.

 Sales network (dealers/retailers/distributors, mainly from large-scale distribution) is:

o Main product distributor/seller.

 Suppliers are:

o Technical partners in designing and/or producing some components;

o External partners providing specific services (molding, electrical boards, etc.).

 Universities (or research centers) are:

o Scientific or technological partners in developing R&D projects and innovating

some specific components or functions.

Actually all actors are spread in Europe (i.e. Universities) and worldwide (i.e. Suppliers, Sales

network, Customers) and below figure has represented the enterprise ecosystem explicitly.

137

Figure 66 Indesit Ecosystem

According to the servitization process, the validation case actual level is rather low as it is

limited to the second level that is selling the physical product. Only few basic services are

offered in a traditional way (e.g. warranty, technical support, service call center, etc.). In

certain cases the second level of servitization is partially achieved if we consider the

maintenance service by warranty contracts and the 24hours assistance service offered by call

center and website. Here below the current servitization level of use case has been

represented.

Figure 67 Use case AS-IS Servitization level

In the AS-IS scenario, it is a traditional WM use consisting of common actions (insert clothes,

insert the cleaner soap, select the washing program, start the machine, etc.). In the TO-BE

scenario the use case can be called “Carefree Washing” because the machine integrates a set

of services that make the customer not to care about additional actions (e.g. maintenance,

machine control, soap recharge, spare parts, etc.).

138

5.2 The Product+Service idea: the carefree Washing service (TO-BE

Situation)

In order to develop new products and more and more innovative services for its customers,

Indesit has been focused on creating a product + service solution starting from the leading

products in its portfolio, the washing machine. The washing machine market is an expanded

and consolidated sector for Indesit which recently proposed also innovative and advanced

solutions aimed at saving energy, smart technology, noise reduction, and self-dosing of

detergents. Actually, Indesit still is very product-oriented but wants to increase its service

orientation. Indeed, it wants to develop new services that allow providing a carefree washing

ecosystem to the customers. For instance with the help of remote control and data services it

wants to enable its service business to act preventively and avoid break-downs of the

customers´ washing machines. Another example for its new service-focused view is an

intelligent soap recharge service. With this service soap shall be automatically delivered to the

customers at the time when they need it (soap recharge or refill). Indeed, after having bought

a washing machine, the recharge service for soap can be ordered by customers to create

additional customer value. Here it could make sense in the future to offer a bundle of product

and service. That means Indesit could sell washing machines that have the soap recharge

service included for a certain period of time (e.g. during the warranty phase, i.e. the

subsequent 24 months after the purchase) and an adapted (i.e. higher) selling price. With the

product-related services mentioned above Indesit can support its white goods and differentiate

towards competitors. Therefore, the use case has been focused on washing machine; the use

case can be defined as “Washing Machine Use”. Indeed, among all products, washing

machines (WMs) actually represent the greater market share and, as a consequence, also the

majority of innovation and research projects have been developed on such an appliance during

the last few years. The use case know-how on WMs is wide and robust and a lot of innovative

and advanced solutions have been recently applied on it (e.g. energy-saving, high-

performance smart technology, silent motion control, auto-dose of soaps and cleaners, etc.).

The use case idea started from two considerations: the widespread of WMs inside domestic

houses, the worldwide distribution and the underused potential of actual WM electronics.

These factors make the WM as the ideal candidate to become a worldwide ecosystem element

and to be further developed. Since Use case is still marginally in the Product+Service phase at

the present moment, the new scenario has a challenging objective: to move to level 3 of

servitization and investigate also the potential of a Product2Service scenario (see figure

below). The new service-oriented scenario implies also a change of the current ecosystem,

which is composed mainly by internal actors and few external entities involved only in R&D

phases. Contrariwise, the TO-BE scenario implies that some external partners will be

involved after sales to support new services as service providers. It forces to define a robust

and successful business model to make the ecosystem work.

139

Figure 68 Use Case TO-BE Servitization level

Innovation in the ecosystem is represented by the presence of so many partners and suppliers

who must be coordinated in their actions and driven by common rules. It will be complex and

challenging. Furthermore, the adoption of an external platform to deliver some services and to

analyzed data collected by the machines is a novelty (some systems are usually internal). It

implies two contrasting aspects: on one hand, data security and privacy issues must be faced

and properly managed; on the other hand, such platform (web-based, shared among numerous

partners, etc.) can open new sales channels and can create marketing perspectives. The new

service-oriented scenario implies also a change of the current ecosystem, which is composed

mainly of internal actors and few external entities involved only in R&D phases. New

external partners will be involved to support new services as service providers (i.e. at least an

HW-SW component supplier, Utility, Detergent producer). The use case scenario can be

summarized by the following figure, providing the overall idea of the main services and the

involved actors. The following figure represents the general business scenario where the use

case servitization process will take place. The product, the services, the customers and the

home network are the main elements. The scenario has been also investigated from the

company viewpoint as well as the customer viewpoint.

5.3 Service Functionalities

As mentioned above, Carefree Washing Service offers a set of functionalities to support the

customer in washing activities and to realize a ―carefree‖ use of the same product by

providing additional services (i.e. machine monitoring, feedback on usage, personalized best

practices, tailored marketing offers). In particular, use case scenario is focused on the

provision of the following service functionalities:

 WM Monitoring: control of the WM status, global WM data, last cycle data, user

habits, by web or mobile applications;

 Best Practice Proposals: provision of personalized feedback and useful advices

elaborated on the basis of real user actions and “errors/inefficiencies”;

 Marketing Offers: provision of interesting marketing offers elaborated on the basis of

the specific user profile and his/her washing habits;

 Detergent supply: provision of personalized detergent offers on the basis of the

specific user profile and his/her washing habits, suggestions of ad-hoc WM-related

products, and on-line order.

