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Titre : De la phénoménologie à la microscopie, une nouvelle approche pour l’évaluation
des sections efficaces de fission

Résumé : Les travaux présentés visent à améliorer les modèles de physique nucléaire
utilisés dans l’évaluation des sections efficaces neutroniques de fission. Le résultat de
ces travaux donne les clefs pour une percée significative dans ce domaine et a permis
d’étendre fortement les capacités du code d’évaluation CONRAD. Les sections partielles
étant naturellement corrélées entre-elles pour respecter la valeur de la section totale, ces
améliorations bénéficient à l’ensemble des sections partielles. Un cadre solide pour la
modélisation des processus concurrent à la fission a dû être établi sur le modèle du code
de référence TALYS. Après s’être assuré de la fiabilité et de la cohérence du cadre, les
investigations spécifiques concernant la fission ont pu être réalisées. Les perspectives
d’applications offertes par les modèles macro-microscopiques FRDM et FRLDM ont été
analysées. Ces modèles ont été implémentés et validés sur des données expérimentales
et des benchmarks. Afin d’obtenir des temps de calcul compatibles avec les besoins de
l’évaluation, des méthodes numériques sophistiquées ont été sélectionnées et une partie
des calculs a été portée sur GPU. Ces modèles macro-microscopiques peuvent être utilisés
pour construire des surfaces d’énergie potentielle qui sont à leur tour traitées afin d’obtenir
des barrières de fission à une dimension, puis des coefficients de transmission fission. Ces
derniers sont alors utilisés dans le cadre de modélisation des sections efficaces moyennes
du domaine statistique sur la base d’un modèle Hauser-Feshbach. Les résultats de cette
approche seront présentés sur le cas du 239Pu(n,f).

Mots clés : Physique nucléaire, évaluation, modèle macro-microscopique, FRLDM,
FRDM, sections efficaces, Hauser-Feshbach, barrière de fission, GPU

Title: Challenging fission cross section simulation with long standing macro-microscopic
model of nucleus potential energy surface

Abstract: The work presented here aims to improve models used in the fission cross-
section evaluation. The results give insights for a significant breakthrough in this field
and yielded large extensions of the evaluation code CONRAD. Partial cross sections are
inherently strongly correlated together as of the competition of the related reactions must
yield the total cross section. Therefore improving fission cross section benefits to all par-
tial cross sections. A sound framework for the simulation of competitive reactions had
to be settled in order to further investigate on the fission reaction; this was implemented
using the TALYS reference code as guideline. After ensuring consistency and consis-
tency of the framework, focus was made on fission. Perspective resulting from the use
of macroscopic-microscopic models such as the FRDM and FRLDM were analyzed; these
models have been implemented and validated on experimental data and benchmarks. To
comply with evaluation requirements in terms of computation time, several specific nu-
merical methods have been used and parts of the program were written to run on GPU.
These macroscopic-microscopic models yield potential energy surfaces that can be used to
extract a one-dimensional fission barrier. This latter can then be used to obtained fission
transmission coefficients that can be used in a Hauser-Feshbach model. This method has
been finally tested for the calculation of the average fission cross section for 239Pu(n,f).

Keywords: Nuclear physics, evaluation, macroscopic-microscopic model, FRLDM,
FRDM, cross section, Hauser-Feshbach, fission barrier, GPU
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Résumé Étendu

Introduction à l’Évaluation des Sections Efficaces

Les données nucléaires telles que les sections efficaces sont des « ingrédients » d’entrée des
calculs de physique des réacteurs. La physique des réacteurs est régie par l’équation du
transport qui décrit la population neutronique dans un réacteur. C’est une équation diffi-
cile à résoudre du fait de la géométrie des réacteurs (géométrie récursivement imbriquée)
et de la grande gamme énergétique à traiter (de 20 MeV à 10−5 meV). Jusqu’aux années
90, l’incertitude associée à la résolution de l’équation du transport était supérieure à celle
associée aux données nucléaires d’entrée. Depuis, la montée en puissance des ordinateurs
à rendu possible un emploi plus routinier de méthodes de résolution plus rigoureuses utili-
sant la simulation Monte-Carlo. L’incertitude liée aux données nucléaires est aujourd’hui
le premier facteur d’incertitude dans les calculs de physique des réacteurs. De plus, le
renforcement des normes de sureté des réacteurs pousse à améliorer les modélisations afin
de quantifier plus précisément le processus en jeu et de restaurer si possible les marges
d’exploitation.

Le but de ce travail de thèse est de démontrer la faisabilité de l’utilisation de modèles de
structure nucléaire avancés dans l’évaluation des sections efficaces de fission. L’évaluation
des sections efficaces repose d’une part sur des modèles, d’autre part sur des données
expérimentales à partir desquelles les paramètres de modèle sont ajustés. à basse énergie,
la précision expérimentale est en général suffisante pour pouvoir obtenir une représentation
exacte de la section. Pour les actinides, cette section présente des structures résonnantes
comme montré dans la figure 1. à plus hautes énergies, la précision expérimentale ne
permet plus de décrire ces structures, une approche statistique moyenne doit être utilisée
pour modéliser la section. Le domaine à basse énergie est appelé le domaine des résonances
résolues. Au delà de ce domaine, les résonances existent toujours, mais il n’est pas possible
d’obtenir des paramètres de résonance pouvant les décrire, c’est le domaine des résonances
non résolues. à plus hautes énergies encore, la densité des résonances et leur largeur
augmentent, ce qui les amène à se recouvrir mutuellement. Dans ce domaine énergétique,
même avec une précision expérimentale infinie, les résonances ne sont plus visibles. Ce
domaine est appelé le continuum. Le domaine des résonances non résolues et le continuum
sont regroupés sous le nom de domaine statistique.

Plusieurs pistes d’amélioration sont ouvertes afin d’obtenir des évaluations de sections
efficaces plus satisfaisantes et sont présentées dans le manuscrit. On retiendra uniquement
ici que le processus de fission est le moins bien modélisé et que du fait de la compétition
entre les voies de réactions différentes, une amélioration spécifique à la section de fission
bénéficierait aux autres sections partielles. En particulier, un des problèmes soulignés dans
le manuscrit est que les mesures de sections efficaces de fission montrent des structures qui
ne se retrouvent pas dans la section totale, ce qui est révélateur d’un phénomène propre
au processus de fission. De plus, on montrera dans le manuscrit que les modèles utilisés
à l’heure actuelle dans la modélisation du processus de fission ne peuvent pas permettre
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Figure 1 – Exemple d’évaluation de la section efficace totale du 239Pu. Les différents
domaines en énergie impliqués dans la modélisation de la section sont illustrés.

de modéliser les structures observées dans les données expérimentales.

Théorie des Collisions et Sections Efficaces

Avant de rentrer dans le cœur du sujet, il est important de préciser dans quel cadre les
sections efficaces sont modélisées. Du fait de la taille des « particules » impliquées en
physique des réacteurs (neutrons et noyaux), leurs interactions doivent être modélisées
dans le cadre de la mécanique quantique. C’est à dire que là où le neutronicien consi-
dère une particule incidente avec une direction donnée frappant un noyau et repartant
dans une autre direction (avec une certaine probabilité associée), le physicien nucléaire
ou l’évaluateur considère quant à lui une onde plane caractérisant le neutron incident se
réfléchissant au contact du noyau cible. L’onde plane incidente peut se décomposer en
une superposition d’ondes sphériques. Les ondes réfléchies sont également des ondes sphé-
riques. C’est donc en terme de probabilité de réflexion d’une onde sphérique donnée en
une autre que le physicien nucléaire est amené à finalement quantifier ce phénomène via
une grandeur appelée la section efficace σcc′ qui connecte l’onde incidente c en une onde
réfléchie c′. On dit que cette section relie la voie c à la voie c′. De façon plus générale, une
voie peut également correspondre à une autre paire de particules (neutron+noyau cible
ou proton+noyau résiduel dans le cas de la réaction (n,p)). La voie décrit également les
moments angulaires des deux particules de la voie, leur état d’excitation intrinsèque, etc.
On notera ici que le moment angulaire total J et la parité totale π sont de « bons nombres
quantiques », ce qui signifie qu’ils sont conservés dans le processus. Un phénomène de col-
lision entre deux particules fait intervenir une infinité de processus « parallèles » ayant
des Jπ associés différents.

Pour finir, plusieurs code de modélisation de réactions nucléaires sont présentés. Ils
correspondent à des codes utilisés dans cette étude, principalement le code ECIS [1] per-
mettant d’obtenir une section efficace totale dans le domaine statistique, le code TA-
LYS [2] permettant de décomposer la section efficace totale en sections partielles. Ces
deux codes représentent des approches de référence dans le travail de mise à niveau du
code CONRAD [3] qui a été le réceptacle des développements réalisés durant le travail de
thèse.
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Section Efficace de Fission dans le Domaine Résolu

La modélisation des sections efficaces dans le domaine des résonances résolues repose sur
la théorie de la matrice-R [4,5]. Cette théorie (et ses nombreuses approximations qui sont
utilisées en pratique) permet d’obtenir une paramétrisation de la section efficace dans
laquelle la dépendance énergétique est explicite. En d’autres termes, la théorie donne une
formule mathématique dépendante de l’énergie et avec des paramètres (γλc) ne dépendant
pas de l’énergie. La théorie de la matrice-R est un formalisme exact. En effet, elle ne
suppose pas d’hypothèses supplémentaires que celles de la théorie des collisions, ce qui en
a fait sa grande force et explique que le formalisme soit toujours utilisé aujourd’hui. Le
contrecoup de cette exactitude se paie dans le fait que la théorie ne décrit pas la valeur
des paramètres qui interviennent dans l’expression de la section. Ces paramètres doivent
donc être obtenus à partir de données expérimentales, ce qui réduit considérablement le
caractère prédictif du modèle.

Les modèles basés sur une approche type matrice-R ne peuvent donc pas prétendre
à la prédictivité pour décrire une section efficace donnée pour un isotope non mesuré.
De plus, la qualité des mesures nécessaires est relativement importante afin de pouvoir
en extraire des paramètres utilisables. Dans la pratique, cela n’est possible qu’à faible
énergie du neutron incident. à plus haute énergie, il est difficile d’obtenir une statistique
et une précision satisfaisantes avec les installations expérimentales actuelles. Cependant,
si les mesures à basses énergies sont suffisamment précises, les paramètres de résonance
qui en sont extraits peuvent servir à obtenir des données statistiques qui peuvent être
utilisées dans une modélisation de la valeur moyenne de la section, dans une approche
dite « matrice-R moyenne ».

Dans la pratique, une approche de type matrice-R rigoureuse n’est pas possible pour
la réaction de fission. Cela est dû au fait que pour cette réaction de trop nombreuses
voies sont ouvertes, correspondantes aux différentes fragmentations, répartitions d’éner-
gies cinétique et de moment angulaire entre les fragments, etc.. Il en est de même pour
la réaction de capture radiative pour les actinides à cause du grand nombre de niveaux
d’arrivée dans le noyau composé après émission du photon. Dans la pratique, l’approxi-
mation Reich-Moore [6] de la matrice-R permet, pour les actinides, de considérer une voie
moyenne dont les paramètres associés ont une faible dispersion. Le traitement habituel
des voies de fission fait que les paramètres non dépendants de l’énergie (γλf) absorbent
une partie de la dépendance. Ceci est du au manque de description physique des voies
de fission. Il est également observé que l’utilisation de deux « voies » de fission suffit à
reproduire les mesures. Cela s’explique par le fait que le passage du noyau composé par
peu d’états corrèle fortement les γλf, ce qui réduit le degré de liberté associé.

J. E. Lynn [7] a élaboré une extension du formalisme matrice-R à ces « voies de fis-
sion ». Dans cette approche, le potentiel d’interaction utilisé dans la théorie de la matrice-
R est assimilé à la barrière de fission correspondant à un état intrinsèque donné. La des-
cription de cette barrière ainsi qu’une mise en équation propre aux voies de fission permet
de décrire la dépendance en énergie manquante, qui biaise l’ajustement des γλf sur les
mesures de section efficace de fission. Cette théorie est présentée dans le manuscrit, ainsi
qu’une approche pragmatique permettant de retranscrire cette dépendance. Cette mé-
thode est ensuite mise en application sur un cas pratique, le 240Pu(n, f). Pour cet isotope,
dit « non fissile », les mesures (n,f) présentent des groupes de résonances appelés clusters.
Ces clusters sont la manifestation de l’effet de la barrière de fission dans la distribution
de la valeur des γλf. L’analyse de ces clusters de résonances permet d’obtenir des valeurs
de γλf avec un biais de modélisation réduit. Ces valeurs peuvent ainsi être utilisées dans
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les extrapolations à plus hautes énergies de façon plus fiable.

Etat de l’Art dans le Domaine Statistique

L’impact de la barrière de fission ne se retrouve pas seulement dans le domaine des
résonances résolues. à plus hautes énergies, dans le domaine statistique, des fluctuations
dans les sections efficaces moyennes peuvent être attribuées à la barrière de fission. Du
fait que les sections partielles sont en réalité définies comme une fraction de la section
totale, celles-ci sont donc naturellement corrélées ; leur somme doit redonner la valeur de
la section totale qui provient d’une modélisation séparée.

Deux modèles sont utilisés pour la modélisation de la section efficace totale, le modèle
dit « matrice-Rmoyenne » et le modèle optique. C’est l’utilisation de ces deux modèles qui
amène à séparer le domaine statistique en deux sous-domaines, le modèle des résonances
non résolues (URR) et le domaine du continuum.

Ces deux modèles permettent de décrire la probabilité qu’a un neutron de pénétrer à
l’intérieur du noyau cible et de former un noyau composé. L’hypothèse du noyau composé
permet de dire que cette probabilité de former le noyau composé à partir d’un neutron est
reliée à la probabilité d’émettre un neutron à partir de ce noyau composé. Pour quantifier
ces phénomènes, les coefficients de transmission Tc sont introduits. Il permettent également
dans le formalisme Hauser-Feshbach [8] de décrire les probabilités de décroissance suivant
les différentes voies à partir d’un noyau composé. Dans une forme simplifiée, le formalisme
Hauser-Feshbach donne la probabilité PCN→c de décroître, à partir du noyau composé, dans
la voie c comme

PCN→c =
Tc∑
c′
Tc′

.

Dans cette image, la probabilité de former le noyau composé est décorrélée de la
probabilité de décroître dans la voie c. Dans la pratique, un facteur de correction est
appliqué pour tenir compte de la corrélation entre la voie d’entrée et la voie de sortie.
Ce terme appelé facteur de correction de fluctuation des largeurs n’est pas davantage
développé dans le manuscrit mais reste inclus dans les calculs. Pour pouvoir calculer une
section efficace partielle, il faut donc un modèle donnant la section totale, un modèle
Hauser-Feshbach et un modèle donnant les coefficients de transmission pour toutes les
autres voies que celles d’entrées (les coefficients de transmission liés aux voies d’entrées
sont donnés par le modèle donnant la section totale). Il est donc nécessaire, même pour
modéliser une section efficace de fission seule, de disposer de modèles décrivant les autres
processus de décroissance comme par exemple la décroissance radiative.

Avant le début de cette thèse, la modélisation haute énergie du code CONRAD, issue
d’un travail préparatoire, était assez rudimentaire. En effet un moteur Hauser-Feshbach
préexistait ainsi que certains modèles rudimentaires permettant le calcul de sections par-
tielles limitées. Dans ce cadre, seul le modèle matrice-R moyenne pouvait être utilisé. Une
refonte complète de cette partie du code a donc été effectuée afin d’être plus générique
dans les modèles utilisables pour les différentes voies.

Concernant le traitement de la voie d’entrée, le modèle matrice-R moyenne a été
préservé (afin d’assurer l’isocapacité du code), mais a été modifié afin de permettre de
s’articuler de façon générique au reste du code. Un couplage avec le code ECIS (modèle
optique utilisant le formalisme des voies couplées décrit en annexe du manuscrit) a été
réalisé afin de pouvoir traiter un domaine en énergie plus grand. En effet, il a été dit
plus haut que le modèle matrice-R moyenne utilise des données issues de l’analyse de

viii



domaine résolu, or dans ce domaine, seules quelques voies jouent un rôle significatif. à
plus hautes énergies, le poids « s’équilibre » entre les différentes voies et leur nombre
augmente très rapidement. Il est dont impossible d’utiliser le modèle matrice-R moyenne
à hautes énergies car trop de paramètres doivent être ajustés sur des mesures. à hautes
énergies des modèles optiques sont utilisés de façon à limiter le nombre de paramètres
phénoménologiques à ajuster in fine sur des mesures. Ce type de modèle réussit très
bien à reproduire les sections efficaces totales. Afin de maitriser complètement la chaine
de modélisation des sections efficaces partielles, un modèle optique par voies couplées a
également été implémenté de façon à pouvoir se passer à terme du code ECIS utilisé depuis
plus de 50 ans et dont la maintenance est difficile à assurer. La nouvelle implémentation
pourra également faciliter l’arrivée de nouveaux modèles optiques, par exemple de type
rotor moue. L’implémentation du nouveau modèle optique et le couplage au code ECIS ont
été testés et ont donné des résultats satisfaisants permettant de passer à la modélisation
des autres réactions. Pour effectuer cette vérification, deux isotopes ont été testés : le 56Fe
et le 157Gd. Le 56Fe permet de tester un potentiel sphérique alors que le 157Gd, déformé
dans son état fondamental, requiert l’utilisation d’un potentiel de type rotor rigide.

Le plus naturel est de commencer par traiter le processus de capture radiative. Ce
processus n’est pas un processus à seuil, il peut se produire à n’importe quelle énergie
d’excitation du noyau composé. Il rentre donc en jeu même à basse énergie. Le photon
émis par décroissance fait « retomber » le noyau composé dand un état de moindre énergie
et de spin-parité différent. De nombreux états d’arrivée sont disponibles, tout spéciale-
ment pour les noyaux lourds. Ainsi, de nombreux coefficients de transmission doivent être
calculés pour chacun de ces états. En pratique, seule une partie des états de basse énergie
est connue. Pour traiter les autres états, une densité de niveau phénoménologique est uti-
lisée. Le code CONRAD partage avec un autre code (le code FIFRELIN) une bibliothèque
de modèles de physique nucléaire dans laquelle des modèles de densité de niveau ρ sont
disponibles. Ces modèles ont donc été raccordés au code CONRAD afin de pouvoir traiter
ce « continuum » de niveaux. Le modèle utilisé dans ce travail est le modèle phénoménolo-
gique de Gilbert-Cameron [9]. La description des niveaux n’est pas suffisante pour décrire
le processus de décroissance radiative. Pour décrire la probabilité de décroissance entre
deux niveaux séparés d’une énergie εγ, un modèle phénoménologique dit de fonction force
gamma est utilisé. La bibliothèque de modèles de physique nucléaire contient également
des modèles de fonction force gamma qui ont été couplés au code CONRAD. Ces modèles
sont cohérents avec ceux de la base RIPL-3 [10]. Au final, le coefficient de transmission
gamma est donné par la formule

T J
π

γ =
∑

X∈{E,M}

∑

`

[
N∑

i=1

TX`(εγ(i))f(Ji, πi, J, π,X, `)

+
∑

J ′π′

E∗∫

Econt

dεγρ(E∗ − εγ, J ′, π′)TX`(εγ)f(J ′, π′, J, π,X, `)

]
.

Dans cette formule, la fonction f sert à sélectionner les transitions permettant de conserver
le moment angulaire et la parité. Les coefficients de transmission liée à l’émission de
neutron sont déjà connus soit via le modèle de matrice-R moyenne soit via le modèle
optique. Il est donc possible de calculer la section efficace de capture radiative en utilisant
la formule d’Hauser-Feshbach

σn,γ ∝
TnTγ
Tn + Tγ
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L’implémentation de ce modèle a été vérifiée avec le code TALYS. Pour effectuer cette
vérification les deux isotopes 56Fe et 157Gd ont été réutilisés. Le code CONRAD et le code
TALYS présentent des écarts inférieurs 0.05%.

Le même type de mise à niveau du code a été réalisé pour la réaction inélastique,
toujours en utilisant le code TALYS comme référence. à la différence de la réaction de
capture, une partie dite directe doit être ajoutée. Cette partie directe peut provenir soit
du calcul par voies coupées pour les niveaux inélastiques, considérés dans le calcul du
modèle optique, soit d’un calcul séparé de type DWBA. Les résultats avec le code TALYS
ont été encore une fois satisfaisants. Cependant, à plus hautes énergies, l’émission d’un
gamma suivi de l’émission d’un neutron devient de plus en plus probable. Ce type de
réaction n’est pas prévu dans le code CONRAD, et son traitement a dû être désactivé
dans le code TALYS afin de faire des comparaisons pertinentes. Malgré tout, cela ne doit
pas poser de problème pour le reste de cette étude car, dans le domaine énergétique traité,
cette contribution reste marginale. Le cadre présenté jusqu’à présent permet maintenant
de traiter spécifiquement la réaction de fission. Afin de réaliser des comparaisons per-
tinentes et de porter le code CONRAD au niveau de l’état de l’art de la modélisation
des sections efficaces fission, le traitement standard de la fission utilisant un modèle de
type Hill-Wheeler [11] avec deux barrières non corrélées a été implémenté. Le modèle
Hill-Wheeler repose sur la description des barrières de fission comme étant de simples
paraboles inversées. De plus, dans la modélisation usuelle, les deux barrières non corrélées
ne sont pas reliées par un puits intermédiaire. Or ce puits intermédiaire est responsable
des structures observées sur les sections efficaces de fission. L’obtention et l’utilisation
d’un potentiel continu seront le sujet des deux prochains chapitres.

Les Modèles Macro Microscopiques
En physique nucléaire, les barrières de fission sont obtenues en étudiant l’évolution de
l’énergie du noyau à mesure que celui-ci se déforme. La description de cette énergie en
fonction des paramètres de déformation collectifs est appelée surface d’énergie poten-
tielle. Plusieurs approches existent pour obtenir de telles surfaces, les méthodes purement
microscopiques, bien qu’intellectuellement plus satisfaisantes, amènent à des durées de
calcul rédhibitoires pour l’évaluation. La méthode concurrente, appelée macro microsco-
pique, combine l’approche historique de type goutte liquide à une modélisation simplifiée
des fonctions d’onde individuelles de chacun des nucléons. Le modèle retenu pour cette
étude est le modèle Finite-Range Liquid-Drop-Model de Peter Möller [12]. Dans cette ap-
proche, la forme de noyau est imposée à l’aide d’une fonction géométrique dépendant des
paramètres de déformation collectifs. Un historique est présenté retraçant les différentes
améliorations successives apportées au modèle macroscopique de type goutte liquide, dont
la formulation originale de type Bethe-Weizsäcker [13, 14] donnée par

B(Z,N) = aVA− aSA2/3 − aC
Z2

A1/3
− aA

(N − Z)2

A
− δ(Z,N) .

Cette modélisation a notamment été améliorée par l’apport successif de termes cor-
rectifs décrivant la diffusivité de la surface du noyau, la taille finie des protons, etc. Cette
vision macroscopique du noyau présente certains défauts. Notamment dans cette descrip-
tion, tous les noyaux ont une forme sphérique dans leur état fondamental. De plus, la
forme de la barrière de fission obtenue ne présente qu’un seul pic. Pour finir, il faut noter
que cette formulation ne permet pas de coller aux masses expérimentales pour certains
noyaux. En effet, pour des noyaux ayant un nombre de protons ou de neutrons proche
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des nombres magiques 2, 8, 20, 28, 50, 82 et 126, des écarts significatifs avec le modèle
macroscopique sont observés. Ces écarts sont dus au fait que les nucléons du noyau ne sont
pas répartis de façon homogène et ont un comportement régi par la mécanique quantique.

Le modèle macro microscopique devint populaire à partir des travaux de Strutinsky [15]
qui fournit une méthode pour calculer une correction de couche à partir des énergies
simples particuliers nucléons. Ces énergies sont obtenues par la résolution de l’équation
de Schrödinger pour des particules indépendantes

Ĥψν = (T̂ + V̂ )ψν = ενψν .

Dans le travail présenté, seules des formes à symétrie axiale seront étudiées. La résolu-
tion de cette équation repose sur la donnée du potentiel moyen ressenti par les nucléons.
Dans l’approche utilisée dans le modèle macro microscopique, ce potentiel est donné par
un modèle de Yukawa calqué sur la forme du noyau. à ce potentiel nucléaire moyen est
ajouté un second potentiel scalaire tenir compte, pour les protons, de l’interaction co-
lombienne. De plus, afin d’obtenir un potentiel réaliste, un potentiel de couplage spin
orbite est aussi introduit. La résolution de l’équation est donc réalisée séparément pour
les protons et neutrons, et ce pour chaque forme du noyau. Un modèle microscopique
à particules indépendantes a donc dû être implémenté dans le code CONRAD. Dans le
cas d’un noyau sphérique, les nombres magiques sont retrouvés. D’autres vérifications
sont également effectuées, portant notamment sur la valeur des énergies simple particule
obtenues lorsque le potentiel utilisé est analytique.

La méthode utilisée pour obtenir la correction de couche à partir des énergies simple
particule est présentée. En réalité, deux types de correction sont calculés. Une première
correction caractérise l’effet de la quantification des énergies des nucléons dans le noyau.
Une deuxième correction caractérise l’effet des énergies discrètes par rapport à l’énergie
continue sur l’énergie d’appariement des nucléons. Le calcul de ces deux types de correc-
tion a été vérifié sur un benchmark. Une dernière correction doit être appliquée à la surface
d’énergie potentielle afin de pouvoir la comparer à une donnée expérimentale. Cette cor-
rection s’appelle l’énergie vibrationnelle de point zéro. Elle correspond au fait, que lorsque
le noyau se trouve dans un puits de potentiel de la surface, il ne peut se trouver « au fond
du puits », mais à une énergie légèrement au dessus. Ce phénomène est courant en méca-
nique quantique : une particule liée dans un puits harmonique se trouve dans le premier
état vibrationnel accessible. Il en est de même pour le noyau dans le puits de la surface de
potentiel. Afin de pouvoir comparer l’énergie potentiel du noyau avec l’énergie de liaison
expérimentale, cette énergie de vibration doit être ajoutée. L’implémentation modèle a
donc pu être vérifiée sur des données publiées [12] et sur les masses expérimentales. Pour
obtenir une analyse plus fine des différences entre l’implémentation originale du modèle
et celle réalisée pour le travail de thèse, un deuxième modèle du même type (le Finite-
Range Droplet Model [12]) a été implémenté. Ce modèle diffère du premier seulement
par sa composante macroscopique. Ceci a permis d’identifier partiellement l’origine des
différences vis-à-vis de l’implémentation originale. En conclusion, les écarts observés avec
les données publiées permettent d’utiliser avec confiance le programme pour l’étude des
surfaces d’énergie potentielle afin d’en extraire une barrière de potentiel à une dimension.

Obtention d’une Barrière de Fission à une Dimension

La surface d’énergie potentielle obtenue à l’aide d’un modèle macro microscopique ne peut
pas être utilisée directement dans un calcul de section efficace type Hauser-Feshbach. Un
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coefficient de transmission fission doit en être extrait. Il serait possible d’utiliser plei-
nement tous les degrés de liberté décrits par la surface en utilisant par exemple des
formalismes sophistiqués tels que « time-dependent generator coordinate method ». Ce-
pendant, de telles méthodes nécessitent un temps de développement et de calcul qui n’est
pas compatible avec la présente étude. La surface de potentiel est multidimensionnelle.
Des méthodes plus simples à mettre en place permettent d’obtenir un coefficient de trans-
mission à partir d’une « surface » à une dimension (une barrière de fission), et ce, quelle
que soit la forme de cette surface. Il a donc été choisi de réduire la surface multidimen-
sionnelle à un chemin 1D. Deux types de méthodes ont été étudiés, la méthode dite de
« moindre énergie », et la méthode de moindre action.

La méthode de moindre énergie se comprend intuitivement en imaginant une surface
2D correspondant par exemple à un profil topologique d’une région géographique mon-
tagneuse. En étudiant l’écoulement de l’eau sur cette surface, on obtient une idée d’un
chemin 1D « optimal ». La généralisation de ce problème à N dimensions est plus com-
plexe, car si les minimas locaux sont faciles à identifier, les points selles les connectant,
ainsi que le chemin complet entre ces différents points particuliers ne sont pas aisés à
déterminer pour des dimensions supérieures. L’algorithme élaboré afin de déterminer ce
parcours est présenté dans le manuscrit. Il s’appuie notamment sur la méthode d’immer-
sion [16] pour déterminer les points selles connectant chaque couple de minima locaux. Le
point faible de cette méthode se trouve dans la définition de « l’abscisse de fission ». En
effet cette méthode donne la suite de formes (et les énergies de déformation associées) que
prend le noyau durant le processus de fission. Cependant la notion de distance entre deux
formes n’est pas naturelle. Un ersatz de solution a été choisi en utilisant une distance « de
Pythagore » entre deux formes en utilisant les valeurs des paramètres de forme. Le cas du
240Pu (fissionnant) a été étudié, et les hauteurs de barrière obtenues sont cohérentes avec
celles trouvées dans la littérature.

La deuxième méthode étudiée est la méthode de moindre action. Cette méthode a
l’avantage de naturellement donner une abscisse de fission. Cependant cette méthode
requiert un paramètre supplémentaire par rapport à la méthode de moindre énergie : le
tenseur d’inertie. Ce tenseur d’inertie B caractérise l’inertie qu’a le noyau à se déformer
dans certaines « directions ». En réalité, ces directions sont les paramètres collectifs de
forme du noyau. Le parcours de moindre action est ensuite défini comme étant le parcours
L qui minimise l’intégrale d’action S définie par

S =

∫

L

ds
√∑

ij

Bij(~q)
dqi
ds

dqj
ds

[V (~q)− V (~q GS)] .

Deux modèles ont été étudiés pour obtenir le tenseur d’inertie, le model Werner-Wheeler
[17] et le modèle de cranking [18,19].

Le modèle de Werner-Wheeler modélise le noyau comme un liquide incompressible
et irrotationnel (de façon cohérente avec l’approche macroscopique de l’énergie de défor-
mation du noyau). Cette méthode présente l’avantage de donner une solution rapide car
elle ne nécessite que la connaissance du volume, de la masse et de la forme du noyau.
Cependant, ce modèle n’a pas été utilisé plus loin dans l’étude du fait des résultats non
satisfaisants donnés par une modélisation aussi simple du noyau. L’insuffisance du modèle
est montrée lors du passage à un calcul de chemin explorant l’asymétrie de masse. En ef-
fet, l’ordre du tenseur (et le nombre de degrés de déformation collectifs) est donné par le
nombre de paramètres utilisés dans la description de la forme du noyau. Dans l’étude, la
paramétrisation de Brack [20] a été utilisée. Cette paramétrisation permet de jouer sur
l’élongation du noyau, la « taille du col » et optionnellement l’asymétrie de masse. On
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étudie donc des surfaces d’énergie potentielle à deux ou trois dimensions. Dans tous les
cas les valeurs propres du tenseur d’inertie doivent toujours être positives. Or, dans le
cas de la surface à trois dimensions, cela n’est plus le cas. C’est la raison pour laquelle ce
modèle n’a pas été utilisé plus loin dans l’étude.

Un deuxième modèle a été étudié pour obtenir le tenseur d’inertie : le modèle de
cranking. Dans ce modèle, les fonctions d’onde simple particule du modèle microscopique
ψν sont réutilisées, de même que les énergies quasi-particule Eν obtenues à partir du
modèle de correction d’appariement. Le tenseur d’inertie s’obtient alors par

Bcr
ij (~q) = 2~2

∑

µν

〈
ν
∣∣∣∂Ĥ
∂qi

∣∣∣µ
〉〈
µ
∣∣∣∂Ĥ
∂qj

∣∣∣ν
〉

(Eν + Eµ)3
(uνvµ + vνuµ)2 + Pij .

Contrairement au modèle Werner-Wheeler, une solution analytique a été développée de
façon à vérifier l’implémentation du modèle.

Une fois le tenseur d’inertie connu, l’intégrale d’action est minimisée à l’aide d’une
méthode de Ritz. L’avantage de la méthode de moindre action par rapport à la méthode
de moindre énergie est qu’en plus de donner une définition plus rigoureuse de l’abscisse
de fission, elle donne également un paramètre d’inertie dépendant de l’abscisse de fission
(appelée déformation après réduction à une dimension). Dans le cas du chemin de moindre
énergie, ce paramètre est choisi constant et indépendant de la déformation. Ce paramètre
a un effet significatif sur le calcul des coefficients de transmission. Malheureusement,
l’utilisation du modèle de cranking dans le cas 3D mène à un parcours ayant des hauteurs
de barrière peu réalistes. Une façon d’obtenir des hauteurs de barrière plus réalistes est
de sélectionner parmi les chemins de moindre action étudiés, celui correspondant à la
barrière la plus basse. Cette méthode arbitraire est appelée LA-Vmin. Cela est bien sûr peu
satisfaisant mais permettra dans le reste de l’étude de montrer l’impact de la dépendance
de l’inertie en fonction la déformation.

Trois modèles sont donc testés pour l’obtention d’une barrière à une dimension : la
méthode de moindre énergie avec paramètre d’inertie constant, la méthode LA-Vmin avec
un paramètre constant et avec un paramètre dépendant de la déformation. Une fois ces
barrières connues, il a fallu mettre en place une méthode pour calculer un coefficient de
transmission à partir d’une barrière de forme quelconque. Dans le cas d’un paramètre
d’inertie constant, la méthode de Numerov [21] peut être appliquée. Dans le cas d’un
paramètre d’inertie dépendant de la déformation, une méthode de Runge-Kutta a été
utilisée. Cela a notamment permis de montrer l’effet spectaculaire de la dépendance du
paramètre d’inertie sur le coefficient de transmission (et in fine sur la section efficace).
Ce phénomène est d’autant plus marqué que le paramètre d’inertie est complètement
négligé dans les approches « traditionnelles » type Hill-Wheeler ou Cramer-Nix [22]. Non
seulement, dans ces approches le paramètre d’inertie est constant, mais sa valeur n’a pas
d’effet sur le coefficient de transmission final.

Pour obtenir des coefficients de transmission fission utilisables dans un calcul de sec-
tion efficace, il est nécessaire de traiter les états de transition. Ces états de transition
sont reliés au fait qu’un noyau se déformant peut se trouver dans l’état qui minimise
l’énergie intrinsèque, ou alors dans le premier état excité, ou le deuxième, etc. Ces états
excités sont obtenus en réutilisant les énergies simple particules du calcul microscopique
et en les combinant avec des états vibrationnels harmoniques afin d’obtenir des têtes de
bandes rotationelles. Cette opération est réalisée en utilisant une routine issue du code
AVXSF [23,24]. Les têtes de bandes rotationnelles obtenues sont alors déroulées en utili-
sant un moment d’inertie, calculé lui aussi à l’aide du modèle de cranking. Dans l’étude,
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l’hypothèse adiabatique est faite et le premier état excité reste le premier état excité,
peu importe l’évolution du niveau simple particule correspondant. Pour finir, la section
efficace de fission 239Pu(n, f) est obtenue en réinjectant les coefficients de transmission
dans un calcul de section efficace moyenne (de type Hauser-Feschbach). Les résultats sont
présentés et commentés : un écart d’environ 30% par rapport aux données évaluées a pu
être obtenu, et ce sans ajustement.

Conclusions et Perspectives
Ce travail de thèse a eu pour but de démontrer la possibilité de fonder la modélisation
de la section efficace de fission à partir d’un modèle moins phénoménologique que dans
les pratiques actuelles. Ce travail ne s’est pas focalisé sur un seul des domaines en énergie
impliqué dans l’évaluation des sections efficaces pour la neutronique mais sur tous (do-
maine des résonances résolues et domaines statistiques). Dans le domaine des résonances
résolues, il a été montré qu’il était possible de donner davantage de sens physique aux
paramètres de résonances associés à la réaction de fission. Dans le domaine statistique,
un modèle de structure nucléaire a été implémenté de façon à fournir des données qui
ne pouvaient jusqu’à présent qu’être intuitées, puis ajustées sur des mesures. Ce travail
a de plus permis de montrer l’importance d’une grandeur complètement ignorée dans les
méthodes actuelles : le paramètre d’inertie. Dans une approche pragmatique de moindre
énergie, il a été possible de montrer que la méthode intégrée d’utilisation de la surface
d’énergie potentielle macro microscopique et l’utilisation d’une barrière de fission conti-
nue permettent de retrouver l’ordre de grandeur de la section expérimentale. De plus, il
est montré que moyennant un ajustement raisonnable des paramètres, l’accord avec les
données expérimentales peut être accru.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The general treatment of nuclear data in order to supply industry with usable data, called
“evaluation”, is presented in this chapter. The evaluation process is introduced along with
a general background of evaluated data libraries, application data libraries, engineering
codes, etc. Focus will be made on neutron cross section evaluation and deficiencies of
current evaluated cross sections will be presented.
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1.1 Objectives of present PhD Work

The purpose of present PhD work is to demonstrate the feasibility of using advanced
theoretical models as underlying tools for fission cross section evaluation. Two main
energy ranges are considered in cross section evaluation: the Resolved Resonance Range
(RRR), relying on the R-matrix theory and the statistical energy range relying on the
Hauser-Feshbach theory. Directions for improvements of fission cross section modeling will
be given for both energy ranges. These improvements aim to give adjusted parameters a
sound physical meaning. The physical meaning for parameters (and for related models)
restrain arbitrariness of the evaluation choices that are made in current approaches.

In the RRR, the fission penetration factor is currently assumed to be unity (Pf = 1),
which deteriorates both the meaning and the statistical quality of the fission resonance
parameters (γλf). In the statistical energy range, the usual Hill-Wheeler formalism fails to
reproduce experimental structures. To compensate this model default, ad hoc solutions
are selected but rely on phenomenological parameters that limit the predictive power
of this approach. The present study will focus on the effects of considering detailed
and reliable fission barrier (namely a barrier having a double-hump shape provided by a
macroscopic-microscopic model) in fission cross section modeling. Results of present work
will be presented as follows.

First, the general context of evaluated data and, more specifically, of evaluated cross
sections will be introduced (this chapter). Focus will be made on the remaining data
inconsistencies and on sources of improvement.

In Chapter 2, the general collision theory that drives cross section modeling will be de-
tailed. All the programming developments required for this work have been implemented
in the CONRAD evaluation code that will be presented.

The R-matrix theory is an exact frame that gives a parameterization of resonant cross
sections in which the energy dependency is made explicit. It relies on the knowledge of
the interaction potential operating in the different reaction channels. This potential, and
the related wave functions, are used to define penetration factors that carry a part of
the energy dependency of the cross section. Theory describing fission-specific penetration
factors in the RRR will be introduced in Chapter 3. An analysis of the fission resonance
parameters of the 240Pu(n, f) cross section will be performed using will highlights the effect
of fission-dedicated treatment in the RRR cross section analysis.

The fission barrier shape is a decisive ingredient in the fission penetration factor mod-
eling. It is also a key feature in average fission cross section modeling in the statistical
energy range. In Chapter 5, a long-standing macroscopic-microscopic model, the Finite
Range Liquid Drop Model, will be presented. This model can be used to describe the po-
tential energy of nucleus as this latter deforms and provides what is called the Potential
Energy Surface (PES).

The multidimensional PES cannot be directly used in a Hauser-Feshbach model to
calculate average cross sections in the statistical energy range. The PES must be converted
into a one-dimensional fission barrier. Out of this latter, a fission transmission coefficient
usable in a Hauser-Feshbach model can be calculated. This reduction to a one-dimension
fission barrier, and the computation of the related fission transmission coefficient will be
treated in Chapter 6. An application example for the 239Pu(n, f) cross section will be
finally presented.

Significant efforts have been provided in this PhD work in terms of code development.
Several verifications on analytical cases, and validations on experimental data were made
all along this work to ensure the reliability of the present approach.
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1.2 General Context of Nuclear Data Evaluation
Nuclear data are necessary inputs for numerous applications such as reactor physics,
nuclear medicine, nuclear marine propulsion1, and non-proliferation efforts. It is also used
for less known applications such as archaeology (radiocarbon dating), food conservation,
material science and astrophysics. In France, the aging of nuclear plants leads to question
the medium-term future of power production and considering alternative sources of energy.
In case where nuclear energy production is favored, two main options are open

• Extent current power plant lifetimes, the so-called Generation II reactors2, engaging
heavy and costly renovations.

• Building a new generation of reactors (the Generation III), with highly upgraded
safety and operability standards.

In both cases, advanced studies regarding safety and efficiency must be performed using
accurate input data. Safety upgrades are imposed by the national nuclear regulatory
commission (named Autorité de Sûreté Nucléaire in France). Unless operators prove that
current procedures comply with the new safety standards, reactor operation margins can
be drastically reduced. This necessitates detailed studies of how to reduce model uncer-
tainties so that safety can be ensured with reasonably restored operation margins. In
recent years, new computational resources made affordable the use of reference methods
in reactor physics. These methods, based on Monte-Carlo simulations, are more appro-
priate because of they do not rely on the various approximations present in the analytical
deterministic methods that are more commonly used. Yet Monte-Carlo simulation is often
too time-consuming considering the number of studies required for instance to operate re-
actors. The reference methods are thus mainly used to quantify and correct biases carried
by analytical deterministic calculations.

Reactor physics computations require a large amount of nuclear physics input data,
namely the cross section values. Nowadays, reactor physics calculations exhibit input-
related uncertainties that are larger than those related to computation method itself,
thanks to Monte-Carlo reference methods.

In parallel to the two above options concerning future of nuclear power production in
France, there is a medium-term project related to a fourth generation of reactors that is
expected to coexist with, or replace Generation III reactors. The fourth reactor generation
is designed to consume the most abundant isotope of uranium, 238U present in natural ore3.
Generation II and III reactor reactors use only the scarce 235U, which isotopic fraction
amounts to only 0.720% of the natural element. This change of consumed material is
achieved by transmuting 238U into 239Pu by neutron capture. This process actually occurs
in any reactor, as long as is contains 238U. In light water reactors (Generation II and III
for instance), plutonium can be responsible for up to a third of fissions. In France,
some current reactors4 use plutonium as fuel. It is obtained from uranium-based spent
fuel recycling, yet this type plutonium fuel recycling can only be performed once as the

1Nuclear marine propulsion refers to both naval nuclear propulsion of warships and to the very few
civil nuclear ships.

