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In this thesis, I have extend LIUM's phrase-based statistical machine translation system in many ways. Phrase-based systems are considered to be one of the best performing approaches. Basically, two probabilistic models are used, a translation model and a language model. The translation model is trained on bilingual corpora and is used to model the faithfulness of the translation. The language model is trained on monolingual corpora and is used to improve the fluency of the translation output.

Ihavebeenworkingonimprovingthetranslationquality . Thisisdone by focusing on three different aspects. The first aspect is reducing the number of unknown words in the translated output. I concentrate on three types of unknown words. First, words which are not correctly morphologically segmented -this can be corrected by using a better segmentation. Second, the entities like numbers or dates that can be translated efficiently by some transfer rules. Finally, I have been working on the transliteration of named entities.

The second aspect of my work is the adaptation of the translation model to the domain or genre of the translation task. This is done by weighting different bilingual sub-corpora according to their importance. One technique is weighting of translation models using perplexity optimization. Another way is using a multi-domain translation model architecture. In this architecture, the computation of the translation model probabilities is delayed until decoding time, allowing dynamic instance weighting using optimized weights.

Finally, I have been working on improved language modeling, based on neural network language models, also called continuous space language models. They are used to rescore the n-best translation hypotheses. All the developed techniques have been thoroughly evaluated and I took part in three international evaluations of the Bolt project. 
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Introduction

Nowadays, the modern technological advances in communication has turned the world into a small village. It is easy to communicate by phone with any person in any geographical location. It is also possible, using the widely spread mobile devices, to reach any person not only at his address but virtually anywhere. If two persons have an internet connection, beside that they can use text messaging and talking using regular free audio calls, they can also have free video calls if they have a camera device installed. Even though many people now have a mobile phone with 3G or 4G access to the internet, there is still a big communication obstacle between people from different parts of the world. This problem is the language barrier between people speaking different languages. The next mankind hope would be reliable technology that can overcome the language barrier and facilitate the communication between people. This could be instant translation of audio or text from any foreign language to our native language and vice versa.

In the last decade, the need for such automatic translation was driven by the wide spread of the internet and the rapid increase of web content. Many internet users would like to read and have a fair understanding of web sites written in other languages. The continuous increase in the number of users of many internet services like social networks (e.g. Facebook, Google+ and Linkedin), chat and audio/video calls (e.g. Whatsapp and Skype) created a need and a business for automatic translation services. This is because most users prefer to speak, read and write using their own native language. If the user can read in his native language a web page or a post on Facebook written in another foreign language, this would allow him to communicate effectively in an interactive way. This also means, from service business point of view, more revenue from advertisement and better target audience for the user's native language ads, which means more sales for the advertiser. These great business opportunities were interesting and raised the fund for more machine translation research in big internet companies. Some companies already established an online free automatic translation service like Microsoft Bing (supports 51 languages) and Google translate (supports 90 languages). Facebook integrated an option that allows the user to translate in-place any post written in a different language. They used "Bing" translation service from Microsoft. A Similar option to translate e-mail content is integrated into Gmail, the widely used e-mail service from Google. Another challenge facing these free online automatic translation services is the scalability and the reliability. Due to the interactive nature of such services, internet users expect fast translation and uninterrupted service.

Since early days of computers, scientists tried to build machine translation systems. At that time, they started by focusing on linguistic approaches to address the machine translation problem. They had, with a lot of optimism, the impression that once the vocabulary and the grammar rules are programmed, automatic translation will be an easy task. These approaches use linguistic analysis and generation with different depth. The deeper the analysis, the more abstract is the intermediate representation of the source sentence, which also requires more effort to generate the target sentence from this intermediate representation. The linguistic approach evolved over time, starting from the transfer-based method, to the interlingua method.

Another better approach which makes use of the translations extracted from corpora previously translated by humans is the corpus-based approach. One example of the corpus-based approach is Statistical Machine Translation (SMT), which is based on statistical models trained on bilingual and monolingual corpora. SMT was invented in the IBM Research Lab. Basically, two probabilistic models are used, a translation model which is trained on bilingual corpora and a language model which is trained on monolingual corpora. SMT has many advantages, it is language independent, easy, cheap and fast to build. Many tools for training and decoding are freely available now. Also the huge bilingual and monolingual corpora needed for training are available for many language pairs. The current state of the art in SMT is the Phrase-based Statistical Machine Translation (PBSMT) because it uses longer translation units than the initial word-based models. By these means, more contextual information is captured by the translation model, which improves the translation quality. It also uses the log linear model which allows the integration of additional features into the model with different weights. The weights are optimized using optimization algorithms. The Arabic language received a lot of attention in the machine translation community during the last decade. It is the official language of 25 countries and it is spoken by more than 295 million people. Egypt is the largest Arabic speaking country with a population around 90 million. The Egyptian dialect is the main spoken Arabic dialect in Egypt. A map of different Arabic dialects are shown in Figure 1.1. The interest in Arabic language and its dialects increased more after the Arab spring and the political change in the Arab countries. In this thesis, I worked on improving LIUM's machine translation system for Arabic/Egyptian into English in the frame-work of the BOLT project.

The work in this thesis was part of the Broad Operational Language Translation (Bolt) program funded by Defense Advanced Research Projects Agency (DARPA) in the USA. Bolt focuses on improving machine translation of informal Egyptian dialect and Chinese text into English. In this thesis, I focus only on translation of Egyptian dialect. The following informal text types were in the scope of the project: discussion forums, SMS/chat and conversational telephone speech (CTS) transcription.

The modern standard Arabic (MSA) and the Egyptian dialect have common MT challenges. This is because the Egyptian dialect is a mixture of MSA and additional dialectal words and dialectal structure. Egyptian dialect shares many words, features and grammar with MSA. For examples, missing short vowels, the clitics and the sentence structure . Additionally, the Egyptian dialect has its own special attributes. They can be divided into two categories: general and writing specific. The general category includes: more flexible sentence structure for example the sentence ËA™" ⌘ Å ⇣ ⌧kQ "A K@ (i.e. I did not go with him) has a different word order than its equivalent in MSA È ™ "I . Î X @' ÀA K@. Another attribute is that Egyptian dialect has different or additional morphological forms for some words like ⌘ Å ⇣ ⌧kQ" (i.e. I did not go) which has no equivalent word in MSA. Also Egyptian has different inflection compared to MSA like ⌘ Å ⇣ ⌧ øA" (i.e. She did not eat) which in MSA …ø A ⇣ K' À .I ta l s or e p l a c e ss o m el e t t e r sb yo t h e r s for sake of easy pronunciation like replacing ⌘ H by ⇣ H in the MSA word ⇣ È ⌘ KC ⌘ K (i.e. three) to be È ⇣ KC ⇣ K or êin ° . A ì (i.e. officer) to be ° . A £ and adding additional letters to the MSA word like adding additional alef @ in …g . P (i.e. man) to be …g . @ P and in È™" (i.e. with him) to be ËA™".

The writing specific category includes: various orthographic forms of the same word due to lack of a standard writing like ⇣ ÜÒ Ç ⌧ ⌦ k (i.e. he will drive) and ⇣ ÜÒ Ç⌧ ⌦ Î or ⌘ ÄAae™" (i.e. you do not have anything) and ⌘ Å∫™";ah i g hr a t eo f orthographic mistakes, letter repetitions like © K@@@@ P (i.e. wonderful); and omitting of some punctuations and some letters' dots like in ¯QK . Òª (i.e. bridge) instead of ⌦ QK . Ò ª;a n du s i n go fa d d i t i o n a lv o c a b u l a r yw h i c ha r en o ti nM S A ⇣ I É (i.e.

woman), ⇣ IK ⌦ PAK ⌦ (i.e. I hope), ⌦ P (i.e. like). Some of these characteristics cause the training data to be more sparse or introduce more ambiguity.

In addition to the MSA and Egyptian dialect challenges in MT, there are general MT challenges. One of these challenges is that some words are not translated by the SMT system because they are Out-Of-Vocabulary (OOV) words. One way to deal with OOV words is to automatically identify and transliterate proper nouns. Transliteration is the process of writing a word (mainly proper nouns) from one language in the alphabet of another language. This requires mapping the pronunciation of the word from the original language to the closest possible pronunciation in the target language. Since I am using a statistical approach throughout this thesis, I will need data to train the system. In this case, the training data should be a bilingual list of names in Arabic and English. Since we do not have this training data available, we have to deal with the automatic extraction of this parallel list of names from the available corpora. This is called transliteration mining.

Another challenge is the adaptation of SMT systems to the Egyptian dialect. The available training corpora, in the context of Bolt program, contain MSA, Egyptian, Levantine and Iraqi dialects. One way to benefit from such heterogeneous training corpora is treating different dialects as different domains. This is done by weighting different translation models according to their importance using perplexity optimization. One of the disadvantages of this technique is that we can adapt the system either to MSA or to the Egyptian dialect but not both together. To overcome this disadvantage, I experimented with a multi-domain translation model architecture. This architecture delays the computation of the translation model features until decoding, allowing dynamic instance weighting using optimized weights from multiple domains (i.e. MSA and Egyptian dialect in our case).

Besides adapting the SMT system to the Egyptian dialect and different genres, I also addressed the translation of ambiguous (i.e. with different meanings) Arabic/Egyptian words. This is achieved by applying a word sense disambiguation (WSD) technique on ambiguous words. I used this technique to help the phrase-based SMT system to better translate ambiguous words.

Finally, another challenge is improving language modeling which plays an important role in MT. It is today acknowledged that neural network language models, also called continuous space language models (CSLMs) outperform ngram language models. However, CSLMs are usually not used in SMT decoding because of high the computational complexity. CLSMs are usually used to rescore the n-best list of hypotheses. One possible way to improve CSLM is by providing additional information at the input of the neural network. For example, this additional information can be used to train a topic-conditioned CLSM. I experiment with different types of auxiliary features including line length, text genre, vector representations of multiple lines, ... etc. By these means, better domain and context specific LM estimations can be obtained.

Scientific goals and objectives

The main aim of this PhD thesis is to improve a state of the art PBSMT system of informal Egyptian into English for the three genres in the scope of Bolt program by applying new approaches and techniques.

The following are the main scientific objectives for this work:

• Development and improvement of a PBSMT system for Bolt program.

• Adaptation the PBSMT system on Egyptian dialects and different genres by applying domain adaptation techniques.

• Development of multi-domain (i.e. MSA and Egyptian dialect) dynamic adaptation technique to build a dialect independent PBSMT system.

• Reduction of the number of OOVs in the translated output using different techniques targeting different type of OOVs. The concentration was on three types of unknown words, words which are morphologically segmented incorrectly, entities like numbers or dates and proper nouns.

• Integration of new features and techniques from other disciplines like neural networks, word sense disambiguation into the baseline PBSMT system to improve the translation quality.

• Evaluation of our improvements in the yearly Bolt program evaluation as well as in other international evaluation campaigns like OpenMT organized by National Institute of Standard and Technology (NIST).

Research contributions

The contributions of this thesis are as follows:

• An o v e lt r a n s l i t e r a t i o nm i n i n ga l g o r i t h mu s i n gb i l i n g u a la n dm o n o l i n g u a l corpora. The results of the transliteration mining is partitioned based on the origin of the name (either from Arabic or English origin) and then used to train a forward and backward transliteration system. These transliteration system can be used to decrease the number of OOVs by transliterate proper nouns.

• A novel CSLM architecture which using additional information at the input of the neural network. This is used to train an auxiliary feature conditioned CLSM. By these means, better domain and context specific LM estimations can be obtained. The architecture is evaluated using different types of auxiliary features including line length, text genre, vector representations of multiple lines, ... etc..

• Development of dialect independent PBSMT system by using an architecture that delays the computation of the translation model features until decoding, allowing dynamic instance weighting that uses optimized weights from multiple domains (i.e. MSA and Egyptian dialect).

• Evaluating recent well established methods and techniques in the literature by applying them in the context of Bolt program and report the best practices on using them.

Outline of the thesis

The thesis consists of 6 chapters which are organized as follows: Chapter Chapter 2

Introduction to Machine Translation

In this chapter, I will give a general introduction to machine translation (MT), its history and approaches. I will focus more on statistical machine translation (SMT) since it is the basis of my work in this thesis. I will cover different components of word-based and phrase-based SMT, including the translation model (TM) and the language model (LM). For the language model, I will give a brief introduction to n-gram back-off and neural network language models. Decoding, MT metrics and evaluation will also be covered. The last section of this chapter will give an overview on the challenges of translating the Arabic language and the Egyptian dialect since this is the focus of the experiments in this thesis.

Machine translation history

Automatic translation, or machine translation as it is generally known, is the attempt to automate all, or part of the process of translation from one human language to another [START_REF] Arnold | Machine Translation: an Introductory Guide[END_REF].

The motivation behind MT is the ability of fast translation of text or audio from one language into another language regardless of the availability of human translators. MT would also break the language barrier between people. For ex-ample, currently, online MT services (e.g. Google translate or Microsoft Bing) provide a translation of a text of various quality that allows the users to have a fairly good understanding of the content. MT can also provide an initial draft translation to human translators who have to review and post-edit it. This can decrease the human translation time, effort and hence cost.

Computers were used during the second world war in Britain to break the German Enigma code by considering it as coded English and decode it. This decoding seemed like an apt metaphor for machine translation. From these early days, the view was optimistic and even over-promising researches were going on. For example, in 1954, the Georgetown university and IBM develop ed jointly an experiment to demonstrate a machine translation system. The experiment involved the automatic translation of about sixty Russian sentences into English. It was claimed that within three to five years the MT problem will be solved. A good amount of funding was provided to machine translation researches around the world guided by these optimistic goals. Many approaches were explored from direct translation with some basic transfer rules to more complex interlingua approaches that use an abstract semantic representation.

In 1966, the Automatic Language Processing Advisory Committee (ALPAC) report was issued, which had a negative impact on MT research funding and almost caused a stop of funding from US agencies. Before it, there were many hopes in the MT research community which had unrealistic targets for possible progress and the ability of machine translation systems at that time. The report basically showed that the cost of machine translation or post editing of automatic translation is higher than human translation. The report observed that there is no shortage of human translators, as well as no big demand of translation of the Russian scientific literature. The report suggested that there is no advantage of using machine translation systems over human translation and recommended to direct the funding to basic linguistic research.

Even though funding was sharply reduced in the USA, research in Europe and other countries continued with funding from the government and commercial companies. For example, the Systran company was founded in 1968. It developed a Russian-English MT system that was used by the US Air Force since 1970. The university of Montreal developed a fully functional MT system for weather forecasts called Météo which has been used since 1976.

The development of rule-based MT continued during the 80s and 90s. For example, Carnegie Mellon University developed the CATALYST system that use interlingua to represent the sentence meaning in a language-independent form. Other systems were developed by universities (e.g. Pangloss which was developed by the New Mexico State University, the University of Southern California, and CMU).

In 1988, at the second Theoretical and Methodological Issues (TMI) in machine translation conference at Carnegie Mellon University, a new era of MT started when IBM's Peter Brown and his colleagues presented an approach to MT which was purely statistical [START_REF] Brown | A statistical approach to language translation[END_REF], inspired by successes of similar work in speech processing. At that time, most researches were focused on syntax-based and interlingua approaches. The statistical approach started to get more interest during 1990s. This was facilitated by various free tools which implement IBM methods. By 2000, many statistical machine translation researches were on-going by many projects. This was motivated by more funds especially from Defense Advanced Research Projects Agency (DARPA), which is a leading funding agency in the US. DARPA showed great interest in statistical approach for MT and funded large projects: TIDES and Global Autonomous Language Exploitation (GALE). Now, many universities and companies (like Google, IBM, Microsoft and Facebook) are developing statistical machine translation systems. A periodically NIST evaluation workshop is organized by NIST in order to exchange ideas and latest developments and measure progress in the MT field. Today, statistical machine translation represents the state-of-the-art. SMT and other data-driven approaches are widely used because of the increase in computing power and the availability of free tools and resources.

Recently, other approaches are proposed like using neural network based machine translation [Bahdanau et al., 2014;[START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF], which could be competitive and promising.

Machine translation approaches

We will divide the MT approaches into linguistic and corpus-based approaches. [START_REF] Vauquois | A survey of formal grammars and algorithms for recognition and transformation in mechanical translation[END_REF] 

Text in Source Language

Text in Target Language

Interlingua

Linguistic approach

This approach uses linguistic analysis and generation with different depth. The deeper the analysis, the more abstract is the intermediate representation of the source sentence, which also requires more effort to generate the target sentence from this intermediate representation.

The linguistic approach evolved over time, starting from the transfer-based method, to the interlingua method as shown by the Vauquois triangle in Figure 2.1. Each method is explained in brief in the following sections.

Transfer-based method

In direct-transfer translation, the source language words are translated word by word using a bilingual dictionary to the target words. Reordering is performed on the translation output using simple syntactic rules (e.g. move adjective after noun). As shown in Figure 2.1,d i r e c t -t r a n s f e ru s e sam o r p h o l o g i c a la n a l y s i so f words and a complex bilingual dictionary, as well as some simple reordering rules. There is no deep analysis of the source sentence nor complex generation rules for the target translation. This gives fair translation for simple sentence structures if used between languages which are syntactically and semantically close.

In the higher transfer-based method a complex linguistic analysis and generation can be used during translation. This consists of three steps: analysis, transfer and generation [START_REF] Arnold | Machine Translation: an Introductory Guide[END_REF]. The first step is to perform deeper analysis of the source language text which can be syntactic and/or semantic. In the second step, a transfer from the source sentence syntactic/semantic representation to the target language representation is performed using mapping rules. Finally, a generation of the target sentence from the mapped representation is performed.

Usually this analysis requires a special syntactic parser that only focuses on differences between the source and target language in order to facilitate the mapping step. For the syntactic transfer, several types of transfer rules will be required: syntactic and lexical. The first one will be used to map the sentence syntactic representation from the source language into the target language [START_REF] Jurafsky | Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition[END_REF], while the second one is needed to select the correct word-to-word translation using a bilingual dictionary that could deal with lexical ambiguity. It is possible to resolve lexical ambiguity by performing word sense disambiguation during the source language analysis phase. Semantic transfer can be used to deal with semantic roles in the sentence structure.

Interlingua method

As seen in the previous section, the transfer-based method involves source and target language-dependent rules for lexical, syntactic and semantic transfer. If we want to translate between more than two languages, we have to write a distinct sets of transfer rules for each language-pair. The simple idea of interlingua is to represent the source sentence in a language-independent abstract concept representation that can be generated from any source language, and which is also used to generate the sentence in any target language. This universal representation is called interlingua. As shown in Figure 2.1,m o r ee ff o r ti sn e e d e dt op e r f o r mt h e analysis to get the interlingua representation as well as to generate the translation output in the target language than for the other methods below in the pyramid.

One of the advantages of the interlingua method is that it would be easy to support translation from a new source language. This will only require building the analysis modules to get the interlingua representation, then the system will be able to generate the translation from this new source language into all already supported target languages. In this method, there is no need for lexical transfer rules since interlingua is an abstract representation that represents source words in a disambiguated semantic form, that can be used to generate the correct translation just by using the target language generation module. Since interlingua requires deep concept and semantic analysis, it is usually used in simple domains like weather forecast, hotel reservation or air travel domains. One example of such a system is the CATALYST project at Carnegie Mellon University (CMU). It was used to translate technical manuals and documentation at the Caterpillar Tractor company.

Corpus-based approach

Corpus-based approaches are using translations extracted from corpora previously translated by humans. Typical examples of of corpus-based approaches are:

• Example-based MT:
This method was motivated by the way human translators work when using ab i l i n g u a ld i c t i o n a r y . T h es y s t e ms e a r c h e si nt h ep a r a l l e lc o r p o r at ofi n d the closest source example to the source phrase. Finding the best match for a source phrase can involve calculating the closeness to various stored examples. Target phrases in the correspondence translation examples are extracted and combined to generate the target sentence. This is done based on the probability of the source phrase's alternative translations. More details on example-based MT approach can be found in [Somers, 1999] • Statistical machine translation: Another method of a corpus-based approach is Statistical Machine Translation (SMT), which is based on statistical models trained on bilingual and monolingual corpora. SMT was invented in the IBM Research Labs by [START_REF] Peter | A statistical approach to machine translation[END_REF]]a f t e rt h es u c c e s so fu s i n gs t a t i s t i c a lm e t h o d si n speech recognition in the late 80s. Basically, two probabilistic models are used, a translation model which is trained on bilingual corpora and is used to estimate the probability that the source sentence is a translation of the target sentence and a language model which is trained on monolingual corpora and is used to improve the fluency of the output translation.

SMT uses conditional probability theory to find the translation t of the source sentence s that has maximum conditional probability P (t|s). Bayes rule is applied to invert the translation direction to P (s|t)a n dt oi n t e g r a t e al a n g u a g em od e lP ( t ) . I fs = s 1 ,...,s j ,...,s ls is the source sentence with length l s and t = t 1 ,...,t i ,...,t lt is the target sentence with length l t .T h e best translation t best is the one that has maximum probability using noisy channel model as shown in Equation 2.1.

t best =argmax t P (t|s)=argmax t Translation Model z }| { P (s|t) × Language M odel z}|{ P (t)( 2 . 1 )
Until today, SMT is widely used and still obtains state-of-the-art results for many language pairs. Since it is the method used in this thesis, I will explain it in more details in Section 2.3.

Statistical machine translation

SMT has many advantages, it is language independent, easy, cheap and fast to build. The fundamental equation of statistical machine translation is Equation 2.1, which consists of two components, the translation model P (s|t)a n dt h el a nguage model P (t). According to this equation, we need to calculate the reverse translation probability P (s|t). Maximizing the reversed translation probability component tries to ensure that the output translation t best corresponds semantically to the source sentence s. While maximizing the language model component ensures that the generated translation is grammatically correct, fluent and commonly used. The process of finding this best translation is called decoding and it is performed by a component called the decoder.S e v e r a ld e c o d i n ga l g o r i t h m s have been used, I will give more information on the decoding process and decoding algorithms in Section 2.3.4.

Word-based translation models

According to Equation 2.1,t h ei n v e r s et r a n s l a t i o np r o b a b i l i t yp(s|t)i sn e e d e d . Many techniques have been developed to calculate it from bilingual corpora. In order to simplify the presentation of these methods, we will assume that we want to calculate p(t|s)w h e r es is the source and t is the target sentence.

Although, the word-based translation model is not the current state-of-theart, it provides the basis for most current statistical machine translation methods. The IBM models were originally the result of the work at the IBM Watson Research center in the context of Candide project in the early 1990s. [START_REF] Peter | A statistical approach to machine translation[END_REF]p r o po s e dfi v eg e n e r a t i v em od e l st oc a l c u l a t et h et r a n s l a t i o nm od e lp r o b ability p(t|s). These generative models are used to generate a number of different translations for a sentence, each with different probability.

Practically, the translation model cannot be calculated directly by collecting sentences statistics due to sparseness, instead it could be calculated indirectly by decomposing the sentence into a sequence of words, then collect the needed statistics to estimate the probability distribution. The IBM models propose algorithms for estimating the probability that a word in the source sentence will be a translation of a particular word in the target sentence [START_REF] Peter | A statistical approach to machine translation[END_REF]. Once such probabilities are estimated they can be used together to align the words in a target sentence with the words in the corresponding source sentence. An example of the alignment of Egyptian Arabic and English sentences is shown in Figure 2 Word alignment: IBM models are defined over a hidden alignment variable a which captures the word-level correspondences between s and t.T h ec o n d i t i o n a lp r o b a b i l i t yp(t|s) is expressed as a sum of the probabilities of hidden alignments a between s and t as follows [START_REF] Peter | A statistical approach to machine translation[END_REF]:

P (t|s)= X a P (t, a|s)( 2 . 2 )
where a is a vector of alignment positions a i for each word t i in t.

This word alignment is a mapping function for each sentence pair, which maps each word in the translated sentence at position i to a word at position j in the source sentence a : i → j. This alignment function is mapping each source word position to one target word position. So it is not possible to have one-to-many or many-to-many alignments, but many-to-one.