They are to be implemented with the support of the industrial assets. This will affect the three

impact categories: Manufacturing, Organization and IT.

140

Manufacturing impact: the machine needs to be enhanced with further functionalities and

components like the zigbee module and the new main board. The zigbee module sends data to

a local gateway Connectivity to allow the data passage to the web; the main board reads and

stores data thanks to some firmware modifications and upgrading of the setting files.

Organization impact: the ecosystem needs to be properly defined and organized through the

partner selection, to choose the best solution, the marketing and R&D collaboration, to realize

a feasible product-service offer, and Service Lifecycle Management (SLM) to manage

product-service lifecycles.

IT impact: the product architecture requires new technological components and new software

applications like data storage from the machine to the web, data elaboration and management

to have feedback from customers and delivery platform to deliver services to final users.

5.4 New Ecosystem for TO-BE Situation (VE)

The TO-BE ecosystem is enlarged if compared to the AS-IS ecosystem as new actors are

involved. Indeed the ―carefree washing‖ system needs the development of a specific

―carefree washing ecosystem‖ in order to provide the service packages proposed in the

previous section. As a consequence, the TO-BE ecosystem involved the actors already

involved in the actual situation (Use case, the customer, the sales network, suppliers,

Universities) but also some new partners to perform some specific roles inside the new

environment. In particular, the customer becomes an active part of the Use case new TO-BE

ecosystem and some service providers are involved. Hereafter the actors involved and their

roles are described.

 Use case is:

o Product designer and producer (R&D);

o Services creator (Marketing);

o Product+Service seller;

o Analyst of all data recorded by products and customers (Technical Assistance and

Marketing);

o Technical Assistance Provider;

o The leader company coordinating all the other partners (service providers).

 Customer is:

o Product+Service buyer;

o Product+Services end-user;

o Warranty contract subscriber;

o Person requiring technical assistance;

o Person requiring H&S assistance;

o Person monitored at home;

o Person buying cleaner soaps;

o Person giving feedback on the product and service use (to monitor the

Product+Service use and conceive new ad-hoc services)

141

o Person co-creating services with use case on the basis of the WM use and

implicit/explicit needs.

 Sales network (dealers/retailers/distributors, mainly from large-scale distribution) is:

o Product+Service distributor/seller.

 Suppliers are:

o Technical partners in designing and/or producing some components;

o External partners providing specific services (molding, electrical boards, etc.);

o Providers of some additional services (maintenance, assistance, etc.

 Universities (or research centers) are:

o Scientific or technological partners in developing R&D projects and innovating

some specific components or functions.

 Mobile application provider (as supplier) is:

o Developer mobile applications for product remote control and product data

monitoring;

o Provider of the developed mobile applications.

 Cleaners/detergents producer (as partner-supplier) is:

o Producer of soap cleaners and detergents;

o Provider of soap cleaners and detergents.

 Local Service delivery provider (as supplier) is:

o Provider of on-site delivery service about spare parts, soaps, and anything that

needs to be delivered at home.

 Disposal and recycling provider (as partner) is:

o Responsible of product disposal and recycling on-site.

 Health & Safety service provider (as supplier) is:

o Provider of H&S service and on-site assistance in case of emergency.

 Energy/Water provider (as partner) is:

o Provider of energy/water facilities to reduce energy/water consumption and costs.

In conclusion, the new ecosystem will be realized with three main actions: Washing machine

monitoring (sending information to an external ecosystem), Users monitoring (sending

information about end-users actions, e.g. by smart phone), and Service delivery infrastructure

(to manage, store and elaborate the system data).

5.5 Scenarios and obtained models

This section will demonstrate the use of the SLMToolBox and the realization of MDSEA in

service development. Two different scenarios are discussed and in each scenario different

models developed by the SLMToolBox (at BSM and TIM levels) are presented and detailed.

The goal behind presenting the developed models is to validate the use of the SLMToolBox as

a modeling tool and as being a partial implementation of the MDSEA methodology.

142

 Design a single service for Indesit 5.5.1

This first scenario is based on designing the care free washing service within Indesit i.e. a

single enterprise and it describes the phases of the service lifecycle form ideation to

execution. Different Models are developed at the BSM and TIM levels.

5.5.1.1 Business Service Model (BSM)

The BSM models developed for this scenario helped to identify the TO-BE process for the

production the care free washing service. These models help business experts and Indesit

engineers to specify the global procedure and objectives of this service. Extended Actigram

Star (EA*) models are used to develop the TO-BE model of the service production process

and details the different phases to be applied by Indesit in order to specify, build, and deliver

the service.

Figure 71 is the overall service concept of the care free washing service represented with an

EA* diagram. The actor responsible for the development of this model is an Indesit service

engineer.

Figure 69 Overall service concept (EA*)

Four main activities constitute the care free washing machine service which is supported by

human and IT resources. “Customer and WM registration” is the first activity through which

the customer uses the mobile application for registering his washing machine. Credentials of

customer and his washing machine are then delivered to the second activity. Daily usage of

the washing machine is tracked and used by the “WM Monitoring” to monitor the usage of

each registered washing machine and thus keeping track of several information to produce

later data and statistics consumed by other activities. WM consolidated data is forwarded to

143

“best practices proposal” activity, while detergent consumption statistics are delivered to

“Smart Detergent Provisioning” activity. “Best Practices Proposal” activity will propose

personalized best practices for every registered customer based on data received from their

WM. “Smart Detergent Provisioning” receives statistics on detergent consumption and later

will deliver detergents to customer based on these statistics.

According to the MDSEA methodology the modeling and designing of the service system

starts at the BSM level from a Global point of view. Figure 72 is an EA* diagram

representing the global view of the “care free washing service” developed by an Indesit

service engineer. The goal is to decompose the service lifecycle management phases.

