
HAL Id: tel-01315755
https://theses.hal.science/tel-01315755

Submitted on 13 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Apprentissage discriminant des modèles continus en
traduction automatique

Quoc Khanh Quoc Khanh Do

To cite this version:
Quoc Khanh Quoc Khanh Do. Apprentissage discriminant des modèles continus en traduction
automatique. Apprentissage [cs.LG]. Université Paris Saclay (COmUE), 2016. Français. �NNT :
2016SACLS071�. �tel-01315755�

https://theses.hal.science/tel-01315755
https://hal.archives-ouvertes.fr


NNT : 2016SACL5071

THÈSE DE DOCTORAT 
DE 

L’UNIVERSITÉ PARIS-SACLAY 
PRÉPARÉE À 

L’UNIVERSITÉ PARIS-SUD 

ÉCOLE DOCTORALE
Sciences et technologies de l'information et de la communication (STIC)

Spécialité de doctorat : Informatique

Par

M. Quoc Khanh Do

Apprentissage Discriminant des Modèles Continus en Traduction Automatique

Thèse présentée et soutenue à Orsay, le 31/03/2016 

Composition du Jury : 

Rapporteur             :    M. Thierry Artières                                  Professeur, Université de Marseille
Rapporteur             :    M. Christof Monz                                    Associate Professor, University of Amsterdam
Examinateur           :    M. Holger Schwenk (président du jury) Facebook Artificial Intelligence Research Paris
Examinatrice          :    Mme. Laurence Likforman-Sulem          Maître de Conférence, Télécom ParisTech
Directeur de thèse  :    M. François Yvon                                    Professeur, Université Paris-Sud
Co-encadrant          :    M. Alexandre Allauzen                           Maître de Conférence, Université Paris-Sud





Gửi tặng ba Đỗ Thanh, mẹ Nguyễn Thị Ba, em gái Đỗ Thị Ly
và người bạn đời tôi hết mực yêu thương, Huỳnh Thị Thanh Huyền





Acknowledgements

I would like to express my gratitude to François Yvon and Alexandre Allauzen, my thesis
supervisors, for their constant guidance and encouragement during my three years at
LIMSI-CNRS. My research as well as my critical thinking skills have been improving
significantly thanks to the meetings and seminars I participated with them. Their devotion
has helped me to overcome the most difficult moments in the thesis preparation.

I am also grateful to the other members of the jury : Thierry Artière, Christof Monz,
Laurence Likforman-Sulem, and Holger Schwenk for their questions, analyses and sugges-
tions. My special thanks to Thierry Artière and Christof Monz for spending a lot of time
and efforts to review this thesis, and to Holger Schwenk for his report of the defense.

Ideas and directions for my research have also been raised from discussions with other
TLP group members. LIMSI laboratory has offered an ideal and joyful working envi-
ronment where the ideas of each individual are all considered, and which helps us to
combine our forces from different research directions. The WMT evaluation campaign
each year has been an occasion for me to benefit from the knowledge of my dear friends.
My appreciation to Nicolas Pécheux who introduced me to n-code and data pre-processing
procedures for Machine Translation. MOSES was explained to me by Benjamin Marie
(though he was not a member of TLP) along with several tuning algorithms that were
crucially important at some points in my thesis. Matthieu Labeau presented the first
implementation of NCE at LIMSI which persuaded me that this method is worthwhile.
Discriminative large-margin methods were first explained to me by Alexandre Allauzen
who had nurtured the ideas for a long time. Other members have made my life as a PhD
student much more easier even though they were not directly implied in my work. Li
Gong in the first time, and Elena Knyazeva later are the "chefs" of our bureau who made
our days more comfortable with their kindness and their humour. Yong Xu discussed
with me about China during lunch times. Thomas Lavergne helped me to understand
other aspects of the research career. Along with Hélène Maynard, I have had unforget-
table moments discovering Lake Tahoe area during the very first international scientific
conference of my career. I also had fruitful discussions with funny stories and jokes with
other limsians : Marianna Apidianki, Claude Barras, Philippe Boula De Mareüil, Hervé
Bredin, Guillaume Wisniewski, Lauriane Aufrant, Rachel Bawden (she impressed me with
her dynamic characteristics although we only met in the last several months), Julia Ive,
Kevin Loser, Franck Burlot, Rasa Lileikyté... Many thanks for all the great moments we
shared together.

I would like to thank Hai Son Le for his SOUL source codes from which I learnt a lot
about C++ programming language, and on which I implemented my research ideas. He
was also the person who convinced me to do my PhD thesis at LIMSI on the field which
I am still working on. Also, I thank Jean-Luc Gauvain for allowing me to intensively use

i



Acknowledgements

cluster machines.

My deepest appreciation to the used-to-be-girlfriend and now my wife, whose richly
emotional life makes my life happier even in the toughest moments. And my limitless
gratitude to my parents and my sister who always stay beside me and support me.

ii



Abstract

Over the past few years, neural network (NN) architectures have been successfully applied
to many Natural Language Processing (NLP) applications, such as Automatic Speech
Recognition (ASR) and Statistical Machine Translation (SMT). For the language mod-
eling task, these models consider linguistic units (i.e words and phrases) through their
projections into a continuous (multi-dimensional) space, and the estimated distribution
is a function of these projections. Also qualified continuous-space models (CSMs), their
peculiarity hence lies in this exploitation of a continuous representation that can be seen
as an attempt to address the sparsity issue of the conventional discrete models.

In the context of SMT, these techniques have been applied on neural network-based
language models (NNLMs) included in SMT systems, and on continuous-space translation
models (CSTMs). These models have led to significant and consistent gains in the SMT
performance, but are also considered as very expensive in training and inference, especially
for systems involving large vocabularies. To overcome this issue, Structured Output
Layer (SOUL) and Noise Contrastive Estimation (NCE) have been proposed; the former
modifies the standard structure on vocabulary words, while the latter approximates the
maximum-likelihood estimation (MLE) by a sampling method. All these approaches share
the same estimation criterion which is the MLE; however using this procedure results in
an inconsistency between the objective function defined for parameter estimation and the
way models are used in the SMT application.

The work presented in this dissertation aims to design new performance-oriented and
global training procedures for CSMs to overcome these issues. The main contributions
lie in the investigation and evaluation of efficient training methods for (large-vocabulary)
CSMs which aim :(a) to reduce the total training cost, and (b) to improve the efficiency
of these models when used within the SMT application. On the one hand, the training
and inference cost can be reduced (using the SOUL structure or the NCE algorithm),
or by reducing the number of iterations via a faster convergence. This thesis provides
an empirical analysis of these solutions on different large-scale SMT tasks. On the other
hand, we propose a discriminative training framework which optimizes the performance
of the whole system containing the CSM as a component model. The experimental results
show that this framework is efficient to both train and adapt CSM within SMT systems,
opening promising research perspectives.

Key words: Statistical Machine Translation, Neural Network, Continuous-Space
Models, Discriminative Training, Large-Margin Methods, Noise Contrastive Estimation
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Résumé

Durant ces dernières années, les architectures de réseaux de neurones (RN) ont été ap-
pliquées avec succès à de nombreuses applications en Traitement Automatique de Langues
(TAL), comme par exemple en Reconnaissance Automatique de la Parole (RAP) ainsi
qu’en Traduction Automatique (TA). Pour la tâche de modélisation statique de la langue,
ces modèles considèrent les unités linguistiques (c’est-à-dire des mots et des segments) à
travers leurs projections dans un espace continu (multi-dimensionnel), et la distribution
de probabilité à estimer est une fonction de ces projections. Ainsi connus sous le nom de
modèles continus (MC), la particularité de ces derniers se trouve dans l’exploitation de
la représentation continue qui peut être considérée comme une solution au problème de
données creuses rencontré lors de l’utilisation des modèles discrets conventionnels.

Dans le cadre de la TA, ces techniques ont été appliquées dans les modèles de langue
neuronaux (MLN) utilisés dans les systèmes de TA, et dans les modèles continus de traduc-
tion (MCT). L’utilisation de ces modèles se sont traduit par d’importantes et significatives
améliorations des performances des systèmes de TA. Ils sont néanmoins très coûteux lors
des phrases d’apprentissage et d’inférence, notamment pour les systèmes ayant un grand
vocabulaire.

Afin de surmonter ce problème, l’architecture SOUL (pour Structured Output Layer
en anglais) et l’algorithme NCE (pour Noise Contrastive Estimation, ou l’estimation con-
trastive bruitée) ont été proposés: le premier modifie la structure standard de la couche
de sortie, alors que le second cherche à approximer l’estimation du maximum de vraisem-
blance (MV) par une méthode d’échantillonnage. Toutes ces approches partagent le même
critère d’estimation qui est la log-vraisemblance; pourtant son utilisation mène à une in-
cohérence entre la fonction objectif définie pour l’estimation des modèles, et la manière
dont ces modèles seront utilisés dans les systèmes de TA.

Cette dissertation vise à concevoir de nouvelles procédures d’entraînement des MC, afin
de surmonter ces problèmes. Les contributions principales se trouvent dans l’investigation
et l’évaluation des méthodes d’entraînement efficaces pour MC qui visent à: (i) réduire
le temps total de l’entraînement, et (ii) améliorer l’efficacité de ces modèles lors de leur
utilisation dans les systèmes de TA. D’un côté, le coût d’entraînement et d’inférence peut
être réduit (en utilisant l’architecture SOUL ou l’algorithme NCE), ou la convergence
peut être accélérée. La dissertation présente une analyse empirique de ces approches pour
des tâches de traduction automatique à grande échelle. D’un autre côté, nous proposons
un cadre d’apprentissage discriminant qui optimise la performance du système entier
ayant incorporé un modèle continu. Les résultats expérimentaux montrent que ce cadre
d’entraînement est efficace pour l’apprentissage ainsi que pour l’adaptation des MC au
sein des systèmes de TA, ce qui ouvre de nouvelles perspectives prometteuses.
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Résumé

Mots clefs: Traduction Automatique Statistique, Réseau de neurones, Modèles Con-
tinus de Traduction, Apprentissage Discriminant, Méthodes à Larges Marges, Estimation
Contrastive Bruitée
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Introduction

Over the past few years, research on neural network (NN) architectures for Natural Lan-
guage Processing has been rejuvenated with the pioneering work of (Bengio et al., 2001,
2003a). Boosted by early successes in the language modelling (LM) task for Automatic
Speech Recognition (ASR) (Schwenk and Gauvain, 2002; Schwenk, 2007; Mnih and Hin-
ton, 2008; Le et al., 2011), NNs have since been successfully applied to many other tasks,
such as syntactic analysis (Socher et al., 2013), estimation of semantic similarity (Huang
et al., 2012a), word alignment (Yang et al., 2013), acoustic modelling in ASR (Seide et al.,
2011; Dahl et al., 2012), or in Statistical Machine Translation (SMT) (Le et al., 2012a;
Kalchbrenner and Blunsom, 2013; Devlin et al., 2014; Cho et al., 2014).

The peculiarity of these models lies in their exploitation of continuous representations
of linguistic units, such as words or phrases. Indeed, traditional probabilistic models are
based on a discrete representation of these units, which considers every unit as the real-
izations of a discrete random variable. As a result, estimation is essentially a counting
operation, which does not embody any notion of similarity between the different events.
As a typical example, when estimating the likelihood of word sequences in an English
corpus, the procedure collects the occurrences of different morphological forms of some
verbs (for instance, eat, eats and ate) as being unrelated outcomes; the occurrences of
each form do not contribute any information to the estimation of the others. The peculiar
distribution of words in texts leads to the fact that the counting is always carried out on a
too small number of occurrences, hence is not statistically reliable and weakly generaliz-
able. On the other hand, neural network-based models, also qualified as Continuous-space
models (CSMs), consider these units through their projections into a continuous (multi-
dimensional) space. The estimated distribution is a function of these projections (also
called embeddings). These vectors, along with the function parameters, are jointly trained
in the neural network framework; the unified training procedure has the effect that the
units appearing in similar contexts have similar embeddings. As a result, a notion of
similarity between units can be induced, which leads to a better exploitation of linguistic
corpora.

In the context of SMT, these techniques have been applied, first on neural network-
based language models (NNLMs) included in SMT systems, then on bilingual continuous-
space translation models (CSTMs) (Schwenk et al., 2007; Le et al., 2012a). These models
have led to significant and consistent gains in the SMT performance (Le et al., 2012a;
Devlin et al., 2014; Do et al., 2014c), but are also considered as very expensive in training
and inference, especially for systems involving large vocabularies. The bottleneck has
been identified since the beginning : conventional output layers require to compute the
score for every vocabulary words (or linguistic units) for a normalization via a softmax
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layer (Bengio et al., 2001; Schwenk and Gauvain, 2004). To overcome this issue, the
Structured Output Layer (SOUL) has been proposed (Le et al., 2011, 2013); its building
however requires to modify the standard architecture with a structured output layer on
vocabulary words. Instead, approximate procedures can be used to train the standard
structure (Bengio et al., 2003b; Bengio and Senécal, 2008), but the resulting estimation
is often very unstable. Noise Contrastive Estimation (NCE), described in (Gutmann and
Hyvärinen, 2010) and applied to NNLMs in (Mnih and Teh, 2012), might be a more
computationally efficient alternative, but its interpretation is difficult and its dependence
on a noise distribution still needs investigation.

All these approaches share (directly or not) the same estimation criterion which is
the maximum-likelihood estimation (MLE). However, using this procedure results in an
inconsistency between the objective function defined for parameter estimation and the
way models are used in the SMT application. The same issue has been identified in the
training of traditional language models for which the usual evaluation by perplexity is
known to only loosely correlate with the performance of the application for which LMs
have been designed. For Speech Recognition systems, (Rosenfeld, 2000) claims that a
reduction of 5% in perplexity is usually not practically significant; a 10− 20% reduction
is noteworthy, while only a perplexity improvement of 30% or more is significant and can
be translated into performance improvement of the ASR. The MLE training for CSMs
has the same limitation. In particular, it is solely based on the CSM itself, and does not
take into account the properties of the SMT system into which the model will be later
incorporated.

Recent developments of large-scale discriminative SMT (Cherry and Foster, 2012; Yu
et al., 2013; Zhao et al., 2014) have put forward a set of training criteria which have been
designed to closely correlate with MT quality metrics (such as BLEU), and of training
procedures that can optimize the whole system in a unified manner. Ideas from this line of
research are henceforth promising for the design of new performance-oriented and global
training procedures for CSMs, which constitute one of the main motivations for the work
described in this dissertation.

In this context, the main contributions of this dissertation lie in the investigation and
evaluation of efficient training methods for (large-vocabulary) continuous-space models
(CSMs) which aim : (a) to reduce the total training cost, and (b) to improve the efficiency
of these models when used within the SMT application. On the one hand, (a) can be
obtained either by reducing the cost of each training iteration (using the SOUL structure
or the NCE algorithm), or by reducing the number of iterations for a faster convergence
(via a better learning rate adaptation). On the other hand, (b) is achieved by proposing a
discriminative training framework which optimizes the performance of the whole system
containing the CSM as a component model.

The dissertation will be organized as follows. Chapter 1 describes various SMT sys-
tems in which a CSM can be used, and introduces training criteria that are widely used
in the discriminative training and tuning of translation systems. Chapter 2 reviews sev-
eral state-of-the-art neural network structures used in NNLMs and CSTMs. The next
two chapters discuss the MLE training, comparing the exact optimization with SOUL
with an approximate training procedure based on NCE (Chapter 3), and proposing sev-
eral adaptive learning rate methods to speed up convergence and reduce the number of
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training iterations (Chapter 4). A discriminative training framework, which corrects the
weaknesses related to the MLE will be introduced in Chapter 5. We will also investigate
various aspects of this framework, along with an intelligent combination with the NCE
approach.
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1
Statistical Machine Translation

This chapter provides a description of several approaches used in Statistical Machine
Translation (SMT), and of the log-linear model into which continuous-space models
(CSMs) will be incorporated. These discussions give the foundation, not only for the
integration, but also for the training of CSMs that will be described in the next chapters.
In the first section, we give a brief overview on several widely used SMT systems, in par-
ticular the phrase-based and n-gram-based approaches. Some methods used to evaluate
the quality of SMT outputs are presented in Section 1.2. The final section formulates and
describes the discriminative training of log-linear coefficients, along with the correspond-
ing optimization algorithms. Following (Cherry and Foster, 2012), several discriminative
objective functions used in these methods are reviewed (Section 1.3.1), which lay the
ground for further developments.

1.1 Overview on Statistical Machine Translation

Translation from a source sentence s to a target sentence t is a complex process usually
modelled by dividing the whole derivation into smaller sub-processes, such as the seg-
mentation of the source text s into smaller fragments, the translation of each individual
fragment into target words, and their final recombination. Each small sub-process can be
modelled independently and is learnt using the statistical analysis of large corpora, while
the interaction between different models is also learnt.

Early work on SMT considers the translation as a generative process. The modelling
aims at estimating the probability of the target sentence given its corresponding source,
and involves probabilistic distributions at the word level. The first mathematically solid
approach to the modelling of the translation process is fully described in (Brown et al.,

5



CHAPTER 1. STATISTICAL MACHINE TRANSLATION

1993), which considers translation as a search for the most likely target sentence t∗ :

t∗ = argmax
t

p(t|s)

The solution of (Brown et al., 1993), known in the literature as the noisy channel model (or
source channel model), is to apply the Bayes rules to obtain the following decomposition :

t∗ = argmax
t

p(t|s)

= argmax
t

p(s, t)

= argmax
t

p(s|t)× p(t) (1.1)

This formulation divides the generation of the couple (s, t) in two terms : the choice of
a target sentence t according to a language model (probability p(t)), and the fitting of
this sentence compared to source text s according to a transmission channel modelled by
p(s|t), also referred to as the translation model. It implies the division of modelling in
two subtasks which can be addressed independently in terms of estimation techniques and
training data : the language modelling and the translation modelling.

The translation model is estimated on a set of sentence pairs (or parallel training data),
each of which contains a sentence in the source language and its translation in the target
language. However, these texts present only surface sentence-level relationship without
any explicit indication about which decisions have been taken to derive the target sentence
from the source. The learning of hidden relationships inside a sentence pair becomes
possible only with the introduction of latent variables a describing the alignment between
the components of the source and target sentences. The definition of these latent variables
characterizes different approaches in Machine Translation, among which the phrase-based
approach (Section 1.1.2) which models the translation based on phrases instead of words,
is today one of the state-of-the-art approaches.

The noisy channel model however presents some limitations. First, the decision in
the noisy channel model (1.1) can be shown to be optimal only when true probability
distributions are used. In practice, distributions are estimated from training data using
some simplifying assumptions. These make the models only poor approximations of the
assumed data distribution; on the other hand the use of these assumptions is necessary
to make statistical estimation tractable. Second, the noisy channel model makes the
integration of complex forms of latent variables, as well as of different approaches for the
same model, difficult. Later, since the work of (Och and Ney, 2002), the discriminative
framework based on a log-linear model is often used. This framework models existing
knowledge about the translation process (such as the likelihood of a target sentence or of
a translation decision) in form of feature functions. In the general case, the probability
of p(t, a|s) is inferred from the following formula :

p(t, a|s) = 1

H(s)
exp

(
M∑

m=1

λmfm(s, t, a)

)
(1.2)

which contains a set of M feature functions reflecting different aspects of the translation
decision. Here H(s) is a normalization constant ensuring all probabilities sum to 1. The
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SMT system then selects the target sentence t (and a derivation a) which maximizes the
above probability : 1

t∗ = argmax
t,a

M∑

m=1

λmfm(s, t, a) (1.3)

It is important to note that the noisy channel model (1.1) is a special case of this
discriminative framework, where the set of features contains two functions : the first one
reflects the compatibility between s and t, while the second one evaluates the fluency of
t in the target language; these two are equally weighted with λ1 = λ2 = 1. In general,
the set of feature functions may exploit various characteristics of the triplet (s, t, a) at
different levels (word, phrase, or sentence), and is derived from the representation of latent
variables (or derivation) a. In practice, the definition of latent variables, as well as the set
of feature functions are two properties that characterize different approaches in Statistical
Machine Translation.

Once the model is defined, its parameters are estimated on training corpora, tradition-
ally relying on a two-step process. In the first step, several probabilistic models, which
give values to feature functions fM1 , are estimated independently on very large monolin-
gual or bilingual corpora. The second step learns the mixing weights of these models to be
used in the linear combination (1.3) via the log-linear coefficients λ. The introduction of
these parameters adds more flexibility, but also complexity. The optimization of λ forms
the tuning task within the building of SMT systems. While the training of a standard
maximum entropy model consists of maximizing the conditional likelihood, the training
of log-linear coefficients within a SMT system often incorporates automatic evaluation
metrics for MT (the most widely used is BLEU, see Section 2.5.2). A typical example is
the Minimum Error Rate Training (MERT) (Och, 2003).

1.1.1 Word-based approach

The word-based approach is introduced in (Brown et al., 1993; Vogel et al., 1996; Tillmann
et al., 1997) which propose to estimate the translation model (TM) p(s|t) in the noisy
channel model by decomposing the translation at the level of words, and by introducing
word-to-word alignments as latent variables :

p(s|t) =
∑

a

p(s, a|t) =
∑

a

p(a|t)× p(s|a, t) (1.4)

where a = a1, ..., aJ denotes the word alignment variable. Each element aj for 1 ≤ j ≤ I
takes value from {1, ..., J}; here J and I denote the number of words in the source and
target sentences. The first term p(a|t) is referred to as the distorsion model which charac-
terizes the syntactic reordering of the source sentence, while p(s|a, t) provides a transla-
tion model given the reordering. The translation model defines the generative probability
of s which can be obtained from word-level probabilities conditioning on aligned target

1Theoretically, t must be chosen to maximize its probability given s, which is estimated by marginaliz-
ing over the variable a in Equation (1.2). In practice, as the marginalization is intractable, we instead look
for a pair (t,a) that maximizes the probability, and take the corresponding t as the output translation.
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words (lexical translation model), while the alignment a can be made independent from
t as proposed in (Vogel et al., 1996) :

p(s, a|t) = p(a|t)× p(s|a, t)

=

(
J∏

i=1

p(ai|ai−1)

)(
J∏

i=1

p(si|tai)

)
(1.5)

Other models propose different assumptions to make tractable the inference of latent
variables a. For example, IBM models (3 & 4) estimate the distorsion model p(a|t) via
the introduction of fertility that characterizes the number of source words a target word
can align to. However, a common weakness of these models is the asymmetry of the
alignment : a source word is aligned only to one target word, but a target word may align
to multiple source words (many-to-one alignment). Moreover, most of them estimate
p(s|a, t) by simplifying it to a lexical translation model, which is a consequence of the
many-to-one alignment : each target word tai is generated depending only on the source
word si it is aligned to. The model hence fails to capture information from target words
other than the aligned word, or from a whole group of target words.

1.1.2 Phrase-based approach

The word-based approach has many shortcomings, such as the failing to capture depen-
dencies outside the word alignment links, and to model complex reordering patterns.
Moreover, longer dependencies are learnt only by the target language model which ig-
nores the source text. The phrase-based approach aims at incorporating long contexts
into the translation model by learning the translations for phrases. 2 The source sen-
tence is first segmented into phrases, then each phrase is translated independently before
they are recomposed to form the target sentence. However, compared to the word-based
models, this kind of models introduces an additional level of complexity which is the
phrase segmentation, while afterwards an optimal alignment is searched on phrases in-
stead on words. To simplify the problem, the phrase segmentation is often performed
using heuristic techniques during the training.

The shift from word-based to phrase-based models is introduced in (Och et al., 1999)
with the method of alignment templates. This approach introduces latent phrase align-
ment variables directly derived from the word alignments, and which are constructed using
a two-phase process : first, word-level alignments are built, then phrase-level alignments
are derived from the first ones using an heuristic. To overcome the many-to-one mapping
implied by word alignment models, the heuristic, often referred to as symmetrization, con-
structs two sets of word alignments, each in one direction, from the source to target side,
and inversely. Then the procedure merges them into a symmetric alignment matrix that
contains many-to-many alignments. Finally, for each sentence pair, all phrase pairs which
are consistent with the alignment matrix are extracted. As in the word-based approach,
the authors also define several generative models derived from aligned source and target
phrases, which correspond to a set of feature functions in the discriminative framework.

2A phrase is simply defined as a sequence of words whose length is not fixed beforehand, and should
not be understood as having here its usual linguistic meaning.

8



Overview on Statistical Machine Translation

During training, these features take into account both the probability of a phrase pair, as
well as the probabilities of inner lexical alignment links inside each phrase pair. The last
terms will be later generalized and named lexical weights in (Koehn et al., 2003).

The alignment template method in (Och, 1999) considers bilingual word classes instead
of surface forms as a first attempt to address data sparsity issues. Zens et al. (2002)
introduce for the first time the term phrase-based machine translation which consists of
a simplification of the alignment template approach where a distribution over bilingual
phrases is estimated directly using their surface forms. On the level of sentences, a set
of latent variables are introduced to describe the segmentation of a sentence pair into
bilingual phrases. They also propose to deal with the reordering problem by the use of
a reordering graph generated by a word-based model. The model described in (Koehn
et al., 2003) is very similar, but introduces a simpler distance based reordering. These two
last papers define the standard method for building a translation model from a parallel
bilingual corpus.

Some propositions in the literature aim at directly addressing the joint segmentation
and alignment into phrase pairs; however they are often based on complex models that
need approximate inference procedures, or imply some constraints to restrict the combi-
natorial search space. The reader is invited to get further details in (Marcu and Wong,
2002; DeNero et al., 2006, 2008; Zhang et al., 2008; Andrés-Ferrer and Juan, 2009; Bansal
et al., 2011; Feng and Cohn, 2013). However, these models never significantly outperform
the standard methods described in (Zens et al., 2002; Koehn et al., 2003).

1.1.3 The n-gram approach in Machine Translation

In this section, we describe a variant of the phrase-based approach to Machine Translation
that will be used in experiments in the rest of the dissertation. The n-gram based approach
described here corresponds to LIMSI’s in-house n-code implementation 3 (Crego et al.,
2011) which has been exploited and showed to achieve state-of-the-art results in several
translation evaluations, such as the WMT (Workshop on Statistical Machine Transla-
tion) and IWSLT (International Workshop on Spoken Language Translation) evaluation
campaigns.

The n-gram-based approach to SMT borrows its main principle from the finite-state
perspective (Casacuberta and Vidal, 2004) in which the translation process is divided in
two sub-processes : a source reordering step and a (monotonic) translation step. The
source reordering is based on a set of rewrite rules that non-deterministically reorder the
input words so as to match the order of the target words (Crego and Mariño, 2006).
The application of these rules yields a finite-state graph representing possible source
reorderings, which are then used to carry out a monotonic translation from source to
target phrases. The main latent variables in this approach is the segmentation of sentence
pairs into elementary translation units called tuples, which are equivalent to phrase pairs
in the phrase-based approach, and which correspond to pairs of variable-length sequences
of source and target words. The n-gram-based approach hence differs from the standard
phrase-based approach by the latent variables a that describe the reordering of the source

3ncode.limsi.fr/ .
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 s̅8: à 

 t̅8: to 

 s̅9: recevoir 

 t̅9: receive 

 s̅10: le 

 t̅10: the 

 s̅11: nobel de la paix 

 t̅11: nobel peace 

 s̅12: prix 

 t̅12: prize 

 u8  u9  u10  u11  u12 

s :   .... 

t :   .... 

à recevoir le prix nobel de la paixorg :   ....

....

....

Figure 1.1 – The segmentation of a parallel phrase pair (s, t) into L bilingual tuples
(u1, ..., uL). The original source sentence (org) is shown above the reordered source sen-
tence s and the target sentence t. Each tuple ui aligns a source phrase si to a target
phrase t.

sentence, and the joint segmentation into bilingual tuples. 4 Another particularity of the
n-gram-based approach is the inclusion of n-gram translation models estimated on atomic
tuples.

Feature functions in an n-gram-based SMT system

n-gram translation models (n-gram TMs) are estimated on the triplets (s, t, a) based
on a specific decomposition of the joint probability p(s, t|a). Given latent variables a,
the sentence pair can be regarded as a sequence of L bilingual units (or tuples) (s, t) =
u1, ..., uL; each tuple u corresponds to a matching u = (s, t) between a source s and a
target t phrase. Figure 1.1 gives an example of the joint reordering and segmentation of
a sentence pair into tuples. Using the n-gram assumption at the level of tuples, the joint
probability p(s, t|a) decomposes as :

p(s, t|a) = p(u1, ..., uM) =
L∏

l=1

p(ul|ul−1l−n+1)

which is in fact a bilingual n-gram model of tuples. This model can be estimated with tech-
niques that will be described in Chapter 2, for instance using discrete probabilistic models
with modified Kneser-Ney smoothing (Chen and Goodman, 1996), or by continuous-space
model (Schwenk et al., 2007; Le et al., 2012a). The set of tuples is extracted during the
training process from a word-aligned corpus (obtained for instance by MGIGA++ 5) in
such a way that a unique segmentation of the bilingual corpus is obtained.

In addition to the n-gram translation model, n-code also implements 10 feature func-
tions that are very similar to those used in the standard phrase-based system :

• A target language model;

• Four lexicon models, two of them correspond to relative frequencies of tuples, and
two lexical weights derived from word-aligned links inside each tuple (Koehn et al.,
2003);

4The segmentation into phrases is deterministic, contrary to the reordering of the source sentence.
5http://www.kyloo.net/software/doku.php .
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• Two lexicalized reordering models aiming at predicting the orientation of the next
translation unit (Tillmann, 2004; Crego et al., 2011);

• A "weak" distance-based distortion model (Koehn et al., 2003);

• and finally a word-bonus model and a tuple-bonus model which compensate for the
system preference for short translations.

Decoding

During the decoding, source sentences are represented in form of word lattices containing
the most promising reordering hypotheses. They are derived from a set of rules extracted
during the tuple extraction process, with the goal to reproduce reordering patterns ob-
served in word alignments. Only those reorderings are used to process the translations.
In practice, part-of-speech (POS) are used, instead of surface word forms, to increase the
generalization power of these rules (Crego and Mariño, 2006).

1.1.4 Hierarchical phrase-based approach

The phrase-based approach has been shown to be powerful to learn and handle local
reorderings and other translation decisions that are sensitive to local context, such as word
insertions or deletions. However, long dependencies, such as those implied by structural
linguistic constraints (agreement for instance) and the reordering of long phrases, are more
difficult to handle, especially when only simple distance-based distortion models are used
in such systems. Koehn et al. (2003) understate that in phrase-based approaches, phrases
longer than 3 words hardly improve the performance, which highlights the implicit trade-
off between the capacity of generating reorderings via phrases, and the difficulty related
to their estimation. The hierarchical phrase-based approach (Chiang, 2005, 2007) results
from the desire to capture longer translations whose scope is larger than a few consecutive
words as in the standard phrases. The main idea is to use hierarchical phrases, which are
phrases that contain sub-phrases, to learn the reorderings at the level of phrases. These
hierarchical phrases are formally the productions of a synchronous context-free grammar
(CFG) (Aho and Ullman, 1969), which is however learnt from training parallel corpora
instead of being manually hand-crafted by linguist experts.

When expressed under the form of the log-linear model (Equation (1.3)), the hierar-
chical phrase-based approach hence only differs from the standard phrase-based approach
by the representation of its feature functions, which is implemented as a weighted syn-
chronous CFG where features are integrated into rule weights. The approach can be
seen as an attempt to introduce some ideas of syntax-based SMT systems (Wu, 1997;
Alshawi et al., 2000; Yamada and Knight, 2001), but to combine them with the strength
of phrase-based SMT systems.

In the training step, the grammar rules are extracted from the training data and filtered
out using heuristics in order to limit their number. The extraction process involves in a
first step the phrase extraction as in the standard phrase-based approach, but then the
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relative frequency of each phrase pair is equally distributed to all rules obtained from
the extraction of this phrase pair into sub-phrases. The decoding is basically performed
using CKY (Cocke-Kasami-Younger) algorithm for CFGs; the sentences are generated in
a bottom-up fashion (instead of in left-to-right order as in phrase-based systems). This
bottom-up decoding makes the integration of a LM more difficult. To do this, the n-gram
LM is often viewed as a weighted finite state machine 6 which is then intersected with the
weighted synchronous CFG of the hierarchical system; the LM scores will be part of the
rule weights like other features (Chiang, 2007).

1.2 Evaluation in Statistical Machine Translation

Evaluating translations is challenging even in the presence of reference translations, and
has been the central problem of an important amount of literature. An ideal evaluation
may resort to the use of human assessments which, given a reference translation, can rank
the adequacy of an output translation in terms of meaning and fluency of the output if
used in the target language (White et al., 1994). However, collecting human judgements
on translations is very expensive, hence is not feasible in an iterative system development
when we need to routinely perform evaluations to identify if changes in the system are
really beneficial (Lopez, 2008). A feasible alternative is automatic metrics, of which a
remarkable number have been proposed in the literature, such as the Word Error Rate
(WER) or WER-related metrics (Och et al., 1999), the Bilingual Evaluation Understudy
(BLEU) (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005), or the Translation
Edit Rate (TER) (Snover et al., 2006). In the context of proliferating quality metrics, an
important research direction is to identify the correlation of each metrics with the human
judgement (Papineni et al., 2002; Callison-Burch et al., 2007). The metric evaluation
task has been included in the WMT evaluation campaigns since 2008 7, resulting in some
interesting automatic metrics (see, for instance (Fishel et al., 2012; Lo and Wu, 2013; Joty
et al., 2014; Stanojević and Sima’an, 2014)).

Despite its well-known weaknesses (Turian et al., 2006; Callison-Burch et al., 2006),
BLEU is still the most widely used metric, and measures the similarity of n-gram count
vectors between hypotheses and the reference translations. Let ](g, t) be the count of
an n-gram g in a particular sentence t and n-grams(h) the set of different n-grams in
a hypothesis h, the n-gram precision pn for a set of translations H and the set of their
respective references R is computed as :

pn(H,R) =

∑
h∈H

∑
g∈n-grams(h)

](g, ref(h))
∑
h∈H

∑
g′∈n-grams(h)

](g′,h)

BLEU is a precision-based score, and is computed as the geometric average of multiples
pn up to a maximum value of n (4 in practice). The metric also includes a brevity penalty
(BP) to penalize hypotheses with are much shorter than the references. The BP is a
corpus-level score which compares the overall number of words in H (denoted by |H|)

6each state corresponds to a sequence of n− 1 words.
7http://www.statmt.org/wmt15/metrics-task/ for the 2015 edition.
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with the one of the reference set |R| :

BP (H,R) =

{
1 if |H| > |R|
exp

(
1− |R|

|H|

)
otherwise

and BLEU(H,R) = BP (H,R)× exp

(
4∑

n=1

log pn

)
.

In this dissertation, we always use BLEU as the metric to evaluate the performance of
a SMT system, hence the performance of CSMs when they are used for SMT applications.
Our practice follows the claim in (Callison-Burch et al., 2006) that "the use of BLEU
is recommended to be restricted to tracking, broad, incremental changes to a single sys-
tem, or comparing systems which employ similar translation strategies". The integration
of continuous-space models into SMT systems is a perfect example of such incremental
changes, while we will always compare only between CSMs included in the same baseline.
Moreover, BLEU is a corpus-level score but has some sentence-level approximations (Lin
and Och, 2004; Liang et al., 2006; He and Deng, 2012) which facilitate its incorporation
into discriminative training procedures that will be described in the next section.

1.3 Discriminative tuning and training of SMT systems

In this section, we focus on the discriminative framework for Statistical Machine Transla-
tion (Equation (1.3)), especially on some tuning algorithms which are used specifically to
optimize the log-linear coefficients λ, and on training procedures aiming at jointly opti-
mize multiple models according to a well-understood objective function. Ideas from this
section can be straightforwardly applied to the training of continuous-space models, as
described later in Chapter 5.

The standard building of the whole log-linear model relies on a two-step process.
First, several probabilistic models are estimated independently on very large monolingual
or bilingual corpora, and output the parameters of the feature functions {fi, 1 ≤ i ≤M}.
Then, an additional tuning step is needed to balance the contribution of each model,
resulting in global model weights (i.e log-linear coefficients) optimized based on the overall
translation quality. These two steps are called respectively training step (for the feature
functions), and tuning step (for λ). While the training step uses training (monolingual
and parallel) data, the tuning step is performed typically on a separate development data,
using for instance Minimum Error Rate Training (MERT) (Och, 2003).

Another approach aiming at globally optimized both groups of parameters for SMT
systems has been proposed in (Liang et al., 2006; Blunsom et al., 2008; Blunsom and
Osborne, 2008; Dyer and Resnik, 2010; Lavergne et al., 2011, 2013). In this framework,
all these parameters are learnt discriminatively in a unified manner, using an optimiza-
tion method on a well-understood objective function over the entire training set. This
framework dispenses the need to build separate models and to tune their interpolation
weights; indeed these two steps are performed simultaneously.

In practice, both approaches suffer from the richness of feature sets which become

13



1.3.1 - Discriminative tuning algorithms

larger to incorporate richer linguistic knowledge. In the literature, solutions have been
proposed to overcome this challenge, firstly by making the tuning step more robust in
the presence of a large number of feature functions. For example, Tillmann and Zhang
(2006) propose to use structured SVMs. Another trend explores various online learning
approaches : structured perceptron (Liang et al., 2006; Wisniewski and Yvon, 2013),
Margin Infused Relaxed Algorithm (MIRA) (Watanabe et al., 2007; Chiang et al., 2008),
learning as ranking (Hopkins and May, 2011). Much of these papers however focus on
the tuning step (on small development sets) while leaving the training procedure (on
large training sets) unchanged. There are some attempts to address the training on large
datasets of component models (Liang et al., 2006; Blunsom et al., 2008; Dyer and Resnik,
2010). These discriminative SMT systems will be described in the second part of the
section ( 1.3.2), while the first part ( 1.3.1) is dedicated to a review of classical tuning
algorithms.