It is normal that in some languages, words in the source sentence have no translation and hence are not aligned to any word in the target sentence. In this case the alignment model will learn to drop such words during translation. To fully define the alignment function, we need to assign an alignment index for all words in the target sentence. An additional word s 0 = NULL is added to the source sentence (usually at index 0) which is used as a mapping index for each target word that does not align to any source word (called spurious words). This allows the alignment model to give an alignment position for each target word, even those which are not a direct translation of any word in the source sentence. [Dempster et al., 1977]i su s e dt oe s t i m a t et h eh i d d e np a r a m e t e r sb ym a x i m i z i n g the likelihood probability of the bilingual training corpus which is considered as a set of independent sentence pairs. Two of the widely used toolkit that implements IBM models is GIZA++ [Och and Ney, 2003b] and MGIZA++ [START_REF] Gao | Parallel implementations of word alignment tool[END_REF].

Hidden Markov Model (HMM), IBM models 1 and 2

These three models are used to estimate the alignment using the lexical translation probability distribution P (t i |s a i ), which is calculated using the count of co-occurrences of aligned word pairs in the bilingual training corpus. All the three models are using the following decomposition equation for P (t, a|s):

P (t, a|s)= lt Y i=1 P (t i |s a i )P (a i |a i-1 , i, l t ,l s )( 2 . 3 )
where a is a vector of alignment positions, a i = j for the word t i in t.T h e difference between how the three models parameterize the alignment is shown in the following equation: > > < > > :

✏ (ls+1) l t IBM 1 P (a i |i, l s ,l t )I B M 2 P (a i -a i-1 ) HMM (2.4)
In IBM model 1,a l la l i g n m e n ta r ee q u a l l yl i k e l y ,s ot h el e x i c a lt r a n s l a t i o n probability is normalized by the source sentence length (including the additional virtual NULL word). In IBM model 2,t h em o d e ld e p e n d so nt h ep o s i t i o no f the aligned words. In the HMM model,t h em o d e ld e p e n d so nt h es h i f to ft h e current aligned word position from the previous aligned word position. It is clear that IBM model 1 lacks the ability to model word reordering.

Since the alignment is hidden and unknown, the estimation of the lexical probabilistic model is a kind of incomplete data problem. In machine learning, the incomplete data problem is addressed using the EM algorithm. The EM algorithm is an iterative algorithm that fills the gaps in the data, then trains the model in alternating steps. In summary EM will start with uniform lexical probabilities (i.e. initially the alignments will be equally likely). In the following iterations, EM will use co-occurrence counts of each word pair to learn better lexical probabilities. EM keeps doing this until convergence to good lexical probabilities.

The EM algorithm works as follows:

1. Initialize the model with some lexical translation probability distribution.

Uniform distribution can be used.

2. Expectation step: collect sentence level co-occurrence counts of each word pair in the training aligned corpus.

3. Maximization step: re-estimate the lexical translation probabilities based on the new counts.

4. Loop though step 2 and 3 until convergence.

For each iteration, the p erplexity is used to evaluate and determine the convergence of the EM algorithm, which will decrease at every iteration. It is calculated as follows:

log 2 PP = - X s log 2 p(t s |s s )( 2 . 5 )
For IBM mo del 1, the EM training is guaranteed to converge to the global minimum, while for IBM Model 2 and HMM model, it will converge to local minimum.

IBM models 3, 4 and 5

IBM models 1 and 2 and the HMM model are generative models, which focus on the words in the source sentence to calculate the lexical translation probabilities, while in IBM models 3, 4 and 5, the generative models are focusing on the target sentence, first by choosing the source word fertility (i.e. the number of connections with target words), then the identity of these target words, and finally their position in the target sentence.

IBM Model 3, models the fertility and the NULL tokens insertion. The fertility parameter P (φ|s j )i si n c o r p o r a t e d ,w h e r eφ is the number of target words aligned to the source word s j .D r o p p i n go fs o u r c ew o r d sd u r i n gt r a n s l a t i o nc a nb e modeled by φ =0whic hisP (0|s j ). The NULL insertion is modeled as a special step after the fertility step, where NULL token is inserted with the probability p1 and not inserted with the probability of p0=1-p1. Lexical translation is handled using the conditional probability distribution P (t i |s a i )a si nI B Mm o d e l1 . Distortion is modeled the same way as in IBM model 2 with the probability distribution P (i|j, l t ,l s ).

IBM model 4 provides more improvement over IBM model 3. Since the distortion parameters of model 3 can not realistically be estimated for long source and target sentences due to data sparseness, they are replaced with relative distortion parameters. In this model, the placement of the target translation of a source word is based on the placement of the translation of the preceding source word.

IBM model 5 fixes the deficiency problem in IBM models 3 and 4. The deficient problem happens because in these two models multiple target words can be placed in the same position. Model 5 fixes this problem by keeping track of the available target word positions and allows placement only into these positions.

Limitations of the IBM models:

IBM models have several limitations: they can align each target word to one source word only, while many to many alignments are needed to translate expressions and idioms. Also they do not use any context information to estimate the translation probabilities. These limitations have been overcoming in the phrasebased translation model which is explained in the following section.

Phrase-based translation models

Phrase-based models use longer translation units. If the translation unit is larger than one word, more contextual information is captured by the translation model which leads to better word selection from different translation candidates. This multi-word translation unit is called a phrase,h o w e v e ri ti sn o tl i n g u i s t i c a l l y motivated. Phrase-based models uses more simple and accurate re-ordering technique which 

Phrase pair extraction

In order to extract phrases during training, IBM models are used to generate word-level alignments, which are used to extract aligned phrase-pairs. The first step is performing asymmetric alignment of the bilingual corpus in both source to target and target to source directions. The second step is getting a high-precision alignment and a high-recall alignment by using the intersection and the union of both alignments respectively. Using heuristics, we start with the high-precision alignment points and add additional alignment points. The phrase extraction is performed by looping over all possible phrases of the target sentence and finding the minimal source phrases that match each of them [START_REF] Koehn | Statistical phrase-based translation[END_REF]. Several conditions should be considered while extracting phrase pairs:

1. All alignments points between the phrase-pair should be included. This is because if the extracted phrase-pair contains a word that is translated to two or more words, these words should be included in the target phrase.

Such phrase-pairs are called consistent phrase-pairs as shown in Figure 2.6.

Figure 2.6: Consistent and non-consistent phrase-pairs (from [START_REF] Koehn | Statistical Machine Translation[END_REF]).

2. Any extracted phrase pair should contain at least one alignment point.

3. More phrase-pairs can be extracted by by including more unaligned words near its boundaries.

The alignment we explained in Section 2.3.1.1 is called asymmetric alignment because it is restricted to map each output word to only one input word. In order to overcome this problem, a method called symmetrizing is used. The symmetrizing method consists of: train the alignment in two directions, source-to-target and target-to-source directions separately to get two alignment matrices, then combine these two alignment matrices. One way to combine them is to take the intersection of them to get the alignment points that exists in both of them (i.e. the high-precision alignment) as shown in Figure 2.7.Ap h r a s e -p a i r se x t r a c t i o n can use this high-precision alignment matrix to extract consistent phrase-pairs.

Phrase-based translation model

If the source sentence s is broken up into I phrases, the reverse translation model P (s|t)i sc a l c u l a t e da sf o l l o w s : The first part φ(s i , ti )inEquation2.6 is the phrase translation probability that the phrase si is the translation of the phrase ti .I ti sm o d e l e da sat r a n s l a t i o n from target to source and is calculated by collecting the counts from the training data as follows:

P (s|t)= I Y i=1 φ(s i | ti )d(a i -b i-1 -1) (2.6)
φ(s i | ti )= count(s i , ti ) P s count(s, ti ) (2.7)
The second part is a distance-based reordering model. a i is the start position of the source phrase which is the translation of the target phrase i, and b i-1 is the last word in the previous phrase. Hence reordering distance is calculated as (a i -b i-1 -1). The distortion function can be d(a i -b i-1 -1) = α |a i -b i-1 -1| . which will penalizes large distortion by giving them lower probability. Equation 2.6 is considered to be the calculation of the translation model for standard phrase-based SMT. However phrase-based translation system usually uses log-linear model, since it allows using more features instead of just using translation model and language model probabilities as in noisy-channel model. We will cover log-linear mo del in more details in Section 2.3.2.3.

Log-linear models

As we saw before, the standard phrase-based model has two components, the translation model and the language model. However the translation model actually can be split into two models, the phrase-translation model and the distortion or reordering model. Using the noisy-channel model Equation 2.1 and the reverse translation model P (s|t)E q u a t i o n2.6,w ec a ng e tt h et r a n s l a t i o no u t p u t as follows:

t best =argmax t I Y i=1 φ(s i | ti )d(a i -b i-1 -1)P (t)( 2 . 8 )
This equation is actually a multiplication of the phrase translation model, the reordering model and the language model, all getting the same uniform weight which is 1. It would be better to give different weight for each model as in the following equation and then find a way to calculate the best weights.

t best =argmax t I Y i=1 φ(s i | ti ) λ φ d(a i -b i-1 -1) λ d |t| Y i=1 P (t i |t 1 ...t i-1 ) λ LM (2.9)
where (λ φ ,λ d ,λ LM ) are the weights that can be chosen for the contribution of each model.

if

h 1 =log Q I i=1 φ(s i | ti )= P I i=1 log φ(s i | ti ), and h 2 =log Q I i=1 d(a i -b i-1 -1) = P I i=1 log d(a i -b i-1 -1), and h 3 =log Q |t| i=1 P (t i |t 1 ...t i-1 )= P |t| i=1 log P (t i |t 1 ...t i-1 ) we will get t best =argmax t exp(λ φ h 1 + λ d h 2 + λ LM h 3 )( 2 . 1 0 ) Assume that n =3,λ 1 = λ φ ,λ 2 = λ d , λ 3 = λ LM ,inEquation2
.10 we will get the following:

t best =argmax t exp n X i=1 λ i h i (s, t, a, b)( 2 . 1 1 )
which is using the basic form of a log-linear model:

p(x)=exp n X i=1 λ i h i (x)( 2 . 1 2 )
Using a log-linear model gives us two advantages over the noisy-channel model. First, we can give different weights to each component model. The second advantage is that one can add more component models, also called feature functions. Usually the weights in a log-linear model are optimized using Minimum Error Rate Training (Mert)t om a x i m i z et h eo v e r a l ls y s t e mt r a n s l a t i o nq u a l i t yu s i n g at r a n s l a t i o ne v a l u a t i o nm e t r i c [ Och, 2003]. I will explain Mert in more details in Section 2.3.6.T h e f o l l o w i n g a r e t h e c o m m o n u s e d f e a t u r e f u n c t i o n s i n t h e state-of-the-art phrase-based systems:

• LM probability.

• Bidirectional (i.e. source to target and target to source) phrase translation probabilities.

• Bidirectional lexical probabilities.

• Phrase reordering model.

• Word/phrase p enalty.

• Operation Sequence Model features.

Language models

An LM is an important component in many natural language processing tasks. In SMT, the LM is responsible of the fluency of the translation output as a feature function in the log-linear model in Equation 2.11.T h eL Mi st r a i n e do na monolingual corpus in order to be able to estimate the probability of a sequence of words. In the next sections, I will cover the n-gram LM, neural network LM and the evaluation of LMs using perplexity.

N-gram language models

The joint probability a P (w 1 ,...,w m )o fas e q u e n c eo fw o r d sw 1 ,...,w m is computed using the chain rule as a multiplication of the conditional probabilities of each word w i as shown in Equation 2.13.

P (w 1 ,...,w m )= m Y i=1 P (w i |w 1 ,...,w i-1 )( 2 . 1 3 )
Using a Markov chain, this can be approximated by limiting the history of the preceding words to n -1 words as in the following equation:

P (w 1 ,...,w m ) ≈ m Y i=1 P (w i |w i-(n-1) ,...,w i-1 )( 2 . 1 4 )
This is called n-gram LM with order n. An n-gram LM estimates the conditional probability for a word given the previous n -1w o r d s . T h ew o r d s 'c o n d i t i o n a l probabilities are multiplied to estimate the joint probability of the whole sentence.

If n =1 ,t h en -g r a mi sc a l l e dau n i g r a m ,i fn =2 ,t h en -g r a mi sc a l l e da bigram and if n =3then-gramiscalledtrigram.

The n-gram conditional probability is estimated using Maximum Likelihood Estimation (MLE) by collecting frequency counts as follows:

P (w i |w i-(n-1) ,...,w i-1 )= count(w i-(n-1) ,...,w i-1 ,w i ) count(w i-(n-1) ,...,w i-1 ) (2.15)
One major problem in estimating the n-gram model using MLE is the fact that many possible n-grams are not observed in the training data. This can lead to zero probability (numerator is zero) or an undefined value (denominator is zero). Many smoothing techniques have been proposed in the literature (e.g. add-one smoothing, Laplace Smoothing, Good-Turing Discounting or Kneyser-Ney smoothing). A good overview of n-gram smoothing techniques is presented in [Chen and Goodman, 1996]. In the following sections I will cover LM interpolation and back-off techniques.

Interpolation :

Interpolation is a linear composition of lower and higher order n-gram LMs. It is motivated by the idea that lower order n-gram models are less sparse than higher order n-gram models. Each n-gram model contributes with a specific weight λ i to the total probability estimation as follows:

P intr (w n |w 1 ,...,w n-1 )=λ 1 P 1 (w n )+λ 2 P 2 (w n |w n-1 )+...+λ n P n (w n |w 1 ,...,w n-1 )
(2.16) where P i is an i-gram language model and 0 ≤ λ i ≤ 1. P i λ i =1t oe n s u r e that P intr is a proper probability distribution. One way to find the best weights is using the EM algorithm on a held-out set. It converges on locally optimal weights.

Back-off LM:

Like interpolation, back-off is used to address the problem of unseen n-grams. The difference is that in a back-off model, we only use the higher order n-gram probability if it is available, otherwise we back off to a lower order LM to get the probability as follows:

P BO n (w i |w i-(n-1) ,...,w i-1 )= 8 > > > > < > > > > : d n (w i-(n-1) ,...,w i-1 )P n (w i |w i-(n-1) ,...,w i-1 ) if count n (w i-(n-1) ,...,w i-1 ) > 0 α n (w i-(n-1) ,...,w i-1 )P BO n-1 (w i |w i-n+2 ,...,w i-1 ) otherwise
(2.17) Ad i s c o u n t i n gf u n c t i o nd is used to make sure that all probabilities add up to 1. The lower order probabilities are multiplied by a discounting factor α between 0 and 1 in order to ensure that only the probability mass set aside by the discounting step is distributed to the lower-order n-grams. More details on back off LM can be found in [START_REF] Slava | Estimation of probabilities from sparse data for the language model component of a speech recognizer[END_REF] LM Evaluation and perplexity:

We can measure the LM quality using two ways. The first way is an end-toend evaluation. In this method, the performance of different LMs is evaluated in the framework of the full system (i.e. a MT system in our case). This is the best evaluation but it is more expensive. The second way is to calculate an independent LM quality measure on an development set. The standard metric is the perplexity(PP).P e r p l e x i t yi sb a s e do nt h ec o n c e p to fentropy H(p), which measures uncertainty in a probability distribution as defined below:

H(p)=- X x p(x)log 2 p(x)( 2 . 1 8 )
The perplexity is a simple transformation of cross-entropy.G i v e na ne v a luation set (w 1 ,w 2 ...,w m ), the language model P LM ,t h ec r o s s -e n t r o p yH(P LM ) is defined as follows:

H(P LM )=- 1 m m X i=1 log 2 P LM (w i |w 1 ,...,w i-1 )( 2 . 1 9 )
and the perplexity is defined as follows:

PP =2 H(P LM )
(2.20)

The PP is a positive number. The smaller the value, the better the language model is. It is important to note that the PP of two LMs are only directly comparable if they use the same vocabulary.

Neural network language models

The neural network LM (also known as continuous space LM or CSLM) tries to overcome the disadvantages of back-off n-gram LMs. One of these disadvantages is that the probabilities are estimated in a discrete space which does not allow directly the estimation of non-observed n-gram in the training data. In a neural network LM, the words are projected into a continuous space during the training. [START_REF] Bengio | A neural probabilistic language model[END_REF] proposes a multi-layer neural network model that jointly learns the word projection and the probability estimation. The basic architecture of this neural network is shown in Figure 2.8.

The inputs of the neural network are h j = w j-(n-1) ,...,w j-2 ,w j-1 which are the previous n -1w o r d s . F o re a c hi n p u tw o r da n1 -o f -ne n c o d i n gi su s e d( i . e . for the word w i in the vocabulary, set the element i of the input vector to 1 and the remaining elements to zeros). P, N and H are the sizes of one projection, one hidden layer and the output layer respectively. The continuous representation (i.e. embedding) of the word w i is at the ith row in the projection matrix which has a dimension of N x P .T h eo u t p u t so ft h en e u r a ln e t w o r ka r et h ep o s t e r i o r probabilities of all words of the vocabulary as follows:

P (w j = i|h j ) ∀i ∈ [1,N]( 2 . 2 1 )
If m jl and v ij are the weights of the hidden and output layers, b j and k i are the corresponding biases, c l the projections, d j the hidden layer activities, o i the outputs and p i their softmax normalization, then the neural network calculates the following: The neural network language model architecture. h j denotes the context w j-1 j-(n-1) . P, N and H are the size of one projection, one hidden layer and the output layer respectively.

d j =tanh ✓ X l m jl c l + b j ◆ (2.22) o i = X j v ij d j + k i (2.23
)

p i = e o i / N X r=1
e or (2.24) p i will be the probability P (w j = i|h j ).

The neural network is trained using the standard back-propagation algorithm to minimize the following error function:

E = N X i=1 t i log p i + β ✓ X jl m 2 jl + X ij v 2 ij ◆ (2.25)
where t i is the target output (i.e. the probability 1 for the next word and 0 for the rest).

P N i=1 t i log p i is the cross-entropy between the output and the target probability distributions, and the second part of Equation 2.25 is a weight decay which is used to prevent the model from over-fitting the training data. The value of the parameter β is set experimentally.

The computation complexity of a CSLM is higher than for an n-gram back-off LM because of the high dimension output layer. One way to decrease its complexity is to use a short list instead of the full vocabulary at the output layer. The short list will be limited to the most frequent words, the remaining words will be predicted by a standard back-off LM Schwenk [2004]. At the input layer, all words are modeled. AC S L Mh a sm a n ya d v a n t a g e s ,i tc a nb eu s e dt oe s t i m a t et h ep r o b a b i l i t y of long n-gram (also short n-gram ) which can not be directly estimated using n-gram back-off LMs. Also, it can be trained using longer context with just small increase in the complexity which is not possible for n-gram back-off LMs.

The CSLM was successfully applied to large vocabulary speech recognition. It is usually used to rescore lattices and improvement of the word error rate by about one point were obtained for many languages and domains, for instance [START_REF] Lamel | Improved models for mandarin speech-to-text transcription[END_REF][START_REF] Park | Improved neural network based language modelling and adaptation[END_REF][START_REF] Schwenk | Continuous Space Language Models[END_REF]Schwenk et al., 2002]. More recently, the CSLM was also successfully applied to statistical machine translation [START_REF] Lamel | Improved models for mandarin speech-to-text transcription[END_REF]Schwenk, 2008a[START_REF] Schwenk | Continuous space language models for statistical machine translation[END_REF][START_REF] Schwenk | Continuous space language models for statistical machine translation[END_REF].

I will present more details on neural network language models and their use in SMT in chapter 5.

Decoding in SMT

The goal of the decoder is to find the best target sentence that maximize the translation probability P (t|s)a se x p r e s s e di nt h el o g -l i n e a rE q u a t i o n2.11.S e veral decoders are publicly available like Jane [START_REF] Freitag | Jane: Open source machine translation system combination[END_REF], Cdec [START_REF] Dyer | gf r a m e w o r kf o rfi n i t e -s t a t ea n dc o n t e x t -f r e e translation models[END_REF]a n dM o s e s [ Koehn et al., 2007b]. Moses is an open source SMT toolkit and implements a beam search decoder.

SMT decoding is NP-complete [START_REF] Knight | Decoding complexity in word-replacement translation models[END_REF], however heuristic techniques work well. Decoding for word-based SMT had a higher complexity because of the possible reordering of individual words compared to phrase-based SMT which use larger translation units (i.e. phrases). The decoding algorithm for wordbased SMT could be implemented using optimal A* search [Och et al., 2001], integer programming [START_REF] Germann | Fast decoding and optimal decoding for machine translation[END_REF]o rg r e e d ys e a r c ha l g o r i t h m s [START_REF] Wang | Modeling with structures in statistical machine translation[END_REF]].

In phrase-based SMT, the most commonly used decoding algorithm is beamsearch stack decoding, other algorithms like Beam search based on converge stacks, A* search, Greedy Hill-Climbing decoding and Finite state transducer decoding which have been proposed in the literature.

In beam search decoding, the decoder starts by looking for all possible translations in the phrase table. This includes the possible translations of all possible phrases of a given source sentence as shown in the upper part of Figure 2.9.

Decoding of a source sentence starts with an initial empty hypothesis, then the translation output hypotheses are constructed from left to right. The hypotheses are expanded by picking the available translation options as shown in the lower part of coverage vector for these new expanded hypotheses. It incrementally computes the translation probability of each of them. Several techniques are used to limit the exponential explosion of the search space. These techniques include hypotheses recombination (i.e. combine similar hypotheses which cover the same source translation but have different scores), pruning out bad hypotheses with worse scores from the hypotheses stack, estimating hypotheses future cost to prevent pruning out good future hypotheses. The expansion process of each remaining hypothesis continues until all source words are covered. These hypotheses are called completed hypotheses. If there are no more incompleted hypotheses, the decoder selects the hypothesis with the highest probability from the completed hypotheses as the most likely translation t best .

MT evaluation metrics

MT evaluation is needed in order to know how good the automatic translation output is. MT evaluation can be done by a human given the source sentence or using a human translated reference(s). It can be also done automatically by as o f t w a r et o o lg i v e no n eo rm o r eh u m a nr e f e r e n c et r a n s l a t i o n s . T r a d i t i o n a l l y , human judgment is based on two factors, the adequacy and the fluency. Adequacy measures the degree that the information contained in the reference(s) are presented in the translation. This can be measured as a score which varies from 5w h e nf u l lm e a n i n gi nt h es o u r c es e n t e n c ei sc o n v e y e di nt h et r a n s l a t i o nt o1i f none of the meaning is conveyed. Fluency measures how fluent the translation is. This can be measured as a score which varies from 5 for a fluent sentence to 1 for an incomprehensible sentence. Since human judgment is expensive in terms of time and cost, automatic evaluation is usually used during MT system development.

Automatic evaluation uses the evaluation metrics that are found to be correlated with human judgment. Usually automatic metrics are useful in measuring the relative translation performance of the MT system from version to version.

One of the first and still frequently used MT evaluation metric is Bleu,short for Bilingual Evaluation Under Study [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF]. This metric works by measuring the n-gram co-occurrence between a given translation and the set of reference translations and then taking the weighted geometric mean. Bleu is ap r e c i s i o no r i e n t e dm e t r i ca si tc o n s i d e r st h en u m b e ro fn -g r a mm a t c h e sa sa fraction of the total number of n-grams in the output sentence.

Av a r i a n to fBleu score is the NIST evaluation metric [START_REF] Doddington | Automatic evaluation of machine translation quality using n-gram co-occurrence statistics[END_REF], which also calculates how informative a particular n-gram is, the rarer a correct n-gram, the more weight it is given. The NIST score also differs in its calculation of the brevity penalty.

Another metric that I used in this thesis, the Translation Edit Rate (Ter) [Snover et al., 2006]. Ter is defined as the minimum number of edits needed to change a hypothesis so that it exactly matches one of the references, normalized by the average number of references words. Possible edits include the insertion, deletion, and substitution of single words as well as shifts of word sequences. As h i f tm o v e sac o n t i g u o u ss e q u e n c eo fw o r d sw i t h i nt h eh y p o t h e s i st oa n o t h e r location within the hypothesis. All edits, including shifts of any number of words, by any distance, have equal cost. In addition, mis-capitalization is counted as an edit in follows:

TER = number of edits average number of ref erence words

(2.26) Also, Snover et al. [2006] proposed Human-targeted Translation Edit Rate (Hter) that employs human annotation to make Ter am o r ea c c u r a t em e a s u r e of translation quality. They proposed creating targeted references to accurately measuring the number of edits needed to transform a hypothesis into a fluent target language sentence with the same meaning as the references. This is done by human editing of the system hypothesis translation to generate the target reference that has the same meaning as the original references. Then, measure

Hter by computing Ter with this single targeted reference as a new human reference.

