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Résumé : 

Ce travail de thèse expérimentale a été consacré à la synthèse par des méthodes de chimie par voie 

humide de nanoparticules à base du multiferroïque BiFeO3 et à leur caractérisation, avec comme 

objectif finale des applications photocatalytiques. Ce matériau présente une bande interdite, avec un 

gap de 2.6 eV, qui permet la photogénération de porteurs de charges dans le visible faisant ainsi de 

BiFeO3 un système intéressant pour des processus photoinduits. Ce travail s’est en particulier 

focalisé à caractériser les propriétés de nanoparticules à base de BiFeO3 en vue de comprendre 

l’effet de ses propriétés sur leur potentiel dans des applications liées à la photocatalyse. Tout 

d’abord, l’étude des effets de taille sur les propriétés structurales, de transitions de phase, et 

physicochimiques des particules a été réalisée, en gardant comme principal objectif de découpler les 

propriétés liées à la surface de celles du massif/coeur de la particule. Pour cela, une maîtrise et une 

optimisation des procédés de synthèse de particules aux échelles nanoet micromicrométriques de 

BiFeO3 a été nécessaire pour obtenir des composés de taille variable et de très bonne qualité 

cristalline. Malgré la diminution de la taille des particules, on constate que, grâce au contrôle de 

paramètres de synthèse, nos nanoparticules présentent des propriétés très proches à celles du massif 

de BiFeO3, gardant la structure rhomboédrique R3c avec des faibles effets de contrainte. Afin de 

contrôler indirectement par le dopage les propriétés optiques des composés à base de BiFeO3, on a 

réussi à réaliser un dopage très homogène en La
3+

, et un dopage partiel en Ca
2+

, sur le site de Bi
3+

. 

Les propriétés optiques des nanoparticules et leurs applications dans les premières expériences 

photocatalytiques sur la dégradation du colorant rhodamine B ont montré la complexité de la 

physicochimie de leur surface et du processus d’interaction lumièreparticule. Après analyse des 

données d’absorbance optique en fonction de la taille de nanoparticules, on observe que la bande 

interdite déduite pour ces différentes particules n’est pas le facteur prédominant sur les 

performances photocatalytiques. D’autres facteurs ont pu être identifiés comme étant à l’origine de 

la localisation de charges photogénérées, tels que des états de surface liés à une fine couche de peau 

ou skin layer sur les nanoparticules, présentant des défauts structuraux, une réduction de l’état 

d’oxydation du Fe
3+

 vers le Fe
2+

 et la stabilisation d’autres adsorbats, tels que FeOOH ; tous ces 

facteurs peuvent contribuer au changement dans les performances photocatalytiques. Les résultats 

photocatalytiques restent très encourageants pour poursuivre les études de nanoparticules à base de 

BiFeO3, montrant une dégradation de la rhodamine B à 50% au bout de 4 h de réaction 

photocatalytique pour certaines des nanoparticules étudiées. 
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Résumé : 

This experimental PhD work has been dedicated to the synthesis, by wet chemistry methods, and 

characterization of nanoparticles based on multiferroic BiFeO3, with the aim of using them for 

photocatalytic applications. This material presents a bandgap of 2.6 eV, which allows the charge 

carrier photoexcitation in the visible range, making BiFeO3 a very interesting system for 

photoinduced processes. This thesis has been particularly focused on characterizing the properties of 

BiFeO3 nanoparticles in view of understanding the relationship of their properties on their potential 

use for photocatalytic applications. First of all, the topic of the size effect on the structural 

properties, phase transitions, and physics and chemistry of the particles has been developed, keeping 

as first aim to separate the properties related to the surface from those arising from the bulk/core of 

the particle. To do so, the mastering and optimization of the synthesis processes of BiFeO3 particles 

at the nano and microscale were needed, to finally obtain different size compounds with high 

crystalline quality. Despite the size reduction of the particles, we notice that, thanks to the control of 

the synthesis process, our BiFeO3 nanoparticles present properties very close to those of the bulk 

BiFeO3 material, keeping the rhombohedral structure R3c with weak strain effects. In order to 

indirectly tune the optical properties exploiting the doping, we have succeeded in realizing a 

homogenous La
3+

 doping, and a partial Ca
2+

 doping, on the Bi
3+

 site. The optical properties of the 

nanoparticles and their use on the first photocatalytic experiments for degrading rhodamine B dye 

have shown the complexity of the physics and chemistry phenomena at their surface and of the 

light-particle processes. After analyzing optical absorbance data as a function of the particle size, we 

observe that the deduced bandgap for different particles is not the main parameter directing the 

photocatalytic performances. Other factors have been identified to be at the origin of the localization 

of the photoexcited charges, as the surface states linked to the skin layer of the nanoparticles, 

depicting structural defects, a reduction of the oxidation state of Fe
3+

 towards Fe
2+

 and the 

stabilization of other adsorbates, such as FeOOH; all these parameters may contribute to the change 

on the photocatalytic performances. The photocatalytic results are very encouraging, motivating to 

continue the study of BiFeO3 based nanoparticles, though depicting a 50% rhodamine B degradation 

after 4 h of photocatalytic reaction using some of the present nanoparticles. 
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1 Background and motivation 

The development of modern technology based on multifunctional materials is 

opening the path to new applications answering to continuous technological 

challenges. As one of the potential materials, complex oxide materials are of 

particular interest since they exhibit a fascinating range of behaviors: from colossal 

magnetoresistance and high temperature superconductivity to ferroelectricity and 

mutiferroicity. This made them capable to possess many different phase transition 

related to this different properties (ferromagnetic, ferroelectric, metal-to-insulator, 

and superconducting). The multifunctional character of such materials brings the 

possibility of unusual response to external stimuli that can be exploited for instance 

in the framework of conversion of electric stimuli in magnetic response, i.e. the 

magnetoelectric effect. In these oxide materials, it exists an intimate relationship 

between structure and properties, making oxides more sensitive to crystalline 

structure, strain or shape conditions. As a novel application, multifunctional oxides 

have recently attracted attention as candidates for their use in photoactive devices 

using the coupling of light absorption with other functional properties, such as 

photovoltaicity, photoelasticity and photocatalysis, capable to provide photo-excited 

carriers used for different purposes. 

Actually, the environmental pollution as well as the lack of sufficient clean and 

nature energy resources are some of the most serious problems faced on a global 

scale. Photocatalytic processes, in which the inexhaustibly abundant, clean, and safe 

energy of the sun can be harnessed for sustainable, nonhazardous, and economically 

viable technologies, are a major advance in this direction. Semiconductor 

photocatalysis has received much attention as a real solution for counteracting 

environmental degradation. As one of the pioneer photocatalytic materials, titanium 

oxide TiO2 materials have shown great potential as ideal and powerful 

photocatalysts due to their chemical stability, nontoxicity, high reactivity, and large 

light absorption wavelength scale. Intense research has been carried out on TiO2 

photocatalysis, which has been focused on understanding the fundamental 

principles, enhancing the photocatalytic activity, and expanding the scope of 
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application. Unfortunately, TiO2 is not ideal for all purposes and performs rather 

poorly in processes associated with solar photocatalysis due to its wide band gap 

(3.2 eV). During the past decade, much effort has been devoted to exploit other 

semiconductor oxide as novel photocatalytic materials.  

One kind of these oxide materials that has come into sight gradually are multiferroics. 

Considered as semiconductors and directly compared to TiO2, similarities can be 

found such as the band gap values and structural characteristics, since the existence 

of octahedral cages centered on transition metal ions is a basic brick in both systems. 

Moreover, in multiferroics presenting ferroelectric order, a spontaneous electric 

polarization may promote an electrically tunable separation of the photo-exited 

carriers, making them movable to the surface for easily interact and react with 

molecules or other particles in the surrounding media. Within these mutiferroic 

materials, bismuth ferrite (BiFeO3), with perovskite structure, is one of the most 

promising materials exhibiting interesting properties. BiFeO3 is a room temperature 

multiferroic presenting coexistence of ferroelectricity, characterized by a strong 

polarization value and very high Curie temperature, and an antiferromagnetic order 

with high Néel temperature. Added to its great potential in spintronics and other 

magnetoelectric and strain mediated applications, though exhibiting ferroelasticity, 

it has been recently at the focus of large interest though a photovoltaic effect has 

been reported in BiFeO3 systems. Besides, BiFeO3 band gap value being lower than 

other ferroelectric materials, it has been expected a larger photon efficiency and 

enhanced interaction with electrons/holes. These properties of BiFeO3 have opened 

a new field for photo-induced properties. 

BiFeO3 has obvious future potential for technological applications. However, several 

fundamental questions still remain unsolved and the present work has been 

developed in such direction. Additionally, with the development of different 

synthesis routes, it will be possible to design and create different shapes, composites, 

core shells or decoration based on this multiferroic material, with the objective of 

obtaining more suitable systems presenting enhanced thermodynamic and chemical 

compatibility and directed to respond to different photocatalytic issues. These 

factors are crucial for fabrication and integration of these materials into devices.  
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2 Aim of the present work 

The aim of this work is the synthesis and characterization of BiFeO3 based 

compounds using soft chemistry routes, in particular a wet chemistry. In the 

framework to understand the potential photocatalytic properties in these 

compounds, this work has been focused on studying the surface, structure and 

physico-chemical effects by playing with the (nano)particle size and the doping on 

the Bi-site. Micrometric samples were in parallel studied as a reference state for the 

nanosized samples results. The main objective of this work is thus to unveil the 

relationship between photocatalytic properties and band structure, optically driven 

charge transition of different size BiFeO3 powders.  

Wet chemical synthesis and traditional solid state route are used for obtaining high 

quality BiFeO3 nano and micro particles. Optimized synthesis processes are obtained 

through thermal analysis and the crystalline growth mechanisms are presented. 

Band structure and optically driven charge transition of different size samples at 

room temperature and high temperature are investigated. These results help 

understanding the photocatalytic of these samples through deducing not only the 

optical bandgap but also other charge transitions producing localized carriers. 

Photocatalytic properties of different size BiFeO3 are studied at visible light range 

and the photocatalytic mechanisms are explained in view of the band structure 

information determined from optical characterization. Moreover, in a more 

fundamental approach, the investigation of these optical properties as a function of 

temperature has been carried out, contributing to understand the physics of BiFeO3 

compounds. 

The new results reported in this work are classified into four chapters: 

5 Synthesis of BiFeO3 compounds; 

6 Structure, electronic/chemical states and magnetic properties of BiFeO3 
particles; 

7 Light interaction with BiFeO3 particles; 

8 Photocatalysis using BiFeO3 nanoparticles on Rhodamine B dye. 
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3 Introduction to ferroics and their photo-induced properties 

3.1 Short overview on ferroic pervoskite oxides  

Generally speaking , multiferroics are defined as materials that exhibit more than 

one ferroic order parameter simultaneously1. The ferroic (or anti-ferroic) order 

parameters include the polarization, the magnetization and the deformation. In 

multiferroics they can coexist and potentially couple2-4. All ferroelectric materials 

that display a spontaneous polarization switchable under an electric field are 

intrinsically multiferroic as they are also usually ferroelastic. Indeed the 

ferroelectricity is related to the splitting of the barycenter of positive and negative 

charges in the unit cell, which induces the unit cell deformation3, 5. Nevertheless 

when dealing with multiferroics, usually people have in mind materials within which 

polarization and magnetization coexist. As a matter of fact, when the polarization 

and magnetization couple the multiferroic becomes magnetoelectric and can be 

useful for applications, as instead of using a magnetic field and thus a current to 

switch the magnetization, one can rather use an electric field and thus a voltage 

which is much favorable from energy consumption point of view.. 

3.1.1 Ferroelectricity 

To be ferroelectric, a material should exhibit a switchable spontaneous polarization, 

which gives rise to an hysteresis loop of the polarization versus the applied electric 

field. The ferroelectricity appears from the centrosymmetric paraelectric state below 

a critical temperature Tc, the Curie temperature. As a result a peak in the dielectric 

susceptibility associated to the appearance of the polarization takes place at Tc. As 

stressed above, the ferroelectricty appears by symmetry breaking (loss of the 

inversion symmetry) and is thus linked to the structure modifications. The structure 

of interest in this thesis work is the perovskite. Such structure presents a wide 

spectrum of properties: superconductor to insulator, magnetism, ferroelectricity, 

piezoelectricity, dielectric, ionic conductivity, ... It is therefore an important structure 

of technical as well as fundamental interest. For instance, the perovskite structure is 

one of the most technologically important classes of ferroelectric materials. The 



Xiaofei BAI 

6 
 

perovskite oxides has the general chemical formula ABO3, where A and B are cations 

with various charges, spins and radii expalining the plethora of properties related to 

this structure. It consists of a network of corner-linked BO6 octahedra, within which 

is enclosed the large A cation6-7. The basic criteria for the structure to be stable is 

that the valence of the ions should balance and that the ionic radii meet the 

Goldschmidt criteria8-9 though the tolerance factor t which is defined by:  

)(2 OB

OA

rr

rr
t




 , 

where rx is the ionic radii of the X cation. The structure will be stable with 

0.85t1.05. 

The prototype non-polar perovskite unit cell is cubic and belongs to the space group 

mPm3  and is shown in Figure 3.1 (a). In conventional ferroelectric perovskites, the 

shift in the cation sublattice relative to the anion sublattice causes a net polarization. 

Figure 3.1 (b), (c) and (d) show the displacement along [001], [110], [111] inducing 

tetragonal, orthorhombic and rhombohedral unit cell respectively. 

 

Figure 3.1 Classical perovskite unit cell (ABO3 structure). (b), (c) and (d) are the tetragonal, monoclinic 

and rhombohedral distortion of the cubic unit cell, respectively. The arrows indicate the direction of 

polarization for each of the distortions. 
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Ferroelectric perovskites are usually considered as ionic compounds being A1+B5+(O2-

)3, A2+B4+(O2-)3 or A3+B3+(O2-)3
6, 10-12. Although the covalent contribution to bonding is 

small, it has been shown theoretically, for example for BaTiO3 or KNbO3, that the 

reason of the displacement of the cation sublattices is linked to a covalent bonding 

between O 2p and B 3d electrons13. As a result when removing this covalent bond 

contribution, the ferroelectricity vanishes. In lead-based or bismuth-based 

perovskites, there is a the so-called “lone pair” of electrons which involves 

hybridization of the ns2 and p0 orbitals of  Pb2+ or Bi3+ that can stabilize the distorted 

structure14-16 and can lead to displacive distortions13, 17-18. 

The strong sensitivity of ferroelectrics to chemistry, defects, electrical boundary 

conditions and mechanical stresses arise from a delicate balance between long-

range Coulomb forces (which favour the ferroelectric state) and short-range 

repulsions (which rather favour the non-polar cubic structure)19-20. In general, for 

ferroelectric perovskites, hybridization between B cation and O is essential to 

weaken the short-range repulsions and allow the ferroelectric transition2, 21. The A 

cation can also hybridize as we already mention, leading indirectly to change the B-O 

interactions and modify the ground state and nature of the transition2, 22. 

3.1.2 Ferromagnetism 

The field created by a magnet is associated with the motions and interaction of its 

electrons. Electricity is the movement of electrons, so each atom represents a tiny 

permanent magnet in its own right23-24. The circulating electron produces its own 

orbital magnetic moment, and there is also a spin magnetic moment because the 

electron itself spins1, 25. In most materials, these magnetic moments cancel each 

other out with each electronic magnet compensating the field produced by 

another23, 26. From Figure 3.2, it can be seen that the total magnetic moment is 

caused by spin magnetic moment and orbital magnetic moment27. 
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Figure 3.2 The orbit of a spinning electron about the nucleus of an atom 

As in ferroelectrics, ferromagnetics exhibit an hysteresis loop of the magnetization 

versus magnetic field (in case of ferroelectrics, it is polarization versus electric field) 

as shown in Figure 3.3 with a coercive field Hc, a remanent Mr and saturation Ms 

magnetization. 28. 

 

Figure 3.3  Ferromagnetization curves and hysteresis loop. 
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Depending on the exchange interactions between spin moments of each magnetic 

ion, several magnetic ordering can be observed. Basically in the perovskite structure,  

the spin on the B cations may couple through oxygen anions by the electron transfer 

mechanism known as superexchange29-30 and lead to antiferromagnetic arrangement 

while double exchange interaction between B-B cations favours a ferromagnetic 

state31-32. Superexchange between eg orbitals is stronger than superexchange 

between t2g orbitals ; degeneracy of the d orbitals are lifted in an octahedral crystal 

field13. For perovskites with tilted BO6 octahedra the B-O-B angle is smaller than 

180°6, leading to a less overlap of the O 2p and B d orbitals. The Néel temperature 

(TN) associated to the antiferromagnetic ordering is then related to the B-O-B 

angle33-34. Therefore with decrease of B-O-B angle, TN increases34-37. For instance, a 

hydrostatic pressure can increase the overlap of B-O-B angle and then TN can 

increase38-39.  

3.2 Photo-induced properties in ferroelectrics 

The ferroelectric properties are usually considered to be sensitive to change of 

temperature, pressure, electric field, strain or chemical composition. Recently, 

fostered by energy and environment concerns, photo-induced properties in 

ferroelectric have attracted much more attention. The intrinsic component which is 

the spontaneous polarization in ferroelectric materials may serve as an internal 

electric field to separate the photogenerated charge carriers. As a matter of fact, in 

contrast to traditional semiconductor solar cell40 where the internal field is located 

at the p-n junction, the internal field in ferroelectric exist within the whole 

ferroelectric domain. This is directly related to the so-called anomalous or abnormal 

bulk photovoltaic effect46. When a non-centrosymmetry material (it is the case for 

ferroelectrics) is illuminated with uniform light wavelength corresponding to the 

absorption edge of the material, a steady photocurrent is generated41. This 

phenomenon is different from the mechanism involved in p-n junction of 

semiconductors42. The bulk photovoltaic effect correspond to a third rank tensor and 

depends on the light polarization41, 43. Therefore, it disappears in the paraelectric 

phase41, 43-44. It is believed that because of the non-centrosymmetry, the probability 
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for the photogenerated carriers to move from k to k' momentum is different from 

that to move from k' to k (such probability is the same in centrosymmetric systems) 

and therefore a shift current can be photogenerated. It is worth mentioning that in 

addition to the above described bulk photovoltaic, it has been also proposed that 

the domain wall contribute to the photocurrent45-46. Indeed, because the bounding 

charges are not fully compensated at this domain-to-domain interface, it appears an 

internal field (resembling to that of the p-n junction) which helps to photogenerate 

charges. It is not clear yet if this mechanism does exist or if it is not rather related to 

some point defect like oxygen vacancies. There is still a strong controversy on this 

aspect and today the existence as well as the contribution of both mechanisms is still 

actively debated.  

Figure 3.4 illustrates a possible model for anomalous photovoltaic effect for Pb1-

xLax(ZrTi)O3 ceramics47. The energy band is basically generated by the hybridization 

of oxygen p-orbitals with the d-orbitals of Ti/Zr. The donor impurity levels (La doping) 

are present slightly above the valence band. The transition from these levels with 

the asymmetric potential due to the crystallographic anisotropy may provide a 

preferred momentum to the electron. The electromotive force is generated when 

electrons that are excited by the light move in a certain direction of the ferroelectric 

crystal (spontaneous polarization)48. 

Figure 3.4 Energy band gap model of excited transition from impurity level in PLZT. 

Finally, for typical perovskite structure (ABO3), the excitation across the band gap is 

in the most often cases a charge transition from the oxygen (O) 2p states at the 

valence band maximum to the transition metal d states at the conduction band 
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minimum47. Owing to a large difference in electronegativity between oxygen and 

transition metal atoms, the band gap is usually quite large (3-5 eV).  

The main features of the photovoltaicity in ferroelectrics can be presented as 

follow41, 43, 47, 49-52: (1) This effect appears in poled uniform single crystals or ceramics 

with noncentrosymmetry and is entirely different in nature from the p-n junction 

effect observed in semiconductors. (2) Constant photo current and voltage are 

generated in the spontaneous polarization direction under uniform illumination in 

the ferroelectric phase and disappears in the paraelectric phase. (3) The magnitude 

of the photoinduced voltage is proportional to crystal length along the polarization 

direction and is much greater than the band gap energy of the crystal.  

Another important potential application of ferroelectrics concerns their 

photocatalytic properties. From the point of view of semiconductor photochemistry, 

the photocatalysis is used to accelerate the redox reaction through the irradiation of 

semiconductor, as shown in Figure 3.5. If the ferroelectric material with a reasonable 

band gap is irradiated by a light, the separation of electron-hole pairs happened48, 53. 

Due to the spontaneous polarization in the ferroelectric, it can prevent the electron-

hole recombination, improve the migration of the carriers towards the surface of the 

particle and thus can permit to enhance the photocatalytic activity47, 54. The band 

edge position of common materials which have been used in photocatalysts are 

presented in Figure 3.6. The left side of the figure indicates the energy position of 

the bands for some given and common semiconductors. The band position of siliver 

halides have also been included as they are usually used in redox reaction for Ag 

nano-particles. In the middle of the figure the work function of some common noble 

metals are shown, while some typical redox group are given in the right side of the 

figure. 
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Figure 3.5 Principles of oxidative decomposition of photocatalysts. After it undergoes illumination, 

charge carrier of photo-generation in a photocatalytic material is separated. Valence band hole and 

conduction band electrons are represented by h
+
 and e

-
. 

 

Figure 3.6 Energy band position of common semiconductor materials in photocatalysis, the work 

function of noble metals, and the electrochemical potentials of redox groups 

For a fully polarized particle, the spontaneous polarization produces positive bound 

charges on the C+ surface and negative bound charges on the C- surface (Figure 3.7). 

In turn, these bound charges if not fully screened by the external charges at the 

surface, like for instance adsorbed species, produce a depolarization field that makes 

the inner free electrons to move from the C- surface to C+ one. After photo-induced 

charge carriers creation, the internal electric field moves the electrons to the C+ 
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surface and the holes towards C- surface. It results in an accumulation of positive and 

negative charges that takes place at different  surfaces, a band bendingoccurs. 

 

Figure 3.7 Schematic of ferroelectric materials in which (a) exists the spontaneous polarization fields 

and depolarization field causing by free carriers and external absorbed species and (b) the 

reorganization of free carrier and the band structure in ferroelectric materials. 

3.3 BiFeO3: room temperature photomultiferroic 

3.3.1 General introduction to BiFeO3 

BiFeO3 is a room temperature multiferroic exhibiting simultaneously a ferroelectric 

state with a strong polarization up to 100 µC/cm2 and an antiferromagnetic order 

which is superimposed to a long period cycloidal modulation33. Because of its 

multiferroic properties coexisting at room temperature, it has attracted a great 
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attention leading to interesting magnetoelectric coupling as well as the possibility to 

tune its properties by various external parameters such as temperature, pressure, 

electric and magnetic field, light, and so on55-57. Light interaction with these order 

parameters in BiFeO3 has been studied through photovoltaic and photostriction 

effects49, 58-59. Structural details and the physical properties of BiFeO3 are shown in 

Table 3.1.  

Table 3.1 Structure and physical properties of BiFeO3 

Property Value Ref 

Crystal systema Trigonal 60 

 arh=5.6364 Å , rh=59.348° 

ahex=5.5787 Å , chex=13.8688 Å  

apc=3.965 Å , pc=89.35° 

60-62 

Space group R3c 60 

Tolerance factorb t=0.89  

Polyhedral volume retio VA/VB=4.727 63 

Density 8.40 g/cm3  

Thermal expansion Non-linear and anisotropic 64-65 

Ferroelectricity TC=820-830 °C 66-67 

Polarisationc 90-100 C/cm2 
68-72 

Dielectric constant r=30 
73 

Antiferromagnetism Canted G-type, TN=370 °C 62 

Piezoelectricity D33=15-60 pm/V 68, 71-72 

a
Trigonal crystals can be represented with rhombohedral, hexagonal or pseudocubic unit cell axes and 

lattice parameters. 
b
Assuming six-coordinated high spin Fe

3+
 and eight-coordinated Bi

3+
 with ionic radii from Shannon. 

c
Inferred from measurements on thin film, single crystals, bulk ceramics and Berry phase calculations. 

The structure of BiFeO3 can be characterized by two distorted perovskite blocks 

connected along the pseudocubic <111> direction, to build a rhombohedral unit 

cell33. In this structure the two oxygen octahedral of the cells connected along the 

<111> are rotated clockwise and counterclockwise around the <111> by 13.8° and 

the Fe ion is shifted by 0.135 Å along the same axis away from the oxygen 

octahedron center position74. Bi3+ plays the major role in the origin of 

ferroelectricity75. Bi ion has outer 6s electrons that do not participate in chemical 
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bonds and it has a high polarizability. The rotation angle of the oxygen octahedral is 

one of the very important parameter. When use the Goldschmid tolerance factor 

using the ionic radii of Shannon gives a value of t=0.88 has been obtained76, which 

means the A cation is too small to fill the 12-coordinated void between BO6 

octahedra, the perovskite structure accommodates this size mismatch by tilting the 

octahedral to reduce the size of the dodecahedron. In BiFeO3, the tilting of oxygen 

octahedral is direct related to Fe-O-Fe angle, =ca.154-156°77. The Fe-O-Fe angle can 

modify the magnetic exchange and orbital overlap between Fe and O, and then it 

can affect the magnetic ordering temperature and the conductivity78. In terms of 

symmetry groups, the polar displacement alone would reduce the symmetry from 

cubic mPm3 to rhombohedral R3m79, the rotation of the FeO6 octahedra alone would 

lead to the paraelectric phase with the space group cR3
80. The incorporation of 

both kinds of distortion gives the actual ferroelectric phase of BiFeO3 with the space 

group R3c33. The unit cell of BiFeO3 arising from the cubic perovskite structure by 

two kind of distortions is shown in Figure 3.8. 

 

Figure 3.8 Schematic drawing of the crystal structure of perovskite BiFeO3 (space group R3c). Two 

crystals along [111] direction are shown in the Figure. 

3.3.2 Light phenomena related to BiFeO3 

While mainly studied for its multiferroic properties, BiFeO3 has been recently widely 

considered for its photoferroelectric properties. Actually, interaction of light with 

ferroelectrics is known for a long time81 but only few works have been done in the 
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past. The revival of photoferroelectric came with BiFeO3 because it displays a lower 

band gap (of 2.6 eV) compared to classical ferroelectrics like BaTiO3 or PbTiO3 (up 

to 3 eV). This part mainly introduces the photo induced phenomena in BiFeO3. 

Photovoltaic are known as a methods for generating electric power by using solar 

cell to convert energy into a flow of electrons. The photovoltaic effect refers to 

photons of light exciting electrons into a higher state of energy, allowing them to act 

as charge carrier for an electric current41.  

As we already mentioned, the photoferroelectrics has been reconsidered thanks to 

the low gap of BiFeO3. The aforementioned abnormal bulk photovoltaic effect has 

been proposed to exist in BiFeO3 and explain its photovoltaicity like in any other non-

centrosymettric material. However, in addition recent works on the photovoltaicity 

of BiFeO3 shed light on the potential key role the domain walls can play. This leads to 

consider the domain wall as the active element rather than the domain. In other 

words, domain wall photovoltaicity has been proposed as an alternative or 

complement to the bulk photovoltaic effect. Actually, as the domain walls are very 

narrow, easily movable, can be created or annihilated and show particular properties 

that are absent in the adjacent domains, a new field of research was born. It 

concerns the investigation of such active nanoelements through the domain wall 

engineering. 

The photovoltaic charge separation at ferroelectric domain walls in the complex 

oxide BiFeO3 has been reported and voltage which is higher than the band gap has 

been produced43, 82. Figure 3.9 sketches the model for the photovoltaic effect in 

BiFeO3 domain wall51. Under illumination, a net voltage is produced at the domain 

wall by the potential steps arising from the component of the polarization 

perpendicular to the domain wall. The higher local electric field enables a more 

efficient separation of the excitons, creating a net imbalance in charge carriers near 

the domain walls, and a net voltage is observed across the entire sample.  
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(a) 

 

 

(b) 

Figure 3.9 (a) Schematic of four domains (three domain walls) in an order array of 71° domain walls. 

(b) Detailed picture of the build-up of photo excited charge at a domain wall. 

BiFeO3 exhibits also photostrictive properties. In ferroelectrics, the photo-induced 

strain can be seen as a superposition of photovoltaic and piezoelectric effects. As 

light irradiates on the ferroelectric electron-hole pairs are generated producing a 

voltage58. These charges can partially screen the polarization and as a ferroelectric is 

also piezoelectric, it turns that a deformation occurs by reverse piezoelectric effect59. 

For BiFeO3, such photostriction has been shown for the first time using either using a 

He-Ne laser or a white light (Figure 3.10). 
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(a) 

 

(b) 

Figure 3.10 (a) schematic of the photoelastic stress measurements. (b) Time dependence of 

photostriction in BiFeO3 using He-Ne laser and white light. 