Figure 70 General view (EA*)

Four phases constitute the lifecycle of the “care free washing service”. “Service Ideation”

activity uses the idea management asset of the Innovation Ecosystem Platform (one of the

platforms developed by the MSEE project). It collects information and data using the idea

management tool and then the best idea is selected. Next the “Product-Service system design”

activity as its name indicates it is responsible for system design based on requirements. The

designed system is later to be implemented at the “product service system implementation”

activity using IT skills from SOFTECO (technical partner of Indesit) and the Mobile

Application Platform (developed by the MSEE project and facilitates the implementation of

mobile applications through code generation). After the creation of the mobile application, the

“product service system delivery” activity is responsible for the delivery of this service using

the MSEE Delivery Platform.

In figure 72 the four phases are represented with structural activities which can be

decomposed into other activities and EA* flow elements. Every structural activity will be

represented with an EA* diagram. The goal of these diagrams is to communicate the service

lifecycle and the different phases needed to produce the service while specifying the resources

necessary for the execution of each phase. The diagrams are presented and elaborated in

144

Annex-4

5.5.1.2 Technology Independent Model (TIM)

At the TIM level UML models are developed by the SLMToolBox and used later by other

code generation platform for the generation of care free washing mobile application. The IT

models are designed and modeled using UML diagrams and are classified into IT architecture

specification and IT software design. The goal of the IT architecture specification models is to

describe the high level architecture of the monitoring system and the carefree washing mobile

web site. The models are developed by SOFTECO software engineer as being a technical

partner to Indesit. Figures 73 and 74 are UML models representing the high level system

architecture and the care free washing mobile website respectively.

Figure 71 High level system architecture (UML)

145

Figure 72 Care free washing machine website (UML)

The IT software design is represented by a UML class diagram in order to build the data

(object model) to be manipulated by the mobile website. Figure 75 represents the Washing

Machine usage data.

The developed IT models at TIM level needs to be implemented at the TSM level. The

SLMToolBox doesn’t support implementation and code generation since it only covers the

BSM and TIM abstraction level. As a result, all models are exported and pushed into the

MSEE model repository. Software developers will later import these models into the mobile

development platform which will generate the code necessary for the development of care

free washing mobile website.

146

Figure 73 WM usage data (UML)

 Design a composite service within the Indesit VME 5.5.2

This scenario demonstrated the development of the “Smart Detergent Provisioning”

composite service models within the Indesit VME defined earlier in section 5.5.4. Models in

this scenario reveal the use of SLMToolBox in modeling collaborative models and diagrams

between partners in the VME. In addition, it demonstrates how model transformation is

applied to transform EA* models into BPMN models.

5.5.2.1 Business Service Model (BSM)

In figure 71 the activity “Smart Detergent Provisioning” is regarded as an offer enriching the

overall service. It is a composite service in which several partners are involved in the

realization process. Figure 76 describes the collaboration within the VME for the TO-BE

“Smart Detergent Provisioning” offer (service).

From the diagram we notice two VME partners (detergent supplier and B2C supply partner)

involved with Indesit in this service. Depending on statistics received from the “WM

Monitoring” activity and the analysis of these data, a detergent order is generated to the B2C

supply partner. In figure 76 two external assets are represented in this diagram (this is

indicated by the black circle with an arrow inside):

 B2C Onsite Delivery: an external service provided by the B2C supply partner

 Ecofriendly detergent: a resource (external to Indesit) referencing an asset provided by

the detergent supplier partner.

147

Figure 74 Smart Detergent Provisioning (EA*)

In fact, the SLMToolBox through its EA* graphical editor is capable of connecting resources

to VME tangible and intangible assets. Every partner of the VME, who is willing to share one

of its resources with other partners, registers the desired resource in an asset repository and

provides specific related information. In this case other partners can browse the assets

repository and choose external assets (tangible or intangible) to be used in their service

production. In addition, activities can be also connected to external services proposed and

registered by other partners in a service repository. In an Indesit EA* process diagram, the

representation of tangible/intangible assets and external services designs the collaboration

between VME partners in the production of the required service.

Figure 77 is a GraiGrid diagram with a goal to model the governance of the VME (functions,

levels, inter-relationships). Three VME partners (B2C Supply partner, Detergent Supplier,

and Indesit) are presented in the diagram. For every partner, one or several departments are

designed with each department possessing several decision centers. These decision centers are

divided over three decision levels: strategic, tactical, and operational. In addition,

Communication, sequence, and information flows between decision and flow centers are

modeled.

148

Figure 75 Smart Detergent Provisioning (GraiGrid)

With the GraiGrid editor presented in section 5.3.2.2, we can model the decision and strategic

view of the service to be produced in collaboration between VME partners. Involved partners,

responsible organizational structures, decision and information centers, and the flow of

information are all modeled and visible in the diagram. In addition, the user can define

objectives, decision variables, and performance indicators that are associated to a specific

decision centers. Figures 78, 79, and 80 reveals how the user can define these terms via the

GraiGrid editor. The user starts by selecting a decision center (figure 78) and clicking the PI

green icon, a wizard is opened with three available tabs (objectives, decision variables, and

performance indicators). The wizard serves in adding, editing, and deleting objectives,

decision variables, and performance indicators (figure79). In addition, performance indicators

can be imported form a list proposed by the scientific research work of several MSEE partners

(figure 80).