Other evaluation metrics are Word Error Rate (WER) [Och et al., 1999], ME-TEOR [START_REF] Lavie | Meteor: an automatic metric for mt evaluation with high levels of correlation with human judgments[END_REF]o rT r a n s l a t i o ne d i tr a t ep l u s( T E R p ) [START_REF] Snover | Fluency, adequacy, or HTER? Exploring different human judgments with a tunable MT metric[END_REF].

Minimum error rate training

The log-linear model gives us two advantages over the noisy-channel model: the first one is that we can give different weights to different component models. The second advantage is the possibility to easily add new components (also called feature functions). Usually the weights λ i in the log-linear model (Equation 2.11) are optimized using the Mert algorithm proposed by [Och, 2003]. Mert is an efficient supervised algorithm used to maximize the translation quality on a held-out set as measured by an automatic metric.

Mert works as follows:

• Initialization : initialize λ i randomly or based on some heuristics. Mert does not scale well to large number of feature functions [START_REF] Ittycheriah | Roukos. Direct translation model 2[END_REF], so other tuning algorithms have been proposed to overcome this issue like MIRA tuning algorithm [START_REF] Chiang | Hope and fear for discriminative training of statistical translation models[END_REF]Hasler et al., 2011]a n dt h e pairwise ranked optimization (PRO) [START_REF] Hopkins | Tuning as ranking[END_REF].

Challenges for Arabic MT

Machine translation from and into Arabic faces the same challenges as human translation between any other two languages as well as some specific issues related to the Arabic language (like missing of diacritic or short vowels). According to [START_REF] Arnold | Machine Translation: an Introductory Guide[END_REF], the challenges and difficulties of MT in general can be categorized into three main categories: 1) problems of ambiguity; 2) problems arising from structural and lexical difference between languages; 3) multiword units like idioms and collocations. [START_REF] Jurafsky | Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition[END_REF]explainedthatthe translation difficulty is caused by the differences between human languages and hence the translation between similar languages could be more easier than the translation between non-similar languages. If we also consider the translation challenges of web content that is written by internet users and the problems related to human mistakes and online writing styles and this thesis focus on Arabic and Egyptian dialect, I divide the challenges and difficulties of Arabic translation into the following five main categories: Ambiguity problems, Degree of similarity of languages, Human related challenges, Arabic vs. Egyptian dialect differences and MT approach related challenges.

Ambiguity problems 2.4.1.1 Lexical ambiguity

Lexical ambiguity means that the word can have more than one meaning. One case for lexical ambiguity is that the word has two or more lexical categories (e.g. fly as noun vs. a fly as verb). In this case one possibility to disambiguate these words is by using a part of speech (POS) tagger. A word has two or more meanings within the same lexical category (e.g. the noun bank as a financial institution vs. the noun bank as in a river bank). In Arabic, one of the reasons of increasing the lexical ambiguity is the omitting of short vowels (diacritics) and sometimes dots for the Yaa and Taa-Marboota letters. However, native speakers can still understand the correct meaning (i.e. the correct diacritics) using the context. For example the word Yg . can mean "grandfather" or "serious". If this word is used in the context " Yg . ©" ⇣ I ⌘ KYm ⇢ ⇣ ' -ÒJ ⌦ À@ Y' g @" (i.e. I talked to Ahmed's grandfather today), the right meaning will be "grandfather". In all these cases, the translation process will need to solve these problems using word sense disambiguation techniques either implicitly or explicitly. One way is to translate a sequence of words which contains larger word-context like what happens in phrase-based SMT. This solution assumes that the source phrase has been seen before in the training data, otherwise the phrase-based SMT system will not be able to generate the right translation since it will back-off to translate shorter phrases or even individual words.

Lexical divergences

An example of lexical divergence is the translation of the English word watch could translate into Arabic as "YK ⌦ ⇣ È´AÉ"or" ⇣ ÈJ . ⇣ Ø@ Q""or"YÎA ⌘ Ç ⌦ ". The translation often requires solving the same problems as word sense disambiguation. Another example is the English word "know" which can be translated into Arabic as "

'OE ™K ⌦ "o r" ¨Q™K ⌦ ".

Another example is the translation of a verb from English into Arabic, since Arabic verbs are inflected by the subject's gender (e.g. ˙⌦Ê .

⇣ Jª@). The translation of such verb into Arabic will require deciding the gender of the subject in order to be able to translate it correctly into Arabic.

Structural ambiguity

Structural ambiguity is the case when a sentence can have two or more different structure interpretation. For example, in this Egyptian Arabic sentence: " Y' g @ ⇣ ÈJ ⌦ K . Q™À@ ˙⌦ ØË P A ÉÈ ⇣ J⌧ . ⇣ Jª ˙⌦OE À@ H . @ Òm . à '@ ¯Q⇣ Ø" (i.e. "Ahmed read the letter which Sara wrote in the car"), it is not clear if "Ahmed read the letter in the car" or "Sara wrote the letter in the car". Sometimes, this case of ambiguity is difficult to resolve, even for human translators. In this case, larger context like a paragraph context could be useful to pick the right structure interpretation, then possibly re-phrase the sentence to remove the ambiguity.

Degree of similarity of languages

Several characteristics can be used to determine the degree of similarity between any language pair. The first category of these characteristics are related to the morphology, syntax and structure. The second category is related to idioms, collocations and similar issues. I am giving more details on these categories in the following sections.

Systematic differences across languages

These differences can be divided into three categories:

A) Morphology:

There are some languages with rich morphology like Arabic, while others have a simple morphology. Human languages can differ in:

• Number of morphemes per word:

In some languages, each word has one morpheme like Vietnamese. These languages are called isolating languages. While in other languages, like Arabic, each word may have many morphemes. These languages are called polysynthetic languages [START_REF] Jurafsky | Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition[END_REF]].

• Difficulty to segment the word into morphemes:

In some languages, the morphemes have clear boundaries, while in others, asingleaffixma yconflatem ultiplemorphemes. Theselanguagesarecalled agglutinative languages and fusion languages respectively. Arabic is considered to be an agglutinative language.

Like other semitic languages, Arabic language has a rich morphology. It has also complex morphological inflections. Some morphemes like the prepositions:

¨in I . Î Y Ø,personalobject È⌥ in È ⇣ J ø @ and possessive pronoun ⌦ in ˙⌦G . @ are affixed the word stems. The corpus of rich morphological language, like Arabic, is sparser than the equivalent English corpus because the average number of observed instances of an Arabic word in surface form (without morphological segmentation) will be lower, than the average number of observed instances of the words in the English corpus [START_REF] Neumann | Challenges for Arabic Machine Translation[END_REF].

Preprocessing of training, tune, development and test sets aims at reducing the morphological differences between source and target languages. Morphological segmentation is used to segment the word into its different morphemes. This helps the translation model to get better alignment and hence improve the translation quality. For Arabic, this includes the segmentations of prepositions, possessive pronouns, subject pronoun, object pronoun, and other types of morphemes. Another problem typical for the Arabic language specifically is the omittion of short vowels (diacritics). Sometimes, the only difference between two morphological forms is the diacritics. If they are missing, it is not possible to understand which one is used without the context. For example the word "I . ⇣ Jª"(i.e.wrote or had been written)i nt h ef o l l o w i n gt w os e n t e n c e sh a sd i ff e r e n td i a c r i t i c sa n d hence different morphological form but the diacritics are omitted:

"H . A ⇣ J∫À@ ˙⌦ ØI . ÀA¢À@ I . ⇣ Jª" (i.e. the student wrote in the book) "H . A ⇣ J∫À@ ˙⌦ ØI . ⇣ Jª"(i.e.thebookhadbeenwritten).

Native speakers use the context to decide the form with the correct diacritics. This issue is actually resolved the same way by phrase-based SMT systems since the phrases as translation units have larger context and hence the translation of the phrase will usually be correct, however translating correctly a single word will still be a challenge.

B) Syntax:

Languages can have different sentence structure. For example, in English, the sentence structure is Subject(S)-Verb(V)-Object(O) while the Arabic language has a more flexible syntactic order which could be SVO or VSO or VOS or even S-Predicate(P). Other languages like Japanese, the sentence structure is SOV. Languages similar in their syntactic structure usually have similar characteristics. For example, languages with SVO sentence structure, usually have prep osition, while languages with SOV sentence structure, usually have postposition.

It is clear that different syntactic structure orders will need more effort during translation; more specifically, more reordering of the translation is needed to match the target language syntactic structure. It is even more difficult if the source language structure has different grammatical components than the target language structure. For example, the translation of an Arabic sentence with structure S-P to the English sentence SVO. For the easier case, when just orders are different, one way to overcome these syntactic differences is to perform some preprocessing on the source language sentences to reorder it to be closer to the syntactic structure order of the target language. This needs a parser to process the source language sentences and reorder the words to match the target language syntactic structure with some hand crafted rules. For example, for translating Arabic into English, we need to re-order the Arabic sentence from VSO to SVO, which is the English sentence structure. This could help in increasing word alignment coverage and significantly improve the translation performance scores as shown in [START_REF] Carpuat | Improving arabic-to-english statistical machine translation by reordering post-verbal subjects for alignment[END_REF], who reordered Arabic VS into SV when translating from Arabic into English. Similar methods were used to perform word reordering to make the Chinese sentences closer to the English sentence order [START_REF] Way | The impact of source-side syntactic reordering on hierarchical phrase-based smt[END_REF], and they reported significant improvement in the translation performance scores.

C) Argument structure and linking: In this category, there are three types of differences between languages regarding argument structure and linking:

1. Relation location marking between the head and its dependents

Languages have different location of the relation marking between the head and its dependents. In Head-marking languages, the relation mark is on the head, while in Dependent-marking language, the relation mark is on the dependent [START_REF] Jurafsky | Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition[END_REF].

The verb manner and motion direction

In some languages, the direction of motion is marked on the verb leaving the satellites to mark the manner of motion. They are called Verb-Framed languages. Other languages, mark the direction of motion on the satellite and leave the verb to mark the manner of motion. They are called Satelliteframed languages [START_REF] Jurafsky | Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition[END_REF].

Referential density and pro-drop

In some languages like Arabic, the pronoun can be dropped when talking about a referent that is given in the discourse, these are called pro-drop languages, while for other non-pro-drop like English, it is required to use explicit pronoun. Even pro-drop languages vary in the frequency of omission, which is called referential density of the language. Languages which use more pronouns are more referentially dense than those use less pronouns.

Idiosyncratic differences including multiword units like idioms and collocations

The following subset of idiosyncratic differences are part of the translation challenges between languages:

1. Adjective-noun order Some languages like English, the adjective precedes nouns, while in other languages like Arabic languages, the adjective follows the noun.

Idioms

Idioms are expressions whose meaning cannot be completely understood from the meaning of the component parts [START_REF] Arnold | Machine Translation: an Introductory Guide[END_REF].

For example in English the idiom "kick the bucket" means "dies". It is difficult to know the meaning of the idioms from the individual words in it. This is a real challenge for SMT and word alignment model. Idioms should be translated as a single unit, otherwise the translation will be wrong.

Collocations

In collocations, the sentence meaning can be understood from the meanings of individual words, but the correct word choice is not predictable [START_REF] Arnold | Machine Translation: an Introductory Guide[END_REF]. The collocation problem is less significant than idioms since the selection of the right word is predictable from other word(s), while with idioms it is not possible to know the meaning from any part of the sentence.

Using phrases as translation units as well a good LM can fix the collocations problem by helping selecting the right word among different hypotheses.

Dates and time format/calendars

Different languages usually have different date and time formats. Sometimes even for the same language, there are different date and time formats. For example, the date format used in the UK is different from the date format used in USA. Another challenge for machine translation is the use of different calendars. It is a challenge to translate the Islamic Hijri date for example to Gregorian date. This issue is usually addressed in the preprocessing of the corpora, by detecting the format used and translating or re-ordering the date parts as required in the target language.

Human related challenges

Nowadays, one of the common sources of corpora is the web. Some collected texts are written by internet users who have different backgrounds and education levels.

People can make spelling mistakes and they also can have their own writing style like stressing on some letters by repeating them or by using some punctuations for other purposes like emotional expression or for text decorations. So we can have two categories of these problems:

1. Orthographic errors.

2. Writing b ehavior on digital media.

Orthographic errors

One of the challenges of translating text are the orthographic errors. This increases significantly when translating text written by internet users like news comments, forums, social media posts and comments, chat and tweets. Because of various education levels it is possible that the Arabic internet users substitute some letters with others which are close to them in pronunciation like " X"(i.e Zal) with " P" (i.e. Zay) also missing shadda " ✏ @"orusing"¯" (i.e. alf-maksoura) instead of "⌦ "( i . e . Y a a ) . F o re x a m p l eu s i n g"˙ÊÖQ""i n s t e a do f"˙⌦ÊÖQ""o rv i c e versa.

For SMT such sp elling mistakes will impact the word alignment, translation and language models. In an SMT system, we can deal with this challenge either by training our system on such data and allowing it to learn to translate words with mistakes OR we can do a pre-processing step on training, tuning and dev, and testing data to correct the spelling mistakes. The decision usually depends on the performance of the translation performance of the two SMT systems with and without spelling correction.

Writing behavior on digital media

Internet users have some writing behavior, for example Arabic users are used to repeat one letter as a kind of stressing a word (e.g. "© K@@@@@@@@@@@@@ P"or"wonderful")

It is also possible to repeat (haa letter in Arabic or h in English) to express the laughing action (e.g. ÈÍÍÍÍÍÍÍÍÍÎ). Usually more repetition of the letter means longer laugh. Another example, Arabic users can use some punctuations for text decoration instead of the normal purpose like the following:

(- - - - - -⇣ ÈJ . ⌧ ⌦ J . m à '@ QÂî"- - - - -)).
This kind of writing behavior introduces another challenge for SMT and even for human translators since sometimes it may be needed to reflect (or use) this writing behavior in the translation output, while some other times, we can do some preprocessing and normalization to help SMT produce better translation independent of the writing behavior.

Arabic vs. Egyptian dialect differences

The modern standard Arabic (MSA) and Egyptian dialect have a common MT challenges. Since Egyptian dialect is a mixture of MSA and additional dialectal words and dialectal structure, it shares many words, features and grammar of MSA. Some examples of such common attributes: the missing short vowels, the clitics and the sentence structure.

Additionally, the Egyptian dialect has its own special attributes which can be divided into two main categories: general and writing specific.

1. The general category includes:

• More flexible sentence structure for example the sentence »X ⇣ HA ⇣ JÇÀ@ (i.e. these women) has a different word order than its equivalent in MSA ZAÇ ⌧À@ ZB ÒÎ. Additional examples shown in or others

Future tense

Uses Seen Ä Use Haa or Heh ⇧k ⇧Î Q ØAÉ AÉ Iw i l lt r a v e l Q ØAÇk

Passive form

Uses wazn …™ Ø Starts with Alef @ …ø @ have been @ in …g . P (i.e. man) to be …g . @ P and in È™" (i.e. with him) to be ËA™".

…øA ⇣ K@ or Alef+Taa ⇣ H@ eaten Negation Uses Lam 'À Uses two parts ⌘ Ä...⇧" Q ØAÉ @' À Id i dn o tt r a v e l ⌘ Å ⇣ Q AEÇ"
⌦ I . K X Wolf I . K ⌦ X Daad ê Zaa † Zaa † ° . A ì Officer ° . A £ Qaaf ⇣ Ü Hamza Z Qaaf ⇣ Ü Q' ⇣ Ø Moon Q' ⇣ Ø Thaa ⌘ H Taa ⇣ H/Seen Ä Taa ⇣ H/Seen Ä ⇣ ÈK ⌦ Ò KA ⌘ K Secondary ⇣ ÈK ⌦ Ò KAÉ Zaal X Daal X/Zaay P Daal X/Zaay P ⇣ ËP X Corn ⇣ ËPX Zaa † Daad ê Daad ê … £ Shadow … ì Hamza at the end Z omitted omitted Z@ Qm ⇡ï Desert @ Qm ⇡ï

The writing specific category includes:

• Various orthography of the same word due to lack of standard writing like ⇣ ÜÒÇ⌧ ⌦ k (i.e. he will drive) and ⇣ ÜÒÇ⌧ ⌦ Î or ⌘ ÄAae™" (i.e. you do not have anything) and ⌘ Å∫™".

• High rate of orthographic mistakes.

• Letter repetition like © K@@@@ P (i.e. wonderful).

• Omitting of some punctuations and some letters' dots like in ¯QK . Òª (i.e. bridge) instead of ⌦ QK . Òª.

• Using of additional vocabulary which are not in MSA ⇣ IÉ (i.e. woman), ⇣ IK ⌦ PAK ⌦ (i.e. I hope), ⌦ P (i.e. like).

Some of these attributes causes the training data to be more sparse or introduce more ambiguity.

MT approach related challenges

In this category, the problems are specific to the MT approach or method. For example, in corpus-based approaches, we use specific bilingual and monolingual corpora and hence closed vocabulary. This leads to several problems as follows:

1. Some source words will not be translated by the MT system because they are unknown to the translation model. These are called Out-Of-Vocabulary (OOV) words. Examples of such unknown words are proper nouns, verbs with different morphological form, words with different inflection form and entities like number or dates. Transliteration of proper nouns can be used to decrease the number of OOVs in the translation output.

2. Unknown target words to the language model.

3. Mismatch between the domain or the style of the bilingual and monolingual training corpora and the translation task. For example when the MT system is trained on modern standard Arabic and formal corpora, but it is used to translate Egyptian dialectal and informal text.

4. Segmentation errors: words are wrongly segmented instead of being left unprocessed or unsegmented words.

5. Low resource languages: small bilingual corpora mostly will lead to a bad translation model and a lot of OOVs, while small monolingual corpora could lead to non-fluent translations and bad formed target sentences.

6. Pre-ordering and inflection of languages with flexible sentence components is a challenge since several orders can be correct and acceptable but inflec-tion could be different in each order (e.g. hA AE ⇣ JÀ@ Y' g @… ø @vs. e.g. hA AE ⇣ JÀ@ Y' g @È ø @) 

Conclusion

In this chapter, I have briefly explained an introduction to machine translation (MT), its history and approaches. Since the SMT is the bases of this thesis, I focused on explaining the basics of SMT and covered different components of word-based and phrase-based SMT, including the translation model and the language model. I introduced the current state-of-the-art in language modeling in a full section that covers n-gram back-off and neural network language models. I also explained the decoding algorithm in PBSMT, then gave more details on the machine translation metrics and evaluation. Finally, a full section was dedicated to an overview of the challenges of translating Arabic and Egyptian dialect into English, since this is the focus of this thesis in the context of Bolt program.

Chapter 3 BOLT Project

Introduction

The Arabic language received a lot of attention in the machine translation community during the last decade. It is the official language of 25 countries and it is spoken by more than 295 million people. The interest in Arabic language and its dialects increased more after the Arab spring and the political change in the Arab countries. There are several research projects with adequate funds focusing on Arabic MT research. Our research group in LIUM is partner in many national and international projects that work on MT. One of these projects is the Broad Operational Language Translation (Bolt)p r o g r a m .

In order to address the need to develop a technology for the task of handling informal language, in October 2011, DARPA launched Bolt program to focus on developing new methods, tools and technology for machine translation and linguistic analysis which mainly address the informal genres of text and speech common in online and personal communication.

As stated on DARPA website 1 , Bolt is aimed at enabling communication with non-English-speaking populations and identifying important information in foreign-language sources by: 1. Allowing English-speakers to understand foreign-language sources of all gen-1 source: http://www.darpa.mil/program/broad-operational-language-translation res, including chat, messaging and informal conversation.

2. Providing English-speakers the ability to quickly identify targeted information in foreign-language sources using natural-language queries.

3. Enabling multi-turn communication in text and speech with non-English speakers. If successful, Bolt will deliver all capabilities free from domain or genre limitations.

Bolt project consists of three phases, started in October 2011 and finished by December 2014. LIUM was partner with IBM and other universities including RWTH Aachen University, Stanford University, Cambridge University, University of Maryland and MIT, working on machine translation research in Bolt delphi team, leaded by IBM. This chapter covers the activities, different techniques and research that were performed during this project. These techniques were used to improve the translation quality of Arabic into English MT system, but in most cases they can be adapted to other languages with small effort. This includes addressing some of the Arabic machine translation challenges presented in Section 2.4. I also present the LIUM systems evaluation results in each phase of this project.

Resources description

Genres:

During this project we have developed three systems for Egyptian dialect. Each system has been adapted for one genre of the following:

• Discussion forum (DF).

• SMS/Chat system.

• Conversational telephone speech (CTS) transcript.

Even though, the Bolt project focuses on Egyptian and the genres above, corpora in other dialects and genres were available to use for system training. For easy reference of each dialect/genre I assigned an ID for each of them as shown in table 3 

Bilingual corpora description:

The bilingual training corpora used in Bolt project are listed in Table 3.2. The list of tune, development and test sets with some short meaningful names is shown in Table 3.3.

Evaluation metric: The official phase evaluation in Bolt program is performed by NIST using human evaluation Hter, but during system development, teams use automatic evaluation metrics. Normally, we should use Ter [Snover et al., 2006]sinceitissimilar to Hter but this obtains worse Bleu [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF] 

Baseline Systems

All LIUM Bolt systems are built using the standard phrase-based SMT with Moses toolkit [Koehn et al., 2007a] and the alignment performed using GIZA++ [Och and Ney, 2003c]. We use 4-gram LM trained using Kneser-Ney smoothing as implemented in the SRILM toolkit [START_REF] Stolcke | Srilm -an extensible language modeling toolkit[END_REF]a n di sc o n v e r t e dt oK e n L M LM [START_REF] Heafield | KenLM: faster and smaller language model queries[END_REF] in order to decrease the required memory and improve the speed of CSLM training and re-scoring. For CSLM training and rescoring, LIUM open source CSLM toolkit [START_REF] Schwenk | Continuous Space Language Models[END_REF][START_REF] Schwenk | Continuous space language models for statistical machine translation[END_REF][START_REF] Schwenk | Continuous space translation models for phrase-based statistical machine translation[END_REF]i su s e d . L o glinear features' weights are optimized using Mert [Och, 2003][ Bertoldi et al., 2009]. XenC [START_REF] Rousseau | Xenc: An open-source tool for data selection in natural language processing[END_REF], the LIUM open source tool is used for data selection. For Arabic segmentation, MADA/TOKAN [START_REF] Habash | Arabic tokenization, part-of-speech tagging and morphological disambiguation in one fell swoop[END_REF], MADA-ARZ version 0.4 [START_REF] Salloum | Dialectal arabic to english machine translation: Pivoting through modern standard arabic[END_REF]o rd a t as e g m e n t e db yI B Mu s i n g IBM internal tools.

Since Bolt program had 3 phases, we had several baselines either internally in LIUM or externally based on the previous phase delivered PBSMT systems. Table 3.4 summarizes each phase baseline system and the evolvement of the baseline systems from phase to phase. 

Phase

Evaluation Results

The summaries of the results of LIUM systems in the three international evaluations of the Bolt project are shown in Table 3.5 and Table 3.6. 

General improvements and Arabic specific improvements

Several general and Arabic related techniques have been implemented. One of these techniques is adapting our SMT systems to the Egyptian dialect. Since the available training corpora, in the context of Bolt project, contains MSA, and several dialects (i.e. Egyptian, Levantine and Iraqi). We improved the system performance by using domain adaptations techniques and treating different dialects as different domains. We use four adaptation techniques to adapt our system on the Egyptian dialect and the system genre. The first technique is using instance weighting of translation models to improve the translation quality by giving more weights to Egyptian than MSA or other Arabic dialects. More details can be found in Section 3.7.3 and 3.7.4.S i n c eo u rt r a i n i n gc o r p o r ah a v ev a r i o u s genres (i.e. NEWS, WEB, UN, DF, SMSCHAT and CTS), we adapt our systems by using data selection techniques. Two techniques are used, the first one is used to select the relevant sentences from monolingual corpora to improve and adapt the LMs, while the second one is used to select the most relevant sentences from the bilingual corpora to improve the TMs. These two techniques are detailed in Sections 3.7.1 and 3.7.2 respectively. We also apply another method for the adaptation of SMT systems to Egyptian using the so-called "lightly supervised" training. This is explained in Section 3.7.5.