It is worth to mention that BiFeO3 has been used for photo-induced strain under 

different wavelength excitation as shown in Figure 3.11. With the wavelength 

increasing, the observed deformation value shows a nonlinear behavior. The 

deformation response time is also wavelength dependent. Due to the faster 

momentum transfer for energy close to the band gap, the light with smaller light 

energy which is close to the band gap can cause faster deformation than illumination 

with other energy (wavelength) far away from the band gap energy. The larger 

deformation observed in the near UV region may be caused by the band-band 
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transitions in BiFeO3 or impurity-defect absorption (oxygen vacancy) mechanism83. 

This example stresses another ingredient to the photo effect in ferroelectrics and 

especially in BiFeO3 that are the defects which can play a crucial role to know that in 

these oxides oxygen vacancies are always present and Bi is very well known to be 

highly volatile.  

 

(a) 

 

(b) 

Figure 3.11 (a) Photoinduced strain of BiFeO3 single crystal as a function of time. The inset shows the 

photoinduced strain at different wavelength. (b) Photoelastic response time of single crystal at 

different wavelength. The inset shows the response time determination approach using fits. 
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3.3.3 Photocatalysis and BiFeO3 

Among semiconductors considered for photocatalysis84-85, the most used and 

investigated is TiO2. However, several issues limit their efficiency: the wide band gap, 

the high recombination rate of the photogenerated charge carriers, photostability in 

water, ....48 In TiO2 notably, only 4% of the total solar spectrum can photoexcite 

charge carriers, conditioning the need for artificial UV radiation to drive efficiently 

the chemical reactions. Photovoltaic ferroelectrics might be considered as an 

alternative choice as most of them are non-toxic oxides, stable in water and 

crystallize in the perovskite structure which is close to that of TiO2. In ferroelectrics, 

once the light excitation generates electrons-hole pairs, the polarization acts like an 

internal electric field favoring separation of the photo-induced charges carriers and 

thus increasing their lifetime by reducing their recombination. This is for instance 

revealed by the much larger decay time of photoluminescence in ferroelectric 

LiNbO3 as compared to non-ferroelectric TiO2
86 (9 s against 0.1 s). 

 

Figure 3.12 Band bending caused by the polarization in BaTiO3 and the free photoexcited carriers act 

jointly to enhance redox chemical reaction. From Ref. (
87

) 
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Figure 3.13 Ag nanoparticles coated BaTiO3 are 7.25 times as fast as bare BaTiO3 in degrading the dye 

molecule Rhodamine B. From Ref. (
87

) 

Interestingly, photogenerated charges can migrate to the materials surface (see 

Figure 3.12) and serve as efficient redox reaction sources for degradation of 

contaminant molecules88-89 in wastewater treatment as well as water splitting90-91 in 

sustainable hydrogen fuel cells. When using photo decolorization of a target dye-

molecule, the decolorization rate is significantly enhanced when ferroelectric BaTiO3 

particles rather than non-ferroelectric ones are used87. A full (100% efficiency) 

photocatalytic degradation of the molecule is achieved after 40 min illumination 

under solar simulator using ferroelectric BaTiO3 particles coated by Ag 

nanoparticles87 (see Figure 3.13). Similarly photocatalytic effects of BiFeO3 to oxidize 

organic dyes was demonstrated not only using UV irradiation92 but also visible light88, 

93 thanks to its lower band gap. Moreover in ferroelectrics, the appearance of 

polarization gives rise to surface charges which in turn induce a depolarizing field 

that acts against the polarization. Adsorption or chemisorption of molecules onto 

the surface can minimize the effect of the depolarizing field by screening the 

polarization charges94-95. As a result a strong Stern layer can be formed favoring 

interactions with environment reactants. A stronger adsorption of dye molecules 

was observed in LiNbO3 in comparison to TiO2 powders (7.79% per unit area against 

1.27%)96. By switching the polarization direction and thus the type of polarization 

charges at the surface of the ferroelectric, it is also possible to preferentially favor a 

type of reactions. For instance, H2 production is enhanced on the positive surface of 
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Sr-doped Pb(ZrTi)O3
97-98 while negative polarization charges are found to promote 

the oxidation reaction both experimentally and theoretically in case of BiFeO3
98. 

Interestingly, it was also proposed that molecules having (permanent or induced) 

dipole moment can interact with the polarization at the surface of the ferroelectric 

and reduces the energy required to break bonds which therefore enhances the 

photochemical activity99. Finally, we note that a piezo-electrochemical effect has 

been reported as an efficient photocatalytic mechanism in BaTiO3 dendrites100 

suggesting that other cross-coupled processes could exist. 

Compared to other semiconductors used for photocatalysis, BiFeO3 has a low band 

gap101, and combined with its specific photovoltaic-like properties49, it is of interest 

to investigate its photocatalytic potentialities. It is known that the photocatalytic 

activity mainly depends on the band structure48, 102 with respect to the energy levels 

of molecule to be degraded as well as the surface reactivity through the particle 

size103 and morphology54, 104. In order to enhance the photocatalytic response, it is of 

importance to optimize the relation between these factors. For instance, it was 

reported that the band structure can be adjusted by the core-shell structured 

BiFeO3/TiO2 systems93 because of electron excitation from d orbitals Fe3+ to Ti4+ 3d 

orbitals in the interfaces, which can significantly enhance the photocatalytic 

efficiency. In particular, due to the large surface area of small particle, using BiFeO3 

particle with nano scale size is beneficial to enhance the photocatalytic activity105. 

Wei et.al106. have reported that microcrystallite BiFeO3 with different morphologies 

present preferable photocatalytic activity compared to smaller and coarse 

counterparts. However, despite the strong potentiality of BiFeO3 as photocatalysis 

there are only few works reported and a flexible control of the size and morphology 

on photocatalytic properties of BiFeO3 remains only rarely investigated.  
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4 Experimental 

4.1 State of art on the synthesis of BiFeO3 powders 

Amount of methods have been reported to synthesize different particle size and 

morphology BiFeO3, which is summarized in Table 4.1. Solid state reaction between 

Bi2O3 and Fe2O3 at high temperature is one of conventional methods to synthesize 

micro size BiFeO3. However, it has been proved that it is difficult to avoid other two 

ternary phases in the Bi2O3-Fe2O3 system. The Bi2O3-Fe2O3 phase diagram indicated 

three equilibrium phases: the orthorhombic Bi2Fe4O9 (space group Pbam, ICSD 

#20067), the rhombohedral perovskite BiFeO3 (space group, R3c, ICSD #15299), 

which decomposes peritectically to Bi2Fe4O9 and a liquid phase at 935 °C, and cubic 

Bi25FeO39 (space group, 123, ICSD #62719), the latter exhibiting a peritectic 

decomposition to Bi2O3 and a liquid phase at 790 °C. Experimental evidence for the 

high temperature instability of BiFeO3 has been reported abundantly. Morozov et 

al.107 showed that pure BiFeO3 can be prepared by at high temperature 850 °C under 

short time (5-10 min), which is called “rapid liquid phase sintering”. Another factor 

that can cause instability of BiFeO3 is the impurity which is introduced during the 

process of sintering by Al2O3 or SiO2 from sintering container108. Studies on Bi2O3-

Fe2O3 diffusion couples, performed at 650 °C, revealed that bismuth diffuses several 

micrometers inside the Fe2O3, while there was little backward diffusion of iron into 

the Bi2O3. Assuming coupled diffusion of the Bi3+ and O2- ions, which preserves the 

electroneutrality, and considering that the oxygen diffusion, it can be reasonably 

assume that the formation of Bi3+ toward the Fe2O3. The low diffusion data, 

calculated for 700 °C: the trace diffusion coefficient of Fe3+ in Fe2O3 (D 700°C  2.810-

25 m2/s) is five orders of magnitude lower than that of Bi3+ in Bi2O3 (D700°C  6.810-20 

m2/s)108. The faster bismuth diffusion explains the commonly observed 

microstructural features in BiFeO3 ceramics, that is, a Fe-rich region inside a BiFeO3 

grain with the Bi-rich sillenite phase close to the BiFeO3 grain boundary. So to 

understand as a kinetically stabilized phase coexistence is necessary to avoid 

unreacted phase in this system.  
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Soft chemistry technique are one of efficient methods for synthesizing different size 

and morphology samples, which include hydrothermal, microwave hydrothermal, 

deposition from solutions and methods based on chemical vapour deposition. It 

makes the precursor solution, gel and polymer precursor mixed in the atomic scale, 

which can disperse reaction ions uniformly and enhance the final sample quality. 

Generally, soft chemistry methods process at relative low temperature and it can 

control the stoichiometry of sample effectively. Recently, different morphologys of 

BiFeO3 have been synthesized using hydrothermal methods. Fei. et al synthesized 

perovskite BiFeO3 pills and robs with domain facets109  and cubes with 110 exposed 

facets by adjusting the alkaline conditions of the precursor solution. Different size 

BiFeO3 were also been synthesized by sol-gel methods and in which different 

precursors were used. Generally, for chelation, hydroxyl (-OH) is need in chelate 

since it has the strong chelate ability, which can hold the cation and ensure 

stoichiometric for different oxides111. In order to obtain the different size materials, 

different synthesis temperature is need to be controlled, since the recovery and 

recrystallisation are complete and further reduction in the internal energy can only 

be achieved by reducing the total area of grain boundary. 

It is clearly that the closely relationship between structure and properties, thus, 

synthesizing the high quality sample for properties analysis is significant. In this study, 

different particle size and morphology nano-BiFeO3 and doping samples have been 

synthesized by wet chemical process and conventional solid state methods, and the 

growth mechanism for wet chemical method has been presented for BiFeO3 

nanoparticles. 
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Table 4.1 The different methods of synthesizing BiFeO3 and its compounds. 

Method 
Synthesis 

Temperature 
(°C) 

Morphology Size Ref 

Oxide 

Precursors 

Conventional solide 

state reaction 
825-8 h Amorphous 

Micro 

(>200 nm) 

112 

Rapid liquid 

sintering 
880-450 s Amorphous 

Micro 

(>200 nm) 

113 

Mechanical 

activation 
760-6 h Amorphous 

Micro 

(>200 nm) 
108 

Wet 

Chemical 

Methods 

Metal complex 400-600 °C sphere 10-200 nm 114 

Modified Pechini 400-600 °C sphere 10-200 nm 112 

Polymer complex 400-700 °C difform 10-200 nm 115 

Glycol gel 400-700 °C difform 15-250 nm 116 

Co-precipitation 750-850 °C difform 
Micro 

(>200 nm) 

117 

Hydrothermal 200 °C cube-shape 
Micro 

(>200 nm) 

118 

Microwave-

Hydrothermal 
200 °C difform 

Micro 

(>200 nm) 

119 

Sonochemical 400-700 °C difform 4-50 nm 120 

Combustion 200 °C difform 25 nm 121 

 

4.2 Pure BiFeO3 and doping samples for nano and microparticles: 

Optimizing wet chemical methods and solid state method. 

4.2.1 Wet chemical synthesis of nano crystalline BiFeO3 

The BiFeO3 nanoparticles with different size have been synthesized using wet 

chemical methods112. All chemical reagents were of analytical grade and used 

without any further purification. In a typical synthesis process, an aqueous solution 

of 12 ml was first prepared by dissolving Bi(NO3)35H2O (0.005 mol), Fe(NO3)39H2O 

(0.005 mol) and nitric acid (4 ml) in deionized water (8 ml) in a beaker with a 

magnetic stirring at room temperature. After stirring continuously for 20min, the 

solution became clear and light yellow color. Keeping the stirred up condition, then 
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the tartaric acid (TA) (0.01 mol) was dissolved in the solution, after it dissolved 

completely, ethylene glycol (EG) (0.01 mol) was droped into the solution. Finally, the 

mole ratio of metal ions, TA and EG in the solution need be hold at 

(Bi3++Fe3+):TA:EG=1:1:1. When the reagent in solution has been dissolved completely, 

control the temperature carefully and heat up to 60 °C under stirring continuously to 

ensure complexing of the cations. The solutions displayed a light yellow color 

homogeneously. Keeping this temperature until the solvent was evaporated 

completely, and at the same time the mixture will become viscous. Transfer the 

mixture to the air-blast oven and keep temperature at 80 °C for 10 h. The solution 

was finally transformed to a dry polymeric precursor. Amount of porous can be 

found on the dry polymeric precursor. After the precursor was completely dried, it 

was ground into a fine powder in an Agate mortar. Ground precursor powders were 

calcined in air with a heating rate of 400 °C/h, and kept for 2 h at different 

temperature to obtain a series of different particle size. A scheme of the synthesis 

route for BiFeO3 is shown in Figure 4.1.  
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Figure 4.1 Scheme of wet chemical synthesis route for BiFeO3 

Ca and La doping nanoparticle samples in A site with different doping content (5%, 

10%) were synthesized using the same process. CaCO3, and La(NO3)36H2O have been 

used for the source of doping ions. At the beginning, the nitric acid solution with 

same concentration has been used. After Bi(NO3)35H2O and Fe(NO3)39H2O were 

dissolved in the solution, different content of doping ions compound were added. In 

order to obtain the high quality sample, the mole ratio of metal ions, TA and EG in 

the solution need be hold at (Bi3++Fe3++doping ions):TA:EG=1:1:1. And then the same 

process as synthesis of nano-BiFeO3 sample was used for synthesizing the different 

particle size BixA1-xFeO3 (5%, 10%) doping samples.  
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4.2.2 Synthesis of bulk BiFeO3 by solid state methods 

BiFeO3 ceramic was prepared by solid state reaction between Fe2O3 and Bi2O3. 

Precursor powders were carefully weighted to control the nominal stoichiometry. 

The ideal starting for solid state reaction synthesis is a homogenous mixture of 

binary oxide particles. The most successful with respect to time comsumption, 

control of stoichiometry and reproducibility in term of phase purity of fired product 

was to mix the binary oxides in ethanol using an Agate mortar and a pestle, since it 

can avoid induce impurities to the system comparing to the ball milling methods, 

since the impurities can destabilize the perovskite phase, which has been proved by 

Sverre et al112. Complete separation of the milled powder from ball milling also 

proved difficult, hindering control of the nominal stoichiometry.  

The mixed binary oxide was uniaxially cold-pressed with 20-30 MPa pressure into 8 

mm diameter pellets of 2 mm thickness. Then place the pellet in alumina disk. 

Sacrificial powder is necessary for coving the pellet in order to avoid evaporation of 

bismuth oxides (Bi2O3 and BiO) and separation between pellet and the alumina disk. 

A nominal Bi:Fe ratio close to unity was thus inferred for phase pure materials, which 

has been confirmed by a series of BiFeO3 samples with intentional deviation from 

Bi:Fe ratio 1:1 and these samples contained the expected secondary phases Bi2Fe4O9 

and Bi25FeO39 due to non-stoichiometry and no variation in lattice parameters of 

BiFeO3 with nominal composition was observed. 

The sample was fired in air at 825 °C for 8 h. In order to avoid secondary phase, put 

the sample into the tube oven directly when temperature at 825 °C and quenching 

the sample in water after 8 h soaking time, which has been adopted for avoiding the 

parasitic keeping the purity. 

Ca/La-doping A site Bi1-xAxFeO3 samples were obtained as the process of BiFeO3 and 

Bi2O3, Fe2O3, CaO and La2O3 have been used as the raw materials. Because of 

different rate of diffusion for different ions, Bi1-xCa/LaxFeO3 samples with x=0.05 and 

0.1 were fired at 830 °C by heating and cooling rate 400 °C/h and 8 h was chosen as 

the soaking time, which can confirm the foreign ions enter the corresponding crystal 

position. 
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Solid state method for synthesis of phase pure BiFeO3 is difficult and with poor 

reproducibility, due to the sensitivity of secondary phase in the synthesis 

temperature region122. The isovalent substitution with larger cation on A site or a 

small cation on the B site would increase the stability of BiFeO3 with respect to the 

binary oxides, and possible also with respect to the Bi2Fe4O9 mullite and Bi25FeO39 

sillenite phase108, 123. Substitution of a more acidic cation on the B site or a more 

basic cation on the A site is also expected to stabilise the perovskite phase6, 124-125. La 

is almost the same size as Bi3+, and although the space group changes with high 

substitution levels, perovskite phase is obtained for all values of x in Bi1-xLaxFeO3
76, 126. 

Through thermodynamics mechanism, it has been obtained the result that 

substitution with elements more soluble in BiFeO3 than Bi2Fe4O9 or Bi25FeO39 favors 

the formation of pure, single phase perovskite and La is more soluble in BiFeO3
122. 

When we consider Ca doping, because of divalent of Ca, it will cause the production 

of hole in the A site, in order to keep the charge balance in the oxide, the oxygen 

vacancies will also be produced at the same time127-128, however, the concentration 

of holes and oxygen vacancies are not equivalent actually, which is caused by the 

experiment condition and the defect formation in the oxide129. Therefore, the band 

energy will be changed according to the concentration of holes and oxygen vacancies 

within the sample, which can affect the physical properties of materials. 

4.3 Characterization techniques 

4.3.1 X-ray diffraction and analysis using Rietveld refinement 

X-ray diffraction (XRD) at ambient temperature was performed using Bruker D2 

phase with XFLASH detector using Cu Kα radiation in Bragg-Brentano geometry. Data 

was collected from 10° to 90° 2 with a step size of 0.005° 2, 1 sec. per step.  

High temperature XRD (HTXRD) was performed with a high resolution goniometer 

with a rotating anodes Rigaku RA-HF18. Heat was provided by oven Rigaku 2311 (300 

K-1000 K). A circular alumina crucible supported the sample in a cavity. Preliminary 

HTXRD pattern of BiFeO3 and doping samples were collected in air from 20° to 60° 2 

with a step size of 0.02° 2, 6 sec. per step and 0.2° fixed divergence slit. The sample 
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was held for 5 min at each temperature prior to data collection to ensure thermal 

equilibrium. 

All Rietveld refinements were carried out using software JANA2006130. Sample 

displacements were refined, while zero errors were fixed. The peak profile was 

refined by Pseudo-Voigt peak shape function. The peak profile function giving the 

best fit to the experimentally observed data was chosen and kept for all patterns 

within a serious of patterns with varying composition, temperature and crystallite 

size. 

Lattice parameters, background, displacement and peak profile parameters were 

allowed to converge before atomic position were added to the refinement. 

Systematically, the position parameters of the heaviest atom in the unit cell were 

refined to convergence before subsequently adding lighter atoms to the refinement. 

Isotropic thermal displacement parameters were added to the refinement after 

convergence of atomic position, and finally the anisotropic thermal displacement 

parameters.  

For the doping samples, since the doping content has been controlled lower than 10% 

to keep the R3c space group, the refinement condition is same as the BiFeO3 

samples. 

Crystallite sizes and micro strain were determined using the Williamson-Hall 

method131 which is derived from profile matching or Rietveld analysis. In this method 

the widening of the Bragg peaks strain (integral breath) follow the equation: 

4 tanstrain    [4.1] 

Where  is the micro-strain. However experimentally there are multiples causes of 

broadening of Bragg peak, another one is due to size effect which follows the well 

known Scherrer’s law: 






cosL

K
size    [4.2] 
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where factor K was set to 1.0 for integral breath, the radiation of wavelength 

=1.5418 Å, the Full Width at Half Maximum (FWHM) of the Bragg reflection is 

depicted by L and  is the angle of the chosen Bragg reflection. FWHM values were 

obtained by JANA2006. The Williamson-Hall analysis is based in the sun of both kinds 

of broadening: 






cos
tan4

L

K
strainsizetot   [4.3] 

thus: 

L

K
tot


  sincos 4   [4.4] 

Plotting tot*cos versus 4sin allows separating and getting a measurement of both 

the size and micro-strain effect: the micro strain is obtained by the slope of the plot 

and the crystallite size is obtained by the intercept at sin = 0. The FWHM, , was 

corrected for instrumental broadening using a diffraction pattern of standard 

material LaB6 powder record with identical X-ray optics. 

4.3.2 Raman spectroscopy 

Raman scattering arises from the interaction of light with different vibrations within 

a material and it allows obtaining a unique spectroscopic image of the different 

vibrational and rotational modes, low-frequency modes related to long range order, 

strain or size effects, among a larger variety of characteristics of a given system. In 

the particular case of BiFeO3, it is a highly useful tool to get insight theoretically and 

experimentally not only structural parameters, but also on ferroelectricity and 

magnetic effects132, 133. To obtain Raman spectroscopy data, the inelastic scattering 

of light with matter is performed using a monochromatic source of light, usually a 

laser in the visible, near infrared, or near ultraviolet range. The laser photons 

interact with molecular vibrations, phonons or other excitations in the system, 

resulting in the energy of the laser photons being shifted up or down. The shift in 

energy of these photons gives information on the vibrational modes in the system. 

Practically, the electromagnetic radiation from the illuminated spot is collected with 
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a lens and sent through a monochromator. Elastic scattered radiation at the 

wavelength corresponding to the laser line (Rayleigh scattering) is filtered out, while 

the rest of the collected light is dispersed onto a detector by either notch or a band 

pass filter134-136. 

Raman spectra presented in this manuscript were collected using a Labram Horiba 

Jobin Yvon spectrometer with laser He-Ne (=632.8 nm) in backscattering geometry. 

Scattered photons with wavenumber from 50 to 1000 cm-1 were selected using an 

edge band pass filter. The temperature was controlled by using Linkam heating stage 

(80 K-870 K) placed under the Raman microscope. Typical optical magnification was 

attained using a x 10 objective lens having a numerical aperture of 0.25, to obtain a 

signal averaged within different grains. The sample was carefully deposited on the 

heating plate and then the laser was focused on it. After the temperature was 

stabilized, the beam focusing was again adjusted to obtain the maximum intensity, 

and suitable testing time was set.  

4.3.3 X-ray photoelectron spectroscopy (XPS) 

X photoelectron spectroscopy (XPS) is used for detecting the photoelectron emitted 

from the surface of materials by X-rays, which based on the photoelectric effect and 

gives the surface information (element composition, chemical state analysis) of 

materials137 Because of high energy of X-ray, the inner shell electrons can be excited 

as photoelectrons with ionization and relaxation process. According to Einstein 

photoelectric emission law, the electron binding energy of each of the emitted 

electrons can be determined by  

 ΦEEE kineticphotonbinding   [4.5] 

Where Ebinding is the binding energy of the electron, Ephoton is the energy of the X-ray 

photons being used, Ekinetic is the kinetic energy of the electron as measured by the 

instrument and  is work function. Ebinding represents the strength of the interaction 

of the electrons at different atomic core levels with the nuclear charge. Figure 4.2 
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shows a scheme of the XPS measurement mechanism and photoelectrons excitation 

process. 

 

Figure 4.2 (a) Scheme of processes after irradiation of a sample by an X-ray beam; (b) the process of 

photoelectrons excitation under X-ray irradiation. 

X-ray Photoelectron Spectroscopy (XPS) measurements were carried out with a 

Kratos Axis Ultra DLD spectrometer using a monochromatic Al K source of 1486.6 

eV working at 150 W, which is the system situated at the Luxembourg Institute of 

Science and Technology (LIST). The experiments were performed and analyzed by Dr. 

J. GUILLOT and Y. Fleming. The powders were placed in a crucible and the base 

pressure in the analysis chamber was better than 5.10-9 Torr. The survey scans and 

the narrow scans were acquired with a pass energy of 150 eV and 20 eV respectively. 

In both cases, the take-off angle was 90° and the collection column was used in the 

hybrid lens mode. The analysis area of the samples surface was 700 m x 300 m. A 

neutralizer was used to limit the charging effect during the acquisition and the 

spectra were then calibrated in energy by shifting the energy scale so that the main 

C-C/C-H component of the C 1s peak, corresponding to the adventitious carbon, is at 

285.0 eV. 

4.3.4 Electron Microscopy techniques 

4.3.4.1 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) permits the observation and characterization of 

heterogeneous organic and inorganic materials on a nanometer to micrometer scale 
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by irradiating with a finely focused electron beam. Different particles are generated 

by the interaction of the electron beam with the sample, including secondary 

electrons, backscattered electrons, X-rays, etc. These electrons and photons are 

obtained from specific emission volumes within the sample and can be used to 

examine many characteristics of the samples (e.g. surface topography, 

crystallography, composition, etc.). 

For morphology purposes, imaging is obtained using secondary and backscattered 

electrons, because their emission primarily depends on the differences in the surface 

topography. The secondary electron emission, confined to a very small volume near 

the beam impact area for certain choices of the beam energy, permits imaging to be 

obtained at a resolution close to the size of the focused electron beam (nanometer 

scale)138. 

The microscope used for the present experiments is a Carl Zeiss Leo 1530 Gemini 

field-emission scanning electron microscopy (FE-SEM) operating at a maximum 

electron accelerating voltage of 20 kV. SEM imaging was carried out by Françoise 

GARNIER and Fabienne KAROLAK. 

4.3.4.2 Transmission  Electron Microscopy and related techniques 

Transmission electron microscopy (TEM) is a microscopy technique which is capable 

of imaging at a significantly high resolution than light microscopes. Because of the 

small de Broglie wavelength of electrons, the electron beam can transmit through 

the ultra-thin specimen and an image is formed from the interaction of the electrons 

transmitted through the specimen. Electrons are generated by thermoionic 

discharge in a cathode, or by field emission; and afterwards they are accelerated by 

an electric field, typically in the 80-300 kV range, achieving equivalent electronic 

wavelengths of 10-12m139. 

Scanning transmission electron microscopy (STEM) works on the same principle as a 

normal scanning electron microscope by focusing an electron beam into a very small 

spot which is scanned over the TEM sample, and it needs the accelerated electrons 

beam pass through the sample. When operating in STEM mode using the High Angle 

http://en.wikipedia.org/wiki/Thermionic_emission
http://en.wikipedia.org/wiki/Thermionic_emission
http://en.wikipedia.org/wiki/Field_emission
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Annular Dark Field (HAADF) detector, dense areas as well as areas that contain heavy 

elements appear brighter due to larger angular scattering of the electrons and 

corresponding scattering probability, thus the image is typically a signature of the 

difference of the atomic number (Z-contrast) of the elements contained in the 

sample. 

Electron Energy Loss Spectroscopy (EELS) is in short based on the physical principle 

of the inelastic scattering of the incident electrons with the electrons of the 

sample140. Information about the sample properties is obtained from the collected 

scattered electrons and the final analysis using an electron spectrometer allows 

interpreting the nature of the atoms found in the sample and their electronic state 

and environment. In a typical EELS spectrum, the main contribution to the collected 

electrons are those that have not undergone any inelastic scattering, forming the so-

called Zero Loss Peak. Moreover, at larger energy losses, fingerprints of sample 

elements and their environment can be deduced from the electrons arising from 

interactions with the core levels electrons of the elements present in the sample. 

The microscope used for the present experiments is a Jeol JEM ARM200F Cold-FEG 

(Universidad Complutense de Madrid), operating at an electron accelerating voltage 

of 200 kV and equipped with a EELS spectrometer with a GIF Gatan detector, which 

energy resolution about 0.5 eV. STEM-HAADF experiments as well as EELS spectra 

were carried out by María Varela del Arco, and co-analyzed by Pavan Nukala. Figure 

4.3 shows the electron transmission channels of TEM, STEM and EELS. 
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Figure 4.3 Sketch of the electron transmission channels of TEM, STEM and EELS. In reality, EELS electrons are not 
scattered at a different angle but at a different energy and collected through the spectrometer located at the 

direct beam position (Bright Field). 

4.3.5 Thermal analysis 

Differential scanning calorimetry (DSC) was performed with TG-DSC 92 SETARAM. 

Samples of 20-100 mg were encapsulated in aluminium sample pans and 

measurements were done in air with 10 to 40 °C/min heating and cooling rates in 

the temperature region 25-600 °C. Non-isothermal crystalline temperatures 

detection was determined using the same measurement process and the heating 

rate from 10 °C/min to 40 °C/min have been used for crystallite growth mechanism 

analysis. 

4.3.6 Magnetic measurements 

Magnetic properties are performed using vibrating sample magnetometry and 

Mössbauer spectroscopy which is situated at Faculty of Physics and Center for 

Nanointegration Duisburg-Essen (CENIDE). The experiment were performed and 

analyzed by Dr. S. Salamon. The Mössbauer data was fitted using PI program which is 

written by Dr. M. Escobar Castillo. 