1.3.1 Discriminative tuning algorithms

We start this section by a formal description adopted from (Cherry and Foster, 2012)
of the tuning problem. The training data of this step is often called development set.
Suppose the development set Ddev contains d source sentences {s}di=1. For each source
sentence si, let Ri be the set of target reference sentences, in which there may be more
than one reference. Finally, Hi designs a subset of reachable hypotheses generated by the
decoder; each h = (t, a) ∈ Hi is composed of a target sentence t and a derivation a which
represents the steps by which the target sentence is generated from the source; a contains
latent variables that are system-dependent (Section 1.1). The search space depends on
the decoder; in practice it is computationally expensive to enumerate all hypotheses in
this space. Henceforth, we often work with a representation of Hi, as an N -best list,
or as a lattice of hypotheses. Depending on the context, the notation Hi may be used,
abusively, to denote either of these representations.

Hypotheses from Hi, i = 1, ..., d are scored by the following linear function :

Fλ(hj) =
M∑

m=1

λmfm(hj) = λ.f(hj) (1.6)

where f(hj) denotes theM -dimensional vector containing all hj’s features. The log-linear
model produces 1-best output according to this scoring function, ĥi = argmax

hj∈Hi

λ.f(hj). Fi-

nally, all 1-best outputs corresponding to the source sentences sdi=1 are assembled and the
whole document is evaluated by an automatic quality metric (typically BLEU score (Pa-
pineni et al., 2002)) computed using the references Rd

i=1 (see Section 2.5.2 for more details
on MT evaluation). The log-linear coefficients λ are learnt so that the assembled doc-
ument is best evaluated using the BLEU score. N -best lists or lattices are often used
to approximate the search space of reachable hypotheses. In the traditional MERT in-
frastructure, an outer loop is maintained to iterate between the optimization of λ and
the re-decoding along with those new values to enhance the approximation by N -best
lists (Och, 2003) or by lattices(Macherey et al., 2008).
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Algorithm 1 A generic batch tuning algorithm
1: Init. λ
2: for each iteration do do
3: Update Hd

1 using current values of λ
4: Train λ to optimize the overall criterion (1.7)
5: end for
6: Return λ

Training procedures

Almost all tuning algorithms (except MIRA) directly optimize an objective function de-
fined on the development set Ddev = {sdi=1} and the approximate search spaces Hd

i=1.
Since the used MT metrics (such as BLEU) are document-level scores, the optimized
criteria could be a surrogate document-level function in order to follow more closely the
system performance on Ddev. However, to simplify the training procedures, linear criteria
are often used which decompose over training examples :

L(λ,Ddev) =
d∑

i=1

L(λ, si,Ri,Hi) +R(λ) (1.7)

where R(λ) is a regularization term, R(λ) = γ × ||λ||2
2

. Each decomposed term
L(λ, si,Ri,Hi) depends on the source si, the set of references Ri as well as on a (ap-
proximate) search space Hi. This space can be updated as soon as the optimizer provides
new values for λ. However, in theoretical as well as practical terms, it would be much
simpler to assume fixed Hd

i=1, i.e to limit the tuning procedure inside lines 3 and 4 in
Algorithm 1. Outside this scope, the optimizer can be viewed as being a part of an outer
loop that alternatively optimizes λ and re-decodes the search space. Algorithm 1 is also
the general architecture of MERT (Och, 2003) and other related procedures that we often
refer to as batch algorithms. Within this framework, tuning algorithms differ in their
criteria and how they optimize the parameters given each criterion.

On the other hand, online algorithms only consider one source sentence si at a time and
update λ according to a criterion L(λ, si,Ri,Hi), where Hi may be time-dependent. At
each iteration, these updates aim at guiding the decoder to output 1-best translations that
are closest to elements of Ri. However, a decoder usually cannot generate translations
that match exactly the reference translations due to beam search pruning and out-of-
vocabulary (OOV) words, henceforth the criterion can not be computed solely based on
Ri. A solution is to use a set of oracle translations (Tillmann and Zhang, 2006; Liang et al.,
2006; Watanabe et al., 2007), chosen from Hi and Ri : Oi = O(Hi,Ri), and to update λ
towards these hypotheses. These are reachable approximations of the translations in Ri

according to a distance derived from a quality metric, such as BLEU.

Updating λ using MIRA (proposed in (Crammer et al., 2006), applied to SMT
in (Watanabe et al., 2007; Chiang et al., 2008, 2009; Cherry and Foster, 2012)) is a
notable exception that does not explicitly use an objective function. However, its original
version can be shown to be the Lagrange dual form of a structured hinge loss 8 optimized

8which is also named max-margin criterion in this dissertation.
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by coordinate ascent (Martins et al., 2010). Later variants of MIRA in (Chiang et al.,
2008) modify the original update steps to better suit reachable spaces used in SMT, but
are not derived from any mathematically defined criterion. An interpretable version of
MIRA is provided in (Gimpel and Smith, 2012).

Minimum Error Rate and Minimum Risk training

Minimum Error Rate Training (MERT (Och, 2003)) is the first proposal to train a log-
linear model by incorporating a SMT evaluation metric. Assume that for each hypothesis
translation h from a source sentence si ∈ Ddev, an error score Ei(h) can be obtained
by comparing h with elements in Ri. The number of errors counted on Ddev is defined
to be the sum of errors of each individual sentence, exactly like the decomposition into
sentence-level losses of Equation (1.7) :

Lmert(λ, si,Ri,Hi) = Ei(ĥi) (1.8)

where ĥi is the hypothesis that maximizes the model score :

ĥi = argmax
h∈Hi

λ.f(h) (1.9)

However, the criterion (1.8) is not easy to be optimized, as it contains an argmax
operation (1.9) which makes the sub-gradient computation difficult; this criterion is in-
deed not optimized using gradient-based methods. Instead, the objective function can
be optimized using Powell’s algorithm, combined with a grid-based line optimization
method (Och, 2003). The optimization starts from a random initial value of λ, and tries
to find a better value by optimizing one dimension of λ while keeping the others fixed.
This procedure has a weakness that it suffers from a lot of different local optima of the
objective function. In order to overcome this difficulty, one often runs the algorithm from
various random initial points.

Even if this issue with local optima can somehow be mitigated, this algorithm is still
slow as it considers a line optimization for each dimension of λ at each iteration. Och
(2003) propose an improved version of the grid-based line optimization method, which
is much faster and more stable than the original one. In order to optimize the BLEU
score, the error function Ei needs to be refined so that its document-level accumulation
approximates the metric. However, the algorithm does not scale with a large-dimension
λ representing the case where we have a lot feature functions. Indeed, MERT is shown
in practice to only work well up to 30 features (Chiang et al., 2008; Cherry and Foster,
2012). Some attempts have been made to improve this line optimization procedure (Smith
and Eisner, 2006; Cer et al., 2008). Moore and Quirk (2008) propose several ways of
generating random starting points for MERT, whereas Cer et al. (2008) come with a
modified version of Powell’s algorithm in which diagonal directions are chosen at random.
Macherey et al. (2008) apply the MERT search on lattices of hypotheses instead of on N -
best lists, which results in a smoother convergence. The proposals in (Foster and Kuhn,
2009) aim to improve the stability of the tuning procedure. However, in order to scale,
it is likely that one should replace the grid-based search in favour of simpler and more
stable optimization methods, such as Stochastic Gradient Descent (SGD). Nevertheless,
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the ability of MERT to optimize parameters according to an evaluation metric (BLEU)
is an advantage compared to the standard maximum-likelihood training, and has become
a standard assumption in SMT.

An application of SGD to MERT may be possible by replacing the piecewise linear
objective function (1.8) by a smoothed error count criterion :

LMR(λ, si,Ri,Hi) =
∑

h∈Hi

Ei(h)p(h|si) (1.10)

where, instead of considering only the hypothesis maximizing the model score, the cri-
terion accounts for an expected error within each search space Hi. This expectation is
estimated based on a probabilistic interpretation of the log-linear model similar to Equa-
tion (1.2) that we rewrite here as follows :

p(h′|si) =
exp(α× λ.f(h′))∑

h∈Hi

exp(α× λ.f(h))
(1.11)

where α is a scaling factor. Compared to the original un-smoothed function, this smoothed
error function has fewer local optima with much more stable optimization results. The
training with this loss is often referred to as Minimum Risk training, and is commonly
used in Automatic Speech Recognition community (Juang et al., 1996; Schlüter and Ney,
2001). Within SMT community, the error Ei(.) can be assigned to the negative sentence-
BLEU (Watanabe et al., 2007; Chiang et al., 2008), hence the procedure amounts to an
expected BLEU training (Zens et al., 2007; Rosti et al., 2011; He and Deng, 2012).

Max-margin approach

Assuming that Hi represents the space of all derivations that can be obtained from the
source sentence si, max-margin methods minimize (by the batch algorithm) the hinge
loss, or structured perceptron (Collins, 2002; Taskar et al., 2004) :

Lmax−margin(λ, si,Ri,Hi) = max
h∈Hi

[
costi(h) + λ.f(h)− λ.f(h∗i)

]
(1.12)

where h∗i is the oracle hypothesis :

h∗i = argmax
h∈Hi

BLEUi(h)

and the cost function costi(.) computes the difference in BLEU, costi(h) = BLEUi(h
∗i)−

BLEUi(h). The same hinge loss is optimized by MIRA, however by an online training
procedure. The definition of this criterion implies the use of an oracle h∗i and another
hypothesis from Hi involved in the max operation, similarly to the local updating towards
a "hope" and against a "fear" derivation in (Liang et al., 2006). In practice, h∗i can vary
during the training, by first choosing a set of oracle translations Oi which contains k
best hypotheses from Hi, then at each iteration, h∗i is chosen from Oi which maximizes
the model score (with the current λ value). This procedure makes the local update even
more local and conservative. The criterion becomes zero only if the model score of h∗i’
is higher than the model score of each of the other hypotheses up to a positive margin,
defined based on the BLEU distance.
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Pairwise ranking

Instead of considering only one pair of hope and fear hypotheses as does the max-margin
criterion (1.12), Pairwise Ranking Optimization (PRO) considers a set of critical pairs Ci =
{(hg,hb),BLEUi(hg) > BLEUi(hb)}, then uses a binary classifier (SVM for instance) to
separate between pairs in which hypotheses are correctly (according to a MT metric)
ranked by the model score (i.e λ.f(hg) > λ.f(hb)), from other pairs. Introduced for the
first time in (Hopkins and May, 2011), the corresponding objective function used by SVM
rank can be written as a sum of structured perceptrons :

LPRO−1(λ, si,Ri,Hi) =
∑

(hg ,hb)∈Ci

max {0, 1 + λ.f(hb)− λ.f(hg)} (1.13)

which differs from the max-margin approach and MIRA (described later) by the replace-
ment of the max operator by a sum over critical pairs, and by the margin fixed to 1. This
sum of hinge losses is 0 only if each pair in Ci is separated by model scores up to 1. It
is however possible to replace the fixed margin by a general cost-augmented score as in
Equation (1.12) :

LPRO(λ, si,Ri,Hi) =
∑

(hg ,hb)∈Ci

max {0, costi(hb)− costi(hg) + λ.f(hb)− λ.f(hg)}

(1.14)

The cost function costi(h) represents the cost paid by choosing the hypothesis h instead of
an oracle (which is fixed beforehand). This cost can be defined in terms of sentence-level
BLEU distance as in the max-margin approach; because BLEUi(hg) > BLEUi(hb), we
always have positive margins costi(hb)− costi(hg) > 0. PRO criterion (Equation (1.13))
uses a sum over pairs, so does not need a hope-and-fear derivation selection. All pairs,
once considered critical, are treated equally by a black-box binary classifier or optimizer.
This may be a weakness of PRO that all pairs, which are correctly ranked, are however not
equally important to have a high BLEU score. On the other hand, using multiple pairs
may help to feed a large amount of information from Hd

i=1 to the classifier, hence prevent
over-fitting, especially when there is a large amount of free parameters to be trained. We
will discuss this issue later in Chapters 5.

In PRO as described in (Hopkins and May, 2011), Ci is selected by a sampling routine
which prefers pairs with large sentence-BLEU (Watanabe et al., 2007; Chiang et al., 2008)
differences. The need to such sampling is due to the fixed margin used in the original
form (1.13). Indeed, it would be unreasonable to require all critical pairs to be separated
similarly by the same margin no matter how the two hypotheses resemble; the sampling
procedure is hence useful in that it forces the optimizer to use more intensively pairs with
important BLEU differences. In the second form (1.14), the margin is adjusted according
to the distance inside each pair, hence such sampling scenario may be unnecessary.

ListNet training

Like the Pairwise Ranking, tuning with ListNet algorithm, first proposed in (Niehues
et al., 2015), also considers the tuning problem as a ranking problem on N -best lists;
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the procedure does not aims only at reducing the gap between the best BLEU score and
the best model score hypotheses, but regards the ranking of all hypotheses as a whole.
The ListNet algorithm (Cao et al., 2007) is a list-wise approach to the ranking problem.
The main idea is to define two probability distributions respectively on two rankings, one
based on model scores, and another based on an external evaluation metric (like BLEU,
or more precisely sentence-level BLEU).

Given two distributions p1 and p2 defined on x ∈ X , their divergence can be expressed
by the cross-entropy :

Lcross−entropy(p1,p2) = −
∑

x∈X

p1(x) log(p2(x)) (1.15)

The model score-based distribution is being learnt to follow the one based on BLEU
score; the criterion is defined in terms of the divergence between these two distributions,
expressed by the above formulation. For our tuning problem, the two distributions are
defined over h ∈ Hi : p2(.) is defined in the framework of the log-linear model (1.11) :

pλ(h
′|si) =

exp(β × λ.f(h′))∑
h∈Hi

exp(β × λ.f(h))

which depends on current values of λ, and p1(.) is derived from sentence-BLEU scores :

pBLEUi
(h′) := pBLEU(h

′|si) =
exp(γ ×BLEUi(h

′))∑
h∈Hi

exp(γ ×BLEUi(h))

The two hyper-parameters β and γ are used to address the situation where the dis-
tribution provides a strong probability (almost 1) to only one hypothesis, and near-zeros
probabilities to others. Henceforth, the ListNet criterion, which still match the general
form of the objection function (1.7), is :

LListNet(λ, si,Ri,Hi) = −
∑

h∈Hi

pBLEUi
(h)× log(pλ(h|si))

= −
∑

h∈Hi

pBLEUi
(h)× (β × λ.f(h)− logHλ(si,Hi)) (1.16)

where Hλ(si,Hi) is the normalization constant, Hλ(si,Hi) =
∑

h′∈Hi

exp(β × λ.f(h′)).

This criterion can be optimized using SGD. Unlike the structured perceptron and
PRO, but like the expected-BLEU (or Minimum Risk) training, its gradient involves all
hypotheses in Hi. The criterion also does not require the definition of oracles or "fear"
derivations. However, the representation of Hi is required to be an N -best list, otherwise
it would be intractable to estimate the two probability distributions defined above.

Online learning methods

The batch regime (Algorithm 1) defines a training criterion over all source sentences sdi=1.
Online learning methods, at the other end, visit one training example {si,Ri} at each
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Algorithm 2 A generic online tuning algorithm

1: Training data D = {si,Ri}di=1

2: Init. search space Hi = {}, i = 1, ..., d
3: Init. oracles Oi = {}, i = 1, ..., d
4: Init. λ0

5: for each iteration do do
6: for i = 1, ..., d do do
7: Update Hi with λi−1 (also called fear decoding)
8: Update oracles Oi = O(Ri,Hi) (hope decoding)

9: Search for λi = argmin
λ

i∑
k=1

L(λ, sk,Rk,Hk) +R(λ), eventually from the pre-

vious iteration’s value λi−1

10: end for
11: end for

12: Return 1
d

d∑
i=1

λi (we suppose one-pass algorithm)

iteration, but proceed to the re-decoding to have a new Hi. Algorithm 2 outlines a generic
view on this kind of learning. Online algorithms differ in instructions at lines 6, 7 and 8,
i.e the approximation to the search space Hi, the update of oracle translation sets, the
objective function as well as the algorithm used to update λ.

Intuitively, the search space can be approximated by decoding an N -best list contain-
ing the N reachable hypotheses that are best evaluated by the scoring function (1.6),
using the current value λi−1. From Hi, oracles are obtained by choosing hypotheses that
are best evaluated by (sentence-)BLEU score. The oracle set satisfies henceforth two
conditions : these are good translations according to the MT quality metric, but still
reachable by the current decoder. In practice, the derivation of these candidates varies
strongly from one method to another. In (Tillmann and Zhang, 2006), oracle translations
are searched as follows : a regular phrase-based decoder is modified in a way that it uses
BLEU scores as the optimization criterion independent of any translation model; for each
source sentence si, a top five hypotheses are computed in a preliminary phase, and are
stored separately before the training starts. The authors also introduce the use of relevant
sets to replace the role played by N -best lists in approximating the search space. These
sets include only hypotheses which are the most easy to be confused by the current scoring
function with one of the oracle translations; here the distance between hypotheses is based
on the definition of a convex cost-sensitive margin. The main assumption made by this
procedure is that if λ is trained to well distinguish oracles from their most closest alter-
natives, then it would work well on the whole search space. According to this, no N -best
list is needed during the training; the decoder is modified, at each iteration, and for each
of the five oracle translation, to decode the hypothesis which is scored the most similarly
to this oracle. Compared to the general algorithm 2, only relevant sets are computed
at line 6, while the oracles (line 7) are searched and stored before any training starts 9.
This procedure, however, does not fundamentally differs from the general scenario, as the
resulting update of λ is proved not to be affected by the replacement of Hi in favour of
the relevant sets.

9Moreover, relevant sets depend directly on these oracles.
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Liang et al. (2006) propose to compare two methods of defining and updating towards
oracles :

• Bold updating: Update towards the highest scoring hypothesis hj = (tj, aj), where
tj is constrained to be one of the reference translations, tj ∈ Ri, but aj is uncon-
strained. Examples not reachable by the decoder are skipped.

• Local updating: Update towards an oracle chosen from an N -best list (Hi) which
achieves the highest BLEU score.

Both updating scenarios are similar to the perceptron algorithm. Bold updating resembles
the traditional perceptron update rule where parameters are updated towards a unique
annotated label. Local updating only uses hypotheses from Hi, similarly to the pairwise
ranking algorithm. Experiments in (Liang et al., 2006) show that the bold updating
appears to over-fit severely, while the local updating seems to be much more stable.
Recently, this point of view has been challenged in (Yu et al., 2013). Wisniewski and
Yvon (2013) describe a similar sub-gradient training, but involve a cost function based on
a linear combination of the n-gram precisions accounted in the BLEU score (Section 1.2).

Margin Infused Relaxed Algorithm : An update from λi−1 to λi can be defined
through the framework of SGD, by computing the gradient of L(., si,Ri,Hi) at λi−1 (Till-
mann and Zhang, 2006; Liang et al., 2006; Wisniewski and Yvon, 2013). Its final update is
quite similar to the batch-version of (1.7). Another promising update method is used by
MIRA (Crammer et al., 2006), which is an online version of the max-margin approach for
structured classification problem (Collins, 2002; Taskar et al., 2004). The original MIRA
employs a hinge loss with a cost function corresponding to BLEU-based difference :

Lmira(λ, si,Ri,Hi) = max
h∗∈Oi,h∈Hi

[BLEUi(h
∗)−BLEUi(h) + λ. (f(h)− f(h∗))]

(1.17)

where themax is taken over all pairs {h,h∗} such that h is a reachable hypothesis, while h∗
is an oracle translation. BLEUi(h) may be a sentence-BLEU score computed according
to reference translations inRi (Watanabe et al., 2007), or an approximated pseudo corpus-
level BLEU in which the reference translation of si is replaced by h (Chiang et al., 2008).
The criterion is 0 only if λ separates each h ∈ Hi from each h∗ ∈ Oi by a margin which
is their BLEU differences.

According to (Martins et al., 2010), the problem at line 9 of Algorithm 2 can be
re-written, using the Lagrange dual form as :

λi = argmin
λ

γ

2
||λ− λi−1||2 + L(λ, si,Ri,Hi)

The interpretation is that, the new value λi should optimize the newly added term
L(., si,Ri,Hi), by making the smallest change to λi−1. The online learning in (Crammer
et al., 2006) interprets lines 7 and 8 by the search for a hypothesis hj and an oracle h∗

which are the maximizers of (1.17). Let {hj,h∗} be this pair, the update can be performed
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in two steps :

ηi = min{C, L(λ
i−1, si,Ri,Hi)

||f(hj)− f(h∗)||2
}

λi = λi−1 + ηi(f(h
∗)− f(hj)) (1.18)

In (Watanabe et al., 2007), the oracle translation are updated at each iteration (line
8), while BLEU scores are a sentence-level approximation of the document-level score.
In (Chiang et al., 2008), the BLEU scores are estimated on a pseudo document containing
all best hypotheses (according to the scoring function) from previous updates. The set of
oracles translation in that work is modified to a single hope derivation which maximizes
λ.f(.) +BLEUi(.), whereas the fear derivation is the maximizer of (1.17) given the hope
oracle, i.e the maximizer of λ.f(.) − BLEUi(.). The search for these two hypotheses is
performed at each iteration by calling two modified 1-best decoders; the use of N -best
lists is no longer needed. A detailed description of MIRA can be found in (Cherry and
Foster, 2012).

Batch MIRA

Compared to batch algorithms (Algorithm 1), online learning (Algorithm 2) requires
to decode within the loop, which is not really convenient. For instance, the decoder
updates the approximate search space Hi at each iteration, which prevents us to store
all hypotheses at once in memory. Yet it is still possible to benefit from MIRA’s update
steps within a batch algorithm. Cherry and Foster (2012) propose a batch version of the
online MIRA algorithm, which intervenes in line 4 of Algorithm 1.

Batch MIRA differs from its online version only by the composition of hope and fear
hypotheses; they are estimated on the N -best lists (or lattices) obtained with the prece-
dent value λi−1. Depending on the representation of the approximate search space, two
versions of batch MIRA have been proposed : batch N -best MIRA exploiting an N -best
representation, and batch lattice MIRA involving hope-and-fear decoding on lattices us-
ing oracle lattice decoding algorithm (Chiang et al., 2008). Batch N -best MIRA improves
over the MERT weakness when dealing with a large number of feature vectors while still
benefiting from the simple alternative decoding-training architecture of MERT. This is
the tuning algorithm we use in the remaining of this dissertation.

1.3.2 From tuning algorithms to integrated systems

It is important to notice that the objective functions used in the tuning algorithms de-
scribed in the previous part can be used, not only to train the log-linear coefficients λ,
but also the parameters of component models which deliver feature vectors f(.). These
tuning procedures could be adapted to become joint procedures that train all free param-
eters of a SMT system in a unified manner. An advantage of this approach is to avoid
the two-phase procedure divided into training and tuning steps. More remarkably, the
ability of incorporating MT quality metrics has become a standard assumption in tuning
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algorithms, while the training step generally still uses criteria which have only a loose
relationship to the translation performance. An integrated training procedure within a
unified framework aims to guide the system parameters to a common objective which is
to produce high-quality translations.

The first work in which λ are trained on large training data instead of a small devel-
opment set is (Tillmann and Zhang, 2006). The authors propose a training algorithm for
a linearly scored block sequence translation model, which regards the phrase-based SMT
system’s translation as a sequential process that generates block orientation sequences.
The system contains a large set (35M) of easily computed feature functions based on
2-grams block sequences and the orientation of the second block compared to the position
of its predecessor. Feature functions here are straightforwardly computed but express
poorer information than traditional language and translation models, hence the training
of log-linear parameters λ is primordial for a good performance. This large-dimension
vector λ is trained on training data in a global setting to separate block sequences with
high BLEU score from block sequences with high model score.

Liang et al. (2006) also train a linear model on large training data with the structured
perceptron algorithm. The learning requires to infer a value for latent variables a for
each of the two hypotheses implied in the perceptron update : the "hope", and the
"fear" derivations. Another related approach is in (Blunsom et al., 2008) which develops
a discriminative version of the hierarchical phrase-based system proposed in (Chiang,
2005), and described in Section 1.1.4. Training consists of maximizing the conditional
log-probability p(t|s) which is obtained by marginalizing over latent variables’ values
to compute gradients. Further developments reported in (Blunsom et al., 2008) include
a tighter integration with a target language model which is taken into account during
the training. On the other hand, the work of (Dyer and Resnik, 2010) focusses on the
learning of the reordering model by maximizing the conditional log-probability of the
target given the source sentence. The maximum-likelihood objective function is also used
in (Lavergne et al., 2011, 2013) where the model takes the form of a Hidden Conditional
Random Field (Koo and Collins, 2005; McCallum et al., 2012).

The work in (Yu et al., 2013) is the first time that discriminatively tuning (by an
online algorithm) on the training data is shown to significantly outperform conventional
methods using only the development set. Instead of choosing between bold and local up-
dating as in (Liang et al., 2006), the authors propose to use an adaptation of the standard
perceptron update in the context of search errors and MT latent variables (the violation-
fixing perceptron framework (Huang et al., 2012b)). In this approach, oracle translations
are computed via forced decoding; the model parameters are updated whenever errors
are detected, even though the decoding of the whole sentence has not finished. 10 An
advantage of this method, compared to the local updating is that it is theoretically guar-
anteed to converge and follows more closely the standard perceptron algorithm which
encourages updating towards the reference. Moreover the use of a sentence-level BLEU
score is no longer needed. The violation-fixing perceptron has recently been applied to
the hierarchical phrase-based SMT system (Section 1.1.4) in (Zhao et al., 2014).

10This strategy is called early update in the paper. Another variant is max-violation which consists of
waiting for the decoding of the whole sentence finishes, then updating only the worst mistake instead of
the first.
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1.3.2 - From tuning algorithms to integrated systems

Recently, expected BLEU training has been used to train the parameters of a phrase
table within the framework of phrase-based SMT. He and Deng (2012) propose a joint
discriminative training procedure for phrase and lexicon translation scores. The log-linear
coefficients λ are still tuned with MERT, alternatively with the expected BLEU training
of the translation scores. In (Gao and He, 2013), the same criterion is optimized with
SGD, while phrase table scores are modelled based on Markov Random Field. Training
procedures in the same style for various component models can also be found in (Gao
et al., 2014; Auli and Gao, 2014). A common feature of these works is that they propose
an intermediary approach where λ is still tuned separately (although alternatively) using
a standard tuning algorithm described in the previous section, only the training step is
modified to become a joint training. Although a unified training on large data set using
a unique objective function could be more effective, several practical solutions resort to
this alternatively organized procedure (which considers the tuning as a black-box process
run on held-out development data) because of various reasons :

• Some state-of-the-art tuning algorithms (such as MERT and MIRA) use optimiza-
tion algorithms that are difficult, even impossible to extend to incorporate other
parameters than the log-linear coefficients, mixed together using more complicated
schemes than the linear combination;

• Literature on tuning algorithms is abundant 11, whereas the tuning using a standard
tool on the same development data would facilitate the comparison with the baseline
system;

• Finally, even using a unique training criterion, integrating the optimization of largely
different models would still be not straightforward, and would face other problems.
For instance, a highly non-linear neural network-based model would be hardly opti-
mized using the same learning rate with the log-linear model within SGD training.

On the other hand, the alternative procedure described in (He and Deng, 2012) requires a
consistency between the objective functions used in the discriminative training and tuning.
In other words, the discriminative training criterion needs to be elaborated in order to
be compatible with the tuning on the development data. This issue will be discussed in
more details in Section 5.4.3 of Chapter 5.

1.4 Conclusions

In this chapter, we have presented a brief description of different SMT systems which gives
the context for the use of continuous-space models discussed in the rest of the dissertation.
Building SMT systems consists of modelling the translation process from training corpora
made of set of sentence pairs. These pairs however contain only shallow sentence-level
matching between source and target sentences; the learning of hidden relationships inside
each sentence pair becomes possible only with the use of latent variables describing the
alignment of different components within the source and target sentences, along with

11see for example the shared tuning task at WMT’2015 : http://www.statmt.org/wmt15/
tuning-task/ .
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Conclusions

their translations. These latent variables also help to divide the complex translation
process into smaller sub-processes which are easier to model, and which will then be
learnt independently from the training data.

In general, existing knowledge about the sub-processes, as well as about different
aspects and characteristics of the translation is introduced under the form of feature
functions. The building of the whole system is hence based on a two-step procedure.
First, several separate models are learnt to give parameters to feature functions; then
these functions are combined together within a discriminative log-linear framework, in
which the features’ contributions are called log-linear coefficients (Equation (1.2)). The
linear combination of feature functions is widely used; however some attempts have been
made with a non-linear combination (see for example (Sokolov et al., 2012)).

In practice, different approaches in SMT are characterized by their definition of latent
variables, as well as their set of feature functions. Among these approaches, the phrase-
based SMT, described mainly in the work of (Zens et al., 2002; Koehn et al., 2003)
sketches the standard method of building a translation model from parallel bilingual
corpora. Some other approaches, such as the n-gram-based approach (Section 1.1.3) or
the hierarchical approach (Section 1.1.4) are variants of the standard technique which
try to model the translation differently, or to embody some syntax-based ideas into the
phrase-based system.

No matter which approach is used, nearly all SMT systems require to learn the log-
linear coefficients that combine different feature functions within a log-linear model (Sec-
tion 1.3.1). This tuning step is performed on a development set, often separately from the
training step on training data. In Section 1.3.1, we have seen that all tuning algorithms
can be presented as corresponding to different objective functions defined on the develop-
ment set, although algorithms differ in their optimization method (for instance, gradient
descent) and modality (batch or online learning). In particular, the fore-mentioned cri-
teria can be used, not only to learn the log-linear coefficients, but also to train other
parameters from component feature functions, resulting in a globally unified optimization
procedure over the entire training data. As the incorporation of MT quality metrics (such
as BLEU, Section 1.2) has become a standard assumption in the tuning algorithms, us-
ing a joint training procedure may have an advantage over approaches which only uses
conventional criteria which have only loose relationship to the translation performance.

The concept of joint training procedures suggests an interesting research direction
aiming at improving the training for the component models incorporated in SMT sys-
tems. In practice, incorporating and simultaneously training largely different models is
not straightforward; practical solutions may resort to an intermediary approach where log-
linear coefficients are still tuned separately (although alternatively), only the training step
is modified to become a joint procedure (Section 1.3.2). This is the technique we choose
for training continuous-space models described in the remaining of this dissertation.
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2
Neural Network Language and Translation

Models

In the previous chapter, we have provided an overview of current approaches to Statisti-
cal Machine Translation (SMT). This chapter is dedicated to a review of different neural
network structures used for the language modelling (LM) and translation modelling (TM)
tasks. Thanks to these discussions, the chapter helps to clarify what characteristics of
continuous-space models (CSMs) in general, and of each particular neural network struc-
ture help the model to have a better modelling capacity compared to conventional discrete
LMs, and to better handle context words that are important for a good performance in
the LM and TM tasks. Besides this, we insist particularly on the difficulty of training and
integrating CSMs into the translation process. An overview of the LM task is given in
the first section before we proceed to a description of discrete and continuous-space LMs.
The application of neural network TMs is presented in Section 2.4, along with a review
of different evaluation methods for CSMs.

2.1 The language modelling task

Language model (LM) is an important component of several Natural Language Processing
(NLP) applications, such as Automatic Speech Recognition(ASR), or Statistical Machine
Translation. The role of this kind of model is to quantify the plausibility of a word
sequence, i.e how likely a sequence is in a given language. In some applications, language
models are important as they provide a certain prior knowledge about the language we are
working with, when other models are less capable of providing or distinguishing a good
output from a set of candidates. For example, in an ASR system, while some texts are
spelled out similarly and an acoustic model provides little evidence to distinguish between
them, such as the two sentences Let music be the food of love and Let music be the foot
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of dove, only a language model trained on a large English corpus can tell us that the first
sentence (ending with love) is much more likely to be used than the second one.

Given a word sequence wN1 , a language model assigns a probability p(wN1 ) to this
short piece of text. Its estimation is based on the hypothesis that there exists an unknown
distribution from which word strings have been generated. The probability of the sequence
wN1 can be rewritten as :

p(wN1 ) =
N+1∏

i=1

p(wi|wi−11 ) (2.1)

which is the product of probabilities computed on each individual word wi in left-to-
right order given all the previous words. In this formulation, we add an additional token
</s> at position wN+1) to identify the end of each sentence. By applying the Markov
assumption, we can restrict the conditional parts to cover only a limited number of n− 1
previous words :

p(wN1 ) =
N+1∏

i=1

p(wi|wi−1i−n+1) (2.2)

where wji denotes the sequence composed of wi, wi+1, ..., wj and wi is the begin of sequence
token <s> whenever i ≤ 0.

This approximation makes the language modelling task much easier compared to the
original form of p(wN1 ) where the random variable wN1 can have unbounded length. Mod-
els using this approximation are called n-gram models; their obvious advantage is the
capacity of modelling the original unbounded task with a finite set of parameters. Indeed,
suppose that each word wi takes values from a finite vocabulary V and the general form
p(wi|wi−1i−n+1) needs to be estimated, we have |V|n different values that can be assigned
to the sequence wii−n+1. Our model can be represented by a set of |V|n free parameters,
which is huge in practice, but is still a finite set.

The use of a statistical language model is first introduced in the ASR community (Je-
linek, 1976) in the context of distinguishing the best outputs from a set of candidates
which have similar acoustic scores. Given an acoustic signal a, the application aims at
finding the sentence w that is the most likely to have been spoken. Using the Bayes’s
theorem, the solution is the one maximizing the following posterior distribution :

w∗ = argmax
w

p(w|a) = argmax
w

p(a|w)× p(w) (2.3)

where p(a|w) denotes the acoustic model, p(w) is the LM score corresponding to sentence
w. In this framework, the language model reflects a prior knowledge about the language;
this information becomes especially relevant for sentences which are undistinguishable
by the acoustic model, such as the two sentences "Let music be the food of love" and
"Let music be the foot of dove" mentioned above. In SMT, language models play a
similar role where the acoustic signal is replaced by a text in a foreign language, and the
acoustic model is replaced by a translation model which reflects how likely an English
word sequence is a translation of a given source text.
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Discrete language models

However, the introduction of LMs in these applications needs some careful consider-
ations : whenever the estimated p(w) is zero, it vanishes all possibility to have w in
the system output no matter of how well it is evaluated by the acoustic or the trans-
lation model. A language model which may output zero probabilities runs the risk of
making useless the action of other system components. This is the main difficulty when
estimating a statistical language model, which becomes extremely severe when training
data is always too small to provide reliable estimations to most n-gram sequences. 1 This
chapter focusses on the estimation problem, as it represents the major challenge in using
language models in practical applications, given that the LM structure will always be the
probability of a word given its context composed of either the n− 1 preceding words (the
n-gram model), or of all preceding words (from the beginning of the document, as in some
recurrent models).

2.2 Discrete language models

In general, the estimation of a discrete n-gram language model is based on the relative
frequencies of word sequences. With an n-gram approximation, all we need to estimate
is the probability p(wi|wi−1i−n+1) of a word wi given its n − 1-word context wi−1i−n+1. The
maximum likelihood estimation (MLE) results in a relative frequency-based method to
estimate this distribution. Let c(wji ) be the number of occurrences of the sequence wji in
a training corpus, then the MLE gives the following estimate :

pMLE(wi|wi−1i−n+1) =
c(wii−n+1)

c(wi−1i−n+1)

This estimation is however often not statistically reliable for all contexts, especially for
applications in which there is a great number of different contexts. It is not guaranteed
to observe each such sequence, even once, to derive a reliable estimation. A historical
example is considered in (Rosenfeld, 1996), where, after observing all trigrams (n = 3) in
a text of 38 million words from the Wall Street Journal corpus, the author realizes that
a third of all trigrams on held-out news articles are still unseen. The problem becomes
more severe with rare words and sequences, especially when it is desirable to increase n to
handle a larger contextual information. Indeed, the problem lies in the number of model
free parameters which increases exponentially with n. At a consequence, the MLE needs
to be adjusted with some smoothing techniques that will be described in the next section.

2.2.1 Smoothing techniques

Smoothing techniques aim at adjusting the described MLE probabilities in order to re-
distribute the probability mass to rare word sequences. Not only do they suppress zero
probabilities, but they also improve the general quality of the probability estimation by
introducing a generalisation mechanism.

1which is easily the case with high-order models.
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2.2.2 - Class-based models

As mentioned in (Kneser and Ney, 1995), all smoothing techniques via backoff can
be described by the following equation :

psmooth(wi|wi−1i−n+1) =

{
α(wi|wi−1i−n+1) if c(wii−n+1) > 0

γ(wi−1i−n+1)β(wi|{wi−1i−n+1}) if c(wii−n+1) = 0
(2.4)

It means we divide the estimation of p(wi|wi−1i−n+1) in two cases depending on the absolute
count of the context sequence in training data. In the case of non-zero count, the prob-
ability α(wi|wi−1i−n+1) is established mainly from the relative count c(wii−n+1)/c(w

i−1
i−n+1),

which is then discounted by a discount ratio (Good-Turing estimate (Good, 1953), Katz
Smoothing (Katz, 1987)), or by a fixed discount D < 1 (Absolute Discounting (Ney et al.,
1994), Kneser-Ney Smoothing (Kneser and Ney, 1995)). The discounted probability mass
is then redistributed among those with zero counts through a backoff step. This backing-
off resorts to a distribution β which conditions on an equivalence class {wi−1i−n+1}, less
specific than the context itself, in order to have more reliable estimate of unseen events.
Typically, the model considers a lower order context wi−1i−n+2. The normalization coefficient
γ(wi−1i−n+1) is present to ensure all terms in (2.4) sum to one.