Since Arabic is a morphologically rich language, the selection of the suitable Arabic morphological segmentation is one of the important preprocessing steps in MT research. There are many morphological schemes that can be used to segment the Arabic words. I evaluated various Arabic segmentation schemes from full word form to fully segmented form to explore the effect on the system performance and translation quality. More details can be found in Section 3.6.1.

In order to address ambiguous Arabic/Egyptian words translation errors, I worked on applying word sense disambiguation technique on them using their context. I integrated this technique into a phrase-based SMT system in order to improve the system performance in translating ambiguous words. This research was conducted during my 3 months internship at IBM T.J. Watson Research Center in 2014 and is covered in Section 3.9.

Another challenge in MT research is dealing with the Out-Of-Vocabulary (OOV) words. I have performed research on several methods to decrease the OOV rate by proper noun transliteration. More details can be found in chapter 4.

Finally, some OOVs are actually numbers, dates .. etc. which can be translated to target language using some rules. This problem is more critical between languages using different writing scripts like Arabic and English than between French and English for example. Since there is no integrated metho d to handle such entities translation, I developed a method to detect numbers, dates and other entities and then transform them from the source language to the target language. This also allows us to have class-based SMT systems with less language model and translation model size. More details can be found in Section 3.6.2.

Preprocessing techniques

The following preprocessing techniques were evaluated and used:

Arabic segmentation schemes

The scheme is used to define the desired target tokenization. Each scheme specifies what to split (i.e. segmentation) and what form to represent the various parts (i.e. regularization) [Habash, 2010]. The selection of the suitable Arabic morphological segmentation scheme is one of the challenges and opportunities in MT research for MSA [El Kholy andHabash, 2010, 2012;[START_REF] Habash | Four techniques for online handling of out-of-vocabulary words in arabic-english statistical machine translation[END_REF]a n d also for Arabic dialects [Salloum andHabash, 2011, 2013;[START_REF] Zbib | Machine translation of arabic dialects[END_REF]. Since Arabic is a morphologically rich language, the selection of the suitable Arabic morphological segmentation is a very important preprocessing step of MT data. This selection is proved to have a significant impact on the translation quality [Al-Haj and Lavie, 2012;[START_REF] Sadat | Combination of arabic preprocessing schemes for statistical machine translation[END_REF][START_REF] Zollmann | Bridging the inflection morphology gap for arabic statistical machine translation[END_REF]. The segmentation scheme should be consistent across all train, tune and test sets.

For example, the wrong segmentation of the Arabic word Ë Q ´(Gaza) to Q (kill by penknife) and Ë (-his) can lead to translate it into "kill" instead of the city name "Gaza".

There are many morphological schemes that can be used to segment the Arabic words. I evaluated various Arabic segmentation schemes from a full surface form to a fully segmented form to explore the effect on the system performance and the impact on the translation quality.

In this work, initially, I used MADA/TOKAN to perform the segmentation. The same corpus with a different segmentation is used to build SMT systems. I used two baseline systems, the first baseline system is built using raw Arabic unsegmented training data and the other baseline is built using Arabic data segmented with an IBM in-house tool following the Arabic Tree Bank (ATB) schema. The motivation of using the first baseline is to emphasize the importance of segmenting Arabic text and to show the large impact on machine translation performance. To limit the time needed to perform a large set of experiments, we used the gale corpus only and tried different schemes using MADA/TOKAN. Also, when I performed these experiments, the MADA version that supports the segmentation of Egyptian dialect was not released yet. The results of these experiments are shown in Table 3.7.T h ed e t a i l so fe a c hs c h e m aa r es h o w ni nT a b l eB.1 on page 148. We concluded that ATB outperforms other Arabic segmentation scheme in the context of MT. Also, in these experiments, MADA/TOKAN ATB tokenization slightly out-performed IBM ATB tokenization.

During the second phase of Bolt,w ed i daf u l ls y s t e mc o m p a r i s o nu s i n go u r EGY DF system which is using IBM ATB and re-built the whole system using MADA ATB using MADA-ARZ. The Tb2 scores of both systems are shown in Table 3.8.T h em o t i v a t i o no ft h i se x p e r i m e n tw a st ob u i l dad i ff e r e n ts y s t e mt o benefit system combination across Bolt delphi team. IBM-based system outperformed MADA-ARZ-system on Egyptian dialect, but the later one outperformed former one on MSA by 0.3. Based on these results, we decided to continue using IBM ATB segmentation especially that MADA-ARZ-based system did not benefit the system combination task that involve systems from LIUM, IBM and other universities in Bolt delphi team. 

⌦ ¯ ê † ⇣ Ü † Xê PPX ‡H .
Normalize repeated letters to max of 2 letters º ¨-»® ⌘ Ä⇧ Îp⌦ @@ @ @ Normalize repeated letters to max of 3 letters @@ @ @ Normalize repeated letters at the end of the word to just one letter

⌦

Normalize repeated letters at the end of the word to max two letters considered OOVs which their translation should not be a complex task. They can be translated to target language using some rules. This problem is more critical between languages using different writing scripts like Arabic and English than between French and English for example. Since there is no integrated method to handle such entities translation, I developed a procedure to detect numbers, dates and other entities and then transform them from the source language to the target language. The preprocessing tools were applied to all kind of corpora, namely bilingual and monolingual training corpora.

All preprocessed text do not contain the entities' values (numbers or dates, etc...), but it only contains the placeholder of each entity. This helps decreasing data sparseness and decreasing the size of the translation model (i.e. the phrase table) and the language model. A post-processing tool is responsible for replacing the placeholders in the translation output by their translated values using the source to target alignments provided by the decoder. One advantage of this technique is that we can keep the MT system independent of the source and target languages cultural preferences. At decoding time, we have the flexibility to select the required cultural preference needed for the translation task. For example, the same SMT system can be used to translate text from UK or USA by specifying the input type to the entities handling engine.

Domain adaptation

Monolingual corpora data selection

As seen in Table 3.11,t h ea v a i l a b l em o n o l i n g u a lc o r p o r ap r o v i d e db yL D Ci s more than 5.6 billion tokens including the English Gigaword corpora. Most of these data are news (i.e. formal) data, while Bolt project focuses on informal text as mentioned before. We can adapt our LM by selecting a small portion of the most relevant data to our task from these huge monolingual corpora. This selected data is used as additional training data for our LM. We performed data selection using the method of [START_REF] Moore | Intelligent selection of language model training data[END_REF]. Their method is based on comparing the cross-entropy (i.e. Equation 2.19 on Page 30), according to in-domain and out-of-domain language models for each sentence of the text.

We used XenC, the LIUM open source tool for data selection which implements the cross-entropy monolingual data selection proposed by [START_REF] Moore | Intelligent selection of language model training data[END_REF].

If 2.19 on Page 30. Finally, the score of each line is calculated by the sum between the two cross-entropy differences, as in the following equation:

Score (ss,st) =[H Insource (s s ) -H Outsource (s s )] + [H Intarget (s t ) -H Outtarget (s t )] (3.2)
Then XenC selects lines based on a score cutoff optimized on held-out in-domain data. This method was particularly effective for the large generic corpora like UN corpus: only about 3% of the data was preserved for EGY DF genre and 1% for both EGY SMS CHAT and EGY CTS genres. The final EGY DF genre system was trained on 20M words from different genres using this method. The result of data selection on each genre is shown in Table 3 Table 3.12: The size and percentage of the selected data from bilingual corpora for different system genres.

Translation model domain adaptation

We used the metho d called p erplexity minimization for translation mo del domain adaptation which is proposed in [START_REF] Sennrich | Perplexity minimization for translation model domain adaptation in statistical machine translation[END_REF]. This method performs instance weighting of translation models, based on the sufficient statistics. It separately optimizes the four features of the log-linear translation model through perplexity optimization. This is done using perplexity minimization for weighted counts, and a modified implementation of linear interpolation. [START_REF] Sennrich | Perplexity minimization for translation model domain adaptation in statistical machine translation[END_REF] proposed performing perplexity minimization independently for the four features of the standard moses SMT translation model: the phrase translation probabilities p(s|t)andp(t|s),andthelexicalweightslex(s|t)andlex(t|s). s and t denote the source and target phrases.

Traditionally, the phrase translation probabilities p(s|t)a n dp(t|s)a r ee s t imated through unsmoothed maximum likelihood estimation (MLE) by Equation 2.7 on page 26.

In order to combines statistics from a vector of n component corpora, [START_REF] Sennrich | Perplexity minimization for translation model domain adaptation in statistical machine translation[END_REF]u s e saw e i g h t e dv e r s i o no fe q u a t i o n2.7,b ya d d i n gaw e i g h tv e c t o rλ of length n :

p(s i | ti ; λ)= P n i=1 λ i c i (s i , ti ) P n i=1 P s λ i c i (s, ti ) (3.3)
An objective function is need in order to perform the translation model perplexity minimization and find the optimized weights for the different TM components in mixture modelling. The used objective function is the minimization of the cross-entropy with the weight vector λ as argument to get the best weight vector λ as in the following equation:

λ =argmin λ - X x,y p(x, y)log 2 p(x|y; λ)( 3 . 4 )
Ad e v e l o p m e n ts e ti sn e e d e dt ot r a i nam o d e lw i t ht h es a m ew o r da l i g n m e n t and phrase extraction tools that were used for training (i.e. Giza++). We can then, extract the phrase pair (x,y) and get their empirical probability p from the development set translation model that we trained. p is the model probability. [START_REF] Sennrich | Perplexity minimization for translation model domain adaptation in statistical machine translation[END_REF] In a group of experiments, this method is used to adapt the system on different tune sets from different genres (i.e. MSA NW WB and EGY DF). The experimental results obtained are shown in Table 3.13.T h i ss h o w st h ee ff e c t i v eness of translation model adaptation on d10 (i.e. MSA NW WB), with a gain up to 0.74 for d10 dev on Tb2 over unadapted baseline system, and when adapter on d12 (i.e. EGY DF) a gain up to 0.39 for d12 dev over unadapted baseline system. I also used another method to calculate the translation models weights by creating individual LM for each source side corpus of the bilingual corpora, then interpolated them and optimized the coefficients on d12+p1r6. IusedtheLMsinterpolationcoefficientsasweightsforthefourfeaturesofthe translation models (i.e. p(s|t)a n dp(t|s), lex(s|t)a n dlex(t|s)). The Tb2 score of using these weights was relatively better for p1r6 (i.e. EGY DF) but worse for the other two sets with a loss of 0.34 on d10 set (i.e. MSA NW WB). We can understand the reason of these results by comparing the LMs interpolation weights to the best score weights (i.e. adapted d12) as shown in Figure 3.2.W e observed that the bolt model got the similar weight which explains the slightly better score on p1r6, but for the rest of the models, they have relatively lower weights (i.e. thy, iraq, bbnegy, bbnlev and fouo) which did not allow the final model to benefit from these bilingual corpora. This could explain the loss in d10 and d12 sets. Since we focus on improving Egyptian dialect translation without degrading the translation of MSA data, we chose to adapt our translation model on d12 tune set which has the best scores for d12 and p1r6 dev sets. Some examples of the translation output are shown in Table 3.14 Iperformedsomeanalysisontheresultsbystudytheweightsassignedtoeach feature. The weights assigned automatically for each translation model feature are shown in Figures 3.3, 3.4, 3.5 and 3.6.W eo b s e r v e dt h a tu s i n gd 1 2t u n e set (i.e. the yellow line) to optimize the weights gives reasonable weights for all the four features especially for bolt and thy bitext, while using p1r6 or the combination of d12+p1r6 gives more weight on thy and much less weight on bolt bitext. We concluded that d12 tune set has better correlation, than p1r6, with bolt corpus which is the main training data of Egyptian dialect in Bolt project. This conclusion is also confirmed by the better Tb2 scores when the same set (i.e. d12 tune) is used to optimize the system log-linear features weights using

Mert.

One of the disadvantages of this technique is that we can adapt the SMT system on one genre only. If we would like to adapt the system on two dialects like Iraqi and Egyptian, we have to build two separate systems, each system description sentence source . ëÀA gË Y ª ⌘ Å⌧ ⌦ Ø# A " ⇣ áJ ⌦ J . ¢ ⇣ JÀ@ ˙⌦ Ø •∫À reference but in application there is nothing like that at all . unadapted system but in practice what fish like this at all . adapted system but in practice there is nothing like this at all .

source

.-Î + •" º+ ®A"X ⌦ Q . ª reference never mind them unadapted system the largest your brain from them . adapted system widen your mind from them . source .. ˙⌦ GA ⇣ KA J⌧ ⌦ É@ Ò ⇣ KAÎ reference bring sinai again .. unadapted system get sina again . adapted system get sinai again .

source

.ÒÎA Ø⌦kAJ . ì •K ⌦ Y' gQ ⇣ Ç" # » Ë+ I . Ç ⌧À@ # H . A"@ reference as for mr. hamdein sabbahy , he is unadapted system as for his lineage to mr hamdeen sabahi , so it is . adapted system as the percentages to mr hamdin sabbahi , so it is .

source

.È ⇣ AEJ ⌦ ⇣ ØX Ë+ 'OE ø ⌘ Å" ⇣ á J m ⇢ ⇣ ' Å . ⌦ PÒÉ
reference sorry , but suffocating is not an accurate word . unadapted system syrian but choke do n't talk to him a minute . adapted system sorry , but really annoying not call him a minute . would be adapted on one dialect. We can overcome this problem by using a multi-domain architecture explained in the next section. 

Multi-domain translation model

Domain adaptation techniques for SMT have proven to be effective at improving translation quality as explained in Section 3.7.3,buttheirusageinamulti-domain environment is often limited because of the computational and human costs of developing and maintaining multiple systems adapted to different domains.

In [START_REF] Sennrich | A multi-domain translation model framework for statistical machine translation[END_REF], we present an architecture that delays the computation of translation model features until decoding, allowing dynamic instance weighting using optimized weights. Also a method for unsupervised adaptation with development and test data from multiple domains (i.e. MSA and Egyptian dialect in our case) is described. An unsupervised method to cluster the sentences of the development set is presented. This is done by train a language model on the source language side of each of the n component bitexts, and compute an n- dimensional vector for each sentence by computing its entropy with each language model. A k-means clustering algorithm is used to cluster these vectors using cosine similarity measure. A bitext for each cluster is obtained, which is used to optimize the model weights using the same method presented in Section 3.7.3.A t decoding time for test set, a cluster and its associated optimized weight vector are assigned to each sentence. Cosine distance of the sentence n-dimensional vector and each centroid are used to find the closest cluster. This allows the adaptation even with unlabeled and heterogeneous test data.

Translation model architecture

The architecture has two goals: move the calculation of translation model features to the decoding phase, and allow for multiple knowledge sources (e.g. bitexts or user-provided data) to contribute to their calculation.

In order to compute the translation model features online, a number of suf-ficient statistics need to be accessible at decoding time. For p(s|t)a n dp(t|s), the statistics c(s), c(t)andc(s, t)arerequired. F oraccessingthemduringdecoding, they are simply stored in the decoder's data structure, rather than storing pre-computed translation model features.

The statistics are accessed when the decoder collects all translation options for a phrase s in the source sentence. Then, all translation options for each component table are accessed, obtaining a vector of statistics c(s)f o rt h es o u r c e phrase, and c(t)a n dc(s, t)f o re a c hp o t e n t i a lt a r g e tp h r a s e . F o rp h r a s ep a i r s which are not found, c(s, t)a n dc(t)a r ei n i t i a l l ys e tt o0 .

For lex(s|t), we require an alignment a,p l u sc(t j )a n dc(s i ,t j )f o ra l lp a i r s (i, j)i na. lex(t|s)c a nb eb a s e do nt h es a m ea l i g n m e n ta (with the exception of NULL alignments, which can be added online), but uses statistics c(s j )a n d c(t i ,s j ).

The architecture can thus be used as a drop-in replacement for a baseline system that is trained on concatenated training data, with non-uniform weights only being used for texts for which better weights have been established. This can be done either using domain labels or unsupervised methods as described in the next section.

This architecture supports decoding each sentence with a separate weight vector of size 4n, n the number of TM components and 4 is the number of translation model features whose computation can be weighted.

The good weights are automatically selected for each sentence by optimizing instance weights using a set of phrase pairs automatically extracted from a parallel development set.

The basic idea consists of three steps:

1. Cluster a development set into k clusters.

2. Optimize translation model weights for each cluster.

3. For each sentence in the test set, assign it to the nearest cluster and use the translation model weights associated with this cluster.

For step 2, we use the algorithm by [START_REF] Sennrich | Perplexity minimization for translation model domain adaptation in statistical machine translation[END_REF]asdetailedinSection3.7.3, implemented in the decoder to allow for a quick optimization of a running system.

Next section gives more detail on steps 1 and 3.

Clustering the tune set

The development set is clustered using k-means clustering algorithm. A language model on the source language side of each of the n component bitexts are trained, n-dimensional vector for each sentence are computed by computing its entropy with each language model. We used the measure of cosine similarity since we would like to cluster on the basis of relative differences between the language model entropies.

The result of the development set clustering to k clusters is obtaining a bitext for each cluster. Each bitext is used to optimize the model weights. The centroid of each cluster is calculated. During decoding, each test set sentence is assigned to the centroid that is closest to it in the vector space using cosine similarity measure. The weight vector is set globally, but can be overridden on a per-sentence basis. A chart of the gold clusters vs. two and three automatic clusters of the tune set d10+d12+p1r6 are shown in Figure 3.7.F o ri l l u s t r a t i o np u r p o s eo n l y ,i n this figure I presented a 2D chart of the clusters using only two bitext (i.e. Gale and Bolt) and comparing them to the gold clusters which are both MSA NW WB (i.e. d10) and EGY DF (i.e. d12 and p1r6) genres in this case. We observed that the clustering technique was able to cluster the concatenated tune sets to two and three clusters; each cluster is closer to either EGY DF in blue or MSA NW WB in red. I will show more result analysis in the next section.

Experiments and results

The experiments are done using two phases: offline phase and online phase. In the offline phase, we train the individual component models, cluster the tune set and compute the optimal weight vector for each cluster (with perplexity minimization). In the online phase, we assigned each sentence in the test set to the closest cluster, translated it using the cluster's corresponding weight vector and evaluated the output using Tb2 metric.

I used this architecture to build a multi-domain system on both MSA NW WB and EGY DF. I experimented with several tune sets (i.e. d10+d12+p1r6 and d12+p1r6) as the tune set to be clustered. The experimental results are shown in Table 3.15.T h er e s u l t ss h o wt h ee ff e c t i v e n e s so fm u l t i -d o m a i nt r a n s l a t i o nm o d e l , with a Tb2 gain of up to 0.58 for MSA NW WB and a Tb2 gain of up to 0.6 for Egyptian dialect over unadapted baseline system. If we compared it to the adapted baseline we can observe a similar gain of up to 0.58 for MSA NW WB and a small gain of up to 0.15 for EGY DF (i.e. just for d12) on Tb2.T h eb e s t scores on both MSA NW WB and EGY DF are obtained by clustering d12 tune set to 32 clusters.

In order to do some result analysis, we need to look at the simple case of two automatic clusters and the automatic weights assigned to each one. Since we have good weights for baseline2 (i.e. in second row in the table) using the method detailed in Section 3.7.3 on d12 tune set, it would be good to compare them to the new assigned weights of each cluster. In Figure 3.8,f o ri l l u s t r a t i o np u r p o s e only, I presented a 2D chart of the clusters of d12+p1r6 tune set using only two bitext (i.e. Gale and Bolt) and comparing them to the gold clusters which are all EGY DF genre in this case. Even though the two sets are informal EGY DF, the clustering technique is still able to cluster them to two clusters; each cluster is closer to either EGY DF or MSA NW WB. We confirmed this observation by comparing the automatically assigned weights for each cluster (using all bilingual corpora as in our experiments) as shown in Figure 3.9.Io b s e r v e dt h a tc l u s t e r2 has larger weights for the main EGY DF corpora (i.e. bolt, thy, bbnegy and bbnturk), while cluster 1 has lower weights for them. 

P(s|t) weights

Cluster 1 weights Cluster 2 weights dev12 (no clustering) d12p1r6 (no clustering)

Figure 3.9: Comparing the four automatically assigned feature p(s|t)w e i g h t so f each cluster of d12+p1r6 tune set and when no clustering is used (for both tune sets d12 and d12+p1r6).

This means that cluster 2 is closer to EGY DF than cluster 1 and so it gets larger weights on EGY DF bitext corpora. if we compare cluster 1 weights to the weights of our instance weighting on d12 in the second row in Table 3. 15 (i.e. this is the same result presented in Table 3.13), we observed that cluster 1 got slightly similar weights which means some how that cluster 1 represents data that are mix of both MSA NW WB and EGY DF as the case of d12 tune set.

Looking at Tb2 scores of SYS1 C2, we observed also that the clustering technique benefits d10 score (i.e. MSA NW WB) compared to the adapted baseline system adapted d12, and because of the larger weights assigned to cluster 2 on EGY DF corpora, it did not lose much on d12 and p1r6 (i.e. EGY DF sets).

In general, we concluded that because Egyptian dialect is a mixture of MSA and additional dialectal words and dialectal structure, the clustering method helps clustering them and assigns different weights to each cluster. It is important to point out to the fact that clusters are not necessary representatives of EGY DF and MSA NW WB with different degrees. It is difficult to label these unsupervised clusters especially for large number of clusters because they could be representatives of other features with different degrees (e.g. different degrees of EGY DF and MSA NW WB, styles, genres, other dialects.. etc.)

In the context of Bolt project, we did not integrate this technique into our main delivered systems because the implementation was based on Moses server which does not support generating the n-best list which we need to apply CSLM re-scoring. Since CSLM re-scoring gives higher gain compared to the multi-domain system, we preferred using it in Bolt.

Adaptation using lightly supervised training

We used the metho d prop osed by Schwenk [2008b], by applying lightly supervised training of the translation model to adapt the system to the EGY DF genre as shown in Figure 3.10.I nt h i st e c h n i q u e ,w ea r eu s i n ga u t o m a t i ct r a n s l a t i o no f large amount of in-domain monolingual text (i.e. Egyptian dialect in our case) to improve and adapt the baseline SMT system for in-domain translation task. This is done basically by adding portion of this large amount of new bitext, which consists of the source sentences and their automatic translation, to our SMT system training data. This technique can be named unsupervised or lightly supervised training depends on the existence or the absence of the in-domain (i.e. discussion forum) training corpora in the language model of the system used for translation. We used lightly sup ervised name since our language mo del training data includes some in-domain monolingual data (i.e. forum3 in Table 3 .11). In order to improve the quality of the automatic translation we applied the following techniques: • The SMT system that we used for automatic translation was built using instance weighting explained in Section 3.7.3 and the fill-up method proposed by [START_REF] Bisazza | Fill-up versus interpolation methods for phrase-based smt adaptation[END_REF]. The fill-up method is used to enrich our translation model with additional unknown phrases/vocabulary (i.e. unseen in the training data) from another large translation model that was built using additional large amount of out-of-domain bitext (i.e. formal MSA UN/News parallel corpora in our case). This helped decreasing the number of OOV words in our monolingual automatic translation task. The fill-up preserves all the entries and scores coming from the first model, and adds entries from the other models only if it is new. Moreover, a binary feature is added for each additional table to denote the provenance of an entry. These binary features work as scaling factors that can be tuned directly by MERT along with other features' weights.

• CSLM re-scoring [START_REF] Schwenk | Continuous space language models for statistical machine translation[END_REF]hadbeenappliedon1000-bestautomatic translation list to re-rank them as it is proven to give better ranking and hence better Tb2 score.