2In France, the Generation I corresponds to the first industrially developed reactors built in the 50’s.
They used natural uranium as fuel and graphite as moderator; the technology then switched to enriched
uranium as fuel and light water as moderator for in Generations II and III.

3There are scenarii and studies that involve thorium as the source of nuclear fuel, yet the related
technology is likely to be ready in a more remote future than for uranium-base fuel cycle.

4Only some of the 900 MWe reactors use plutonium fuel. Yet, it amounts to only a third of the nuclear
fuel used, the remaining being the usual 235U fuel.
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plutonium isotopic quality is degraded after being used once more in a Generation II or III
reactor. Generation IV reactors are designed to allow multi-recycling of spent fuel, and are
also expected to burn minor actinides that are responsible for long-term radiotoxicity of
current nuclear wastes. All these reasons (new reactor design, renovation of existing plants
and highlight of nuclear data-related uncertainties) advocate for quality enhancement of
nuclear data and of related uncertainties.

A large amount of nuclear data is required in order to design, operate and even de-
commission a nuclear reactor plant. These nuclear data can be of very various types, for
example:

• Partial and total cross-sections ; When two particles collide, for instance a neutron
and a uranium nucleus, the probability for a given reaction to occur (e.g. capture,
elastic scattering, fission, etc.) can be quantified in terms of cross-sections. The
partial cross section is related to a given reaction type and the total cross section
stands for the total interaction probability, regardless of the type of reaction.

• Multiplicity of produced particles; for some reactions, various types of particle (neu-
tron, proton, alpha particle, fission fragments, etc.) can be emitted. In particular,
for the fission reaction, these quantities are separately named fission yields when
referring to the fission fragments; fission multiplicity when referring to the number
of neutrons emitted by fission; and fission gamma multiplicity when referring to
prompt gamma emissions.

• Angular and energetic distributions of produced particles.

• Radioactive decay data.

• Reaction energy; e.g. the amount of energy released per fission or the energy trans-
ferred by inelastic scattering.

• Data related to nuclear structure (discrete levels); for example energy, angular mo-
mentum and parity of excited states of nuclei.

• Nuclear data can also be extended to some electronic properties data, for instance
for the electronic stopping power along with the nuclear stopping power.

Nuclear data can be either obtained from by experiments or, whenever no experimental
information is available, predicted by theoretical models. On the contrary, when sev-
eral experimental measurements and/or several models are available, a necessary balance
must be found in order to weight all “versions” and to reach the best data estimate.
This cumbersome process is called evaluation. Figure 1.1 shows the upstream position
of the nuclear data evaluation in the whole process that eventually leads to industrial
applications.

For a specific type of nuclear data, all relevant microscopic experimental infor-
mation can be merged and averaged to form a standard. The cross section standards
are not often used in applications because of two main reasons:

• First, data for which many related measurements are available are scarce. For
neutron cross section, standards only involve few reactions [25] 1H(n, n), 3He(n, p),
6Li(n, t), 10B(n, α), 10B(n, α1γ), C(n, n)5, 197Au(n, γ), 235U(n, f) and 238U(n, f). Re-
lated data are also often restricted to a limited energy range.

5For the C(n, n) cross section, the standard is related to carbon of natural isotopic abundance.
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Evaluated Data
Library

Microscopic Experimental
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feed
back

Figure 1.1 – Schematic of the nuclear data path from experimental and/or theoretical
sources to industrial applications.

• The second reason that limits the use of standards is that careful evaluation analyses,
combining theoretical models and selected experimental data, usually increases
the consistency of evaluated nuclear data with integral experiments. These latter
integral experiments involve several partial cross sections of many isotopes for a wide
energy range. Standards are based onmicroscopic experiments designed to be as
sensitive as possible to one reaction involving one isotope and for a specific energy
range only.

Even though standards are not directly used for applications, they remain a source of
verification of the evaluation process. Evaluated nuclear data are gathered into evaluated
data libraries. On the opposite to the standards way, there are the pure theoretical
investigations. This approach is envisaged whenever lack of microscopic and integral
experimental data is encountered. Nuclear data are very specific to the related isotope,
yet systematics (or trends) can be found for some types of data across the periodic table.

The present work focuses on one specific type of nuclear data: the neutron-induced
fission cross section, for which experimental data are usually available and for which large
reactor application feedback exists (i.e. integral experiments). This feedback is used more
and more to produce new evaluated data that are expected to correct possible biases in
microscopic measurements. Finally, it must be also noticed that evaluated data libraries
are usually not directly used in engineering codes. A processed data application
library must be created specifically for each engineering code. The processing is not
only a change of format but can consists of several treatments, for instance the zero-
Kelvin cross sections can be broadened to actual reactor temperatures. Further dedicated
treatments [26,27] can also be performed such as the production of self-shielded multigroup
cross sections [28,29].

Due to the very nature of nuclear physics, nuclear data can be highly fluctuating and
finely structured. For instance, cross sections can “oscillate” several times (varying of
several orders of magnitude) within a range of 1 eV of the incident particle energy, and
the reactor data must cover the range from 0 to several millions of eV! Figure 1.2 shows an
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example of evaluation of such fluctuating data, pictured here by the total neutron cross
section of 239Pu.
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Figure 1.2 – JEFF-3.2 evaluation of the 239Pu total cross section. The different energy
ranges involved for the description of the cross section are also highlighted.

At low incident neutron energies, well energy-resolved resonances can be observed
(green background), they correspond to the Resolved Resonance Range (RRR). At higher
energies the lack of experimental information and the difficulty to separate resonances
lead to consider an average value of the cross section, this energy range is referenced as
the Unresolved Resonance Range (URR) (blue background).

In this energy range, resonances still exist and cannot be neglected for reactor physics
applications. In the reactor core, neutrons collide with isotopes present in the reactor core.
The resonance width that is “seen” by the moving neutron depends on the relative velocity
between the neutron and the collided isotope. This relative kinetic energy is modified by
the medium temperature as thermal motion modifies the velocity of the collided isotope.
By Doppler effect, the resonance widths are broadened when the medium temperature
increases, for instance as a result of an increase in power production in the reactor. This
phenomenon is a key point for reactor safety, as this effect has to result in a negative
feedback which stabilizes the reactor reactivity. In the URR, the effect of the medium
temperature must be “somehow” treated. Since no pointwise data can be recommended for
resonance description in this range, they are treated using probability tables that contain
the statistical properties of the resonances. This description is more suitable to handle
self-shielding and Doppler effect.

At even higher energies, the resonance density becomes so high that resonances overlap
and no fine resonance structures can be identified anymore. The resonance widths also
become larger with increasing incident neutron energy, which enhances the overlapping
phenomenon. This energy range, where no resonance can physically be observed, is called
the neutron Continuum range (red background in Fig. 1.2).

The amount of numerical values to be stored in order to reproduce the complexity of
the cross section is tremendous. In order to make evaluated data available to any appli-
cation, these latter are formatted into specific evaluated nuclear data files. The definition
of an international format has been a long term effort from the pioneer definitions [30,31]
to the current ENDF-6 standard [32] as more and more types of nuclear data became
needed to be processed and stored. Although the ENDF-6 format seems nowadays like

6
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an old-fashioned and highly FORTRAN-oriented Man Machine Interface, it is still the
international reference format used world wide. The reason being that the processing
of evaluation files is a heavy task that needs to be done specifically for every reactor
physics computer code. A change in the format would imply tremendous modifications
in all subsequent processing codes. Still, a working group of the OECD/NEA WPEC
(subgroup 38 [33]) is currently in charge of studying the relevance of different modern
formats that could be more appropriate to a new generation of nuclear data storage.

1.3 Evaluation Methods and Status of Evaluated Cross
Sections

The recent renewed interest from nuclear industry in improved nuclear data, pushes for
new experiments and more sophisticated theoretical models, also pushes for changes in
evaluation methods. The improvements in evaluation methods are related to already
identified deficiencies in current evaluations:

• Consistency of evaluated nuclear file. For instance, the same type of information
can be found several times in a single evaluated file, thus consistency is not always
ensured.

• Consistency of modeling of nuclear data. For instance the data evaluated in different
energy ranges can have common features (e.g. parameters) that are not consistent
between the ranges.

• Lack of accurate variance-covariance data. These types of information stand for
both uncertainties and correlations between nuclear data.

• Predictability of not-measured nuclear data by improving the theoretical ground; a
continuous effort is carried on in that field as experiments cannot be always per-
formed (cost, feasibility, international treaties6).

• Capability to reproduce experimental data.

All these points will be discussed and exemplified in the following sections.

1.3.1 Consistency of Evaluated Nuclear Data

Improving consistency of evaluated nuclear data may seem like the most trivial way to
enhance data quality. Figure 1.3 shows an example of inconsistency; the JEFF-3.2 eval-
uation of the 240Pu total cross section exhibits an nonphysical discontinuity at 40 keV.

This issue results from the fact that the cross section has been evaluated separately
according to the range of incident neutron energy (URR or Continuum). For reactor
physics applications, neutron cross sections are evaluated for incident neutron energies
from about 10−5 eV up to 20 MeV, that is to say on an energy range about twelve orders
of magnitude wide. In practice there is no unique model able to treat cross sections over
such a wide energy range, hence different models are used depending on the range of the
incident neutron energy. As each range may be treated by different people, at different

6For instance, fission cross section of 241Am, 242mAm and 234U where measured [34,35] in the 60’s by
the means of nuclear explosions as neutron source. This technique is now prohibited by the Comprehensive
Nuclear-Test-Ban Treaty.
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locations7 and at different times, complete consistency is difficult to achieve. Consistency
is not only related to man-power issues but may also be related to intrinsic differences in
model behavior depending on the energy range. Some ongoing studies attempt to analyze
the effects of constraining consistency between models in terms of cross section values and
propagated variance-covariance matrices [36].
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Figure 1.3 – JEFF-3.2 evaluation of the 240Pu total and elastic scattering cross sections.
A mismatch can be observed at 40 keV between the Unresolved Resonance Range (gray
background) and the Continuum Range.

Similar issues can also occur for partial cross sections. Indeed total and partial cross
sections are provided in evaluated files, but the summation of partial cross sections does
not necessarily equal the total cross section. This is also related to the fact that total and
partial cross sections can be evaluated separately or may result from addition of “extra”
cross sections in the evaluation file. These extra cross sections are used to provide data
wherever the ENDF-6 format has no dedicated container, the use of such tricks remains
hazardous but should vanish with upcoming new formats.

1.3.2 Consistency of Nuclear Data Modeling

Another source of inconsistency in current evaluations is related to the underlying models
(and parameters) used to produce evaluated data. In Chapter 4, it will be clearly shown
that models operating in different energy ranges have common features. Connections
between the model parameters, and consequently between different evaluated data sets,
emerge because models provides not only the required observable but also tend to describe
the complete nuclear process and thus some common intermediate properties are also
involved and should be consistent. Figure 1.4 shows an example of such a situation. Here
the radiative capture reaction 239Pu(n, γ) is considered:

n + 239Pu→ 240Pu∗ → 240Pu∗ + γ1 ... 240Pu∗ → 240Pu + γn

Underlying parameters describe the 240Pu excited states involved in photon emission.
Another reaction called the inelastic scattering 240Pu(n, n′) or 240Pu(n, ninel) is:

n+ 240Pu→ 241Pu∗ → 240Pu∗+n′ 240Pu∗ → 240Pu∗+γ1 ... 240Pu∗ → 240Pu+γn′

7For instance, several contributors and institutes are involved in the JEFF project of evaluated cross
section library, namely CEA-Bruyères-le-Châtel and CEA-Cadarache (France), NRG (Netherlands), Karl-
sruhe Institute of Technology (Germany), UKAEA (United-Kingdom) and many others.
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Here again, parameters are required to describe the 240Pu excited states involved in the
decays of 241Pu∗ and 240Pu∗. Both reactions 239Pu(n, γ) and 240Pu(n, n′) involve the same
240Pu nucleus but in different roles. In the inelastic reaction, 240Pu is the target and
residual nucleus, whereas for the capture reaction it is the compound nucleus. This
implies that model parameters are correlated (and expected to be consistent); therefore
the same nuclear structure database must be used for evaluation of both reactions.
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239Pu(n, γ)
240Pu(n,ninel)
240Pu(n,ninel,cont.)

Figure 1.4 – JEFF-3.2 evaluations of the 239Pu(n, γ) and 240Pu(n, ninel) cross sections.
The “continuum” contribution to the 240Pu(n, ninel) cross section, 240Pu(n, ninel,cont.) is also
shown. The word “continuum” used here is not related to the continuum energy range
of incident neutron energy introduced previously. Instead it is related to an average
treatment of residual nucleus levels.

A second example, related to fission cross sections, is shown in Fig. 1.5. Here the
reaction models involve a neutron colliding with an actinide isotope, forming a compound
nucleus that undergoes fission. This reaction process is called first chance fission. However
for high enough incident neutron energies, the compound nucleus can emit a neutron and
still have a significant probability of fissioning. This latter process is called second chance
fission.

The two first chance fission reactions involved in Fig. 1.5 are

(1) n + 239Pu→ 240Pu∗ ⇒ fission
(2) n + 240Pu→ 241Pu∗ ⇒ fission

Let say that, in the 241Pu∗ decay (reaction (2)), a neutron is emitted prior to fission and
ignites a second-chance fission

n + 240Pu→ 241Pu∗ → 240Pu∗ + n→ fission

The 240Pu∗ isotope is formed by two different processes, by the first chance fission in
239Pu(n, f) and by the second chance fission in 240Pu(n, nf). However in this example,
common features do not relate to 240Pu states as decay arrival states, like in the first
example, but as initial states prior to fission decay. Here model parameters describing
240Pu∗ tendency to decay toward fission must be the same. Physics consistency requires
thus that common shared parameters must be used in the evaluation of 239Pu(n, f) and
240Pu(n, f), yet this is not always the case. It must be stated here that the large number
of related parameters can be difficult to estimate with the desired degree of confidence.
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Figure 1.5 – JENDL-4.0 evaluations [37] of the 239Pu and 240Pu neutron-induced fission
cross sections. The solid and dashed lines correspond to the partial cross sections related
to 239Pu and to 240Pu respectively. Dark blue curves correspond to total fission cross
sections, i.e. the sum of all chance fission cross sections. Except for dark blue curves,
dashed and solid curves of the same color are related to the fission decay of the same
compound nucleus, namely 241Pu∗,240Pu∗, 239Pu∗ and 238Pu∗. Partial fission cross sections
of identical “chance order” correspond to the same decay process but for different isotopes.
However curves with same colors relate to decay of the same isotope, and thus rely on
common parameters.

1.3.3 Variance-Covariance Data

As operation margins tend to be reduced in nuclear industry due to enhanced safety
standards, efforts are made to quantify more accurately uncertainties related to nuclear
data. Uncertainties on nuclear data are provided by evaluators in terms of variance-
covariance matrices. These matrices contain uncertainties on data themselves but also
the interdependence, or correlation, between two given data, e.g. the cross section values
at two different energies or between two different partial cross sections. Significant efforts
were put in this direction in recent years, and should be maintained because:

• Variance-covariance matrices do not exist for all nuclear data types and isotopes.

• When full experimental matrices are used, the eventual χ2 of the fit can be improved
while deteriorating the agreement with experimental data (see Peelle’s Pertinent
Puzzle [38]).

• For experiments with a tremendous number of data points, the eventual computed
uncertainty is sometimes too low to be relevant. Yet, the marginalization tech-
nique [38], recently applied in evaluation for the propagation of systematic uncer-
tainty, reduces this effect.

• Correlations between isotopes are quite rare although measurements are often made
with respect to reference data (e.g. the 235U neutron fission cross section) or are
made with natural-abundance samples containing several different isotopes.

• Models correlate data as they give “trends” regardless of their parameter values.
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• Evaluated data related to processes involving decay of identical isotopes must use
common parameters that describe the decays, thus correlating the data.

1.3.4 Predictability and Reproduction of Experimental Data

Development of Fast Reactor technology and concerns about long-life minor actinides
waste increase interest in nuclear data related to heavy nuclei. Unfortunately experimen-
tal investigation on nuclear data is often expensive, and sometimes hardly practical due
to radio-toxicity or to short lifetime of the involved isotopes. Therefore alternative meth-
ods are investigated. In the experimental field, surrogate reactions are used to produce
identical compound nuclei by substitute reactions. For instance, the 238U(3He, tf)238Np
reaction leads to fission decays of 238Np and can be considered an indirect measurement
of the 237Np(n, f) reaction.

In the theoretical field, investigations can be made using extrapolated model param-
eters. Systematics (trends) in parameter values for known isotopes may exhibit approxi-
mate dependencies on the mass number A and/or on the atomic charge number Z. Hence
specific data can be extrapolated from known isotopes to exotic ones. This technique is
often used to supply data for astrophysics applications that deal with very short-life iso-
topes. Unfortunately these extrapolations can be done only in cases where few parameters
are involved. When highly structured data are involved, such as resonant cross sections,
this systematics approach cannot be considered. A related exampled is shown in Fig. 1.6
representing the JEFF-3.2 neutron-induced fission cross section of 240Pu. Fluctuations
in the evaluated cross section in the continuum range results from the addition of ad
hoc parameters (i.e. not provided by underlying nuclear structure model) used here to
reproduce experimental data. Details about the method used to produce the right-hand
side of this evaluation will be given in Section 4.6.

In the URR range (cf. Fig. 1.6), one can also notice that evaluated data [43] (red lines)
do not reproduce all features observed in the experimental data since the model used in this
range provides only energy-averaged values of the fission cross section. To emphasize that
such an average treatment is a limiting point for reactor physics applications, the ECCO-
1968 [42] multigroup energy structure is also shown on the upper parts of the frames in
Fig. 1.6. This energy group structure is used by some reactor physics codes to defined
multigroup cross sections, which can be regarded here as energy-averaged cross sections
over the group energy width. One can see that the reactor physics energy discretization is
quite more refined than the one chosen for the evaluated data8. This highlights that some
experimental structures are discarded in the evaluation treatment and that engineering
codes are readily able to deal with more finely structured input cross sections.

On the lower part of Fig. 1.6, the experimental fission cross section structures that
are not reproduced in the evaluation are about 100 eV wide, and have a mean spacing of
about 200 eV. These structures should not be mixed up with the low-energy resonances
that are considered in the RRR (cf. Fig. 1.2). These latter resonances are much narrower
(100 meV wide). This can be verified in Fig. 1.7 where 240Pu total and fission cross sections
are shown for energies corresponding to the upper part of the RRR (in this example the
RRR is [0, 5.7 keV] and Fig. 1.6 shows the lower part of the URR). Low energy resolved
resonances can be observed on the total cross section measured by Kolar et al. [46] and
on the JEFF-3.2 evaluation.

8The nearly piece-wise constant structures in the low energy part of Fig. 1.6 results from the inclusion
of an integral experiments feedback [44] based on the ERALIB adjusted library [45].
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Figure 1.6 – Comparison between the JEFF-3.2 240Pu(n,f) cross section evaluation and
related experimental data [39–41]. The blue background corresponds to the enlarged
frame shown in the lower figure. The black and white bar codes, on the top of each figure,
show the 1968-groups energetic mesh used by the ECCO reactor cell code [42].

These resolved resonances have an average width smaller than 100 meV, and a mean
spacing of about 13 eV. The broad structures (100 eV wide) in the fission cross section
shown in Fig. 1.6 are much wider than the narrow resolved resonances of the total cross
section. Differences in experimental resolution cannot explain alone these broad struc-
tures. If so, average fluctuations should be similar between fission and total cross sections
but this is not what is observed in Fig. 1.7. Average JEFF-3.2 total and fission cross
sections are shown to highlight differences in behavior between total and fission cross sec-
tions. The average values are obtained using a 15 eV bin. Broad structures are visible on
the average fission cross section whereas the average total cross section remains roughly
constant. This proves that the fluctuations shown in Fig. 1.6 are not partially-resolved
narrow resonances but are instead originating from a fission-specific phenomenon.

This phenomenon also shows up for fissile isotopes. In Fig. 1.8 one can compare the
JEFF-3.2 total and fission cross sections for 235U and 239Pu. The broad fluctuation behav-
ior of the fission cross sections is reduced compared with 240Pu, especially for 235U, and
the visible fluctuations seem correlated to the total cross section. This can be understood
referring to by the Hauser-Feshbach (HF) formalism that will be detailed in Chapter 4.
For the present explanation, it will be understood that HF parameters like Tn describes
the tendency of the compound nucleus to emit a neutron and Tf is the related param-
eter for undergoing fission. Neglecting capture reaction9, the HF formalism yields the

9In practice this assumption is invalid for low incident neutron energies. But it is reasonably assumed
that, for heavy nuclei, the capture reaction does not produce structures in neutron cross section for the
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following results:

Tf � Tn ⇒ σ̄n,f ∝ Tf Tf � Tn ⇒ σ̄n,f ∝ Tn (1.1)

and
σ̄n,tot ∝ Tn. (1.2)
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Figure 1.7 – Comparison of structures in 240Pu total and fission evaluated and experi-
mental [39,46] cross sections.

One can yet see uncorrelated broad structures between total and fission cross sections
of 239Pu near 2.2 keV. About this energy, the fission reaction is less favored (the gap
between total and fission cross sections is the largest of the energy range of Fig. 1.8).
This can be interpreted using Eqs. 1.1 and 1.2. In this range, fission is somehow hindered,
so that σ̄n,f ∝ Tf, and as σ̄n,tot ∝ Tn, uncorrelated structures can appear. When fission is
more favored (in the rest of the considered energy range), σ̄n,f ∝ Tn and thus correlations
appear.

Uncorrelated structures are not visible for 235U because the fission probability is higher
for this isotope than for 239Pu, as it can be seen in the lower part of Fig. 1.8. This
higher probability to fission can be explained using empirical data [10] for fission barrier
heights and neutron binding energies. For 235U, thermal neutrons lead to a compound
nucleus excited to about 0.86 MeV above its related fission barrier, whereas for 239Pu this
quantity is reduced to about 0.52 MeV. Hence fission is less favored for 239Pu and thus
fission-related structures are more visible on the 239Pu fission cross section (as explained
by the Hauser-Feshbach frame) than in 235U fission cross section.

The present study will focus on the fission cross section modeling, in both the RRR
and the statistical energy range. Yet before showing how the fission process description
can be improved in the RRR, the general collision theory, that is a common framework
for resonant and average cross section modeling, will be introduced.

considered energy range.
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Figure 1.8 – Comparison of the JEFF-3.2 total and fission cross sections of 235U and
239Pu. To make comparison easier, cross section are averaged using a 10 eV bin.
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CHAPTER 2. COLLISION THEORY

Chapter 2

Collision Theory, a Background to
Cross-Section Evaluation

In this chapter the general theoretical framework used to described cross sections will be
presented. It quantifies the transition probability from one state, a channel mode of two
colliding particles with some properties, to another state. Wave functions related to all of
the possible channels must be properly defined and combined together to obtain the total
system wave function that is in turn used to define the collision matrix. The total and
partial cross sections can finally be expressed in terms of the collision matrix that carries
all physical information related the collision process. A general scheme of models and
theories related to cross section modeling will be presented, along with some computer
codes that are related to the present study.
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2.1. THEORETICAL FRAMEWORK CHAPTER 2. COLLISION THEORY

2.1 Theoretical Framework
Cross section evaluation models mostly rely on collision theory regardless of the energy
range the models are used for. A reader familiar with collision theory can readily jump
to Section 2.2.

2.1.1 Channels and Channel Wave Functions

Due to the small size of particles involved in nuclear reactions, their behavior must be
described within the framework of quantum mechanics. Collision theory is used to provide
an efficient way of deriving cross section expressions as a function of the particles relative
velocity. This section will deal with scattering of an incident particle or projectile (e.g. a
neutron) colliding a target (e.g. an actinide nucleus). The collision may change the nature
and properties of the initial particles, leading to an ejectile (usually this term is used for
the lighter of the final particles) and a residual nucleus. This is schematically shown in
Fig. 2.1 where both classical and quantum mechanics representations are displayed.

Laboratory

Center of mass

Projectile

Ejectile

Target

Residual Incident plan waveReflected spherical waves

Figure 2.1 – (left) Classical representation of particle scattering in both laboratory and
center-of-mass systems. (right) Equivalent representation with quantum mechanics wave
functions in the center-of-mass system. Red lines correspond to the initial configuration,
blue lines to the final one.

In the following, α = (α1, α2) stands for a pair of particles. Parameter α1 and α2 de-
scribe the nature of either of the colliding particles, (e.g., neutron, proton, alpha, nucleus,
etc.) but also the particle internal configurations. For instance, the ground state and
an excited state of the same given nucleus will be labeled by two different values of α1.
When two particles collide, the total angular momentum J and the parity π of the system
are “good quantum numbers”1. This means they are conserved along the whole collision
process. A channel c is specified by a pair of particles in their given internal states α, a set
of good quantum numbers Jπ and an additional set of the remaining quantum numbers
required to precisely define the channel. These quantum numbers are sometimes referred
as asymptotically good quantum numbers. For example a channel in which two particles
have intrinsic spins I1 and I2 and relative orbital angular momentum ` is labeled by

c = {α, J, π, `, I1, I2, ...} ,

with any additional parameters characterizing the coupling between angular momenta.
1Actually the ~J projectionMJ along an arbitrary axis is also a good quantum number. However unless

non-spherically-symmetric external field is introduced, most of the equations are independent of MJ .
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Some channel-related parameters will be used in the following such as:

– The channel reduced mass Mc:

Mc =
Mα1Mα2

Mα1 +Mα2

, (2.1)

where Mα1 (reps. Mα2) is the mass of particle α1 (reps. particle α2).

– The channel wave number kc:

kc =
√

2Mc(E − εc)/~2, (2.2)

where E is the total energy of the system and εc is the intrinsic excitation energies
of particles in channel c, i.e. the energy carried by the internal configuration of each
particle.

– The channel Coulomb field parameter ηc:

ηc =
Zα1Zα2e

2

4πε0

Mc

~2kc
, (2.3)

where Zα1 (reps. Zα2) is the atomic charge number of particle α1 (reps. particle α2)
and e is the electric charge of an electron. In Eq. 2.3, π stands for the mathematical
constant, not the system parity. This ambiguous notation can be found elsewhere
in this document, yet it is often obvious which definition must be understood.

Target and projectile can be made of nucleons, their related spatial degrees of freedom
define the nucleons configuration space. In collision theory, the nucleons configuration
space is divided into one internal region and several externals regions, the channels. The
internal region is defined by the condition that nucleons are spatially close enough so
that nuclear interactions cannot be neglected to describe the system. Compound nucleus
states are included in this internal region that is shown in Fig. 2.2a.

In a given external region (or channel), nucleons are spatially gathered to form two
subgroups distant enough from each other so that no “complex” (unknown) nuclear inter-
actions between the subgroups is effective. Nuclear interactions exist within a subgroup;
the nucleon configuration within a subgroup can be different from the ground state con-
figuration of this subgroup and different from channel to channel. This leads to “labeling”
channels according to their internal configurations or excitation states as explained before.
In a given channel, the interaction potential between the two subgroups is assumed to
be known, thus the wave function Ψ associated to the two subgroups can be analytically
solved in the channel region and is called the channel wave function Ψc.

These external regions are shown in Fig. 2.2b. Each “tube” corresponds to a channel
that expands from internal region border along a certain degree of freedom rc that is
the distance between the subgroups’ centers of mass. The rc parameter is not defined
everywhere in the configuration space as the qubgroups of nucleons must be separated
enough so that their centers-of-mass can be properly identified. All channels are connected
to the internal region but not directly together. This means that a system of two colliding
particles can only evolve from an entrance channel to an exit channel by traveling through
the configuration space along an entrance “tube” to the internal region and finally along
the exit “tube”. The external system total wave function (i.e., the combining of all channel
wave functions) is zero in the configuration space zone that is not a channel.
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As Jπ is conserved along the collision process, processes with different Jπ do not
interact, regions such as illustrated in Fig. 2.2 are specific to a given Jπ. The bordering
region between a channel c and the internal region is named the channel surface Sc. The
internal region completely enclosed within the total surface S defined as

S =
∑

c

Sc . (2.4)

r3

S3

r2

S2

r1

S1

(a) Internal region

r3

r1

r2

(b) External regions – channels

Figure 2.2 – Representation of the configuration space regions [47]. The internal region
corresponds to the compound nucleus configurations. In the channel regions two “sub-
groups” of nucleons are already well separated. Some channel surfaces Sc and the related
channel degrees of freedom rc are shown. Illustration of nucleon configurations is shown
for the compound nucleus region and for some channels.

To obtain the global (internal and external) system wave function, channel waves have
to be smoothly matched at the border between the channels and the internal region. As
channel c evolves along the rc degree of freedom (see Fig. 2.2b), the border is defined by
the matching radius or channel radius ac so that rc = ac. The smooth matching conditions
are given by

∀c,
{

Ψint|rc=ac = Ψc|rc=ac
gradnΨint|rc=ac = gradnΨc|rc=ac

, (2.5)

where gradn is the gradient normal to the internal surface. Equations 2.5 are verified on
the channel surface Sc. As long as rc is a relevant degree of freedom in the configuration
space, this Sc region can be defined by rc = ac. This region splitting approach (distinct
wave functions defined in different external regions and matched at a certain radius with
the internal region wave) is common in both resonance and statistical energy ranges. Two
methods for matching these waves at boundaries will be detailed in Chapters 3 and 4.
They lead to the formalisms used respectively for the modeling of resonant and average
cross sections. In the following, focus will be made on how cross sections can be obtained
providing that these wave functions are smoothly matched.

In a given channel c, the potential is asymptotically symmetric and the wave func-
tion Ψc can be expanded using spherical harmonics Y `

m`
(Ω̂c), where Ω̂c is the normalized
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direction vector pointing from particle α1 to particle α2, it reads

Ψc ∝ i`Y `
m`

(Ω̂c)
uc(rc)

rc
, (2.6)

where the radial wave function uc is solution of the radial Schrödinger equation
[
d2

dr2
c

− `(`+ 1)

r2
c

− 2
ηckc
rc

+ k2
c

]
uc(rc) = 0 , (2.7)

which is the wave equation when no potentials but the centrifugal and Coulomb fields are
effective. Defining the variable ρc = kcrc, Eq. 2.7 becomes

[
d2

dρ2
c

− `(`+ 1)

ρ2
c

− 2
ηc
ρc

+ 1

]
uc(ρc) = 0 . (2.8)

There are two real and linearly independent solutions of the radial equation 2.8. They
are known as the regular Fc and irregular Gc Coulomb wave functions [48]. Their names
regular and irregular refer to the fact that lim

ρc→0
Fc(ρc) = 0 whereas lim

ρc→0
Gc(ρc) 6= 0.

Another couple of linearly independent solutions are defined by




Ic(rc) = [Gc(ρc)− iFc(ρc)]eiωc

Oc(rc) = [Gc(ρc) + iFc(ρc)]e−iωc
. (2.9)

The ωc parameter is related to the Coulomb phase shift σc = arg Γ(1 + ` + iηc) (Γ being
the gamma function [48]) by

ωc = σc − σc|`=0 =
∑̀

n=1

arctan
(ηc
n

)
. (2.10)

Those functions have interesting asymptotic properties that are needed to obtained cross
section expressions and that are presented in the following blue insert. From the radial
wave functions (Eq. 2.9), two linearly independent forms of the channel wave function Ψc

can be defined: 



Ic(rc) = i`Y `
m`

(Ω̂c)
Ic(rc)

v
1/2
c rc

Oc(rc) = i`Y `
m`

(Ω̂c)
Oc(rc)

v
1/2
c rc

, (2.11)

where vc = ~kc/Mc is the asymptotic relative velocity of the two particles in channel c.
This velocity is introduced here so that wave functions are normalized to a one unit flux
of probability current.

2.1.2 Normalization of Wave Functions

For Ic, (resp. Oc) the current flows to (resp. from) the internal region. This can be
shown if one considers the probability current defined by

~j[Ψ] =
~

2iMc

[
Ψ∗~∇Ψ−Ψ~∇Ψ

]
, (2.12)
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where Ψ can be either of the wave functions Ic and Oc. The del operator ~∇ can be
written using the spherical coordinate system as

~∇ =
∂

∂rc
r̂c +

1

rc
~∇Ω̂c

, (2.13)

where r̂c = ~rc
rc

and ~∇Ω̂c
operates on Ω̂c only. Considering for instance Ψ = Ic, the

probability current can be written

~j[Ic]=
~

2iMc

[
Y `∗
m`
Y `
m`

vcrc

(
I∗c

d
drc

Ic
rc
−Ic

d
drc

I∗c
rc

)
r̂c+
|Ic|2
vcr3

c

(
Y `∗
m`
~∇Ω̂c

Y `
m`
−Y `

m`
~∇Ω̂c

Y `∗
m`

)]
.

(2.14)
The second term tends to zero faster than the first one due to the rc dependence2. It is
also the only term that will lead to a component in the r̂c direction. One can thus only
consider the first term

~j[Ic] · r̂c=
~

2iMc

Y `∗
m`
Y `
m`

vcrc

(
I∗c I

′
c

rc
−|Ic|

2

r2
c

− IcI
∗
c
′

rc
+
|Ic|2
r2
c

)
=
Y `∗
m`
Y `
m`

2ikcr2
c

(
I∗c I

′
c−IcI∗c ′

)
, (2.15)

where vc was replaced by its expression. From Eq. 2.9 it can be seen that I∗c = Oc. The
probability flux passing through a sphere of radius rc is obtained by integration of Eq. 2.15
over the related sphere:

Φ[Ic] =

∫

4π

d2Ω̂cr
2
c
~j[Ic] · r̂c =

1

2ikc
W (Oc, Ic) = W (Fc, Gc), (2.16)

where W is the Wrońskian operator. The derivative of the Coulomb functions is made
with respect of ρc, with the consequence of removing the kc coefficient. Finally, considering
the probability currents related to both Ic and Oc functions, and using the Wrońskian
property of the Coulomb functions [48], the probability fluxes are

{
Φ[Ic] = −1
Φ[Oc] = 1

, (2.17)

which correspond to an inward (respectively outward) propagating, one-unit-flux wave
function for Ic (respectively Oc).

2.1.3 Wave Functions and Cross Sections

The unit-flux-normalized incoming plane wave, propagating downward the z-axis, can be
expressed in terms of Coulomb wave functions Fc as3 [5]

Ψinc
α =

1

kαv
1/2
α

∞∑

`=0

i`
√

4π(2`+ 1)eiωα`
Fα`
rα

Y 0
` (Ω̂α). (2.18)

Here the α and ` indices have been used instead of c to exhibit specific dependencies, and
especially no specific dependency on Jπ. Ψinc

α can be written in terms of Ic and Oc using
Eq. 2.11 as

Ψinc
α =

∞∑

`=0

i
√
π(2`+ 1)

kα︸ ︷︷ ︸
yc

(
Ic − e2iωcOc

)
. (2.19)

2It can be shown that this term can be rigorously omitted if one considers afterward probability
current, for a given `, summed over all possible m` values.

3In case of no Coulomb field, i.e. ηc = 0, this expression has a more common form: Ψinc
α = v

−1/2
α eikαrα .
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It can be noticed that for all partial incoming waves included in the sum of Eq. 2.18,
the z-projection of their relative orbital momentum m` is zero. As the total angular
momentum J (and also the parity π) is a result of the coupling between all angular
momenta ( ~J = ~I1 + ~I2 + ~̀), an infinity of processes with different Jπ are induced by the
incident plane wave Ψinc

α defined in Eq. 2.18.
The channel wave function can be written in a general way as

Ψc = xcOc + ycIc , (2.20)

where xc and yc are expansion coefficients. The collision matrix U (and its coeffi-
cients Ucc′) is defined by the general relation

xc = −
∑

c′

Ucc′yc′ . (2.21)

This expression transposes the fact that the probability flux flowing out of channel c is a
result of the sum of the probability fluxes flowing from channels c′ (through the internal
volume). Using the collision matrix, the channel wave function can still be written in a
general way as

Ψc =
∑

c′

(Icδcc′ − Ucc′Oc)yc′ . (2.22)

The total wave function in the external region is

Ψ =
∑

c

Ψc =
∑

cc′

(Icδcc′ − Ucc′Oc)yc′ . (2.23)

The incident plane wave Ψinc
α of Eq. 2.19 is added and removed from the total wave

function Ψ (Eq. 2.23) so that

Ψ = Ψinc
α +

∑

cc′

(Icδcc′ − Ucc′Oc)yc′ −
∑

cc′

(Icδcc′ − e2iωcOcδcc′)yc′ , (2.24)

= Ψinc
α +

∑

cc′

(e2iωcδcc′ − Ucc′)Ocyc′ . (2.25)

The incident wave function has thus been isolated out of the total wave. The second term
of Eq. 2.25 is related to the probability of flowing out of channel c (Oc), from flowing in
from channel c′ (yc′).

As mentioned earlier, many processes with different Jπ occur independently, hence
the collision matrix U is a block diagonal matrix, with blocks corresponding to different
Jπ values. It is more usual to work with such Jπ blocks written UJπ . The partial cross
section can be obtained from the current probability related to (e2iωcδcc′ − Ucc′)Ocyc′ and
is given by [5]

σJ
π

cc′ =
π

k2
c

gJ
∣∣e2iωcδcc′ − UJπ

c′c

∣∣2 , (2.26)

where
gJ =

2J + 1

(2I1 + 1)(2I2 + 1)
(2.27)

is called the spin factor 4. As the collision matrix is unitary [5], the total cross section
depends only on the collision matrix diagonal terms and can thus be obtained easily from

σJ
π

c,tot =
∑

c′

σJ
π

cc′ =
2π

k2
c

gJ(1− Re[UJπ

cc ]) . (2.28)

4 The derivation of this term involves summation over z projections of all angular momenta [5]. This
summation is responsible of the disappearance of the (2`+ 1) term in yc.
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2.2 Models and Codes Overview
Collision theory is a keystone in cross section modeling. Other related specialized theories
and frameworks (R-matrix theory for resonant cross sections and Hauser-Feshbach for
average cross sections) are built on this former general theory. The different energy
ranges involved in cross section evaluation (RRR, URR, Continuum) directly reflect this
change in the underlying models (respectively an R-matrix approximation, the average
R-matrix model and the optical model). The relation between these energy ranges, on
one side, and related models and theories, on the other side, is illustrated in Fig. 2.3.

Collision
theory

R-matrix

SLWB

MLWB

Reich-
Moore

R̄-matrix

Tn

Hauser-
Feshbach

Tγ

Level
densities

γ-strength
functions

Tf

Cramer-
Nix

Hill-
Wheeler

Optical
Model

URR

RRR
Continuum

Statistical

SCAT

TALYS

ECIS

CONRAD

FIFRELINCOOL

Figure 2.3 – Overview of models and codes used in cross section modeling. Bubble colors
correspond to the different energy ranges. Computer codes related to the present study
are shown in green boxes.

R-matrix approximations (SLBW, MLBW and Reich-Moore) used in practice in the
RRR will be presented along with the general R-matrix in Chapter 3. The Hauser-
Feshbach framework and its related sub-models (including the average R-matrix and
optical models) will be detailed in Chapter 4. All code developments related to this PhD
work were performed in the CONRAD code [3]. Yet CONRAD is not the only code
dealing with cross section modeling. Other computer codes related to the present work
are also indicated in Fig. 2.3. They can be briefly introduced as follows:
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• The SCAT spherical optical model code [49], developed at CEA-Bruyères-le-Châtel
(France) by Olivier Bersillon. This program is not directly used in the present work,
but a similar implementation has been introduced in the CONRAD code in 2011 by
Pascal Archier [50].

• The ECIS coupled channel optical model code [1] has been widely used for half a
century and developed since the 60’ by Jacques Raynal at CEA-Saclay (France).

• The TALYS nuclear reaction code [51] is a widely used reference code developed
from the end of the 90’ by Arjan Koning and Marieke Duijvestijn at NRG/Petten
(The Netherlands) and Stéphane Hilaire at CEA-Bruyères-le-Châtel. It contains
many nuclear reaction models that makes it suitable for calculations in the energy
range [1 keV, 200 MeV] and can deal with many observables: cross sections, spectra,
angular distributions, etc. This energy range corresponds to high-energy reactions5
making associated models particularly suited, for instance, for astrophysics applica-
tions.

• The FIFRELIN code [52] that simulates various fission observables, has been de-
veloped at CEA-Cadarache (France) by Oliver Litaize, Olivier Serot and David
Regnier. This code is not used in the present study, but is mentioned here since
it shares with the CONRAD code the jointly-developed COOL libraries containing
nuclear physics models.

• The AVXSF code [23, 24], not represented in Fig. 2.3, is an average fission cross
section modeling code developed by J. Eric Lynn from LANL (USA) and Olivier
Bouland from CEA-Cadarache (France). This code is, in particular, able to treat
the intermediate structures in the second well and the coupling of class-I and class-
II states by Monte Carlo sampling and combinatorial level densities. This code is
mentioned here because its combinatorial routine has been coupled to the CONRAD
code for the present studies.

CONRAD [3] is an evaluation-dedicated computer code developed at CEA-Cadarache
to produce evaluated data along with related variance-covariance matrices. The initial
purpose of the code was the treatment of the resolved resonances. It has recently been
extended to the treatment of various data types: prompt neutron fission spectrum [53],
fission yields [54], etc. The code has the capability of analyzing both microscopic and
integral experiments. The code contains an internal library of nuclear models (the COOL
library) but is also coupled with external nuclear-reaction programs like the TALYS and
ECIS codes using them as black boxes.