Another approach is to linearly interpolate higher- and lower-order n-gram mod-
els (Bell et al., 1990; Witten and Bell, 1991), so that in all cases, the smoothed probability
psmooth(wi|wi−1i−n+1) involves higher-order count and lower-order estimates :

psmooth(wi|wi−1i−n+1) = λwi−1
i−n+1

c(wii−n+1)

c(wi−1i−n+1)
+ (1− λwi−1

i−n+1
)psmooth(wi|wi−1i−n+2)

The key difference between backoff and interpolated models hence lies in the estimation
of non-zero-count events. Indeed, while interpolated models always use information from
lower-order distributions, backoff models do not. In (Chen and Goodman, 1996), the
authors remark that it is easy to create a backoff version of an interpolated model, and
the interpolated and backoff versions of some existing algorithms have been implemented
and tested. In that work, they also propose a methodology aiming at fairly comparing
the performance of different smoothing techniques proposed in (Jelinek, 1980; Katz, 1987;
Bell et al., 1990; Ney et al., 1994) and (Kneser and Ney, 1995). A modified version of
Moreover, the authors propose a modified version of the Kneser-Ney method (Kneser and
Ney, 1995), which outperforms all other methods, has also been proposed. The procedure,
commonly known in literature as the modified Kneser-Ney smoothing, is a recommended
choice for many applications that imply the use of a language model estimation technique.

2.2.2 Class-based models

Another way to overcome the difficulty due to large vocabularies and rare words when
estimating an n-gram language model is to use word clustering. This approach (Ward
et al., 1990; Brown et al., 1992; Kneser and Ney, 1993) relies on the idea that information
learnt from the occurrences of a given word can be shared among other words that belong
to the same group. In the general form, the first step consists of assigning a class Ci
to each word wi in the vocabulary. Then, the n-gram probability p(wi|wi−1i−n+1) can be
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Discrete language models

estimated in some different ways (Rosenfeld, 2000), for instance with a trigram model :

p(wi|wi−1, wi−2) = p(wi|Ci)p(Ci|wi−1, wi−2) (2.5)
p(wi|wi−1, wi−2) = p(wi|Ci)p(Ci|wi−1, Ci−2) (2.6)
p(wi|wi−1, wi−2) = p(wi|Ci)p(Ci|Ci−1, Ci−2) (2.7)
p(wi|wi−1, wi−2) = p(wi|Ci−1, Ci−2) (2.8)

Class-based models represent an attempt to exploit the relationships between vocab-
ulary words throughout the use of clusters, instead of considering them solely as elements
in a discrete finite vocabulary set. Such relationships can also be expressed in terms of
morphological, syntactic or semantic properties. For instance, the occurrence of a trigram
such as I like cat will certainly give some insight regarding the likelihood of another tri-
gram I like dog, as the two final words dog and cat play a similar role in this context.
Intuitively, when a language model gives a non-zero probability to the occurrence of cat
just after I and like, it should not give zero probability to p(dog|like, I), even if the trigram
is not observed. Class-based models help to formalize such intuition by first clustering cat
and dog in the same cluster, then whenever an n-gram occurs which contains either word
from this cluster, it will transfer information and redistribute the probability to other
words in the cluster.

An obvious weakness of this kind of models may be the fact that they depend upon the
clustering of words. This structure can be learnt carefully from the training data (Brown
et al., 1992; Kneser and Ney, 1993), or be decided based on some external linguistic
knowledge (Ward et al., 1990). Another weakness is that they are often based on hard
clustering which expresses the word-to-word relationship in a strict manner under the
assumption that each word belongs to one and only one cluster. In practice, words
can be related to each other via different aspects (semantics, syntax or morphology);
words can also be grouped into multiples categories. Continuous-space language models
described in Section 2.3 constitutes a promising alternative that gives a more flexible
mean to exploit these relationships between words or linguistic units through the concept
of word continuous representation. At the core of the approach, semantic and syntactic
relatedness is to be learnt implicitly through the projection of all vocabulary words into
a multi-dimensional continuous space in which inter-word relationships are expressed in
terms of distances between word embeddings.

2.2.3 Linguistically motivated models

All the techniques presented in the previous section have in common that they use little
knowledge of what the language really is. Indeed, these methods could be applied as
well to sequences of arbitrary symbols as to words or characters. This lack of linguistic
knowledge is an obvious direction for further improvements, and incorporating strong
linguistic knowledge seems to be a promising approach. One of the first attempt along
these lines is the use of language models that are directly derived from grammars, such
as Context free (CFG) or Link grammar. An overview of such models can be found
in (Rosenfeld, 2000).

Another approach that still falls into the category of linguistically motivated models,
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2.2.4 - Overview on discrete language models

but that can be estimated quite efficiently using n-gram techniques is the Dependency (or
Structured) language models of (Chelba et al., 1997; Chelba and Jelinek, 2000). Depen-
dency grammars (DG) describe sentences in terms of asymmetric pairwise relationships
among words. Each word in the sentence is considered to be dependent upon one other
word that is called head or parent ; the single exception is the root which serves as the
head of the entire sentence. A probabilistic version of DG has also been developed (Car-
roll and Charniak, 1992), which provides a suitable tool for the language modelling task
using usual techniques of n-gram LMs. Instead of conditioning on a few preceding words
(n−1-gram context), probabilistic DG has an additional latent variable representing a de-
pendency graph which decides which words are to be taken into the context for the word
prediction. The latent variable, throughout the concept of dependency graph, chooses
among all words that have occurred since the beginning of the sentence only the most
relevant elements that can help to boost the prediction capacity. Irrelevant context words
are ignored, the model hence uses more efficiently context information while still limiting
itself to an n-gram model. Examples of this idea can be found in (Chelba et al., 1997;
Chelba and Jelinek, 2000), or more recently in (Gubbins and Vlachos, 2013).

2.2.4 Overview on discrete language models

There are other ideas on discrete language models that have not been mentioned here,
such as the adaptive models (or Global semantics language models) which are based on the
assumption that documents may differ in domains, topics and styles (Gildea and Hofmann,
1999; Bellegarda, 2000; Wang et al., 2003; Tam and Schultz, 2005, 2006; Watanabe et al.,
2011), or the exponential models which allow us to incorporate arbitrary feature functions
representing knowledge from different sources, including linguistic knowledge (Lau et al.,
1993; Berger et al., 1996; Chen and Rosenfeld, 2000).

However, a common feature of all the LMs described so far is their being based on
statistics of discrete symbols (from a finite set which is the vocabulary) which forces
the estimation techniques for these models to deal with severe problems related to data
sparsity. As a consequence, smoothing techniques are employed to correct the MLE
probabilities derived from relative counts. These methods are often based on various
tricks to redistribute the probability mass to rare events which are undermined by the
direct count. In terms of modelling task, the conventional n-gram discrete language model
contains a number of free parameters which increases exponentially with n. Reducing this
quantity might be the key to improve LMs. This reduction can be realized throughout the
principle of sharing parameters : word sequences are modelled using the information from
the words they are composed of; then whenever a new sequence needs to be handled, the
model can reuse parameters from other sequences, instead of considering it as a totally
new event. Class-based LMs provide an illustration of this idea in spite of the fact that
their probabilities still rely on relative counts (of word classes). Continuous-space LMs, as
described in the next section, give an example in which the representation of a sequence
may be as simple as the concatenation of representations from its sub-parts. Not only
the number of parameters is reduced, the models also produce by default only non-zero
probabilities, even though a MLE estimate is still employed. 2

2with a simple regularization term whose the role is not as significant as in smoothing techniques for
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2.3 Continuous space language models

In this section, we present an overview of continuous-space models (CSMs) for the lan-
guage modelling task. The term continuous-space models often refers to those exploiting
continuous representation instead of discrete-element-based representation as do the mod-
els presented in the previous sections. Continuous representation can be expressed within
different frameworks. For instance, Bellegarda (1997) use successfully Latent Semantic
Analysis to derive a continuous representation of words. Sarikaya et al. (2008) propose
to obtain these word embeddings via an adaptation of Latent Semantic Analysis, where
a Gaussian mixture model is learnt on the upper layer within a hidden Markov model.

However, in the scope of this dissertation, we focus on the description of continuous-
space models based on artificial neural networks. An advantage of this category of models
is that word representations are expressed in terms of weights inside a neural network,
and are learnt through the training process of the neural network. The projections and all
inter-word relationships are hence learnt implicitly and jointly with all other parameters
on the training corpora, rather than being inherited from an external model. This feature
makes neural network-based language models (NNLMs) useful in two aspects. On the one
hand, it can be incorporated to applications requiring a LM (such as ASR, SMT, etc.).
On the other hand, it can also be seen as being a preliminary phase to train continuous
word representations which are then used in other applications, as typically proposed
in (Collobert and Weston, 2008; Turian et al., 2010).

This section begins with a description of some neural network structures used for
the language modelling task, starting with the conventional feed-forward model proposed
in (Bengio et al., 2003a), then proceeding to other structures such as recurrent neural net-
works. An important part of this report is dedicated to the description of some techniques
that aim to overcome the computational difficulty related to the training and inference,
especially at the output layer.

2.3.1 Conventional feed-forward model

The work of (Bengio et al., 2003a) is not the first time neural networks (NNs) have been
applied to the language modelling task. The idea has been inspired from previous works
in which distributed representation for discrete symbols have been used within a neural
network (Hinton, 1986; Elman, 1990; Paccanaro and Hinton, 2000). The use of NNs
for the language modelling task has also been investigated in (Nakamura et al., 1990;
Miikkulainen and Dyer, 1991; Schmidhuber and Heil, 1996; Xu and Rudnicky, 2000).
But (Bengio et al., 2003a) has been the first work in which the idea has been applied to
large-scale data. A peculiarity of this model is the joint training of two sets of parameters :
the first set contains distributed word feature vectors, while the second set represents a
function which outputs estimates for n-gram sequence probabilities. The goal is to model
n-gram probabilities p(wi|wi−1i−n+1), where words wi can take values from a finite vocabulary
V . The first set of parameters expresses a mapping function C from any element w ∈ V to
a multi-dimensional vector C(w) ∈ RD. In practice, C is represented by a D×|V| matrix,

discrete LMs.
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2.3.1 - Conventional feed-forward model
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Figure 2.1 – The feed-forward neural network language model presented in (Bengio et al.,
2003a). h denotes the hidden layer’s activation which provides a compact representation
of context words, hence the probability pθ(w|c) can be rewritten as pθ(w|h).

each column represents the real multi-dimensional vector corresponding to a word in V .
In order to obtain the embedding of w, one needs to find the column corresponding to w
inside this matrix, also called the lookup table. The operation can also be viewed as the
product of C× lw, where lw, called a one-hot vector, is a |V|-dimensional vector in which
all components are zero except the one corresponding to w.

The second set of parameters is a function which, given the word embeddings of
wi−1i−n+1 and the predicted word wi, outputs the estimated probability of the word wi given
its context wi−1i−n+1. Let θ be the set of all free parameters (which is the union of the two
afore-mentioned sets), the estimated probability can be written as :

pθ(wi|C(cngram(wi))) or pθ(wi|cngram(wi))

where cngram(wi) := wi−1i−n+1 represents the context words of wi within the n-gram frame-
work, and C(cngram(wi)) is the concatenation of the word embeddings of wi−n+1, ..., wi−1.

We can viewC(cngram(wi)) as one single feature vector that contains information about
all context words. The input is simply the concatenation of all context embeddings, hence
giving a flat representation about the context. The vector is then applied to a sequence
of neural network layers to deliver more and more compact representations of the context.
The function pθ(.) is modelled as a neural network containing an input, a hidden and an
output layer, as represented in Figure 2.1.

The input layer

The vector C(cngram(wi)) is fed to a standard feed-forward neural network via an input
layer i of (n − 1)D units. To obtain this vector, an additional neural network layer is
added at the beginning of the chain, taking as input the concatenation of n − 1 one-hot
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vectors of the context words :

{lwi−n+1
, lwi−n+2

, ..., lwi−2
, lwi−1

} (2.9)

and as weight matrix n − 1 replicates of the matrix C, which produces the vector
C(cngram(wi)) = {C × lwi−n+1

, ...,C × lwi−1
} as output. This is a conventional neural

network layer, except that all parameters in C are shared among (n − 1) parts of the
weight matrix.

The hidden layer

After obtaining the input i = C(cngram(wi)), the hidden layer, defined by a weight matrix
Wh ∈ RH×(n−1)D and a bias vector bh ∈ RH transforms i into an output activation :

h = f (Wh × i + bh) (2.10)

where f is a (non-linear) function, which can be tangent hyperbolic (tanh(x) =
exp(x)−exp(−x)
exp(x)+exp(−x)), or sigmoid function (sigm(x) = 1

1+exp(−x)). The vector h ∈ RH can be
considered as a more abstract and more compact representation of the context words.

The output layer

From the context representation h, the output layer computes an output vector a =
aθ(., wi−1i−n+1) ∈ R|Vo|, each component of which corresponds to a word w ∈ Vo evaluating
the likeliness of the word wi in the context of wi−n+1, ..., wi−1 :

a = Wo × h+ bo (2.11)

where Wo ∈ R|Vo|×H and bo ∈ R|Vo| are the free parameters of the layer. Here, the output
vocabulary Vo can be different from the context vocabulary V . A such generalization is
necessary when we consider a short-list approach (Section 2.3.4), or when the conventional
NNLM is extended to a bilingual continuous-space translation model (Section 2.4).

In order to have a probabilistic interpretation on Vo, we take the exponentials of
activations, then normalize them through a softmax function :

pθ(wi|wi−1i−n+1) =
exp(aθ(wi, wi−1i−n+1))∑

w∈Vo
exp(aθ(w,wi−1i−n+1))

(2.12)

where aθ(w,wi−1i−n+1) denotes the component of vector a corresponding to the word w ∈ Vo.

Table 2.1 summarizes the notations used in this section; some of them will also be
used later to describe other neural network structures. The standard model has three
hyper-parameters : the dimension of the word feature vectors D, the hidden layer size H
and the non-linear function f . The two sets of parameters described above are gathered
in a vector θ including : the mapping matrix (or lookup-table) C, the weight matrix Wh

and bias vector bh of the hidden layer, and the weight matrix Wo and bias vector bo of
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Notation Meaning
n Degree of the (n-gram) model
θ Vector containing all free parameters of the network
D Dimension of word embeddings
cngram(w), crecc(w) Context of a word w in the framework of an n-gram

(ngram) or a recurrent (recc) model
lw One-hot vector corresponding to a word w
C, C(w) Lookup-table matrix, feature vector (embedding) of w
i (n− 1)D-dimensional activation of the input layer
Wh, bh Weight matrix and bias vector of the hidden layer
f Non-linearity function
h Activation of the hidden layer, which is

the most compact representation of the context
H Dimension of h
Wo, bo Weight matrix and bias vector of the output layer
V , Vo, |Vo| Input and output vocabularies, the size of the output vocabulary
a, aθ(w, c) Activation vector of the output layer and its component

corresponding to w, these variables are computed from c
e, eθ(w, c) Exponential of the output layer activation, e = exp(a)
pθ(w|c) Probability of the word w appearing after a context c,

estimated by the neural network
gθ(w, c) Output score of the neural network for the n-gram (c, w),

which is the log-probability of the last word given its context
Hθ(c) Partition function, computed for each context c,

and depends on θ

Table 2.1 – Notations used for describing standard NNLMs.
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the output layer. In practice, when evaluating an NNLM with perplexity, or using it in
an application such as SMT (see Section 2.5), we often use the log-probability. It is hence
convenient to explicitly define the output score as :

gθ(wi, w
i−1
i−n+1) = logpθ(wi|wi−1i−n+1)

= aθ(wi, wi−1i−n+1)− log

(∑

w∈Vo
exp(aθ(w,wi−1i−n+1))

)

= aθ(wi, wi−1i−n+1)− log(Hθ(w
i−1
i−n+1)) (2.13)

where Hθ(.) denotes the normalization constant which is the sum of exp(aθ(w, .)) over
all w ∈ Vo, and which depends on the network input (i.e the context). Here we add the
subscript θ to indicate the dependence on free parameters.

In this model, the two matrices C and Wo play similar roles as they define maps
between vocabularies (V and Vo) and continuous spaces. Hence we can refer to C as the
lookup table projecting to the input (context) space, and toWo as projecting to the output
(prediction) space. The two matrices can share the same parameter values, in conditions
that the two vocabularies are the same, V = Vo and D = H. In this situation, we obtain
the log-bilinear model proposed in (Mnih and Hinton, 2007). This model further reduces
the number of trainable parameters, compared to the standard version.

2.3.2 Recurrent neural network language model

A major drawback of the conventional model described in (Bengio et al., 2001) is that
the feed-forward structure imposes a fixed-length context, which limits the amount of
contextual information exploited by the language model. For discrete language models,
because of the data sparsity problem and in order to have reliable statistics, the number
of context words is often limited to 4. Attempts have been made to handle longer depen-
dencies, such as the Structured language models (Chelba et al., 1997; Chelba and Jelinek,
2000). For CSMs, Mikolov et al. (2010) show that it is possible to implement a structure
called Recurrent neural network in order to construct a compact representation for all
context words from the beginning of a document until the current word to be predicted.

The basic implementation in (Mikolov et al., 2010) is based on an Elman network (El-
man, 1990). Here, the key modification lies in the hidden activation h, which should
contain information of all words since the beginning of the document (or from the token
<s> of each sentence) until the last word preceding the current predicted word. The most
straightforward method is to compute h recursively for the current position i as follows :

hi = f (Wh × hi−1 +C× lwi−1
) (2.14)

where, hi−1 is the hidden activation vector used for predicting the word wi−1 3, and Wh

is still the weight matrix of the hidden layer which is time-independent (see Table 2.1).
The term C × lwi−1

, as described in the previous section, is the feature vector of wi−1.
As for the standard structure, the probability pθ(wi|crecc(wi)) is still computed from the

3which means that it captures information about context words until wi−2.
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Figure 2.2 – The compact structure of a recurrent NNLM.
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Figure 2.3 – The unrolled recurrent NNLM.
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hidden activation vectors using (2.11) and (2.12) :

ai = Wo × hi + bo

pθ(wi|crecc(wi)) =
exp(aiθ(wi, crecc(wi)))∑

w∈Vo
exp(aiθ(w, crecc(wi)))

where we add the subscript i to indicate the dependency on time i (all quantities without
subscript i are time-independent), and crecc(wi) is the context of a recurrent neural net-
work. The whole model can be described compactly as shown in Figure 2.2. The training
algorithm is truncated back-propagation in which the lookup table matrix C, the weight
matrix and bias vector of the hidden layer Wh and bh are updated at time i using the
error gradient computed for the current time step. The algorithm can be viewed just as
back-propagation applied on the unrolled model of Figure 2.2.

Compared to the basic version in (Mikolov et al., 2010), Mikolov et al. (2011b) propose
several modifications among which the most relevant is the use of (truncated) Back-
Propagation Through Time (BPTT) (Rumelhart et al., 1985). BPTT consists of unrolling
the network (Figure 2.3) from its compact form (Figure 2.2) and back-propagating error
gradients through multiple time steps. The unrolled version shows the impact between
the first word <s> and the current prediction; however parameter updates are truncated
upon a threshold τ . Hence, the truncated back-propagation in the first work can be
considered as BPTT with τ = 1 as if words laying far away backward no longer have an
impact on the current word wi. Additional information and a practical guide on truncated
BPTT can be found in (Boden, 2001). A comparison between recurrent and feed-forward
neural network NNLMs has also been presented in (Mikolov et al., 2011b). According to
their experiments, the perplexity obtained by a mixture of recurrent NNLMs is shown
to be better than the one with feed-forward NNLMs. Other comparative results in ASR
applications are reported in (Mikolov et al., 2011a; Sundermeyer et al., 2013).

Context-dependent recurrent NNLM

We have seen so far that the hidden activation vector hi (also referred to as hidden state)
in the recurrent NNLM is a time-dependent quantity which accumulates the information
of an additional context word after each time step. This vector can however incorporate
other information than the presence of words, by extending the hidden layer input to also
include an auxiliary input, which transforms Equation (2.14) to the new following form :

hi = Wh × hi−1 +C× lwi−1
+ F× fi (2.15)

The corresponding structure is displayed in Figure 2.4.

The time-dependent auxiliary input fi may in theory represent any context informa-
tion other than the recurrent context crecc(wi). The first attempt to exploit this additional
piece of context is in (Mikolov and Zweig, 2012) where the authors propose to feed into
fi a global context feature to further reinforce the ability of recurrent NNLMs to cap-
ture longer dependencies. This feature vector, then conventionally interpreted as a topic
representation, is concatenated to the last word feature C × lwi−1

and the previous hid-
den vector hi−1 as described in Figure 2.4; the resulting hidden state is used to predict
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Figure 2.4 – The compact structure of a context-dependent recurrent NNLM, which in-
volves an auxiliary input layer fi.

the current word wi. The topic representation vector is estimated, at each position i,
from a fixed-length word block preceding the current word, using Latent Dirichlet Allo-
cation (Blei et al., 2003). The proposal can be described as a combination of recurrent
NNLMs with the adaptive models (Gildea and Hofmann, 1999; Bellegarda, 2000; Wang
et al., 2003; Tam and Schultz, 2005, 2006; Watanabe et al., 2011), except that the added
topic feature vectors here are computed from a fixed-length window (50 preceding words
in the experiments). The generalization capacity of continuous-space models also allows
the authors to train a joint model which avoids having to partition the training data
into subsets of different topics (on which multiple models have to be built) which often
leads to data fragmentation. The proposal has been reported to result in the lowest pub-
lished perplexity on the Penn Treebank data, and to WER improvements for the Wall
Street Journal ASR task. The auxiliary input vector later plays a crucial role for building
recurrent bilingual CSTMs from recurrent NNLMs (Section 2.4.3).

Vanishing gradients and LSTM networks

The gains obtained by adding (global) context feature vectors described above give a quite
confusing message, as the recurrent NNLM is assumed to have knowledge about all context
words, since the beginning of the document until the last word preceding the current
position. Experimental results show that, in spite of the recurrent design, this kind of
structure always suffers from estimation problems due to long-term dependencies, for the
gradient computation becomes increasingly ill-behaved when errors must be propagated
further back in time. This problem is often referred to as the problem of vanishing
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gradient (Bengio et al., 1994; Hochreiter and Schmidhuber, 1997).

Practical difficulties when using gradient descent, either by truncated back-
propagation or by BPTT to optimally train recurrent neural networks have been men-
tioned in early work, for instance in (Bengio et al., 1994). Experimental evidences suggest
that training with gradient descent often results in sub-optimal solutions which take into
account only short-term dependencies, but ignore long-term dependencies (Bengio et al.,
1992; Mozer, 1993). The main reason is that when using the tangent hyperbolic or the sig-
moid as the non-linear function f , the derivative of the objective function Li(θ) (computed
when predicting wi) with respect to the hidden state vector hi−k (at k steps backward)
is scaled at each backward step, hence either exponentially converges or explodes as k
increases. These gradients (indexed by i and k) in turn identify the update direction for
all network free parameters, such as the shared weight matrix Wh, for which gradient is
computed by :

∂Li(θ)
∂Wh

=
i−1∑

k=0

∂Li(θ)
∂hi−k

× hTi−k−1

An observation can be made from the above formula is that Wh is updated towards a
direction along which long-term effects (i.e with k � 1) either vanish or explode; both
situations lead to a scaling problem in updating Wh. It simply means that Wh is much
more easily optimized to reflect short-term than to reflect long-term dependencies between
output predictions and hidden states, and that if the training converges, the final model
may not express richer modelling information than the simpler n-gram structure. The
same holds for the update of other model parameters.

In order to improve the capacity of recurrent NNLMs in remembering long-term effects,
besides the explicit concatenation of global context information to the network hidden
state as described above, other solutions can be divided in two groups, either by using
alternative algorithms to the gradient descent, or by modifying the non-linear function f
(which often results in a modification of the network structure) in order to prevent the
gradient from vanishing. In the first group, some alternative solutions to plain SGD have
been proposed, including Simulated Annealing and Discrete Error Propagation (Bengio
et al., 1994), explicitly introduced time delays (Lang et al., 1990; Lin et al., 1996) or
time constants (Mozer, 1993), hierarchical sequence compression (Schmidhuber, 1992),
and Hessian-free optimization (Martens, 2010; Martens and Sutskever, 2011; Sutskever
et al., 2011). However, they are either particularly expensive because of the use of higher-
order gradient information, or the requirement of a batch optimization algorithm is not
suited to practical systems trained on huge training corpora. With the view of applying
RNNs to the language modelling task, the second group, which consists of modifying the
network hidden layer while still keeping unchanged the training algorithm, seems to be
a more promising approach. Several implementations along this research line have been
experimented, including the LSTM (Hochreiter and Schmidhuber, 1997) or a simpler
version recently proposed in (Cho et al., 2014).

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997; Gers et al.,
2003) is a recurrent architecture specifically designed to address the vanishing gradient
problem, while still using BPTT for training. The idea of LSTM is to re-design the
structure in such a way that the scaling factor at each backward propagation is fixed
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2.3.2 - Recurrent neural network language model

Figure 2.5 – An illustration of LSTM hidden unit. Figure borrowed from (Sundermeyer
et al., 2012)

to one, hence preventing the gradient from vanishing or exploding. The element-wise
non-linear f is replaced : each hidden unit is enriched by several so-called gated units
(Figure 2.5). Sundermeyer et al. (2012) first introduce LSTMs to the language modelling
task, and report an improvement of 8% in perplexity compared to a standard recurrent
NNLM on English and French LM tasks, while also achieving considerable improvements
in WER. LSTM recurrent NNLMs have also been applied to the lattice decoding problem
in ASR, resulting in an improvement in WER up to 10.7% relative over a state-of-the-art
baseline (Sundermeyer et al., 2014).

However, in spite of their benefits, recurrent NNLMs are still somewhat limited in
their use due to expensive training and inference. The main computational bottleneck
still lies between the hidden and output layer, just like the standard structure for which
some solutions have been proposed (see Section 2.3.4 for a detailed description). By
using the recurrent structure, this computational complexity is even harder to reduce,
as the training and inference have to be carried out in a left-to-right fashion, without
straightforward possibility to be performed in mini-batch mode, or to pre-compute some
parts of the network to increase processing speed, or to group predictions sharing the same
context during the inference. Some speed-ups and tricks have been proposed in (Mikolov
et al., 2011b) where the data is first divided into paragraphs, filtered and then sorted;
the most in-domain data is placed at the end of each epoch. Other solutions consist of
simplifying the structure. For instance, the hidden layer can be decreased by simulating
a maximum entropy model using a hash function on n-gram features (Mikolov et al.,
2011b). Le et al. (2012b) propose an approximation of the recurrent architecture involving
limited histories. While its performance is showed to be close to the recurrent NNLM, its
simplified architecture makes the associated training procedure readily compatible with
all speed-ups proposed for the standard feed-forward network, including mini-batch and
resampling methods. The training time is showed to be divided by 8 by this model-specific
approximation without significant loss in performance compared to the recurrent NNLM.
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2.3.3 Ranking language models

We have presented so far the continuous-space models used to estimate word probabilities.
This probabilistic estimate is required by the classical n-gram language models in which
sentences are evaluated by their likelihood, which is in turn computed as a product of
the probabilities of all of their composing words. Collobert and Weston (2008); Collobert
et al. (2011) however propose another view according to which non-probabilistic CSMs
should also be considered. The approach leads to the use of a unified neural network
architecture, which can model several natural language processing tasks including the
language modelling task, and which results in the so-called ranking language model. In-
stead of estimating a probability distribution, the proposed model aims only at ranking
the likelihood of words to occur in a given context.

In addition to the use of continuous representation, Collobert and Weston (2008);
Collobert et al. (2011) suggest some further ideas that are related to the work presented
in this dissertation :

• The output of the ranking LM is not a probability distribution, and is not normal-
ized. This property suggests a workaround for the computational problem described
in Section 2.3.4. For the language model, the parameters are trained using the fol-
lowing max-margin criterion:

max [0, 1− gθ(x) + gθ(x
′)] (2.16)

where gθ denotes the network output, x and x′ represent respectively an example
from the training data and its (negative) counterpart generated from a sampling
routine. Another training strategy uses NCE algorithm (Noise Contrastive Estima-
tion, Section 3.2). The objective function (2.16) is also similar to the discriminative
max-margin criterion that will be described and experimented in Chapters 5.

• Collobert and Weston (2008) emphasize the superiority of the semi-supervised learn-
ing scenario in improving the generalization power of the model in the absence of
hand-engineered features. Indeed, all tasks listed in the paper use annotated data,
except the language modelling task. In this situation, the language model is first
trained to estimate the word continuous feature vectors from unlabelled training
data; these shared representations are included in each task-specific model which is
then fine-tuned for prediction tasks. This scenario is similar to the training method
described in Chapter 5 where we initialize a partly supervised and discriminative
training process from a CSTM that has been pre-trained with maximum-likelihood
optimization.

2.3.4 Solutions for the output layer

All neural networks so far proposed for NNLMs are limited by their expensive compu-
tational cost during the training and inference. Early work on CSMs has pointed out
that the bottleneck is situated at the output layer where we have to normalize scores
over all vocabulary words (Bengio et al., 2003a; Schwenk and Gauvain, 2004). According
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to (Schwenk and Gauvain, 2004), for the standard feed-forward structure, the number of
floating point operations needed to predict an output word is (the reader is invited to
refer to Table 2.1 for notations) :

((n− 1)×D+ 1)× H+ (H+ 1)× |Vo| (2.17)

The first term corresponds to the computation at the hidden layer, and the second term
to the output layer. 4 In practice, we often have |Vo| � D and |Vo| � H, therefore the
second term, which corresponds to the processing at the output layer, represents most
of the computational burden. With large-vocabulary applications where |Vo| is up to
hundreds of thousand, this cost is problematic. Remarkably, the problem concerns the
use of continuous-space language and translation models, no matter of how these models
are incorporated in the MT application, either via N -best rescoring. (Schwenk et al., 2007;
Kalchbrenner and Blunsom, 2013; Hu et al., 2014), direct decoding (Vaswani et al., 2013),
or direct translation using neural network models 5 Model-specific workarounds often
employ three main techniques : reducing the size of Vo (Bengio et al., 2003a; Schwenk
and Gauvain, 2004; Schwenk et al., 2007), performing the normalization of (2.12) only on
small groups of words (Morin and Bengio, 2005; Le et al., 2011, 2013), or not normalizing
at all (Mnih and Teh, 2012; Vaswani et al., 2013; Xiao and Guo, 2013; Devlin et al., 2014).
Besides that, application-specific solutions are also possible which exploit properties of
the computing task implying the CSM, as described in the last part of this section.
Moreover, some training criteria, such as those described in Chapter 5, do not require any
normalization, either in training or in inference.

Short-list approach

As the computational cost of the output layer is proportional to the output vocabulary
size |Vo|, the most straightforward approach is to limit this quantity. For instance, Bengio
et al. (2003a) propose to merge all low frequency words (whose frequencies ≤ 3) into one
special token in the output layer, reducing |Vo| and resulting in 2-3 times speed-up without
significant degradation of the performance. Furthermore, Schwenk and Gauvain (2004)
propose to include in the output layer only the most frequent words, referred to as a short-
list, and to use LM probabilities from a 4-gram back-off model for all the remaining words.
More precisely, the probability of wi, given its context c(wi) is estimated as follows :

p(wi|c(wi)) =

{
pθ(wi|c(wi))× pS(c(wi)) if wi ∈ short-list
pB(wi|c(wi)) else

where pθ(.) is the probability estimated by the NNLM containing only the short-list,
pB(.) is from a back-off LM model, and the coefficient pS(.) serves as a normalization
constant ensuring that all the probabilities with context c(wi) sum to 1.

In order to have any practical utility, several recent works on neural network models use
short-lists which take up to 80K most frequent words (e.g (Sutskever et al., 2014)), which

4The input layer (also called the lookup table layer) consists of looking for columns of C corresponding
to context words; with an efficient storing of C, this operation can be assumed to have a constant cost.

5See for example a recent attempt in (Jean et al., 2015) dealing with the problem due to large vocab-
ularies for Neural Machine Translation task.
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is quite large. Short-lists can be limited to 2000 (Schwenk and Gauvain, 2004), however
with the resort to classical discrete LMs. The necessity for a CSM to be supported by a
back-off LM certainly hinders the full exploitation of its generalization capacity, as rare
words outside the short-list are where the CSM should perform sharply better than its
discrete counterpart, the final estimated scores however rely on the discrete model.

Hierarchically structured output vocabularies

A more promising approach is based on a hierarchical structuring of the output vocab-
ulary (Morin and Bengio, 2005; Mnih and Hinton, 2008; Le et al., 2011). In its general
form, all the elements from Vo are arranged into a tree structure. Each word is attached
to a leaf of the tree, hence predicting output words is equivalent to the prediction of a
path from the root of the tree to one of its leaves.

This idea is inspired from class-based LMs (Section 2.2.2) applied to CSMs. However,
the neural structure allows us to go further by naturally considering word classes (or
branches under each internal node), just like words themselves, as labels to be predicted
using the context history h. Indeed, by using the same neural structure either when
predicting classes, or when predicting words within a class, we can incorporate context
information in all our predictions. By this, the probability of a word within a class do
not depend solely on this class (as in Equations (2.5), (2.6), (2.7), (2.8)), but also on the
history. As for the computational complexity, the second term of (2.17) becomes :

(H+ 1)×max
j
{Sj} × h

where max
j
{Sj} denotes the maximum number of children at each internal nodes of the

tree, and h is its height. This term is much smaller compared to the original one. Such
a technique can result in 15 times speed-up at a small cost in accuracy (Mikolov et al.,
2011b).

The remaining question is about the construction of such tree structure, and how to
choose the structure leading to an optimal performance. Morin and Bengio (2005) suggest
that it is possible to use an expert knowledge (WordNet), but the method degrades the
performance. Another limitation is that such expert knowledge can be unavailable for
certain domains or languages.

Considering the important impact of this hierarchical structure on the final perfor-
mance, Mnih and Hinton (2008), Le et al. (2011), Le et al. (2013) propose to learn this
structure from the word continuous representations, which will keep all the training phase
independent from any external source information. A detailed description of this method
will be given in Section 3.1.1 of Chapter 3.

Un-normalized and self-normalized output layers

The expensive cost of normalizing scores over the output vocabulary poses a serious ques-
tion about the necessity of this step. Indeed, one may not perform such normalization,
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α log(p(w|c)) | logHθ(c)|
0 −1.82 5.02

10−2 −1.81 1.35
10−1 −1.83 0.68
1 −1.91 0.28

Table 2.2 – Normalization constants of the models trained in (Devlin et al., 2014), using
the criterion (2.18). In the best case corresponding to α = 1, | log(Hθ(c))| is reduced
to 0.28, corresponding to a normalization constant of 1.32 or 0.76. The numbers are
extracted from the same article.

as in the case of ranking LMs (Section 2.3.3). However, the lack of a probabilistic in-
terpretation is problematic for the incorporation of such models into applications, such
as in SMT. In order to understand the importance of such interpretation, we refer to
Equation (2.1), where probabilities given to each word wi are just an intermediate stage
to proceed to an evaluation of hypotheses. The sentence-level score is the foundation
of many useful applications of CSMs in Speech Recognition (Equation (2.3)) or in SMT
where the system performance is evaluated on the whole sentence, not on the choice of
each individual word. It it therefore necessary for LMs to be able to assemble the word
probabilities in order to give a score to the entire output sentence. 6 Therefore, the work
in (Collobert and Weston, 2008; Collobert et al., 2011) only provides a pre-training phase
to obtain good word representation which can then be used in other prediction tasks.

In view of using NNLMs in SMT systems, it is necessary that the NN scores on all
output words sum to 1. Let aθ(w, c) be the activation corresponding to a word w given
the context c, this constraint translates as :

Hθ(c) =
∑

w∈Vo
e aθ(w,c) = 1

Devlin et al. (2014) present an attempt to make this condition explicit in the training
criterion where log(Hθ(c)) is optimized to be as close to 0 as possible. This is achieved
by adding the term log2(Hθ(c)) to the objective function as follows :

Ldevl(θ) =
∑

(w,c)∈S

[
−aθ(w|c) + α log2(Hθ(c))

]
+R(θ) (2.18)

where the training set S is considered to be a set of word-context pairs (w, c), and R(θ)
is a regularization term. With log(Hθ(c)) made close to 0 during the training phase, the
output scores become :

gθ(w, c) = aθ(w, c) (2.19)

which means that during the inference we do not need to normalize over the output
vocabulary, but only to compute the output activations aθ. This self-normalization has
resulted in about a 15 times speed-up in (Devlin et al., 2014). In Section 3.3.1 of Chapter 3,

6 Being deprived of a probabilistic interpretation, we can no longer use Equation (2.1). Such situation
requires a sentence-level training criterion (for instance in (Auli and Gao, 2014), or the strategies that
will be described in Chapter 5), instead of a word-level criterion.
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we present a similar result with a self-normalization network corresponding to a speed-up
up to 50 times (Table 3.5). The difference in ratios may be due to the fact that the
experiments in (Devlin et al., 2014) use quite modest vocabularies with only 32K words,
while in the scope of this dissertation, experiments are always ran with large vocabularies
of 500K words. 7

The techniques of (Devlin et al., 2014) however do not speed up the training phase, as
activations for all w ∈ Vo are still necessary in the training criterion (2.18). There exists
a much faster self-normalization technique using the Noise Contrastive Estimation (or
NCE) (Gutmann and Hyvärinen, 2010) and which has been applied to NNLMs (Mnih and
Teh, 2012; Vaswani et al., 2013). Devlin argues that the NCE algorithm lacks a mechanism
to control the degree of self-normalization, contrary to the presence of the hyper-parameter
α in his objective function. However, this point seems to be practically irrelevant, as
observed in our experiments in Chapter 3, the un-normalized scores from the NCE-trained
CSMs, once incorporated in the SMT system, tend to approach the performance of the
conventionally normalized NNLM without any significant loss in BLEU score. The quality
of the normalization, as results of the NCE algorithm, seems to be sufficiently good to
guarantee an integration of NCE-trained models using standard scenarios (Section 2.5.2).
Table 2.2 shows some examples of the self-normalization process in (Devlin et al., 2014)
controlled by the value of α.

Recently, Auli and Gao (2014) train a un-normalized model which results in 5 times
faster inference. However, the model is not self-normalized, but is trained using a sentence-
level objective function (Section 5.4.3).