149

Figure 76 Performance indicators (1)

Figure 77 Performance indicators (2)

150

Figure 78 Performance indicators (3)

5.5.2.2 Technology Independent Model (TIM)

In previous sections, we introduced the different features provided by the SLMToolBox. One

of these features was the model transformation from EA* models to BPMN models. This

specific transformation will help different actors to communicate at different abstraction

levels and reuse pre-developed models as explained earlier. Using the SLMToolBox we

transformed the “Smart Detergent Provisioning” EA* diagram (figure 76) into a BPMN

diagram. Figure 81 is the result obtained from the transformation using the SLMToolBox.

Graphical objects are not well arranged due to the lack of auto positioning in the BPMN

modeler integrated in the SLMToolBox. The user is then invited to rearrange the graphical

objects to obtain a user friendly diagram (figure 82). The obtained diagram can be regarded to

be at the top TIM level and needs to be enriched by a software engineer. In figure 83, the

software engineer specifies the logical rules and messages which must be handled by the

automated part of the supply process.

After the enrichment of the Smart Detergent Provisioning BPMN diagram at TIM Level and

using the SLMToolBox, the diagram is exported and stored in MSE model repository

(connection to the model repository can be accomplished automatically using the

SLMtoolBox). Software engineers using the MSEE development platform will import the

BPMN diagram (TSM level) and enrich it with technical information before being published

into the Innovation Ecosystem Platform (IEP). The IEP will later execute the BPMN diagram

to orchestrate the process’s execution after implementing the necessary web services.

151

Figure 79 RAW Smart Detergent Provisioning (BPMN)

Figure 80 Rearranged Smart Detergent Provisioning (BPMN)

152

Figure 81 Enriched Smart Detergent Provisioning (BPMN)

5.6 Conclusion on the Indesit Use Case

In section 5.5, we presented the Indesit use case as being one of the MSEE manufacturing

partners. The AS-IS and TO-BE situations were introduced while explaining the new

collaborative service to be produced by the Indesit Virtual Enterprise (VE). The shift from

product to product+service systems is accompanied by the use of the MSEE project’s results.

MDSEA concepts and the use of SLMToolBox were investigated during the servitization

process of Indesit. Several models were produced at the BSM and TIM levels and then

delivered to other MSEE platforms in order to proceed with the implementation of the service.

At BSM level GraiGrid models were developed to model the strategic and tactical views of

the service. In addition objectives and performance indicators were imported into the

GraiGrid models for governance and monitoring reasons. EA* diagrams were developed

through different scenarios with diagrams targeting collaboration processes between different

partners while others represented the service production lifecycle phases to be held by Indesit

and its partners and thus can be used for communication between partners and a

representation of the service production in the TO-BE VE. In certain diagrams external assets

and services were referenced using the EA* editors that can connect to assets and service

repository.

At TIM level UML models were developed for the Care Free Washing mobile application.

These models were exported to the MSEE mobile platform and used for the automatic

creation of the application’s source code. In addition, the transformation from EA* models to

BPMN models were presented. BPMN diagram was created form existing EA* diagram using

the model transformation feature of the SLMToolBox, then the diagram was rearranged and

enriched with IT information and details. The enriched diagram was finally exported to the

model repository and used by other platform for execution.

153

6. Conclusion

Chapter 5 presented the SLMToolBox as a modeling and simulation tool developed during

this thesis work. We provided a system and technical overview, and explained the

implementation of MDSEA and simulation principles inside this tool. Also, the different

features constituting the tool are presented and detailed. At the end of the chapter, the Indesit

case study is illustrated with a description of current situation and position in the servitization

process, the services to be introduced to their product, defined scenarios, and obtained results.

After presenting our research work and contributions, the following chapter will present

future perspectives for our work and produced assets.

General Conclusion and
Perspectives

155

The previous chapters represented the contribution of our thesis, this chapter will conclude

these results and highlights future perspectives.

1. General Conclusion

During this thesis we contributed to the development of the Model Driven Service

Engineering Architecture (MDSEA) which target was helping manufacturers in their business

transformation shift towards servitization. We specified a process modeling language, the

Extended Actigram Star (EA*) language with abstract and graphical syntax identified. An

EA* metamodel is developed which takes into consideration conceptual and implementation

concerns. The metamodel permits the development of graphical editors used for the creation

of graphical diagrams. In addition, model transformation and its utility in MDSEA were

discussed, in particular our proposition of transforming EA* to BPMN models and BPMN to

DEVS models. Both model transformations were based on previous research work and it

answered challenges met by researchers during their work. These model transformations were

executed through different steps: defining the mapping of concepts between both source and

target models, implementation of the identified mapping using the Atlas Transformation

Language (ATL), executing the ATL transformation, implementation of an XSLT style sheet

used for the creation of a diagram and graphical objects, and finally executing the XSLT style

sheet to add graphical objects to the model. We also presented a DEVS editor and simulator

which was used to simulate business processes using the DEVS formalism. The simulator

provides a simulation report and animation features. At the end we introduced the Service

Lifecycle Management Tool Box (SLMToolBox), a modeling and simulation tool we

participated in its development at Hardis Group. This tool is a partial implementation of the

MDSEA methodology and in which we integrated an EA* editor, the model transformations

specified, and the DEVS editor and simulator.

Chapter 1 was the general introduction of the thesis, it reported the context in which the thesis

was involved and the problem trying to participate in solving. The context in general is about

servitization and how manufacturers are shifting their business in a transformation process

towards services. On the other hand, the problem is the lack of methods, methodologies and

tools to accompany those manufacturers in their transformation. MSEE project tried to answer

and contribute to these challenges and the thesis being part of the MSEE project has

contributed in the development of specific solutions. We then presented the organization of

the thesis.

Chapter 2 was the state of the art of this thesis, it presented various work related to our

domain of research and study. It introduced enterprise modeling and a group of known

methods (CIMOSA, GIM, and ARIS), enterprise interoperability and a list of several

approaches and frameworks (IDEAS, LISI, and ATHENA), Model driven development and in

particular MDA and MDI, three modeling languages directly related to our work (GRAI

Extended Actigram, BPMN, and DEVS), and finally a list of business process and DEVS

based simulation tools.

