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resumo Devido ao desenvolvimento de métodos de medição global, recentes 
estratégias de identificação de parâmetros de material baseiam-se na 
informação obtida em testes mecânicos heterogéneos. Os campos de 
deformação desenvolvidos por estes testes permitem uma melhor 
caracterização mecânica de chapas metálicas, o que possibilita reduzir 
consideravelmente o número de testes mecânicos necessários num processo 
de identificação de parâmetros de modelos constitutivos complexos. 
No presente trabalho, uma metodologia de design recorrendo a optimização 
para desenvolver testes mecânicos heterógenos é apresentada. O seu 
principal objectivo consistiu na concepção de um teste mecânico capaz de 
caracterizar o comportamento mecânico de chapas metálicas para vários 
estados de tensão e deformação. Para isso, este estudo foi realizado 
considerando um material virtual obtido a partir de dados experimentais. Além 
disso, um indicador capaz de caracterizar testes mecânicos foi proposto para 
ser posteriormente utilizado na metodologia de optimização. 
Por um lado, o comportamento virtual de um aço macio foi caracterizado 
através de um modelo fenomenológico complexo composto pelo critério de 
plasticidade anisotrópico Yld2004-18p, combinado com uma lei de 
encruamento mista e com um critério macroscópico de ruptura. Para esta 
caracterização mecânica, um processo eficiente de identificação de 
parâmetros foi desenvolvido e o conjunto de parâmetros identificado foi 
validado comparando resultados experimentais e numéricos do processo de 
embutidura de um copo cilíndrico. 
Por outro lado, um indicador quantitativo para avaliar a informação do campo 
de deformação de testes mecânicos foi formulado e a sua performance foi 
avaliada através da análise numérica tanto de testes mecânicos clássicos 
como de testes heterogéneos. 
Relativamente à metodologia de optimização, duas abordagens diferentes 
foram consideradas para a concepção do teste mecânico heterógeno. A 
primeira abordagem consistiu num procedimento de etapa única projectando a 
forma do provete e o carregamento através da utilização de uma ferramenta. A 
segunda abordagem consistiu numa técnica incremental de varias etapas 
projectando a forma do provete e o caminho de deformação através da 
aplicação de carregamento por deslocamentos locais. Os resultados obtidos 
revelaram que a metodologia de optimização proposta permite a concepção de 
testes mecânicos capazes de caracterizar toda a gama de estados de 
deformação e níveis de deformação normalmente observados nos processos 
de conformação de chapas metálicas. 
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keywords mechanical characterization of sheet metals, heterogeneous tests, sheet metal 
forming, Finite Element Method (FEM), inverse methodologies, material 
parameters identification, shape optimization. 

abstract With the development of full-field measurements methods, recent material 
parameters identification strategies call upon the use of heterogeneous tests. 
The inhomogeneous strain fields developed during these tests lead to a more 
complete mechanical characterization of the sheet metals, allowing the 
substantial reduction of the number of tests in the experimental database 
needed for material parameters identification purposes. 
In the present work, an innovative design optimization process for the 
development of heterogeneous tests is presented. The main goal is the design 
of a mechanical test able to characterize the material behavior of thin metallic 
sheets under several stress and strain paths and amplitudes. To achieve this 
aim, the study was carried out with a virtual material, though derived from 
experimental data. An indicator of the mechanical interest of the test was 
proposed, and was used in an optimization procedure to design both the 
boundary conditions and the sample shape. 
On the one hand, the virtual behavior of a mild steel was characterized using a 
complex phenomenological model composed by the Yld2004-18p anisotropic 
yield criterion combined with a mixed isotropic-kinematic hardening law and a 
macroscopic rupture criterion. An efficient material parameters identification 
process based on finite element model updating type was implemented and the 
identified parameters set was validated by performing a deep drawing test 
leading either to full drawing or rupture of the blank. 
On the other hand, an indicator which rates the strain field of the experiment by 
quantifying the mechanical information of the test was formulated. The 
relevance of the indicator was stressed out by the numerical analysis of already 
known classical as well as heterogeneous tests and the results obtained were 
validated by a material parameter sensitivity study. 
Two different optimization approaches were used for designing the 
heterogeneous test, namely (i) a one-step procedure designing both specimen 
shape and loading path by using a tool and (ii) a sequential incremental 
technique designing the specimen shape and the loading path of the specimen 
considering local displacements. The results obtained revealed that the 
optimization approach proposed was very promising for designing a single 
experiment able to fully characterize the several strain paths and amplitudes 
encountered in sheet metal forming processes. 
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résumé 

 
Grâce au développement des méthodes de mesure de champs, de nouvelles 
stratégies d’identification de paramètres matériau de lois de comportement 
mécanique sont proposées, fondées sur l’utilisation d’essais mécaniques 
hétérogènes. Les champs de déformation hétérogènes développés au cours de 
ces essais permettent une meilleure caractérisation du comportement 
mécanique des tôles métalliques et, par conséquent, de réduire 
considérablement le nombre d’essais nécessaires pour identifier les 
paramètres matériau de modèles phénoménologiques complexes. Mais 
comment concevoir ces essais? Dans ce travail, une méthodologie 
d’optimisation pour le développement d’essais mécaniques hétérogènes est 
présentée. L’objectif principal est la conception, par analyse inverse et en 
proposant un indicateur représentatif des états de déformation, d’un essai 
capable de caractériser le comportement mécanique des tôles métalliques pour 
plusieurs états de contrainte et déformation. Pour cela, cette étude a été 
réalisée en considérant un matériau virtuel (acier doux sous forme de tôle 
mince), obtenu à partir de données expérimentales. En outre, un indicateur qui 
caractérise les essais mécaniques a été proposé pour être utilisé dans la 
méthodologie d’optimisation. 
D’un côté, le comportement mécanique de l’acier doux a été représenté avec 
un modèle phénoménologique complexe composé du critère anisotrope de 
plasticité Yld2004-18p, combiné à une loi d’écrouissage mixte et un critère 
macroscopique de rupture. Pour cette loi de comportement, un procédé 
d’identification des paramètres du matériau a été développé et le jeu de 
paramètres identifiés a été validé en comparant des résultats expérimentaux et 
numériques de l’emboutissage d’un godet cylindrique. 
D’un autre côté, un indicateur quantitatif pour évaluer l’information du champ 
de déformation des essais mécaniques a été formulé et sa pertinence a été 
évaluée à travers l’analyse numérique d’essais classiques et hétérogènes de la 
littérature. 
Concernant la méthodologie d’optimisation, deux approches différentes ont été 
considérées pour la conception de l’essai mécanique hétérogène. La première 
approche est fondée sur une procédure en une seule étape, où l’optimisation 
de la forme de l’éprouvette et des conditions aux limites, imposées par un outil, 
a été effectuée. La seconde approche est fondée sur une technique 
incrémentale en plusieurs étapes, en optimisant la forme de l’éprouvette et le 
chemin de déformation, par l’application des déplacements locaux. Les 
résultats obtenus sont comparés et un essai est retenu pour identifier les 
paramètres matériau, en utilisant le matériau virtuel comme référence, afin 
d’illustrer la pertinence de la démarche.  
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Chapter 1  

1 General frame 

1.1 Motivation 

Sheet metal forming, in particular by drawing, is one of the most widely used processes in the 

manufacturing industry of thin metallic sheets. Drawing is the process where a sheet metal blank 

is deformed plastically, by stretching, into a desired part shape. In this stamping process, the 

sheet metal blank is radially drawn into a forming die by the mechanical action of a punch. The 

load applied by the punch forces the sheet metal to flow into the die cavity, leading to the 

shaping of the blank according to the design of the mating punch-die set. Commonly, a blank 

holder clamping the blank against the die is also included in this set-up to prevent the formation 

of wrinkles in the stamped part. When the length of the stamped part is equal to or greater than 

half of its diameter, the process is generally termed as being deep drawing. 

Due to its benefits, namely, a fast production rate generally associated to very small waste 

of raw material and the ability of creating complex parts of superior mechanical properties, the 

deep drawing process is massively used for numerous industrial applications such as the 

production of automotive structural components, aerospace parts and home appliances. 

In the past, the production of metallic parts by deep drawing was often preceded by 

numerous empirical trial-and-error attempts for the quest of the optimum design of the forming 

tools. Such attempts were mostly based on knowledge gained through experience and aimed at 

calibrating the stamping process parameters, such as friction and blank holder pressure, as well as 

to avoid undesired defects in the stamped part, such as wrinkling, earing, thinning and springback. 

Nowadays, due to the great advances made both in modeling and simulation as well as in 

computational systems, the mechanical design of stamped parts is performed firstly by numerical 

simulation. Indeed, the numerical simulation of sheet metal forming, mostly based on the Finite 

Element (FE) method, becomes an everyday virtual tool in engineering practice. Even in the early 

design phases, numerical simulation is carried out. The main aims are verification of the 

manufacturability of the stamped parts and obtaining vital information on optimum tool design 

(Roll, 2007). Moreover, the numerical simulation also allows to increase the complexity and to 
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enhance the performance of designed metallic parts. From the economical point of view, FE 

simulation leads to a considerable decrease of the associated delays and costs with an optimal 

design of components (Kajberg and Lindkvist, 2004), allowing faster and more economical 

manufacturing productions. Thus, the numerical simulation of sheet metal forming processes 

plays a crucial role in the forming industry in order to decrease the design cycle of new products, 

reduce significantly the costs of preproduction and improve the product quality. 

Nevertheless, reliable numerical predictions of sheet forming processes depend on the 

accurate modeling of the mechanical behavior of thin metallic sheets. Therefore, the success of 

these predictions is substantially affected by the quality of the constitutive model used for 

describing the analyzed material as well as by the accurateness of the input set of material 

parameters associated to this model (Haddadi and Belhabib, 2012). 

On the one hand, the numerical simulations require the knowledge of the material behavior 

under several strain paths and strain amplitudes, corresponding to the paths and amplitudes 

encountered during the forming process. Thereby, the constitutive equations implemented in the 

numerical model must be able to reproduce accurately this material behavior. On the other hand, 

the constitutive models include several material parameters that must be determined for each 

material and an efficient identification of these coefficients is essential in order to achieve 

reliability of the numerical predictions. 

Over the years, material parameters have been identified using classical mechanical tests 

characterized by a rather homogeneous strain distribution over the gauge area of the specimen 

(Andrade-Campos et al., 2007; Chaparro et al., 2008). This kind of tests provides stress and strain 

data only for a fixed stress state, being then mandatory to carry out additional tests when the 

chosen mechanical model depends on the information related to several stress states. 

The continuous development of non-linear constitutive models with larger complexity, 

aiming at enhancing the material behavior description of sheet metals, led to an increase of the 

number of material parameters needed to be identified from experiments (Bron and Besson, 

2004; Barlat et al., 2005; Vegter and van den Boogaard, 2006). It imposes the use of an increasing 

number of classical tests and, as a consequence, the material parameters identification process 

becomes more expensive and time consuming. Thereby, it constitutes a serious drawback for a 

straightforward parameters identification of the material behavior. 

Another limitation of the classical tests is the fact that the homogeneous stress and strain 

fields generated do not resemble the complex stress and strain fields that occur in many sheet 

metal forming operations. Therefore, the validity of phenomenological constitutive models is 

limited to situations that are comparable to the range of experiments from which the material 

parameters of these models are identified. Due to this, the material behavior obtained from 

classical tests and described by constitutive models is merely an approximation that in some cases 

proves insufficient for a reliable simulation of complex forming processes (Cooreman et al., 2008). 

In fact, sheet metals undergo multiaxial stress states during forming processes and thus, 

multiaxial loading experiments are highly desirable for the validation of the constitutive models 

used in numerical simulations (Banabic et al., 2010). Thereby, to circumvent the aforementioned 

disadvantages of the classical tests, the material parameters identification of constitutive models 

demands more complex mechanical tests. 
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The full-field measurement (FFM) methods, which have emerged in the last years, directly 

provide displacement or strain field data over a surface during a mechanical test. Such 

measurements on the overall surface of the specimen are a crucial tool for the analysis of 

complex mechanical tests. This kind of methods overcomes the drawback of the strain 

homogeneity of classical tests by monitoring complex strain fields of heterogeneous tests. Due to 

this reason, recent material parameters identification strategies call upon the use of 

heterogeneous experiments. The inhomogeneous strain fields developed during these tests 

reproduce situations close to those encountered in real forming processes, regarding the variety 

of stress states and strain levels obtained in a single experiment (Teaca et al., 2010). It is of great 

interest for the development of more efficient and straightforward material parameters 

identification processes, since (i) a smaller number of experiments (or even a single one) is 

required in the experimental database, (ii) these tests provide more and richer mechanical 

information allowing for a better material characterization of sheet metals and (iii) the quality of 

the identified parameters is improved (Cooreman et al., 2008; Pottier et al., 2011a). 

1.2 Aims of this thesis 

The present work deals with the development of an innovative optimization methodology for the 

computational design of heterogeneous mechanical tests. The main goal is to find the appropriate 

specimen shape and boundary conditions of the test leading to an inhomogeneous strain field 

which characterizes the sheet metal behavior under several strain paths and amplitudes. Hence, it 

is intended with this work to design a heterogeneous test able to promote an enhanced 

mechanical behavior characterization of thin metallic sheets. 

For this purpose, two different design strategies are proposed: (i) a one-step procedure 

that design the specimen shape and loading path using a tool and (ii) a sequential incremental 

technique that design the specimen shape and the loading path of the specimen considering local 

displacements. Whereas the first design strategy is focused on the reproduction of the 

experimental reality since a tool is generally used for applying the displacement for standard 

testing machines, the latter one aims to understand the effect of a complex loading path in terms 

of multisteps as well as local displacements on the achievement of more informative strain fields. 

Within this virtual design approach, an accurate description of the mechanical behavior of a 

sheet metal is fundamental since the reliability of the numerical simulations carried out during the 

optimization process depends on the constitutive model adopted and the input set of material 

parameters. Therefore, the first step of this work is the proper definition of a virtual material 

using a complex constitutive model, including anisotropy, evolution of hardening and a 

macroscopic rupture criterion. This virtual material must be representative of a metallic sheet 

used in drawing. On the one hand, this study involves an experimental database composed by 

several classical tests characterizing a real sheet metal in order to calibrate the complex 

constitutive model which reproduces virtually this chosen material. One the other hand, it 

includes the implementation of an inverse methodology for the identification of the hardening 

and anisotropic material parameters of the constitutive model as well as the calibration of the 

rupture criterion by a mixed experimental-numerical approach. Furthermore, the inverse 
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methodology of material parameters identification must be developed in order to be able to 

identify parameters from classical as well as heterogeneous tests. 

Additionally, in the design of the mechanical test, a suitable analysis of the inhomogeneous 

strain field of the test is definitively a crucial point that must be carefully considered. As a result, 

the formulation of an indicator which rates the strain field of the experiment by quantifying the 

mechanical information of the test is also in the scope of this work. This quantitative indicator 

must be able to analyze accurately the main features of the strain field with the purpose of 

guiding the optimization process in the quest for the optimum design of a heterogeneous test. 

However, the relevance of the indicator should previously be evaluated from already known 

classical and heterogeneous tests in order to inquire about its performance in distinguishing and 

rating different tests.  

Also among the objectives of this thesis is the material parameters identification of the 

constitutive model from one of the designed heterogeneous tests. By this way, the reliability of 

this identified material parameters set can be assessed and compared with the one coming from 

the experimental database composed by several quasi-homogeneous classical tests. 

1.3 Reading guide 

This work is divided into five main parts. The first part, called as Outline, is composed by one 

generic chapter (chapter 1) explaining the motivation as well as the main goals of this thesis. The 

second part (chapters 2 - 4) is the Comprehensive review and comprises a bibliographic study of 

the several strategies applied for material parameters identification purposes, the inverse 

problems formulation and the mathematical equations describing the constitutive models 

adopted in this work. The third part (chapters 5 and 6), designated by Mechanical characterization 

of mild steel, is related to the material parameters identification of the models used for describing 

a DC04 mild steel as well as to the validation of the material parameters identified. In the fourth 

part (chapters 7 and 8), defined as Computational design of mechanical tests, a quantitative 

indicator for evaluating the mechanical information given by the strain field of the test and the 

optimization methodology for designing heterogeneous mechanical tests are presented. The last 

part of this thesis, Final remarks (chapter 9), consists of the main conclusions as well as some 

future developments giving continuity to the present work.  

After a general introduction of this thesis in chapter 1, the following chapters are described: 

 

Chapter 2 A literature survey of the different strategies used for the material parameters 

identification of constitutive models describing the mechanical behavior of sheet metals is 

presented. These different identification strategies are investigated and discussed, taking into 

account the mechanical tests used for characterizing the mechanical behavior of thin metallic 

sheets as well as the mathematical formulations used within each one. 

 

Chapter 3 This chapter deals with the definition and formulation of inverse problems. Both 

inverse problem categories, namely parameters identification and shape optimization are 

presented. The different types of optimization methods used in inverse problems are 

characterized and the optimization algorithms applied in this thesis are introduced. 
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Chapter 4 Some fundamental mathematical concepts applied in the formulation of the 

constitutive modeling as well as the phenomenological models and macroscopic rupture criteria 

adopted to reproduce the mechanical behavior of a DC04 mild steel are described in this chapter. 

 

Chapter 5 The development of a global procedure for a complete characterization of sheet metal 

behavior, including anisotropy, evolution of hardening and rupture is presented. The initial 

anisotropy, evolution of hardening and rupture of a DC04 mild steel are characterized using two 

complex phenomenological model composed by the non-quadratic Yld2004-18p yield criterion 

combined with either an isotropic or a mixed isotropic-kinematic hardening law. Two different 

uncoupled macroscopic fracture criteria are also considered. An efficient inverse methodology for 

material parameters identification based on finite element model updating is implemented. 

Several classical tests considered as homogeneous are used as experimental database for 

identifying the material parameters of the constitutive model. Concerning the characterization of 

the rupture behavior, a uniaxial tensile test up to rupture is used and a mixed experimental-

numerical approach to calibrate the fracture criteria is carried out.  

 

Chapter 6  The reliability of the material parameters identified for both constitutive models as 

well as the critical parameters of both fracture criteria is assessed by a deep drawing test leading 

either to full drawing or rupture of the blank. Strain fields at several stages of the deep drawing 

experiment, recorded by digital image correlation, are evaluated allowing for a better comparison 

between the experimental observations and the results of the numerical simulation. 

 

Chapter 7  A quantitative indicator focused on the evaluation of the strain field information of the 

experiments and able to distinguish and rate different mechanical tests is formulated. In order to 

demonstrate the relevance of this indicator, numerical simulations up to rupture of already 

known classical as well as heterogeneous tests are carried out and are assessed by this indicator. 

The performance of these tests is compared and their reliability to characterize the mechanical 

behavior is rated and ranked. A validation study for the proposed indicator, based on a material 

parameters sensitivity analysis, is also performed in this chapter. 

 

Chapter 8 An optimization methodology focused on the computational design of heterogeneous 

mechanical tests for thin metallic sheets is developed. Within this approach, two different 

strategies, namely (i) a one-step procedure designing both specimen shape and loading path by 

using a tool and (ii) a sequential incremental technique designing the specimen shape and the 

loading path of the specimen considering local displacements, are implemented. A direct search 

optimization algorithm is adopted in order to design by optimization the geometrical as well as 

loading path conditions of both strategies. The quantitative indicator, proposed in chapter 7, is 

applied as cost function to guide the optimization processes. The phenomenological model 

composed by the non-quadratic Yld2004-18p yield criterion combined with a mixed isotropic-

kinematic hardening law, identified in chapter 5, is used for defining the virtual material. Several 

design attempts are performed and the best designed heterogeneous mechanical tests of both 

optimization strategies are presented. Additionally, by using the inverse methodology previously 
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developed in chapter 5, a material parameters identification process for the constitutive model 

used is also carried out from one of the optimized heterogeneous tests. The reliability of this 

identified material parameters set is assessed and compared with the one coming from the 

experimental database composed by several classical tests. 

 

Chapter 9 The main conclusions of this thesis as well as its contributions are presented. Some 

suggestions for future developments in the domain of the present work are also outlined. 
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Chapter 2 

2 Parameters identification strategies 

2.1 Introduction 

Nowadays, a complete mechanical characterization of sheet metals accounting for initial 

anisotropy, evolution of hardening with strain, even up to rupture, and Bauschinger effect 

became crucial for enhanced numerical predictions of sheet forming processes. In fact, over the 

years, constitutive models have been continuously developed in order to include and, further, 

improve the numerical representation of these mechanical properties. 

Most of sheet metals exhibit a significant anisotropic mechanical behavior. This anisotropy 

is mainly due to their crystallographic structure which results of previous thermo-mechanical 

processes, like rolling and annealing, and is characterized by the symmetry of the mechanical 

properties with respect to three orthogonal planes. Such mechanical behavior is defined as 

orthotropy. The intersection lines of the symmetry planes are the orthotropic axes and, in the 

case of rolled sheet metals, their orientations are defined as rolling (RD), transverse (TD) and 

normal (ND) directions, as depicted in Figure 2.1.  

Figure 2.1 – Orthotropic axes of rolled sheet metals. RD, TD and ND stands for rolling, transverse and 

normal directions, respectively (Banabic, 2010). 

Moreover, the anisotropy of a sheet metal during forming is a combination of its initial 

anisotropic behavior with the plastic deformation during the stamping operation (Yoon et al., 
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2006). Therefore, for an accurate numerical simulation of the material behavior over a large strain 

range it is mandatory to take into account the hardening evolution. 

Additionally, the Bauschinger effect is a main characteristics of the mechanical behavior of 

sheet metals and its modeling allows for improved predictions of some defects found in stamped 

parts, such as surface distortion and springback (Cao et al., 2009). It results from the fact that 

representing the Bauschinger effect leads to a better determination of the internal stress 

distribution within the sheet metal after deformation and, consequently, it makes possible to 

perform more reliable springback simulations. Indeed, springback is one of the main problems 

influencing the final product quality in sheet forming, particularly for deep drawing, and then, 

taking the Bauschinger effect into account has been considered by many authors to improve the 

prediction of this undesired defect (Pourboghrat and Chu, 1995; Morestin et al., 1996; Gau and 

Kinzel, 2001; Chung et al., 2005). 

Sheet metal forming operations often lead to complex strain paths and, as a result, several 

stress and strain states, as well as different strain amplitudes, occur in the sheet metal. Hence, the 

numerical simulations of such forming operations require the knowledge of the material behavior 

under these conditions. 

In FE analysis, the description of the mechanical behavior of the material implies the use of 

a constitutive mathematical model. Constitutive equations of such a model involve several input 

parameters related to the mechanical properties of the material. Within a phenomenological 

approach, the initial anisotropy of sheet metals is quantified by anisotropic coefficients and/or 

initial yield stresses at different orientations to RD and at different stress states. On the one side, 

experimental tests performed in monotonic loading paths allow to obtain such information as 

well as to characterize the isotropic hardening evolution of the material. On the other side, 

experimental tests carried out in reversed loading path, such as tension-compression and shear-

Bauschinger, allow to characterize the kinematic hardening contribution, that can represent the 

Bauschinger effect. This experimental data is commonly used for identifying the input parameters 

set of phenomenological models. 

In the case of monotonic loading, several stress states can be studied such as, uniaxial and 

biaxial tension, uniaxial and biaxial compression, plane strain tension and simple shear. Figure 2.2 

shows an overview of the classically used experimental tests and their respective stress states on 

the yield locus.  

As it can be seen in Figure 2.2, the identification of the yield surface (transition between the 

elastic and plastic behaviors) through characteristic points of the yield locus can be performed 

considering several monotonic tests. The main stress states occurring in sheet forming processes 

are reproduced by these experiments. Due to the large diversity of tests proposed over the years, 

different ones can characterize the same stress state and, consequently, the same point of the 

yield locus. For instance, equibiaxial tension can be characterized by means of hydraulic bulge 

test, biaxial tension using cruciform specimen or disk compression test, as shown in Figure 2.2 

(red point).  

It is well known that the prediction capability of the forming simulations carried out by FE 

analysis depends not only on the constitutive model chosen but also on the suitable identification 

of their material parameters, which refers both to the type of the experimental tests being used 

and the parameters identification strategy applied (Haddadi and Belhabib, 2012). 
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Figure 2.2 – An overview of different tests used for the mechanical characterization of sheet metals 

concerning the yield surface definition in terms of the major (σ1) and minor (σ2) stress in the sheet 

plane (Brosius et al., 2011). 

In general, the material parameters are identified by a set of classical mechanical tests 

developing quasi-homogeneous strain fields (Andrade-Campos et al., 2007; Chaparro et al., 2008; 

Carbonnière et al., 2009; Zang et al., 2011). These tests provide stress and strain data only for a 

fixed stress state since their design was often developed based on some assumptions in order to 

establish analytical formulations that give stress and strain from raw signals (Hosford and Caddell, 

2007). However, some of these assumptions may not be accurate such as,  true stress corrections 

in tensile test (Choung and Cho, 2008) or equivalent stress in hydraulic bulge test (Aretz and 

Keller, 2011). Additionally, these classical tests usually allow for the identification of a single 

material parameter (Lubineau, 2009).  

Concerning simple constitutive models (Hill, 1948; Hosford, 1979; Barlat et al., 1991) which 

involve a small number of coefficients, these classical tests seem the most suitable option to 

identify the material parameters. Nevertheless, when non-linear constitutive models with a larger 

complexity are chosen, a large number of parameters must be identified from the experiments 

(Bron and Besson, 2004; Barlat et al., 2005; Vegter and van den Boogaard, 2006; Soare, 2007; 

Yoshida et al., 2013). Therefore, a high number of classical tests must be used in the experimental 

database and it leads to more expensive and time consuming material parameters identification 

process. 

Moreover, the homogeneous stress and strain fields provided by classical tests do not 

resemble the complex stress and strain fields which occur in many metal forming operations. 

Thereby, with the purpose of improving the quality of the parameters identification and, 

consequently, the numerical predictions, it seems more appropriate to characterize the 

mechanical behavior of sheet metals under inhomogeneous and multiaxial strain paths as the 

ones encountered in sheet forming processes. 

Currently, the scientific community is focused on achieving a good compromise between 

time and material consuming as well as the number of tests. Due to this reason, complex 

mechanical tests allowing multi stress and strain states on a single specimen and using full-field 

measurement (FFM) methods (Grédiac, 2004; Grédiac and Hild, 2013) appear as a very promising 
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solution for a more reliable mechanical characterization of sheet metals. This approach also leads 

to the development of more straightforward material parameters identification processes, since a 

smaller number of experiments is required in the experimental database. Actually, it corresponds 

to the recent trend on the mechanical characterization since an increasing number of innovative 

tests promoting heterogeneous strain fields as well as parameters identification strategies have 

been proposed in the last years (Pottier et al., 2011b; Zhang et al., 2014). 

In this chapter, the different strategies used for material parameters identification as well 

as the classical and heterogeneous experimental tests used for characterizing the mechanical 

behavior of sheet metals are investigated and discussed. 

2.2 Inverse methodologies for material parameters identification 

In the past, the accurate identification of the material parameters was a generalized problem for 

the scientific community, mainly due to the increasing complexity of the constitutive models 

(Kleinermann, 2000; Andrade-Campos et al., 2007). At the beginning of the 1990s, the material 

parameters determination was simply achieved through the use of curve fitting techniques, 

considering simple constitutive models and experiments with the assumption of uniform 

distribution of the resulting strains and stresses within the whole volume of the specimen 

(Ponthot and Kleinermann, 2006). However, curve fitting techniques were not valid for complex 

constitutive models and non-homogeneous experiments. Then, Chaboche et al. (1991) proposed a 

trial-and-error procedure for the identification of material parameters. Withal, automatic 

methodologies based on the coupling of FE codes with optimization methods were also 

developed (Schnur and Zabaras, 1992; Cailletaud and Pilvin 1993, 1994; Gelin and Ghouati, 1996) 

and, nowadays, constitute the principal techniques adopted for the material parameters 

identification. This kind of techniques are commonly designated as Finite Element Model 

Updating (FEMU) and consists of an inverse problem where the aim is to determine the input data 

that lead to a final desired result that is previously known. This inverse problem can be solved 

using an optimization methodology whose main goal is to seek for a set of material parameters 

that leads to the smallest difference between the experimental observations and the numerical 

simulation results. In order to do this, the parameters identification framework combines an 

optimization algorithm, responsible for updating the material parameters, with an objective 

function, responsible for defining the gap between experimental and numerical data and that will 

control the all optimization process. During the identification procedure, the material parameters 

set is iteratively updated with the purpose of minimizing the objective function value. Figure 2.3 

depicts a general FEMU strategy applied in material parameters identification. 

An evolution relatively to the experimental data considered in the identification strategies 

was mainly due to the development of FFM methods. Note that FFM methods, that have emerged 

in the last years (c.f. an overview in Grédiac (2004)), directly provide displacement or strain field 

data on the overall surface of the specimen. As a result, it becomes possible to analyze complex 

mechanical tests developing heterogeneous strain fields. Within FFM methods, Digital Image 

Correlation (DIC) technique is widely used due to its simplicity and versatility (Périé et al., 2009). 

Several works made use of DIC technique for different purposes, such as damage analysis 

(Tarigopula et al., 2008; Périé et al., 2009; Abbassi et al., 2013), experimental validation of models 
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(Teaca et al., 2010; Souto et al., 2015) or identification of material parameters  (Belhabib et al., 

2008; Cooreman et al., 2008; Pottier et al., 2011a; Haddadi and Belhabib, 2012; Tardif and 

Kyriakides, 2012; Zhang et al., 2014). 

Figure 2.3 – Parameters identification framework based on FEMU strategy. 

In this way, the identification strategies can be divided into two approaches, concerning the 

experimental data considered, namely: homogeneous and non-homogeneous. On the one hand, 

the homogeneous approach deals with the identification strategies which use stress-strain data 

obtained by classical mechanical tests, mainly performed with conventional specimens and 

characterized by homogeneity on the strain distribution, at least over a restricted area. Here, an 

analytical post-treatment of the experimental data is performed. On the other hand, the non-

homogeneous approach is related to the strategies that use FFM methods applied to 

heterogeneous tests. These identification strategies are based on the experimental 

measurements of the applied load and strain field and, therefore, usually involve obtaining large 

amount of information data out of the experiments.  

Both homogeneous and non-homogeneous identification approaches can be carried out 

using FEMU strategy. Indeed, this strategy consists of the most generalized and popular 

parameters identification process (Grédiac et al., 2006). However, within the non-homogeneous 

approach, the increasing application of FFM methods boosted the development of other 

identification strategies. Thereby, several identification strategies based on full-field analysis have 

been developed such as, for instance, virtual field method (VFM) (Grédiac and Pierron, 2006; 

Pierron et al., 2010; Rossi and Pierron, 2012; Kim et al., 2013), equilibrium gap method (EGM) 

(Claire et al., 2004; Périé et al., 2009), constitutive equation gap method (CEGM) (Geymonat and 

Pagano, 2003; Latourte et al., 2008; Florentin and Lubineau, 2010; Moussawi et al., 2013) or 

reciprocity gap method (RGM) (Bui et al., 2004). Detailed information about these strategies can 

be found in Avril et al. (2008a) and Grédiac and Hild (2013). The majority of these strategies also 

use optimization techniques for the search of parameters of non-linear elastoplastic constitutive 

models. Consequently, these methods can suffer from the problem of multiple solutions (Grédiac 

and Pierron, 2006; Avril et al., 2008a).  
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2.2.1 Homogeneous approach 

The homogeneous approach for material parameters identification is usually based on the use of 

a FEMU strategy and of classical mechanical tests developing quasi-homogeneous strain fields. 

From these tests, analytical stress and strain relations with raw test data can be defined. Indeed, 

it constitutes their main advantage. The several values required as input data on 

phenomenological models, namely, anisotropic coefficients and initial yield stress values at 

different orientations to RD as well as at different stress states, can also be directly calculated 

from these tests. 

One way to identify the material parameters of the chosen phenomenological model is to 

adjust between several sampling experimental points and yield model predictions (Bron and 

Besson, 2004; Chaparro et al., 2008). These sampling points correspond to the anisotropic 

coefficients and yield stresses obtained from the classical tests. Withal, it has been pointed out 

that due to the dispersion on initial yield stress as well as the evolution of anisotropy with strain, 

considering only initial values does not give an accurate description of the mechanical behavior 

(Zang et al., 2011). Then, for a better prediction of the material behavior, the hardening evolution 

over a large strain range must also be taken into account in the material parameters 

identification. Therefore, the analytical stress and strain relations obtained from the classical tests 

must be used on the FEMU strategy. Generally, such experimental data is composed by discrete 

values representing a set of stress-strain measured points, as depicted in Figure 2.4. In opposition, 

the stress-strain numerical results obtained from FEMU are defined through a curve and 

interpolations for each experimental point are performed to compare both data. 

Figure 2.4 – Definition of the gap between numerical and experimental stress-strain data. 

The material parameters identification procedure is guided by an objective function. In this 

way, the success of the optimization process demands a suitable definition of this function. 

Usually, the objective function consists in the sum of the squares of the differences between 

computed and experimental data (such as stress or strain) at the same instant of time and can be 

written as 
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where )(obj xnS  is the objective function value for test n and x is the material parameter set to be 

identified. The numerator of Equation 2.1 is the quadratic difference between the experimental 

Z i
exp and numerical Z i

num values for the experimental point i and nnp  stands for the number of 

experimental points of the test n. Experimental values Z i
exp  are recorded according to the 

acquisition rate and, therefore, are associated to a given time ti and simulated values Z i
num  are 

calculated at the same time ti. 
nWabs is a weighting factor for test n that should be adapted to the

identification problem in order to normalize different units or scales of the data (Andrade-Campos 

et al., 2012). The objective function becomes zero if a perfect correspondence between numerical 

and experimental points is obtained. However, this objective function presents more properties, 

such as: (i) for each test n, all the experimental points are taken into account and have equal 

opportunity to be optimized (due to the term 1/ nnp ); (ii) when using multiple tests (cf. Equation

2.2), all experimental tests also have equal opportunity to be optimized, independently of the 

number of points of each test and (iii) different units or scales do not affect the overall 

performance of the optimization process by adjusting the weighting factor nWabs . 

Although these advantages, this objective function may not be the most effective to 

conduct the optimization process, since a lower value of it may not necessarily means a better 

global reproduction of the material behavior, as shown by Andrade-Campos et al. (2012). Though, 

this objective function is one of the most commonly used in parameters identification problems 

(de-Carvalho et al., 2011). 

Nevertheless, classical mechanical tests provide stress and strain data only for a certain 

stress state and, as a result, usually allow for the identification of a single parameter (Lubineau, 

2009). However, to warrantee the relevance of the material parameters set identified, the 

number of experimental data should not be lower than the number of material parameters 

considered in the identification process (Zhang et al., 2014). Therefore, a material parameters 

identification process based on several classical tests is required and an optimization process 

must be defined. In this case, the objective function is defined by 


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
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1

objobj )()(

n

n

nSS xx , 
(2.2) 

where ntests stands for the number of tests considered in the FEMU strategy. 

The main classical experiments used for parameters identification purposes are the uniaxial 

tension, simple shear, plane strain tension and hydraulic bulge test. However, disk compression 

test can also be considered mainly for determining specific data, for instance, the anisotropic 

biaxial coefficient rb. This value is of great importance for some constitutive models that can 

exhibit significant difference in the biaxial tension area. 
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The following sections are dedicated to the description of the mechanical tests used for the 

homogeneous approach. 

2.2.1.1 Tensile test 

The uniaxial tensile test is the most commonly used experiment for sheet metal characterization 

mainly due to its easy preparation and reproducibility up to necking. In this experiment, a 

specimen is subjected to two opposite loads, applied via two crossheads, as illustrated in Figure 

2.5 (Marciniak et al., 2002). 

Figure 2.5 – Typical tensile test specimen used for sheet metals (Marciniak et al., 2002). P stands for 

the applied loads, l0, w0 and t0 correspond to the initial length, width and thickness of the gauge area. 

The tensile test is standardized by several norms, such as DIN EN 10 002 (2001), ASTM E8-

04 (2004) or ISO 6892-1 (2009) and it is mainly applied to determine the flow curves under 

uniaxial stress state at different orientations to the RD as well as the anisotropy coefficients. For 

that purpose, the tensile specimen is machined in different directions according to the RD. The 

most common tensile directions xΙ


 used consist in the RD, 45° to the RD and TD. 

The Cauchy stress σ and logarithmic strain ε tensors in the frame ( zyx Ι,Ι,Ι


) for the uniaxial 

tension can be written as 
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The main advantage of this test is the homogeneous deformation of the specimen until 

necking, allowing the accurate evaluation of the material behavior by analytical equations. Hence, 

it is possible to easily determine the Cauchy stress-strain curves before necking. After necking 

localization, this task becomes difficult due to the non-homogeneity of the gauge area, even using 

stress correction approaches (Choung and Cho, 2008). During the homogeneous deformation of 

the specimen, the logarithmic strain εxx and the Cauchy stress σxx can be obtained by assuming 

volume conservation and can be defined as 
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and 
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where l is the elongation of the gauge length and σn is the nominal stress. 

Beyond the initial yield stress and hardening, other important material parameters usually 

used in the constitutive models, namely, anisotropy coefficients, can be output from the uniaxial 

tensile test. Indeed, the variation of the sheet metal behavior with the tensile direction in the 

sheet plane can be evaluated by the plastic anisotropy coefficient rα, which can be written as 
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where p
yy and p

zz  are the plastic strain components in the width and the thickness directions, 

respectively, and α is the angle between xΙ


 (or tensile direction) and RD. However, for thin sheet 

metals it is usually calculated assuming the constant volume condition in the plastic range, i. e. 
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Moreover, by considering the anisotropy coefficients obtained at 0°, 45° and 90° to the RD, the 

normal anisotropy    of the material can be defined as 

4

2 90450 rrr
r


 . (2.8) 

The normal anisotropy indicates the ability of the sheet metal to resist to the elongation when 

subjected to tensile and/or compression forces. Sheet metals used in deep drawing process 

should present a high value of normal anisotropy to prevent excessive thinning. 

The variation of rα in the sheet plane gives also useful information. This variation is 

evaluated by the planar anisotropy coefficient Δr by 

2

2 90450 rrr
r


 . (2.9) 

The planar anisotropy coefficient indicates the difference of behavior evidenced by the material in 

the plane of the sheet as a function of the different directions considered. This quantity is related 

to the earing amplitude after cup deep drawing. When the value of the anisotropy coefficient is 

quite the same along all directions in the plane of the sheet, the planar anisotropy coefficient 

tends to be 0 and the earing phenomenon is not observed (Banabic, 2010). On the contrary, a 

significant planar anisotropy coefficient of the sheet metal indicates that a considerable earing 

phenomenon may be expected in deep drawn cups. 

Despite the advantages previously enunciated, the tensile experiment has also some 

drawbacks. The main one is the rather small amount of homogeneous deformation obtained 

during the test compared with the deformation level obtained in forming processes. This 
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limitation occurs due to a geometric and material instability leading to the necking phenomenon. 

Since the analytical Cauchy stress and logarithmic strain calculations are no longer valid after the 

onset of necking, generally, the maximum strain achieved in homogeneous uniaxial tensile tests is 

0.3 (Koç et al., 2011). However, using FFM methods, such as DIC technique, it is possible to 

acquire strain data up to larger strains. Note that DIC technique is a non-contacting optical 

method that measures displacement and strain fields by comparing the random pattern of grey 

levels of the sample surface during deformation with an initial (reference) image taken prior to 

loading. In order to perform this evaluation, a region of interest (ROI) of the sample, defined by 

the user, is discretized into continuous finite areas. Therefore, within the ROI, the strain field data 

can be recorded even up to rupture of the specimen. Indeed, many authors have used DIC 

technique for characterizing the behavior of uniaxial tensile tests at and after strain localization or 

at rupture (Wattrisse et al., 2001; Tardif and Kyriakides, 2012; Mishra and Thuillier, 2014). 

Uniaxial compression or tension-compression tests can also be performed using uniaxial 

tensile specimens. Tension-compression tests have been largely used for characterizing the 

Bauschinger effect. However, some drawbacks are associated to this experiment. The main 

problems of this experimental test are the high risk of buckling due to the compression load 

applied in the thin specimen and the difficulty to achieve high strain levels. Often, additional 

support devices are required to prevent buckling. 

Dietrich and Turski, in 1978, developed an experimental device for in-plane compression 

tests of a sheet specimen where the maximum strain is limited to 0.03 (Kuwabara, 2007). Based 

on the previous experimental device, Kuwabara (2007) conceived a testing apparatus which 

allows to reach high plastic strain values. According to the author, plastic strain about 0.16 can be 

obtained in this in-plane compression testing apparatus. In order to enable continuous in-plane 

tension-compression tests, Kuwabara et al. (2009) performed some updates in the previous 

experiment. This one is presented in Figure 2.6 and it can be seen that the lower die 1 is fixed to 

the lower plate of the die set and lower die 2 is positioned on a slide rail that enables the die to 

move smoothly in the horizontal direction. The same principle is also applied for the upper dies. 

The specimen is placed between the lower and upper dies and is subjected to tension and 

compression without buckling. However, since this experiment involves friction forces, teflon 

sheets must be used on both sides of the specimen. This experimental device has been used to 

characterize the mechanical behavior of some metals, such as copper and AA6016-T4 aluminum 

alloys (Kuwabara et al., 2009) and DP980 steel (Saito et al., 2010). 

Figure 2.6 – Configuration of the tension-compression experimental apparatus developed by 

Kuwabara et al. (2009). 
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Yoshida et al. (2002) carried out experimental tension-compression tests using 

simultaneously specimens adhesively bonded and an anti-buckling device in order to prevent 

buckling phenomenon and to obtain large deformation. The specimens used consisted of five 

pieces of the sheet glued with an acrylic adhesive. An aluminum-killed mild steel and a dual-phase 

steel were tested and compressive strains up to 0.25 and 0.13 were acieved, respectively. Figure 

2.7 shows the in-plane compression-tension test developed by Yoshida et al. (2002). 

Figure 2.7 – In-plane tension-compression device proposed by Yoshida et al. (2002). 

Boger et al. (2005) proposed a tension-compression test design which combines the 

advantages of the small specimens (large strains, continuous and reversed strain paths) with large 

specimens (homogeneity, self-alignment and accurate measurement of uniform stress and strain). 

This experiment is based on the application of solid flat plates, working as buckling constraints, 

and normal pressure by a hydraulic clamping system. In addition, a special tensile specimen 

design was developed in order to minimize three kind of buckling failure modes. Figure 2.8 a) 

illustrates the plate supports and final shape dimensions of this test. 

Figure 2.8 – Schematic view a) of the plates and specimen dimensions proposed by Boger et al. (2005) 

and b) tension-compression device developed by Cao et al. (2009). 

Cao et al. (2009) also proposed an original testing device to carry out tension-compression 

tests into a universal testing machine. This device consists of four-block wedge design with pre-

loaded springs, as depicted in Figure 2.8 b). It can be seen that the blocks cover the entire 

specimen on both sides and can freely move in the vertical direction while providing the normal 

support to the full length of the sample. The specimen is composed by double-side fins with the 
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purpose of measuring the strain. The pre-loaded spring is used on each side of the device to 

ensure that the edge plates are in firm contact with each other. Teflon sheets are applied 

between the specimen and the inner surface of the wedge plates, for the reduction of friction 

effects. According to the authors, (i) pre-strain levels of 0.15 and 0.09 in tension-compression and 

compression-tension can be respectively reached, (ii) potential buckling of the sheet specimen in 

compression can be prevented and (iii) the frictional force between the wedge plates and 

specimen can be neglected. 

2.2.1.2 Shear test 

The planar simple shear is a loading path particularly interesting for sheet metals since it can leads 

to large strains without the occurrence of plastic instability such as, flow localization and fracture 

(Rauch, 1998; Yoon et al., 2005; Bouvier et al., 2006; Thuillier and Manach, 2008). Indeed, the 

simple shear test allows characterizing the hardening behavior like the uniaxial tensile test, 

however, achieving higher level of deformation due to the absence of necking phenomenon. 