Other speed-ups and tricks

Other tricks can be used to speed up the training and inference without any impact on
performance; some of them are crucial in order to make the training of large-scale sys-
tems feasible. For instance, the training of NNLMs on very large corpora with billions of
word tokens cannot be performed exhaustively, but requires to adopt resampling strate-
gies, consisting of randomly selecting a small subset of training data to be used at each
epoch. It has also been observed in (Schwenk, 2007) that data resampling can increase
the generalization performance.

Speed-ups can also be obtained by propagating several examples at once throughout
the network (Schwenk and Gauvain, 2004). This mini-batch mode allows us to use matrix-
matrix operations, which are optimized by BLAS libraries to be faster than vector-matrix
operations. 8 With 128 examples in each mini-batch, the training step is 10 times faster,
though the modification does not yield any reduction on the number of floating point
operations. In (Schwenk et al., 2012), it is showed that using optimized library for GPU
makes the training and inference of NNLMs even faster.

7Fast matrix operations BLAS implemented in different libraries make the real-time comparisons only
approximative, contrary to the comparison based on the number of floating point operations. For instance,
the softmax proceeded on 500K words is not always 10 times slower than the one on 50K words.

8It is noticed that matrix-matrix operations are more easily accelerated on advanced CPU architectures
with multi-threading.

47



2.3.4 - Solutions for the output layer

However, it is important to notice that all the afore-mentioned tricks are much easier
to be implemented with the feed-forward than other more complicated architectures. For
recurrent NNLMs for instance, word predictions need to be processed in the left-to-right
style, while the network’s input must take into account the hidden vector computed at
the preceding position. In such situation, the mini-batch mode can only be performed
with the division of the data into b paragraphs (suppose b is the size of mini-batches),
each propagation then takes the first non-processed word from each paragraph (Le et al.,
2012b).

For the inference, a possible technique is context grouping, which consists of group-
ing n-grams sharing the same history words, then forwarding through the network each
context only once. If the inference is carried out within the decoding of a SMT sys-
tem (Vaswani et al., 2013; Devlin et al., 2014) (Section 2.5.2), the pre-computation of the
hidden layer is showed to be very powerful with speed-ups up to 1000 times (Devlin et al.,
2014), but applicable only on self-normalized, feed-forward neural architectures with one
hidden layer. The idea is to pre-compute as most as possible Equation (2.10), in par-
ticular the dot product Wh × i, and to store the results in memory before the decoding
starts. The matrix Wh is divided to n − 1 sub-matrices, each corresponds to a position
in the context. Then, for every word from the input vocabulary, and for each position,
the dot product between the word feature vector and the corresponding sub-matrix of
Wh is computed and results are stored in n − 1 lookup tables. During the decoding,
the computation consists of simply looking to the right column of the right lookup table
(corresponding to a position in the context). All n − 1 found vectors are then summed
up, along with the bias vector bh, before being fed to the non-linear function f . Hidden
vectors can also be indexed to context sequences, then stored in memory cache in order
to reduce as most as possible all costly operations during the decoding (Vaswani et al.,
2013).

2.4 Continuous space translation models

The previous section has described various aspects of language models and the application
of neural networks (or continuous-space models) in the language modelling task. In this
section, we focus on the use of continuous-space models in modelling the translation
process. Like language models which aim at estimating the probability of a word sequences
p(wN1 ), translation models (TMs) are designed to evaluate the likelihood of a sequence
t = tI1, conditioned on another (foreign language) sequence s = sJ1 . Translation models
are hence by nature conditional distributions p(t|s) 9, to which, as described in Chapter 1,
we add latent variables a which model intermediary stages, such as the translation of each
source word or sequence of source words, or the reordering of local translations in order
to form a complete meaningful sentence. A probability distribution on target sentences
given the source sentence is defined as :

p(t, a|s) = 1

H(s)
exp

(
M∑

m=1

λmfm(s, t, a)

)
(2.20)

9In practice phrase-based SMT systems include phrase translation probabilities in both directions, i.e
p(t|s) and p(s|t).
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where M feature functions (fm) are weighted by a set of coefficients λ = λM1 , and H(s)
is the normalization constant. In most cases, this set of feature functions contains the
translation models delivering a score for each derivation (t, a).

Like in the case of discrete language models, early translation models relied on max-
imum likelihood estimates of discrete random variables and exploit relative frequencies
from the training data. These models suffer from the data sparsity problem, as the values
of these variables are considered without any relationship between them, while count-
based estimations are in many cases not statistically reliable. In the case of TMs, the
problem becomes even more severe, as discrete variables take values from sets of word
or phrase pairs, which are larger than the word vocabulary; whereas training data for
bilingual TMs is not as abundant as the one used for LMs. Remedies exist, such as
smoothing techniques (Section 2.2.1) 10, or resorting to factored language models (Bilmes
and Kirchhoff, 2003) adapted to TMs in (Koehn and Hoang, 2007; Crego and Yvon,
2010). However, such approaches necessitate external linguistic analysis tools which are
not always available; moreover they do not seem to bring consistent improvements.

Continuous-space models (CSMs), as described in Section 2.3 seem to be a promising
approach to improve the estimation of these models. In many cases, continuous-space
translation models (CSTMs) are a bilingual generalization of LMs, in which words come
from two different languages, instead of only one. Such models are also often called
Neural Network Joint Models (NNJM) (Devlin et al., 2014) as they can be employed to
estimate monolingual as well as bilingual probabilities. Various structures and training
strategies that have been used for NNLMs can be generalized to CSTMs. We can divide
these models into Phrase-pair based TMs and word factored (or lexicalized) TMs; the
first group manipulates phrase pairs as elementary translation units, while the second
one factors probabilities at the level of individual words, hence amounts to a word based
LM-style model.

2.4.1 Phrase- and phrase-pair- based CSTMs

In the context of SMT, Schwenk et al. (2007) present the first CSTM estimating trans-
lation probabilities, more precisely within the framework of n-gram-based SMT system.
This framework differs from other approaches by the use of latent variables indicating
the reordering of the source sentence, the segmentation of this source into segments, and
the translation of each segment forming bilingual translation units called tuples (Sec-
tion 2.4.2). The translation model estimates the joint probability p(t, s|a) by first decom-
posing it at the level of tuples :

p(t, s|a) = p(u1, ..., uL) =
L∏

l=1

p(ul|ul−1l−n+1)

where u1, ..., uL are L phrase pairs (tuples) extracted from (t, a, s), and ul−1l−n+1 denotes
the context using the n-gram assumption. Inspired from the NNLM, each tuple can be

10These methods have been systematically compared in a phrase-based SMT system (Foster et al.,
2006).

49



2.4.1 - Phrase- and phrase-pair- based CSTMs

projected into a multi-dimensional continuous space, in which similarities can be com-
puted as indications of relationship between different tuples. The neural structure used
in that work is still the feed-forward network, while in order to reduce the computational
cost, the output vocabulary is limited to 8K most frequent units. This short-list approach
(Section 2.3.4) necessitates to interpolate the CSTM with a back-off LM on tuples. The
CSTM is then used to rescore 1000-best lists (see Section 2.5.2 for more details). The
results only show a slight improvement of 0.2 BLEU points 11, whereas the CSTM seems
to under-perform the word-based NNLM which has been used to rescore the same N -best
lists. This results is particularly surprising, as unlike the NNLM, the CSTM explicitly ex-
ploit information about the source language in context as well as in prediction. It suggests
that estimation problems are still present despite the use of the continuous representation
of phrase pairs. Another limitation of that work is the Short-list approach which makes
the model applicable only on small-scale tasks with limited number of phrase pairs (about
21K units as considered in the paper).

Zamora-Martinez et al. (2010) propose a tighter integration of a CSM within an
n-gram-based SMT system both for the phrase-pair based CSTM and the target NNLM.
Later works, such as (Hu et al., 2014) try to use more complicated neural structures, such
as the recurrent neural network for CSTMs. The main motivation, like in the case of
recurrent NNLMs, is to handle longer dependencies between (source and target) contexts
and the unit to be predicted. However recurrent neural network models on phrase pairs
face a more severe problem of data sparsity, as the set of phrase pairs is much larger
than the set of words. Phrase pairs are modelled as Minimum Translation Units (MTUs)
in (Hu et al., 2014), which correspond to a segmentation of the source and target sentences
satisfying two constraints : there are no overlapping word alignment links between phrase
pairs, moreover it is impossible to extract smaller translation units without violating the
word alignment constraint. The translation is then modelled as a sequence of MTUs
just like in the n-gram model of (Schwenk et al., 2007), however using a recurrent neural
network exploiting unbounded contexts. The CSTM is used to rescore N -best lists, and
gives quite limited improvements. Remarkably, the result confirms the trend observed
in (Schwenk et al., 2007) according to which the atomic MTU-based model hinders the MT
performance compared to a word-based recurrent NNLM (−0.7 BLEU point difference).
The authors propose a workaround by considering the MTU not as an atomic unit, but
as a bag-of-words, and redesigning the output layer to predict a word rather than a
MTU. This modification helps to bring the performance of the MTU-based model close
(but always inferior) to the recurrent NNLM. The bag-of-words representation seems to
hinder the model performance, as dependencies between words from different MTUs are
not explicitly modelled. The capacity of handling longer contexts which derives from the
modelling of MTUs seems to have little importance. Finally, Zhang et al. (2015) represent
another attempt to generate the target sentence phrase by phrase, by the definition of
Minimal Phrase in the context of a bilingual sentence pair model. The proposed model is
however a target NNLM on phrases without any conditioning on source contexts; moreover
phrase-based models need to be interpolated with word-based models to give improved
results.

11see Section 1.2 for more details on BLEU.

50



Continuous space translation models

2.4.2 Word-factored n-gram-based CSTM

The development of CSTMs has a history which is somewhat contrary to what has
been observed in SMT. For the development of SMT systems, the mainstream has
been observed to shift from word-based models (Brown et al., 1993) to phrase-based
approach (Zens et al., 2002) which has been a significant progress, as atomic-phrase con-
sideration allows the model to enlarge the context information from both source and target
words. However, the performance of phrase-based CSTMs is hindered by a huge number
of events to be taken into account by the neural network, which increases drastically the
number of free parameters and the model complexity, whereas training data is reduced.
Due to this estimation problem, the most successful CSTMs use words, instead of phrases
or phrase pairs, as minimal units. The goal is hence to predict (source and target) words
from a certain history made of context words, or to evaluate a translation based on its
constituting words.

The n-gram-based CSTMs described in (Le et al., 2012a) clearly reflect this trend. In
their first proposal, the authors reuse the idea of building an n-gram CSTM over the set
of phrase pairs (or tuples), using a hierarchically structured output layer (Section 2.3.4) to
handle large vocabularies of tuples or phrases, whereas the context length is increased to
10-gram instead of only 3-gram in (Schwenk et al., 2007). The number of all phrase pairs
is quite impressive : 300K for a small-scale task and 8847K for a large-scale one, setting
this work as one of the first large-scale experiments on CSTMs. The results confirm
the trend observed in (Schwenk et al., 2007) : the phrase pair based CSTM improves
the baseline system only by 0.5 BLEU points via N -best rescoring on the small task,
while a target NNLM on top of the same baseline gives 1.1 BLEU point improvement.
Further investigating on this comparison, the authors propose to compare the phrase pair
based CSTM with phrase-factored and word-factored (or lexicalized) models, the results
show that decomposing phrase pairs into smaller units yields significant improvements
during the N -best rescoring. Finally, only the word-factored CSTM outperforms the
target NNLM (+0.6 BLEU points). This comparison suggests that, even though the
continuous representation of atomic units (phrase pairs, phrases, or words) has been used
and a structured output layer allows us to handle all units, estimation problems persist,
and it is important to factorize the probabilistic model in order to limit the vocabulary
size.

The CSTMs used in the scope of this dissertation are based on the word-factored
model introduced in (Le et al., 2012a), it is hence important to give a detailed description
of different formulations leading to this structure. In spite of the proposition of various
neural structures in the literature, we still advocate the conventional feed-forward struc-
ture. The main reason is that powerful speed-ups are available for both its training and
inference (Section 2.3.4). Moreover, simple feed-forward networks still achieve impressive
improvements (Le et al., 2011, 2012a; Allauzen et al., 2013; Devlin et al., 2014; Do et al.,
2014a).

The model is based on the n-gram approach for SMT (Section 1.1.3) and has been
first described in (Le et al., 2012a). In this approach, the sentence pair is assumed to
be decomposed into a sequence of L bilingual phrase pairs (called tuples) defining a joint
segmentation (s, t) = (u1, ..., uL) (see Figure 1.1). The basic translation units are tuples,

51



2.4.2 - Word-factored n-gram-based CSTM

representing a matching u = (s, t) between a source s and a target t phrase. The first
formulation of the model comes from the n-gram assumption over sequences of tuples :

p(s, t) =
L∏

l=1

p(ul|ul−1l−n+1) (2.21)

All the probabilities in Equation (2.21) are modelled by a feed-forward neural network,
which is referred to as the standard n-gram CSTM in (Le et al., 2012a). The elementary
units are bilingual phrase pairs, which means that the underlying vocabulary, hence the
number of parameters, can be quite large, even for small translation tasks. In order to
reduce the number of free parameters, Equation (2.21) can be factored by decomposing
tuples in two (source and target) parts and in two equivalent ways :

p(ul|ul−1l−n+1) = p(tl|sll−n+1, t
l−1
l−n+1)× p(sl|sl−1l−n+1, t

l−1
l−n+1)

= p(sl|sl−1l−n+1, t
l
l−n+1)× p(tl|sl−1l−n+1, t

l−1
l−n+1) (2.22)

Each decomposition involves two bilingual conditional distributions, the first represents
a TM, the second term is best viewed as a distortion model. Another benefit of this
formulation (referred to as the factored n-gram CSTM in (Le et al., 2012a)) is that
elementary events now correspond either to source or target phrases, but not to phrase
pairs. The underlying vocabulary is thus obtained as the union, rather than the cross
product, of phrase inventories.

Finally, the third formulation (the word-factored CSTM in (Le et al., 2012a)) consists
of taking (source and target) words as the basic units of the n-gram TM. This decomposi-
tion of phrases in words is considered only as a way to mitigate the parameter estimation
problem. Indeed, as the baseline system (hence the corresponding decoder) is still n-gram-
based, the neural network still computes, as its final outputs, the probabilities of phrases
rather than of words. Let skl denote the kth word of the source sequence sl, and tkl denote
the lth word of the target sequence tl. We also denote cn−1(skl ) (respectively cn−1(tkl )) the
sequence made of the n − 1 words preceding skl (resp. tkl ) in the source (resp. target)
sentence. 12 The joint probability can then be rewritten in two equivalent ways, as :

p(s, t) =
L∏

l=1



|tl|∏

k=1

p(tkl |cn−1(tkl ), cn−1(s1l+1))×
|sl|∏

k=1

p(skl |cn−1(t1l ), cn−1(skl ))




=
L∏

l=1



|sl|∏

k=1

p(skl |cn−1(skl ), cn−1(t1l+1))×
|tl|∏

k=1

p(tkl |cn−1(s1l ), cn−1(tkl ))


 (2.23)

This decomposition relies on the n-gram assumption at the level of words, rather than
phrases or phrase pairs. Intuitively, the conditioning part includes two sliding windows
of length n − 1, one for each language; however the moves of these windows remain
synchronized by the source reordering and the segmentation into tuples. Moreover, the
context is not limited to the current phrase, but continues to include words in adjacent

12The source sentence is reordered beforehand to match the target sentence word order. See Sec-
tion 1.1.3 for more details.
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 s̅9: recevoir 

 t̅9: receive 

 s̅10: le 

 t̅10: the 

 s̅11: nobel de la paix 

 t̅11: nobel peace P ( | )= P ( t̅11: nobel peace |  s̅9: recevoir  s̅10: le  s̅11: nobel de la paix ) t̅9: receive  t̅10: the 

P ( |  s̅9: recevoir  s̅10: le ) t̅9: receive  t̅10: the  s̅11: nobel de la paix 

= P ( nobel | recevoir, le , receive, the )

× P ( de | le, nobel , receive, the )

× P ( la | nobel, de , receive, the )

× P ( paix | de, la , receive, the )

× P ( nobel | la, paix , receive, the )

× P ( peace | la, paix , the, nobel )

Figure 2.6 – An example of the decomposition of the tuple-based model at the level of
phrases, then at the level of words. In the first formulation, tuples are treated as the
smallest translation units, while in the second one, each tuple is decomposed into its
source and target side. The third formulation estimates the probability of words, given
the context composed of the two most recent source and target words (for a trigram
model). Source words are coloured in red, while target words are coloured in green.
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Figure 2.7 – The feed-forward neural network model used to estimate the last word-
factored probability in the example of Figure 2.6.
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phrases. Figure 2.6 gives an example of these three formulations applied on a bilingual
trigram model.

As with for the SOUL NNLM (Le et al., 2011, 2013), each formulation described by
Equations (2.21), (2.22) and (2.23) uses a neural network model with structured output
layer (Section 2.3.4) to compute the output probabilities. Figure 2.7 illustrates the neural
architecture used to estimate the word-factored probabilities given by the last formulation.
A major modification compared to the standard NNLM lies in the input layer where the
CSTM uses two mapping functions, one for each (source and target) language. These three
formulations have been compared in (Le et al., 2012a) on an English-French translation
task within the framework of N -best list rescoring (Section 2.5.2). The results show that
in spite of the presence of source words which are directly aligned to the target predicted
word throughout the tuple segmentation and provide strong suggestion about which word
to be present, only the third formulation outperforms the target NNLM (+0.6 BLEU
points). The atomic representation of phrases or phrase pairs seems to be harmful to the
general performance. Henceforth, in the scope of this dissertation, we will only use the
word-factored formulation, expressed by Equation (2.23) in all experiments.

2.4.3 Other lexicalized CSTMs

In order to predict words, most of lexicalized CSTMs use a softmax layer covering all
vocabulary words. With large-vocabulary SMT systems, CSTMs face the same com-
putational problems as the NNLMs, hence all strategies described in Section 2.3.4 for
NNLMs can be straightforwardly applied to CSTMs, for instance the Structured OUtput
Layer (Le et al., 2012a), the self-normalized output layer in (Devlin et al., 2014) or the
NCE algorithm used to train CSTMs described later in Chapter 3.

Besides the output layer, the main divergence lies in the input layer where different
strategies of context handling have been proposed. Being the first work on lexicalized
CSTM, Le et al. (2012a) employ a context composed of an n− 1-gram sliding window of
target words concatenated with a similar window of source words, while parameters are
organised in the same way as in the standard NNLM (Bengio et al., 2001). This context
handling is inspired (and deduced) from the n-gram-based approach in SMT : source
and target windows are synchronised by the segmentation of source and target sentence
into phrase pairs whereas the source side is reordered beforehand. Also feeding n − 1
previous target words into the history, Devlin et al. (2014) however propose a different
way of choosing the sliding window of source context words (denoted by Sj, where j is the
current target word to be predicted). This window is chosen as being the most relevant to
the current target position, established through the word alignments. Each target word
tj is supposed to be affiliated with exactly one source word at index aj, then Sj comprises
the m words surrounding saj :

Sj = saj−m−1
2
, ..., saj , ..., saj+m−1

2
(2.24)

The notion of affiliation is directly derived from the word alignment, but unlike the syn-
chronised contexts in (Le et al., 2012a), the context described in (Devlin et al., 2014)
does not depend on the reordering of the source sentence, as well as the segmentation
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into phrase pairs. This purely lexicalized model is reported to have good performance. 13

Note however that a combination of several CSTMs is used in this paper. 14

Also focussing on the incorporation of source context words in a CSTM by using a
window covering all surrounding words as defined in Equation (2.24), Tran et al. (2014)
suggest another use of lexicalized models in improving the prediction accuracy for word
translations when translating into a morphologically rich language. A peculiarity of mod-
els described in this paper lies in the fact that word-based probabilities are further de-
composed into the probabilities of stems and suffixes, resulting in two different tasks of
predicting separately target stem and target suffix. The improved capacity in predicting
morphological forms is then proved to be beneficial for a phrase-based SMT system from
English into Russian. The differences between this model and those considered in this
dissertation is that it predicts target words independently from one another. Moreover,
instead of predicting words in a large output vocabulary, the model includes only a lim-
ited number of options deduced from the word alignment on training corpora; this feature
allows the model to prevent some computational difficulties described earlier.

From context-dependent to source-dependent recurrent neural networks

Recurrent neural network structures have also been used in CSTMs, where the condition-
ing on words from the source language is an important feature which distinguishes these
models from each other, and from the recurrent target language NNLMs. In order to
further incorporate the source side information, the auxiliary input vector, inspired from
context-dependent recurrent NNLMs (Section 2.3.2), plays an important role. This addi-
tional input vector contains the source sentence’s embedding, which is combined with the
recurrent hidden state and the precedent word tj−1’s embedding, similarly to the mecha-
nism illustrated in Figure 2.4. The only difference is that, instead of the topic-dependent
vector as proposed in (Mikolov and Zweig, 2012), fj here gives information about the
source sentence which is useful for the prediction of tj. Auli et al. (2013) provide a typical
work along this line, where the source s is represented either by a latent semantic analysis,
or by a word encoding obtained by training a recurrent NNLM on the source side. Further
developments of that work use a lattice rescoring scenario to incorporate the CSTM into
a SMT system. However, the unbounded recurrent context is not compatible with the
recombination of decoder states sharing the same context into a single state (Koehn et al.,
2007), as the amount of recombination decreases significantly with long contexts. The
difficulty makes some simplifications necessary; but even in this case lattice rescoring does
not seem to be significantly better than N -best rescoring. The integration leads to to an
improvement of 1.5 BLEU points over the WMT 2012 French-English baseline, but the
extension of the recurrent architecture brings only 0.2 BLEU points. This may be due to
the difficulties in training recurrent neural networks (Section 2.3.2).

Another way to build the continuous representation of the source sentence is proposed
in (Kalchbrenner and Blunsom, 2013) where the authors use a convolutional network to
transform the whole source sentence into a multi-dimensional embedding (the Convolu-
tional Sentence Model (Blunsom et al., 2013)). The prediction of each target word tj

13+3.0 BLEU points on top of a powerful baseline already including a recurrent NNLM.
144 joint models and 2 lexical models with only source or target words in the conditioning part.
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is conditioned on the source sentence by simply feeding this embedding to the auxiliary
input vector fj. However, this model, as well as the model presented in (Auli et al., 2013)
might have a weakness that the same source language context is used for the prediction
of all words of the target sentence. As a consequence, Kalchbrenner and Blunsom (2013)
propose a second model to make this conditioning on the source side information more
precise. The motivation behind this is the fact that target words should depend more
strongly on certain parts of the source sentence. It is hence likely that the prediction of
each target word tj should focus on some relevant context source words, such as those
covered by the sliding window surrounding the affiliated position in (Devlin et al., 2014;
Tran et al., 2014). The proposed model, by a mechanism called Inverted Convolutional
n-Gram Model, or ICGM, first tries to generate I different vectors representing the same
source words (I is the length of the target sentence), each vector is supposed to contain
the necessary information for the word prediction at the corresponding target position.
This variant of the recurrent CSTM yields indeed significant improvements in terms of
perplexity 15 which is 40% lower than the original model. This suggests the importance
of context source words in the conditioning part. More remarkably, instead of relying
on word and phrasal alignments as in (Le et al., 2012a; Devlin et al., 2014), this work
proposes the ICGM to automatically learn these dependencies from the training data.
It would be interesting in a future work to repeat the English-French experiments de-
scribed in the paper on other language pairs in order to see if such mechanism is capable
of capturing long-span reordering. The idea of automatically learning word alignment
using neural networks has also been pursued in (Bahdanau et al., 2014) with the so-called
attention-based approach.

Generating translations with CSTMs

A consequence of an independence from word or phrasal alignments is that translations
can be generated and evaluated without any baseline SMT system. This gives ways to a
new research direction in which neural networks are used to directly generate translations
from the source, without resorting to any linguistic information or hand-engineered fea-
tures (Hermann and Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014; Bahdanau
et al., 2014). The main idea can be described as first encoding the source sentence into a
continuous feature vector, then using it as a part of the input to generate the target sen-
tence, often within a recurrent NNLM incorporating an auxiliary input layer. Sutskever
et al. (2014) propose to use a recurrent NNLM with Long Short-Term Memory (LSTM)
(Section 2.3.2) hidden layer to encode the source sentence, then another NNLM to decode
the target sentence. The direct translation using this model results in an encouraging
BLEU score of 34.8 on WMT’ 14 English-to-French task, compared to 33.3 obtained by
a phrase-based SMT system, even though only a short-list of 80K most frequent words
are used to generate the translations. The combination of these two systems through
1000-best rescoring helps to improve the baseline by 3.2 BLEU points. Similarly, Cho
et al. (2014) use a recurrent encoder-decoder with a fixed-length vector representation for
the whole source sentence, and a simpler variant of LSTM for their hidden layers.

In line with the modification brought out by the second model proposed in (Blunsom
et al., 2013), Bahdanau et al. (2014) train a model that can automatically learn a soft word

15with respect to reference translations.
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alignment evaluating the importance of each source word towards each target position.
The auxiliary input vector fj still has a fixed length, but is estimated from a set of vectors
h1,h2, ...,hJ (J is the length of the source sentence). Each vector hi represents the whole
source sentence, but with strong focus on the part surrounding the i-th source word.
These vectors are obtained from two recurrent NNLMs computed on the source sentence,
one predicting in the left-to-right order and the other in the inverse order. Furthermore, as
a counterpart to the ICGM proposed in (Kalchbrenner and Blunsom, 2013), the authors
propose an additional feed-forward neural network to predict the impact of each source
word si on the target word tj. More precisely, the auxiliary input vector fj is computed
as a linear combination :

fj =
J∑

i=1

αijhi

where αij, i = 1, .., J, j = 1, .., I are the outputs (computed from a softmax layer) of the
additional neural network, which can be interpreted as the probability of the target word
tj being aligned to the source word si. Therefore, the model does not depend on a hard
word alignment, but implicitly learns a soft alignment between source and target words
from the training data.

Finally, we can remark that in most of past work on CSTMs, the best performances
are often achieved by combining different models (4-6 models), or the proposed models
are combined with baselines. Even though this strategy is necessary to achieve a good
performance, the effect of training each individual model is not well assessed. In this
dissertation, we insist particularly on the one-model configuration in order to present a
fair framework in which various training strategies can be compared to each other.

2.4.4 Discriminative phrase translation models

We also review a particular kind of TMs which do not aim at estimating probabilities, but
only a score reflecting the likelihood of a translation unit, or the compatibility between a
source and a target phrase (Gao and He, 2013). More precisely, in the phrase-based SMT
framework, the translation model, also known as phrase table, is often constructed by a
two-step approach : first, phrase pairs are heuristically extracted from an automatically
word-aligned training data; the second step consists in estimating a score for each phrase
pair. These scores are conventionally based on relative frequencies estimated on the same
aligned data (Koehn et al., 2003). This estimation procedure faces data sparsity problem,
just like the discrete LMs whose probabilities have to be estimated on the occurrences of
word sequences.

Therefore, most work on phrase translation models focusses on improving the param-
eter estimation procedure. He and Deng (2012) propose a new discriminative training
procedure for phrase and lexicon translation scores, instead of relying solely on relative
frequencies. The general training scenario is a joint optimization for {θ,λ} (Section 1.3.2),
where θ denotes the parameters of phrase and lexicon TMs, and λ represents the log-
linear coefficients in Equation (2.20). The whole procedure is sketched in Figure 2.8.
The parameters θ are trained on the training set, while the feature weights λ are tuned
alternatively on a development set. Due to possible mismatch between the training and
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Figure 2.8 – Discriminative training procedure proposed in (He and Deng, 2012)

development set, the training process might not help to improve the BLEU score as ex-
pected. As a consequence, the authors propose to use another held-out data to validate
{θ,λ} : only the iteration which maximizes the training criterion on this data is finally
chosen.

The objective function used in (He and Deng, 2012) is the expected BLEU score with
Kullback-Leibler divergence regularization. This criterion, described in Section 1.3, has
been originally used to train log-linear coefficients λ on a development set (Rosti et al.,
2011). The main motivation behind this is the fact that the conventional maximum-
likelihood estimation is not directly related to the translation performance, measured
for instance by BLEU (Section 1.2). Gao and He (2013) propose a simpler optimization
procedure which updates θ based on Stochastic Gradient Descent, while the phrase trans-
lation probability is modelled using Markov Random Fields (MRF). Another difference is
that the work in (Gao and He, 2013) does not use held-out data to validate θ and λ, but
base on the BLEU scores on the development set to choose the best iteration at the end.

A continuous-space version of the model in (Gao and He, 2013) is proposed in (Gao
et al., 2014), where each (source and target) phrase is projected into a (common) multi-
dimensional continuous space. For each phrase pair, a score is used to indicate the com-
patibility between source and target phrases, and is computed as the distance between
their embeddings. The model is still trained by the expected BLEU objective function,
similarly to the algorithm presented in Figure 2.8. 16 However, the main weakness of this
model is that phrase translation probabilities depend solely on its phrase embeddings,
and not on other context words which fall outside phrase boundaries.

Recently, an attempt has been made to use the expected BLEU criterion to train a
recurrent NNLM (Auli and Gao, 2014), which improves the system by 0.6 BLEU points
compared to the same model trained with maximum-likelihood estimation. A peculiarity
of that work is that the neural network does not employ a softmax layer, but delivers
un-normalized scores. This feature makes the model in (Auli and Gao, 2014) similar to
ranking LMs (Section 2.3.3). However, instead of using a word-level objective function
(Equation (2.16)), the model is trained by a sentence-level criterion which is the expected

16The CSM is shown to improve a WMT’12 French-to-English system by up to 1.3 BLEU points.

58



Evaluating and training a continuous space model

BLEU. Moreover, as no normalization is required, the inference is reported to be 5 times
faster than the conventional models, in spite of a slower training.

2.5 Evaluating and training a continuous space model

In this section, we discuss some aspects about evaluation and training strategies for CSMs.
In general, it is desirable to have a training method that is consistent with the evaluation;
however it is not always the case, for instance with language models. In practice, LMs
are trained to optimize the perplexity, but then the same models are used in different
applications for which the evaluation metric is only loosely related to the perplexity.
Evaluation within these applications is often expensive as it requires the existence of a
baseline system, along with a set of models corresponding to various system features.
The evaluation of LMs is hence often performed separately. Indeed, during the training,
it is often convenient to have an intermediary intrinsic evaluation measure that does not
depend on any external system.

Since our work focusses on CSTMs, as extrinsic metrics, we only consider the integra-
tion of NNLMs and CSTMs into a SMT system, and consider the BLEU score to assess
the final performance. Other evaluation methods exist, such as including NNLM into an
ASR system, and using the Word Error Rate (WER) of the final system to assess the
quality of the included LM.

2.5.1 Perplexity

For NNLMs and several CSTMs, the most straightforward intrinsic measure is the per-
plexity. This quantity is derived from the probabilistic interpretation formulated in Equa-
tion (2.1) : the model perplexity computed on a dataset D reflects the likelihood of D
estimated by this model. Suppose that D contains d samples, D = {D1, ...Dd}, then its
log-likelihood estimated by the model with parameters θ is computed as :

logp(D|θ) =
d∑

i=1

logpθ(Di)

While evaluating a LM (or a word-factored TM), each data sample Di is considered as
the pair of context words and a word to be predicted in this context. In order to have a
fair comparison that is data size-independent, the averaged log-likelihood is often used :

average-log-likelihood(D|θ) = 1

d
logp(D|θ) = 1

d

d∑

i=1

logpθ(Di) (2.25)

The perplexity is computed from this quantity as :

perplexity(D,θ) = exp

(
−1

d

d∑

i=1

logpθ(Di)

)
(2.26)
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which is used to evaluate the language or translation model with parameters θ, where D is
not used during the training phase. In terms of the word prediction problem modelled by
a LM, a lower perplexity computed on a held-out validation set implies a higher likelihood
of the unseen data, which means that the model predicts better the new data samples.

The quantity (2.25) can also be viewed as a negative empirical estimate of the cross-
entropy of the true (but unknown) data distribution p with the model distribution pθ.
The perplexity (2.26) can also be interpreted as the (geometric) average branching factor
of the language according to a language model (Rosenfeld, 2000), or of the target lan-
guage given the aligned source sentence in the case of a translation model. The use of
perplexity has an advantage as it is easy to compute and to optimize. The perplexity
optimization leads straightforwardly to the conventional maximum log-likelihood proce-
dure (Section 3.1). Moreover, when multiple LMs or TMs exist, they can be interpolated
according to the coefficients which are trained by the EM algorithm to minimize the
perplexity on a validation set (see, for example (Schwenk et al., 2007)).

In spite of all these advantages, the quality of a language or translation model must
be measured ultimately by its impact on the application for which it has been designed.
However, the correlation between perplexity and the performance measures is not obvious
in many cases. For ASR systems, Rosenfeld (2000) claim that a reduction of 5% in
perplexity is usually not practically significant; a 10− 20% reduction is noteworthy, while
only a perplexity improvement of 30% or more is significant and can be translated into
performance improvements. Perplexity has been shown in (Chen et al., 1998) to predict
well WER when considering only n-gram models trained on in-domain data. The authors
propose a new metric by imitating the WER calculation without the use of a speech
recognizer, and show that this metric is superior when comparing LMs from different
categories. Although the perplexity continues to be widely used, some recent attempts
have been made to train models directly based on the application quality metric (He and
Deng, 2012; Auli and Gao, 2014; Do et al., 2014a).

2.5.2 Extrinsic evaluation and integration of CSMs

Extrinsic evaluation consists of incorporating the CSM into a SMT system as an additional
feature function, and using the final system performance, expressed for instance in terms
of BLEU score, to assess the quality of the model. This section describes several strategies
that can be used to integrate a CSM into the translation system.

N-best and lattice rescoring

Because of a high computational cost during the inference, CSMs are often integrated
into SMT systems in a two-step approach : first, a set of best translation candidates is
generated for each source sentence; then, the CSM is used to rescore this set, resulting
in a new score for each hypothesis. The added feature, along with other scores of the
baseline system, are tuned on the development set (Section 1.3.1) in order to optimize the
log-linear coefficients λ according to the BLEU score. The whole system is then used to
process the test data. During this procedure, the set of best hypotheses can be stored in
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N -best lists, or more compactly in lattices.

For each source sentence s, we assume that the baseline SMT decoder generates a set
of top translation candidates h1, ...,hN . Each hypothesis hi = (ti, ai) is associated with
a score from Equation (1.3) :

Fλ(s,hi) =
M∑

m=1

λmfm(s,hi) (2.27)

Suppose that the CSM with parameters θ outputs a score gθ(s,hi) for each hypoth-
esis hi (which typically corresponds to the log-probability of the derivation, gθ(s,hi) =
logpθ(s,hi)). This score is added as (M +1)th feature function in Equation (2.27), giving
a new scoring function :

Gλ,θ(s,hi) = Fλ(s,hi) + λM+1gθ(s,hi)

which depends both on the CSM parameters θ, as well as on the coefficients λ of the
scoring function. Tuning λ can use standard tools presented in Section 1.3. Because of
its simplicity, N -best list rescoring is widely used to incorporate new models to the SMT
system (Schwenk et al., 2007; Kalchbrenner and Blunsom, 2013; Hu et al., 2014). Another
advantage is that the procedure can score the whole derivation without any assumption
regarding the decomposition of the translation process. However, a limitation of this ap-
proach is that N -best lists contain hypotheses that are typically very redundant with little
diversity, representing only a few combinations of translation decisions (Huang, 2008).
Moreover, in the discriminative training of the log-linear coefficients (Section 1.3), the list
of hypotheses is often considered as a proxy for the whole space of derivations (Chiang,
2012), their limited variety may be harmful to the tuning step.

Compared to the N -best representation of hypotheses, lattice or hypergraph-based
structures offer a much richer representation of hypotheses produced by the decoder,
since they compactly encode an exponential number of hypotheses in polynomial
space (Macherey et al., 2008). Auli et al. (2013) propose a new lattice rescoring algo-
rithm to integrate a recurrent neural network joint model 17which improves by 1.5 BLEU
points on the WMT’12 French-English task. However, their experiments show no signif-
icant improvement of the lattice rescoring compared to the N -best list rescoring, while
the former is performed at a higher computational cost.

Decoding with neural network models

A more plausible solution to work around the shallow representation of N -best lists is
to use the CSM during the first decoding phase to build the search space. The first
work in which a large-vocabulary neural network model is integrated into the decoding
is (Vaswani et al., 2013). In this paper, the authors extend the NNLM of (Bengio et al.,
2001, 2003a) in two ways : first, the softmax output layer is replaced by a self-normalized
NCE output layer (Section 3.2); second, the non-linear function f uses rectified linear

17.
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units with cheaper computation than the sigmoid or the tanh functions. The CSM in-
tegration is then performed either by N -best list rescoring or by directly decoding with
the NNLM in order to increase its influence on the SMT system. The second approach
is shown experimentally to improve upon the first one by up to 1.0 BLEU point on a
Chinese-English task, but the improvements are not significant on French-, German- and
Spanish-to-English tasks. Later, Devlin et al. (2014) also include a feed-forward CSTM
to the decoder, giving a strong improvement of 3.0 BLEU points over a baseline which
has already incorporated a powerful NNLM. The improvement is attributed not only to
the extension of the conditioning part over source context words, but also to the direct
decoding with CSTM.