The purpose of the present work is to improve very significantly the models used for
the description of fission cross sections. Few capabilities were present in CONRAD for
the treatment of average cross sections in the statistical range. It was then necessary
to develop a proper frame making possible investigations on fission cross section in the
statistical range. TALYS has been used as a reference guideline for the implementation of
this framework for the calculation of average cross sections in the statistical range. Other
partial cross sections must be properly treated so that improvements brought along the
present work are relevant. Although applications presented in this document are mostly
related to the statistical range (URR and Continuum), some investigations in the RRR
will also be presented in Chapter 3.

5The meaning of the term “high energy” depends on the considered field. For particle physics it will
be related to colliding particles with energies above 1 GeV, for astrophysics it may be used for energies
up to 200 MeV whereas for nuclear reactor physics, energies near 1 MeV can be regarded as high.
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Chapter 3

RRR-Related Fission Model
Improvements

In this chapter, the general method for modeling cross sections in the Resolved Resonance
Range (RRR) will be presented. It will be followed by an introduction to the standard
approximations used in practice. The extension of the formalism to fission channels will
be presented, and exemplified by an analysis of the fission resonance parameters involved
in the modeling of the 240Pu(n, f) cross section.
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3.1 General Theory and Practical Aspects
All cross section evaluation techniques in the RRR rely on the R-matrix theory or on
related approximations. The general theory of resonance cross section modeling will be
presented as well as some practical approximations commonly used in evaluation work.

3.1.1 R-Matrix Theory

The R-matrix theory was elaborated [4,55] in the 40’s to give a proper framework in the
interpretation of the resonance phenomena observed in two-body collisions. Several au-
thors [5,47] have developed the theory and gave full mathematical details of its derivation.
Therefore only explanations necessary to the understanding of the rest of this document
will be provided here. The complete derivation can be found in the encyclopedic paper of
Lane and Thomas [5]. This derivation is made for channels involving particles, it could
seem tedious and not directly related to the fission reaction applications, yet it makes the
extension to fission reaction, that is presented later in this chapter, more straightforward.
Most of the notations of Ref. [5] are adopted here.

The purpose of the R-matrix theory, that will be discussed now, is to obtain a pa-
rameterization of the collision matrix that exhibits an explicit energy dependence, and
that thus relies on energy-independent parameters only. The principal assumption of the
theory is that the wave function in the internal region1 Ψ can be expanded on a set of
eigenfunctions Xλ of the system Hamiltonian Ĥ:

Ψ =
∑

λ

AλXλ. (3.1)

These eigenfunctions Xλ are defined by an eigenvalue boundary condition, more details
can be found about their definition in Ref. [5]. The Aλ coefficients are obtained by
integration of Ψ over the internal region Vint

Aλ =

∫

Vint

dτX∗λΨ , (3.2)

where dτ is an infinitesimal integration volume of the configuration space. The channel
“surface” wave functions are defined by either

ϕJ
πMJ
c=αiI`s =

∑ 〈imiIMI |sms〉 〈`m`sms|JMJ〉 a−1
c i`Y `

m`

or
ϕJ

πMJ
c=αiI`j =

∑ 〈imi`m`|jmj〉 〈IMIjmj|JMJ〉 a−1
c i`Y `

m`

(3.3)

where I, i and s are respectively the target, projectile and channel spins. The bracket
signs correspond to the usual Clebsch-Gordan coefficients [56]. The channel radii ac are
defined in Chapter 1, and Y `

m`
are the usual spherical harmonics. The channel spin s is

obtained by coupling I and i, ~s = ~i + ~I. The total angular momentum of the system J
is thus obtained by coupling s with the relative orbital momentum `, ~J = ~s + ~̀. The
alternative representation would consist in first coupling ` and i to obtained the projectile
total angular momentum ~j = ~i + ~̀, that is then coupled to I to obtain ~J = ~j + ~I.
These two definitions are correct, in the RRR and URR it is usually the coupling scheme
involving s that is used, whereas for the continuum energy range (treated with an optical

1cf. Chapter 1
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model), it is coupling scheme involving j that is used. For instance in resonance models
the channel spin s is preferred, whereas in optical models (statistical range) the projectile
total angular momentum j is favored. The term “surface” must be understood in the sense
of internal region boundary surface (cf. Chapter 1, Fig. 2.2). The surface wave function
ϕc has finite values on Sc only and is zero elsewhere. The channel surface wave functions
are orthogonal and normalized on the internal surface S =

∑
c

Sc, so that

∫

S

dSϕ∗cϕc′ = δcc′ . (3.4)

The Xλ eigenfunction is related to the eigenvalue Eλ and depends on a set of boundary
conditions {Bc}c defined at the surface S by

δλc
γλc

= Bc, (3.5)

where the value quantity γλc and the derivative quantity δλc are defined as

γλc =

√
~2

2Mcac

∫

S

dSϕ∗cXλ,

δλc =

√
~2

2Mcac

∫

S

dSϕ∗cgradn(rcXλ) ,

(3.6)

where Mc is defined in Chapter 1. The proper definition of Xλ and the choice of the
arbitrary conditions are beyond the scope of the present work. One should refer to Refs. [5,
47] for discussion about this point. It should yet be noted that the boundary conditions
{Bc}c are independent of both λ and E, however the Aλ coefficients do depend on E.

The derivation of the R-matrix theory using the Green’s functions can be obtained
as done in Ref. [5]. Considering the waves Ψ and Xλ, eigenfunctions of the system
Hamiltonian Ĥ, that are related to the eigenvalues E and Eλ respectively so that

ĤXλ = EλXλ, ĤΨ = EΨ . (3.7)

The complex conjugate of the first of these expressions is multiplied by Ψ, and the second
expression is multiplied by X∗λ, so that

Ψ[ĤXλ]
∗ = ΨEλX

∗
λ, X∗λĤΨ = X∗λEΨ . (3.8)

The second expression is subtracted from the first one, and the result is integrated over
the internal region Vint

(Eλ − E)

∫

Vint

dτΨX∗λ =

∫

Vint

dτ
(

Ψ[ĤXλ]
∗ −X∗λĤΨ

)
. (3.9)

The potential part V̂ in Ĥ is assumed to be self-adjoint, so that
∫

Vint

dτ
(

Ψ[V̂ Xλ]
∗ −X∗λV̂Ψ

)
= 0 . (3.10)
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Only the kinetic operator T̂ remains in the right-hand-side of Eq. 3.9. Then using Eq. 3.2
and the Green’s theorem, Eq. 3.9 reduces to

(Eλ − E)Aλ =

∫

S

dS
−~2

2Mc

(ΨgradnX
∗
λ −X∗λgradnΨ) . (3.11)

Similarly to γλc and δλc, the value quantity Vc and the derivative quantity Dc can be
defined for Ψ as

Vc =

√
~2

2Mcac

∫

S

dSϕ∗cΨ,

Dc =

√
~2

2Mcac

∫

S

dSϕ∗cgradn(rcΨ) .

(3.12)

Expansion of Ψ and gradn(rcΨ) on S using the channel surface functions is assumed to
be complete, so that

Ψ =
∑
c

√
2Mcac
~2

Vcϕc,

gradnrcΨ =
∑
c

√
2Mcac
~2

Dcϕc = acgradnΨ + Ψ .

(3.13)

Similarly for Xλ, one has

Xλ =
∑
c

√
2Mcac
~2

γλcϕc,

gradnrcXλ =
∑
c

√
2Mcac
~2

δλcϕc = acgradnXλ +Xλ .

(3.14)

Using these four relations into Eq. 3.11, the Aλ coefficients are expressed as

Aλ =
1

Eλ − E
∑

c

γλc(Dc −BcVc) . (3.15)

Using this expression in the Ψ expansion (Eq. 3.1), after a projection on ϕ∗c′ , a relation
between different value quantities Vc is obtained

Vc′ =
∑

cλ

γλcγλc′

Eλ − E
(Dc −BcVc) . (3.16)

In matrix form it becomes
~V = R( ~D −B~V ) , (3.17)

where B being a diagonal matrix (so that Bcc′ = Bcδcc′). This introduces the R-matrix,
whose coefficients Rcc′ are given by

Rcc′ =
∑

λ

γλcγλc′

Eλ − E
. (3.18)

The channel wave function expression Ψc = xcOc + ycIc (cf. Chapter 2, Eq. 2.20) is now
used to obtain the value and derivative quantities. Using this Ψc in Eq. 3.12, Vc and Uc
can be calculated as

Vc =

√
~2

2Mcacvc
(xcOc + ycIc) =

√
~
2
ρ
− 1

2
c (xcOc + ycIc),

Dc =

√
~2ac

2Mcvc
kc(xcO

′
c + ycI

′
c) =

√
~
2
ρ

1
2
c (xcO

′
c + ycI

′
c) .

(3.19)

28



CHAPTER 3. FISSION MODEL IN RRR 3.1. GENERAL THEORY AND PRACTICAL ASPECTS

These must verify Eq. 3.17, which is written in matrix notation

(1−R(ρO′O−1 −B))Oρ−
1
2~x = −(1−R(ρI ′I−1 −B))Iρ−

1
2~y , (3.20)

where ρ, I,O are diagonal matrices and ~x, ~y are column vectors. The collision matrix U
is obtained by identification of its definition ~x = −U~y (cf. Chapter 1, Eq. 2.21) with
Eq. 3.20, so that U is expressed as

U = ρ
1
2O−1(1−R(ρO′O−1 −B))−1(1−R(ρI ′I−1 −B))Iρ−

1
2 . (3.21)

Defining the following diagonal matrices:

L = ρO′O−1, L = ρI ′I−1,
L0 = L−B, L0 = L−B,
Ω = I

1
2O−

1
2 , P = ρI−1O−1 .

(3.22)

The final relation between R and U becomes

U = ΩP
1
2 (1−RL0)−1(1−RL0)P−

1
2 Ω . (3.23)

Dependencies of the parameters involved in this equation are now discussed. The diagonal
matrices ρ, I and O only depend on the channel definition and on the choice of channel
radii {ac}c at which they are evaluated. They depend on the system energy E only
through their dependency on kc. Hence in this last formulation, matrices Ω, L, P and
L depend on kc and on the choice of ac. The remaining parameters are γλc and Eλ are
present in the R-matrix definition (cf. Eq. 3.18) and that are related to the properties
of the internal region. These internal parameters must be obtained from adjustments on
experimental cross sections. This formulation explicitly exhibits energy dependence of the
collision matrix U , and consequently, of the cross sections. It provides an exact way to
reproduce cross sections by: first choosing arbitrary channel parameters {ac}c and {Bc}c,
then adjusting the internal region parameters {γλc}cλ , {Eλ}λ on measured data. It must
be reminded that the values of the internal region parameters γλc, Eλ depend on the prior
arbitrary choice of the channel parameters ac and boundary condition Bc. Discussions
about the choice of ac and Bc can be found in Refs. [47,57–59].

The method presented here is particularly well adapted for “particle” channels, i.e.
when one of the colliding particle is a nucleon or a light nucleus. For capture reaction
on heavy nuclei, i.e. for gamma emission, many channels are available but it is most
of the time impossible to distinguish gamma channels experimentally. In such cases,
a special treatment (cf. the Reich-Moore model that will be detailed later) is made
so that these numerous channels are considerd as a whole. Additionally in the case of
fission reaction, there is a tremendous number of available channels because namely of
the different possible fragmentations, so that such a general approach is not possible.
A similar treatment (Reich-Moore) cannot be done for fission cross section. The reason
is that, when the nucleus deforms towards fission, it can only passes by few “transition
states” (cf. Chapter 4). These transition states will correlate the fission amplitude widths
and their effects cannot statistically cancel as in the case of gamma channels. This effect
for gamma channels will be detailed in Section 3.1.3.

Restraining the rest of this section to “proper” particle channels, and because of the
analytical relation between Ic and Oc and the Coulomb wave functions Fc and Gc, it can
be shown that L = L∗. Matrix L can be written as L = S + iP , where matrices S and
P are real and respectively called shift and penetration factors. One can also show that
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P = P and Ωc = ei(ωc−φc), where φc is called the hard-sphere phase shift and is defined
by φc = arctan [Fc/Gc]. It describes the direct interaction between target and projectile.
Hence S, P and Ω can be computed using Fc and Gc. If one of the two particles involved
carries no charge (i.e., when a neutron is involved), the Coulomb wave functions reduce
to spherical Bessel functions, from which analytical expressions can be obtained for S, P
and Ωc = e−iφc . Their expression can be found in Tab. 3.1.

Table 3.1 – Analytical expressions corresponding to shift and penetration factors and to
the hard-sphere phase shift for channels involving a neutron.

` Sc Pc φc

0 0 ρc ρc

1 − 1

1 + ρ2
c

ρ3
c

1 + ρ2
c

ρc − arctan ρc

`
ρ2
c(1− Sc|`−1)

(1− Sc|`−1)2 + P 2
c|`−1

− ` ρ2
cPc|`−1

(1− Sc|`−1)2 + P 2
c|`−1

ρc|`−1 − arctan

[
Pc|`−1

`− Sc|`−1

]

The channel phase shift has a special role. Indeed if no eigenstate is assumed in the
internal region (R ≡ 0), then Eq. 3.23 reduces to

U = Ω2, Ucc′ = δcc′e−2iφc . (3.24)

In practice it is almost impossible to perform full R-matrix analysis. As mentioned
above, measurements are necessary to obtain the γλc and Eλ parameters and the tremen-
dous number of possible channels undermines the rigorous modeling of resonances. For
example, if one considers neutron spectroscopy of a medium-size nucleus, for a given res-
onance λ, each gamma decay process will correspond to a different photon-channel c to
which a γλc parameter must be associated. For heavier nuclei, fission channels worsen the
entanglement. Approximate treatments of the general R-matrix framework must thus be
settled. Even for total cross section, where only diagonal terms of the collision matrix are
involved (cf. Chapter 1, Eq. 2.28), measurement overlays all entrance channels. It can
be noted here that polarized scattering experiments may reduce this effect, unfortunately
such experimental data are scarce.

3.1.2 Single- and Multi-Level Breit-Wigner Formalism

In case of well-spaced levels2, a convenient approximation can be made so that the R-
matrix can be decomposed as R = R0 +RSL, where R0 varies slowly with energy, and
RSL is an R-matrix-like single-level matrix, so that its components RSL

cc′ verify

RSL
cc′ =

γλcγλc′

Eλ − E
(3.25)

This leads to splitting the expression of the collision matrix U = U 0 + 2i
~τλ × ~τλ
ελ

, where

U 0 is also slowly varying with energy, both ~τλ and ελ are defined in Ref. [5]. Finally,
assuming negligible effect of remote levels, the collision matrix can be written

Ucc′ = (U0
ccU

0
c′c′)

1/2


δcc′ +

iΓ
1/2
λc Γ

1/2
λc′

Eλ + ∆λ − E −
i

2
Γλ


 , (3.26)

2A proper definition of the “well-spaced” condition will be given in the following.
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where
Γλc = 2Pcγ

2
λc, (3.27)

and ∆λc = −(Sc − Bc)γ
2
λc are the channel width and channel shift, associated to level λ.

The Γλ parameter can be, to first order, considered the “natural width” of the resonance,
i.e. the half-height width of the resonance observed in cross sections measurements. The
well-spaced level condition can thus be more rigorously defined as 〈Eλ−Eλ+1〉λ � 〈Γλ〉λ.
The bracket sign 〈〉λ stands for an average over levels. The total level width and shift are
given respectively by Γλ =

∑
c

Γλc and ∆λ =
∑
c

∆λc. Expression 3.26 can be inserted in

Eq. 2.26 of Chapter 2 that is recalled bellow

σJ
π

cc′ =
π

k2
c

gJ
∣∣e2iωcδcc′ − UJπ

c′c

∣∣2 , (3.28)

to obtain channel-to-channel cross sections

σJ
π

cc′ (E) =
π

k2
c

gJ
ΓλcΓλc′

(Eλ + ∆λ − E)2 + 1
4
Γ2
λ

, c 6= c′ , (3.29)

σJ
π

cc (E) =
π

k2
c

gJ

[
4 sin2 φc − Γλc

2(Eλ + ∆λ − E) sin 2φc + Γλ(1− cos 2φc)

(Eλ + ∆λ − E)2 + 1
4
Γ2
λ

+
Γ2
λc

(Eλ + ∆λ − E)2 + 1
4
Γ2
λ

]
.

(3.30)

The last term of Eq. 3.30 is called the resonance term and corresponds to interactions
of the projectile within the internal region of the target with all nucleons. In this region
complex many-body nuclear interactions are effective and lead to the many resonances
visible on cross sections. The first term, on the contrary, can be seen as corresponding
to the projectile interacting with the an average potential surrounding the target nucleus
and is called the potential term. It has a slight energy dependency that can often be
neglected in the vicinity of a given resonance. Finally the term in the middle corresponds
to interference between the potential and resonance terms.

Nowadays, this type of modeling is obsolete in evaluation work as it neglects coupling
terms between levels and between channels and because current computers can cope
with more refined models. It is presented here because it can be used to make a simple
connection between the RRR and the statistical energy range frameworks, as will be
shown in Chapter 4. It can be seen in Eq. 3.29 that the only difference between σJ

π

cc′

and σJ
π

cc′′ lies in the width Γλc′/c′′ of the exit channel; no coupling between the entrance
and exit channels, nor between exit channels. Additionally, the fluctuations of the cross
sections in the RRR are due to the presence of many levels, and can be approximated
as a sum of expressions of type 3.29. Again in this case, no interference or coupling is
considered between levels. An extension, called Multi-Level Breit-Wigner, in which the
coupling terms between levels only exists and is still commonly used and gives satisfactory
results for isotopes where the fission reaction is negligible.

The fission channels, in the rigorous sense of the R-matrix formalism, are numerous
because each fragmentation (and each internal configuration of each fragment) leads to
new channels. In practice, due to the fact that only few transition states are effective in
the resonance region, satisfactory results are obtained using one or two fission channels.
However as no proper wave functions are defined in the outer region, the penetration
factor related to fission is arbitrarily set to 1 for simplicity.
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3.1.3 Reich-Moore

As mentioned before, the general R-matrix theory is hardly practical for actual com-
putation, especially for heavy nuclei, because of the too many radiative decay channels
that are open. An alternative treatment has been proposed by Reich and Moore [6], that
consists in writing the general R-matrix as follows

R =




R11 =



R1,1 · · · R1,m
... . . . ...

Rm,1 · · · Rm,m






R1,m+1 · · · R1,n

... . . . ...
Rm,m+1 · · · Rm,n






Rm+1,1 · · · Rm+1,m

... . . . ...
Rn,1 · · · Rn,m






Rm+1,m+1 · · · Rm+1,n

... . . . ...
Rn,m+1 · · · Rn,n







(3.31)

where indices i ∈ J1,mK relate to non-gamma channels, and accordingly i ∈ Jm + 1, nK
relates to gamma channels. They also split the collision matrix U using the same pattern.
In their derivation, they used the original Wigner and Eisenbud formula [4] that relates
the R-matrix to the collision matrix U :

U = Ω[1− i(BRB + C)]−1[1 + i(BRB + C)]Ω , (3.32)

instead the collision matrix expression of Eq. 3.23. The B and C terms used in Eq. 3.32
are defined in Ref. [4]. The full derivation of their calculation [6] is not reported here.
It is only emphasized here that they derived a relation between R11 and its counterpart
U 11, and that this relation can be put in a form similar to Eq. 3.32

U 11 = Ω11[111 − i(B11RB11 + C11)]−1[111 + i(B11RB11 + C11)]Ω11 , (3.33)

but where the genuineR-matrix components are replaced by a slightly modified expression

[R]cc′ =
∑

λ

γλcγλc′

Eλ − E
⇒ [R]cc′ =

∑

λ

γλcγλc′

Eλ − E − 1
2
iΓγ

(3.34)

In Eq. 3.34, Γγ is the total width related to gamma channels only. It can be stated at
this point that Eq. 3.33 is obtained by assuming random sign of the amplitude width γλc
(where c is related to gamma channels only), so that while summing expression such as

∑

λµ

γλcγµc , (3.35)

for c ∈ γ, only “diagonal” terms remain
∑

λµ

γλcγµc ≈
∑

λ

γ2
λc . (3.36)

Partial cross sections not related to gamma channels can be obtained by using the
regular R-matrix framework but using the Reich-Moore form of that matrix (right side of
Eq. 3.34). The capture cross section is obtained by subtraction of all other partial cross
sections from the total cross section (that is obtained from the diagonal components of U)

σJ
π

cγ = σJ
π

c,tot −
∑

c′ 6=γ
σJ

π

cc′ . (3.37)

Concerning fission channels this formalism still carries some deficiencies. Just like in
the Multi-Level Breit-Wigner formalism, the penetration factor related to fission channel
is arbitrarily set to 1. As width amplitudes γλc are adjusted on experimental data, ad-
justment that balance modeling deficiency. However this leads to statistical bias when
considering statistical properties of the width amplitudes related to fission channels.
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3.2 Lynn Extension to Fission Channels
Lynn [7,60] extended theR-matrix formalism presented in Section 3.1.1 to fission channels.
Yet this extension has never been used in practice for actual evaluations. Like the rc degree
of freedom of the “true” particle channels, an adequate fission channel degree of freedom η
must be defined. A related kinetic operator T̂η for the fission channel and an “interaction”
potential V̂ (η) also have to be defined. The general formula of the kinetic operator3 is

T̂η = − ~2

2Bη(η)f 2(η)

∂

∂η

(
f 2(η)

∂

∂η

)
, (3.38)

where the f function definition depends on the type of fission channel degree of freedom
η that is considered. For instance η can be chosen to be the quadruple moment Q of the
system of A nucleons, defined by

η ≡ Q =
A∑

i=1

(3z̄2
i − r̄2

i ), (3.39)

where z̄i and r̄i are the ith nucleon cylindrical coordinates in the center-of-mass. In this
case, f is simply the identity function f ≡ 1. The Bη coefficient is the inertia parameter
corresponding to the deformation variable η. Its definition also depends on the choice of
the deformation η. In the case of η ≡ Q, it is given by

BQ =
m

4Q+ 8Ar̄2
, (3.40)

where m is the mass of a nucleon and r̄2 is the average value of r̄2
i given by

r̄2 =
1

A

A∑

i=1

r̄2
i . (3.41)

In the following, BQ is assumed not to depend on the deformation η. As fission coordi-
nate is considered, the eigenstates Xλ of the internal region are expanded on functions
Ψµν , associated to coefficient Cλ(νµ). The Ψµν functions are defined as a product of
quasi-vibrational functions Ψ

(µ)
ν (η) and an intrinsic function χµ (defined at the channel

deformation ηc)
Xλ =

∑

νµ

Cλ(νµ)Ψµν =
∑

νµ

Cλ(νµ)Ψ
(µ)
ν χµ . (3.42)

The superscript (µ) implies that a different set of quasi-vibrational functions Ψ
(µ)
ν (η) can

be defined for each intrinsic state χµ. The quasi-vibrational functions Ψ
(µ)
ν (η) satisfy the

energy-independent boundary condition

1

f(ηc)Ψ
(µ)
ν (ηc)

(
∂fΨ

(µ)
ν

∂η

)

ηc

= Bµ . (3.43)

These considerations lead to the definition of new value and derivative quantities (as in
Eq. 3.12) related here to the fission channel

Vµ =

(
~2

2Bηf(ηc)

)1/2 ∫

S |η=ηc

dS χ∗µf
−1Ψ,

Dµ =

(
~2

2Bηf(ηc)

)1/2 ∫

S |η=ηc

dS χ∗µf
−1∂fΨ

∂η
.

(3.44)

3This form actually depends on the choice of the deformation coordinate η. It is yet a general expression
for deformation coordinates considered in Ref. [7].
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Following the same approach than in Section 3.1.1, the corresponding shift and penetration
factors are defined as [

1

fΨ(µ)

∂(fΨ(µ))

∂η

]

η=ηc

= Sµ + iPµ, (3.45)

where Ψ(µ) is the outgoing wave function, solution of

[T̂η + V̂ (η)]Ψ(µ) = [E − εµ(η)]Ψ(µ), (3.46)

where εµ is the intrinsic excitation energy corresponding to state χµ and E is the total
excitation energy.

3.2.1 Double-Humped Barrier Textbook Example

To illustrate what are the expected effects of this approach on resonance analysis, let us
detail an example inspired by Ref [7]. The fission barrier shape V (η) of Fig. 3.1 is consid-
ered. A constant inertia parameter will be assumed with value Bη = 0.054A5/3~2 MeV−1,
the fissioning isotope is 241Pu, thus A = 241. Considering only the fundamental barrier
(i.e. εµ = 0) the wave function Ψ(µ) can be computed for any value of E.

η

V (η)

0.05 0.3 0.05

5.5 MeV

2.5 MeV

Figure 3.1 – Schematic representation of a double-humped fission barrier. Deformations
(η axis) are in arbitrary units.

Defining an equivalent fission channel radius ηc as the deformation corresponding to
the top of the first barrier hump, Pµ and Sµ can be computed from Eq. 3.45. A relevant
numerical method [61] used for the wave function Ψ(µ) computation also provides the
barrier transmission coefficient. In this numerical method, the wave function Ψ(µ) is
expressed differently on each piecewise constant parts Vn of the potential

Ψ(µ)
n (η) = bneiknη + cne−iknη, (3.47)

where bn and cn are expansion coefficients for the nth potential constant segment and

kn =

[
2Bη

~2
(E − Vn)

]1/2

∈ C∗ . (3.48)

The rightmost potential segment is labeled ∞. The outgoing wave function requirement
leads to setting c∞ = 0. The rightmost condition c∞ = 0 is then “propagated” to the
leftmost segment (labeled 0). The barrier transmission coefficient is finally given by

Tf =
k∞
k0

∣∣∣∣
b∞
b0

∣∣∣∣
2

. (3.49)
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Some numerical methods that can be used for this type of problem will be detailed in
Chapter 6 and Appendix D.

In Fig. 3.2 the results for the transmission coefficient (Eq. 3.49), the penetration and
the shift factor (Eq. 3.45) are shown. On the right part of the figure, the potential is
shown again (red lines) with the densities probabilities |Ψ(µ)|2 computed for some special
energies. These energies are those for which the transmission coefficient shown on the
right part of the figure (black dotted curve) is maximal. These energies are shown on
both part of the figure, on the right part by colored dots on the top of the frame and on
the left part by straight solid lines accordingly colored.

η

V (η)

3 4 5 6 7
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d
S
µ

Tf Pµ Sµ

Figure 3.2 – (Left) Potential used for the computation of the wave function Ψ(µ) and
probability densities |Ψ(µ)|2 associated with the resonance energies of the transmission
coefficient Tf shown on the right. (Right) Transmission coefficient (Tf), shift (Sµ) and
penetration (Pµ) factors for the barrier shape of Fig. 3.1. Pseudo eigenstates are shown
on the left plot, the related energies are shown with corresponding-colored dots on the
right plot.

From Fig. 3.2 it can be seen that the three functions Tf, Pµ and Sµ exhibit distinct
resonant structures at similar energies. The structures do not exist if the considered
barrier does no have an intermediate well. The transmission coefficient has much broader
resonant structures compared to those of the penetration factor. For energies at which
resonant structures exist, the probability density |Ψ(µ)(η)|2 shows that the wave is mostly
located in the intermediate well. Energies at which resonances occur are directly related
to the barrier shape. They are pseudo-eigenenergies of the intermediate well; the term
“pseudo” is used because the intermediate well is not infinite. The resonance structures
of the transmission coefficient are evidences of states spatially located in the intermediate
well, the so-called class-II states. States mostly located in the first well (not represented
in the figure) are respectively named class-I states. Resonance energies showing up in the
transmission coefficient thus correspond to energies of the class-II states.

One can notice from Fig. 3.2 that the maximum value of the penetration factor is not
identical for all resonant structures of blue curve. This is a feature related to the fission
barrier description. Instead of the potential described by Fig. 3.1, one can consider the
barrier used in Ref. [7], reported in Fig. 3.3. In this case the potential is also described
(from the second saddle point) down to the “scission point”.
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η

V (η)

0.05 0.3 0.05

5.5 MeV

2.5 MeV

100 MeV

Figure 3.3 – Schematic representation of a double-humped fission barrier with a descrip-
tion down to the scission point. Deformations (η axis) are in arbitrary units.

This description is of course very schematic, yet if this actual potential is used to
obtain Tf, Pµ and Sµ, the results can be slightly different. The corresponding results are
shown on Fig. 3.4.
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Figure 3.4 – Transmission coefficient (Tf), shift (Sµ) and penetration (Pµ) factors related
to the barrier shape of Fig. 3.3.

In Fig. 3.4, several features should be noticed. First, the shift factor is not strongly
modified apart from the increase of the maximum values at resonances. The second feature
is related to the maximal values of the transmission coefficient that are not equal to unity
anymore. This is due to the first ratio in Eq. 3.49, in which the two wave numbers are no
longer identical. This is physically related to the fact that the probability current used in
the definition of the transmission coefficient4, involve the asymptotic velocity waves that
are thus different on the right and left sides of the potential. This feature should not be

4In Eq. 2.12 of Chapter 2, the probability current is defined as ~j[Ψ] = ~
2iBη

[Ψ∗~∇Ψ − Ψ~∇Ψ] and

the transmission coefficient is defined by Tf = |jright/jleft|2, where jleft and jright are respectively the
probability current on the left (resp. the right) part of the barrier.
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a concern in this chapter as only the penetration factor will be used. The last feature is
related to the penetration factor. The maximal values for each resonance of Pµ are now
roughly equal. This would be and important condition in the sub-threshold analysis of
the 240Pu fission cross section.

3.2.2 Penetration Factor Modeling

Prior to attempting to use these concepts to perform an actual analysis, a practical
method to include the fluctuations of the penetration factor must be defined. Zooming on
a particular resonance structure, as shown in Fig. 3.5, one sees a shift in energy between
the transmission coefficient and the penetration factor maxima.
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Figure 3.5 – Barrier transmission coefficient (Tf), shift (Sµ) and penetration (Pµ) factors,
related to the schematic barrier of Fig. 3.3, for the second class-II resonance of Fig. 3.4
near 2.8 MeV. An approximation of the penetration factor by a Lorentzian (Pµ – fit) is
also shown.

The energy shift in Fig. 3.5 indicates that the maximal amplification of the penetration
factor occurs at energies slightly different from the class-II states energies. This will have
a visible effect when analyzing clusters of resonances for fertile isotopes as will be detailed
in the following. For practical reasons the whole modeling of the fission channel, by
defining both kinetic operator T̂η and deformation potential V (η), will not be carried out
in resonance analysis. Instead of using a full description of the barrier shape, one can
approximate the amplification effect of the penetration factor by the following Lorentzian
expression

Pµ(E) =
σCΓ2

C/4

(E − EC)2 + Γ2
C/4

. (3.50)

Parameters EC and ΓC are respectively the cluster resonance energy (roughly the class-II
state energy) and the cluster width. Parameter σC characterizes the magnitude of the
penetration factor. Figure 3.5 also demonstrates the quite satisfactory representation
of the actual penetration factor Pµ, obtained with the potential of Fig. 3.3, by such a
phenomenological Lorentzian (Pµ – fit).
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3.3 Sub-Threshold Analysis of 240Pu(n,f)
The dramatic local amplification of the penetration factor can account for the presence
of clusters of resonances in fission cross-section of fertile isotopes such as 240Pu(n, f). This
sub-threshold resonance phenomenon is examplified in Fig. 3.6. Between 600 eV and
2100 eV, three structures located around 800, 1400 and 1900 eV are visible. They are
called clusters of resonances. A fourth one, quite smaller, can be seen near 1000 eV if one
considers the cumulative fission width “Cumul. Γf” defined as

Cumul. Γf(E) =
∑

λ|Eλ≤E
Γλf . (3.51)

This cumulative fission width is also shown in Fig. 3.6. It reveals that within each cluster
a few (actually only one) resonances contribute significantly to the cumulative fission
width.
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Figure 3.6 – Measurement of the lowest-energy clusters of resonances for 240Pu(n, f)
(Weston-1984 [39]). The cumulative fission width (Cumul. Γf) is also shown.

The phenomenological method (penetration factor approximation by a Lorentzian)
will now be used to analyze the resonances of the 240Pu fission cross section. The JEFF-
3.2 evaluation is used as the basis for the analysis. This does not mean that the JEFF-3.2
parameters are necessarily used in the present analysis, instead the fission cross section
is reconstructed using the relevant RRR formasilm5 and used as it it were experimental
data. Some fission widths in the evaluation are not related to measurements but are
introduced to represent the average resonance spacing, and must be discarded from the
statistical analysis. As these resonances are very small, they do not significantly affect
the reproduced cross section. For the present analysis these resonance widths are not
retained. Within each cluster of resonances, a particular resonance with an extremely
large fission width (a thousand times larger than the surrounding ones) and a quite small
neutron width can be identified. These resonances are considered as evidence of wave
function located in the intermediate well and identified as the class-II states. Those class-
II resonances should be considered separately in the analysis because their physical origin

5In this case, the 240Pu(n, f)–JEFF-3.2 fission cross section must be reconstructed using the Reich-
Moore formalism, cf. Section 3.1.3.
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differs from the surrounding class-I resonances. Their distinctive property is striking
when considering the zero-Kelvin cross section as shown in Fig. 3.7. A resonance with an
extremely large width is observed near 1400 eV. It should be noted that in the vicinity
of this large resonance, other narrow resonances have their maximum values amplified.
The maximum of this amplification phenomenon (cf. red dashed curve in Fig. 3.7) seems
not to be centered on the large width resonance (blue arrow) but rather on the right of
the most amplified narrow resonance, near 1410 eV (red arrow). This can be seen as an
illustration of the energy shift in the resonance structures of Fig. 3.5. The maximum of
the transmission coefficient (meaning the energy of the broad 0 K resonance) is shifted
compared to the maximum of the penetration factor (energy of the most amplified narrow
resonance).
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Figure 3.7 – Neutron-induced fission cross section of 240Pu reconstructed at zero Kelvin
from the JEFF-3.2 evaluation resonance parameters (solid black curve). The class-II state
is indicated with the blue arrow. The class-I amplification envelope is shown in dashed
red line. The envelope is centered about an energy indicated with a red arrow.

In the vicinity of the class-II resonance of each cluster, the class-I resonances have
amplified fission widths (although a hundred times smaller than the class-II one). To
highlight this phenomenon the averaged reduced widths γ2

λf/〈γ2
λf〉 are shown in Fig. 3.8

(black marks). Only the class-I assumed resonances are considered in the calculation of
〈γ2
λf〉 (the broad class-II states are discarded). It can be seen that, when the usual treat-

ment of the penetration factor, i.e. Pµ ≡ Pf ≡ 1 (black marks), some class-I resonances
have quite large width amplitudes γλf. This is due to the omission of the amplifying
penetration factor that is balanced by the γλf fit in the JEFF-3.2 analysis to reproduce
experimental data.

For the present study, an analysis has been done using a penetration factor defined as
the sum of four Lorentzians centered on the most amplified class-I state of each cluster. All
Lorentzians have a width of 60 eV except for the one in the second cluster near 1000 eV. In
that cluster the class-II state has a fission width twice larger than for other class-II states.
Because of that, a twice-larger Lorentzian width (120 eV) was taken for this cluster. In a
proper evaluation, those parameters should be adjustable, or even better, directly deduced
from an underlying penetration barrier calculation as done in the previous section. Here
they were not adjusted.

As was shown on the previous section, the maximum value of the penetration factor σC
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Figure 3.8 – Averaged fission reduced width amplitudes of 240Pu(n, f) analyzed using
either a unit penetration factor (Pf = 1) i.e. the JEFF-3.2 data, or using four Lorentzian
enhancers defined by Eq. 3.50 (Pf 6= 1).

is identical for all Lorentzians. The σC parameter has no effect on practical resonance pa-
rameter analysis. Considering a Single-Level Breit-Wigner description of the resonances,
the resonance width Γλf is related to the resonance amplitude γλf by

Γλf ≈ 2Pµ(Eλ)γ
2
λf (3.52)

The reduced width amplitudes γλf are obtained by “fitting the resonance width Γλf”, by
fitting the cross section. Thus the σC parameter will have the effect of a normalization
factor that will vanish in the resonance parameter analysis as the quantity of interest is
the relative distribution γ2

λf/〈γ2
λf〉. Using the four Lorentzians, class-I γλf parameters are

fitted to the JEFF-3.2 reconstructed cross section. In Fig. 3.8 the result of this analysis is
shown (Pf 6= 1, red marks). It can be seen that the local amplification of the class-I states
in the vicinity of the class-II is somehow removed since the cluster envelopes produce
the amplification. Here again the class-II reduced width amplitudes are not used for the
statistical analysis.

Figure 3.9 shows another visible effect of this treatment. The JEFF-3.2 evaluation is
compared to an artificially reconstructed cross section, (Pf 6= 1), for which an identical
average reduced width amplitude 〈γλf〉 was taken for all class-I resonances6. In one case
a constant penetration factor is used and yields no structures (Pf = 1, middle figure).
In the second case, the penetration factor used contains the four Lorentzian described
earlier (Pf 6= 1, lower figure). It can be seen that this rough approach tends to reproduce
properly gross structures.

A “cleaner” statistics feedback for the distribution f of the class-I fission reduced
width amplitudes γλf may be expected from the present approach. The distribution f is
defied so that f(x)dx is the probability for an average reduced width amplitude γ2

λf/〈γ2
λf〉

to have a value between x and x + dx. In Fig. 3.10 such a distribution is shown. It
can be seen that despite the rather low statistics between 600 eV and 2100 eV (less
than a hundred resonances), the replacement of the one-unit penetration factor by the

6The reduced width amplitudes γλf are signed quantities (positive or negative). In the present case,
the sign of the evaluated parameter is conserved but the magnitude is fixed to the average magnitude
value.
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Figure 3.9 – Clusters of resonances in the 240Pu(n, f) cross section. The upper figure shows
the JEFF-3.2 evaluation reproducing the observed fission cross section but (a standard
Reich-Moore formalism). The middle plot shows a theoretical calculation using an average
fission reduced width amplitude 〈γλf〉 for all resonances and a unit fission penetration fac-
tor. The lower plot shows a theoretical calculation also using an averaged fission reduced
width amplitude 〈γλf〉 for all resonances but with the Lorentzians as fission penetration
factor. In the middle and lower plots, the JEFF-3.2 parameters are used for all reactions
but fission.

four Lorentzians brings the “experimental” distribution closer to the expected Porter-
Thomas distribution [62]. It thus brings consistency with the class-I neutron reduced
width amplitude analyses.
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Figure 3.10 – Distribution of the 240Pu(n, f) fission reduced width amplitudes using a unit
penetration factor (Pf = 1, blue dashed curve), reproduced from the JEFF-3.2 evalua-
tion. The similar quantity obtained while performing the analysis with the four cluster
Lorentzian enhancers is also shown (Pf 6= 1, red solid curve). A Porter-Thomas theoretical
distribution is also shown for comparison.
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The present analysis highlights that the consideration of the fission barrier shape in
the RRR analysis leads to different evaluated parameters. These parameters are believed
to have a better physical meaning. In the presented analysis, the fission penetration
factor was not directly obtained by treatment of the fission barrier but instead by a
phenomenological way by introducing Lorentzians. The more rigorous method would
require a proper physical description of the barrier shape to be used as a starting point
of the fission resonance analysis. In the next chapter a model providing such a fission
barrier description will be presented.
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Chapter 4

Upgrading the CONRAD Code to the
State of the Art of Evaluation Models
in the Statistical Range

In this chapter, some of the models currently used for cross section evaluation in the
statistical energy range will be presented. The aim of this chapter is not to introduce all
models that can be used for evaluation. It will be restricted to the necessary developments
that have been brought to the CONRAD code in order to improve and extend the code
capability in the statistical range.
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4.1. HAUSER-FESHBACH FRAMEWORK CHAPTER 4. UPGRADES IN THE STATISTICAL RANGE

This chapter will focus on the cross section modeling in the statistical energy range
(cf. Fig. 2.3 of Chapter 2). It must be emphasized that the CONRAD code [3] had only
few statistical range capabilities prior the start of the present PhD work. Indeed, the
code has been linked to the ECIS code [1] to adjust average total cross sections and to
the TALYS code [51] for the various partial cross sections (cf. Chapter 2, Section 2.2).
However, CONRAD uses this latter code as a “black-box” and implementation of new
fission models required to assimilate parts of the TALYS code into the CONRAD code.
An averageR-matrix model was already implemented along with a spherical optical model
similar to the SCAT-2 [49] program. Despite these previous developments, a lack of generic
programming was limiting the use of “neutron transmission coefficients” (e.g. obtained
from ECIS, the internal spherical optical model or the average R-matrix) to obtain partial
cross sections. This latter comment will become clearer in the following as the Hauser-
Feshbach frame for the calculation of statistical range cross section will be introduced.

4.1 Hauser-Feshbach Framework
The energy-averaged total cross section derived in Chapter 2 (cf. Eq. 2.28), leads to the
definition of two “partial cross sections”,

σ̄c,tot =
2π

k2
c

gJ(1− Re[ŪJπ

cc ]) =
π

k2
c

gJ
∣∣1− ŪJπ

cc

∣∣2

︸ ︷︷ ︸
σshapec

+
π

k2
c

gJ

(
1−

∣∣ŪJπ

cc

∣∣2
)

︸ ︷︷ ︸
σreactionc

(4.1)

The first term, σshapec , is called the shape elastic cross section and is related to the prob-
ability that the incoming particle is reflected on the target without penetrating into the
nuclear matter. The second term, σreactionc ,on the contrary, is the complementary reaction
cross section. The reaction cross section is not exactly the cross section for the formation
of the compound nucleus (or absorption cross section), other direct cross sections, such
as the direct inelastic cross sections should be subtracted from the reaction cross section
to obtain the compound nucleus formation cross section.