4.3.6.1 Vibrating sample magnetometry 

Vibrating sample magnetometry (VSM) was done with a Quantum Design MPMS 

SQUID VSM dc magnetometer from 5 to 300 K, collecting data every 1 K, using a 9 T 
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magnetic field. Standard procedures include the field and temperature dependent 

determination of sample magnetization, through the recording of M(H) hysteresis 

and M(T) ZFC-FC curves. The device is equipped with a temperature controller, 

allowing the sample temperature to be set between 1.8 and 1000 K. A 

superconducting magnet allows fields up to +/-9 T to be set. The machine is built as a 

closed-cycle system, being able to generate the liquid helium needed for operation 

via a pulse tube cooler.  

4.3.6.2 Mössbauer spectroscopy 

In the Mössbauer spectra, the environment of the Fe nuclei is investigated. 

Mössbauer spectroscopy is based on the absorption of gamma-radiation by nuclei 

and their different energy levels which undergo and characterize the nuclei 

environment (valence state, local crystal field, spin configuration). In fact, the 

technique exploits the Doppler effect between the gamma rays source and sample, 

and thus the characteristic spectra is represented by an absorbed intensity as a 

function of the source to sample relative speed. The analysis of the collected spectra 

is compared to a given reference absorber. The energy levels of the nuclei are mainly 

modified by the isomer shift and the quadrupole and magnetic splittings. First, 

isomer shift accounts for the electron cloud surrounding the nuclei. Secondly, 

quadrupole splitting for the angular momentum of the nuclei, and thus it is sensitive 

to any local electric field gradient, such as the electric polarization. Finally, magnetic 

splitting is directly related to the Zeeman splitting of nuclei presenting non-zero 

nuclear spin moment, thus being sensitive to magnetic order, spin projection, and 

other spin-related features. 

Mössbauer studies were performed in transmission geometry using a constant 

acceleration spectrometer and a 57Co source (Rh-matrix) on samples with 20 

mg/cm2 BiFeO3. The MVC-450 from WissEI allows the calibration of the Mössbauer-

drive by a laser interferometer. This device is used for high-speed measurements, 

widening the range by increasing the velocity of the Mössbauer driving unit, which 

can be used for high speed measurements for sample with strong temperature 

depending line broadening. 
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4.3.7 Optical properties 

4.3.7.1 Diffuse reflectance  

Diffuse reflectance spectrophotometer has been used for studying the optical 

properties. Ultra Violet-visible diffuse reflectance spectra were measured on particle 

directly using a PerkinElmer spectrometer Lambda 850 in the wavelength range of 

200 nm to 900 nm. Non-absorbing standard BaSO4 has been used as reference 

sample.  

High temperature diffuse reflectance was performed through Harrick equipment 

assessor with a high temperature reaction chambers which allow diffuse reflection 

spectroscopic measurements under controlled pressures and a wide range of 

temperatures. In our experiment, temperature range from 30 °C to 450 °C with a 

step size of 30 °C has been used for diffuse reflectance. The powder sample was hold 

for 5 min at each temperature prior to data collection to ensure thermal equilibrium. 

In diffuse reflectance measurements, one of important accessory is integrating 

sphere which is an optical component consisting of a hollow spherical cavity with its 

interior covered with a diffuse white reflective coating, with small holes for entrance 

and exit ports. The simplified principle of the use of integrating sphere to measure 

the reflectance of a test sample has been shown in Figure. It can ensure a uniform 

scatting or diffusing effect and preserve power but destroys spatial information. 

4.3.7.2 Kubelka-Munk theory and Tauc plot for band structure investigation 

Kubelka-Munk theory141 provides an equation that relates the reflection of a sample 

under diffuse illumination to certain of its properties. In diffuse reflectance spectrum, 

scattered radiation is collected excluding specularly reflected light matching closely 

with the Kubelka-Munk function given by 
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Where R is the reflectance. Kubelka-Munk parameter F(R) is related to the 

absorption spectrum, which can be used for obtaining the charge transition 

information in the range of reflectance wavelength.  

In order to get the band gap value for different size samples, Tauc plot141-142 has 

been used. 

)()( /1

g

n EhAh    [4.7] 

Where h is the Planck’s constant,  is frequency of vibration,  is absorption 

coefficient, Eg is band gap and A is proportional constant. 

The value of the exponent n denotes the nature of the sample transition. 

For direct allowed transition, n=1/2; for direct forbidden transition, n=3/2; for 

indirect allowed transition, n=2; for indirect forbidden transition, n=3. 

Generally, the direct allowed transition has been reported for BiFeO3, n=1/2 is used 

in this work. The acquired diffuse reflectance spectrum is converted to Kubelka-

Munk function. The  in the Tauc equation is substituted with F(R). Thus, in the 

actual experiment, the relational expression becomes 

)()]([ 2

gEhARFh    [4.8] 

A line is drawn tangent to the point of inflection on the curve of equ , and the h 

value at the point of intersection of the tangent line and the horizontal axis is the 

band gap Eg value. 

4.3.7.3 Urbach analysis 

Urbach energy describes the density-of-state tails above the valence band and below 

the conductor band, the shape and size of these tails depend on the presence of 

different types of disordering143-145. The function 

UEh /ln    [4.9] 
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can be used for obtaining the Urbach energy EU.  is the absorption coefficient, in 

our case, it can be substituted by F(R).  

4.3.8 Photocatalysis 

The photocatalytic properties were characterized by the degradation of Rhodamine-

B (RhB) in aqueous solution under visible-light irradiation. The equipment of 

photocatalysis is shown in Figure 4.4 (a), the equipment is situated at the Electronic 

Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi’an 

Jiaotong University, the equipment were performed and analyzed by Prof. J.Wei. The 

photocatalytic reaction was performed with 50 mg BiFeO3 powders in a reactor 

under magnetic stirring, which was irradiated using a 500 W Xe lamp with a cutoff 

filter (420 nm) (Figure 4.4 (b)). The reaction temperature was kept at room 

temperature by cooling water to prevent the thermal catalytic effect. The 

degradation efficiency of RhB was evaluated by centrifuging the retrieved samples 

and recording the intensity of absorption peak of RhB (553 nm) relative to its initial 

intensity (C/C0) using a UV–Vis spectrophotometer. 

 

Figure 4.4 (a) The photocatalysis equipment which includes Xe lamp, magnetic stirring device, sample 

container. (b) The absorption spectrum of 500W Xe lapm spectrum. 

The procedure of photocatalysis experiment is as follow: 

1. Weight a certain amount of RhB and prepare RhB solution with 50 mL, 5 mg/L; 

2. Weight 50 mg BiFeO3 powder and put it in the quartz test tube which 

contains RhB solution. Then put the tube in the dark reaction chamber with 
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magnetic stirring, keep it 30 min in the dark condition and make the BiFeO3 

dispersion uniformly; 

3. Turn on the light (500 W) for photocatalysis reaction; 

4. Turn off the light and draw 10 ml mixture from the tube by pipette at regular 

interval (1 h); put the mixture in the centrifuge tube and remove the powder 

by centrifuging. Then measure the absorption spectrum by UV-visible 

spectrophotometer. And the peak summit of RhB absorption spectrum is the 

Cx (x=1, 2, 3,….); 

5. Repeat the step 4, until you get the enough data; 

6. Note: measure the prepared RhB solution in step 1which doesn’t process for 

photocatalysis reaction and get the RhB absorption spectrum, the peak 

summit is C0; 

The photocatalysis reaction temperature is controlled at room temperature by 

coolant system.
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5 Synthesis of BiFeO3 compounds 

5.1 BiFeO3 with nano particle size synthesized by wet chemical methods 

Nano-BiFeO3 particles are synthesized by wet chemical method at different synthesis 

temperature. A systematic investigation of synthesizing temperature and the effect 

of different chelates to complex Bi3+ and Fe3+ are performed. The synthesis route is 

introduced in detail in chapter 4.2.1. 

An overview of syntheses and chelates identified by X-ray diffraction (XRD) after 

annealing at 600 °C are summarized in Table 5.1. X indicates presence of phases 

which have been detected in XRD and ICSD #20067 (Bi2Fe4O9), ICSD #15299 (BiFeO3), 

and ICSD #62719 (Bi25FeO39) are used as reference. 

Table 5.1 Synthesis process, chelates, and products identified by XRD after annealing at 600°C 

Synthesis Chelates BiFeO3 Bi2Fe4O9 Bi25FeO39 other 

A TA X X   

B TA+EG X    

C PVA X X X X 

D 2-M X X X  
Note: In the synthesis A and C, precipitation of white crystals, possibly Bi(NO3)3, on the wall of the 
beaker at the liquid air interface was observed during evaporation of the solution, and it may 
explain the traces of Bi2Fe4O9 observed after calcination. TA, tartaric acid. EG, ethylene glycol. 2-M, 
2-Methoxyethanol. PVA, polyvinyl alcohol. 

Since the diluting nitric acid is used as the reaction solution, no precipitates are 

observed during the sol process for all syntheses in Table 5.1. The precursors from all 

syntheses displayed completely amorphous XRD patterns before calcinations. 

Compared with other synthesis process, in synthesis B the use of ethylene glycol (EG) 

creates a more porous polymeric precursor that can be seen through the overall 

expansion in the beaker. From summary results of Table 5.1., high quality BiFeO3 

particles can be synthesized by simultaneously using tartaric acid (TA) as chelant and 

ethylene glycol as assistant agent. In the following, the synthesis mechanism will be 

explained in detail. 
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Figure 5.1 shows the molecular structure of different chelants used in the syntheses. 

A requirement for the formation of a homogenous polyester precursor with 

segregation of cations is thus proposed to be COOH-group for complexing of Bi3+ and 

Fe3+, and OH-group for polyesterification with COOH-group111. Bi3+ has been 

reported to form nine-coordinated complexes with tartaric acid146. The addition of 

equimolar amount of ethylene glycol with respect to the carboxylic acids yield phase 

pure BiFeO3. Because the existence of OH-group in the ethylene glycol, it can react 

with hydroxyl-terminated group of tartaric acid147. A rigid 3D network (Figure 5.2) 

can form by polymerization between OH-group and COOH-group, which is beneficial 

to uniformly disperse the cations in the solution and finally obtain a high quality 

gel148. The polymerization reaction is shown in Figure 5.2. For other synthesis 

processes, which just include one chelant in the solution and lack of OH-group on the 

main branch, it also contains single bonds, allowing the COOH-group to rotate 

independently. Although the cations can be complexed, the uniform dispersion 

cannot be guaranteed112. It will be influent on the quality of the final products.  

 

Figure 5.1 Molecular structure of different chelants used in the syntheses 

 

Figure 5.2 Polymerization reaction of esterification for precursors, in which tartaric acid and ethylene 

glycol have been used as chelant and assistant agent, respectively. 3D structure is formed in this 

reaction which can help fix the ions, improving sample quality. 
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When using different temperature program for Precursor powder of synthesis B with 

equimolar amounts of tartaric acid and ethylene glycol, different quality BiFeO3 

could be synthesized. If a one-step temperature program is used, which is shown in 

the top inset of Figure 5.3 (red line), parasitic phases can be detected in the XRD of 

the final powders (top data in Figure 5.3). We propose that Fe3+ may catalyse the 

reaction. Detection of the iron rich phase Bi2Fe4O9, but not a poor Fe phase as 

Bi25FeO39 in the XRD pattern (asterisk in Figure 5.3), is attributed to a higher local 

temperature and evaporation of the volatile phases, as Bi2O3
111-112. From XRD data in 

Figure 5.3, it can be seen that the use of different temperature processes for the 

same precursor powders, while keeping the same final temperature (500 °C) but 

following a one-step (top) or a three-steps (bottom) temperature program, the 

corresponding XRD patterns depict the formation in the final powders of BiFeO3 but 

in the first case it is accompanied by parasitic phases whereas in the latter case only 

pure BiFeO3 powders are obtained.  

 

Figure 5.3 XRD data from the synthetized powders after the same sol-gel synthesis method is used to 

produce BiFeO3 but applying different temperature process. Top (red): ordinary one-step 

temperature program (see inset for details). Bottom (black): Three-step temperature program (see 

inset for details). Bulk BiFeO3 main phase is obtained in both cases, but for the one step temperature 

program, parasitic phases are also observed (marked by asterisks). 
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As we have acknowledged and proved experimentally with the different 

temperature programs presented before, the synthesis of pure BiFeO3 powders is 

very difficult, because of the loss of Bi through the volatilization of Bi2O3 at high 

temperature, not keeping the stoichiometric ratio of BiFeO3 and parasitic phases will 

appear. Furthermore, the size and morphology of the particles strongly depend on 

both crystal temperature and total reaction time. On the basis of our experimental 

results and previous reports, we propose a possible formation mechanism of 

different size BiFeO3 particles synthesized via our wet chemical process with 

different synthesis temperature. We will present here how we have determined the 

optimum three-step temperature program in combination with the previously 

presented sol-gel process called synthesis process B (ethylene glycol and tartaric 

acid). 

In order to obtain the optimal temperature process for synthesizing BiFeO3 particles, 

the precursor powders have been analyzed using differential scanning calorimetry 

(DSC). From Figure 5.4, the DSC results show that with increase of temperature up to 

400ºC, two endothermic peaks appear successively and no other peak is detected in 

the following, at higher temperature. In Figure 5.4, DSC results of these powders 

demonstrate that the precursors are ignited at around 200 °C, indicated by a sharp 

endothermic peak (blue area), caused by the progressive decomposing of tartaric 

acid, ethylene glycol and the network structure caused by the esterification reaction 

between tartaric acid and ethylene glycol. Since the decomposing temperature of 

tartaric acid and ethylene glycol is close to 200 °C, which means that a great amount 

of heat can be exchanged during a very short time, it can cause a local overheating 

and thus promote the evaporation of Bi2O3, affecting the stoichiometry of BiFeO3
111. 

After 250 °C, another endothermic peak appears (green area), which is caused by the 

complete destruction of the polymeric network structure.  
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Figure 5.4 DSC analysis of precursor powders (from synthesis process B).Unit problems 

 

Figure 5.5 Detail of the optimized three-step temperature program determined on the basis of DSC 

data analysis of BiFeO3-precursors to prevent parasitic phase formation. 
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On basis of these DSC results, the synthesis temperature process has been 

determined and shown in Figure 5.5. The different intermediate temperature steps 

are fixed for a relatively long time before the final synthesis temperature step is 

attained to prevent that the heat exchange is released in a short time thus allowing 

to keep the Bi-stoichiometry and finally improving the concentration of pure BiFeO3 

phase up to even suppressing any parasitic phase. 

Analyzing in detail this wet chemical process, the use of tartaric acid as cationic 

chelate fastens the process by exploiting the OH-group reactivity with the metallic 

ions, which is a benefit to the final reaction process at low temperature. 

Furthermore, ethylene glycol being used, it reacts with tartaric acid through 

esterification, a homogeneous network can be formed and the metallic ions can be 

fixed in it, additionally. As a matter of fact, ethylene glycol has been proved to be a 

suitable solvent to prepare metal oxides (i.e. SrBi2TaO9 and Ba0.5Sr0.5TiO3)149-150 

because the presence of two terminal hydroxyl groups in the molecule makes it easy 

to keep heterometallic units during hydrolysis reaction. It is reported that the 

linearly structured molecule of ethylene glycol is favorable for obtaining stable sol151. 

Ethylene glycol as solvent can thus prevent the hydrolysis of bismuth cation and 

keep bismuth and iron, although presenting different electronegativity, within the 

same network152. This may reduce the energy required for successful dissolution and 

recrystallization to form pure BiFeO3 during the sol-gel process. In other words, the 

reaction kinetics of BiFeO3 should be remarkably accelerated by using ethylene 

glycol as solvent152-153. Introducing ethylene glycol in aqueous solution should in 

principle decrease the dielectric constant in comparison to water 151, which would 

result in a higher nucleation rate of bismuth ferrite. Thus, ethylene glycol as a 

solvent gives rise to a faster nucleation and formation of a larger number of crystal 

nuclei with smaller size154-157. 

To sum up on this discussion on the polymerization process, all these different 

parameters (different solvents, temperature steps) allows controlling the 

stoichiometric equilibrium of Bi3+ and Fe3+ and ensuring the phase purity of BiFeO3 

particles. The details on the polymerization process are found in Figure 5.2. 
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Now we focus on the study of the crystallization process of the amorphous powder, 

observed from DSC, in Figure 5.6. Two separated exothermic peaks are observed, the 

peaks being shifted to higher temperature with the increase of the heating rate of 

the thermal process, which indicates that the events are thermally activated. We 

have studied the effect of the heating rate using the thermal process ending at 

450 °C. Observation of two endothermic events and from the XRD data of the 

processed powder suggest that the amorphous precursors of BiFeO3 evolves through 

a nucleation and crystalline growth process to form BiFeO3, happening at different 

temperatures depending on the different heating exchange. Crystallite growth is also 

evident from XRD in the same temperature region as the peak in the DSC curves. The 

present finding shows that nano-crystalline BiFeO3 can be obtained at 450 °C by the 

present wet chemical route. 

 

Figure 5.6 Crystallization of amorphous powders observed by DSC indicated from the 2 heat exchange 

peaks. The same precursors but different heating rates are used for the crystallization. 

XRD patterns of precursor powders and powders after calcinations at various 

temperatures form synthesis B are shown in Figure 5.7 (a). Crystallization and 

crystallite growth of BiFeO3 was evidenced by the XRD patterns recorded with 



Xiaofei BAI 

50 
 

increasing calcination temperature. From the XRD patterns, it can be seen that the 

powder is amorphous after calcinations at 400 °C. Remarkably, detail investigation of 

the XRD data around (104) and (110) diffraction peaks (Figure 5.7 (b)) indicates a 

slight reduced separation of these two peaks, which is a signature a tiny evolution of 

the crystalline structure with grain size decreasing. These powders present all of 

them rhombohedral R3c structure, and the Rietveld refinement results will be 

presented in chapter 6.1.1. 

 

Figure 5.7 XRD patterns of different size BiFeO3 synthesized at different end temperatures: (a) Full 

range data, (b) detail of the XRD data around (104) and (110) peaks. 

In summary, crystallization kinetics and growth mechanism of the BiFeO3 particles 

have been studied combining DSC and XRD results. Figure 5.6 shows the DSC curves 

for the crystallization of the BiFeO3 particles at various heating rate ranging from 10 

to 40 K min-1. It can be found that the crystallization peaks shift to a higher 

temperature when the heating rate increases, meaning the nucleation and growth of 

BiFeO3 crystals are delayed to higher temperature though the heating exchange is 

less efficient with quicker heating rates. The existence of two peaks suggests that an 

irregular BiFeO3 crystal network is created (first peak) and secondly a periodic lattice 

of BiFeO3 crystals is set (second peak).  

5.2 Crystal growth mechanisms of different size BiFeO3 

Modified Johnson-Mehl-Avrami (JMA) function can be applied for obtaining the non-

isothermal activation energy of BiFeO3 particles crystallization158, following the 

formulae: 
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where h is the heating rate, Ea is the activation energy for crystallization, Tm is the 

crystal peak temperature of DSC curve and C is the constant. From the DSC results at 

different heating rates, a linear relationship between lnh and 1/Tm is shown in Figure 

5.8 and the activation energy (66.2 kJmol-1) can be obtained from the slope of fitted 

line. 

 

Figure 5.8 The Arrhenius relation of heating rate h and crystallizing temperature Tm. 

When the BiFeO3 precursors are heated at a constant rate, the crystal nuclei are 

formed, eventually growing in size if the soaking time is increased. Since the number 

of crystallizing molecules is proportional to the heat release during a time interval, 

the total number of BiFeO3 nuclei (N) formed per unit volume in the course of 

heating between T1 and T2 is expressed as159-160 
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and the radius (r) of crystal particles is expressed by159-161 

  
 

 
         

  

  
 

  
  

   
  

 
      

  

  
  [5.4] 

where N0 is the initial number of nuclei, h is the heating rate, I(T) is the nucleation 

rate, U0 is the rate constant of crystal growth, R is the gas constant. There are two 

types of crystallization; one is based on the bulk nucleation and the other on the 

surface nucleation. For the case of bulk nucleation, it means that the crystal particles 

grow towards three dimensions. The volume fraction of the crystal (x) is expressed 

as161-162 

  

  
 

     
   

  
          

   

  
  [5.5] 

where x=Si/S, S is the area under DSC curve between the crystal formation started 

temperature (T1) and the crystal formation completed temperature (T2), Si is the area 

between T1 and Ti (intermediate temperature between T1 and T2) under DSC curve 

(Figure 5.9) and n is the growth morphology parameter. 

 

Figure 5.9 (a) Sketch of the integral area for different temperature range; (b) Sketch of surface 

nucleation in a particle. 

That is, 

  

   
 

     
   

  
     

   

  
    [5.6] 

this integral not being expressed by any elementary function, thus the following 

approximation should be made: 

         
 

  
     

   

  
   [5.7] 
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In the case of surface nucleation (Figure 5.9 (b)), the nuclei are formed at the surface 

and not at the center of the particle. We thus assume that the crystal sphere of 

radius R0 and the thickness r of surface layer is crystallized. The volume fraction of 

the crystal is expressed as161, 163 

       
 

  
 
 

 [5.8] 

Thus: 
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Accordingly, combining the function of bulk and surface nucleation together, the 

following expression is derived: 

         
  

  
     

   

  
  [5.12] 

and the following simplified expression is derived: 

                      
 

     

   

  
          [5.13] 

where n and m are numerical factor which depend on the mechanism of 

crystallization. Different value of n and m mean different crystallization growth 

mechanism. For m=4, n=3, it describes the three dimensional growth, for m=3, n=2, 

it means two dimensional growth, for m=2, n=1, it means one dimensional growth. 

For the surface nucleation, m=n=1. 
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Figure 5.10 (a) Arrhenius plots of log[-ln(1-x)] against 1/T and (b) log-plots against log h, for BiFeO3 

precursor powders at various heating rates in (a) and at a fixed temperature in (b). The numerical 

factor n and m can be obtained from slope value of fitting results. Change the figure 

Table 5.2 Growth morphology parameters of n and m at various heating rates 

Heating rate (K min-1) nEa (kJ mol-1) n M 

10 84.515 1.276 1.017 

20 86.066 1.300 0.839 

30 88.785 1.341 0.718 

40 98.148 1.483 0.708 

Average 89.378 1.350 0.821 

The plot of log[-ln(1-x)] against 1/T and log h for the BiFeO3 precursor powders at 

various heating rate are shown in Figure 5.10. The value nEa and m are obtained 

from the slope of the fitted lines, which is shown in Table 5.2. For the m, n values of 

BiFeO3 particles, it can be seen that it is approximately 1. According to the 

aforementioned function analysis, it means that BiFeO3 crystallites are formed from 

the given precursors by a surface nucleation mechanism.  explain   

Usually, the rate of crystal nucleation reaches the maximum at a high temperature 

and then decreases rapidly with temperature increasing, while the rate of crystal 

growth reaches the maximum at a temperature much higher than the temperature 

at which the nucleation rate is highest. When sample is heated at a constant rate, 

crystal nuclei formed at lower temperatures and grown in size at high temperature 

without any increasing in number.  
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From above analysis, we know that the crystal growth mechanism of our 

nanoparticles is surface nucleation and the crystallization started from surface. From 

Figure 5.6, it can be seen that the crystal temperature for different heating rate are 

between 450 °C and 500 °C. It means that the crystal nucleus can be formed in this 

temperature range. Above this temperature range, the leading role of crystallization 

is crystal nucleus growth. From XRD and SEM results (chapter 6.1.1 and 6.3.1), when 

we compare the particle size and crystal size, it can be found that when the BiFeO3 

nanoparticle is smaller, the particle size is same as crystal size, on the contrary, when 

particle size is bigger, one particle size includes two or three BiFeO3 single crystal.  

As mentioned above, the amount of crystal nuclei is fixed. Because of surface 

nucleation of nanoparticles, the single crystal is formed at lower temperature, 

however, when temperature increasing, bigger particles can be formed by single 

crystals mergering. Finally, it can be observed different size particles from SEM 

images, which will be shown in chapter 5.3. 

5.3 Nanostructure through Electron Microscopies 

In chapter 5.2, the crystallite growth mechanism by sol-gel solution has been 

presented through non-isothermal analysis, which has indicated that the crystallite is 

formed from surface nucleation mechanism of the precursors. From Scanning 

Electron Microscopy (SEM) images in Figure 5.11, the particle size growth increase 

with synthesis temperature is attributed to a larger degree of agglomeration.  
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Figure 5.11 SEM images of different size BiFeO3 nanoparticles synthesized at different temperatures: 
(a) 450 °C, (b) 500 °C, (c) 550 °C, and (d) 600 °C. 

At first glance, the morphology of larger size samples is more faceted compared to 

the smaller ones. This is partially caused by the SEM resolution limits for the smaller 

nanoparticles. We have shown that from XRD patterns of different size samples 

(Figure 6.1), the crystallite size can be calculated by Williamson-Hall function. Thus, 

we can compare crystallite and particle sizes, both as a function of the synthesis 

temperature, shown in Figure 5.12. It can be seen that the particle size increases 

with the increase of synthesis temperature. However, when compared to the 

crystallite size obtained from XRD analysis, the particle size is much larger than the 

crystallite one for higher synthesis temperatures. In fact, the size of BiFeO3 

nanoparticles synthesized at 600 °C is three times larger than their crystallite size. 

We can thus speculate that the nanoparticles synthesized at 450 °C are equivalent to 

nanometric single crystals, whereas the nanoparticles synthesized at 600 °C are 

composed by three nanometric single crystals. Compared to the smaller size 

nanoparticles, the larger ones should present a less-defective surface as noticed 
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from the reduced strain noticed from XRD analysis (chapter 6), which can influence 

among others the optical properties. 

 

Figure 5.12 Crystallite size (black, squares) from XRD analysis and particle size (red, circles) from SEM 
images analysis of nano BiFeO3 as a function of the synthesis temperature. 

In order to obtain the size distribution of different nanoparticles, 150 particles of 

every sample (synthesizing at different temperature and the same soaking time) 

have been selected from SEM image for calculating the size distribution by one 

homemade program. The size distribution has been obtained in different size range. 

Figure 5.13 shows the size distribution for different synthesis temperature at the 

same soaking time. The mean sizes for different synthesis temperature are 32 nm, 

49 nm, 120 nm and 189 nm. After analyzing the size deviation of different sample, 

we found that different size samples have the similar deviation value (20%), which 

means the growth mechanism for different nanoparticle is identical. 
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Figure 5.13 Zoom of the SEM images for BiFeO3 nanoparticles synthesized at different temperatures, 
being (a) 450 °C, (b) 500 °C, (c) 550 °C, and (d) 600 °C,  and the corresponding size distribution (e)-(h). 

From above analysis, it can be observed that different size BiFeO3 nanoparticles have 

been synthesized by three steps temperature program (chapter 5.1).  

5.4 Results on the synthesis of A-site doped BiFeO3 samples 

Nanoparticles of A-site doped BiFeO3 (Bi1-xAxFeO3-) using lanthanum (La) and 

calcium (Ca) have been synthesized using the same wet chemical methods, i.e. 

tartaric acid and ethylene glycol have been used as the complexant agents, fixing the 

cations through the 3D network structure as depicted in Figure 5.2. The mechanism 

has been presented in chapter 5.1. Furthermore, a similar temperature program is 

used during the synthesis process, however, one important point needs to be 

noticed, meaning that the first step in the temperature process is changed 

depending on the doping ions. The corresponding DSC and XRD analysis are shown in 

Figure 5.14. 
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Figure 5.14 (a) DSC analysis of 10% La doping in BiFeO3, compare to the result of non-doping result, 
the combustion exothermic peak shift to high temperature. (b) The XRD results of La/Ca 10% doping 

sample synthesizing at 600 °C through adjust the first temperature step. 

In order to understand and optimize the synthesis process, analysis of the DSC 

results from room temperature to the higher calcined temperature (600 °C) is 

performed. As mentioned before, an intense peak corresponding to the 

decomposition of solvents is observed around 200 °C. However, in comparison to the 

process related to obtain pure BiFeO3, it can be found that the heat exchange peak is 

shifted to a lower or higher temperature (Figure 5.14 (a)) depending on the doping 

cations76, 164. The violent decomposition reaction occurring around 250°C can be 

deemed as a self-heating, leading to an apparent acceleration of the decomposition. 

There may also be a contribution of an self-combustion reaction165, with the nitrate 

acting as an oxidizer. In fact, different nitrates have different catalytic activity, thus 

mixing them with dopants in the base material, the dopant will have an influence on 

the heat exchange166 directly seen from the temperature shift of the decomposition 

peak for different nitrates. For this doping level, after close inspection of XRD data 

(Figure 5.14 (b)), we deduce that both La and Ca 10% doping on the Bi-site allows 

keeping the R3c structure. 