Chapter 3 was our first contribution; it introduced the Model Driven Service Engineering

Architecture (MDSEA). The problem statement that triggered the development of MDSEA, is

well detailed, starting from the emergence of servitization and the shift from product systems

to service systems, then to service systems and service lifecycle management and finishing

the problem statement with service system’s modeling. Then we introduced MDSEA as a

contribution of our research work, detailing its three abstraction levels and the proposed

156

modeling languages at each level. In addition, we proposed a process modeling language

Extended Actigram Star (EA*) which we developed based on GRAI Extended Actigram. In

order to better explain EA*, we mentioned its scope, overview of the language, its abstract

syntax, graphical representations, and its connectivity constraint. At the end of this chapter,

we presented the model transformation from EA* to BPMN which we developed and

implemented as being part of the MDSEA methodology. Also an example of this model

transformation is shown.

Chapter 4 was dedicated to simulation of business processes in MDSEA. It started presenting

the problem we are trying to answer by simulation and in particular by our developed DEVS

simulator. We then justified the choice of DEVS formalism through its basic characteristics.

The second model transformation BPMN to DEVS models which we have developed was

proposed in addition to the DEVS simulation implemented in the SLMToolBox (execution,

results, and animation). And finally an example of the transformation of BPMN models to

DEVS and the simulation of obtained model was demonstrated.

Chapter 5 is the final chapter containing the thesis’s contributions. It presented the Service

Lifecycle Management Tool Box including system’s overview, technical overview, the

implementation of MDSEA and simulation in the SLMToolBox. A use case study is detailed

at the end of this chapter in order to validate the obtained results.

Figure 84 summarizes the context, problem and contribution of the MSEE project and this

thesis in particular. In the context, manufacturers started shifting their production towards

services (servitization). Then these manufacturers agreed to collaborate between them in order

to compete in the market and produce services. This collaboration leads to the formation of

ecosystems and virtual manufacturing enterprises. The transformation is governed through the

use of MDSEA, SLMToolBox, Simulation and other MSEE methods and platforms.

157

Figure 82 context, problem, and contributions

MDSEA

SLMToolBox

Simulation

Other MSEE methods and platforms

Context & Problem

Contribution

158

2. Perspectives

The MSEE project members and with the effort of I-VLab have worked on a proposal for

standardization of Service Modeling Language (SLM) where MDSEA acts as a framework

for the proposed language. The introduction of the proposal was as follows “There is no

language standard in ISO or CEN for the modelling of service system. Some existing service

modelling languages mainly focus on IT related service or Web service. Most of existing

enterprise modelling languages are relevant to service in VME and can be reused to model

part of a service system in the context of VME. In order to cover the whole modelling

requirements for service system engineering, the concepts of those modelling languages need

to be integrated and mapped one to another. A standardized Service Modelling Language

(SML) and its associated meta-model is seen as an important issue to avoid hazardous and

fragmented development in this domain. A Model Driven Service Engineering Architecture

(MDSEA) adapted from MDA/MDI acts as a framework for the proposed service modelling

language…” Several meetings had been held for this purpose at Brussels and an action plan

was initialized for the various actors. If the proposal is accepted, more future contribution by

various partners will be needed to produce a well-structured and specified language.

Some European projects in ICT achieve good results, particularly in the development of

methodology supported by software. Unfortunately, sometimes the dissemination and the

development of these software stop after the end of the project. For this reason, different

partners and actors (exterior to the MSEE project) have met several times to form a

community group around the SLMToolBox. The members of the group will take the

engagement and to facilitate further development of the SLMToolBox based on MDSEA. The

main interests for the partners to join the community group could be to:

 Extend the Method and/or the Model (research interest)

 Deliver, maintain, support and extend the Tool (software) (development interest)

 Disseminate, exploit and adapt the asset for further experimentation and use

(innovation interest)

Several projects and universities have continued the development of the SLMToolBox to

meet its requirements. The NOCIFEL project as an example which is a French project whose

goal is to develop an innovative and modular platform for managing good’s transportation has

customized the SLMToolBox’s Extended Actigram Star editor to meet transportation

requirements. In addition, [UNINOVA] an independent and nonprofit research institute in

Lisbon and MSEE partner is willing to adopt and extend the SLMToolBox in some of its

projects. Besides, the University of Bordeaux is studying the possibility to use the

SLMToolBox for DEVS modeling and simulation courses.

159

References

160

Agostinho C., Sarraipa J., Gonçalves D., Jardim-Goncalves R. Tuple-based semantic and

structural mapping for a sustainable interoperability. DOCEIS'11. Costa de Caparica, 2011.

Amyot D., Farah H., Roy J. F. Evaluation of Development Tools for Domain-Specific

Modelling Languages. System Analysis and Modelling: Language Profiles, Vol.

4320, 2006, pp 183-197

Andrews T. et al. Business Process Execution Language for Web Services. Version 1.1. 2003

available at: http://xml.coverpages.org/BPELv11-May052003Final.pdf

ATHENA Integrated Project. Framework for the Establishment and Management

Methodology, Deliverable DA1.4, 2005.

ATHENA, Advanced Technologies for Interoperability of Heterogeneous Enterprise

Networks and their Applications, FP6-2002-IST1, Integrated Project, 2003.

ATL official site: http://www.eclipse.org/atl/.

Baines T.S., Lightfoot H.W., Benedettini O., Kay J.M. The servitization of manufacturing: A

review of literature and reflection on future challenges. Journal of Manufacturing Technology

Management, Vol. 20(5), 2009, pp. 547-567.