Furthermore, shear specimens can be machined at different orientations to the RD, such as 

tensile specimens, in order to characterize the anisotropic behavior in the sheet plane. From a 

strain state point of view, both homogeneous uniaxial tensile and simple shear tests can be seen 

as complementary experiments. In the case of the uniaxial tensile test, the strain state involves 

only diagonal components of the strain tensor while non-diagonal components of the strain 

tensor mainly appear in simple shear (Thuillier and Manach, 2008). 

The first test reported in the literature to produce shear property data was developed by 

Iosipescu (1967) and is commonly called as Iosipescu shear test. Although it was developed to 

characterize steel metals, it has been largely used for composite materials (Adams and Walrath, 

1986; ASTM, 1993). This experiment was very important to understand the different material 

behavior when submitted to shear deformation. However, it was revealed inadequate to 

characterize the material up to large strains due to the notched geometry of the shear specimen. 

For this reason, Miyauchi (1984) developed a classical simple shear equipment allowing to 

achieve high levels of shear strain. This equipment consists of a clamping device of two rigid parts 

subjected to parallel movement. The device is mounted on a universal tensile machine and the 

specimen geometry is designed with two shear zones which are subjected to vertical 

displacement, as shown in Figure 2.9 a). The main advantage of this geometry, defined with two 

symmetric zones loaded in shear, is that both shear forces acting in the central grip of the device 

equilibrate each other. As a result, the friction forces decrease and it allows a better estimation of 

the shearing forces (Bouvier et al., 2006).  

An et al. (2009) proposed a shear test approach quite similar to the one developed by 

Miyauchi. FE simulations and experimental tests were carried out by the authors in order to (i) 

evaluate the effect of the specimen geometry on the shear distribution, (ii) study the effect of 

material parameters on the measured work hardening and (iii) correct the edge effect based on 

the geometry of the specimen. For this purpose, both specimen geometries depicted in Figure 2.9 

b) were investigated. Such as the Miyauchi sample, the proposed specimens are composed by two

symmetric shear zones (white zones) and are fully clamped by three sets of clamping blocks (grey

zones). The authors observed in their study that (i) the strain distribution is quite homogeneous in

the majority of the shear length of the rectangular specimen, while the opposite occurs for the
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specimen including slits and (ii) the specimen geometry ratio (L/w) plays a critical role on the 

accuracy of the measured shear stress.  

Figure 2.9 – Specimen geometries developed by a) Myiauchi (Mattiasson and Sigvant, 2004) and b) An 

et al. (2009) (rectangular specimen and specimen with slits). Dimensions are given in mm. L=55 mm 

and w=5 mm are the specimen length and effective shear width, respectively. 

G'Sell et al. (1983) developed a simple shear test with only a single shear zone for polymers 

that was later adapted for metallic materials (Rauch and G'Shell, 1989). However, an improved 

version of this specimen as well as a dedicated device was developed by Genevois (1992), as 

shown in Figure 2.10. In this improved shear specimen, the rotation of the specimen under the 

action of the shearing forces is impeded by the stiffness of the machine frame (Bouvier et al., 

2006). Figure 2.10 shows that the dedicated device keeps the same principle of shear deformation 

of the equipment proposed by Miyauchi, since a parallel displacement of two lateral grips 

distorting a rectangular area of the specimen to a parallelogram also occurs. This dedicated device 

is one of the most widely used by the scientific community nowadays due to the simple 

rectangular geometry of the sample. Though, this simple shear test may present some drawbacks: 

(i) the measurement of the local strain can be difficult because of the narrowness of the shear

zone, (ii) the existence of some heterogeneity of the strain state and buckling on the shear zone

depends on the specimen dimensions and (iii) sliding of the sample may occur under the grips

(Bouvier et al., 2006; Thuillier and Manach, 2008).

Nevertheless, a numerical study conducted by Bouvier et al. (2006) investigated the shear 

strain and stress in the sample. This study shows that using L/h ≥ 10 and h/e ≤ 3 ratios (dimensions 

depicted in Figure 2.10), it is possible (i) to obtain an almost homogeneous stress state and (ii) to 

minimize the stress perturbation induced by clamping, avoiding buckling and premature failure. 

Additionally, Yoon et al. (2005) also carried out numerical simulations to study the effect of the 

shear specimen shape on the stress and strains fields. Both authors presented similar conclusions. 

Despite the stress components σxx and σyy  can reach considerable values near the free ends 

of this shear specimen, these ones can be neglected when using the dimension ratios established 

by Bouvier et al. (2006). According to this, the Cauchy stress and logarithmic strain tensors in the 

frame ( zΙ,Ι,Ι yx


) can be written as 
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within small strain assumption. For this shear test, shear stress σxy and shear strain γ can be 

calculated by 

Le

F
σxy  (2.11) 

and 

h

L
ε


 xy2 , (2.12) 

where F is the applied force, ΔL is the corresponding displacement between the sheared edges, L 

is the length, e is the sheet thickness and h is the width of the shear zone, as illustrated in Figure 

2.10. Usually, the evaluation of the shear strain directly from the relative grips displacement must 

be avoided due to the expected sliding of the sample. Therefore, to circumvent this, it can simply 

use FFM methods. 

Figure 2.10 – Shear test device and specimen geometry improved by Genevois (Rauch and G'Shell, 

1989; Yoon et al., 2005). 

Several advantages of this simple shear test must be stressed out. For instance, due to the 

symmetry of the stress tensor, experimental shear tests carried out at 0° and 90° to the RD are 

similar at the beginning of the deformation and the possible small discrepancy verified during the 

test results, essentially, of the induced anisotropy. Withal, the main advantage of the shear test is 

the possibility to also perform reversal experiments which are designated as shear-Bauschinger 

tests. The characterization of the kinematic work hardening in sheet metals can be a rather 

difficult task mainly due to the buckling in tension-compression. However, using this experiment, 

the loading direction can be easily reversed by simply changing the displacement direction of the 
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clamps. Moreover, shear-Bauschinger tests generally lead to the achievement of large strains (Hu 

et al., 1992).  

More recently, new shear test approaches have been developed for universal tensile 

machine without any kind of dedicated device or clamping system. Merklein and Biasutti (2011) 

use a modified geometry based on the specimen proposed in the ASTM B831 (2005) to carry out 

monotone and reverse simple shear tests in sheet metals. The obtained results with this setup 

were validated comparing the determined flow curves of an AA6016 aluminum alloy with similar 

results obtained from an optimized Miyauchi shear test device. The developed specimen and the 

obtained flow curves using both shear devices are shown in Figure 2.11 a). It can be seen that the 

proposed shear specimen promotes high strain values and also avoids sliding problems and 

rotation moments and reduces the experimental effort since the clamping devices are located at 

the upper and the lower ends, not influencing the shear zone. However, in reverse shear, buckling 

may occur due to the compression loads. Therefore, additional supporting devices (four plates 

machined out of high strength steel) must be layered on the specimen in a sandwich manner to 

prevent this undesirable phenomenon (Merklein and Biasutti, 2011). Nevertheless, the supporting 

devices are mounted without applying friction in the shear zones. 

a) 

       b)                                                                                             c) 

Figure 2.11 – Shear specimen proposed by a) Merklein and Biasutti (2011) and flow curves obtained by 

using this specimen and the one developed by Miyauchi, b) Vrh et al. (2011) and c) Peirs et al. (2011). 

Specimen dimensions are given in mm. 
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Vrh et al. (2011) developed a new shear specimen for a reliable identification of the 

hardening curve of sheet metals after the onset of necking, observed in uniaxial tensile tests. This 

specimen, illustrated in Figure 2.11 b), is composed by two symmetric shear regions and enables 

to achieve large shear strain. The contour of these shear regions was optimized by FE simulation 

in order to assure simple shear loading conditions. 

Peirs et al. (2011) proposed a combined experimental-numerical approach to output the 

strain rate and temperature dependent mechanical behavior from high strain rate experiments. 

For this purpose, an in-plane shear specimen like the one shown in Figure 2.11 c) is used to study 

the stress-strain behavior of Ti6Al4V material. Thanks to the particular geometry, optimized for 

the mechanical properties of Ti6Al4V, the tensile load imposed during the experiment is 

converted into shear deformation in the central area of the sample. The deformation observed in 

the small shear zone conducts to a stress state of almost pure shear due to the non-aligned 

position of the notches. 

Another way to obtain a shear stress state consists of the plane torsion test that was 

introduced by Marciniak (1961). This test uses a circular sheet sample which is clamped in the 

center and in the outer rim. The plane torsion is applied through the inverse rotation of both 

clamps and the free area is subjected to shear deformation. 

Yin et al. (2011) proposed an experimental setup for plane torsion, as depicted in Figure 

2.12 a), and determined monotonic and cyclic flow curves using optical strain measurement. The 

experimental setup is integrated in a universal tensile machine and is composed by a servo motor 

and a worm gear. The application of a torque moment on the outer clamping system produces an 

inhomogeneous stress and strain distribution along the radial distance to the center. In this way, 

the highest stress and strain is observed near the inner clamp and decreases progressively until 

the outer clamp. Due to this fact, the shear strain that consists of the gradient of the distorted 

radial line, as shown in Figure 2.12 a), cannot be directly calculated and, thus, a FFM method is 

required. The main advantages of this experiment are the possibility of reaching high levels of 

equivalent strains (up to 1.0) and obtaining multiple cyclic shear curves by using only a single 

specimen (Yin et al., 2011). Nonetheless, the measured torque moment is an average of varying 

shear stress along the circumference and, consequently, an average of any effect of the material 

anisotropy (Yin et al., 2012). Other limitations, namely, buckling and slipping can also occur in this 

experiment. 

a) 
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b) 

Figure 2.12 – Specimen geometry and geometrical features of a) plane torsion specimen developed by 

Yin et al. (2011) and b) twin-bridge shear specimen proposed by Brosius et al. (2011). 

Based on the plane torsion, the twin-bridge shear test presented in Figure 2.12 b) was 

proposed by Brosius et al. (2011). This test avoids the disadvantages related to plane torsion and 

conventional shear tests. In fact, it allows (i) the reduction of the clamping loads, (ii) the reduction 

of possible slipping and (iii) to avoid buckling effects especially in cyclic loading. The twin-bridge 

specimen consists of a circular shape with partial tangential slots. The slit geometry is responsible 

for strain localization in two opposite shear bridges, which are the only connection between the 

inner and the outer clamp zones. In addition, both bridges are arranged symmetrically to avoid 

any unintended resulting forces or moments (Brosius et al., 2011). The principle of deformation is 

the same of the plane torsion test, however, the shear zone differs. For twin-bridge shear test, no 

occurrence of deformation in the whole free area is verified, only in the twin bridges. The use of a 

FFM method for obtaining the strain deformation, especially if the clamps are not adjacent to 

shear bridges, is recommended. 

Yin et al. (2014) investigated the application of the twin-bridge shear, Miyauchi (Figure 2.9 

a)) and modified ASTM B831 (Figure 2.11 a)) specimens on the characterization of sheet metals. 

The main focus of the authors was to compare the effect of these different shear test 

configurations, in terms of specimen geometry as well as fixtures, on the material behavior 

characterization under shear conditions. For this purpose, experimental strain distributions 

measured by DIC technique and FE simulations to evaluate the effect of the specimen geometry 

on the stress distributions in the shear zones were carried out for each shear test. It was 

concluded that (i) a good agreement between the experimental shear stress-strain curves from 

the different shear tests is obtained and (ii) FE simulations revealed minor discrepancies in the 

stress distributions. 

The twin-bridge shear experiment was also applied for identifying kinematic hardening 

material parameters of DC06, DP600, and TRIP700 steels (Yin et al., 2012). For that, the specimen 

dimensions rm =21.5 mm, Δr=1 mm, Δθ=20°, t=1 mm and a radial distance of 15 mm and 30 mm, 

respectively for the inner and the outer clamp, were considered. Instead of using a FFM method 

for measuring strain data, the inverse approach for material parameters identification was 

implemented by using the torque and the angle data. This strategy was based on moment-angle 

curves and from the obtained results it was concluded that (i) these curves present the same 

characteristics of a material stress-strain curve and (ii) the proposed method is able to correctly 

predict the inhomogeneity within the shear zone. 
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2.2.1.3 Plane strain tensile test 

The plane strain tension characterizes the material behavior between uniaxial and equibiaxial 

tension, as pointed out in Figure 2.2, and consists of a typical deformation path encountered in 

sheet metal forming. Bending of wide sheets or tension in a cylindrical cup wall are examples 

involving this kind of deformation. Furthermore, it was estimated that 85% of stretching failures 

in automotive stamping occurs near the plane strain state (Ayres et al., 1978), which reveals the 

importance of this strain state in sheet forming operations. In plane strain tension, the Cauchy 

stress and logarithmic strain tensors in the frame ( zΙ,Ι,Ι yx


) can be defined by 
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Wagoner (1981) designed both specimen geometries shown in Figure 2.13 a) with the aim 

of characterizing plane strain tension. These specimens were subjected to tensile loading using a 

universal testing machine and near-plane strain tension was obtained in the center of the 

samples. 

Kuwabara and Ikeda proposed an adapted cruciform specimen for characterizing plane 

strain tension (Kuwabara, 2007), as depicted in Figure 2.13 b). The tensile direction is parallel to 

the shorter arms of the specimen and the strain component of the longer arms of the specimen is 

maintained at zero using a closed-loop hydraulic system (Kuwabara, 2007). 

a) 

         b)                                                          c) 

Figure 2.13 – Specimen configurations for plane strain tension test proposed by a) Wagoner (1981), b) 

Kuwabara and Ikeda (Kuwabara, 2007) and c) Pijlman (2001). Dimensions are given in mm. 
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Pijlman (2001) also developed an experiment for characterizing plane strain tension. This 

experiment consists of a biaxial test equipment that can combine plane strain and shear 

deformation. Figure 2.13 c) presents the specimen configuration used in this test. During the 

experimental test, the specimen is fixed between two pairs of clamps and the vertical translation 

of the clamps gives a plane strain deformation. The deformation zone corresponds to the small 

white area at the middle of the specimen. In order to obtain plane strain tension, the width of the 

deformation zone must be large relatively to the height. Nevertheless, it leads to high clamping 

loads and, usually, sliding of the specimen occurs under the grips. Due to this reason, FFM method 

is highly recommended for the analysis of local strains. 

2.2.1.4 Hydraulic bulge test 

Biaxial tests are essential to provide a reliable mechanical characterization of the material since 

multi-directional deformation is verified in sheet metal forming. Uniaxial tests only characterize 

the mechanical properties in a single direction and, usually, such experimental data is not enough 

to accurately describe complex sheet forming processes, like deep drawing. Biaxial tests, such as 

the hydraulic bulge test, are used to quantify and clarify the effects of stress biaxiality on 

monotonic stress-strain curves and forming limit diagrams (Makinde et al., 1992). 

The hydraulic bulge test is a testing method where a circular or elliptical blank is clamped 

around the edges and subjected to an increasing fluid pressure, as illustrated in Figure 2.14. This 

experiment was initially introduced by Prater and Read (Prater and Read, 1949; Dudderar et al., 

1977) and several improvements have since been performed, namely, a biaxial extensometer 

developed by Johnson and Duncan (Johnson and Duncan, 1965; Banabic et al., 2010) and 

automated hydraulic bulge testers such as the ones developed by Golongrac (Golongrac, 1975; 

Kuwabara, 2007), Young et al. (1981) and Koh (2008). For example, the bulge testing device 

proposed by Young et al. (1981) allows to acquire true stress-strain data by controlling the strain 

rate deformation, while the bulge test apparatus developed by Koh (2008) allows to 

accommodate material strength up to 1000 MPa with plate thickness between 1.0 and 1.8 mm. 

Concerning the bulge experiment, the Cauchy stress and logarithmic strain tensors in the 

frame ( zyx Ι,Ι,Ι


) can be written by 
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The hydraulic bulge test has been applied to provide flow stress properties at large strain levels as 

well as to determine the equibiaxial yield stress (σb). This test can give equivalent plastic strain 

levels up to 0.7 whereas the maximum achievable strain in homogeneous tensile tests is reported 

to be limited about of 0.3 (Gutscher et al., 2004; Koç et al., 2011). In addition, the experimental 

data are very reproducible, in particular, the pressure and local strain relation. However, for an 

accurate measure of biaxial stress-strain curve, the geometry of the bulge must be taken into 

account (Ranta-Eskola, 1979). 

During the experiment, the deformation varies radially from balanced biaxial tension at the 

crown of the specimen to plane strain near the clamped edge (Foecke et al., 2007). This effect 

results in a radial thickness variation and, therefore, the determination of the strain must be 
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based on the local thickness dimension or strain distribution measure with a FFM method. The 

gauge area in the bulge test is stretched by an approximately uniform biaxial membrane stress. As 

a consequence, the membrane theory is generally used to determine the flow stress curve and 

can be described as 

t

Pσσ


2

2

1

1


, (2.15) 

where σ1 and σ2 are the principal stresses on the sheet surface, ρ1 and ρ2 are the corresponding 

radii of the curved surface, P is the hydraulic pressure and t is the sheet thickness at the center 

(see Figure 2.14). 

Figure 2.14 – Geometry of the bulge test (Koç et al., 2011). 

Considering the axi-symmetric case of the bulge test and the material isotropy assumption, 

σ1= σ2 = σ and ρ1= ρ2 = ρ. Then, Equation 2.15 can be simplified to 

t

P
σ

2


 . (2.16) 

One of the difficulties of the bulge test is the determination of the parameters t and ρ during the 

test when FFM methods are not used. One of the assumptions considered is that the bulge test is 

a portion of a sphere. In this way, the radius of the bulge can be determined by 

d

2
d

2
c

2h

hr 
 , (2.17) 

where rc is the die cavity radius and hd is the dome height, as depicted in Figure 2.14. 

Nevertheless, such assumption consists of the main drawback of this experiment. The works of 

Papirno (1961) and Brown and Thompson (1949) show that the shape of the bulge is rarely 

spherical and is strongly dependent on the plastic deformation properties of the specimen 

(Dudderar et al., 1977). Thus, calculations based on this assumption can lead to errors. Indeed, 

according to Aretz and Keller (2011), the assumption of equibiaxial stress state on bulge, assumed 

by Equation 2.16, may be violated due to the orthotropy of the material. For materials exhibiting 

rb value significantly different from the unity, the membrane theory assumption is no longer valid 

due to the material anisotropy. The analysis of these authors was based on a virtual material with 

rb= 0.5 and a real one with rb= 0.36 and shows that an equibiaxial stress state cannot be achieved 

on bulge. In addition, Yoshida (2013) investigated numerically the validity of the equibiaxial stress 

state assumption for the bulge test in the case of material anisotropy and concluded that the 

stress state at the apex can deviate about 1 to 5% from the equibiaxial stress state. 
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2.2.1.5 Disk compression test 

Barlat et al. (2003) proposed the disk compression test to determine the anisotropic biaxial 

coefficient rb introduced in the yield function Yld2000-2d. Note that, such as in uniaxial tension, 

from biaxial tension it is also possible to determine an anisotropy coefficient. The so-called biaxial 

anisotropy coefficient rb consists of the ratio between the principal strains in the sheet plane and 

is written as 

1

2

ε

ε
rb  . (2.18) 

When the material is isotropic, rb is equal to the unity. This coefficient is a direct measure of the 

slope of the yield locus at the equibiaxial stress state (Barlat et al., 2005). Experimentally, rb value 

can be determined either by using a disk compression test (Barlat et al., 2003) or a biaxial tensile 

test with cruciform specimen (Pöhlandt et al., 2002).  

Concerning the disk compression test performed by Barlat et al. (2003), a 12.7 mm disk was 

compressed through the normal direction of the sheet using either dry film graphite or teflon 

sheets as lubrication between the faces of the specimen and contact points with the upper and 

lower platens of the compression test fixture. Both diameters, parallel and perpendicular to the 

RD, and the thickness were measured for each specimen prior to and after deformation. The 

strains were calculated from these measurements and the rb coefficient was defined. 

Merklein and Kuppert (2009) developed a reliable methodology for disk compression test 

with the aim of evaluating anisotropic materials. This methodology is based on the adaption of 

the experimental setup of standard compression test described in DIN 50106 (Merklein and 

Kuppert, 2009) and the use of two optical strain measurement systems to get experimental data 

along both symmetry axis. The specimen consists of stacked circular samples forming a cylindrical 

configuration. Both specimen and experimental device are illustrated in Figure 2.15. Teflon-foil 

acting as a solid lubricant is used to reduce the friction between the stacked specimen and the 

compression plates (Merklein and Kuppert, 2009). The optical strain measurement systems with 

an angle of 90° each other provide directly the major and minor strain data and the real loaded 

surface of the specimen. This methodology suppresses any type of assumption concerning the 

loaded surface or strain outside the measured area, as occurs when experimental data is only 

available from one axis direction. 

Figure 2.15 – Stacked specimen and experimental setup used by Merklein and Kuppert (2009). 
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The disk compression test can also be used to determine the hardening behavior in 

compression, having the advantage of reaching large plastic strain levels comparing with the 

conventional tensile test (Merklein and Kuppert, 2009). It is due to the absence of necking 

phenomenon in compression. However, the application of this experimental test for sheet metals 

is only possible staking a number of sheet samples. 

2.2.2 Non-homogeneous approach 

Comparing with classical testing methods, where measured global quantities are used to infer the 

values of constitutive parameters with the help of simple analytical solutions and under 

assumption of homogeneous strain and stress fields in the gauge area, FFM methods allow 

substantial flexibility due to the measurements of displacement and strain fields over the 

specimen surface (Avril et al., 2008a). From this non-homogeneous approach, several parameters 

of a constitutive model can be identified at the same time with only one test when the 

experimental field information is rich enough (Zhang, 2014). Therefore, complex experiments with 

large strain field heterogeneity allow to extract more information from a small number of tests 

and to reduce considerably the experimental database required for parameters identification 

purposes. 

2.2.2.1 FEMU identification strategy 

Since sheet metal forming processes are carried out under inhomogeneous and multiaxial strain 

paths, heterogeneous experiments based on a new design or modified classical tests have been 

developed in order to evaluate the material behavior for non-homogeneous strain fields. The 

FEMU strategy, as described previously in section 2.2, is widely applied for the parameters 

identification from these heterogeneous experiments. However, because full-field measurements 

are considered by the non-homogeneous approach, the objective function assumes a different 

formulation. The most commonly used objective function consists of a weighted least-square 

difference between computed and experimental field data where this data can be displacement 

(Pottier et al., 2011a; Pottier et al., 2011b) or strain (Cooreman et al., 2008; Güner et al., 2012; 

Haddadi and Belhabib, 2012; Prates et al., 2014; Zhang et al., 2014) fields. Moreover, the 

quadratic difference between the experimental and numerical data can be weighted by two 

different ways. One way consists of dividing this difference by the corresponding experimental 

value of each point of the field data (Haddadi and Belhabib, 2012; Zhang et al., 2014), while 

another way is to use the maximum experimental value of the field data (Pottier et al., 2011a; 

Pottier et al., 2011b).  

In the first case, when an experimental data corresponds to a null value, an indetermination 

results of this division and the objective function will not be well calculated. Therefore, since the 

experimental field data is defined by a large number of values and some of them can be zero, this 

way of weighting the objective function does not seem the most suitable one. In the latter case, 

assuming that the maximum experimental value of the field data is different of zero (which occurs 

due to the specimen deformation), the objective function will be always accurately calculated 

during the identification process. In addition, only one weighting factor for the all field data is 

used and it also leads to the normalization of different units or scales of the data. 
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The objective function must be defined considering both field data and global reaction load 

as material responses in the parameters identification process, since it leads to a better suited 

solution when strain concentration and localized damage are involved (Avril et al., 2008a). Then, 

for the non-homogeneous approach, the objective function Sobj(x) can be defined by 
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where np is the number of points of the strain field, nim is the number of strain fields evaluated, 
exp

iF  and )(num xiF  are the experimental and numerical load values at the strain field i, exp
maxF is the

maximum experimental load value for all the strain fields, exp
,,1 ij  and )(num

,,1 xij as well as exp
,,2 ij and

)(num
,,2 xij are the experimental and numerical major and minor principal strain values for the point

j at the strain field i, respectively, exp
,max1, i and exp

,max2, i are the maximum experimental major and 

minor principal strain values at the strain field i and x is the material parameters set. 

Most of the heterogeneous experiments available in the literature are based on the 

modification of (i) classical tensile test (Meuwissen, 1998; Meuwissen et al., 1998; Kajberg and 

Lindkvist, 2004; Belhabib et al., 2008; Cooreman, 2008; Pottier et al., 2011a; Güner et al., 2012; 

Haddadi and Belhabib, 2012) or (ii) biaxial tension test using a cruciform specimen (Cooreman et 

al., 2008; Teaca et al., 2010; Zidane et al., 2010). 

Heterogeneous tensile tests 

Concerning the geometry of heterogeneous tensile tests, it is mainly designed by (i) adding a hole 

(Cooreman et al., 2008; Pottier et al., 2011a), (ii) notching the specimen (Belhabib et al., 2008; 

Güner et al., 2012; Haddadi and Belhabib, 2012) or (iii) promoting a shear-like tensile zone 

(Meuwissen et al., 1998; Kajberg and Lindkvist, 2004). 

Meuwissen et al. (1998) developed a FEMU strategy for identifying elastoplastic material 

parameters from the shear-like tensile tests illustrated in Figure 2.16. This procedure was 

performed for low strain levels of an AA1200 thin sheet. Retro-reflective markers were placed on 

the central area of the specimen surface and their displacements were measured optically. The 

displacement fields were iteratively compared with the ones coming from the numerical 

simulation in order to minimize an objective function. Although an overall good fit was observed 

between the experimental displacements and the numerical ones obtained with the identified 

parameters set, some discrepancies were found in the numerical prediction of the classical 

uniaxial tensile test, namely, an underestimation of the yield stress. The authors stated that by 

using a FFM method for acquiring the experimental displacements fields it is expected to improve 

the previous results. 

Kajberg and Lindkvist (2004) proposed a FEMU strategy for characterizing the sheet metal 

behavior up to large strains. For that, notched samples were subjected to tension loading up to 

fracture and the field information for both in-plane displacements and strains was measured by 

digital speckle photography. The material parameters of two constitutive models were estimated 

by minimizing a least square cost function based on the difference between the experimental and 
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numerical calculated displacements, strains and loads. However, the identified parameters sets 

were only validated at low strains for stress-strain curves obtained from a classical uniaxial tensile 

test. 

 
Figure 2.16 – Shear-like tensile specimens proposed by Meuwissen et al. (1998). 

Belhabib et al. (2008) proposed a non-standard notched tensile test (HTT) for the 

identification of material parameters using FFM method. The specimen consists of a hybrid 

geometry between a classical tensile test (CTT) and a plane tensile test (PTT) and was designed 

with the aim of verifying (i) large heterogeneity of the strain in the gauge area, (ii) large strain 

paths diversity and (iii) good sensitivity of the strain fields to the material parameters. These 

tensile tests are illustrated in Figure 2.17 a). The authors showed that HTT presents large diversity 

of strain paths and better material parameters sensitivity of the strain fields than CTT and PTT. By 

this work, it was concluded that using a heterogeneous experiment, such as HTT, it is expected to 

improve the quality1 of the identified material parameters. 

Later, Haddadi and Belhabib (2012) developed and implemented a FEMU identification 

process based on both total load and full-field strain measurement obtained from the HTT test. 

DIC technique was used for acquiring the experimental strain data and a least-square function 

combining tensile load and longitudinal strain field was defined. In order to validate the material 

parameters identified, a comparison between the numerical and experimental strain field of the 

shear like-tensile test depicted in Figure 2.17 b) was carried out. The obtained results revealed 

that a good prediction was obtained using the identified material parameters set. In addition, this 

numerical strain field was also compared with the one obtained from a parameters set identified 

by standard tests and it was observed that a more reliable prediction is achieved by set of 

parameters identified with the heterogeneous HTT test. 

Pottier et al. (2011a) compared the reliability of the material parameters identified by 

applying FEMU strategy and DIC technique to three sample geometries. The tests exhibit 

increasing strain heterogeneities and consist of a classical tension, a tension with hole and a 

shear-like tensile test, as shown in Figure 2.18. In order to evaluate the reliability of the three 

                                                           
1
 A set of material parameters for a pre-determined constitutive model is considered of better quality when 

it gives more reliable predictions of the material behavior and, consequently, of real forming processes. 
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identified parameters sets, numerical simulations of a deep drawing experiment were compared 

with the experimental data. The results showed that a better numerical reproduction of the deep 

drawing data was obtained with the material parameters set identified from the shear-like 

tension. According to the authors, the quality of the material parameters identified improves and 

the required number of experiments decreases when the heterogeneity of the strain field 

increases 

 
a) 

 
b) 

Figure 2.17 – Tensile tests with a) classical (CTT), plane strain (PTT) and heterogeneous (HTT) specimen 

configuration investigated by Belhabib et al. (2008) and b) shear-like tensile test used by Haddadi and 

Belhabib (2012) for material parameters validation. 

 
Figure 2.18 – Tensile tests a) classical, b) with a hole and c) shear-like used by Pottier et al. (2011a). 

Güner et al. (2012) proposed a method to identify the planar anisotropy of sheet metals 

based on the evaluation of strain fields on a flat specimen with a varying cross-section. The 

material parameters of the constitutive model were determined by an inverse identification 

scheme comparing experimental and numerical strain distribution and load-displacement curves. 

The considered specimen geometry covered strain states between uniaxial tension and plane 
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strain tension and the identified parameters set was validated by comparing the experimental and 

numerical results of a deep drawn car hood geometry. This work pointed out that the use of the 

strain field distribution together with the conventionally used integral measures, such as load and 

displacement, improves the quality of the supplied information for an inverse parameters 

identification of planar anisotropy. 

 

Biaxial tensile tests 

The tensile experiments described above were designed to be subjected to uniaxial loading. 

However, sheet metals are subjected to multiaxial loadings during forming processes. Therefore, 

multiaxial loading experiments are highly desirable for the validation of the plasticity models used 

in numerical simulations (Banabic et al., 2010). Hence, it is of great interest to consider the biaxial 

tensile test in the non-homogeneous approach of material parameters identification. Biaxial 

tensile tests are characterized by using a cruciform specimen and applying simultaneously 

longitudinal and transverse loads on their arms, leading to a biaxial tension in the center of the 

sample. This technique had been developed in the late 1960s (Shiratori and Ikegami, 1967; Mohr 

and Oswald, 2008) and successive improvements in the cruciform specimen shape and new 

testing devices have been proposed. Detailed reviews about biaxial tensile tests can be found in 

the works of Lebedev and Muzyka (1998) and Hannon and Tiernan (2008). The lack of a standard 

geometry is the main problem of this experiment in order to be used as a classical test. Due to this 

fact, the manner which stresses are calculated from the applied loads and the uniformity of stress 

and strain fields in the gauge section of the different specimen geometries influence the test 

results and their interpretation (Makinde et al., 1992).  

In addition, since a large strain heterogeneity is observed over the whole cruciform 

specimen surface, the biaxial tensile experiment is particularly interesting for reproducing 

situations close to those encountered in real forming processes, regarding the variety of stress 

states and strain levels obtained in a single experiment (Teaca et al., 2010). 

Cooreman et al. (2008) developed an identification strategy of material parameters based 

on a heterogeneous biaxial test. A perforated cruciform specimen, shown in Figure 2.19, was used 

by the authors and the evaluation of the strain field was carried out with DIC technique. The 

material parameters of a constitutive model composed by the Hill48 anisotropic yield criterion 

and a Swift hardening law describing a DC06 mild steel were identified by minimizing a least-

square function based on the difference between the experimental and numerical 2D strain 

components. The material parameters identified with this non-homogeneous approach were 

compared with the ones obtained from a homogeneous approach considering 8 classical 

experiments (tension, plane strain tension and shear tests). It was observed that the results are 

quite similar which means that the parameters identification strategy developed with this single 

heterogeneous biaxial test is able to promote an identical material characterization as the one 

obtained from an experimental database composed by several homogeneous tests. The authors 

pointed out that the use of heterogeneous strain fields for material parameters identification 

leads to results better suited for the prediction of real forming processes than the ones based on 

classical homogeneous tests. 
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Figure 2.19 – Perforated cruciform specimen investigated by Cooreman et al. (2008). The shaded area 

is the zone in which the experimental measured strains are compared to the numerical ones. 

Dimensions are given in mm. 

Teaca et al. (2010) designed two types of cruciform specimens that promotes a wide range 

of stress paths and a high sensitivity to the material anisotropy in order to use the obtained strain 

fields measure by DIC technique as input data for material parameters identification. A more 

accurate description of the plastic anisotropy was achieved with this strategy and, consequently, a 

better prediction of the strain distributions, forming limits and springback. The material 

characterization is performed for stress paths composed by the stress state range from uniaxial to 

plane strain tension using the cruciform specimen 1 depicted in Figure 2.20 a) and from uniaxial to 

equibiaxial tension using the cruciform specimen 2 exhibited in Figure 2.20 a). For the specimen 1, 

average stress states in the arms (RD region) and connecting parts between arms (DD region) are 

fairly close to uniaxial tension and plane strain tension, respectively. In the case of the specimen 

2, stress state along RD region varies between equibiaxial tension in the center section and 

uniaxial tension in the central ligament of the arm. The main advantage of both experiments is 

the multi-stress states given in a single biaxial specimen which allows the reproduction of strain 

paths close to those encountered in industrial sheet forming processes. 

Prates et al. (2014) proposed and inverse methodology for determining the material 

parameters of plastic constitutive models from a single biaxial tensile test using the cruciform 

specimen depicted in Figure 2.20 b). The geometry of this specimen was designed with the 

purpose of reproducing, as far as possible, inhomogeneous deformation developing strain paths 

commonly observed in sheet forming operations. The parameters identification strategy 

developed is based on the analyses of the load evolution during the test and the equivalent plastic 

strain distribution along the axes (RD and TD) of the sample, at a given moment of deformation; 

instead of following the strain fields on the specimen surface at several moments of deformation, 

such as carried out by the most part of the aforementioned works. This identification strategy was 

tested numerically considering a virtual material behavior and was compared with a 

homogeneous parameters identification strategy. It was shown that this proposed inverse 

strategy can be an efficient alternative to the homogeneous approach of material parameters 

identification which needs several classical tests. 
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a) 

    b)                                                                                c) 

Figure 2.20 – Biaxial tensile cruciform specimens investigated by a) Teaca et al. (2010), b) Prates et al. 

(2014) and c) Zhang et al. (2014). 

Zhang et al. (2014) also compared both homogeneous and non-homogeneous approaches 

of material parameters identification for calibrating the Bron and Besson (2004) anisotropic yield 

criterion reproducing the mechanical behavior of AA5086 aluminum alloy. Several classical 

experiments, namely, uniaxial tensile tests at 0°, 45° and 90° to the RD, simple shear tests at 0° 

and 45° to the RD and an hydraulic bulge test were used to identify the material parameters from 

the conventional identification strategy. Alternatively, a single biaxial tensile test using the 

cruciform specimen shown in Figure 2.20 c) was considered in the case of the non-homogeneous 

strategy. In this strategy, the principal strains along the diagonal direction of the gauge section of 

the cruciform sample (line DD in Figure 2.20 c)) have been evaluated and the difference between 

experimental results and numerical predictions was minimized. The yield contours obtained with 

the material parameters identified with both strategies were compared and it was observed that 

similar yield surface descriptions were obtained. It leads to the conclusion that a single 

heterogeneous test seems sufficient for identifying accurately all the material parameters of a 

complex yield criterion. 

Other heterogeneous tests 

Among the original tests that introduced a new design for the specimen and loading, the 

heterogeneous TIX test proposed by Pottier et al. (2011b) must be highlighted. This test is an 
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innovative testing technique for characterizing sheet metals based on the use of a uniaxial tensile 

device with a specimen subjected to an out-of-plane motion. In this experiment, the specimen is 

simultaneously deformed along two perpendicular tensile directions, two perpendicular shear 

directions and also in biaxial expansion, in different areas. Figure 2.21 a) shows the specimen 

designed by Pottier et al. (2011b) and the different deformation zones. This geometry presents a 

circular shape of 100 mm of diameter with inner grooves and leads to the development of a highly 

heterogeneous strain field, involving tension and shear at 0° and 90° to the RD and also biaxial 

tension in the center of the sample. The experimental setup of this test, shown in Figure 2.21 b), 

consists of a hemispherical punch with 15 mm of diameter which applies vertical displacement at 

the center of the specimen. 

 
a) 

 
b) 

Figure 2.21 – a) Specimen geometry and principal strain directions in the deformation zones and b) 

experimental device developed. It should be noted that E is the axial component of the Green-

Lagrange strain tensor (Pottier et al., 2011b). 

The TIX experiment was applied for the parameters identification of a simple anisotropic 

constitutive model using an inverse procedure taking into account the displacement field 

measurements. Thus, a least-square function defining the difference between experimental and 

numerical (i) displacement fields along x, y, and z axis and (ii) global reaction load F was defined 
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and the gap was iteratively minimized during the parameters identification process. In order to 

inquire the validity of the identified material parameters, a deep-drawing test was carried out 

both experimentally and numerically. It was concluded that (i) a single heterogeneous test can 

lead to the identification of a complete material parameters set of an anisotropic plastic model 

and (ii) the increase of the strain field heterogeneity leads to a better assessment of the material 

behavior through parameter sets. 

2.2.2.2 Other identification strategies 

The FEMU identification procedure can become time consuming, especially if the constitutive 

model or the specimen geometry are complex, because at each iteration of the iterative 

identification process a full FE computation has to be performed. Another drawback is that often 

the actual boundary conditions are not perfectly reproduced in the FE model, introducing errors 

in the subsequent identification (Rossi and Pierron, 2012). 

Therefore, other strategies have been proposed to directly evaluate the constitutive 

equations from the displacement and strain field measured by a FFM method, for instance, virtual 

field method (VFM) (Grédiac and Pierron, 2006; Pierron et al., 2010; Rossi and Pierron, 2012; Kim 

et al., 2013), equilibrium gap method (EGM) (Claire et al., 2004; Périé et al., 2009), constitutive 

equation gap method (CEGM) (Geymonat and Pagano, 2003; Latourte et al., 2008; Florentin and 

Lubineau, 2010; Moussawi et al., 2013) or reciprocity gap method (RGM) (Bui et al., 2004). Among 

these strategies, VFM is clearly the most developed one for parameters identification of 

elastoplastic parameters.  

The first application of the VFM to the identification of elastoplastic constitutive 

parameters was carried out with simulated full-field kinematic data obtained from a thin notched 

tensile specimen (Grédiac and Pierron, 2006). Further, experimental validations of the VFM were 

successfully achieved at small strains (Pannier et al., 2006; Avril et al., 2008b; Pierron et al., 2010). 

Pannier et al. (2006) identified the material parameters of a nonlinear hardening model on a thin 

notched specimen showing a varying cross section. Avril et al. (2008b) reconstructed all the 

heterogeneous in-plane stress components of the stress tensor. Pierron et al. (2010) investigated 

the kinematic in addition to the isotropic hardening behavior of the material. The approach was 

later extended to large deformations using a thick sheet specimen with simulated data (Rossi and 

Pierron, 2012). More recently, VFM has been applied to characterize the post-necking strain 

hardening behavior of thin sheet specimens subjected to uniaxial tension (Kim et al., 2013). 

 The VFM is based on the principle of virtual work which is, for a given solid of volume V 

subjected to a quasi static loading in absence of body forces, defined by (Pierron et al., 2010) 

0d.d:
fd

 


VV
SV uTεσ , (2.20) 

where σ is the actual stress tensor, ε+ is the virtual strain tensor, T is the distribution vector of 

loading tractions acting on the boundary, dVf is the part of the solid boundary where the tractions 

are applied and u+ is the virtual displacement vector. A virtual displacement field is actually a test 

function, defined across volume V, for which the Equation 2.20 is verified. The virtual strain tensor 

is the strain tensor derived from the given virtual field displacement. An important feature is the 

fact that u+ must be kinematically admissible (Grédiac et al., 2006). It means that u+ must be 
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continuous and differentiable across the whole volume and it must be null or constant over 

boundaries where the reaction traction distributions are unknown, in order to involve only the 

measured resultant loads in the equations (Pierron et al., 2010). The choice of the virtual fields is 

a key issue in the method. Indeed, their number and their type depend on the nature of the 

constitutive equations. When these constitutive equations are nonlinear functions describing the 

elastoplastic behavior of the material, the equation derived from the principle of virtual work is 

also non-linear with respect to unknown material parameters (Grédiac and Pierron, 2012). In this 

case, the stress tensor only depends implicitly on the unknown material parameters through the 

evolution of plastic strains (Grédiac et al., 2006). Due to this reason, an iterative procedure which 

minimizes a cost function is required for determining the material parameters. However, this 

iterative problem remains rather easy and fast to solve comparing with the one defined by FEMU 

strategy (Grédiac and Pierron, 2012). The main drawback of this identification strategy is related 

to the choice of the optimum virtual fields when complex constitutive models are considered. 

RGM relies on situations where full-field measurements are available on the boundary. In 

this strategy, a reciprocity gap function is defined from the principle of virtual work using the 

Maxwell–Betti reciprocity theorem (Avril et al., 2008a). An adjoint state is defined and the 

reciprocity gap between this adjoint state and the experimental one is minimized in order to 

obtain the parameters. The RGM can be seen as a variation of the VFM where kinematical fields 

are known only on the boundary. Nevertheless, there is no method for extrapolating the 

displacement field from known boundary values. Thus, the RGM method has not been applied to 

material parameters identification using experimental field data (Avril et al., 2008a). Most 

applications deal with hidden crack identification, however, the technique is also theoretically 

applicable to retrieve constitutive coefficients governing elastic linear constitutive equations 

(Ikehata, 1993; Grédiac and Pierron, 2012). 

The EGM strategy is based on the discretization of the equilibrium equations. In this way, 

the equilibrium equations are prescribed between elements on a discretized domain. Therefore, 

the EGM strategy requires full-field displacement data from which a finite element method is set 

up so that its nodes are coincident with the measurement grid points (Avril et al., 2008a). This 

strategy allows determining heterogeneous elastic or damage fields by minimizing the equilibrium 

gap. Indeed this strategy has been applied to the identification of damage heterogeneity in 

composite materials (Claire et al., 2004, 2007; Azzouna et al., 2011). 

The CEGM strategy is based on the minimization of a constitutive equation gap functional 

which provides the identified values of constitutive parameters (Avril et al., 2008a). The CEGM 

measures the difference between a given stress field and another stress field computed through a 

constitutive model from a given displacement field. This strategy does not specifically need full-

field measurements and can be applied to any kind of over determined data (Avril et al., 2008a). 

In the case of an elastoplastic problem, the constitutive equation gap is defined by both F 

(associated to the standard formulation) and G (associated to the incremental formulation) 

functionals (Latourte et al., 2008) 

     dF *)(:::*)(:
2

1
),( s1s-Tss uεBτBuεBτBτ (2.21) 

and 
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     dG *)(:::*)(:
2

1
),( t1-tTtt uεBτBuεBτBτ , (2.22) 

where u* is the in-plane displacement field measured on a given region of interest Ω of the 

specimen, τ and Δτ are the standard and incremental stress fields, Bs and Bt are the secant and 

tangent tensors and ε(u*) and ε(Δu*) are the strain related to the measured displacement and to 

the incremental displacement, respectively. In order to perform the numerical minimization of 

these functionals, by an iterative optimization process, a FE method is required to obtain an 

appropriate description of displacement, stress and material properties in the region of interest 

Ω. The CEGM strategy was initially applied in dynamics in the context of model updating of 

vibrational data (Ladeveze et al., 1994), then was adapted for the identification of elastic 

properties (Geymonat and Pagano, 2003; Florentin and Lubineau, 2010; Moussawi et al., 2013) 

and of elastoplastic parameters in the context of a small strain hypothesis and plane stress 

assumption for quasi-static loadings (Latourte et al., 2008). More recently, it has been used for 

identifying the nonlinear damage behavior of composite materials (Merzouki et al., 2014). 