We can explain the doping process in the A-site of BiFeO3 in the following manner: 

when introducing A-site doping ions, because of the different ionic radius, they can 

induce strain fields that may disturb grain growth process78. As a matter of fact, 

doping ions act as pinning centers located in the grain boundaries and therefore 

limiting grain boundary mobility167. The interaction between dopants and 

surface/grain boundaries may as well decrease the ratio between surface and grain 

boundary energies, thus, leading to the stabilization of surface and grain 
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boundaries167-168, which is similar to the effect created by a surfactant used to 

reduce the surface energy and stabilize surfaces. In addition, during the synthesis 

process, the effect of lubrication by the dopants affects particle agglomeration169, 

thus the mean particle size will consequently decrease. In addition, the dopant drag 

effect is produced when the dopant is segregated to the grain boundaries due to a 

low solubility on the host component. If located at the grain boundaries170-171, the 

dopant will slow down the diffusion, resulting in an inhibition of grain growth. On 

the other hand, when doping with divalent cations having thus a different oxidation 

state than Bi3+,other electronic defects should be formed in order to neutralize the 

charge imbalance introduced by the dopant76, 172-173. In the case of Ca2+ cations, they 

will introduce an excess of negative charge that can be compensated by different 

defects, like the creation of oxygen vacancies or reduction of pre-existing cations, as 

it will be created the Bi3+ cationic vacancies. These defects may also affect the grain 

growth. The grain size of different doping BiFeO3 will be presented in the chapter 

6.1.3. 

5.5 Conclusion 

In this part, different size BiFeO3 and doped nanoparticles are synthesized by wet 

chemical methods. The crystal growth mechanism is studied through modified 

Johnson-Mehl-Avrami function and surface nucleation mechanisms for different size 

samples have been studied. For different synthesis temperature, we can obtain 

different size BiFeO3, for smaller size BiFeO3, the nanoparticle is single crystal, 

however, when particle size is bigger, it includes two or three single crystal BiFeO3 in 

one BiFeO3 particle. Doping samples synthesized by the same wet chemical method 

by controlling the ratio of chelants and metallic ions. When introducing other cations, 

these doping ions reduce the solvent decomposition temperature through the 

synthesis process, whereas defects can be introduced through the doping ions.  
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6 Structure, electronic/chemical states and magnetic properties of 

BiFeO3 particles  

6.1 X-ray diffraction results 

6.1.1 X-ray diffraction results of nano-BiFeO3 

Rietveld method has been used to refine the XRD diffraction data as shown in Figure 

6.1. Mean crystallite sizes estimated from XRD data of pure phase samples are 

obtained through the Rietveld refinement together with the structural parameters 

and micro-strain. All samples were determined to structurally correspond to 

rhombohedral symmetry, R3c space group. Lattice parameters, crystallite size and 

micro-strain values are refined by the Rietveld method and the corresponding results 

are given in Table 6.1. According to The Williamson-Hall function (4.4) and 

refinement results of different particle size BiFeO3, the crystal size and microstrain 

can be obtained from the value of slope and intercept, which has been shown in 

Figure 6.2. 



Xiaofei BAI 

62 
 

 



Xiaofei BAI 

63 
 

 

Figure 6.1 XRD data and corresponding Rietveld refinement results of different size nano-BiFeO3: (a) 

30nm, (b) 50nm, (c) 120nm, and (d) 190nm  
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Figure 6.2 Williamson-Hall method for crystal size (intercept) and microstrain (slope) 

Table 6.1 Structural parameters ahex and chex in hexagonal notation, pseudocubic tetragonality cc / ac 

calculated from corresponding pseudocubic cc and ac unit cell, unit cell volume Vhex, crystallite size and 

micro-strain for different nano-sized BiFeO3 particles. 

 30 nm 50 nm 120 nm 190 nm 

ahex (Å) 5.5794(2) 5.5781(5) 5.5791(3) 5.5781(6) 

chex (Å) 13.8703(7) 13.8682(5) 13.8712(9) 13.8683(9) 

ac (Å) 3.9452(5) 3.9443(5) 3.9450(4) 3.9443(6) 

cc (Å) 4.0040(1) 4.0030(4) 4.0042(7) 4.0034(3) 

cc / ac 1.0148(9) 1.0149(7) 1.0150(1) 1.0149(8) 

Vhex (Å
3
) 373.9(4) 373.7(1) 373.9(2) 373.7(1) 

Rp(%) 8.39 8.22 8.02 8.13 

Rwp(%) 13.71 13.15 13.23 13.03 

Crystallite (nm) 285 395 466 612 

Microstrain (ε) (24.74.8)10
-4

 (14.62.5)10
-4

 (8.43.0) 10
-4

 (8.22.8) 10
-4
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Figure 6.3 Zoom in of the XRD fine scanning patterns shown in Figure 6.1 around (104) and (110) 

peaks for different size BFO particles (bottom to top, particle size is 30nm, 50nm, 120nm and 190nm). 

It can be seen that the lattice parameters a and c do not show much change as a 

function of crystal size, meanwhile, the cc/ac ratio and rhombohedral distortion 

varying from 1.0148 to 1.0149 and from 1.46% to 1.47% respectively when the grain 

size is decreased from 190 nm to 30 nm. Therefore, the polarization which is directly 

proportional to the square-root of the distortion is believed to remain almost 

unchanged in the studied size range. From the detail of XRD pattern, the reduced 

separation of (104) and (110) peak positions [2(104)-(110)] which would coalesce into 

a single (200) peak in the cubic phase (Figure 6.3). The symmetric broadening of the 

XRD peaks indicated that microscale internal strain varies from crystal to crystal. 

Using the Bragg peak widths extracted from the Rietveld analysis and applying the 

Williamson-Hall methods, we can access the crystallite size as well as the so called 

inhomogeneous strains (Table 6.1) or local distortions arising from defects including 

vacancies, dislocations or interfaces, among others. 

It is worth mentioning that the crystallite size coincides with the size of the smallest 

particles while the bigger nanoparticles are constituted of some crystallites, as we 
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can determine from SEM images, presented in chapter 5.3 (Figure 5.12). By 

decreasing the particle size, the inhomogeneous strain corresponding to local 

distortion related to defects rises up by three times from the biggest to the smallest 

particles as reported in Table 6.1. That is, downscaling BiFeO3 particles results then 

in an enhancement of the amount and/or strength of defects and their 

corresponding local strains. These details on the strain dependent on the size will be 

afterwards related to the effect on the optical properties of BiFeO3 particles. 

6.1.2 X-ray diffraction results of A-site doped nano-BiFeO3 

X-ray diffraction analysis of different size La or Ca doped BiFeO3 particles are shown 

in Figure 6.4. Rietveld method is used for crystal parameter and the results are 

compared to those of undoped samples. The final structural parameters refined by 

the Rietveld method is shown in Table 6.2. The focus of our work being to induce 

variations on the optical properties but as few as possible changes on the 

ferroelectric properties, strongly linked to the structure, we limited the doping to 10% 

for each dopant. 

About the different ionic radius of the dopants within the R3c BiFeO3 structure, first 

we note that La ion having almost the same ionic radius than Bi ion, when La is 

occupying the A site of BiFeO3, both the Fe-O bond within the FeO6 octahedron and 

the off-centering of the ferroelectric polarization along the hexagonal [001]h 

direction are predicted to be substantially reduced76, 174. La doping mainly induces 

the oxygen octahedral tile in BiFeO3, which can affect the photo-induced properties 

and it will be explained in next chapter 7. Bivalent Ca ion having a much smaller ionic 

radius than Bi ion, when used for doping in the A site of BiFeO3, two effects will be 

produced78, 128-129, 173: the unit cell crystal volume is compressed as the Fe-O-Fe angle 

increases; the Ca2+ divalent dopant, in contrast to the trivalent one Bi3+, creates 

positive charge imbalance, thus to maintain valence equilibrium, oxygen vacancies 

and/or holes can be produced, affecting the band structure of materials and 

probably leading to new localized electronic states. 
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Figure 6.4 X-ray diffraction analysis for 10% La and Ca doping BiFeO3 samples at different particle size 

by Rietveld method. 
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Table 6.2 Structural parameters ahex and chex in hexagonal notation, pseudocubic tetragonality cc / ac 

calculated from corresponding pseudocubic cc and ac unit cell values, unit cell volume Vhex, crystallite 

size and micro-strain for different doped nano-sized BiFeO3 particles 

 La 5% 35 nm La 5% 100 nm La 10% 35nm La 10% 100 nm 
ahex (Å) 5.5761(5) 5.5771(0) 5.5757(4) 5.5762(8) 

chex (Å) 13.8443(8) 13.8366(9) 13.8703(7) 13.8080(3) 

ac (Å) 3.9429(3) 3.9436(1) 3.9426(4) 3.9430(3) 

cc (Å) 3.9965(3) 3.9943(1) 4.0040(3) 3.9860(3) 

cc/ac 1.0135(9) 1.0128(6) 1.0155(7) 1.0109(1) 

Vhex (Å
3
) 372.7(9) 372.7(2) 371.9(0) 371.8(4) 

Rp(%) 11.08 8.08 9.07 11.06 

Rwp(%) 17.76 13.48 14.04 17.82 

Crystallite (nm) 305 435 285 405 

Microstrain (ε) (60.42.3)10
-4

 (40.21.5) 10
-4

 (62.32.3)10
-4

 (43.81.5) 10
-4

 

 

     

 Ca 5% 40 nm Ca 5% 100 nm Ca 10% 40nm Ca 10% 100 nm 
ahex (Å) 5.5722(1) 5.5725(2) 5.5750(6) 5.5699(2) 

chex (Å) 13.8391(0) 13.8294(2) 13.7545(5) 13.7497(5) 

ac (Å) 3.9401(4) 3.9430(3) 3.9421(6) 3.9385(3) 

cc (Å) 3.9950(0) 3.9860(3) 3.9706(0) 3.9692(1) 

cc/ac 1.0155(7) 1.0109(1) 1.0072(1) 1.0077(9) 

Vhex (Å
3
) 372.1(8) 371.9(1) 370.2(3) 369.4(2) 

Rp(%) 10.97 12.22 12.50 11.43 

Rwp(%) 16.75 18.47 17.91 16.55 

Crystallite (nm) 215 305 216 285 

Microstrain (ε) (79.92.3)10
-4

 (57.11.5) 10
-4

 (842.4)10
-4

 (62.91.3)10
-4

 

From Table 6.2, compare to lattice parameter of BiFeO3 synthesizing at same 

temperature in Table 6.1, it is clear that the crystallite size decreases with larger 

doping. The interaction between the dopants and surface/grain boundaries may 

decrease surface energy/crystallite boundary energy, thus the particle size is smaller 

than for pure BiFeO3 synthesized at the same temperature (seen chapter 5.2). 

Comparing the cc/ac values of samples with different doping and dopants, it can be 

seen that these values are weakly changed and close to BiFeO3 ones, meaning that 

the polarization linked to such structure is expected to be roughly the same between 

samples presenting La or Ca doping. However, comparing microstrain values of these 
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samples to BiFeO3 ones, those of La/Ca doped BiFeO3 samples are increased by an 

order of magnitude, which is expected to be caused not only by the size decrease 

but also by the increase of disorder induced by the doping. 

6.1.3 Temperature dependence of X-ray diffraction results of different size BiFeO3 

particles 

Temperature dependence of X-ray diffraction parameters of different size BiFeO3 

particles are shown in Figure 6.5-Figure 6.7. The crystal parameters (ahex, chex and V) 

of different size BiFeO3 particles at different temperature are determined using JANA 

2006, with the same procedure as for the X-ray diffraction experiments and analysis 

performed at room temperature. From Figure 6.5-Figure 6.7, it can be seen that the 

value of crystal lattice parameters increase with temperature increasing, which is in 

well agreement with earlier data from Bucci et al64., the variation rate of crystallite 

lattice parameter are shown in Table 6.3. It can be seen that there are almost no 

change but a small jump around Néel temperature for different size samples in ahex 

and chex lattice parameters with temperature increasing. The cell parameters 

describe a quasilinear temperature evolution with similar expansion coefficients for 

ahex and chex (Table 6.3). This result is in agreement with the earlier observation of 

Bucci et al64 and Haumont et al.175. It is remarkable that this is a support of the 

strong spin-lattice coupling, and it is still more important to underline our results 

since the investigated samples were nanoparticles and the experiments were carried 

out using a laboratory diffraction setup. The bond length can weakly change at the 

antiferromagnetic to paramagnetic transition as reported by Haumont et al.175, being 

this transition characterized by a continuous magnetic structure change from a 

particular temperature T and achieving the actual Néel transition at TN. In our 

results, although the unit cell changes are very subtle for nanoparticles data, this 

temperature can be clearly evidenced through the lattice parameters analysis vs T 

(ahex, chec and V) shown in Figures 6.4-6.6, depicting an inflection point. Through 

above analysis, we deduce that the magnetic structure arranges itself continuously 

between T  390K and TN  580K for smaller particles and between T  400K and TN 
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 610K for larger particles, all these characteristic temperatures depending on the 

particle size  are summarized in Table 6.3. 

We want to comment on another intriguing point related to the variation of TN 

values as the particle size changes, also shown in Table 6.3; TN decreases from  650 

K for micro-BiFeO3 to  580 K for 30 nm BiFeO3. Similar results have been reported 

by Sverre et al.79 and Landers et al36 through X-ray diffraction and Mössbauer 

spectroscopy. The finite size effects on structure properties and Néel temperature, 

which is the major effect factor in our case. Antiferromagnetic domains can be 

controlled by electric field induced switching of ferroelastic domains, and 

antiferromagnetic planes in BiFeO3 are perpendicular to the polar axis176. Phase 

transition in BiFeO3 nanoparticles has observed to a high-symmetry paraelectric 

phase with particle size decreasing80, which can influence the magnitude of 

polarization. Meanwhile, the antiferromagnetic ordering may thus be influenced by 

the polarization. The decrease in TN could be associated with the decrease in 

spontaneous polarization, in addition to the decrease in the number of the 

antiferromagnetic interactions with decreasing particle volume. This is in agree with 

the dielectric anomalies at TN in BiFeO3
177. The TN anomaly for 50 nm BiFeO3 is 

related to the Dzyalonshinkii-Moriya (DM) interaction when particle size approaches 

to 62 nm, which will be explained in chapter 6.4. 
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Figure 6.5 Volume variation (hexagonal notation) of different size BiFeO3 as a function of temperature, 

(a) 30 nm; (b) 50 nm; (c) 120 nm; and (d) 190 nm. 

 

Figure 6.6 Parameter ahex variation of different size BiFeO3 as a function of temperature, (a) 30 nm; (b) 

50 nm; (c) 120 nm; and (d) 190 nm. 
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Figure 6.7 Parameter chex variation of different size BiFeO3 as a function of temperature, (a) 30 nm; (b) 

50 nm; (c) 120 nm; and (d) 190 nm. 

Table 6.3  Lattice expansion coefficients of different size BiFeO3 particles 

Sample ahex10-5 (Å/K) chex10-5 (Å/K) V10-3 (Å 3/K) T TN 

30 nm 5.7(2)0.2 19.3(4)0.8 12.9(8)0.5 390 K 580 K 

50 nm 5.9(9)0.1 19.6(6)0.4 13.3(7)0.3 390 K 600 K 

120 nm 5.9(7)0.1 19.9(5)0.3 13.4(4)0.2 400 K 600 K 

190 nm 5.9(2)0.08 19.3(8)0.2 13.1(8)0.2 400 K 610 K 

Micro 6.0(8)0.1 21.4(0)0.2 13.9(8)0.3 400 K 650 K 

6.2 Raman spectra for different size BiFeO3 

As mentioned before, for BiFeO3, the ferroelectric order originates from the 

stereochemical activity of Bi lone electron pair. The A site Bi3+ ion shows a valence 

electron configuration of 6s26p0, the lone 6s2 electrons of Bi3+ ion hybridize with both 

empty 6p0 orbitals of Bi3+ ion and the 2p6 electrons of O2- ion to form Bi-O covalent 

bonds, which leading a structure distortion and ferroelectric order69-70. This 

ferroelectric mechanism is different from other conventional perovskite oxide 

ferroelectrics.  
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For BiFeO3
132, 133, we identify phonon modes containing information of different 

atomic distortions, sensitive to structural phase transition, but also to magnetic 

order. About the available optical modes from the group theory, it is predicted that 

BiFeO3, belonging to R3c space group, it should display optical phonon modes given 

by178-179: 

  2

,,

1 5943 AEAcR RIRRIR

opt   [6.1] 

The A1 and E modes are both IR and Raman active, whereas the A2 modes are both IR 

and Raman inactive. Further, to detect these different phonons, propagation 

direction against light polarization can be used. In fact, the A1 modes are polarized 

along z and the doubly degenerate E modes polarized in the x-y plane. Thus typically 

A1 phonon modes detected are longitudinal optical (LO) phonons and E are 

transverse optical (TO) vibrational modes. 

6.2.1 Room temperature Raman spectra of BiFeO3 nanoparticles 

First of all, Figure 6.8 shows the Raman spectrum for BiFeO3 micrometric particles, 

which provides a reference for the investigation on BiFeO3 nanoparticles. We note 

that the number of Raman modes in Raman spectrum are more than 13 modes 

expected in R3c space group. Given the high sample quality and the fact the no 

Raman modes are observed from impurity phases (Bi2O3, Fe2O3, Fe3O4 etc.), we 

conclude that all recorded Raman modes belong to BiFeO3. On the other hands, all 

the Raman modes are infrared-active, as a conclusion, the LO-TO splitting is 

expected as a result of long range electrostatic forces180, which can insert other 

modes in the Raman spectrum. 
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Figure 6.8 Room temperature Raman spectra of micrometric size BiFeO3 powders in the spectral 

range 50-600 cm
-1

. The first order -point phonons are visible below 600 cm
-1

, together with mode 

symmetries taken from Ref.
181

 and predominantly involving atomic species taken from the first-

principles study in Ref.
132

. The modes are numbered according to ascending frequency. 

 

Figure 6.9 Room temperature Raman spectra of different size BiFeO3 nanoparticles in the spectral 

range 50-600 cm
-1

. 
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Compared to BiFeO3 micro-particles data (Figure 6.8), BiFeO3 nanoparticles (Figure 

6.9) have the same spectrum assignment as a whole. However, differences also exist 

form the details which will be analyzed in the following. Even though BiFeO3 has 

been extensively studied with Raman spectroscopy, the assignment of the phonons 

is still controversial. In this work, we will adopt the assignments from Refs. 181 and 132 

as our starting point. The peak assigned as A1 and E features are also in reasonable 

agreement with calculated and experimental results132, 182. For BiFeO3 Raman spectra 

which have been largely reported183-186, the lower wavenumber vibration modes 

below 170 cm-1 give the information about Bi atoms and the oxygen motion strongly 

dominates in the modes above 267 cm-1. The Fe atoms are mainly involved in the 

modes between 152 and 261 cm-1 and also contribute to some high wavenumber 

modes. We attribute the low modes to the E (LO2) one at 140 cm-1, and to the A1 

(TO1) one at 170 cm-1, which overlap with the A-site displacement caused by the 

activation of Bi lone pair. These low modes are predominantly linked to the Bi atom. 

The mode at 220 cm-1 has been assigned as the oxygen mode with A1 symmetry 

which is related to the structure distortion away from the ideal 3Pm m structure, 

which has been assigned to A1 (O). The mode at 260 cm-1 is assigned as E mode with 

is related to the Fe-O covalent bond and corresponding Fe-O-Fe angle. The modes 

higher than 600 cm-1 belong to the second-order Raman scattering which is related 

to the electron-phonon interaction in BiFeO3. If the structure distortion happened, 

the spin-phonon and electron-phonon coupling will happened178 and obvious Raman 

modes change can be observed in the second-order scattering, which will explain in 

detail in the doping BiFeO3 sample. The computed frequencies of the A2 modes are 

109, 261, 308, 446, and 579 cm-1, respectively. These frequencies, however, cannot 

be compared to experimental values since no experimental inelastic scattering data 

are presently available.  

We want to qualitately focus on the shape, intensity and wavenumber values of the 

peaks between the multi-crystal BiFeO3 microparticles spectrum (Figure 6.8) and the 

BiFeO3 nanoparticles spectra (Figure 6.9). For micro-BiFeO3, Voigt functions have 

been used for fitting the Raman modes and different modes have been marked 

(Figure 6.8). A notable intensity change in the peaks with varying size has been 
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observed. Obviously, the peaks are intensified with crystal size increasing. A similar 

phenomenon has been reported in Refs. 35, 157. The increase in peak intensity and 

slight change of wavenumber of normal A1 mode with increasing crystal size implies 

the enhancement in the contribution of the Bi-O vibrational mode, which might be 

caused by different lattice distributions and change in the spin-phonon coupling in 

the different size BiFeO3 nanoparticles80. We recall that the first order -point 

phonons are visible below 620 cm-1 and thus we can obtain detailed information on 

the structure of the sample. Since the Raman spectra of nano-BiFeO3 (Figure 6.9), has 

the same mode assignment than the micro-BiFeO3 (Figure 6.8), we conclude that the 

crystal structure doesn’t change when the particle size is reduced to 30 nm, keeping 

the R3c structure79-80. However, when observed in detail, some fine disparities can 

be found. Compared to the micro BiFeO3 spectrum, for the nano-BiFeO3 two modes 

at 360 cm-1 and two other ones at 270 cm-1 are merged together with decreasing 

the particle size. Another difference is observed on the relative intensity of the 

modes between 470 cm-1 and 530 cm-1. The mode at 360 cm-1 is related to the 

oxygen chain of octahedra and relative intensity variation means the octahedral 

environment has changed as particle size decreases. Although in our work the 

second order Raman scattering is not shown because of the wavenumber limit, for 

the purpose of understanding the present data, we note Johan et al.178 reported 

mode combination between first order scattering (below 900 cm-1) and second order 

(above 900 cm-1). According to their results, the mode at 470 cm-1 and 530 cm-1 

are combined with the mode at 950 cm-1 and 1150 cm-1. However, in our result, the 

mode at 530 cm-1 is still ambiguous. The relative intensity variation of modes at 

470 cm-1 and 530 cm-1 means the different electron-phonon interaction which can 

be explained by Fröhlich mechanism187. Some articles have reported that there exists 

a critical particle size (8 nm) for phase transition of BiFeO3 when particle size 

decreasing79-80. As shown in our case, through the relationship between Raman 

modes and crystal structure, the shifts of the Raman modes with decreasing the 

particle size in the low wavenumber range from 100 to 200 cm-1 is presented in 

Figure 6.9. 
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Figure 6.10 displays the Raman spectrum of the low wavenumber region (80 cm-1 to 

200 cm-1) of micro-BiFeO3 (Figure 6.10 (a)) together with the wavenumber values of 

the corresponding peaks for the different nano-BiFeO3 samples (Figure 6.10 (b)). 

Striking finite length scale effects are evident from the observed nanoparticle 

response in this wavenumber range. From the fitting results (Figure 6.10 (b)), we 

distinguish that the Raman mode E (TO) near 110 cm-1 has shifted to lower 

wavenumber values with particle size decreasing.  

 

Figure 6.10 (a) Raman spectrum and corresponding fitting of micro BiFeO3 at low wavenumber from 

80 cm
-1

 to 200 cm
-1

; (b) Shifts of the Raman modes with particle size increasing for the three different 

Raman modes shown in (a). 

Like mentioned above, the low wavenumber vibrational modes below 170 cm-1 give 

the information about Bi atoms. For the rhombohedral of BiFeO3, Bi cations move 

out-of-phase with respect to FeO6 octahedral along the polar direction, while the 

two adjacent FeO6 octahedral counter rotate about the [111] axis. Fe cation 

displacements are fairly large, so they move off-center in the octahedral. These 

displacements can be evidenced by displacive phonons80, 179. The systematic red shift 

of the E (TO) vibrational mode (Figure 6.10 (b)) and the relative intensity change of 

the Raman modes at 360 cm-1, 470 cm-1 and 530 cm-1 with decreasing size (Figure 6.9) 

strongly support its assignment as the soft mode driving the ferroelectric transition. 

Moreover, the E mode is under damped in the smallest particle size 30 nm BiFeO3, 

suggesting a first order nature. This means that the stereochemical activity of the Bi 

lone electron pair plays a main role in the change of Bi-O covalent bond. 

According to the above analysis and based on the observed phonon shift trend, 

decreasing the crystal size implies a change of the Bi-O covalent bonds as a result of 
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the decline in the stereochemical activity of the Bi lone electron pair. This change 

weakens the intensity and broadens the width of the Raman modes, special for low 

wavenumber ones. 

6.2.2 Temperature dependence of BiFeO3 Raman spectrum 

Since the Raman spectra are sensitive to atomic displacements, the shift in Raman 

modes with temperature can provide valuable information about lattice distortions 

and electric polarization. 

From now on, to simplify the temperature dependence analysis and get qualitative 

information on the thermal evolution of low wavenumber range of the Raman 

spectra of different size nano-BiFeO3, we have fitted these data with Asy2sig 

functions. Representative Raman spectra deconvolution for different size BiFeO3 at 

room temperature is shown in Figure 6.11, where a strong asymmetry for the low 

wavenumber modes is observed. It can be seen that the phonon anomaly is very 

pronounced for the band at 140 cm-1. 

 

Figure 6.11 Below 200 cm
-1

 raw Raman spectra (black lines) and deconvolution using Asy2sig 

functions (green and red lines) for different size BiFeO3 nanoparticles. 
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To emphasize on these anomalies, Figure 6.12 presents a more detailed view of the 

temperature dependence of the modes at 140 cm-1 and 170 cm-1. For different 

BiFeO3 nanoparticles, a closer inspection of these data reveals a noticeable spectral 

change in the vicinity of 500-550 K. The anomalies in the full width at half maximum 

(FWHM) (Figure 6.13) and in intensity (not shown) also clearly point out two changes 

of regime. We note that the earlier reported phonon anomalies for the BiFeO3 

ceramic at low temperature (140 K and 201 K) link to surface confined phase 

transition188, and another transition of BiFeO3 related to its surface layer has been 

confirmed using impedance analysis and grazing incidence x-ray diffraction at 550 

K189. Due to the surface has its own symmetry and undergoes its particular phase 

transition, surface-sensitive probes such as backscattering Raman have shown an 

onset of phonon softening at 543 K182.  

To figure out if these anomalies are related to the surface effects, we analyze the 

data from different size nanoparticles. At first sight, the considerable spectral 

changes at T*182 suggest a structural rearrangement which has to be subtle on a local 

level. From the X-ray diffraction data (chapter 6.1.1), the T* transition for BiFeO3 

nanoparticles has also been deduced from X-ray diffraction analysis, with very similar 

T* values (400 K) for different size BiFeO3 (Figure 6.5-Figure 6.7, Table 6.3). 

However, it is hard to detect surface layer properties transitions for nanoparticles by 

X-ray diffraction using laboratory setups, since it is essentially sensitive to the 

volume of the crystal. Moveover, the crystalline size of the nanoparticles being in the 

nanometric scale, the width of the X-ray diffraction peak of these powders is 

intrinsically large due to size effects, thus any surface effect is smeared out. We note 

that it is also difficult to detect this transition from the optical characterization in the 

UV and visible range (allowing us to determine the band gap value and Urbach 

energy), corresponding data and analysis are included in chapter 7. Adding all these 

effects, these anomalies seen by Raman spectroscopy are speculated to be related 

to the skin layer structure of BiFeO3, since the elongated out-of-plane lattice 

parameter has been verified within a few nanometers from the surface188-189. 
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Figure 6.12 Temperature dependence of Raman modes (140 cm
-1

 and 170 cm
-1

) shift for different 

particle size: (a) 30 nm, (b) 50 nm, (c) 120 nm and (d) 190 nm 

 

Figure 6.13 Temperature dependence of the full width at half maximum (FWHM) for different Raman 

modes (140 cm
-1

 and 170 cm
-1

) of different particle size: (a) 30 nm, (b) 50 nm, (c) 120 nm and (d) 

190 nm 
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It is known that any static and dynamic changes in the structures should, in principle, 

lead to a variation in the phonon behavior, and the analysis of the wave number, 

intensity, and line width evolution of the whole spectra as a function of temperature. 

A weak thermal transition region, limited by two Raman anomalies is observed from 

T* to Ts, Ts being the transition temperature related to relaxation energy and 

magnetic properties at the surface, in different size BiFeO3 nanoparticles (Figure 6.12 

and Figure 6.13). The summary of the values of these anomalies are shown in Table 

6.4. We speculate that this Ts transition is related to the BiFeO3 skin layer and thus it 

should be sensitive to the surface to volume ratio of the particles. Thus, comparing 

the Raman shifts and the corresponding FWHM data of different size nanoparticles 

(Figure 6.12 and Figure 6.13), we notice that the upper value of this region, Ts, for 

different size nanoparticles decreases with particle size decreasing. Indeed, Ts is 

reduced from 600 K to 510 K. It means that the different size BiFeO3 nanoparticles 

have different phonon energy state for the skin layer. The skin will more strongly 

contribute to the Raman spectra on samples with a large surface to volume ratio. It 

has been reported that if a skin layer exists, a core-shell structure composed by a 

bulk-like BiFeO3 core and a BiFeO3-skin layer shell represents quite accurately any 

BiFeO3 nanoparticle. The magnetic properties of these nanoparticles have been 

measured evaluating the zero-field cooling and field cooling magnetization 

experiments, and with particle size decreasing, the surface contribution of smaller 

particle is predominant35. In our case, from the Figure 6.12 and Table 6.4, lower Ts 

values can be observed for smaller size nanoparticles, which is in agreement with the 

reported data on other BiFeO3 nanoparticles. 