The portion that we added to our SMT training data was selected based on the bilingual data selection explained in Section 3.7.2 in order to score the new bitext and sort them according to sentence pairs which are more relevant to our domain (i.e. EGY DF). In order to determine the best amount of data we can use from this new artificial bitext, we used empirical method by trying different amounts of them and study the impact on the system Tb2 score. Table 3 baseline system on p1r6 (i.e. EGY DF). The gains increases to 0.71 after applying CSLM re-scoring. As expected, adaptation of the system using lightly supervised method degraded the translation quality of MSA NW WB which we accepted since our focus was on improving EGY DF translation performance. [2011]r e p o r t e dt h a tas t a t i s t i c a l l ys i g n i fi c a n ti m p r o v e m e n t sh a v eb e e na c h i e v e d on Bleu for German-to-English and Spanish-to-English tasks, and comparable results for a French-to-English task.

Operation sequence model

The new generative model treats the translation process as a linear sequence of operations. The source and the target sentence are generated in parallel by these operations. The operations are: generation of a sequence of source and target words, gaps insertion as explicit target positions for reordering operations, and forward and backward jump operations which do the actual reordering. An n-gram model of the operations is used to estimate the probability of a sequence of operations. This means that the reordering operation may depend on preceding operations like generation and vice versa. This is because the operations are coupled in single generative story. This allows a natural consistent reordering operation that can deal with long distance re-ordering as well as local re-ordering operations.

The experimental results of using OSM in our Bolt EGY DF system are shown in Table 3.18 with improvement between 0.42 and 1 on Tb2 metric. 

Word sense disambiguation technique

Several researches were conducted on incorporating word sense disambiguation (WSD) in SMT. [START_REF] Carpuat | Improving statistical machine translation using word sense disambiguation[END_REF]f o u n dt h a ti n c o r p o r a t i n gt h ep r e d i ctions of a WSD system within a typical phrase-based SMT model consistently improves translation quality across all three different IWSLT Chinese-English test sets, as well as producing statistically significant improvements on the larger NIST Chinese-English MT task. They consistently integrate WSD models both during training, where sense definitions and sense-annotated data are automatically extracted from the word-aligned parallel corpora from SMT training, and during testing, where the phrasal WSD probabilities are used by the SMT system just like all the other lexical choice features. They extracted the context features from state-of-the-art WSD models. The evaluation is conducted on the actual translation task, rather than intermediate tasks such as word alignment.

In my work, no sense-annotated data is used and the senses are not extracted from the word alignment but from the pre-trained phrase table. Also Chan et al.

[2007], integrates a state-of-the-art WSD system into a state-of-the-art hierarchical phrase-based MT system, Hiero. They show that integrating a WSD system improves the performance of a state-of-the-art statistical MT system. In this work, I also focus on using word sense disambiguation to improve SMT performance but using context vectors modeling. I focus on how to improve an SMT system for Egyptian by applying word sense disambiguation techniques on ambiguous words using their context. The goal is to help the SMT system to decrease the number of wrong translations and by these means, improve its performance. There are huge amounts of mono-lingual data available for Arabic, Egyptian, English and many other languages compared to the size of the available bilingual corpora. The idea is to utilize these data instead of bilingual data which are sparse resources. We used context vector representations of words to capture the word similarity as well as other syntactic and semantic regularities in the language.

Recently, Mikolov et al. [2013b] introduce Continuous Bag-of-Words (CBOW) models, an efficient method for learning high-quality vector representations of words from large amounts of unstructured text data. They propose an architecture that is similar to the feed-forward continuous space language model, where the non-linear hidden layer is removed and the projection layer is shared for all words (not just the projection matrix); thus, all words get projected into the same position (their vectors are averaged). CBOW uses continuous distributed representation of the context. The model architecture is shown in Figure 3.11. Note that the weight matrix between the input and the projection layer is shared for all word positions in the same way as in the CSLM.

One of the characteristic of the context vector representation (a.k.a word embeddings) is that similar words are likely to have similar context vectors representation. I utilized this idea in my research to disambiguate the word sense of ambiguous words by finding all possible distinct translations of ambiguous words by calculating the cosine similarity between these various translation and merge the senses who have high cosine similarity scores.

In the next section, I will explain the main idea of utilizing these context vector representations to achieve the following:

• Measure the similarity between words.

• Detect the words which are not ambiguous.

• Extract various senses for each ambiguous word.

• Merge similar senses for each ambiguous word.

• Utilize the new proposed sense table in SMT to assign a sense tag for some words in order to improve the SMT translation performance. 2. Extract a Dictionary List (DL) using all unigram source words and their unigram target translation from a trained translation model (i.e. phrase table) after discarding entries with joint counts less than 5, punctuations unigram and stop words.

3. Find all possible target translations T j , j =0...n of each source word S i in the extracted DL.

4. Calculate the cosine similarity between the context vector representation of the all target translations T j and each other, k-means algorithm is used to cluster T j based on cosine similarity measure.

5. Find all possible source translations S t , t =0...m of each target word T j using the extracted DL. Assign the target words T j as default sense IDs for all S t .W ew i l lc a l li tSense Trigger Keywords List (STKL S i )o ft h es o u r c e word S i .

6. Calculate the cosine similarity between the context vector representation of the found possible source translation S t , t =0...m in (STKL S i )a n dt h e context vector representation of S i and discard S t with cosine similarity less than specific threshold (I used 0.05).

7. If S t is identical with the source word S i ; we check if the target translation T t is a transliteration of S i using a transliteration mining algorithm. If it is a transliteration, then we assign a NAME sense ID to S t instead of T t which we were using as default sense ID.

8. Output all S i words that has one sense ID for all S t in (STKL S i )a sn o nambiguous words in the Non-Ambiguous Word Table (NAWT), and the rest of words as ambiguous words with their sense IDs in the Ambiguous Words Sense Table (AWST).

Table 3.19 shows a sample from the NAWT table with words that the algorithm detected to be non-ambiguous words. Table 3.20 gives a sample from the AWST table with words that the algorithm detected as ambiguous words with possible sense IDs. 3.19: Sample from the NAWT with words that our algorithm detected as non-ambiguous words 3.9.0.2 Word sense disambiguation algorithm One way to integrate my work into SMT is to assign a sense ID for each word in the SMT training, tune and test sets. Only ambiguous words will be tagged with the detected Sense ID. As shown in Figure 3.13,t h eS e n s eI Dt a gf o rt h es o u r c e word S i is assigned based on the following algorithm:

S i T j Sense Keyword j ÒÉP@  Warsaw ÒÉP@  ˙⌦ Ê AEJ ⌦ À Livni ˙⌦ Ê AEJ ⌦ À ⌦ PÒªPAÉ Sarkozy ⌦ PÒªPAÉ hPAJ . "@ yesterday Å"B@ hPAJ . "@ yesterday ⇣ ÈkPAJ . À@ hPAJ . "@ yesterday -ÒK ⌦ hPAJ . "@ yesterday Å"@ Q î k@ green Q î kB@ Q î k@ green Z@ Q î m à '@ Q î k@ green Q î k@ Table
1. Check if the word S i is in AWST table of ambiguous words, if not, then do not tag the word and go to the next word.

2. Extract the words neighbor of S i based on the used window in our context vector space model and calculate the context vector representation V i by sum and normalize these neighbor words context vectors.

3. Get all senses of S i from AWST table with the associated STKL S i for each sense.

4. Calculate the cosine similarity between the neighbor context vector representation V i and each S t in STKL S i .

S i

T j /Sense ID Meaning Sense Keyword j

˙⌦ÊÖQ"

thanks thanks

˙⌦ÊÖQ"

thanks merci

˙⌦ÊÖQ"

thanks thanks

Y"m à '@ thanks thanks

Y"m à '@ thanks thank Y' g @ mercy mercy

˙⌦ÊÖQ"

mercy mercy -kQK ⌦ NAME morsi ˙⌦ÊÖQ" NAME mursi

˙⌦ÊÖQ"

NAME morsy

˙⌦ÊÖQ"

port marsa

˙⌦ÊÖQ"

port mersa

˙⌦ÊÖQ"

anchorage anchorage

˙⌦ÊÖQ"

port portsaid YJ ⌦ ™ÉPÒK .

port port A ØQ÷oe@ port port A ØQ" port port ⇣ HP ÒK . port port ZA JJ ⌦ " port ports ˙ G@ Ò÷oe@
Table 3.20: Sample from the AWST with words that our algorithm detected as ambiguous words; each sense has a sense ID and a sense keyword.

5. If S t has the highest cosine similarity with V i ,assignthesenseIDassociated with it to S i . 3.21 shows an example of a tagged sentence using the proposed technique. I used this approach to improve SMT system but it did not improve the final scores. However, by looking into the translation output, some translations are better compared to the baseline system translation as shown in Table 3.22.

Is S i

CSLM rescoring

LIUM is developing and using since several years the continuous space language models (CSLM) toolkit. This toolkit was used in Bolt project beside other projects. The theoretical background of CSLM is presented in this Section 2.3.3.2. Source Word Meaning Selected SENSE TAG

¨Ò ⌘ Ç

see see

• ⌦ "

who whose

»# has - Ë+ - - ⇣ Èj í" interest interest ‡@ that - ⇣ HAK . A j ⇣ J KB@ election - A"# will not - ' ⇣ Ê ⇣ K perform done ⌘ Ä+ - -
Table 3.21: Example of sense tagging of the SMT training data using our approach, ambiguous words are tagged with sense tag, while non-ambiguous words are not tagged

We trained and adapted CSLM for each genre in Bolt. The main differences between these models are the training data. We used monolingual data selection methods explained in Section 3.7.1.W e a l s o u s e d d a t a r e s a m p l i n g f e a t u r e i n CSLM toolkit. The resampling coefficients are determined by training individual back-off LM for each corpus in the training corpora, then interpolate them to get the LMs interpolation coefficients which are used as CSLM data resampling. We run CSLM training and re-scoring on 3D graphic cards from Nvidia in order to take advantage of their high computational power. The results of re-scoring with CSLM are shown in Table 3.23.Ia l s ow o r k e do ni m p r o v i n gC S L Mm o d e l sb y using additional auxiliary data. This work is presented separately in chapter 5 of this thesis.

Conclusion

This chapter describes Bolt program and its objectives, scope, data resources and constrains. It covers the activities and the different techniques that we used during Bolt project in different phases. The techniques developed to improve description sentence source . ⇣ HAae ⇣ J ØA K ⌦ ⌦ @ …J ⌦ ' g . -Cø tagged source words$(-Cø) beautiful$(…J ⌦ ' g . )v e r y $ (⌦ @) AK ⌦ NAME$( ⇣ HAae ⇣ J Ø).

reference av e r ybe a u t i f u lw o r d s,f a t a k a t. tagged translation av e r ybe a u t i f u lw o r d s,f a t a k a t. baseline translation av e r yn i c ew o r d s,f a t a k a t.

source

? @ Q' g †Ò¢ k#H . ⇣ ÈJ ⌦ £@ Q ⇣ AE÷fl ⌦ X tagged source NAME$( ⇣ ÈJ ⌦ £@ Q ⇣ AE÷fl ⌦ X)#H . lines$( †Ò¢ k) NAME$(@ Q' g )?
reference democracy with red lines ? tagged translation democracy with red lines ? baseline translation democracy red lines ?

source .' ∫ m à '@ ÄAÉ@ »Y™À@ # ẗagged source ¨#fair$(»Y™À@)basis$(ÄAÉ@)power$('∫m à '@).

. Q ⌦ "A' ⇣ Ø AK ⌦ 'ª+ XXP @ Q∫ ⌘ É⌦ÊÖQ" tagged source thanks$(˙⌦ÊÖQ")t h a n k s $ (@ Q∫ ⌘ É)replies$(X XP) 'ª+ AK ⌦ Q ⌦ "A' ⇣ Ø .
reference justice is the basis of ruling . tagged translation so justice is the basis of ruling . baseline translation so justice is the basis of the power .

source

. ‡@YJ ⌦ ÷oe@ • ⌦ À PA KA Jk@ ‡AÇk -@ AK ⌦ ˙⌦⇣ GQ ´ P tagged source ˙⌦⇣ GQ ´ PAK ⌦ NAME$( ‡AÇk)here$(A Jk@)keep$( • ⌦ À PA K) NAME$( ‡@YJ ⌦ ÷oe@).

reference ululate um hassan , we are going to the square . tagged translation ˙⌦⇣ GQ ´ P um hassan , we are going to the square . baseline translation ˙⌦⇣ GQ ´ P um hassan , we are going down to the square . the translation quality of Arabic/Egyptian into English MT system, but in most cases they can be adapted to other languages with small effort. It also presents the results of LIUM Systems in the three international evaluations of the Bolt project.

Several general and Arabic related techniques have been implemented. One of these techniques is adapting our SMT systems to the Egyptian dialect, since the available training corpora, in the context of Bolt project, contains modern standard Arabic, and several dialects (i.e. Egyptian, Levantine and Iraqi). We improved the system performance by using domain adaptations techniques and treating different dialects as different domains. We used several adaptation techniques to adapt our system on the Egyptian dialect and/or the required system genre. The first technique is using instance weighting of translation models to improve the translation quality by giving more weights to Egyptian than modern standard Arabic or other Arabic dialects. Since our training corpora have various genres (i.e. NEWS, WEB, UN, DF, SMSCHAT and CTS), we adapt our systems by using data selection techniques. Two techniques were used, the first one is used to select the relevant sentences from monolingual corpora to improve and adapt the language models, while the second one is used to select the most relevant sentences from the bilingual corpora to improve the TMs. We also applied another method for the adaptation of SMT systems to Egyptian using the so-called "lightly supervised" training. In this technique, we are using automatic translation of large amount of in-domain monolingual text (i.e. Egyptian dialect in our case) to improve and adapt the baseline SMT system for in-domain translation task. This is done basically by adding portion of this large amount of new bitext, which consists of the source sentences and their automatic translation, to our SMT system training data.

Since Arabic is a morphologically rich language, the selection of the suitable morphological segmentation options is one of the important preprocessing steps in MT research. There are many morphological schemes that can be used to segment the Arabic words. I evaluated various Arabic segmentation schemes from full word form to fully segmented form to explore the effect on the system performance and translation quality.

In order to address ambiguous Arabic/Egyptian words translation errors, I worked on applying word sense disambiguation technique on them using their context. I integrated this technique into a phrase-based SMT system in order to improve the system performance in translating ambiguous words. Another challenge in MT is the dealing with the out-of-vocabulary words. I have performed research on several methods to decrease the out-of-vocabulary rate including proper noun transliteration.

Finally, many languages contain specific entities (like e.g. dates and numbers) which require special treatment, and the Arabic language is one of them. In this work, we addressed the problem of translation of these entities. In this context, since there is no integrated method to enable the correct translation of numbers and dates, I developed a method to detect numbers, dates and other entities and then transform them, if needed, from the source language format to the target language format.

Chapter 4

Semi-supervised Transliteration Mining from Parallel and Comparable Corpora

MT and transliteration

One of the challenges in MT research is dealing with the OOV words. One way to decrease the OOV rate is by transliterating proper nouns (or names). In this chapter, I will focus on dealing with the challenge of transliteration of Arabic proper nouns into English. Transliteration is the process of writing a word (mainly proper nouns) from one language in the alphabet of another language. This requires mapping the pronunciation of the word from the original language to the closest possible pronunciation in the target language. Both the word and its transliteration are called a Transliteration Pair (TP).

Since I am using a statistical-based approach throughout this thesis, I will need data to train the system. In this case, the training data should be a bilingual list of TPs in Arabic and English. Since we do not have this training data available, we have to deal with the automatic extraction of these TPs from the available corpora. In this work, I deal with two types of corpora, a bilingual corpora and a comparable corpora. A comparable corpus is a pair of corpora in two different languages, which come from the same domain. The automatic extraction of TPs from parallel or comparable corpora is called Transliteration Mining (TMI).

Recently, TMI has gained considerable attention from the research community. There are several methods to perform TMI: supervised, unsupervised and semisupervised. In this chapter we will focus on a semi-supervised method with both parallel corpora and comparable corpora. The reasons that we consider the proposed method a semi-supervised one are as follows. The first reason is that the initial TPs list should be obtained manually or it can be generated using a supervised rules based Arabic-English transliteration. The second reason is that the method uses a rule-based normalization step which is written by human specifically focusing on the similarity and difference of pronunciation of Arabic and English language pair.

In this chapter, I present my work on performing TMI, getting the TPs, building a transliteration system and evaluating it. Even though the main goal of this work is to improve SMT performance by transliterating proper nouns OOVs (POOVs), however I was not able to evaluate this work in the context of SMT. One of the reasons of not integrating our transliteration system in our Bolt systems is that the percentage of POOVs is very small (vary from 1-4%). This means that the expected gain from transliterating POOVs is very small taking into account the following: transliteration of other OOVs types because of name entity recognition errors of the NER tool, wrong transliteration since the accuracy reported in this chapter does not exceed 50%, scoring MT output using Bleu or Tb2 after removing OOVs gives better scores. For these reasons, the transliteration systems we developed are evaluated independently on the name transliteration task using de-facto standard metrics. I was not able to compare my results to other research in international tasks like Name Entity Workshop (NEWS) [START_REF] Kumaran | Report of NEWS 2012 Machine Transliteration Shared Task[END_REF]sincenosimilarw orkshopw asheldsincethelastone in 2012.

The chapter is organized as follows: the next section is the related work, Section 4.3 presents the challenges of Arabic transliteration, followed by a description of the TMI using parallel corpora. This technique is extend to comparable cor-pora in Section 4.5.T h ep a r t i t i o n i n gm e t h o df o ri m p r o v i n gb a c k w a r da n df o r w a r d transliteration is presented in Section 4.6,fi n a l l yt h ec h a p t e rc o n c l u d e sw i t ha discussion of the perspectives of this work in Section 4.7.

Related work

The related work includes TMI and transliteration research. For TMI, several methods are possible to perform it, supervised, unsupervised and semi-supervised. Also, some TMI researches focus on parallel corpora and others on comparable corpora. [START_REF] Bibliography | Transliterated arabic name search[END_REF] use a variant of the so-called SOUNDEX methods and n-grams to improve precision and recall of name matching in the context of transliterated Arabic name search. Originally, SOUNDEX was developed by [START_REF] Russell | Specifications of letters[END_REF]. This is an algorithm used for indexing names by sound as pronounced in English. The SOUNDEX code for a name consists of a letter followed by three numerical digits: the letter is the first letter of the name, and the digits encode the remaining consonants. Similar sounding consonants share the same digit. For example, the labial consonants B, F, P, and V are each encoded as the number 1. The method proposed by [START_REF] Bibliography | Transliterated arabic name search[END_REF] reduce the orthographical variations by 30% using SOUNDEX. They improved precision slightly but they observed ad e c r e a s ei nr e c a l l . [START_REF] Darwish | Transliteration mining with phonetic conflation and iterative training[END_REF]p r e s e n t st w om e t h o d sf o ri m p r o v i n gT M I : phonetic conflation of letters and iterative training of a transliteration model. The first method is an improved SOUNDEX phonetic algorithm. They propose SOUNDEX like conflation scheme to improve the recall and F-measure. Also an iterative training method was presented that improves the recall but decreases the precision. [START_REF] Kuo | Learning transliteration lexicons from the web[END_REF]p r e s e n ta na d a p t i v el e a r n i n gf r a m e w o r kf o rP h o n e t i cS i m ilarity Modeling (PSM) that supports the automatic construction of transliteration lexicons. PSM measures the phonetic similarity between source and target words pairs. In a bitext snippet, when an source language word EW is spotted, the method searches for the word's possible target transliteration CW in its neighborhood. EW can be a single word or a phrase of multiple source language words. In their work, they initialize the learning algorithm with minimum machine transliteration knowledge, then it starts acquiring more transliteration knowledge iteratively, from the Web. They study an active learning and an unsupervised learning strategy, respectively, which minimize human supervision in terms of data labeling. They report that unsupervised learning is an effective way for rapid PSM adaptation while active learning is the most effective in achieving high performance. Another TMI method relies on a Bayesian technique proposed by [START_REF] Fukunishi | Using features from a bilingual alignment model in transliteration mining[END_REF]. This method simultaneously co-segments and forcealigns the bilingual segments through rewards the re-use of features already in the model. The main assumption is that transliteration pairs can be derived by using bilingual sequence pairs already learned by the model, or by introducing a very short unobserved pair into the derivation. They assume that incorrect pairs are likely to have large contiguous segments that are costly to force-align with the model. The transliteration classifier is trained on features derived from the alignments of the candidate pairs as well as other heuristic features. They report results which indicate that transliteration mining of English-Japanese using this method should be possible at high levels of precision and recall. [START_REF] Mehdi | Automatic transliteration of proper nouns from arabic to english. the challenge of arabic for nlp/mt[END_REF]p r e s e n t e da n de v a l u a t e dat r a n s l i t e r a t i o ns y s t e mb y combining two different techniques and taking the best of each. They introduced a three phase algorithm which is based on a Hidden Markov Model approach, but also leverages information available in on-line databases. The algorithm achieved an accuracy approaching 80%. One encountered problem was the lack of training data, resulting in less accurate performance for some cases. [START_REF] El-Kahky | Improved transliteration mining using graph reinforcement[END_REF]a d a p tg r a p hr e i n f o r c e m e n tt ow o r kw i t hl a r g et r a i n i n g sets. They introduce a parametrized exponential penalty to the formulation of graph reinforcement which led to improvement in precision. They report that TMI quality using comparable corpora is impacted by the presence of phonically similar words in comparable text, so they extracted the related segments that have high translation overlap and used them for TMI, which leads to higher precision for the suggested TMI methods. An automatic language pair independent method for transliteration mining using parallel corpora is proposed by [START_REF] Sajjad | A statistical model for unsupervised and semi-supervised transliteration mining[END_REF]. They model transliteration mining as interpolation of transliteration and non-transliteration sub-models. Two methods, unsupervised and semi-supervised were presented with the results that show that semi-supervised method is out-performing the unsupervised one.

For transliteration research, [START_REF] Al-Onaizan | Machine transliteration of names in arabic text[END_REF]usetwoalgorithms based on sound and spelling mappings using finite state machines to perform the transliteration of Arabic names. They report that the transliteration model can be trained on relatively small list of names which is easier to obtain than the average amount of data needed for training phonetic based models. [START_REF] Jiampojamarn | Directl: a language-independent approach to transliteration[END_REF] present DirecTL, a language independent approach to transliteration. DirecTL is based on an online discriminative sequence prediction model that employes EM-based many-to-many unsupervised alignment between target and source. [START_REF] Sajjad | An algorithm for unsupervised transliteration mining with an application to word alignment[END_REF]useajoin tsourcec hannelmodelonthealignedorthographic transliteration units of the automatically extracted TPs. They compare the results with three online transliteration systems and report better results.

Recently, [START_REF] Durrani | Integrating an unsupervised transliteration model into statistical machine translation[END_REF]proposethreemethodsforin tegratinganunsupervised transliteration model into the Moses SMT toolkit [Koehn et al., 2007c]. They extract a transliteration corpus from the parallel data and build a transliteration model from it which is used to translate OOVs or named-entities. They propose to induce a transliteration model from parallel data and use it to translate OOV words. The approach is unsupervised and language independent. By integrating this method in SMT, they observed improvements from 0.23-0.75 Bleu points across 7 language pairs. They compared the extracted transliteration corpora with the gold standard one and reported that their corpora provide better rule coverage.

The challenges of Arabic transliteration

There are several challenges related to Arabic translation as listed in Section 2.4. One of the challenges is how to perform transliteration of Arabic POOVs in order to decrease the number of OOVs in the translation output. This is a challenge because there are some Arabic letters which have no phonically equivalent letters in English (e.g. ê and †), and also some English letters do not have phonically equivalent letters in Arabic (e.g. v). Another challenge is the missing of short vowels (i.e. diacritics) in the Arabic text, while they should be mapped to existing letters in English text during the transliteration process. Additionally, some Arabic letters can be mapped to any letter from a group of phonically close English letters (e.g. H . to p or b), and some Arabic letters can be mapped to a sequence of English letters (e.g. p to 'kh'). There is also a tokenization challenge, since unlike English, sometimes, the Arabic name is concatenated to one clitic (e.g. preposition H . or conjunction )orbothtogether(e.g. H . ), which requires an advanced detection and segmentation for these clitics before performing the transliteration.