2.3 Conclusion 

A literature review concerning both homogeneous and non-homogeneous approaches used to 

identify material parameters of constitutive models applied to thin metallic sheets was presented 

in this chapter. The parameters identification strategies behind both approaches were formulated 

and discussed. 

It was stated that the material parameters are mainly identified based on a finite element 

model updating (FEMU) strategy which is applied to both homogeneous and non-homogeneous 

approaches. This strategy consists of an inverse problem where an optimization algorithm 

performs an iterative updating of the material parameters to minimize an objective function 

which computes the difference between experimental observations, coming from mechanical 

tests, and numerical predictions, usually obtained by FE simulation. Moreover, other identification 

strategies were also proposed in the case of the non-homogeneous approach. Within these 

strategies, just the VFM has been sufficiently developed to be applied to the material parameters 

identification of elastoplastic constitutive models. Nevertheless, due to the difficulty in choosing 

the optimum virtual fields, this strategy has not yet been largely used for identifying parameters 

of anisotropic elastoplastic constitutive models. 

In addition, the classical and heterogeneous mechanical tests characterizing the sheet 

metal behavior which are respectively used by the homogeneous and non-homogeneous 

approach were introduced. These ones consist of the uniaxial tension, simple shear, plane strain 

tension, hydraulic bulge test and disk compression test, in the case of classical experiments, 

whereas tensile tests with notched specimen, a hole or shear-like tensile zone in the specimen 

and biaxial tensile tests using cruciform samples are the most common heterogeneous 

experiments. 

It was pointed out that several works using the strain or displacement field measurements 

of a single heterogeneous test for identifying the material parameters from a non-homogeneous 

approach led to a similar or a better suited numerical prediction of the material behavior than 
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using the material parameters identified from an homogeneous approach based on the analytical 

stress-strain relations of several quasi-homogeneous classical tests. These results highlight that 

the time and material consuming as well as experimental database for material parameters 

identification purposes can be significantly reduced with a simultaneous enhancement of the 

quality of the material parameters when a heterogeneous experiment developing multi-stress and 

-strain sates is used. Due to this reason, the main goal of this thesis is the design of a mechanical 

test leading to a more complete mechanical characterization of the sheet metal behavior. 

Since both homogeneous and non-homogenous approaches consist of an inverse 

optimization strategy, the formulation of an optimization problem and the different types of 

optimization methods are introduced in the next chapter. 
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Chapter 3 

3 Parameter and shape optimization 

3.1 Introduction 

Optimization is the act of obtaining the best result under given circumstances. In design, 

construction and maintenance of any engineering system, technological and managerial decisions 

at several stages must be taken. The aim of these decisions is either to minimize the effort 

required or to maximize the desired benefit. Since the effort required or the benefit desired in 

any practical situation can be expressed as a function of certain decision variables, optimization 

can be defined as the process of finding the conditions that give the maximum or minimum value 

of a function (Rao, 1996). 

Focusing on sheet metal forming, the design of metallic parts is no longer performed by 

trial-and-error procedures, mostly for economical and competitive reasons. Today, the numerical 

simulation by FE method is largely applied for testing virtually sheet forming processes in order to 

optimize the process parameters. However, numerical simulation of sheet metal forming is a 

complex process controlled by input coefficients describing the material behavior, blank shape, 

geometry of the tools, blank-holder pressure, friction, etc. Due to its complexity, involving the 

combination of all these input variables, optimization procedures are crucial tools for the proper 

design of sheet forming process as well as for the prediction and correction of undesirable 

forming defects (de-Carvalho et al., 2012). Indeed, the optimization by numerical simulation of 

sheet forming processes and respective design of metallic parts is, currently, fundamental in the 

forming industry for decreasing the design cycle of new products, reduce substantially the 

associated costs and enhance the product quality. 

Therefore, in the current chapter, the optimization problems found in sheet metal forming 

processes are defined and the different optimization methods generally used for solving these 

problems are characterized. Additionally, the optimization methods used in this work are 

introduced. 
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3.2 Optimization problem 

In order to obtain accurate stress and strain fields, an effective FE numerical simulation requires 

reliable input data such as geometry, mesh, non-linear material model, contact and friction 

models, etc. This sort of problems can be defined as direct problems, in which the quality of the 

results relies on the quality of the input data that are however not always available. In order to 

overcome these difficulties, a possible approach are the inverse problems, for instance, with the 

definition of input parameters to be used in geometric or constitutive models for numerical 

simulations, based on experimental data (de-Carvalho et al., 2011). 

Hence, inverse problems deal with the determination of unknown parameters inherent to 

mathematical formulations of physical problems by comparing the measured real responses with 

the calculated numerical ones of the physical system. Taking into account the type of parameters 

needing to be determined, inverse problems can be divided in parameters identification and 

initial shape optimization problems (Kleinermann and Ponthot, 2003). 

The aim of the parameters identification problem is to estimate the parameters of the 

constitutive model describing the mechanical behavior of the material. This optimization problem 

relies on the knowledge of material behavior coming from experimental data and its iterative 

comparison to results (for the same experiments) provided by numerical simulation models. 

Mathematically, the goal is to minimize the difference between experimental and simulation-

based results defined by an objective function in order to found a reliable input constitutive 

parameters set. Note that this kind of inverse problem was already discussed in chapter 2. 

The initial shape optimization problem intends to determine the initial shape of the blank 

and/or the shape of the forming tools when the final shape of the part is already known. In most 

forming process designs, such as in deep drawing, the final geometry of the part to be formed is 

prescribed. Moreover, the forming process must be designed to ensure that, after deformation, 

the blank will reach this prescribed shape (Ponthot and Kleinermann, 2006). However, this task 

becomes difficult due to the non-linearities that are inherent to the forming process, such as 

contact, non-homogeneous strain fields, large deformation and structural defects onset, such as 

wrinkling, thinning, earing and springback after the tools removal (Valente et al., 2010). Due to 

this reason, an automatic design of the initial shape of the blank and/or the forming tools shape 

by performing optimization is essential in order to provide the desired final part geometry after 

forming process. In such an optimization procedure, the blank shape to be optimized is defined by 

a finite number of input parameters. An objective function evaluating the gap between the 

desired final part shape and the final one obtained by numerical simulation is iteratively 

minimized with the purpose of determining the optimal initial shape of the blank and/or tools. 

Nevertheless, regarding the modification of the blank shape during the optimization 

process, another kind of optimization problem can be distinguished. This one consists in the 

shape optimization problem. Shape optimization problems do not belong to the class of inverse 

problems but are not so different. The general shape optimization problem tries to find a 

geometry or shape that is optimal, in the sense that it minimizes a certain objective function while 

satisfying given constraints (de-Carvalho et al., 2012). Thereby, the only difference with the 

corresponding inverse problem is that in the inverse one the final shape is already known. This 
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shape optimization problem is the approach used for the computational design of the mechanical 

test proposed in this thesis, as can be seen further in chapter 8. 

The concept of modern design optimization in engineering has been introduced by Schmit 

(1960). Zienkiewicz and Campbell (1973) combined the FE method with shape optimization 

concepts. In metal forming, Park et al. (1983) were pioneers presenting a methodology to 

calculate the optimum design of a forging preform. Later, Maniatty and co-workers (Maniatty and 

Zabaras, 1989, 1994; Maniatty and Chen, 1996) contributed significantly with sensitivity analysis 

for steady processes of metal forming inverse problems. Fourment and co-workers (Fourment et 

al., 1996; Fourment and Chenot, 1996) generalized the design optimization in metal forming by 

suggesting a shape optimization method for a non-linear and non-steady-state metal forming 

problem. These authors proposed an inverse approach in order to optimize the initial shape of the 

part as well as the shape of the preform tool during a two-step forging operation, for which the 

shape of the second operation was previously known. 

Concerning the optimization of mechanical tests for characterizing the material behavior of 

sheet metals, usually, only parametric studies related to the geometrical dimensions of the 

specimen are carried out in order to improve the performance of such tests (Zidane et al., 2010; 

Dunand and Mohr, 2011; Tiernan and Hannon, 2014). However, note that Makris et al. (2010) 

implemented a shape optimization process with the aim of finding the optimal design of a 

cruciform specimen used in biaxial tension. These authors coupled a numerical optimization 

technique with FE analysis and the geometrical dimensions of the specimen were optimized in 

order to (i) maximize the region of strain uniformity in the biaxial loaded zone, (ii) minimize the 

strain concentration outside the test zone of interest and (iii) make specimen failure in the biaxial 

loaded zone. 

Both parameters identification and shape optimization problems can be formulated as 
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Here, x=[x1, x2,…, xr] with r  is the optimization variables tensor of the problem, Sobj is the 

objective function to be minimized, M is the number of inequalities constraints )(xmg and L is the 

number of equalities constraints )(xlh (Polak, 1997). In the case of both inverse problems, the 

objective function is usually written as (Valente et al., 2010) 
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while, in the case of the standard shape optimization problem, Sobj is generally defined by  

(Valente et al., 2010) 
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Both objective functions expressed by Equations 3.2 and 3.3 are evaluated at the Mq instants of 

observation. Concerning the inverse problems, the objective function (Equation 3.2) calculates the 

gap between desired results and numerical predictions, as mentioned before. Alternatively, in the 

standard shape optimization problem, the objective function (Equation 3.3) is based on a 

functional Fj that characterizes the geometric shape as a function of structural properties such as, 

for instance, stress σ and strain ε fields. 

An important aspect in design optimization is the fact that the optimization techniques 

used for minimizing the objective function are not able to evaluate the physical relevancy of the 

numerical model. Such optimization techniques just search for the design variables set which 

promote a best approximation between the numerical and expected results. However, the search 

space of design optimization problems is generally limited due to the physical admissible bounds 

of the different optimization variables. Therefore, the optimization variables should fill in this 

search space and, for this purpose, boundaries or inequality constraints for the design parameters 

value are commonly included in the optimization process. In the case of constrained optimization 

problems, the search space is limited by considering lower and upper admissible boundary sets 

for the optimization variables as defined in the last expression of Equation 3.1. Nevertheless, in 

the case of using unconstrained optimization methods, the design variables can be transformed as 

follows (Andrade-Campos, 2011) 
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where x0 ≥ 1 is the initial value of x for an existing xmax and x normalized. A similar equation is 

formulated for x0 < 1 using xmin. In this way, lower and upper boundaries are imposed to the 

optimization variables. 

Moreover, non-linear inequality constraints that represent complex relations among the 

design variables can also be imposed to the optimization process by the form of penalization 

terms (penalty method). These terms are added to the objective function with the aim of 

discouraging constraint violations. As a result, the optimization problem to be minimized can be 

defined by (Andrade-Campos et al., 2007; Andrade-Campos, 2011) 
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where αm are penalty coefficients and the second term of the equation is an exterior penalty 

function which leads to the evolution of the optimization process. 

3.2.1 Optimization methods 

The solution for the aforementioned optimization problems cannot be achieved analytically and is 

carried out with the aid of iterative numerical techniques designated as optimization methods. 
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These optimization methods are applied to update the variables x during the optimization 

procedure, with the purpose of minimizing the objective function value. 

However, it must be pointed out that during the optimization process several local minima 

can be reached and some of the optimization methods do not have mechanisms to avoid this 

drawback. In this way, the selection of the optimization method assumes a great importance 

because it controls the efficiency of the parameters identification process (Cailletaud and Pilvin, 

1994). 

A large number of optimization methods can be used to solve inverse problems, generally, 

these belong to three main groups: (i) classic gradient-based, (iii) direct-search and (iii) 

evolutionary methods (Chong and Zak, 2001; Nocedal and Wright, 2006; Weise, 2008). 

The classic gradient-based methods are characterized by using the information of the 

derivative of the objective function to successively update the solution until a criterion is satisfied. 

These methods usually converge quickly in the vicinity of the solution and then, are very 

interesting in terms of convergence rate (Chaparro et al., 2008). Nonetheless, the results obtained 

with this type of optimization methods are characterized for being dependent on the initial set of 

parameters, since these methods do not have mechanisms that hinder the convergence for local 

minima (Polak, 1997; Andrade-Campos et al., 2007). Thereby, the skills of the user on the 

definition of the initial guess solution may present a crucial role for the success of the 

optimization process. However, classic gradient-based methods are widely used in optimization 

due to their very good relationship between efficiency and required computational time 

(Chaparro et al., 2008). 

Among the several classic gradient-based methods, the most popular one applied to inverse 

optimization problems is the Levenberg–Marquardt least-square algorithm (Levenberg, 1944; 

Marquardt, 1963). Withal, other traditional optimization methods, such as the conjugate gradient 

or Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Polak, 1997), as well as the convex approximation 

methods, such as the convex linearization (CONLIN) (Fleury, 1989), the method of moving 

asymptotes (MMA) (Svanberg, 1987) and the sequential quadratic programing (SQP) were also 

successfully used in optimization problems (Andrade-Campos et al., 2007). 

The direct search methods are generally based on simple strategies that only use function 

evaluations without needing the calculation of derivatives of the objective function. These 

optimization methods undergo the problem of converging to local minimums and are also  user-

dependent (Chaparro et al., 2008). Their convergence can be very time-consuming and involves 

the comparison of each trial solution with the best previous solution. Several direct search 

methods can be mentioned, such as pattern search (Nocedal and Wright, 2006), Rosenbrock (Rao, 

1996) and Nelder-Mead (Lagarias et al., 1998). This kind of methods is popular, mostly the Nelder-

Mead algorithm, due to its simplicity, flexibility and reliability. Additionally, these methods are 

less sensitive to numerical noise than the gradient-based methods. 

Evolutionary method is a generic definition used to indicate any population-based 

optimization algorithm that makes use of some mechanism to improve the initial solutions 

(Chaparro et al., 2008). Among the evolutionary optimization methods, the nature-inspired 

algorithms can be distinguished. These are probabilistic optimization methods based on biological 

evolution mechanisms, such as the reproduction or natural selection (Andrade-Campos et al., 

2007). These algorithms, which resort to a population where each individual can be a possible 
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solution, are very robust. Their search is initiated with a set of possible solutions only using the 

information of the objective function value (Furukawa and Yagawa, 1997), however, these 

algorithms require a large number of evaluations and, consequently, their convergence can be 

very time-consuming. In the following, the 2 algorithms used in this work are detailed. 

3.2.1.1 Levenberg-Marquardt algorithm 

One of the most used optimization methods in material parameters identification process is the 

Levenberg-Marquardt (L-M) gradient-based algorithm (Levenberg, 1944; Marquardt, 1963). This 

algorithm is an evolution of the classical least-square Newton method and calculates a search 

direction between the Gauss-Newton direction and the steepest descent direction (Chong and 

Zak, 2001). The L-M algorithm is characterized by alternating between a slow descent when 

moved away from a minimum and a quick convergence when in the neighborhood of a minimum. 

This feature associated to the excellent relationship between efficiency and required 

computational calculation time constitutes the main reason for the wide application of the L-M 

algorithm in optimization problems. 

The L-M gradient-based algorithm uses the first order derivative of the residuals of the 

objective function. This algorithm starts on an initial point and creates a quadratic approach of 

the objective function using the values of first order of the derivative in this point. The L-M 

algorithm for an iteration k can be written as (Kleinermann, 2000; Andrade-Campos et al., 2007) 

        )()()()(diag)()( TLMTT
kkkkkkk xRxJhxJxJxJxJ  , (3.6) 

where J(xk) is the Jacobian matrix of the objective function defined as a sum of squares of 

residuals, λ is the Levenberg-Marquardt parameter, LM
kh corresponds to the step given for the

algorithm in each iteration k and )( kxR is the vector of the residuals between the experimental 

results and the numerical predictions obtained with the optimization variables tensor x at the 

iteration k. The parameter λ promotes different behaviors in the method influencing the direction 

and size of the algorithm step LM
kh . 

3.2.1.2 Nelder-Mead algorithm 

The direct search Nelder-Mead algorithm is based on a spatial approximation to achieve the 

minimum of the objective function. Since this algorithm does not use any kind of derivative 

information of the objective function, it is suitable for problems that are not smooth or have a 

number of discontinuities and it tends to be very robust and efficient (Coleman et al., 1999; 

González, 2001). 

The Nelder-Mead algorithm is based on the definition of a non-degenerate2 simplex. For an 

objective function of r optimization variables, this simplex consists of a geometric figure of non-

zero volume which is the convex hull of r + 1 vertices (Lagarias et al., 1998). At each iteration of 

the optimization process, this algorithm removes the vertex with worst objective function value 

and replaces it with another vertex with a better value. The new vertex is obtained by reflecting, 

expanding or contracting the simplex along the line joining the worst vertex with the centroid of 

2
 A simplex is non-degenerate if its vertices are not coplanar. 
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the remaining vertices. When it is not possible to find a better vertex in this way, then, only the 

vertex of the best objective function value is retained and the simplex is shrunk by moving all the 

other vertices toward this value (Nocedal and Wright, 2006). 

For a given iteration k, the r + 1 vertices kv1 , …, 
k
rv 1 are ordered, such that (Nocedal and 

Wright, 2006) 

)()()( 1obj2obj1obj
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r

kk vSvSvS   (3.7) 

and the centroid of the best rk vertices can be denoted by 
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Since the goal is the minimization of the objective function, kv1 corresponds to the best vertex 

while k
rv 1 is the worst one. Points along the line joining k

rv 1 and kv are denoted by 

)()( 1
kk

r
k vvdvdv   , (3.9) 

where d is a scalar. 

Figure 3.1 illustrates the spatial approximation principle used by the Nelder-Mead 

algorithm by considering a two dimensional example. From this figure, the current simplex 

configuration defined by the three vertices as well as the possible replacement configurations, for 

instance, (i) reflection point   (-1), expansion point   (-2), inside contraction point   (1/2), outside 

contraction point   (-1/2) and shrunken simplex defined by the grey region. Note that the worst 

current vertex consists of v3. 

Figure 3.1 – Simplex (solid triangle with vertices v1, v2 and v3) defined by the Nelder-Mead algorithm. 

3.3 Conclusion 

In this chapter, both types of optimization problems covered in this thesis, namely material 

parameters identification and shape optimization, were defined and discussed. 

In fact, the shape optimization consists of the main purpose of the current work by the 

development of an innovative optimization methodology for the computational design of 
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heterogeneous mechanical tests. Alternatively, the material parameters identification problem 

appears due to the need of calibrating numerically the mechanical behavior of the DC04 mild steel 

in order to become the virtual material in the previous mentioned shape optimization problem. 

In addition, the classic gradient-based L-M and the direct search Nelder-Mead optimization 

algorithms which are used, respectively, in the material parameters identification and shape 

optimization problems, were introduced. On the one side, the L-M algorithm was selected for the 

material parameters identification procedure due to its excellent relationship between efficiency 

and required computational time. On the other side, the Nelder-Mead algorithm was chosen for 

the shape optimization problem due to the fact that it is suitable for problems that are not 

smooth or have a number of discontinuities. It is the case of the optimization problem formulated 

for designing a heterogeneous mechanical test. 

The following chapter deals with the mathematical formulation of the constitutive model 

chosen for reproducing the mechanical behavior of DC04 mild steel. 
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Chapter 4 

4 Mechanical model up to rupture 

4.1 Introduction 

The constitutive model of the mechanical behavior of sheet metals is a decisive input of the FE 

simulations in order to obtain accurate numerical predictions. As a consequence, the quality of 

the constitutive model chosen for describing the material behavior plays a crucial role for the 

success of these predictions. 

Therefore, with the aim of obtaining a reliable virtual material to be used on the 

optimization design of the heterogeneous mechanical test, a complex constitutive model 

involving anisotropy, evolution of hardening also including Bauschinger effect and macroscopic 

rupture must be considered for describing accurately the mechanical behavior of the DC04 mild 

steel. 

Thus, in the current chapter, a brief review concerning the fundamental concepts that are 

used in the description of the macroscopic mechanical behavior of solids is presented. For 

instance, the main topics of the continuum mechanics theory of a material body as well as the 

constitutive modeling of phenomenological plasticity within the large strain framework are 

explained. Furthermore, the phenomenological constitutive models and macroscopic rupture 

criteria chosen to reproduce the mechanical behavior of DC04 mild steel are described. 

4.2 Continuum mechanics 

The continuum mechanics theory ignores inhomogeneities of the matter such as molecular, grain 

or crystal structures and thus, supposes that a material body is a continuum (Belytschko et al., 

2001). In this way, it considers that the material can be modeled by assuming that the matter is 

continuously distributed and fills the entire space region occupied by the material body. This 

assumption allows for the modeling of physical phenomena of the material body with high 

accurateness when length scales much greater than that of interatomic distances are taken into 

account. 
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In this context, the material body can be continually sub-divided into infinitesimal material 

particles over which the local heterogeneity of the stresses and strains are neglected and 

averaged quantities can be used. In this case, the effects of the heterogeneities act only indirectly 

through a certain number of internal variables (Chaboche, 2008). 

Forming processes change the initial configuration of a material body by imposing a 

displacement field which results in large deformations. The deformation of the material body can 

be divided into several components: stretch, rigid body rotation and translation. The stretch 

implies the change in shape and/or size of the material body between the initial configuration and 

the current (deformed) configuration (Dunne and Petrinic, 2005). 

Deformable bodies occupy regions in three dimensional Euclidean space Ψ, and a given 

body which consists of a continuous set of particles defined by the spatial points P will occupy 

different regions at different times. The subsets of Ψ occupied by a body β are defined as its 

configurations. The motion of a continuum body β is a continuous time sequence of mapping 

displacements ρ between the initial configuration and the current configuration. The domain of 

the body β in the initial configuration at time t = 0 is denoted by Ω0 and usually coincides with the 

reference configuration. The reference configuration is the configuration where the geometry and 

physical state of the body β are known and other configurations of the body at different times can 

be characterized by comparing them with this one. Figure 4.1 exemplifies a general motion of a 

deformable body β. 

The material body β can be seen as a continuous set of particles defined by the spatial 

points P that are labeled by the coordinates X, with respect to the Cartesian coordinate system, at 

their initial positions at time t=0. 

 
Figure 4.1 – General representation of a general motion of a deformable body β. 

The motion ρ of a material particle can be expressed by two distinct formulations: Eulerian 

(or spatial) and Lagrangian (or material). In the Lagrangian description, the independent variables 

are the position X (material coordinates) at time t = 0 and the time t. The motion can be expressed 

as (Belytschko et al., 2001; Banabic, 2010) 

Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa Nelson Souto 2015



  
Chapter 4 – Mechanical model up to rupture 55 

 
 

 

 .,tXρρ  (4.1) 

In the Eulerian description, the independent variables are the time t and the current position x 

(spatial coordinates) of the particle that occupied the point X at time t=0. This kind of description 

is focused in a given region in space instead of a certain particle of a continuum and can be 

described as (Belytschko et al., 2001; Banabic, 2010) 

 .,txρρ   (4.2) 

The Eulerian or spatial description is largely used in fluid mechanics, because it is often 

impossible and unnecessary to describe the motion with respect to the reference configuration. 

Generally, in these problems the attention is focused on a certain region in space, which enables 

the analysis of a flow in a considered point (Banabic, 2010). 

The Lagrangian description is more suitable for solid and structural mechanics due to the 

history-dependence. Indeed, the stresses generally depend on the history deformation and an 

undeformed (reference) configuration must be specified to define the strain (Belytschko et al., 

2001). In a FE context, the primary variables in the Lagrangian formulation are displacements, 

while in the Eulerian formulation they are velocities (Banabic, 2010). 

 

Deformation gradient and strain measurement 

The description and definition of deformation constitutes an essential part of nonlinear 

continuum mechanics. An important tensor in the finite deformation analysis is the deformation 

gradient F which can be defined by 

.
X

x
F

 ∂




 
(4.3) 

Note that F transforms vectors in the reference configuration into vectors in the current 

configuration establishing a description of deformation components, for instance, rigid body 

movement and stretch. Therefore, it is common to express the deformation gradient as function 

of the displacement gradients. Considering that the displacement u can be obtained by (Dunne 

and Petrinic, 2005; Banabic, 2010) 

uXx   (4.4) 

thus, the deformation gradient F can assume the form of (Banabic, 2010) 

,
X

u
I

X

x
F

 ∂

 ∂

 ∂

 ∂
  (4.5) 

where I is the second order identity tensor. The deformation gradient definition obtained by 

Equation 4.5 is particularly interesting for describing the Green-Lagrange strain tensor E, defined 

by (Banabic, 2010) 

Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa Nelson Souto 2015



 
56      Chapter 4 – Mechanical model up to rupture 
  

 

 IFFE  T

2

1
. (4.6) 

It must be highlighted that many different measures of strain are used in nonlinear continuum 

mechanics, such as the Almansi, logarithmic or Green-Lagrange strain tensors. 

 

Velocity gradient and rate of deformation 

The velocity gradient, that describes the spatial rate of change of velocity v, is defined by (Dunne 

and Petrinic, 2005) 
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(4.7) 

The velocity gradient L can be decomposed into symmetric (stretch related) and skew-symmetric 

(rotation related) components as (Dunne and Petrinic, 2005; Banabic, 2010) 

.wdL   (4.8) 

The symmetric component d is called as the rate of the deformation tensor and can be described 

by 

 T

2

1
LLd  , (4.9) 

while the skew-symmetric component w is the continuum spin tensor and is formulated as 

 .
2

1 TLLw   (4.10) 

4.3 Anisotropy and hardening modeling 

The mechanical behavior of a material can be mathematically expressed by a constitutive 

formulation which gives the stress as a function of the deformation history of the body. Usually, it 

is modeled by two sets of constitutive equations, according to the elastic and plastic deformation. 

For metallic materials, the first set consists of a linear stress-strain relation governed by Hooke's 

law, where the deformation applied by a load is reversible and, consequently, the initial shape of 

the material is recovered. However, when the elastic limit or initial yield stress σ0 is overcome, 

irreversible deformation begins and the material will be permanently deformed. 

According to the plasticity theory, elastoplastic constitutive models can be based on the 

additive decomposition of the rate of deformation tensor d, 

,pe ddd   (4.11) 

where de and dp are the elastic and plastic parts of the rate of deformation tensor, respectively. 

From Equation 4.11, the stress dependency of the plastic deformation can be written as 
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),(: pddDσ   (4.12) 

where D is the elastoplastic modulus tensor. In the case of elasticity, the coefficients of D are 

determined by using the elastic Young modulus E and the Poisson coefficient υ and D is given by 
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The transition from the elastic to plastic material behavior is determined by the yield 

surface. This surface defines the boundary between the elastic and plastic domains. Figure 4.2 

illustrates the elliptical yield surface according to the von Mises criterion and shows the stress 

states in plane stress (σ3 = 0) at which yielding occurs. The points located inside the yield surface 

correspond to the elastic stress levels, while the points belonging to the surface are related to the 

elastoplastic state. Points outside the surface have no physical meaning. In order to describe the 

yield surface, yield functions are adopted and these ones can be defined using two distinct 

approaches: micromechanical or phenomenological. 

On the one hand, the micromechanical approach is based on the mechanism of plastic 

deformation, e.g. slip (and twinning) in metallic crystals, and on averaging procedures over a large 

number of grains. The crystallographic texture is the main input to this approach but other 

parameters, such as grain shape, can also be included. Usually, micromechanical models are very 

powerful to describe the mechanical behavior of materials (Banabic, 2007). However, these 

models are complex and often expensive in terms of computational effort. Detailed information 

concerning micromechanical models can be obtained, for instance, in Banabic et al. (2000b) and 

Habraken (2004). 

On the other hand, the phenomenological approach corresponds to the macroscopic 

description of the mechanical behavior. In this approach, the internal variables of the material 

particle are directly associated with the dissipative behavior observed at the macroscopic level in 

terms of continuum quantities. By comparison with the micromechanical approach, the 

phenomenological one presents: (i) a simpler mathematical form, (ii) an easy implementation into 

FE codes, (iii) a better relationship between numerical simulation and computational calculation 

time and (iv) may present some poor accuracy under multiaxial and non-proportional loading 

conditions (Banabic, 2010). 

The plastic behavior of metallic materials described by phenomenological models can be 

defined by three major concepts: the yield criterion, the associated flow rule and the hardening 

law. Note that though non-associated plasticity has regained recently some interest, only 

associated plasticity is considered in this work. 
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The yield criterion establishes the relationship between the stress components at the 

moment when plastic yielding occurs and is defined taking into account important macroscopic 

phenomena such as incompressibility condition and independency to the hydrostatic stress 

(Dunne and Petrinic, 2005). In addition, the yield surface described must be closed, smooth and 

convex (Banabic, 2010). Over the years, several anisotropic yield functions have been developed 

to characterize the planar anisotropy and stress directionality of the material. Hill (1948), Hosford 

(1979), Yld91 (Barlat et al., 1991), Karafillis and Boyce (1993), BBC (Banabic et al., 2000a), Bron 

and Besson (2004), Yld2004-18p (Barlat et al., 2005), Vegter and van den Boogaard (2006) and, 

more recently, Yoshida et al. (2013) are some of the anisotropic yield functions presented in the 

literature. An extensive and comprehensive survey about yield functions can be found in Banabic 

et al. (2010). 

Hill (1948), introduced a quadratic yield function which is a generalization of the von Mises 

isotropic criterion (von Mises, 1913) for anisotropic materials. Nowadays, this criterion is one of 

the most well-known anisotropic yield criteria and, due to its simplicity, remains as one of the 

most used in the description of the behavior of orthotropic metals, mainly steels. It presents a 

reduced number of material parameters which can be determined by uniaxial tensile tests at 0°, 

45° and 90° to the RD. However, the reduced number of material parameters and experimental 

database constitutes a limitation to obtain an accurate reproduction of the mechanical behavior 

of advanced metal sheets. Indeed, this drawback of the Hill48 yield criterion can be shown by the 

four ears when using it in axisymmetric deep drawing processes whereas, in practice, different 

numbers of ears are observed (Banabic et al., 2000b). 

Comparatively to quadratic phenomenological models, constitutive models composed by a 

complex non-quadratic yield function are more suitable to accurately represent the material 

anisotropy of the sheet metal. In fact, non-quadratic yield functions, such as Yld2004-18p 

function, have been developed with the purpose of well describing the anisotropic behavior of 

metallic alloys with different crystallographic texture. These yield functions generally lead to a 

finer description of the plastic anisotropy. Nonetheless, these ones incorporate a large number of 

coefficients and, therefore, an increasing experimental database is required to determine the 

material parameters. 

 
Figure 4.2 – Representation of the von Mises yield surface, in the major (σ1) and minor (σ2) stress in 

the sheet plane, showing the increment of plastic strain dεp in a normal direction to the tangent to the 

surface (Dunne and Petrinic, 2005).  
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The associated flow rule is responsible for establishing the relationship between the strain 

rate and stress tensors. In other words, the associated flow rule allows the determination of the 

evolution of the plastic deformation after the occurrence of plastic yielding. To do this, the 

normality condition of plasticity is considered stating that the increment of the plastic strain 

tensor is normal to the yield surface at the load point (Dunne and Petrinic, 2005), as depicted in 

Figure 4.2. 

The hardening law describes the evolution of the yield surface during the deformation. The 

evolution of the yield surface can be a function of the accumulated plastic strain and may involve 

expansion, translation, rotation or distortion to which correspond isotropic, kinematic, rotational 

and distortional hardening, respectively. Usually, the combination of different hardening types is 

considered for a better description of the material behavior. Among such combinations, the most 

popular one that takes Bauschinger effect into account consists of considering simultaneously the 

isotropic and kinematic hardening behaviors. In the case of the isotropic hardening, the change of 

size of the yield surface is updated leading to a homothetic expansion. The isotropic hardening is 

mainly formulated by means of exponential or power laws. In the case of the kinematic 

hardening, the translation of the yield surface can be investigated by reverse loading, cf. chapter 

2. Such a model aims at taking into account the Bauschinger effect, which is characterized by a 

lower yield stress under strain reversal, further transient behavior that corresponds to the smooth 

elastic-plastic transition with a rapid change of strain hardening rate, and for some materials a 

hardening stagnation, the magnitude of which depends on the pre-strain and eventually 

permanent softening characterized by a stress offset (Zang et al., 2011). The kinematic hardening 

can be formulated by (i) single surface models, e.g. Prager-Ziegler, Armstrong-Frederick or 

Chaboche and (ii) multi- or bounding surface models, e.g. Mróz, Geng and Wagoner or Yoshida 

and Uemori (Cao et al., 2009).  

It is important to highlight that the hardening behavior of most metals is well modeled by 

combining isotropic and kinematic hardening formulation. On the one side, constitutive models 

only composed by isotropic hardening over-estimates the hardening component by missing the 

Bauschinger effect. On the other side, constitutive models with pure kinematic law under-

estimates the hardening component and over-estimates the Bauschinger effect (Thuillier and 

Manach, 2008). As a result, with the purpose of predicting correctly both effects, it is highly 

recommended to adopt constitutive models with simultaneous contribution of isotropic and non-

linear kinematic hardening behavior (Gau and Kinzel, 2001; Geng and Wagoner, 2002; Li et al., 

2002; Yoshida et al., 2002; Gosling et al., 2008; Cao et al., 2009). 

In the present work, a phenomenological model based on the framework of mixed 

isotropic-kinematic hardening is adopted. In this case, the yield condition F is defined by the 

generic form, 

,0)()(),,( p
Y

p   ασασF  (4.14) 

where   is the equivalent stress which is a function of the tensor η , defined by .αση   Here, 

α  is a backstress tensor that describes the kinematic hardening, σy is the yield stress related to 

the isotropic hardening and p is the equivalent plastic strain according to the conservation of 

plastic work. 
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The isotropic hardening, controlling the size of the yield surface is defined by an 

exponential law written as (Simo, 1988) 

   ,.β).δexp(1.)( pp
00

p
Y     (4.15) 

where σ0, σ , δ and β are material parameters. 

The kinematic hardening law is based on the additive contribution of several backstress 

components such as proposed by Chaboche and Rousselier (1983). This formulation defines the 

evolution of the backstress tensor as 
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where Ci and γi, with i = 1,…, 3, are material parameters related to the kinematic hardening 

behavior, iα  are the backstress components and p  is the equivalent plastic strain rate. 

Comparing with a kinematic hardening model composed by only one backstress component, this 

expression allows for a more extensive strain domain and a better description of the soft 

transition between elasticity and the onset of plastic flow (Chaboche, 2008). However, this 

kinematic formulation is not able to perform an accurate description of the work hardening 

stagnation observed after cyclic loading (Zang et al., 2011). 

The associated flow rule determines the plastic strain increment, e.g. presented in Yoon et 

al. (2006), as 

,p

η
ε







  (4.17) 

where   is the plastic multiplier. From the work-equivalent principle for incremental 

deformation theory it can be stated that  pε (Chung et al., 2005; Yoon et al., 2006). The 

determination of the plastic multiplier is based on the consistency condition. This condition 

implies that during plastic loading the stress point remains on the yield surface (Dunne and 

Petrinic, 2005). 

The present work accounts for the advanced non-quadratic Yld2004-18p anisotropic yield 

criterion (Barlat et al., 2005). This criterion is defined by 

,4~~ )( Y

3

1,1

)2()1( a

ji
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ji
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

∑ - SSη  (4.18) 

where a is the yield criterion exponent. In this equation, 
)(~ k

iS , k=1, 2 and i,j = 1 ,…, 3, are the 

eigenvalues of the tensors )(~ kS and are given by a similar linear transformation of S, the deviatoric 

part of the tensor η , 

2,1,:~~ )()(  kkk SLS , (4.19) 

where )(~ kL are given by 
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using the Voigt notation. The two linear transformations provide 18 anisotropic coefficients for a 

general three-dimensional stress state. 

When all coefficients are equal to one, the Yld2004-18p anisotropic yield criterion is 

reduced to Hershey’s isotropic yield criterion, proposed to reproduce the yield surface calculated 

with a self-consistent polycrystal model (Barlat et al., 2005). It must be mentioned that these 

coefficients have no real physical meaning. Additionally, the exponent a of the yield criterion 

depends on the material crystallographic texture and can be adjusted in function of the material 

structure type. 

Based on polycrystal theories and experimental results it was verified that quadratic yield 

criteria are not able to perform reliable yield surface descriptions of some metallic materials of 

cubic structure, namely, body-centered cubic (bcc) and face-centered cubic (fcc) materials. For 

this reason, non-quadratic yield criteria are more flexible for the mechanical behavior description 

of most metallic materials. Logan and Hosford (1980) showed that the most indicated values for 

the exponent of non-quadratic yield criteria are 6 and 8 in order to reproduce the mechanical 

behavior of bcc and fcc materials, respectively. 

According to Barlat et al. (2005), the coefficients of Yld2004-18p can be identified from 

tensile tests at every 15° to the RD, biaxial test, disk compression test and four more additional 

data characterizing the out-of-plane properties. The out-of-plane experiments referred by the 

authors are needed for characterizing the crystallographic texture of the material. However, when 

these out-of-plane tests cannot be carried out and texture or any other microstructural 

information is not available, it is recommended to assume the out-of-plane properties equal to 

the isotropic values. In this case, the coefficients )(
44
kc and )(

55
kc with k=1, 2 must be considered equal 

to one. 

The anisotropic Yld2004-18p yield criterion was chosen in this work due to the fact that, as 

a non-quadratic yield function, it is more suitable to accurately represent the material anisotropy 

of the sheet metal. This yield criterion involves a large number of coefficients, which gives a high 

flexibility to adjust the yield surface to the experimental data. Indeed, the use of a high number of 

coefficients directly leads to an excellent prediction of the mechanical behavior of highly 

anisotropic metals, such as AA2090-T3 aluminum alloy (Yoon et al., 2006). This model has also 

proved its capability to provide an accurate prediction of the planar variations of the uniaxial yield 

stresses and plastic anisotropy coefficients as well as to predict the occurrence of six and eight 

ears in the process of cup drawing (Barlat et al., 2005; Banabic, 2010). 

Although the large flexibility and accuracy on the description of the yield surface, the 

Yld2004-18p anisotropic yield criterion assumes much more complexity than other criteria, such 

as Hill48, Yld91, etc., mainly due to the large number of material parameters which must be 
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identified. As a consequence, a large number of experimental tests for an appropriate material 

identification procedure is required. 

In the present work, the anisotropic plastic behavior of a DC04 mild steel is characterized 

using two phenomenological constitutive models. Both ones are composed by the non-quadratic 

Yld2004-18p anisotropic yield criterion combined (i) with an isotropic hardening model defined by 

Equation 4.15, and (ii) with a mixed isotropic-nonlinear kinematic hardening model, defined by 

Equations 4.15 and 4.16. These are denominated as ‘Yld2004-Iso’ and ‘Yld2004-Mixed’ models, 

respectively. 

Though Yld2004-Iso model does not take into account the Bauschinger effect, it was 

considered with the purpose of adjusting the material parameters identification process since it 

needs a smaller number of parameters to be identified, comparatively to Yld2004-Mixed model. 

4.4 Macroscopic rupture criteria 

The study of the rupture assumes great importance in forming industry, especially in automotive 

industry, due to the necessity of performing crash simulations and also predicting energy 

absorption of the materials. Thus, fracture ductility is also a relevant phenomenon, insofar 

consists of the ability of a material to reach high amount of deformation without rupture. In this 

work, the rupture has to be predicted, in order to validate the maximum strain level reached 

during the design of a new experiment. The rupture behavior can be analyzed considering two 

different approaches: (i) uncoupled fracture criteria, which neglect the effects of damage on the 

yield surface of materials and (ii) coupled fracture criteria, which consists in ductile damage 

models coupled with plasticity (Li et al., 2011). 

The coupled fracture criteria incorporate the damage accumulation and allow the 

modification of the yield surface by damage-induced density change (Li et al., 2011). The 

degradation of the mechanical properties is taken into account in the constitutive equations up to 

the final rupture. These criteria are usually based on micromechanical phenomena of initiation 

and growth of voids followed by coalescence. The coupled fracture criteria tend to give a more 

reliable description of the fracture behavior than the uncoupled fracture criteria. However, these 

coupled criteria are usually complex and difficult to implement into FE codes. Gurson-Tvergaard-

Needleman (GTN) and continuum damage mechanics (CDM) models are examples of coupled 

fracture criteria. An extensive description about this kind of fracture criteria can be found in 

Besson (2010). 

The uncoupled fracture criteria are formulated considering an empirical or semi-empirical 

rupture parameter based on some macroscopic variables such as, the equivalent plastic strain, 

principal and hydrostatic stresses and more recently the Lode angle, since these variables are the 

most relevant to fracture initiation and propagation (Li et al., 2011). Several uncoupled fracture 

criteria have been proposed, for instance, Cockroft and Latham (1968), Brozzo et al. (1972), Rice 

and Tracey (1969), Oyane et al. (1990), Xue-Wierzbicki (Wierzbicki et al., 2005). Although there is 

a limitation of not representing the deterioration of the mechanical properties related to damage, 

these fracture criteria are widely adopted due to their easy implementation into FE codes and 

easy calibration (Wierzbicki et al., 2005). 
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In this work, the rupture behavior of a DC04 mild steel is evaluated considering both 

Cockroft and Latham (CL) and Rice and Tracey (RT) uncoupled fracture criteria. The definition of 

CL criterion is taken as the one given in (Li et al., 2011) 

 

p
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f
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p
CL d
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
WW I , (4.21) 

where σI is the maximum principal stress. Fracture is expected to occur when the rupture 

parameter CLW  reaches the critical value f
CLW , leading to the determination of the equivalent 

plastic strain at rupture p
f . The RT criterion is described by (Li et al., 2011) 
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where σH is the hydrostatic stress and the critical parameter is defined as f
RTW . 

Both CL and RT fracture criteria were adopted in this work due to their simple calibration 

which can be obtained from a single test. Moreover, CL fracture criterion was chosen because it is 

a widely used macroscopic rupture criterion (Zhalehfar et al., 2013; Björklund et al., 2014). 

Alternatively, RT criterion was selected since it takes into account the stress triaxiality ratio (σH/  ) 

in its formulation and the stress triaxiality is, besides the strain intensity, the most important 

factor that controls initiation of ductile fracture, e.g. Bao and Wierzbicki (2004). 

The calibration of the uncoupled fracture criterion parameters is generally performed 

comparing experiments leading to rupture, such as the tensile test, with FE simulation. Takuda et 

al. (1999) applied the combination of uncoupled ductile fracture criteria with FE simulation in 

order to predict the fracture initiation and, consequently forming limits. The predictions were 

performed for deep drawing experiment and accurate results were obtained by the authors. 

Ozturk and Lee (2004) presented a complete determination of forming limit diagram (FLD) by 

using several uncoupled fracture criteria. For this purpose, tensile tests up to rupture and 

numerical simulation were used by the authors in order to calibrate the fracture criterion 

parameters. Zhalehfar et al. (2013) predicted the effect of strain path change on the FLD at 

rupture by using a numerical approach and the uncoupled CL fracture criterion. Björklund et al. 

(2013) also adopted the uncoupled CL criterion and performed a comparison between 

experimental results coming from simple mechanical tests and FE simulations, to calibrate the 

criterion. Tarigopula et al. (2008) used DIC technique on shear test up to rupture and calibrated 

the parameter of the CL fracture criterion through FE simulation. In addition, Wierzbicki et al. 

(2005) presented the calibration and evaluation of several uncoupled fracture criteria by using 

numerical simulation. 

4.5 Conclusion 

In this chapter, some mathematical concepts of the continuum mechanics, which constitute the 

foundation of the constitutive models used in FE simulation, and the phenomenological 

constitutive models adopted in this study were presented. Both phenomenological models chosen 
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for representing the anisotropic plastic behavior of a DC04 mild steel consist of the Yld2004-18p 

anisotropic yield criterion combined with either an isotropic hardening law (Yld2004-Iso) or a 

mixed isotropic-nonlinear kinematic hardening law (Yld2004-Mixed). 