A model providing ŪJπ

cc – c being the entrance channels, in the present case, the neutron
channels – would be enough to provide the average total cross section. However the shape
elastic cross section does not correspond to the final elastic cross section as neutrons can
be emitted “elastically” after having been absorbed by the target. It can be compared
to the potential term of the Single Level Breit-Wigner (SLBW) expression (cf. 3.29 of
Chapter 3). Thus, a model is necessary to decompose the absorption cross section into
partial compound cross sections. The statistical Hauser-Feshbach [8] framework is used
for that purpose. It can be derived from the SLBW formula. Considering the partial
compound cross section related to a given level λ in the SLBW formalism

σcompJπ
cc′λ (E) =

π

k2
c

gJ
ΓλcΓλc′

(Eλ + ∆λ − E)2 + 1
4
Γ2
λ

, (4.2)

the actual partial cross section is obtained by summation over all levels

σcompJπ
cc′ (E) =

∑

λ

σcompJπ
cc′λ (E). (4.3)

Here it is convenient to assume that ∆λ = 0. Equation 4.2 corresponds to process involving
formation of a compound nucleus. Considering the resonance integral Iλ of a SLBW cross
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section of Eq. 4.2,

Iλ =

∞∫

0

dEσcompJπ
cc′λ (E) =

∞∫

0

dE
π

k2
c

gJ
ΓλcΓλc′

(E − Eλ)2 + 1
4
Γ2
λ

≈ π

k2
c

gJ

∫

∆

dE
Γλc .Γλc′

(E − Eλ)2 + 1
4
Γ2
λ

(4.4)

The right-hand-side of Eq. 4.4 is obtained by assuming that the resonance is narrow
enough so that its amplitude is almost entirely contained in the integration range ∆. The
range ∆ is supposed to be small enough so that the energy dependency of kc can be
neglected in the ∆ range. Assuming again that the resonance is narrow compared with ∆
(i.e. Γλ � ∆), the integration range can be reset to [0,+∞[ so that analytical integration
can be performed. One obtains

Iλ ≈
π

k2
c

gJ

∞∫

0

dE
ΓλcΓλc′

(E − Eλ)2 + 1
4
Γ2
λ

=
π

k2
c

2πgJ
ΓλcΓλc′

Γλ
. (4.5)

Finally, the average value of the SLBW cross section σ̄compJπ
cc′ can be obtained by consid-

ering N resonances in an energy range D ×N , D being the average resonance spacing

σ̄compJπ
cc′ =

N × 〈Iλ〉λ
N ×D =

π

k2
c

gJ
2π

D ×N

(
N ×

〈
ΓλcΓλc′

Γλ

〉

λ

)
=

π

k2
c

gJ
2π

D

〈
ΓλcΓλc′

Γλ

〉

λ

.

(4.6)
The bracket signs correspond to the average over the N resonances contained in the D×N
energy bin. This average is not an energy average but a level average. In practice, a width
fluctuation correction term Wcc′ is further introduced to take into account of the fact that

〈
ΓλcΓλc′

Γλ

〉

λ

6= 〈Γλc〉λ 〈Γλc′〉λ〈Γλ〉λ
. (4.7)

The Wcc′ coefficient has a significant effect on partial cross sections but as this is not the
point of the present study, it is often omitted here but is present in the computations.
The average total cross section can also be simply expressed as

σ̄compJπ
c,tot =

∑

c′

σ̄compJπ
cc′ =

π

k2
c

gJ
2π

D
〈Γλc〉λ , (4.8)

where relation Γλ =
∑
c

Γλc has been used. As Eq. 4.2 is related to compound processes

only, Eq. 4.8 is actually the total compound cross section or the compound nucleus for-
mation cross section. This relation can be compared to Eq. 4.1 and leads to the definition
of a new quantity named the transmission coefficient Tc defined by

Tc = 1−
∣∣ŪJπ

cc

∣∣2 =
2π

D
〈Γλc〉λ . (4.9)

Finally, the Hauser-Feshbach formula, provides the compound partial cross sections, ac-
cording to

σ̄compJπ
cc′ =

π

k2
c

gJ
TcTc′∑
c′′
Tc′′

Wcc′ . (4.10)

The width fluctuation correction factor Wcc′ vanishes when considering the total com-
pound cross section, as an effect of the “flux conservation”

σ̄compJπ
c,tot =

∑

c′

π

k2
c

gJ
TcTc′∑
c′′
Tc′′

Wcc′ =
π

k2
c

gJTc

∑
c′
Tc′Wcc′

∑
c′′
Tc′′

=
π

k2
c

gJTc . (4.11)
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These two last expressions (Eqs. 4.10 and 4.11) are keystones of a global framework in
which many sub-models provide transmission coefficients for a specific reaction type using
their own physical description and parameters. They provide the compound nucleus part
of all partial cross sections. One can however notice that, except for the total cross section
that only depends on the entrance transmission coefficient Tc (i.e. neutron absorption or
emission1), all other partial cross sections will depend on the transmission coefficients
related to all reactions. This intrinsic competition between partial reactions increases
dramatically the complexity of partial cross section analyses. This is caused by the fact
that any change in one of the transmission coefficients will affect all partial cross sections.
To make the CONRAD code able to calculate fission cross sections it was thus necessary
to have reliable transmission coefficients for all other reactions. Some of the transmission
coefficient sub-models available in CONRAD will be presented in the following. Most of
them have been implemented specifically for the present PhD work.

4.2 Unresolved Resonance Range – Average R-Matrix

As recalled above (cf. Eq. 4.1), a model providing UJπ

cc can readily be used to provide
entrance-channel-related transmission coefficients. In neutron cross section evaluation,
two models are used to produce such average matrix coefficients. The first model con-
sidered here is a direct extension of the R-Matrix formalism explained above. At inter-
mediate energies, resonances are not fully detailed due to energy resolution limitation of
microscopic differential measurements and to the partial overlapping of resonances. Eval-
uation of resolved resonance parameters becomes equivocal. This energy domain, called
Unresolved Resonance Range (URR), needs a proper treatment [63]. The URR is ana-
lyzed on the basis of prior average parameter values extracted from the RRR. An average
treatment of the diagonal terms of the collision matrix leads to [5]

U
Jπ

c ≡ U
Jπ

cc ' e2iφc

1 + iPc(E)

(
R
∞
c + iπ

sc
√
E

2P`=0(E)

)

1− iPc(E)

(
R
∞
c + iπ

sc
√
E

2P`=0(E)

) , (4.12)

where the pole strength function2 parameters sc can be estimated from the RRR analysis
as

sc = 2π
〈γ2
λc〉λ
DJπ

. (4.13)

The average level spacing DJπ involved in Eq. 4.13 is related to levels having quantum
numbers Jπ similar to those in channel c3. The distant level parameters R∞c characterizes
the effect of distant resonances, and need to be adjusted on experimental data. In the

1In this framework the entrance or exit transmission coefficients are identical quantities.
2The pole pole strength function is defined by Eq. 4.13, whereas the strength function Sc is given by

Sc = 2π
〈Γλc〉λ
DJπ

, which still contains a remaining energy-dependency because of the penetration factor Pc,

cf. Eq. 3.27.
3In practice, it can be difficult to identify definitively the Jπ values of a resonance as measurements

are cumulating events from different Jπ processes. Yet interference patterns on cross sections can give
some clues about the difference in Jπ from a resonance to another. Sometimes this identification is not
possible but the value of the incident neutron orbital momentum ` can be identified. In such cases, the
DJπ value is estimated as an average value for these `-tagged resonances.
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case of neutron cross section evaluation, using Eqs. 4.9 and 4.12, a neutron transmission
coefficient can be defined.

The parameters used in this model are obtained from the RRR analysis or from ad-
justments on experimental data at higher energies. It was explained in Chapter 2 that the
reactor physics cross sections (related to plane wave scattering) involve many processes
having specific Jπ values. At low energy only few of these processes are contributing
to the cross sections, hence data extracted from the RRR analysis [64] can be used to
describe only few of these processes. It is thus difficult to use this formalism for high
energies as more and more Jπ processes are involved. An alternative approach, relying
on optical models (described in the following) do not suffer from this limitation.

To explain why this model is still used in evaluation, it is necessary to details some
phenomena that play effective roles in reactor physics. Even if the resonances in the URR
are not experimentally resolved they exist. The cross sections depend on the relative
velocity between the projectile and the target nucleus. As resonances can be quite narrow,
the thermal motion of the target may be significant enough so that it has some effect on
the relative velocity. This effect is known as the Doppler-broadening and cannot be taken
into account if only an average value of the resonance is known. In practice this effect
can be rendered if average resonance parameters (as those used by the average R-matrix)
are known. A fictive (but representative) cross section can be reconstructed from these
average parameters, broadened then averaged so that the effect of the thermal motion
can be propagated to the cross section values. In practice this has no strong effects
in reactor physics applications if multigroup formalism is used. Indeed, if resonances
are narrow enough so that they are mostly contained in a single energy group, as the
resonance integral is conserved by the broadening, the resulting average cross section
remains unchanged. Yet this may have effect if a continuous energy description is used or
if probability tables are used along with multigroup cross sections. These tables contain the
distribution of the cross section values within an energy group. Even if the average value
does not change in the group, if the medium temperature is modified, the distribution
of the cross section values do change. This is illustrated in Fig. 4.1, where the total
cross section and related cross section probability density are shown (in the energy range
[300 eV,320 eV]) for two temperatures 0 K (red curves) and 300 K (blue curves). The
average cross sections are also shown with dashed lines on the left part of Fig. 4.1. This
average is made over the energy range [300 eV,320 eV], thus the Doppler broadening has
little effect on the cross section average value (about 0.05%). If only a part of a resonance
was contained in the energy range, the average value would have change more. On the
other side, the cross section probability density (right part of Fig. 4.1) is strongly affected
by the change in temperature. As probability tables are computed from the cross section
probability density, they are significantly modified by Doppler-broadening.

At high enough energies, this treatment is no longer necessary because resonances
overlap each other and Doppler broadening is no longer effective. The energy boundaries
of the URR are determined, for the low energies, by the available experimental data, and
for the higher energies by the effective range of the Doppler broadening. The emerging
standard procedure (SPRT [65]) for the treatment of the URR relies on the alternative
optical models to obtain transmission coefficients and phase shifts, then to extract from
them the required averaged parameters used in the URR treatment. Before this PhD
work, the average R-matrix formalism was already implemented in the CONRAD code,
however its use in a generic and validated Hauser-Feshbach framework was still to be
done.
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Figure 4.1 – Effect of Doppler broadening on the 239Pu(n, tot) cross section (left) and on
the cross section probability density (right). The average values of the cross sections is
shown in dashed lines on the left plot.

4.3 Continuum Range – Optical Model
The main liability of the average R-matrix approach is that the number of parameters
to be fitted becomes tremendous as incident neutron energy increases. As the energy
increases, the number of significantly contributing channels increases, as well as the num-
ber of average parameters to be evaluated. An alternative model for supplying neutron
transmission coefficients is the optical model. For comprehensive information about op-
tical models see Refs. [1,66–70]. In the following, the global scheme of the optical models
will be sketched, more details about the coupled channel equations that are solved can be
found in Appendix A.

Optical models share many common features with the R-matrix theory. Phenomenol-
ogy is introduced in optical models through the description of the interaction potential
V̂cc′(rc′ , Ω̂c′) that is effective between the two particles of channel c. As in Eq. 2.6, the
channel wave function is

Ψc = i`Y `
m`

(Ω̂c)
uc(rc)

rc
. (4.14)

The Schrödinger equation (cf. Eq. 2.8) becomes

[
− ~2

2Mc

(
d2

dr2
c

− `(`+ 1)

r2
c

− 2
ηckc
rc

)
+ εc − E

]
uc(rc)

= −
∑

c′



∫

4π

d2Ω̂cY
m∗
` (Ω̂c)V̂cc′(~rc′)Y

m′
`′ (Ω̂c′)


uc′(rc′) . (4.15)

In Eq. 4.15, the interaction potential is present in the right-hand-side. In case of spher-
ically symmetric interaction potential, V̂cc′(rc′ , Ω̂c′) does not depend on Ω̂c′ and most of
terms in the summation vanish. Therefore for such potentials, only channels having the
same ` and m can be coupled. The channel-to-channel coupling potential is defined by

Wcc′(r) =
2Mc

~2

∫

4π

d2Ω̂cY
m∗
` (Ω̂c)V̂cc′(~rc′)Y

m′
`′ (Ω̂c′) . (4.16)
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Finally the coupled channel equation is
[
d2

dr2
c

− `(`+ 1)

r2
c

− 2
ηckc
rc

+ k2
c

]
uc(rc) = −

∑

c′

Wcc′(rc′)uc′(rc′) . (4.17)

Just like in the R-matrix theory, only channels coupled to the same Jπ value are con-
sidered. Hence several coupled equations are to be solved separately according to the Jπ
value of the process. In practice, as V̂cc′(rc′ , Ω̂c′) is an operator, the coupled channel equa-
tion can become quite complex because of terms such as spin-orbit coupling (involving
wave function first order derivatives) are involved. Further details are beyond the scope
of this work. It can be stated that, from the numerical resolution of the coupled chan-
nel equation, the radial waves uc are obtained and matched to the analytical asymptotic
wave functions of Eq. 2.9, for which the coupling potential Wcc′(rc′) is zero. This finally
leads to the definition of the average collision matrix U (called the scattering matrix S
in optical models). As in Eq. 2.26, calculated collision matrix elements are used to obtain
the channel-to-channel cross sections

σJ
π

cc′ =
π

k2
c

gJ

∣∣∣δcc′ − UJπ

cc′

∣∣∣
2

. (4.18)

A common interface was developed in CONRAD for all models that can provide the
value of the average collision matrix UJπ

cc′ (optical models and average R-matrix). They
can now be easily tested and interchanged in the Hauser-Feshbach framework.

Since the total cross section depends only on the neutron transmission coefficients
(cf. Eq. 4.1) and can be compared with representative evaluated data, they are chosen
as a first checking comparison. This was also a test to validate a newly implemented
C++ coupled channels program based on the same algorithm than the ECIS code4 that
has been implemented for during this PhD. The simplest reaction to be considered is
56Fe(n, tot) that involves an even-even medium-mass target and for which a spherical
optical model potential can be assumed to be relevant. The even-even nature of 56Fe
leads to a zero intrinsic spin for the target ground state. This in turns reduces the
complexity of the angular momentum coupling involved in the coupled channel optical
models. In this particular case, for 56Fe(n, tot), equations solved by from the spherical
optical model (channels not coupled) and by the more refined coupled channel optical
models are identical. Left part of Fig 4.2 shows results obtained for the calculation
using the ECIS code, the CONRAD internal spherical optical model implemented by
P. Archier [50] and the new coupled channel algorithm. Comparison with the TALYS
code is not necessary in this case as TALYS actually drives ECIS internal calculations
to obtain the total cross section (i.e. both shape elastic cross sections and transmission
coefficients). A second test shown on the right part of Fig 4.2 corresponds to a similar
calculation but for 157Gd(n, tot). In this case the target nucleus has no longer a zero-spin
ground state and is deformed. Because of these two additional features, the equation
coupling in the coupled channel model becomes more complex. It was thus a relevant
second test case. More details are provided in Appendix A about the coupled channel
equations. Four rotational levels are included in this calculation. The new implementation
was found to be roughly as fast as the ECIS calculation and can further benefit from the
native parallelism of the CONRAD code.

One can notice that all optical models are very consistent. However the comparison
with evaluated data and calculated results is rather discrepant as shown for 56Fe(n, tot)

4First version of the ECIS code were written about 50 years ago in an old-fashioned FORTRAN-IV
language, which makes the code difficult to maintain.
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Figure 4.2 – (left) Comparison of the average total cross section of (n + 56Fe) calculated
using the various options available in the CONRAD code. Solid lines correspond to cross
sections obtained with optical models.To make comparison between optical model results
easier, relative differences to ECIS results are shown with x-marks. (right) Same but for
the (n + 157Gd) reaction.

for energies below 3 MeV. This of course may be due to the limited relevance of us-
ing average cross section models (optical models) for such low energies with this type of
medium-mass isotope, but this can also be explained by the choice of the optical model
potential. The selected optical model potential was taken from the RIPL database [10],
(an international database containing reference input data for numerous nuclear data ap-
plications). The potential parameter set (RIPL-1416), is designed to cover a large energy
range (0-200 MeV), wider than the present one. One can notice that small differences
exist between the coupled channel results (ECIS and CONRAD–CC OM) and the spher-
ical optical model (CONRAD–Sph. OM), in the case of 56Fe(n, tot). This may be caused
by some extra angular discretization that is considered in the coupled channel programs.
For the total cross section, the differences between ECIS and CONRAD–CC OM are be-
low 0.001%, which is close to the digit precision of the ECIS output files. In the case
of 157Gd(n, tot), differences are even smaller (about 0.0005%). Obtaining satisfactory
comparison with evaluated data is not the objective of the work presented here, which is
to obtain satisfactory modeling for partial reactions so that fission models can be tested.
Model parameter evaluation is not performed here, therefore verification will be limited to
comparisons between codes (TALYS and CONRAD mainly). Codes are of course supplied
with identical input parameters5.

4.4 Capture Reaction and Level Density Models

The next step in the quest of better fission cross section modeling is to obtain compound
partial cross sections and to do so, reaction-dedicated transmission coefficients are neces-
sary. As explained before, both average R-matrix and optical models can provide neutron
transmission coefficients6 that can be in turn used to provide the total compound cross
section. To extend the modeling capability of the code, beyond total cross section, to

5Consistency with code internal databases (e.g. low-lying levels and deformations) had also to be
ensured for these comparisons.

6They also provide the shape elastic cross section.
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partial cross section calculations, the Hauser-Feshbach model has been implemented. It
must be “fed” with transmission coefficients in order to calculate compound partial cross
sections. As photon radiative emission is always possible, the simplest step further is to
introduce a gamma transmission coefficient T Jπγ that will allow calculation of both cap-
ture and elastic cross sections. In reactor physics, the capture cross section corresponds
to radiative emission of photons and no re-emission of the incident particle. The elastic
cross section corresponds to the re-emission of the incident particle – or of another particle
of the same nature – where the residual nucleus is identical to the target nucleus. For
instance if the target is in its ground state, which is often the case, the residual nucleus is
also in its ground state. The elastic cross section is the addition of the shape elastic and
the compound elastic cross sections, whereas only compound radiative capture occurs.

The gamma transmission coefficient is actually a sum of many photon-channel trans-
mission coefficients. Each channel is related to a given type X of transition having a
multipolarity `. The X term labels either the electric E or magnetic M nature of the
photon-decay, as for instance E1, M2, etc. Each channel is also characterized by a “reac-
tion transition energy” εγ that is the amount of energy taken away by the photon. The
multipolarity ` is the amount of angular momentum carried away by the photon. After
the decay, the nucleus lies in a state i of its related level scheme. This state is described
by its related energy Ei, angular momentum Ji and parity πi. The energy of the photon εγ
is thus the difference between the compound nucleus excitation energy E∗ and the energy
of ending state Ei. It is given by

εγ(i) = E∗ − Ei . (4.19)

As angular momentum and total parity of the whole system must be conserved. Some
photon-decay channels are forbidden (suppressed) because they would break these con-
servation rules. One can finally write

T J
π

γ =
∑

X∈{E,M}

∑

`

∑

i

TX`(εγ(i))f(Ji, πi, J, π,X, `) , (4.20)

where the f function ensures the conservation rules:

f(Ji, πi, J, π,E, `) =

{
1, |J − `| ≤ Ji ≤ J + ` and π = (−1)`πi
0, otherwise , (4.21)

f(Ji, πi, J, π,M, `) =

{
1, |J − `| ≤ Ji ≤ J + ` and π = (−1)`+1πi
0, otherwise . (4.22)

In practice, the nucleus level scheme is not known up to energies corresponding to the
neutron binding energy (4 to 10 MeV). Hence the summation of Eq. 4.20 can be done
only for the known levels (usually only the lowest energy levels). The remaining levels
are treated using a phenomenological average level density ρ(E, J, π). If the N first levels
are known up to a certain energy Econt, Eq. 4.20 becomes:

T J
π

γ =
∑

X∈{E,M}

∑

`

[
N∑

i=1

TX`(εγ(i))f(Ji, πi, J, π,X, `)

+
∑

J ′π′

E∗∫

Econt

dεγρ(E∗ − εγ, J ′, π′)TX`(εγ)f(J ′, π′, J, π,X, `)

]
. (4.23)
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This computation of gamma transmission coefficients has been implemented in the CON-
RAD code using the TALYS reference code as guideline. The CONRAD implementation
has been verified to be consistent with the TALYS results, yet the selected integration
method used in the calculation of the last term of Eq. 4.23 has been found to be a possible
source of significant differences, about 2% for 56Fe(n, γ) and 0.6% for 157Gd(n, γ).

4.4.1 Level Density Models

In order to obtain gamma transmission coefficients, level density models are required.
Phenomenological level density models usually decompose the level density ρ(E∗, J, π),
into a product of a state density ρ(E∗), an angular momentum probability of the level
P (J) and its parity probability P (π), so that

ρ(E∗, J, π) = ρ(E∗)P (J)P (π) . (4.24)

Therefore ρ(E∗, J, π)dE∗ is the number of levels having a total angular momentum J
and parity π in the energy interval dE∗ around the excitation energy E∗. Therefore
each term can be specifically treated by dedicated models. The implementation of a
gamma transmission coefficient model has been eased by the use of the C++ nuclear
physics model library that is shared by the CONRAD and the FIFRELIN [52] codes. This
library contains “tools” that can benefit to both codes. This library already contained level
density models before this present PhD work started thanks to D. Regnier PhD work [71].
Concerning the level densities, a Composite Gilbert-Cameron Model [9] (CGCM) is used.
This model is widely used for three reasons:

• It relies on a small amount of parameters.

• Its implementation is quite easy.

• It can be used to reproduced quite satisfactorily the few observables related to level
densities, namely low-lying average values and the mean level spacing at neutron
spectroscopy energies (called D0).

This composite model consists in a Constant Temperature Model (CTM) for low excitation
energies and a Fermi Gas Model (FGM) at higher energies. These two models are smoothly
joint at a matching excitation energy EM

ρCGCM(E∗) =





ρCTM(E∗) =
1

T
exp

[
E∗ − E0

T

]
, E∗ ≤ EM

ρFGM(E∗) =

√
π

12

exp
[
2
√
a(E∗ −∆)

]

a1/4(E∗ −∆)5/4
, E∗ ≥ EM

. (4.25)

Here T and E0 are parameters adjusted on low-lying levels and ∆ is an average pairing
energy. The level density parameter a is set using the Ignatyuk’s prescription [72] with
thus a dependence on the excitation energy E∗

a(E∗) = ã

[
1 + δW (A,Z)

1− exp [−γ(E∗ −∆)]

E∗ −∆

]
, (4.26)

where δW (A,Z) is a shell correction for the considered nucleus. The asymptotic level
density parameter ã and the γ parameter are obtained using systematics:

ã = αA+ βA2/3 and γ =
γ0

A
. (4.27)
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The α, β and γ0 parameters are obtained from the RIPL [10] database.
Both CTM and FGM rely on the assumption of equiprobaility of the parity distribution

P (π = ±1) = 1
2
, and on a Rayleigh-type distribution law for the angular momentum

probability

P (J) =
J + 1

2

σ2
exp

[
−(J + 1

2
)2

2σ2

]
, (4.28)

where σ is a parameter called the spin cutoff and J is expressed in units of ~. This
distribution (Eq. 4.28) is not normalized for discrete values. To compensate this problem,
two normalization options are present in the code, the piece-wise normalization7:

P pw(J) =
P (J)∑

J ′
P (J ′)

, (4.29)

and the integral normalization:

P int(J) =

J+ 1
2∫

J− 1
2

j

σ2
exp

[
− j2

2σ2

]
dj , (4.30)

where the integration boundaries must be shifted if one considers integer angular momenta
instead of half-integer ones. This normalization can have effects up to 0.3% (respectively
2.3%) on the level densities for the P int (respectively P pw) normalization. This effect is
calculated by comparison with the case with no-normalization (Eq. 4.28).

A model of the spin-cutoff σ is also required, the Back-Shifted, following the TALYS
standard route [73] is defined as follow8

σ2(E∗) =





σ2
d, 0 ≤ E∗ ≤ Ed

σ2
d +

E∗ − Ed

Bn − Ed
(σF(Bn)− σ2

d), Ed ≤ E∗ ≤ Bn

σ2
F(E∗), E∗ ≥ Bn

, (4.31)

where again Ed and σd are extracted from low-lying levels as described in Ref. [73], and
σF is the Fermi-gas spin-cutoff given by

σ2
F(E∗) =

I0/~2

ã

√
a(E∗ −∆) , (4.32)

where I0 is the rotational moment of inertia of the nucleus, assumed here to be a rigid
spherical body and is thus given by

I0 =
2

5
m0R

2A ≈ 0.01389A5/3~2 MeV−1 , (4.33)

where m0 is the neutron mass and R is the nucleus radius that is here R = 1.2A1/3 fm.
As said above, all parameters involved in the level density parameterization are not

completely free, the low-lying levels and the mean level spacing measurements obtained
by neutron spectroscopy are used to constrain the model parameters9.

7In practice, the sum span over the first 50 possible J values.
8To obtain better agreement between CONRAD and TALYS, the binding energy Bn in Eq. 4.31 is

replaced by the matching energy EM used in Eq. 4.25.
9The mean level spacing obtained with slow neutrons is directly related to the level density at E∗ = Bn.
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4.4.2 Gamma Strength Functions

To obtain the gamma transmission coefficient of Eq. 4.23, the multipolar transmission co-
efficients TX`(εγ) must be provided. This can be done by use of gamma strength functions
fX` so that

TX`(εγ) = 2πfX`(εγ)ε
2`+1
γ . (4.34)

Gamma strength functions are often a part of photo-absorption cross section models.
Usual gamma strength models are independent of the excitation energy of the nucleus.
However some models incorporate a slight dependency on this energy.

Several gamma strength function models were already present in the shared library
mentioned above thanks again to D. Regnier PhD work [71]. The already implemented
models are the Enhanced Generalized Lorentzian (EGLO) model defined in RIPL-3 [10],
and the Brink-Axel [74] model, also called Standard Lorentzian (SLO) in RIPL-3. The
CONRAD code could use the SLO model with minor implementation work. The TALYS
standard route uses a slightly different version of the EGLO model10. To maintain dif-
ferences between the CONRAD and TALYS codes as small as possible (for the present
objective to have a “safe” framework to work further on fission cross sections) an identical
model had to be implemented.

Following the TALYS standard route, the Kopecky-Uhl [75] model is used for the
X` ≡ E1 transitions and the Brink-Axel [74] model (SLO) for other transitions. In the
Kopecky-Uhl model, the strength function is given by

fE1(εγ, E
∗) =

σX`ΓE1

(2`+ 1)π2~2c2

[
εγΓ̃E1(εγ, Tf)

(ε2γ − E2
E1)2 + ε2γΓ̃

2
E1(εγ, Tf)

+ 0.7
Γ̃E1(0, Tf,i)

ε3γ

]
, (4.35)

where

Ts∈{f,i}(E∗) =

√
E∗ −∆− εγδsf

a(Sn)
and Γ̃E1(εγ, T ) = ΓE1

ε2γ + 4π2T 2

E2
E1

. (4.36)

The difference between this model and the EGLO lies in the temperature of the second
term of Eq. 4.35. The RIPL-3 states Ti for the EGLO whereas TALYS implementation is
Tf for the Kopecky-Uhl model.

For multipolarities different than E111, the strength function model is the SLO defined
by

fX`(εγ) =
1

(2`+ 1)π2~2c2

σX`εγΓ
2
X`

(ε2γ − E2
X`)

2 + ε2γΓ
2
X`

. (4.37)

In both models EX`, ΓX` and σX` are parameters that can be adjusted.

4.4.3 Verification on Capture and Elastic Cross Sections

In the TALYS code, it is possible to obtain intermediate results such as the level den-
sity ρ(E, J) and the gamma strength functions fX`(E) that are used in the calculations.
Comparisons were made with the corresponding CONRAD intermediate results to check
consistency. However, this step is not reported here, but the agreement was satisfactory,

10The TALYS code uses a strength function model based on the Kopecky-Uhl original model [75]
whereas the EGLO model is based on a modified version defined in Ref. [76]

11The only transitions considered in the present work are E1, E2, M1 and M2, following the TALYS
standard route, no other multipolarities are considered.
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below 0.1% of difference for strength functions and about 0.0001% for level densities. Com-
parison on capture and elastic cross sections are presented instead. These compound cross
sections are calculated using the Hauser-Feshbach formula (Eq. 4.10) and are added, for
the elastic cross section, to the shape elastic cross section obtained by the optical model.
Results can be seen in Fig. 4.3 for the elastic scattering and radiative capture cross sec-
tions of the (56Fe + n) and (157Gd + n) colliding systems. The TALYS and CONRAD
results (respectively, the blue solid and green dashed curves) are so close that the relative
difference must be shown in the right axis. For all considered cases, the differences are
quite satisfactory, the maximum of difference is for the 56Fe(n, n) reaction, below 0.05%.
This test thus verifies the implementation of the Hauser-Feshbach engine and the calcula-
tion of the gamma transmission coefficient from the gamma strength functions and level
density.
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Figure 4.3 – Verification of the CONRAD Hauser-Feshbach model with the TALYS code
for 56Fe + n (left plots) and 157Gd + n (right plots).

4.5 Inelastic Scattering
Prior to focusing on fission cross section modeling, a last reaction must be considered,
the neutron inelastic scattering. This reaction cannot be neglected because the Hauser-
Feshbach formula enforces that the sum of all partial cross sections remains equal to the
total cross section (cf. Eq. 4.11). This is due to the constraint on Wcc′ for the conserving
flux ∑

c′

TcTc′∑
c′′
Tc′′

Wcc′ = Tc . (4.38)
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Omitting inelastic cross section would lead to either restraining the energy range of
calculation of fission cross section below the first inelastic threshold energy, or to highly
overestimate all partial cross sections. This is especially true for fertile isotopes for which
the inelastic cross section can be as large as the fission cross section. The eventual com-
pensation on fission and capture cross section would undermine all efforts made so far to
obtain a suitable framework for fission cross section modeling. The inclusion of inelastic
reaction in the model is yet somehow different from the capture reaction because a direct
component must be taken into account. These direct terms are rather similar in nature
to the shape elastic cross section. They correspond to incident neutron interacting with
collective states of the target (the ground state and some collective exited states). These
direct inelastic terms can be seen as a kind of “shape inelastic” terms. The incident neu-
tron is thus scattered but some of its energy has been transferred to a collective state of
the target nucleus. In case of coupled channel calculations, some direct terms are directly
provided by the couple channel calculation. In this study, these terms involve levels and
related inelastic channels that are included in the coupled channel calculation as part of
the ground state rotational band. For other levels or for spherical nuclei, following the
TALYS code as guideline, a vibrational model is assumed and treated in the Distorted
Wave Born Approximation (DWBA) [1,70]. The ECIS code can be used to provide such
direct terms. Since the DWBA and coupled channel formalisms have many similarities, a
DWBA model was also implemented in the CONRAD code for the present study.
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Figure 4.4 – Same as Fig. 4.3 but with the elastic cross section substituted by the inelastic
cross section (direct and compound).
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It can be seen in Fig. 4.4 that larger differences are present between code results
compared with those of Fig. 4.3. One first notices large differences in the vicinity of
certain energies. This is obvious on the low energy side of the 56Fe inelastic cross section.
Although both codes seem to have similar threshold energies related to the first inelastic
level (near 800 keV), they provide different values up to a certain energy near 1000 keV
whereas above that point consistency is restored. These differences come from different
threshold energies used for the treatment of the direct and compound inelastic cross
sections in the TALYS code. This explains most of the differences observed in Fig. 4.4.
Another striking difference is visible over the high energy part of the capture cross sections
for both 56Fe and 157Gd. These deviations are due to the (n, γn) reaction that was
neglected in the CONRAD code but not in TALYS. At low energies, this reaction is
negligible, which can be explained by the two following arguments:

• First, the gamma strength function shape implies that photons are more likely to
be emitted at energies around 1 MeV, with small dependency on nucleus excitation
energy. To be able to emit a neutron after a gamma emission, the gamma must be
of energy smaller than E∗ −Bn, thus the (n, γn) becomes more favored as E∗ −Bn

tends to 1 MeV.

• Second, as excitation energy increases, the level density near the final energy (cf.
Eq. 4.23) increases exponentially.

This explains the exponential shape of the differences now attributed to the (n, γn) reac-
tion. Such “second chance” (or two-steps) reactions (cf. Chapter 1) are not considered in
the CONRAD code. For the remaining section of this chapter that is related to fission
cross section modeling, these features have been deactivated in the TALYS code so that
comparison with the CONRAD are not biased.

To illustrate the effect of this “second chance” removal, a calculation similar to the
lower-left part of Fig. 4.4 is performed and a new comparison is made between CONRAD
and TALYS (“second chance” deactivated). The results are shown in Fig. 4.5. It can be
seen that differences between codes have been cut by about one order of magnitude (from
10% to about 0.6%) compared to results shown in Fig. 4.4.
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Figure 4.5 – Verification of the CONRAD Hauser-Feshbach model with the TALYS code
for 56Fe(n, γ) with two steps reactions deactivated in the TALYS code.
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Remaining differences can be seen around 800 keV corresponding to the first inelastic
level. This could be explained this time by small change in the compound inelastic cross
section. At higher energies (above 1 MeV), the difference between codes raises again,
but this is much smaller than in Fig. 4.4. For the time being these differences remain
unexplained, but are acceptable for the purpose of the present work which will be now
focused on fission models.

Besides checking model implementations, one must keep in mind that possible differ-
ences between numerical implementations and also between nuclear databases can have
significant eventual effects. Both CONRAD and TALYS codes use their own nuclear data
input library, describing for instance the experimental low-lying levels of the various iso-
topes. Some nuclear levels present some differences in level energies and more often in
assigned angular momenta and parities.

4.6 Fission Reaction
Some of the necessary developments realized for the present work to provide a proper
framework for evaluation were summarized in the previous sections. These are related to
all partial cross sections but fission. In this last section, current models for obtaining fis-
sion transmission coefficients will be discussed. Focus will be made on the well-known and
extensively used Hill-Wheeler model [11]. Final comparisons with the TALYS reference
code will be presented on actual actinide fission cross section calculations.

4.6.1 Hill-Wheeler Approach

To understand the underlying phenomenon in the Hill-Wheeler [11] famous formula, one
can consider a nucleus deforming from a spheroidal shape to an elongated dumbbell shape,
and eventually to two nascent fragments. The nucleus deformation is hindered by attrac-
tive nuclear forces. At a certain deformation, the Coulomb repulsive force prevails and
increases deformation. The potential felt by the nucleus can be approximated, at least
locally, by its second order Taylor expansion in the vicinity of the potential maximum12.
The system behavior is thus modeled by a fictive particle interacting with an inverted
parabola potential as represented in Fig. 4.6. The wave function Ψ of the equivalent
fictive particle is solution of

− ~2

2µ

d2Ψ

dη2
+ (V − 1

2
µω2η2)Ψ = EΨ , (4.39)

where η is a general deformation parameter (often written β) related to a degree of freedom
relevant to the fission process (elongation). The µ parameter is the inertia of the fictive
particle “with respect of η”, V and ~ω are respectively the barrier height and curvature.
Using the variable change x = η

√
µω/~ and writing b = (V − E)/~ω, one obtains

d2Ψ

dx2
+
(
x2 − 2b

)
Ψ = 0. (4.40)

The solutions of this wave equation are expressed in terms of parabolic cylinder func-
tions [48]. The corresponding asymptotic behavior [11] for x > 0 is

Ψ ∼ T ≡ 2−
1
4x−

1
2 exp

[
i
x2

2
− i b

2
ln 2x2 + i

π

8
− π b

4

]
, (4.41)

12As the expansion is made in the vicinity of the potential maximum, the first order derivative term
in this expansion vanishes.
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η

V (η)

~ω

V

R

I
T

Figure 4.6 – Schematic representation of the fission process in the Hill-Wheeler usual
approach: a fictive particle of inertia µ (black mark) tunnels through an inverted parabolic
potential. The assymtotic forms of the wave function I, R and T are also shown on both
sides of the barrier.

and for x < 0 the asymptotic behavior is a combination of an incident wave I and a
reflected wave R

I ≡
√

2π2−
1
4 |x|− 1

2

Γ(1
2

+ ib)
exp

[
−ix

2

2
+ i

b

2
ln 2x2 + i

π

8
+ π

b

4

]
,

R ≡2−
1
4 |x|− 1

2 exp

[
i
x2

2
− i b

2
ln 2x2 − 3i

π

8
+ 3π

b

4

]
. (4.42)

Conservation of the probability current defined as j = ~
2µi

(
Ψ∗ ∂Ψ

∂x
−Ψ∂Ψ∗

∂x

)
implies that

|I|2 = |R|2 + |T |2 . (4.43)

The barrier transmission coefficient Tf is defined by

Tf =

∣∣∣∣
T

I

∣∣∣∣
2

=
|T |2

|T |2 + |R|2 =
1

1 +
∣∣R
T

∣∣2 . (4.44)

Substituting Eqs. 4.41 and 4.42 in Eq. 4.44, it reads

R

T
= exp (−2iπ + πb) = exp (πb) , (4.45)

eventually yielding the famous formula, commonly used in cross section evaluation works

Tf =

[
1 + exp

(
2π
V − E
~ω

)]−1

. (4.46)

A representation of the energy dependence of the Hill-Wheeler transmission coefficient
will be shown in the following.

4.6.2 Cramer-Nix Approach

Prior to detailing how the Hill-Wheeler formula is used in practice, an alternative modeling
of the barrier tunneling will be presented. When evidence began to show that fission
barrier may consist of several humps, Cramer and Nix [22] extended the Hill-Wheeler
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model to more complex barrier shapes. They considered a barrier made of three smoothly
joint parabolae as shown in Fig. 4.7.

η

V (η)

E1

E2

E3

η1 η2 η3a b0
zone I zone II zone III

Figure 4.7 – Schematic representation of the fission tunneling process in the Cramer-Nix
approach: a fictive particle of inertia µ (black dot) tunnels through a potential made of
three smoothly jointed parabola.

In this approach, the deformation potential is defined by

V (η) =





E1 − 1
2
µω2

1(η − η1)2, η ≤ a

E2 + 1
2
µω2

2(η − η2)2, a ≤ η ≤ b

E3 − 1
2
µω2

3(η − η3)2, η ≥ b

. (4.47)

This potential is defined by 12 parameters out of which 4 can be regarded as interde-
pendent because of the smooth matching conditions at η = a and η = b. Two additional
degrees of freedom vanish as the eventual transmission coefficient is insensitive to the
inertia parameter µ and to any η-shift of the barrier. The 6 parameters usually retained
are the energies E1, E2 and E3 and the curvatures ω1, ω2 and ω3 as defined by Eq. 4.47
and shown in Fig. 4.7. The deformation space related to η can be divided into three
zones, over each of which an analytical wave function Ψ can be computed using parabolic
cylinder functions [48]. Two types of solutions exist; one can be regarded as a wave ψ
propagating towards η > 0, the other one ϕ as a wave propagating towards η < 0. The
wave function equation is separately solved in each of the different potential zone and
then wave functions and their first derivatives are matched at the zone boundaries. The
zone-waves are

ΨI = AψI + BϕI, η ≤ a,
ΨII = CψII + DϕII, a ≤ η ≤ b,
ΨIII = FψIII + GϕIII, η ≥ b .

(4.48)

To select solutions corresponding to an outgoing wave function (from which the transmis-
sion coefficient can be obtained), one needs to consider global waves propagating towards
η > 0 in the rightmost part of the potential (i.e. G = 0). Defining the intermediate
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quantities

u(η) =

√
2µω1

~
(η − η1), α1 =

E1 − E
~ω1

,

v(η) =

√
2µω2

~
(η − η2), α2 =

E2 − E
~ω2

,

w(η) =

√
2µω3

~
(η − η3), α3 =

E3 − E
~ω3

.

(4.49)

The barrier transmission coefficient is defined by

T =

√
ω3

ω1

∣∣∣∣
F

A

∣∣∣∣
2

, (4.50)

where
F

A
=
v′u′2i

√
2/π

detM
, (4.51)

and where M is a matrix whose components are defined using the parabolic cylinder
functions [48] V , U and E .

M =




Ea(α1,−u) −Va(α2, v) −Ua(α2, v) 0

−u′E (−u)
a (α1,−u) −v′V (v)

a (α2, v) −v′U (v)
a (α2, v) 0

0 Vb(α2, v) Ub(α2, v) −Eb(α3, w)

0 v′V (v)
b (α2, v) v′U (v)

b (α2, v) −w′E (w)
b (α3, w)


 . (4.52)

Here above the function superscript stands for the argument with respect of which the
derivative of the function is calculated. The function subscript stands for the deformation
point η at which the function is evaluated.

In Fig. 4.8, transmission coefficients obtained with both the Cramer-Nix and the Hill-
Wheeler models are shown. It can be seen that the Cramer-Nix model leads to transmis-
sion coefficient with resonant structures where the Hill-Wheeler model only produces a
smooth variation of the transmission coefficient.
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Figure 4.8 – Example of fission transmission coefficients obtained using the Cramer-Nix
model and a single-humped Hill-Wheeler model. The three colored dots correspond to
special energies that are analyzed in Fig. 4.9.
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Three special energies are chosen for a more in dept analysis. They are highlighted
by colored dots in Fig. 4.8. The first energy (blue dot) corresponds to the first resonance
energy of the Cramer-Nix transmission coefficient in the figure. The second energy (green
dot) is chosen few hundreds of eV above to the first one (but already “out” of the reso-
nance). The last energy (red dot) is chosen to be approximately between the two first
resonance energies. The corresponding wave functions are illustrated in Fig. 4.9. It be-
comes obvious while comparing the “red” and “green” states, that the spatial localization
of the wave function is responsible for the dramatic change in the transmission coefficient
value. For the “red” state (out of the resonance) the wave is mostly located in the first
well, whereas for the “blue” state it is mostly located in the intermediate well (zone-II).
Both blue and green curves of Fig. 4.9 are related to close energies in the vicinity of the
first resonance, as shown in Fig. 4.8. The small change shown in the wave functions (blue
and green curves in the orange enlargement circle Fig. 4.9) leads to a drop of the value of
the transmission coefficient from nearly unity (blue dot in Fig. 4.8) to about 2.5 × 10−3

(green dot in Fig. 4.8). For comparison, the transmission coefficient related to the red
curve in Fig. 4.9 is about 10−6 (red dot in Fig. 4.8).
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Figure 4.9 – Cramer-Nix potential (black curve) used to obtain the transmission coeffi-
cient show in Fig. 4.8. The probability amplitudes |Ψ(η)|2 for three peculiar energies is
represented.