The proposed TMI algorithm is based on the following pronunciation (and hence transliteration) observations in the English language:

1. In most cases, we can sort the letter's impact on transliteration from low to high as follows:

• Phonetically similar vowels have low impact.

• Phonetically dissimilar vowels have medium impact.

• Consonants letters have significant impact.

2. Double vowels producing a long vowel sound have more impact on the pronunciation of the English word.

3. As e q u e n c eo ft w oo rm o r ed i ff e r e n tv o w e l s ,h a sas p e c i a lp r o n u n c i a t i o n which has more impact on the pronunciation of the English word.

4. Av o w e la tt h ei n i t i a lp o s i t i o no ra tt h efi n a lp o s i t i o ni nt h ew o r dh a s significant impact on the pronunciation (e.g. the names: Adham, Samy).

English normalization and three level similarity scores for TMI

We developed three normalization functions which can be used to normalize the word transliterated from Arabic and the English word with the goal to make the two words phonetically comparable. These normalized forms are used to calculate the similarity between the transliterated word and the English word. Three levels of similarity are used. The first level calculates the similarity of all vowels and consonants. The second level calculates the similarity of long vowels and vowel letters at the beginning and the end position of the words as well as consonant letters. The third level calculates the similarity of consonant letters only. The details of each normalization function are presented in the following: 104

(1) Norm similar normalization function: Normalize the transliteration of the Arabic as well as the English word. The objective of the normalization is folding English letters with similar phonetic to one symbol. In Norm similar ,a l ll e t t e r s are converted to lower case, phonetically equivalent consonants and vowels (i.e. these English letters which are mapped to the same Arabic letter) are folded to one letter (e.g. p and b are normalized to b, v and f are normalized to f, i and e are normalized to e), double consonants are replaced by one letter (since they are mapped to double letter which is actually written as one Arabic letter with Shadda above it), and finally a hyphen "-" is inserted after the initial letters "al" which is the transliteration of the usually concatenated Arabic article " »@ "-if it is not already followed by it.

(2) Norm vowels normalization function: Using Norm similar output, double vowels are replaced by one similar upper-case letter (i.e. ee is replaced by E), non-initial and non-final vowels are removed only if not followed by a vowel or not preceded by a vowel.

(3) Norm consonants normalization function: Using Norm vowels ,h y p h e n-a n d vowels are removed.

Hence, for each Arabic word A and English word E, if A t is the transliteration of A into English, we can calculate the following three similarity scores

TLS i = Levenshtein(Norm i (A t ),Norm i (E)) |Norm i (E)| (4.1)
with i in similar, vowelsandconsonants.W eu s et h ew e l l -k n o w nL e v e n s h t e i n distance at character level.

(7) TPs are extracted from the TT by applying a threshold on the three levels similarity scores. We selected the thresholds using an empirical method described in Section 4.4.3.2.

Transliteration system for TMI evaluation

The transliteration system is built using the Moses toolkit. We train a letterbased SMT system on the list of TPs extracted using our TMI algorithm explained in Section 4.4.1.T h ed i s t o r t i o nl i m i ti ss e tt o0t od i s a b l ea n yr e o r d e r i n g . Since the length of most names will not exceed 20 letters, we set the maximum phrase length to 20, however the system can still learn from and translate names which exceeds this limit. The transliteration system should be able to learn a transliteration model using the alignment of the letters using Giza++, and hence be able to generate the possible transliterations of a name written in the source language script into a name written in the target language script. This research focuses on the following points:

• Use the TMI algorithm to extract a list of TPs that we can use to build a transliteration system.

• Acquire a list of target language names to train the letter-based language model which is needed to improve the LM of the letter-based SMT system.

• Study the impact of the segment length on the transliteration quality. In this context, two systems are trained to evaluate the segmentation for the word letters. We compared two segmentation scheme:

-Simple segmentation of the word by separating individual letters.

-Advanced segmentation of the word that segments the word into a group of 1-2 letters based on predefined phonetic units which combine two English letters, based on their position in the word, in one substring (e.g. 'kh', 'kn', 'wh', 'sh' and 'ck' ).

• The impact of using different tuning metrics, we compared the following metrics: Ter, Bleu, Tb2. • Evaluate the performance of the TMI algorithm by using TPs to build a transliteration system. The transliteration system performance is correlated with the quality of the extracted TPs, and hence the TMI performance.

Experiments and evaluation

The objectives of developing our transliteration system is to evaluate the quality of our TMI algorithm and perform research on improving the transliteration quality especially for unseen names in the training data. We evaluated the proposed TMI algorithm using an Arabic/English parallel corpus which contains about 3.8 million Arabic words and 4.4 million English words. The evaluation of the TMI algorithm is performed by training a statistical system on the extracted TPs and evaluating the quality of the transliteration output.

The extracted TPs are divided into three parts: a training data set which varies in size in function of the selected thresholds of the 3-levels (from 9k to 10.5k), tune and test sets (∼ 1k for each). All occurrences of words in the tune or test set were removed from the training set.

In order to evaluate the quality of our transliteration system, we used the de-facto standard metrics and evaluation tools from the Name Entity Workshop (NEWS) [START_REF] Kumaran | Report of NEWS 2012 Machine Transliteration Shared Task[END_REF]: ACC, mean F-Score, MRR, and M AP ref .

The following notation is further assumed: N :t o t a ln u m b e ro fn a m e s( s o u r c ew o r d s )i nt h et e s ts e t . n i :n u m b e ro fr e f e r e n c et r a n s l i t e r a t i o n sf o ri-th name in the test set. r i,j :j-th reference transliteration for i-th name in the test set K i : Number of candidate transliterations produced by a transliteration system. c i,k : k-th candidate transliteration (system output) for i-th name in the test set (1 ≤ k ≤ 10)

Here is a short description of each metric:

• Word Accuracy in top-1 (ACC),itmeasuresthecorrectnessofthefirst transliteration candidate in each candidate transliteration list generated by 109 at r a n s l i t e r a t i o ns y s t e m . T h ef o l l o w i n ge q u a t i o ni su s e dt oc a l c u l a t ei t :

ACC = 1 N N X i=1
( 1i f∃ r i,j : r i,j = c i,1 0o t h e r w i s e (4.2)

• F-Score. The mean F-score measures the difference, on average, between the first transliteration hypothesis and its closest reference. if the first transliteration hypothesis matches one of the references, the F-score will equal to 1. It equals 0, if there are no common letters between the first transliteration hypothesis and any of the references. The F-score is a function of Precision and Recall. The length of the Longest Common Subsequence(LCS) between a candidate and a reference are used to calculate the Precision and Recall. LCS is calculated using the following equation:

LCS(c, r)= 1 2 (|c| + |r|-ED(c, r)) (4.3)
where ED is the edit distance and |x| is the length of x.I ft h eb e s tm a t c hing reference is given by r i,m = argmin j (ED(c i,1 ,r i,j )) (4.4)

The recall R i ,t h ep r e c i s i o nP i and the F-score for i-th word are calculated as follows:

R i = LCS(c i,1 ,r i,m ) |r i,m | (4.5) P i = LCS(c i,1 ,r i,m ) |c i,1 | (4.6) F i =2 R i × P i R i + P i (4.7)
• Mean Reciprocal Rank (MRR) is measured for any right answer produced by the system, among the candidates. 1/MRR gives the average rank of the correct transliteration. An MRR close to 1 implies that the correct answer is mostly produced close to the top of the n-best lists. It is calculated as follows:

RR i = ( min j 1 j if ∃ r i,j ,c i,k : r i,j = c i,k 0o t h e r w i s e (4.8) MRR = 1 N N X i=1
RR i (4.9)

• M AP ref measures the precision in the n-best transliteration output for the i-th source name, for which reference transliterations are available. If all of the references are produced, then the MAP is 1. If num(i, k)isthen um ber of correct transliteration hypotheses for the i-th source name in k-best list, the M AP ref is calculated using the following equation:

M AP ref = 1 N N X i=1 1 n i n i X k=1 num(i, k) ! (4.10)

Acquiring LM resources

We used two resources to get lists of English names to train letter based LMs. The first language model, LM1, is trained on a list of proper names extracted from the English Gigaword corpus (using only Xinhua, Agence France Presse and New York Times parts). The extraction is done using the Stanford Named Entity Recognizer (NER) [START_REF] Finkel | Incorporating non-local information into information extraction systems by gibbs sampling[END_REF]. The second language model, LM2, is trained on the English part of the extracted TPs from our bilingual corpora. The Table 4.1 below compares the performance of two systems which are using LM1 and LM2. These results show that the system LM2 gives better accuracy score but lower mean F-score. Since in the context of MT, the accuracy is more important, so we decided to use the second language model (LM2) in the rest of our experiments.

it would be difficult to perform the optimization on all of them together. In the same time, the Mert toolkit in Moses is limited to specific set of standard SMT evaluation metrics (e.g. Bleu, Ter,... etc.) and it does not support using external metrics. We decided to evaluate a three of well known SMT evaluation metrics namely Bleu, Ter and Tb2 to select the one that gives the best transliteration scores. We used two segmentation techniques, the first technique simply segments the NE into characters, the second one is an advanced segmentation that groups together letters that form one phonetic sound in one segment (e.g. ph, ch, sh, etc). Table 4.4 shows the results of both segmentation techniques. One can see that the second technique helps the letters alignment between source and target and hence significantly improves the transliteration output. The results presented in the current and next sections are different than the results in previous sections because we re-applied the TMI algorithm again using our best transliteration system (i.e. SYS540). This results in obtaining better TPs. The transliteration system trained on these TPs (i.e. SYS540-2 ) is improved compared to the previous one (i.e. SYS540). This is the explanation of the increase in accuracy and other scores in Table 4.4.

Results

Using three levels similarity scores thresholds=(0.5, 0.4, 0) as explained in Section 4.4.3.2,t h et o t a ln u m b e ro fe x t r a c t e dT P si s1 0 5 2 9 . T a b l e5.1 shows some statistics on the extracted TPs. 

TMI using comparable corpora

In this section, we will introduce a corpus based computational method to extract transliteration pairs from comparable corpora. In order to evaluate the extracted pairs, we trained a letter based statistical transliteration system on them and evaluate the system performance which is correlated with the TMI quality.

TMI algorithm for comparable corpora

Since it is easier to collect and find monolingual text than parallel text, it would be useful if we can perform TMI using comparable corpora of monolingual text for any pair of languages. comparable corpora. The algorithm is designed to remove the non-nouns words in order to minimize the number of words in each monolingual text. The next step, is detecting the words which are transliteration of each other, with respect to the observations listed in Section 4.3.W e s c o r e t h e w o r d s s i m i l a r i t y u s i n g three levels similarity scores to generated the transliteration table (TT). TPs are extracted from the TT using three thresholds on the three levels of similarity scores. The following steps explain the TMI algorithm:

(1) Each monolingual corpus is tagged using a POS tagger. We used Stanford POS tagger [START_REF] Toutanova | Feature-rich part-of-sp eech tagging with a cyclic dep endency network[END_REF]f o rE n g l i s ha n dM a d a / T o k a n [START_REF] Rambow | Mada+tokan: A toolkit for arabic tokenization, diacritization, morphological disambiguation, pos tagging, stemming and lemmatization[END_REF] for Arabic POS tagging.

(2) All words with POS tags other than noun (NN) or proper noun (PNN) tags and all English words starting with lower-case letters are removed (only for target corpora).

(3) The remaining words are un-tagged (i.e. removing the POS tags from source text and target text).

(4) Two unique word lists are derived (LIST SRC and LIST TRG) from both source and target texts.

(5) The source word list (LIST SRC) is transliterated into target language (LIST SRC TRANS) using rule based transliteration system (or previously created statistical based transliteration system).

(6) The transliteration of source word list is normalized as well as the English word list to Norm similar , Norm vowels and Norm consonants as explained in Section 4.3.1. The objective of the normalization is folding English letters with similar or close phonetic to same letter or symbol.

(7) The normalized values are used, for each transliterated word in the source language list WORD AR TRANS and target language word WORD EN, and the 3-similarity scores are calculated between them. All scores are stored in the transliteration table (TT).

(8) The TPs are extracted from the TT by applying a selected thresholds on the three levels similarity scores.

Experiments and evaluation

Purpose and data sets

We evaluated the proposed TMI algorithm by applying it on the Arabic Gigaword corpus (about 270.3 million Arabic words using only XIN, AFP and NYT parts) and the English Gigaword corpus (roughly 1.47 billion English words using only XIN, AFP and NYT parts).

The extracted TPs are used as training data. We used the same tune set and test set extracted from parallel corpus as mentioned in Section 4.4.3.

As before, all occurrences of words in the tune set or test set were removed from the training data.

We selected the thresholds using empirical method. Several systems were trained to evaluate the best thresholds to be used in our experiments. Only two thresholds are compared, other thresholds are discarded because they almost give the same TPs. The experiments show that the best thresholds for 3-scores on tune set are (TLS 1 , TLS 2 , TLS 2 )=(0.4, 0.3, 0) since they give slightly better mean F-Score and MRR. The scores of the tune set with different thresholds are mentioned in Table 4.7.T a b l e4.7 lists the systems with the TLS scores' thresholds used to select data to train each one.

System

TLS Their system uses bilingual training data, along with morphological analysis (using Sakhr's Morphological Analyzer), some heuristic rules and observations to achieve these results in combination with traditional statistical language processing and machine learning algorithms.

Partitioning technique

In order to study the impact of partitioning Arabic-English transliteration training data, tune set and test set. We propose to partition each dataset into three parts:

• Transliterated names which are originally Arabic (called forward transliteration)

• Transliterated names which are originally English (called backward transliteration)

• At h i r dp a r t i t i o nf o rn a m e sw h i c ha r es h a r e do rd i ffi c u l tt oc a t e g o r i z ei n the other two partitions.

The partitioning technique uses two language specific features: the first feature is the source or target language phonetics which are missing in the other language. This is motivated by the following two facts:

• It is difficult to transliterate these names without transliterating the phonetic variants to the closest possible phonetic variant in the target language.

For example the Arabic letter ê has no equivalent in English, hence it is mapped to the English letter "D" which is the closest possible substitution.

The Arabic letter ê can not be a transliteration of any English phonetic unit and hence the name is more likely from Arabic origin.

• It is difficult to transliterate to a target language phonetic that has no mapping back to source language phonetic. For example the English letter "X" has no equivalent in Arabic. Hence it can not be a transliteration of Arabic phonetics unless the name origin is English.

The second feature we used is the common letter patterns (or sequences) of names in each language. For example, in Arabic, if a name contains the letter sequence YJ . ´, then its origin is certainly Arabic.

Partitioning rules

We obtained the list of TPs using transliteration mining technique detailed in Section 4.4 using parallel Arabic-English corpus. We divided this list into three sets, training data, tune set and test set. The partitioning of the data is done for all transliteration pair in each set as following:

• Aw e i g h ti sa s s i g n e df o re a c hl e t t e ro rs e q u e n c eo fl e t t e r st h a ti sm o r ef r equent in source or target language. For Arabic and English, some examples of these letter sequences are presented in Table 4.10 with suggested weights.

In these experiments, the weight is set manually based on the closeness of the letter phonetic to other phonetic in the other language.

letters Sad ê Daad ê Eien ® Al »@ Abo ÒK . @ Abd YJ . ´p/P x/X weight 1 1.5 2 2 2 2 1.5 2 Table 4.10: Arabic and English specific letter(s) or pattern and their proposed weights

• For each transliteration pair two scores, S and T, are calculated to measure whether the name origin is Arabic or English.

• Afi n a ls c o r ei sc a l c u l a t e da sf o l l o w i n g : S total = S source -S target .

• The transliteration pair is partitioned as follows:

-Arabic partition if S total >0

-English partition if S total <0

-non-determined partition if S total =0 .

In the following sections, we will present the experiments and results for forward and backward transliteration.

Experiments and Evaluation

Apply partitioning technique

Table 4.11 shows a sample of names and its transliteration from Arabic partition, while Table 4.12 shows a sample of names and its transliteration from English partition. The results of partitioning the training data of ∼ 20.3k transliteration pairs, the tune and test sets are shown in Table 4.13.W ew i l le v a l u a t et h ei m p a c t of partitioning technique by using the partitioned sets to train several statistical based transliteration systems compared to a baseline system that is using all data sets before partitioning them.

Arabic

English transliteration By these means, we were able to significantly improve the transliteration performance when the origin was detected (about 50% of the training and 30% of the tune and test data). As expected, there is no notable change in the performance when the transliteration direction can not be automatically detected and a generic system is used.

⌦ XAJ . ´Abadi XÒí ⇣ AE÷oe@YJ . ´AbdelMaqsoud ⇣ H@YJ ⌦ J . ´Abidat Y' g @ Ahmed QÂïA KÒJ . À@ Albunasser ˙⌦ GA ⇣ JÉQÓD ⌘ ÑÀ@ AlShahristani ˙⌦ ´ Q ´ QÀ@ AlZaghzaghi ⌦ Cj÷oe@ AlMehlawi
The method presented in this chapter is specific to Arabic and English, but the framework can be used for other language pairs after replacing the language specific modules and rules.

Chapter 5

CSLM improvement 5.1 Introduction

It is well known that the language model on the target sentence plays an important role to achieve high quality statistical machine translation. We have already applied several adaptation techniques to the language models developed by the SMT group of LIUM, e.g. data selection, interpolation, etc. (read more details in Section 3.7).

In this chapter, I will present improvements of the CSLM which I have developed during the last period of my PhD. The idea is to provide additional information at the input of the neural network. In extension of similar work for recurrent NN LM by [START_REF] Mikolov | Context dep endent recurrent neural network language model[END_REF], we will name these additional inputs "auxiliary information". I used different type of auxiliary features including line length, text genre, line context vector representation, ... etc. By these means, better domain and context specific LM estimations can be obtained. I will report the results using perplexity as well as when these improved CSLMs are integrated into an SMT system. This is performed by re-scoring the n-best list and adding an additional feature function. This architecture would allow different auxiliary information for each n-gram, but since our goal is to model the topic or long-term context, we made the choice to keep the auxiliary data constant for all n-grams of one sentence. Therefore, the auxiliary data is loaded once for each sentence. If more than one auxiliary feature is desired, the dimension of the auxiliary feature vector will be equal to the sum of the individual feature dimensions. In this case the auxiliary feature vector will be the concatenation of two or more feature vectors. This architecture also allows us to use sentence-level features as well as document (or corpus) level features by using the same auxiliary vector for all lines in the document (or corpus).

The functionality of auxiliary features has been integrated in the open-source CSLM toolkit1 [START_REF] Schwenk | Continuous space language models for statistical machine translation[END_REF] Other works, like the work of [Iyer and Ostendorf, 1999]focusedondeveloping as e n t e n c e -l e v e lm i x t u r el a n g u a g em o d e lt h a tt a k e sa d v a n t a g eo ft h et o p i cc o nstraints in a sentence or article. They proposed topic-dependent dynamic cache adaptation techniques in the framework of mixture models. An automatic clustering algorithm was used to classify text with two levels of mixture models for smoothing. In my work a predefined genre is assigned to different corpora, which is used as additional input to the neural network. However, it is also possible to use topics instead of genres and to assign the topic dynamically by using similar automatic clustering algorithm like the one used by Iyer and Ostendorf [1999]. Khudanpur and Wu [2000]p r o p o s e da nL Mt h a tc o m b i n e sc o l l o c a t i o n a ld ependencies with the syntactic structure and the topic of the sentence. They integrate these dependencies using a maximum entropy technique. They report a substantial improvement in perplexity and in the accuracy of a speech recognition task. In my work, instead of using the topic, I used the genre of the sentence. Since I am using auxiliary features on the sentence level, it could be envisioned to extend this to syntactic features. [START_REF] Mikolov | Context dep endent recurrent neural network language model[END_REF]f o c u so ni m p r o v i n gt h ep e r f o r m a n c eo fr e c u r r e n t neural network language models (RNNLMs) by using a topic-conditioned RNNLM. They used a contextual real-value input vector in association with each input word. This vector is used to convey contextual information about the sentence being modeled. They use Latent Dirichlet Allocation (LDA) to get a compact vector-space representation of a long span context which they conventionally interpreted as a topic representation. They argue that their approach has the key advantage of avoiding the data fragmentation associated with building multiple topic models on different data subsets. The main differences with my work are, that I used a feed-forward neural network and context vector representation instead of LDA. Also, I evaluated the impact of using various types of auxiliary feature as explained in Section 5.4.

Auxiliary features

In this work, I experimented with two types of auxiliary features: the first one provides a feature of the current line itself (e.g. the number of words or genre) which allows us to train feature-conditioned continuous space language models. Some of these features are motivated by research in the machine translation quality estimation literature. The second type of auxiliary feature aims at providing al a r g e rc o n t e x t . T a b l e5.1 summarizes the auxiliary features of these two types that we have experimented with. One of the basic auxiliary feature I used is LineLen or the line length, expressed in number of words. I used an 1-of-n encoding to generate this feature vector. The ith value in the vector is set to 1 if the line length is equal to i,a n dz e r o s otherwise. I considered a maximum line length of n =2 0 0 ,s oi ft h el i n el e n g t h exceeded 200 words, I use n =2 0 0 . I nm ye x p e r i m e n t st h i s1 -o f -ne n c o d i n gi s projected into a continuous space like for the words. The Genre consists of a binary vector with dimension equal to the number of genres we have. As for LineLen, we used a 1-of-n encoding. In our training data, we have 5 genres as shown in the second row in Table 5.1.

For the context vector representation auxiliary features, we used various ways to compose them. One of the composition is CurrLine αl of a line l.T h i sw i l lb e the normalized sum of the word embeddings e w of all tokens w ∈ l computed as follows: For PrecHCurrLines,w ec a l c u l a t et h ew e i g h t e ds u mo ft h ec o n t e x tv e c t o r representation of the current line αl and the preceding H lines. The farther the line is in the past, the lower the weight is. The vector of a line l is calculated as follows:

ηl,H = P l i=l-H αi λ l-i || P l i=l-H αi λ l-i || (5.3)

In our experiments we used different values of H=10, 30, 50 and λ=0.95.

The differences between AllPrecLines and PrecHCurrLines is that the first one does not include the current line context vector representation in the calculation of its vector and that it uses all preceding lines not just the H preceding lines. The equation used to calculate the feature vector of AllPrecLines of al i n el is as follows: ωl = P l-1 i=1 αi λ l-i || P l-1 i=1 αi λ l-i || (5.4)

For the first line, we used the context vector representation of itself (i.e. ω1 = α1 ). In our experiments, we used several weights: λ =0. 85, 0.95, 0.98. For AllPrecCurrWords,t h el i n ec o n t e x tv e c t o rr e p r e s e n t a t i o nσ l is calculated using all preceding words with a weight λ that gives more weight to the near history words and lower weight to the far history words.T h ee q u a t i o nu s e dt o calculate the feature vector of AllPrecCurrWords of a line l is the following: σl = P W 0 -1 i=1 e w i λ W 0 -i || P W 0 -1 i=1 e w i λ W 0 -i || (5.5)

where W 0 is the number of words in the current and all preceding lines. In our work we experiment with the following weights: λ =0.75, 0.85, 0.95.

AllPrecWords is calculated in a similar way as AllPrecCurrWords,b u t excluding the words of the current line. The equation used to calculate the feature vector of AllPrecWords of a line l as follows:

δl = P Ẇ -1 i=1 e w i λ Ẇ -i || P Ẇ -1 i=1 e w i λ Ẇ -i || (5.6)
where Ẇ is the number of words in all preceding lines. et al., 1993]. This is a very small corpus (< 1m i l l i o nw o r d st r a i n i n gd a t a ) ,b u t it has the advantage that many comparable results are published. I limited my evaluation on PTB to use only the preceding line auxiliary feature (i.e. PrecLine).

Evaluation on Penn Treebank

The features LineLen and CurrLine can not be used when using perplexity to evaluate an LM since they provide information on the future. However, it is valid and useful to apply them in an n-best list re-scoring framework, as discussed later in the following sections.