Work on direct decoding with CSMs needs to address the difficulty related to the
computational complexity of the model inference. As scores need to be computed at
run-time, most work use intensively techniques that have been described in Section 2.3.4
to speed up the computations. For the output layer, un-normalized and self-normalized
large-vocabulary output layers are widely used. Later works, such as the implementation
of CSTMs as a feature in MOSES (Birch et al., 2014) prefer using the NCE approach as it
speeds up not only the inference but also the training. The resulting integrated decoder
is reported to be twice slower than the one without CSM, which makes the whole system
quite reasonable in terms of processing time. For the hidden layer, context grouping is not
really useful as the CSM is often required to process only one word at a time. Instead,
caching (Vaswani et al., 2013) and pre-computation (Devlin et al., 2014) can be used to
reduce costly operations at run-time, and have been shown to be very efficient. However,
the condition for these methods to work well is that the neural structure should be kept
to the conventional feed-forward network with preferably only one hidden layer. It is
also noticed that integrating the Restricted Boltzmann Machine (RBM)-based LM into
decoding could be done only with an approximation of RBM probabilities which avoids
the normalization (Niehues and Waibel, 2012). Finding the right trade-off between, on
the one hand complex neural structures for modelling long-span dependencies, and on
the other hand simpler feed-forward network without costly operation, is an interesting
research line.

2.5.3 Discussions

It is important to notice that, in the ideal situation, the training procedure should be
directly related to the final performance evaluation metric. Unfortunately, in spite of
the emergence in the literature of different integration strategies, the dominant training
method for CSTMs is still the maximization of the conditional likelihood which corre-
sponds to the minimization of perplexity. This training objective function is simple,
however only loosely correlates with the MT evaluation metrics (such as BLEU score)
and makes the training step totally separated from its intended use. As a consequence,
during the training phase, we have only few indications about the translation perfor-
mance, apart the perplexity on held-out data. This loose correlation between the training
and testing phases may raise doubts about the performance comparisons reported in the
literature, as long as models are not trained for tasks they are assigned. For instance,
while Devlin et al. (2014) conclude that decoding using CSTMs outperforms the N -best
rescoring, it might be a consequence of the fact that the models have not been trained to
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optimally perform in N -best rescoring. Moreover, if information about other components
of the SMT system were given to the training phase, it is likely that they would perform
even better during the decoding step.

In this dissertation, our main goal is to investigate new training strategies which take
into account the impact of the CSM on the translation performance. As the N -best
list rescoring is the simplest integration mode, we investigate CSMs mainly within this
framework. Its simplicity allows us to deduce a correlated training procedure (Chapter 5)
inspired from the discriminative SMT (Section 1.3), and to quantitatively assess the model
performance at the least cost. It is interesting however for future work to further exper-
iment with other integration modes, such as the direct decoding with SMT systems, or
even the direct translation with neural network-based models.

2.6 Conclusions

This chapter gives a description of different neural network model structures that are used
in the language and translation modelling tasks. The use of these continuous-space models
has been motivated firstly by the estimation problem related to discrete language models
(discrete LMs). Conventionally, traditional n-gram LMs rely on the maximum-likelihood
estimate (MLE), resulting in an estimation procedure based on relative frequencies. How-
ever, such estimates are often not statistically reliable, as the number of free parameters
increases exponentially with the degree n of the model. Smoothing has been the most
popular technique used to correct these MLE probabilities by redistributing the prob-
ability mass from frequent word sequences to less frequent ones, through either backoff
or interpolation techniques. However, such approaches still suffer from the fundamental
limitation which lies in the estimation based on statistics of discrete events from a finite
set.

The data sparsity problem raises the necessity of reducing the number of free param-
eters, for instance via a class-based approach which aims at modelling the relationship
between discrete events with an event clustering. While the last approach has been shown
to have some usefulness, continuous-space models (CSMs), via artificial neural networks,
seem to offer a more systematic way of modelling such relationships, as they exploit contin-
uous representations (embeddings), expressed naturally in weight matrices, and which can
be learnt jointly with other model parameters. During the last few years, different neural
structures have been proposed for the language modelling task, such as feed-forward or
recurrent networks; each has its own way in handling context words and using the context
in the word prediction. Even though this category of models has been proved to boost
the performance of applications for which they are designed, CSMs are often associated
with very expensive training and test procedures, mainly because of the normalization at
the output layer, for which particularly intensive efforts have been made to workaround
the computational problem (Section 2.3.4).

Besides the language modelling task, CSMs have also been used in translation models,
which differ from the first task by the inclusion of context words from a foreign language.
The application of CSMs in TMs also serves as a way to overcome the limitations of
the maximum-likelihood estimate over word or phrasal units. Indeed, the data sparsity
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problem in TMs is particularly severe, as training data is reduced, whereas the models
often require to manipulate much larger vocabularies (such as word or phrase pairs) than
the vocabulary of words.

Recent experimental results in the literature clearly suggest that it is preferable to
factorize the phrase or phrase pair translation units into smaller units, such as words; the
most successful CSTMs use words as minimal units. These lexicalized models can therefore
be viewed as the bilingual generalization of NNLMs where vocabulary words come from
two different languages. The conditioning on context source words is an important feature
which distinguishes the CSTMs from each other, and from the target NNLMs. Among
various factors which determine the performance of a CSTM, strategies for choosing source
words which are included in the context seem to be of primary importance. Various
model structures proposed for NNLMs can also be applied to CSTMs. However, in the
scope of this dissertation, we base our experiments on the n-gram-based CSTM proposed
in (Le et al., 2012a) which conditions the probability on context words determined by the
boundaries of tuples (Section 2.4.2).

In spite of different proposals and ideas, there are two problems with CSTMs that
still have not been resolved satisfactorily. The first one concerns the cost of training
and inference, which hinders practical uses of CSTMs no matter how the models are
incorporated in applications. The second problem consists in the gap between the training
and testing phases. Although CSMs can be evaluated both by intrinsic (perplexity) and
extrinsic measures, the last ones, based on the performance of the application for which
CSMs have been designed, are more promising. While the correlation between these
two measures is not obvious in many cases, in practice most CSTMs still employ the
maximum-likelihood training method which is consistent with the perplexity, but not
with the translation performance. It is hence likely that the models are not optimally
optimized to perform well inside a SMT system along with other components.
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Maximum Conditional Likelihood and Noise

Contrastive Estimation

CSMs are effective in boosting the performance of NLP applications, however they also
come along with expensive training and inference procedures. A major part of the com-
putational cost comes from the handling of large vocabularies in the output layer (Sec-
tion 2.3.4). While this problem can be avoided by using a smaller short-list containing
only the most frequent words (Schwenk and Gauvain, 2004; Schwenk et al., 2007), this
solution is not satisfactory when all vocabulary words need to be handled and evaluated
by the model. Several other workarounds have been proposed in the literature, such as the
ranking LM (Section 2.3.3), or the training procedure described in (Devlin et al., 2014)
aimed at equipping the ranking LM with a probabilistic interpretation. However, these
methods suffer from the lack of a probability estimation which limits their efficiency in
inference, or from an expensive training.

In this chapter, we describe in details two main approaches that help to efficiently
handle arbitrarily large vocabularies in neural network models. While vocabulary words
can be hierarchically organized as in the SOUL structure, the second approach employs a
sampling scenario to approximately estimate the gradient of the objective function used
in Stochastic Gradient Descent (SGD). While both methods have been shown to be ef-
ficient in integrating large vocabularies without slowing the inference, there is still no
systematic comparison between them, in terms of training and inference speed and their
uses in applications. We will analyse the advantages and weaknesses of each method; the
comparison is carried out on various training and integration situations. In each experi-
ment, the intrinsic measure (perplexity) is first used to evaluate the models. However, the
effectiveness of CSMs must finally be assessed through their impact on the applications
for which they have been designed. Moreover, each of these approaches comes with a
variety of choices of hyper-parameters which can have an impact on the performance of
the final system.
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CHAPTER 3. MAXIMUM CONDITIONAL LIKELIHOOD AND NOISE
CONTRASTIVE ESTIMATION

The chapter begins with a description of the maximum-likelihood estimation (MLE)
used to train the conventional CSM (Bengio et al., 2001, 2003a), and of the SOUL struc-
ture. The second section describes several methods for approximating the MLE gradient
based on Importance Sampling algorithms, the most effective one being Noise Contrastive
Estimation (or NCE). Finally, comparative experiments are performed (Section 3.3) on 3
different domains, which represent various situations of training and building systems in
SMT. Part of these experimental results have been published in the description paper of
the joint KIT-LIMSI submission to the WMT’2015 English-to-German shared translation
task (Ha et al., 2015).

3.1 Maximum likelihood training and SOUL structure

Conventional neural network language models (NNLMs) are trained to maximize the con-
ditional likelihood (CLL) on training samples (Bengio et al., 2003a; Schwenk and Gau-
vain, 2004). In this framework, the training corpus is considered as a set of n-grams (for
n-gram language and translation models 1), or more generally as a set of pairs composed
of a context c and a word w to be predicted. Let us denote this set by Sn, the likelihood
computed based on the CSM free parameters θ is the product of likelihoods estimated on
each n-gram :

p(Sn|θ) =
∏

(w,c)∈Sn

pθ(w|c)

hence, the maximization of the likelihood is transformed to the minimization of the fol-
lowing CLL criterion :

Lcll(θ,Sn) =
∑

(w,c)∈Sn

− logpθ(w|c) +R(θ) (3.1)

where R(θ) is the L2-regularization term defined by :

R(θ) = γ × ||θ||
2

2
(3.2)

and γ is an associated hyper-parameter.

This criterion corresponds to the negated conditional log-likelihoods of all n-grams
in Sn. The most costly phase in the optimization of this criterion is the computation of
conditional probabilities which requires to normalize the network activations of all possible
output words in Vo with the following softmax function :

pθ(w|c) =
eθ(w, c)∑

w′∈Vo
eθ(w′, c)

=
eaθ(w,c)

Hθ(c)
(3.3)

where, Hθ(c) :=
∑

w′∈Vo
eaθ(w

′,c) and aθ(w, c) denotes the activation of the neural network

corresponding to the word w and computed with the input from context c. This nor-
malization intervenes both in the training and inference of the CSM. The operation is

1In the scope of this dissertation, we always consider n-gram models in our experiments.
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Figure 3.1 – SOUL structure via the organization of vocabulary words into clusters, as
implemented and described in (Le et al., 2011, 2013).

extremely costly for large output vocabulary. Indeed, the number of floating points oper-
ations (according to (Schwenk and Gauvain, 2004)) needed to compute such a probability
is :

((n− 1)×D+ 1)× H+ (H+ 1)× |Vo| (3.4)

where we reuse the notations that have been described in Section 2.3.1 : D is the dimension
of word embeddings, H denotes the size of the last hidden layer, and n is the degree of the
model. As in Automatic Speech Recognition and Machine Translation, the size of Vo is
often much larger than D and H, the quantity can be asymptotically approximated with :

H× |Vo| (3.5)

which is also the asymptotic complexity of processing the output layer during training,
and is proportional to the output vocabulary size.

3.1.1 Description of Structured OUtput Layer

As the output layer represents the major part in the computational cost (3.4), a mod-
ification of this layer is necessary to efficiently estimate word probabilities. Early work
along these lines (Morin and Bengio, 2005; Mnih and Hinton, 2008) proposes to organize
words in Vo hierarchically : each word is attached to a leaf in a binary tree structure,
hence predicting output words is equivalent to the prediction of paths that lead from the
root to leaves. The idea is inspired from the class-based LM (Brown et al., 1992; Kneser
and Ney, 1993; Rosenfeld, 2000) applied to continuous-space models.

The SOUL structure (Le et al., 2011, 2013) is a combination of these two ideas. In
general, each word w in Vo is assigned to a cluster Clw, then the word probability is
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3.1.2 - Initializing SOUL models

Algorithm 3 SOUL training scheme described in (Le, 2012).
1: Step 1, short-list pre-training provides a first estimate of word representation by

training an NNLM covering a short-list.
2: Step 2, word clustering derives a clustering from the information in the word

representation obtained from Step 1.
3: Step 3, out-of-short-list (OOS) pre-training trains an NNLM with OOS words

as output.
4: Step 4, full training trains a SOUL NNLM with the clustering derived from Step

2, and with the parameters initialized using the parameters obtained at Step 3 and
Step 1.

estimated first by estimating the probability of this cluster :

pθ(w|c) : =
SOUL

pθ(Clw|c)× pθ(w|Clw, c) (3.6)

Note that words in Clw can in turn be organized in clusters; this class-based approach
therefore represents the output vocabulary Vo as a clustering tree. The word prediction
problem is hence translated into sub problems of predicting a sequence of decisions that
form a path from the root to a leaf. In particular, these sub-problems share as much as
possible their free parameters so that the total number of parameters is limited. More
precisely, the two probabilities are both conditioned on c, hence both use the vector rep-
resentation of the context as their input (see Figure 3.1); the standard network structure
up to the last hidden layer is shared among all predictions. The conditioning on Clw of
the second probability in (3.6) is materialized by the creation, for each cluster, of a sepa-
rate output layer with its own weight matrix and bias vector. The relationship between
clusters can be expressed in terms of distances between these continuous representations.
Figure 3.1 gives an illustration of the SOUL structure used in practice.

Let nc be the number of word clusters, and argmax
w∈Vo

|Clw| the maximal number of words

contained in each cluster, then the asymptotic cost (3.5) becomes :

H× nc + H× argmax
w∈Vo

|Clw| (3.7)

A well-chosen clustering scenario can thus reduce drastically the asymptotic cost. For
instance, if all clusters contain approximatively the same number of words, then we have
nc × argmax

w∈Vo
|Clw| ≈ |Vo|. Moreover, if the number of clusters is chosen to be close to the

number of words in each cluster, then nc ≈ argmax
w∈Vo

|Clw| ≈ |Vo|1/2, hence the asymptotic

cost becomes 2H×|Vo|1/2, instead of H×|Vo|. With a 500K-word vocabulary, the speed-up
is about 350x faster than the standard structure with only one softmax output layer.

3.1.2 Initializing SOUL models

The speed-up provided by the SOUL structure comes along with the additional cost of
building the hierarchical structure over Vo. The proposal in (Morin and Bengio, 2005)
builds this structure using an expert knowledge (WordNet). Later, the log-bilinear LM
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described in (Mnih and Hinton, 2008) and the SOUL structure in (Le et al., 2011) both
learn this hierarchy via the word embeddings. More precisely, a NNLM with SOUL
structure can be built through the 4-step procedure described in Algorithm 3. The first
step consists of training an NNLM with a short-list output (but still with full input) in
order to obtain an embedding for each word in the vocabulary. These vectors are then
used to run a clustering algorithm (typically K-mean) which delivers the structure that
will accelerate the training in steps 3 and 4.

Initializing SOUL CSTM :

The SOUL CSTM, described in Section 2.4.2, is initialized from two SOUL language
models, one in the source and another in the target language. Here we only consider the
lexicalized models involved in the third formulation (2.23) of Section 2.4.2. Depending on
predicted words and contexts, the bilingual model can be considered as an extension of the
monolingual model on the source or target language. For instance, the model estimating
p(tkl |cn−1(tkl ), cn−1(s1l+1)) is initialized from a target SOUL NNLM. Its output layers are
copied from the target NNLM, as both models predict the same set of words; while the
look-up table and hidden layers are extended to also include vocabulary words from the
source language, using parameters of the source SOUL NNLM.

3.2 Noise contrastive estimation

In this section, we consider another form of training called Noise Contrastive Estimation,
or NCE. This algorithm belongs to the class of sampling-based training methods which are
useful to learn exponential models over a large set of elements (Gutmann and Hyvärinen,
2010). Mnih and Teh (2012) propose to apply this method to NNLMs.

3.2.1 Sampling-based methods for the training of NNLMs

The general idea of sampling-based methods is derived from the gradient computation
of the conditional log-likelihood (CLL) criterion (3.1). Indeed, with word probabilities
normalized by (3.3), the gradient of the log-probability is computed as follows :

∂ logpθ(w|c)
∂θ

=
∑

w′∈Vo
(Iw′=w − pθ(w

′|c))× ∂aθ(w′, c)
∂θ

(3.8)

The use of Stochastic Gradient Descent (SGD) means that we are increasing the CLL of
w and decreasing the CLL of all other words w′ 6= w. The difficulty of optimizing a CLL
criterion lies in the following fact :

(a) the explicit computation of pθ(w
′|c) requires the computation of the normalization

constant, and

(b) the whole vocabulary is involved in the computation of the sum.
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On the other hand, sampling-based methods aim to overcome (b) by penalizing the
scores only of a few negative examples. These negative words are sampled from a proba-
bilistic distribution which is simpler than the one that needs to be estimated, and from
which a tractable sampling routine can be derived. By careful arrangements, some of
these methods also allow us to ignore (a) by only requiring the activations correspond-
ing to sampled negative examples, without knowledge of the normalization constant. In
general, a sampling-based method is specified by the definition of :

(1) a sampling routine for negative examples, and

(2) an approximation of the CLL gradient that rewards the positive word w and penal-
izes negative ones. This can be seen as an approximation of the partition function
over a reduced set of negative examples.

3.2.2 Importance Sampling

In order to estimate the CLL gradient (3.8), Importance Sampling (Robert and Casella,
2013) can be employed. The procedure comes from the rewriting of (3.8) as :

∂ logpθ(w|c)
∂θ

=
∂aθ(w, c)

∂θ
−
∑

w′∈Vo
pθ(w

′|c)× ∂aθ(w′, c)
∂θ

=
∂aθ(w, c)

∂θ
− Ew′∼pθ(.|c)

(
∂aθ(w′, c)

∂θ

)

The expensive sum, which is also an expectation, can be estimated by Monte Carlo
sampling methods (Robert and Casella, 2013) which consists of sampling examples from
pθ(.|c) and taking the average of their gradients. However, the underlying distribution
pθ(.|c) here is being estimated, hence we sample from another distribution Q(.) :

∂ logpθ(w|c)
∂θ

=
∂aθ(w, c)

∂θ
−
∑

w′∈Vo
Q(w′)× pθ(w

′|c)
Q(w′)

× ∂aθ(w′, c)
∂θ

=
∂aθ(w, c)

∂θ
− Ew′∼Q(.)

(
pθ(w

′|c)
Q(w′)

× ∂aθ(w′, c)
∂θ

)

where the last expectation term is estimated by sampling m examples ŵi, 1 ≤ i ≤ m from
Q(.) :

∂ logpθ(w|c)
∂θ

≈ ∂aθ(w, c)
∂θ

− 1

m

m∑

i=1

pθ(ŵi|c)
Q(ŵi)

× ∂aθ(ŵi, c)
∂θ

(3.9)

3.2.3 Biased Importance Sampling

Unfortunately, the formulation (3.9) still does not solve the problem (a) as we still have to
compute explicitly the value of pθ(ŵi|c). Instead, the sum can be estimated by a biased
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approximation which is based on the particular form of probabilities computed by the
standard CSM (Equation (3.3)) :

Ew′∼Q(.)

(
pθ(w

′|c)
Q(w′)

× ∂aθ(w′, c)
∂θ

)
= Ew′∼Q(.)

(
1

Hθ(c)
× exp(aθ(w′, c))

Q(w′)
× ∂aθ(w′, c)

∂θ

)

≈ 1

T

m∑

i=1

T (ŵi)
∂aθ(ŵi, c)

∂θ

where T (ŵi) = exp(aθ(ŵi),c)
Q(ŵi)

, and T =
m∑
i=1

T (ŵi). This approximation is called Biased

Importance Sampling, and is used in situations where the considered distribution (here,
pθ(.|c)) can be computed up to a multiplicative constant (Kong et al., 1994). It is
important to note that the estimator is biased, but its bias decreases when m increases,
and can be shown to converge to the true expectation. For each sampled example ŵi, we do
not need to compute Hθ(c), but only the activation aθ(ŵi, c). The sampling distribution
Q(.) is chosen so that it is cheap to sample from, such as the unigram distribution (Bengio
and Senécal, 2008).

Bengio et al. (2003b) and Bengio and Senécal (2008) propose to use Biased Importance
Sampling for training NNLMs. However, the procedure only computes biased estimates
which limits severely its use in practice. On the one hand, the bias decreases and ap-
proaches zero when m tends to infinity. On the other hand, we are not free to take an
arbitrarily large m in order to benefit from this property. Indeed, m cannot be greater
than the number of vocabulary words, otherwise the use of a sampling-based method is
meaningless. Moreover, the corresponding variance is not guaranteed to be bounded (Or-
tiz and Kaelbling, 2000), meaning that the updates may be very unstable. As a conse-
quence, the required number m of samples needs to be quite large, or adapted during
the training. Bengio et al. (2003b) propose a method to estimate m that is necessary
for the Biased Importance Sampling to yield the same variance as the standard version :
if this number is greater than |Vo|, then a switching back to full back-propagation is
needed. Their experiments show that when fixing Q(.) to the unigram distribution, this
number increases exponentially as training progresses. Further improvement in (Bengio
and Senécal, 2008) consists of adapting Q(.) so that it stays close to the data distribution
estimated by the neural network model : with the new adaptive scenario, the necessary
number of samples grows only linearly, instead of exponentially. Compared to the full vo-
cabulary back-propagation , the technique presented in (Bengio and Senécal, 2008) shows
speed-ups up to 100x faster, when both m and Q(.) are adapted during the training.

3.2.4 Noise contrastive estimation

Another approach to overcome the problem (a) in the formulation (3.9) is to set Q(.) to
a mixture of pθ(.|c) and a noise distribution pN(.), from which the number of examples
sampled from pN(.) is supposed to be K times greater than from pθ(.|c) :

Q(ŵi) : =
NCE

pθ(ŵi|c) +KpN(ŵi)
K + 1

(3.10)
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3.2.4 - Noise contrastive estimation

At first glance, sampling from (3.10) seems intractable as it involves pθ(.|c). However,
this distribution is being trained to approximate the data distribution, hence we can
directly use the positive word w as an example from pθ(.|c). The sampling routine is
henceforth as easy as sampling from the noise distribution. By setting m = K+1 in (3.9)
and using K examples {ŵi, 1 ≤ i ≤ K} sampled from pN(.), we have the following
estimation of the CLL gradient :

∂ logpθ(w|c)
∂θ

≈ ∂aθ(w, c)
∂θ

−

1

K + 1

(
(K + 1)pθ(w|c)

pθ(w|c) +KpN(w)
× ∂aθ(w, c)

∂θ
+

K∑

i=1

(K + 1)pθ(ŵi|c)
pθ(ŵi|c) +KpN(ŵi)

× ∂aθ(ŵi, c)
∂θ

)

=
KpN(w)

pθ(w|c) +KpN(w)
× ∂aθ(w, c)

∂θ
−

K∑

i=1

pθ(ŵi|c)
pθ(ŵi|c) +KpN(ŵi)

× ∂aθ(ŵi, c)
∂θ

(3.11)

The optimization using the above approximative form is called Noise Contrastive Esti-
mation (or NCE) (Gutmann and Hyvärinen, 2010), and has been first applied to the
training of NNLMs in (Mnih and Teh, 2012). Like in the case of the Biased Importance
Sampling, a large value of K reduces the estimation variance, hence makes the training
more stable. But unlike the biased algorithm, the estimator corresponding to the NCE
algorithm is always unbiased no matter the choice of pN(.) and K. This feature of NCE,
which derives from the standard Importance Sampling, constitutes its main advantage
compared to the Biased Importance Sampling described in (Bengio et al., 2003b; Bengio
and Senécal, 2008). While the choice of a noise distribution is still important, its adapta-
tion, along with the adaptation of K during the training is no longer necessary to ensure
convergence.

Self-normalization :

The approximate form (3.11) still contains the expensive probability terms pθ(.|c).
To speed-up the training phase, the work of (Mnih and Teh, 2012) proposes to replace
pθ(.|c) by the exponential of activations eθ(., c), i.e to set the partition function Hθ(c)
to 1. Concretely, the proposal distribution of (3.10) becomes :

Q(ŵi) =
exp(aθ(ŵi, c)) +KpN(ŵi)

K + 1
(3.12)

and the gradient is rewritten as follows :

∂ logpθ(w|c)
∂θ

≈

KpN(w)
eθ(w, c) +KpN(w)

× ∂aθ(w, c)
∂θ

−
K∑

i=1

eθ(ŵi, c)
eθ(ŵi, c) +KpN(ŵi)

× ∂aθ(ŵi, c)
∂θ

(3.13)

By forcing eθ(., c) to follow the data distribution in (3.12), a side effect is that the nor-
malization constants tend to 1 as training progresses. At the end of the training, this
self-normalization allows us to completely ignore the expensive normalization when com-
puting model scores, hence speeding up considerably the inference.
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This phenomenon is explained in (Mnih and Teh, 2012) by the fact that CSMs have
a lot of free parameters that constraining the un-normalized output scores eθ(., c) to
estimate a distribution is easy. In order to better understand it, we reconsider the gradi-
ent (3.13) as deriving from the optimization of the following loss function 2 :

Lnce(θ, (w, c)) = − log
eθ(w, c)

eθ(w, c) +KpN(w)
−

K∑

i=1

log
KpN(ŵi)

eθ(ŵi) +KpN(ŵi)
(3.14)

which has been obtained in (Gutmann and Hyvärinen, 2010; Mnih and Teh, 2012) from
the CLL optimization transformed into a binary classification problem of distinguishing
positive examples from negative ones sampled using the noise distribution. Suppose that
we can choose a noise distribution that is different from eθ(., c) only by a multiplicative
constant : pN(.) = eθ(., c).H−1. Then, the loss (3.14) becomes :

Lnce(θ, (w, c)) = − log
eθ(w, c)

eθ(w, c) +Keθ(w, c)H−1
−

K∑

i=1

log
Keθ(ŵi, c)H−1

eθ(ŵi) +Keθ(ŵi, c)H−1

= (K + 1) log(H +K)− logH −K logK

that has a gradient K(H−1)
H(H+K)

with respect to H, which is zero only when H = 1. It
means that the corresponding loss function is minimized only when eθ(., c) has the same
normalization constant as the noise distribution. In practice, the sampling distribution
derived from eθ(., c) is unknown, but the minimization of (3.14) tends to close the gap
between the partition functions of the two distributions. Self-normalization is hence
achieved by imposing an exact form of the noise distribution in the mixed proposal (3.10).

3.2.5 Choosing a noise distribution

It is well-known that Importance Sampling has a reduced variance if the proposal dis-
tribution is close to the target distribution (Robert and Casella, 2013). In (Bengio and
Senécal, 2008), more complex back-off bigram and trigram models are used in the biased
version, but produce even poorer results than the simple unigram proposal. This may be
because back-off n-gram models are very different from the corresponding models esti-
mated by CSMs (Goodman, 2001). An adaptive scenario for Q(.) has then been proposed
in (Bengio and Senécal, 2008), but even in this case, the procedure requires sampling hun-
dreds of samples for each training example, and this number increases rapidly at training
progresses.

Being an unbiased estimator, the NCE algorithm also benefits from the mixture (3.10)
where Q(.) already incorporates the distribution estimated by the CSM, hence is made
closer to the latter. Choosing the noise distribution is still important, but it can be decided
once and for all (along with the number of negative examples) before training starts
and kept fixed during all the training process without causing divergence. Experiments
in (Gutmann and Hyvärinen, 2010; Mnih and Teh, 2012) show that with the use of a
simple unigram distribution and only about 25 negative samples, NCE training can result

2This loss corresponds to one n-gram (w, c). For Sn, the objective function will be the sum of losses
computed over all n-gram ∈ Sn, along with a regularization term of (3.2).
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in a model which is as good as the one trained by optimizing the CLL criterion. Even in
the extreme case where uniform distribution is used with K = 1, the training does not
diverge, which proves the NCE’s advantage of being unbiased.

3.3 Comparison between SOUL and NCE

In this section, we will report experiments used to quantitatively compare the two ap-
proaches mentioned in the previous sections : the CLL optimization using SOUL structure,
and the NCE algorithm. The first approach represents a model-specific solution for the
computational problem of normalizing over a large vocabulary, while the second comes
from the category of sampling-based approaches (Section 3.2.1). The models trained by
these two methods will be called respectively SOUL and NCE models for simplicity. The
performance of each method is evaluated by their perplexities 3 (Section 2.5.1) computed
on validation sets, the amount of time needed to finish one training iteration, as well
as the number of iterations until convergence. CSMs are also then incorporated into
SMT systems using N -best rescoring (Section 2.5.2) to help improving the translation
performance.

Our SMT experiments are carried out in three different domains. The first task
is derived from the text translation track of IWSLT’2011 from English to French (the
TED Talks task (Federico et al., 2012)). The baseline system has been trained in the
condition of WMT’2013 shared translation task 4, whereas the training of NNLMs and
CSTMs only uses an in-domain dataset containing 107, 058 aligned sentence pairs. The
second domain is the medical translation task of WMT’2014 5 (English to French). For
this task, we use all in-domain authorized corpora (above 5M sentence pairs) to build a
MOSES-based 6 SMT system, while CSTMs are trained on 200K parallel sentence pairs
extracted from the Patent-Abstract corpus. Finally, the third task represents a situation
where multiple large corpora are available to train CSTMs: both the SMT system and
CSTMs are built in the condition of the WMT’2015 shared translation task. 7 This exper-
iment is extracted from the joined submission of KIT (Karlsruhe Institute of Technology)
and LIMSI to the English to German translation task. Details on the baseline system, as
well as on the CSTM structures can be found in the description paper (Ha et al., 2015).

Table 3.1 presents detailed information about our experimental set-ups, while Table 3.2
collects the values of hyper-parameters of our neural network structure (Section 2.4.2).
For the TED Talks task, we train both NNLMs and CSTMs for the SMT system, while
in other domains, only bilingual CSTMs are trained and incorporated into SMT systems.
The official development and test sets for each domain are used, except for the first task
where, following (Le et al., 2012a), we swap these two sets : the tuning of log-linear
coefficients is carried out on 1, 664 sentences of the official test, while the final test on
934 sentences of the original development set. Baseline SMT systems are built based

3Like in previous work on NCE NNLMs (Mnih and Teh, 2012; Vaswani et al., 2013), the computation
of perplexities requires us to explicitly normalize over Vo.

4http://www.statmt.org/wmt13/.
5http://www.statmt.org/wmt14/medical-task/.
6http://www.statmt.org/moses/.
7http://www.statmt.org/wmt15/.
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Task dev/test SMT sys. Init. CSM Train data CSM Voc. (src/trg)
TED IWSLT-

tst2010 /
IWSLT-
dev2010

WMT’13
n-code
(12M)

random
107, 058
of TED

506K
En /
493K Fr

NNLM
TED from
CSTM NNLMs
Medical devel/test MOSES on random 200K of 587K En /
WMT’14 Medical (5M) Patent-Abstract 367K Fr
WMT’15 News2013 / MOSES- from all WMT 432K En /
En-De News2014 based WMT NNLMs corpora 500K De

Table 3.1 – Details about experimental configurations used to assess the performance of
SOUL and NCE models.

Hyper-parameter Value
n 10
D 500
H 2 hidden layers with 1000 and 500 units

Table 3.2 – Hyper-parameters for CSTMs.

either on n-code 8 (an open implementation of the n-gram approach for SMT described
in Section 1.1.3), or on a conventional phrase-based approach. 9 NNLM parameters are
initialized randomly; the clustering of Vo into groups is learnt from the pre-trained word
embeddings following the procedure described in Algorithm 3. CSTMs are initialized
from NNLMs as described in Section 3.1.2, except the medical task where all bilingual
models are initialized randomly. 10 All experiments cover large vocabularies (about 500K)
extracted from the parallel training data used to train the baseline SMT systems. With
such vocabularies, training the standard CSM structure with a full softmax output layer
is prohibitive; SOUL or NCE models are both plausible alternative solutions as they make
the training feasible in a reasonable time.

The adaptation of learning rates is important for the convergence speed as well as
final perplexities. Chapter 4 will investigate this aspect in details. For simplicity, in this
chapter we only use by default Down Scheduling for the training of SOUL models, and
Adjust Scheduling for NCE models, as they are both very simple global learning rate
adaptation scenarios which have shown good performance in our experiments. 11
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SOUL NCE
uniform TED unigram
25 50 25 50

English LM, 505k vocabulary words 108.4 332.4 330.1 108.4 110.0
French LM, 492k vocabulary words 79.0 349.6 304.3 78.5 84.3

Table 3.3 – Perplexities on developments sets of SOUL models and of NCE models with
different training configurations. Note that to compute the perplexity, NCE models are
explicitly normalized.

Configurations of system dev/IWSLT-tst2010 tst/IWSLT-dev2010
Baseline system (BS) 33.9 27.6

BS + SOUL LM 34.8 28.7

BS + NCE LM

uniform
25 norm 34.3 28.2

unnorm 34.3 28.2

50 norm 34.4 28.1
unnorm 34.3 28.2

TED unigram
25 norm 34.9 28.7

unnorm 34.8 28.6

50 norm 34.8 28.6
unnorm 34.8 28.6

Table 3.4 – Results of using a continuous space language model to rescore N -best lists of
the baseline system.

3.3.1 Experiments on TED Talks 2011 English → French

Monolingual models

Table 3.3 presents the perplexities obtained on the validation set (IWSLT-tst2010) with
SOUL and NCE NNLMs trained on the English and French sides of TED Talks corpus.
We investigate the impact of two NCE hyper-parameters : the noise distribution, and the
number of negative words 12 sampled from this distribution (25 or 50 words). The results
reflect the importance of this noise : while none of these configurations causes divergence,
the unigram distribution obtains perplexities which are 70% less than those with the
uniform distribution. Once the unigram noise is chosen, there is only slight difference
between configurations with 25 and 50 negative examples. The best NCE models are
equivalent to SOUL NNLMs in terms of perplexity.

The result of incorporating these models into the WMT translation system is presented

8perso.limsi.fr/Individu/jmcrego/bincoder .
9http://www.statmt.org/moses/

10In this configuration, SOUL models benefit from the fact that their word clusterings is not randomized
but inherited from monolingual models.

11They are the two adaptive methods which obtain the best performance among global learning rate
adaptation scenarios, as observed in the experiments of Chapter 4.

12According to descriptions in Sections 3.2.1 and 3.2.4, this number should correspond to K + 1.
However, by negative words, here we refer only to the K words generated by the noise distribution pN (.).
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Training time (minutes) for each ite.
SOUL NCE

25 neg. 50 neg.
19.7 19.1 23.8

Time of decoding (minutes)
Naive structure SOUL NCE

275.6 7.8 5.3

Table 3.5 – The time for each iteration (training) and for computing the scores of all
hypotheses from N -best lists.

in Table 3.4. The French SOUL NNLM improves the baseline system by 0.9 BLEU points
on the development, and by 1.1 BLEU points on the test set. These are equivalent to the
performance obtained by NCE models which have been trained using the unigram noise
distribution. Perplexity is known to be an intrinsic evaluation metric (Section 2.5.1) which
is only partially correlated to the translation performance, especially when the latter also
strongly depends on the baseline system. In our experiments, the 70% perplexity reduction
observed in Table 3.3 translates only to a 0.5 BLEU point improvement. This comparison
suggests that optimizing solely the perplexity will yield small improvements, and that the
introduction of a new criterion which correlates better to the translation performance
might be necessary to achieve more significant gains.

Interestingly, our comparison also includes the case where the scores of NCE models are
explicitly normalized before being integrated to the SMT system; this case corresponds to
the mention norm in the fourth column, while unnorm indicates that the activations are
directly used as scores. Although taking up to more than 4 hours to complete the scoring
on the development and test sets (the lower part of Table 3.5), norm does not give better
results than unnorm, while the latter is 50x faster. This suggests that the un-normalized
version of NCE models is not necessarily a weakness, and that the self-normalizing prop-
erty of the NCE algorithm is practically sufficient for a successful integration into the
SMT system. The computation of self-normalized scores is fast (even compared to SOUL
models which normalize scores only on small softmax layers) and easy to be speeded
up, using pre-computation techniques as described in (Devlin et al., 2014). This kind of
models is henceforth promising if we want to integrate NNLMs during the runtime of the
decoding, i.e to directly use these scores for the construction of the search space (Vaswani
et al., 2013).

To further illustrate the self-normalization property of the NCE training, Figure 3.2a
plots the averaged normalization constants (along with standard deviations) measured
on the validation set after each training iteration. The figure clearly shows that the
NCE algorithm, besides its approximation to the CLL gradient, also helps to make Hθ(c)
close to 1 for each context c, hence making the activations of the last layer ready for
use in the translation system. Without this property, each normalization constant Hθ(c)
would become a free parameter that needs to be optimized as described in preliminary
experiments in (Mnih and Teh, 2012), or in (Devlin et al., 2014). This situation will slow
severely the training, because the number of such parameters increases exponentially
with the model order, n. It is important to note that, this self-normalization comes
from the fact that we use a mixture of the CSM probability and the noise pN(.) for the
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Figure 3.2 – (a) The evolution of normalization constants computed in all context word
sequences from the validation set. These quantities are presented by their averages and
standard deviations at each training iteration. (b) The evolution of perplexity measured
on the validation set.

proposal distribution (3.10), and that the partition functions of these two distributions
are "balanced" as a side effect of the NCE optimization.

Finally, Table 3.5 compares the time needed for SOUL and NCE models to finish one
training epoch, as well as to perform inference on the test set. The training of NCE models
becomes slower with 50 negative sampled examples, but K = 25 is sufficient to have good
performance. For the inference, NCE models yield a computing speed which is 20− 30%
faster than SOUL models, due to the fact that the scores of NCE models correspond to
the activations directly computed by vector-vector (or matrix-vector with mini-batches)
operations at the output layer, without any normalization. This modest speed-up can
be explained by the fact that with the implementation of SOUL and NCE approaches,
the computational cost of training and inference with the CSM is no longer dominated
by the output layer, but by the processing of context words. Further improvements for
NCE models would consist of pre-computing the contextual embeddings so that context
words which have appeared in previous sentences can recover their vectorial representation
without repeating entirely the forward step (Devlin et al., 2014).

The convergence speed is the main weakness of NCE, compared to the CLL opti-
mization by SOUL structure. Due to the variance in estimating the CLL gradient by
Importance Sampling, NCE training is known to require about twice as many epochs as
the CLL optimization to converge (Mnih and Teh, 2012). Precisely, our SOUL NNLMs
start to over-fit after 4 epochs, while the NCE training still have perplexities decreased af-
ter 15 epochs. However, as illustrated in Figure 3.2b, NCE models reach good perplexities
around epoch 6. Even though they are not as good as those obtained by SOUL models,
there is only slight difference between them which, as suggested by results in Table 3.4,
will not translate into significant differences in the translation performance.