This type of barrier potential and analytical transmission coefficient has also be ex-
tended to a triple-humped fission barriers [77] and numerical methods have been devel-
oped to solve this type of problem with arbitrary barrier shapes [78]. Some of these latter
methods will be detailed in Chapter 6 and Appendix D.

4.6.3 Current Pragmatical Approach for Fission

4.6.3.1 Uncorrelated Hill-Wheeler Humps

In practice, the Cramer-Nix model is not used in evaluation. The uncorrelated Hill-
Wheeler barriers model, that will be presented below, is often favored because it relies
on fewer adjustable parameters. To account for the double-humped nature of the fission
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barrier, the two humps are dissociated and a statistical equilibrium (Hauser-Feshbach
formalism) is assumed in the intermediate well [79]. This is illustrated in Fig. 4.10. In
the following, TA is related to the Hill-Wheeler transmission coefficient related to the
first hump, and TB to the second one. The derivation of the commonly used formula
T eq
f = TATB/(TA + TB) is now presented.

η

V (η)

~ωA

VA

VB

~ωB

Equilibrium

Statistical

Figure 4.10 – Schematic picture of the double-hump fission barrier in the uncorrelated
Hill-Wheeler approach. The potential shown here is not continuous (not defined between
the two humps) and is not used to calculate wave propagation and probability current as
in the single-hump Hill-Wheeler model.

Let us define the following probabilities:

1. to pass from the first well to the second well:

PI→II =
TA

TA + TI

(4.53)

2. to pass from the second well to fission:

PII→f =
TB

TA + TB + TII

(4.54)

3. to pass from the second well to the first well :

PII→I =
TA

TA + TB + TII

(4.55)

TI (resp. TII) stands for sum of the transmission coefficients related to any decay from the
first well (resp. the second well) without passing through any barrier. Hence the fission
probability is obtained by

PI→f = PI→IIPII→f + PI→II(PII→IPI→II)PII→f + ... (4.56)

= PI→IIPII→f

∞∑

n=0

(PII→IPI→II)
n =

PI→IIPII→f

1− PII→IPI→II

. (4.57)

Finally, the probability that the nucleus undergoes fission from an initial state located in
the first well is [79]

PI→f =
TATB

(TA + TI)(TA + TB + TII)− T 2
A

. (4.58)
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From this, an effective or equivalent fission transmission coefficient T eq
f can be defined so

that it can be used in a “first well” Hauser-Feshbach formula. It is defined such as

PI→f =
T eq
f

T eq
f + TI

, (4.59)

which leads to

T eq
f =

TITATB
TATII + TI(TA + TB + TII)

. (4.60)

If no absorption or particle emission is considered in the second well (i.e. TII = 0), the
equivalent fission transmission coefficient becomes

T eq
f =

TATB
TA + TB

. (4.61)

This expression is usually used for “first well” Hauser-Feshbach calculation, i.e. a calcu-
lation leading to a fission cross section that can be expressed as

σnf ∝
T eq
f

T eq
f + TI

. (4.62)

The derivation of the T eq
f expression shows why it is not normalized to unity. This property

leads to different asymptotic plateau values in both fission cross section and fission decay
probability calculations [80] depending on the chosen number of barrier humps. This is
illustrated in Fig. 4.11 where it can be seen that the plateau value of the transmission
coefficient plateau is approximately halved13.
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Figure 4.11 – Effect of the uncorrelated Hill-Wheeler hump model (T eq) on the transmis-
sion coefficient plateau value. The Cramer-Nix and single-humped Hill-Wheeler models
are also shown for comparison.

13The precise effect of the reduction depends on the choice of the barrier parameters (heights and
curvatures).
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4.6.3.2 Transition States

The plateau value can be restored by addition of transition states [80,81]. These transition
states were introduced by Bohr and Wheeler [81, 82] to account for the states of internal
excitation of the nucleus as it passes the barrier. They where later characterized [83] in
terms of coupling between collective and individual degrees of freedom in the picture of
the “cold fissioning nucleus”. In the vicinity of the hump maximum, the total energy E∗
that is available for deformation can be reduced because some energy Eint is drained out
by discrete intrinsic excitation. The deformation energy Edef is constrained by the energy
conservation

E∗ = Eint + Edef (4.63)

This property can be understood as if there were many way of crossing the barrier. The
total transmission coefficient for the barrier X is

T J
π

X (E∗) =
∑

c|Jπ
T J

π

Xc(E
∗), X ∈ {A,B} , (4.64)

where the sum runs over the possible transition states c, these being significantly different
from the R-matrix channels. The transmission coefficient related to a transition state c
is given by Eq. 4.46 with an energy shift

T J
π

Xc(E
∗) =

[
1 + exp

(
2π
VX − (E∗ − εJπXc)

~ωXc

)]−1

, (4.65)

where VX is the height of barrier X, ~ωXc is the barrier curvature energy and εXc is
the intrinsic excitation energy. In practice ~ωXc, VX and εXc are adjustable parameters.
Transition states are not channels in the sense of the R-matrix theory but they are used
to reduce the tremendous number of R-matrix channels related to fission. In practice the
transition state energy εXc is calculated as part of a rotational band. The rotational band
is characterized by a band-head energy, and by two quantum numbers: the band-head
parity π and the quantum number K. This latter is the magnitude of the projection of
the total angular momentum J on the nucleus deformation axis14. For a barrier hump
X, a band-head energy can thus be written EKπ

X , a transition state related to the Jπ
quantum numbers and related to the band-head EKπ

X would be given by

εJ
π

Xc = EKπ

X +
J(J + 1)−K(K + 1)

2IX
(4.66)

where IX is the moment of inertia of the nucleus for a deformation corresponding to the
hump maximum.

4.6.3.3 Ersatz Solution for Intermediate-Well Fluctuation

The presence of an intermediate well should create fluctuations in the overall tunnel-
ing phenomenon. The uncorrelated Hill-Wheeler barrier model does not reproduce such
fluctuations (regardless of the addition of transition states). As energy gets close to a
pseudo-eigenstate of the intermediate well, the transmission is amplified and, even if en-
ergy is below the barriers heights, one can observe (assuming ideal experimental energy

14The quantum number K is a good quantum number only for axially symmetric shapes.
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resolution) an amplified overall transmission coefficient. This model deficiency is, in prac-
tice, compensated by adding local enhancement factors [84]

FAB(E) = 1 +
∑

class II

[
4

TA + TB
+

(
E − EII

ΓII/2

)2(
1− 4

TA + TB

)
− 1

]
fII(E) (4.67)

where fII is 1 if E ∈ [EII ± ΓII/2] and 0 otherwise. However, this method, which uses
phenomenological parameters, leads to issues mentioned in the introduction, in particular
it lacks of predictability for the EII and ΓII class-II parameter values. To be able to predict
new data, attempts are made to connect model parameters to quantities obtained from
less phenomenological approaches. For instance, the barrier heights and width can be
obtained from underlying HFB calculations [85]. Yet, in the approach of Ref. [85] the
fission transmission coefficient is still obtained using uncorrelated Hill-Wheeler humps.

4.6.3.4 “Classical” Fission Treatment in CONRAD

As a final step of the upgrade of the CONRAD code that has been achieved during this
PhD work, the “usual” treatment of the fission transmission coefficients was also imple-
mented (i.e. Hill-Wheeler transmission coefficients supplemented by transition states).
A comparison was made with the TALYS code for both 238U(n, f) and 239Pu(n, f) cross
sections, the results are shown in Fig. 4.12.
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Figure 4.12 – Test of the fission cross section model implemented in CONRAD by com-
parison with TALYS on the (238U + n) and (239Pu + n) systems.

The differences between code results for the fission cross sections are larger than for
the other partial cross sections detailed in the previous sections. The reason was found
to lie in the numerical integration related to the transition states. Just like the gamma
transmission coefficient (given by Eq. 4.23) that is a sum over discrete states plus an
integral over a “continuum” energy range, the fission transmission coefficient expression
can be split on the same ground, namely

T J
π

X (E∗) =
∑

discrete states c

T J
π

Xc(E
∗) +

E∗∫

Econt.
X

dεT J
π

X (ε)ρX(J, π, ε), (4.68)
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where T Jπ(ε) is the continuum extension of Eq. 4.65, ρX is the transition state density
related to the barrier hump X and Econt.

X is the continuum lower boundary energy. It
was found, just like for the gamma transmission coefficient Eq. 4.23, that most of the
remaining differences between the CONRAD and the TALYS calculations are related to
the numerical computation of the continuum integrals.

4.7 Summary and Remaining Limitations of the Code

4.7.1 “CONRAD 2.0”

Deep modifications have been brought to the CONRAD code in terms of “high energy”
cross section modeling. These modifications and implementations mainly consist in:

• A generic Hauser-Feshbach engine able to be rapidly extended to new models and
new reactions.

• A brand new coupled channel optical model that could be more easily upgraded
than the ECIS legacy code.

• Generic transmission coefficients for neutron-related reactions (i.e. elastic and in-
elastic compound scattering).

• A customizable gamma transmission coefficient relying on the COOL library nuclear
physics models (e.g. level densities and gamma strength functions).

• A shape inelastic DWBA model, inspired also by the ECIS code and the TALYS
standard route (first order vibrational model for uncoupled levels).

• Standard fission transmission coefficients using the Hill-Wheeler and Cramer-Nix
approaches.

These developments where made by generic programming15 allowing the code to keep
evolving with further new models and new reactions. All these upgrades have been in-
troduced in the CONRAD code, which make them readily usable as tool for complete
evaluations (i.e. adjustment on experimental data with production of accurate variance-
covariance data).

4.7.2 “CONRAD 2.0-beta”

However several shortcomings remain and prevent from the covering of the whole eval-
uation range [0, 20 MeV]. These limiting points are yet quite acceptable for the present
study concerning fission-dedicated models. The further limitations are:

• No continuum inelastic scattering is considered. The “continuum” term refers here
to the excitation energy domain of the residual nucleus (i.e. after re-emission of the
incident particle) that cannot be described by experimentally known low-lying levels.
This is not a serious gap to fill because the treatment is similar to the one involved
for gamma transmission coefficients and fission transition states16. However in the

15This “spirit” was already present in the TALYS code that has been a precious help for the work
presented in this chapter.

16A slight difference with respect to gamma of fission reactions lies in the direct inelastic cross section
treatment in the continuum.
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presented applications it is the first limitation to be encountered as calculations are
made with increasing incident particle energies. It is this limiting point that defines
the high energy border in Fig. 4.12.

• No deformed spin-orbit coupling is yet possible in the new coupled channel optical
model.

• No charged particle emission is yet possible. This is no serious gap either because
the optical models implemented in or driven by CONRAD can treat Coulomb in-
teraction, but the related channels must be properly managed.

• The most sever change that should be brought to the code, so that cross sections
can be evaluated to higher energies, is the treatment of multiple chance reactions
(two-steps or more). These would mostly consist in as second chance fission (n, nf)
and (n, γn) reactions, then to reactions involving charged particles and multiple
neutrons emission.

• Finally for quite high energies, a new phenomenon starts to play a significant role.
The compound nucleus hypothesis becomes less and less valid as incident particle
energy increases. A pre-equilibrium model would be necessary as the probability
of particle emission prior to reach the compound nucleus state increases at higher
incident particle energies are reached.

To conclude this chapter, it should be stated that the vast modifications brought to
the CONRAD evaluation code make it usable in the low energy part of the statistical
energy range. Despite the remaining limitations of the code, preventing from performing
evaluations over the whole energy range [0, 20 MeV] of reactor physics, the code can
be used to test new approaches of fission cross section evaluations for neutron incident
energies up to 1 MeV for actinides. These new approaches will be detailed in the two
following chapters.
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Chapter 5

Implementation and Verification of
Macroscopic-Microscopic Models

Chapters 3 and 4 showed that the fission barrier shape is a key requirement for the fission
cross section models. Such barriers can be obtained by studying Potential Energy Surfaces
(PES). These PES represent the nuclear deformation energy with respect to multidimen-
sional coordinates ~q that describe the shape of the nucleus. A long-standing macroscopic-
microscopic model has been implemented to calculate these PES: the Finite-Range Liquid-
Drop Model (FRLDM) that is presented in this chapter. The FRLDM is composed of two
parts (macroscopic and microscopic) that will be detailed. The necessary verification and
validation of the newly implemented program will also be presented. Finally, insights are
given about the computational methods that have been set up during this work to make
this model computationally fast enough to meet evaluation requirements.
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5.1 General Macroscopic-Microscopic Approach
The quest for relevant Potential Energy Surfaces (PES) has been a long-term effort in
nuclear physics. These surfaces can be in turn used for deriving fission transmission co-
efficients that are can be used in a Hauser-Feshbach for the calculation of average fission
cross sections. In the present study, the Finite-Range Liquid-Drop Model [12] (FRLDM)
has been selected to provide these PES. This macroscopic-microscopic model is composed
of two sub-models: the macroscopic and the microscopic parts. In the macroscopic model,
the nucleus is regarded as a homogeneous liquid, whereas in the microscopic model, nu-
cleons in the nucleus are considered as individual particles.

Even if macroscopic models can be used to describe the overall behavior of nuclear
masses throughout the periodic table, some discrepancies remain. These are due to quan-
tum mechanics-related phenomena that cannot be taken into account in the macroscopic
approach. For specific numbers of neutrons or protons, the nucleus is more tightly bound
than other nuclei having similar numbers of nucleons. This effect occurs for numbers
known as the magic numbers : 2, 8, 20, 28, 50, 82 and 126. This specificity comes from
the fact that bound nucleons have discrete energies, which cannot be rendered by the
homogeneous liquid picture.

Solutions were proposed to account for the microscopic (quantum mechanics) effects,
see for example Ref. [86], but these were based on an analytical expression relying on
adjustable parameters. The macroscopic-microscopic method became widely used after
Strutinsky introduced a quantitative method [15, 87] to calculate the microscopic cor-
rections using single-particle levels as a starting point. It is this macroscopic-microscopic
model that has been selected for the present study to obtain the required PES. The macro-
scopic deformation energy Emacro describes the overall energy of the nucleus as it deforms.
The microscopic model is used to provide single-particle orbits (ψi, εi). From these orbits,
corrections can be extracted in order to account for the discrete nature of the nucleons
inside the nucleus. The microscopic corrections are calculated independently for neutrons,
Emicro,n and protons Emicro,p. The macroscopic-microscopic “deformation energy” Edef is
finally obtained as the sum of these three components

Edef = Emacro + Emicro,n + Emicro,p . (5.1)

Microscopic corrections are composed of a shell correction δEshell and pairing correction
δEpair. For instance, the neutron microscopic correction is given by

Emicro,n = δEshell(n) + δEpair(n) . (5.2)

The general scheme of the macroscopic-microscopic approach, shown in Fig. 5.1, can be
summarized as:

1. Selecting a parameterization for the nucleus shape. For instance the shape can
be defined as a “geometrical” function ρ(z) or r(θ) (defined here in the cylindrical
coordinate system) relying on a set of parameters ~q.

z

ρr

θ

The ~q parameters are only involved in the ρ(z) or r(θ) expressions.
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2. Calculating the macroscopic energy according to the model described in Section 5.2
using the selected shape.

3. Generating an average potential for both neutrons and protons using the selected
shape, then computing the related wave functions with the microscopic model de-
scribed in Section 5.3.

4. The corrections due to the discrete energy levels of nucleons are computed and
added to the macroscopic energy. This point will be developed in Section 5.4.1.

PES

Deformation
energy
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Emacro +

δEshell(n,p) +
δEpair(n,p)

Pairing
correction
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Shape
parameterization
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Macroscopic
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Mass

Zero-vibration

-point energy

Deformation

inertia

Figure 5.1 – Macroscopic-microscopic general scheme.

The first step of the macroscopic-microscopic approach is the definition of the nucleus
shape. In this approach, the shape of the nucleus is not an output of the model but an
input. To study the evolution of the shape of a fissioning nucleus, one would need to
compute the nucleus energy for many deformations (or shapes), then to track back which
shapes are relevant for the study. The notion of shape is rather abstract. To “quantify”
a shape, a parameterization is used. This parameterization would connect a given set
of shape parameters to a geometrical function, for instance ρ(z) or r(θ). In the present
study, only axially symmetric shapes are studied.

In case of diffuse-edge shapes, the geometrical functions ρ(z) and r(θ) are the gen-
erating shapes. For diffuse-edge shapes, nuclear matter density must be handled instead
of sharp-edge volume. However the geometrical functions can be used as folding func-
tion to obtain the desired structure of the nuclear matter density. This leads to nuclear
matter density having spacial features similar to the geometrical folding functions. Hence
parameterized geometrical shapes can still be used for diffuse-edge calculations.

Several parameterizations have been used for macroscopic-microscopic studies. In
Tab. 5.1, some properties of the parameterizations used in the present study are summa-
rized. More details related to shape parameterization are given in Appendix B.1.
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Table 5.1 – Characteristics of the shape parameterizations used in the present work.

Parameterization name Type Number of
degrees of freedom Parameter names

Legendre Polynomialsa r(θ) 1..∞ β2,β3,...
Hill-Wheeler r(θ) 1 fissility y

Perturbed Spheroida r(θ) 1..5 ε2, ε3, ε4, ε5, ε6
Generalized Spheroida ρ(z) 2..3 c, h, α

Three Quadratic Surfaces ρ(z) 5 Q2, αg, εf1, εf2, d

aA generalization to axially-asymmetric shapes exists.

5.2 Macroscopic Models
In this section, the macroscopic model will be detailed. The basic idea is to consider the
atomic nucleus as a liquid whose properties are solely due to collective average behavior of
nucleons. This model was first proposed by George Gamow [88] then fully theorized into its
more final and mature form by Carl Friedrich von Weizsäcker in 1935. Several refinements
have been introduced since – that will be presented in the following – and yielded to
the current macroscopic model composing the FRLDM. Not all these refinements would
have eventual effects on the PES that will be used later in the calculation of average
fission cross section. Indeed some of these refinements have no dependence on the nucleus
shape and thus only leads to uniform shift in the PES energy. The PES used in this
study are “shifted” so that the zero-deformation energy corresponds to the ground-state
shape. These shape-independent features must yet be implemented in the code so that the
program can be verified against published tables and validated with experimental data.

5.2.1 Historical Semi-Empirical Bethe-Weizsäcker Formula

An easily measurable manifestation of nuclear properties is the nuclear binding energy.
Systematic differences were measured between masses of nuclei and the sum the separated
nucleon masses. For a given atom with Z protons and N neutrons and of mass M(Z,N),
the binding energy B(Z,N) is given by

B(Z,N) = ZMH +NMn −M(Z,N) , (5.3)

where MH is the mass of a hydrogen atom1, and Mn is the mass of a neutron. The
binding energy or mass defect is the result of the existence of a strong attractive force
acting between nucleons and counteracting the repulsive Coulomb interaction between
protons. The positive sign of the binding energy (as defined above) means that the
corresponding system of nucleons is more stable if nucleons are gathered into a small
region (the nucleus) than separated. One of the pioneering attempts to understand nuclear
energy was modeling the nuclear binding energy. It yielded the famous Semi-Empirical
Bethe-Weizsäcker formula [13,14]

B(Z,N) = aVA− aSA2/3 − aC
Z2

A1/3
− aA

(N − Z)2

A
− δ(Z,N) , (5.4)

where A = Z+N is the total number of nucleons. Even though more sophisticated models
exist today, the physical meaning of the formula terms are still quite relevant.

1As M(Z,N) is the atomic mass, the mass of electrons and the related electronic binding energies
must be removed. This is done by using the hydrogen atomic mass instead of the proton mass.
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• The first term, known as the volume term, stands for the existence of an attractive
force between nucleons and thus has a dependence on the total number of nucleonsA.

• The second term, called the surface term, stands for the fact that nucleons in the
surface region of the nucleus have less neighbors to interact with and thus reduces the
first term proportionally to the nuclear surface area (which is proportional to A2/3,
assuming a spherical shape of the nucleus).

• The third term is also negative and results from the Coulomb interaction between
protons. It is given by the Coulomb energy of a uniformly charged sphere of radius
proportional to A1/3.

• The fourth term, known as the asymmetry term, is related to the quantum nature
of the nucleus. Nucleons can only occupy discrete energy levels. The system energy
is the sum of the energies for all occupied states. Because of the Pauli exclusion
principle, only two nucleons can occupy a given level. If protons and neutrons were
identical particles (as in the level scheme below), the system energy is obtained by
summing a large number of level energies. On the contrary, if they could occupy
states in different level schemes, only the low-lying levels are occupied and the
system energy is reduced. It is observed that for heavy nuclei this phenomenon is
less effective (due to the reduction of energy gap between levels and/or higher level
degeneracy).

Identical particles scheme Proton scheme Neutron scheme

• The last term stands for the pairing interaction that tends to strongly bind nucleons
pairwise (protons with protons, neutrons with neutrons) as pairs of nucleons in time-
reversed orbits2. This term introduces changes between neighbor nuclei but has a
limited effect on mass formula except for very light nuclei. Its main Z and N
dependence is given by:

δ(Z,N) =





+δ0, Z and N even
0, A odd

−δ0, Z and N odd
(5.5)

Figure 5.2 shows the effect of successive addition these five terms for the binding energy
per nucleon. Experimental data are taken from Ref. [90]. For each mass number A, only
the most stable nuclide of the isobar family is considered. The addition of the Coulomb
term leads to saw-tooth shape structure that are only due to the fact that for the volume
and surface term there is no dependence on Z. It may seem that all terms are required
to get a proper match with experimental data, however one has to keep in mind that the
present parameters are fitted so that the whole formula gives proper results. One would

2Unless magnetic field is effective, neutrons and protons levels are – at least – doubly degenerate. They
can be more degenerate, for instance in case of spherically symmetric field with no spin-orbit coupling.
The two nucleons of a doubly-degenerate level have identical quantum numbers except for the quantum
number related to the projection of their total angular momentum. These are identical in magnitude but
of opposite sign. Two nucleons in the same doubly-degenerate level are said to be in time-reversed orbits
because of the symmetry of their related wave functions under time reversal [89].
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have obtained different parameters while fitting data with a mass formula containing
less terms. One can see that despite the agreement on the global trend of the curve,
some structures are not reproduced. Discrepancies occur for isotopes having a number
of neutrons or protons close to the so-called “magic number”: 2, 8, 20, 28, 50, 82 and
126. For very light isotopes large differences are visible, however one can consider that
the global approach of the “liquid drop” concept for the nucleus becomes increasingly less
accurate with decreasing number of nucleons. However, for medium and heavier nuclei
shell effects tend to organize nucleons in such a way that less energy is required to gather
nucleons. Some residual peaks are present on the curve around 138

56Ba82 and 140
58Ce82 and

around the doubly magic nucleus 208
82Pb126. These structures cannot be reproduced by

“smooth” curves such as those used in terms of Eq. 5.4. For lighter isotopes near 36
16S20 or

88
38Sr50, structures are also visible although because the gap between magic numbers 8 and
20 is smaller than between 126 and 82, shells are more difficult to distinguish.
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Figure 5.2 – Binding energy per nucleon also known as the Aston’s curve. The different
contributions of the Bethe-Weizsäcker formula are shown as successive addition of its
terms: Volume (V), Surface (S), Coulomb (C) and Asymmetry (A). Experimental data [90]
(Exp.) are also shown (for each isobar family only the most tightly bound nuclide is
considered). For readability the pairing term is not shown. Some of the nuclides with
“magic numbers”, for which shell structures occur, are shown in format A

ZXN with magic
numbers written in bold red.

An early correction of the formula was introduced to include Pauli exclusion principle
in the calculation of the Coulomb energy term. It yields [14]

aC
Z2

A1/3
→ aC

[
Z2

A1/3
− 5

(
9

28π2

)1/3
Z4/3

A1/3

]
. (5.6)
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5.2.2 Liquid Drop Model

To obtain the Bethe-Weizsäcker Formula (Eq. 5.4), the nucleus is seen as a homogeneous
sphere of radius proportional to A1/3. However there is no a priori reason for the nu-
cleus to be spherical. Additionally, when nuclear reaction such as fission are studied, it
is interesting to let the nucleus shape evolve. A straightforward extension of the Bethe-
Weizsäcker formula is the Liquid Drop Model (LDM). In this model the nuclear matter,
following what scattering experiments of that time indicated, is assumed be a homoge-
neous (uniformly charged), incompressible liquid. Additionally, nuclear matter is assumed
to be contained within a sharp-edge surface characterized by an arbitrary shape ~q. Eq. 5.4
becomes

B(Z,N) = aVA− aSBS(~q)A2/3 − aCBC(~q)
Z2

A1/3
− aA

(N − Z)2

A
− δ(Z,N). (5.7)

The surface term BS is the surface area of the nucleus, the Coulomb term BC is the
Coulomb energy of the related liquid. Both terms are normalized to the related value for
a spherical nucleus having the same volume. The radius R of such a spherical nucleus is
proportional to A1/3 and can be written as

R = r0A
1/3 , (5.8)

where r0 is a model parameter that can be estimated from electron-nucleus scattering
experiments. For the surface term one obtains

BS(~q) =
1

4πR2

∫

S

d2S , (5.9)

where d2S is the surface element. For the Coulomb term one has:

aC =
3

5

e2

4πε0r0

and BC(~q) =
15

32π2R5

∫

V

∫

V

d3~r1d2~r2

‖~r1 − ~r2‖ , (5.10)

where ε0 is the vacuum permittivity.
This classical Liquid Drop Model was later modified to take into account several

refinements, such as the surface diffuseness. These refinements led to the Finite-Range
Liquid-Drop Model (FRLDM) that is presented in the following section.

5.2.3 Finite-Range Liquid-Drop Model

5.2.3.1 Finite Range of Nuclear Forces

The actual nucleus surface is not sharp but has a certain diffuseness, hence the charge
density has also a diffuse-edge aspect. For instance, the sharp-edge charge density ρsharpC
is defined as

ρsharpC (~r) =





Ze
4
3
πR3

, ~r ∈ V
0 , ~r 6∈ V

, (5.11)

that is used in the Coulomb term calculation must be replaced by a diffuse-edge charge
density ρdiffC .
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Swiatecki and Myers refined the mass formula by inclusion of the surface diffuseness
in the calculation of the Coulomb energy [91, 92]. This diffuseness was modeled using a
Wood-Saxon form for the nuclear matter density. For the charge density it becomes

ρdiffC (~r) =
Ze

4
3
πR3

1

1 + en/d
, (5.12)

where d is a “skin parameter” and n is the distance between the point at ~r and the surface
of the nucleus. The skin parameter characterizes the diffuseness range of nuclear matter
density at the nucleus edge. The correction term to the Coulomb energy for the surface
diffuseness is defined as the effect of the density change ρdiffC − ρsharpC on the Coulomb
energy. This correction term is then added to the usual sharp-edge term. Swiatecki and
Myers defined the surface diffuseness Coulomb correction term δEC as

δEC =

∫

∞

d3~r [ρdiffC (~r)− ρsharpC (~r)]V (~r) , (5.13)

where V (~r) is the Coulomb potential created by the sharp distribution. Using a first-order
Taylor expansion of the Coulomb potential and applying the Gauss theorem they found

δEC = −4πZe

∞∫

−∞

dn · n[ρdiffC (~r)− ρsharpC (~r)] , (5.14)

where n is the normal distance between ~r and the sharp surface. To first order in d
R

it
yields:

δEC = −π
2

2

e2

r0

Z2

A

d

R
. (5.15)

Later, Davies and Nix derived an exact formulation of the Coulomb term for a diffuse-
edge shape [93]. Instead of the Wood-Saxon density they used a Yukawa-folded density
defined as

ρdiffC (~r1) =
Ze

4
3
πR3

∫

V

d3~r2
1

4πa3

e−‖~r1−~r2‖/a

‖~r1 − ~r2‖/a
, (5.16)

where a is the range of the Yukawa density. Its meaning is closely related to the skin
parameter d. In this expression, integration is performed over a volume V circumscribed
by a surface, defined by a generating shape. This generating shape can be defined as
a sharp-edge shape with a parameterized geometrical function ρ(z) or r(θ). But the
generating shape must not be understood as the actual sharp-edge surface of the nucleus,
since in the present case the nucleus has a diffuse surface. Yet this generating surface
is used to fold a nuclear matter density model (such as the Yukawa-folded density) that
will reproduced the features of the generating shape on the density. The exact Coulomb
energy term can be calculated as

EC =
1

2

∫

∞

∫

∞

d3~r1d3~r2

‖~r1 − ~r2‖
ρdiffC (~r1)ρdiffC (~r2) . (5.17)

In the case of the Yukawa-folded charge density, it yields [94,95]

EC =
1

2

(
Ze

4
3
πR3

)2 ∫

V

∫

V

d3~r1d3~r2

‖~r1 − ~r2‖

(
1−

(
1 +

1

2

‖~r1 − ~r2‖
a

)
e−‖~r1−~r2‖/a

)
. (5.18)
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In parallel Krappe, Nix and Sierk [96,97] included diffuse-edge shape in the calculation
of the nuclear energy term. They also used a Yukawa-folded model and replaced the
BS(~q)A2/3 term by

ES(~q) = − 1

8π2r2
0a

4

∫

V

∫

V

d3~r1d3~r2
e−‖~r1−~r2‖/a

‖~r1 − ~r2‖/a
+

2

3

r0

a
A . (5.19)

This expression presents several advantages: it makes the nuclear energy term less sen-
sitive to high multipole wriggles on the nuclear surface. It also leads to an attractive
contribution when used to model heavy ions collisions. It removes excessively high surface-
energy contributions from the neck region of nuclei at scission when the size of the neck
is of the order of the nuclear interaction range. Finally it is readily appropriate to any
types of shape. The last term in the expression is present so that for spherical nuclei and
for a/r0 � 1, one obtains the usual Liquid Drop Model term:

ES(~q = ~0) = A2/3 − a2

r2
0

+

(
A1/3 +

a

r0

)2

exp
(
−2

r0

a
A1/3

)
−−−−→
a/r0→0

A2/3 . (5.20)

5.2.3.2 The Yukawa Plus Exponential Formula

Later again Krappe et al. [98] showed that this formulation in terms of Yukawa-folded
potential has two deficiencies. The first issue was that the Yukawa range a, required
to obtain suitable heavy-ion interaction barrier-heights, was incompatible with the one
obtained from heavy-ion elastic scattering analyses. The second issue raises when one
considers the (Yukawa-folded) interaction energy between two semi-infinite nuclear matter
slabs. Krappe showed that the interaction potential between slabs Eint is

Eint = − aS
2πr2

0

e−s/a , (5.21)

where s is the distance between the slabs and aS characterizes the strength of the inter-
action. It happens that this interaction energy is not minimal when slabs are touching
(s = 0). One can get rid of this feature by considering a potential given as the difference
between two Yukawa-folded functions:

Eint = Eint,1 − Eint,2 . (5.22)

However one has now to deal with four parameters (two ranges a and two strengths aS).
The minimum of slab interaction energy is obtained by the condition

∂Eint,1 − Eint,2

∂s

∣∣∣∣
s=0

= 0 , (5.23)

where indices 1, 2 stand for the two Yukawa folding functions. This condition, also known
as the saturation condition, yields

aS,1
a1

=
aS,2
a2

. (5.24)

If one writes the effective strength aS as

aS = aS,1 − aS,2 , (5.25)
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one gets the relations

aS,1 =
aSa1

a1 − a2

and aS,2 =
aSa2

a1 − a2
. (5.26)

Hence the interaction energy can be written

Eint = − aS
2πr2

0

a1e−s/a1 − a2e−s/a2

a1 − a2

. (5.27)

Heavy-ion scattering experiments suggested that both Yukawa-folded functions have sim-
ilar ranges (a1 ∼ a2). In the limit case a1 → a2, one has

Eint = − aS
2πr2

0

∂

∂a
ae−s/a . (5.28)

The generalization to arbitrary shape comes by the differentiation of the first term of
Eq. 5.19 with respect to a:

ES(~q) = − 1

8π2r2
0a

4

∫

V

∫

V

d3~r1d3~r2

(‖~r1 − ~r2‖
a

− 2

)
e−‖~r1−~r2‖/a

‖~r1 − ~r2‖/a
. (5.29)

It can be noted that, in the case of spherical nuclei, this term becomes

ES(~q = ~0) =

{
1− 3

( a
R

)2

+

(
R

a
+ 1

)[
2 + 3

a

R
+ 3

( a
R

)2
]
e−R/a

}
A2/3 . (5.30)

In the limit of zero range of nuclear forces and no diffuse-edge of the nuclear surface
(a = 0), one gets again the usual Liquid Drop Model term A2/3. However it can be noted
that, in the opposite case a/r0 ∼ 1, the second term of the equation leads to a term that is
not associated with any power of A (also known as A0 terms). This leads to include an A0

term in the mass formula that appears to have a significant effect for mass tabulation [94].

5.2.3.3 Proton Form Factor

In the calculation of the Coulomb energy, one assumes that the nuclear charge is homo-
geneous within the nucleus. The Coulomb energy between two elementary volumes d3~r1

and d3~r2 , in the sharp-edge case, is given by

d6EC =

(
Ze

V

)2 d3~r1d3~r2

‖~r1 − ~r2‖
. (5.31)

In this expression, the potential at a point ~r1 created by a charge density Ze/V at point
~r2, can be easily recognized. However scattering experiments showed that protons have
a finite-range radius and that the related proton charge distribution is exponential [99].
The effective potential between two protons is [100]

V (~r1, ~r2) =
e2

‖~r1 − ~r2‖

[
1− e−x

(
1 +

11

16
x+

3

16
x2 +

1

48
x3

)]
, (5.32)

where x =
√

12‖~r1 − ~r2‖/rp and rp ≈ 0.8 fm is the proton r.m.s. radius. From that
potential, a correction to the Coulomb energy that takes into account the “shape” of
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protons can be calculated. This proton form factor correction energy ∆Ep.f.f. is given
by [94]

∆Ep.f.f. = −1

8

r2
pe

2

r2
0

[
145

48
− 327

2880
(kFrp)2 +

1527

1209600
(kFrp)4 + ...

]
Z2

A
, (5.33)

where kF is the Fermi wave number given by

kF =
1

r0

(
9πZ

4A

)1/3

. (5.34)

The proton form factor correction is assumed to be independent of the deformation.

5.2.3.4 Binding Energy of Electrons

The mass model parameters are often adjusted on experimental atomic masses. Hence
the mass of electrons is removed to obtain the nucleus mass. Additionally the binding
energy of electrons Bel(Z) must also be removed. Foldy suggested [101] that the binding
energy of electrons can be written as a function of powers of Z:

Bel(Z) = 15.73Z7/3 eV (5.35)

Seeger seems to have been the first to include this correction [102, 103] in atomic mass
models. He used:

Bel(Z) = 14.33Z2.39 eV (5.36)

More recent estimations [104] suggest:

Bel(Z) = 14.4381Z2.39 + 1.55468× 10−6Z5.35 eV (5.37)

It should be noted that if one uses this formula for the electron binding energy, the atomic
mass of hydrogen MH should not be used anymore but must be replaced by the masses
of the proton and electron. Indeed in Eq. 5.3, MH = Mp + Me − Bel(1), where Bel(1) =
13.6 eV. This electron binding energy correction is very small compared to the nuclear
binding energy. The related parameters are not adjusted with other mass parameters but
obtained from dedicated adjustments on ionization energies. This correction is introduced
so that adjustable parameters are not falsified by the fitting process.

5.2.3.5 Neutron-Proton Asymmetry terms

Studies of neutron and proton densities in nucleus [105] led to consider that the difference
in the neutron and proton “effective radii” should be taken into account in the mass
formula as an asymmetry component in the surface term [92, 94, 106]. The asymmetry
term aA(N − Z)2/A = aAI

2A of the Bethe-Weizsäcker formula 5.4 can be regarded as a
similar effect but for the volume term. Hence aS should be replaced by cS = aS(1−κSI2),
where I is the relative neutron excess: I = (N − Z)/A. Similarly aV can be replaced by
cV = aV(1 − κVI2) and the asymmetry term aA(N − Z)2/A can be dropped. The new
parameters aS, aV, κS and κV must be adjusted on experimental data.

It was first considered that this treatment of asymmetry was good enough to include
all asymmetry effects. However Negele [100] argued that the unexplained failure of the
mass formula to reproduce mass difference between mirror nuclei 41Sc and 41Ca was due
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to a small asymmetry in the nuclear force [94]. To first order, this effect was included by
a charge-asymmetry energy ∆EA given by

∆EA = cA
Z2 −N2

A
= cA(Z −N) , (5.38)

where cA is a new adjustable parameter.
An other failure of the mass formula is visible for light nuclei having Z = N [92]. This

effect cannot be explained by usual shell or pairing effects [107] and led to the inclusion
of an additional term called the “Wigner term”, defined by

EWigner = (|I|+ d)W , (5.39)

where
d =

{
1/A, Z and N odd, and Z = N

0, otherwise . (5.40)

The d term is justified experimentally [108].

5.2.3.6 Pairing Effects

In the early Bethe-Weizsäcker formula, the pairing term makes no distinction between
pairs of neutrons or pairs of protons. An extension of this approach may consider different
pairing forces between neutrons and protons [109]. This approach includes nevertheless
a “residual interaction” between an unpaired neutron and an unpaired proton that leads
to bring more stability than if one considers protons and neutrons as non-interacting
systems. This last refinement leads to a pairing term δ(Z,N) defined as

δ(Z,N) =





∆̄p + ∆̄n − δnp, Z and N odd ,
∆̄p, Z odd and N even ,
∆̄n, Z even and N odd ,
0, Z and N even .

(5.41)

Here the average pairing gap parameters ∆̄p and ∆̄n and average residual interaction δnp
are given by

∆̄p =
rBS

Z1/3
e+sI−tI2

,

∆̄n =
rBS

N1/3
e−sI−tI2

,

δnp =
h

BSA2/3
,

(5.42)

where BS is defined by Eq. 5.9. Parameters r, s, t and h are to be adjusted on experimental
data. An extensive study of pairing models, comparing macroscopic, BCS and Lipkin-
Nogami models, was performed by Möller and Nix [110] and concluded that no real benefit
is obtained by varying t and s parameters. Hence the final parameters retained for the
average pairing terms are h and r, both parameters s and t are taken to be zero.

5.2.4 Summary and Effect of Deformation

The global expression of the macroscopic energy of the finite-range liquid-drop model,
EFRLDM

macro (Z,A, ~q), is obtained by gather all features presented here-above. The expression
of the atomic mass in the macroscopic model is given by [12]
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EFRLDM
macro (Z,A, ~q) = MHZ +MnN

− aV(1− κVI2)A+ aS(1− κSI2)B1(~q)A2/3 + f(kFrp)
Z2

A

+ a0A
0 + c1

Z2

A1/3
B3(~q)− c4

Z4/3

A1/3
− ca(N − Z)

+W

(
|I|+ 1

A
δZNδZodd

)
+





∆̄p + ∆̄n − δnp, Z and N odd
∆̄p, Z odd and N even
∆̄n, Z even and N odd
0, Z and N even

− aelZ2.39 . (5.43)

where

c1 =
3

5

e2

4πε0r0

and c4 =
5

4
c1

(
3

2π

)2/3

. (5.44)

The expression of the shape-dependent terms in Eq. 5.43, B1 and B3, are, as stated
previously given by

B1(~q) =
A−2/3

8π2r2
0a

4

∫

V

d3~r1

∫

V

d3~r2

(
2− ‖~r1 − ~r2‖

a

)
e−‖~r1−~r2‖/a

‖~r1 − ~r2‖/a
, (5.45)

B3(~q) =
15A−5/3

32π2r5
0

∫

V

d3~r1

∫

V

d3~r2

‖~r1 − ~r2‖

[
1−

(
1 +

1

2

‖~r1 − ~r2‖
aden

)
e−‖~r1−~r2‖/aden

]
. (5.46)

In the present study, the model parameters are not adjusted, their values can be found
in Ref. [12].

In Fig. 5.3, the deformation energy of 240Pu obtained using the macroscopic FRLDM
energy is shown, as a function of the deformation, using the Hill-Wheeler shape parame-
terization (cf. Eq. B.4 of Appendix B.1). It can be seen that the calculated ground state is
spherical (y = 0) and that the fission barrier has a single hump. The barrier height seems
quite low (less than 4 MeV), yet it should be kept in mind that the macroscopic parameters
used here are those of the macroscopic-microscopic model. These parameters have been
adjusted to reproduce experimental data (masses) but using the macroscopic-microscopic
model, not the macroscopic model alone. A similar calculation with the macroscopic-
microscopic model would lead to more realistic barrier heights (about 6 MeV) and also to
a non-spherical ground state. It is also this latter unsatisfactory feature of the macroscopic
model that historically led to introduce the macroscopic-microscopic model.
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Figure 5.3 – Macroscopic deformation energy of the FRLDM using the Hill-Wheeler shape
parameterization for 240Pu.
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5.2.5 Macroscopic Model Verification

In the FRLDM macroscopic expression (cf. Eq 5.43), few terms need specific numerical
verification, it only relates to the B1 and B3 terms that depend not only on the considered
isotope but also on its shape. A macroscopic shape-dependent term, BS is used in the
microscopic shell correction that will be detailed later in this chapter. The numerical
computation of this term must also be verified. The computation of the B1, B3 and BS

terms can be verified against sphere shapes (of radius R = r0A
1/3) for which analytical

expression exists, Eqs. 5.45, 5.46 and 5.9 become respectively:

BS(~qsphere) = 1 , (5.47)

B1(~qsphere) = 1− 3

x2
0

+ (1 + x0)

(
2 +

3

x0

+
3

x2
0

)
e−2x0 , (5.48)

B3(~qsphere) = 1− 5

y2
0

[
1− 15

8y0

+
21

8y3
0

− 3

4

(
1 +

9

2y0

+
7

y2
0

+
7

2y3
0

)
e−2y0

]
, (5.49)

where

x0 =
r0A

1/3

a
and y0 =

r0A
1/3

aden
. (5.50)

Additionally it can be noted that, depending on the shape parameterization, the shape
can be represented by two kinds of functions ρ(z) or r(θ), thus two types of integration
methods must be implemented for B1, B3 and BS (Eqs. 5.9, 5.45 and 5.46). For shapes for
which both representations are possible, the two integration methods lead to consistent
results.