Table 6.4 Temperature transitions observed from low wavenumber Raman modes (140 cm
-1

 and 

170 cm
-1

) for different size BiFeO3 nanoparticles 

Sample T
 
(K) Ts (K) 

30 nm 390 520 

50 nm 400 550 

120 nm 400 600 

190 nm 400 610 
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As mentioned begin, the Raman modes at these low wavenumbers are mainly 

related to the phonon of Bi atom, the observed phonon anomalies as a function of 

temperature illustrate a difference of Bi state in the surface and in the bulk due to 

surface reconstruction/relaxation and some other local defects being also possible, 

but in any case essentially being predominant at the surface. Jarrier et al.188 have 

already reported that the some defects exist at the surface of BiFeO3 samples due to 

bismuth volatility, the most probable defects are Bi vacancies due to bismuth 

volatility. In our case, due to the low temperature synthesis of our samples, Bi should 

be in a stoichiometric state. Nevertheless, other surface effects can be claimed to 

produce similar polar effects as those reported in Ref 188. For instance, as we will see 

in chapters 6.2.3 and 6.2.4, a change on the Fe valence at the surface compared to 

the bulk of the nanoparticle is possible, as well as the stabilization of other 

absorbates, such as FeOOH. Thus, we note that these surface effects can effectively 

change the local electronic structure and bonding energy. As it has been seen in Ref 

189, the variation of lattice parameter at the surface, as indicated by the grazing 

incidence XRD, induce the strong uniaxial strain in the surface189, which further 

induces the creation of a shallow impurity level resulting in the structure release at 

the surface. Similar effects are the possible disorder origin in our systems, affecting 

the surface structure and changing the Bi sublattice with decreasing the particle 

size80, which is likely to be a plausible explanation for the different surface transition 

temperatures as a function of the particle size.  

6.2.3 Raman spectra of A-site doped BiFeO3 particles 

The discovery of the unusual multiferroic together with an observed magnetoelectric 

coupling in BiFeO3 have generated a large amount of scientific research. Among 

different effects, isovalent and non-equivalent atomic substitution on the Bi and/or 

Fe site can destroy the spin cycloid and affect the magnetoelectric coupling76, 190-191. 

Upon substitution on the Bi3+-site, this induced distortion can eventually lead to a 

perturbation of the Bi 6s lone pair electrons and a concurrent of a change in the 

space group form the polar R3c to nonpolar space groups, depending on the nature 

of the  substituting element. In this work, La3+ and Ca2+ ions have been used for 
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substitution atoms on the Bi3+-site, for different reasons: La3+ ions represent an 

isovalent substitution with a small change in the ionic radius from 116 pm to 117 pm 

between La3+ and Bi3+, whereas Ca2+ ions present a different valence state and very 

different ionic radius, which implies that the substitution introduces a significant 

lattice distortions as well as perturbing the electronic landscape and in particular the 

band gap. 

Here, La and Ca doping of BiFeO3 samples have been achieved following the 

synthesis presented in chapter 4, keeping a low dopant concentration (5 mol% and 

10 mol%). The purity and crystal structure of the Bi1-xLaxFeO3 (0  x 0.1) and Bi1-

xCaxFeO3- (0  x 0.1) samples prepared for the Raman measurements were 

assessed on the basis of the long scan XRD data (chapter 5, Figure 5.14). For these 

dopants and keeping a dopant concentration lower than 10%, the diffraction pattern 

was characteristic of R3c symmetry, similar results being reported in Ref. 78, 128, 174, 178. 

The allowed Raman modes of La and Ca doped BiFeO3 compounds have been 

analyzed. Because Bi1-xLaxFeO3 (0  x 0.1) and Bi1-xCaxFeO3 (0  x 0.1) keep the 

same space group than BiFeO3, Raman modes depicted by doped samples are similar 

to those of the BiFeO3. We note that only the position and intensity of the modes are 

affected by this doping. In particular, the number of Raman allowed modes of doped 

samples is as follows178-179:  

  2

,,

1 5943 AEAcR RIRRIR

opt   [6.2] 

which are the same as those of BiFeO3. We recall that in BiFeO3, the low A1 (TO) 

mode at 170 cm-1, overlapping with the A-site displacement caused by the activation 

of the Bi lone pair , corresponds predominantly to Bi motions. The atomic motions of 

the modes at 220 cm-1 originate from the relative soft oxygen mode with A1 

symmetry. Thus, these two modes will be affected by the A-site doping. 

Firstly, in Figure 6.14, the Raman spectra for La doped BiFeO3 nanoparticles for 

different concentrations and sizes (Figure 6.14 (a) and (b)) are presented and 

compared to the corresponding data for BiFeO3 micro and nanoparticles (Figure 6.14 

(c) and (d)). At the low wavenumber range (Figure 6.14 (a) and (c)), it can be seen 
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that the E2 140 cm-1 and A1 170 cm-1 modes of La doped BiFeO3 nanoparticles are 

shifted to lower wavenumbers compared to those of BiFeO3 micro and nanoparticles, 

in particular for La 10% doped BiFeO3 (mode position indicated by vertical line and 

arrows). The decrease of size of the La-doped nanoparticles affects in the same way 

these modes as for BiFeO3 nanoparticles, and we notice a similar increase on the 

width of the modes. For the high wavenumber range (Figure 6.14 (b)), a close 

examination of the mode at 350 cm-1 reveals a gradual shift to lower wavenumber 

with La doping concentration increasing, when compared to BiFeO3 micro and 

nanoparticles spectra in the same range (Figure 6.14(d)) (reference mode position 

indicated by vertical lines and corresponding shifts by arrows). We also note that the 

intensity of the mode at 620 cm-1 (vertical line) is strengthen for all La doped 

samples presenting 35 nm-particle size, this latter effect has also been observed for 

30 nm-BiFeO3 nanoparticles (arrows). 

 

Figure 6.14 Room temperature Raman spectra of: [(a) and (b)] La doped BiFeO3 nanoparticles with 

different La content and size, as indicated in the legend, and [(c) and (d)] pure BiFeO3 micro and 

nanoparticles, with sizes indicated in the legend. The Raman spectra have been separated into 

different panels, for low spectral range (below 200 cm
-1

) [(a) and (c)], and for high spectral range (200 

cm
-1

 to 800 cm
-1

) [(b) and (d)]. Vertical dotted lines indicate the mode reference position for the pure 

BiFeO3 . Closest arrows indicate the evaluated position for the La doped BiFeO3 nanoparticles.  
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A general feature of BiFeO3 based compounds when doping on the A-site is 

realized178 is a strong shift of the A1 mode, which is identified by first-principle 

calculations as arising from both Bi motions and oxygen octahedra tilts in R3c 

BiFeO3
132. From Figure 6.14, the A1 mode at 220 cm-1 decreases in intensity for 

doped and undoped samples with smaller size. However, this A1 mode is weakly 

affected by the La doping, whereas the doping strongly affects the position of A1 

mode at lower wavenumber 170 cm-1 but also that of the E mode at 140 cm-1. This 

result can be expected based on the fact that the ionic radius of La and Bi are very 

close, thus Bi-sublattice and oxygen octahedra tilt distortions at low doping level is 

relatively weak. We point out that weaker shifts on the B-site can be noticed, such as 

on the E mode at 260 cm-1 associated to the Fe-O covalent bond174, 178, indirectly 

related to the Fe-O-Fe bond angle, which may affect the antiferromagnetic order, 

potentially seen from a larger spin canting effect, leading to the existence of a weak 

ferromagnetism stabilized by the La doping but also by the increase of the surface in 

smaller nanoparticles36. 

Continuing the study on oxygen motion modes, comparing the E Raman mode at  

350 cm-1 of La doped samples against BiFeO3 micro and nanoparticles in Figure 

6.14(b) and (d), respectively, it can be seen that the mode frequency shifts towards 

lower values with increasing the La doping. This significant variation in E modes due 

to La substitution signals that there is a significant destabilization of the oxygen 

octahedra chains, which in-turn affects the local FeO6 octahedral environment. Here 

we must remember that the activation of the Bi lone pair electrons and the 

corresponding [111] displacement of the Bi atoms depends on a Bi s-O p/s 

hybridization that, in itself, affects unit cell parameters and polarization. Loss of the 

Bi 6s lone pair electrons with the La3+ substitution will thus alter the oxygen 

octahedra arrangement even in the absence of direct lattice deformations, thus 

causing a contraction of the unit cell, resulting in the observed weakening of the E 

mode. Besides, ferroelectric polarization will be consequently decreased by the La 

doping. 

When comparing the high wavenumber range Raman spectra of different La doped 

samples with those of BiFeO3 nanoparticles, it can be found that the relative 
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intensity of the 620 cm-1 mode increases with decreasing the particle size. 

Nevertheless, a more detailed mode assignment is lacking for this vibrational mode 

at 620 cm-1, which is not fitted in the expected allowed Raman first -point 

phonons. Bielecki et al.178 have reported that in the polar R3c structure, though 

there can be found completely Raman silent A2 modes, infrared active vibrations can 

also be Raman active due to the loss of inversion center and the existence of Fröhlich 

mechanism related to the second-order scattering. Therefore, the mode at 620 cm-

1 is expected to be a Fröhlich activated mode187, following first-principles calculations 

that predicts the highest A2 mode may lie between 620 cm-1 and 700 cm-1, 

depending on the functional used132. Moreover, it can be seen that the intensity of 

this mode at 620 cm-1 is independent of the La dopant concentration. Here, we 

speculate that from the similar radius values of Bi3+ and La3+, weak effects are 

expected on the oxygen octahedra chains, then the LO-scattering becomes more 

relevant and allowed through Fröhlich mechanism187 in smaller BiFeO3 nanoparticles 

(doped and undoped). 

Ca doped BiFeO3 nanoparticles have also been investigated in this work. Divalent 

cation substituted Bi1-xAxFeO3- (A = Ca, Sr, Pb, and Ba) compounds have been 

already studied78, 192. Yang et al.129 showed the presence of a ferroelectric-

paraelectric boundary in Ca doped BiFeO3 thin films with an atomic fraction of 

0.125. Since the high doping will cause strong structural distortions due to the large 

difference in ionic radius, in order to study the rhombohedral phase for our 

nanoparticles, we limited the Ca doping to low concentration values (5%, 10%). 

Figure 6.15 shows the Raman spectra of different Ca dopant concentrations (5%, 

10%) and different size nanoparticles at low wavenumber (50 to 200 cm-1) and high 

wavenumber (200 to 800 cm-1) (Figure 6.15(a) and (b), respectively) compared to the 

corresponding data for BiFeO3 micro and nanoparticles (Figure 6.15(c) and (d), 

respectively) . It can been seen that, compared to BiFeO3 particles, one new mode 

appears at low wavenumber at 90 cm-1 and the modes are shifted to higher 

wavenumber (vertical line and arrows at 90 cm-1, Figure 6.15(a)). Still within the low 

wavenumber range, the E2 140 cm-1 and A1 170 cm-1
 are shifted from their ideal 
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values even for 5% Ca doped samples, but the shift sign depends on the size of the 

nanoparticles. In fact, for 10% Ca doped nanoparticles, the broadening of these 

modes is larger than for the 5% Ca doped ones, but for the 10% Ca doped ones 

spectra, these modes keep the reference center positions at 140 cm-1and 170 cm-1. 

We also notice other mode shifts and broadening, in particular the E mode at 

350cm-1 towards lower wavenumbers and the 470 cm-1 and 520 cm-1 modes 

towards higher wavenumbers, with the increase of doping. 

The structure of BiFeO3 is rhombohedral at room temperature, and the influence of 

Ca doping is to reduce both the volume and the rhombohedral distortion of the unit 

cell, which has been demonstrated by XRD patterns and corresponding analysis 

(chapter 6.1.2, Table 6.2). Published works have already reported that the Fe ions 

preserve their Fe3+ oxidation state78, 129 and, due to the divalent ions substituted in 

the doped compound, in order to equilibrate the charge balance, oxygen vacancies 

can be produced76, 128-129. Thus, we speculate that the observed broadness of the 

Raman modes, modes shifts to higher/lower wavenumber values and the 

appearance of a new mode in the low wavenumber range with the increase of Ca 

doping might be all caused by the reduction of the stereochemical activity of Bi lone 

pair electrons caused by a strong A-site lattice disorder and by the creation of 

oxygen vacancies. 
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Figure 6.15 Room temperature Raman spectra of: [(a) and (b)] Ca doped BiFeO3 nanoparticles with 

different Ca content and size, as indicated in the legend, and [(c) and (d)] pure BiFeO3 micro and 

nanoparticles, with sizes indicated in the legend. The Raman spectra have been separated into 

different panels, for low spectral range (below 200 cm
-1

) [(a) and (c)], and for high spectral range (200 

cm
-1

 to 800 cm
-1

) [(b) and (d)]. Vertical dotted lines indicate the mode reference position for the pure 

BiFeO3 . Closest arrows indicate the evaluated position for the Ca doped BiFeO3 nanoparticles.  

The Ca-doping will probably affect the magnetic properties of BiFeO3, thus, which 

also can be detected by Raman spectrum analysis78. In Figure 6.15(b), within the 

spectral range from 200 cm-1 to 600 cm-1, the Raman spectra mainly reflect the 

information of Fe, O and Fe-O-Fe bonds178, and it can be analyzed in view of the 

effect in the magnetic order. Similarly to La doping effects, at 350 cm-1, this E mode 

shifts to lower wavenumbers with the increase of Ca doping, which means the 

oxygen octahedra environment is changed by Ca doping. Since the Fe ions preserve 

their Fe3+ oxidation state, the substitution of Bi3+ by Ca2+ has at least two structural 

effects, and probably indirect charge effects. Firstly, it contracts the lattice and it 

straightens the Fe-O-Fe bond angle. Secondly, it distorts the oxygen octahedra, and 

lastly it creates oxygen vacancies to keep charge neutrality. 

From Figure 6.15(b), it also can be seen that the Raman modes at 470 cm-1 and 520 

cm-1 are shifted to higher wavenumbers and present larger widths with Ca doping 
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concentration increasing. Divalent doping on the A-site in Fe and Cr perovskites have 

been deduced to be an effect of the oxygen vacancies and the local distortions that 

they induce187. Due to these local distortions of the oxygen network, the Ca doping 

on the Bi-site should influence the Fe-O-Fe bond angle, straightening it. In ceramics 

samples, it has even been already reported an increase of the Néel temperature TN 

with Ca doping78. Moreover, since the Bi sublattice is also strongly affected by the 

loss of the Bi s-O p/s hybridization, the ferroelectric polarization and Curie 

temperature TC of these compounds are thus expected to present a lower value 

compared to undoped BiFeO3. From all these results, we can then speculate that for 

Ca doped samples the magnetoelectric coupling may be enhanced by this 

simultaneous increase of TN and decrease of TC
193. 
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6.3 Nanostructure through Electron Microscopies  

6.3.1 High Resolution Scanning Transmission Electron Microscopy for atomic 

scale structural characterization 

Figure 6.16 shows the as-acquired High Resolution Scanning Transmission Electron 

Microscopy (HRSTEM) images on pure BiFeO3 nanoparticles (120 nm) for two 

different indices of crystallographic plane, one oriented such that the incident 

electron beam is along <001>c (zone axis, Figure 6.16 (a) and (b)), and the second 

oriented along <111>c zone axis (Figure 6.16(c)). Figure 6.16(b) shows the HAADF 

STEM image from a region of the nanoparticle shown in Figure 6.16(a) (indicated in 

blue). It must be noted that contrast in HAADF STEM images emanates out of 

electron channeling along the atomic columns with IZ2, where I is the intensity of a 

bright spot on a dark background and Z is the effective atomic number of an atomic 

column along the zone axis139. In Figure 6.16(b), the brightest circles correspond to Bi 

atoms in <001>c columns, and the relatively dimmer contrast corresponds to Fe 

atoms along <001>c columns. From the structural projection of BiFeO3 along the 

<001>c direction (Figure 6.16(a), inset), we simulated the HAADF STEM contrast by 

JEMS software (Figure 6.16 (b), inset). The square-like lattice pattern of Bi atoms in 

the simulation (Figure 6.16(b), inset) is in agreement with what is observed 

experimentally (Figure 6.16 (b)). Similarly, the hexagonal-like lattice in HAADF STEM 

pattern of BiFeO3 structure simulated along <111>c zone axis (Figure 6.16(c), inset) 

depicts the corresponding experiment results (Figure 6.16(c)). It is important to 

realize that along the <111>c zone axis, every atomic column consists of equal 

number of Bi and Fe atoms, giving rise to the same intensity for all the columns.  
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Figure 6.16 The as-acquired HRSTEM images on pure BiFeO3 nanoparticles (120 nm) with two 
different crystallographic plane indices, one oriented such that the incident electron beam is along 

<001>c zone axis, (a) and (b), and the second oriented along <111>c zone axis, (c). We include 
simulated images (insets with red squares in (b) and (c)) and atomic structural models (blue sketches 

in (a) and (c)), obtained using JEMS software.  

Owing to the energy minimization of elastic and electrostatic, coexistence of various 

ferroelastic and ferroelectric domains can be observed in BiFeO3 samples. 

Polarization should lie along [111]c directions, thus, the interesting zone axis to 
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observe any atomic displacement should be <001>c. To characterize the nature of 

domains, the first step in this direction was filtering both the low and high frequency 

noise from the HAADF STEM images shown in Figure 6.16. Figure 6.17 (a) shows such 

a processed image from a selected part of Figure 6.16 (b), presenting a nanoparticle 

along <001>c zone axis. It can be seen from the simulated HAADF STEM image 

(Figure 6.17 (b)) of a monodomain BiFeO3 along <001>c zone axis that Fe atoms are 

all displaced in a particular <110>c direction from the center of the Bi square-like 

lattice, which is a projection of its original displacement along [111]c directions in R3c 

BiFeO3. The existence of Fe displacements along different diagonals in different 

regions of the image reveals the coexistence of ferroelectric domains. To understand 

such Fe displacements, we performed a line scan over 11.5 nm along a [1-10]c 

direction connecting 20 Bi atoms, on the processed image (Figure 6.17 (a) and (c)). 

For the first 7 nm along the considered line, it can be seen from the Bi and Fe 

intensities that the Fe off-centering is indeed along the diagonal of the Bi lattice, 

pointing towards the bottom right Bi atom of every square-like Bi lattice, denoted 

precisely as [110] c (arrow in Figure 6.17(a)). The long and short bond distances 

between Bi and Fe are 3.2 and 2.5 Å respectively. Subsequently, from 7 to 9.5 nm 

along the line, we see a complete flip of Fe off-centering to [-1-10]c direction, 

resulting in a reversal of short bond and long bond ordering. Clearly, atoms in 7 to 

9.5 nm and atoms in the first 7 nm belong to different ferroelectric domains. Beyond 

9.5 nm along the line, we observe no contrast of Fe atoms, revealing a shift of Fe 

atoms along the other diagonal [1-10]c (arrows in the Figure 6.17(a)), and hence 

belonging to another (or other set of) ferroelectric domain(s). Furthermore, we also 

observe a smeared out of Fe contrast from 7 to 9.5 nm which can be modeled as a 

combination of Fe displacements along [-1-10]c and [1-10]c directions (off-centering 

towards top-right Bi), suggesting the coexistence of ferroelectric domains in the 

thickness direction, too. All in all, based on <001>c zone HAADF STEM image 

processing on a 40 nm2 area of the sample, we can identify the coexistence of at 

least three different ferroelectric domains. This is our first strong evidence to show 

that our BiFeO3 nanoparticles synthesized via sol-gel processing present ferroelectric 

domains. 
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Figure 6.17 HAADF STEM image from a selected part of Figure 6.16 (b) after filtering both low and 
high frequency noise. The existence of Fe displacements along different diagonals in different regions 

of the image are observed, which reveals the coexistence of ferroelectric domains in BiFeO3 
nanoparticles. 

6.3.2 Chemical analysis of pure BiFeO3 and 10% La doped BiFeO3 nanoparticles by 

Electron Energy Loss Spectroscopy 

In the attempt to understand if the A site doping was homogenous and the possible 

electronic and chemical effects on the Fe site, we characterized 10%La (A-site) doped 

ferroelectric BiFeO3 nanoparticles. To facilitate an easy comparison with our STEM 

and Electron Energy Loss Spectroscopy (EELS) results on pure BiFeO3 nanoparticles, 

we selected 100 nm size particles, and observed them along <001>c zone axis. The 

first question we attempted to answer was whether La doping was uniform through 

the sample. For this, we generated energy filtered maps using EELS spectrum images 

of La distribution in the nanoparticle. A spectrum image (SI) is essentially HAADF 

STEM image, with every pixel additionally containing information on energy loss 

spectrum in a certain energy range. The loss peak at 120 eV corresponds to a 
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delayed La N edge and thus we have used it to map La-distribution. By selecting the 

energy slice from 95 to 125 eV, and replotting the spatial information already 

available in the SI, we obtain the spatial map of La distribution (Figure 6.18 (b)). 

When compared with Fe maps generated from the energy slices around L2,3 edges of 

Fe (Figure 6.18 (a)), we can see that while Fe is spatially very uniform, La is almost 

uniformly distributed with minor inhomogeneities within the inner part of the 

nanoparticle (indicated by red circles on the image). 

 

Figure 6.18 Spatial map of Fe (a) and La (b) distributions in 10% La doped BiFeO3 obtained from EELS 
spectrum images. 

Finally, we sought to understand the effect of La doping on the structure and 

chemistry of BiFeO3. For this, we use EELS data and compared the Fe L2,3 edges of 

pure BiFeO3 and 10% La doped BiFeO3 nanoparticles (Figure 6.19) and observed 

similar features. The energy split of 13 eV between L2 and L3 in both doped and pure 

particles is attributed to the spin-orbit coupling, and it is consistent with EELS 

observations on other Fe-O containing compounds. Each of these individual peaks 

further consists of fine structure. For L3 edge shows a shoulder followed by a more 

intense peak, and can be deconvoluted into two Lorentzians (L3a and L3b) separated 

by 1.6 eV. This separation results from octahedral crystal field splitting of Fe3+ 3d 

orbitals into a lower energy triplet with t2g symmetry, and a higher energy states 

with eg symmetry194. Conversely, such fine structure of L3 peaks proves the existence 

of Fe3+ in an octahedral ligand field, the ligand here being oxygen. The intensity 
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ratios of these paeaks (L3a/L3b) are 0.40 and 0.38 for pure BiFeO3 and 10% La doped 

BiFeO3, respectively, from fitted Lorentzian peaks indicated as L3a and L3b in Figure 

6.19. These values are comparable to that of a standard hematite ore (Fe2O3, L3a/L3b 

= 0.38) which also has Fe3+ in an octahedral oxygen environment. These results 

unequivocally show that La constitutes an A-site substitution, and that is does not 

alters neither the oxidation state of Fe (remaining as Fe3+), nor its octahedral oxygen 

environment within the volume of the nanoparticles. 

 

Figure 6.19 EELS spectra of pure BiFeO3 (120 nm) and 10% La doped BiFeO3 (100 nm) nanoparticles. 

6.3.3 Surface chemical states from X-ray photoelectron spectroscopy  

The Fe valence state in our different size samples are investigated by measuring the 

Fe 2p core level X-ray photoelectron spectroscopy (XPS). The representative survey 

scans of different size BiFeO3 are given in Figure 6.20. It can be seen at first glance 

that the spectra of different size BiFeO3 are same in the whole scanning range. In the 

following, though being the atomic species in BiFeO3 presenting the highest 

sensitivity to surface effects and practically less complex to be analyzed than oxygen, 

we focus our study on the Fe states. 

The valence state of Fe 2p core level spectra of Fe2+ and Fe3+ in different materials 

have been largely reported 195-199. Figure 6.21 shows the typical Fe 2p XPS core 

spectra for BiFeO3 30 nm and 190 nm nanoparticles. Fe 2p spectra show mostly the 

features of Fe3+ oxidation state as determined from the binding energy obtained for 

Fe 2p3/2 (at 710.6 eV) for all samples. The peak at 712.1 eV is attributed to Fe(OH) or 

FeO(OH)200 or Fe atoms in BiFeO3 occupying both octahedral and tetrahedral sites201. 
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In general, satellite peaks appear at 8 eV above 2p3/2 for Fe3+ and 6 eV above 2p3/2 

for Fe2+. In our samples, the wide peak at 718.3 eV is the corresponding satellite 

peak of the Fe3+. However, from fitting core level spectra, the peak at 714.9 eV was 

attributed to the Fe2+ contribution201-202. 

 

Figure 6.20 Survey XPS scans of 30 nm (red line) and 190 nm (black line) BiFeO3 nanoparticles. 

The XPS analysis evidences the existence at the surface of a mixed Fe2+-Fe3+ valence 

state in different size BiFeO3 particles (Figure 6.21(c)), which is different from 

reported results on BiFeO3 nano-samples195. In our case, the origin of Fe2+ could be 

due to the occurrence of oxygen vacancies201. The Fe2+/Fe3+ content of different size 

BiFeO3 were obtained through the fitting results in Figure 6.21 (a) and (b). A 

summary of the corresponding results are shown in Table 6.5. 
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Figure 6.21 Fe 2p XPS core spectra for (a) 30 nm and (b) 190 nm BiFeO3 nanoparticles, and(c) detail of 
the corresponding Fe 2p3/2 region for 30 nm (red line) and 190 nm (black line) BiFeO3 nanoparticles. 

Table 6.5 XPS fitting results of detail of the Fe 2p regions of 30 nm and 190 nm BiFeO3. 

Sample Fe2+ (%) Fe3+ (%) Fe3+ from FeOOH (%) Fe2+/Fe3+ 

BiFeO3 30nm 5.4 27.7 31.1 0.09 

BiFeO3 190nm 7.1 24.5 33.6 0.12 

From Table 6.5, it can be seen that a particle size dependence of the Fe2+/Fe3+ ratio 

(from 0.09 to 0.12) in BiFeO3, thus reflecting the increase of Fe2+ content relatively to 

Fe3+ as particle size increases. Though by EELS analysis (chapter 6.3.3) clearly indicate 

that the core of 120 nm BiFeO3 nanoparticles are essentially constituted by Fe3+ ions, 

we can localize this Fe2+ signature to arise from the very last unit cells of the 

nanoparticles. Such Fe2+ coming from the outer surface of the nanoparticles, it 

indicates that slightly larger Fe2+ regions may be found on larger nanoparticles. 

However, we also notice from the study of the FeOOH signature, which correspond 

to a Fe3+ state, that for larger nanoparticles the FeOOH signature is also larger. A 

chemical and electronic surface reconstruction of a given oxide under different 

environmental conditions is expected. Interestingly, a FeOOH compound may 

eventually play a significant role in separating electron and holes in the event of a 

photocatalytic process as it happens for TiO2
203. Both effects (Fe2+ and FeOOH 
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stabilization) may differently affect the photocatalytic properties. These results will 

be presented and analyzed in chapter 8. 

6.4 Magnetism from magnetometry and Mössbauer spectroscopy 

6.4.1 Magnetometry 

To investigate the magnetic properties of BiFeO3 nanoparticles, magnetic 

measurements were performed on these samples using a SQUID magnetometer. 

Figure 6.22 shows magnetic field dependences of the mass magnetization M for 

BiFeO3 powders with different sizes obtained at room temperature. For large 

particles an almost linear hysteresis-loops are observed, similar to those obtained 

from bulk BiFeO3
157. For sample size below 120 nm (inset, Figure 6.22), it can be seen 

that a larger remnant magnetization appears. This result can be explained by two 

possible facts: (i) with particle size reduced, sample becomes dimensionally smaller 

than the characteristic period length of 62 nm of the spiral modulated spin structure 

of BiFeO3
35-36, and (ii) the spin canting and consequently the effective remnant 

magnetization becomes more relevant since this effect is strongly correlated to 

surfaces, and the surface to volume ratio increases for smaller nanoparticles34. In 

addition, from the inspection of the magnetization hysteresis loops at 300 K and 5 K 

for the smallest nanoparticles (Figure 6.23), it is clearly seen that this effects is kept 

down to low temperature and even increased (larger remnant magnetization at low 

temperature). We can thus conclude that BiFeO3 nanoparticles present a weak 

ferromagnetic behavior. 
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Figure 6.22 Hysteresis loops at 300 K for BiFeO3 nanoparticles with indicated sizes. The inset shows a 

zoom of the low field magnetization loops. 