As a compensation, the NCE training is carried out on the standard NNLM structure
which does not require any specific initialization scheme, while the initialization of SOUL
models needs to perform the first estimate of the word clustering for SOUL structure.
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Comparison between SOUL and NCE

SOUL
NCE

uniform TED unigram
TrgSrc 9.2 57.2 12.0
Src 84.4 152.3 105.0
SrcTrg 8.4 32.8 11.9
Trg 54.1 85.0 68.8

Table 3.6 – Perplexities of 4 neural n-gram translation models, trained by SOUL and
NCE.

The convergence of NCE training can be further improved by adapting a learning rate for
each block of parameters, as described in Chapter 4.

Bilingual models

Word-based bilingual models estimate the probability of a source or target word given a
context sequence composed of both source and target words. These models are derived
from Equation (2.23) in Section 2.4.2. The four probabilities correspond to four CSTMs
in our experiments, which are denoted respectively by TrgSrc, Src, SrcTrg and Trg. Like
NNLMs, CSTMs can be evaluated using the perplexity computed on a validation set : here
the validation is carried out on sentences from the development set (IWSLT-tst2010), cou-
pled with their references, and segmented into bilingual tuples (Section 2.4.2). Table 3.6
presents the perplexities obtained by SOUL and NCE bilingual models, whereas Table 3.7
shows the results of incorporating these models in the baseline SMT system. Similarly
to what has been observed in the monolingual case, using the uniform noise distribution
results in perplexities which are much larger than those obtained by the unigram distri-
bution estimated on TED Talks corpus. This perplexity differences translate into BLEU
improvements of about 0.6 points in the last case where all CSTMs are used in the trans-
lation system, but only of 0.3 points if we compare to the best result obtained by the
uniform noise distribution (28.9). Consistent with previous observations, the NCE train-
ing yields perplexities which are 20−30% higher than SOUL models, but this difference is
not reflected in the translation performance. Finally, using normalized NCE model scores
instead of un-normalized ones, and increasing the number of sampled negative words to
50 does not help to improve BLEU score obtained by the overall system.

3.3.2 Experiments on the medical task 2014 English → French

Experiments so far have been carried out on the small in-domain TED Talks corpus and
have shown that the unigram noise distribution, estimated on the same corpus, gives good
performance. In the second set of experiments, we further investigate the impact of noise
distributions, estimated on different datasets, on the convergence of the NCE training.
The data used to train the SMT system is the medical parallel corpora authorized for
the medical translation task of WMT’2014, whereas a 200, 000-sentence subset of Patent-
Abstract corpus is used to train the CSTMs. Three noise distributions are compared :
the uniform, as well as two unigram distributions estimated respectively on all medical
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3.3.2 - Experiments on the medical task 2014 English → French

dev = IWSLT-tst2010 test = IWSLT-dev2010
Baseline system

33.9 27.6
Baseline + TrgSrc

SOUL 35.1 28.8
NCE uniform 34.6 28.3
NCE TED unigram 34.7 28.7
NCE normalized TED unigram 34.8 28.7
NCE TED unigram 50 34.8 28.8

Baseline + Trg
SOUL 34.8 28.7
NCE uniform 34.6 28.9
NCE TED unigram 34.8 28.7
NCE normalized TED unigram 34.8 28.7
NCE TED unigram 50 35.1 28.8

Baseline + TrgSrc + Src
SOUL 35.3 28.7
NCE uniform 34.6 28.3
NCE TED unigram 35.0 28.9
NCE normalized TED unigram 35.2 29.2
NCE TED unigram 50 35.0 29.0

Baseline + SrcTrg + Trg
SOUL 35.2 29.2
NCE uniform 34.6 28.7
NCE TED unigram 35.1 28.9
NCE normalized TED unigram 35.2 28.9
NCE TED unigram 50 35.2 28.8

Baseline + all NNTMs
SOUL 35.6 29.1
NCE uniform 34.7 28.6
NCE TED unigram 35.4 29.2
NCE normalized TED unigram 35.4 29.2
NCE TED unigram 50 35.4 29.2

Table 3.7 – Results of integrating CSTM into the out-of-domain translation system. By de-
fault, NCE models are trained with 25 negative examples per word, and use un-normalized
scores for rescoring, except in the fourth line of each configuration where scores are nor-
malized, and in the fifth line where K = 50 is used.
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SOUL NCE
uniform all medical unigram training medical unigram

TrgSrc 6.1 17.2 7.6 7.3
Src 53.5 188.3 xxx 64.2
SrcTrg 7.7 193.1 xxx 10.2
Trg 30.9 58.6 xxx 35.8

Table 3.8 – Perplexities on the validation set of models trained using SOUL and NCE, and
by different configurations of NCE. Different noise distributions give strikingly different
results in terms of perplexities. The case xxx means that the corresponding training causes
divergence.

dev = devel test = test
Baseline system
39.4 38.1

Baseline + TrgSrc + Src
SOUL 41.8 39.6
NCE uniform 40.8 39.1
NCE training medical unigram 41.9 39.8

Baseline + SrcTrg + Trg
SOUL 42.1 39.5
NCE uniform 41.1 39.1
NCE training medical unigram 41.7 39.6

Baseline + all NNTMs
SOUL 42.3 39.9
NCE uniform 41.3 39.4
NCE training medical unigram 42.4 39.6

Table 3.9 – BLEU scores in rescoring N -best lists from the baseline system.

corpora (all medical unigram), and on the 200, 000 sentence pairs of Patent-Abstract
corpus used to train the CSTMs (training medical unigram).

Table 3.8 presents the perplexities obtained with NCE models, compared with those
obtained by SOUL models trained on the same corpus. As expected, the 4 SOUL models,
which have been trained directly to optimize the CLL (hence, the perplexity) criterion,
achieve the best perplexities on the validation set. Between the two unigram noise distri-
butions, the one estimated on all medical corpora causes divergence for three (out of four)
bilingual models. The only explanation is the inconsistency between the noise and data
distributions : while the CSTMs are trained only on the small subset of medical corpora,
these unigram probabilities are however estimated on all corpora and seem to be very
different from the data distribution. This experiment shows that the choice of a noise
distribution plays a crucial role in the NCE algorithm. Given such experimental evidence,
it is important that the noise distribution fits the unigram distribution estimated on the
training data.

Table 3.9 summarizes results obtained by integrating these CSMs into the SMT system
using N -best rescoring. CSTMs can be incorporated to the SMT system by pair of
models (TrgSrc + Src or SrcTrg + Trg) according to each of the two equations (2.23),
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3.3.3 - Experiments on WMT English → German

Algorithm 4 Procedure of each NCE training iteration.
1: Given dataset D, an integer K > 0.
2: Step 1, data resampling samples a subset Sn = {(w, c)} from D. This set contains
n-grams, which are equivalent to pairs of a context c and a word w to be predicted
from this context.

3: Step 2, unigram estimation estimates a unigram distribution pN(.) based on the
set of predicted words w in Sn. This distribution will be used as noise distribution
(Section 3.2.4).

4: Step 3, negative word sampling generates, for each (w, c) ∈ Sn, K negative words
ŵ1, ..., ŵK from the noise distribution pN(.). The set of n-grams (w, c) ∈ Sn, along
with all generated samples form a new set SNCE

n for the NCE training.
5: Step 4, optimization minimizes the objective function (3.14) on SNCE

n , along with
the regularization term (3.2). The optimization method is SGD.

or all 4 models (the lowest part of the table). The upper part of the table shows the
BLEU scores of the baseline system without any CSM. Integrating NCE CSTMs trained
with a uniform noise improves the translation by 1− 1.3 BLEU points, even though the
perplexities corresponding to these models are quite high. The NCE models trained using
the unigram noise distribution (estimated on the training corpus) improves the baseline
system by up to 1.7 BLEU points. These results are consistent to what has been obtained
with SOUL CSTMs.

Because of the importance of estimating the unigram noise distribution on the train-
ing data which is used to train CSTMs, we sketch in Algorithm 4 the procedure which
corresponds to one training iteration of the NCE algorithm. The procedure is applicable
both for training NNLMs and CSTMs, and constitutes, by default, our version of NCE
algorithm for the rest of this dissertation.

3.3.3 Experiments on WMT English → German

Experiments on the English-to-German shared translation task of WMT’2015 evaluation
campaign represent a large-scale situation where both the SMT system and CSTMs are
built on multiple large corpora. These corpora are extracted from Europarl Parliament
(EPPS), News Commentary (NC) and the common part of web-crawled data (Common
Crawl). This work was carried out in collaboration with researchers from Karlsruhe Insti-
tute of Technology (KIT). Details on the SMT system, as well as on the data processing
can be found in (Ha et al., 2015). We train one model for each of the 4 bilingual model
structures (TrgSrc, Src, SrcTrg or Trg), and for each corpus; the total number of models is
12. Each model is trained either using the SOUL structure, or the NCE algorithm (Algo-
rithm 4). At each iteration, a subset of 10M n-grams is resampled from the corresponding
corpus; all training processes are stopped after 15 iterations.

Table 3.10 compares SOUL and NCE models in terms of perplexity, whereas Table 3.11
presents the results of adding these models into the SMT system. Consistent with our
previous experiments, the perplexities obtained with SOUL models are generally lower
than those obtained with NCE models; however these differences do not translate into
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Model TrgSrc Src SrcTrg Trg
On newsco corpus

SOUL 11.9 96.3 11.2 75.0
NCE 16.6 108.5 13.8 93.4

On crawl corpus
SOUL 11.8 120.1 12.7 107.7
NCE 20.3 133.5 16.5 139.9

On EPPS corpus
SOUL 7.2 51.5 7.2 49.7
NCE 9.5 56.4 8.6 57.0

Table 3.10 – Perplexities of SOUL and NCE models trained on different corpora.

Training method dev = News2013 test = News2014
Baseline system

18.8 18.6
Baseline + all 4 bilingual models

SOUL 19.7 19.3
NCE 19.5 19.5
SOUL + NCE 19.5 19.5

Table 3.11 – BLEU scores in rescoring using SOUL and NCE models.

training speed inference speed
SOUL 1000 / s 15500 / s
NCE 1000 / s 19400 / s

Table 3.12 – Speeds of the training and the inference corresponding to SOUL and NCE
models, expressed in number of processed words per second.
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3.3.3 - Experiments on WMT English → German

sharp differences in translation performance. The use of SOUL CSTMs helps to improve
the baseline system by 0.9 BLEU points on the development set, and by 0.7 BLEU points
on the test set. With NCE CSTMs, these gains are respectively 0.7 and 0.9 BLEU points.
Finally, combining all SOUL and NCE models does not yield further improvement, which
indicates that probabilities estimated by SOUL and NCE models are not very different
from each other. Their combination does not provide complement information compared
to the separate use of each model category.

Table 3.12 compares the training and inference speeds for SOUL and NCE models,
which is very in line with the empirical results presented in Table 3.5. While the two
kinds of models have the same training speed, in inference the NCE models benefit from
their un-normalized scoring.

3.4 Conclusions

In this chapter, we have reviewed two efficient approaches to reduce the cost of comput-
ing conditional probabilities when training and integrating CSMs. The first approach
consists of employing a hierarchical output layer (the SOUL structure), which organizes
the output vocabulary as a clustering tree, and transforms the word prediction into the
prediction of a path leading from the root of the tree to one of its leaves. Instead of
basing on a model-specific solution, the second approach (NCE) comes from the category
of sampling-based methods, which consists of approximating the gradient of the conven-
tional conditional likelihood criterion based on a small subset of negative examples from
the output vocabulary.

Two typical sampling-based methods described in this chapter are Biased Importance
Sampling (BIS) and Noise Contrastive Estimation (NCE). BIS is based on a biased
estimator, which requires to sample a lot of negative examples to approach the estimation
to the true distribution, as well as to limit the variance. As the number of sampled negative
words cannot be too high, an workaround consists of adapting both this number and the
proposal distribution. Compared to BIS, NCE represents a more elegant approach derived
from the standard unbiased version of the Importance Sampling, which does not require
any adaptation during the training process. Another advantage of the NCE algorithm
lies in the fact that this method leads to self-normalization, which allows us to also ignore
the expensive normalization during the inference.

Experiments in this chapter have helped to empirically compare the trainings (for
both monolingual and bilingual CSMs) with SOUL structure, and with NCE criterion
on translation tasks from 3 different domains. Several general conclusions can be drawn
from this set of experiments. Firstly, SOUL models, which have been trained directly
to optimize the conditional likelihood on training data, are generally better in terms of
perplexity; but these perplexity differences are often insufficient to lead to sharp improve-
ments in translation performance. Secondly, the un-normalization feature of NCE models
is not a weakness of this kind of models, and the self-normalization deduced from the
NCE optimization is sufficient for the model integration into SMT systems. Moreover,
this un-normalized scoring also helps NCE models to speed up the inference, which results
in faster computations compared to those using SOUL models.
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Conclusions

Among the experiments with NCE training, we insist particularly on the importance
of choosing an appropriate noise distribution. While the unigram distribution is unani-
mously chosen because of its simplicity, a possible problem that may arise is the inconsis-
tency between this noise and the data distributions. As clearly suggested by the second
experiment, there is in practice no universal unigram distribution that can be used for all
NCE trainings. Instead, it is important that the noise distribution fits the unigram distri-
bution estimated on the training dataset used to train the CSM. This conclusion would
be meaningful in large-scale learning techniques where various large corpora of different
genres and domains are mixed together, and from which training data is resampled at
each iteration in order to reduce the training cost. In such case, it is important to perform
data resampling before estimating the noise distribution, as suggested by Algorithm 4.
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4
Adaptive strategies for learning rates

The high computational cost of training NNLMs is an important issue for a lot of ap-
plications. In Section 2.3.4, we have reviewed some possible workarounds to reduce this
cost, such as the use of short-list (Bengio et al., 2003a; Schwenk and Gauvain, 2004),
the hierarchical structuring of output vocabularies (Morin and Bengio, 2005; Mnih and
Hinton, 2008; Le et al., 2011), or the use of self-normalized output layers (Vaswani et al.,
2013; Devlin et al., 2014). In Chapter 3, we have described two approaches to efficiently
train a NNLM, which drastically reduce the training time of each iteration. However, in
practice the total training cost also depends on the number of iterations which reflects
the convergence speed of each method.

Even though differing in optimization steps, SOUL and NCE models both rely on the
Stochastic Gradient Descent (SGD), for which hyper-parameters, such as learning rates,
have a great impact on the final convergence level, as well as the time needed to achieve
this convergence. In practice, the training of NNLMs uses learning rates which are either
empirically determined or adapted. The total training cost must take into account the
number of times these hyper-parameter values are tested in order to obtain the optimal
performance. An adaptive regime may be helpful, as it aims to automatically achieve the
optimal values without the need to repeat in multiple instances the training procedure.

Recently, Adaptive Gradient (or AdaGrad (Duchi et al., 2011)) has been used to adapt
one learning rate for each model parameter. In the context of training NNLMs, it requires
however additional cost to maintain a high-dimensional vector of learning rates. Moreover,
the method still depends on other hyper-parameters which need to be empirically set.

Convergence speed is an important issue for the NCE training, which has been exper-
imentally shown to be less stable than the maximum-likelihood estimation (Chapter 3).
The NCE training introduces an additional random element which is the sampling from
the noise distribution. Moreover, the number of updates performed on the word embed-
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CHAPTER 4. ADAPTIVE STRATEGIES FOR LEARNING RATES

dings may differ greatly from a word to another depending on the noise distribution; the
parameters corresponding to rare words may not be updated at all or obtain very few
updates. Given this context, a careful choice of an adaptive scenario for learning rates
offers a promising and simple technique to reduce the number of iterations needed and
the computational cost without changing the general training method.

In this chapter, we propose to compare several methods for adapting the learning
rates of the SOUL and NCE trainings. Two new methods are introduced which aim at
(a) reducing the dependence of the performance on hyper-parameters, and (b) subtly
adjusting one learning rate for each group of parameters in order to guide the model to
achieve a faster convergence. Between these two goals, we emphasize particularly on the
first one as the empirical hyper-parameter fixing is particularly time-consuming. The next
section briefly reviews current methods for adapting learning rates in the SGD training
framework. Note that this review is far from exhaustive; we focus only on methods that
can be applied to our model structure. Several experimental comparisons in a practical
large-scale setting will be described in Section 4.3; the experimental set-up is based on
an English-to-Spanish SMT task. Results related to the training of SOUL NNLMs have
been published in (Do et al., 2014b). In this chapter, we extend this work with additional
experiments on the NCE training of NNLMs.

4.1 Stochastic Gradient Descent, and beyond

The conventional NNLM is trained by minimizing an empirical regularized log-likelihood
criterion on a dataset Sn :

Lcll(θ,Sn) =
∑

(w,c)∈Sn

− logpθ(w|c) +R(θ) (4.1)

where, as in previous chapters, θ denotes the vector containing all free parameters of the
CSM, and pθ(.) is the probability distribution computed by Equation (2.12). The dataset
Sn is viewed as a set of n-grams, or more generally as pairs of a word w and a context c
from which w is predicted.

The use of the criterion (4.1) requires model scores to be normalized over the output
vocabulary Vo. This normalization represents however a major computational difficulty
for training as well as inference of an NNLM, as has been discussed in Section 2.3.4. In
the previous chapter, we have described a method which consists of using a structured
output layer (Section 3.1); in this case the training objective function (4.1) is kept un-
changed. Another approach is to use the NCE algorithm (Section 3.2) which optimizes
the corresponding NCE criterion :

Lnce(θ,Sn) =
∑

(w,c)∈Sn

[
− log

pθ(w|c)
pθ(w|c) +KpN(w)

−
K∑

i=1

log
KpN(ŵi)

pθ(ŵi|c) +KpN(ŵi)

]
+R(θ)

(4.2)

where ŵKi=1 are K negative examples randomly generated from a noise distribution pN(.).
In both cases, the objective function is coupled with a L2-regularization term R(θ) =

γ × ||θ||
2

2
.
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Stochastic Gradient Descent, and beyond

Though differing in training criteria, both approaches typically use SGD algorithm to
optimize θ, which consists of iteratively looking for a better θ(t+1) at time t+ 1 given its
current value at time t :

θ(t+1) = θ(t) − η∇L(θ(t),Sn) (4.3)

where ∇L(θ(t),Sn) denotes the gradient at the current value θ(t), and η is the learning
rate. Without loss of generality, we assume here that η is a vector which contains all
learning rates, one for each parameter; however η may turn out to be a scalar if all of its
components take the same value.

When the mini-batch SGD algorithm is used to train a NNLM (Schwenk and Gauvain,
2004; Bengio, 2012), we estimate the gradient, then update θ after each mini-batch 1,
instead of waiting until the whole dataset is used. This stochastic method is theoretically
proved to be worse than the batch method. In practice, however, it seems to be more
convenient than the batch version as it leads to a faster convergence while using fewer data.
The size of these mini-batches is set so that it allows us to efficiently use matrix-matrix
operations which are generally easier to optimize than vector-matrix operations.

The simple update form (4.3) however yields small incremental changes on deeper
neural networks with many hidden layers (Martens, 2010). The reason is that the opti-
mization direction estimated based on the gradient tends to ignore information about the
curvature of the objective function and does not allow the training to accelerate in regions
where both the objective value and its gradient change slowly 2 3. This curvature infor-
mation is expressed not in the gradient itself, but in the second-order gradient of gradient,
or Hessian matrix. There are henceforth some attempts to use Hessian-like algorithms or
conjugate gradient approaches to train a neural network. Originally, Newton algorithm
replaces the learning rate η in (4.3) by the inverse of the Hessian matrix estimated at
time t :

θ(t+1) = θ(t) −
(
H(t)

)−1∇L(θ(t),Sn)

whereH(t) is the Hessian matrix computed at θ(t). This method is constrained by the high
cost of storing the Hessian matrix and computing its inverse, especially in large neural
networks. Indeed, the Hessian matrix’s size is |θ|2, with |θ| denoting the number of
network parameters. A typical NNLM structure contains a lookup table (Section 2.3.1)
of 500 dimensions for each of 372K vocabulary words; the total number of trainable
parameters may be up to 2 × 108. Therefore, some Quasi-Newton methods propose to
approximate H(t). A review of these methods for neural networks can be found in (LeCun
et al., 2012; Bengio, 2012). A plausible approach is to use a diagonal approximation to
H(t), which is equivalent to the use of a separate learning rate for each parameter in the
model. This approach will be further described in the next section.

Another solution is Hessian-free optimization procedures which have also been devel-
oped to overcome the difficulties associated to the training of complicated neural struc-
tures. The main idea is that, instead of estimating and storing H(t), one should only

1Each mini-batch contains some hundreds training examples, typically 128.
2These regions are called to exhibit pathological curvature in (Martens, 2010).
3An example of this phenomenon is the vanishing gradient problem in training recurrent NNs (Sec-

tion 2.3.2).
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4.2.1 - A global learning rate

compute H(t) × d where d is a |θ|-dimensional vector. Fortunately, this matrix-vector
product can be efficiently estimated using finite differences at the cost of a single addi-
tional gradient evaluation which, in case of neural networks, corresponds to an additional
forward-backward step :

H(t)d = lim
ε→0

∇L(θ(t) + εd)−∇L(θ(t))

ε

Secondly, Hessian-free approaches employ conjugate gradient optimization to find an
optimal update direction from θ(t) to θ(t+1). Martens (2010) and Martens and Sutskever
(2011) develop an improved variant of the Hessian-Free optimization which is powerful
enough to train deep neural networks from random initializations. This approach has been
successfully applied to train a character-level NNLM (Sutskever et al., 2011), and is shown
to be an effective solution to the vanishing gradient associated with recurrent NNLMs
(Section 2.3.2). However, the Hessian-free method as described in (Martens, 2010) is still
not free from hyper-parameters. Moreover, for feed-forward neural structures applied to
language modelling task, the plain SGD is much simpler to implement but still effective in
terms of performance as well as of computational cost, while an appropriate learning rate
schedule helps to improve training speed and precision. This is the approach we adopt
for the rest of this chapter.

4.2 Adaptive strategies for the learning rate

In most cases, NNLMs use a learning rate that is empirically fixed or adapted by some
simple regimes. To the best of our knowledge, there is still no comparison between different
regimes to assess how they could affect the performance as well as the training time
of a NNLM. However, in the Stochastic Gradient Descent literature, the learning rate
is considered since early works as a crucial hyper-parameter that greatly impacts the
convergence rate (Robbins and Monro, 1951). More importantly, a good adaptive learning
rate schedule, although without much tuning, seems to perform equivalently or even better
than the best-tuned SGD, hence eliminates the need for manual tuning of the learning
rate (Schaul et al., 2012). These adaptive methods can be divided into two groups,
those using a global learning rate, and those adjusting a separate learning rate for each
parameter, or each group of parameters.

4.2.1 A global learning rate

The most widely used global learning rate schedule is the Power Schedule η ≈ t−1

described in (Senior et al., 2013). This regime is theoretically proven to give the best
asymptotic convergence in the case of a global learning rate (Xu, 2011) 4. More precisely,
the learning rate η(t) at time t is decayed according to the number of updates performed

4The authors in (Xu, 2011) use an average version of SGD while we still choose the best iteration
according to the objective value on held-out data.
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Adaptive strategies for the learning rate

on parameters as :

η(t) =
η(0)

1 + τt

where τ is a learning rate decay coefficient. In (Bengio et al., 2003a), τ is empirically set
to 10−8. Le et al. (2012b) use a special form of Power Schedule in which :

η(t) =
η(0)

1 + τN(t)
e

where N(t)
e denotes the number of training examples used until the time t. This is the

form we adopt in our experiments described in Section 4.3.

Besides the Power Scheduling, another regime named Down Schedule is introduced
for training the SOUL structure (Le, 2012). The scenario consists of dividing the training
process into 2 periods. During the first one, the learning rate is kept fixed; in the second
one, this quantity is divided by 2 after each iteration. 5 The boundary between these two
periods is identified for instance by monitoring the perplexity on a held-out (or validation)
set : it can be defined as the moment when perplexity starts to increase. A variant of
this method named Adjust Schedule (used for example in (Ollivier, 2013)) consists in
comparing the variation of perplexity between two consecutive iterations : if it increases,
we cancel all the updates of the current iteration and divide the learning rate by 2.
Conversely, if a decrease is observed, we multiply the learning rate by 1.1. This schedule
practically allows us, as training goes on, to have a learning rate reasonably independent
from its initial value and adapted according to an intrinsic measure. However, some
iterations are wasted; this phenomenon appears more frequently during the NCE training
which is less stable than the maximum-likelihood estimation with SOUL structure.

The simplest method among all is the Fix Schedule that keeps the learning rate
constant during all the training. In our work, this regime serves mainly as a reference to
measure how important a good adaptive learning rate schedule is for the final convergence
and the training time.

4.2.2 Local learning rates

Reviews on training methods for neural networks often recommend the use of different
learning rates for different parameters located in various parts of the network (Bottou,
2012; LeCun et al., 2012). This approach can be considered to be the intermediary
between standard SGD and Hessian-like methods such as Gauss-Newton or Quasi-Newton
algorithms, with the Hessian-like matrix reduced to its diagonal approximation. For
instance, LeCun et al. (2012) recommend the use of diagonal Gauss-Newton and diagonal
Levenberg-Marquardt algorithms for classification problems.

Recently, Adaptive Gradient (or AdaGrad (Duchi et al., 2011)) has emerged and
has been applied to some NLP applications where it helps to give good performance

5no matter whether the perplexity increases or decreases.
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(e.g. (Green et al., 2013)). In its original form, AdaGrad requires to approximate the
Hessian matrix in Newton algorithm at time t as follows :

H(t) ≈

(
t∑

i=1

∇L(θ(i−1))∇L(θ(i−1))T

)1/2

which is intractable in case of a large-dimension parameter vector θ. Henceforth, AdaGrad
is more often used in its diagonal form which is computationally cheaper. More precisely,
let g(i)

j be the gradient of the loss function with respect to the parameter θ(i)
j at time t,

then the learning rate corresponding to the parameter θj is computed as follows :

η
(t)
j =

η(0)
(
1 +G

(t)
j

)1/2 (4.4)

G
(t)
j =

t∑

i=1

(
g
(i)
j

)2

where η0 is the initial learning rate (for all parameters), and the unity is added in the
denominator of (4.4) to assign the learning rates at time 0 to η(0).

4.2.3 Block-AdaGrad strategy

In our experiments, it is preferable not to use directly (4.4) due to its computational costs.
Indeed, the implementations of NNLMs often come up with an intensive use of matrix-
matrix and matrix-vector product operations, especially in parameter updating. Consider
an update according to (4.3) of the hidden layer weight matrix Wh. The gradient ∇L(θ)
is obtained from a matrix-vector product in case of the original SGD training, and from
a matrix-matrix product if the mini-batch version is used. Multiplying the gradient with
η and subtracting the resulted quantity from θ(t), the formula (4.3) can be performed
entirely in one single step 6 only if η is a scalar. Otherwise, the implementation would
require first to estimate and store the gradient, then to incorporate the vector η to this
gradient via dot products, and finally to subtract the whole quantity from θ(t). The
procedure is switched from one-step to three-step operation and increases the running
time of each iteration. The total amount of training time might not be reduced even if
fewer iterations are needed to achieve convergence.

Instead of adjusting one learning rate for each free parameter, we prefer using one
scalar learning rate whenever the update formula (4.3) is used. In our SOUL and NCE
implementation, the update steps are performed by blocks of parameters; it is hence
preferable to assign one learning rate to each block. This procedure, adapted from Ada-
Grad, will be called Block-AdaGrad in our experiments.

More precisely, the local learning rate ηj in (4.4) is replaced by ηbj which denotes
the learning rate assigned to all parameters belonging to a block bj. The corresponding

6using multi-thread BLAS matrix operation libraries.
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Adaptive strategies for the learning rate

procedure is written as :

η
(t)
bj

=
η(0)

(
1 +G

(t)
bj

)1/2 (4.5)

G
(t)
bj

=
t∑

i=1

(
g
(i)
bj

)2
=

1

|bj|

t∑

i=1

∑

k∈bj

(
g
(i)
k

)2
(4.6)

The modification brought to (4.6) is interpreted as follows : at each update, we first
modify the value of Gbj corresponding to the block bj in consideration, by adding to it
the square of gradients averaged on all parameters in the block. The resulted Gbj is used
to compute the effective learning rate (Equation (4.5)) which will then be used to update
all parameters in bj.

Parameter blocks in SOUL and NCE models : From implementation details,
parameter blocks are defined in a manner such that each of them is updated using one
matrix-matrix or matrix-vector operation. In SOUL, two blocks are defined for each
hidden layer and for each output linear softmax layer : one for the weight matrix and
the other for the bias vector. For the lookup table, we have one block for the embedding
vector of each vocabulary word. The Block-AdaGrad is designed to introduce no extra
computing time compared to the standard method. The total number of blocks amounts
to 376K for a total of 378 millions of parameters.

NCE models use a conventional output layer which is organized and trained similarly
to the lookup table layer. 7 Therefore, each word has its embedding updated with a
separate learning rate.

4.2.4 Down-Block-AdaGrad

In practice, few adaptive scenarios are really free from the choice of hyper-parameters.
For the adaptive learning rate methods described above, a hyper-parameter which is
shown to play an important role (Section 4.3.2) is the initial value η(0), except for Power
Scheduling where the performance may depend not only on η(0) but also on the learning
rate decay coefficient τ . The strong dependence on hyper-parameters of some methods
such as Block-AdaGrad, as will be shown in Section 4.3.2, is an unexpected property,
as it implies we need to repeat the training procedure with different hyper-parameter
values in order to obtain the optimal performance. This choice leads inevitably to extra
computational cost. Moreover, the more the performance depends on hyper-parameter
values, the more it becomes important to perform the corresponding grid-based search.
On the other hand, if an adaptive method is proven to depend only slightly on hyper-
parameters within a reasonably large range of values, it maybe suffices to choose an
arbitrary value inside this range without a much more careful search. The dependence on
hyper-parameters is henceforth a motivation behind some recent AdaGrad variants such
as AdaDec (Senior et al., 2013) and AdaDelta (Zeiler, 2012) which propose strategies to
reduce the sensitivity of their methods to hyper-parameters.

7The parameters of this layer can be considered as output word embeddings in the standard NNLM
of (Bengio et al., 2001, 2003a).
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4.2.5 - Peculiarities of NCE training

In our study with SOUL and NCE models, we propose a simpler approach by combin-
ing Block-AdaGrad with a global learning rate adaptive regime. This idea is derived from
the observation (Section 4.3.2) that, when training SOUL models, the Down Scheduling
depends only slightly on the initial value η(0). More precisely, on top of the Block-AdaGrad,
we adjust an extra global scaling coefficient γ(t) such that at every moments during the
training process, the learning rate of a reference parameter block b∗ is scaled to be equal
to γ(t). For the learning rates of blocks other than b∗, the ratio between any learning rate
and the one of b∗ must be kept the same as in the Block-AdaGrad method. We name this
method Down-Block-AdaGrad, which adjusts the learning rate η(t)bj assigned to block bj at
time t by the following formula :

η
(t)
bj

=
γ(t) ×

(
1 +G

(t)
b∗

)1/2

(
1 +G

(t)
bj

)1/2 (4.7)

where b∗ denotes the reference block which, in SOUL and NCE models, is assigned to the
block of weight matrix of the first output layer. 8 This choice is motivated by the fact
that perplexity is particularly sensitive to the last layer of the network. The parameter
γ(t) is in turn adjusted using Down Scheduling with η(0) as its initial value.

Why should this strategy work? On the one hand, the method still benefits from a
local adjustment which is an advantage of Block-AdaGrad : the vector of learning rates is
assumed to approximate the Hessian matrix, and to give information about the curvature
of the loss function. Here the ratio between any pair of learning rates inside Down-Block-
AdaGrad is kept the same as in Block-AdaGrad. On the other hand, the method improves
a weakness of Block-AdaGrad that its learning rates may be decayed too fast before the
training converges. This strategy will be compared on the same ground along with other
adaptive scenarios described above in the large-scale training of a NNLM included in a
SMT system.

4.2.5 Peculiarities of NCE training

As mentioned above, the Block-AdaGrad applied on NCE models differs from the one
on SOUL models by the fact that the output layer’s parameters are grouped in different
parameter blocks, one for each output vocabulary word. This arrangement is after all a
practical choice, decided based on the feature of the NCE implementation. Besides this,
our preliminary experiments suggest that the learning rates corresponding to the output
layer are decayed too fast. Hence, we modify Equation (4.6) as follows :

G
(t)
bj

=
1

|bj| × |Vo|1/2
t∑

i=1

∑

k∈bj

(
g
(i)
k

)2
(4.8)

where |Vo| is the size of the output vocabulary. Note however that this modification
intervenes only in the NCE training, and only in the output layer. This also modifies
accordingly the Down-Block-AdaGrad scenario.

8It corresponds to the principal output layer in SOUL structure, while in NCE model it is the unique
output layer.
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Experiments

It is also observed that training with the NCE algorithm is much less stable than the
maximum-likelihood estimation. Here this instability means that the outcome of each
iteration depends heavily on the sampling of negative examples (Section 3.2), and that
the perplexity is not guaranteed to decrease after each iteration. In order to ensure that
the NCE training will finally converge, we apply a simple trick from Adjust Scheduling
which consists of cancelling all updates and getting back to the previous parameter values
if the current perplexity is found not to decrease after the current iteration. For the NCE
training, this technique is systematically applied no matter what adaptive regime is used.

4.3 Experiments

4.3.1 Description of experiments and methodology

To assess the impact of the different learning rate schedules on NNLMs, we carry out
experiments on the Spanish language modelling task to compare different scenarios de-
scribed in the previous section : the global learning rate methods (Fix, Power, Down, and
Adjust Schedules), along with the two variants of AdaGrad (Block-AdaGrad and Down-
Block-AdaGrad). Two kinds of training, which have been described in Chapter 3, are
used in this comparative study : the maximization of the conditional likelihood described
in Section 3.1, and the NCE algorithm trained on the standard structure (Section 3.2).
NNLMs are designed for the large-scale English-to-Spanish shared translation task at
WMT’2013. 9 These Spanish NNLMs are 10-gram models which are trained using the
same vocabulary and datasets used to train the Spanish back-off LMs that were a part
of our SMT system submitted to this task (Allauzen et al., 2013). Neural networks are
trained iteratively : at each iteration a 15M-ngram subset is sampled from the whole
training data, and then divided into mini-batches of 128 n-grams. The held-out data
(or validation set) is Newstest2008. As described in (Allauzen et al., 2013), the training
scheme of the standard back-off LM is decomposed as follows : the total training data is
divided into 7 sets based on dates or genres; for each set, a standard 4-gram LM is es-
timated using modified Kneser-Ney Smoothing (Chen and Goodman, 1996). These LMs
are then interpolated using coefficients chosen so as to minimize the perplexity. These
interpolation coefficients are re-used to train the NNLMs. For each configuration and at
each iteration, the quantities of data sampled from those 7 sets are proportional to these
coefficients. For a fair comparison between methods, data used at all iterations is sampled
only once before any training starts, so that all adaptive scenarios will use exactly the
same data during their training process. The same technique is also carried out with the
sampling of negative examples for NCE training; the sampling is done beforehand and
is used for all adaptive methods. We use a NNLM structure with 500-dimension lookup
table and two hidden layers of 1000 and 500 units in all experiments.

Our study emphasizes particularly the dependence of the methods on hyper-
parameters, which are the initial learning rate η(0) and the learning rate decay τ in case
of Power Schedule. The other meta-parameters are fixed to pre-defined values, for in-
stance the fact that we divide the learning rate by 2 if the perplexity increases, and that

9http://statmt.org/wmt13/translation-task.html .
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4.3.2 - Perplexity-based analyses

Fix Pow 5e− 7 Dow Adj Bag D-Bag
5e− 03 93.9 103.8 91.4 91.3 100.9 90.8
1e− 02 97.8 99.7 91.4 91.0 96.4 90.8
2e− 02 104.4 96.2 92.2 90.1 92.6 92.9

Table 4.1 – The best perplexities obtained by SOUL models on Newstest2008 by different
adaptive learning rate strategies, corresponding to 3 values of the initial learning rate.

a factor of 1.1 is used to reinforce the learning rate in Adjust Schedule. In principle, the
choice of hyper-parameter values should be performed by grid-based search in which a
series of values are assigned on multiple training instances and final outcomes are com-
pared. The high computational cost of training NNLMs does not allow us to perform a
full search over a large number of values for η(0), however the following experiments still
reflect some general trends. More precisely, SOUL models are trained using each adaptive
scenario with 3 values of η(0) : 0.005, 0.01 and 0.02 while τ is set to 5 × 10−7 in Power
Schedule. For the NCE training, a slightly extended search is done with 5 values of η(0) :
0.005, 0.01, 0.02, 0.05 and 0.1, while 3 values of τ are tested : 5 × 10−7, 1 × 10−7, and
5× 10−8.

The schedules are evaluated based on different criteria : perplexities estimated on the
validation set, as well as the convergence speed and the sensitivity to hyper-parameter
values. The held-out dataset is employed after each iteration to re-compute the perplexity.
This perplexity serves two purposes : it is an indication used by different schedules to
adjust learning rates, while the smallest value at the end of the training process is helpful
for us to assess the performance. Convergence speed is mentioned here in its practical
meaning : we fix in advance the number of training iterations to 15 10 and compare
the perplexities obtained by different methods. For a theoretical asymptotic analysis on
convergence speed of the SGD algorithm, the reader is invited to read, for instance (Duchi
et al., 2011). As an extrinsic evaluation, the NNLMs are also included in the SMT
system via N -best rescoring to estimate the impact of these adaptive methods on the
final translation performance.