5.3 Microscopic Models
An alternative way of considering the atomic nucleus is the microscopic approach, in which
nucleons are individually modeled in a quantum mechanics framework. This approach is
widely investigated with Hartree-Fock-Bogoliubov self-consistent methods. However the
following study will be limited to phenomenological mean-fields that will be later used in
the macroscopic-microscopic model. Additionally, only axially-symmetric shapes will be
considered.

In this approach nucleon properties are described by an independent-particle Hamil-
tonian Ĥ given by

Ĥ = T̂ + V̂ , (5.51)

where the kinetic operator T̂ can be written, using the cylindrical coordinate system
defined in Fig. 5.4, as

T̂ = − ~2

2m

(
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂ϕ2
+

∂2

∂z2

)
, (5.52)

where m is the mass of a nucleon. In the following, a few different models for the potential
operator V̂ will be discussed.

5.3.1 Nilsson Harmonic Oscillator Model and Basis Wave Func-
tions

A single-particle Hamiltonian that often appears in microscopic models is the Nilsson
Harmonic Oscillator model [111]. In this model, a spinless nucleon of mass m feels an
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Figure 5.4 – Definition of the cylindrical coordinate system.

average three-dimensional harmonic oscillator potential V̂ HO defined as

V̂ HO =
1

2
mω2

xx̂
2 +

1

2
mω2

y ŷ
2 +

1

2
mω2

z ẑ
2 , (5.53)

where ωx, ωy and ωz are the harmonic oscillator frequencies associated with the x, y and z
axes respectively. In the case of axially symmetric potentials, one defines ω⊥ = ωx = ωy,
so that the potential V̂ simplifies to

V̂ HO =
1

2
mω2

⊥ρ̂
2 +

1

2
mω2

z ẑ
2 . (5.54)

It is often convenient to introduce the following variable changes

η =
mω⊥
~

ρ2 and ξ =

√
mωz
~

z . (5.55)

The kinetic operator T̂ can thus be written as

T̂ = −1

2
~ω⊥

(
4
∂

∂η

(
η
∂

∂η

)
+

1

η

∂2

∂ϕ2

)
− 1

2
~ωz

∂2

∂ξ2
. (5.56)

Using variables η and ξ, the potential operator V̂ HO can be written

V̂ HO =
1

2
~ω⊥η +

1

2
~ωzξ2 . (5.57)

In practice, ω⊥ and ωz are not chosen independently, the usual approach is to enforce
ω2
⊥ωz = ω0

0 to be independent of the harmonic oscillator “elongation”. The eigenfunctions
of the corresponding Hamiltonian Ĥ are defined by

Ψnr,nz ,Λ(ρ, z) = ΨΛ
nr(η)Ψnz(ξ)ΨΛ(ϕ), (5.58)

where

ΨΛ(ϕ) = NΛeiΛϕ, NΛ =
1√
2π
,

Ψnz(ξ) = Nnz

[mωz
~

] 1
4 e−

ξ2

2 Hnz(ξ), Nnz =
1√√
π2nznz!

,

ΨΛ
nr(η) = NΛ

nr

[
2mω⊥

~

] 1
2

η
|Λ|
2 e−

η
2L
|Λ|
nr (η), NΛ

nr =

√
nr!

(nr + |Λ|)! ,

(5.59)
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and (nr, nz) ∈ N2, Λ ∈ Z. Here Hnz and L|Λ|nr are respectively the Hermite and associated
Laguerre polynomials [48]. Ψnr,nz ,Λ is also an eigenfunction of the l̂z operator, which is
the orbital angular momentum projection on the deformation axis z, with eigenvalue Λ.
The eigenvalue εnz ,nr,Λ associated with Ψnr,nz ,Λ for the Hamiltonian operator Ĥ is given
by

εnz ,nr,Λ =
1

2
~ω⊥(2nr + |Λ|+ 1) +

1

2
~ωz(nz +

1

2
) . (5.60)

One can easily see (from the modulus sign | |) that the energy level associated with εnz ,nr,Λ
is always degenerate if Λ 6= 0. In this latter case two eigenfunctions with opposite value of
Λ are associated with the εnz ,nr,Λ energy. Hence one can consider only doubly-degenerate
levels with eigenfunctions for which Λ ∈ N∗, with special care of non-degenerate eigen-
functions having Λ = 0. The eigenfunction Ψnr,nz ,Λ can be written in Dirac notation:

Ψnr,nz ,Λ = |nrnzΛ〉 (5.61)

This type of potential may seem simplistic, however it is still widely used as a comput-
ing base in more sophisticated approaches. This point will be detailed in Section 5.5.1.

5.3.2 More Realistic Phenomenological Potentials

More realistic potentials have been introduced since. In the following, only phenomeno-
logical potentials will be presented, i.e. potentials defined by ad-hoc parameters, not
obtained from an effective nucleon-nucleon interaction. These parameterized approaches
can yet be used to produce shape-dependent potentials.

5.3.2.1 Average Scalar Potential

The most commonly used phenomenological potential is known as the Wood-Saxon po-
tential [112]. It has been introduced as an optical model interaction potential as described
in Section 4.3 of Chapter 4. The potential well felt by a nucleon is given by

V̂N = − V0

1 + en(~r)/a
, (5.62)

where n(~r) is the normal distance from ~r to the surface of the nucleus. Although this
type of parameterization could be used for deformed nuclei (n(~r) depends not only on r
but also on ~r

r

)
, another parameterization, known as the Yukawa-folded model, is more

suitable for arbitrary shapes. It is defined by

V̂N = − V0

4πa3

∫

V

e−‖~r−~r ′‖/a

‖~r − ~r ′‖/ad
3~r ′ . (5.63)

For protons, an additional scalar potential V̂C resulting from the Coulomb interaction
must be added. It reads

V̂C =
Ze2

4
3
πR3

∫

V

d3~r ′

‖~r − ~r ′‖ . (5.64)

Figure 5.5 shows an example of such potentials for neutrons and protons using the Yukawa-
folded model. The generating shape is defined using the three-quadratic surface param-
eterization (3QS) that is detailed in Appendix B.1. One can observe structures on the
well bottom for protons that do not exist for neutrons. They are due to long-range of the
Coulomb interaction.
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Figure 5.5 – Example of scalar mean potentials calculated by a folded-Yukawa model for
236U. Here a = 0.8 fm, V0 ≈ 45 MeV for neutrons and V0 ≈ 60 MeV for protons. The
3QS generating shape used here (cf. Appendix B.1), is symbolized by a solid green line
on plane V = 0.

The parameters used in the model are listed in Ref. [12]. The spherical-equivalent
radius definition is obtained from Ref. [113], the proton and neutron well depths are
taken from Ref. [87]. Finally the spin-orbit coupling strength is defined in Ref. [94] from
interpolation of experimental data fitting [114] in regions A ≈ 160 and A ≈ 240.

5.3.2.2 Spin-Orbit Coupling Potential

In addition to the mean scalar potential, a spin-orbit coupling potential V̂s.o. must be
added in the Hamiltonian. In spherically symmetric potentials, this term is proportional
to ~̂S · ~̂L, where ~̂S is the nucleons intrinsic spin operator and ~̂L is its relative angular
momentum operator. However, for arbitrary shapes, a more general form of the coupling
potential must be considered, known as full-Thomas term [115]. It is given by

V̂s.o. = −λ
(

~
2mc

)2

¯̄σ · ~∇VN ×
~p

~
, (5.65)

where ¯̄σ is the Pauli spin vector

¯̄σ =



σx
σy
σz




(x,y,z)

=



σρ
σϕ
σz




(ρ,ϕ,z)

=



σr
σθ
σϕ




(r,θ,ϕ)

. (5.66)

In cylindrical coordinate system, one has the Pauli matrices

σρ =

[
0 e−iϕ
eiϕ 0

]
, σϕ =

[
0 −ie−iϕ
ieiϕ 0

]
, σz =

[
1 0
0 −1

]
. (5.67)
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This coupling potential, because of the presence of the Pauli spin vector ¯̄σ, will introduce
mixing between states with different Λ and Σ values, Σ being the quantum number related
to the projection of Ŝ on the z axis. However the total angular momentum projection on
the z axis, Ω = Λ + Σ, remains a good quantum number. The spin-orbit potential V̂s.o.
operates on wave functions that can be written as

Φ(ρ, z) =

(
ψ↑↑(z, ρ)
ψ↑↓(z, ρ)

)
, (5.68)

where ψ↑↑ and ψ↑↓ are wave functions for which Ω = Λ + 1
2
and Ω = Λ − 1

2
respectively.

Hence the spin-orbit potential operator can be written in a matrix form [116] as

V̂s.o. = λ

(
~

2mc

)2

 − (Ω− 1

2
)

ρ
∂VN
∂ρ

[
(Ω+ 1

2
)

ρ
∂VN
∂z

+ ∂VN
∂z

∂
∂ρ
− ∂VN

∂ρ
∂
∂z

]
[

(Ω− 1
2

)

ρ
∂VN
∂z
− ∂VN

∂z
∂
∂ρ

+ ∂VN
∂ρ

∂
∂z

]
(Ω+ 1

2
)

ρ
∂VN
∂ρ


 .

(5.69)
In case of nucleons (Σ = ±1

2
) no states with Ω = 0 exists, hence there are only doubly-

degenerate eigenstates3 (i, ī) having opposite signs of Ω. Considering eigenstate i with
Ω > 0, the state wave can be written

Φi(ρ, z) =

(
ψ↑↑i+(z, ρ)

ψ↑↓i+(z, ρ)

)
, (5.70)

the corresponding eigenstate ī with Ω < 0 is obtained [117] from Φi as

Φī(ρ, z) =

(
−ψ↑↓i+(z, ρ)

ψ↑↑i+(z, ρ)

)
. (5.71)

Considering Ω > 0, one can write

|Σ〉 =





(
1
0

)
, for Σ = +1

2

(
0
1

)
, for Σ = −1

2

. (5.72)

The wave function Φi can thus be written

Φi(ρ, z) = ψ↑↑i+(z, ρ)|Σ = +1
2
〉+ ψ↑↓i+(z, ρ)|Σ = −1

2
〉 . (5.73)

In case of non-zero spin particles, the harmonic oscillator wave functions |nznrΛ〉 can
be used to define a new base of functions

|nznrΛΣ〉 = |nznrΛ〉 |Σ〉 . (5.74)

These new functions will be used as an expansion base for the numerical computation of
the actual wave functions as described in Section 5.5.1, this method will namely rely on
the calculation of coupling terms between different functions of the base.

3If i is one of the doubly-degenerate state (for instance with Ω > 0), its time-reversed counterpart is
written ī.
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5.3.3 Single-Particle States and Deformation

Given a parameterized shape, a folded nuclear potential V̂N, a Coulomb potential V̂C
and a spin-orbit coupling potential V̂s.o. can be defined. The Schrödinger equation of
independent particles [87], written

Ĥψ =
[
T̂ + V̂N + V̂C + V̂s.o.

]
ψ = εψ , (5.75)

is solved and leads to single-particle wave functions ψi and related single-particle ener-
gies εi.

An illustration of such wave functions is shown in Fig. 5.6. One can notice that
nucleons are not necessarily localized in a specific spatial region; in this example it is
particularly true for the proton state. The wave refection-asymmetry in the figure is due
to the mass-asymmetry of the generating shape (green line). The wave functions are not
directly required for the calculation of the microscopic corrections that must be brought
to the macroscopic energy, however they will be required for the calculation of inertia
quantities. This will be detailed in Chapter 6.
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ρ
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m
]

Low

High

Probability density

Proton

−20 −15 −10 −5 0 5 10 15 20
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10

z [fm]

ρ
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m
]

Figure 5.6 – Example of nucleon probability density |ψi|2 for the last occupied level of
240Pu. The generating shape, here a 3QS one (cf. Appendix B.1), is dwawn as a solid
green line.

Figure 5.7 (respectively 5.8) shows single-particle energies εi for neutrons (respec-
tively protons) calculated for different shapes. Here described by the Hill-Wheeler shape
parameter y (cf. Appendix B.1). This figure shows results obtained with the newly im-
plemented single-particle program, for comparison with results from Ref. [87]. For the
spherical shape, the magic numbers appear. They can be found by filling levels with two
nucleons per level, from the first (most negative) level. Magic numbers occur when a
significant gap between level energies exists. Considering two neighboring nuclei having
the same level scheme, one has all levels filled with nucleons up to a gap, the other one
has just one more nucleon that is at an energy quite above than the former one. The
binding energy per nucleon, would be quite reduced in the latter case compared to the
former one.

In Figs. 5.7 and 5.8, only the less tightly bound levels are shown, so only largest
magic number can be seen. There are the experimentally observed numbers 82 and 126
and the predicted number 184 for neutrons and the experimentally observed 50 and 82
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Figure 5.7 – Example of Nilsson diagram showing the single-particle energies εi as a
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parameterization). Each line corresponds to a doubly-degenerate level (MJ = ±Ω).
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Figure 5.8 – Same as Fig. 5.7 but for protons.
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numbers and the predicted 114 number for protons. In the case of spherically symmetric
potential, the “spectroscopy” levels correspond to good quantum numbers N`j, shown
in the figures. The degeneracy is broken for non-spherical shapes. The von Neumann-
Wigner non-crossing rule [118] is also verified; levels with similar Ω and parity Π quantum
numbers do not cross when deformation increases. Finally one can notice that as the shape
evolves from sphere to dumbbell-like shape (with two nascent fragments), the high-Ω levels
increase in energy and the and the low-Ω levels decrease in energy.

Figures 5.7 and 5.8 show the level energies for the 240Pu nucleus as a function of the
deformation. The nucleus “starts” from a spherical shape and evolves to a dumbbell shape
corresponding to two nascent fragments. The 240Pu nucleus contains many nucleons and,
in its ground state, it has low-lying levels with high-angular momenta. On the contrary,
fragments are smaller and have not these high-angular-momentum levels in their low-
lying level schemes. As the levels energies are continuous functions of deformation, the
high-angular-momentum levels must “disappear” otherwise they would be present in the
fragment level schemes. Thus these level energies must raise as deformation increases. To
compensate this reduction of available levels, extra low-angular-momentum levels must
“appear”, i.e. as the nucleus deforms, levels from the positive energy region (for spherical
shapes) fall down to the low-lying negative energy region (for elongated shapes), as can
be seen in the figures. For instance in Fig. 5.8, orange lines (Ω = 7

2
) seem to rise with

deformation whereas blue lines (Ω = 1
2
) tend to go down.

5.3.4 Microscopic Model Verifications

Several verifications of the microscopic model have been done.

• A first natural verification consists in considering a deformed harmonic oscillator
potential V̂ HO for the nuclear average potential V̂N (ω⊥ 6= ωz), no Coulomb potential
V̂C = 0 and no spin-orbit coupling potential V̂s.o. = 0. In this case, the eventual
Hamiltonian matrix HΩ used in the expansion method described in Section 5.5.1 is
diagonal. The diagonal matrix element, corresponding to the base function |nrnzΛΣ〉
has an analytical expression (cf. Eq. 5.60)

εnz ,nr,Λ =
1

2
~ω⊥(2nr + |Λ|+ 1) +

1

2
~ωz(nz +

1

2
) , (5.76)

which is the eigenvalue associated with |nrnzΛ〉. With this simplified potential, there
is no dependence on Σ, and thus the diagonalization of the Hamiltonian matrix4 HΩ

must yields twice to each eigenvalues. For this test, the implemented computer code
recovers exactly the analytical values of εnz ,nr,Λ within errors smaller than 10−3%.

• The second verification deals with the above potential specifications, but where the
V̂N potential is taken to be spherical (ω⊥ = ωz). This case is just a particular
configuration of the above general verification. However it is well known that for
spherically symmetric potentials, `, s and j are good quantum numbers and that
corresponding energy levels are 2(2` + 1)-degenerate (this degeneracy corresponds
to the sz and `z quantum numbers). For this test the code gives consistent results
as well. Even if numerical values are not exactly identical for all degenerate states
(differences less than 10−3% between them), these differences are much smaller than
the energy differences between degenerate levels.

4This is correct if both
∣∣nrnzΛ,+1

2

〉
and

∣∣nrnz(Λ + 1),−1
2

〉
are contained in the base ofHΩ (Ω = Λ+Σ).

If the base is truncated using all base functions having a Λ value below a given Λmax, then eigenvalues
εnz,nr,Λmax are found only once among the matrix HΩ eigenvalues.
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• A third verification of the code can be made using again a spherical harmonic
oscillator V̂ HO and no Coulomb potential but this time using a spin-orbit coupling
potential with a special form. Indeed, in such spherically symmetric case, the full
Thomas term (cf. Eq. 5.65) becomes

V̂s.o. =− κ

~
¯̄σ · ~∇VN ×

~p

~
= −κ

~
¯̄σ · dVN

dr
~r

r
× ~p

~
(5.77)

=− 2
κ

~
1

r

dVN
dr

1

~2
~S · ~r × ~p︸ ︷︷ ︸

~L

= −2
κ

~
1

r

dVN
dr

~S · ~L
~2

, (5.78)

where κ
~ = λ

( ~
2mc

)2. The ~S · ~L operator can be written Ĵ2− L̂2− Ŝ2 so that 2
~S·~L
~2 has

for eigenvalue j(j+1)−`(`+1)−s(s+1). As the wave functions associated with the
spherical harmonic oscillator (without spin-orbit coupling) are also eigenfunctions
of ~S · ~L, thus Ĥ and V̂s.o. commute, providing that

1

r

dVN
dr

= const./r . (5.79)

A proper substitution of VN leads to an analytical shift of the energy levels (this
replacement of VN is made in the V̂s.o. expression only, not for the scalar mean field
that remains a spherical harmonic oscillator V̂ HO). If the replacement form for VN
is chosen to be

C~
κ

r2

2
, C ∈ R, (5.80)

it leads to an energy shift ∆Es.o. (with respect to level energy without spin-orbit
coupling) of

∆Es.o. = −C [j(j + 1)− `(`+ 1)− s(s+ 1)] . (5.81)

This term lifts the spherical level degeneracy related to ` and s. Only the degeneracy
related to j remains. The C parameter will quantify the magnitude of the energy
shift. As nucleons are spin-1

2
particles, only two (`, s) coupling are possible:

∆Es.o. =

{
C`(`+ 1), j = `− 1

2
,

−C`, j = `+ 1
2
.

(5.82)

Therefore “large” j levels will have lower energies than “small” j levels. This spe-
cial configuration (spherical harmonic oscillator potential with “special” spin-orbit
coupling potential) was tested with the code and gave very satisfactory results.

When a realistic phenomenological spin-orbit coupling is included, the proper level
degeneracy lift can be observed. An example is shown in Fig. 5.9 for 208Pb. The spin-
orbit coupling is introduced progressively (i.e. a “strength” of the coupling is used to
vary the magnitude of the spin-orbit potential used for the figure, 0% means no spin-orbit
coupling potential, 100% means full realistic potential). As the strength is varied from 0
to 100% it is observed that, for all levels but the s ones, the spin-orbit coupling potential
“splits” the 0% levels into two levels. These two levels correspond to two different possible
values of j = `± 1

2
, as ` is no longer a good quantum number. Given a 0%-strength level

(labeled N`), two j-levels appears with increasing the strength, with the larger j that is
the lower energy level, in agreement with Eq. 5.82.

It must be noted here that the program computes states as doubly-degenerate levels
having Ω = |jz| ≥ 1

2
. When no deformation is considered, i.e. for spherical potentials, j
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Figure 5.9 – Variation of the single-particle level energies of 208Pb with the strength of the
spin-orbit coupling. Unless other specification, energies are given for states with Ω = 1

2
.

Solid and dashed lines refer respectively to positive and negative parities. Spectroscopic
labels N`j are used, where N is the principal quantum number, ` and j are quantum
numbers related respectively to the orbital and total angular momentum. Colors are
related to the ` quantum numbers. To avoid overloaded figure, the same colors are used
for all principal quantum numbers N . Levels in the legend box are ordered according to
the level order for the 0% coupling strength situiation. Finally, for a given N` level if two
corresponding j levels exist, the level with the larger j value is always the lower of the
two. An example is given with 1g and 2g levels.

is a good quantum number, and the degenerate states of a given j-level have jz quantum
numbers spanning from −j to +j, meaning a 2j + 1 degeneracy that is also found when
analyzing code results. The levels shown in Fig. 5.9 correspond to the doubly-degenerate
levels with Ωπ = 1

2

± as these states are present in all degenerate j-levels and are thus
representative of these j-levels. Just like in Section 5.3.3, levels with the same Ωπ quantum
numbers do not cross. Enlargements are shown for confirmation on the right side of
Fig. 5.9, where levels corresponding to states Ωπ 6= 1

2

± are also shown. From enlargements
it can be seen that levels with identical Ωπ do not cross. To make levels shown in Fig. 5.9
having constant degeneracy when the spin-orbit coupling strength varies, the colors change
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to be consistent with the situation with no spin-orbit coupling. For instance in the lower
enlargement inset, it can be seen that the two levels shown with Ω+ = 1

2

+ (green and blue
lines) do not cross. The same phenomenon can be observed for all other states composing
these levels (Ω > 1

2
, not shown in the figure), expect for Ω = 11

2
(dotted line) as this

doubly-degenerate level is only present in one of the two levels (green line). This is a
striking evidence that the Pauli exclusion principle is properly rendered by the model.

A final validation on experimental single-particle levels can be done. Figure 5.10 shows
single-particle levels for neutrons and protons in 208Pb. The blue bars show energies
obtained with the Yukawa-folded independent-particle model; each bar stands for doubly-
degenerate level. The multiplicity of degenerate levels (degenerate bars) gives indication
to label levels with spectroscopic notation N`j. Even if calculated level energies do not
agree very well with experimental levels (red bars), the level multiplicity is reproduced.
For experimental data, multiplicity is obtained from the experimental angular momentum
associated with the level. An experimental level with j = 3/2 will have a degeneracy of
2j + 1 = 4 (the degeneracy is related to the mj quantum number). As bars stand
for doubly-degenerate levels, this j = 3/2 level will be represented by two bars. This
comparison using bars is not common in scientific publications; the more common level
schemes are shown on the right sides of the diagrams.
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Figure 5.10 – Comparison of the 208Pb single-particle energies, obtained with the newly
implemented single-particle model, for protons (top) and neutron (bottom) against ex-
perimental data taken from Ref. [119]. Each bar corresponds to a doubly-degenerate
states.
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5.4 Macroscopic-Microscopic Model

The macroscopic and microscopic models have now been introduced. To obtain the
macroscopic-microscopic energy, the microscopic shell and pairing corrections δEshell and
δEpair must be calculated using the single-particle-state (ψi, εi). It is recalled here that
these corrections are calculated independently for neutrons and protons.

5.4.1 Shell and Pairing Corrections

The discrete character of the nucleon energy levels is responsible for properties that cannot
be reproduced by a macroscopic model alone. Examples of such properties are for instance
a non-zero quadrupole deformation at the ground state or the double-humped shape of
fission barrier. Corrections corresponding to this discrete nature are to be brought to
the macroscopic energy that is obtained considering a uniform and homogeneous model
of the nucleus [15]. These corrections are calculated independently for neutrons and
protons. Figure 5.11 shows the effect of a discrete distribution of levels on the cumulative
number of levels N cumul

disc , counted up to a certain energy compared with the case of the
continuous distribution N cumul

cont . It can be seen that the continuous distribution sometimes
underestimates, sometimes overestimates the total number of levels. The shell correction,
originally introduced by Strutinsky [15], is calculated with the same idea but considering
the energy of the level instead of the number of levels. Details on the shell correction will
be given in the following.

εk

ε

N cumul
disc N cumul

cont

0

10

20

30

Figure 5.11 – Schematic illustration of the discrete nature of nucleon levels. The cumula-
tive number of levels is shown as a function of the level energy for a discrete distribution
N cumul

disc (red curve) and for a continuous distribution N cumul
cont (blue curve). The correspond-

ing level scheme is shown in the lower part of the figure.

Corrections that are included in macroscopic-microscopic models are related to the
shell structure of the energy levels [87, 120] but also to its impact on the pairing en-
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ergy [110]. In microscopic models, the effect of nucleons pairing on the total energy
depends on the single-particle states. It differs from its macroscopic definition, for which
it only depends on odd-even property of N and Z. The inclusion of a pairing interaction
“destroys” the sharp nature of the Fermi surface5. On a Nilsson diagram, the occupation
number vdisck of a state k is no longer 1, or 0 according if the level is below or above the
Fermi surface. As only even system will be considered here, the last occupied level has a
pair-occupancy of 1. In the interest of simplicity and clarity, introduction of the pairing
correction will be restrained in the following to even number of nucleons. Extensions to
odd numbers of nucleons exist and can be found, for instance, in Ref. [110]. Instead of
having integer values, the occupation number vk becomes a real number that can take
any values between 0 and 1 (it is actually an occupation number of the pair at the con-
sidered level and thus the maximum value is 1 and not 2). This is schematically shown in
Fig. 5.12. The effect of this pairing correction depends on the “spread” of levels and is thus
different depending if one considers a set of discrete levels or a continuous distribution.
This is why a pairing correction must be included as energy-related “shell effect”. Two
models for the pairing correction will be presented: the Bardeen, Cooper, and Schrieffer
(BCS) and Lipkin-Nogami models. In practice, it is the Lipkin-Nogami model that is
used for the calculation presented in this study, yet the BCS is more suitable for a first
introduction to pairing correction.

εk

εk

vno pair
k vpairk

0

1

Figure 5.12 – Schematic effect of pairing interaction on level occupation numbers. The
occupation numbers are shown with (vpairk ) and without (vno pair

k ) pairing considered. The
corresponding level scheme is shown below the figure.

5.4.1.1 Shell Correction Term

The usual calculation of the shell correction considers a set of discrete energy levels {εk}k,
from which a smooth level density must be extracted. The eventual shell correction is
calculated as the difference between the cumulative energy of the discrete distribution and
the one obtained with the smooth distribution. The method described in Refs. [87, 120]
has been implemented in the CONRAD code for the present study in order to obtain the
smooth distribution is reported here. More details are provided in Appendix B.2.1. The
cumulative number of levels of the discrete distribution n at a given energy ε is given by

n(ε) =

ε∫

−∞

dn
dε′

dε′ =
ε∫

−∞

g(ε′)dε′ , (5.83)

5The Fermi surface is the name of the energy region below the energy of the least tightly bound
nucleon.

94



CHAPTER 5. MACROSCOPIC-MICROSCOPIC MODELS 5.4. MACROSCOPIC-MICROSCOPIC MODEL

where the discrete level density g is expressed from the single-particle energies εn as

g(ε) =
∞∑

n=1

δ(ε− εn) . (5.84)

The shell correction calculation method requires to have an equivalent smooth level den-
sity ḡ. To obtain ḡ, the discrete density g is written with Gaussian weighting, where the
Dirac functions δ are expanded in terms of Hermite polynomials [87], g becomes

g(ε) =
1

γ

∞∑

n=1

δ

(
ε− εn
γ

)
=

1

γ
√
π

∞∑

n=1

e−u
2
n

∞∑

m=0

cmHm(un) , (5.85)

where
un =

ε− εn
γ

, (5.86)

and

cm =





(−1)m/2

2m(m/2)!
, m even ,

0, m odd .
(5.87)

The smoothing parameter γ has a smoothing effect on ḡ. The smooth density ḡ can be
obtained from g by cutting off the δ-function expansion up to a certain order p, so that

ḡ(ε) =
1

γ
√
π

∞∑

n=1

e−u
2
n

p∑

m=0

cmHm(un) . (5.88)

From this smooth level distribution, it is possible to calculate the smooth cumulative
number of levels up to energy ε, n̄(ε), which can be written

n̄(ε) =

ε∫

−∞

ḡ(ε′)dε′ =
∞∑

n=1

{
1

2
[1 + erf(un)]− 1√

π
e−u

2
n

p∑

m=1

cmHm−1(un)

}
. (5.89)

The cumulative number of levels n̄ is not directly used to calculate the correction energy
but is used to obtain the smooth-distribution Fermi energy λ̄ that satisfies

n̄(λ̄) = N, (5.90)

where N is the total number of nucleon considered (neutrons and protons are treated
separately). The eventual shell correction is defined as

δEshell =
N∑

n=1

εn −
N∫

0

ε̄(n)dn , (5.91)

where ε̄ is the smooth equivalent to εn. The second term of Eq. 5.91 can be transformed
using ḡ as

N∫

0

ε̄(n)dn =

λ̄∫

−∞

εḡ(ε)dε . (5.92)

So that the second term of Eq. 5.91 can be written as a function of the discrete level
energies:
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N∫

0

ε̄(n)dn =
∞∑

n=1

{
1

2
εn[1 + erf(ūn)]− 1

2
√
π
γe−ū

2
n

− 1√
π
e−ū

2
n

p∑

m=1

cm

[
1

2
γHm(ūn) + εnHm−1(ūn) +mγHm−2(ūn)

]}
, (5.93)

where

ūn =
λ̄− εn
γ

. (5.94)

Equation 5.93 can be used in Eq. 5.91 to provide finally the shell correction energy δEshell.
A discussion about the shell correction treatment, namely the effect of level in the con-
tinuum, can be found in Appendix B.2.2.

In practice, the smoothing parameter γ used in the shell calculation (Eq. 5.93) carries
an empirical dependence on the BS term defined in Eq. 5.9, γ is expressed as

γ = ~ω0BS(shape) . (5.95)

5.4.1.2 Pairing Correction Term (BCS model)

The pairing correction is calculated in a similar way than for the shell correction. The
term pairing correction should be used carefully as a pairing correction can also be brought
to single-particle calculation in a microscopic approach. In the present case, the pairing
correction actually refers to a shell correction for the pairing effect. A pairing correction
is calculated with both types of energy distribution g and ḡ, yielding respectively Epc and
Ēpc, then the difference between the two gives the correction δEpair to the macroscopic
energy

δEpair = Epc − Ēpc . (5.96)

The first inclusions [15, 87, 121] of a microscopic correction related to pairing in the
nuclear deformation energy were based on the BCS [122]. This model has been developed
by Bardeen, Cooper, and Schrieffer to explain the superconductivity property of electrons
in metals. Given a pairing strength G and a pairing gap ∆, the pairing interaction leads
to a new expectation value of the total binding energy [19] EBCS that is given by

EBCS = 2

Np∑

k=1

εkv
2
k −G

Np∑

k=1

v4
k −

∆2

G
, (5.97)

where the summation is taken over all doubly-degenerate levels considered in the pairing
calculation. The pairing correction for a discrete energy level distribution EBCS

correction is
given by

EBCS
correction = EBCS − 2

1
2
Np∑

k=1

εk . (5.98)

The pairing correlation EBCS
pc may be considered instead of the above expression [87,123].

However it only results in a shift in energy of +1
2
GNp compared with the above expression.

As this energy shift occurs for both terms EBCS
pc and ĒBCS

pc this has no effects on the
eventual correction δEpair brought to the macroscopic energy. The pairing correlation of
the discrete energy level scheme EBCS

pc is given by

EBCS
pc = 2




Np∑

k=1

εkv
2
k −

1
2
Np∑

k=1

εk


− ∆2

G
−G




Np∑

k=1

v4
k −

1
2
Np∑

k=1

1


 , (5.99)
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where the level occupancy numbers vk, the Fermi energy λ and the pairing gap ∆ satisfy
the BCS equations:

2Np = 2

Np∑

k=1

v2
k , (5.100)

2

G
=

Np∑

k=1

1

[(εk − λ)2 + ∆2]1/2
, (5.101)

∀k ∈ J1, NpK, v2
k =

1

2

{
1− εk − λ

[(εk − λ)2 + ∆2]1/2

}
. (5.102)

The equivalent expression ĒBCS
pc for a continuous energy distribution is obtained using

a linearized expression of ε̄(n) near the Fermi level. The pairing strength G can be
calculated [87] as

1

G
= ρ̄ ln





[(
Np

2ρ̄∆̄

)2

+ 1

]1/2

+
Np

2ρ̄∆̄



 , (5.103)

where ρ̄ is the average density of doubly-degenerate levels and is given by

ρ̄ =
1

2
ḡ(λ̄) . (5.104)

The pairing correlation for the continuous energy distribution is finally given by

ĒBCS
pc = −1

4

N2
p

ρ̄





[
1 +

(
2ρ̄∆̄

Np

)2
]1/2

− 1



+

1

2
ρ̄∆̄G arctan

Np

2ρ̄∆̄
. (5.105)

5.4.1.3 Pairing Correction Term (Lipkin-Nogami Model)

The BCS model fails to describe the pairing effect when the level gap at the Fermi en-
ergy is too large. To solve this liability, a refined model was developed by Lipkin and
Nogami [124–128]. It has been then adapted to the nuclear pairing correction that is re-
quired for the macroscopic-microscopic approach [110]. In this model, the average pairing
gap, written ∆G, is a model parameter. The following notation will be used: the pairing
interaction involved Ntot nucleons dispatched between the levels N1 and N2, Np levels
are thus involved. Here again, in the interest of simplicity, only cases with Ntot even are
treated. The pairing strength G is obtained by [110]

2

G
= ρ̄

[
ln

(√
y2

2 + ∆2
G + y2

)
− ln

(√
y2

1 + ∆2
G + y1

)]
, (5.106)

where ρ̄ is again the average density of doubly-degenerate levels and is given by

ρ̄ =
1

2
ḡ(λ̄) , (5.107)

and

y1 =
N1 + 1− 1

2
Ntot

ρ̄
and y2 =

N2 − 1
2
Ntot

ρ̄
. (5.108)

The smooth pairing term ĒLN
pc is given by

97



5.4. MACROSCOPIC-MICROSCOPIC MODEL CHAPTER 5. MACROSCOPIC-MICROSCOPIC MODELS

ĒLN
pc =

1

2
ρ̄

[
(y2 −G)

(
y2 −

√
y2

2 + ∆2
G

)
+ (y1 −G)

(
y1 +

√
y2

1 + ∆2
G

)]

+
1

4
(G− 4λ̄2)ρ̄∆G

[
arctan

(
y2

∆G

)
− arctan

(
y1

∆G

)]
, (5.109)

where λ̄2 is given by

λ̄2 =
G

4

(
A− C
B − C

)
, (5.110)

where

A =

(
ρ̄∆G

4

)2





(
2

Gρ̄

)2

−
[

ln

(√
y2

2 + ∆2
G√

y2
1 + ∆2

G

)]2


 , (5.111)

B =
∆2
Gρ̄

2

16

[
arctan

(
y2

∆G

)
− arctan

(
y1

∆G

)]2

, (5.112)

C =
ρ̄∆G

32

[
∆G

(
y2

y2
2 + ∆2

G

− y1

y2
1 + ∆2

G

)
+ arctan

(
y2

∆G

)
− arctan

(
y1

∆G

)]
. (5.113)

The discrete pairing term ELN
pc is obtained by solving the 2Np + 3 coupled equations:

Np =

Np∑

k=1

v2
k , (5.114)

∀k ∈ J1, NpK, v2
k =

1

2

{
1− ek − λ

[(ek − λ)2 + ∆2]1/2

}
, u2

k = 1− v2
k , (5.115)

∀k ∈ J1, NpK, ek = εk + (4λ2 −G)v2
k , (5.116)

2

G
=

Np∑

k=1

1

[(ek − λ)2 + ∆2]1/2
, (5.117)

λ2 =
G

4




(
Np∑
k=1

u3
kvk

)(
Np∑
k=1

ukv
3
k

)
−

Np∑
k=1

u4
kv

4
k

(
Np∑
k=1

u2
kv

2
k

)2

−
Np∑
k=1

u4
kv

4
k



. (5.118)

From these equations the pairing energy ∆, the Fermi energy λ, the number fluctuation
constant λ2 and the occupation numbers vk are determined. The discrete pairing term ELN

pc
is finally obtained by

ELN
pc =

Np∑

k=1

(2v2
k − nk)εk −

∆2

G
− G

2

Np∑

k=1

(2v4
k − nk)− 4λ2

Np∑

k=1

u2
kv

2
k , (5.119)

where nk takes the values 2 or 0 according to the discrete distribution.
Both pairing models (BCS and Lipkin-Nogami) have been implemented. The BCS

implementation was easier in a first approach but the Lipkin-Nogami was necessary for
the complete verification of the macroscopic-microscopic model.
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5.4.1.4 Pairing Models Comparison

Figures 5.13 shows the paring correction δEpair obtained by both the BCS and Lipkin-
Nogami models. This figure is obtained using a shape described using the perturbed
spheroid parameterization (cf. Appendix B.1), where the two shape parameters ε2 and ε4
are varied. It can be seen that the two models lead to quite similar results, yet in two areas,
highlighted with green circles, small differences can be observed. As the Lipkin-Nogami
is a more robust model than the traditional BCS, and because the FRLDM parameters
are given [12] for this model, it was also selected as for the present work.
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Figure 5.13 – Comparison of the BCS and Lipkin-Nogami corrections obtained using a
perturbed spheroid parameterization (cf. Appendix B.1).

5.4.2 Macroscopic-Microscopic Model Verification and Results

5.4.2.1 Zero-Point Vibrational Energy

In order the verify the present implementation of the macroscopic-microscopic model, it
was necessary to be able to calculate nuclear masses. The nuclear masses are obtained
from the minimum value of the PES6 to which a zero-point vibrational energy is added.
Therefore in addition to all previous contributing terms, a last one must be added. This
term stands for the fact that the PES model provides the deformation potential “felt” by
the nucleus. The experimental mass is related to the actual energy level of the nucleus at
rest inside its deformation potential well. As the nucleus cannot have zero kinetic energy
(forbidden by quantum mechanics), a certain offset must be added to the deformation
potential minimum. In Fig. 5.14, an example is shown for a harmonic oscillator potential.
The first energy level is shifted from the ground state deformation potential Vg.s. = V (ηg.s.).
The ground state deformation still remains defined as the minimum of the deformation
energy but the actual nucleus wave function spreads over certain deformation range.

There is some arbitrariness in the choice of collective coordinates for the zero vibra-
tion(s) point (one or several degrees of freedom can be considered). For the calculation
of this last term, the procedure described in Refs. [12, 94] is applied. Only one degree
of freedom is retained, here is this degree of freedom is ε2 and corresponds to the per-
turbed spheroid parameterization of the nuclear shape that is defined in Appendix B.1.3.

6A restricted area in the PES must be considered to avoid scission shapes to be considered as the
ground states as these shapes may have related deformation energies lower than the ground state one.
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η
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1
2~ω

Figure 5.14 – Illustration of the first level construction from the addition of the zero
point energy to the minimum energy of an harmonic oscillator potential. The harmonic
oscillator potential operates on an arbitray deformation parameter η.

The actual potential is locally approximated by a harmonic oscillator. First, the actual
potential energy surface stiffness Cε2 is calculated for the ground state deformation

Cε2 =
∂2Vactual
∂ε22

∣∣∣∣
g.s.
. (5.120)

Then the inertia parameter Bε2 is obtained considering the nuclear matter as an irrota-
tional liquid [94]:

Birr
ε2

(ε2) =
2

15

1 + 2
9
ε22

(1− 1
3
ε22)2

(
1− 1

3
ε22 −

2

27
ε32

)−4/3

M0R
2, (5.121)

where M0 = A×m (m is the mass of a nucleon, A is the mass number), and R = r0A
1/3.

The local curvature ωirr
ε2

is defined by

ωirr
ε2

=

(
Cε2
Birr
ε2

)1/2

. (5.122)

Following Ref. [12] the final zero-point vibrational energy is given by

Ezp =
1

2
~ωε2 , (5.123)

where
ωε2 = Rωirr

ε2
. (5.124)

The R parameter is adjusted so that for spherical shape the inertia Bε2 equals the inertia
determined from an adjustment to spontaneous-fission half-lives of actinides.

Finally, all these refinements can be gathered to form the finite-range liquid-drop
model. Although the number of refinements seems rather large, only few terms are shape-
dependent. Therefore they will mostly only produce an energy shift of the PES but will
have a significant effect on the predicted ground-state masses. This confrontation of the
implemented model with experimental masses is a validation that cannot be overlooked.
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5.4.2.2 Results for Masses

At this point, both macroscopic and microscopic models have been presented, and the
related implementation in the CONRAD code has been verified. The calculation of the
shell and pairing corrections from the single-particle orbitals have been verified on a
benchmark kindly provided by P. Möller [129]. As the FRLDM parameters are adjusted
to reproduce experimental masses it is interesting to test the mass prediction power of the
newly implemented model as a final validation point. In the beginning of this chapter the
Aston curve was presented along with its modeling with the Bethe-Weizsäcker formula
(c.f. Fig. 5.2). A similar plot can be made with values obtained from the FRLDM, this
is shown in Fig. 5.15.
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Figure 5.15 – Results of newly implemented FRLDM for binding energies per nucleon.
Red numbers are magic numbers for which small structures are visible. This figure must
be compared with the Aston curve in Fig. 5.2.