 

Figure 6.23 Magnetization hysteresis loops for the 30 nm-nanoparticles at 5 K and 300 K, respectively.  

As particle size decreases, micro strain increases (chapter 6.1.1; Table 6.1); 

introducing ionic coordination distortions and lattice disorder throughout the 

nanoparticle, including the surface, with the net result being that canted spin 
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structures; leading to the increase of the remnant magnetization, coexist with the 

underlying BiFeO3 antiferromagnetic order.  

Temperature dependent magnetization studies are shown in Figure 6.24 for different 

size BiFeO3. Magnetization measurements were carried out while heating the sample 

from lowest temperature at large applied magnetic field (9 T), after cooling down 

under no field (zero-cooling, ZFC) and after cooling down under field (field cooling, 

FC). This large magnetic field ensures the measurement of the saturation 

magnetization and allows the study of the overall magnetic response. 

 

Figure 6.24 Temperature dependence of the magnetization for BiFeO3 nano particles of varying size, 

showing zero field cooling (ZFC) and field cooling (FC) curves, with an applied magnetic field set at 9T. 

(a) 30 nm, (b) 50 nm, (c) 120 nm, (d) 190 nm 

Firstly, there are three features worth mentioning: (1) the splitting in the ZFC and FC 

magnetization curves are observed for all the BiFeO3 samples; (2) the magnetization 

from ZFC and FC curves for 190 nm and 120 nm samples decreases from 300 K, while 

for 50 nm and 30 nm, their corresponding magnetization values increase; and (3) for 

all the BiFeO3 samples, in the ZFC curves, we can observe a maximum of magnetic 

moment at low temperature, being more evident for smaller nanoparticles (50 and 

30nm). 
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We can explain these different features as follows. First, the splitting of the ZFC and 

FC curves usually appears in the co-existent system of antiferromagnetic and 

ferromagnetic phases, like the core-shell structure with antiferromagnetic core and 

ferromagnetic surface35. Secondly, from magnetic point of view, samples with sizes 

larger than 62 nm are expected to follow the bulk behavior, since this size allows the 

existence of a bulk-like spin cycloid. Finally, the presence of the broad peak in ZFC 

curves can be attributed to the magnetic blocking mechanism induced by the 

competition between thermal energy and magnetic anisotropy energy in 

nanoparticles34, 157, strongly enhanced for samples with larger values of 

surface/volume ratios. For this last feature, we note that BiFeO3 nanoparticles (30 

nm and 50 nm), their corresponding curves exhibit a broad magnetization maximum 

around Tmax = 50 K. Park et al.157 have reported that this is not the 

superparamagnetic relaxation process. On the contrary, Tmax represents a spin-glass-

like freezing temperature due to the high packing volume fraction as well as a 

complex interplay between finite size effects, possible interparticle interactions, and 

a random distribution of anisotropy axes in our nanoparticle assembly. Vijayanand et 

al.204 proved that the above mentioned peak is not associated with any spin glass or 

phase transition by a series of ZFC and FC magnetization measurement, and they 

propose that it corresponds to some changes associated with domain structure. 

After these statements, the broad magnetic peak of our BiFeO3 nanoparticles may be 

related to the magnetic domain pinning effect, which is well known in magnetic 

materials205, added to the disorder induced by the strain. Additionally, aggregation 

can be observed in different size nanoparticles from SEM (chapter 5.3.1), the 

interparticle interactions within the nanoparticle assemblies become stronger, which 

can affect the magnetic properties in nanoparticles. It is suggested to be due to the 

interparticle dipolar and exchange interactions between the particles in the 

aggregations.  
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6.4.2 Mössbauer spectroscopy 

In order to obtain closer insight into the atomistic nature of the magnetic state of 

BiFeO3 nanoparticles, Mössbauer spectroscopy is performed at room temperature. 

And Mössbauer spectra of different size BiFeO3 are shown in Figure 6.25. In the 

Mössbauer spectra, superposition of quadrupolar (doublet) and magnetic (sextet) 

absorption spectra are observed (Figure 6.25, lines).  

 

Figure 6.25 Room temperature Mössbauer spectra of BiFeO3 nanoparticles, annealed at different 

temperature: (a) 30 nm, (b) 50 nm, (c) 120 nm, (d) 190 nm. Measurements performed in zero applied 

magnetic field. The solid lines are least-squares fits of the experimental data to theoretical spectra. 

Deduced Mössbauer parameters are summarized in Table 6.6. 

Table 6.6 Mössbauer parameters of different size BiFeO3 nanoparticles 

Sample 
Magnetic hyperfine 

field (Hhf) (T) 
Isomer shift () 

(mm/s) 

Quadrupole splitting 

(EQ) (mm/s) 
30 nm 48.9(6)±0.03 0.29(8)±3.210

-5
 0.09(4)±2.810

-3
 

50 nm 48.9(0)±0.01 0.28(1)±3.010
-4

 0.11(0)±1.210
-2

 

120 nm 49.3(1)±0.03 0.29(3)±4.810
-4

 0.10(2)±3.110
-3

 

190 nm 49.1(5)±0.04 0.29(0)±6.310
-4

 0.08(4)±4.010
-3
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The magnetic spectral signature corresponds to high-spin Fe3+ ions in a oxygen 

octahedra environment, typical for BiFeO3 crystal lattice206. In such case, an 

absorption sextet is observed, characterized by an asymmetry in the relative 

absorption value of all absorptions, as for instance it is seen between for the first 

peak (on the left) and the last peak (on the right). This has been attributed to the 

presence of Fe3+ in two different crystallographic environments that differ primarily 

in the size of the electric field gradient, through the Dzyalonshinkii-Moriya (DM) 

interaction, creating a cycloid spin structure, with an uncommensurate period 

compared to the antiferromagnetic unit cell34. 

In Figure 6.25, we include the least-square fits of our experimental data to 

theoretical spectra based on antiferromagnetic Fe3+ in an octahedral crystal field 

(red lines) plus a paramagnetic contribution (blue lines). The fitting gives values for 

the isomer shift (), quadrupole splitting (EQ), and magnetic hyperfine field (Hhf) 

consistent with the presence of high-spin Fe3+ ions34. The fitting results are included 

in Table 6.6. We note similar results for all nanoparticles for the quadrupole splitting 

values, varying EQ between 0.09 and 0.11 mm/s (compared to literature values in 

BiFeO3 nanoparticles34), and for the isomer shift values, varying  between 0.28 and 

0.29 mm/s (which is slightly lower than bulk BiFeO3)206. On the other hand, the 

hyperfine field Hhf has a relatively lower value for 30 and 50 nm nanoparticles, 

compared to the corresponding values for 120 and 190 nm ones. We argue that 

these values have the same origin as the increase of the remnant magnetization for 

smaller samples seen in magnetometry measurements (previous chapter, Figure 

6.22), being related to a larger spin canting in samples with larger surface-to-volume 

ratio. Further experiments as a function of temperature are necessary to confirm the 

exact nature of the spin arrangement. As for magnetometry measurements, low 

temperature Mössbauer experiments can provide information on the spin cycloid. 

From the values shown in Table 6.6, the apparently non monotonic evolution of the 

isomer shifts and quadrupole splitting should be related to a different cycloid and 

spin canting state in smaller samples (30 and 50 nm).  
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From the above analysis of the magnetic data (magnetometry and Mössbauer 

spectroscopy), we can conclude that as the particle size diminishes and the surface-

to-volume ratio increases, the increase of magnetization is due to the contribution of 

uncompensated spins at the surface, caused by strain and the inavoidable larger 

contribution of the surface in smaller particles. Consequently, surface spins 

dominate the magnetic behavior in smaller particles.  

6.5 Conclusion 

In this part, the structure and chemical and electronic states of different size BiFeO3 

and doped samples are analyzed through XRD experiments and Raman spectra at 

different temperature, and HRTEM-EELS and XPS. The size and morphology of 

different size BiFeO3 are observed by FE-SEM, which has shown that the particle size 

is increasing with synthesis temperature increases. Compare with the crystallite size 

from XRD, particle size is larger for the particle size larger than 50 nm, which means 

that a particle contains several crystals. Structure and Raman analysis indicates the 

existence of characteristic R3c structure for all samples, but presenting different 

strain states, with transitions seen to depend on the sample size. From HRTEM 

imaging, we prove the existence of ferroelectric domains in pure BiFeO3 

nanoparticles. The chemical and electronic state of Fe is studied from HRTEM-EELS 

and XPS experiments. We notice that at the nanoparticles surface we find Fe2+ and 

characteristic features of FeOOH ligands, whereas the core of the nanoparticles 

keeps Fe3+ ions. The analysis of these EELS and XPS results signals the existence of a 

surface layer, i.e. skin layer, with different chemical/electronic states than the core 

of the particle. Finally, the study of magnetic properties through magnetometry and 

Mössbauer experiments has proved the existence of antiferromagnetic order for 

pure BiFeO3 samples. The smaller size samples show distinguishing spin canting 

behavior because of finite size effect, strain and other defects, arising from 

uncompensated spins at the surface. 
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7 Light interaction with BiFeO3 particles 

7.1 Mechanisms for charge transition in Fe3+ oxides 

Transition metal oxides are materials belonging to the family of oxides with strong 

electron-electron correlation and electron-phonon coupling207, which lead to many 

complex phenomena. BiFeO3 is one of the typical multiferroic materials which 

exhibit colossal magnetoelectricity coupling and photoferroelectricity1, 49; Moreover, 

these different properties may even be sensitive to a size effect. The size effects 

reflect different critical physical lengths and behaviors that are fingerprints of the 

varied elementary excitations and interactions59. In this part, we try to understand 

light induced properties of BiFeO3 compounds with different micrometric and 

nanometric size. 

In BiFeO3, Fe3+ ions are kept in oxygen octahedra, then Fe ions exhibit strong inter-

reactions with close oxygen ions and adjacent Fe3+. It is well established that three 

types of electronic transitions occur in the optical absorption spectra of Fe3+ 

substances, that is, the Fe3+ ligand field transitions or the d-d transitions, the ligand 

to metal charge transfer transitions, and the pair excitations resulting from the 

simultaneous excitation of two neighboring Fe3+ cations that are magnetically 

coupled. We detail in the following these different transitions. 

7.1.1 Fe3+ ligand field transitions or Fe3+ d-d transitions 

In octahedral coordination, the Fe 3d atomic orbitals are split into two sets of 

orbitals labeled as t2g and eg. The t2g and eg orbitals are each of them split by the 

exchange energy and the energy separation is the 10Dq ligand field parameter or 

crystal field splitting. The energies of the different states of Fe3+ under this ligand 

field as a function of 10Dq are shown schematically in the Tanabe-Sugano diagram 

shown in Figure 7.1. The exchange splitting results in two sets of t2g and eg orbitals, 

one for majority spin (spin-up or -spin) and the other for the minority spin (spin-

down or -spin) electrons. The ligand field transitions are those relating states which 

arise from the different possible electronic configurations of the t2g and eg orbitals. 
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Figure 7.1 Tanabe-Sugano diagram for high-spin Fe
3+

 in octahedral coordination. 

The ground 6A1 (6S) state in Figure 7.1 arises from the ground state 
3 2

2( ) ( )g gt e 
 

configuration of high-spin Fe3+ ions. The first possible excited state is 

3 1 1

2 2( ) ( ) ( )g g gt e t  
. This configuration gives the 4T1 (

4G) and 4T2 (4G) states in Figure 7.1. 

the remaining states in Figure 7.1 result from the “spin-flip” configuration 

2 1 2

2 2( ) ( ) ( )g g gt t e  
 and 

3 1 1

2( ) ( ) ( )g g gt e e   208. 

All of the transitions from the ground 6A1 (6S) state to the excited ligand field states 

are, in principle, both spin and parity forbidden. However, in practice these 

transitions may occur with a finite transition probability and become allowed 

through other mechanisms, such as the magnetic coupling of electronic spins of 

nearest Fe3+ ions in the crystal209-211.  

A qualitative understanding of the state associated with Fe3+-Fe3+ pairs can be 

obtained by assuming that the coupling between two Fe3+ centers is through the 

Heisenberg Hamiltonian212: 

             [7.1] 
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Here,     and     are the spins of the two Fe3+ cations and J is the Heisenberg 

exchange integral between this spins. We simplify the analysis and use of the 

Hamiltonian, in the view of antiparallel spin configuration of Fe3+ cations and being J 

negative for antiferromagnetic interaction. From now on, we consider the absolute 

value of J and use the modulus of the both spins     and    ., thus Sa and Sb. The 

application of this Hamiltonian as a perturbation to the ligand field states of the 

uncoupled Fe3+ cations yields a set of states for the Fe-pairs with energies given by: 

( / 2)[ ( 1) ( 1) ( 1)]a a b bE J S S S S S S        [7.2] 

Where S is the net spin of the pair with values a bS S , 1a bS S  ,……, a bS S . If 

both Fe3+ cations are in their ground 6A1 states (high-spin), Sa=Sb=5/2, the resulting 

pair-states derived by coupling the two Fe3+ cations will have S=0, 1, 2, 3, 4, and 5. 

Now, if one of the Fe3+ cations in the pair is excited to a quartet ligand field state, 

Sa=3/2 and Sb=5/2, the two Fe3+ cations would therefore couple to give a set of pair 

states with S=1, 2, 3, and 4. Transition from S=1, 2, 3, and 4 states in the Fe3+(6A1)-

Fe3+(6A1) pair state manifold to the states in the excited-single-ion pair-state 

manifold can therefore, occur with S=0 and be spin allowed. The relative energies 

of the states in the ground and excited-single-ion manifolds are shown in Figure 7.2. 

 

Figure 7.2 States of an Fe
3+

-Fe
3+

 pair assuming that the Fe
3+

 cations are coupled via Heisenberg 

Hamiltonian H=-JSaSb. E0 is the energy difference between the ground 
6
A1 state and an arbitrary 

quartet state of an isolated, uncoupled Fe
3+

 cation. The number next to each level indicate the spin 

quantum number (S) of the pair state. 
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In BiFeO3, the O2- ions lie between the neighboring Fe3+ ions, and, through the super-

exchange mechanism, allow the Fe3+-Fe3+ magnetic coupling. The existence of the 

hybridization of Fe 3d and O 2p orbitals relaxes the parity forbidden transitions to 

some extent. Therefore, both the spin and parity selection rules for the Fe3+ ligand 

field transitions can be relaxed by the magnetic coupling of adjacent Fe3+ cations and 

covalent bonding with oxygen. Moreover, this relaxation through the covalent 

bonding may be enhanced by decreasing size and surface modification33, 75. 

7.1.2 Pair excitations or double exciton processes 

An additional phenomenon resulting from the magnetic coupling of adjacent Fe3+ 

cations is the presence of absorption features corresponding to the simultaneous 

excitation of two Fe3+ centers213. These features occur at energies given 

approximately by the sum of two single-ion Fe3+ ligand field transitions and are often 

referred as “double exciton processes.” These transitions are also spin allowed: if 

both Fe3+ cations are excited to a quartet ligand field state so that Sa=Sb=3/2, the pair 

states resulting from coupling the two Fe3+ cations will have S values of 0, 1, 2, and 3. 

Transitions to these pair states can therefore occur from the S=0, 1, 2, and 3 states in 

the Fe3+(6A1)-Fe3+(6A1) ground state manifold. 

7.1.3 Ligand to metal charge-transfer transitions 

According to molecular orbital theory, the transitions at energy higher than most of 

the ligand field transitions are the ligand to metal charge-transfer transitions. For 

BiFeO3, since the bulk band gap is 2.6 eV (or 476 nm), bands above 3.0 eV (or 

400 nm) in energy were assigned to ligand to metal charge-transfer transitions. 

However, this charge-transfer band tail may extend to lower energy (longer 

wavelength) regions through the magnetic coupling. 

7.1.4 Band edge and narrow d bands 

The band edge of an inorganic solid is located at the low energy end of the 

conduction band above the valence band. It is difficult to determine the band edge 

for transition metal oxides particularly those presenting magnetic order, because 
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there are narrow d bands in the gap, leading to transitions implying localized charges 

that to some extend can be excited with infrared radiation with a finite probability. 

The transitions induced by these photons include the d-d transitions, pair excitation, 

and finally the charge transfer or optical band gap. The first two transitions 

mentioned previously arise from the narrow d bands. 

7.2 Optical properties of pure BiFeO3: effect of particle size and 

temperature 

Optical spectroscopy is a well-known non-contact probe to study the charge and 

bonding in solids. When charge and spin degrees of freedom are strongly coupled, it 

they are also influenced by magnetic excitations or by spin order transition141, 214. 

The coupling between different types of orders in multiferroics, which in the case of 

BiFeO3, simultaneous possess antoferromagnetic and ferroelectric orders, gives rise 

to several interesting coupling phenomena. BiFeO3, with its high temperature 

antiferromagnetic and ferroelectric transitions, besides the fact to present a band 

gap in the visible range, provides a set of interesting parameters to be studied and 

optically triggered, including spin, charge and lattice couplings33. 

In this part, the band structure of different size BiFeO3 has been investigated by 

ultraviolet-visible light spectrometry exploiting diffuse reflectance experiments at 

different temperature. The disorder of the different samples has been investigated 

by Urbach analysis. The different optically induced transitions, from the band gap to 

different interband or other charge-transfer transitions at high energy as well as 

magnon excitations at low energy will be presented. 

7.2.1 Room temperature behavior 

The band structure and other charge transition of oxides can be deduced from 

optical properties using photons with different energies83. To the present study on 

BiFeO3, the wavelength range of the photons used on the diffuse reflectance 

spectroscopy was from 200 to 900 nm. The experiments were carried out at room 

temperature for different size samples, being shown in Figure 7.3.  
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Figure 7.3 Diffuse reflectance spectra for different size BiFeO3, as indicated. The vertical line is a guide 

for the eye, indicating the energy (top) or wavelength (bottom) for which the more obvious variation 

of reflectance intensity is measured. 

One obvious variation of the reflectance measured for different size samples is found 

for 600 nm (2.06 eV). We notice that the shape of the reflectance curves in this 

region strongly changes, evolving from an almost linear dependence on the energy 

for 30 nm particles towards a plateau for corresponding data for 190 nm ones. From 

this simple examination of the reflectance curves, we deduce that different charge 

transition mechanisms may exists for different size BiFeO3, which we analyze below. 

In order to obtain the band gap value of different size sample, Kubelka-Munk (KM) 

function is used 215 

R

R
RF

2

)1(
)(

2
  [7.3] 

where R is the experimental reflectance referred to the BaSO4 standard. We recall 

that K-M function is also known as the reemission function. From now on, the K-M 

function (or F(R) curves) will be considered as proportional to the optical absorption. 

The different F(R) curves are shown in Figure 7.4 as a function of the photon energy. 
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Information on the complex charge transitions and on the electronic structure can 

be deduced from the F(R) curves, since considered as the absorption, provide 

information on the electronic states. These features will be analyzed in the following. 

 

Figure 7.4 K-M functions of different size BiFeO3 at room temperature. 

In order to study the band gap, we represent the F(R) curves using the Tauc plot195 

according to the relation 

   
g

n
EhAhRF  )(  [7.4] 

where F(R) corresponds to the experimental K-M function, A is a constant value, h is 

the Plank’s constant,  is the photon frequency, Eg is the band gap and the n is the 

exponential coefficient related to the band gap transition nature (n=2 for direct band 

gap). Using the direct band gap approach with our set of data, the band gap values 

have been determined from linear fits of the band gap edge of the different Tauc 

plots, the effective band gap values as a function of the particles size have been 

obtained and shown in Figure 7.5. 
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Figure 7.5 (a) Tauc plots of different size BiFeO3, presenting the linear fits used for determining the 

effective band gap values. (b) Size dependence of the effective band gap.  

It can be seen that the band gap value increases with the increase of the particle size, 

to further stabilize its value for nanoparticles with size larger than 120 nm, which is 

consistent with previous reports195, but still these values are lower than the usual Eg 

values obtained from single crystals and thin films216-217. Our band gap results, even 

though they are dependence on the particle size, holding around 2.20-2.25 eV. 

In order to investigate the electronic states and the charge transitions below the 

band gap, the K-M function can be further analyzed to depict the electronic disorder 

near the band gap edge. From the Urbach energy, it is possible to obtain important 

information about the dynamics of the electronic excitations and to determine, for 

instance, the effect of defects on the electronic excitations143. In BiFeO3, oxygen 

vacancies and oxygen interstitials are assigned as possible defects which have also 

been reported in other oxides101, 218. Generally, the oxygen vacancies in materials 

create an intra gap, localized state. It can be simply explained from the fact that the 

positive vacancy VO
••, the net positive charge induces other closer cation to relax 

away from the vacancy site, raising the defect state energy219. Recent experimental 

results would favor a vacancy level in the upper gap edge101. In a general view, in 

oxides, oxygen (anion) vacancies are surrounded by metal (cation) site, whereas in a 

covalent solid, anion vacancies would leave cation dangling bonds. With increasing 

ionicity, cation dangling bond states lie nearer the conduction band. Additionally, in 

even more ionic solids, the charge screening weakens, the coulomb potential is 

stronger, all this causes the vacancy states to become more localized inside the 

vacancy itself and less delocalized onto the cation states. Thus, larger iconicity is 
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typically related to type-s and type-p metal oxides, leading the vacancy level to lie 

deeper in the band gap, whereas type-d metal oxides present less ionicity (larger 

covalency), leading the vacancy level to lie near the conduction band, even above 

it.219. 

 

Figure 7.6 (a) ln[F(R)] plot as a function of the photon energy for 50 nm BiFeO3 nanoparticles, allowing 

to determine the Urbach energy EU from the linear fit in the band gap energy range, the slope being 

proportional to (1/EU). (b) Dependence of the Urbach energy on the particle size. The dotted line is 

the EU value for the corresponding data of BiFeO3 microparticles. (c) Schematic view of the energy 

diagram, Urbach tails lying close to the conduction band and valence bands. 

From the different K-M curves, we can determine the Urbach energy EU related to 

the disorder of the energy levels close to the conduction and/or valence bands. The 

disorder sources can be point defects, strain related effects on the electronic states, 

morphology effects, etc. A schematic view of the Urbach energy is shown in Figure 

7.6 (c). Figure 7.6 (a) shows the typical plot to determine the Urbach energy, and 

Figure 7.6 (b) includes the Urbach energy as a function of particle size. 

We recall the Urbach analysis relationship, based on  

UEhRF /)(ln   [7.5] 
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where F(R) is the K-M function, h is the Plank’s constant,  is the photon frequency, 

and EU is the Urbach energy. EU vales are found to vary from 0.11 eV to 0.20 eV for 

190 nm to 30 nm particle sizes, respectively. These latter EU values are in very good 

agreement with X-ray photoelectron spectroscopy measurements on BiFeO3 

revealing the presence of defect trapped states at 0.2 eV below the conduction band 

that have been attributed to defects at the grain boundaries218. 

Continuing with the analysis of the K-M curves shown in Figure 7.4, we notice that 

below  2.2 eV, two other absorption onsets can be seen at 1.9 eV and 1.4 eV. In 

Figure 7.7 (a) and (b), we include the F(R) for different size BiFeO3 samples this 

intragap energy range. Because of the limited infrared range of our 

spectrophotometer to 900nm (1.4 eV) (Figure 7.7(b)), in order to provide further 

evidence on the existence of this low energy transition, we have used another 

spectrophotometer (PerkinElmer Lambda 950 UV Vis NIR), capable to illuminate and 

detect within the near infrared range and up to 1800 nm (Figure 7.7(a)). We can thus 

confirm that the different absorption peaks at 1.4 eV and  1.9 eV exist in all BiFeO3 

particles, being attributed to 6A1g
4T1g and 6A1g

4T2g crystal-field transitions, 

respectively (Figure 7.7 (c)). Strikingly, in contrast to the other absorption bands, 

low-energy crystal-field bands at 1.9 eV are obviously affected by the decrease of 

the particle size, the positions are red-shifted and the intensity is also decreased 

(within the detection limits), as shown in the Figure 7.7 (b). We cannot rule out that 

the effect of higher disorder near the band gap edge increases the band gap 

absorption onset, affecting the shape of the curve and making it difficult to 

determine the energy position of the transition at 1.9 eV. On the other hand, 

compared to the transition at 1.9 eV, the lower energy transition at 1.4 eV clearly 

holds the same energy for different size BiFeO3 particles, which is shown in Figure 

7.7 (a). 
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Figure 7.7 [(a) and (b)] K-M functions at low energy range, observed peaks correspond to the d-d 

transitions 
6
A1g  

4
T1g (1.4 eV) and 

6
A1g  

4
T2g (1.9 eV); (c) Schematic representation of the crystal-

field effect lowering the symmetry from cubic octahedral Oh to rhombohedral C3v environment and 

the energy levels involved in BiFeO3. Ec and Ev indicate the expected bottom conduction and top 

valence band, respectively. EU corresponds to the Urbach energy. 

These bands have been demonstrated to be magnetically sensitive and, more 

interestingly, by using an oscillator strength analysis involving electron-phonon 

coupling216, it has been also shown that their temperature dependent behavior 

changes at 150 K; Raman scattering has highlighted a similar anomaly behavior near 

140 K which has been interpreted as a spin reorientation transition. And it also 

remarkably corresponds to the temperature value of one of the transitions reported 

for the skin-layer of BiFeO3
188. We note that the magnetic changes have been 

previously attributed to the skin-layer at this peculiar temperature188, which means 

the electrons state between skin layer and bulk is different. In addition, some d-d 

transitions may exhibit a finite size effect due to the different spin orientation at the 

surface. Moreover, since such a skin-layer is also known to be the site of trapped 

states for charge carriers, we propose here that the defect states evidenced from 
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our Urbach analysis at room temperature could be mainly located in the skin-layer. 

Therefore, both the Urbach energy and low-energy bands changes for different 

particle size could suggest that the skin-layer and the defects trapped in it plays a 

major role in modifying the optical response of BiFeO3 particles.  

Further analysis on the K-M functions shown in Figure 7.4 as a whole is thus related 

to above band gap transitions. In detail, above 2.2 eV, the absorption suddenly 

increases and shows two broad bands at 3.4 eV and 5.2 eV. On its low-energy side, 

the p-d charge-transfer band at 3.4 eV is affected by the 4T2g crystal-field electronic 

level localized at 3.3 eV as well as additional bands previously reported at 2.8 eV, 

2.9 eV and 3.1 eV by second-harmonic-generation measurements and explained by 

electronic states and multimagnon couplings220. The band at 5.2 eV can be assigned 

to (p+d)-p charge-transfer221 and the tail on the left-side energy at 4.5eV is 

explained by p-d charge-transfer excitations222. As previously mentioned, while the 

charge band gap is expected at 2.6-2.8 eV101, 222, a narrow d-d band absorption at 

2.55 eV corresponding to (4Eg, 4Ag) crystal field levels and a shoulder at 2.4 eV in 

the linear spectra above 2.2 eV due to d-d charge-transfer (and possibly to double-

excitons) can be observed220. From this analysis, the resulting electronic energy-level 

scheme for the Fe3+ ions is summarized in Table 7.1. 

Table 7.1 Summary of the different energy levels optically probed in BiFeO3 particles 

Type of energy levels/Transitions 
Energy 

(eV) 

Crystal-field levels of Fe3+ in BiFeO3 1.4, 1.9 

Charge gap, Eeff,g 2.2 

Double-exciton/charge transfer bands 2.4 

4Eg, 4Ag crystal field levels 2.55 

Multimagnon coupling 2.8, 2.9, 3.1 

p-d charge transfer 3.4, 4.5 

(p+d)-p charge-transfer 5.2 

Due to the superimposition of charge transfer excitation bands associated with 

interatomic transitions between O 2p, Fe 3d, Bi 6s and Bi 5p levels and absorption 
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bands (d-d bands transitions) originating from on-site Fe3+ (high-spin 3d5) crystal-

field transitions linked to its rhombohedral symmetry environment (Figure 7.7 (c)), 

BiFeO3 reveals a complex and puzzling electronic structure. Since the rhombohedral 

structure, Fe3+ displaces away from the central location in octahedral, the electronic 

configuration of free Fe3+ ions will evolve from the typical 
3 2

2g gt e  high spin 

configuration in the cubic octahedral environment to the a1e2e2 one, as belonging to 

the rhombohedral environment C3v space group. In addition, the lowering of the 

local symmetry by defects/strains can lead to a shift of the energy levels, lift off of 

the degeneracy (e orbitals can split) and/or insertion of localized intragap energy 

levels, thus adding some extra absorption features.  