Baines T., Lightfoot H., Evans S., Neely A., Greenough R., Wilson H. State of the art in

product-service systems. Journal of Engineering Manufacture Part B, 2007, pp.1543–1551.

Banks J., Carson J. S., Nelson B. L., Nicol D. Discrete-event system simulation. 4th ed.

Englewood Cliffs, Prentice-Hall, 2005.

Behrend S., Jasch C., Kortmap J., Hrauda G., Firzner R., Velte D. Eco-service development.

Reinventing supply and demand in the European Union. Greenleaf Publishing Ltd., 2003.

Bell M. Service-Oriented Modelling: Service Analysis, Design, and Architecture. Wiley,

2008.

Boughnim N., Yannou B. Using Blueprinting Method For Developing Product-Service

Systems. International conference of Engineering Design (ICED), 2005, Melbourne,

Australia.

Bourey J. P., Grangel R., Doumeingts G, Berre A. Deliverable DTG 2.3 - Report On Model

Driven Interoperability. InterOP, 2007 (report available at:

http://interopvlab.eu/ei_public_deliverables/interop-noe-deliverables/tg2-model-driven

Bourey J. P., Grangel S. R., Doumeingts G., Berre A. J. Report on Model Driven

Interoperability. Deliverable DTG 2.3, INTEROP NoE, April 2007, pp. 91. Available from

http://www.interop-vlab.eu/ [accessed 15 June 2009]

BPMN2 Modeler official site: http://eclipse.org/bpmn2-modeler/

http://link.springer.com/search?facet-author=%22Daniel+Amyot%22
http://link.springer.com/search?facet-author=%22Jean-Fran%C3%A7ois+Roy%22
http://link.springer.com/book/10.1007/11951148
http://www.eclipse.org/atl/
http://interopvlab.eu/ei_public_deliverables/interop-noe-deliverables/tg2-model-driven
http://eclipse.org/bpmn2-modeler/

161

Brezet, Bijma, Ehrenfeld, Silvester. The design of eco-efficient services; Method, tools and

review of the case study based ‘Designing Eco-efficient Services’ project. Delft University of

Technology, Design for Sustainability program, 2001.

C4ISR, Architecture Working Group (AWG), Levels of Information Systems Interoperability

(LISI), March 30, 1998.

Cardoso J., Pedrinaci C., Leidig T., Rupino P., De Leenheer P. Open semantic service net-

works. Exploring Services Science, Lecture Notes in Business Information Processing, Vol.

143, 2013, pp 141-154.

Carosi A., Heydari M., Zanetti C., Taisch M., Ducq Y. Service Performance Assessment: A

PI Toolset Methodology for VEs. In Proceedings of IFIP WG 5.7 International Conference,

APMS 2014, Ajaccio, France, pp 691-698, 2014,

Çetinkaya D., Verbraeck A., Seck M. D. Model Transformation from BPMN to DEVS in the

MDD4MS Framework. In Proceedings of the 2012 Symposium on Theory of Modeling and

Simulation, article No. 28, 2012.

Charalabidis Y., Gionis G., Moritz Hermann K., Martinez C. Enterprise Interoperability

Research Roadmap, Draft Version 5.0, 2008. Available from

ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/enet/ei-roadmap-5-0-draft_en.pdf [accessed 20

December 2010]

Chen D., Doumeingts G. The GRAI-GIM reference model, architecture and methodology.

Architectures for Enterprise Integration, IFIP Advances in Information and Communication

Technology, 1996, pp 102-126.

Chen D., Vallespir B., Doumeingts G. GRAI integrated methodology and its mapping onto

generic enterprise reference architecture and methodology. Computers in Industry, 33(2-3),

1997.

Chen D., Vernadat F. Enterprise interoperability: a standardisation view, in: K. Kosanke, et al.

(Eds.), Enterprise Inter-and-Intra Organisational Integration, Kluwer Academic Publishers,

2002, pp. 273–282 (ISBN 1-4020-7277-5).

Chen D., Vernadat F. Standards on enterprise integration and engineering - a state of the art,

International Journal of Computer Integrated Manufacturing 17 (3), 2004, pp. 235-253.

Chen D. Framework for enterprise interoperability. In Proceedings of the Workshops and the

Doctorial Symposium of the Second IFAC/IFIP I-ESA International Conference: EI2N, WSI,

IS-TSPQ, pp.77-88, 2006.

Chesbrough H., Spohrer J. A Research Manifesto for Services Science. Communications of

the ACM - Services science, 2006, Vol. 49 Issue 7, pp. 35-40.

Clark T., Jones R. Organizational Interoperability Maturity Model for C2. Department of

Defense, Canberra, Australia, 1999.

ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/enet/ei-roadmap-5-0-draft_en.pdf

162

Czarnecki K., Helsen, S. Feature-based survey of model transformation approaches. In IBM

Systems Journal, Model-driven software development, 2006, Vol. 45 Issue 3, pp. 621-645.

Cetinkaya D., Verbraeck A., Seck M. D. Model transformation from BPMN to DEVS in the

MDD4MS framework. In Proceedings of the 2012 Symposium on Theory of Modelling and

Simulation - DEVS Integrative M&S Symposium, p.1-6, Orlando, Florida, 2012

Doumeingts G., Ducq Y. Enterprise Modelling techniques to improve efficiency of

enterprises. In International Journal of Production Planning and Control - Taylor & Francis,

2001, Vol. 12(2), pp. 146-163

Doumeingts G., Vallespir B., Chen D. GRAI grid decisional modelling. In International

Handbook on Architecture of Information System, Springer Verlag, 1998, pp. 313-337.

Eclipse official site: http://www.eclipse.org/.

EEF official site: http://wiki.eclipse.org/EEF.