In addition, two different uncoupled fracture criteria namely, Cockroft and Latham (CL) and 

Rice and Tracey (RT), were adopted in order to calibrate the macroscopic rupture behavior of the 

mild steel. The main purpose of using a fracture criterion is to validate the heterogeneous 

mechanical test further developed in chapter 8. Such criterion will be the end condition to stop 

the numerical optimization approach used on the design of the heterogeneous mechanical test. 
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Chapter 5  

5 Material parameters identification and rupture 

5.1 Introduction 

The accurate description of the mechanical behavior of a DC04 mild steel involves considering 

deformation up to large strains including rupture. Therefore, an efficient procedure that leads to a 

complete mechanical characterization of the sheet metal behavior, including anisotropy, 

evolution of hardening and rupture, is proposed in this chapter.  

The focus of the global procedure presented here is to identify the anisotropic and 

hardening material parameters of both Yld2004-Iso and Yld2004-Mixed phenomenological models 

and also to calibrate the macroscopic rupture behavior of a DC04 mild steel by considering both 

RT and CL fracture criteria. To do this, an inverse methodology for material parameters 

identification was developed based on FEMU and several classical tests considered as 

homogeneous were used in the experimental database. Furthemore, a mixed experimental-

numerical approach to calibrate the fracture criteria was performed. Such approach consisted in 

the comparison of the experimental strain distribution, obtained by DIC technique, of a tensile 

test carried out up to rupture with the numerical results obtained by FE simulation. 

5.2 Parameters identification process 

5.2.1 General structure 

Since a FEMU technique was adopted for identifying the material parameters of the 

phenomenological modes, the parameters identification process was performed using a 

combination of the FE code ABAQUS (Abaqus, 2009) and the optimization software code SdL3 

(Andrade-Campos, 2011). While ABAQUS is responsible for the numerical simulations of the 

                                                           
3
 SdL is a non-commercial optimization software designed for material parameters identification and 

engineering shape optimization problems. It is currently developed at Limatb (University of Bretagne-Sud) 
and Grids (University of Aveiro) research groups. 
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classical tests, SdL updates the material parameters at each evaluation of the identification 

process with the purpose of minimizing the objective function and, eventually, stops the 

optimization. The communication between these two programs was ensured by a FORTRAN 

interface which compares the experimental and numerical results and writes the updated 

parameters on the ABAQUS input file after each evaluation. Figure 5.1 depicts the flow diagram of 

the identification process implemented. 

 
Figure 5.1 – Scheme of the parameters identification process developed. 

DC04 mild steel used in this work presents a thickness e = 0.7 mm and its mechanical 

behavior was characterized by Le Port (2012) and Zang et al. (2011) under different stress and 

strain states. The experiments carried out consisted of: (i) uniaxial tensile and simple shear tests 

at 0°, 22°, 45°, 77° and 90° to the RD; (ii) hydraulic bulge test and (iii) three shear-Bauschinger 

tests in the RD, consisting of unloading and reloading in the reverse direction after a pre-strain of 

0.13, 0.21 and 0.33. The stress levels in uniaxial tension are quite close whatever the orientation, 

except at 45°/RD, where it is lower than the others. Concerning the plastic anisotropy coefficients, 

the minimum value, equal to 1.68, was measured at 0°/RD and it then increases when the angle 

between the tensile direction and RD also increases, up to 2.25 at 90°/RD. It leads to an average 

coefficient, characterizing the normal anisotropy, of 1.93 and a planar anisotropy characterized by 

a coefficient of 0.08. Concerning bulge test, the evolution during the test of the two strain 

components, in the RD and TD, were measured by DIC technique, and these two values are very 

close, with a relative gap lower than 5% (Zang et al., 2011). 

The experimental database used in the identification process was composed by the stress-

logarithmic strain curves (σ-ε) in uniaxial and biaxial tension, shear stress-strain curves (τ-γ) in 

simple shear and transverse strain-longitudinal strain curves (ε11-ε22) for the several uniaxial 

tensile tests and bulge test. 

All experiments were used in the material parameters identification of the Yld2004-Mixed 

model. Whereas, in the material parameters identification of the Yld2004-Iso model, shear-
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Bauschinger tests were not considered due to the fact that this model does not account for the 

kinematic hardening. 

5.2.2 Objective function 

According to the experimental database available and the definition of an objective function for a 

test n (introduced in Equation 2.1), the experiments were divided into 4 main groups and the 

global objective function was defined as 

).()()()()( SBT
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 (5.1) 

Superscript ‘TU-S’ stands for the stress level in tension, ‘TU-E’ for the width strain in tension, 

‘Shear-S’ for the stress level in simple shear and finally ‘BT-S’ stands for the stress level in bulge 

test. The sums over α gathers for all tests at a given orientation α to RD and Bauschinger tests in 

simple shear where also accounted for (subscript ‘Baus’). These 4 main groups were defined in 

order to apply a same normalized weighting factor h
absW  for each one of the experiments 

belonging to the group, instead of attributing an individual weighting factor for each test n as 

suggested in Equation 2.1. In this way, for each group h, the parameter h
absW  was calculated 

according to the following equation, 
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where h
tn is the number of tests belonging to the same group h, hn is the number of groups (equal 

to 4 in this work) and nZ )( exp
max  is the maximum output data from each experiment for a given test 

n of a group h. The different h
absW  values used for both Yld2004-Iso and Yld2004-Mixed models 

are given in Table 5.1. The sum of h
absW , with k =1, …, 4 is equal to 1 to normalize the objective 

function values obtained by each group of experiments. 

Table 5.1 - Number of tests and absW values of each group for both constitutive models. 

 TU-S Shear-S BT-S TU-E  

absW  1.05x10
-1

 5.95x10
-2

 1.75x10
-1

 7.78x10
-5

 
Yld2004-Iso 

nt 5 5 1 6 

absW  8.93x10
-2

 5.05x10
-2

 1.48x10
-1

 6.60x10
-5

 
Yld2004-Mixed 

nt 5 8 1 6 

 

5.2.3 Numerical simulation of the tests 

Concerning the numerical modeling of the material behavior, the phenomenological formulation 

of Yld2004-18p yield criterion with the Armstrong-Frederick kinematic hardening model, 
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composed by one backstress tensor, was implemented by Grilo et al. (2013c) in a user-defined 

material subroutine UMAT of the FE code ABAQUS (Abaqus, 2009). Nevertheless, this 

phenomenological model is not the most suitable one to perform a better numerical description 

of DC04 kinematic hardening. Thereby, the kinematic hardening formulation was modified in the 

UMAT subroutine adopting the kinematic hardening model proposed by Chaboche and Rousselier 

(1983) which is defined by Equation 4.16. The implementation of this kinematic hardening model 

in a UMAT subroutine as well as its validation was detailed in appendix A. 

Note that the implemented kinematic hardening model is composed by the additive 

contribution of a set of three Armstrong-Frederick terms leading to a hardening law defined by 

three backstress tensors. As a consequence, it leads to an improved description of the 

Bauschinger effect and more flexibility since it can be reduced to the previous hardening 

formulation using only one backstress tensor. In Figure 5.2, the hardening evolution (αT) described 

by the kinematic hardening model proposed by Chaboche and Rousselier (1983) with three 

Armstrong-Frederick hardening terms (α1, α2 and α3) is illustrated. This figure shows the 

advantage of using a kinematic formulation based on multiple individual backstress tensors, 

because the additive contribution of each backstress allows a more complex Bauschinger 

modeling. 

 
Figure 5.2 – Evolution of the individual backstress tensors (α1, α2 and α3) that compose the kinematic 

hardening formulation (αT=α1+α2+α3) implemented in this work. Kinematic hardening described by the 

identified material parameters listed in Table 5.2. 

Concerning the numerical modeling of the tests, tridimensional models with one single 8 

node element with linear interpolation and reduced integration (C3D8R) were used to reproduce 

these experiments. Boundary conditions were applied in order to obtain a homogeneous stress 

and strain states over the element, in the uniaxial tension and simple shear. In the case of biaxial 

tension, to save calculation time, only the central area of the bulge specimen was considered and 

an equibiaxial strain state was imposed on the element. Figure 5.3 illustrates the boundary 

conditions applied for the numerical simulations. 
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            a) Tensile test                                    b) Shear test                                    c) Biaxial strain 

Figure 5.3 – Boundary conditions applied on the numerical model of each test. U stands for 

displacement. 

It must be pointed out that, for simple shear and uniaxial tension, the definition of 1-

element model is justified by the homogeneous strain distribution verified during the experiment. 

In the case of bulge test, the simplification is only valid if the 1-element model reproduces the 

same conditions experimentally verified in the center of the bulge specimen, as shown in 

appendix B. 

According to the membrane theory for hydraulic bulging, defined by Equation 2.15, and 

considering the axisymmetric case of the bulge test and material isotropy, the longitudinal and 

transverse stress components σ11 and σ22 must be similar. Thus, based on Equation 2.16, a single 

stress component was calculated from the experimental pressure, using the radius of curvature of 

a small area centered at the specimen apex. 

The numerical simulation of the bulge test was carried out applying a same displacement in 

both 1 and 3 direction, as shown in Figure 5.3 c). This situation leads to the same numerical strain 

components ε11 and ε22 during the test. Such an assumption was justified by the fact that, 

experimentally, the evolution during the bulge test of the two strain components leads to a very 

close equibiaxial strain state. This assumption was checked by comparing the 1-element simplified 

model with 3D model of hydraulic bulging, as detailed in appendix B. 

5.2.4 Process parameters 

Some conditions related to the optimization process of material parameters identification must 

be defined. For instance, the stopping criterion to end the optimization process consisted of a 

stagnation value of 10-7, in terms of the objective function value between two consecutive 

evaluations. The Jacobian (partial derivatives) of the objective function was calculated numerically 

through a forward finite difference scheme with a perturbation value of 5.0x10-3. Additionally, the 

L-M algorithm was used with a maximum number of evaluations limited to 500. 

In the parameters identification framework, some material parameters were considered 

constant like the elastic parameters E and υ, the exponent a as well as the anisotropic coefficients 
)(

44
kc and )(

55
kc , with k=1, 2 of the Yld2004-18p yield function. As previously referred in section 4.3, 

these four anisotropic coefficients of the yield function are related to out-of-plane properties of 
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the sheet material and, as the experimental database available does not allow the identification 

of this kind of properties, these ones were assumed constants and equal to 1 (isotropic value). 

The exponent a was considered equal to 6 since DC04 mild steel is a bcc material and this 

exponent value is the more appropriate for this material crystallographic structure. In the case of 

the elastic properties of DC04 mild steel, the constant values of E=176 GPa (calculated from 

tensile tests) and υ=0.29 were considered. 

It was also considered that the initial stress of the isotropic hardening law (σY(0)), cf. 

Equation 4.15, must be equal to the initial yield stress σ0 in uniaxial tension at the RD. Therefore, 

based on the uniaxial tension state at the RD,  00000xxσ , and Equations 4.18-4.20 

the following condition was also taken into account in the identification process, 

1
4

)0(

1

Y

xx 









a



 , (5.3) 

where φ is defined by 
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(5.4) 

5.3 Numerical results  

In this section, the identified material parameters that characterize the mechanical behavior of 

DC04 mild steel considering both Yld2004-Iso and Yld2004-Mixed phenomenological models are 

presented. 

Table 5.2 shows the initial and the optimal identified parameters, the respective initial and 

final values of the objective function and the number of evaluations carried out by both 

identification procedures. The anisotropy coefficients to determine are 14 whereas the hardening 

parameters are 10 for Yld2004-Mixed model and 4 for Yld2004-Iso model. Then, the total number 

of parameters to identify is 24 and 18, respectively. 

The initial values for the anisotropy coefficients were chosen equal to 1 in order to start the 

identification process from material isotropy, describing the Hershey isotropic yield surface. From 

values found in the literature using the same yield criterion for several sheet metals, it came that 

the coefficients )(k
ijc  where i, j = 1,  2,  3 and k= 1, 2 all found lying within the range [-2.2, 2.2]. The 

initial value for σ0 was defined from the initial yield stress in uniaxial tension at the RD and the 

initial  and δ values came from an estimation from the tensile stress-strain curve in the RD 

considering isotropic hardening. The lower bound of 100 MPa was set to prevent the L-M 

optimization algorithm to decrease drastically the initial yield stress, in order to compensate the 

contribution coming from the kinematic hardening (Yld2004-Mixed model), in particular the 

rapidly saturating term Xsat2 (Carbonnière et al., 2009). This lower bound value seemed 
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acceptable from a physical point of view. Concerning the parameters for the kinematic 

contribution of Yld2004-Mixed model, Xsati and γi, with i = 1, 2, 3, these ones were chosen in order 

to ensure three saturating rates very different, without any overlapping. Indeed the following 

relation γ3 < γ1 < γ2 was always satisfied regarding the upper and lower bounds. The initial guesses 

for these parameters were chosen approximately in the middle of the range. Note that the ratio 

Ci/γi, with i = 1, 2, 3 was optimized because it corresponds to the saturating value (Xsat) and 

therefore setting bounds for it was easier. 

Table 5.2 - Material parameters identified for DC04 mild steel.  

 Yld2004-Iso Yld2004-Mixed   

Parameters Initial Optimal Initial Optimal Limits Units 

)1(
12c  1.0 1.114 1.0 1.264 -2.2 / 2.2 - 

)1(
13c  1.0 1.019 1.0 0.974 -2.2 /2.2 - 

)1(
21c  1.0 1.228 1.0 1.242 -2.2 / 2.2 - 

)1(
23c  1.0 0.664 1.0 1.049 -2.2 /2.2 - 

)1(
31c  1.0 0.319 1.0 0.579 -2.2 / 2.2 - 

)1(
32c  1.0 0.913 1.0 0.708 -2.2 /2.2 - 

)1(
66c  1.0 1.476 1.0 1.365 -2.2 / 2.2 - 

)2(
12c  1.0 0.989 1.0 0.792 -2.2 /2.2 - 

)2(
13c  1.0 0.458 1.0 0.672 -2.2 / 2.2 - 

)2(
21c  1.0 0.613 1.0 0.838 -2.2 /2.2 - 

)2(
23c  1.0 0.964 1.0 0.929 -2.2 / 2.2 - 

)2(
31c  1.0 0.959 1.0 0.996 -2.2 /2.2 - 

)2(
32c  1.0 0.656 1.0 0.768 -2.2 /2.2 - 

)2(
66c  1.0 0.509 1.0 0.678 -2.2 /2.2 - 

σ0
 
 128.0 164.0 141.2 100.0 100.0 / 170.0 MPa 

  250.0 332.7 261.0 210.3 160.0 / 800.0 MPa 

δ 10.5 14.07 10.5 5.92 1.0 / 100.0 - 

β 150.0 259.9 160.0 102.8 100.0 / 900.0 MPa 

Xsat1 - - 25.0 44.57 5.0 / 50.0 MPa 

γ1 - - 90.0 22.85 10.0 / 150.0 - 

Xsat2 - - 100.0 106.2 70.0 / 300.0 MPa 

γ2 - - 300.0 258.38 500 / 1200 - 

Xsat3 - - 5000 5629.7 2500 / 7500 MPa 

γ3 - - 0.02 0.0258 0.001 / 4.0 - 

Sobj (x) 1.04 x10
7 

6.67x10
4 

(-99.4%) 8.14x10
6 

 1.05x10
6
 (-87.1%)  - 

Evaluations 416 500  - 

 

Generally speaking, using a gradient-based algorithm makes the solution dependent on the 

initial guess of parameters. Local minimums can be reached, which may depend on the initial 
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parameter set. Therefore, after finding a set leading to a good description of all the tests in the 

database, several initial guesses were tried for both models, in order to investigate the robustness 

of these solutions and the algorithm converged each time toward almost the same solutions, 

presented in Table 5.2. 

Comparing the initial and final objective function values, given at the bottom of Table 5.2, it 

can be seen that a reduction of 99.4% for Yld2004-Iso and 87.1% for Yld2004-Mixed models were 

achieved. Despite the optimization method adopted may conduct the optimization process to a 

local minimum of the objective function, these results show a great efficiency of L-M algorithm.  

Figure 5.4 depicts the evolution of the objective function value during the identification 

process for both constitutive models. The first initial decrease, over 19 and 25 evaluations (for 

Yld2004-Iso and Yld2004-Mixed models, respectively), correspond to the variations of each initial 

parameters in order to numerically calculate the sensitivity matrix. Then, a considerable reduction 

of Sobj occurred before the first 100 evaluations, and subsequently, a stabilization of Sobj value is 

seen. This type of evolution is due to the fact that L-M algorithm always seeks the best descent 

direction, thus accelerating to the converged state. However, when the optimization process is 

close to a possible solution (minimum of the objective function), the objective function value 

tends to stabilize until the end condition is satisfied. Thereby, considering the relationship 

between required calculation time and obtained results, it is important to point out that, in both 

material parameter identifications, approximately 200-250 evaluations could be enough to obtain 

similar results comparatively to those achieved by the identification procedures performing 416 

(Yld2004-Iso) and 500 (Yld2004-Mixed) evaluations. 

 
Figure 5.4 – Evolution of the objective function Sobj during the material parameters identification 

process for both Yld2004-Iso and Yld2004-Mixed models for DC04 mild steel. 

First of all, the normalized projection of the yield surface in the plane (σXX/σY(0), σYY/σY(0)) 

was plotted in Figure 5.5 for the identified material parameters listed in Table 5.2. For comparison 
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purposes, experimental data as well as yield surface projections obtained by Le Port (2012) and 

Zang et al. (2011) using Hill48 anisotropic yield criterion were added in Figure 5.5. Comparing the 

yield surface projections for both models, it is observed that the one of Yld2004-Mixed model is 

very close to the experimental data. The yield surface of Yld2004-Iso model tends to be more 

stretched still, lies between Hill48 surfaces obtained by Le Port (2012) and Zang et al. (2011). 

With the set of material parameters identified for both phenomenological models, τ-γ/σ-ε 

curves for simple shear/uniaxial tension and ε11-ε22 curves for uniaxial tension in the five different 

orientations to RD were predicted, as shown in Figures 5.6 to 5.10. Note that in Figure 5.6, it is 

also depicted the numerical prediction relative to bulge test. It should be emphasized that the 

bulge test data was plotted by using ε11, instead of an equivalent strain, leading to a falsely 

exaggerated gap between uniaxial tensile and biaxial stress levels.  

 
Figure 5.5 – Projection of the yield surface in the plane (σXX/σY(0), σYY/σY(0)) for the identified material 

parameters given in Table 5.2. 

Comparing the experimental and predicted results of both models exhibited in Figures 5.6 

to 5.10, it can be seen that an overall good description of the mechanical behavior was obtained. 

However, a numerical over-estimation of σ-ε curve of the last experimental points occurs for the 

bulge test, depicted in Figure 5.6. In the case of the simple shear experiment at 45° to RD, 

depicted in Figure 5.8, τ-γ curve was also over-predicted by both numerical models. In addition, it 

can be seen that almost all τ-γ numerical curves in simple shear predicted by Yld2004-Mixed 

model tend to overestimate the stress level close to the initial yield stress. It may come from the 

choice of the hardening law, in the first loading, the kinematic contribution described by rapidly 

evolving terms (cf. Equation 4.16) leading to such phenomenon. 
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Figure 5.6 – Experimental and numerical (i) τ-γ curve for simple shear and σ-ε curves for bulge and 

uniaxial tension to 0°/RD and (ii) ε11- ε22 curves for bulge and uniaxial tension to 0°/RD. 

 
Figure 5.7 – Experimental and numerical (i) τ-γ and σ-ε curves for simple shear and uniaxial tension to 

22°/RD and (ii) ε11- ε22 curve for uniaxial tension to 22°/RD. 

In Figure 5.11, the numerical reproduction of τ-γ curves with reverse loading at 0.13, 0.21 

and 0.33 of pre-strain are presented for both Yld2004-Iso and Yld2004-Mixed models. As 

expected, the numerical Yld2004-Iso model was not able to perform an acceptable reproduction 

of such τ-γ curves since kinematic hardening formulation was not included in this model. 

Concerning the numerical Bauschinger curves predicted by Yld2004-Mixed model, it can be seen 

that the kinematic material parameters give a generally good description of the Bauschinger 
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effect with the exception of the rounded yield point and work hardening stagnation. It must be 

noted that a transient behavior and hardening stagnation are experimentally observed for DC04 

mild steel and the kinematic formulation adopted on Yld2004-Mixed model does not include the 

prediction of this phenomenon. 

 
Figure 5.8 – Experimental and numerical (i) τ-γ and σ-ε curves for simple shear and uniaxial tension to 

45°/RD and (ii) ε11- ε22 curve for uniaxial tension to 45°/RD. 

 
Figure 5.9 – Experimental and numerical (i) τ-γ and σ-ε curves for simple shear and uniaxial tension to 

77°/RD and (ii) ε11- ε22 curve for uniaxial tension to 77°/RD. 
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Figure 5.10 – Experimental and numerical (i) τ-γ and σ-ε curves for simple shear and uniaxial tension to 

90°/RD and (ii) ε11- ε22 curve for uniaxial tension to 90°/RD. 

 
Figure 5.11 – Experimental and numerical τ-γ Bauschinger curves obtained with the identified 

parameters of both Yld2004-Iso and Yld2004-Mixed models for DC04 mild steel. 

The visual comparison of the numerical results with the experimental behavior is always 

mandatory in order to ascertain the real quality of the identified material parameters. Based on 

this, it is stated that both sets of material parameters identified from the several tests lead to a 

good representation of the mechanical behavior of DC04 mild steel, under monotonic loading 

conditions. 
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5.4 Macroscopic rupture calibration 

As reported in section 4.4, the calibration of uncoupled fracture criteria parameter is usually 

performed comparing experiments leading to rupture, such as the tensile test, with FE simulation. 

Therefore, this kind of experimental-numerical approach is adopted for evaluating the 

macroscopic rupture in DC04 mild steel. 

Uniaxial tensile tests were carried out up to rupture and the critical parameters of RT and 

CL criteria were directly determined by comparing the numerical simulation with the experiment 

in terms of the critical deformation level reached. Both experimental and numerical nominal 

stress-displacement curves were compared up to the experimental rupture displacement. The 

critical value of the fracture criteria was determined for this displacement by the numerical 

simulation.  

According to Xue (Xue, 2008), the number of experiments needed for the calibration of 

uncoupled fracture criteria is equal to the number of material parameters. Hence, a single 

experiment and FE simulation can be used to determine the critical f
CLW  and f

RTW  values. 

However, based on the results of Li et al. (Li et al., 2011), calibrate uncoupled fracture criteria 

using a single test may not be enough for a reliable prediction of fracture in other plastic 

deformation process even under similar forming conditions. 

5.4.1 Experimental data 

The uniaxial tensile test up to rupture is adopted for the characterization of the rupture behavior 

of DC04 mild steel. This test is easy to carry out and gives specific data in the fracture zone using 

DIC technique. Another reason for its selection is related to the fact that RT and CL criteria are 

able to correctly predict the fracture onset and location in experiments with localized 

deformation, like necking. Indeed, uncoupled fracture criteria are able to easily capture the plastic 

deformation mode as well as failure initiation when localized deformation occurs (Li et al., 2011). 

In this work, four uniaxial tensile tests up to rupture in RD were conducted under 

displacement control with Instron 8033 testing machine, at a displacement rate of the grips of 10 

mm/min and at room temperature. Rectangular specimens were machined. A slight grinding of 

the long edge was made in the middle, in order to ensure necking and subsequent rupture in the 

center of the sample. Figure 5.12 shows the sample geometry and dimensions of the adopted 

uniaxial tensile specimen. 

 
Figure 5.12 – Geometry of the specimen applied in tensile test experiment. 

The deformation was measured by DIC technique, with Aramis system developed by GOM 

(2009), as well as an extensometer. Figure 5.13 a) depicts Cauchy and nominal stress-logarithmic 

strain curves obtained with DIC technique for all experiments. The experimental curves were 
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plotted up to rupture and it was verified that a good reproducibility was achieved between all the 

tests. Thus, test 3 was selected as the reference one. Figure 5.13 b) compares the stress-

logarithmic strain curves recorded by both DIC and extensometer techniques. Additionally, the 

uniaxial tensile σ-ε curve in RD obtained by Zang et al. (2011) from the same DC04 mild steel was 

also included in this figure. This test corresponds to the one used in the database for parameters 

identification. The comparison between the experimental curve recorded and the one obtained 

by Zang et al. allows to ascertain if the aging time between the tensile test carried out by Zang et 

al. and the presented one may influence the mechanical behavior of DC04 mild steel. Analyzing 

Figure 5.13 b), it was observed that σ-ε curves obtained by using both measurements techniques 

as well as by Zang et al. (2011) are identical. It reveals that no aging phenomena affected DC04 

mild steel sheet during the time between the presented test and the one performed by Zang et al. 

(2011). In addition, the ultimate tensile strength (UTS), that defines the limit between the uniform 

plastic deformation and the plastic instability, was also added in Figure 5.13 b). 

 
                                                       a)                                                                                   b) 

Figure 5.13 – Cauchy (solid line) and nominal (dashed line) stress-logarithmic strain curves a) of the 

different tensile tests up to rupture obtained by DIC technique and b) of the tensile test up to rupture 

used as reference. Note that gray line define the UTS value of 305.3 MPa. 

A detailed analysis of the rupture phenomenon can be carried out by analyzing additional 

data coming from DIC measurement technique. Indeed, logarithmic strain field over the whole 

sample surface can be recorded up to rupture, defined by the breaking into two parts. These data 

are very useful to understand and characterize the neck geometry and subsequent fracture and, 

by comparison with the numerical simulation, may be used to calibrate the parameters of the 

fracture criteria. 

For computation, DIC analysis was performed with digital images subdivided into square 

facets of 13x13 pixels with a 5 pixel overlapping area (facet step equal to 8 pixels). From each 

valid facet, a measuring point results after computation. The accuracy of the resulting measuring 

point improves with the increase of facet size. However, more computation time is required and 

local effects within the facet size cannot be captured. Conversely, the increase of the facet step 

leads to a decrease of the measuring point density and less computation time is required (GOM, 
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2009). Then, the value defined for both parameters constitutes a compromise between accuracy 

and computation time. The influence of the facet size on the calculated local strain values was 

investigated, leading to this choice, which corresponds to rather stable values (independent of the 

facet size) and a reasonable computational time. The considered facet step and size, for this 

experiment, led to the discretization in square elements with a mesh defined by 3 facets per mm. 

In order to perform a robust comparison between experimental and numerical rupture, the 

following data was output: (i) nominal stress-displacement curve (σnom-Δl) up to rupture 

considering the displacement between two equidistant points from the specimen center (points 1 

and 2 depicted in Figure 5.14), (ii) ε11-Δl and ε22-Δl curves with strain components calculated in the 

rupture zone (region of 2x1.5 mm2 shown in Figure 5.14) and (iii) ε11 strain distribution in the 

center of the specimen along direction 1


(section 0°/RD) and along direction 2


(section 90°/RD) at 

the moment just before rupture. Mention that this moment just before rupture was defined as 

the one corresponding to DIC image taken before the specimen breaking into two parts. In this 

experiment, the capture time, between two consecutive images, used by DIC was 1.05 seconds. 

Figure 5.15 presents these results. The initial distance between the equidistant points 1 and 2 was 

7 mm and at the moment of rupture was 13.65 mm, which means that the fracture was obtained 

for a relative displacement of 6.35 mm. The relative displacement between these two points is 

taken as reference for comparison with the numerical data. 

 
Figure 5.14 – Illustration of areas used for strain field output. 

 
                                         a)                                                          b)                                                         c) 

Figure 5.15 – a) σnom-Δl curve, b) ε11- Δl and ε22- Δl curves and c) ε11 strain distribution along the 

sections 0° and 90° to RD at the moment just before rupture. 
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From the digital images taken by DIC technique, a visual distribution of the experimental 

deformation was recorded. Figure 5.16 shows ε11 isovalue distribution just before and after 

rupture for the tensile test used as reference. By Figure 5.16 a) it is possible to realize the non-

uniformity of ε11 distribution and the appearance of the strain critical zone in the center of the 

specimen just before rupture. This region constitutes the origin of the fracture, as shown in Figure 

5.16 b). 

 
                                                    a)                                                                             b) 

Figure 5.16 – Strain distribution ε11 a) just before and b) after rupture recorded by DIC technique. The 

gaps close to the center specimen (without strain distribution) are due to the extensometer device. 

5.4.2 Numerical modeling 

The computational analysis of the tensile test up to rupture was evaluated by using the FE code 

ABAQUS, within the implicit scheme. The numerical model consists in one fourth of the specimen, 

considering symmetry in the thickness and in the width; the total length in-between the grips was 

considered. Displacement, of equal magnitude d1, in 1


and - 1


directions was applied at both 

extremities of the sample, as depicted in Figure 5.17. 

The mesh was structured and 3D 8-node linear isoparametric elements with reduced 

integration (C3D8R) and with hourglass control were used. With the purpose of evaluating the 

mesh dependency, different mesh sizes were considered. By this way, two distinct regions (A and 

B) as well as a transition region were defined, as depicted in Figure 5.17, and three different mesh 

refinements were considered in region A. Table 5.3 depicts the features of each mesh. It should 

be emphasized that mesh 2 is defined in region A with the same facet size used with DIC system in 

the experiment. 
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Figure 5.17 – Different sub-regions defined over the numerical model of the tensile sample, for mesh 

refinement. 

Numerical simulations were carried out for both Yld2004-Iso and Yld2004-Mixed models 

and both CL and RT fracture criteria were evaluated. These fracture criteria were implemented in 

ABAQUS code as user-defined output variable subroutine (UVARM). 

Table 5.3 - Features of the different meshes used in the numerical simulation of tensile specimen.  

 
Region 

 
Mesh A B Thickness (el) Nº elements (el) 

1 2 el/mm 
1 el/mm (along y) 

1 to 0.5 el/mm (along x) 

2  3630 

2 3 el/mm 2  5898 

3 4 el/mm 2  9394 

 

5.4.3 Critical value determination 

The critical value of the uncoupled fracture criteria is calibrated comparing the experimental and 

numerical data up to rupture displacement. However, an accurate reproduction of the 

experimental data by the numerical simulation can be difficult when uncoupled fracture criteria 

are adopted. Indeed, while the experimental data up to rupture may be influenced by damage, 

leading to a decrease of the stress level, the plastic response of the numerical model was not 

influenced when using uncoupled fracture criteria. As a consequence, the simulation can lead to a 

larger plastic deformation than the one observed experimentally. 

Therefore, in order to assure the best numerical description using these uncoupled fracture 

criteria, it must be verified whether the material parameters were identified within the same 

deformation range as the one investigated in the tensile test up to rupture. Figure 5.18 depicts 

the equivalent plastic strain evolution for the uniaxial tensile test up to rupture and for the 

conventional tests used in the material parameters identification process. As the strain rate effect 

was not taken into account in the constitutive equations, all the numerical simulations were 

carried out for a total time of 1 s. The time increment used in Figure 5.18 is a normalized 

evolution parameter. From this figure, it can be seen that the maximum equivalent plastic strain 
p reached in the tensile test up to rupture is similar to the one achieved at the end of the bulge 

test. 

However, the numerical prediction of the bulge experiment using both Yld2004-Iso and 

Yld2004-Mixed models shows (Figure 5.19) an overestimation of the stress level for an equivalent 

plastic strain greater than 0.6. For this reason, a modification of the isotropic hardening law was 
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considered in order to improve the mechanical description for a plastic strain above 0.6. In this 

way, the modified isotropic hardening law was defined by 
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 , (5.5) 

where p
0.6 = 0.6 and β2 is an extra material parameter obtained by adjusting the predicted stress 

level of the bulge test to the experimental values, with a trial-and-error procedure. The 

phenomenological models with this isotropic hardening formulation were named as Yld2004-

IsoMod and Yld2004-MixedMod. Parameter β2 assumed the values of 220.9 MPa and 59.6 MPa for 

Yld2004-IsoMod and Yld2004-MixedMod models, respectively. Note that )( p
Y   for p ≤ 0.6 

consisted of the isotropic hardening law defined by Equation 4.15 and the parameter values are 

the ones listed in Table 5.2. Thereby, the modification introduced in the hardening law does not 

alter the previous identification results. 

 
Figure 5.18 – Evolution of the equivalent plastic strain for the conventional tests and tensile test up to 

rupture using Yld2004-Iso model. Note that the numerical simulations were stopped for the same 

deformation value (ε or γ) observed at the end of the corresponding experimental test. 

Figure 5.19 shows the experimental and numerical σ-ε cuves of the bulge test using both 

Yld2004-Iso and Yld2004-IsoMod and both Yld2004-Mixed and Yld2004-MixedMod models. By this 

figure, it can be seen that a closer description of the bulge test data is attained using the modified 

isotropic hardening law because a decrease of the slope is obtained in the latter deformation 

stage ( p ≥  0.6) comparatively to the prediction with Yld2004-Iso and Yld2004-Mixed models. 
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                                                a) Yld2004-Iso and Yld2004-IsoMod 

 
                                                b) Yld2004-Mixed and Yld2004-MixedMod 

Figure 5.19 – Experimental and numerical σ-ε curves of the bulge test using the initial and the modified 

hardening formulation. Numerical simulation performed using 1-element model. 

The improvement of the results using the modified hardening formulation can be observed 

by comparing the experimental and numerical rupture data using both Yld2004-Iso and Yld2004-

IsoMod models. Thus, the experimental and numerical σnom-Δl and ε-Δl curves up to rupture as well 

as ε11 strain distribution at the center of specimen along the sections 0°/RD and 90°/RD at the 

moment just before rupture, obtained using mesh 2, are depicted in Figures 5.20 and 5.21.   
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                                                         a)                                                                              b) 

Figure 5.20 – Experimental and numerical a) σnom-Δl curves and b) ε11-Δl and ε22-Δl curves obtained up 

to rupture, using mesh 2, for Yld2004-Iso and Yld2004-IsoMod models. 

 
                                                   a)  0°/RD                                                                b) 90°/RD 

Figure 5.21 – Experimental and numerical ε11 strain distribution along the sections a) 0°/RD and b) 

90°/RD at the moment just before rupture, using mesh 2, for Yld2004-Iso and Yld2004-IsoMod models. 

By comparing the experimental and numerical data illustrated in Figure 5.20, it was 

observed that the nominal stress-displacement curve σnom-Δl up to rupture and the ε22-Δl curve 

were overestimated by both Yld2004-Iso and Yld2004-IsoMod models. It may come from the non-

taking into account of the effect of damage on the plastic response of the material by the 

uncoupled fracture criteria (Li et al., 2011). However, huge differences between the numerical 
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results of both Yld2004-Iso and Yld2004-IsoMod models were pointed out. In fact, a reliable 

reproduction of ε11-Δl curve was achieved by using Yld2004-IsoMod. In addition, concerning ε11 

strain distribution crossing the center of the specimen along the sections 0°/RD and 90°/RD 

(Figure 5.21), the results obtained by Yld2004-IsoMod model were closer to experimental data than 

Yld2004-Iso. ε11 strain distribution at the center of the specimen was well reproduced for both 

0°/RD and 90°/RD sections while the global distribution was not too coincident. Nonetheless, the 

most important zone was accurately reproduced since the necking and consequent fracture 

occurs at the center of the specimen. 

Due to the previous analysis, the numerical simulations were then carried out for both 

Yld2004-IsoMod and Yld2004-MixedMod models using both CL and RT fracture criteria and 

considering the different meshes presented in Table 5.3. 

Figures 5.22 and 5.23 illustrate the numerical and experimental σnom-Δl and ε-Δl curves 

obtained up to rupture and ε11 distribution along the two sections at 0° and 90° to RD at the 

moment just before rupture for the different meshes listed in Table 5.3. The numerical results 

with mesh 2 were the ones that give a good representation of DC04 mechanical behavior up to 

rupture, in particular the maximum ε11 value was well predicted, as shown in Figure 5.23. Indeed, 

FE simulation with mesh 2 was defined with the same element size used by DIC technique during 

the experiment. Additionally, it was also possible to verify that the numerical models with mesh 2 

of both Yld2004-IsoMod and Yld2004-MixedMod models present a similar prediction. 

 
                                                         a)                                                                              b) 

Figure 5.22 – Experimental and numerical a) σnom-Δl curves and b) ε11-Δl and ε22-Δl curves obtained up 

to rupture for the different meshes considered using both Yld2004-IsoMod (solid line) and Yld2004-

MixedMod (dashed line) models. 

Based on the numerical results of Figures 5.22 and 5.23, the critical value of CL and RT 

criteria were determined from the FE simulation with mesh 2 for both Yld2004-IsoMod and 

Yld2004-MixedMod models. 
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                                                   a)  0°/RD                                                                b) 90°/RD 

Figure 5.23 – Experimental and numerical ε11 strain distribution along the sections a) 0° and b) 90° to 

RD at the moment just before rupture for the different meshes considered using both Yld2004-IsoMod 

(solid line) and Yld2004-MixedMod (dashed line) models. 

In Figure 5.24, the experimental and numerical ε11 distributions over the tensile specimen 

at the moment just before rupture can be compared. It can be seen that the numerical 

simulations have some difficulty in describing perfectly the cross shape localization in the fracture 

zone, leading therefore to the differences observed in Figure 5.23. However, Yld2004-MixedMod 

model allowed a better prediction of the cross shape localization than Yld2004-IsoMod. Note that it 

is mandatory to obtain a good prediction by the FE model since the mesh may affect the 

calibration of the fracture criteria. 

 
Figure 5.24 – Experimental (Exp) and numerical (Yld2004-IsoMod and Yld2004-MixedMod) ε11 distribution 

over the tensile specimen at the moment just before rupture, by using FE model with mesh 2. 
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Figure 5.25 shows the WCL distribution on the specimen at the moment just before rupture 

using both Yld2004-IsoMod and Yld2004-MixedMod models. From this figure, it was observed that 

WCL distribution achieved larger values at the center of the sample, predicting accurately the 

fracture zone. In addition, it was verified that WCL distribution using Yld2004-MixedMod model 

tends to define the cross shape that appeared on the experimental ε11 distribution at the center 

of the specimen. Moreover, WRT distributions using Yld2004-IsoMod and Yld2004-MixedMod models 

similar to the ones obtained with WCL criterion were also observed. 

In Table 5.4 the critical values of WRT, WCL and stress triaxiliaty (χ) are listed. These values 

were calculated in the region of 2 x 1.5 mm2 depicted in Figure 5.14. The comparison of WRT, WCL 

and χ values shows that a huge difference exists between the values obtained for both 

constitutive models. The reason of such difference is related to    inherent to each constitutive 

model. Although the principal stresses σ1, σ2 and σ3 were almost identical for both Yld2004-IsoMod 

and Yld2004-MixedMod models, in the case of   , a different evolution was obtained, as shown in 

Figure 5.26. This figure exhibits the evolution of the principal stress components and    during the 

tensile test up to rupture. It can be seen that    value of Yld2004-MixedMod was approximately half 

of the    value obtained for Yld2004-IsoMod model. The difference between both    values comes 

from the kinematic hardening contribution of Yld2004-MixedMod model. 

 
Figure 5.25 – Numerical (Yld2004-IsoMod and Yld2004-MixedMod) WCL distribution of the tensile test at 

the moment just before rupture. UVARM5 stands for WCL. 

Table 5.4 - Critical values of WRT and WCL, and χ (χ=σh/  , where σh is the hydrostatic stress) obtained for 

both Yld2004-IsoMod and Yld2004-MixedMod models using FE model with mesh 2. 

 f
RTW  

f
CLW  χ 

Yld2004-IsoMod 1.52 0.90 0.49 

Yld2004-MixedMod 2.51 1.68 0.94 

 

Table 5.4 puts in evidence the influence of the constitutive model in the definition of the 

stress triaxility χ. For material isotropy, such as using von Mises yield criterion, it has been 
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analytically proven that for uniaxial tensile state χ ≈ 0.33 and for biaxial state χ ≈ 0.67. However, 

the anisotropy of the material leads to different χ values. It can be checked through Figure 5.27, 

which depicts the stress triaxiality evolution of the bulge and tensile test up to rupture for (i) 

Yld2004-IsoMod, (ii) Yld2004-MixedMod and (iii) a constitutive model composed by von Mises 

isotropic yield criterion with the modified isotropic hardening law, called as vonMises_IsoMod. The 

latter model was defined in the UMAT subroutine reducing all the coefficients of Yld2004-18p 

criterion to 1 and adjusting the exponent a to 2. 

 
                                                         a)                                                                              b) 

Figure 5.26 – Evolution of a) principal stress σ1, σ2 , σ3 and b)    during the tensile test up to rupture for 

both Yld2004-IsoMod and Yld2004-MixedMod models. 

 
                                                         a)                                                                              b) 

Figure 5.27 – Evolution of χ with the equivalent plastic strain during the a) tensile test up to rupture 

and b) bulge test for Yld2004-IsoMod, Yld2004-MixedMod and vonMises_IsoMod models. 
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Analyzing Figure 5.27, it can be seen that vonMises_IsoMod model achieved the theoretical 

expected χ values for both uniaxial tensile (up to necking) and biaxial state, while different values 

were obtained for both Yld2004-IsoMod and Yld2004-MixedMod models. It appears that the stress 

triaxiality is dependent on the constitutive model and, consequently, the theoretical χ values 

cannot be used as reference when anisotropic yield criteria are considered. 

5.5 Conclusion 

In order to characterize the mechanical behavior of a DC04 mild steel, a large experimental 

database composed by (i) uniaxial tensile and simple shear tests at 0°, 22°, 45°, 77° and 90° to RD, 

(ii) bulge test and (iii) three shear-Bauschinger tests reversed at 0.13, 0.21 and 0.33 of pre-strain 

was used. In the case of the Yld2004-Mixed model, all the mentioned experiments were 

considered in the parameters identification process. While, in the case of Yld2004-Iso model, the 

shear-Bauschinger tests were not taken into account. Despite the large number of experimental 

tests, the implemented optimization process was able to identify a set of material parameters 

leading to a global accurate characterization of the DC04 mechanical behavior. However, 

concerning the shear-Bauschinger tests, the identified kinematic parameters for Yld2004-Mixed 

model give a global correct description of the Bauschinger effect with the exception of the 

rounded yield point and work hardening stagnation. 

In addition, CL and RT uncoupled fracture criteria were adopted in order to calibrate the 

macroscopic rupture behavior of the mild steel. The calibration of these criteria was performed 

considering an experimental-numerical approach. The experimental data obtained during the 

experiment was recorded by using DIC system. Several numerical and experimental data were 

compared up to rupture displacement: (i) nominal stress-displacement curve (σnom-Δl) up to 

rupture, (ii) ε11-Δl and ε22-Δl curves with strain components calculated in the rupture zone and (ii) 

ε11 strain distribution in the center of the specimen along the directions at 0° and 90° to RD at the 

moment just before rupture. The numerical simulations presented some difficulty in describing 

perfectly the cross shape localization in the fracture zone. Nevertheless, Yld2004-MixedMod model 

allowed a better prediction of the cross shape localization than Yld2004-IsoMod. Moreover, both 

WCL and WRT distributions achieved larger values at the center of the sample, predicting accurately 

the fracture zone.  
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Chapter 6  

6 Validation in deep drawing 

6.1 Introduction 

With the purpose of validating the material parameters identified for both Yld2004-IsoMod and 

Yld2004-MixedMod models as well as f
CLW and f

RTW critical values, a deep drawing test was carried 

out. A schematic view of the experiment with detailed dimensions of the blank and tools is shown 

in Figure 6.1. 

Experimental and numerical force-displacement curves and final diameter of the blank 

were assessed. In addition, a visual comparison of the major strain distribution was also 

performed at different stages of the deep drawing test. The acquisition of strain fields using DIC 

technique constituted an important tool to promote a better validation of the numerical results. 

 
Figure 6.1 – 2D projection of the set-up of the deep drawing experiment (revolution symmetry). 