From the above analysis and the optical reflectance spectra in the ultraviolet-visible-

near infrared range of as-synthesized BiFeO3 particles, it is clear that four 

unambiguous absorption regions appear in the absorption that can be adscribed to 

different processes. In Figure 7.4, region 1 (250-400 nm) mainly includes the ligand 

to metal charge-transfer transitions and partly the contributions of the Fe3+ ligand 

field transitions 6A1
4T1(4P) at 290-310 nm, 6A1

4E(4D) and 6A1
4T2(4D) at 360-

380 nm. Region 2 (400-600 nm) is considered to include the pair excitation processes 

6A1+6A1
4T1(4G)+4T1(4G) at 485-550 nm, possibly overlapped to the contributions of 

6A1
4E, 4A1(4G) ligand field transitions at 430 nm and the charge-transfer band tail. 

Region 3 (600-750 nm) is assigned to include the 6A1
4T2(4G) transition at about 

640 nm. Finally, region 4 (750-900 nm) covers the 6A1
4T1(4G) transition at about 

900 nm. Moreover, the absorption values in regions 1 and 2 are far larger than those 

in regions 3 and 4, which indicates that the absorption from the charge-transfer 

transitions or the pair excitations is far stronger than that from the ligand field 

transitions due to the selection rules. 

Interestingly, though BiFeO3 presents a G-type antiferromagnetic structure and 

belongs to the R3c space group, the spin-orbit interactions and the presence of a 

spin cycloid and spin canting35, these effects give rise to more relaxed parity-

forbidden transitions216. All this can lead to large transition probabilities for the spin-

allowed single-ion excitation and simultaneous double-ion excitation (pair 
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excitations or double exciton processes) of two Fe3+ centers. In the case of BiFeO3, 

the transition at 500 nm is responsible for the double exciton [6A1+6A1
4T1 

(4G)+4T1(4G)]. In the long wavelength (low energy) region, from 600 nm to 900 nm, 

just the spin-allowed single-ion excitations and relaxed parity-forbidden transitions 

of the Fe3+ ligand field transitions can occur. The defects combined with 

uncompensated spins on the surface induce weak ferromagnetic interaction 

between interstitial Fe3+ ions, which cause the d-d charge transition between the 

ground 6A1 state and the excited states 4T2(4G). 

7.2.2 High temperature behavior 

The band gap of BiFeO3 single crystal and thin film has been extensively studied, 

found to be 2.6-2.8 eV. For our BiFeO3 nanoparticles, the analysis of the diffuse 

reflectance data at room temperature indicates the existence of a skin layer, where 

defects, local distortions, surface reconstructions, etc. can be located, and indeed 

they can affect the optical absorption of BiFeO3 by shifting and/or splitting energy 

levels. Using the direct band gap approach and using Tauc plots with our set of data, 

an effective band gap of Eg,eff 2.2 eV has been obtained for BiFeO3 nanoparticles. 

From Figure 7.5 (b), it can be seen that the variation of band gap is weak as a 

function of particle size. Because of the spin-charge-lattice coupling, the band 

structure of BiFeO3 is sensitivity to the external factors, such as temperature and 

stress223-224. The obvious metal-insulator transition of BiFeO3 single crystal has been 

confirmed by investigating the variation of band gap value as a function of 

temperature. 

In order to find out the temperature dependence of band gap and any optically 

probed transition in BiFeO3 nanoparticles, diffuse reflectance spectra have been 

measured for temperatures between 300 and 680 K for our samples (Figure 7.8). 

From the diffuse reflectance result, curves are characterized by a redshift, the shape 

of the curves indicating that the shoulder at 600 nm disappears with higher 

temperature. 
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Figure 7.8 Diffuse reflectance spectra as a function of temperature for different size BiFeO3 

nanoparticles : (a) 30 nm, (b) 50 nm, (c) 120 nm, and (d) 190 nm. 

From Figure 7.9, the band gap values of different sizes samples as a function of 

temperature have been determined from the corresponding linear fits of the Tauc 

plots. From Figure 7.9, we notice that the band gap decreases as temperature 

increases, similarly to what has been reported for BiFeO3 single crystals223. The 

temperature dependence of the band gap values for different particle size samples is 

shown in Figure 7.10. It can be seen that with increasing the temperature, the band 

gap for all BiFeO3 nanoparticles decrease almost linearly, with no discontinuity. 

Considering these dependences as linear ones, the fitting results have provided 

variation rate constants for the band gap (Table 7.2). Comparing the overall band 

gap variation rates from nanoparticles, we notice that these values are constraint 

between -5.1210-4  and -6.7410-4 eV/K, whereas the corresponding value for 

microparticles is that of a much pronounced slope, -9.6610-4 eV/K. 
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Figure 7.9 (a) Temperature dependence of the Tauc plots of different size BiFeO3 nanoparticles: (a) 30 

nm, (b) 50 nm, (c) 120 nm, and (d) 190 nm. The arrow indicates the different spectra as the 

temperature increases. 

 

Figure 7.10 Band gap values as a function of temperature of different size BiFeO3 nanoparticles: (a) 30 

nm, (b) 50 nm, (c) 120 nm, and (d) 190 nm. 
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Table 7.2 Thermal variation rates of band gap, Urbach energy and low energy transition 

Sample 
Variation rate10

-4 

(eV/K) 
(band gap) 

Variation rate10
-4 

(eV/K) 
(Urbach energy) 

Variation rate10
-4 

 
(eV/K) 

(low energy d-d transition) 

30 nm -5.97 1.97 -5.35 

50 nm -6.31 3.68 -4.60 

120 nm -5.12 2.69 -4.90 

190 nm -6.74 3.87 -4.79 

Micro -9.66 9.22 -3.96 

The room temperature band gap values as a function of particle size shown in Figure 

7.5 (b), and the fact that below a given particle size the band gap decreases, were 

previously explained by the existence of defect-induced energy levels between 

conduction and valence bands, more specifically energy levels close to the 

conduction band. These shallow levels can reduce the effective band gap for smaller 

particles, if their density is high enough. The presence of non-uniform micro strain in 

the particles but also surface reconstructions or other surface effects modify the 

energy levels, influencing the absorption band edge195. As mentioned in chapter 6.1, 

and it can be seen that micro-strain increases with particle size decreasing, this 

result also being reported in Ref. 195. In general, the micro-strain in nano-crystallites 

is caused by several factors, like non-uniform lattice distortions, dislocations, anti-

phase domain boundaries, grain surface relaxation, etc. In BiFeO3, the most common 

defects such as oxygen vacancies are major contributions to the micro-strain, these 

oxygen vacancies reportedly at lower energy level than the adjacent Fe 3d levels, 

resulting in sub-band gap defect states, analyzed in chapter 7.2.1. Another 

contribution to the micro-strain comes from the unsaturated bonds on the surface of 

the nanoparticles, which create deep and shallow levels within the band gap225, 

helping to stabilize other valence states for the cations, as Fe2+, or adsorbed 

molecules, such as FeOOH (chapter 6.3.4). 

For the high temperature band gap analysis, the 120 nm nanoparticle data indicate 

an inflection point in the observed trend as a function of particle size. In fact, the 

electron confinement, coulomb interactions, and binding energy effects dominate 

each other in different particle size regimes33, 226-227. Thus, because of the weak 

variation of band gap at room temperature (2.2 eV) and the high temperature 
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variation rates (from -5.1210-4  to -6.7410-4 eV/K) for different particle size, we 

speculate that variation trend of the electron configuration for all nanoparticles as a 

function of temperature is the same within the studied temperature range. That is, 

compared to BiFeO3 microparticles, all BiFeO3 nanoparticles present the same defect 

configuration. To study these defects (disorder) in BiFeO3 particles, the Urbach 

energy has been studied as a function of temperature, and it will be presented below 

(Figure 7.11 and Figure 7.12). 

Similarly to the analysis performed for the room temperature data, from the 

different Kubelka-Munk curves, we can determine the Urbach energy EU related to 

variations of the energy levels close to the conduction and/or valence bands 

(affected by different sources of disorder), as a function of temperature. Figure 7.11 

depicts the corresponding Urbach energy plots for BiFeO3 nanoparticles at different 

temperatures. 

 

Figure 7.11 ln[F(R)] plots as a function of temperature for different size BiFeO3 nanoparticles: (a) 30 

nm, (b) 50 nm, (c) 120 nm, and (d) 190 nm. The arrow indicates the different spectra as the 

temperature increases. 
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Figure 7.12 Urbach energy EU values as a function of temperature of different size BiFeO3 

nanoparticles: (a) 30 nm, (b) 50 nm, (c) 120 nm, and (d) 190 nm. 

According to the Urbach rule in crystalline solids (equation 7.5), the Urbach behavior 

happens to be seen as tails near valence and conduction bands (Figure 7.6 (c)). The 

shape and size of these tails depend on the presence of different types of disorder. 

In Figure 7.11, we study the absorption tails of the absorption spectra and to apply 

Urbach rule (linear fit) to determine the characteristic EU values. The slope of the 

linear fits corresponds to (1/EU), and since it decreases with increasing the 

temperature, the Urbach energy thus increases as a function of temperature. In 

Figure 7.12, we present the temperature dependence of the Urbach energy for 

BiFeO3 nanoparticles, the corresponding temperature variation of the EU values is 

summarized in Table 7.2. From the values of Urbach energy rate constant, it is 

difficult to find a clear trend on the nanoparticle size. However, taking a close look at 

Table 7.2 and comparing Urbach energy variation rate constants and the absolute 

values of the band gap ones for all nanoparticle data, we evidence a similar 

dependence: increasing band gap/Urbach below 120 nm nanoparticles, then slight 

decrease. Similarly, the corresponding rate constant for the microparticles is larger 

than that of nanoparticles. These results indicate a different nature of the electronic 
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defects observed by optical probes on nano and microparticles, differing also in their 

temperature dependence.  

As a comparison with larger size particles, the reflectance spectra of BiFeO3 

microparticles have been also investigated as a function of temperature (Figure 7.13). 

The band gap of micro-BiFeO3 decreases with increasing the temperature. However, 

we point out that obvious differences from nano size BiFeO3 data is that the absolute 

value of the band gap and the Urbach energy variation rates are much larger for 

micro than for nanoparticles (Table 7.2).  

 

Figure 7.13 For micro-BiFeO3, as a function of temperature: (a) reflectance spectra, (b) corresponding 

K-M functions, and fitted values of (c) Urbach energy, and (d) band gap. 

On top of the investigation of the band gap and electronic disorder near it, we have 

studied the low energy electronic transition 6A1
4T2 as a function of temperature 

(Figure 7.14 (a)), through detailed investigation of the second derivative of the KM 

spectra (Figure 7.13 (b)). We have proceeded in the same manner for the KM data 

from BiFeO3 nanoparticles. In Table 7.2 we include the variation rates of this low 

energy electronic transition. Remarkably, these values are almost the same for nano- 

and micro-BiFeO3. In Figure 7.14, we compare the temperature dependences of the 
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band gap and low energy d-d transition values together for micro and nanoparticles. 

It is seen that increasing the temperature, the low energy transition values intersect 

those of the band gap for BiFeO3 microparticles at 640 K (Figure 7.14 (a)). However, 

this effect is not observed for BiFeO3 nanoparticles (Figure 7.14 (b)). 

 

Figure 7.14 The variation of band gap and low energy d-d transition as a function of temperature for 

micron (a) and nano (b) BiFeO3 

In order to better understand this electronic d-d transition as a function of 

temperature for micro-BiFeO3, the schematic energy diagram as a function of 

temperature is shown in Figure 7.15. Due to the different temperature variation 

rates of band gap of micro- and nano-BiFeO3, the electronic band transition (6A1
4Eg, 

4Ag) and low energy transition band (6A1
4T2) merge together at high temperature. 

 

Figure 7.15 (a) Sketch of two different bands transition three different arbitrary temperatures for 

micro-BiFeO3 (b) Band structure for BiFeO3 below 3.5 eV, three arrows corresponding to the low 

energy d-d transition (
6
A1 

4
T1, 

6
A1

4
T2) and effective band gap transition. 

Moreover, from the temperature dependence of the electronic conductivity (in air) 

of micro-BiFeO3 (Figure 7.16) [thesis work of Romain Jarrier (SPMS)], as temperature 
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increases, around 640 K, there is no change in the absolute value of conductivity. 

Nevertheless, Arrhenius plots show a change in the slope, with a knee point at 640 K. 

The activation energy of the charge carriers changes from 0.4 to 0.85 eV as the 

sample is heated above 640K. We suggest that this effect is related to the band 

structure change increasing the temperature. 

 

Figure 7.16 Arrhenius plot of the electric conductivity  dependence on temperature of a pressed 

pellet of micro-BiFeO3. The different activation energy Ea values below and after the knee at 658.9 K 

and calculated from linear fits are also indicated 

From Figure 7.14 (a) and Table 7.2, we have pointed out that the different variation 

rates for the band gap and low energy d-d transition with temperature for BiFeO3 

microparticles leads to a crossing point at 640 K for these energies. In other words, 

both 6A1
4Eg, 4Ag and 6A1

4T2 transitions continually reduce, thus the conductivity 

increases, and when temperature reaches 640 K, the two bands merge together, 

thus the electron transfer through the 6A1
4Eg transition is easily performed. More 

excited electrons populate the conduction band, further increasing the conductivity. 

This may explain why there is a knee point in the 640 K in Figure 7.16. 

For nano-BiFeO3, from Figure 7.14 and Table 7.2, both variation rates for 6A1
4Eg, 

4Ag and 6A1
4T2 are similar. Thus, it cannot be observed any crossing point in the 

temperature range under study. Electric conductivity measurements for nano-BiFeO3 
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was not possible since the sintering in pellets induces particle growth, thus losing the 

interest in the particle effect. The conductivity of BiFeO3 as a function of 

temperature has been reported in Ref. 33, in which the magnetic order affects the 

conductivity band gap, the knee point being assigned as the Néel temperature. 

Meanwhile, the Néel temperature decreasing with particles size decreasing has also 

been reported. However, according to our results, we did not observe the 

intersection between the two transitions, 6A1
4Eg, 4Ag and 6A1

4T2, at the 

temperature range where the Néel temperature is expected, which is contradictory 

with reported results. From these results, further investigations on the correlation 

between band gap and magnetic order in nano-BiFeO3 is needed.  

7.2.3 Band gap as a function of temperature for BiFeO3 nano and microparticles 

In this part, the explanation on the different temperature dependence of the band 

gap for different size BiFeO3 samples will be given. 

The band gap values of nano- and micro-BiFeO3 as a function of temperature are 

shown in Figure 7.17. The band gap variation rate as temperature increases is 

different for nano and micro samples (Table 7.2), with faster rates for microparticles 

than the corresponding ones for nanoparticles. The combination of finite size effects 

on lattice parameters and atomic positions has been proved from the atomic bond 

lengths and angles determined from calculations and neutron diffraction analysis80, 

228. The Fe3+ ion displacement is more sensitive to size than the Bi3+ ion one, thus 

being of interest to focus on the Fe-O bond length and Fe-O-Fe angle of two corner-

sharing FeO6 octahedra, as shown in Figure 7.18. From crystal structure analysis, 

with decreasing size, the short Fe-O bond length decreases and the long Fe-O bond 

length increases, and the Fe-O-Fe angle decreases with decreasing crystallite size79. 

In a band structure picture, increasing the band gap with decreasing particles size 

arises naturally from the structural changes at the nanoscale, since the increase of 

long Fe-O bond lengths and the decrease of Fe-O-Fe angles weaken the Fe-O-Fe 

superexchange mechanism by reducing the Fe 3d-O 2p orbital overlapping and 

increasing the bandwidth29. Thus, all this accounts for the slightly larger effective 

band gap observed in nanoparticles. 
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Figure 7.17 Band gap of different size BiFeO3 particles as a function of temperature. Error bar 

 

Figure 7.18 Sketch of two adjacent FeO6-octahedra showing the two different Fe-O bond lengths 

caused by the polar displacement of Fe
3+

 with respect to the center of the oxygen octahedron and the 

Fe-O-Fe angle  180° 

The band gap evolution as a function of temperature has been reported by Palai et 

al.223. However, they mainly focused on the metal-insulator transition at high 

temperature. In this study, different wavelength Raman spectra have been used to 

analyze the band gap evolution as a function of temperature229. According to the 

investigation of first and second order Raman scattering, the optical absorption 

changes in temperature are related to a shrinking of the indirect band gap, while the 

direct band gap is almost insensitive to temperature. In our case, the band gap 

values of nano and microparticles are all shrinking with temperature (Figure 7.17), 

but the variation rates are different. We explain this through the different Fe-O-Fe 
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angle variation in temperature. The key structure is likely to be the straightening of 

the Fe-O-Fe angle, which leads to the increase of the orbital overlapping between 

oxygen p the iron d orbitals, thus facilitating the charge transfer. This angle is known 

to play a key role in the functional properties of transition metal perovskite oxides. 

Weber et al.229 have reported that the band gap decrease in temperature is caused 

by the modification of the valence band. They claim that this can happen because 

the highest valence band states predominantly originate from oxygen p-states, while 

the light relative mass of the oxygen atom will naturally lead to the largest nuclear 

displacements in the corresponding phonon modes. Increasing the temperature, the 

Fe-O-Fe angle increases, which means that it facilitates the vibration of the oxygen 

atom, and the phonon energy increases. Furthermore, because of the different Fe-O-

Fe angle between the nano and micro-BiFeO3, it can make the band gap variation 

rate different for different size samples. 

High temperature reflectance spectra below the corresponding synthesis 

temperature of micro-BiFeO3 were performed to investigate this high temperature 

transitions. In Figure 7.19, the determined band gap values for micro-BiFeO3 are 

shown to decrease monotonously until 875 K. Then, after this temperature, the 

band gap variation rate changes and we can observe a plateau, almost unchanged. 

Palai’s results223 signal that an analogy can be created between optical band gap and 

an insulator to conductor transition. Weber et al.229 have proposed that the 

temperature-dependent modification of the valence band is primary based on a 

band gap value variation. In our case, the band gap value of 2.09 eV is observed for 

micro-BiFeO3 at room temperature, which is much smaller than the reported band 

gap values of thin films and single crystals224, 230. It has been known that the oxygen 

vacancies are a familiar defect for the high temperature synthesis of BiFeO3. Thus, 

the smaller band gap value shall then correspond to an intragap electronic states, 

caused by charge defect related to oxygen vacancies, being also in agreement with 

the 2.2 eV value predicted by first-principles calculations231. Finally, we assign this 

band gap value change at high temperature to a defect transition involving oxygen 

vacancies located at near the valence band. 
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Figure 7.19 Band gap values of micro BiFeO3 as a function of temperature. The line is a guide for the 

eye.  

Using high annealing temperatures, the appearance of oxygen vacancies in BiFeO3 

has been largely reported 101, 232-233, concomitant to this effect, the 

sublimation/evaporation of Bi happens and thus the appearance of Bi vacancies108, 

233. The conjunction of oxygen and bismuth vacancies shall affect the band structure 

of oxide. In view of the above mentioned facts, we propose that oxygen and bismuth 

vacancies appear in our micro-BiFeO3 sample, simultaneously. From semi-conductor 

theory, in BiFeO3 as the donor (n-type) oxygen vacancies are expected to be located 

close to the bottom of conduction band, on the other hand, the bismuth vacancies 

are acceptors (p-type), thus located close to the top of valence band. Generally, the 

Fermi level can be modulated by the relative content of donors (d) and acceptors 

(a)
129, and when the amount of donors and acceptors is high, the transition from 

non-degenerate state to degenerate state can occur, changing the position of Fermi 

level. Following this semi-conductor view, different Fermi level positions can be set 

as a function of the donor/acceptor content: (1) if there are no defects or the 

concentration of oxygen vacancies and hole carriers is in equilibrium (d=a), the 

Fermi level is located in the middle of the valence and conduction bands; (2) for 
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larger donor concentration (oxygen vacancies) than acceptor one (bismuth vacancies) 

da, the Fermi level is close to or even within the conduction band (3) for larger 

acceptor concentration (bismuth vacancies) than donor one (oxygen vacancies) 

da, the Fermi level is close to or so far as within the valence band. According to 

the position of Fermi level, band structure and conductivity may be confirmed. A 

schematic diagram of density of states is shown in Figure 7.20, the three different 

Fermi level positions mentioned above are presented.  

 

Figure 7.20 The band filling and position of the virtual Fermi level EF, at representative contents of 

oxygen vacancies (d) and holes (a). The oxygen vacancy band is expected to be kept below the 

conduction band CB at room temperature. 

Figure 7.21 shows the Kubelka-Munk functions of micro-BiFeO3 before(after) 

annealing the sample at 1073 K. This procedure allows, in principle, to 

freeze(compensate) the oxygen vacancies created at high temperature. First, the 

spectrum is broader for the annealed sample than for the non-annealed one, and at 

2.2 eV, and one obvious small bump arises for the annealed one. This energy range 

corresponds to the aforementioned oxygen vacancies band below the conduction 

band. Furthermore, this phenomenon confirms that the emergence of oxygen 

vacancies in BiFeO3 at high temperature is unavoidable under the ordinary 

conditions. From Mössbauer analysis at high temperature by Landers et al.36, it can 

be seen that the isomer shift is less than 0.4 mm/s at high temperature, which is a 

value close to that of our samples at room temperature. This study reported that the 
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valence of the Fe ion is held at trivalent for the whole temperature range, which also 

can be affirmed by the works presented in Ref.78, 234. The valence state of Fe ion in Ca 

doping BiFeO3 in A site holds as Fe3+ (the Ca concentration is 10%)78, which further 

confirm that the invariance of valance state of Fe3+ in BiFeO3. However, from our XPS 

results for nano BiFeO3 particles, the characteristic peak of Fe2+ is observed, although 

it arises essentially from the surface and it is shown even in pure BiFeO3 

nanoparticles. It does not affect our analysis, since the role of Fe2+ is same as Bi 

vacancies, which contributes to the hole concentration in BiFeO3. From analysis 

above, it confirms that the Bi vacancies arise with the generation of oxygen 

vacancies, which could also affect the Fermi level in the band structure. 

 

Figure 7.21 Comparison of Kubelka-Munk functions of micro BiFeO3 for annealed (800 °C, 10 h) and 

non-annealed. Dotted lines are guide for the eye. 

We now come back to the observed band gap transition at high temperature (Figure 

7.19). The temperature dependence of the band gap evolution can be separated in 

two different behaviors, below and above 875 K, below this temperature 

presenting a linear trend, and above being almost unchanged. These different trends 

can be understood in terms of an electronic localization (below 875 K)-
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delocalization (above 875 K) through the different evolution of the electronic bands, 

leading to a Fermi level that at high temperature crosses both absorption bands 

(Figure 7.20). We have proposed that the explanation of this aforementioned effect 

is the existence of two different defects in BiFeO3: bismuth and oxygen vacancies. 

The position of Fermi level is controlled then by the relative concentration and 

activation of donor oxygen vacancies (d) and acceptor bismuth vacancies (a). In our 

case, in order to explain the band gap values as a function of temperature, below 

and above 875 K, two arguments need to be recalled. In fact, for temperatures 

below 875 K, the band gap decreases with temperature increasing, caused by (1) 

the excitation energy form valence band to defect state involving oxygen vacancies 

decreases with temperature, and/or (2) the excitation energy from a defect state 

near the valence band caused by bismuth vacancies towards the conduction band 

decreases. To determine the most probable scenario and shed light on the role of 

vacancies in the BiFeO3 band structure, we compare the temperature dependence of 

the band gap for samples with different vacancy content, i.e. for annealed and non-

annealed BiFeO3 (Figure 7.22). 

First, we notice that annealed BiFeO3 microparticles depict a smaller band gap than 

those of non-annealed samples. Interestingly, both series of data exhibit the same 

trend in temperature, with the inflection point at 875 K. The concentration of 

bismuth vacancies can be larger after annealing for a rather long time (10 h) at high 

temperature (1073 K), and oxygen vacancies may not have been completely 

compensated and present a larger bandwidth, all these effects contributing to the 

shrinkage of the effective band gap for the annealed sample. In order to explain the 

observed plateau values for the band gap above 875 K (Figure 7.19 and Figure 7.22), 

one possible explanation is that the Fermi level becomes affected by high 

temperature activated states in the valence (conduction) band and is kept at the 

middle of the forbidden band. As a matter of fact, we notice that the shape of the 

curves is very similar for both samples, thus the nature of the defects should be 

essentially the same for both samples, though the population and width of the 

defect states is clearly larger due to the high temperature annealing. Consequently, 

at 875 K, the Fermi energy level should sit at the middle of the forbidden band 
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though the compensated effect of both defect states (oxygen vacancies at the 

conduction band, bismuth vacancies at the valence band), these states becoming 

saturated, leading to the invariant band gap value observed above 875 K. 

 

Figure 7.22 Comparison of band gap variation as a function of temperature for annealed and non-

annealed BiFeO3. 

From the above analysis, we speculate that annealed BiFeO3 microparticles can be 

considered more as a room temperature p-type semiconductor, since the high 

temperature annealing may primarily create new bismuth vacancies and the 

observed curves of annealed (1073 K, 10h) and non-annealed samples are barely the 

same. At room temperature, the holes concentration caused by bismuth vacancies is 

thus higher than the concentration of oxygen counterparts. In other words, the 

amount of acceptors is higher than the amount of donors. The Fermi energy level 

could lie much closer to the valence band, and with temperature increasing, the 

transition from degenerate state to non-degenerate state occurs at 875 K. Although 

the band gap variation of the annealed BiFeO3 as a function of temperature has the 

similar variation trend as non-annealed BiFeO3, we conclude that the band gap 

values of the annealed BiFeO3 are smaller compared to the non-annealed one due to 
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the enlargement of the width of the defect bands and the increase of the population 

of oxygen vacancy states. 

7.2.4 Low energy d-d transition as a function of temperature for BiFeO3 nano and 

microparticles 

In order to investigate the d-d transition at low energy of different size BiFeO3 

particles as a function of temperature, we have fitted the diffuse reflectance 

spectrum using Bi-Gaussian functions, the spectrum from the maximum temperature 

experiment for each sample has been used as the baseline for every spectrum at any 

other temperature. As an example, the fitting procedure corresponding to the 

reflectance spectra from microparticles is shown in Figure 7.23. 

 

Figure 7.23 Reflectance spectra of BiFeO3 microparticles: (a) for 300 K and 630 K (higher temperature 

experiment, data used as baseline), (b) corrected spectrum using the 300 K spectrum and removing 

the 630K one in (a), and the corresponding fitting result using Bi-gaussian functions. 

The reflectance peak centers of the corresponding Bi-Gaussians as a function of 

temperature of different size BiFeO3 are shown in Figure 7.24. It can be clearly seen 

that, compared to the reflectance peak at 750 nm, the reflectance peak at 600 nm 

shifts in temperature with a faster rate. Interestingly, the temperature dependences 

of both peaks present an anomaly at 550 K-600 K for all size samples. The skin layer, 

which has its own lattice parameter and electronic structure, has been found in 

single crystals and nanotubes of BiFeO3, with reported transitions happening at 

140.3 K, 201 K and 550 K188-189 and related to its variation of the electron density and 

elongation of the out-of-plane lattice parameter. The transition seen in our diffuse 
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reflectance spectra as a function of temperature is not to be a coincidence, on the 

contrary, we argue it is related to the phase transition of the skin layer of different 

size samples.  

 

Figure 7.24 Center positions of the low energy transitions as a function of temperature obtained from 

fitting the two reflectance peaks at 600 nm and 750 nm for different size samples: (a) micro, (b) 30 

nm, (c) 50 nm, (d) 120 nm, and (e) 190 nm. 

In Figure 7.25 (a) we show the reflectance spectra together with the corresponding 

Kubelka-Munk (K-M) functions for BiFeO3 nanoparticles. Remarkably, the reflectance 

peaks previously fitted correspond in the K-M functions to the energy interval 

identified for the low energy d-d transition. Thus, computing the center position 

difference (wavelength difference) for the different samples and as a function of 

temperature will provide us information on this transition. The wavelength 



Xiaofei BAI 

139 
 

difference for different size samples in temperature are included in Figure 7.25 (b)-(f). 

It can be seen that the width (wavelength difference) of the d-d electron transition 

decreases in temperature, meaning that the d-d transition weakens compared to the 

background (high temperature baseline). Some anomalies are more clearly seen in 

these wavelength difference plots. In particular, we notice that the data from 

microparticles depicts two clear anomalies, identified by two inflection points, 

whereas the data from nanoparticles present much weaker effects. These results are 

in agreement with the d-d transitions analyzed previously in chapter 7.2.2 for 

different size samples, being different between micro and nanoparticles. 