One obtains the expected structure around the particular mass number (related to the
magic numbers) as in the experimental Aston curve of Fig 5.2. Some related “magical”
isotopes are placed on the curve to highlight shell structures. To investigate remaining
differences between experimental and theoretical data, examining the binding energy per
nucleon is not appropriate. Instead, error on mass excess, will be used, i.e. the difference
between the experimental and predicted mass excesses. Comparison with results from
the original model [12] are shown in Fig. 5.16. The lower part of Fig 5.16 is related to
a second model, the finite-range droplet model, which is detailed in Appendix B.3. This
model differs from the FRLDM only for its macroscopic component. Both models have
been implemented, yet only the FRLDM model is used to calculate the eventual PES. The
implementation of the FRDM is nevertheless important for the present study as it helps
to identify the source of the remaining differences between the present implementation
and the original one [12].

In Fig 5.16, gross structures are reproduced, however many small differences remain.
For instance, structures near A = 240 seem similar between the present and the original
implementations. However structures near A = 140 present more similarities between the
two implementations from the same author rather than between two implementations of
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Figure 5.16 – Comparison of the errors on masses obtained by Peter Möller with his
original implementation [12] and with the present implementation. The two upper plots
are related to the FRLDM, and the two lower ones, to the FRDM.

the same model. The origin of the remaining differences is quite difficult to identify due
to the complexity of the model. The FRDM and FRLDM only differ by their macroscopic
components, i.e. shell and pairing corrections are the same for both models. Therefore,
the difference of the FRDM and FRLDM values should be rather insensitive to the mi-
croscopic components (with the exception of the zero-point vibrational energy that still
depends on the surface curvature of the complete7 deformation energy). Figure 5.17 shows

7The comparison is made on Edef = Emacro + δEpair(n) + δEpair(p) + δEshell(n) + δEshell(p) + Ezp.
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the difference ∆Emacro between macroscopic energies of the two models.

∆Emacro = EFRDM
macro − EFRLDM

macro (5.125)

The agreement is much better than in the comparison of full models (cf. Fig. 5.16).
This indicates that remaining differences come from the microscopic terms. As shell and
pairing corrections where properly verified from P. Möller benchmark [129], the remaining
differences must be due to the single-particle energies. A preliminary study indicated that
the choice the base of wave functions used in the expansion method (cf. Section 5.5.1)
may explain the remaining differences on single-particle energies.
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Figure 5.17 – Comparison of the difference between the macroscopic energies ∆Emacro ob-
tained with Möller original implementation [12] (above) and with present implementation
(below).

To quantify the error on mass excess predictions for the two implementations, the
method given in Ref. [12] was used to estimate the deviation from experimental masses
for both FRDM and FRLDM models and results were compared with those from Ref. [12].
Out of the 1654 data points (i.e. isotope masses) used in Ref. [12], the present program
leads to 174 non-calculable points. For almost all of the non-calculable points the program
failure was due to non-positive potential stiffness Cε2 for the calculation of the zero-point
vibrational energy. This is easily explained by the fact that small changes in the model
implementation can change the actual ground state shape and thus, for isotopes with
shallow ground-state minima on the potential energy surface, the potential stiffness Cε2
becomes negative for the tabulated ground-state shape. If the program is “allowed” to
search for its own local minimum, most of the crash points are processed correctly. Finally

103



5.4. MACROSCOPIC-MICROSCOPIC MODEL CHAPTER 5. MACROSCOPIC-MICROSCOPIC MODELS

six reaming failure points were due to another reason. The failures happened for isotopes
far from the stability valley. For these isotopes, too few levels were found available for
the calculation of the shell and pairing corrections. Finally Tab. 5.2 summarizes the
comparison of the present mass calculations with the original implementation results [12].
The results seems quite satisfactory, especially for the FRLDM that is the model used
eventually for the calculation of the PES that are used in the next chapter.

Table 5.2 – Root-Mean-Square errors (in MeV) for the implementations of the two
macroscopic-microscopic models.

Implementation FRDM FRLDM Number of masses

Möller et al. [12] 0.669 0.779 1654
Present work 0.724 0.793 1590

5.4.2.3 Results for Potential Energy Surface

To conclude this chapter on PES calculation, Fig 5.18 shows the PES obtained using
the FRLDM and the generalized spheroid shape parameterization (see Appendix B.1),
for four different values of the mass-asymmetry parameter α. The ground state shape
can be identified by searching the minimum of the PES in a restrained area of small
elongations. It is located in the present case at (c, h, α) = (1.25,−0.18, 0). This means
that the calculated ground state has a mass-symmetric shape. A second minimum can be
observed for slightly more elongated shapes (for larger c values), for instance at (c, h, α) =
(1.45, 0, 0). This minimum is responsible for the double-humped shape of the fission
barrier. The “dark sea” on the right upper part of the plots is the entrance valley of
shapes leading eventually to scission configurations. Two barrier humps can thus be
defined, one connecting the ground state shape to the intermediate minimum, the second
connecting this latter to the “dark sea”. In Fig 5.18, the first hump can be identified to be
related a mass-symmetric shape (α = 0), and to be located around (c, h, α) = (1.3, 0.2, 0).
The second hump would be quite larger (about 10 MeV) if only mass-symmetric shapes
are considered. Extending the searching area to mass-asymmetric shapes, one can find a
lower second hump (with height of about 6 MeV) located near (c, h, α) = (1.6, 0, 0.1).

With very high mass-asymmetry (α = 0.15), the fission barrier increases again to
exceed 12 MeV. This is consistent with evaluated independent fission yields8, as shown
in Fig. 5.19 for the thermal neutron-induced fission on 239Pu. It can be noticed that the
symmetrical fission (120/120) is hindered, just like the very asymmetric one (58/155).
However, the “reasonably” mass-asymmetric fission (103/137) is favored.

The FRLDM model (and its related implementation) that has been presented in this
chapter can readily be used to study the variation of the nuclear potential energy as
its shape evolves. In the first versions of the newly implemented FRLDM, a complete
calculation for a given nucleus shape took few seconds. As a typical PES can contains
up to millions of shapes, a run would thus last more than 100 days! Therefore special
care was brought in the present work about mathematical, numerical and computational
solutions to make the computing time compatible with evaluation requirements.

8These fission yields are obtained from the JEFF-3.1.1 evaluation, the term independent means that
they correspond to yields before prompt neutron emissions.

104



CHAPTER 5. MACROSCOPIC-MICROSCOPIC MODELS 5.4. MACROSCOPIC-MICROSCOPIC MODEL

−0.4

−0.2

0

0.2

0.4
h

α = 0 α = 0.05

0

2

4

6

8

10

12

14

16

1 1.2 1.4 1.6 1.8 2
−0.4

−0.2

0

0.2

0.4

c

h

α = 0.1

1 1.2 1.4 1.6 1.8 2
c

α = 0.15

Figure 5.18 – Example of potential energy surfaces obtained using the generalized spheroid
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Figure 5.19 – JEFF-3.1.1 evaluation of the n+239
94Pu thermal-neutron-induced independent

fission yields. A favored splitting is shown in green on the upper part of the figure, two
less likely scission configurations are shown in red.
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5.5 Evaluation-Compliant Implementation
Evaluations rely on experimental data but also on accurate theoretical models. The
macroscopic-microscopic model presented here is a good candidate for the improvement of
physics in evaluations. Other models, for instance based on the Hartree-Fock-Bogoliubov
theory, may seem more accurate, or at least more intellectually satisfactory. Yet their use
in evaluation is often difficult in practice because of three reasons. First, computational
models may not be available and their implementation would require a lot of work. Second,
they may be not flexible enough so that their parameters could not balance remaining
model inaccuracy. Yet this point cannot be checked before the model is implemented.
Finally the computation may take much too long time to be compatible with adjustment
procedures. This latter statement must be taken with consideration as nothing is more
time-dependent than computation power. As this last point was a major challenge for
this PhD work, some of the features that led to an evaluation-compliant program will be
detailed.

5.5.1 Base Expansion of Wave Functions

The first point that will be developed in this section is not a brand new method (nei-
ther a specific contribution of this PhD work) but remains a key point to obtain fast
single-particle states computation. Once kinetic, scalar potential and spin-orbit poten-
tials operators are defined, a numerical method must be chosen to obtain the related
single-particle orbitals (i.e. energies and wave functions). The two most common meth-
ods for the computing single-particle orbitals are the finite-difference method [116] and
the base functions expansion method9 [117,131]. However it was early reported [87] that
the expansion method is accurate enough as long as accuracy on the asymptotic behaviors
of the wave functions is not required, and is much faster than the finite-difference method.
This method will be briefly detailed here, extensive details can be found in Appendix C.

In the expansion method, a set of arbitrary functions {|ϕj〉}j will be assumed to be
properly chosen, so that any eigenfunction |ψi〉 of the single-particle Hamiltonian10 Ĥ can
be expanded using {|ϕj〉}j. In other “words”:

∀i





Ĥ|ψi〉 = Ei|ψi〉 ,

∃
{
aij
}
j

: |ψi〉 =
∑

j

aij|ϕj〉 .
(5.126)

It is recalled here that the eigenfunctions of Ĥ are orthonormal:

∀(`, i), 〈ψ`|Ĥ|ψi〉 = Ei〈ψ`|ψi〉 = Eiδi` =
∑

kj

a`ka
i
j〈ϕk|Ĥ|ϕj〉 . (5.127)

As Ĥ is Hermitian, it can be shown that Eq. 5.127 is equivalent to the diagonalization of
the symmetric matrix H whose coefficients [H ]kj are given by

[H ]kj = 〈ϕk|Ĥ|ϕj〉 . (5.128)

If E is a diagonal matrix containing the [H ] eigenvalues Ei, the hermitian properties of
H implies that there is an orthogonal matrix P satisfying

P ᵀHP = E , (5.129)
9Reference [130] corrects misprints of Ref. [131].

10See for instance Eq. 5.75 of this chapter.
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which can be written
∀(`, i),

∑

jk

PjiHjkPkl = Eiδi` , (5.130)

and compared to Eq. 5.127.
The key point of this approach is thus the definition of the base functions and the

calculation of the related Hamiltonian matrix elements. The base functions used in the
present work is the deformed harmonic oscillator base described in Section 5.3.1. The
eigenvalues and eigenvectors of H are obtained using the vectorized library Eigen [132].
It can be stated here that due to the fact that only axially spherical shapes are considered,
the Ω quantum number is a good quantum number, thereforeH is a block diagonal matrix.
Each block HΩ can be treated separately, reducing both the number of matrix elements
to compute and the time required for the matrices diagonalization11.

5.5.2 Efficient Numerical Integration Methods

As is mentioned in Section 5.3.2, the use of more realistic potential such as the Yukawa-
folded potential requires performing numerical integrations over the nucleus surface. Prior
to detailing how efficient numerical integrations can be performed, it should be stated that
the Gauss-divergence theorem can usually be used to reduce the dimensional range of inte-
gration. For instance by transforming a volume integration into a surface integration12, or
a double volume integration into a double surface integration13 [93]. These integral trans-
formations, detailed in Appendix B.4.1, provide forms that can be efficiently computed.
Additionally, for Coulomb potential related to a sharp-edge volume, a special treatment
using complete elliptic integrals [48] can reduce the the surface integral to a one dimen-
sional integral. This is detailed in Appendix B.4.2. Finally, as detailed in Appendix C.4,
the use of integration by parts may also remove scalar potential gradient terms that are
time-consuming to evaluate in the spin-orbit matrix elements computation.

Numerical integration can be highly time-consuming. Therefore efficient numerical
procedures have been implemented. In the following, the Gauss-Patterson [133, 134]
quadrature rule and the related sparse grid extension will be detailed.

A quadrature rule can be seen as an implicit expansion, of the function f to integrate,
on a given set of polynomials. The most “famous” type of quadrature rule is the Gauss-
Legendre rule, relying on Legendre polynomials, that can be used to perform integrations
over the range [−1, 1]. This range can be easily converted by linear variable change to
any finite range [a, b].

a∫

b

dxf(x) =
b− a

2

1∫

−1

dyf
(
b− a

2
y +

b+ a

2

)
(5.131)

For integrals over semi-infinite [0,+∞[ and infinite ]−∞,+∞[ ranges, other polynomials
must be used. In the present implementation, the Gauss-Laguerre and Gauss-Hermite

11For reflection-symmetric shapes, i.e. for mass-symmetric shapes, the parity π is also a good quantum
number, in this case each matrix HΩ can be divided into two additional sub-matrices. This is not done
in practice to keep a unified procedure in the computation as the program is intended to extensively
investigate mass-asymmetric shapes.

12This is the case for the computation of scalar microscopic potentials, cf. Eqs. 5.64 and 5.63.
13For instance, for the computation of the Coulomb and surface terms B1 and B3 of the FRLDM

macroscopic part, cf. Eqs. 5.45 and 5.46.
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quadrature rules [135] have been used respectively for semi-infinite and infinite ranges.
Eventually the integral of a function f over the range R will be computed as

IR[f ] =

∫

R

dxf(x) ≈
N∑

i=1

w
(N)
i f(x

(N)
i ) . (5.132)

The integral IR is estimated by evaluating the function f for certain predetermined ab-
scissa x(N)

i , the function results f(x
(N)
i ) will be weighted by the predetermined coefficients

w
(N)
i and summed to obtain the integral estimate. This integral is only an estimation of

IR[f ] as the underlying polynomial expansion is truncated to a given order related to the
quadrature order14 N . These quadrature methods usually reduce the number of function
evaluations15 necessary to obtain a decent estimation.

A key point in the use of quadrature rules is the choice of the quadrature order. The
quadrature rule will provide an estimate of the integral, but no accuracy estimation.
A trivial way to obtain an estimate of the integration error is to compare with another
estimate obtained with an order N−1 or N+1. Yet this method may require a significant
number of extra function calls. Several methods have been developed in order to obtain
an estimate of the error from a subset of the previously evaluated function results; for
instance the Gauss-Kronrod [136] and Gauss-Bond [137] quadrature rules. These methods
still have the liability that if the estimated error is too large, a completely new set of
function calls must be computed to obtain an integral estimate of order N + 1.

This burden is removed if nested quadratures are used. For nested quadrature rules,
the evaluation abscissa of order N are partially or fully contained in the abscissa of order
N + 1. Thus, to perform an integration with a higher order, some (or all) of the previous
function evaluations can be reused to provide a new estimate. This is illustrated in
Fig. 5.20, it can be seen that for the nested Gauss-Patterson quadrature rule, the lower
order abscissa (xi) can be reused for higher order integral estimates. This is not possible
for the unnested Gauss-Legendre quadrature rule.
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Figure 5.20 – Comparison of the abscissa for the Gauss-Legendre and Gauss-Patterson
quadrature rules. The red lines highlight the fact that a quadrature rule is nested or not.

14The quadrature order N is not necessarily the highest order of polynomial used.
15Compared with discretization methods such as the Simpson method [135].
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With nested quadrature rules, the error estimation can be obtained by comparing
convergence of the integral estimate between orders N and N −1. The precision16 of such
nested rules is slightly reduced compared with other types of quadrature (e.g. Gauss-
Legendre) as can be seen in Tab 5.3. The high-precision of the Gauss-Legendre quadrature
rule is traded off to get nestedness. Yet in practice the Gauss-Patterson rule leads to a
significant speed-up of the integration as the convergence of the integral can be tested
much faster than if a higher order Gauss-Legendre quadrature had to be estimated. It
also reduces the number of function calls if the function to integrate varies “nicely”.

Table 5.3 – Comparison of precision for the Gauss-Legendre and Gauss-Patterson quadra-
ture rules.

Number of function calls Precision
Gauss-Patterson Gauss-Legendre

1 1 1
5 5 5
13 11 13
29 23 29
61 47 61
125 95 125
253 191 253
509 383 509
1021 767 1021

In practice, two or three-dimensional integrals must be computed in the present work.
This can be easily performed by use of the Fubini’s theorem and using recursive calls of
one-dimensional quadrature rule, for instance

∫

X×Y

d(x, y)f(x, y) =

∫

X

dx
(∫

Y

dyf(x, y)

)
. (5.133)

This approach combined with the Gauss-Patterson method would enforce convergence
on each “x evaluation point” whereas a convergence on the integral estimate would be
enough.

The generalization of quadrature rules to higher dimensions is called sparse grid and
is obtained by Smolyak construction [138]. Tensor product of one-dimensional quadrature
rules is used to form product rules, then a weighted sum of product rules, provides sparse
grid. One-dimensional types of quadrature rule can be combined to define a sparse grid.
For instance, it allows to handle integration ranges [−1, 1] and [0,+∞[ for two different
dimensions. Details about Smolyak construction [138] is beyond the scope of this docu-
ment, an example is shown in Fig. 5.21. In the figure only evaluation points are shown. It
can be seen that they spread similarly on each dimension, and this, accordingly to the one-
dimension Gauss-Patterson quadrature rule. The weight related to each evaluation points
is not shown, and their computation is quite tedious. To tabulate the Gauss-Patterson
evaluation points and weights for one dimensional quadrature rule (and two and three
dimensional sparse-grids) the SANDIA_RULES program of John Burkardt [139,140] has
been used.

16Precision, order and number of function evaluations are different quantities. The quadrature order is
simply an index labeling a given quadrature rule in its quadrature rule family. The precision stands for
the highest order of polynomial that the quadrature is able to integrate exactly.
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Figure 5.21 – Illustration of a 1D nested quadrature rule (5.21a) and of a 2D (5.21b)
and a 3D sparse grids (5.21c) obtained with the Gauss-Patterson quadrature rule. Only
evaluation points are shown, related weights are not represented. The level is a general-
ization of the one-dimensional order. For 1D and 3D cases the level colors are identical
(for presented levels) to the 2D levels. Levels 4 and 5, levels 7 and 8 and levels 9 to 11
correspond to identical 2D sparse grids.

5.5.3 Exploitation of Computational Resources

Even with the here-above mentioned mathematical and numerical sophisticated methods,
a modern program intended to be used for evaluation purposes should take advantage of
all speed-up opportunities. The last point in this section about implementation efficiency
will deal with hardware-related implementation. Figure 5.22 shows the evolution of the
processor frequency in the last 40 years, along with the evolution of the number of cores
per processor during the same period. It can be seen that the exponential increase of
the processor frequency has been dramatically reduced from the beginning in the decade
2000-2010. Additionally, one can see that the number of cores per processor has taken
over the computing power race.

In parallel of this effort to compensate the so-called “frequency wall” by adding more
and more cores per processor, manufacturers also increased vectorized computation ca-
pabilities of cores. This type of computing capability relies on the Single Instruction
Multiple Data (SIMD) treatement. An example of application of this technology could be
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Figure 5.22 – Evolution of the processor frequency and the number of cores per processor
since 1975. ∗Streaming SIMD Extensions. ∗∗Advanced Vector eXtensions.

understood when one needs to perform and element-wise addition of two arrays. Instead
of looping on array elements and performing “one-by-one” additions, the core perform
two addition at the same time. Speed-up becomes less easy than in the “good old days”
when the chip frequency kept increasing, but if this type of operation is a bottle-neck
in the program, significant enhancement can be expected. Figure 5.22 also shows some
instruction set architectures (SSE and AVX). They correspond either to:

– An increase of the vectorized register size (128-bits, 256-bits, 512-bits, etc.)17.

– A new data-type capability, for instance operations on floating point numbers (not
only integers).

– More complex or composed operations, multiplication (not only addition). Recently
fused multiply-add (FMA) operations became available, i.e. performing multiplica-
tion and addition at the same time or more exactly, during the same clock cycle.

Graphical processing has been for a long time a specific field of computer sciences.
Although it has been used for large scale computing for a long time, it has been investi-
gated for scientific computation – namely genomic research – only for less than a decade.
Among the main motivations was the fact that programming for Graphic Processing Unit
(GPU) was a much more difficult task than for usual Central Processing Unit (CPU). In
recent years, General-Purpose computing on GPU (GPGPU) developed thanks to Ap-
plication Programming Interfaces (API) such as OpenCL [141] of the Khronos Group
or CUDA [142] of NVIDIA. This later was used for the present implementation work.
These API ease the programming on GPU even if some hardware-related features must
be handled at the programming level, whereas it is often compiler-level for most CPU
programs18. Interest from the High Performance Computing (HPC) community for GPU

17 This corresponds to the capability of either processing more data at the same time (four-by-four),
or treating “larger” type of data (64-bits integers, double-precision floating point numbers).

18This is actually different when performances are targeted. In this case, specific programming features
must be inserted in order to take advantage of the many cores or of the vectorized operations.
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is additionally driven by the energy efficiency of GPU by comparison with CPU for a
similar computation power19.

Two versions of the FRLDM have been implemented, one using CPU-only, the sec-
ond combining CPU and GPU (in this version only the Hamiltonian diagonalization is
performed by the CPU20). Both versions will not be detailed any further; it will simply em-
phasized that both implementations use the same mathematics and numerical algorithms
(cf. the two subsections above concerning mathematical and numerical methods). A typ-
ical calculation with the implemented models of the FRLDM would consist in defining a
large list of nucleus shapes. For each of these, an independent calculation (a shape-task) as
described in the previous section is performed. For computation of the many shape-tasks,
the list of shape-tasks is dispatched, by a “master” workstation, to all available worksta-
tions installed in the group laboratory. On each workstation, the program splits its list
of shape-tasks and distributes tasks to available CPU cores. As mentioned above the
implementation using GPU is not GPU-only, a part of the computation is performed by
the CPU. It should be stated here that standalone GPU programs are not (yet?) possible,
GPUs are still driven by a CPU. The latter CPU only starts the GPU computation and
waits for GPU calculation to be complete. GPU must still be considered a co-processor.
The difference between the two implementations rely in the following: in the CPU im-
plementation, a list of shape-tasks is attributed to each CPU, they perform the required
computations using as much as possible vectorized loops. In the GPU implementation,
in order to use GPU at their maximal capacities, all CPU submits a specific shape-task
to the GPU and performed diagonalization when GPU computation is completed. When
all shape-tasks assigned to the workstation are treated, the related results are sent back
to the master workstation.

To complete this section about computational efficiency, qualitative results with two
implementations of the FRLDM (CPU and GPU) will be given for the computation of
PES. The calculation grid of the example21 consists in a 3D grid containing 42×42×26 ≈
5 × 104 shape-tasks. Only one workstation is used (no workstation dispatching) but
the 12 cores of the workstation are used. In this case the computation time for the
CPUs alone is about 20 minutes, whereas for GPUs enhanced computation this falls to
5 minutes, which means a speed-up factor of 4. Considering a single-CPU computation for
an equivalent case, the speed-up factor would be about 50. The workstation dispatching
has a nice scalability (i.e. it does not loose too much performance while dispatching tasks
and gathering results), while using only few of the available workstation in the group
laboratory, one easily gets a factor 100.

19The computation power is often measured in terms of highest achievable number of Floating Point
Operations per Second (FLOPs), the energy efficiency of the computation is measured in FLOPS per
Watt.

20This part remains performed by the CPU because the CUDA version available at that time did not
provide eigen-problem library. This is now the case with the CUDA-7 version.

21In Ref. [16], for a 5D grid, more than 5× 106 shapes are considered.
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Chapter 6

From Potential Energy Surface to
Fission Cross Section

In the previous chapter, Potential Energy Surfaces (PES) are obtained using the FRLDM
macroscopic-microscopic model. The present chapter deals with several methods that have
been settled in order to extract from the multidimensional PES, a one-dimensional fis-
sion barrier. To obtain a fission transmission coefficient from this barrier, numerical
methods have been tested and compared. The influence of a deformation-dependent iner-
tia parameter on fission transmission coefficient is studied. Global transition states are
also introduced as the extension of those from Chapter 4 and the eventual macroscopic-
microscopic-based fission cross section is computed.
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In the previous chapter it was shown how to obtain multidimensional Potential Energy
Surfaces (PES). These PES are related to a shape parameterization, each parameter of the
parameterization corresponds to one dimension of the PES. In this last chapter, the gener-
alized spheroid parameterization (cf. Appendix B.1) will be used for all the calculations.
This parameterization can be easily used with two or three shape parameters correspond-
ing approximately to the elongation c, the neck size h and the mass-asymmetry α. For
a better description of the nucleus shape “between” the “fission point” (defined below)
and the scission point, a more sophisticated shape parameterization such as the 3QS (cf.
Appendix B.1) should be used. As this deformation range is not studied in the present
work, the three dimensional generalized spheroid parameterization seems appropriate.

In practice, a multi-dimensional PES cannot be directly used to perform cross section
modeling. Ongoing works are investigating in this direction, for instance using the time-
dependent generator coordinate method [143], but it implies performing time-dependent
wave propagation, which is for the time being far too time-consuming for direct use in
evaluation. To use the multidimensional PES obtained from the macroscopic-microscopic
model, one needs to determine a relevant one-dimensional path. This path consists in a list
of shapes taken by the nucleus from its ground state shape to a “fission shape”1. Two ap-
proaches to obtain this one-dimensional barrier have been implemented in the CONRAD
code, they are namely the least-energy and least-action methods. These methods extract a
one-dimensional deformation potential (“fission barrier”) from the multidimensional PES.
To calculate the transmission coefficient related to this one-dimensional potential, nu-
merical methods must be chosen. Several options have been tested and compared. The
least-action method also provides a deformation-dependent inertia parameter (defined
later in this chapter) that has a significant effect on transmission coefficient. Finally,
global transition states are introduced and an actual fission cross section calculation can
be performed.

6.1 Least-Energy Path
An intuitive approach to obtain a one-dimensional path consists in considering that, along
the fission path, the nucleus takes a shape that minimizes “somehow” the potential energy.
The least-energy path method, described in the following, relies on that principle. As the
PES spans over several dimensions (more than 2), visual verification is not always possible.
If the following, one can consider the PES a multidimensional array, most of the discussion
below can be more easily understood if one keeps in mind a 2D array. The algorithm may
seem trivial, yet while considering arbitrary 2D surface or higher dimensions it becomes
necessary to have a sound method.

6.1.1 Immersion Technique

The first step in the least-energy path method is the identification of all PES local minima.
This is trivially done by checking, for each point of the PES, if all neighboring points are
higher in energy. These minima can also be at an edge of the calculation grid, in this case
the point checked has just fewer neighbors. In the present work it seems not necessary
to check if two neighboring points have exactly identical energies as the program stores
energies in double precision, the probability for this situation is highly improbable to the
difference in Ref. [16] where only few digits were stored.

1This type of shape corresponds here to elongated shapes having the same deformation energy than
the ground state.
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Once all local minima have been identified, the next step is to obtain the saddle points
between all pairs of minima. This is done using the immersion technique well described in
Ref. [16], this method is only briefly described bellow. To easily understand the method,
one should consider the deformation-energy a “landscape” with hills, valleys and ridges.
The immersion technique allows to obtain the saddle points connecting two valley bottoms.
Considering two selected valley bottoms (two local minima), one artificially considers that
water is flowing out of one of the local minima (the spring). The second minimum will be
called the sink point. The flowing water slowly fills the first valley containing the spring,
the water level increases iteratively up to a level where the water reaches the saddle point
and flows down to the second valley to sink point. The implementation of the immersion
technique must then focus on how properly “wet” points of the PES as water level increases
and also how to wet points as the water flows down a saddle point.

The saddle point is obtained with this method by identifying the point of the PES
that is the lowest to become “wet” as the water level is raised and flows down to the sink
valley. The water level is increased at each iteration with a given water-level step until
the sink point becomes wet. If the water-level step used is small enough, there is only one
wet point between the two last iterative water levels. A trivial one-dimensional case is
shown in Fig. 6.1. One can consider that water is flowing out of one of the local minima
(red dots), the water level is iteratively raised with a constant water-level step. When the
water level exceeds the saddle point2, the number of points located between the two last
water levels (here corresponding to steps 3 and 4) are counted. If this number is larger
than one, the program resumes raising water level from step 3 with a smaller water-level
step (here leading to step 5). This operation is repeated until only one point is identified.

water flowing out

Deformation

E
n
er
gy

step 5
step 4
step 3
step 2
step 1

Figure 6.1 – Example of application of the immersion technique in a one-dimension case.

The generalization of this concept and its application to the PES saddle point search is
well detailed in Ref. [16]. Since this method is well suited and robust for high-dimensional
PES, it has been implemented in the CONRAD code during this PhD work, and verified
for 2D cases. Whenever high-dimensional PES are considered (for instance 5D), several
hundreds of local minima can be identified and the immersion technique must be applied
for each pair of minima. As a saddle point between two minima can also be the saddle
between two others, this reduces the number of times of the immersion technique must
be applied. Yet, as this operation can still take a significant amount of time, this search
of saddle points has been multithreaded (i.e. parallelized) in the CONRAD code.

2In the multidimensional case, this event is detected by a method described in Ref. [16].
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6.1.2 Full Least-Energy Path

In order to obtain the full least-energy path, the following steps are followed

1. Get all minima,

2. Get saddle points between each pair of minima,

3. For each saddle point, get all minima that are reached solely by going down from
the saddle,

4. Get the succession of minima and saddle points between a specific local minimum
(the ground-state) and a “fission point”,

5. Select a relevant “fission point”,

6. Get the succession of saddle points and intermediate wells between the ground-state
and the “fission point”,

7. Find paths between the ground-state and the selected “fission point” (down the
saddles).

The two first points have been treated in the previous sub-section. The third point
can be addressed by the definition of “only-going-down” paths. Considering a saddle point
identified in the previous step, the saddle point is set as “wet” and added to a group of
wet points (the just-wet-group), then all neighbors below that saddle point are labeled as
wet and added to the just-wet-group. The saddle point is then removed from the just-
wet-group (but is still wet). This operation is performed as long as there are points in
the just-wet-group; a new point is picked out of the just-wet-group at each step and some
of its neighbors can be added (if below the running point and not already wet). Once
the just-wet-group is empty, all minima that could become wet by water going solely
down from the saddle, with no intermediate saddles, have been found. A mapping can be
obtained between each saddle point and all minima that can “get wet by water, flowing
out of the saddle point, without accumulating somewhere”. This is exemplified in Fig 6.2,
where two paths are shown, starting from the higher saddle point on the right. Path 2
goes directly to the lowest local minimum and, all along the path, the deformation energy
only decreases. In case of Path 1, the path reaches first an intermediate local minimum,
after what the deformation energy increases again until the path reaches the second saddle
point.

At the fourth step, the ground-state point must be identified. This is done by searching
the global minimum among local minima. As very elongated shapes can have energy below
the ground-state shape, they must be discarded, thus a maximal “elongation” criterion
must be set. Then exit points must be defined; these points are local minima with energy
below the ground-state energy, they are the “fission shapes”. From step 2, the saddle
points between all these minima and the ground state are known. Thus a first selection is
made among the exit points to retain only those corresponding to the lowest global saddle
point. At this stage, the ground-state and the global saddle points are known. Yet the
eventual fission point is not uniquely determined as several exit points may correspond
to the lowest saddle point connected to the ground state. Here a first arbitrariness of the
method is highlighted. Indeed, no obvious criterion can be used to select a particular exit
point or another. In the present work, the criterion was set to retain the point with the
smallest Pythagorean distance to the ground state. This Pythagorean distance will be
defined in the following.
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Figure 6.2 – Example of path options that can be used to determine which local minima
are “connected” to a given saddle point.

To perform the next step, i.e. determining the succession of saddle points and inter-
mediate wells, one starts knowing the ground state shape (entrance point) and the exit
point selected from the previous step. From the mapping between pairs of minima, the
corresponding saddle point can be obtained (cf. step 2). Then the full path must be ob-
tained. One path may be found to go directly from the saddle point to the entrance and
exit points but this path would miss possible intermediate wells. The algorithm operates
as follow and can be understood using Fig. 6.3 as guideline.

• Starting from the saddle point ( 1© in Fig. 6.3) and, for instance, the exit point (∞© in
Fig. 6.3). The program selects all minima (blue dots in Fig. 6.3) that are connected
to the saddle point by an “only-going-down” path (arrowhead lines in Fig. 6.3).

• The program then selects the minima that is related to the exit point with the lowest
intermediate saddle point. This latter is 3© in the present case.

• A new saddle point 3© is now selected between two minima 2© and ∞©. The same
procedure is then applied recursively.

The final step consists in obtaining the full path (i.e. not only the succession of saddles
and local minima points. This is done assuming that the correct connection between pairs
of minima and related saddle points is provided by the latter step. Given a saddle point
(running point) and one of the two corresponding minima (the targeted minimum), the
program searches the lowest point among the neighbors of the saddle point that has an
“only-going-down” path to the targeted minimum. This lowest neighbor becomes the
running point and the same search is performed again until the running point becomes
the targeted minimum. At this points all saddles of the path have been identified, and
two “continuous” set of points are defined from each saddle point down to the related
minima. The program finally connects these partial paths by identifying common minima
in the subpaths related to two different saddle points.
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Figure 6.3 – Illustration for the least-energy path searching method. Saddle points are
shown with red crosses, local minima with blue dots, arrows indicate “only-going-down”
paths. The heights of the saddle points are also shown.

6.1.3 2D-Verification and 3D-Application

Figure 6.4 shows the results for the least-energy method that has been detailed above. It
is applied to a 2D PES related to the 240Pu compound nucleus (using a 2D generalized
spheroid parameterization). On this 2D image, the agreement between the code results
(orange curve) and the background “hilly area” is quite satisfactory. The “fission line” (red
curve) corresponds to shapes with the smallest elongation and for which the deformation
potential value is identical to the ground state one. It can be noticed that not only one
intermediate local minima is found, additionally more than two saddle points are found
whereas one would have expect to obtain two properly defined humps separated with a
single intermediate well. Yet these extra minima correspond to very shallow wells, and
thus these and the related extra saddle points (to escape from these shallow wells) have
very little effects on the path structure. An example of these shallow wells can be seen
in Fig. 6.4 near the ground states. Two local minima (white dots) can be observed near
(c, h) = (1.2,−0.2). The presence of two close local minuma may be due to numerical
issue, as near the ground state point the potential slope is very low and small numerical
fluctuations can produce local minima. It can be observed in Fig. 6.4 that no fission valley
can be identified in the area delimited “on the left” of the fission line. This means that,
in this case, the fission valleys appear for elongations beyond the fission line. This may
actually be different in the case of 3D PES, but this information cannot be obtained by
visual checks.

From the least-energy results such as those shown in Fig. 6.4, it is difficult to obtain
a one-dimensional deformation energy as no abscissa is defined. The intuitive method
would consist in projecting the path (orange curve in Fig. 6.4) on the elongation axis c.
Unfortunately such a method may lead to one-dimensional barrier that is unusable for
eventual transmission coefficient calculation. An example is shown in Fig. 6.5. It can
be seen that the related projected potential V proj

def (c) is not a proper function as a given
elongation c can correspond to several deformation energies. Results from Fig. 6.5 cannot
be further used to obtain a transmission coefficient. This effect for the 2D case is even
worse if the mass-asymmetry degree of freedom is explored (3D curve).

To avoid this problem, the ad hoc Pythagorean rule has been used for the present study
with the least-energy technique. For instance with the 2D (c,h) or 3D (c,h,α) generalized
spheroid shape parameterization, the “distance” dist(P1,P2) between two points P1 and
P2 of the least-energy path is given by Tab. 6.1.
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Figure 6.4 – PES of the 240Pu based on the FRLDM and using the 2D generalized spheroid
parameterization. The path obtained with the least-energy (immersion) technique [16] is
shown as an orange solid line. The fission line is shown in red, and corresponds to points
~q with the smallest c deformations that have the property V (~q) = V (~q GS). The saddle
points are shown with magenta cross marks and the path local minima are marked with
white dots.
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Figure 6.5 – Projection of the least-energy path of the 240Pu on the elongation axis c.
The original PES is obtained using the generalized spheroid shape parameterization with
two (2D) or three (3D) degrees of freedom.

119



6.1. LEAST-ENERGY PATH CHAPTER 6. FROM PES TO FISSION CROSS SECTION

Table 6.1 – Definition of the Pythagorean one-dimensional distance used for the least-
energy method.

dimension P1 P2 dist(P1,P2)

2D (c1, h1) (c2, h2)
√

(c1 − c2)2 + (h1 − h2)2

3D (c1, h1, α1) (c2, h2, α2)
√

(c1 − c2)2 + (h1 − h2)2 + (α1 − α2)2

The one-dimensional projection using the Pythagorean distance rule is shown in the
left part of Fig. 6.6. It can be seen that the shape is somehow scaled along the “x-axis”
between the 2D and the 3D case. This highlights the fact that the Pythagorean distance
is not a sound definition for the deformation abscissa. This “x scaling” is caused by the
fact that, while deforming from the ground state to the first saddle point, the nucleus
takes small mass-asymmetric shapes. This fact must be taken cautiously because, as can
be seen in Fig. B.4 of Appendix B.1, the mass asymmetry parameter has small effect for
shapes with small elongation. The first saddle point is reached for (c ≈ 1.2) and the
maximum of mass asymmetry for shapes between the ground state and the first saddle
point is α = 0.12, which is about half the mass asymmetry for shapes shown in Fig. B.4.
The saddle point area is yet completely mass-symmetric (α = 0), which results in similar
shapes for first saddle points shown in Fig. 6.6 (blue dots). One can get convinced that
the path are quite similar between the 2D and 3D paths by examining again Fig. 6.5.
Except in the vicinity of the ground state, the 2D and 3D projections are identical up to
the second hump.
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Figure 6.6 – (Left) One dimension reduction of the 240Pu PES using the Pythagorean
distance rule for the 2D and 3D cases. (Right) Illustration of the shapes obtained for
the ground state, the saddle points, the intermediate well bottom and the “fission point”.
Data related to the 2D PES are shown with dotted lines.

Even if the x-axis of Fig. 6.6 is not completely justified, one can notice interesting
features concerning the curve height. For the second saddle point, the mass-asymmetry
has a significant effect and leads to a significant reduction of the second barrier height.
This effect has been noticed for a long time but remains yet a comforting result for
testing of the present implementation. The barrier heights, about 10 MeV for the mass-
symmetric path and about 6 MeV for the mass-asymmetric path are quite realistic for
actinides [144–146].
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From the shape of the curves, the ground state, the saddle points, the intermediate
well bottoms and the “fission points” can be identified for both 2D and 3D cases. It
can be noticed that, for the ground state, the first saddle point and the intermediate
well bottom, shapes and energies obtained in the 2D and 3D cases are identical. The
corresponding shapes are shown on the right part of Fig. 6.6. The solid (respectively
dotted) lines correspond to shapes obtained with the 3D (respectively 2D) model. One
can also notice that in the case of fission shapes (and also second saddle point shapes),
the 2D configurations are more elongated, which is expected from measurements analyses
of fragments total kinetic energy [147].

6.2 Least-Action Path

The least-energy path searching method explained above contains some arbitrariness,
for instance the path abscissa is not well justified. Also, paths down saddles to local
minima are not uniquely defined, and even the choice of the sequence of saddles and
minima can be questioned. An alternative approach to find a one-dimensional path in a
multidimensional PES is the least-action method. This method has two main advantages:
it provides a more satisfactory one-dimensional “fission abscissa”, and the definition of
the “fission path” between two points is unambiguous. However the method requires the
introduction of an additional quantity, the deformation inertia tensor.

6.2.1 Deformation Inertia Tensor

Assuming that the deformation degrees of freedom of the nucleus are labeled ~q, the kinetic
energy T kin of the deforming nucleus given by [20]

T kin =
∑

ij

1

2
Bij(~q)q̇iq̇j , (6.1)

where Bij are the components of the deformation inertia tensor. Assuming that this tensor
is known, several methods can be used to find the least-action path L that minimizes the
action integral S [20] defined by

S =

∫

L

ds
√∑

ij

Bij(~q)
dqi
ds

dqj
ds

[V (~q)− V (~q GS)] , (6.2)

where V is the deformation potential provided by the PES, ~q GS is the ground state
deformation and ds is the infinitesimal path abscissa. Two models for the inertia tensor
will be presented in the following.

6.2.1.1 Werner-Wheeler Approximation

Using the same image than for the Liquid Drop Model (cf. Chapter 5, Section 5.2), the
deformation inertia of the nucleus is expressed as the deformation inertia of an irrotational
incompressible liquid drop. In this case, the deformation kinetic energy is given by [148]

T kin =
1

2
ρm

∫

V

d3~rv2(~r) , (6.3)
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where v is the velocity field of the nuclear liquid and ρm is the mass density of the matter
contained in the sharp-edge volume V . This expression can also be written in terms of
time derivatives of the shape coordinates ~̇q as

T kin =
1

2

∑

ij

Birr
ij (~q)q̇iq̇j . (6.4)

The velocity potential ϕ defined by v(~r) = ~∇ϕ is solution of a Laplace equation

∆ϕ = 0 , (6.5)

and has Dirichlet boundary conditions on the nuclear surface S containing V :

∀~r ∈ S, ~∇ϕ(~r) · ~n(~r) = ~v(~r) · ~n(~r) =
∑

i

q̇i
∂~r

∂qi
· ~n(~r) , (6.6)

where ~n is a normal vector to the surface at ~r. Additionally, in the Werner-Wheeler
approximation, an additional hypothesis is made, stating that the z component vz of
the velocity does not depend on the ρ coordinate. Using these relations and the volume
conservation conditions

∂

∂t

∫

V

d3~r =
∑

i

q̇i
∂

∂qi

∫

V

d3~r = 0 , (6.7)

the tensor BWW
ij can be expressed using of shape parameterization function ρ(z) =

ρ(z; ~q) [17] as

BWW
ij (~q) = πρm

zmax∫

zmin

dzρ2(z)

[
Ai(z)Aj(z) +

1

8
ρ2(z)A′i(z)A′j(z)

]
, (6.8)

where zmin and zmax are the minimum and maximum z coordinates of the nucleus surface
that verify ρ(zmin) = ρ(zmax) = 0, and where the Ai functions are given by

Ai(z) =
1

ρ2(z)

∂

∂qi

zmax∫

z

ρ2(z′)dz′ . (6.9)

Figure 6.7 shows an example of the inertia tensor obtained using a 2D generalized
spheroid shape parameterization (c, h). Since this tensor is of order two, i.e. a matrix,
a simple “graphical” representation can be used3 for Bcc, Bhh and Bch. The B matrix is
symmetric, thus only one of the off-diagonal component (Bch) needs to be shown. The
structure on the upper-right part of the figures corresponds to the scission line, beyond
this line the Werner-Wheeler model implementation does not hold. This is not necessarily
an issue in the present study as such highly deformed shapes are not be investigated.
The validation of the Werner-Wheeler model implementation has not been completed as
analytical solutions exist for only few shape parameterizations [149], but not for those
used in this study. Because of the nature of the deformation inertia, the inertia tensor
must have only positive eigenvalues. It was verified that the eigenvalues of the inertia
tensor BWW remain positives in the whole deformation range, as part of the proof, the
square root of the matrix determinant is shown in Fig. 6.7.