6.2 Deep drawing experiment 

The material DC04 is a mild steel, and therefore extreme conditions must be taken into account to 

promote rupture of the blank for the adopted cylindrical cup test. Thereby, the validation of the 
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material parameters can be carried out by an experiment leading to full drawing, while CL and RT 

fracture criteria can be validated by an experiment that leads to premature rupture of the blank. 

Then, for full drawing of the blank, the experiment was carried out considering a blank-holder 

force Fholder = 15 kN and lubrication was used. To obtain the experimental strain distribution data 

on the cylindrical cup using DIC system, a polypropylene film was applied on the blank surface in 

order to avoid damaging the black and white paint deposited on the blank surface (Coër, 2013). 

To reach a premature rupture of the blank, a blank-holder force Fholder = 90 kN was applied. 

Moreover, neither lubrication nor the polypropylene film was used. Additionally, all surfaces of 

the tools and blank were carefully cleaned. The occurrence of the premature rupture in this 

experiment for DC04 mild steel was only possible under these severe conditions. Indeed, several 

experimental conditions were tested for this purpose, as depicted in Figure 6.2. It can be seen 

that just one condition was able to promote the premature rupture of the blank. 

 
Figure 6.2 – Cylindrical cups obtained under several conditions tested to reach premature rupture on 

the blank for DC04 mild steel. 

It should be also emphasized that an increase of Fholder was not enough to provoke a 

premature rupture of the blank. The small amount of lubrication applied also needed to be 

removed. 

The friction coefficient μ is a crucial parameter in sheet forming simulation and then its 

accurate definition is mandatory for reliable predictions of the process. Thereby, due to the 

special conditions applied to promote rupture on the cylindrical cup test, another experiment 

with the same friction condition, i.e. without lubrication and polypropylene film, but using 

Fholder = 15 kN was performed. This additional test helped to obtain a better determination of the 

friction coefficient for the experiment that leads to premature rupture of the blank.  

The experiments were carried out using a displacement rate of the punch of 1 mm/s. In the 

case of the experiment leading to premature rupture of the blank, a crack sensitivity criterion was 
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considered in order to stop the test after a load drop of 200 N after the maximum value. The 

blank-holder forces (Fholder) of 15 and 90 kN corresponds to a blank-holder pressure approximately 

of 7.7 and 46.4 MPa, respectively. Figure 6.3 depicts the experimental force-displacement curve 

obtained for each deep drawing experiment. Three tests were carried out for each drawing 

experiment and reproducible results were obtained. From Figure 6.3, it can be seen that both 

experiments with Fholder = 15 kN led to full drawing of the cylindrical cup, however, the one without 

lubrication required larger load effort. Concerning the experiment with Fholder = 90 kN, it led to 

premature rupture of the blank. Nevertheless, this test needed a significant higher load effort 

than the other two tests with Fholder = 15 kN, as can be seen by comparing the initial slope of these 

experiments. Figure 6.4 shows the final blank shape obtained for each one of these experiments. 

By this figure it can be pointed out that almost no earing phenomenon is observed for both tests 

leading to full drawing of the cup, namely, the tests with Fholder = 15 kN. In the case of the test with 

Fholder = 90 kN, it can be seen that the rupture was reached for an earlier deformation stage of the 

blank. 

 
Figure 6.3 – Experimental force-displacement curves of the cylindrical cup tests carried out for DC04 

mild steel. 

The experimental acquisition of the strain field on part of the outer surface of the 

cylindrical cup can be seen as challenging due to several limitations present in this type of forming 

process. First of all, it cannot be obtained continuously during the experiment due to the device 

configuration. Thus, for acquiring these experimental data, a procedure that consists in the 

capture of an image of the blank before and after the experiment was adopted. In this way, this 

procedure imposed that several test experiments must be performed when strain fields at 

different punch displacements (dpunch) are desired (Coër, 2013). Consequently, for obtaining the 

strain field distribution at different punch displacements, several experiments, either leading to 

full drawing or to rupture, must be repeated. For instance, in the case of the test leading to full 

drawing, the data acquisition was carried out for dpunch equals to 7.6 and 15 mm, and also up to 
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the end of drawing, while in the case of the test that led to premature rupture, the data 

acquisition was performed for dpunch equals to 7.6 and 8.2 mm. This last value corresponded to the 

final value when rupture occurred. 

Figures 6.5 and 6.6 illustrate the force-displacement curves including the major strain 

distribution obtained in the tests leading to full drawing (Fholder = 15 kN with lubrication and 

polypropylene film) and premature rupture (Fholder = 90 kN without lubrication nor polypropylene 

film), respectively.  

The procedure adopted for acquiring the strain field information in this experiment 

depends on placing correctly the blank for capturing the images. The same blank position for the 

initial and final images recorded by DIC is required in order to be possible to establish an accurate 

correlation between the initial and final pattern of grey levels of the blank surface.  

 
Figure 6.4 – Blank shapes obtained for the cylindrical cup test considering different experimental 

conditions. 

 
Figure 6.5 – Experimental force-displacement curves using Fholder = 15 kN and major strain distribution 

of the cylindrical cup test leading to full drawing for the different displacements (dpunch) considered. 
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Figure 6.6 – Experimental force-displacement curves using Fholder = 90 kN and major strain distribution 

of the cylindrical cup test leading to premature rupture for the different displacements considered. 

The damage of the painting was inherent to the contact of the blank surface with the tools 

and led to another limitation of the procedure. This limitation can be successfully avoided by 

adding a polypropylene film between the blank painted surface and the tools, which made 

possible the preservation of the painting. For this reason, in the experiment leading to full 

drawing, a polypropylene film was included. In the case of the experiment leading to premature 

rupture of the blank, even though the severe conditions considered, the strain field can be 

acquired without using the polypropylene film since the drawing up to rupture did not destroy the 

painting. 

Additional data information was output concerning the cylindrical cup test leading to 

rupture. The final diameter (Ldraw-in) of the blank at 0° and 90° to RD when rupture occurred was 

measured. Figure 6.7 illustrates the measurement of the final diameter and these values are 

further listed in Figure 6.11. Comparing the measured Ldraw-in values with the initial diameter of 

the blank (60 mm) it can be stated that no significant drawn-in occurred during the test up to 

rupture of the blank. 
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Figure 6.7 – Experimental image of the blank at the rupture captured by DIC system.  

6.3 Numerical modeling 

The numerical simulation of the cylindrical cup test was performed considering implicit time 

integration scheme using ABAQUS/Standard. Only one quarter of the blank was modeled due to 

the material and process symmetries and it was meshed with 3D 8-node linear isoparametric 

elements with reduced integration (C3D8R). Concerning the tools, namely, die, punch and blank-

holder, these were modeled as analytical rigid surfaces. The mesh size defined for the blank was 

in agreement with the mesh selected for the numerical simulation of the tensile experiment up to 

rupture. This is a crucial point because f
CLW and f

RTW are valid for a given mesh size. Figure 6.8 

shows the mesh adopted for FE simulation. The number of element layers used in the thickness 

was 4 and the blank was meshed with a total of 13348 elements. 

 
Figure 6.8 – Blank mesh used for the deep drawing simulation. 

Analyzing Figure 6.8, it can be seen that two different mesh densities were chosen. Coarse 

and fine meshes were defined in the center zone and in the rest of the blank, respectively. On one 

side, the coarse mesh was defined in the zone which is in contact with the bottom of the punch 

and where no significant deformation occurs. On the other side, the fine mesh, with a density of 3 

Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa Nelson Souto 2015



  
Chapter 6 – Validation for mild steel thin sheets 99 

 
 

 

el/mm (such as mesh 2 of the numerical model of the tensile experiment up to rupture), was 

defined in the blank region subjected to high strains. 

The contact between the blank and the tools was modeled with the Coulomb’s law for 

friction, using a friction coefficient μ = 0.06 for the experiment with lubrication and μ = 0.22 for the 

experiments without lubrication. These values were fixed in order to have a good compromise 

between experimental and numerical results within a reasonable μ range. In Figure 6.9, the 

assembly of the test device composed by the blank and tools is illustrated. 

 
Figure 6.9 – Numerical assembly of the cylindrical cup device. 

6.4 Results  

In this section, the experimental and numerical results obtained for the cylindrical cup test of 

DC04 mild steel were compared with the aim of validating the material parameters as well as the 

fracture values calibrated for both Yld2004-IsoMod and Yld2004-MixedMod models. 

Figure 6.10 depicts the experimental and numerical force-displacement curves obtained 

both for the full cup drawing (Fholder = 15 kN) and rupture (Fholder = 90 kN) of the blank using both 

Yld2004-IsoMod and Yld2004-MixedMod models. From this figure, it is shown that a very reliable 

prediction of the force-displacement curves relative to the experiments leading to full drawing of 

the blank (Fholder = 15 kN, either with or without lubrication) is obtained using both models. In the 

case of the experiment leading to premature rupture of the blank (Fholder = 90 kN), some 

discrepancy between experimental and numerical force-displacement evolution was observed. 

This discrepancy may result from some residual blank material adhesion on the tools, which was 

observed during the experiment. It was not considered in the numerical simulation. Moreover, 

the absence of lubrication in this experiment also increased the difficulty of its numerical 

prediction since in this condition the contact property was hard to properly define. 

The experimental and numerical final diameters of the blank for the experiment leading to 

rupture of the blank were also compared. Figure 6.11 presents the experimental and numerical 

Ldraw-in values measured for both Yld2004-IsoMod and Yld2004-MixedMod models. It can be seen that 

the numerical simulations using both Yld2004-IsoMod and Yld2004-MixedMod models underestimate 

the experimental Ldraw-in values. Numerically, a larger displacement of the blank region in contact 

with the blank-holder and the die was verified comparing with the experimental observations. 
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Thus, the numerical simulations allowed the material to flow more in the die cavity than occurred 

experimentally. It also highlights that the contact property was not properly defined. 

 
Figure 6.10 – Experimental and numerical force-displacement curves obtained for the deep drawing 

experiments using both Yld2004-IsoMod and Yld2004-MixedMod models. 

 
Figure 6.11 – Experimental and numerical Ldraw-in values measured in the blank at 0° and 90° to RD. 

The major strain distribution over the blank for several punch displacements (7.6, 15 mm 

and at the end of the drawing) was numerically predicted for the experiment with FHolder = 15 kN 

and using lubrication. These results were compared with the experimental ones, as illustrated in 
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Figure 6.12. This figure shows that an overall accurate representation of the experimental 

distributions was obtained with both Yld2004-IsoMod and Yld2004-MixedMod models. Concerning 

the major strain distribution for a punch displacement of 7.6 mm, it can be seen that the larger 

major strain value was about of 0.18 and it was reached on the blank region which was in contact 

with the punch radius zone. Note that the blank zone in-between blank-holder and die was not 

captured by DIC image. The numerical major strain distribution obtained with both models was 

identical and is in agreement with the experimental observation. The punch displacement of 15 

mm corresponds approximately to the displacement at the middle of the drawing experiment and 

its major strain distribution revealed a maximum level of strain about of 0.27. It was achieved for 

the blank region in contact with the radius die zone. Such a zone corresponds to the one where 

the blank was subjected to the highest starching at this deformation stage. Both numerical 

models were able to predict the experimental major strain distribution, also presenting similar 

results. Relatively to the major strain distribution at the end of the drawing, it can be observed 

that the largest strain was about 0.45. The numerical major strain distributions of both Yld2004-

IsoMod and Yld2004-MixedMod models were able to describe the experimental results, however, the 

blank zone with higher major strain distribution was less pronounced than the experimental one. 

Note that no significant differences were observed between the major strain distributions 

predicted by both Yld2004-IsoMod and Yld2004-MixedMod models. Indeed, the main difference 

between these two models is the fact that Yld2004-MixedMod accounts for the kinematic 

hardening. Nonetheless, such contribution is not observed in these experimental results and, 

therefore, it was expected to achieve similar predictions using both numerical models. 

 

 
a) dpunch = 7.6 mm 
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  b) dpunch = 15 mm 

 
c) End of drawing 

Figure 6.12 – Experimental and numerical major strain distribution for several punch displacements 

obtained in the experiment leading to full drawing, Fholder = 15 kN using lubrication. 

For the experiment relative to the end of the drawing, experimental and numerical major 

and minor strain evolutions were compared for different sections of the blank, as shown in Figure 

6.13. Taking the major strain at 45° to RD, which corresponds to the lowest value, as the 

reference, the relative gap between the major strain in RD (at 90°/RD respectively) and the 

reference was calculated from the experimental results and numerical predictions. For the section 

at 3 mm from the cup rim, these gaps are 10% from the experiments whereas the numerical 

simulations for both models lead to lower values of 5%, approximately. The same 

underestimation of the simulation was found for the section lying at 7 mm from the cup rim. The 

earing amplitude of deep drawing cups is related to planar anisotropy and these results revealed 

a less pronounced one by the numerical models, however, the same evolution was predicted. 
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Concerning the experiment leading to rupture of the blank, a visual comparison of the 

experimental and numerical major strain distribution was performed for dpunch equals to 7.6 and 

8.2 mm (rupture), as shown in Figure 6.14. It can be seen that the experimental fracture zone is 

accurately detected by both numerical models, with an accurate representation of the 

experimental distributions with exception of the fracture zone, where the major strain was 

underestimated. The difference between the experimental and numerical major strain 

distribution in the fracture zone of the cylindrical cup could be expected due to the previous 

discrepancy observed in the force-displacement curve, shown in Figure 6.10. 

CL and RT fracture distributions at rupture of the blank (dpunch equal to 8.2 mm) are 

represented in Figure 6.15. It can be highlighted that the critical value for CL and RT criterion 

using both Yld2004-IsoMod and Yld2004-MixedMod models were reached in the fracture zone of the 

blank. Therefore, the fracture parameters were calculated and these values are listed in Table 6.1. 

Additionally, the critical ones ( f
CLW and f

RTW ), calibrated by the tensile test up to rupture, as well 

as the stress triaxility values were also listed in Table 6.1.  

 
Figure 6.13 – Experimental and numerical major and minor strain evolution at the end of the drawing 

(sections at 3 and 7 mm to the base of the blank) obtained in the experiment with Fholder=15 kN and 

using lubrication. 

It can be seen that WRT fracture parameters obtained for the cylindrical cup test using both 

Yld2004-IsoMod and Yld2004-MixedMod models were over-predicted while WCL parameters were 

both under-predicted. In the case of RT fracture criterion, the rupture parameter was already 

exceeded f
RTW critical value when the numerical rupture in the cylindrical cup test occurs. 

Conversely, in the case of CL fracture criterion, the rupture parameter has not reached yet its 

critical value f
CLW when rupture occurs numerically in the blank. Based on the numerical results 
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obtained for the experiment leading to rupture of the blank, it was verified that the prediction of 

the fracture parameter with lower relative gap is achieved for CL criterion using Yld2004-MixedMod 

model. For this model, WCL fracture value was predicted with a relative gap of 13%. In addition, 

the reference and the obtained stress triaxility χ values were also compared, as shown in Table 

6.1. In the case of both numerical models, χ values obtained in the cup drawing test are far to the 

reference ones coming from the tensile test up to rupture. Therefore, the triaxility ratio χ is 

different for both tensile test up rupture and cylindrical cup experiments and the discrepancy 

verified between the critical ( f
CLW and f

RTW ) and fracture values (cylindrical cup test) suggests that 

CL and RT criterion may not be able to perform reliable predictions in this χ range. 

 
a) dpunch = 7.6 mm 

 
b) dpunch = 8.2 mm 

Figure 6.14 – Experimental and numerical major strain distributions obtained in the experiment 

leading to rupture, Fholder=90 kN without lubrication. 
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Figure 6.15 – Fracture criteria distribution at the moment of rupture (dpunch = 8.2 mm) using both 

Yld2004-IsoMod and Yld2004-MixedMod models. 

Table 6.1 – Critical and numerical WRT and WCL values and stress triaxiality (χ) calculated in the 

experiment leading to rupture using both Yld2004-IsoMod and Yld2004-MixedMod models. 

 Critical Yld2004-IsoMod 

 

Critical Yld2004-MixedMod 

WCL 0.90 0.73 1.68 1.46 

WRT 1.52 1.83 2.51 5.55 

χ 0.49 0.81 0.94 1.43 

 

In order to investigate the strain state in the fracture zone at the rupture of the blank, the 

ratio between the minor and major principal strains (ε2/ε1) in the sheet plane was numerically 

evaluated. Note that the formability of sheet metals is related to the strain state and such strain 

state is commonly defined by the combination of these major ε1 and minor ε2 principal strains. As 

a consequence, this ratio allows to distinguish for different strain states. Therefore, the numerical 

evolutions of ε2/ε1 ratio over the blank for dpunch equals to 4, 5, 6, 7 and 8.2 mm using both 

Yld2004-IsoMod and Yld2004-MixedMod models were investigated and are illustrated in Figure 6.16. 

The results obtained for both numerical models reveal that ε2/ε1 ratio tends near zero with the 

increase of the equivalent plastic strain, which means that the strain state at the rupture of the 

blank corresponds to near plane strain state. In addition, the results depicted in Figure 6.16 also 

give information concerning the maximum equivalent plastic strain reached at the moment of 

rupture. It can be seen that both numerical models achieved different values. In the case of 

Yld2004-IsoMod model the maximum equivalent plastic strain was about of 0.74, while in the case 

of Yld2004-MixedMod model, the equivalent plastic strain was approximately 0.8. 
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                                                          a)                                                                             b) 

Figure 6.16 – Numerical ε2/ε1 evolution over the blank for several dpunch values in the experiment 

leading to rupture using a) Yld2004-IsoMod and b) Yld2004-MixedMod models. 

6.5 Conclusion 

The purpose of this chapter was the validation of the material parameter sets presented in 

chapter 5, as well as the RT and CL critical values, by considering a deep drawing experiment. A 

cylindrical cup test was carried out, considering different conditions in order to obtain (i) full 

drawing of the blank, to validate the material parameters, and (ii) premature rupture of the blank, 

to validate CL and RT fracture criteria. Experimental and numerical force-displacement curves, 

final diameter of the blank and major strain distribution over the blank for several punch 

displacements were assessed. 

In the case of the experiment leading to full drawing, a reliable reproduction of the 

experimental force-displacement curve and major strain distributions over the blank was 

obtained using both numerical models. In consequence, the material parameters identified for 

both Yld2004-IsoMod and Yld2004-MixedMod models were successfully validated. 

Concerning the experiment leading to premature rupture of the blank, some discrepancy 

between the experimental and numerical force-displacement curve was observed for both 

phenomenological models. The experimental and numerical major strain distributions over the 

blank were compared for punch displacements of 7.6 and 8.2 mm (rupture). The results stressed 

out that the experimental fracture zone was accurately detected by both numerical models and a 

good prediction of the experimental distributions with exception to the fracture zone, where the 

major strain distribution is underestimated, was obtained. 

CL and RT fracture distributions at rupture of the blank (dpunch equal to 8.2 mm) were also 

evaluated. WRT values obtained in the cylindrical cup test were over-predicted while WCL values 

were under-predicted when compared with the critical ones ( f
CLW and f

RTW ) determined using a 
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tensile test up to rupture. In the case of Yld2004-MixedMod model, WCL fracture value was 

predicted with a relative gap of 13%. The stress triaxiality was also investigated in the experiment 

leading to rupture of the blank using both numerical models. It was observed that the triaxility 

ratio was different for the tensile test up to rupture (reference) and cylindrical cup tests. The 

discrepancy observed between the critical ( f
CLW and f

RTW ) and fracture parameters obtained 

suggests that CL and RT criterion may not be able to perform reliable predictions due to the 

different stress triaxiality range.  

Though some difference in the validation of f
CLW using Yld2004-MixedMod model, it was considered 

that such difference remained acceptable, mainly due to the substantial difficulty in reproducing 

the experimental friction conditions of the cylindrical cup test leading to rupture but also 

regarding the different stress triaxiality range. Therefore, knowing that the anisotropy and 

hardening behavior of DC04 mild steel was successfully validated then, Yld2004-MixedMod model 

and CL criterion, by considering its critical f
CLW value, will be used on the design of the 

computational mechanical test. 
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Chapter 7  

7 Development of an indicator 

7.1 Introduction 

The main goal of this PhD is the optimized design of a mechanical test able to promote a thorough 

reproduction of the sheet metal behavior. For that, such a test must congregate most of the 

several strain paths and amplitudes encountered in classical mechanical tests. Therefore, during 

the optimization process of its design, each of these features needs to be accurately evaluated in 

order to achieve an improved experiment most suitable for material parameters identification. 

Due to this reason, the purpose of this chapter is the development of an indicator able to 

assess, quantitatively, the main features of mechanical tests. This indicator is decisive for 

determining, during the optimization procedure, if a given mechanical test provides more 

information for the characterization of the material behavior than another one. In this way, it is 

possible to satisfy the current aims of the mechanical characterization, for instance, to find a non-

homogeneous strain field that (i) promotes the identification of large sets of material parameters 

and (ii) improves the quality of the identified parameters. Thus, by ranking the information 

provided by the tests, the proposed indicator can be used to guide the design of the mechanical 

test. 

Thereby, in this chapter, the formulation of an indicator focused on the mechanical 

behavior of sheet metal is presented and applied considering classical as well as heterogeneous 

tests presented in chapter 2. The performance of these several tests is compared and their 

reliability on the mechanical behavior characterization is rated and ranked. Moreover, with the 

aim of validating the results obtained with the proposed indicator, a material parameter 

sensitivity study is carried out for the chosen tests. 

It must be highlighted that, in a first step, strain path change is not considered in the 

formulation of the indicator and, as a consequence, only monotonic experiments are evaluated. 

Nonetheless, according to Schmitt et al. (1985) the parameter Θ can be used to describe strain 

path changes. This parameter is defined as the cosine of the angle in the strain space between the 

strain rate tensors during the pre-strain P
1D  and the subsequent strain path P

2D , 
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where Θ ]1,1[  assumes value 1, -1 and 0 for monotonic, reversed and orthogonal strain path, 

respectively. This parameter is useful in two-stage tests, however, sheet metal forming processes 

usually do not consist of two monotonic strain paths. Multistep deep drawing processes can 

exhibit such changes, but single-step deep drawing processes show continuous strain path 

changes and a clear distinction of individual strain paths cannot be made (van Riel and van den 

Boogaard, 2007; Thuillier et al., 2010). 

7.2 Features of the indicator  

In order to properly formulate the indicator, it is mandatory to define a list of the main features 

and mechanical phenomena observed in sheet metal forming that should be covered. Only in this 

way, will it be possible to develop a quantitative indicator able to show that one mechanical test 

is more informative4 than another one. Hence, the indicator must be an evaluation criterion rating 

the difference between tests and should include the following aims: 

 recognize and quantify all distinct strain states presented in the mechanical test, 

favoring tests that cover larger strain state range with a minor number of gaps. 

 analyze the deformation heterogeneity of the specimen during the test, promoting 

tests with large non-homogeneity. 

 evaluate the maximum strain achieved for the most important strain states, 

promoting the increase of these values. 

 quantify the average strain level, taking into account the geometry, and favoring 

large values of this average strain. 

 promote a continuous evaluation of the test up to rupture. 

 promote the unicity of the solution when identification strategies are used. 

The listed features should be quantified to define the indicator and must be continuously 

evaluated during the test up to rupture. These can be arranged in the following two groups: (i) 

strain state range and heterogeneity and (ii) strain level. 

In addition, the proposed indicator must be evaluated from both real (experiments) as well 

as virtual (numerical simulation) tests. For that purpose, since strain level is considered, it is just 

necessary take into account a definition of equivalent plastic strain ε P. As example, in the case of 

experimental data, the elastic strain εe can be neglected comparatively to the plastic strain εP 

because εP>>εe and a von Mises equivalent strain definition can be adopted. Concerning 

numerical results, an equivalent plastic strain can be defined based on von Mises criterion or on 

the yield criterion used to characterize the material behavior. 

                                                           
4
 A mechanical test is considered more informative if a larger number of mechanical phenomena and 

stress/strain states are covered. 
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7.2.1 Strain state range and heterogeneity 

Several strain states are expected during sheet metal forming processes. Due to this, the strain 

state range of the test must be taken into account by the indicator. The ratio between the minor 

ε2 and major ε1 principal strains in the sheet plane can be considered in order to analyze the strain 

state range. Indeed, this ratio is commonly used to evaluate the formability of sheet metals by 

means of Forming Limit Diagram (FLD). Note that due to the incompressibility condition, only two 

principal strains are required and, consequently, the ratio ε2/ε1 leads to a different value for each 

strain state. Figure 7.1 shows the most relevant strain states observed in sheet metal forming as 

well as their ε2/ε1 ratio considering material isotropy. In this way, the strain state range (ε2/ε1)R 

covered by the mechanical test can be calculated by using the maximum and minimum ε2/ε1 

values achieved in the test as 

.
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 (7.2) 

 
Figure 7.1 – Range of ε2/ε1 values of the most relevant strain states observed in sheet metal forming, 

considering material isotropy.  

However, (ε2/ε1)R may not be able to characterize fully the strain state range information. 

Indeed, the diversity of the mechanical information obtained by the strain state range is not 

characterized by Equation 7.2, since large strain state bounds do not necessarily means large 

diversification of the mechanical information provided by the test. A practical example of this 

situation consists in the conventional simple shear test using rectangular specimen. Indeed, most 

part of the specimen region corresponds to a simple shear strain state (ε2/ε1 = -1) and the 

remaining small regions near the free edges exhibit distinct strain states (tension and 

compression) (Bouvier et al., 2006). Nevertheless, this test can be considered as quasi-

homogeneous within the central area. The diversification of the mechanical information given by 

the test is a relevant feature that must be considered and can be evaluated measuring the strain 
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state range variation of the specimen during the test. In this work, such a variation of the strain 

state range was determined by the standard deviation (Std) of ε2/ε1 values obtained for the 

specimen during the test. Note that Std is a statistical function that shows how much dispersion 

from the average exists. A low Std value indicates that the data points tend to be very close to the 

mean (which is the case for homogeneous experiments) while a high Std value indicates that the 

data points are spread out over a large range of values, expected for heterogeneous experiments. 

Std(ε2/ε1) is defined as 

,
1

])[(
1

2
12

1

2
12
















n
Std

n

i

i 




 

(7.3) 

where (ε2/ε1)i is the ratio ε2/ε1 for subarea or element i of the mesh, 
12  is the mean value of 

ε2/ε1 of the specimen and n is the number of elements or subareas. Indeed, histograms 

representing ε2/ε1 distribution of subareas of the sample or the elements of the meshed 

specimen, when using DIC measurements or FE analysis, are an easy way to visualize the 

applicability of Std(ε2/ε1). Figure 7.2 shows two histograms with distinct ε2/ε1 distributions. In 

both cases, the same strain state range is covered. However, the diversity of the mechanical 

information provided differs significantly. A large distribution of element sets with similar number 

of elements in each set corresponds to a high diversity of the mechanical information leading to a 

high Std(ε2/ε1), since a large quantity of elements is far from με2/ε1, as illustrated by Figure 7.2 a). 

On the contrary, when the majority of the elements presents similar ε2/ε1 values, a lower 

Std(ε2/ε1) for the test is obtained since the majority of the elements is close to με2/ε1 , as shown in 

Figure 7.2 b). 

 
                              a) Heterogeneous                                 b) Homogeneous                                                   

Figure 7.2 – Histograms representing ε2/ε1 distribution in finite subareas or elements in the specimen. 
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Additionally, it is well known that the non-homogeneity of the specimen deformation is 

also a crucial factor for the larger diversification of the mechanical information of the test. 

Consequently, the deformation heterogeneity of the specimen was also taken into account in the 

formulation of the indicator. In that respect, the non-homogeneity of the strain field during the 

test was evaluated through the variation of the equivalent plastic strain ε P by assessing Std(ε P), 

such as 

  ,
1

)(
1

2P

P










n
Std

n

i

i P


  
(7.4) 

where P
i is the equivalent plastic strain of the specimen subarea or element i and P

 is the mean 

ε P value of the sample at a given time. 

7.2.2 Strain level 

One of the main goals considered in the development of tests for material parameters 

identification is to reach the same deformation level as the one recorded in sheet metal forming 

processes. Hence, the strain P
Max  achieved during the test is a crucial data that must be 

evaluated by the indicator. P
Max  was calculated taking into account the maximum ε P value 

obtained for the test ( P
test ) as well as the ε P values for the most relevant strain states (cf. Figure 

7.1), namely, equibiaxial tension ( P
biaxial ), simple shear ( P

shear ), uniaxial tension ( P
tens ), plane 

strain tension ( P
plane ) and uniaxial compression ( P

comp ), and can be written as 

6

P
plane

P
comp

P
biaxial

P
shear

P
tens

P
testP

Max





 . (7.5) 

Note that Equation 7.5 was defined by giving equal importance to each term and, then, P
Max

consists of an average value of the ε P values. It was considered that any strain state is not more 

relevant than the other ones. It is rather difficult to assume that, for example, uniaxial tension is 

more important than simple shear and, consequently, to attribute different weights for these 

strain states. Actually, from a strain state point of view, uniaxial tension and simple shear are 

complementary since the first one only involves diagonal components of the strain tensor while 

the second one involves non-diagonal components of the strain tensor. 

Additionally, the average deformation obtained in the specimen was also considered on the 

definition of the indicator since this feature points out the global level of deformation imposed 

during the test. Larger values of the average deformation contribute to a more informative test. 

The average deformation P
Av of the test is calculated by 
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(7.6) 

where vi is the volume of the element or subarea i and vT is the total volume of the specimen. 

Note that, in order to normalize the average deformation to the specimen geometry, P
Av  is 

defined accounting for the volume of the specimen. In this way, P
Av values for experiments with 

different specimen geometries can be compared. 

7.3 Mathematical formulation 

The indicator is formulated based on Equations 7.2-7.6 which characterize the strain state range 

and heterogeneity as well as strain level features. However, some considerations must be taken 

into account for its formulation. 

For instance, the indicator must be based on a continuous evaluation of the strain field up 

to rupture. Though plastic instabilities can occur before achieving rupture for some tests, these 

phenomena may provide useful additional information for a better characterization of the 

material behavior. Cockroft and Latham (1968) fracture parameter f
CLW  was used as an end 

condition to stop the numerical simulation. 

Within the characterized features, P
Max  and P

Av consist of cumulative data of the test. As 

a result, just the values obtained at the end of the test were considered in the indicator 

calculation. 

Nevertheless, (ε2/ε1)R, Std(ε P) and Std(ε2/ε1) are not cumulative and may change in 

subsequent increments of the test mostly due to the heterogeneity. As a consequence, the mean 

values of Std(ε P) and Std(ε2/ε1) calculated over the whole test time were considered in the 

definition of the indicator. Nonetheless, in the case of (ε2/ε1)R, just the value obtained at the end 

of the test was taken into account. This choice was made considering that (ε2/ε1)R is dependent on 

the heterogeneity and, generally, the large heterogeneity of the test occurs at the rupture. 

By considering the previous assumptions, the proposed indicator IT was defined as 
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where wri and wai with i=1, …, 5 are relative and absolute weighting factors. Table 7.1 shows wri 

and wai values adopted for IT.  

Table 7.1 – Weighing factors used on the definition of IT. 

wa1 wa2 wa3 wa4 wa5 

1   4 0.25 1 1 

wr1 wr2 wr3 wr4 wr5 

0.3 0.03 0.17 0.4 0.1 
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The absolute weighting factors wai correspond to the maximum achievable value for each 

one of the indicator terms. Therefore, these weighting factors are based on a physical meaning. 

The weights wa4 and wa5 were defined assuming that the maximum and average P values that 

can be obtained are 1 whatever the test, which is a reasonable value regarding thin sheet metals. 

Concerning wa1 and wa3, these absolute weighting factors were selected based on the mean values 

of Std( P ) and Std(ε2/ε1) obtained for the different tests considered further in section 7.4. In the 

case of wa2, this one was defined limiting the strain state range between equibiaxial state 

(ε2/ε1 = 1) and a compression state presenting ε2/ε1 = -3, therefore, wa2 = 4. These bounds were 

imposed to the numerical analysis of (ε2/ε1)R since high negative values can be obtained, as can be 

seen in Figure 7.1. Moreover, the main strain states are covered by this range and in sheet metal 

forming it is not expected to obtain relevant compression states, due to buckling. The purpose of 

wai factors was to normalize each term of the indicator between 0 and 1, which is very useful for 

evaluating the several indicator contributions. 

In the case of the relative weighting factors, these wri values can be defined by the user 

taking into account the importance attributed to each contribution. The indicator was formulated 

by the sum of five different terms and wri factors must be considered in order to (i) scale, for any 

mechanical test, the indicator value between 0 and unity and (ii) adjust the importance of each 

term in the calculation of the indicator. Note that, though each indicator term defines a different 

feature, some of these features are related. 

For example, without deformation heterogeneity (Equation 7.4) it is not possible to obtain 

different strain states on the specimen (Equation 7.2). Nevertheless, high deformation 

heterogeneity does not lead inevitably to relevant strain states variation. It is observed when 

necking appears in the uniaxial tensile test since substantial strain heterogeneity occurs in the 

center of the sample but, the strain states covered remains almost the same. In addition, as 

pointed out in section 7.2.1, both features defined by Equations 7.2 and 7.3 are required for a full 

characterization of the strain state range information. Since, the strain state range value defined 

by Equation 7.2 may not be directly related with the diversification of the mechanical information 

provided by the test (Equation 7.3). Furthermore, the average strain level of the specimen 

(Equation 7.6) contributes for a more informative test. Notwithstanding, such feature can be 

considered less important than the maximum strain achieved on the test (Equation 7.5) because 

one of the main goals considered in the development of mechanical tests is to reach the same 

deformation level as the one recorded in sheet metal forming processes.  

Considering the inherent relation between some of the indicator features, relative 

weighting factors are needed for defining the importance of each term. Thus, the focus of the 

relative weighting factors is adjusting the contributions of each one of the indicator terms aiming 

at a suitable calculation of IT. Then, wri factors were defined attributing equal importance to the 

contributions of both strain state range/heterogeneity (wr1 + wr2 + wr3 = 0.5) and strain level 

(wr4 + wr5 = 0.5), which seems a reasonable decision. According to this, the several wri values listed 

in Table 7.1 were adjusted empirically. Additionally, for scaling the indicator value between 0 and 

unity, the sum of the several wri values is equal to 1. Then, the maximum IT value that can be 

reached by a certain experiment is unity. 
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7.4 Numerical tests evaluation 

Several tests were considered for evaluating the indicator IT given by Equation 7.7: (i) uniaxial 

tensile test, (ii) plane strain tension test (Wagoner, 1981), (iii) simple shear test (Thuillier and 

Manach, 2008), (iv) classical biaxial test using cruciform specimen (Prates et al., 2014), (v) 

equibiaxial bulge test (Sousa et al., 2007), (vi) TIX test (Pottier et al., 2011b),  (vii) biaxial tensile 

test using  a perforated cruciform sample (Teaca et al., 2010) and (viii) tensile test using a shear-

like tensile specimen (Haddadi and Belhabib, 2012). The reason for such a selection is the fact that 

these tests reproduce different types of stress/strain states. Additionally, it must be highlighted 

that these ones consist of classical or quasi-homogeneous (i, …, v) as well as heterogeneous tests 

(vi, …, viii) and their performance characterizing the material behavior can be compared. Indeed, 

by calculating IT for each test it was possible to establish a raking, hence rating the importance of 

each one. This analysis allows inquire for the most informative test among the selected ones. 

Figures 7.3 and 7.4 show, respectively, the specimen geometries of the classical and 

heterogeneous tests. It must be noticed that the width of the plane strain specimen (Figure 7.3 

d)) was increased for obtaining a more accentuated plane strain state in this test, since the 

original plane strain specimen proposed by Wagoner (1981) only promotes near-plane strain 

tension (as stated before in section 2.2.1.3). 

 
Figure 7.3 – Sample geometries of the classical tests. 
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The different tests adopted were generally discussed in chapter 2. However, it must be 

stressed out that the uniaxial tensile test considered corresponds to the tensile test used in 

chapter 5 for calibrating the rupture behavior of DC04 mild steel. 

 
Figure 7.4 – Sample geometries of the heterogeneous tests. 

The computational analysis was carried out considering implicit time integration scheme by 

using ABAQUS/Standard FE code. The tests were modeled with 3D 8-node linear isoparametric 

elements with reduced integration (C3D8R) and with hourglass control. Symmetry conditions 

were used for uniaxial tensile, bulge, biaxial tensile and plane strain tests with the purpose of 

saving computational time. Only one fourth of uniaxial tensile (symmetry in the thickness and 

width), bulge and biaxial tension geometries were modeled while half specimen was considered 

in the case of plane strain test. Figure 7.5 shows the boundary conditions for all the tests. It must 

be mentioned that the punch of TIX test was defined as an analytical rigid surface and the 

lubrication coefficient taken into account was 0.25, as suggested by Pottier et al. (2011b). 

The numerical simulations were carried out using the material parameters identified for 

Yld2004-MixedMod model and also f
CLW  fracture parameter. A mesh density of 3 elements per mm 

was used for all the tests. Additionally, samples were meshed with 3 elements along the 

thickness. The specimens of the several mechanical tests were defined with a thickness of 0.7 

mm. Note that this thickness value is the same of DC04 mild steel sheet used for identifying the 

material parameters of the constitutive model adopted. 

The analysis of the tests for calculating IT was carried out considering the evaluation of the 

specimen surface. Such as in DIC technique, a region of interest (ROI) of the sample was defined 
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and the strain field was post-treated only in this region. In the case of uniaxial tensile, plane strain 

tension, shear-like tensile and biaxial tensile tests all the deformed geometry was taken into 

account. However, for simple shear, bulge and TIX tests, a ROI was defined to avoid local effects 

such as the contact with the tools or to avoid regions that cannot be measured experimentally by 

DIC. The ROI are illustrated in Figure 7.5 as red zones. 

 
Figure 7.5 – Numerical model of the tests. 

Concerning ε2/ε1 analysis, this ratio was defined by calculating the eigenvalues and 

eigenvectors for each finite element in order to determine accurately the major ε1 and minor ε2 

principal strains in the sheet plane. A python script was developed to perform the ε2/ε1 analysis in 
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post-processing, after the numerical simulation. ε2/ε1 ratio was only determined for elements 

exhibiting a certain amount of equivalent plastic strain, i.e. with ε P ≥ 10-3. 

Relatively to ε P values obtained for the test as well as for the most relevant strain states, it 

must be pointed out that P
test  was calculated by defining the average of the 15 elements (region 

with approximately 1.5x1 mm2) with highest ε P value while ε P of the different strain states was 

calculated as the average value for all elements having ε2/ε1 range depicted in Table 7.2. Note 

that due to DC04 material anisotropy, ε2/ε1 values characterizing the uniaxial tensile and uniaxial 

compression states are -0.627 and -1.595, respectively. 

Table 7.2 – ε2/ε1 range characterizing the different strain states considered for IT calculation. 

Strain State ε2/ε1 range 

Uniaxial tension -0.627 ± 0.03 

Simple shear -1 ± 0.03 

Plane strain tension 0 ± 0.03 

Equibiaxial tension 1 (0.94 - 1) 

Uniaxial compression -1.595 ± 0.03 

7.5 Results 

The different terms used in IT formulation were analyzed for the several tests adopted. The 

calculation of IT and its robustness to the variation of the relative weighting factors were also 

presented in this section. 

7.5.1 Main characteristics of the tests 

With the aim of obtaining a visual description of ε P evolution during the test, histograms showing 

its distribution at normalized times 0.5, 0.75 and 1 (end of the test) are depicted in Figures 7.6 

and 7.7. The histograms represent ε P distribution on element sets divided in 100 equal intervals. 

By the analysis of these element sets it is possible to evaluate the level of heterogeneity of each 

test. Note that accurate ε P distributions using histograms are only possible considering a constant 

element size for the whole mesh. Otherwise element sets would not represent equally the area of 

the specimen. Additionally, ε P distribution over the specimen is included in Figures 7.6 and 7.7. 

These contours show the location of the heterogeneity regions as well as ε P value obtained on the 

sample. 

Large element set distribution with a similar number of elements and, consequently, 

heterogeneity, is verified for biaxial tension tests using classical cruciform specimen and also 

perforated sample, as can be seen in Figures 7.6 d) and 7.7 c). On the contrary, a narrow 

distribution of element sets composed of a high number of elements indicates non-heterogeneity, 

as observed in the case of uniaxial tensile, TIX and shear-like tensile tests before strain localization 

(histograms at times t = 0.5 and t = 0.75) illustrated, respectively, in Figures 7.6 a), 7.7 b) and 7.7 

d). It must be highlighted that TIX and shear-like tension are heterogeneous tests, however, their 

heterogeneity occur in rather small areas of the ROI. In the case of plane strain tension, simple 

shear and bulge test, shown in Figures 7.6 b), 7.6 c) and 7.7 a), it can be seen that the 

heterogeneity tends to increase during the test. For these experiments, a narrow element sets 
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distribution is observed for the histogram at time t = 0.5, however, the element sets distribution 

enlarges up to end of the test (histograms at times t = 0.75 and t = 1). Note that though simple 

shear consists of a quasi-homogeneous experiment, the ROI defined for this test comprises non-

homogeneous zones of the sample and, therefore, heterogeneity is observed from the analysis of 

its histograms. 

Similarly, histograms reproducing ε2/ε1 distribution on the specimen during the test as well 

as ε2/ε1 contours were analyzed, as shown in Figures 7.8 and 7.9. These figures show that ε2/ε1 

range covered by each test is almost constant during the experiment since no significant changes 

occur on the element set distribution. The tests that present some smooth ε2/ε1 range variation 

between half time (t=0.5) and the end (t=1) of the test are the uniaxial tensile and the bulge test. 

Indeed, the strain state ratio of the uniaxial tensile test was comprised between -0.64 and -0.62 

before strain localization (up to t=0.75) and after necking phenomenon the strain state range 

covered was -0.64 < ε2/ε1 < -0.54 (t = 1), as shown in Figure 7.8 a). Taking into account that the 

total strain state range available is in-between -3 and 1, the increase of ε2/ε1 range observed in 

uniaxial tensile test is not substantial. 

The larger is the strain state range covered, the larger is the diversity of the mechanical 

state information given by the test. As expected, classical tests such as uniaxial tension, simple 

shear or bulge test provide mainly uniaxial tensile (ε2/ε1 = -0.627), shear (ε2/ε1 = -1) and equibiaxial 

(ε2/ε1 = 1) strain states, as can be seen in Figures 7.8 a), 7.8 c) and 7.9 a), respectively. However, 

several strain states are covered by biaxial tension tests using classical cruciform specimen or 

perforated sample (Figures 7.8 d) and 7.9 c)), TIX test (Figure 7.9 b)) and shear-like tensile test 

(Figure 7.9 d)). 

In the case of biaxial tension test using classical cruciform sample (Figure 7.8 d)), strain 

state range between uniaxial and equibiaxial tensions is characterized. Hence, plane strain state 

(ε2/ε1 = 0) is also included in this test. A similar ε2/ε1 range is achieved using the perforated 

cruciform sample (Figure 7.9 c)). Note that the test is similar, however, the hole at the center of 

the sample hinders the propagation of the biaxial strain state. Thereby, this strain state is 

localized in small regions of the specimen, as shown by ε2/ε1 contour. In fact, this test was 

suggested by Teaca et al. (2010) to characterize a strain state range between uniaxial to plane 

strain tension, as can be seen in section 2.2.2.1. Concerning shear-like tensile test, it can be seen 

in Figure 7.9 d) that this test exhibits uniaxial compressive and tensile strain states. A large ε2/ε1 

range is covered by this test comparatively to uniaxial tensile test (Figure 7.8 a)). However, the 

covered ε2/ε1 strain range is not continuous due to the observed gap between compressive and 

tensile states. It results not only from the specimen design but also from the imposed condition to 

determine ε2/ε1 ratio for elements with ε P ≥ 10-3 as well. Consequently, grey regions on ε2/ε1 

contour of shear-like tensile test means that the imposed condition was not satisfied. 

The TIX test is the only one covering all principal strain states, namely, uniaxial 

compression, shear, uniaxial, plane strain and equibiaxial tensions, as illustrated in Figure 7.9 b). 