EFFRA (European Factories Of the Future Research Association), FoF (Factories of the

Future). Multi-annual roadmap for the conceptual PPP under Horizon 2020. 2013. Pdf can be

downloaded from http://bookshop.europa.eu/fr/factories-of-the-future-pbKI0213266/

Elvesæter B., Hahn A., Berre A., Neple T. Towards an Interoperability Framework for

Model-Driven Development of Software Systems. Interoperability of Enterprise Software and

Applications, 2007, pp. 409-420.

EMF official site: http://www.eclipse.org/modelling/emf/.

ENSEMBLE. Deliverable 2.1 EISB State of Play Report version 1.00. 2007. Available from

http://www.fines-cluster.eu/fines/wp/d21/ [accessed 07 July 2011].

FlnES Future Internet Enterprise Systems (FlnES) Cluster. Cluster Book ICT2010 EVENT

VERSION- June 2010 http://cordis.europa.eu/fp7/ict/enet/documents

FP7 – FoF-ICT-2011.7.3. Manufacturing SErvice Ecosystem Project. 2011. http://www.msee-

ip.eu/

Furrer O. Le rôle stratégique des services autour des produits. Revue Française de Gestion,

1997, n° 113, pp. 98-108.

Garredu S., Vittori E., Santucci J.F., Bisgambiglia P. A Meta-Model for DEVS - Designed

following Model Driven Engineering Specifications. In Proceedings of SIMULTECH, 2012,

pp. 152-157.

Gebauer H., Friedli T. Behavioural implications of the transition process from products to

services. Journal of Business & Industrial Marketing, 2005, Vol. 20, No. 2, pp. 70-80.

Gebauer H., Friedli T., Fleisch E. Success factors for achieving high service revenues in

manufacturing companies. Benchmarking: An International Journal, 2006, Vol. 13, No. 3, pp.

374-86.

http://www.eclipse.org/
http://bookshop.europa.eu/fr/factories-of-the-future-pbKI0213266/
http://www.eclipse.org/modeling/emf/
http://www.fines-cluster.eu/fines/wp/d21/
http://cordis.europa.eu/fp7/ict/enet/documents
http://www.msee-ip.eu/
http://www.msee-ip.eu/

163

Gonçalves R., Agostinho C., Garção A. A reference model for sustainable interoperability in

networked enterprises: towards the foundation of EI science base. Computer Integrated

Manufacturing, 2012, 25(10), pp. 855-873.

Gorka B., Larrucea X., Elvesæter B., Neple T., Beardsmore A., Friess M. A Platform

Independent Model for Service Oriented Architectures. Enterprise Interoperability, Ed, 2007,

London, S., pp. 23-32.

Grangel S. R., Cutting-Decelle A. F., Bourey J.P. A UML profile for transforming GRAI

Extended Actigrams into UML. In Proceedings of the 17th IFAC World Congress, Session:

Architectures and Software Tools for Enterprise Integration and Networking in

Manufacturing, Paper ThB24.3, Séoul, Korea, 2008.

Graphiti official web site: http://www.eclipse.org/graphiti/.

Gummesson E. Exit Services Marketing- Enter Service Marketing. The Journal of Customer

Behaviour, 2007, 6(2), 113-141

Hamri M., Zacharewicz G. Automatic generation of object-oriented code from DEVS

graphical specifications. In Proceedings of WSC '12 Winter Simulation Conference, 2012,

Berlin, Germany, Article 409.

IDABC. European Interoperability Framework draft version 2.0, 2008. Available from

http://ec.europa.eu/idabc/servlets/Docb0db.pdf?id=31597 [accessed 07 July 2011].

IDEAS. Thematic Network, IDEAS: Interoperability Development for Enterprise Application

and Software-Roadmaps. Annex 1-DoW, 2002.

IDEAS. IDEAS project deliverables (WP1-WP7) (Public reports), 2003.

IEEE. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer

Glossaries. New York, Institute of Electrical and Electronic Engineers. International journal

of service industry management, 1990, Vol. 14(2), pp. 160-172.

ISO/IEC/IEEE 42010. Systems and software engineering - Architecture description. 2011.

Jagdev H. S., Browne J. The Extended Enterprise A Context for Manufacturing. Production

Planning & Control, 1998, pp. 216-229.

Johnston R., Clark G. Service operations management: improving service delivery. Financial

Times, Prentice Hall, 2008, 3. Ed.

Jouault F., Allilaire F., Bézivin J., Kurtev I. ATL: A model transformation tool. Science of

Computer Programming, 2008, Vol. 72, pp. 31-39.

Kleppe A. G., Warmer J., Bast W. MDA Explained: The Model Driven Architecture: Practice

and Promise. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2003.

Lovelock C., Wirtz J. Lapert D. Marketing des Services. Paris, France: Prentice Hall, 2004,

2nd ed., pp 619.

http://www.eclipse.org/graphiti/
http://ec.europa.eu/idabc/servlets/Docb0db.pdf?id=31597

164

March J. G., Simon H. A. Les organisations. Paris, Dunod, 1958/1965

Narahari Y. Petri nets. Resonance, 1999, Volume 4, Issue 9, pp 44-52.

NIST (National Institute of Standards and Technology). IDEF Integrated DEFinition

Methods. 1993. Accessed May 15 2013. http://www.idef.com/IDEF0.htm

Oliva R., Kallenberg R. Managing the transition from products to services. International

Journal of Service Industry Management, 2003, Vol. 14 Iss: 2, pp.160-172.

OMG. XML Metadata Interchange (XMI). 2000, document number: ad/2001-06-12.

OMG. MDA Guide Version 1.0.1. 2003, Document number: omg/2003-05-01.