4.3.2 Perplexity-based analyses

We first compare the performance of adaptive scenarios based on the perplexities com-
puted on the validation set Newstest2008 after 15 training iterations. Results of training
SOUL models are presented in Figure 4.1a-4.1f and Table 4.1, while the results for NCE
models are shown in Figure 4.2a-4.2h and Table 4.2. For the training of SOUL NNLMs,
the performance of Fix, Power and Block-AdaGrad schedules is strongly sensitive to η(0),
whereas Down and Adjust schedules give a quite consistent results with 3 different values
of η(0). The last two methods also give a faster convergence to a lower perplexity on the
validation set, compared to the Fix, Power and Block-AdaGrad schedules.

In the case of Power Schedule, we also have a complicated problem of choosing τ . It
seems that the value of this hyper-parameter has an important impact on the convergence

10a value often mentioned in the training of SOUL models (Le, 2012) and which leads to a reasonable
amount of training time.
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Figure 4.1 – Perplexities computed on Newstest2008 for each adaptive strategy when
training SOUL-structure models.
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4.3.2 - Perplexity-based analyses
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(b) Power Scheduling τ = 5× 10−7
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(c) Power Scheduling τ = 1× 10−7
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(d) Power Scheduling τ = 5× 10−8
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(g) Block-AdaGrad
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Figure 4.2 – Perplexities on Newstest2008 when training with NCE algorithm.
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Experiments

Fix Pow 5e− 7 Pow 1e− 7 Pow 5e− 8 Dow Adj Bag D-Bag
5e− 03 141.2 326.5 166.4 152.2 154.4 128.5 185.0 107.0
1e− 02 134.0 229.3 141.7 136.8 300.8 116.1 152.4 104.4
2e− 02 134.6 203.7 135.6 122.7 132.5 114.7 132.6 102.9
5e− 02 x 152.9 121.1 116.8 310.4 114.8 121.3 101.4
1e− 01 x 131.4 124.8 132.0 235.4 122.0 x 152.2

Table 4.2 – The best perplexities obtained by NCE models on Newstest2008 using dif-
ferent adaptive learning rate strategies, corresponding to 5 values of the initial learning
rate. Notation "x" signifies that the NCE training fails to reduce the perplexity with the
corresponding configuration.

speed as well as the final perplexity. Our experiments here do not allow us to have a clear
comprehension on this dependence. However, the dependence on not only one, but two
hyper-parameters is a serious limitation which makes its set-up complicated and time-
consuming.

Compared to Block-AdaGrad, the proposed Down-Block-AdaGrad clearly reduces the
sensitivity of the performance to η(0). Moreover, the method also helps to achieve the
best results : it gives the best perplexities for 2 out of 3 values of the initial learning rate.
In summary, if we take the perplexity obtained by the simplest Fix Schedule as reference,
a good adaptive learning rate schedule can reduce the perplexity on Newstest2008 by at
least 4% and up to 14%.

Our analysis focusses however on NCE training. As the NCE criterion is an approxima-
tion of the conditional log-likelihood (Chapter 3), NCE training is known to be less stable
than the training with SOUL, partly due to the random sampling of K negative sam-
ples. In this context, an appropriate learning rate regime appears to be very important.
Indeed, a too high initial value may lead to the training failing to reduce the perplexity
(Table 4.2). Like in the case of the maximum-likelihood estimation, NCE training shows
a high sensitivity of Fix, Power and Block-AdaGrad schedules to η(0). 11 But unlike the
training of SOUL models, NCE training displays a degradation for Down Schedule. This
limitation is due to the fact that the second period (see Section 4.2.1) may come too early,
as each NCE training iteration is less predictable and yields an increased perplexity more
often than the MLE. As a consequence, the learning rate is so strongly decayed after some
iterations that it appears to be too small. As a result, for training NNLMs using the NCE
algorithm, we recommend the use of Adjust Schedule for the global learning rate setting,
or of Down-Block-AdaGrad if the adaptation of one learning rate for each update block
is required. The proposed Down-Block-AdaGrad improves by about 11.6% over the best
global learning rate adaptive regime. Compared to the reference of Fix Schedule, this
method reduces the perplexity on Newstest2008 by at least 24% and up to 28%.
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4.3.3 - Impacts on the translation performance

Perplexity Nt08 dev Nt11 Nt12 Nt13
Without NNLM - 32.3 32.8 28.7

Fix η(0) = 0.02 104.4 32.8 33.3 29.0

Fix η(0) = 0.01 97.8 32.9 33.5 29.3

Fix η(0) = 0.005 93.9 33.0 33.5 29.3

Down η(0) = 0.005 91.4 33.0 33.6 29.3

Adjust η(0) = 0.01 91.0 33.1 33.6 29.1

Down-Bloc-AdaGrad η(0) = 0.005 90.8 33.0 33.6 29.2

Down-Block-AdaGrad η(0) = 0.01 90.8 33.1 33.7 29.3

Table 4.3 – BLEU scores using SOUL models on Newstest2012 and Newstest2013.

Perplexity Nt08 dev Nt11 Nt12 Nt13
Without NNLM - 32.3 32.8 28.7

Fix η(0) = 0.005 141.2 32.5 33.3 28.9

Fix η(0) = 0.01 134.0 32.6 33.2 28.8

Fix η(0) = 0.02 134.6 32.6 33.1 28.8

Adjust η(0) = 0.1 122.0 32.6 33.0 28.8

Down-Bloc-AdaGrad η(0) = 0.005 107.0 32.8 33.4 29.0

Down-Bloc-AdaGrad η(0) = 0.01 104.4 32.9 33.3 28.8

Down-Bloc-AdaGrad η(0) = 0.02 102.9 32.9 33.5 29.2

Down-Bloc-AdaGrad η(0) = 0.05 101.4 32.8 33.5 29.2

Table 4.4 – BLEU scores using NCE models on Newstest2012 and Newstest2013.

4.3.3 Impacts on the translation performance

We use the SOUL and NCE NNLMs trained with different adaptive learning rate regimes
to rescore N -best lists produced by our submitted English-to-Spanish SMT system (Al-
lauzen et al., 2013). We use Newstest2011 as the development set on which log-linear
coefficients are tuned (Section 1.3.1), while Newstest2012 and Newstest2013 serve as test
sets. We use the batch N -best version of MIRA tuning algorithm described in (Cherry
and Foster, 2012) and as implemented in MOSES. 12 The tuning algorithm is run in 8
instances from different initial points, the obtained BLEU scores are then averaged. The
results are presented in Tables 4.3 and 4.4. To summarize, the N -best rescoring using
our NNLMs improves the baseline system by 0.8 BLEU points on the development set,
and respectively 0.9 and 0.6 BLEU points on Newstest2012 and Newstest2013. The NCE
models display similar performances as SOUL models, with at most 0.2-point differences
on the development and test sets, which is in line with our observations in Chapter 3.

For a comparison between different adaptive methods, the performances of SOUL
models show no significant difference between Down-Block-AdaGrad and Fix Schedule.
This is in line with a certain number of past works related to the development of language
models in NLP applications, in which a reduction of less than 10% (as observed in our

11For the first 3 initial learning rate’s values, Fix Schedule results in quite similar perplexities, however
it fails with the two other values.

12http://www.statmt.org/moses/ .
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Conclusions

experiments) would not translate to an important and consistent gain of the final perfor-
mance (Rosenfeld, 2000). On the other hand, NCE training shows more divergence be-
tween adaptive regimes. The experiments show that our proposed Down-Block-AdaGrad
adaptive method can improve over scenarios in which no particular adaptive regime is
required (the Fix Schedule) by 0.3 BLEU points on the development and test sets.

4.4 Conclusions

In this chapter, we have presented an empirical study of several adaptive learning rate
regimes that can be used in the training of NNLMs in order to improve the convergence
speed and performance. The comparison is based on the two efficient training strategies
that have been described in Chapter 3.

A particularity of this work lies in the use of AdaGrad for which we propose a variant
that adjusts one learning rate for each parameter block (Block-AdaGrad). These blocks
are defined in a manner such that each of them is updated using one matrix-matrix or
matrix-vector product operation, hence the adaptive regime does not introduce any extra
cost compared to the standard training process. Another peculiar feature is our insistence
on rendering adaptive scenarios independent from hyper-parameters, such as the initial
learning rate value or decay coefficient. Indeed, each hyper-parameter requires supplement
effort to empirically optimize its value. This study is meaningful as training NNLMs is
still expensive, even with efficient approaches proposed in Chapter 3.

Experiments have been carried out on the Spanish language modelling task for a
WMT’2013 English-to-Spanish SMT system, using SOUL and NCE NNLMs. These ex-
periments have shown that the performances of Fix, Power and Block-AdaGrad schedules
(Sections 4.2.1 and 4.2.3) are very sensitive to their hyper-parameters, whereas the Down
and Adjust schedules give quite consistent results with different hyper-parameter values
(Figures 4.1a- 4.1f and 4.2a- 4.2h). In order to reduce the dependency of Block-AdaGrad
to the initial learning rate value, we propose to combine it with the Down schedule. The
resulting Down-Block-AdaGrad achieves the best performance (in terms of perplexity) in
various trainings of SOUL and NCE models.

In terms of evaluation measures, the work provides another evidence that the per-
plexity has only a loose relationship with the translation performance. For the training
of SOUL models, perplexity divergence due to different adaptive learning rate methods
does not lead to significant improvement in terms of BLEU score. On the other hand,
the NCE training represents a situation in which these adaptive scenarios lead to more
significant performance difference, up to 0.3 BLEU points. Finally, we recommend the
use of Adjust and Down-Block-AdaGrad schedules while training NNLMs using the NCE
algorithm.
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5
Discriminative Training and Adaptation

Methods for CSTMs

Training procedures for continuous-space models (CSMs) so far rely on the optimization
of the conditional log-likelihood (CLL), or on an approximative form of the CLL gradient
(the NCE algorithm). This training criterion, along with the evaluation of CSMs by
perplexity has, in many cases, only a loose relationship with the performance of the
applications into which CSMs are to be integrated. For Speech Recognition systems, it
has been claimed (Rosenfeld, 2000) that only a perplexity improvement of 30% or more
is significant and can be translated into performance improvement. For SMT systems, we
have observed in Chapters 3 and 4 a number of situations in which a difference in terms
of perplexity between models does not necessarily lead to an improvement in translation
performance. A typical example is the equivalence in terms of BLEU score between
SOUL and NCE CSMs reflected in Tables 3.7, 3.9 and 3.11, although SOUL models are
often better than NCE models in terms of perplexity. It is hence likely that the CLL
training, resulted from an evaluation by perplexity, hinders the impact of CSMs on the
SMT systems. To overcome this issue, a discriminative framework will be introduced in
this chapter to guide the learning process of CSMs towards improving the performance
of the existing system. This framework can incorporate training criteria which closely
correlate to MT quality metrics (such as BLEU), and will be first applied to Domain
Adaptation situations, before being extended to training situations.

Domain adaptation (DA) is an important and active research topic in Statistical Nat-
ural Language Processing (NLP) (Daumé III and Marcu, 2006; Blitzer, 2008), and is
often expressed in terms of finding an optimal combination of a small in-domain dataset
with large amounts of out-of-domain data. Because of their scarcity, the in-domain corpus
gives domain-specific knowledge which is often best used along with general knowledge in-
ferred from large out-of-domain data. To avoid the dilution of domain-specific knowledge,
most approaches consider various kinds of data weighting schemes in order to balance
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the importance of in-domain versus out-of-domain. The use of mixture models is another
useful technique in such situations. In such adaptation scenarios, NLP components need
to be retrained, entirely or partly to integrate these new samples, which can be very
time-consuming, or even unrealistic in many situations. This is especially problematic for
SMT systems, that are typically made of multiple statistical models (Chapter 1). With
the emergence of CSMs, questions related to DA need to be looked at carefully when such
systems need to be adapted to a specific domain. One of the first studies in DA for CSMs
has been described in (Le et al., 2012a) where the authors propose to run some additional
epochs of back-propagation using in-domain data, on top of CSMs which have already
been trained on out-of-domain data. The method is straightforward as it can be consid-
ered as an extended training process using the usual maximum-likelihood, but requires
however to retrain all system models; moreover the adaptation of the CSMs is performed
separately from the other components. The discriminative framework described in this
chapter allows us to adopt a simpler strategy which consists of adapting only the CSM
using in-domain data, while keeping other models intact.

While an adaptation task requires to adapt the whole system (including the CSM) to a
new domain, a training situation learns the CSM parameters on the same data which has
been used to train the baseline system. In such situations, a similar discriminative training
method can be used as a remedy to the problem related to the gap between training and
testing phases described in Chapter 2. A difficulty of such scenario is that the training
performance depends strongly on the N -best lists obtained from the training data, and
will be explained in Section 5.4.4. Other aspects of the discriminative framework will also
be investigated, such as initialization issues, or a comparison between different training
criteria.

The main contribution of this work is to propose and investigate discriminative adap-
tation and training scenarios on top of SOUL and NCE models (Chapter 3) which leads
to a tighter integration of these models within SMT systems. The generic procedure
is described in the next section, while several training criteria that can be used in the
framework will be described in Section 5.2. For each experimental set-up described in Sec-
tion 5.3, we compare the discriminative framework with the traditional CLL optimization,
and assess the performance of different discriminative training criteria. In Section 5.4, we
also discuss two other important issues that can have great impact on the system per-
formance : model initialization, as well as the baseline SMT system from which N -best
lists are produced. Parts of the experimental results presented in this chapter have been
published in (Do et al., 2014a, 2015a,b).

5.1 Discriminative framework for CSMs

As described in Section 2.5.2 of Chapter 2, continuous-space models are in most cases
integrated into SMT systems via a post-processing step called N -best rescoring. For each
source sentence s, the decoder is assumed to generate an N -best list H = {h1, ...,hN}
of the N top translation hypotheses, which represents a subset of the reachable search
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Algorithm 5 Joint optimization procedure for θ and λ

1: Initialize θ and λ
2: for each iteration do
3: for M mini-batches do . λ is fixed
4: Compute the sub-gradient of L(θ, s) for all s in the mini-batch
5: Update θ
6: end for
7: Update λ using dev set . θ is fixed
8: end for

space. Each hypothesis hi = (ti, ai) is associated with a decoding score :

Fλ(s,h) =
M∑

k=1

λkfk(s,h)

When rescoring with a continuous-space model 1, Fλ(.) is augmented to also include
an additional feature gθ(h) computed from the CSM. As explained in Chapter 3, gθ(h)
typically corresponds to the log-probability of the hypothesis h, which is computed exactly
by a SOUL model, or only approximatively by a self-normalized model :

gθ(h) =





∑
(w,c)∈h

logpθ(w|c) for SOUL model
∑

(w,c)∈h
aθ(w, c) for NCE model (5.1)

where θ is the vector containing all CSTM free parameters. The new scoring function
used in rescoring is then :

Gλ,θ(s,h) = Fλ(s,h) + λM+1gθ(h) (5.2)

This scoring function depends on the CSTM parameters θ, as well as on the log-linear
coefficients λ. Contrarily to the standard approach which first trains the CSTM, then
tunes all the log-linear coefficients (including λM+1), our proposal requires to alternatively
tune the vector of coefficients λ and to adapt the parameters θ : the former uses the
development data (Section 1.3.1), while the latter will use a parallel training corpus.

The corresponding optimization procedure splits the training data into fixed-size mini-
batches (typically 128 subsequent sentence pairs). As sketched in Algorithm 5, each mini-
batch is used to update θ while keeping λ fixed. The log-linear coefficients λ are updated
every M mini-batches.

It is important to notice that similar algorithms have been adopted in several other
studies (He and Deng, 2012; Gao and He, 2013; Gao et al., 2014) for the parameter esti-
mation of phrase translation models (Section 2.4.4). In our study, tuning λ is performed
using a standard tuning tool, the Batch N -best MIRA algorithm 2 as proposed in (Cherry
and Foster, 2012) and described in Section 1.3.1. The update of θ (with fixed λ) is more
interesting and requires an appropriate training objective function.

1The approach can be easily generalized to integrate more than one additional model.
2We use the implementation included in MOSES toolkit (http://www.statmt.org/moses/).
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5.1.2 - Discriminative domain adaptation with CSMs

5.1.1 MLE versus discriminative training criteria

It is interesting to realize that Algorithm 5 can be performed with any objective function
L(θ, s), including the conditional log-likelihood (CLL) conventionally optimized to train
a NNLM or a CSTM (Section 3.1). The optimization of CLL aims at minimizing the
perplexity, which is an intrinsic measure to evaluate a CSM. However, conforming to the
experiments already described in Chapters 3 and 4, there are many examples in the liter-
ature in which a reduction in perplexity does not translate to a significant improvement
of the SMT system.

Evaluating a CSTM throughout its integration within a SMT system, we realize that
the consistency between the CLL and the translation performance is loose also because
translation outputs do not depend only on the CSTM, but also on other system com-
ponents, and on the integration mode. If an N -best list rescoring approach is chosen to
perform this integration, the final result may also depend on the N -best lists produced
by the decoder. A joint training procedure like Algorithm 5 enables to reduce the gap be-
tween the training and testing phases. An objective function L(θ, s) needs to be designed
to further reinforce this correlation. In this context, discriminative tuning algorithms, as
described in Section 1.3.1 of Chapter 1 are an important source of inspiration, as they rep-
resent two following advantages. First, batch (and certain online) tuning algorithms use
intensively N -best lists of hypotheses, which are often the environment in which a CSTM
is incorporated. Second, the incorporation of MT evaluation metrics (such as BLEU)
into these algorithms has become a standard assumption in SMT since the introduction
of MERT (Och, 2003). It is also desirable that such training criterion makes the CSTM
training dependent on existing components of the SMT system. As a consequence, we
will define (in Section 5.4.3) our discriminative criteria based on the final scoring function
Gλ,θ(s,h) which involves all the system scores, along with the log-linear coefficients λ.

5.1.2 Discriminative domain adaptation with CSMs

Even though CSMs have been proved to boost the translation performance, the adaptation
of CSMs for SMT has received little attention. In the first work on lexicalized CSTM,
Le et al. (2012a) present an adaptation experiment in which their SMT system, which
already includes an out-of-domain CSTM is adapted to a new domain by simply running
five additional epochs of the back-propagation algorithm on in-domain data. This simple
strategy gives an improvement of 0.7 BLEU points, which shows that continuous-space
models in general, and SOUL CSTM in particular, can be efficiently used in a DA setting.
However, the experiments in (Le et al., 2012a) still require that each individual model
is retrained with the arrival of in-domain training samples. Moreover, the CSTM is
adapted separately from other models of the system, meaning that the adaptation process
is unaware of potentially important information about the CSTM interaction with other
components.

In this study, we adopt a different practice in which all out-of-domain component
models are kept the same, only the CSTM needs to be adapted using a small in-domain
parallel corpus. Figure 5.1 summarizes our experimental practices : the left-hand side
shows the conventional 2-step building of a SMT system, while the discriminative adap-
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Out of domain In domain

Dev Data

Decode

n-best

Tune

Train Data

Learn features

Dev Data

Decode

n-best

Tune

Parallel Data

n-best

Decode

Train NN

KX

k=1

�kfk(t, s,a)

KX

k=1

�kfk(t, s,a)

K+1X

k=1

�kfk(t, s,a)

�K+1

Figure 5.1 – The two-step building of a SMT system (left-hand side) and the discriminative
training (right-hand side). In the left, training data is used to separately train each feature
model (from which feature scores are given to the log-linear model), then the log-linear
coefficients λ are tuned on the N -best lists of the development set. On the other hand,
discriminative training exploits N -best lists on both training and development data. The
training criterion involves the whole scoring function, and alternatively updates feature
function parameters on the training data, and tunes λ on the development data.
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5.1.3 - Computation of gradient using back-propagation

tation scenario is sketched in the right-hand side. The traditional schema is used to
build the baseline SMT system (including a CSTM), while the discriminative framework
is employed to adapt the CSTM.

5.1.3 Computation of gradient using back-propagation

Stochastic Gradient Descent (SGD) is used to optimize the loss function L(θ, s). The
dependence of the loss function on Gλ,θ(s,h) constitutes an additional layer throughout
which the gradient with respect to θ can be computed using the chain rule. This gradient
is then used to update θ while keeping λ fixed. More precisely, the computation can be
formulated in four steps :

∂L(θ, s)
∂θ

=
∂L(θ, s)

∂Gλ,θ(s,hN1 )
× ∂Gλ,θ(s,h

N
1 )

∂gθ(hN1 )
× ∂gθ(h

N
1 )

∂gθ((w, c) ∈ hN1 )
× ∂gθ((w, c) ∈ hN1 )

∂θ
(5.3)

where the first term reflects the dependence of the loss function on the system score
Gλ,θ(s,hi) of each hypothesis hi ∈ {h1, ...,hN}, which depends itself on the definition of
the loss function. The second term indicates the integration of model score gθ() within
the system score Gλ,θ(s,hi). It is simply λM+1 × IN where IN is the identity matrix of
dimension N . The term is in practice ignored as it only involves a change in the learning
rate. The third term reflects the transition from hypothesis-level to n-gram-level scores
estimated by the neural network. This computation will be described below in greater
detail. Finally, the fourth term is conventionally computed by back-propagation inside
SOUL or NCE models. The computation of this term, along with several approximations
has already been described in Chapter 3.

In general, the gradient at (5.3) requires dealing with each n-gram (w, c) extracted
from N -best hypotheses. Let T be the number of these n-grams. Given the fact that the
log-probability of each hypothesis hi is the sum of log-probabilities of its n-grams, the
third term in (5.3) is a N ×T matrix D in which each element Di,j counts the number of
times the jth n-gram appears in hi. The right-hand side of (5.3) can be rewritten 3 as :

∂L(θ, s)
∂θ

=
T∑

j=1

(
N∑

i=1

Di,j
∂L(θ, s)

∂Gλ,θ(s,hi)

)
∂gθ(w

j, cj)
∂θ

(5.4)

where (wj, cj) denotes the jth n-gram. This gradient differs from the CLL gradient by
weighting coefficients :

kj =
N∑

i=1

Di,j
∂L(θ, s)

∂Gλ,θ(s,hi)

corresponding to (wj, cj). In practice, our gradient calculation follows closely this formu-
lation. 4 We first compute the gradient of the loss function with respect to each hypothesis

3The second term is ignored for simplicity.
4The only difference is that gradient is computed not for each source sentence s, but for a mini-batch

of 128 sentences at once.
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score, each of them is attributed to all n-grams extracted from this hypothesis. Then, we
perform an n-gram grouping process in which coefficients of the same n-gram from differ-
ent hypotheses, or different places in the same hypothesis, are summed up. It also helps
to reduce the number of n-grams to be handled, and to speed up the training. Finally,
θ is updated using the gradients of n-gram-level scores (with respect to θ), multiplied by
the corresponding coefficient kj resulted from the n-gram grouping step. Following this
procedure, the introduction of new forms for the criterion L(θ, s) involves changes only
in the first term of (5.3).

5.2 Discriminative training criteria for CSMs

The generic Algorithm 5 can incorporate any objective function L(θ, s). However, the
discriminative framework exhibits its full advantage compared to the MLE only if L(θ, s)
aims at optimizing the performance of the whole system, and if the optimization is guided
by MT metrics (such as BLEU), instead of by the perplexity of the CSTM. This section
aims to explore several such objective functions.

5.2.1 A max-margin approach

Our max-margin training criterion is derived from the structured perceptron ap-
proach (Collins, 2002; Taskar et al., 2004) described in Section 1.3.1. As explained
above, each hypothesis hi produced by the decoder is scored according to (5.2). Its
quality can also be evaluated by a sentence-level approximation of the BLEU score
SBLEU(hi) (Nakov et al., 2012). Let h∗ be the hypothesis with the best sentence-BLEU
score inHs. A max-margin training criterion (Freund and Schapire, 1999; McDonald et al.,
2005; Watanabe et al., 2007) can then be formulated as follows :

Lmm(θ, s) = max
1≤j≤N

[costα(hj) +Gλ,θ(s,hj)−Gλ,θ(s,h
∗)] (5.5)

where the cost function, defined as :

costα(hj) = α(SBLEU(h∗)− SBLEU(hj)) (5.6)

reflects the cost paid by choosing hj instead of the best hypothesis h∗. This objective
function is similar to the loss (1.12) used to tune λ, except that here the general scoring
function Gλ,θ(.) depends both on the neural network and the log-linear coefficients. We
also multiply the sentence-BLEU difference by a factor α in order to adjust the mar-
gin according to the scale of system-level scores. Taking α = 0 transforms the general
max-margin criterion to a structured perceptron loss (Collins, 2002). The goal is to dis-
criminatively learn to give the highest model score to the hypothesis h∗. Moreover, the
margin term enforces the scoring difference between h∗ and the rest of the N -best list to
be greater than the BLEU difference.
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5.2.2 - Pairwise ranking

To compute the gradient for training purpose, we use the following gradient :

∂Lmm(θ, s)
∂Gλ,θ(s,hi)

=





−1, if hi = h∗

1, if hi = argmax
1≤j≤N

[costα(hj) +Gλ,θ(s,hj)]

0, otherwise
(5.7)

which assigns non-zero terms only to the oracle hypothesis h∗ and another one obtained
from the argmax operation. The former derivation can be identified before the training
starts (as N -best lists are kept fixed during training), while the latter only requires to be
chosen from the N -best list. The framework of N -best list rescoring henceforth helps us
to simplify the gradient computation for the update of θ.

However, a source sentence s can have, within the N -best list, several good translations
that differ only slightly from the best hypothesis. The max-margin objective function
defined above nevertheless considers that all hypotheses, except the best one, are wrong.
The ranking-based approach defined below tries to correct this weakness.

5.2.2 Pairwise ranking

Inspired by the pairwise ranking approach (Hopkins and May, 2011), we define another
criterion that aims to simulate the model score to follow the ranking of hypotheses ac-
cording to their sentence-BLEU scores. Let ri be the rank of the hypothesis hi

5 when
the N -best list is reordered by the sentence-level BLEU, this criterion is defined as :

Lpro(θ, s) =
∑

1≤i,k≤N

I{ri+δ≤rk,Gλ,θ(s,hi)<Gλ,θ(s,hk)} (−Gλ,θ(s,hi) +Gλ,θ(s,hk)) . (5.8)

Note that this loss function does not involve all hypothesis pairs, since two hypotheses
are included in the sum only if they are sufficiently apart in terms of their ranks. Formally,
the absolute difference of ranks should be greater than a threshold δ, here δ is an predefined
integer hyper-parameter. The ranking problem is thus reduced to a binary classification
task taking candidate translation pairs as inputs.

However, a major weakness of this kind of criteria is that not all candidate pairs are
equally relevant to give a high BLEU score. Instead, a heavily mis-ranked hypothesis
pair, in which the best hypothesis is much better than the other in terms of BLEU, but
is undermined by the system, should be taken into account with a strong emphasis. PRO
described in (Hopkins and May, 2011) resolves this problem by resorting to a sampling
routine by which hypothesis pairs are sampled based on the BLEU difference between
the two hypotheses inside each pair. The procedure ensures that a more relevant pair
(with large difference in terms of sentence-BLEU score) will be included into the loss
function more frequently than a less relevant one. In this work, we however advocate an
adaptation of margins : instead of adopting a margin fixed to 1 as in Equation (1.13),
we use a cost-based margin as defined in Equation (5.5). More precisely, the ranking
criterion (5.8) is generalized in such a way that for each pair of hypotheses (hi,hk) such
as ri + δ < rk, the scoring difference Gλ,θ(s,hi) − Gλ,θ(s,hk) should exceed a positive

5The best hypothesis has rank 1, while the worst has rank equal to the size of the N -best list.
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margin which is α(SBLEU(hi)− SBLEU(hk)). Let us define the set of all critical pairs
of hypotheses :

Cαδ,pro−mm = {(hi,hk) : 1 ≤ i, k ≤ N, ri + δ ≤ rk, Gλ,θ(s,hi)−Gλ,θ(s,hk)

< costα(hk)− costα(hi)} (5.9)

where the cost function costα(.) is still defined by (5.6). Then the objective function that
combines both the pairwise ranking and max-margin criteria is defined as follows :

Lpro−mm(θ, s) =
∑

(hi,hk)∈Cαδ

costα(hk)− costα(hi)−Gλ,θ(s,hi) +Gλ,θ(s,hk). (5.10)

Taking α = 0, this function is equivalent to the pairwise ranking training (5.8). α > 0
modifies the set of critical pairs : at first glance it appears only to extend this set, as
costα(hk) − costα(hi) ≥ 0. However it also discriminates relevant pairs from the full set
of all pairs. Indeed, the larger the BLEU difference is, the harder it is to remove the
corresponding pair (hi,hk) from Cαδ . In other words, more relevant pairs are used by the
optimization a greater number of times than less relevant ones. As a consequence, this
definition of margins yields a similar effect without explicitly introducing the sampling
routine employed in PRO. Moreover, we can flexibly adjust its contribution throughout
the hyper-parameter α.

Finally, all discriminative criteria that have been described can be rewritten under the
following form :

L(θ, s) =
∑

(hi,hk)∈Cαδ

costα(hk)− costα(hi)−Gλ,θ(s,hi) +Gλ,θ(s,hk) (5.11)

with the critical set Cαδ being defined by each approach. For the max-margin crite-
rion (5.5), Cαδ contains only one hypothesis pair :

Cαδ,mm =

{
(h∗s,hi),hi = argmax

1≤j≤N
(costα(hi) +Gλ,θ(s,hi))

}
(5.12)

where the cost function of h∗s is zero : costα(h∗s) = 0. For the pairwise ranking criterion,
the set has already been defined by (5.9). A variant of this criterion defines the threshold
δ in terms of sentence-BLEU score as does the PRO tuning algorithm (Hopkins and May,
2011), and considers the following critical set :

Cαδ,pro−mm−sbleu ={(i, k) : SBLEU(hk) + δ ≤ SBLEU(hi),

Gλ,θ(s,hi)−Gλ,θ(s,hk) < costα(hk)− costα(hi)} (5.13)

which specifies a variant of our PRO-MM criterion. For the rank-based threshold, δ is set
to 250 for 300-best lists, while the sentence-BLEU based threshold is set to 0.05.

No matter how this set needs to be defined, the gradient with respect to the score
Gλ,θ(s,hi) will be the number of times hi appears in Cαδ at the second position in a pair
(negative example), subtracted by the number of times it appears at the first position
(positive example).
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5.2.4 - Expected-BLEU and ListNet optimizations

5.2.3 Maximizing conditional log-likelihood on N-best lists

We have so far considered the hypothesis model scores in terms of their absolute values.
These quantities can also be probabilistically interpreted, by assigning a probability to
each hypothesis in the N -best list Hs as follows :

pθ(hi|s) =
exp(β ×Gλ,θ(s,hi))∑

h∈Hs

exp(β ×Gλ,θ(s,h))
(5.14)

which is similar to Equation (1.11) discussed in Chapter 1, except that here the log-linear
scoring function is also considered as a function of θ. Thanks to this interpretation, we
can define an N -best-list-based CLL criterion which is the negative log-likelihood of the
oracle translation h∗s given the source sentence s and the corresponding Hs :

Lcll,N−best(θ, s) = − logpθ(h
∗s|s)

= −β ×Gλ,θ(s,h
∗s) + log

(∑

h∈Hs

exp(β ×Gλ,θ(s,h))

)
(5.15)

where h∗s defines the best BLEU hypothesis in the N -best list.

The gradient term corresponding to this objective function is computed as follows : 6

∂Lcll,N−best(θ, s)
∂Gλ,θ(s,hi)

= −Ihi=h∗s + pθ(hi|s)

where pθ(hi|s) is computed by (5.14). The general gradient computation has already
been described in Section 5.1.3.

5.2.4 Expected-BLEU and ListNet optimizations

We also derive the expected-BLEU and ListNet optimizations for the CSTM from the
corresponding objective functions used to train the log-linear coefficients (Equation (1.10)
and (1.16)). Here we rewrite these functions under the following forms :

Lexpected−BLEU(θ, s) = −xBLEUs
θ = −

∑

hi∈Hs

SBLEU(hi)pθ(hi|s) (5.16)

LListNet(θ, s) = −
∑

hi∈Hs

pSBLEU(hi)× logpθ(hi|s) (5.17)

where xBLEUs
θ denotes the expected sentence-BLEU score computed on hypotheses in

Hs, and according to the probability distribution pθ(.) (Equation (5.14)), while pSBLEU(.)
is another distribution on Hs derived from sentence-BLEU scores computed by :

pSBLEU(hi) =
exp(γ × SBLEU(hi))∑

h∈Hs

exp(γ × SBLEU(h))

6β appears in the corresponding gradient, just as in case of Expected-BLEU and ListNet optimizations,
but we ignore it in the formula as well as in our implementation as it only implies a change in learning
rates.

112



Experimental configurations

Config. Domain / SMT Initialization
CSM

Train data Relationship
(1) & (2)dev/test system (1) CSM (2)

random

TED’2011/
tst2010/
dev2010

WMT’13
n-code (12M)

random

107, 058
of TED

(2) ∩ (1) = ∅
|(2)| � |(1)|

init.
WMT CSTM from CLL

adapted CSTM on WMT
Mono-init from NNLMs
TED (a) on TED
CLL (a) from CLL
fine-tuned model of (a)
Mono-init from NNLMs
WMT (b) on WMT
CLL (b) from CLL
fine-tuned model of (b)
Training TED’2014/

ted.dev/
ted.test

n-code on from CLL
model on
TED

180K of
TED

(2) = (1)TED 2014 TED (180K)
Adaptation n-code on (2) ∩ (1) = ∅
TED 2014 WMT (12M) |(2)| � |(1)|
Partial

training on
medical Medical/

devel/
test

n-code on
medical incl.

P-A
from CLL
model on
Patent-
Abstract

Patent-
Abstract
(200K)

(2) ⊂ (1)
|(2)| � |(1)|

"Adaptation"
on Medical

n-code on
medical

except P-A

(2) ∩ (1) = ∅
|(2)| � |(1)|

Table 5.1 – Details about the experimental set-ups.

in which, following (Niehues et al., 2015), we set γ to 100. The gradient terms of these
two criteria are :

∂Lexpected−BLEU(θ, s)

∂Gλ,θ(s,hi)
= pθ(hi|s)× (xBLEUs

θ − SBLEU(hi))

∂LListNet(θ, s)
∂Gλ,θ(s,hi)

= pθ(hi|s)− pSBLEU(hi)

5.3 Experimental configurations

In order to assess the impact of different strategies on the discriminative framework, we
perform experiments on training and adaptation tasks in two different domains. The first
domain is derived from a lecture translation task (TED Talks task), whereas the second
domain is the medical translation task of WMT’2014.
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5.3.1 - Task and corpora

5.3.1 Task and corpora

The first set of experiments is carried out in a Domain Adaptation situation, where
in-domain data corresponds to a lecture translation task, and the baseline system is a
state-of-the-art out-of-domain SMT system which has been intensively trained for a news
translation task. The goal is therefore to quickly and efficiently adapt the SMT system by
only adapting the CSTM. The task considered here is derived from the text translation
track of IWSLT’2011 from English to French (the TED Talks task (Federico et al., 2012)),
where a (in-domain) training dataset containing 107, 058 aligned sentence pairs is made
available. As explained above, this corpus serves only to adapt the CSTM, i.e to adapt
the parameters θ. The baseline and out-of-domain system is trained in the condition of
the shared translation task of WMT’2013 evaluation campaign. 7 This system includes
a CSTM that will be used as the starting point for adaptation. The official development
and test sets respectively contain 934 and 1, 664 sentence pairs. Following (Le et al.,
2012a), these sets are swapped, the tuning of the log-linear coefficients λ is carried out
on 1, 664 sentences of the latter, while the final test is on 934 sentences of the former.

To investigate the impact of model initialization on the performance of the discrimina-
tive framework, the experimental configuration is also extended to include other initializa-
tion schemas for CSTMs (see the upper part of Table 5.1). For SOUL CSTMs, the model
can be initialized using monolingual NNLMs trained on in-domain (mono-init TED (a))
or out-of-domain (mono-init WMT (b)) corpora. The NNLMs serve as a tool to build the
output vocabulary hierarchical structure; this structure is then fixed for further training
and building of the initial bilingual models (Section 3.1.2). For NCE models, we initialize
θ using in-domain NNLMs. These initialization scenarios are compared with the random
initialization, and with the scenario in which discriminative training is only considered
as a fine-tuning phase for CSTMs which have been pre-trained by the CLL criterion on
TED data (CLL (a) & (b) fine-tuned).

For the second set of experiments, the discriminative framework is evaluated both in
training and adaptation scenarios (the lower part of Table 5.1). In the training scenario,
the CSTM is trained on the same parallel data as the one used to train the baseline SMT
system. In the adaptation scenario, as described above, large out-of-domain corpora are
used to train the baseline SMT system, while the CSTM is trained on a much smaller,
in-domain corpus. An intermediate situation (partial training) is when only a fraction
of the SMT training data is reused to estimate the CSTM : this situation is interesting
because it allows us to train the CSTM much faster than in the training scenario.

Two domains are investigated in this set of experiments. For the TED Talks task,
we use the 2014 version 8 which contains 180K in-domain sentence pairs. The out-of-
domain is still the corpora accepted for the English-to-French shared translation task of
WMT’2013. The second domain is the medical translation task of WMT’2014 9 (English-
to-French) for which we use all authorized in-domain corpora (above 4M sentence pairs).
The Patent-Abstract corpus, made of 200K sentence pairs, is used either for CSTM adap-
tation or partial training. Note that a similar set-up has been described in Chapter 3

7http://www.statmt.org/wmt13/ .
8http://workshop2014.iwslt.org/ .
9www.statmt.org/wmt14/medical-task/ .
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Experimental configurations

(Table 3.1), except that here we discriminatively train or adapt the CSTMs; moreover,
the SMT system varies (the lower part of Table 5.1) in order to examine its impact on the
performance of the discriminative framework (Section 5.4.4). We pay particular attention
to the relationship between the dataset used to train CSTMs and the one used for SMT
system training; this relationship decides whether the current task is of adaptation or
training situation. The relative sizes of corpora are also worth some attention.