However, excluding uniaxial tension, the remaining strain states were localized in very small 

regions, as shown by ε2/ε1 contour. As for the shear-like tensile test, ε2/ε1 ratio was not calculated 

for some areas of TIX specimen. 
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Figure 7.6 – Histograms representing ε P distribution of the elements for a) uniaxial tension, b) plane 

strain tension c) simple shear and d) biaxial tension. SDV1 stands for ε P. 
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Figure 7.7 – Histograms representing ε P distribution of the elements for a) bulge test, b) TIX test c) 

biaxial tension with hole and d) shear-like tension. SDV1 stands for ε P. 
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Figure 7.8 – Histograms representing ε2/ε1 distribution of the elements for a) uniaxial tension, b) plane 

strain tension c) simple shear and d) biaxial tension. LE-RAPMINMAJ stands for ε2/ε1. 

 

Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa Nelson Souto 2015



 
 126   Chapter 7 – Development of an indicator 

 

 

 

 

 
Figure 7.9 – Histograms representing ε2/ε1 distribution of the elements for a) bulge test, b) TIX test c) 

biaxial tension with hole and d) shear-like tension. LE-RAPMINMAJ stands for ε2/ε1. 
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7.5.2 Calculation of the indicator 

The evolution of Std(ε P) and Std(ε2/ε1) for each test is depicted in Figures 7.10 and 7.11, 

respectively. In addition, ε P and ε2/ε1 evolution for all elements belonging to the ROI of the sample 

are included in these figures, providing supplementary information. 

Analyzing ε P evolution, it can be stated that, generally, a continuous increase of Std(ε P) 

occurs during the tests. The displacement imposed as boundary condition during the test leads to 

the specimen deformation where some regions are more deformed than the remaining ones. 

Consequently, a significant variation of ε P on the sample surface may occur. In this way, the 

deformation heterogeneity of the specimen can be accurately measured by Std(ε P). An example of 

Std(ε P) functionality can be seen for the uniaxial tensile test depicted in Figure 7.10 a). Due to the 

homogeneity of this test, Std(ε P) remains equal to almost zero until necking starts. However, after 

necking, the increase of Std(ε P) is verified. Moreover, analyzing the mean value of Std(ε P), it can 

be seen that both biaxial tension tests present the higher values (Figures 7.10 d) and 7.11 c)) 

among the several tests investigated. Indeed, it is in agreement with the results obtained from 

Figures 7.6 and 7.7, since it was observed that these two tests were the ones presenting large 

heterogeneity. 

On the contrary, the analysis of Std(ε2/ε1) evolution reveals that a continuous increase is 

not observed. Indeed, Std(ε2/ε1) evolution tends to a stabilized value which is verified during the 

major part of the test. This is in agreement with the observations of Figures 7.8 and 7.9, where it 

can be seen that no considerable change occurs on the covered ε2/ε1 range. Thereby, no 

substantial variations of Std(ε2/ε1) value are verified along the test. In addition, from ε2/ε1 

evolution for all elements belonging to the ROI, it is shown that though the tests are non-

homogenous in space they are rather uniform in time. It is also observed that biaxial tension and 

TIX test, shown in Figures 7.10 d) and 7.11 b), are the tests with large mean value of Std(ε2/ε1) and 

it is in agreement with the fact that both tests are the ones covering a large strain state range. 

Std(ε2/ε1) evolution is mainly influenced by the design of each test such as, for instance, the 

boundary conditions and specimen geometry. However, it is clear that strain localizations, such as 

the ones observed for uniaxial tensile (Figure 7.10 a)), TIX (Figure 7.11 b)) or shear-like tensile test 

(Figure 7.11 d)), promote Std(ε2/ε1) variations during the test. 

In Figures 7.12 and 7.13, the evolution of (ε2/ε1)max, (ε2/ε1)min, ε P for the most relevant strain 

states and the distribution of WCL at the rupture are shown for all the tests. Note that ε P value for 

the relevant strain states was calculated as an average considering the elements presenting ε2/ε1 

ranges depicted in Table 7.2. WCL contours were presented in order to show the expected 

localization of the rupture for each test. For uniaxial tensile, simple shear, bulge and shear-like 

tensile tests, experimental and numerical rupture localization is in agreement. Concerning the 

remaining tests, no experimental data is available to proceed to such a comparison. 

In the case of uniaxial tension, plane strain tension, biaxial tension test using classical 

cruciform sample, bulge test and biaxial tension test using perforated sample (Figures 7.12 a), 

7.12 b), 7.12 d), 7.13 a) and 7.13 c), respectively), (ε2/ε1)max and (ε2/ε1)min values tend to be rather 

constant during the whole test. For simple shear, TIX and shear-like tensile tests (Figures 7.12 c), 

7.13 b) and 7.13 d), respectively), (ε2/ε1)max is constant, however, variations on (ε2/ε1)min are 

observed. Relatively to (ε2/ε1)min evolution for simple shear test, it can be seen that this value 

starts from the compressive state and reaches shear state which is then the dominant strain state 
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over all the specimen. In both TIX and shear-like tensile tests, the decrease of (ε2/ε1)min value 

during the test is due to the occurrence and evolution of compression zones in the sample. 

 
Figure 7.10 – Evolution of Std(ε P) (left) and Std(ε2/ε1) (right) for a) uniaxial tension, b) plane strain 

tension c) simple shear and d) biaxial tension. Dashed lines are the mean values of Std(ε P) and 

Std(ε2/ε1). 

Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa Nelson Souto 2015



  
Chapter 7 – Development of an indicator 129 
 

 

 

 
Figure 7.11 – Evolution of Std(ε P) (left) and Std(ε2/ε1) (right) for a) bulge test, b) TIX test c) biaxial 

tension with hole and d) shear-like tension. Note that dashed lines correspond to the mean Std(ε P) and 

Std(ε2/ε1) values. 
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Figure 7.12 – Evolution of maximum and minimum ε2/ε1 values (left), maximum ε P value of the 

different strain states (center) and WCL distribution at the rupture (right) for a) uniaxial tension, b) 

plane strain tension c) simple shear and d) biaxial tension. 
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Figure 7.13 – Evolution of maximum and minimum ε2/ε1 values (left), maximum ε P value of the 

different strain states (center) and WCL distribution at the rupture (right) for a) bulge test, b) TIX test c) 

biaxial tension with hole and d) shear-like tension. 
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In order to evaluate the maximum and the average deformation achieved in the several 

tests, P
test  as well as P

Av values are illustrated in Figure 7.14. In the case of P
test , it can be 

observed that most part of the tests achieve the same level of maximum equivalent plastic strain 

at the end of the test. However, for P
Av , distinct values are obtained for the several tests. This is 

due to the fact that P
Av is related to the overall deformation of the specimen and, depending of 

their design, strain localization occurs leading to high values for P
test but rather low values for 

P
Av , e.g. the TIX test. 

 
Figure 7.14 – Evolution of a) maximum ε P value achieved during the test and evolution of b) P

Av . 

The different contributions used for IT calculation as well as the IT values obtained for all 

tests are listed in Table 7.3. Based on the IT results, a rating scale ordering the several experiments 

by order of importance is presented in Figure 7.15. 

According to the proposed indicator, uniaxial tension is the test giving the lowest 

information concerning the mechanical behavior of the material. This test is limited by the small 

ε2/ε1 range as well as by the necking phenomenon, which leads to high level of deformation only 

in a localized zone of the specimen. The shear-like tensile and simple shear tests provide more 

significant mechanical information than uniaxial tensile test. Next, plane strain tension and bulge 

test appear providing even more mechanical information than the previous tests. It must be 

noted that this rating shows that plane strain tension is more interesting for material 

characterization than simple shear or uniaxial tension. It is related to the fact that this test covers 

a large ε2/ε1 range with a substantial level of deformation. Biaxial tension test using perforated 

sample, TIX test and biaxial tension test using classical cruciform specimen consist of the best 

three tests giving richer mechanical information. IT indicates that biaxial tests provide more 

information than uniaxial ones. Indeed, these three tests are the ones covering higher ε2/ε1 range. 

It is interesting to note that the biaxial tension test using classical cruciform specimen leads to a 

better mechanical information than the other heterogeneous tests. In fact, it must be noted that 

even though TIX test was developed in order to promote shear and tensile strain in RD and TD 

directions as well as equibiaxial strain, small deformation levels are obtained for these strain 

states and for the overall specimen. 
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Table 7.3 – Obtained values for the several contributions of IT and IT values for the different tests. 

 
Tensile 

Plane 

strain 
Shear Biaxial Bulge TIX 

Biaxial 

hole 

Shear-like 

tensile 

  12StdMean   0.001 0.150 0.044 0.363 0.168 0.369 0.255 0.151 

min1
2 










  -0.636 -0.743 -1.026 -0.777 0.471 -2.898 -0.693 -2.030 

max1
2 










  -0.547 0 -0.651 0.981 0.999 0.945 0.925 -0.039 

R1

2












 0.089 0.743 0.375 1.758 0.528 3.843 1.618 1.991 

  PStdMean   0.009 0.025 0.024 0.054 0.023 0.033 0.078 0.047 

P
test  0.859 0.667 0.679 0.794 0.699 0.842 0.674 0.852 

P
tens  0.348 0.317 - 0.214 - 0.063 0.336 0.043 

P
shear  - - 0.507 - - 0.002 - - 

P
plane  - 0.283 - 0.040 - 0.046 0.017 - 

P
biaxial  - - - 0.020 0.508 0.126 - - 

P
comp  - - - - - 0.003 - 0.001 

PAv


 0.272 0.318 0.496 0.179 0.410 0.049 0.204 0.050 

         

IT 0.115 0.184 0.161 0.248 0.192 0.239 0.231 0.157 

  

 
Figure 7.15 – Ranking of the different tests by using IT indicator. 

7.5.3 Robustness of the indicator 

It must be emphasized that the obtained IT values are influenced by the relative weighting factors 

wr adopted. Different wr sets may change IT rating and, therefore, a parametric study comparing 

three distinct wr sets was performed with the aim of assessing the robustness of the proposed 

indicator. Table 7.4 lists wr sets used for this analysis. 

The weighting factors wr1, wr2 and wr3 are related to the IT terms that evaluate strain state 

range/heterogeneity while wr4 and wr5 are related to the strain level. The three wr sets were 

defined imposing (i) 50%-50%, (ii) 65%-35% and (iii) 35%-65% of importance for strain 

range/heterogeneity and strain level, as can be seen in Table 7.4. It must be highlighted that IT (50-

50) consists in the reference indicator calculated in the previous section. 
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Table 7.4 – Different wr sets selected for IT robustness study.  

 IT (50-50) IT (65-35) IT (35-65)  

wr1 0.3 0.36 0.22 
Strain range/ 

Heterogeneity 
wr2 0.03 0.05 0.04 

wr3 0.17 0.24 0.09 

wr4 0.4 0.23 0.5 
Strain level 

wr5 0.1 0.12 0.15 

 

Figure 7.16 shows the IT calculations for all the tests using the different wr sets. Analyzing 

these results, it can be observed that the variation of wr values leads to almost identical IT ratings. 

 
Figure 7.16 – IT results obtained considering the different wr sets. 

By comparing IT (65-35) results with the reference ones (IT (50-50)), it can be seen that the 

ranking of the several tests is quite the same, just changing the order of shear-like tensile with the 

simple shear test. With IT (65-35), shear-like tensile test provides some more mechanical information 

than simple shear. However, it must be stressed out that in the ranking obtained with the 

reference indicator (IT (50-50)), shown in Figure 7.15, no substantial difference exists between the 

amount of mechanical information given by these two tests since they have obtained very close 

IT(50-50) values. Therefore, knowing that shear-like tensile test promotes more heterogeneous 

strain fields than simple shear, the increase of importance of the strain state range/heterogeneity 

group (65%) led to the re-ordering of these two tests. Withal, the general results suggest the 

achievement of similar rating when considering an IT calculation that gives more importance to 

the strain range/heterogeneity contribution. 

Alternatively, the comparison of the results obtained by IT (35-65) with the reference ones 

shows that an equal rating scale ordering the several tests was achieved. Nevertheless, it must be 

Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa Nelson Souto 2015



  
Chapter 7 – Development of an indicator 135 
 

 

highlighted that the classical tests with significant level of deformation, such as bulge test, plane 

strain tension or simple shear, tend to reach higher indicator values and such values became 

closer to the ones obtained for the best tests, namely, the TIX and the biaxial tension tests using 

perforated and classical cruciform samples. Hence, it can be more difficult to distinguish the 

mechanical information of the several tests when a large importance to the strain achieved on the 

test is attributed. 

According to the results obtained for the several IT configurations tested, it can be stated 

that the robustness of IT was demonstrated. Moreover, it is expected to reach a reliable 

reproducibility of the IT rankings when choosing wr values for a range comprised in-between 

[35% - 65%] of importance of both strain state range/heterogeneity and strain level groups. 

Outside of this interval, IT results tend to promote considerable changings on the ranking of the 

several tests.  

7.6 Material parameters sensitivity 

With the purpose of validating the results obtained using IT, the analysis of the material 

parameters sensitivity (Belhabib et al., 2008) of the tests was carried out. This methodology gives 

a comparison of the several tests, searching for the one presenting a larger sensitivity to the strain 

field. It should be mentioned that this analysis is dependent on the constitutive model, material 

parameter set and definition of the cost function. 

The material parameters sensitivity of the test expresses the sensitivity of the strain field to 

the parameters of the material model (Belhabib et al., 2008). In this way, it is possible to evaluate 

the contribution of each test mainly when complex material models are used. Thus, tests with 

more sensitivity to the material parameters have a greater contribution on the prediction of the 

strain field. 

As in Belhabib et al. (2008), in order to quantify this sensitivity, a cost function Ssen is 

defined by the least-square difference between a reference and a perturbed data given as 

yyxx εεFsen SSSS  , (7.8) 
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and 
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where nim and nel are the number of strain fields evaluated and elements of the test, )( 0PiF  and 

)(PiF are the load values at the increment i obtained with the reference (P0) and the perturbed (P) 

parameter set values, )( 0,,xx Pji and )(,,xx Pji  as well as )( 0,,yy Pji and )(,,yy Pji  are the strain 

values for the element j at the strain field i obtained using P0 and P set parameters, respectively. 

Both load and strain data are taken into account in the definition of Ssen since it leads to a better 

suited solution when strain concentration and localized damage are involved (Avril et al., 2008a). 

Note that the sensitivity of Ssen to each parameter is not dependent on the reference term 

of Ssen because this term is constant. It is the perturbed term responsible to distinguish between 

different values of the parameter (Valente et al., 2014). 

The reference parameter set P0 consists of the material parameters describing Yld2004-

MixedMod model, while P set is obtained by perturbating one of the parameters of P0 by -10%. 

Therefore, numerical simulations were carried out for all the tests perturbing individually each 

parameter listed in Table 5.2. Hence, 24 perturbed set parameters were used on this sensitivity 

analysis. The reference and perturbed data were analyzed in ROI of the tests up to the maximum 

deformation level of ε P = 0.35 by comparing 6 strain fields (nim = 6). The strain fields were obtained 

at maximum levels of ε P = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35] for each test. The sensitivity results of the 

cost function for the several material parameters are depicted in Figures 7.17 to 7.19. 

 
Figure 7.17 – Sensitivity of Ssen to the isotropic hardening parameters. 

Figure 7.17 shows the sensitivity of the cost function to the isotropic hardening parameters. 

It can be seen that the cost function is highly sensitive to variations of σ0 and σ∞ while, in the case 

of β, the sensitivity of Ssen is less expressive. Among the several tests, biaxial tension test using 

perforated sample, shear-like tensile and TIX test show the greatest sensitivity to the isotropic 

hardening parameters. Note that these tests consist of the heterogeneous ones and, thereby, the 

results illustrated in Figure 7.17 seem to indicate that large strain field heterogeneity leads to 

more sensitivity to the hardening parameters. 
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Concerning the variations of the kinematic hardening parameters, it is verified in Figure 

7.18 that, generally, these material parameters lead to lower sensitivity of Ssen than the isotropic 

hardening parameters. It is justified by the fact that the contribution of the kinematic hardening is 

more significant when reverse strain path is considered. However, reverse strain is not verified in 

the tests used for this study. With exception to γ3 and Xsat3 where uniaxial tensile test presents 

higher Ssen sensitivity, it is observed that biaxial tension test using perforated sample, shear-like 

tensile and TIX test show greatest sensitivity for the remaining kinematic hardening parameters. 

Nonetheless, a considerable difference exists between the sensitivity to the kinematic hardening 

parameters obtained for the TIX test and the remaining mechanical tests. In order to understand 

the meaning of this occurrence, the evolution of strain path change by Θ (cf. Equation 7.1) was 

evaluated for this test. It was observed that some smooth strain path variation occurs in TIX test, 

explaining these results. 

 
Figure 7.18 – Sensitivity of Ssen to the kinematic hardening parameters. 

  
Figure 7.19 – Sensitivity of Ssen to the yield function coefficients. 

It can be stressed out that biaxial tension test using perforated sample, shear-like tensile 

and TIX test are the mechanical tests that contribute the more for the prediction of the work 

hardening, because these tests present strain fields with the highest sensitivity to the variations of 

the isotropic and kinematic hardening parameters. 
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The sensitivity of Ssen to the yield criterion parameters is illustrated in Figure 7.19. It can be 

pointed out that the variations performed for these material parameters lead to the major 

variations of the strain field due to the larger Ssen values obtained. In this way, these results 

highlight the large influence of the coefficients of Yld2004-18p anisotropic yield criterion on the 

prediction of the strain field. In addition, it is verified that the TIX test as well as both biaxial 

tension tests are the ones most sensitive to the anisotropy of the material since these tests 

present higher Ssen values. Thereby, concerning the large diversity of strain paths required by 

Yld2004-18p yield criterion it seems clear that these tests are the most indicated to characterize 

larger strain state ranges. 

The global evaluation of the results shows that the TIX test is the most sensitive test to the 

mixed work hardening as well as material anisotropy. Therefore, the material parameters 

sensitivity carried out indicates that this test is one of the tests that can contribute more 

significantly for the prediction of the material model adopted. In part, it may due to the fact that 

the TIX experiment reproduces a considerable number of the strain fields used for identifying the 

input parameters of this constitutive model, for instance, uniaxial tensile and simple shear at 0° 

and 90° to RD and also biaxial tensile state. 

Moreover, it can be stated that a general agreement is observed between the results 

obtained by the validation study and by the proposed indicator. Both methodologies highlighted 

the same three tests (the TIX and both biaxial tension tests) as the best ones promoting the 

mechanical behavior characterization of the material. 

On the one hand, by a qualitative analysis of the mechanical tests, it seems clear that the 

tests involving multiaxial stresses as well as larger heterogeneity must provide a better 

mechanical characterization of the material behavior. On the other hand, since the material 

model adopted to reproduce the DC04 mild steel behavior corresponds to a complex 

phenomenological model based on several stress states as well as mechanical phenomena, the 

sensitivity of the material parameters tends to reflect the ability of the tests in reproducing these 

several stress states and mechanical phenomena. 

7.7 Conclusion 

In this chapter, a quantitative indicator able to distinguish, rate and rank mechanical tests was 

proposed. This indicator, called IT, was designed to include the analysis of strain state range 

covered by the test, the deformation heterogeneity of the specimen as well as the strain level 

achieved up to rupture. For that, a continuous evaluation of the strain fields up to rupture was 

considered. 

One of the main advantages of IT is the fact that all its contributions have physical meaning. 

These contributions were based on strain characteristics and, in addition, can be obtained by 

using FFM techniques.  

In order to evaluate the performance of IT, classical mechanical tests as well as modern 

heterogeneous tests were carried out numerically using the virtual behavior of DC04 mild steel. 

The several IT terms were calculated for each test and a ranking of all the tests was defined. The 

qualitative analysis of the mechanical tests adopted indicated that the tests involving multiaxial 

stresses as well as larger heterogeneity provide a more complete mechanical characterization of 
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sheet metals. The obtained IT ranking confirmed this trend and it revealed that the indicator is 

able to perform an accurate quantification of the mechanical information provided by the tests. 

Moreover, the robustness of the IT results was also investigated and identical ratings ordering the 

several tests were achieved. 

The indicator performance was only investigated for single-step tests. However, the 

inclusion of the parameter Θ (cf. Equation 7.1) in the indicator formulation was mentioned as 

suggestion for the analysis of multi-step tests evidencing strain path changes, in a future work. 

With the purpose of comparing results and validate IT, a material parameter sensitivity 

study was performed. In this analysis, a cost function was defined based on load and strain data 

for each test and the sensitivity of the strain field was evaluated by perturbing each material 

parameter. According to the obtained results as well as its validation, it was shown that the 

proposed indicator consists of an efficient strategy for choosing the most appropriate 

heterogeneous test when it comes to the identification of material parameters. Therefore, IT can 

be used for guiding the design of the computational mechanical test in order to find an ideal 

strain field able to promote better mechanical characterization of the material behavior. 
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Chapter 8  

8 Design of mechanical tests 

8.1 Introduction 

Aiming at better descriptions of the sheet metal behavior, the design of different classical 

experiments trying to reproduce individually the stress and strain states encountered in sheet 

forming processes had been considered by the scientific community in the past. Nowadays, 

thanks to FFM methods, the design of non-classical experiments based on the heterogeneity of 

the strain field became the focus of several recent studies. Alternatively to the classical 

experiments, where homogeneous stress and strain fields are provided, these heterogeneous 

experiments search for reproducing the complex stress and strain fields which generally occur in 

sheet metal forming operations. 

The main goal on the design of heterogeneous experiments is to define a sample geometry 

and boundary conditions leading to an ideal strain field that develops several stress and strain 

states and amplitudes. However, such a task imposes to have no idea concerning the initial shape, 

boundary conditions and loading path of the experiment. For this reason, the most common 

specimen optimization approaches described in the literature are mainly based on (i) the shape 

improvement of existent classical experiments (Belhabib et al., 2008; Teaca et al., 2010; Dunand 

and Mohr, 2011; Tiernan and Hannon, 2014), usually by performing parametric studies for some 

geometrical parameters and (ii) trial-and-error attempts in the shape design of specimens inspired 

in previous experiments (Shouler and Allwood, 2010; Brosius et al., 2011; Pottier et al., 2011b; Yin 

et al., 2011; Yin et al., 2012). 

The classical experiments mostly used to re-design the specimen shape consist of classical 

uniaxial tensile test (Meuwissen, 1998; Meuwissen et al., 1998; Kajberg and Lindkvist, 2004; 

Belhabib et al., 2008; Cooreman, 2008; Pottier et al., 2011a; Güner et al., 2012; Haddadi and 

Belhabib, 2012) and biaxial tensile test using a cruciform specimen (Cooreman et al., 2008; Makris 

et al., 2010; Teaca et al., 2010; Zidane et al., 2010; Zhang et al., 2014), as previously described in 

section 2.2.2.1. 
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Concerning the shape specimen design based on trial-and-error attempts, twin bridge shear 

test (Yin et al., 2012) and TIX test (Pottier et al., 2011b) must be highlighted (Figures 2.12 and 

2.21). The twin bridge shear specimen was based on the plane torsion test (Yin et al., 2012), while 

the TIX test was inspired from Nakazima tests (Pottier, 2010). The TIX test was developed with the 

purpose of increasing the variety of strain paths. It imposed the (i) reproducibility of the boundary 

conditions, (ii) minimization of friction phenomena and (iii) existence of strain localization and, by 

trial-and-error attempts, a specimen generating shear, uniaxial and biaxial tensile zones was 

designed. 

In the present chapter, a different approach, based on the strain field as well as loading 

path optimization, is considered. This innovative procedure was developed without taking into 

account any kind of specimen geometry or loading path of existent experiments. Its main purpose 

is to understand what can be the best geometry and loading conditions that promote a strain field 

more sensitive to the mechanical information. To accomplish this, an optimization methodology 

based on a direct search method5 was developed in order to optimize the geometry as well as 

loading path conditions. The quantitative indicator, proposed in chapter 7, which rates the strain 

field of the experiment by quantifying the mechanical information of the test was used, as cost 

function, to guide the optimization process. Within this approach, two different strategies were 

developed: (i) a one-step procedure optimizing both the specimen initial shape and the loading 

path by using a rigid tool, (ii) a sequential incremental technique optimizing the specimen shape 

and the loading path of the specimen considering local displacements. In both strategies, no 

friction phenomenon takes place, avoiding the difficulties related to the choice of friction 

coefficients. In addition, a material parameters identification using one of the designed 

heterogeneous tests was carried out considering the virtual DC04 mild steel identified from the 

conventional tests as reference material. Furthermore, the experimental curves obtained for 

these conventional tests were predicted using the parameters set identified from the 

heterogeneous test with the purpose of evaluating the quality of the material parameters 

determined by this non-homogeneous inverse approach. 

Note that the quantitative indicator assumes a crucial role in the innovative procedure 

developed. Its application and robustness to the design of a mechanical test is evaluated in this 

chapter as well as its pertinence for the design of novel mechanical tests. 

8.2 Strain field optimization 

In order to design an experiment able to promote a more complete material characterization of 

sheet metals, it is mandatory to determine the strain field that gives a rich mechanical 

information. The best way to achieve this objective is to implement an efficient optimization 

procedure that evaluates the strain field information. However, the main question relies in the 

initial shape, boundary conditions and loading path that must be taken into account in the 

modeling.  

The use of existent experiments or specimen geometries in the quest for the best strain 

field consists in a constraint imposed to the optimization process, since the assumption that such 
                                                           
5
 Direct search methods are not dependent on the gradient of the cost function and are less time 

consuming than evolutionary algorithms (cf. chapter 3). 
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experiment or specimen geometry is the one that leads to the best results is made. Therefore, 

this kind of approach constrains the optimization process. Nevertheless, the goal of the present 

approach is to implement an optimization procedure that must be the most unconstrained as 

possible. Indeed, only in this way is it possible to identify what kind of geometry and loading 

conditions lead to a better strain field for material parameters identification purposes.  

Thus, the optimization process defined in this chapter must be based on a model with a 

free geometry and a loading path evolution. For that, two optimization strategies were adopted. 

The first one, named as “Test design using rigid tools” corresponds to a one-step procedure where 

the initial specimen shape and loading path, imposed by using a tool, can be both subjected to 

design optimization. The main advantage of this strategy is the resemblance with the 

experimental reality, since a rigid tool is used for applying the displacement in a similar way as 

standard testing machines. The second strategy, called as “Test design based on local 

displacements”, consists of a sequential incremental technique that designs by optimization the 

loading path, locally, on the overall free boundary of the specimen shape. In this strategy, the 

optimization of the specimen shape was taken into account in the first step of the sequential 

optimization process while the loading path is subjected to optimization in the several sequential 

steps. Although this strategy seems unrealistic from an experimental point of view, its main 

purpose is to understand the effect of a complex loading path, in terms of multisteps as well as 

local displacements, on the achievement of rich strain fields. Alternatively, this strategy consists 

of the most unconstrained optimization procedure developed in this work since (i) initial 

specimen shape, (ii) boundary conditions by means of local displacements and (iii) complex 

loading path by sequential steps are all designed by optimization. 

As a starting point, before implementing the above-mentioned optimization strategies, a 

shape optimization process for a rectangular specimen used in simple shear tests was developed. 

The reason of this work was the fact that for high strength steels, such as DP980 steel, premature 

rupture of the shear specimen occurs near the grips. For this material, just a shear strain value of 

0.42 was reached experimentally. Then, it was proposed to re-design the geometry of the shear 

specimen in order to avoid this premature rupture. Therefore, the geometry of the shear sample 

was subjected to design optimization with the aim of maximizing the shear strain. An optimization 

process searching for the best design of the specimen boundaries which delay the rupture and, 

consequently, maximize the shear strain was performed. This optimization process is detailed in 

appendix C. Though such an optimization work did not deal with the design of a heterogeneous 

test, it consisted of an introductory way to conceive the optimization strategies for the design of 

the heterogeneous test. Indeed, it was the starting basis for the development of the following 

optimization strategies. 

8.2.1 Test design using rigid tools 

The current optimization strategy is based on a symmetric model with the specimen geometry 

defined by curve interpolation and the loading path imposed by a rigid tool. Figure 8.1 presents a 

schematic view of this optimization strategy. The symmetry was used as a starting point, in order 

to limit the degrees of freedom of the problem. 

The curve interpolation method was considered in this strategy since it uses polynomials to 

represent the specimen geometry. As a result, it allows for a reduced number of design variables 
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because only a few points, designated as control points, are needed to define the polynomials. 

Therefore, the shape of the specimen is controlled by 7 control points (red points in Figure 8.1) 

defined radially at every 15°. The position of these control points may change and, by means of 

the polynomials, the specimen geometry is modified and can be optimized during the 

optimization process. The arrows in Figure 8.1 illustrate the variation allowed for the position of 

the control points and it can be seen that the radial length between the control points and the 

specimen center xi, i = 1,…, 7 corresponds to the design variables for the specimen shape. In this 

optimization strategy, cubic splines were used to define the specimen shape. A different cubic 

spline is created between consecutive control points, which leads to a boundary shape definition 

composed by 6 continuous cubic splines. This polynomial curve type is described in appendix D. 

 
Figure 8.1 – Illustration of the sample shape and rigid tool. 

Concerning the loading path optimization, a rigid tool was used. The shape of the rigid tool 

must be coincident with the specimen shape in each evaluation of the optimization process. This 

is mandatory, since the specimen geometry is continuously updated during the optimization 

process and concordance between both shapes is required for a proper contact definition in the 

model. However, the size of the tool Ltool as well as the orientation of the tool displacement ϴ are 

optimized during the process. The position of the tool Ptool corresponding to one or the other 

extremity of the tool is not subjected to design. It is initially fixed at any location of the specimen 

boundary. The position, size and orientation of the tool displacement were defined in angular 

measurement then Ptool can be fixed for any angular value between 0° and 90°. In this way, the 

tool shape is defined with the fixed position Ptool and with its updated size Ltool by considering the 

corresponding cubic splines shape previously created for the specimen geometry. Figure 8.1 also 

displays the design variables used for the tool. 

The loading path is applied in a single step procedure up to rupture. For that, the numerical 

simulation is carried out until reaching f
CLW parameter. Thereby, just the orientation ϴ of the tool 

displacement needs to be updated, whereas the displacement value was defined large enough to 

always lead to rupture. 

Therefore, 9 design variables r were considered in this optimization strategy, namely, 7 

radial displacements of the control points, Ltool and ϴ of the tool. The tensor r can be written as 
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 θTool7654321 Lxxxxxxxr . (8.1) 

During the optimization process these design variables are updated in order to maximize the 

strain field information by increasing the indicator IT. This optimization process is illustrated in 

Figure 8.2.  

 
Figure 8.2 – General optimization procedure. 

8.2.1.1 Automatic model generation 

Usually, the main problem in shape optimization is to warrantee a reliable mesh definition. 

Indeed, since this optimization strategy can generate complex specimen shapes that may not 

allow a structured mesh, it is required to create the model with a robust parametrization.  

The computational analysis was carried out by using ABAQUS/Standard FE code. Therefore, 

the most straightforward way to create the numerical model is through an ABAQUS script 

developed in Python (Abaqus, 2012). These scripts are very useful when automatic repetitive 

tasks, as the iterative modification of the model geometry, are needed. In the case of this design 

strategy, the use of a Python script presents many advantages since it constitutes an easy and 

automatic method to (i) change the geometry of the model, (ii) define properly the mesh and also 

(iii) vary the size of the rigid tool in each evaluation. The main structure of the ABAQUS script is 

depicted in Figure 8.3. 

 
Figure 8.3 – Python script structure for the creation of a numerical model developed in ABAQUS. 
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As can be seen in Figure 8.3, the Python script follows the usual steps of a numerical model 

development when using ABAQUS software. This script allows obtaining different specimen 

shapes by just changing the position of the 7 design control points, as shown in Figure 8.4. By this 

figure, it can also be stressed out the important role of the cubic splines in the optimization 

strategy due to the large diversity of different shapes which can be generated. 

 
Figure 8.4 – Illustration of initial specimen shape variation by using the ABAQUS script developed in 

Python. 

In addition, the position Ptool and size Ltool of the rigid tool can be easily parameterized in 

order to optimize the loading path. Figure 8.5 illustrates some examples of the tool position and 

size variation allowed by the implemented script code. Nevertheless, it must be highlighted that 

during the optimization procedure the position of the tool was fixed. 

 
Figure 8.5 – Illustration of position and size variation of the rigid tool by using the ABAQUS script. 

Although the parametrization of the design variables constitutes the focus for the 

optimization of the model, the definition of a reliable unstructured mesh is one of the great 

benefits of the use of this script code. In fact, it is mandatory to have a reliable mesh definition in 

order to get accurate results coming from the numerical simulation. Moreover, a new mesh must 
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be generated automatically by the script code for each evaluation of the optimization process due 

to the continuous updating of the specimen shape. As demonstrated in Figure 8.6, the script code 

creates reliable unstructured meshes and is also able to define different mesh refinements. 

Independently of the complexity of the generated specimen geometry, the mesh size must always 

be defined with 3 elements/mm. Indeed, it corresponds to the mesh size used for the uniaxial 

tensile test to calibrate the CL fracture parameter. Since the loading path was applied up to 

rupture, f
CLW  is used as a condition to stop the numerical simulation and, therefore, a mesh 

refinement of the model similar to the one used for the calibration of CL parameter is required.  

 
Figure 8.6 – Several mesh generation of the model using the ABAQUS script. 

In this design optimization strategy, a tridimensional model was created by the ABAQUS 

script and only one eighth of the model was defined by considering material and process 

symmetries. The symmetry simplification adopted for the numerical specimen geometry, applying 

both symmetries in x- and y-directions (as shown in Figure 8.1) and also along the thickness, 

allows for the reduction of the number of design variables and saving calculation time in every 

evaluation of the optimization process. The specimen was meshed with 3D 8-node linear 

isoparametric elements with reduced integration (C3D8R) and hourglass control, while the tool 

was defined as analytical rigid using 3D 4-node rigid elements (R3D4). A tie contact was assumed 

between tool and specimen boundary in order to apply the loading path. The specimen was 

defined with an approximated mesh density of 3 elements/mm in the sheet plane and with 2 

elements along the thickness by extrusion of the 2D mesh. The numerical simulations were 

carried out using the material parameters identified for Yld2004-MixedMod model. In addition, a 

rupture zone centered in the node with the maximum WCL value consisting of a region of 1x1.5 

mm2 is used for determining f
CLW , as considered for its calibration, and the entire specimen 

surface was taken into account for the calculation of the indicator. 

8.2.1.2 Optimization framework 

The optimization process was implemented in an interface program developed using Matlab. The 

interface program consists of a Matlab script that links ABAQUS code, used to carry out the 

numerical simulations, and the Python script, used to create the numerical model as well as to 

post-process some output data coming from the numerical simulation. The Matlab script also 

defines the specimen boundary and tool shapes by cubic splines interpolation, calculates the cost 
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function and updates the design variables by using the optimization toolbox available in this 

environment. Figure 8.7 illustrates the flow diagram of the optimization methodology developed. 

 
Figure 8.7 – Flow diagram of the optimization procedure developed for the design strategy using rigid 

tools. 

The optimization procedure starts by introducing the initial guess of the design variables in 

the Matlab script. Then, the script determines the cubic splines defining the specimen outer 

shape from the 7 design control points. By means of interpolation, the Cartesian coordinates of 

the specimen boundary are calculated for each decimal degree of the angular space between 0° 

and 90°. After that, taking into account the position and the size of the tool, the angular range 

occupied by the tool is calculated and the tool is converted into Cartesian coordinates by using 

the cubic splines which define the specimen boundary. Figure 8.8 shows an example of specimen 

boundary and tool shape defined in Cartesian coordinates. The coordinates are written by the 
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Matlab script in two different files, with respect to the specimen and tool shapes, and are read by 

the Python script. Indeed, before starting creating the ABAQUS model, the Python script opens 

the coordinates files and records these data as construction points of the specimen and tool, 

respectively. Then, the ABAQUS model is created and the numerical simulation is carried out up to 

rupture. At the end of the numerical simulation, another Python script is used for post-processing 

the results. For instance, it is used to determine the ε2/ε1 ratio over the specimen surface and also 

to read and record the numerical results required for the calculation of the several terms of the 

indicator IT. These data are analyzed by the Matlab script and, consequently, the indicator as well 

as the cost function are determined. When a stopping criterion is reached, the optimization 

process stops, the optimum strain field is found and an automatic file summarizing the 

optimization is created. In opposition, if the stopping criterion is not reached, the optimization file 

recording the evolution of the design variables as well as the cost function during the optimization 

is automatically re-written, the design variables are updated by the optimization algorithm and 

the process is repeated until achieving the stopping criterion or reaching the maximum number of 

evaluations. This optimization process is conducted using the Nelder-Mead direct search 

algorithm, as introduced in chapter 3. 

 
Figure 8.8 – Example of specimen boundary and tool shape obtained using Matlab script. 

8.2.1.3 Cost function definition 

As the goal of the developed strategy is the maximization of the strain field information, the 

indicator must increase during the optimization process. However, the optimization methods 

were conceived to proceed to the minimization of the cost function. Therefore, the cost function 

must be defined in order that its minimization means the maximization of the indicator IT_Op, 

defined in Table 8.1. A simple way to achieve this goal is defining the cost function as 

T_Opcost 2)( IS r , (8.2) 

where the difference between 2 and IT_Op ensures the required condition. Note that due to its 

formulation, theoretically, the maximum IT_Op value that can be reached is the unity and then, the 

value 2 was just chosen as an upper limit. 
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From preliminary design tests, it was observed that abrupt variations for the design 

variables values of consecutive control nodes occur during the optimization process. It tends to 

promote (i) the generation of unrealistic specimen shapes, which leads to the impossible 

definition of the specimen shape and mesh by the Python script or (ii) specimen configurations 

leading to premature strain localization and rupture. Therefore, by introducing optimization 

constraints, the optimization algorithm can be instructed to avoid such kinds of solutions.  

The optimization constraints were defined based on the admissible range values for each 

one of the 7 design control points. Thus, it was assumed that the design control point 1 can vary 

between the lower and upper limits (LBound and UBound) chosen for the optimization process, while 

the following control points were lower and upper constrained in function of the previous control 

point value. It can be written as 
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)1()1(
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 (8.3) 

where av is the parameter value defining the admissible variation and xk represents the design 

control point. For example, av = 0.15 means that the admissible value for design control point 2 is 

between 0.85 and 1.15 of the value of the design control point 1. The inequalities imposed by 

Equation 8.3 are analyzed in each evaluation of the optimization process and are quantified as 

iii xaxg )1()( v1,U  r  (8.4) 

and 

1v,L )1()(  iii xxag r , (8.5) 

where i = 1, ..., 6. Taking into account the several values obtained in Equations 8.4 and 8.5, a 

penalty function Res was defined in order to penalize the cost function when these inequalities 

are not respected during the optimization. The penalty function Res is calculated by 
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with 
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1

LU 
 , (8.7) 
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where α is a penalty coefficient that defines the importance of the constraints during the 

optimization process. It must be noted that the Res function leads to a quadratic penalization6.  

The penalty function Res was introduced in Equation 8.2 and an augmented objective 

function was defined as 

ResIS  T_Opcost 2)(r . (8.8) 

This cost function is the one used to guide the optimization process. 

In addition, the weighting factors of IT were also adjusted in order to improve the optimized 

results. It was also observed on the preliminary optimization processes that an increase of 

importance of the IT terms relative to the strain level group promoted the global deformation of 

the specimen and reduced premature strain localization effects. Thus, the set of weighting factors 

was modified to avoid solutions promoting premature rupture. Therefore, the adjusted weighting 

factors listed in Table 8.1 are used in the formulation of IT_op. The relative weights were changed 

taking into account that the maximum IT_Op value that can be reached in the test is 1. 

Table 8.1 – Adjusted weighing factors used for IT_Op formulation in the optimization process. 

wa1 wa2 wa3 wa4 wa5 

1   4 0.25 0.8 0.4 

wr1 wr2 wr3 wr4 wr5 

0.13 0.02 0.25 0.35 0.25 

8.2.1.4 Optimization conditions 

Several conditions related to the optimization process as well as the design strategy must be 

defined. Thus, concerning the optimization process, the stopping criterion corresponds to a 

stagnation value of 1x10-4, in terms of the cost function value between two consecutive 

evaluations. Alternatively, the maximum number of evaluations allowed for Nelder-Mead 

algorithm was 200. 

In the case of the conditions imposed to the design strategy, it must be stressed out that 

Ptool was fixed for the angular value of 90°. As a result of this choice, the orientation of the 

displacement ϴ was also fixed at 90°, due to the symmetry condition. Note that horizontal 

displacement of the elements on the vertical symmetry is not allowed and, then, a numerical 

conflict could exist for the control point 1. Then, just the 7 control points xi and the size of the tool 

Ltool were subjected to design by optimization. The admissible variation between consecutive 

control points was defined in the penalty function with av = 0.25. Furthermore, taking into account 

that the results obtained by the optimization algorithm may depend on the starting guess, three 

different sets of initial design variables were considered. 

Additionally, the optimization strategy was adapted in order to include one more rigid tool. 

Hence, an optimization process using two rigid tools was also performed. The goal of this 

approach was to promote the optimization of a multiaxial loading path such as occurs, for 

                                                           
6
 It means that for a control point value out of the admissible variation but close to the imposed limit, just a 

smooth penalty is obtained. However, for a control point value far away of the imposed limit, a huge 
penalty is applied. 
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example, for the biaxial tensile test. Thereby, the tools were fixed, respectively, for Ptool1 = 90° and 

Ptool2 = 0°. As a result, the orientation of the displacement was also fixed at ϴ1 = 90° and ϴ2 = 0° due 

to both symmetries. Also three different starting guesses were considered and a total of 9 design 

variables were used, namely, the 7 control points xi and the sizes Ltool1 and Ltool2 of both tools. In 

this case, the admissible variation between consecutive control points was considered less 

restrictive, with av = 0.55. 

8.2.1.5 Results 

The different design variable sets selected as starting guesses for both optimization processes 

using 1 and 2 rigid tools are represented in Figure 8.9. It can be seen that distinct initial specimen 

shapes were purposely chosen aiming at decreasing the possibility of the optimization algorithm 

to start the process directly into a local minimum of the cost function. 

 
a) 1 tool 

 
b) 2 tools 

Figure 8.9 –Specimen geometries using the initial design variable sets defined for the optimization 

process. A gap between the tool and specimen was inserted in the models for an easy visualization. 

Although three optimization processes were performed for each approach, only the best 

design solution is presented. Table 8.2 shows (i) the initial and optimal design variables, (ii) the 

initial and final Scost, Res and IT_Op values and (iii) the number of evaluations as well as time spent 

in both design optimization processes. The variation allowed for the design control points was 

defined between 10 and 60 mm and the initial values were chosen, approximately, in the middle 

of this range for both design cases. Concerning the bounds imposed to the size of the tools, these 

ones were defined leading to a minimum tool size of 10° and a maximum size lower than the 

angular range covered by the specimen shape boundary, i. e. 90° for one tool and 45° when using 

two tools, to avoid symmetry conflicts. Analyzing IT_Op values, it can be seen that the design test 

using 2 tools gives the best result. Moreover, an increase of IT_Op about of 153% and 92% were 

obtained, respectively, in the optimization processes using 1 and 2 tools. It revealed the ability of 

the optimization algorithm to find a solution that maximizes the strain field information. 

Additionally, the optimum solutions presented slight Res values. On the one hand, it means that 

some design control points did not fully respect the optimization constraints imposed. However, 
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these design control points are in the vicinity of the inequalities since the Res values were very 

small compared to Scost. On the other hand, it confirms the trend of the optimization process to 

search for abrupt variations between the design control points which leads to unfeasible 

solutions. 