OMG. Meta-object facility 2.0 core specification. 2006, available at

http://www.omg.org/spec/MOF/2.0/

OMG-1.Unified Modelling Language: infrastructure (version 2.4.1). 2011.

OMG-2. Business Process Model and Notation (BPMN) version 2.0. 2011, document

number: formal/2011-01-03.

OMG. Diagram Definition (DD) Version 1.0. 2012, available at

http://www.omg.org/spec/DD/1.0/ (accessed 30 Mars 2015).

Papyrus official site: http://www.eclipse.org/papyrus/.

Perrey R., Lycett M. Service-oriented architecture. In Proceedings of Symposium on

Applications and the Internet Workshops, 2013.

Scheer A. W., Galler J., Kruse C. Workflow Management within the ARIS framework. In

European Workshop on integrated manufacturing systems engineering Chapman & Hall,

Grenoble, France, 1994.

Scheer A. W. Architecture of Integrated Information System (ARIS) In JSPE‐IFIP WG 5.3

Workshop on the Design of Information Infrastructure Systems for Manufacturing

(DIISM’93), 1993, Tokyo, Japan, pp. 177‐191.

Scheer A. W. ARIS - Des processus de gestion au système intégré d'applications,

Springer‐Verlag, 2002.

Spohrer et al. The Service System is the Basic Abstraction of Service Science. In Proceedings

of 41st Annual HICSS Conference, 2008.

SLACK N. Patterns of Servitization: Beyond products and service. 2005, Institute for

Manufacturing, Cambridge University. London, UK.

Thoben K., Jagdev H., Eschenbaecher J. Extended Products: Evolving Traditional Product

concepts. In Proceedings of the 7th International Conference on Concurrent Enterprising:

http://www.idef.com/IDEF0.htm
http://www.omg.org/spec/DD/1.0/
http://www.eclipse.org/papyrus/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Perrey,%20R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lycett,%20M..QT.&newsearch=true

165

Engineering the Knowledge Economy through Co-operation. Bremen (Germany), 2001, pp.

429-439.

Thoben K. D., Jagdev H. S. Anatomy of Enterprise Collaborations Typological Issues in

Enterprise Networks. Production Planning Control, 2001, pp. 437-451.

Davenport T. Process Innovation: Reengineering work through information technology.

Harvard Business School Press, Boston, 1993.

Ullberg J., Chen D., Johnson P. Barriers Driven Methodology For Enterprise Interoperability.

IFIP International Federation for Information Processing, 2007, pp. 453-460.

Vandermerwe S., Rada J. Servitization of Business: Adding Value by Adding Services.

European Management Journal, 1988, Vol.6, pp. 314-324.

Vargo S. L., Lusch R.F. Evolving to a new dominant logic for marketing. Journal of

Marketing, 2004, Vol. 68, pp. 1-17.

Vlietstra J. A summary of the CIMOSA reference architecture. In Bernus, P., Nemes, L. and

Williams, T.J. (Eds.), Architectures for Enterprise Integration. London: Chapman & Hall,

1996.

Vreede G. J., Verbraeck A., Eijck D. T. Integrating the Conceptualization and Simulation of

Business Processes – A Modelling Method and Arena Template. Simulation Transactions of

the Society for Modelling and Simulation International, 2003, Vol. 79(1), pp. 43-55.

UNINOVA official web site: http://www.uninova.pt/

Wainer. DEVS Tools. Hosted by G. Wainer at Carlton University, November 2013,

http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm

Weske M. Business Process Management: Concepts, Languages, Architectures. New York,

Springer-Verlag, 2007, pp. 368.

Development of GERAM, A Generic Enterprise Reference Architecture and Enterprise

Integration Methodology. Integrated Manufacturing Systems Engineering, IFIP - The

International Federation for Information Processing, 1995, pp 279-288.

Williams T. J. An overview of PERA and the Purdue Methodology. Architectures for

Enterprise Integration, IFIP Advances in Information and Communication Technology, 1996,

pp 127-161.

Zacharewicz G., Frydman C., Giambiasi N. G-DEVS/HLA Environment for Distributed

Simulations of Workflows. Journal Simulation, May 2008, Vol. 84 (5), pp. 197-213.

Zaring O. Creating eco-efficient producer services. Research Report, Gothenburg Research

Institute, Gothenburg, 2001.

Zeigler B. Theory of Modelling and Simulation. John Wiley & Sons, New York, 1976.

http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm

166

Zeigler B., Vahie S. DEVS formalism and methodology: unity of conception/diversity of

application. In Proceedings of the 25th Winter Simulation Conference, pp 573–579, Los

Angeles, CA, 1993.

Zeigler B., Praehofer H., Kim T. G. Theory of Modelling and Simulation - Second Edition.

Academic Press, 2000.

Zelm M., Vernadat F., Kosanke K. The CIMOSA Modelling Process. Computers in Industry,

1995, vol. 27(2), pp. 123-142.

Zur Muehlen, Michael and Recker, Jan C. How Much Language is Enough? Theoretical and

Practical Use of the Business Process Modeling Notation. In Proceedings of 20th International

Conference on Advanced Information Systems Engineering, 2008, Montpellier, France

167

Annex-1-MetaModels

Figure 83 BSM Core Metamodel

168

Figure 84 TIM Core Metamodel

169

Annex-2-Simulation Report

170

171

172

173

174

168

Annex-3-ATL and XSLT code

Figure 85 ATL Lazy Rule: EA* Process to BPMN Process

176

Figure 86 ATL helpers

177

Figure 87 XSLT example 1

178

Figure 88 XSLT example 2

179

Annex-4 Use case diagrams

Figure 89 Global view

Figure 90 Service Ideation process

180

Figure 91 Product-Service System Design

Figure 92 Product and Service Design

181

Figure 93 Service System Design

Figure 94 Service System Design

182