 

Figure 7.25 (a) Reflectance and Kubelka-Munk spectra of different size BiFeO3, the shadowed part is 

the correspond area of low energy d-d transition in reflectance and Kubelka-Munk spectra; (b)-(f) are 

the reflectance difference as a function of temperature of different size BiFeO3. 
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We recall that a surface transition has been identified from Raman spectroscopy of 

different size samples as a function of temperature (chapter 6.2.2, Figure 6.12 and 

Figure 6.13, Table 6.4). It is known that any static and/or dynamic changes in the 

structure should, in principle, lead to a variation in the phonon behavior, and the 

analysis of the wavenumber, intensity, and/or linewidth evolution of the whole 

spectra as a function of temperature is expected to give insight into those change188. 

The Raman modes transition temperatures (Figure 6.12 and Figure 6.13, Table 6.4) 

for different size samples are comparable to the anomalies seen in Figure 7.25 (b)-(e), 

all round 550 K. The Raman modes at low wavenumber corresponding to Bi mode 

activity in BiFeO3. Ab initio calculations188 suggesting that Bi vacancies may be at the 

origin of the defect state levels and the variation of out-of-plane lattice parameter 

related to Bi sublattices, combined to our Raman modes (140 cm-1 and 170 cm-1) 

anomaly with increasing the temperature, all this means that a strong uniaxial strain 

at the surface is expected around 550 K189. With the surface transition at 550 K 

being confirmed by impedance analysis and grazing incidence X-ray diffraction189, 

the temperature dependences of our reflectance data and K-M function analysis of 

d-d transition at 550 K provide another proof of the existence of a high temperature 

surface transition related to Bi vacancies at the surface. 

7.3 Optical properties of A-site doped BiFeO3 

7.3.1 Low energy d-d transition as a function of temperature for A-site doped 

BiFeO3 nano and microparticles  

In this section, the low energy d-d transition as a function of temperature for doped 

and non doped BiFeO3 sample are compared. As mentioned above, from K-M 

spectrum, below the band gap, there exist two weak bands at 1.39 eV and 1.92 eV, 

which are assigned to 3d5-intraconfigurational 6A1
4T1 and 6A1

4T2 crystal-field 

transition235, respectively. Originally, these transition are spin and parity forbidden in 

centrosymmetric systems, the exchange mechanism between Fe3+ pairs in 

concentrated systems and nonconcentrosymmetric crystal-field distortion around 

Fe3+ such as those attained in BiFeO3 and Fe2O3 both relax the spin and parity 

forbiddingness, enhancing the transition oscillator strengths216. The integrated band 
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transition energy for 4T2 has been obtained by second derivative for K-M spectrum. 

Figure 7.26 (a) and (b) shows the temperature dependence of the K-M spectrum of 

10% La and 10% Ca doping BiFeO3 (100 nm) synthesizing at 600 °C. Two relevant 

features are observed: (1) the 4T2 bands redshift with temperature, (2) 6A1
4T2 the 

transition intensity associated with 4T2 transition is notably changed with 

temperature.  

 

Figure 7.26 Kubelka-Munk spectra of (a) 10% La and (b) 10% Ca doped BiFeO3 nanoparticles 

synthesized at 600 °C. 
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Figure 7.27 Low energy d-d transition as a function of temperature for La and Ca doped micro (a) and 

nano-BiFeO3, corresponding size and doping as indicated. 

Figure 7.27 shows the temperature dependence of the low energy d-d transition 

obtained from the study of the second derivative of the K-M functions for micro and 

nano La and Ca doping BiFeO3. Figure 7.27 (a) shows the low energy d-d transition 

for doped and pure micro-BiFeO3. It is clear that the band energy keeps the same 

variation trend for all micro-samples below 600 K, with an anomaly after 600 K. It 

has been shown that the Ca and La doping can induce a change of Néel 

temperature78, 236, which caused by the variation of the crystal field environment of 

Fe3+. Besides, the low energy d-d transition in BiFeO3 is related to crystal field 
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distortion. From the above analysis, the Néel temperature transition can be seen by 

this low energy d-d transition as a function of temperature. Figure 7.27 (b) and (c) 

show the low energy d-d transition for different crystal size doped and pure nano-

BiFeO3. It can be seen that, whatever the crystal size for BiFeO3, the band position of 

d-d transition keep the same energy. However, when doping with Ca or La in the A-

site of BiFeO3, the band energy of d-d transition is slightly lower than the pure 

samples for the whole temperature range. We have mentioned that this d-d 

transition is related to the crystal-field distortion caused by the loss of 

centrosymmetric arrangement. From the d-d transitions determined from the doped 

samples, we confirm that it is another clear evidence of the Ca and La doing effect on 

the octahedral crystal structure. Unfortunately, it is difficult to make conclusive 

remarks on how these size and doping effects affect the d-d transition. 

7.3.2 Band gap as a function of temperature for A-site doped BiFeO3 

microparticles 

In this part, the band gap of Ca and La doped BiFeO3 have been studied as a function 

of temperature. Because of different valence of Ca2+ and La3+, the doping effect for 

forbidden band is different. Since the doping concentration in BiFeO3 is set below 

10%, from X-ray diffraction (chapter 6), it has been shown that the space group of 

different doping sample are still R3c. Thus, we can remove the effect to band gap 

from a structural phase transition up to a certain limit. The band gap values of 

differently doped samples are obtained from analysis of Kubelka-Munk functions 

combined with Tauc plots. Figure 7.28 shows the band gap values for 10% Ca and 10% 

La doped micro-samples as a function of temperature. It can be seen that at whole 

temperature range, the band gap of 10% Ca doped BiFeO3 microparticles is 

unexpectedly higher than those of 10% La doped ones and of pure BiFeO3 ones.  
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Figure 7.28 Band gap values of 10% La and 10% Ca doped BiFeO3 microparticles as a function of 

temperature. 

Firstly, we focus on the 10% Ca doping sample (Bi0.9Ca0.1FeO3-). In order to 

understand why Ca-doped sample has a higher band gap value having the same 

space group than the other compounds, the band structure and its Fermi level is 

analyzed. Because of the divalent cation Ca2+ occupying the Bi3+ site, holes could be 

produced. Moreover, oxygen vacancies can be created to maintain charge neutrality. 

Ionization of oxygen vacancies in Ca-doped BiFeO3 yields electrons to compensate 

hole carriers introduced by Ca to maintain the 3+ valence state of iron ions. As 

donors, the oxygen vacancies are thermodynamically highly confined near the 

conduction band. As acceptors, the hole carriers caused by calcium doping are 

located at the top of valence band. The relative content of oxygen vacancies (VO) 

and hole carriers (h) can control the Fermi energy level position. When the 

concentration of oxygen vacancies is lower than the concentration of hole carries 

(VOh), the Fermi level is thus located close to valence band even within the 

valence band; when VOh, the Fermi level is located close to conduction band or 

within the conduction band; when VO=h, the Fermi energy is expected to be 

located in the middle of the forbidden band, as shown in Figure 7.20.  
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The Ca doping in the A site of BiFeO3, compared to BiFeO3 (chapter 7.2.3), more hole 

carriers can be produced, which means the Fermi level will be located preferentially 

in the valence band, deeper, at room temperature. With increasing the temperature, 

the Fermi level raises continually corresponding to the band gap decreasing, as 

expected. It explains why the Ca doped BiFeO3 samples have a larger band gap 

within the whole temperature range. Another possible scenario is that the Ca2+ has 

the different radius with Bi3+, then in Ca doped BiFeO3, Ca contracts the lattice and 

straighten the Fe-O-Fe bond angle. In chapter 7.2.3, we have analyzed the 

relationship between Fe-O-Fe angle and band gap values in BiFeO3. In Ca doped case, 

from the result of band gap values as a function of temperature, it can be found that 

this result is opposed to the effect expected from a Fe-O-Fe angle variation. From 

the above analysis, the structural effects induced by Ca doping are not the dominant 

mechanism for the band gap variation, but the electronic (holes) ones. 

Although La ion (1.16 Å) has almost the same ionic radius that Bi ion (1.17 Å) 

according to their tabulated Shannon radii, La doping in BiFeO3 could make the 

crystal structure more symmetric, the FeO6 octahedron can become progressively 

more uniform and decrease the local structural distortion, the loss of the Fe-O bond 

anisotropy (e.g., the difference in the bond length between Fe-O1 and Fe-O2), 

reduced significantly upon the substitution of La on Bi at the A site of perovskites76, 

174. The Fe-O-Fe angles become large and enhances the overlap between Fe 3d eg 

and O2- 2p orbitals. The structural consequences of La substitution resemble those of 

a small hydrostatic pressure. The effect of pressure on the band gap and the local 

FeO6 environment in BiFeO3 has reported in Ref. 224, in contrast to band gap, the Fe3+ 

crystal field energy mainly depends on the FeO6 local structure. This fact points out 

how the band gap, as a crystal bulk property, depends on the crystal structure and 

thus it is an appropriate probe for detecting phase transition. La doping can also 

reduce the leakage current, which is caused by a conducting mechanism at the bulk 

of the grains. This suggests that the change in the resistivity of the La doped BiFeO3 

does not stem from minor amounts of secondary phases at grain boundaries. Our 

XRD data also support the absence of any minority phase. The splitting of the 

(104)/(202)hex and the (006)/(202)hex reflections decreases, pointing to a less 
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distorted crystal structure with increasing the La content. According to this idea, the 

observed increase in the electrical resistivity (decrease of the optical band gap) can 

be attributed to a reduction in the concentration of minor hole carriers, which 

means that the amount of oxygen vacancies is depressed. In the schematic diagram 

of the electronic density of states, the oxygen vacancy impurity band is less 

populated. According to the aforementioned analysis, the band gap value of La 

doping BiFeO3 depend on the relative degree of oxygen vacancies impurities and 

holes created by A-site vacancies. In our case, it can be seen that the band gap 

values, to a certain extent, are higher than for BiFeO3. Thus, it can be deduced that, 

for the whole temperature range, the oxygen vacancies impurity band level is 

virtually shifted upwards, and hole carriers, if any, are less populated though less La 

vacancies are expected than their Bi counterparts. Thus, the band gap value of La 

doped BiFeO3 is higher than pure BiFeO3. 

In conclusion, the band gap values of Ca and La doped BiFeO3 are investigated as a 

function of temperature. The band gap values decrease in temperature for two 

differently doped and different size samples. From our analysis, for Ca doping, due to 

the acceptor impurity doping, compared to BiFeO3, more holes are produced in Ca 

doped BiFeO3 compounds. Meanwhile, oxygen vacancies also exist naturally. 

Because of the concentration of holes is larger than oxygen vacancies, compared to 

BiFeO3, the Fermi level lies deeper in the valence band for Ca doped BiFeO3 samples. 

Thus, the band gap value of Ca doped BiFeO3 is higher than the band gap of BiFeO3. 

For La doped BiFeO3 samples, the band gap values depend mainly on the density of 

state changes related to the less populated oxygen vacancy impurity bands and the 

lower amount of holes existing in the La-doped BiFeO3 samples, thus making the 

band gap of such samples larger than for the BiFeO3 ones. 

7.4 Conclusion 

The photo-induced properties, and in particular the effective band gap and low 

energy d-d transition as a function of temperature, have been analyzed for different 

size and differently doped BiFeO3. As a reference, micro BiFeO3 samples have also 

been studied. The low energy d-d transition values of micro-BiFeO3 decrease quicker 
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than the nano BiFeO3 ones. The band gap variation of micro BiFeO3 is analyzed at 

high temperature, and we give the result that the band gap variation is caused by 

Fermi energy level position change as a function of the nature and population of the 

oxygen and bismuth vacancy levels. Finally, transitions of La and Ca doped BiFeO3 

compounds are studied as a function of temperature.  We notice that the whereas 

the band gap is larger for doped BiFeO3 than for pure ones, being explained by the 

fact that the Fermi level depends on the defect states created by this different 

substitution. 
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8 Photocatalysis using BiFeO3 nanoparticles on Rhodamine B dye 

Among useful ferroelectrics for photo-induced applications, BiFeO3 is the most 

promising candidate because of its relatively small band gap (Eg  2.6-2.8 eV) in 

comparison to other classical ferroelectric oxides like BaTiO3, PbZrTiO3 or LiNbO3 (Eg > 

3 eV) allowing to benefit from a wider part of the sunlight spectrum and its larger 

polarization value (P  100 µC/cm2)33, ensuring a more efficient separation of the 

photogenerated charge carriers. While intensively studied as thin film form for its 

ferroelectric, magnetic and magnetoelectric properties as well as most recently for 

its photovoltaicity, there is an increasing interest for photocatalytic and photolysis 

processes under visible light illumination using this material, that might become an 

alternative to the widely investigated photocatalytic material TiO2 which suffers from 

its large band gap allowing to use only  4 % of the solar spectrum. 

However, to make BiFeO3 a good photocatalyst requires to enhance the surface area 

and reactivity by simultaneously keeping or even increasing its absorption capability 

in order to guarantee an efficient charge transfer to surrounding foreign molecules 

and participate in oxidation-reduction processes leading to molecule 

decomposition53. It has been demonstrated that using different BiFeO3 particles, 

from nanosized to core shells structures, can indeed be beneficial for enhancing the 

photocatalytic activity93, 237. The nanosize shaping produces a lowering of the band 

gap which might cause a larger absorption of the sunlight. Moreover, the particle 

morphology is also a contributing parameter as it has been shown on micron-sized 

BiFeO3 particles because of the more efficient photoabsorption of cubic like facets238. 

Core-shell nanostructures based on BiFeO3 coated with TiO2 have been also used to 

enhance surface reactivity93. However, despite growing research in this field, the 

coupling between nanosize, shaping, optical and photocatalytic responses in BiFeO3 

has been not demonstrated yet. Here, by investigating at room temperature BiFeO3 

nanopowders with sizes ranging from 30 to 190 nm. 

The time dependent photo-degradation of the Rhodamine B (RhB) dye under visible 

light irradiation while in solution with BiFeO3 nanoparticles of different size has been 



Xiaofei BAI 

150 
 

shown in Figure 8.1(a). It can be seen that the typical intensity variation of the 

absorbance peak of RhB under visible-light irradiation that decreases with increasing 

the time indicating that RhB has been decomposed by BiFeO3 with reaction time. In 

order to evaluate the degradation efficiency of RhB, the maximum intensity ratio 

C/C0 is plotted in Figure 8.1 (b). Compared with the blank test for equivalent time 

dependences obtained from the light induced degradation of pure RhB in aqueous 

solution, it can be seen that the RhB degradation becomes efficiently accelerated by 

up to 50 % by using BiFeO3 particles. However, unexpectedly, the degradation is 

found to be less efficient once the particle size is reduced. This is clearly seen in 

Table 8.1 through the continuous decrease of (C0-C)/C0 ratio, i.e. the degradation 

efficiency, with particle size decreasing. 

 

Figure 8.1 (a) Absorption spectra of RhB under visible-light irradiation in solution with  190 nm 

BiFeO3 nanopowders. (b) Photodegradation of RhB as a function of the illuminated time when in 

solution with BFO nanopowders of different particle sizes. The curves are fitting results using the first 

order kinetic equation C/C0 = exp (-kt) 
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The degradation efficiency is strongly lowered by over 30 % from the 190 nm sample 

to the 30 nm one. A first order kinetic reaction law i.e. C/C0 = exp (-kt) where k is the 

kinetic rate and t the time, is used to fit the data in Figure. 8.1(b). Table 8.1 reports 

the constant k obtained for the different particle size. It appears that the faster 

reaction occurs for the bigger particles although a lower surface area is exposed to 

the RhB dye. Reducing the particle size is generally beneficial for photocatalysis, as it 

leads to quadratic growth of the specific surface area and thus enhances the surface 

reaction. However, it is not always the case that the smaller the particle size, the 

higher the efficiency. Nevertheless, here, in contrast to previous reports238, the 

shape of the particle is similar, which has been shown in Figure 8.2, and the lowering 

of the degradation efficiency cannot be accounted to a better light absorption from 

some specific facets with higher surface energy.  

 

Figure 8.2 FE-SEM images of BiFeO3 powders with average nanoparticles of (a) 50 nm (b) 190 nm. The 

corresponding inset figures are selected focused areas depicting that similar surface morphology is 

observed for different particle sizes. 
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Table 8.1 Sample name of BiFeO3 nanoparticles and their corresponding synthesis temperature, 

particle size, crystalline size, lattice parameters, cc/ac ratio, cubic-like distortion, and local 

inhomogeneous distortion 

 

Besides, the polarization, which is expected to only vary slightly, if any, with the 

change of the nanocrystallite size, cannot be considered as a parameter that could 

here affect the charge carrier separation. In contrast, some defects and their 

corresponding local strains revealed by the broadening of the Bragg peaks do exist 

and their amount and/or strength increases by decreasing the particle size. These 

defects, if localized at the surface, may indeed favor the recombination of electron-

hole charge carriers reducing the reaction activity between BiFeO3 and the RhB 

molecules. Moreover, the defects localized in the inner part of the particle can trap 

the charge carriers created within the particle, limiting their mean free path and thus 

their migration towards the surface. In addition, the local distortions surrounding 

associated to these defects can also affect the electronic structure, which has been 

presented in chapter 7.2.1, by shifting or lifting the degeneracy of existing energy 

levels or by creating new extra ones that can be localized within the band gap. 

Additionally, from Figure 8.3, although the total absorption is similar for different 

size samples, a great number of defects in smaller size sample could lead to greater 

scattering of carriers and this deduces the light efficiency, which will lead to a change 

on the light absorption properties of BiFeO3 particles. Thus, defects will lead to a 

change on the light absorption properties of BiFeO3 particles. It is worth mentioning 

that their nature cannot be straightforwardly determined and further efforts are 

required to answer to this question. Here, we note that the more plausible origin of 

these defects are the oxygen vacancies195, as they are usually expected in oxides as 

point defects, although others may also account like the so-called skin-layer188, 239. 
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This skin-layer having its own phase transitions is believed to be the site of trapping 

centers for charge carriers and interestingly it is associated to strong local distortions. 

Increasing the surface/volume ratio by decreasing the particle size might make the 

skin-layer to have a role on (1) the average increase of the local distortions, 

becoming more relevant in smaller particles (Table 8.1), and (2) the development of 

more local defects, i.e. more efficient trapping centers for the photogenerated 

charge carriers, as observed from the decrease of the degradation efficiency and the 

rate constant in such particles (Table 8.2). 

Table 8.2 Sample name and corresponding values of photodegradation efficiency (C0-C)/C0, (deduced 

after 4 h of irradiation), kinetics rate k, effective band gap Eg,eff, Urbach energy EU, and absorption 

area below 2.95 eV. 

Sample 
Photodegradation 

(C0-C)/C0 (%) 

Rate 
constant 

k (h
-1

) 

Absorption onset 
energy   

Eabs (eV) 

Urbach 
Energy 
EU  (eV) 

Absorption 
area 

30 nm  33% 0.12 2.18(1) 0.19(1) 2.40(1) 

50 nm 41% 0.14 2.21(1) 0.16(1) 2.47(1) 

120 nm 44% 0.16 2.22(1) 0.11(1) 2.58(1) 

190 nm 46% 0.17 2.24(1) 0.11(1) 2.94(1) 

In order to get further insights into the possible mechanisms involved in the 

decrease of the photocatalytic activity with particle size reduction, we studied the 

modifications of the optical properties related to particle size changes in BiFeO3. The 

absorption spectra of BiFeO3 nanoparticles are analyzed through the corresponding 

Kubelka-Munk function F(R), which is proportion to the absorption. The different F(R) 

curves are presented in Figure 8.3 as a function of the photon energy. Different low 

energy onsets can be seen in the inset of Figure 8.3. 

Because of the spin-charge-lattice couplings, BiFeO3 absorption spectrum reveals a 

complex and puzzling electronic structure75, 101, 230, which has been analyzed in 

chapter 7. Actually, according to the complex charge transition, the determination of 

the band gap is not straightforward. Typically, the band gap is determined using Tauc 

plots according to the relation (F(R)h)n=A(h-Eg) (chapter 7). Using the direct band 

gap approach with our set of data provides an effective band gap of Eg,eff 2.2 eV, in 

agreement with previous reports but lower than the usual Eg values obtained from 
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single crystals or thin films220. Even though this effective band gap is lower than that 

seen in crystalline materials, it is relatively close to the absorption onset noted there. 

Our results show a very weak decrease, if any, with the particle size reduction from 

190 nm to 30 nm, as summarized in Table 8.2. 

 

Figure 8.3 Room temperature UV-Vis absorption spectra of different size BiFeO3 samples derived from 

the diffuse reflectance (R) spectra using Kubelka-Munk functions F(R). The inset shows the low energy 

crystal-field transition bands for samples with different average particle sizes. 

From the different Kubelka-Munk curves, we can determine the Urbach energy EU 

related to the variation of the energy levels close to the conduction and/or valence 

bands, being affected by different sources of disorder. Using Urbach analysis through 

lnF(R)=h/EU relationship, the Urbach energy is found to vary from 0.11 eV to 0.2 eV 

from 190 nm to 30 nm, respectively (Table 8.2). These latter EU values are in very 

good agreement with x-ray photoelectron spectroscopy measurements218 on BiFeO3 

revealing the presence of defect trapped states at 0.2 eV below the conduction band 

that have been attributed to defects at the particle boundaries.  
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Below  2.2 eV, the low energy transitions located at 1.4 eV and 1.9 eV (Figure 8.3) 

are magnetically sensitive. Strikingly and in contrast to the other absorption bands, 

these low-energy crystal-field bands are obviously affected by the decrease of the 

particle size; the positions are red-shifted and the intensity is also decreased (within 

the detection limits), as shown in the inset of Figure 8.3. More interestingly, by using 

an oscillator strength analysis involving electron-phonon coupling216, it has been also 

shown that their temperature dependent behavior changes at 150 K, which 

remarkably corresponds to the temperature value of one of the transitions reported 

for the skin-layer of BiFeO3
188. We note that the magnetic changes have been 

previously attributed to the skin-layer at this peculiar temperature188. Moreover, as 

such a skin-layer is also known to be the site of trapped states for charge carriers, we 

propose here that the defect states evidenced from our Urbach analysis could be 

mainly located in the skin-layer. Therefore, both the Urbach energy and low-energy 

bands changes when the particle size is varied could suggest that the skin-layer and 

the defects trapped in it plays a major role in modifying the optical response of BFO 

particles. However, we should consider other mechanisms accounting for these 

different surface effects. As a matter of fact, the variation of the polarization state 

near the surface or through the nanoparticles, related to the ferroelectric domain 

configuration, will lead to a polarization gradient. Secondly, these nanoparticles 

should present Stern layers developed in the solution during the photocatalytic 

experiments that should influence the path and recombination of carriers within the 

solution. Additionally, nanoparticle aggregation could change the surface area 

contacting with the light, which also can affect the photocatalytic properties. From 

SEM images of different size nanoparticles (chapter 5.3.1), it can be observed that 

the different aggregation degree for different particle size BiFeO3. To unveil the 

contribution of these effects, further investigations are in process. 

Figure 8.4 shows the absorption area above 420 nm (i.e. energies below 2.95 eV) 

determined using F(R) and corresponding to the total optical energy absorbed by 

BiFeO3 particles in our photocatalysis experiment in comparison to the degradation 

efficiency. It appears that the absorption by BiFeO3 particles decreases with the 

reduction of the particle size. Therefore, the decrease of degradation efficiency of 
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RhB molecules with particle size reduction can be simply explained by the decrease 

of BiFeO3 capability to absorb the light once the particle size is reduced. 

 

Figure 8.4 The absorption area extracted from F(R) above 420 nm (i.e. below 2.95 eV) and 

photodegradation efficiency (C0-C)/C0 as a function of the different average particle size. 

Therefore, both the Urbach energy and low-energy bands changes when the particle 

size is varied could suggest that the skin-layer and the defects trapped in it plays a 

major role in modifying the optical response of BiFeO3 particles. Such skin-layer 

which is the site of defects and local distortions can indeed affect the optical 

absorption of BiFeO3 by shifting and/or splitting energy levels because of local 

symmetry reduction and inserting extra in-gap levels that can trap the charge 

carriers. By decreasing the particle size, the average shape, polarization, distortion 

and band gap are only weakly altered, if any, while the skin-layer is believed to vary 

substantially (Urbach energy and low-energy bands) leading to the observed 

decrease of degradation capabilities of BiFeO3 nanoparticles. 

In conclusion, a detailed optical and photocatalytic investigation on different particle 

sized BiFeO3 particles is conducted. While the particle size is reduced and thus the 

surface reaction is increased, the photocatalytic activity of BiFeO3 is found to 

decrease in the investigated particle size range. Such unexpected behavior is 

explained by changes occurring in the optical response of BiFeO3 due to the 

existence of a skin-layer which is the site of trapped defects and local distortions. 
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Decreasing the particle size affects the skin-layer response while the global 

properties (polarization, strain, band gap) are only weakly affected. The skin-layer 

being an inherent property of many other compounds should be then taken into 

account for further investigation and use in future photocatalysis applications of 

other functional oxides with the ABO3 perovskite structure like BiFeO3. 
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9 Summary 

Multiferroic materials combine two or more of the ferroic properties which affect 

reciprocally. These materials are prime candidates for future computer memory 

concepts, as well as for sensors and spintronic devices. Recently, coupling to other 

degree of freedom, such as light, is now under intense scrutiny, in the quest for 

multifunctional materials. The perovskite bismuth ferrite (BiFeO3) is the most studied 

mutiferroic material. BiFeO3 is ferroelectric below 830 °C and antierromagnetic 

below 370 °C. Epitaxial thin films of BiFeO3 have attract tremendous interest from 

the scientific community, but a thorough understanding of photo-induced properties 

and electron and charge transition at different energy and different temperature has 

received comparative less attention. 

The aim of this work has been to prepare phase pure bulk and nanocrystalline BiFeO3 

and to investigate the electron/charge optically proved transitions as a function of 

temperature. Moreover, different size La/Ca doped BiFeO3 samples have also been 

studied for in the same manner. 

Simple aqueous synthesis routes to obtain phase pure nanocrystalline BiFeO3 were 

developed using nitrate solution as metal precursors. The tartaric acid and ethylene 

glycol were found to complex both Bi and Fe cations. Preparation of pure phase bulk 

BiFeO3 by solid state reaction synthesis from Bi2O3 and Fe2O3 has been also obtained. 

The XRD and Raman spectroscopy techniques have been used for analyzing the 

sample quality and structure variation as a function of temperature. From the 

Raman spectra, we determine that the Fe-O-Fe angle depends on the size and in 

temperature it presents different anomalies related to the surface effects of 

different size BiFeO3. From XRD pattern, small changes of the lattice have been 

observed at the Néel temperature, which is an evidence of the spin-lattice coupling 

even observed in nanoparticles. EELS and XPS techniques have been used to study 

the volume and surface chemistry, respectively. Different ratios of Fe2+/Fe3+ in the 

surface of different size BiFeO3 have been detected, whereas the core of the 

nanoparticles is constituted by Fe3+ ions, thus indicating that different surface 
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properties can be expected for different size BiFeO3 while keeping similar core 

properties. STEM technique has been used. From STEM images, ferroelectric 

domains in BiFeO3 nanoparticles have been observed. From the EELS results of La 

doped BiFeO3 and pure BiFeO3 nanoparticle, it can be seen that the distribution of La 

ion is almost uniform in doped samples and Fe3+ state remains unchanged. 

The optical properties, especially, the effective band gap and low energy d-d 

transition as a function of temperature have been analyzed for different size BiFeO3. 

As a comparison, micro BiFeO3 has also been studied, which exhibits different band 

structure transition with temperature increasing. The low energy d-d transition of 

micro BiFeO3 is reducing quicker than nano BiFeO3, and one sketch is used to explain 

this difference variation. The band gap variation of micro BiFeO3 is analyzed at high 

temperature, the result being that the band gap variation is caused by a shift of the 

Fermi energy level depending on the concentration of oxygen vacancies and holes in 

these materials. Moreover, electronic and charge transitions of La/Ca doped BiFeO3 

have been studied as a function of temperature. The band gap difference is 

explained by the existence of different defects that can be controlled by the doping 

in the materials.  

Finally, a detailed optical and photocatalytic investigation on different particle sized 

BiFeO3 particles is conducted. While the particle size is reduced and thus the surface 

reaction area is increased, the photocatalytic activity of BiFeO3 is found to decrease 

in the investigated particle size range. Such unexpected behavior is explained by 

changes occurring in the optical response of BiFeO3 due to the existence of a skin-

layer which is the site of trapped defects and local distortions. Decreasing the 

particle size affects the skin-layer response while the global properties (polarization, 

strain, band gap) are only weakly affected. The skin-layer being an inherent property 

of many other compounds should be then taken into account for further 

investigation and use in future photocatalysis applications of other functional oxides 

with the ABO3 perovskite structure like BiFeO3. 
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