Finally, the Adaptation TED 2014 (Table 5.1) is rerun with several discriminative cri-
teria in order to assess the impact of these criteria on the translation performance of the
final system (Section 5.4.3). The discriminative framework is proved to be very efficient
in this configuration; the translation performance however depends strongly on the ob-
jective function used to update the model parameters θ. In all experiments described in
this chapter, the batch N -best MIRA, as described in Section 1.3.1 and implemented in
MOSES, is used to tune λ.

5.3.2 Translation system and model structure

The SMT systems are based on the bilingual n-gram approach to SMT described in Sec-
tion 1.1.3 and constructed from an open source implementation. 10 The CSTM structure
is the lexicalized model based on the n-gram approach (Section 2.4.2) for which we still use
hyper-parameters summarized in Table 3.2. As formulated in Section 2.4.2, four neural
network models can be learnt which correspond to various factorizations of p(t, s|a) :

p(t, s|a) =
L∏

l=1



|tl|∏

k=1

p(tkl |cn−1(tkl ), cn−1(s1l+1))×
|sl|∏

k=1

p(skl |cn−1(t1l ), cn−1(skl ))




=
L∏

l=1



|sl|∏

k=1

p(skl |cn−1(skl ), cn−1(t1l+1))×
|tl|∏

k=1

p(tkl |cn−1(s1l ), cn−1(tkl ))




For the sake of clarity, we focus our study on models estimating p(tkl |cn−1(tkl ), cn−1(s1l+1))
and p(tkl |cn−1(s1l ), cn−1(tkl )). Similar trends were observed with other CSTMs.

For the discriminative training and adaptation tasks, baseline SMT systems are used
to generate respectively 600 and 300 best hypotheses for each sentence in the in-domain
corpus. The threshold δ in the PRO-MM criterion (Equation (5.9)) is set to 250 for 300-
best, and to 500 for 600-best lists. The sentence-BLEU-based threshold is set to 0.05
(Equation (5.13)), while α is set empirically. As a convention throughout all experiments
in this dissertation, reported BLEU scores are averaged over 8 MIRA runs from random
initial points. For a fair comparison, all BLEU scores reported are obtained after a tuning
phase on the development set, including out-of-domain systems.

10perso.limsi.fr/Individu/jmcrego/bincoder.
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5.4.1 - Domain Adaptation on TED Talks
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Figure 5.2 – (a) : Evolution of BLEU scores on the dev set using three discriminative
criteria described in (5.5), (5.8) and (5.10). Vector λ is updated every 200 sub-iterations
(mini-batches). (b) : Evolution of BLEU scores on the dev set with different values of α.
Lpro−mm is used in all cases.

5.4 Experimental results

5.4.1 Domain Adaptation on TED Talks

We first consider the Domain Adaptation task as described in Section 5.1.2. The ex-
periments aim at comparing the discriminative adaptation framework (Figure 5.1) with
the usual method (Le et al., 2012a) where CSTMs are retrained with the new in-domain
data. The experimental configuration is WMT CSTM adapted from Table 5.1 and only
SOUL CSTMs are used. Figure 5.2a compares the three discriminative criteria respec-
tively defined in (5.5), (5.8) and (5.10) in terms of BLEU scores on the development
set when adapting the model estimating p(tkl |cn−1(tkl ), cn−1(s1l+1)). According to these
results, the pairwise ranking criterion, with or without max-margin, clearly outperforms
the max-margin approach (5.5). This result outlines the benefit of using criteria based
on multiple hypotheses from different parts of the N -best list, rather than only on the
pair of hope and fear candidates as does the max-margin loss. Indeed, the gradient of
the max-margin criterion computed by (5.7) gives non-zero terms only to two hypotheses,
while the pairwise ranking objective involves much more candidates in the optimization
of θ. The participation of a large number of hypotheses would give to the pairwise rank-
ing training more reliable information about which word choices need to be rewarded or
penalized. Moreover, the pairwise ranking strategy also allows us to deal with multiple
good translations situated in the upper part of the N -best list, instead of updating θ
solely toward the oracle translation.

To assess the impact of the margin in Lpro−mm, we plot on Figure 5.2b the evolution
of the BLEU score on the development set as a function of α. When α = 0, the objective
function, equivalent to the pairwise ranking Lpro, equally considers all potential pairs
of hypotheses for which the difference in ranks is superior to δ. By increasing α, the
optimization focusses more strongly on pairs with large difference in terms of sentence-
BLEU score. This discrimination corresponds to an improvement of 0.4 BLEU point in
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System dev test
Baseline systems (out-of-domain)

n-code 33.9 27.6
n-code + CSTM WMT 34.4 28.5

Adapted systems
n-code + CSTM CLL adapted 34.9 29.0
n-code + CSTM Lmm adapted α = 100 35.2 29.3
n-code + CSTM Lpro adapted 35.4 29.4
n-code + CSTM Lpro−mm adapted α =
100

35.8 29.6

Table 5.2 – BLEU scores obtained for different adaptation schemes of the CSTM for
p(tkl |cn−1(tkl ), cn−1(s1l+1)) with WMT baselines : maximum conditional likelihood (CLL)
vs discriminative adaptation. The log-linear coefficients of the baseline systems are re-
tuned using the in-domain dev set.

our experiments, while beyond α = 100, the performance starts to drop.

The results of adapting the model estimating p(tkl |cn−1(tkl ), cn−1(s1l+1)) are presented
in Table 5.2. The upper part reports the baseline BLEU scores. Initial results are
obtained with the out-of-domain one-pass system, and a 0.9 BLEU point improvement
is obtained when rescoring its output with the out-of-domain CSTM. The lower part
of Table 5.2 summarizes the results obtained with various adaptation methods : the
conditional likelihood (CLL) optimization yields an additional increase of 0.5 BLEU point,
which is doubled when using the discriminative objective function Lpro−mm to perform
adaptation. As showed in the middle part of Table 5.3, similar improvements are obtained
with the adaptation of the model estimating p(tkl |cn−1(s1l ), cn−1(tkl )).

Finally, the lower part of Table 5.3 compares the performance obtained by our dis-
criminative adaptation method to the one published in (Le et al., 2012a) for a similar
experimental set-up. In our experiment (the last line), in-domain data is only used to re-
tune λ in the baseline system, and to perform discriminative adaptation for two CSTMs.
In (Le et al., 2012a), the SMT system is entirely re-trained from scratch to integrate
in-domain data (from word alignments to large scale target language model), and all four
CSTMs defined by the last formulation in Section 2.4.2 are adapted using the CLL cri-
terion. This experiment shows that we can achieve slightly better performance by only
adapting two CSTMs with the proposed adaptation method.

5.4.2 Initialization issues

Initialization of the CSM parameters θ and of the log-linear coefficients λ is an impor-
tant issue when using the discriminative procedure. In (Gao et al., 2014; Auli and Gao,
2014), the authors initialize λM+1 to 1, and normalize all other log-linear coefficients.
In this dissertation, we however initialize λM+1 by optimizing it on development set us-
ing initial parameter values θ of the CSTM, as well as parameters of other component
models which have been included in the SMT system. The initial values of θ hence play
an important role in Algorithm 5, as they also influence the initialization of λ which,
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System dev test
Baseline systems (out-of-domain)

n-code 33.9 27.6
n-code + CSTM WMT 34.6 28.2

Adapted systems
n-code + CSTM CLL adapted 35.1 28.7
n-code + CSTM Lpro−mm adapted α = 100 35.5 29.3

Model combination
n-code (+TED) + all CSTMs CLL
adapted (Le et al., 2012a)

36 29.7

n-code + all WMT CSTMs + 2 CSTMs
Lpro−mm

36.3 29.8

Table 5.3 – BLEU scores obtained for different adaptation schemes of the CSTM for
p(tkl |cn−1(s1l ), cn−1(tkl )) in the middle part, and with model combination in the lower
part. The notation n-code (+TED) emphasizes that for this system the baseline SMT
system is re-trained with out-of-domain and in-domain data, while in all other cases the
baseline system only uses out-of-domain data.

dev test
Baseline system 33.9 27.6

Adding a standard CSTM
NCE mono-init TED (a) 34.8 28.8
Adding a discriminatively trained CSTM
random initialization 34.3 28.5
mono-init TED 35.2 29.1
CLL (a) fine-tuned 35.4 29.7
Oracle 46.1 39.0

Table 5.4 – Comparison of results obtained in terms of BLEU scores with different un-
normalized CSTMs. The term mono-init (TED or WMT) indicates a CSTM initialized
with monolingual models trained on the corresponding monolingual dataset.

altogether constitutes the starting point of our iterative procedure. In this section, we
present an empirical study to evaluate different initialization scenarios for θ. These pa-
rameters can be randomly initialized, or get their values based on monolingual models
as described in Section 3.1.2 (mono-init TED / WMT). The third scenario consists of
using the discriminative procedure only in a fine-tuning phase, while the CSTM is pre-
trained by optimizing its CLL (or an approximation using the NCE algorithm). This
technique hence takes into account a mixture of information from various sources : com-
bination between the n-gram-level information on word frequencies and the sentence-level
information on translation hypotheses, combination between unsupervised (with SOUL
or NCE) and supervised training guided by sentence-BLEU scores.

The TED Talks adaptation set-up is still used, except that various initialization scenar-
ios are explored (Table 5.1), while both SOUL and NCE CSTMs are involved. The upper
part of Table 5.1 summarizes several experimental configurations used in this section.
The PRO-MM criterion (Equation (5.10)), which has obtained the best performance in
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dev test
Baseline system 33.9 27.6

Adding a standard CSTM
SOUL mono-init TED (a) 35.1 28.8
SOUL mono-init WMT (b) 35.2 28.9
Adding a discriminatively trained CSTM
random initialization 33.8 27.6
mono-init TED 35.0 28.9
CLL (a) fine-tuned 35.7 29.3
mono-init WMT 35.2 29.5
CLL (b) fine-tuned 35.9 29.5
Oracle 46.1 39.0

Table 5.5 – Comparison of results obtained in terms of BLEU scores with SOUL-structure
models.

the precedent experiment is employed and parameter α is set to 100. In order to compare
different training methods and initializations, the first experiments involve un-normalized
models, which can be trained using the NCE algorithm, the discriminative method, or a
combination of these two.

Table 5.4 presents the results obtained with different training criteria and initialization
techniques. The conventional CSTM structure, trained with NCE algorithm, gives an
improvement of 1.2 BLEU points over the baseline system.

The second part of the table compares different results using the discriminative cri-
terion (PRO-MM) and shows the importance of initialization for this training method.
Starting from a random initialization, the discriminative model obtains a significant gain
of 0.9 BLEU points, which however is less than the gain obtained by NCE CSTM. How-
ever, if we use the same initialization technique as with the NCE CSTM (i.e mono-init
TED setting), the discriminative model yields an additional gain of 0.3 BLEU points
compared to the NCE CSTM. Finally, the best result is obtained with the combination
of these two criteria : the model is first pre-trained with the NCE algorithm, then fine-
tuned using the discriminative framework. This configuration gives to the SMT system
(with only one CSTM included) an impressive gain of 2.1 BLEU points, and this only
with a simple integration using N -best rescoring.

Further experiments are carried out to perform the same comparison on the SOUL
structure, with results presented in Table 5.5. We can observe that training SOUL mod-
els from initializations either on in-domain or out-of-domain data obtains similar results
(only 0.1 BLEU point difference), and also similar to the one obtained with the NCE
model. However, the performance of the discriminative framework strongly depends on
the initialization value. Indeed, starting from a random initialization, we do not obtain
any improvement compared to the baseline system. When using the initialization strategy
based on NNLMs (which is also employed by SOUL models trained with the CLL crite-
rion), the performance depends on whether the NNLMs have been trained on in-domain
(mono-init TED setting) or out-of-domain (mono-init WMT setting) corpora. Our exper-
imental results show that initializing using out-of-domain data significantly outperforms
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the one using in-domain data, no doubt because of the effect of combining these two
corpora in the first scenario. More interesting is the fact that, if only in-domain data is
used, the discriminative method does not seem to outperform the CLL optimization from
the same mono-init TED starting point (28.9 versus 28.8); however when out-of-domain
data is used (the mono-init WMT setting), the discriminative method clearly outper-
forms the CLL training (29.5 versus 28.9). It seems likely that discriminatively trained
models are capable of remembering information provided during the initialization step,
while CLL-trained models fail to exploit it. This capacity could be attributed to the word
embeddings which are kept fixed during our discriminative adaptation. 11 This feature
becomes relevant in situations where data comes from different sources and domains, such
as Domain Adaptation tasks described in the previous experiment.

In all experiments with SOUL and NCE CSTMs, the combination of n-gram-level
and sentence-level training criteria (the fine-tuning configurations) obtains the best per-
formance. This observation is related to the work of (Collobert and Weston, 2008; Col-
lobert et al., 2011) in which the authors use some unlabelled training data to learn word
embeddings, before using these feature vectors for supervised tasks. Compared to the
expected-BLEU training, described for instance in (Auli and Gao, 2014), our method
has an advantage that comes from n-gram-level information and pre-trained word feature
vectors.

All in all, starting the discriminative procedure on top of an NCE model seems to
deliver the best result. Moreover, NCE trained models are un-normalized, which reduces
the computational cost of computing the scores of N -best lists for the entire CSTM
training set. This is hence our preferred experimental configuration for the rest of this
chapter.

5.4.3 A comparison between discriminative criteria

We extend the comparison between max-margin and pairwise-ranking approaches (Sec-
tion 5.4.1) to also include other discriminative criteria described in Section 5.2. The
experiments are conducted in the Adaptation TED 2014 configuration of Table 5.1, where
the conventional development and test sets are used for tuning λ and for testing. Following
the conclusion from the precedent section, we pre-train the CSTM using NCE algorithm
on the TED Talks corpus, and use it as the starting point for the discriminative procedure.

Table 5.6 compares the results obtained under this configuration using the different
criteria. The upper part reports baseline scores on the development and test sets, while
the second part presents improvements obtained by integrating the NCE-trained CSTM
into the baseline system. Adding the CSTM into the SMT system yields gains of 0.7
BLEU points on the development set, and of up to 1.0 BLEU on the test set. Continuing
the training process with the discriminative procedure amplifies these gains respectively
to 1.3 and 2.1 BLEU in case the PRO-MM criterion is used.

The two versions of the threshold δ described in Section 5.2.2 here obtain similar results

11We have also experimented with conditions where the embeddings were modified; however no signif-
icant difference was observed.
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Criterion train dev test
Baseline system

33.3 28.5 32.0
Baseline + CSTM NCE

34.9 29.2 33.0
Baseline + CSTM discriminative

Max-margin α = 100 34.9 29.6 32.9
PRO 35.3 29.6 33.4
PRO-MM α = 75 35.9 (+ 1.0) 29.8 (+ 0.6) 34.1 (+ 1.1)
PRO SBLEU-threshod 35.2 29.5 33.5
PRO-MM SBLEU-threshold α = 100 35.7 29.7 34.0
CLL on N -best list 35.5 29.8 (+ 0.6) 33.5
expected-BLEU 34.7 29.2 33.0
ListNet 35.4 29.7 33.5

Table 5.6 – Comparing the performance of NCE models trained using different discrimi-
native criteria.

(34.1 versus 34.0). By comparing the 4 PRO-like criteria listed in Table 5.6, we realize
the importance of margins within these criteria. As has been discussed in Section 5.2.2,
setting α > 0 allows the optimization to focus on relevant hypothesis pairs, as they are
more likely to be used for the updates of θ. The use of margins in our PRO-MM criterion
produces further gains of up to 0.7 BLEU points compared to the PRO criterion without
margins (α = 0). The failure of the max-margin criterion by itself to improve BLEU
scores suggests however that the use of a critical set Cαδ containing multiple hypothesis
pairs (instead of using only one pair) is also crucial to obtain better results.

The two objective functions, CLL (on N -best lists) and ListNet, achieve reasonable
gains that are equivalent to the results of the PRO without margins. It is important to
notice that in these criteria, no margin term has been employed. A combination of the
CLL and large-margin optimizations via a cost-augmented score has been described and
investigated in (Gimpel and Smith, 2010) in the framework of linear structured prediction
models.

The most surprising fact is that, contrarily to previous work (Gao et al., 2014; Auli
and Gao, 2014), the expected-BLEU does not give any improvement in our experiments.
In order to further investigate the behaviour of this criterion, we also compute BLEU
scores on the training N -best lists 12 which have been used to discriminatively train the
CSTM. The results in Table 5.6 show that there is a strong correlation between BLEU
scores on the training and test sets. It is observed that the expected-BLEU criterion also
fails to improve BLEU scores (with respect to the Baseline + NCE CSTM setting) even
on the training data. This could be due to the fact that while the model parameters θ are
optimized using the expected-BLEU, the log-linear coefficients λ are tuned using N -best
MIRA which corresponds to another criterion (the hinge loss, or max-margin, as described
in Section 1.3.1). Figure 5.3, which plots a typical trend of the expected-BLEU score on
the development set during training, illustrates this phenomenon. While this score im-

12Like scores on the development and test sets, these scores are also averaged over 8 MIRA runs from
random initializations.

121



5.4.4 - The discriminative training of CSTMs

0 2 4 6 8 10 12 14
Intervals

28.2

28.3

28.4

28.5

28.6

28.7

28.8

28.9

29.0

xB
LE

U 
on

 d
ev

Figure 5.3 – Expected-BLEU scores on the development set re-evaluated at constant time
intervals during training using the expected-BLEU criterion. The x-axis represents the
training time intervals, while the y-axis represents the corresponding BLEU scores.

proves after each time interval, a re-optimization of λ 13 (using N -best MIRA on the same
development set), brings this quantity down. It seems that an incompatibility between
the training and tuning criteria is the main factor that explains the poor performance
of this criterion. While only the batch N -best MIRA is tested in these experiments, the
relative performance of criteria may change with other tuning methods, such as MERT,
PRO, expected-BLEU (Zens et al., 2007) or a ListNet optimizer (Niehues et al., 2015).
The results hence suggest the importance of using the same criterion for the training of
CSTM parameters θ and the tuning of log-linear coefficients λ. We plan an extension of
these experiments with other tuning algorithms to have a more complete conclusion and
to investigate the importance of the consitency between these training criteria. Note that
a related comparative study on the tuning task has been performed in (Zens et al., 2007).

Although using the same criterion with the tuning of λ, the performance of the max-
margin criterion presented in Table 5.6 suggests that always updating towards the fixed
oracle candidate h∗s is too risky. The PRO approach overcomes this problem, while an
incorporation of margins makes it the best companion of the MIRA tuning algorithm in
our training procedure.

5.4.4 The discriminative training of CSTMs

The experiments so far have been carried out in an adaptation framework in which the
baseline SMT system is trained on out-of-domain data, while a small amount of in-domain
data is used to train the CSTM. Despite its small size, this in-domain data is shown to
be very effective to boost the performance of the baseline system. This experimental

13corresponding to the 6th interval in the figure.
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train dev test
Training TED 2014

Baseline n-code on TED 65.6 28.1 32.3
Baseline + CSTM NCE 64.1 28.9 33.1
Baseline + CSTM discriminative 64.9 29.0 (+ 0.1) 33.5 (+ 0.4)
Oracle 78.2 39.1 47.4

Adaptation TED 2014
Baseline n-code on WMT 33.3 28.5 32.0
Baseline + CSTM NCE 34.9 29.2 33.0
Baseline + CSTM discriminative 35.9 29.8 (+ 0.6) 34.1 (+ 1.1)
Oracle 47.6 37.9 46.1

Table 5.7 – BLEU scores for the TED Talks tasks. In each task, the in-domain corpus
is first used to train the CSTM using NCE, which constitutes the initialization for the
discriminative procedure.

train dev test
Partial training on medical

Baseline n-code incl. Patent-Abstract 45.8 40.4 37.4
Baseline + CSTM NCE 45.2 40.8 38.1
Baseline + CSTM discriminative 46.0 41.8 (+ 1.0) 38.8 (+ 0.7)
Oracle 57.6 56.0 52.7

"Adaptation" on medical
Baseline n-code except Patent-Abstract 39.4 39.8 37.2
Baseline + CSTM NCE 40.4 41.2 38.2
Baseline + CSTM discriminative 41.5 41.8 (+ 0.6) 38.9 (+ 0.7)
Oracle 50.7 55.6 52.5

Table 5.8 – BLEU scores for the medical tasks. The Partial training scenario uses the
Patent-Abstract corpus to train the baseline SMT system, while the adaptation scenario
does not. The CSTM is first trained using 200K sentences from the Patent-Abstract
corpus, before being discriminatively trained on N -best lists generated on these same
sentences.

condition is attractive as it provides evidence that, in order to adapt the SMT system
to other domains, one might need only to retrain the CSTM. In this section, we further
investigate the impact of the baseline SMT system over the CSTM discriminative training.
Our experiments aim to identify the necessary conditions that need to be satisfied by the
baseline system in order to guarantee a successful training process. The experimental
configurations are summarized in the lower part of Table 5.1. From previously drawn
conclusions, we only use the PRO-MM criterion with a rank-based threshold 14 δ set to
250 for 300-best, and to 500 for 600-best lists.

Results in Table 5.7 measure the impact of the discriminative training on top of an
NCE model for the two TED Talks configurations. In the adaptation task, the discrimina-
tive training gives a large improvement of 1.1 BLEU points over the CSTM only trained

14Compared to the rank-based threshold, PRO-MM with a sentence-BLEU based threshold makes the
training slower, however does not obtain better performance.
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with NCE, and 2.1 BLEU points over the baseline SMT system. However, for the training
scenario, these gains are reduced respectively to 0.4 and 1.2 BLEU points. The BLEU
scores (in train column) measured on the training N -best lists gives insight to this dif-
ference : in training, these N -best lists contain hypotheses with an overoptimistic BLEU
score, to be compared with the ones observed on unseen data. As a result, adding the
CSTM significantly worsens the performance on the training data, contrarily to what is
observed on the development and test sets. Even if the results of these two conditions
cannot be directly compared (as the baselines are different), it seems that the proposed
discriminative training has a greater impact on performance in the adaptation scenario,
even though the out-of-domain system initially yields lower BLEU scores.

The medical translation task represents a different situation, in which a large-scale
system is built from various but domain-related corpora, among which one is used to
train the CSTM. Nevertheless, results reported in Table 5.8 exhibit a similar trend. For
both conditions, the discriminative training gives a significant improvement, up to 0.7
BLEU points over the model only trained with NCE, and up to 1.7 BLEU points over
the baseline system. Arguably, the difference between two conditions is much smaller than
what has been observed with the TED Talks task, due to the fact that Patent-Abstract
corpus (which is used to discriminatively train the CSTM) only corresponds to a small
subset of the parallel data. However, the best strategy seems, here again, to exclude the
data used for the CSTM from the data used to train the baseline SMT system. This
strategy is most suitable in the Domain Adaptation framework, but still feasible in the
training of large-scale systems where the amount of data exclusively reserved for the
training of CSTMs is insignificant compared to the total amount of bilingual data, as
reflected in Table 5.1.

5.5 Related work

Most recent work in domain adaptation for SMT focuses on the modification of the suf-
ficient statistics by conventional discrete models (Foster and Kuhn, 2007; Bertoldi and
Federico, 2009; Chen et al., 2013), or on data selection (Axelrod et al., 2011; Sennrich,
2012). Our work owes much to recent contributions in discriminative training and tuning
methods for SMT systems that we have reviewed in Section 1.3. While perceptron-based
learning has been first introduced in (Shen and Joshi, 2005; Liang et al., 2006), margin-
based algorithms such as MIRA (Watanabe et al., 2007; Chiang et al., 2008; Cherry and
Foster, 2012) are nowadays considered as more efficient to train feature rich translation
systems. This property is particularly relevant in our case, since we intend to learn a large
set of parameters (θ). Another trend considers the optimization problem as ranking (Shen
et al., 2004; Shen and Joshi, 2005; Hopkins and May, 2011; Simianer et al., 2012). Note
that the ranking task corresponds to the integration of CSTMs based on N -best list
rescoring (Section 2.5.2). In this work, the proposed objective functions borrow from
these two lines of research to both adapt the CSTM (θ) and tune its contribution (λ) to
the whole SMT system. This procedure can be considered as an instance of discriminative
integrated training described in Section 1.3.2.

To the best of our knowledge, the most similar work on discriminative training or
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adaptation of neural network models is (Gao et al., 2014). In this article, the authors
propose to estimate a neural network-based phrase translation model towards the expected
BLEU (the Minimum Risk Training in Section 1.3.1), while tuning λ by standard tools.
Algorithm 5 is very similar to their optimization algorithm, except that in our case, the
feature weights λ are regularly updated for a better and tighter integration of the CSTM
into the SMT system. Moreover, their model only considers phrase pairs in isolation,
while we use a probabilistic model of the joint distribution of sentence pairs. Expected
BLEU training has also been applied to recurrent NNLM (Auli and Gao, 2014).

For ranking language models (Section 2.3.3), (Collobert and Weston, 2008; Collobert
et al., 2011) also introduce a ranking-type objective function, but which aims only to
estimate word embeddings in a multi-task learning framework. Furthermore, Socher et al.
(2013) investigate the use of a max-margin criterion to train a recursive neural network
for syntactic parsing. Interestingly, their model is also used to rerank N -best derivations
generated by a conventional probabilistic context-free grammar. However, as showed in
our experiments, the max-margin criterion alone is less adapted to SMT for lack of a truly
reliable and unambiguous quality measure.

5.6 Conclusions

In this chapter, we have described a discriminative method for training and adaptation
tasks of continuous-space translation models. Compared to the usual CLL training of
CSTMs, this framework has several advantages that lie in a better correlation between
training criteria and the translation performance, and in the training process that is
capable of taking into account all component models of the system. In an adaptation
context, this method improves over the traditional adaptation strategy which requires all
models (including the CSTM) to be retrained, and in which the training of each model is
performed separately from the others. Instead, our approach proposes to only adapt the
CSTM with new in-domain data while keeping intact other system components.

The contributions of this chapter are two-fold. First, we define a set of new training
criteria for CSTMs, which are derived from the discriminative tuning and training of
SMT systems, described in Section 1.3. Two typical loss functions are the max-margin
and pairwise ranking criteria. While the first one is based on the structured perceptron
the goal of which is to discriminatively learn to give the highest model score to the oracle
translation, the second one considers multiple pairs of hypotheses, and is combined with
a max-margin criterion which emphasizes relevant candidate pairs. Second, we evaluate
the discriminative framework and the impact of different aspects within several training
and adaptation situations. Another peculiarity of this chapter is the use of discriminative
criteria on top of the standard CSM structure trained by NCE algorithm.

The experimental results allow us to draw several outstanding conclusions. First,
empirical evidence from the text translation track of IWSLT’2011 English-to-French task
prove the efficiency of the proposed framework in the adaptation situation, and of the
discriminative criteria compared to the CLL optimisation. This experiment confirms an
observation in (Le et al., 2012a) that continuous-space models are promising for Domain
Adaptation, especially through the proposed discriminative adaptation framework.
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5.4.4 - The discriminative training of CSTMs

Second, initialization, in particular of the CSTM parameters, is an important aspect
of the proposed discriminative procedure. By a careful initialization schema using the
CLL criterion, we can achieve a mixture of information from various sources inside the
final model : combination between n-gram-level and sentence-level indications, as well as
of unsupervised and supervised learning. According to experimental evidence, the best
result is obtained by concatenating two modes of learning : first, the model is pre-trained
with CLL optimization (or its NCE approximation), then the discriminative training is
performed as a fine-tuning phase.

Moreover, based on this best configuration, we have compared different discriminative
criteria that have been described in Chapter 1. Two important features of these criteria
have been identified as the main factors in making the proposed procedure successful : the
use of margins via a cost function, and the critical set which considers multiple hypothesis
pairs at once. In particular, it seems that the inconsistency between the update step of θ
and the tuning of λ is a factor that can explain the bad performance of some approaches.

Finally, the impact of the baseline SMT system has also been investigated. Compar-
ing between training and adaptation tasks, adaptation with discriminative method has a
greater impact on the final translation performance. The best strategy consists of exclud-
ing the data for CSTM training from the parallel data used for the baseline SMT system.
This is particularly suited to adaptation situations, but also to large-scale training tasks
where training the CSTM involves only a small fraction of the total training data.
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Conclusion

The work described in this dissertation investigates different methods and strategies to
learn continuous-space models (CSMs) for Statistical Machine Translation (SMT). In
most cases, the use of CSMs in Machine Translation (MT) is based on the encoding of
existing knowledge under the form of feature functions. This log-linear approach gener-
ally allows the system to easily incorporate models of various natures and complexities,
which forms the basis for incremental improvements and developments of SMT systems
reported in the literature. As a consequence, this trend has led to a situation where the
set of feature functions has become so large and diversified that the task of finding an
optimal contribution of each component function has become extremely complicated. The
development and consolidation of algorithms for this tuning step of the log-linear model is
hence primordial for current SMT architectures, and remains until now an active research
direction, especially for large-scale settings (Cherry and Foster, 2012; Yu et al., 2013;
Zhao et al., 2014). An important feature characterizing this research area is the design of
training criteria that tightly incorporate MT quality metrics, and of training procedures
that involve parameters not only from the log-linear model, but from the whole SMT
system.

The development of CSMs for MT also follows this incremental improvement of SMT
systems. 15 This line of research has initiated with the study of monolingual NNLMs (Ben-
gio et al., 2001), then later also includes bilingual CSTMs (Schwenk et al., 2007; Le et al.,
2012a). These models have boosted the performance of SMT systems, as measured in
terms of MT metrics (such as BLEU), but are also considered as being extremely expen-
sive in training and testing, especially for large-vocabulary systems. Moreover, another
problem which originates in the training of traditional language models is the inconsis-
tency between the objective function defined for parameter estimation and the evaluation
metrics derived from the application. NNLMs and CSTMs are often trained to optimize
the CLL corresponding to an intrinsic evaluation using perplexity ; however this measure
has been shown to only loosely correlate with the performance of the CSM within the
final application. It is likely that the CSM parameters are not optimally trained to yield
the best performance for the translation system.

15In spite of the fact that CSMs now can be used as an independent approach for SMT (Sutskever
et al., 2014; Bahdanau et al., 2014), integrating a CSM within a SMT system remains a popular and
much simpler method to obtain good translation performance, and to evaluate the efficiency of the CSM.
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Summary of my contributions

The contributions of this dissertation consist of proposing and evaluating solutions for
these issues in order to obtain a better translation performance of the overall system.
The cost of training and testing a large-vocabulary CSM can be reduced by using the
SOUL output layer (Section 3.1), or the standard model structure trained using the NCE
algorithm (Section 3.2). In Chapter 3, these two methods have proven to be equivalently
efficient approaches to speed up the building of CSMs for SMT. While the training of
SOUL models directly optimizes the CLL, the NCE algorithm belongs to the category of
sampling-based procedures which approximately estimate the gradient of this objective
function based on a small subset of negative examples from the output (or target) vocab-
ulary. Within this category, the NCE CSMs (Mnih and Teh, 2012; Vaswani et al., 2013),
even though also derived from Importance Sampling algorithm, are more advantageous
than Biased Importance Sampling approach (Bengio et al., 2003b; Bengio and Senécal,
2008). Its corresponding training is more stable and delivers self-normalized scores which
speed up the testing phase. Chapter 3 also puts forward an appropriate noise distribution
which guarantees the convergence of the NCE training. In general, a unigram distribution
can be used, subject to the condition that this noise distribution fits the one estimated
on the data used to train the CSM.

The SOUL structure and NCE algorithm help to reduce the complexity of each train-
ing iteration, but the number of such iterations depends on how fast the convergence
is achieved. To improve the convergence speed during the training phase, appropriately
adapting the learning rates is shown to be an important issue (Chapter 4), in particular
for the NCE training which is only an approximation of the CLL optimization. Two
kinds of adaptive learning rates have been investigated : global learning rate scenarios,
and local learning rate regimes which adjust one hyper-parameter for each block of model
parameters (Block-AdaGrad). We have studied both the convergence speed and the sen-
sibility of each method to other hyper-parameters (such as the first learning rate value
and decay coefficient). Our experimental results have shown that the proposed Down-
Block-AdaGrad achieves the best performance (in terms of perplexity) in various training
scenarios involving SOUL and NCE models.

Instead of only training the CSMs towards an intrinsic perplexity measure, our final
goal is to improve their effectiveness in the SMT application. To this end, a discrimina-
tive procedure has been proposed (Algorithm 5) for training and adaptation scenarios,
which draws inspiration from the discriminative tuning and training of SMT systems (Sec-
tion 1.3). For training tasks, the method has two advantages compared to the usual CLL
optimization : a better correlation between the training criterion and final performance,
and the consideration of the other components of the system during the training process.
These experiments also prove the efficiency of discriminative Domain Adaptation, which
requires only to adapt the CSTM while keeping other components intact. In terms of
training criteria, objective functions which have been used for the Discriminative tuning
of SMT systems (such as hinge loss, pairwise ranking or ListNet algorithm) can also be
used in the proposed procedure. However, experimental evidence (Section 5.4.3) has al-
lowed us to identify two important features for improving the performance : the use of
margins via an appropriate cost function, and the inclusion of multiple hypothesis pairs
from the search space. Other aspects have also been investigated, such as initialization
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issues, or the relationship between the baseline system and the training data used for
CSMs, which decides whether we are in a training or adaptation situation (Section 5.4.4).
As a general conclusion, this discriminative framework is shown to outperform the CSMs
which have been trained only by the CLL optimization (or the NCE algorithm), both in
adaptation as well as in training situations. This result suggests rooms for improvements
by adopting training criteria which correlates better with the actual error metric, whereas
work solely based on perplexity may result in disappointing performance. The experi-
mental study also presents more significant gains of this method in adaptation than in
training situations, due to the fact that in the latter, the SMT system, which has been
trained on training data, often produces hypotheses with over-optimistic BLEU scores
compared to the ones that are generated for the test set. It is of general rule to exclude
the training data dedicated for CSMs from the training data of the SMT system. Its use
is hence most suited to adaptation tasks, but also to several training tasks where the total
parallel training data is sufficiently large such that the impact of this exclusion from the
SMT system training data is negligible.

Future work

To have a complete understanding of different discriminative training criteria described
in this dissertation, a direct extension of the comparative study in Section 5.4.3 is to
use various tuning algorithms other than the batch N -best MIRA. The role in the final
performance of the consistency between the training and tuning criteria needs to
be confirmed by future experiments.

The discriminative training framework defines a schema for iteratively adding
multiple component models into the SMT system. Each model is learnt using
the baseline N -best lists rescored with previously added models, in the hope that it
will capture complementary information and correct errors of the previous pass. This
scenario would give a comprehensive training procedure where the impact of CSMs re-
mains measurable, instead of the currently widely-used method where the performance
of CLL-trained CSMs integrated within the systems is unknown before the testing phase.
Weighting differently training examples, similarly to the boosting algorithm (Freund and
Schapire, 1995) also seems to be a promising approach. Moreover, our experiments so far
have been based on the feed-forward neural network. A replication of these experiments
with other model structures, such as the recurrent and convolutional neural networks can
also be foreseen.

An interesting research direction is to investigate the role of word embeddings
in the discriminative framework proposed in Chapter 5. Previous works (Collobert and
Weston, 2008; Le, 2012; Huang et al., 2012a) have provided multiple evidences that the
relatedness between words are well reflected through their embeddings; this property is
considered as a source of improvements of CSMs compared to discrete models. The per-
formance of our discriminative training has been boosted by pre-training word continuous
representations (Section 5.4.2); it suggests that initializing the models using unlabelled
data (such as the training of NNLMs) is always useful. The exploitation of such feature
vectors on other tasks, such as word or phrase alignment model will be a natural extension.
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In the scope of this dissertation, experiments have been carried out based on the N -
best rescoring framework (Section 2.5.2). This approach can be extended in various ways.
On the one hand, it would be interesting to evaluate alternative ways to integrate
discriminatively trained CSMs, such as a more direct integration into the decoder.
The use of such models within decoding is facilitated by the NCE model which provides a
self-normalized output layer with fast inference (Vaswani et al., 2013). Several speeding-
up techniques such as pre-computing the hidden layers (Devlin et al., 2014) or the use
of cache (Vaswani et al., 2013) could be necessary to obtain a computationally efficient
decoder.

On the other hand, other training procedures could be derived from various
integration modes. It is important to notice that the max-margin objective function
described in this work differs from the usual perceptron algorithm by the fact that ref-
erences are often unreachable in SMT; oracle translations are used instead at the cost
however of a loss of the theoretical guarantees. This issue has been discussed in (Huang
et al., 2012b) with the violation-fixing perceptron framework, and applications have been
described in (Yu et al., 2013), or in (Zhao et al., 2014) for hierarchical phrase-based
systems. This idea can be used to discriminatively train CSTMs based on reference
translations instead of the oracle translations extracted from N -best lists as described in
this dissertation.

Neural Machine Translation (NMT) framework is a recently proposed approach
for SMT in which a neural network-based model is trained to directly generate translations
from the source sentences without any external linguistic knowledge and hand-engineered
features. While the work described in this dissertation considers CSMs as a mean to boost
the performance of the actual SMT systems, NMT proposes CSMs as an independent
approach for SMT (Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2014). In
spite of this divergence, a combination between NMT and the ideas proposed in this work
can be formed in different ways. First, it is interesting to assess the performance of our
discriminatively trained CSMs within the NMT framework. Indeed, the SOUL structure
provides an efficient solution for generating texts from large vocabularies (Allauzen et al.,
2013) : a path from the root to a leaf of the clustering tree can be sampled by a sequential
procedure. Such generation capacity is the core of various NMT approaches, but they often
face issues related to large vocabularies (Jean et al., 2015). It seems that CSTMs with
SOUL structure can be modified to work around their dependency on phrasal alignments,
hence will be capable of generating translations in a very efficient way. Second, the
discriminative training framework described in this dissertation is particularly important
to the current NMT systems for which the training mostly relies on the maximization of
CLL. In such situation, the violation-fixing perceptron framework (Huang et al., 2012b)
can be used to lift the dependency on oracle translations from a baseline system, hence
making this discriminative approach a complete and feasible solution for NMT.
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