The perplexity values on PTB for several configurations are shown in Table 5.2. Ie x p e r i m e n tw i t hd i ff e r e n tl e a r n i n gr a t es c a l e sf o rt h efi r s tl a y e ro ft h en e u r a l network as shown in the third column in Table 5.2.T h i sm e a n st h a tt h efi r s t layer learning rate is scaled by this value which means that the network learns the weights faster than other layers weights and possibly learns better projection weights. Copy means that no weights are learned and the auxiliary feature vector is copied to the next layer directly.

In CSLM1, using auxiliary features and unified learning rate scale decreased the perplexity slightly. To understand these results, I compared systems with the same setup except for one variable. Comparing Baseline1 and Baseline2 shows the impact of increasing the learning rate scale from unified to 2. Also comparing CSLM1 and CSLM2 gives us the impact related to the increase of learning rate scale for word embeddings only since the Copy layer used for auxiliary feature does not have any weights. Also comparing CSLM1 and CSLM3, gives us the impact of using sequence of double hyperbolic tangent layer for auxiliary data instead of Copy. I observed that this allows the network to deeply learn from the auxiliary data. These three comparisons accumulated a perplexity decrease of 7.28 on dev and 7.03 on test. We concluded that using auxiliary feature decreases the perplexity with different meta-configuration and topology by around 7.5% on dev and test. Looking at Table 5.4,w eo b s e r v e dag o o di m p r o v e m e n tu s i n gLineLen auxiliary feature, but Genre has relatively better gain on both dev and test. This means that Genre is better discriminative auxiliary feature. We observed that PrecLine provides better performance due to better context information compared to CurrLine.W ea l s oo b s e r v e dt h a tC S L M sw i t ha u x i l i a r yf e a t u r e sw h i c h contain the current line (i.e. AllPrecCurrWords, PrecHCurrLines) generally have lower Bleu scores than CSLMs with auxiliary features which do not contain the current line. We concluded that using current line is not so useful for re-scoring n-best list because instead of predicting the next word, the CSLM would rather learn to find the next word from the input auxiliary feature making undesirable cycle in the model.

PrecLine has +0.6 Bleu gain on test. If one preceding line is useful, two or more preceding lines would be more useful (possibly weighted). We can verify this assumption by looking at AllPrecLines result, which uses auxiliary feature that does not contain the current line (i.e. both AllPrecCurrWords, PrecHCurrLines contain the current line). The results of AllPrecLines is 26.52 on test which is the second best Bleu score in Table 5.4,w h i c hc o n fi r m st h a to u ra s s u m p t i o ni s correct.

Looking at the additional results of AllPrecLines with different λ(s) in Table 5.5,w eo b s e r v e dt h a tl a r g e rλ weight improved the Bleu score on both dev and test sets. The best Bleu scores are obtained using AllPrecWords CSLM. The only difference between AllPrecLines and AllPrecWords is that the second one is weighted sum of words' embeddings, while the first one is the weighted sum of lines' embeddings. It means that AllPrecWords auxiliary feature includes better and consistent context information. One possible reason for this is that for AllPrecLines auxiliary feature vector, each line has a different length, and hence the weight on each line controls the contribution of a variable number of words. This clearly is less stable than using the weighted sum of individual words em- 5.5: Bleu scores of re-scoring n-best list using AllPrecLines, AllPrecWords and AllPrecCurrWords auxiliary features with various weights. Auxiliary layer is a sequence of two tanh 320x320.

beddings and hence the auxiliary feature vector will be independent of individual lines lengths. In Table 5.5,w enoticedthesamerelationbet w eenλ and the Bleu scores as we discussed for AllPrecWords auxiliary feature. Looking at the results of AllPrecCurrWords auxiliary feature in Table 5.5,w e observed that the results are inconsistent on test, λ=0.75 gives better scores than λ=0.85, but also, λ=0.95 gives better scores than λ=0.85. We concluded that including word embeddings of both current line and preceding lines in the same auxiliary feature gives inconsistent results.

For the results of PrecHCurrLines in Table 5.6,g e n e r a l l y ,w eo b s e r v e dt h a t including more preceding lines does not give better scores on test (we used maximum 50 preceding lines in these experiments), even with H=50, the scores are not better than just one preceding line PrecLine.W ec o n c l u d e dt h a tt h er e a s o n is that this auxiliary feature includes the current line embeddings which cause inconsistent results on dev and almost no improvement on test.

Conclusion

In this chapter I introduced a novel method to improve the continuous space language model using auxiliary features. I used different features which some of them are motivated by the important features in machine translation quality estimation literature. The suggested auxiliary features include text genre, line length and various types of context vector representations.

Ir e p o r t e dp e r p l e x i t yi m p r o v e m e n ta r o u n d7 . 5 %o nd e va n dt e s tu s i n gt h e English Penn Treebank dataset. I also reported an improvement on a translation task up to 1.4 Bleu on dev and 1.1 on test by re-scoring n-best list of a strong baseline phrase-based SMT system. Also, the results show that the weighted sum of the word embeddings is more stable and outperforms the line level weighted sum of embeddings. These results need to be validated on other tasks with different language pairs, genres and data sets.

In future work, I would like to try using combined features and explore syntactic features. Also I would like to experiment with additional features like source language features and study their impact on the CSLM performance. In transliteration work, I proposed adapting the transliteration system on forward or backward transliteration by partitioning the training data and using instance weighting techniques. The partitioning is done automatically using supervised method. I applied this proposed technique by building two separate systems for forward and backward transliteration from Arabic into English. The detection of the transliteration direction is fully automatic. I showed a significant improvement in the transliteration performance when the origin was detected (about 50% of the training and 30% of the tune and test data). As expected, there is no notable change in the performance when the transliteration direction cannot be automatically detected and in this case an unadapted system can be used.

System

Finally, I contributed a novel architecture to improve the continuous space language models using auxiliary features. I used different auxiliary features motivated by the important features in the quality estimation literature. The suggested auxiliary features include text genre, length of the line, line context vector representation calculated using different ways. Experiments are done on the English Penn Treebank data. I reported a perplexity improvement of 7.5% on development and test sets. Additionally, I reported the results of re-scoring nbest list of our phrase-based MT system with a gain up to 1.1 on Bleu metric.

Prospects

There are several prospects of the work on CSLM improvement using auxiliary features, the following enhancements are interesting: When CSLM is trained on at a r g e ts i d eo fab i l i n g u a lc o r p o r a ,i tw o u l db ei n t e r e s t i n gt os t u d yt h eu s eo f additional auxiliary features extracted from the source language side of the bitext. This could be the line length, the topic, the genre and the context vector representation of the line or other source side features. Additionally, in my work a predefined genre ID is assigned to different corpora, which is used as auxiliary feature input to the neural network. It is possible to use topics instead of genres and to assign the topic ID dynamically by using similar automatic clustering algorithm like the one used in [Iyer and Ostendorf, 1999].

The same auxiliary features we used in feed-forward neural network, can also be used with recurrent neural network language models (RNNLMs) architecture like the one used in [START_REF] Mikolov | Context dep endent recurrent neural network language model[END_REF]. This work can conclude with a comparable results that recommend one architecture over the other when auxiliary features are used. Another interesting idea, is that we used auxiliary features in continuous space language modeling, it would be interesting to study the impact of using them in various continuous space translation models [Bahdanau et al., 2014;[START_REF] Schwenk | Continuous space translation models for phrase-based statistical machine translation[END_REF][START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF].

From the work done in using word sense disambiguation to improve phrasebased systems, we proposed a word sense disambiguation technique and used it to tag ambiguous words with their sense IDs. It would be interesting to use and evaluate different integration approaches in phrase-based systems. Also, to use systems combination technique to combine output of the baseline system with the output of the system that uses our word sense disambiguation technique, which will benefit from good translations in both systems. Instead of applying our approach on all ambiguous words in the corpora, it would be good to just try to tag the problematic ambiguous words only. These words could be detected by translating training data or other bilingual corpus and using the translation errors as indicators for the problematic ambiguous words.

Finally, for multi-domain work, we used an unsupervised method to cluster the sentences of the development set. We obtained a bitext for each cluster, which are used to optimize the model weights. At decoding time for test set, we need to assign a cluster and its associated optimized weight vector to each sentence. One possible extension for this work is to optimize the log-linear feature weights by Mert and then use both the associated optimized weight vector and the new log-linear features weights to translate each sentence.
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 1 Figure 1.1: Different Arabic dialects in the Middle-East region 1

  2 gives an introduction to machine translation. Chapter 3 covers the work I did in the Bolt program. The details of the work I did in transliteration and transliteration mining is presented in Chapter 4.T h ei m p r o v e m e n to fC S L Mi sp r e s e n t e da n d discussed in Chapter 5. Finally, the conclusion and future work is presented in Chapter 6.
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 2 Figure 2.1: The Vauquois triangle for MT[START_REF] Vauquois | A survey of formal grammars and algorithms for recognition and transformation in mechanical translation[END_REF] 
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 22 Figure 2.2: Using of the noisy channel model in SMT
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 2 Figure 2.3: A visualization of an alignment between English and Egyptian sentences

  2.3.1.1 The five IBM generative models Brown et al. [1990]p r o p o s e dfi v eg e n e r a t i v em o d e l s( n a m e dI B Mm o d e l1u n t i l IBM model 5), each model improves its predecessor by adding or reinterpreting parameters. During training, the Expectation Maximization (EM) algorithm

Figure 2 . 4 :

 24 Figure 2.4: Example of Arabic-English aligned phrases

Figure 2

 2 Figure 2.7: A visualization of symmetrization of IBM alignments by taking the intersection of source-to-target and target-to-source alignments to get a highprecision alignment, the union of both alignments is used to extract phrases.

  Figure2.8: The neural network language model architecture. h j denotes the context w j-1 j-(n-1) . P, N and H are the size of one projection, one hidden layer and the output layer respectively.

!

  Figure 2.9: Decoding process: start with empty hypothesis, hypotheses are expanded by picking translation options

•

  Translation: n-b est translation of the development set with current λ i • Comparison: compare the objective score (such as Bleu)o ft h en -b e s t translation with previous run • Re-estimation: Re-estimate the weights λ i • Iterate: Iterate until weights have converged

  Figure 3.1: The support of externalization of entities values translation in entitybased PBSMT system.
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 32 Figure 3.2: Comparing the automatically assigned weights for feature P (s|t)with the weights calculated using LMs interpolation technique.
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 33 Figure 3.3: Automatically assigned weights for feature P (s|t)f o rd i ff e r e n tt r a n slation models.

Figure 3 . 4 :Figure 3 . 6 :

 3436 Figure 3.4: Automatically assigned weights for feature P (t|s)f o rd i ff e r e n tt r a n slation models.

  Figure 3.7: Clustering of d10+d12+p1r6 tune set which contains sentences from two domains: MSA NW WB and EGY DF. Comparison between gold segmentation, and clustering with cosine similarity/distance measures. red: MSA NW WB; bleu: EGY DF; black: mixed MSA NW WB and EGY DF.

  Figure 3.8: Clustering of d12+p1r6 tune set which contains sentences from two domains: MSA NW WB and EGY DF. Comparison between gold segmentation, and clustering with cosine similarity/distance measures. red: MSA NW WB; bleu: EGY DF; black: mixed.
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 3 Figure 3.10: The lightly supervised training adaptation

  [START_REF] Durrani | A joint sequence translation model with integrated reordering[END_REF]p r e s e n t e dan o v e lm a c h i n et r a n s l a t i o nm o d e lw h i c hu s e sa linear sequence of operations to model the translation. This sequence includes both translation and reordering operations. The key ideas of this model are (i) new reordering operations that provide better restriction on the position that a word or phrase can move to. It also supports both long and short distance reordering, and (ii) a more flexible joint sequence model for the translation and reordering probabilities compared to the standard phrase-based MT.Durrani et al. 

Figure 3 . 11 :Figure 3

 3113 Figure 3.11: Graphical representation of the CBOW model. In the CBOW model, the distributed representations of context (or surrounding words) are combined to predict the word in the middle. source:[Mikolov et al., 2013b] 

  Figure 3.13: Using WSD algorithm based on word embeddings to detect sense IDs for the words in SMT corpora

Figure 4

 4 Figure 4.1: Extracting TPs from parallel corpora

  Figure 4.2 shows an overview of the TMI algorithm for (Stanford POS Tagger) Arabic word A e.g. !"# $ English word E e.g. Mohammad Filter the vocabulary list (NN/NNP, start with upper case...etc.) list (NN/NNP, start with upper case...etc.)Remove POS tags

Figure 4 . 2 :

 42 Figure 4.2: Extracting TPs from comparable corpora

  Figure 5.1: Adding additional auxiliary feature input to the CSLM

  in the line Genre The text genre (MSA NW WB, EGY DF, EGY SMS CHAT, EGY CTS or MSA FORMAL) CurrLine sum of the word embeddings of the current line PrecLine sum of the word embeddings of the preceding line LineHCurrLines weighted sum of the current and h preceding lines' sum of the word embeddings AllPrecCurrWords weighted sum of the word embeddings of the current and all preceding lines' words AllPrecWords weighted sum of the word embeddings of all preceding lines' words AllPrecLines weighted sum of all preceding lines' sum of the word embeddings Table 5.1: Different types of auxiliary features used in our experiments
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  SMT treats the translation problem as a machine learning problem. It learns how to translate by means of learning a translation model from many examples of human translation (i.e. training corpora). The best translation is the one that has the maximum probability using noisy channel model as shown in Figure 2.2.

	Many available tools for training and decoding are freely available.
	Also SMT training data are available as huge bilingual and monolingual training
	corpora in many languages. A list of these corpora and tools can be found at
	http://www.statmt.org.				
	Transmitter		Noisy				Receiver
	(channel source)	T message	Channel	S message	(channel output)
	t= "He is a good man"	s="	&'(	%$ر	!"	"
							Channel model
	Language Model	t	s		s,t		Translation Model
	P(t)						P(s|t)
			Decoder			
		P(t)	argmax P(s|t)P(t) t				P(s|t)
			argmax P(t|s)	
			t			
		likely channel source message	
		t best = "He is a good man"		

  .3.

	1	2		3		4			
	What	could	happen		?		English sentence
	a 1 =1	a 2 =2		a 3 =2	a 4 =3		a 5 =4	
	#"ا	&	%$ا	'()*	-	,	"+	?	Egyptian Arabic sentence
	1	2		3		4		5	

Table 2

 2 

	.1.

Table 2

 2 (i.e. She did not eat) which does not exist in MSA and instead it use 'À negation …ø A ⇣ K' À .

	tion ( ⌘ Ä...A")in ⌘ Å ⇣ ⌧ øA" • Replacing some letters by others for sake of easy pronunciation like
	replace tha ⌘ H by taa ⇣ H in the MSA word ⇣ È ⌘ KC ⌘ K (i.e. three) to be È ⇣ KC ⇣ K . Additional examples shown in Table 2.2.
	• Adding additional letters to the MSA word like adding additional alef

.1: Comparison of some linguistic forms used in MSA and Egyptian dialect

• Different or additional morphological form for some words like ⌘ Å ⇣ ⌧kQ"

(i.e. I did not go) which has no equivalent one word in MSA.

• Different inflection compared to MSA like the Egyptian specific nega-

Table 2

 2 

.2: Some examples of how Egyptian dialect replaces some Arabic letters by others in pronunciation and most time in writing

  7. Limited data resources causes data sparseness problem. How often the word occurs in the training data correlates with the machine translation quality. if the word (or phrase) occurs rarely, it causes problems in word alignment, calculation of the translation probabilities and other statistical modeling training. If the word never occur, this causes the problem of OOVs which we discussed in the first point above. The data sparseness problem is generally addressed by using more data which help in a better word alignment, a better estimation of the words and phrases translation probabilities as well as additional context for PBSMT.

  .1.

	Genre ID	Description
	MSA NW WB	Modern Standard Arabic (MSA) (includes Broadcast News,
		Broadcast Conversation, Newswire, Newsgroups and Weblogs)
	EGY DF	Informal text in Egyptian dialect (threads, posts collected
		from online discussion forums)
	IRQ DF	Iraqi Arabic dialect
	LEV DF	Levantine Arabic dialect
	MSA FORMAL	Formal MSA (document collections from the United Nations)
	EGY SMS CHAT Egyptian dialect (collected naturally occurring
		SMS and Chat data in Egyptian Arabic)
	EGY CTS	Egyptian dialect (CTS transcript, which is supplied from
		LDC's multilingual CALLHOME and CALLFRIEND collections.)
	EN DF	Collected threaded posts from online discussion
		forums in English language.

Table 3 .

 3 

1: List of the genres and dialects used in Bolt project and the assigned IDs used in this thesis.

Table 3 .

 3 s c o r e ,s ow eu s e d (Ter -Bleu)/2 metric[Servan and Schwenk, 2011]w h i c hw er e f e rt oa sTb2 through this thesis. For some experiments, Bleu metric has been used and it was clearly stated, otherwise Tb2 should be assumed. More details on Hter, Ter and Bleu are available in Section 2.3.5. 2: The sizes and the genres of bilingual training corp ora in Bolt project.

	corpus	genre	release phase Ar tokens En tokens
	bolt		1	1.70m	2.05m
	thy bbnturk	EGY DF	1 1	282k 1.52m	362k 1.58m
	bbnegy		1	514k	588k
	gale		1	4.28m	5.01 m
	fouo		1	717 k	791k
	ummah e103	MSA	1 1	3.61m 4.44m	3.72m 4.45m
	isi		1	35.44m	34.71m
	fix		1	1.22m	1.43m
	iraq	IRQ DF	1	1m	1.14m
	bbnlev	LEV DF	1	1.59m	1.81m
	un	MSA FORMAL	1	134.88m	127.71m
	smschat EGY SMS CHAT	2	648k	845k
	cts1 cts2	EGY CTS	3 3	430k 804k	522k 931k
	Total	-	-	193.13m	187.69m
	Set	Genre	Tune	Dev		Test
			Ar/En tokens Ar/En tokens Ar tokens
	d10		42k/	42.5k/		43k
	(3 references)	MSA NW WB	R1=49.4k R2=46.8k	R1=49.7k R2= 47k	
			R3= 50k	R3=50.3k	
	d12		17.7k/21.4k	27.2k/32.6k	19k
	p1r6	EGY DF	52.5k/67.3k	18k/22.3k		21.4k
	cts-asr cts	EGY CTS	17.6k/24k 20.3k/24k	21k/29.6k 25k/29.6k		39k 44k
	smschat		19.7k/25.6k	19.4k/24.6k	18.5k
	(3arrib) smschat	EGY SMS CHAT	19.3k/25.6k	19.4k/24.6		18.5k
	(trans)				

Table 3 .

 3 3: The size and the genre of tune, dev and test sets used in Bolt project.

Table 3

 3 

		Genre ID	Baseline ID Delivered ID Applied technique or experimental work
					+LM adaptation(data selection)
					+TM adaptation(data selection)
	Phase 1	EGY DF	EGY DF BL1	EGY DF P1	+find best set for Mert optimization
				June 2012	*Evaluate MADA segmentation schemes
					+CSLM rescoring
					+TM adaptation(instance weighting)
					+Fill-up/Backoff phrase tables
					+Arabic/Egyptian preprocessing
	Phase 2	EGY DF	EGY DF P1	EGY DF P2	+TM light-supervised training
				Sept 2013	*Muti-domain Adaptation
					*Entity-based translation
					*IBM ATB vs. MADA-ARZ ATB
					+Operation sequence models(OSM)
		EGY DF	EGY DF P2	EGY DF P3 Dec 2014	+Using combined CSLM models *Using word embedding for WSD *LM lightly-supervised training
					+New EGY SMSCHAT bitext
					+LM adaptation(data selection)
	Phase 3	EGY SMS CHAT EGY SMS BL1 EGY SMS P3 Dec 2014	+TM adaptation(data selection) +TM adaptation(instance weighting) +Operation sequence model *Arabic/Egyptian preprocessing
					+CSLM rescoring
					+Using combined CSLM models
		EGY CTS	EGY CTS BL1 EGY CTS P3 +New EGY CTS bitext
				Dec 2014	+same same techniques as SMS

.4: Description of the baseline systems for each Bolt phase and the techniques applied or experimental work (+ means applied to the baseline, * means experimental)

Table 3 .

 3 4 lists the techniques and methods we applied and integrated in the delivered system during the phase (i.e. marked by +) as well as the experimental and research work that had not been integrated due to its modest results (i.e. marked by *).

	Set	type	P1	P2	P3
	d10	test 1.45	2.61	1.25
	d12	dev 16.93 15.88 15.20
	d12	test 16.15 14.39 13.74
	P1R6	dev 15.75 14.76 14.71
	P1R6	test 15.84 15.39 15.28
	P1Prog dev 17.86 17.77 17.63
	P1Prog test 10.50 10.50 9.75

Table 3 .

 3 5: LIUM systems evaluation results during the three phases of the Bolt project for EGY DF genre (scores in Tb2).

	Set	type P3 baseline	P3
	smschat	dev	19.24	15.46
	smschat	test	16.83	12.67
	smschat 3arrib dev	19.87	15.74
	smschat 3arrib test	17.81	12.70
	cts	dev	16.89	15.91
	cts-asr	dev	27.91	25.46
	cts	test	18.09	17.97
	cts-asr	test	29.79	27.04
	Table 3.6: LIUM systems evaluation results compared to initial baseline during
	the Bolt project phase three for EGY SMS CHAT and EGY CTS genres (scores
	in Tb2).			

Table 3
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	System	d10	d12	p1r6
	Baseline(BL)	5.42	17.75	16.02
	BL+pre-processing	5.19	17.40	15.87
	Table 3.10: Results of development set preprocessing. (scores in Tb2)
	3.6.2 Entity translation			
	I focused on number, date, email and URLs entities. Numbers and dates are
	part of the cultural preference of any language and country. For example date
	format in France is different than the date format used in the USA or the UK
	(e.g. day/month/year vs. month/day/year). We can also observed a difference
	in format of numbers (e.g. 2 450,30 in France vs. 2,450.34 in the USA). It is

.9: Pre-processing rules for EGY DF genre development/test sets to express the amount of emotions or enthusiasm. So I applied some preprocessing rules to normalize these repeated letters as summarized in Table

3

.9.T h i sl e a d st o againbet w een0.15and0.35onTb2 on development set as shown in Table

3

.10. This gain is only observed with EGY DF genre. important to translate them by phrase entries in the phrase table, but this is not always possible because usually they have many variations. Unknown entities are

Table 3 .

 3 IN and OUT are the in-domain and out-of-domain corpora respectively. Firstly, XenC creates the in-domain language model LM IN and out-of-domain 11: The size and p ercentage of the selected data from monolingual corpora (including the English gigaword) for EGY FORUM system. to the task. If In source and Out source are the in-domain and out-of-domain corpora of the source language. And, In target and Out target are the in-domain and outof-domain corpora of the target language. Firstly, XenC creates two in-domain LMs (LM Insource and LM Intarget )u s i n gt h ei n -d o m a i ns o u r c ea n dt a r g e tc o r p o r a . Secondly, it creates two out-of-domain LMs (LM Outsource and LM Outtarget )u s i n g the out-of-domain source and target corpora. For each parallel lines s s and s t in Out source and Out target respectively, the monolingual cross-entropy differences are calculated (i.e. H Insource (s s ) -H Outsource (s s )a n dH Intarget (s t ) -H Outtarget (s t )) using the cross-entropy Equation

	corpus	full size	selected selected size
		En tokens	%	En tokens
	e103	4.45m	73	3.2m
	isi	34.7	8	2.7m
	un	127.7m	2	2.5m
	forum3 1k	666.4m	5	33.3m
	cna	44.1m	3	1.3m
	ltw	326.9m	5	16.3m
	wpb	20.9m	12	2.5m
	nyt9x	772.4m	4	30.8m
	nyt2xa	554.8m	3	16.6m
	nyt2xb	385.9m	4	15.4m
	apw9x 2k	392.2m	4	15.6m
	apw2xa	550.1m	3	16.5m
	apw2xb	482.1m	3	14.4m
	afp9x	156.8m	4	6.2m
	afp2xa	311.4m	3	9.3m
	afp2xb	399.6m	4	15.9m
	xin9x	106.8m	3	3.2m
	xin2x	270.3m	3	8.1m
	Total	5625.3m	-	231.7m

Table 3 .