The evolution of Scost for both optimization process is depicted in Figure 8.10. It should be 

mentioned that the optimization algorithm tried some design variable sets leading to unfeasible 

specimen shapes and, consequently, impossibility of generating the model. For these cases the 

value of Scost is equal to 2, since calculations are not performed and, consequently, IT_Op = 0. Such 

sets were mainly observed before 50 evaluations (particularly for the test design using 2 tools). 

After that, the Nelder-Mead algorithm tested almost only feasible solutions. The type of Scost 

evolution obtained, with several peaks, also points out the non-smoothness of the problem, 

justifying the reason for the choice of a direct search algorithm. 

Table 8.2 – Optimized results obtained for both design tests using 1 and 2 rigid tools. 

 Test using 1 tool Test using 2 tools   

Variables Initial Optimal Initial Optimal LBound/UBound Units 

x1 35.0 32.90 36.0 39.91   

x2 35.0 31.89 37.75 39.18   

x3 35.0 42.56 37.25 38.23   

x4 35.0 29.27 31.0 24.57 10/60 mm 

x5 35.0 37.15 37.25 38.49   

x6 35.0 35.78 37.75 39.52   

x7 35.0 34.03 36.0 37.18   

LTool 35.0 37.0 - - 10/80 Deg 

LTool1 - - 28.0 29.2 10/40 Deg 

LTool2 - - 28.0 29.6 10/40 Deg 

Scost 1.873 1.672  1.813 1.640 - - 

IT_Op 0.127 0.334 (+153%) 0.187 0.359 (+92%) - - 

Res 0.0 0.0058 0.0 7x10
-5

 - - 

Evaluations 200 200  - 

Time
7
 39.7 44.2  hours 

 

The two optimization processes started respectively with a circular and a cross specimen 

shapes and led to the optimized geometries illustrated in Figure 8.11. This figure shows that the 

optimal shape obtained for the approach using 1 tool corresponds to a butterfly specimen. 

Whereas, in the case of the approach using 2 tools, a typical specimen shape of biaxial tension 

was obtained. As previously stated in chapter 7, the cruciform specimen shape seems to be the 

best shape for promoting a rich mechanical information when biaxial loading path is applied. 

Therefore, it must be stressed out that the design optimization process was able to achieve this 

kind of result, revealing the consistency of the optimization strategy proposed. Even if the 

conditions defined could favor the achievement of the cruciform specimen shape, it must be 

highlighted that the indicator was effective in guiding the optimization to such a shape. The 

designed tests are further called butterfly and cruciform, respectively. 

                                                           
7
 The optimizations were carried out in a Intel(R) Core(TM) i7-3630QM CPU using 4 processors. 
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In Table 8.3, the values of the several contributions to IT are listed. It was verified that the 

butterfly test presents a larger (ε2/ε1)R value than the cruciform one. Hence, a larger strain state 

range is covered and more strain states are reproduced by the butterfly test. However, it must be 

highlighted that these states, with exception to uniaxial and plane strain tension, were 

characterized only for strain values lower than 0.01, as shown by the different ε P values reached 

for each strain state. Nonetheless, these results demonstrate that the optimization process 

converge for solutions that favor the existence of multi-strain states. It can also be observed by 

Table 8.3 that a similar value of deformation heterogeneity Std(ε P) was obtained for the two 

designed tests, while the cruciform test presents a better result in terms of global deformation 

PAv


.  

 
                                                a) 1 tool                                                                           b) 2 tools 

Figure 8.10 – Evolution of the cost function for the optimization processes. 

 
a) 1 tool – Butterfly test 

 
b) 2 tools – Cruciform test 

Figure 8.11 – Initial (left) and optimal (right) specimen shapes obtained in the optimization process. 
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Comparing the IT contributions of both designed tests (Table 8.3) with the ones listed in 

Table 7.3 of similar tests (shear-like and biaxial tests), it can been verified that the designed tests 

present better performance. 

Figure 8.12 shows the distribution of ε P and ε2/ε1 at rupture. Concerning ε P distribution, 

both designed tests reached almost the same maximum value, although the cruciform test was 

generally more deformed. In relation to the ε2/ε1 distribution, the cruciform test leads to the 

characterization of ε2/ε1 range between biaxial to uniaxial strain states. While the butterfly test 

covers, in the most part of the sample, near shear to plane strain states. Note that it is without 

considering the remaining zone covering compression states, since this one presents a very small 

deformation level (cf. Figure 8.12 a)).  

Strain states above plane strain tension were not developed by the butterfly test and, in 

opposition, strain states below uniaxial tension were not developed by the cruciform test. It 

seems, therefore, that the current optimization strategy is not performant enough to find an 

experiment promoting the characterization of the full strain state range. To this end, eventually, 

design optimization strategies using more tools or with increased complexity of the specimen 

configuration, adding holes or slits, can be explored. 

Table 8.3 – Contributions to IT for the optimized butterfly and cruciform tests. 

 Butterfly Cruciform 

  12StdMean   0.318 0.336 

R








1

2



 2.269 1.681 

  PStdMean   0.076 0.078 

P
test  0.869 0.843 

P
tens  0.229 0.305 

P
shear  0.003 0 

P
plane  0.047 0.054 

P
biaxial  0 0.037 

P
comp  0.005 0 

PAv


 0.192 0.222 

 

In order to quantitatively compare both designed tests with the ones evaluated in section 

7.5.2, the ranking classifying all the tests through IT was updated. Thereby, Figure 8.13 presents a 

classification of the different tests and it can be seen that both designed tests achieved better 

results than the other ones. Note that IT values of the designed tests displayed on the ranking 

scale were calculated using the same weighting factors (listed in Table 7.1) as the other tests. 

These values are different of the ones obtained by the optimization process and consist of IT = 

0.261 and IT = 0.271 for the butterfly and cruciform test, respectively. It must be pointed out that 

the butterfly specimen reached almost the same IT value than the cruciform test. However, this 
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test only involves the use of uniaxial loading path. From the experimental point of view, its 

reproduction requires less effort since can be made by a universal standard testing machine. 

 
Figure 8.12 – Distributions of ε P (left) and ε2/ε1 (right) for the two tests. Grey zones on ε2/ε1 contour 

means that ε P < 10-3 and that this ratio was not calculated. SDV1 and LE-RAPMINMAJ stands for ε P and 

ε2/ε1, respectively. 

The ranking shows that with the optimization strategy developed it was possible to design 

experiments with enhanced mechanical information. Therefore, it appears that such a 

methodology is effective for finding mechanical tests promoting a better mechanical 

characterization of the material. 

 
Figure 8.13 – IT ranking for the tests evaluated in section 7.5.2 and the designed ones (butterfly and 

cruciform tests). 

8.2.2 Test design based on local displacements 

The local displacements strategy consists of a sequential design optimization technique applied to 

a symmetric model. In this strategy, the specimen geometry is defined by curve interpolation and 

Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa Nelson Souto 2015



  
Chapter 8 – Design of mechanical tests 157 
 

 

the loading path is imposed by local displacements over the specimen boundary shape. A 

schematic view of this design strategy is illustrated in Figure 8.14.  

Similarly to the optimization strategy using rigid tools, the specimen geometry is controlled 

by the radial length of 7 design control points and the specimen center (red points 1 to 7 in Figure 

8.14) and cubic splines are used to generate the boundary shape. However, in the case of the 

loading path, instead of using rigid tools, local displacements ui, i = 1,…, 7 of coordinates 

ui(ux,i, uy,i) were applied directly to the control points, as shown in Figure 8.14. Hence, the position 

and displacement of the control points are the design variables r in the design process. Then, the 

tensor r can be written as 

  .7665544332217654321 xyxyxyxyxyxy uuuuuuuuuuuuxxxxxxxr  (8.9) 

Concerning the loading path, the purpose of this strategy is to apply individual 

displacements for each point belonging to the outer boundary of the specimen. As a 

consequence, the displacement field for all these points (later discretized as nodes) must be 

calculated. To do that, the numerical deformed shape of the specimen must be known. Therefore, 

the displacements ui are applied on the control points and a new spline taking into account the 

updated position of the control points is calculated, as shown in Figure 8.14. This new spline 

corresponds to the deformed shape of the specimen obtained in the numerical simulation. Thus, 

the displacements for the remaining points (black points in Figure 8.14) of the outer boundary of 

the specimen can be determined by calculating the difference between their position in the initial 

and new (deformed) spline shape, as exemplified by uA. It must be highlighted that the updated 

cubic spline between control points is equally spaced in order to accurately determine the 

updated position of the remaining points (black points). 

 
Figure 8.14 – Scheme of the test design based on local displacements.  

In this way, all displacements for the control and remaining points can be defined and 

introduced as boundary conditions in the numerical model. It consists, thereby, of a loading path 

applied locally on the overall outer boundary of the specimen. 
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The current optimization strategy was applied as a sequential incremental technique since 

the loading path evolution was designed considering several steps. In other words, instead of just 

optimizing a one-step displacement leading to a loading path evolution up to rupture, the loading 

path was optimized in multistep displacements where the rupture, by reaching f
CLW , is achieved 

in the last one. As a result, in the first step, both specimen shape and loading path are subjected 

to optimization by designing the initial position and displacement of the control points whereas, 

in the following steps, just the loading path is designed through the control points displacement. 

This kind of approach consists of a dynamic optimization design problem because the optimum 

values of the previous step are required in the following step. Indeed, the optimum deformed 

shape of the specimen in the previous step corresponds to the initial specimen shape in the 

following step. 

During each optimization step, the design variables are found with the aim of maximizing the 

value of the indicator IT_Op and, consequently, maximizing the strain field information of the test. 

Figure 8.15 shows the general design optimization process for the local displacements strategy. 

This strategy involves the design optimization of (i) the initial specimen shape, (ii) boundary 

conditions by means of local displacements and (iii) a complex loading path in sequential steps. 

With this optimization procedure, it is expected to evaluate the effect of a complex loading path, 

in terms of multisteps as well as local displacements over the outer boundary of the specimen, on 

the achievement of a rich strain field. Although the optimized results may lead to an unfeasible 

loading path evolution from the experimental point of view, these results will allow to understand 

what kind of loading path evolution promotes a better mechanical information. 

 
Figure 8.15 – Design optimization process for n steps of the local displacements strategy. 

8.2.2.1 Automatic model generation 

Such as for the design optimization using a rigid tool, in this strategy, a similar Python script 

generating the model was used. However, some differences on the definition of the script must 
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be pointed out. For instance, (i) all the points belonging to the outer boundary must be controlled 

in order to apply the displacements and (ii) the boundary must be meshed with 3 elements per 

mm along the edge, in order to respect the mesh density used to calibrate CL fracture parameter.  

Nevertheless, in the first step of the design optimization process, the initial specimen 

geometry is always changing since this one is successively updated. Then, based on the arc length 

of the specimen boundary obtained for each evaluation, the Python script meshes the boundary 

shape with a number of nodes leading to a mesh definition of 3 elements/mm in-between the 

control points. These nodes are also controlled by the script in order to apply locally the boundary 

conditions concerning the updated loading path. 

Concerning the following steps of the design optimization process, only the loading path is 

subjected to optimization. As a consequence, the specimen mesh remains the same and just the 

displacement values imposed on each node belonging to the specimen boundary are changed for 

each evaluation. Therefore, it is mandatory to parametrize the boundary conditions applied to 

each one of these nodes and, then, a parametrized input ABAQUS file is required for these 

optimization steps. 

In addition, as the sequential steps of the optimization process are dependent on the final 

(and optimum) deformed shape of the previous step, it is also mandatory to retrieve this 

information. Therefore, all the information of each step is stored and, for the following step, the 

calculation is re-started from the end of the previous step with new boundary conditions. In this 

way, it is possible to carry out a dynamic multistep optimization since the previous designed 

deformation of the specimen is considered as the initial shape of the specimen in the following 

design optimization step and the displacement field for all the nodes of the outer boundary can 

be calculated.  

A tridimensional model with both symmetries in x- and y-directions and also along the 

thickness is generated to be used by this design strategy. The specimen shape was meshed using 

C3D8R elements with hourglass control and a mesh density of 3 elements/mm in the sheet plane 

and 2 elements along the thickness was defined. The numerical simulations were carried out 

using Yld2004-MixedMod model and a zone of 1x1.5 mm2 for determining 
f

CLW . For the 

optimization of the strain field, the indicator was calculated taking into account the entire 

specimen surface in the sheet plane. 

8.2.2.2 Optimization framework 

The optimization procedure implemented for the design strategy based on local displacements is 

depicted in Figure 8.16. This design procedure involves a Matlab interface linked to ABAQUS code 

and to a Python script. Due to the loading path design in multistep displacements, this 

optimization procedure is repeated n times, until rupture is reached. 

In the first step, specimen geometry as well as local displacements are subjected to design. 

Therefore, for step 1, the optimization process starts with an initial guess of design variables 

composed by the position and displacement of the 7 control points (cf. Equation 8.9).  
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Figure 8.16 – Flow diagram of the multistep design process based on local displacements. 

The Matlab script then determines the cubic splines defining the specimen shape from the 

position of the control points and, by calculating the arc length of this global spline, determines 

the number of nodes needed on the outer boundary of the specimen in order to respect the mesh 

density. Knowing the number of nodes required, their position on the boundary is further 

calculated by curve interpolation in Cartesian coordinates. At this stage, the initial shape of the 

specimen and position of the boundary nodes are defined. After that, the design variables 
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consisting of the control points displacements are added to the initial position of the control 

nodes. In this way, the position of the control points concerning the deformed shape of the 

specimen is calculated. Using these values, the deformed boundary shape is then determined by 

means of cubic splines and, applying curve interpolation, the position of the boundary nodes on 

the deformed state of the specimen are obtained. Note that the deformed boundary shape 

defined here corresponds to the final specimen shape that will be achieved by the numerical 

simulation. Hence, the loading path applied to the numerical simulation results of the difference 

between the boundary nodes position for the deformed and initial boundary shape. Such 

difference gives the individual displacements for each node of the outer boundary of the 

specimen, as illustrated in Figure 8.14. As a consequence, it is possible to impose a complex 

loading path on the overall specimen boundary. 

Since the initial specimen shape in Cartesian coordinates and the displacements imposed to 

the boundary nodes (loading path) were defined, the Matlab script writes these values in files that 

are used by the Python script for generating the numerical model. For instance, the coordinates 

data are used as building points for the cubic splines that define the part model of the specimen, 

while the displacements data are directly applied as boundary conditions defining the loading 

path of the model.  

With the model created, the numerical simulation is carried out with ABAQUS software 

and, subsequently, another Python script is used for post-processing the numerical results. The 

post-processing includes the determination of the ε2/ε1 ratio over the whole surface of the 

specimen and the numerical data needed for the indicator calculation. Using these data, the 

Matlab script determines the indicator as well as the cost function. In the case of the stopping 

criterion is reached, (i) the design process for this step ends, (ii) the final results file related to the 

optimization process of this step is written and (iii) the optimization process for the following step 

starts. In the case of the non-verification of the stopping criterion, (i) the optimization file 

recording the evolution of the design variables as well as the cost function during the optimization 

is automatically re-written, (ii) the design variables are updated by using the Nelder-Mead 

algorithm and (iii) the process is repeated until the stopping criterion is verified or the 

optimization process achieves the maximum number of evaluations. 

For the optimization steps between 2 to n, the same design procedure is followed with the 

exception of the definition of the initial specimen shape. In these optimization steps, just the 

loading path evolution is designed since the specimen geometry was previously found in the 

starting optimization step. In fact, these following optimization steps consist of sequential designs 

of the loading path evolution leading to a more informative specimen deformation. Thereby, the 

displacement design variables are calculated taking into account the deformed state of the 

specimen obtained on the previous step, which is considered as the initial shape of the specimen 

in the following step. As a result, the following design step starts directly by the calculation of the 

deformed position of control nodes, adding the respective displacement design variables to the 

‘initial’ position of the control nodes. Moreover, a new model does not need to be created, the 

geometric model is the one achieved in the first optimization step and just a parametrized input 

ABAQUS file is required for running the numerical simulation. However, it must be highlighted 

that it consists of an incremental design of the loading path. Therefore, the numerical simulation 
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of the model must be continued (and not restarted) from the first to the last step and all the 

numerical information must be continuously stored. 

8.2.2.3 Cost function definition 

Due to the fact that this design strategy is a sequential optimization process, the cost function 

was defined differently for the first and the following optimization steps. 

In the case of the first optimization step, the cost function (Scost,1) is the one given by 

Equation 8.8. The same features described in section 8.2.1.3 were considered since this 

optimization step also involves optimizing the specimen geometry. Similarly, the weighting factors 

listed in Table 8.1 are used in the formulation of the indicator IT_Op. However, here, the 

displacements are constraints to a maximum value, never reaching rupture. 

In the case of the following optimization steps, the Bellman's principle of optimality8  

(Sniedovich, 1986) was applied in the definition of the cost function. The Bellman’s principle 

constitutes a necessary condition when dynamic optimization is used since it allows to break the 

optimization problem into simpler sub-problems. Thus, the principle of optimality is formulated in 

relation to a sequential decision model characterized by its cost function being dependent only on 

the final state of the process. In the case of the proposed design strategy, it means that the 

indicator value obtained by the optimum strain field of the previous step must be related with the 

one calculated during the optimization of the current step. Then, for an optimization step i 

comprised between 2 to n, the cost function is defined by 

iii ISS T_Op,1cost,cost, )(  r , (8.10) 

where 1-T_Op,T_Op,T_Op, iii III   is the incremental variation of the indicator at the increment i. 

8.2.2.4 Optimization conditions 

The optimization procedure was performed considering 4 sequential steps. For each design step, 

a stagnation value between consecutive evaluations of the cost function of 1x10-4 was defined as 

the stopping criterion. Additionally, the maximum number of evaluations allowed for Nelder-

Mead algorithm was 350 for the first and 200 for the remaining optimization steps. The reason for 

defining more evaluations in the first optimization step is related to the larger number of design 

variables. Concerning the penalty function used in this optimization step, the parameter value 

defining the admissible variation between consecutive control points was defined as av = 0.55. 

The displacements of the control points were defined in terms of Cartesian system by their 

horizontal and vertical values (ux,i, uy,i). Hence, 19 design variables were used in the first step of 

this optimization strategy, namely: (i) the radial length of the 7 design control points to the 

specimen center, (ii) the 6 vertical and (iii) the 6 horizontal displacements of the control points. 

For the following steps, only the 6 vertical and 6 horizontal displacements of the control points 

were designed, leading to a total value of 12 design variables. It must be noted that for the 

control points 1 and 7 (Figure 8.14) it can be only applied, respectively, vertical and horizontal 

                                                           
8
 The principle of Bellman states that an optimal sequence of decisions in a multistage decision process 

problem has the property that whatever the initial state and decisions are, the remaining decisions must 
constitute an optimal policy with regard to the state resulting from the first decisions. 
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displacement, due to the symmetry conditions defined on the model. Therefore, for these control 

points the conditions ux,1 = 0 and uy,7 = 0 were imposed. 

8.2.2.5 Results 

Due to the complexity of this design strategy, a preliminary approach just considering the design 

of the loading path was first applied. Its main goal was to define a suitable number of steps and 

maximum local displacements for investigating the loading path evolution. This preliminary 

approach has shown that rupture can be reached in 4 steps and the maximum displacements 

should be around 1.5 mm. Therefore, 4 steps are considered for this design strategy. 

On a second preliminary approach, the effect of the predefined specimen shape on the 

achievement of more informative loading path was analyzed. Therefore, the multistep loading 

path evolution was designed considering 3 different initial specimen geometries. These 

geometries are shown in Figure 8.17. The obtained results of this preliminary analysis revealed 

that the loading path of the rectangular specimen shape led to larger mechanical information of 

the test. Therefore, this rectangular shape was chosen as initial specimen shape to be subjected 

to optimization in the multistep design strategy. 

 
Figure 8.17 – Specimen geometries used for investigating the effect of the starting specimen shape on 

the multistep loading path evolution. 

Table 8.4 lists (i) the initial and optimal design variables, (ii) the Scost, IT_Op and Res values 

and (iii) the number of evaluations as well as the time spent for the 4 steps of the optimization 

process. Concerning the first step, where specimen shape and loading path were simultaneously 

subjected to optimization, it was defined a variation of position of the control points between 10 

and 60 mm and a variation of the displacement variables between 0 and 1.5 mm. For steps 1 to 3, 

the later range was used and the initial displacement values were 0.75 mm. However, for step 4 

(last one) the initial displacement values were set equal to 1.5 mm and the bound values allowed 

were defined as 0 and 3 mm. Large displacements were allowed for this last step in order to 

ensure the achievement of rupture. Analyzing the optimum design variables, it can be seen that 

the design control points did not present significant variations comparatively to the initial values 

chosen. However, in the case of the displacement variables, different values from the initial ones 

were obtained in the different steps. By IT_Op and Scost values, it can be seen that a considerable 

increase of the mechanical information of the test is obtained when a multistep loading path is 

adopted, since an IT_Op value of 0.497 was reached at the last step. In addition, no active 

constraints were verified, obtaining a null value for Res. 

Figure 8.18 shows the evolution of Scost for the different optimization steps. It can be seen 

that, for step 1, the Nelder-Mead algorithm tested some design variable sets leading to unfeasible 

specimen shapes and, consequently, impossibility of generating the model (evaluations with 

Scost= 2). For the remaining steps, such a situation was not observed since only the loading path 
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was subjected to design. Figure 8.19 illustrates the initial and final specimen geometry as well as 

the deformed shapes of the specimen at the end of each optimization step. It can be seen that the 

designed specimen shape obtained was not substantially different from the initial one and, in 

addition, it can also be observed the slight differences between the achieved deformed shapes. 

Table 8.4 – Results obtained for the multistep design test. 

Variables Initial 
Optimal 

LBound UBound Units 
Step 1 Step 2 Step 3 Step 4* 

x1 35.0 33.28 - - - 10 60 mm 

x2 36.2 36.07 - - - 10 60 mm 

x3 40.4 39.59 - - - 10 60 mm 

x4 45.7 46.35 - - - 10 60 mm 

x5 40.4 39.93 - - - 10 60 mm 

x6 36.2 36.51 - - - 10 60 mm 

x7 35.0 38.50 - - - 10 60 mm 

uy1 0.75/1.5* 0.684 0.731 1.006 0.898 0 1.5/3.0* mm 

ux2 0.75/1.5* 0.80 1.039 0.135 1.063 0 1.5/3.0* mm 

uy2 0.75/1.5* 0.769 0.682 0.407 0.959 0 1.5/3.0* mm 

ux3 0.75/1.5* 0.793 0.878 1.282 0.835 0 1.5/3.0* mm 

uy3 0.75/1.5* 0.645 0.998 1.094 0.945 0 1.5/3.0* mm 

ux4 0.75/1.5* 0.85 0.937 1.277 0.844 0 1.5/3.0* mm 

uy4 0.75/1.5* 0.721 0.898 0.430 1.117 0 1.5/3.0* mm 

ux5 0.75/1.5* 0.846 0.996 1.385 1.087 0 1.5/3.0* mm 

uy5 0.75/1.5* 0.856 0.750 1.477 0.955 0 1.5/3.0* mm 

ux6 0.75/1.5* 0.786 1.285 0.001 0.806 0 1.5/3.0* mm 

uy6 0.75/1.5* 1.125 0.020 1.422 1.107 0 1.5/3.0* mm 

ux7 0.75/1.5* 0.665 0.448 1.411 1.039 0 1.5/3.0* mm 

IT_Op 0.114 0.153 0.271 0.420 0.497   - 

Scost 1.886 1.847 1.729 1.580 1.503   - 

Res 0 0 - - -   - 

Evaluations 350 200 200 200   - 

Time
9
 45.59 22.6 23.3 20.3   hours 

 

Table 8.5 presents the values of the several contributions used in IT formulation. It can be 

observed that the strain state range (ε2/ε1)R as well as the diversity of the mechanical information 

Std(ε2/ε1) did not always increase during the multistep optimization. It reveals that the strain state 

range covered varied for each step as can be proven by the  ε P values reached for each strain 

state. In fact, for step 1, shear and compression strain states were not covered while, for step 3, 

all the strain states were reproduced. Concerning the average deformation P
Av  as well as the 

deformation heterogeneity Std(ε P), it can be seen that these values increased continuously during 

the multistep optimization. It was due to the fact that these values deal with plastic strain, which 

increased up to rupture in the last step. 

                                                           
9
 The optimization was carried out in a Intel(R) Core(TM) i7-3630QM CPU using 4 processors. 
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Figure 8.18 – Evolution of the cost function for the multistep design process. 

Figure 8.20 shows the distribution of ε P and ε2/ε1 at the end of each step. Analyzing ε P 

distribution, it can be seen that the large strains occur in the vicinity of the specimen boundary 

and that the maximum equivalent plastic strain value achieved in the step 4 was about of 1.34. It 

appears that by applying a loading path based on local displacements, large deformation can be 

reached compared with the tool displacement approach. Concerning ε2/ε1 distribution, it can be 

seen that the strain state range was mainly covered between uniaxial (ε2/ε1 = -0.62) to equibiaxial 

tension (ε2/ε1 = 1). However, uniaxial compression (ε2/ε1 = -1.59) and/or simple shear (ε2/ε1 =-1) 

were also covered in steps 3 and 4. These results show that it is possible to cover all the strain 

state range using a multistep design optimization approach. 

 
                                        a) Initial geometry                               b) Designed geometry (end of step 1) 

0 200 400 600 800 1000

1.5

1.6

1.7

1.8

1.9

2

Iterations

S
c
o
s
t

 

 

Step 1
Step 2
Step 3
Step 4
Evolution

Evaluations

Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa Nelson Souto 2015



 
 166      Chapter 8 – Design of mechanical tests 

 

 

 
Figure 8.19 – Several sample geometries after each step. 

Table 8.5 – Values obtained for the contributions of IT on the different steps of the multistep test. 

 Step 1 Step 2 Step 3 Step 4 

  12StdMean   0.443 0.411 0.4684 0.503 

R1

2 










 1.633 2.305 2.629 1.998 

  PStdMean   0.012 0.037 0.079 0.115 

P
test  0.226 0.728 1.328 1.366 

P
tens  0.196 0.494 0.178 0.493 

P
shear  0 0.339 0.717 0.960 

P
plane  0.081 0.076 0.083 0.145 

P
biaxial  0.053 0.054 0.055 0.083 

P
comp  0 0 0.413 0 

P
Av  0.093 0.282 0.463 0.508 

 

 

 
a) Step 1 

c) Initial and deformed specimen shapes at the end of each step 
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b) Step 2 

 
c) Step 3 

 
d) Step 4 

Figure 8.20 – Distribution of ε P and ε2/ε1 over the specimen surface at the end of the different steps.  

The multistep test was included in the IT ranking classifying all the tests, as shown in Figure 

8.21. Its IT value was calculated using the weighting factors listed in Table 7.1. Thus, the indicator 

value was different of the one (IT_Op) obtained on the optimization process and consists of 

IT = 0.46.  

 
Figure 8.21 – IT ranking for the classical and heterogeneous tests evaluated in section 7.5.1, the ones 

designed using 1 and 2 rigid tools and the multistep test. 

From Figure 8.21, it can be observed that the multistep test achieved a quite higher IT value 

than the remaining tests. By this result, it was proved that a complex loading path evolution in 

terms of sequential steps as well as local displacements is able to promote a considerable 
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improvement of the mechanical information given by a test. However, from an experimental 

point of view such kind of test seems hard to carry out, mainly due to the boundary conditions 

applied by means of global displacement of the free boundary specimen shape. Nonetheless, it 

should be emphasized that the main purpose of this design optimization strategy was to 

understand the effect of a complex loading path on the achievement of informative strain fields. 

8.3 Parameters identification using a heterogeneous test  

The butterfly test obtained in section 8.2.1.5 was used in order to evaluate its performance for 

material parameters identification purposes. Among the designed mechanical tests, this one was 

chosen due to the fact that its experimental reproduction seems to be straightforward, since it 

can be carried out using a standard testing machine. 

However, experimental tests with this specimen were not performed. Instead, for this 

material parameter identification study, the virtual DC04 mild steel identified from the 

conventional tests was considered as the reference material. In this way, the reference data used 

as experimental results was virtually generated by considering the parameters set of Table 5.2 for 

Yld2004-Mixed model. 

Since the butterfly test corresponds to a heterogeneous experiment, a non-homogeneous 

identification approach was considered. Therefore, an evaluation of the strain fields was carried 

out for the identification of the material parameters. Then, the objective function Sobj(x) defined 

by Equation 2.19 was used. Hence, both load and strain data were taken into account. For 

instance, the specimen surface was analyzed up to a tool displacement of 10 mm, which 

corresponds to a maximum equivalent plastic strain of 0.65, comparing 5 strain fields (nim = 5). The 

strain fields, in terms of minor ε2 and major ε1 strain values in the sheet plane were compared for 

the tool displacements d = 0.2, 1, 2, 6 and 10 mm. In the case of the load data, the tool force-

displacement curve was considered. 

Further, the parameters identification framework previously developed in chapter 5 and 

described in Figure 5.1 was used to identify the material parameters. However, a Python script 

was included to read the strain field results.  

It was observed, by a preliminary identification process, that using only the butterfly test, 

the parameters set identified was not the most accurate, leading to some differences in the 

prediction of the experimental curves of the uniaxial tensile and simple shear tests mainly 

oriented at 77° and 90° to RD. Therefore, another butterfly test with a rotation of 90° of the 

material orientation was introduced and was also used for identifying the material parameters.  

Thus, Sobj-T(x) was defined as 





test

1

obj,T-obj )()(
n

i

 iSS xx , (8.11) 

where ntest is equal to 2 and stands for the butterfly test without and with a rotation (of 90°) of the 

material orientation. 
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8.3.1 Numerical model of the butterfly test 

The numerical model of the butterfly test was already described in section 8.2.1.1. However, since 

the optimized butterfly test was generated with an unstructured mesh, a re-meshing of the 

specimen surface was carried out in order to create a structured mesh. The reason for that was to 

acquire the strain field data by a similar approach as the one using DIC technique to output the 

experimental results. Figure 8.22 shows the original mesh, obtained in the design of the butterfly 

test, and the structured mesh, for the identification process. It must be emphasized that both 

meshes present approximately a mesh density of 3 elements/mm and the structured mesh leads 

to a similar IT value for the test. Thereby, no influence of the re-meshing was evidenced on the 

achievement of more (or less) mechanical information from the test. 

In addition, such as for DIC technique, a ROI for the specimen surface was defined as shown 

in Figure 8.22 b) (red zone). Only the strain field information coming from the ROI was used for 

identifying the material parameters. The outer ROI was not considered due to the local effects 

related to the tool contact and also, because, from an experimental point of view, DIC technique 

may present some difficulty to accurately measure data in this region. 

 
                             a) unstructured mesh                                       b) structured mesh 

Figure 8.22 – Meshes for the butterfly test used in the parameters identification process. The red zone 

consists in the ROI of the sample. 

8.3.2 Process parameters 

The parameters identification process was defined considering a stagnation value of 10-12, in 

terms of the objective function value between two consecutive evaluations, as the stopping 

criterion. Moreover, the derivatives of the objective function were calculated numerically through 

a forward finite difference scheme with a perturbation value of 5x10-3 and the L-M algorithm was 

used with a maximum number of evaluations limited to 250. It was observed for the parameters 

identification processes using the classical tests (section 5.3) that this number of evaluations 

could be enough to obtain a reliable material parameters set. 

As for the parameters identification processes of chapter 5, the elastic parameters E and υ, 

the exponent a as well as the anisotropic coefficients )(
44
kc and )(

55
kc , with k = 1, 2, of the Yld2004-

18p yield function were not considered as parameters to be identified. In addition, the kinematic 

hardening parameters were considered constant values and equal to the reference ones since the 

butterfly test does not involve reverse loading. 
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8.3.3 Results 

Table 8.6 shows the initial, reference and optimal identified parameters, the initial and final 

values of the objective function and the number of evaluations carried out by the identification 

process. The initial values as well as the bounds for the material parameters were set equal to the 

ones used in the identification of the virtual DC04 mild steel behavior (reference material). Hence, 

both identification processes started in similar conditions. 

Table 8.6 - Material parameters identified from the butterfly tests and the experimental database.  

 Yld2004-Mixed   

Parameters Initial Reference Identified Limits Units 

)1(
12c  1.0 1.264 1.317 (+4.2%) -2.2 / 2.2 - 

)1(
13c  1.0 0.974 1.021 (+4.8%) -2.2 /2.2 - 

)1(
21c  1.0 1.242 0.973 (-21.7%) -2.2 / 2.2 - 

)1(
23c  1.0 1.049 1.049 -2.2 /2.2 - 

)1(
31c  1.0 0.579 0.769 (+32.8%) -2.2 / 2.2 - 

)1(
32c  1.0 0.708 0.721 (+1.8%) -2.2 /2.2 - 

)1(
66c  1.0 1.365 1.064 (-22.1%) -2.2 / 2.2 - 

)2(
12c  1.0 0.792 0.936 (+18.2%) -2.2 /2.2 - 

)2(
13c  1.0 0.672 0.828 (+23.2%) -2.2 / 2.2 - 

)2(
21c  1.0 0.838 0.894 (+6.7%) -2.2 /2.2 - 

)2(
23c  1.0 0.929 1.101 (+18.5%) -2.2 / 2.2 - 

)2(
31c  1.0 0.996 0.889 (-10.7%) -2.2 /2.2 - 

)2(
32c  1.0 0.768 0.662 (-13.8%) -2.2 /2.2 - 

)2(
66c  1.0 0.678 1.067 (+57.4%) -2.2 /2.2 - 

σ0
 
 141.2 100.0 106.4 (+6.4%) 100.0 / 170.0 MPa 

  261.0 210.3 185.9 (-11.6%) 160.0 / 800.0 MPa 

δ 10.5 5.92 7.069 (+19.4%) 1.0 / 100.0 - 

β 160.0 102.8 180.1 (+75.2%) 100.0 / 900.0 MPa 

Xsat1  44.57 -  MPa 

γ1  22.85 -  - 

Xsat2  106.2 -  MPa 

γ2  258.38 -  - 

Xsat3  5629.7 -  MPa 

γ3  0.0258 -  - 

Sobj-T (x) 0.141
 

 - 5.207x10
-4

 (-99.6%)  - 

Evaluations  - 233  - 

 

Comparing the identified and the reference parameters, it can be seen that these 

parameters sets are rather different. It results from the fact that multiple solutions can be 

obtained on the search of parameters of non-linear elastoplastic constitutive models. Moreover, 
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the identified parameter set was found after performing 233 evaluations, while the reference 

parameter set was identified after performing 500 evaluations. However, comparing the initial 

and final objective function values, given at the bottom of Table 8.6, it can be observed that a 

reduction of 99.6% was obtained. Therefore, though the reference and identified parameters sets 

are different, these ones must predict similar results and reproduce the behavior of the material. 

Figure 8.23 depicts the evolution of the objective function value during the identification 

process of the identified parameters set. For the first 19 evaluations, individual perturbations of 

each material parameter were performed in order to calculate numerically the Jacobian of the 

objective function (sensitivity matrix) and, before 50 evaluations, Sobj_T value was significantly 

decreased. In the following evaluations, a stabilization of Sobj_T value was observed till the 

verification of the stopping criterion after 233 evaluations. 

 
Figure 8.23 – Evolution of the objective function Sobj_T during the material parameters identification 

process using both butterfly tests. 

Figure 8.24 depicts the load-displacement curves obtained for the butterfly tests without 

and with rotation of the material orientation using both reference and identified parameter sets. 

Concerning the load-displacement curve of the butterfly test without rotation of the material 

orientation, it can be seen that the identified parameter set led to a smooth over-prediction of 

the reference result. However a good reproduction of this curve was achieved. In the case of the 

load-displacement curve of the butterfly test with rotation of the material orientation, a very 

reliable prediction of this curve was obtained since both reference and identified parameter sets 

led to similar results.  

Figures 8.25 to 8.28  show the major and minor strain distribution obtained in the butterfly 

tests for the tool displacements d = 2 mm and d = 10 mm, using both reference and identified 

parameters set. It can be seen that a good agreement was obtained between the reference and 

the predicted results. Concerning the major and minor strain distributions for d = 2 mm (Figures 

8.25 and 8.27), identical strain fields were obtained. In the case of the major and minor strain 

distributions for d = 10 mm (Figures 8.26 and 8.28), slight differences can be observed mainly for 

the strain field of the butterfly test without rotation of the material orientation, however, the 
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global strain distribution was almost identical. Taking into account the observed objective 

function reduction during the identification process, it was expected to obtain similar strain field 

distributions. Indeed, the strain distributions depicted confirmed this expectation. 

 
                                                           a)                                                                        b) 

Figure 8.24 – Load-displacement curves obtained using the reference and the identified parameters 

sets for the butterfly test a) without and b) with rotation of the material orientation. 

 

 
                                                                     a) Reference set                              b) Identified set 

Figure 8.25 – Major ε1 and minor ε2 strain distribution for a displacement d = 2 mm of the butterfly test 

without rotation of the material orientation. 
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                                                                     a) Reference set                              b) Identified set 

Figure 8.26 – Major ε1 and minor ε2 strain distribution for a displacement d = 10 mm of the butterfly 

test without rotation of the material orientation. 

 
                                                                     a) Reference set                              b) Identified set 

Figure 8.27 – Major ε1 and minor ε2 strain distribution for a displacement d = 2 mm of the butterfly test 

with rotation of the material orientation. 
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                                                                     a) Reference set                              b) Identified set 

Figure 8.28 – Major ε1 and minor ε2 strain distribution for a displacement d = 10 mm of the butterfly 

test with rotation of the material orientation. 

8.3.4 Numerical reproduction of the experimental data 

In order to assess the quality of the material parameters set identified from the butterfly test, the 

experimental database composed by the several classical tests used in chapter 5 was reproduced. 

Figures 8.29 and 8.30 show the experimental and numerical, obtained with the reference and 

identified parameters sets, stress-strain curves for simple shear/uniaxial tension and ε11-ε22 curves 

for uniaxial tension in the five different orientations to RD. Figure 8.29 also includes the 

experimental and numerical results for bulge test. 

From Figure 8.29, it can be observed that a reliable reproduction of the experimental 

uniaxial tension and simple shear curves was obtained using the identified parameters set. In fact, 

both identified and reference parameters sets led to similar numerical predictions. In the case of 

the bulge test, an under-estimation of the hardening evolution was verified using the identified 

parameters set. Nonetheless, it must be emphasized that the butterfly test does not cover the 

equibiaxial stress state (cf. Table 8.3). Moreover, identical numerical and experimental ε11-ε22 

curves were obtained for both uniaxial and biaxial tension. 

Concerning the numerical reproductions of the stress level in uniaxial tension and simple 

shear as well as ε11-ε22 curves at 22° and 45° to RD, depicted in Figures 8.30 a) and b), it can be 

seen that the identified parameters led to almost identical stress-strain curves to the ones 

obtained with the reference parameters set. However, the numerical ε11-ε22 curves at 22° and 45° 

using the identified parameters set were not accurately predicted. These curves tended to deviate 

from the experimental behavior with the increase of deformation. 
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In the case of the uniaxial tension and simple shear curves as well as ε11-ε22 curves at 77° 

and 90° to RD, shown in Figures 8.30 c) and d), very reliable predictions were obtained. The 

experimental and numerical curves using the identified and reference parameters sets were 

similar. 

 
Figure 8.29 – Experimental and numerical (i) τ-γ curve for simple shear and σ-ε curves for bulge and 

uniaxial tension to 0°/RD and (ii) ε11- ε22 curves for bulge and uniaxial tension to 0° to RD. 
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b) 45° to RD 

 

 
c) 77° to RD 
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d) 90° to RD 

Figure 8.30 – Experimental and numerical (i) τ-γ curves for simple shear and σ-ε curves for uniaxial 

tension and (ii) ε11- ε22 curves for uniaxial tension. 

In addition, the normalized projection of the yield surface in the plane (σXX/σY(0), σYY/σY(0)) 

is illustrated in Figure 8.31 for the identified and reference material parameters set. It can be seen 

that the one obtained with the identified parameters set was not able to reach the equibiaxial 

stress point, however, it was close to this experimental value. Nonetheless, it can be seen that a 

general agreement was verified between the yield projections obtained using the reference and 

identified parameters set 

 
Figure 8.31 – Projection of the Yld2004 yield surface in the plane (σXX/σY(0), σYY/σY(0)) for the reference 

and identified material parameters sets. 
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From the numerical predictions using the identified parameters set, it appears that 

interesting results can be obtained for material parameters identification considering the 

butterfly test. These predictions revealed that this heterogeneous test performed in both 0° and 

90° to RD is able to characterize the mechanical behavior of sheet metals under several stress and 

strain states and amplitudes. Concerning the phenomenological model chosen in this work, only 

two butterfly tests led to similar numerical predictions to the ones obtained from 5 uniaxial 

tension and 5 simple shear tests at different orientations to RD as well as 1 bulge test. However, 

the biaxial stress state was not accurately predicted. Nevertheless, it was also pointed out that a 

heterogeneous test performed in uniaxial loading path can also be very effective to identify all the 

material parameters of a complex phenomenological model involving large number of 

parameters. 

8.4 Conclusion  

The main goal of this chapter was the development of an innovative methodology for designing 

heterogeneous tests which promote a more complete mechanical characterization of sheet 

metals. Two different design optimization strategies based on a direct search method and on the 

quantitative indicator IT, proposed in chapter 7, were developed for this purpose.  

On the one hand, a one-step procedure designing both specimen shape and loading path by 

using rigid tools was defined. The main advantage of this strategy is the resemblance with the 

experimental reality, since a rigid tool is used for applying the displacement similarly to standard 

testing machines. Heterogeneous tests were designed using one and two rigid tools in order to 

also investigate the effect of uniaxial and biaxial loading path on the achievement of strain fields 

with enhanced mechanical information. The optimization processes started with a circular and a 

cross specimen shapes and led to a butterfly and cruciform specimens, respectively, using one 

and two rigid tools. The obtained results suggested that when a uniaxial loading path is applied, 

the design optimization process tends to search for a specimen shape developing a strain state 

range between simple shear to plane strain tension. While, when a biaxial loading path is applied, 

a cruciform specimen shape, such as the typical one of biaxial tensile tests, tends to promote 

larger mechanical information.  

On the other hand, a sequential incremental technique that designs the loading path, locally, 

on the overall outer boundary of the specimen shape was also defined. In this strategy, the design 

optimization of the specimen shape was taken into account in the first step of the sequential 

optimization process while the loading path was subjected to design optimization on the several 

sequential steps. Despite such a strategy may be experimentally unfeasible, its main purpose was 

to evaluate the effect of a complex loading path, through multisteps and local displacements, on 

the achievement of richer strain fields. The heterogeneous test designed revealed that it was 

possible to cover all the strain state range and to improve considerably the mechanical 

information using this kind of multistep optimization approach. 

From the IT results obtained for the designed tests, it was demonstrated that both 

optimization methodologies proposed were able to find mechanical tests promoting a better 

mechanical characterization of the material. Nonetheless, the proposed indicator IT may present 

some limitations since it was not possible to cover successfully all the principal strain states, 
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mainly in the case of the optimization methodology using rigid tools. However, it must be stressed 

out that these are very first results and the optimization procedure developed can be very 

efficient for designing a mechanical test leading to a complete mechanical characterization of thin 

metallic sheets.  

Moreover, a material parameters identification process using the butterfly test i) without 

and ii) with rotation of the material orientation was carried out considering the virtual DC04 mild 

steel identified from the conventional tests as a reference material. The identified material 

parameters from this heterogeneous test were used to predict the experimental data of the 

conventional tests and reliable numerical reproductions were obtained. It revealed that the two 

butterfly tests are necessary to (i) characterize the mechanical behavior of sheet metals under 

several stress and strain paths, (ii) give identical numerical predictions to the ones obtained from 

5 uniaxial tension and 5 simple shear tests at different orientations to RD as well as 1 bulge test 

and (iii) promote an effective material parameters identification for complex phenomenological 

models involving a large number of parameters. 
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V – Final remarks 
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Chapter 9  

9 Conclusions and future works 

9.1 General conclusions 

The present work was proposed since the material parameters identification of modern 

constitutive models demands for a large number of classical quasi-homogeneous tests and, as a 

consequence, leads to expensive and time consuming identification procedures. Therefore, the 

main goal of the present work was the computational design of heterogeneous tests for material 

parameters identification purposes. The inhomogeneous strain fields developed by these tests 

should be close to the ones encountered in sheet metal forming processes, concerning the variety 

of stress and strain states as well as strain levels. 

Regarding this, in the current work, a first introduction to the different strategies, namely, 

both homogeneous and non-homogeneous inverse approaches, for material parameters 

identification of constitutive models was performed. Also in this topic, the classical and 

heterogeneous tests used, respectively, by these approaches were introduced. 

Moreover, both types of optimization problems covered in this thesis, namely, material 

parameters identification and shape optimization, were defined and discussed. One the one hand, 

the shape optimization was the main goal of the present work due to the development of an 

innovative optimization methodology for the computational design of heterogeneous tests. On 

the other hand, the material parameters identification problem was also considered due to the 

need of characterizing numerically the mechanical behavior of DC04 mild steel in order to become 

the virtual material in the shape optimization problem. 

Therefore, an inverse methodology for material parameters identification was developed 

with the purpose of identifying parameters from classical as well as heterogeneous tests. This 

inverse methodology was used to identify the parameters for initial anisotropy and evolution of 

hardening of DC04 mild steel from a complex phenomenological model (Yld2004-Mixed) 

composed by the non-quadratic Yld2004-18p yield criterion combined with a mixed isotropic-

kinematic hardening law. A large experimental database composed by (i) uniaxial tensile and 

simple shear tests at 0°, 22°, 45°, 77° and 90° to RD, (ii) bulge test and (iii) three shear-
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Bauschinger tests reversed at 0.13, 0.21 and 0.33 of pre-strain was used. The implemented 

optimization process was able to identify a set of material parameters leading to a global accurate 

characterization of DC04 mechanical behavior. Nonetheless, some discrepancy was obtained in 

the prediction of the rounded yield point and work hardening stagnation of shear-Bauschinger 

tests since the kinematic hardening law chosen does not take into account such a kind of 

mechanical phenomena.  Additionally, the Cockroft and Latham (CL) uncoupled fracture criterion 

was adopted for calibrating the macroscopic rupture behavior of DC04 mild steel from a uniaxial 

tensile test up to rupture. Such a calibration was required to define the rupture as an end 

condition to stop the numerical optimization approach used on the design of the heterogeneous 

mechanical tests. The calibration of CL criterion was performed considering an experimental-

numerical approach based on experimental data acquired by using DIC technique. The numerical 

simulations of this experiment presented some difficulty in describing perfectly the cross shape in 

the fracture zone. However, the CL parameter achieved larger values at the center of the sample, 

predicting accurately the fracture zone. 

The reliability of the material parameters identified for Yld2004-Mixed model and the 

critical parameter of CL criterion was evaluated with a deep drawing test leading either to full 

drawing or rupture of the blank. Strain fields at several stages of the deep drawing experiments 

were recorded by DIC technique. In the case of the experiment leading to full drawing, a reliable 

reproduction of the experimental data was obtained, validating the material parameters set 

identified of Yld2004-Mixed model. While, for the experiment leading to premature rupture of the 

blank, some differences between the experimental data and numerical results were observed. 

However, these numerical results described accurately the experimental fracture zone and led to 

a good prediction of the experimental strain distributions with exception to the fracture zone, 

where the major strain was underestimated. The critical parameter of CL criterion was under-

predicted with a relative gap of 13% comparatively to the reference value obtained by the uniaxial 

tensile test up to rupture. Although, it was considered that such a difference remained acceptable 

mainly due to the substantial difficulty in reproducing properly the experimental friction 

conditions of the cylindrical cup test leading to rupture and also regarding the different stress 

triaxiality range of both uniaxial tensile and cylindrical cup tests. 

For the computational design of heterogeneous tests a suitable analysis of the 

inhomogeneous strain field was mandatory in order to find optimized tests exhibiting several 

stress and strain states as distinctly as possible. Thus, a quantitative indicator IT able to 

distinguish, rate and rank mechanical tests was formulated. This indicator was designed to include 

the analysis of the strain state range covered by the test, the deformation heterogeneity of the 

specimen as well as the strain level achieved up to rupture. Its performance was numerically 

investigated for classical mechanical tests as well as modern heterogeneous tests using the virtual 

behavior of the DC04 mild steel. The qualitative analysis of these mechanical tests indicated that 

the ones developing multiaxial stress states as well as larger heterogeneity must provide a more 

complete mechanical characterization of sheet metals and the quantitative IT results confirmed 

this trend. These results pointed out that IT was able to accurately quantify the mechanical 

information provided by the tests. Moreover, to validate IT, a material parameter sensitivity study 

was performed and it was shown that the proposed indicator consists of an efficient strategy for 

choosing the more appropriate heterogeneous test when it comes to identification of material 
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properties. Thereby, IT was used for guiding the design of the computational mechanical tests in 

order to find an ideal strain field able to promote better mechanical characterization of the 

material behavior. 

Finally, concerning the computational design of heterogeneous mechanical tests for thin 

metallic sheets, an optimization methodology approach was developed. Within this approach, 

two different strategies, namely (i) a one-step procedure designing both specimen shape and 

loading path by using a tool and (ii) a sequential incremental technique designing the specimen 

shape and the loading path of the specimen considering local displacements, were proposed.  

In the case of the first optimization strategy, heterogeneous tests were designed using one 

and two rigid tools with the aim of investigating the effect of uniaxial and biaxial loading path on 

the achievement of richer strain fields. The optimized results led to a butterfly and cruciform 

specimens, respectively, using one and two rigid tools. These results suggested that when uniaxial 

loading path is applied, the optimization process tends to search for a specimen shape exhibiting 

a strain state range between simple shear to plane strain tension. While when biaxial loading path 

is applied, a cruciform specimen shape such as the typical one of biaxial tensile tests tends to be 

the specimen configuration providing more mechanical information. Such a result revealed that 

the optimization procedure and, mostly, the indicator can be very effective in finding the best 

specimen configurations since it appears that the cruciform specimen shape is indeed the best 

shape for promoting richer mechanical information when a biaxial loading path is applied. 

In the case of the sequential incremental optimization strategy, it was observed that the 

heterogeneous test designed covered all the strain state range and reached an IT result revealing 

a significant improvement of the mechanical information given by the test, compared with the 

ones of the first optimization strategy. It demonstrated the potential of using a complex loading 

path, through multisteps and local displacements, on the achievement of richer strain fields. 

Additionally, the optimized butterfly test i) without and ii) with rotation of the material 

orientation was used for identifying the material parameters of the DC04 mild steel of Yld2004-

Mixed model. By this way, it was possible to investigate the reliability of identified material 

parameters sets coming from an experimental database composed by several quasi-

homogeneous tests and heterogeneous tests. A non-homogeneous inverse approach was defined 

and the virtual DC04 mild steel identified from the conventional tests was considered as the 

reference material. The identified material parameters obtained with this heterogeneous 

approach were used to predict the experimental data of the conventional tests and reliable 

numerical reproductions were obtained. These results were interesting since it was observed that 

the two butterfly tests, with and without rotation of the material orientation, are able to (i) 

characterize the mechanical behavior of sheet metals under several stress and strain paths, (ii) 

give identical numerical predictions to the ones obtained from 5 uniaxial tension and 5 simple 

shear tests at different orientations to RD as well as 1 bulge test and (iii) promote an effective 

material parameters identification for complex phenomenological models involving a large 

number of parameters. 

Generally speaking, in this work, an innovative methodology for designing heterogeneous 

tests which promote a better mechanical characterization of sheet metals was presented. The 

obtained results consist of very first results, however, it was observed that such an innovative 
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optimization methodology can be very efficient for designing a mechanical test leading to a 

complete mechanical characterization of thin metallic sheets.  

9.2 Future works 

Considering the work presented, future developments may be outlined. According to the 

obtained results as well as their validation, it was shown that the global procedure developed for 

material parameters identification of sheet metals by including initial anisotropy, evolution of 

hardening and macroscopic rupture can be very useful for a more complete characterization of 

the mechanical behavior of sheet metals. Therefore, this efficient identification procedure can be 

extended to other materials. However, integrating the rupture test in tension in the optimization 

of material parameters in order to seek for a better description of necking could be very 

interesting. 

Concerning the indicator IT proposed, this one was essentially formulated for monotonic 

loading experiments. However, since in sheet metal forming operations the material can be 

subjected to different strain path changes affecting the work-hardening behavior, reverse and 

orthogonal strain path experiments are commonly studied. Therefore, IT formulation can be 

enhanced to detect strain path changes during the test, accounting for the mechanical 

phenomena inherent to these multistep tests. In addition, it could be very interesting to compare 

numerical and experimental evaluations of IT for a certain mechanical test with the aim of 

validating experimentally this indicator. Note that the several contributions of IT have physical 

meaning because they were based only on strain deformations. Therefore, IT can be determined 

experimentally by using, for example, DIC technique to output the strain field over the specimen 

surface during the test. 

Besides evolutionary algorithms tend to be very time consuming due to the large number of 

evaluations required, they are very robust avoiding local minima of the objective function. 

Thereby, this type of algorithm could be used on the optimization approach for designing 

heterogeneous tests in order to investigate their influence on the achievement of more 

informative strain fields. In addition, the innovative methodology for designing the 

heterogeneous tests can be further developed without considering symmetry conditions. Indeed, 

non-symmetric experiments may provide more mechanical information than symmetric ones. 

Alternatively, in the case of the optimization strategy using a rigid tool, the optimization 

methodology could be extended to include more tools or to increase the complexity of the 

specimen configuration adding holes and/or slits. In this way, the effect of multi-axial loading 

paths as well as perforated specimens on the full characterization of the strain state range could 

be studied. 

Interesting results were obtained using the butterfly test for material parameters 

identification purposes and its experimental reproduction could be carried out. Though it involves 

additional devices for the cross heads of the standard testing machine, this butterfly test may 

promote a suitable material parameters identifications for complex phenomenological models 

with large number of parameters. 

Finally, the innovative methodology proposed in this thesis was a completely distinct 

approach to the common ones used to design heterogeneous mechanical tests, which are based 
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on trial-and-error attempts or geometrical parametric studies of existent tests. Hence, this kind of 

optimization approach may be adopted in future developments of heterogeneous tests with 

enhanced inhomogeneous strain fields. 
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Appendix A 

A. Kinematic hardening implementation in a UMAT subroutine 

A.1 General equations 

The constitutive model Yld2004-Mixed but with only one term for the kinematic contribution was 

already implemented in a UMAT10 subroutine by Grilo et al. (2013b). This constitutive model was 

implemented considering a fully-implicit backward-Euler stress integration algorithm based on the 

multi-stage return mapping procedure (Yoon et al., 1999). This kind of integration algorithm uses 

the control of the potential residual and integrates the constitutive equations at any instant of 

time (pseudo-time), during a deformation process. More detailed information can be found in 

Grilo et al. (2013b). 

To formulate material constitutive models it is necessary take into account the integration 

of the material state variables at each integration point within the continuum medium, at any 

instant of time (pseudo-time), during the deformation process. This integration of the material 

state variables is carried out by the return-mapping method, also called as predictor-corrector 

method. This kind of integration method is based on an elastic predictor phase, when a purely 

elastic trial stress is evaluated, and a plastic corrector phase. 

Considering the assumption that the system is in global equilibrium and the stress and all 

state variables are known at the beginning of the time step, the trial stress state (σTR) can be 

formulated under the assumption that the total strain increment is entirely elastic. Then, 

,: tTR
1 ΔεDσσ  nn  (A.1) 

where n is reported to the values at the beginning of the time step and σTR is evaluated at the 

configuration n+1. If the trial stress is within the yield surface in the principal stress space (F≤0), 

the previous assumption is correct and the material point belongs to an elastic state. However, if 

the trial stress is outside the yield surface, the yield condition is violated and the plastic corrector 

phase is required to numerically ensure the consistency condition. In other words, the plastic 

                                                           
10

 The commercial FE code ABAQUS allows the introduction of constitutive models by means of a user 
material subroutine (UMAT). 
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corrector is responsible to bring the stress onto the subsequent yield surface. The consistency 

condition is defined as 

,0)()( p
Y   nnF Δηη  (A.2) 

where the following relations can be established by: 

,ΔαΔσΔη   (A.3) 

,: eΔεDΔσ   (A.4) 

,pte ΔεΔεΔε   (A.5) 

aΔε p
 (A.6) 

and 
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CCC
 (A.7) 

Note that the kinematic hardening model is modified in Δα, relatively to initial formulation, by 

adding two more backstress tensors. 

In order to carry out the plastic correction, it is required consider an assumption for the 

deformation path. In the case of this implementation, the state variables used in the returning 

procedure are evaluated at the current configuration, which is unknown. This kind of strategy is 

designed as backward-Euler methodology. Despite the backward-Euler methodology is quite 

complex due to the consideration of the variation of the normal to the yield surface (flow 

direction a), it presents several advantages, such as: (i) provides great accuracy even for large 

time steps, (ii) is more appropriated for the implicit integration scheme and (iii) follows the 

minimum plastic work path which is based on the incremental deformation theory. 

Using the backward-Euler method, Equation A.2 is solved in N-sub-steps through 

,)()()( p
Y kknknk FF   Δηη  (A.8) 

where the residual Fk, for each sub-step k=1, …, N, has a prescribed value, and F1>F2>…>Fk>…>FN, 

(FN≈0). In the following the iterative procedure for the kth sub-step on the backward-Euler 

procedure is given. The following auxiliary residuals for the sub-step k can be defined by: 

,0)()()( p
Y1  kknkk Fg

k
 η  (A.9) 
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Equation A.9 is obtained from Equation A.8 considering that Δηk=ηk- ηn, Equation A.10 is 

determined from Equations A.3-A.6 and A.1, and Equations A.11-A.13 are formulated through 

Equation A.7 considering that Δαk = αk- αn. When the convergence of the constitutive equations is 

achieved, the auxiliary residuals must be approximately zero, within a given tolerance. These 

residuals are non-linear functions of the plastic multiplier which are linearized, at each iteration, 

around the current values of the state variables to obtain the increment of the plastic multiplier. 

The linearization of the auxiliary residuals is performed using the Taylor series expansion (where 

only the linear terms were considered). For each iteration of the sub-step k, the auxiliary residuals 

are given as: 

,0::1  kkkkkk Hg
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From the mathematical manipulation of Equations A.16-A.18 which can be rewritten as: 
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and considering the relation Δα = Δα1 +Δα2 + Δα3, the equation that describes the evolution of the 

backstress tensor can be determined. This equation presents the following form, 
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The evolution equation of the stress tensor is obtained by using Equations A.15 and A.22 and is 

defined by 
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The substitution of the Equations A.22 and A.24 into Equation A.9 allows to define the increment 

of the plastic multiplier, which is formulated as 
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In addition, the auxiliary variables used in Equations A.22-A.25 are given by: 
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At the end of each iteration i, the plastic multiplier, the backstress and stress tensors are updated 

as: 
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The iterative procedure is continuously performed until the auxiliary residuals are within a 

prescribed tolerance. When this situation occurs, the convergence is achieved and the following 

conditions are taken into account for the determination of the elastoplastic consistent tangent 

modulus matrix, for instance: (i) kkk ηa : and, consequently, 
k

A1 is equal to 0; (ii) the auxiliary 

residuals 
k

g1 , 
k2g , 

k3g ,
k4g and 

k5g are equal to 0 and (iii) the variation of the flow direction a 

must be considered. Respecting these conditions, the increments of backstress and stress tensors 

are, respectively, 
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and 
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It must be mentioned that Δα is obtained from Equation A.22 and Δσ from Equations A.4, A.5, 

A.38 and also considering the variation of the flow direction a by the differentiation 
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Additionally, E* and A5* are the specific values of the auxiliary variables E and A5 after 

convergence and are defined as 
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and 
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With the aim of determining the increment of the plastic multiplier ∆λ, Equations A.38 and A.39 

are replaced in the consistency condition and the following equation is given, 
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Finally, the elastoplastic consistent tangent modulus epD̂ , for the backward-Euler stress 

integration method, can be obtained by replacing Equation A.43 into Equation A.39, 

 
   

 

.
111

:::

*::*
*ˆ

33
3

g5
22

2

g4
11

1

g3

ep

H
C

A

C

A

C

A
* 

















































αηαηαηaAEa

EaAE
ED

*
5

1

1*
5

1
1










 
(A.44) 

A.2 Validation of kinematic hardening model 

The numerical validation of the implemented kinematic hardening model is performed comparing 

tension-compression and/or shear- Bauschinger tests for two different cases. In the first case, the 

performance of the implemented kinematic hardening model is analyzed considering an 

anisotropic material behavior combined with the Swift isotropic and the Armstrong-Frederick 

kinematic hardening model (only one backstress tensor). The reference data is presented in Grilo 

et al. (2013a) and consists of shear-Bauschinger curves with reverse direction after a pre-strain of 

0.1, 0.2 and 0.3 obtained using a virtual material. Table A.1 depicts the material parameter values 

of this reference data. 
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For this virtual material, both reference shear-Bauschinger curves, presented in Grilo et al. 

(2013a), and the ones obtained by the new kinematic formulation, implemented in the UMAT, are 

illustrated in Figure A.1. This comparison allows to verify if the kinematic hardening behavior and 

the anisotropic yield criterion are accurately linked in the new UMAT formulation. 

Table A.1 - Reference parameter values of the virtual material (Grilo et al., 2013a). 

Virtual material 

)1(
12c  )1(

13c  )1(
21c  )1(

23c  )1(
31c  )1(

32c  )1(
44c  )1(

55c  )1(
66c  

1.241 1.078 1.216 1.223 1.093 0.889 0.501 0.557 1.349 

)2(
12c  )2(

13c  )2(
21c  )2(

23c  )2(
31c  )2(

32c  )2(
44c  )2(

55c  )2(
66c  

0.775 0.922 0.765 0.793 0.918 1.027 1.115 1.112 0.589 

a ε0 K (MPa) n C (MPa) γ E (GPa) υ  

8 4.78x10
-3

 500.8 0.20 150.0 2.2 69.0 0.33  

 

Comparing the results depicted in Figure A.1, it can be verified that an identical 

reproduction of the shear-Bauschinger curves between the reference data and the new kinematic 

formulation of the UMAT is achieved. Hence, it leads to the conclusion that the linking between 

kinematic hardening formulation and anisotropic yield criterion was correctly implemented in the 

new UMAT. 

 
Figure A.1 – Shear-Bauschinger curves obtained with the reference data (Grilo et al., 2013a) and the 

new kinematic formulation implemented in the UMAT, using the virtual material parameter values of 

Table A.1. 

In the second case, shear-Bauschinger and tension-compression curves obtained 

considering material isotropy combined with the isotropic hardening law of Equation 4.15 and the 

implemented kinematic hardening model (with three backstress tensors) are evaluated. For this 

purpose, a numerical model composed by the von Mises yield criterion and the additive 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-250

-200

-150

-100

-50

0

50

100

150

200

250



 
[M

P
a
]

Reference

UMAT

Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa Nelson Souto 2015



 
 196  Appendix A 
  

 

contribution of three Armstrong-Frederick kinematic terms is defined in ABAQUS software and is 

used as reference data. Concerning the UMAT, this material model can also be reproduced since 

the isotropic yield criterion is easily obtained reducing all the parameters of yld2004-18p yield 

criterion to 1 and defining the exponent parameter a equal to 2 or 4 (Barlat et al., 2005). Thus, 

shear-Bauschinger and tension-compression results obtained by two different ways, namely, 

ABAQUS library model and UMAT, can be compared. Such comparison investigates if the 

implemented kinematic hardening model works correctly in the new UMAT formulation. Table A.2 

shows the material parameter values used in this second case. 

Figures A.2 and A.3 show, respectively, the shear-Bauschinger curves with reverse direction 

after 0.1, 0.2 and 0.3 of pre-strain and the tension-compression curves with reverse direction 

after 0.06, 0.1 and 0.16 of pre-strain obtained by both ABAQUS library and UMAT models. 

Table A.2 - Material parameter values adopted for the constitutive model composed by the von Mises 

yield criterion with the isotropic hardening law and the kinematic model for three backstresses. 

E (GPa) υ σ0
 
(MPa)  (MPa) δ β (MPa) C1 (MPa) γ1 C2 (GPa) γ2 C3 (MPa) γ3 

176.0 0.29 141.2 242.3 1.089 81.2 100 0.02 30.0 300.0 2250 90.0 

 
Figure A.2 – Shear-Bauschinger curves with reverse direction after 0.1, 0.2 and 0.3 of pre-strain 

obtained with the constitutive models implemented in ABAQUS library and UMAT, using the material 

parameter values of Table A.2. 

By analyzing Figures A.2 and A.3, it is observed that a reliable reproduction of the ABAQUS 

shear-Bauschinger and tension-compression curves is achieved by using the new UMAT 

formulation. Therefore, these results validate the implementation of the kinematic hardening 

model with three additive Armstrong-Frederick terms. 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-250

-200

-150

-100

-50

0

50

100

150

200

250



 
[M

P
a
]

ABAQUS

UMAT

Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa Nelson Souto 2015



  
 Appendix A 197 

 
 

 

Based on the results obtained for both cases of study, it may be concluded that the kinematic 

hardening model composed by three additive Armstrong-Frederick terms was successfully 

implemented in the UMAT subroutine. 

 
Figure A.3 – Tension-compression curves with reverse direction after 0.06, 0.1 and 0.16 of pre-strain 

obtained with the constitutive models implemented in ABAQUS library and UMAT, using the material 

parameter values of Table A.2. 
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Appendix B 

B. Bulge test analysis 

B.1 Numerical model for the bulge test 

In order to clarify the validity of the assumption made for bulge test, numerical results with (i) a 

single element (1-element) and (ii) whole bulge were compared using the identified parameters of 

Table 5.2. 

The whole bulge test is numerically modeled with ABAQUS/Standard considering a 

tridimensional model defined by one-fourth of the geometry, due to the symmetry conditions. 

The geometric dimensions of this experiment are shown in Figure B.1. The pressure fluid is 

applied on the surface of the blank as a linear increasing normal surface load. The boundary 

conditions defined can be seen in Figure 7.5. The blank is modeled with 8 node elements with 

linear interpolation and reduced integration (C3D8R). A mesh refinement with 3 layers of 

elements in the thickness and a total number of 3096 elements was defined. The dimension of the 

apex element in the undeformed configuration was 0.33 x 0.33 mm. 

 
Figure B.1 – Experimental set-up of the bulge test. 

Figures B.2 and B.3 show the experimental and numerical σ-ε11, ε11-ε22 and σ11-σ22 curves 

obtained by both 1-element and whole bulge test models, using the identified parameter sets for 

Yld2004-Iso and Yld2004-Mixed, respectively. On the whole bulge test model, stress and strain 

components are recorded at the apex, as illustrated in Figure B.2. In addition, the numerical σ-ε11 

curves are plotted using σ11 stress component. 

From Figures B.2 and B.3, it can be seen that both simplified 1-element and whole bulge 

test models perform an identical reproduction of the experimental σ-ε11 curve (data used in the 
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parameters identification procedure). It can also be observed that a similar reproduction between 

experimental and numerical ε11-ε22 and σ11-σ22 curves was achieved with exception to the whole 

bulge ε11-ε22 curve of Yld2004-Mixed model, which presents a slight deviation. These results 

pointed out that the membrane theory assumption (σ1≈σ2) is respected by the simplified 1-

element model. 

 
                                    a)                                                               b)                                                               c) 

Figure B.2 – Experimental and numerical a) σ-ε11, b) ε11-ε22 and c) σ11-σ22 curves obtained by 1-element 

and whole bulge models using the identified parameters of Yld2004-Iso. 

 
                                  a)                                                               b)                                                               c) 

Figure B.3 – Experimental and numerical a) σ-ε11, b) ε11-ε22 and c) σ11-σ22 curves obtained by 1-element 

and whole bulge models using the identified parameters of Yld2004-Mixed. 

Therefore, it was demonstrated that (i) the assumption adopted (1-element model) to save 

calculation time leads to similar results to the ones obtained by using the whole bulge model and 

(ii) a good agreement between experimental behavior and numerical results was observed. 

Mention that, comparing the calculation time required for each numerical model adopted 

for bulge experiment, the numerical simulation of one-fourth of bulge specimen was performed in 

approximately 8 minutes while the numerical simulation using 1-element was performed in less 

than 20 seconds. Due to this fact, the numerical simulation of the bulge test considering 1-

element model was adopted in the parameters identification process. 
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B.2 Validation of the stress calculation 

As stated in section 2.2.1.4, Aretz and Keller (2011) pointed out that the membrane theory 

assumption may not be longer valid when using anisotropic materials exhibiting rb value 

significantly different from unity, while Yoshida (2013) concluded that the stress state at the apex 

can deviate by 1-5% from the equibiaxial stress state due to the material anisotropy. 

The identified parameter sets lead to rb values of 0.91 and 1.43 for Yld2004-Iso and 

Yld2004-Mixed models, respectively. These values were determined from the numerical 

simulation of a disk compression test. 

Though the material was anisotropic, the bulge stress component was calculated according 

to isotropic relationship. Therefore, the equibiaxial stress state imposed by the membrane theory 

assumption must be checked numerically by using the whole bulge model. In this way, the 

evolution of σ11, σ22, ε11 and ε22 with p  for both Yld2004-Iso and Yld2004-Mixed models is 

presented in Figures B.4 and B.5.  

 
                                                           a)                                                                          b)                                        

Figure B.4 – Numerical evolution of a) ε11 and ε22 and b) σ11 and σ22 with ε P obtained at the apex of 

bulge test using Yld2004-Iso model. 

Figure B.4 shows that a similar evolution for ε11 and ε22 components as well as σ11 and σ22 

occurs during the numerical simulation of the whole bulge test using the identified parameters of 

Yld2004-Iso model. In Figure B.5, a slight difference between σ11 and σ22 values during the 

numerical simulation of the bulge using the identified parameters of Yld2004-Mixed model was 

detected. Nevertheless, this difference remains very small as demonstrated by Figure B.6, which 

represents the evolution of the biaxial deviation (σ11-σ22)/σ11 during the numerical simulation of 

the bulge test. It can be seen that an average relative gap of 3% between the stress components 

in RD and transverse directions were recorded for Yld2004-Mixed model. In the case of Yld2004-

Iso model, an average relative gap lower than 1% was achieved. 

From an experimental point of view, it should be emphasized that the size of the area used 

to calculate the radius of curvature at the apex was small compared to the gauge diameter of the 

bulge test (185 mm), as proposed by Yoshida (2013). Hence, taking it into account as well as the 
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very small recorded deviations from the equibiaxial stress state, it was shown that the theoretical 

formulation on bulge stress remains acceptable in this work. 

 
                                                           a)                                                                          b)                                        

Figure B.5 – Numerical evolution of a) ε11 and ε22 and b) σ11 and σ22 with ε 
P obtained at the apex of 

bulge test using Yld2004-Mixed model. 

 
Figure B.6 – Numerical biaxial deviation on the bulge test using the identified parameter sets of both 

Yld2004-Iso and Yld2004-Mixed models. Dashed lines correspond to the average values. 

 

0 0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35


P



 

 


11


22

0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

700

800


P


 

 


11


22

- -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4


P

B
ia

x
ia

l 
D

e
vi

a
ti

o
n

 (
%

)

 

 

Yld2004-Iso

Yld2004-Mixed

-

Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa Nelson Souto 2015



 

203 
 

Appendix C 

C. Shape optimization of the rectangular shear specimen 

The planar simple shear is a loading path particularly interesting for evaluating the mechanical 

properties of sheet metals. Actually, shear tests using rectangular specimen are widely used by 

the scientific community for characterizing the material behavior due to the large strains that can 

be obtained. Nevertheless, for high strength steels, such as dual-phase steel DP980, premature 

rupture occurs in the vicinity of the grips. For this material, the maximum shear strain achieved 

using the rectangular specimen geometry was 0.425. Due to this fact, the shape of the shear 

specimen is redesigned with the aim of maximizing the deformation achieved in the central part 

of the specimen without the occurrence of rupture near the grips.  

Dunand and Mohr (2011) performed a parametric study for evaluating the influence of 

some geometric parameters of a butterfly specimen applied to fracture testing. The butterfly 

specimen and the evaluated geometric parameters are depicted in Figure C.1.  

 
Figure C.1 – Schematic of the butterfly specimen proposed by Dunand and Mohr (2011). 

By using different values for the geometric parameters Rs and Rl, it was observed that (i) the 

homogeneity of the strain distribution can be improved by increasing the shoulder radius Rs, (ii) a 

concave (Rl > 0), in opposition to rectangular (Rl = ∞) and convex (Rl < 0) geometry of the lateral 

boundaries, leads to the reduction of strain concentrations near the specimen shoulders and (iii) 

the maximum value of the equivalent plastic strain along the lateral boundary can be reduced by 

varying the concave geometry of the lateral boundaries. This study consisted only of punctual 

testing of some different values of geometric parameters and was applied on a different specimen 
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type. However, considering their results and knowing that the rupture occurs at the corners of the 

rectangular shear specimen, in this work, just the lateral boundaries of the sample were subjected 

to shape optimization. 

C.1 Material and numerical validation 

Initially, shear tests were carried out on rectangular specimens of dimension 50 x 17 x 1.75 mm3. 

Nonetheless, sliding of the sample was verified during the experiments, as shown in Figure C.2 a). 

It is due to the hardness and considerable thickness of the specimen. Then, the sample geometry 

was modified and the shear tests were performed using the geometry depicted in Figure C.2 b) 

(Mishra, 2013). The reduction of the gauge area of the sample led to a significant decrease of the 

clamping load and, as a result, sliding was avoided. The numerical reproduction of DP980 

mechanical behavior was carried out considering a phenomenological model composed by the 

anisotropic yield criterion of Hill48 combined with a linear isotropic hardening law identified from 

tensile tests (Mishra et al., 2011). 

 
a) 

 
b) 

Figure C.2 – Shear specimen with a) rectangular and b) modified geometry. 

Table C.1 lists the anisotropic coefficients and the elastic properties of the material while 

Figure C.3 (left) presents the experimental and numerical shear stress-strain curves obtained. The 

results depicted in Figure C.3 (left) reveal a good agreement between the numerical and 

experimental behavior of DP980 steel. Additionally, the shear strain distribution along the lines 

parallel to the shear direction in the gauge area of the sample was also evaluated for the shear 

test at the RD. The shear strain distribution along the middle line and the lines at + 1 mm and - 1 

mm from the specimen center (shown in Figure C.2 b)), for an average shear strain of 0.35, are 

depicted in Figure C.3 b), a) and c), respectively. Note that the positions of 0 and 30 mm 

correspond to the lateral boundaries of the gauge area. Excepting the shear strain distribution for 

the line at +1 mm (Figure C.3Figure C a)) where the numerical reproduction exhibits some 

discrepancy, for the two remaining shear strain distributions reliable reproductions were 
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obtained. Thereby, these numerical results allow a good description of the DP980 mechanical 

behavior. 

Table C.1 – Plastic anisotropy and elastic coefficients of DP980 steel. 

 r0 r45 r90 E [Pa] υ 

DP980 0.63 0.95 0.82 180x10
9
 0.3 

 
Figure C.3 – Experimental and numerical (i) shear stress-strain curves at 0°, 45° and 90° to the RD (left) 

and (ii) shear strain distribution along the lines at a) +1 mm, b) middle and c) -1 mm of the specimen 

center for DP980 steel. 

C.2 Numerical modeling and rupture criterion 

The shape optimization is carried out by using a bidimensional numerical model that consists of 

the gauge area of the modified shear specimen. 

In shape optimization, it is essential to proceed to the parametrization of the specimen 

geometry in order to control the nodes position and also to obtain a reliable mesh definition 

when FE method is used. The commercial FE code ABAQUS is chosen for this purpose. The 

specimen geometry is parametrized on the ABAQUS input file considering mesh refinement in the 

boundaries of the sample. This local mesh refinement is required since the critical rupture is 

reached on the boundaries. Figure C.4 shows the different mesh regions defined on the numerical 

model of the shear sample. The zones A consist of an area of 3 x 3 mm2 at each opposite side of 

the specimen with a mesh definition of 6 elements/mm, while the zone B was defined with 6 

elements/mm along y-direction and 2 elements/mm along x-direction. This mesh is structured 
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with 4-node plane stress quadrilateral elements (CPS4). Moreover, ALE11 adaptative meshing was 

also included in the numerical model. This kind of formulation makes possible to maintain a high-

quality mesh throughout an analysis, even when large deformation or loss of material occurs, by 

allowing the mesh to move independently of the material. Additionally, this formulation does not 

alter the element connectivity of the mesh (Abaqus, 2009).  

 
Figure C.4 – Different zones defined over the numerical model of the shear sample, for mesh 

refinement. 

 The definition of the boundaries is performed using curve interpolation with cubic splines. In this 

way, a reduced number of design variables is used. 

For evaluating the rupture in the specimen geometry, RT (Rice and Tracey, 1969) 

macroscopic rupture criterion was implemented in a user-defined output variable subroutine 

(UVARM) for ABAQUS code. 

Mishra (2013) calibrated the RT criterion for DP980 steel through a uniaxial tensile test 

subjected to rupture and the critical value obtained was C
RTW =1.31. Moreover, RT criterion was 

compared for tension and bending tests, with triaxiality ratio of the order of 0.33 up to 0.66, and 

it was observed that this rupture criterion gives a good prediction of the rupture strain over all 

the stress triaxiality range (Mishra, 2013). Latter, it is shown that the stress triaxiality ratio for 

simple shear, near the free edges, reaches a value of 0.46 which is in the range used to validate 

the rupture criterion. 

For calibrating the rupture behavior in the shear test, a numerical reproduction up to the 

experimental rupture average strain (γ = 0.425) was carried out using the specimen geometry 

shown in Figure C.2 b). The critical RT rupture value obtained was 1.41. By comparing this rupture 

value with the one calibrated by Mishra (2013) using uniaxial tensile test, a discrepancy of about 

7% was obtained. Since such discrepancy is less than 10%, it was considered that the critical 

rupture value calibrated for the shear test remains acceptable. Therefore, it was considered that 

an accurate reproduction of the experimental reality is achieved with this model and, 

consequently, the critical rupture value obtained (1.41) was used as reference C
RTW  parameter in 

the shape optimization process.  

C.3 Shape optimization process 

As referred above, the aim of this work is to maximize the shear strain achieved on the shear 

sample before rupture takes place. For this purpose, the shape optimization process developed 

consists of finding the best geometry of the specimen boundaries that delay the rupture and, 

consequently, maximize the average shear strain. To do this, the numerical simulation of the 

                                                           
11

 Arbitrary Lagrangian Eulerian. 
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shear test is performed until the end criterion C
RTW  is reached, while the specimen boundary 

shape is iteratively updated in order to maximize the average value of shear strain. 

The success of the optimization process depends on a suitable definition of the objective 

function. This objective function must be formulated to represent the shape optimization 

problem and to satisfy the optimization approach considered. Therefore, the objective function 

Sobj(x) is defined as 

,)2()( 2
aveobj xS  (C.1) 

where x is the design variables set and γave is the average shear strain obtained for a region of 

2x1mm2 in the center of the specimen (shown in Figure C.6) when the reference critical rupture 

value is reached. 

The optimization process is conducted by an interface program developed in Matlab. This 

interface program is linked with the FE code ABAQUS to perform the numerical simulations and 

with a Fortran script to read the numerical results. Figure C.5 illustrates the flow diagram of the 

optimization methodology implemented. The objective function is minimized by using the Nelder-

Mead optimization algorithm (Coleman et al., 1999; González, 2001). 

 

 
Figure C.5 – Flow diagram of the optimization methodology implemented in this work. 
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The optimization process is repeated iteratively until a stagnation criterion of 1x10-15 

between two consecutive evaluations of the objective function is obtained or a maximum of 200 

evaluations is reached. In addition, the Nelder-Mead optimization algorithm used is available in 

Matlab by the fminsearch function (Coleman et al., 1999). 

In order to simplify the optimization problem, some conditions were defined: (i) it was 

considered that diagonal symmetry exists in the sample. Therefore, the geometric shape of the 

lateral boundaries is identical, however, inverted relatively to the other boundary side. Thus, just 

the design variables of one lateral boundary need to be optimized. It is illustrated in Figure C.6 by 

considering 5 design variables; (ii) the vertical position y of the design variables is fixed whereas 

the horizontal position x is subjected to optimization; (iii) the design variables (1 and 5) of the 

extremities are not subjected to optimization since a previous study considering these control 

points as variables revealed that no significant variations occur. These control points maintained 

almost the same initial value. Moreover, the imposition of this condition avoids eventual 

variations in the length of the gauge area and additional effort on manufacturing the optimized 

specimen geometry; (iv) different number of design variables are considered in the optimization 

process, namely, 3, 5 and 7 control points. These control points are equally spaced on the lateral 

boundary. The use of different number of design variables allow to evaluate the influence of the 

cubic splines interpolation in the obtained results; and (v) three optimization processes using 

different starting values were carried out for each optimization process (with 3, 5 or 7 design 

variables) because the Nelder-Mead algorithm, besides effective, does not avoid local minima of 

the objective function. 

 

Figure C.6 – Schematic representation of the shear specimen boundaries subjected to optimization. 

The average shear strain is calculated in the region with 2 x 1 mm2. 

C.4 Results and discussion 

Table C.2 shows the initial and optimal design variables and objective function values as well as 

the number of evaluations performed and the average shear strain obtained for each set of 

design variables. In addition, the deformed optimal shapes showing the RT distribution (UVARM1) 

are also depicted. Though three optimization processes were carried out for each set of design 

variables, just the one that achieved best results is presented in Table C.2. The best obtained 

shapes using 3, 5, and 7 design variables allow to reach 0.83, 1.03 and 1.05 of average strain. 

These results show that by optimizing the shear specimen shape it is possible to achieve 

substantial average shear strain up to rupture, when comparing with the average shear strain of 

0.425 that was experimentally obtained. In addition, it is also observed that a larger number of 
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design variables leads to an optimal geometry with larger average shear strain. However, for 5 

and 7 design variables the average shear strain value obtained is quite similar. 

The initial and best geometries using 3, 5 and 7 design variables are illustrated in Figure C.7 

a), b) and c), respectively, and these best geometries are compared in Figure C.7 d). 

Table C.2 – Optimization results obtained using 3, 5 and 7 design variables. 

 
By Figure C.7, it can be seen that the best geometry corresponds to a concave shape for the 

three optimization processes. It leads to the conclusion that this kind of specimen shape is the 

one more effective for delaying rupture in shear experiments.  

In this work, the best geometry shape was achieved using 7 design variables and the stress 

triaxiality (χ=σH/σeq) was evaluated for this specimen geometry. A maximum value of 0.46 was 

obtained near the free edges in this stress analysis. This value is in agreement with the range used 

to validate the rupture criterion. 

Opt. Variables Initial (mm) Optimal (mm) 

3 control 
points 

x1 0.0  0.0  

 
 

 

x2 0.5  0.49  

x3 0.0  0.0  

Iterations  45  

Sobj initial  1.49  

Sobj final  1.36  

γave  0.83  

5 control 
points 

x1 0.0  0.0 

 
 

 

x2 0.4  0.33  

x3 0.6  0.57  

x4 0.4  0.46  

x5 0.0  0.0  

Iterations  137  

Sobj initial  1.25  

Sobj final  0.92  

γave  1.03  

7 control 
points 

x1 0.0  0.0 

 
 

 

x2 0.1  0.23  

x3 0.25  0.41  

x4 0.31  0.50  

x5 0.25  0.41  

x6 0.1  0.18  

x7 0.0  0.0  

Iterations  157  

Sobj initial  1.65  

Sobj final  0.88  

γave  1.05  
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Figure C.7 – Initial and best boundary shapes using a) 3, b) 5 and c) 7 design variables; d) best 

boundary shapes using 3, 5 and 7 design variables. 

C.5 Conclusion 

The aim of this work is the optimization of the conventional simple shear specimen in order to 

obtain a large level of deformation. This work comes from the fact that hard materials, such as DP 

980 steel, reach premature rupture in shear near the grips. In the case of this material, the 

experimental rupture was obtained for an average shear strain of 0.425. 

A shape optimization process based on RT macroscopic rupture criterion was defined to 

solve this problem. Cubic splines were applied for describing the boundary geometries and the 

Nelder-Mead algorithm was used for minimizing the objective function. The optimization results 

show that concave shape is the most effective one to delay the rupture. In addition, when a larger 

number of design variables is used, the higher is the average shear strain achieved. The best 

geometry allows reaching an average shear strain value of 1.05. However, this shear strain value 

was obtained numerically and experimental results using this optimized geometry shape are 

required for validating the accuracy of this value and, consequently, of this shape optimization 

process. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Appendix D 

D. Cubic splines definition 

The curve interpolation is a useful technique to interpolate between known data points in order 

to design and control the shape of smooth complex curves and surfaces. The main principle of this 

technique consists in using the mathematical representation of polynomials defined by a 

sequence of a few points to construct a complex curve whose shape follows this sequence. The 

points are called control points. 

The interpolation methods used in curve interpolation technique are, usually, divided into 

two main categories: global interpolation and piecewise interpolation (Lyche and Mørken, 2008). 

The global interpolation method deals with the construction of a single mathematical 

equation fitting all the control points. This single mathematical equation corresponds to a high 

degree polynomial. In fact, a polynomial of degree n is needed to interpolate n+1 control points. 

This kind of interpolation method results in smooth curves when no abrupt changes along the 

sequence of control points exist. However, for complex shapes such as the ones used on several 

engineering applications, the global interpolation is not well suited due to the fact that a high 

degree polynomial catches all oscillations at least until n-1 derivatives leading to estimation and 

round off errors and then, severe oscillation and overshoot at intermediate points (Knott, 2000; 

Lyche and Mørken, 2008). 

The piecewise interpolation is based on the construction of a complex curve shape applying 

a lower degree polynomial between each pair of control points. Splines, B-splines or Bézier are 

some types of polynomial curves used in piecewise interpolation (de Boor, 1978; Knott, 2000; 

Lyche and Mørken, 2008). The splines defined with second or third degree polynomials are called, 

respectively, quadratic or cubic splines. The cubic spline is the one most typically chosen for 

constructing interpolation curves since (i) it is the lowest degree polynomial that can support an 

inflection, allowing defining flexible curves and (ii) it behaves well numerically promoting a 

smooth and continuous curve. It is due to the fact that the cubic splines are formulated 

considering continuous and smooth connections between consecutive control points. In addition, 

since cubic splines are defined by a lower degree polynomial, the oscillations captured are kept to 

a minimum and, generally, high approximations of the curve shape behavior are provided (Knott, 

2000; Lyche and Mørken, 2008). 
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In Figure D.1, the performance between a polynomial of degree 6, quadratic and cubic 

splines used for the definition of a curve shape using 7 control points can be compared. It can be 

easily seen that the cubic spline leads to a better representation of the curve shape. 

 
Figure D.1 – Curve shapes obtained using quadratic splines, a polynomial function of degree 6 and 

cubic splines. 

A cubic spline is defined mathematically for given n control points, (x1,y1),…,(xn,yn), by a 

piecewise function of the form (Matlab): 
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where bi, ci and di with i = 1,…, n-1 are chosen to satisfy the interpolation constraints and also 

some smoothness constraints. For instance, the continuity (C0) between each curve segment at 

the control points is enforced by 

1111 )()(   iiiii yxSxS  (D.2) 

and at the right value of x, Sn-1(xn)=yn. Additionally, C1 and C2 continuity imposing that the shapes 

and curvatures of curve segments connected by the same control points is also considered by 

)()( 1
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Finally, two more constraints are needed to define uniquely the cubic splines. These ones consist 

of defining that the third derivatives match at x2 and xn-1 control points. Such constraints are 

designated as “Not-A-Knot” condition and are written as (Matlab) 

)()( 2
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and 
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