 3 13: Tb2 scores for several systems' translation models adapted on different tune sets (or LM interpolation coefs)

	et al., 1995]t ope r f o r mt h eo p t i m i z a t i o n .			
	System	tune set	d10 dev d12 dev p1r6 dev
	Baseline	-	5.45	18.16	16.61
	Adapted d12	d12 (EGY DF)	5.45	17.77	16.31
	Adapted p1r6	p1r6 (EGY DF)	6.27	18.69	17.04
	Adapted d10	d10 (MSA NW WB)	4.71	18.25	17.54
	Adapted d12+p1r6 d12+p1r6(EGY DF)	6.36	18.75	17.33
	Adapted using LM	manual weights	5.79	18.25	16.53
	interpolation coefs				

us e sL -B F G Sw ithn u me r ic allya p p ro ximate dg rad ie n ts[ Byrd

Table 3 .

 3 14: First 3 examples for improved translation and last two examples of not improved translation when TM adaptation is used

Table 3 .

 3 .16 lists the size of the new automatic bilingual corpora and the portions that we selected and added to LIUM Bolt EGY DFsystem. 16: The sizes of automatically translated monolingual Egyptian dialect corpora and the selected portion from it as used in Bolt project.For Egyptian dialect, experimental results shown in Table3.17 demonstrate the effectiveness of lightly supervised training, with a gain up to 0.2 over the

	LDC ID	Size	Best selected amount
		Ar/En tokens	Ar/En tokens
	ldc2012e16d4	34m/38m	10.1m/11.7m
	ldc2012e16d1 158.4m/176.3m	29.8m/34.3m
	ldc2012e04	56.5m/63m	30.1m/34.5m
	TOTAL	248.8m/277.3m	70.1m/80.5m

Table 3 .

 3 18: Tb2 scores for experiments of using OSM to improve LIUM SMT system.

	System d12 tune d10 dev d12 dev p1r6 dev
	Baseline	15.88	5.19	17.40	15.87
	+OSM	15.46	4.14	16.75	15.23

Table 3
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	.22: Example of improved translation by using the sense tagged SMT train-
	ing data

Table 3 .

 3 23: Result of all genres development sets before and after re-scoring with CSLM. Each genre is rescored with a genre adapted CSLM. (scores in Tb2)

  Table 4.3 shows that Tb2 gives better results than using Bleu or Ter alone.

	System	Mert metric	ACC	Mean F-Score MRR M AP ref
		Bleu	0.43648	0.87662	0.54322 0.43647
	SYS430(LM2)	Ter	0.43545	0.87638	0.54263 0.43545
		Tb2	0.44159	0.87860	0.54862 0.44160
	Table 4.3: The results on tune set when use various tuning metrics
	4.4.3.4 Segmentation techniques		

  Finally, we list in Table4.6 the results of best system on the tune and test set. Both tune and test sets have not seen before in the training data.

	System	Segmentation	ACC	Mean F-Score MRR M AP ref
	SYS540(LM2) SYS540-2(LM2)	0.44774 0.47951 1a n d2l e t t e r s 0.50000 One letter	0.88226 0.89248 0.89589	0.55012 0.44774 0.59226 0.47951 0.61178 0.5000
	Table 4.4: Results on the tune set using one letter segmentation vs. advanced
	segmentation			
	Data		Number of Words Extracted TPs %
	Bitext-Arabic		3.8m	0.27 %
	Bitext-English		4.4m	0.24 %
	List of aligned words		1.25m	0.84 %
	List of aligned NN		161k	6.5 %
		Table 4.5: Statistics on the extracted TPs
	Set	ACC	Mean F-Score MRR M AP ref
	tune 0.50000		0.89589	0.61178 0.5000
	test 0.46162		0.88412	0.58221 0.4616
		Table 4.6: tune and test sets scores

Table 4
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			Arabic …J ⌦ AE ⇣ K Q . À@	English transliteration
			Ç ⇣ ˙⌦aeÇ ØÒ∫K ⌦ A ⌘ ‡ÒÇ∫K ⌦ X ‡A ØÒ K X	Brax Chikovski Dixon Donovan
			‡A÷fl. ÒÎ	Hopman
			‡AK ⌦ PAJ . Ǫ	Kasparian
	.11:	Examples from forward	Table 4.12:	Examples from backward
	transliteration partition	transliteration partition

Albertville

PA Ø XÒ÷oe@ Almodovar Ū @ QK .

Table 4 .

 4 14: The adapted transliteration systems and the used: training corpora, corpus weighting set (if used) and Mert tune set

	System	tune set ACC	Mean	MRR M AP ref
				F-Score
	Baseline AR	AR	0.3757 0.8843 0.4840 0.3717
	Partition AR	AR	0.4497 0.9066 0.5531 0.4471
	Baseline EN	EN	0.3240 0.8553 0.4563 0.3237
	Partition EN	EN	0.3222 0.8645 0.4377 0.3222
	Baseline ND	ND	0.3476 0.8663 0.4711 0.3473
	Partition ND	ND	0.3533 0.8664 0.4699 0.3527
	Table 4.15: Tune sets scores on baseline vs. partitioned systems

  The same happen when I replaced Copy by a sequence of double hyperbolic tangent in CSLM3, and when I increased the learning rate scale to 2 in CSLM4, comparing to Baseline2. Changing the learning rate scale to 3 in CSLM5, again, decreased the perplexity by 7.5 on dev and 7.2 on test vs. Baseline2. So the perplexity of CSLM5 compared to Baseline1 decreased by 7.6% on dev and 7.5% on test. Table 5.2: Perplexity on Penn Treebank using the PrecLine auxiliary feature.

	System Auxiliary layer	First layer	DevSet TestSet
			learning rate scale	PPL	PPL
	Baseline1	-	1	133.19	127.66
	(No Aux)				
	Baseline2	-	2	130.48	125.28
	(No Aux)				
	CSLM1	Copy	1	128.26	123.45
	CSLM2	Copy	2	124.80	120.32
	CSLM3	Seq. of two tanh	1	127.15	121.93
	CSLM4	Seq. of two tanh	2	124.22	118.57
	CSLM5	Seq. of two tanh	3	122.98	118.08

Table 5 .

 5 3: Training corpora and dev set used to train and tune the CSLM models

	type	data set	# English tokens	genre
		gale	5.01	MSA
	train	bolt	2.05m	FORUM (Egyptian)
		smschat	845k	SMS/CHAT
		Total	7.9m	-
	Dev smschat-tune	25.6k	SMS/CHAT
	Test smschat-dev	24.6k	SMS/CHAT
	System	Auxiliary input Aux dim/proj. layer	Dev	Test
	SMT baseline	-		-	27.35 25.72
	(No CSLM)			
	CSLM Baseline	-		-	28.04 25.67
	(No AuxData)			
	LineLen	1/200	Projection 200x320 28.65 26.14
	Genre	5/-	Copy 5x5	28.90 26.32
	CurrLine	320/-	Sequence of two	28.29 26.09
			tanh 320x320
	PrecLine	320/-	Sequence of two	28.67 26.33
			tanh 320x320
	LineHCurrLines	320/-	Sequence of two	28.92 26.26
	λ=0.95, h=50		tanh 320x320
	AllPrecCurrWords	320/-	Sequence of two	28.52 25.86
	λ=0.75		tanh 320x320
	AllPrecWords	320/-	Sequence of two	28.77 26.82
	λ=0.95		tanh 320x320
	AllPrecLines	320/-	Sequence of two	28.63 26.52
	λ=0.98		tanh 320x320

Table 5 .

 5 4: Bleu scores of re-scoring the n-best list using different auxiliary data. auxiliary feature, sequence of double hyperbolic tangent layer for the rest of auxiliary features. All experiments are trained with 24-gram context size.

  AllPrecCurrWords 0.75 28.52 25.86 AllPrecCurrWords 0.85 28.23 25.59 AllPrecCurrWords 0.95 28.21 25.64

	System	λ	Dev	Test
	SMT baseline	-	27.35 25.72
	CSLM Baseline	-	28.04 25.67
	CurrLine	-	28.29 26.09
	PrecLine	-	28.67 26.33
	AllPrecLines	0.85 28.06 25.52
	AllPrecLines	0.95 28.59 26.42
	AllPrecLines	0.98 28.63 26.52
	AllPrecWords	0.75 28.37 26.36
	AllPrecWords	0.85 28.74 26.49
	AllPrecWords	0.95 28.77 26.82
	Table			

  Table 5.6: Bleu scores using PrecHCurrLines auxiliary feature with number of preceding lines H and λ =0.95. Auxiliary layer is a sequence of two tanh 320x320. transliteration mining algorithm is effective.

		H Dev	Test
	SMT baseline	-	27.35 25.72
	CSLM Baseline	-	28.04 25.67
	CurrLine	-	28.29 26.09
	PrecLine	-	28.67 26.33
	PrecHCurrLines 10 28.70 26.21
	PrecHCurrLines 30 28.28 26.26
	PrecHCurrLines 50 28.92 26.26

Source: https://en.wikipedia.org/wiki/Varieties of Arabic. Image distributed under a CC-BY 3.0 license: http://creativecommons.org/licenses/by/3.0/

Available for download from https://github.com/hschwenk/cslm-toolkit
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P (a i |a i-1 , i, l t ,l s )= language model LM OUT . Secondly, XenC calculates, for each line s in OUT , the cross-entropy H IN (s)g i v e nb yLM IN and H OUT (s)g i v e nb yLM OUT .T h e n , XenC will add for each line a score which is calculated using the cross-entropy difference as in following Equation:

Then select lines based on a score cutoff optimized on held-out in-domain data. The selected portions from all corpora are used as additional corpora to train the adapted language model. The advantages of this method are obtaining an adapted smaller LM that better matches the in-domain data and requires less training data. The results of the data selection technique for EGY DF genre is shown in Table 3.11.W eo b s e r v e dt h a tag o o dp o r t i o n( i . e .7 3 % )o ft h ec o r p u se 1 0 3w a s selected, this was expected since this corpus contains English text that was translated by human not native text. A LM is trained using these selected sentences in addition to the target side of Bolt bilingual corpora. The data selected from each corpus as well as other corpora are used to build individual 4-gram back-off LM using modified Kneser-Ney smoothing implemented in the SRILM toolkit. The final LM is built by interpolating these individual LMs. The interpolation coefficients are calculated to minimize perplexity using EM procedure on the English side of the concatenation of the EGY DF tune sets (d12 + p1r6). The same technique was used to adapt the LM for EGY SMS and EGY CTS genres.

Bilingual corpora data selection

The data amount provided by LDC is approximately 193 million words of bilingual corpora. We performed system domain adaptation by using only a portion of these huge bilingual corpora that is most relevant to our task. We used XenC, which implements the cross-entropy bilingual data selection proposed by [START_REF] Axelrod | Domain adaptation via pseudo in-domain data selection[END_REF].

XenC is used to select a subset of parallel sentences which are the most relevant

TMI using parallel corpora

In this section, we will introduce a corpus based computational method to extract TPs from a parallel corpus. In order to evaluate the extracted pairs, we trained al e t t e rb a s e ds t a t i s t i c a lt r a n s l i t e r a t i o ns y s t e mo nT P sa n de v a l u a t et h es y s t e m performance.

TMI algorithm for parallel corpora

The algorithm as shown in Figure 4.1 is designed to compare two aligned words and detect the words which are transliterations of each other, with respect to the observations in Section 4.3. The algorithm proceeds in 7 steps:

(1) First, the parallel corpus is tagged using a part-of-speech (POS) tagger. We used Stanford POS tagger [START_REF] Toutanova | Feature-rich part-of-sp eech tagging with a cyclic dep endency network[END_REF]f o rE n g l i s ha n d Mada/Tokan [START_REF] Rambow | Mada+tokan: A toolkit for arabic tokenization, diacritization, morphological disambiguation, pos tagging, stemming and lemmatization[END_REF] for Arabic POS tagging.

(2) Then, we align the tagged bitexts using Giza++ [Och and Ney, 2003a]. Using the source/target alignment file, we remove all aligned word pairs with POS tags other than noun (NN) or proper noun (PNN) tags and we remove all English words starting with lower-case letters. Words which have the lowest alignment scores are removed (about 5% from the total number of aligned word pairs).

(3) After that the POS tags are removed from Arabic and English words since they are not needed any more.

(4) Then, the Arabic word is transliterated into the English word A t using ar u l eb a s e dt r a n s l i t e r a t i o ns y s t e mo rap r e v i o u s l yt r a i n e ds t a t i s t i c a lc h a r a c t e r based transliteration system.

(5) The transliteration of the Arabic word A t as well as the English word are normalized to Norm similar , Norm vowels and Norm consonants as explained in Section 4.3.1. The objective of the normalization is folding English letters with similar phonetic to the same letter or symbol.

(6) For each aligned Arabic transliterated word A t and English word E, their normalized forms are used to calculate the three levels of similarity scores which are stored in a Transliteration We used the Mert tool for weight optimization [Och, 2003][Bertoldi et al., 2009].

We faced several problems in optimizing the log linear features weights. The first problem is that there are four evaluation metrics as presented in Section 4.4.3,

Improving backward and forward transliteration by partitioning training data

There are two types of transliteration, forward and backward. In forward transliteration, the names are transliterated from their original language to another language (e.g. the native Arabic name " Y"m ◊ "i st r a n s l i t e r a t e dt o" M o h a m e d "i n English). In backward transliteration, the transliterated names are transliterated back to the original names in their native language (e.g. " ⌘ ÄÒK . "w i l lb et r a n s l i t - erated back to "Bush"). This section discusses these two types of transliteration in order to improve the transliteration performance.

4.6.1 Related work [START_REF] Kang | Automatic transliteration and backtransliteration by decision tree learning[END_REF] presented a very effective bi-directional automatic English/Korean transliteration and back-transliteration methodology. The used method consists of character alignment and decision tree learning. They wanted to induce the transliteration rules for the English alphabet and the back-transliteration rules for the Korean alphabet. They also developed a highly accurate character alignment algorithm, which is able to align two words in a desirable constrained way across languages. The alignment method is partially language independent. The only language dependent part is the alignment evaluation metrics that may also be easily constructed without much effort. [START_REF] Qin | Proceedings of the 3rd Named Entities Workshop (NEWS[END_REF] We used the partitioned training data to train three transliteration systems with the same tools and setup as in the previous experiments detailed in Section 4.4.2. Additionally, we used the method described in Section 3.7.3 which performs instance weighting of translation models, based on sufficient statistics. It separately optimizes four features weights in the Moses translation model through perplexity optimization. [START_REF] Sennrich | Perplexity minimization for translation model domain adaptation in statistical machine translation[END_REF] independently performs perplexity minimization for the following features of the standard Moses SMT translation model: the phrase translation probabilities p(s|t)andp(t|s),andthelexicalw eigh tslex(s|t) and lex(t|s). Also we used the Operation Sequence Model as proposed in [Durrani et al., 2013]a n di m p l e m e n t e di nt h eM o s e st o o l k i t . I nt h e s ee x p e r i m e n t s we trained three systems which are adapted for forward, backward and nondetermined transliteration. The description of the training data and tune sets used for each system is presented in Table 4.14. We tuned the transliteration systems using Mert as shown in Table 4.14 using the training sets, tune sets presented in Table 4.13.T a b l e 4.15 shows the results on the tune sets of the three adapted transliteration systems using partitioning of training data technique. The transliteration system adapted on the names originally Arabic achieved 0.4497 accuracy compared to 0.3757 for the baseline system, representing a gain of about 0.074. A significant improvement also reported on the mean F-score, MRR and M AP ref metrics.

Results

We compared our results on the test set to our baseline system that is not using the partitioning technique. The transliteration system for names originally Arabic achieved 0.3704 accuracy compared to 0.3333 for the baseline system, representing againofabout0.0371. Someimprovementsarealsoreportedonmean F -score, MRR and M AP ref metrics. Also, the transliteration system for names originally English got improvements of about 0.0206 on accuracy as shown in 

Conclusion

In this chapter we introduced a new semi-supervised transliteration mining method for parallel and comparable corpora. The method is mainly based on new suggested three level scores to extract the transliteration pairs. The transliteration system trained on the transliteration pairs extracted from the parallel corpus achieved an accuracy of 0.46 and a mean F-score of 0.88 on the test set. We also applied our transliteration mining approach on two Arabic and English comparable corpora. The system trained on transliteration pairs extracted from them achieved an accuracy of 0.27 and a mean F-score of 0.83. This shows that the proposed semi-supervised transliteration mining algorithm is effective.

In a second set of experiments, we build separate systems for forward and backward transliteration. The detection of the transliteration direction is fully

Related work

Although, I focus on improving CSLM in this work, some related research focus on improving the standard n-gram language models by integrating more context or semantic knowledge. Kuhn and De Mori [1990]p r o p o s e dt oc a l c u l a t et h e probabilities which correspond to the relative proportion of the last N words. They present a combined LM that interpolates a general trigram LM and another LM that they called a cache-based LM which is trained on the last N words. The relative interpolation weights assigned to each component are based on the POS of each word. The cache component assigns higher probability to recently encountered words. In my work, the context is represented as a continuous space vector. It can be one line or the whole history back to the beginning of the document. In the latter case more weight is given to recent lines.

Bellegarda [2000]p r o p o s e dam e t h o dt ou s em o r eg l o b a lc o n s t r a i n t st oi mprove LM since local constraints are already captured by the n-gram model. They use latent semantic analysis (LSA) which automatically discovers the semantic relationships between words and documents in a given corpus. In their approach, words and documents are mapped into a continuous semantic vector space, in which clustering techniques are used. This allows the characterization of parallel layers of semantic knowledge in the space, with variable granularity. The resulting LMs complement the conventional n-gram LMs. They suggested to use hybrid n-gram+LSA models to benefit from the advantages of several smoothing techniques.

In a similar work, Coccaro and Jurafsky [1998]integratedsemanticknowledge into an n-gram LM using LSA and a word similarity algorithm. Since LSA is a bad predictor of frequent words, they used a geometric instead of a linear combination based on a per-word confidence metric. In my work, instead of using LSA , I use the line context vector representations which is calculated using the word embeddings of the words in this line. The word embeddings are the projections learned during CSLM training. We were motivated by what was reported recently by [Baroni et al., 2014]t h a tu s i n gt h ec o n t e x tp r e d i c t i v em o d e l s( i . e . word embedding) outperform classic count-vector-based distributional semantic approaches.

SMT experimental results

I evaluate the performance of our improved CSLMs which use auxiliary features in the context of SMT. This is done by using them to re-score the n-best list provided by an SMT system. A new CSLM score is added to the n-best list for each hypothesis and the coefficients of all feature functions are optimized. In the following subsections, we describe our baseline system and the rescoring results with some discussions.

SMT system baseline

We used Bolt project phase 3 system for EGY SMSCHAT genre as our baseline. The description of the system is detailed in Chapter 3.W e a p p l i e d t h e CSLMs with different auxiliary features and reported the results as described in the following section.

Re-scoring n-best list results

CSLM models with various auxiliary features were trained using CSLM toolkit on three English corpora (total of 7.91m words) which are the target side of the bilingual corpora shown in Table 5.3. Also we described in the same table the used dev and test sets (we used Dev and Test to reference these sets in the following sections (i.e. smschat tune is called Dev and smschat dev is called Test).

The results obtained by re-scoring the n-best list created by the baseline system are summarized in Table 5.4.T h et a b l ec o n t a i n st h eb e s tr e s u l tf o re a c h auxiliary feature. Detailed results can be found in Tables 5.5 and 5.6.S i n c e the test set Bleu scores of both SMT Baseline and CSLM Baseline without auxiliary data are the same, we decided to use SMT Baseline as the Baseline for the result analysis.

These results were obtained with the best meta-parameters (i.e. H and λ). In Table 5.4,w ed e s c r i b e dt h eC S L Mm o d e l ,a u x i l i a r yf e a t u r ed i m e n s i o n ,a u x i liary feature projection dimension along with the Bleu scores on dev and test. We used projection layer for LineLen auxiliary feature, Copy layer for Genre Chapter 6

Conclusions and prospects

In this dissertation, we reported the work done in the context of Bolt program covering the activities and the different techniques that we used during this project in different phases. These techniques have been developed to improve the translation quality of Arabic/Egyptian into English. We also presented the results of LIUM Systems in the three international evaluations of the Bolt project.

Our work contributes to several research areas in machine translation by proposing new methods, algorithms and frameworks in the following areas: transliteration mining, transliteration, domain adaptation, word sense disambiguation and the continuous space language modeling. Experiments are done to evaluate the proposed techniques and the results and analysis are reported.

We worked on several general and Arabic related techniques. One of these techniques is adapting our SMT systems to the Egyptian dialect. Since the available training corpora, in the context of Bolt project, contain modern standard Arabic, and several dialects (i.e. Egyptian, Levantine and Iraqi). We improved the system performance by using domain adaptations techniques treating different dialects as different domains. We applied five adaptation techniques to adapt our system on the Egyptian dialect as well as the required system genre. The first technique is using instance weighting of translation models to improve the translation quality by giving more weights to Egyptian than modern standard Arabic and other Arabic dialects. The second method is based on using multi-domain approach proposed in [START_REF] Sennrich | A multi-domain translation model framework for statistical machine translation[END_REF]. We presented an architecture that delays the computation of translation model features until decoding time, allowing dynamic instance weighting using optimized weights. We also used a method for unsupervised adaptation with development and test data from multiple domains (i.e. MSA and Egyptian dialect in our case). We reported a significant improvement which shows the effectiveness of multi-domain approach. Since our training corpora have various genres (i.e. News, Web, United Nations, discussion forums, SMS/Chat and conversational telephone speech transcription), we used two data selection techniques to adapt our systems on different genres. The first one [START_REF] Moore | Intelligent selection of language model training data[END_REF]consistsofselectingtherelevantsentencesfromother out of domain monolingual corpora to improve and adapt the language models, while the second one [START_REF] Axelrod | Domain adaptation via pseudo in-domain data selection[END_REF]i ss e l e c t i n gt h em o s tr e l e v a n tp a r a l l e l sentences from out of domain bilingual corpora to improve and adapt the translation models. We also applied a fifth method for the adaptation of our systems to Egyptian using the so-called "lightly supervised" training. In this technique, we are using automatic translation of large amount of in-domain monolingual text (i.e. Egyptian dialect in our case) to improve and adapt the baseline system for in-domain translation task. This is done basically by adding portion of this large amount of new bitext to our SMT system training data.

In order to address the translation errors of ambiguous Arabic and Egyptian words, I proposed a novel word sense disambiguation technique that uses ambiguous word context. The technique makes use of the word vector space models (i.e. word embeddings) to find the correct senses of ambiguous words using their context. I used this technique in a phrase-based SMT system in order to improve the system performance related to ambiguous words.

In another work, I have performed research on several methods to decrease the number of out-of-vocabulary words by transliterating proper nouns. I presented my work [START_REF] Aransa | Semi-supervised transliteration mining from parallel and comparable corpora[END_REF]o ft r a i n i n gal e t t e r -b a s e ds t a t i s t i c a ls y s t e m on the list of transliteration pairs obtained using transliteration mining. I contributed a new method for semi-supervised transliteration mining using parallel and comparable corpora. The results shows that the proposed semi-supervised Appendix A Publications • Walid Aransa, Holger Schwenk, Loïc Barrault, LIUM, University of Le Mans. Semi-supervised transliteration mining from parallel and comparable corpora. Proceedings IWSLT 2012, 2012 [START_REF] Aransa | Semi-supervised transliteration mining from parallel and comparable corpora[END_REF].

• Rico Sennrich, Holger Schwenk, and Walid Aransa. A multi-domain translation model framework for statistical machine translation. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 832-840,Sofia, Bulgaria, August 2013. Association for Computational Linguistics [START_REF] Sennrich | A multi-domain translation model framework for statistical machine translation[END_REF].

• Walid Aransa, Semi-supervised transliteration mining from parallel Corpora. journe des doctorants de l ecole doctorale STIM (JDOC13), Nantes, France [START_REF] Aransa | Semi-supervised transliteration mining from parallel corpora[END_REF].