3The graphical limitation is more related to the fact that the inertia tensor components depend on 2 or
3 deformation coordinates. The inertia tensor is always of order two but if three deformation coordinates
are used, 7 components would be shown and each of them would depend on 3 parameters.
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Figure 6.7 – Deformation inertia tensor BWW calculated with the Werner-Wheeler ap-
proximation for 240

94Pu. The shape is parameterized with generalized spheroid shape pa-
rameterization (c, h), the three components of the tensor BWW

cc , BWW
ch and BWW

hh are shown.
The square-root of the inertia tensor determinant

√
detBWW is also shown. The triangu-

lar structure on the upper-right parts of the plots is due to inertia calculation failure as
this area corresponds to separated fragments.

6.2.1.2 Cranking Model for Deformation Inertia Tensor Calculation

In a symmetric way to the PES computation, a microscopic approach for the deformation
inertia can be made by using the cranking model. In this approach the single-particle
energies and wave functions obtained with the microscopic model described in Chapter 5
will be used to obtain a collective inertia tensor. The cranking model was first developed
by Inglis [18] to obtain the rotational inertia momentum (not the deformation inertia
tensor). This former rotational inertia momentum will be detailed later in this chapter.
Yet this approach is quite general to any collective coordinates. It was also further
developed by Belyaev to include effects of the pairing interaction. The cranking inertia
tensor Bcr

ij is defined as [20]

Bcr
ij (~q) = 2~2

∑

m

〈
0
∣∣∣ ∂
∂qi

∣∣∣m
〉〈
m
∣∣∣ ∂
∂qj

∣∣∣0
〉

Em − E0

, (6.10)

where 0 stands for the ground state and m for an excited state. The excited state m
can be written as the superposition of two quasiparticle excitations |m〉 = |νµ〉, and thus
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Belyaev derived [19]

〈
νµ
∣∣∣ ∂
∂qi

∣∣∣0
〉

= −i(uνvµ ± vνuµ)
〈
ν
∣∣∣ ∂
∂qi

∣∣∣µ
〉
− δνµ

vν

∂uν
∂qi

, (6.11)

where vν and uν are the occupancy and vacuum numbers of the pairing model (cf. Sec-
tion 5.3 of Chapter 5). Here again for this introduction of the model, only even numbers
of particles are considered. The ± sign depends on the property of the operator ∂/∂qi,
according to 〈

µ̄
∣∣∣ ∂
∂qi

∣∣∣ν̄
〉

= ±
〈
ν
∣∣∣ ∂
∂qi

∣∣∣µ
〉
. (6.12)

In the following, it will be assumed a positive sign for this expression. The diagonal terms
of Eq. 6.12 are assumed to vanish, meaning that inserting Eq. 6.11 into Eq. 6.10, and
using the quasi-particle energies Em − E0 = Eν + Eµ, it leads to

Bcr
ij (~q) = 2~2

∑

µν

〈
ν
∣∣∣ ∂
∂qi

∣∣∣µ
〉〈
µ
∣∣∣ ∂
∂qj

∣∣∣ν
〉

Eν + Eµ
(uνvµ + vνuµ)2 + ~2

∑

ν

1

v2
ν

∂uν
∂qi

∂uν
∂qj

1

Eν
. (6.13)

Brack et al. [20] modified this expression using the Fermi energy λ and pairing energy
∆ that are involved in the pairing model (the BCS model in this case). They used the
following relation [150]

(Em − E0)
〈

0
∣∣∣ ∂
∂qi

∣∣∣m
〉

=
〈

0
∣∣∣
[
Ĥ,

∂

∂qi

]∣∣∣m
〉

= −
〈

0
∣∣∣∂Ĥ
∂qi

∣∣∣m
〉
, (6.14)

where Ĥ is the single-particle Hamiltonian, and obtained

Bcr
ij (~q) = 2~2

∑

µν

〈
ν
∣∣∣∂Ĥ
∂qi

∣∣∣µ
〉〈
µ
∣∣∣∂Ĥ
∂qj

∣∣∣ν
〉

(Eν + Eµ)3
(uνvµ + vνuµ)2 + Pij , (6.15)

where

Pij =
~2

4

∑

ν

1

E5
ν

[
∆2 ∂λ

∂qi

∂λ

∂qj
+ (εν − λ)2∂∆

∂qi

∂∆

∂qj
+ ∆(εν − λ)

(
∂λ

∂qi

∂∆

∂qj
+
∂λ

∂qj

∂∆

∂qi

)

−∆2

(
∂λ

∂qi

〈
ν
∣∣∣∂Ĥ
∂qj

∣∣∣ν
〉

+
∂λ

∂qj

〈
ν
∣∣∣∂Ĥ
∂qi

∣∣∣ν
〉)

−∆(εν − λ)

(
∂∆

∂qi

〈
ν
∣∣∣∂Ĥ
∂qj

∣∣∣ν
〉

+
∂∆

∂qj

〈
ν
∣∣∣∂Ĥ
∂qi

∣∣∣ν
〉)]

, (6.16)

where εν are the single-particle energies (not the quasiparticle energies Eν). Even if
Eqs. 6.15 and 6.16 seem complex, they are directly derived from Eq. 6.11, the BCS
equations (cf. Chapter 5) and the relation

∂εν
∂qi

=
〈
ν
∣∣∣∂Ĥ
∂qi

∣∣∣ν
〉
. (6.17)
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Here Eq. 6.16 has been corrected from a misprint reported in Ref. [151]. Brack et al. [20]
also derived expressions for the derivatives ∂λ/∂qi and ∂∆/∂qi that simplify the compu-
tations (the only remaining derivatives are related to the Hamiltonian), these derivatives
are expressed as

∂λ

∂qi
=
aci + bdi
a2 + b2

and
∂∆

∂qi
=
bci − adi
a2 + b2

, (6.18)

where
a = ∆

∑

ν

1

E3
ν

, b =
∑

ν

εν − λ
E3
ν

,

ci = ∆
∑

ν

〈
ν
∣∣∣∂Ĥ
∂qi

∣∣∣ν
〉

E3
ν

, di =
∑

ν

(εν − λ)

〈
ν
∣∣∣∂Ĥ
∂qi

∣∣∣ν
〉

E3
ν

.

(6.19)

For the computation of the ∂Ĥ/∂qi term, it is usually assumed [20] that

∂Ĥ

∂qi
≈ ∂V̂

∂qi
(6.20)

where V̂ is the scalar potential of the Hamiltonian.
The cranking inertia tensor as described above has been implemented during this

work. In the cranking model, the two types of nucleons provide two components BCr(n)

and BCr(p), respectively for neutrons and protons, that are summed to obtain the eventual
nucleus deformation inertia BCr.

BCr = BCr(n) +BCr(p) (6.21)

An example is shown in Fig. 6.8 for the neutron contribution of 240
94Pu. On the contrary

to the very regular variation in the Werner-Wheeler approach (cf. Fig. 6.7), the cranking
model leads to many fluctuations related to the nuclear structure and to the changes
in the nucleon wave functions as the nucleus deforms. The tendency of the Bcc and
Bch components to raise as c increases can be seen for both the Werner-Wheeler and
the cranking models. Yet, the order of magnitude of the inertia is quite different for
both models. As said earlier, the Werner-Wheeler still needs deeper verification, and this
difference of magnitude may be caused by an error in the implementation. But it is to be
expected that such different approaches may lead to very different results. In Ref. [151],
it is reported that a difference between the two approaches could be as large as one order
of magnitude, which is quite consistent with the present results. Finally, in Fig. 6.8, the
square root of the BCr(n) determinant is also shown as a verification of the positiveness of
det
[
BCr(n)

]
.

To verify the implementation of the cranking model the method described in Ref. [151]
was applied. In this method, the single-particle model described in Chapter 5 is used
with a perturbed spheroid shape parameterization. In the analytical test case that will
be described now, a single shape parameter ε2 is retained to describe the shape (cf.
Appendix B.1). The nuclear scalar potential used in the single-particle Hamiltonian is
a deformed harmonic oscillator (not a Yukawa-folded potential). No Coulomb potential
and no spin-orbit coupling are present in the Hamiltonian. Thus the analytical base
functions |nrnzΛΣ〉 defined in Chapter 5 are the exact single-particle wave functions. The
Hamiltonian potential V̂ HO is defined by

V̂ HO =
1

2
m(ω2

⊥ρ
2 + ω2

zz
2) =

1

2

[
~ω⊥η + ~ωzξ2

]
, (6.22)
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Figure 6.8 – Neutron contribution to the deformation inertia tensor BCr(n) calculated with
the cranking model for 240

94Pu. The shape is described with generalized spheroid shape
parameterization (c, h). The three components of the tensor (BCr(n)

cc , BCr(n)
ch and BCr(n)

hh )
are shown . The square-root of inertia tensor determinant

√
detBCr(n) is also shown.

where m is the mass of the nucleon, η and ξ are the reduced coordinates defined in
Chapter 5 (cf. Eq. 5.55), and

ω⊥ = ω0

(
1 +

ε2
3

)
and ωz = ω0

(
1− 2ε2

3

)
. (6.23)

The ω0 parameter is defined so that ω2
⊥ωz is independent of ε2 and is given by

ω0 = ω0
0

[
1− ε22

(
1

3
+

2ε2
27

)]−1/3

. (6.24)

The ω0
0 parameter is similar to the one introduced in Chapter 5, cf. Eq. 5.54. The

Hamiltonian derivative of Eq. 6.20 can be written

dĤ
dε2
≈ dV̂ HO

dε2
= 3~ω0

0

[
f1(ε2)η + f2(ε2)ξ2

]
, (6.25)

where

f1(ε2) =
ε2(ε2 + 6) + 9

[27− ε22(9 + 2ε2)]
4/3

and f2(ε2) = 2
ε2(2ε2 + 3)− 9

[27− ε22(9 + 2ε2)]
4/3

. (6.26)

Equation 6.25 differs from the corresponding expression in Ref. [151] by a factor of 2. It
seems that the authors of Ref. [151] derived the right-hand side of Eq. 6.22 with respect
of ε2 without considering the η and ξ dependency on ε2. This is unfortunately propagated
through the whole paper.
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The inertia tensor is reduced to a scalar function (as only one deformation parameter
is considered). Its expression (Eq. 6.15) reduces to

Bcr(ε2) = 18~2[~ω0
0]2
∑

µν

|〈ν|f1(ε2)η + f2(ε2)ξ2|µ〉|2
(Eν + Eµ)3

(uνvµ + vνuµ)2

︸ ︷︷ ︸
D(ε2)

+Pε2(ε2) . (6.27)

The coupling matrix elements 〈ν|f1(ε2)η+f2(ε2)ξ2|µ〉 can be computed analytically using
the expression of the wave functions 〈ν| = 〈n′rn′zΛ′Σ′| and |µ〉 = |nrnzΛΣ〉 (defined in
Chapter 5). The analytical derivation eventually yields

〈ν|f1(ε2)η + f2(ε2)ξ2|µ〉 = δΛ,Λ′δΣ,Σ′δn′z ,nzf1(ε2)
[
(2nr + 1 + Λ)δn′r,nr

−
√
nr(nr + Λ)δn′r,nr−1 −

√
(nr + 1)(nr + Λ + 1)δn′r,nr+1

]

+ δΛ,Λ′δΣ,Σ′δn′r,nrf2(ε2)
[
(nz + 1

2
)δn′z ,nz

+ 1
2

√
nz(nz − 1)δn′z ,nz−2 + 1

2

√
(nz + 2)(nz + 1)δn′z ,nz+2

]
. (6.28)

Here again, this result differs from the corresponding expression in Ref. [151] in which
two non-diagonal terms were omitted. The Pε2 expression is obtained from Eq. 6.16 and
reduces to [151]

Pε2(ε2) =
2~2

8

∑

ν

1

E5
ν

[(
∆

dλ
dε2

)2

+ (εν − λ)2

(
d∆

dε2

)2

+ 2∆(εν − λ)
dλ
dε2

d∆

dε2

− 2∆2 dλ
dε2

〈
ν
∣∣∣dV̂
dε2

∣∣∣ν
〉
− 2∆(εν − λ)

d∆

dε2

〈
ν
∣∣∣dV̂
dε2

∣∣∣ν
〉]

. (6.29)

The pairing and Fermi energies involved in Eq. 6.29 are computed using the usual BCS
formalism and Eqs. 6.18 and 6.19.

A comparison between the implemented general model and the derived analytical
model is shown in Fig. 6.9 where both D(ε2) defined in Eq. 6.27 and Pε2 obtained from
Eq. 6.29 are shown.
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Figure 6.9 – Comparison of results obtained with the analytical cranking model and the
CONRAD cranking model.

The two models for the inertia tensor are thus available in the CONRAD code, the
Werner-Wheeler model and the cranking model. They can now be used to investigate the
effect of the two very different approaches on the determination of the fission path.
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6.2.2 Action Minimization and Path

Finding the least-action path consists in finding the sequence L of shapes the deforming
nucleus will take, so that the action integral (Eq. 6.2) is minimized. Several techniques
can be used to obtain such a path L. When the PES V (~q) is given as a grid, for instance
when each coordinate qi spans over an equally spaced range of values, the Dijkstra [152]
or the A∗ algorithms [153] can be used. They consist in an exploratory approach of the
grid. The two algorithms will not be detailed here, only a simplified version of the Dijik-
stra algorithm will be explained. Given two points of the grid, a starting point and an
ending point, the algorithm will explore from the starting point, all paths to “neighboring”
points, then to the neighboring points of this neighbor, etc. At each step the algorithm
tests if a shortest path has been found from the starting point to the current neighbors.
This approach, has two main liabilities. First, the computation time can be prohibitive
if the calculation grid is refined, especially using the Dijkstra algorithm. Additionally,
the amount of required memory can be very large, even for current computers, depend-
ing on the implementation. The Dijkstra approach has been tested with a procedure
implemented in the Boost C++ library [154]. Yet, it was necessary to make an internal
implementation to reduce the memory use. It must also be noticed that the exploring
graph (i.e. the grid) cannot be interpolated without increasing the number of points of
the grid and thus the computational cost. The paths obtained with this method have a
coarse shape even if the grid is fine enough to perform proper interpolations. The second
issue related to these methods is that the definition of a one-dimensional deformation
parameter is not straightforward. It should yet be noted that the Dijkstra algorithm has
the advantage of yielding the exact solution. In addition, it has some advantages when
the “ending point” is not defined a priori as the Dijkstra algorithm compute the shortest
path from a starting point to all points without too much extra computation time.

Other methods exist, the one retained for this study is the Ritz method [155]. In
this method the starting point ~q GS and ending point ~q FIS must be known a priori. An
evolution function qi(x) is associated to each coordinate.

qi(x) =
N∑

k=1

aik sin(kπx) + (qFISi − qGS
i )x+ qGS

i , (6.30)

where x is a parameter evolving in [0, 1]. Here the aik parameters must be found to
minimize Eq. 6.2; that becomes

S =

1∫

0

dx
√∑

ij

Bij(~q)
dqi
dx

dqj
dx

[V (~q)− V (~q GS)] . (6.31)

The problem becomes a minimization of a function, Eq. 6.31, over its range of definition
that is related to the aik. For the global minimum search the NLopt [156] optimization
library has been used4. One disadvantage of this Ritz representation is that the parameters
aik are strongly correlated with each-other, and thus several sets of parameter values can
describe very similar paths (no uniqueness of the solution). This property is not yet a
problem for eventual applications because the similar paths would lead to similar fission
barriers. However this feature can be an issue for the global optimum search. Indeed the

4The global optimum search can be done using several algorithms, to simplify the comparisons pre-
sented in this work, the GN_DIRECT algorithm has been used in all calculations. Yet a sensitivity study
of the optimum search results with respect of the algorithm should be done.
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program searches for the global optimum and several parameter sets can lead to similar
path (and thus to similar value of the action integral). It would take time for the program
to determine which path is the best. In practice a timeout is set to the optimization.
If the computation time of the minimization exceeds the timeout, the NLopt program
returns the best path that has been found.

Several ending points ~q GS are tested to get the one with the smallest action integral.
The tested points are those contained in the “fission line” defined for the least-energy
method. In the case of three or more dimensions, this line becomes a surface or a hyper
surface. It should be stated here that the algorithm, while searching for the aik coefficients,
may “explore” deformation area where the V (~q) < V (~q GS). This occurs for example when
the path is close to the chosen ending point. Indeed the ending point is defined as
the first point of the grid that has an energy V (~q) below V (~q GS). As the grid can be
coarse, the integration method computing Eq. 6.31 may need to evaluate the function in
a deformation region where V (~q) < V (~q GS) and thus the square root results in complex
values. This is avoided in practice by taking the real part of the square root, the action
integral remains unchanged. Another feature concerning this method is that the final one-
dimensional path may need to be rescaled along the x axis so that the potential for x = 1
is equal to V (~q GS). This has in practice no effects on the eventual fission transmission
coefficient if the one-dimensional deformation inertia is also scaled. In can be stated here
that it is possible to operate a variable change [157] so that the deformation inertia matrix
is diagonal and independent of the deformation. In such cases, it is the potential that
“absorbs” the deformation dependency of the inertia tensor. The deformation inertia still
needs to be computed but the subsequent equations can be simplified.

6.3 Least-Energy V.S. Least-Actions

To illustrate the difference between the least-energy and the least-action methods, the
paths resulting from the 240Pu 2D PES are shown in Fig. 6.10. The least-action path search
is performed using the Werner-Wheeler inertia tensor (white curve) and the Cranking
inertia tensor (purple curve). In the beginning of the paths, the cranking path seems to
follow the least-energy path (orange curve), then it differs to reach the fission line in a
more “direct” way than the least-energy path. On the opposite, the Werner-Wheeler path
crosses the hill between the first and intermediate wells then avoids the bottom of the
intermediate well and directly reaches the fission line. The Werner-Wheeler inertia tensor
has very slow variations for c < 1.4 (cf. Fig. 6.7); thus one would have expected the path
to follow the PES valleys. On the contrary, the Werner-Wheeler path seems to “ignore”
the structures of the PES. This may indicate an issue with the present Werner-Wheeler
implementation.

The practical advantage of the least-action technique is that it provides a convenient
deformation abscissa x (cf. Eq. 6.30). It also provides one-dimensional deformation-
dependent inertia parameter µ(x) defined by

µ(x) =
∑

ij

Bij(~q)
dqi
dx

dqj
dx

. (6.32)

For least-energy paths, a constant inertia parameter µconst is considered. Its value is given
by [22]

µconst = 0.054A5/3~2 MeV−1 , (6.33)
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Figure 6.10 – Fission paths obtained with the least-energy and least-action methods. For
the least-action method, two types of deformation inertia tensor are used (Cranking and
Werner-Wheeler).

where A is the mass number of the fissioning nucleus. In the present case, it is 240Pu, so
that

µconst ≈ 500~2 MeV−1 . (6.34)

Figure 6.11 shows the least action paths obtained with the 240Pu 2D PES where the inertia
parameter µ is either obtained from the Werner-Wheeler model or the cranking model.
The constant inertia parameter µconst is also shown for comparison. It can be seen that
the saddle points heights are quite similar in the two approaches. The second saddle point
is of course very high due to the 2D limitation of the PES in this case. The widths of the
first barriers differ significantly between the two methods, so do the widths of intermediate
wells. The deformation inertiae differ significantly in terms of magnitude and shape (cf.
Figs 6.7 and 6.8). These differences in deformation inertia, as exemplified by Fig. 6.11,
this will have a dramatic effect on the eventual transmission coefficient calculation, as it
will be demonstrated later in this chapter.

Similar calculations were attempted in the case of the 3D PES, however it happened
that the present Werner-Wheeler implementation make the inertia tensor have negative
eigenvalues. This is nonphysical as it would imply that a shape parameterization could
be found, in which the inertia tensor is diagonal with at least one of the diagonal term
being negative. This is incompatible with the physical definition of inertia that is always
a positive quantity. Therefore only the cranking inertia tensor is used for the rest of
the present study while considering 3D PES. The corresponding result are shown in the
left part of Fig. 6.12. Contrary to the least-energy case, if can be seen that the barriers
obtained from the 2D and 3D PES are completely different. In the 3D case, its seems
that the first barrier height is lower than in the least-energy case, which is not possible
because of the way the least energy path is constructed. The results comes for the fact
that the least-action path does not reached the true intermediate well. The first low
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Figure 6.11 – One-dimensional least-action potentials (blue curves) and inertia parameters
(red curves) obtained from the 2D PES of 240Pu using either the Werner-Wheeler (left)
and cranking (right) deformation inertia tensors. The constant inertia parameter (green
curve) is shown for comparison.

barrier, about 2 MeV height is not a barrier leading to the same intermediate well as in
the least-energy case. The explanation of this smaller “first” saddle point height can be
understood if one considers the projection of the path (defined in a 3D space (c, h, α))
on the 2D plane (c, h, α = 0). The path obtained in this case shows that the nucleus
“remains” in the first well prior to deforms towards fission. The effects of the second well
(visible on the PES figure background near (c, h) = (1.5, 0)) are only slightly reproduced
in the one-dimension barrier (left part of the figure) at the top of the “second barrier”.
The fluctuations observed on the top of the “second barrier” do not correspond to the
background potential because in this part of the path, the nucleus shape has a non-zero
α value.
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Figure 6.12 – (Left) One-dimensional potential (blue curve) and inertia parameter (red
curve) obtained for the 240Pu with the least-action method applied to the 3D PES and
using cranking deformation inertia tensor. The constant inertia parameter (green curve) is
shown for comparison. (Right) Projection of the corresponding 3D path on the (c, h, α =
0) plane. The deformation potential also corresponds to the (c, h, α = 0) “slice”.

An alternative method in the search of the least action path consists in changing the
selected ending point. The ending point is no longer the point of the fission line having

131



6.4. NUM. TRANSMISSION COEFFICIENTS CHAPTER 6. FROM PES TO FISSION CROSS SECTION

the smallest calculated action integral (calculated by Eq. 6.31). The new ending point is
the one related to the lowest barrier height of the path (which is specific to the ending-
point) . The corresponding results, 3D–Cranking-Vmin, are shown in Fig. 6.13. In this
case, the one-dimensional fission barrier leads to first saddle point and intermediate well
heights that are similar to those obtained with the 2D PES (cf. Fig. 6.11). Additionally
it can be noted that in this case, the one-dimensional deformation inertia behavior seems
anti-correlated to the barrier shape.
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Figure 6.13 – One-dimensional potential (blue curve) and inertia parameters (red curve)
obtained for the 240Pu with the least-action-Vmin method for the 3D PES and using the
cranking deformation inertia tensor. The constant inertia parameter (green curve) is
shown for comparison. The least-action method used here differs from the one used in
Fig. 6.12 as the ending point is chosen to be the one related the lowest barrier height.

At this point, two main options seem promising for the final application of fission cross
section modeling: the least-energy method and the least-action-Vmin method (because of
the reasonable values of the barrier heights). Yet the regular least-action method will
be preserved in the next step (barrier transmission coefficient calculation), so that the
difference between the two least-action methods can be highlighted.

6.4 Numerical Transmission Coefficients

Now that the one-dimensional potential has been extracted from the PES, the related
transmission coefficient can be calculated. As the shape of the potential can be very
general, a numerical method must be used to obtain the fission barrier transmission
coefficient out of a numerical deformation potential. Two cases will be treated depending
if the one-dimensional deformation inertia deformation-dependent or not.

6.4.1 Deformation-Independent Effective Mass Parameter

The barrier transmission coefficient can be computed with the same approach than the in
Hill-Wheeler and Cramer-Nix models (cf. Chapter 4). The fission process can be modeled
as a fictive particle tunneling through a potential barrier. The difference in this case is
that the deformation potential is numerical, thus no analytical solution can be given
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and a numerical approach must be found. If the deformation inertia µ is constant with
deformation, the particle tunneling process is described by a wave function Ψ solution of

−~2

2µ

d2Ψ

dη2

︸ ︷︷ ︸
T̂Ψ

+V (η)Ψ = EΨ . (6.35)

This equation can be written in the general form

f ′′(x) +W (x)f(x) = 0 , (6.36)

for which many numerical methods exist. Several methods have been implemented,
namely:

• The piece-wise constant discretization of the potential, analytical solving on each
piece. In this method, the potential V is transformed into a piece-wise constant
function. On each constant fragment, an analytical solution of the wave function
can be found. The piece-wise wave functions are then smoothly matched to obtain
the complete wave function.

• The piece-wise linear discretization of the potential. This method differs from the
former only by the definition of the analytical solutions that are defined on each
piece of linear potential segment.

• The Jeffreys-Wentzel-Kramers-Brillouin method (JWKB) [158]. This method relies
on a quasi-classical approximation of the physical tunneling problem.

• The Numerov method [21]. This is “only” a numerical method that can be used to
solve differential equation of type of Eq. 6.36. This method is especially efficient in
transmission coefficient calculation problems.

In the interest of simplicity and clarity, only the Numerov method will be presented here.
The piece-wise and JWKB methods are described in Appendix D.1. The performances of
the different numerical methods will then be compared.

6.4.1.1 Numerov Method

The Numerov method does not rely on physical assumptions but only on mathematical
hypotheses regarding Eq. 6.36. The variable x is discretized and the equation is solved
“backward” from x = xmax to x = 0. If {xn}n stand for the discrete abscissae – all
separated by a constant step h, a recurrence relation is provided by the method between
corresponding ordinates {fn}n. The mathematical assumption would be that in this
recurrence relation, terms higher than h6 are neglected. See Appendix D.1.3 for the
derivation of the method. The recurrence relation is

fn−1 =

(
2− 5h2

6
Wn

)
fn +

(
1− h2

12
Wn+1

)
fn+1

1− h2

12
Wn−1

, (6.37)

where Wn = W (ηn). The wave function Ψ for η = ηN can be written in the form

Ψ(ηN) = b∞eik∞ηN , (6.38)
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where b∞ ∈ C∗. Using this expression, the wave function derivative is

Ψ′(ηN) = ik∞b∞eik∞ηN . (6.39)

Using these expressions for Ψ and Ψ′, one assumes that h = ηN − ηN−1 is small enough,
so that the wave function for η = ηN−1 can be expressed as

Ψ(ηN−1) = Ψ(ηN)− hΨ′(ηN) . (6.40)

Thus the two first points of the recurrence (Eq. 6.37) are defined and the wave can be
computed down to η = η0. Then a same approach than for Eq. 6.40 can be used to obtain
from Ψ(η0) and Ψ(η1) the values Ψ′(η0), then coefficients c0 and b0 can be found using
the relations

Ψ(η0) = b0eik0η0 + c0e−ik0η0 , (6.41)
Ψ′(η0) = ik0b0eik0η0 − ik0c0e−ik0η0 . (6.42)

The transmission coefficient can thus be obtained using Eq. D.7; here recalled

T (E) =
k∞
k0

∣∣∣∣
b∞
b0

∣∣∣∣
2

. (6.43)

6.4.1.2 Verification and Comparison of the Methods

To check the accuracy and to compare performances of the implemented methods, analyt-
ical test cases were analyzed. These analytical cases are detailed in Appendix D.2, they
consist in a step (or square) potential, a triangular potential and a triple, smoothly-joint
parabola potential. As detailed in Appendix D.2, the Cramer-Nix analytical solution has
to be slightly modified to provide a practical baseline. The tests performed with the
square and triangular potential will not be presented here but were quite satisfactory.
Instead, focus is made on methods comparison with the triple, smoothly-joint, parabola
potential.

First, the JWKB method is compared with the analytical case. Even if the JWKB
method has the significant advantage to be applicable for general shapes of the potential,
and to consist in a single integral, it cannot be used in all cases. As it is shown in analytical
examples in Appendix D.2, transmission coefficients can have resonant structures for
energies above the barrier maximum that cannot be obtained with the present JWKB
approach. In practice the JWKB approximation becomes inaccurate for energies just
below and above the barrier maximum. This can be seen in Fig. 6.14, where the analytical
“modified” Cramer-Nix model, described in Appendix D.2, has been used as a reference
for the calculation. The last resonance before the JWKB method fails is shifted by
about 20 keV with respect of the analytical result. For energies above the barrier height,
Eq. D.18 cannot be used anymore. In such cases the transmission coefficient value could
be arbitrarily set to one but structures observed in the analytical case (black curve in
Fig. 6.14) cannot be reproduced. In practice this means that this approach cannot be
used for fissile isotopes.

Other methods do not have such restrictions. To compare performances of the imple-
mented methods, an error score δ is defined as

δ =

∫
dE|T num(E)− T exact(E)|
∫

dET exact(E)
, (6.44)
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Figure 6.14 – Calculation of the transmission coefficient for the Cramer-Nix potential
using the JWKB approximation. Analytical results are also shown. The triple parabola
test case potential is defined by E1 = E3 = 6 MeV, E2 = 2 MeV, ~ω1 = ~ω3 = 1 MeV,
~ω2 = 0.5 MeV, µ/~2 = 0.054A5/3 (in MeV−1) where A = 240 (cf. Appendix D.2).

where T num is the transmission coefficient obtained with a given numerical method, and
T exact is the corresponding value obtained with a reference analytical model. The integrals
are performed over an arbitrary testing energy range. The smaller δ, the better the
performance. To compare methods, a performance diagram is used where the running
time (driven by changing the discretization step) is represented as a function of the error
score δ. Figure 6.15 shows such a diagram.

The same calculation is performed with the three methods several times with varying
discretization, thus yielding different running times and different error scores δ. It can be
seen that the piecewise linear method has more fluctuating performances than the other
methods. This is due to the inherent numerical issues of the method that are explained
in Appendix D.2. Unfortunately, the “mixing” with the piecewise constant method does
not solve completely the problem. One can also see that this method is significantly less
efficient than the two others, because of the time required for the evaluation of the Airy
functions. Even if the potential is accurately described with less points than in the con-
stant piecewise method, this gain in discretization is overwhelmed by the computational
cost of the Airy functions. It should be noted here that the discretization was performed
using the constant deformation step. Unlike in the Numerov method, a uniform dis-
cretization grid is not necessary for the piecewise methods and a smartly tuned mesh
could change somehow the performance of the method. Finally the Numerov and the
piecewise constant methods have similar performances. In general the piecewise constant
method is better but if rapidity must prevail over accuracy, the Numerov method should
be used instead.
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Figure 6.15 – Performance diagram related to the piecewise constant method (Constant),
the piecewise linear method (Linear) and the Numerov method (Numerov). The potential
used is the triple, smoothly-joint, parabola potential described in Appendix D.2. To
make this test representative, each run consists in 500 transmission coefficient calculations
defined for energies between 2 and 7 MeV.

6.4.2 Deformation-Dependent Effective Mass Parameter

In this case the kinetic operator T̂ of Eq. 6.35 must be modified. A general form satisfying
the Hermitian property of the operator and yielding the usual equation when inertia is
constant with deformation is

T̂ =
1

4

(
µαp̂µβ p̂µγ + µγ p̂µβ p̂µα

)
, (6.45)

where α, β and γ are real arbitrary parameters satisfying the von Roos [159] condition:
α + β + γ = −1. If µ does not vary, one gets the usual operator

T̂ =
p̂2

2µ
. (6.46)

After some algebraic manipulations, Eq. 6.45 applied to a given wave function Ψ becomes

T̂Ψ = − ~2

2µ

[
Ψ′′ − µ′

µ
Ψ′ +

[
[(β + γ)(γ + 1) + 1]

µ′2

µ2
− 1

2
(1 + β)

µ′′

µ

]
Ψ

]
. (6.47)

To get rid of the α, β and γ parameters, the BenDaniel-Duke [160] conditions α = γ = 0
and β = −1 are used. Equation 6.47 simplifies to

T̂Ψ =
1

2
p̂

1

µ
p̂Ψ = − ~2

2µ

[
Ψ′′ − µ′

µ
Ψ′
]
. (6.48)

As this expression involves a first order derivative Ψ′, the Numerov method described in
the previous section cannot be used. A fourth-order Runge-Kutta method has thus been
implemented to treat problems with varying inertia.

The fourth-order Runge-Kutta method is a numerical method that can be used to
solve differential equation of types

u′(η) = F [η, u(η)] . (6.49)
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In the present case, the differential equation

T̂Ψ + V (η)Ψ = EΨ (6.50)

can be written
Ψ′′ − µ′

µ
Ψ′ − 2µ

~2
(V (η)− E)Ψ = 0 . (6.51)

Equation 6.51 can be turned into a form of Eq. 6.49 by defining

u =

(
u0

u1

)
=

(
Ψ
Ψ′

)
and F [η, u] =




u1

µ′(η)

µ(η)
u1 +

2µ(η)

~2
(V (η)− E)u0


 . (6.52)

Just like in the piecewise methods used when µ is constant, the deformation range is
discretized, and initial condition

uN = b∞eik∞ηmax

(
1
ik∞

)
with b∞ ∈ C∗ , (6.53)

is imposed on the outermost part of the potential η = ηN = ηmax, where

k∞ =

√
2µ

~2
[V (ηmax)− E] . (6.54)

At a given step ηn, the function un = u(ηn) can be computed from un+1 by

un = un+1 −
h

6
(k1 + 2k2 + 2k3 + k4) , (6.55)

where h is the constant distance between two points ηn and ηn+1 and

k1 = F [ηn, un] , (6.56)
k2 = F [ηn + h

2
, un + h

2
k1] , (6.57)

k3 = F [ηn + h
2
, un + h

2
k2] , (6.58)

k4 = F [ηn + h, un + hk3] . (6.59)

Once u(η0) is computed, one can define

b0 =
1

2ik0

[ik0Ψ(η0)−Ψ′(η0)] e−ik0η0 , (6.60)

and obtain the transmission coefficient using a slightly modified version of Eq. 6.43:

T (E) =
k∞µ(η0)

k0µ(ηmax)

∣∣∣∣
b∞
b0

∣∣∣∣
2

. (6.61)

Both accuracy and performance of the method can be analyzed with the same method
than in the case of constant inertia. For the analytical case, the same “modified” Cramer-
Nix model, described in Appendix D.2 has been used as a baseline. Even though, in this
analytical case, inertia is constant, it is still a good verification of the implemented algo-
rithm. The performances of the piecewise constant and Numerov methods (cf. Fig. 6.15)
are reported in Fig. 6.16 for a comparison with the benefits brought by the Runge-Kutta
method. Results of the Numerov method are reported here, yet this method cannot
be used when deformation inertia is deformation-dependent. The performances of the
method is quite similar to those of the piecewise constant method and even slightly bet-
ter.
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Figure 6.16 – Performance diagram for the piecewise constant method (Constant), the
Numerov method (Numerov) and the Runge-Kutta method (Runge-Kutta). The potential
used is the triple, smoothly-joint parabola potential described in Appendix D.2. For this
test, 500 transmission coefficients are computed for energies between 2 and 7 MeV.

6.4.3 Effects of Path Searching Method and Deformation Inertia
Tensor on Transmission Coefficient

6.4.3.1 A Test Case

Prior to tackle transmission coefficient calculation for actual potentials, the effect of the
deformation-dependent inertia parameter µ(x) is analyzed here on a test case. The triple,
smoothly-joint, parabola potential described in Appendix D.2 is considered. To highlight
the effect of inertia parameter µ, four cases are considered.

• The inertia parameter µ(x) = µconst is constant and given by Eq. 6.33.

• The inertia parameter varies according to5

Birr
ε2

(ε2) = µconst

[
1−X +X

1 + 2
9
x2

(1− 1
3
x2)2

(
1− 1

3
x2 − 2

27
x3

)−4/3

− 1

]
, (6.62)

where X takes values between 0% (i.e. µ(x) = µconst) and 100%, namely X =
0%, 1%, 5%, 10% and 100%. To avoid over cluttered figures, only the first four
values will be used to compute transmission coefficients.

These choices of parameterization of µ are illustrated on the left side of Fig. 6.17. It can
be seen that the difference between the constant case and the 1% variation is minute.
The related transmission coefficients are calculated using the implemented Range-Kutta
method, corresponding results are shown on the right side of Fig. 6.17. It can be seen that
change in inertia has small effect for the low-energy resonances. However for resonances
located juste below the barrier maximum (here 6 MeV), the change is dramatic, even
for small values of X. The overall increase of inertia with deformation on transmission
coefficient densify the number of observed resonances.

5This parameterization is chosen to be consistent with Eq. 5.121.
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Figure 6.17 – (Left) Inertia parameters used in the test case. (Right) Corresponding
tranmission coefficients. The triple parabola test case potential is defined by E1 = E3 =
6 MeV, E2 = 2 MeV, ~ω1 = ~ω3 = 1 MeV, ~ω2 = 0.5 MeV, µ/~2 = 0.054A5/3 (in MeV−1),
where A = 240 (cf. Appendix D.2).

6.4.3.2 Actual Barriers and Inertia Parameters

To highlight the dramatic effect of the deformation dependence of the inertia tensor,
five different test cases have been treated. All test cases are related to the 3D PES of
240Pu reduced to a one-dimensional barrier. In all cases the transmission coefficient is
calculated using the Runge-Kutta method described here above. These tests will show
the effect of the searching method, least-energy (LE), least-action (LA) or least-action
with smallest barrier height retained (LA–Vmin). Two cases will be considered in the
least-action methods, one using the inertia parameter µ(x) obtained with the cranking
model, the other using the constant value µconst given by Eq. 6.33. The constant inertia is
only related to the one-dimensional calculation, the PES reduction to a one-dimensional
potential is always done using the cranking inertia tensor. Present five test cases are:

• Least-energy potential and constant inertia parameter (LE–µconst), cf. Fig. 6.6.

• Least-action potential and a varying inertia parameter (LA–µ(x)), cf. Fig. 6.12.

• Least-action potential and constant inertia parameter (LA–µconst) i.e. the least-
action path is obtained with the Cranking inertia tensor, but it is a constant inertia
parameter that is considered with the one-dimensional barrier, cf. Fig. 6.12.

• Least-action potential (with smallest barrier height retained) and a varying inertia
parameter (LA–Vmin-µ(x)), cf. Fig. 6.13.

• Least-action potential (with smallest barrier height retained) and constant inertia
parameter (LA–Vmin-µconst), cf. Fig. 6.13.

The four least-action methods are compared in Fig. 6.18. It can be seen that the
LA methods (green curves) produce less structures that the LA–Vmin methods, this is
especially true for LA-µconst. This is due to the fact that the LA potential (cf. Fig. 6.12)
consists almost in a single barrier. This barrier height is also about 2 MeV higher than
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the corresponding one of the LA–Vmin potential. This explain the energy shift (of about
2 MeV) that can be seen between methods (i.e. between blue curves on one side and
green curves on the other side). A surprising effect is observed comparing the LA-µconst
and LA-µ(x) results; the inclusion of a varying inertia parameter restores structures in
the transmission coefficient. This type of phenomenon is proven here to have spectacular
effects, but is never considered in evaluation techniques. This effect is less visible for the
LA–Vmin methods because the intermediate well (Fig. 6.13) allready induces resonance
structures. A last feature can be observed from Fig. 6.18; the deformation-dependent cases
(i.e. solid lines) exhibit fluctuations up to quite higher energies than the corresponding
deformation-independent cases (dashed lines).
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Figure 6.18 – Transmission coefficients calculated using the least-action potential (LA)
and using either a constant inertia parameter (dashed curves) or a deformation-depedent
inertia parameter (solid curves). The transmission coefficients are shown in linear scale
(left) and logarithmic scale (right).

Finally the LE-µconst and LA–Vmin-µ(x) methods are compared. The related results
are shown in Fig. 6.19. Two main features should be noticed. First, the LE method
produces many more resonances than the LA–Vmin-µ(x) method, this is probably due
to the difference in the shape of the intermediate wells. Second, in the LE case, the
transmission coefficient tends to its asymptotic value much faster than in the LA–Vmin-
µ(x) case. For energies much above the barrier heights (about 6 MeV in both cases),
the LA–Vmin-µ(x) method still exhibits strong fluctuations whereas, in the LE case, the
resonances are almost completely damped. One could finally notice that LA–Vmin-µ(x)
(respectively LE) leads to a resonance near 5 MeV (respectively 4.5 MeV) that are observed
experimentally with surrogate reactions [161,162].

At this point it is not possible to determine which method is the best suited for cross
section modeling as transmission coefficients cannot be confronted with experimental data.
To obtain transmission coefficients usable in fission cross section modeling, it is necessary
to introduce transitions states. To the difference of the usual evaluation method, these
transition states must be defined all along the fission path. The method used to deduce
them is described in the following section.
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Figure 6.19 – Transmission coefficient calculated using the LE–µconst and LA–Vmin-µ(x)
methods. The transmission coefficients are shown in linear scale (left) and logarithmic
scale (right).

6.5 Transition states
As was explained in Chapter 4, the transmission coefficient calculated with a barrier shape
as obtained with the macroscopic-microscopic model stands for one way the nucleus can
fission. This latter barrier shape corresponds to configurations where the intrinsic energy
(i.e. the amount of energy that is not “taken” by the deformation) is minimal. This is why
this latter barrier is called the fundamental barrier. Additional states can be built “above”
the fundamental barrier standing for the configurations where part of the total energy is
“consumed” by the intrinsic degrees of freedom. These are the present extension of the
single-hump transition states. Several fission “channels” can be defined for each of these
configurations, they will be related to a specific new barrier shape that will be somehow
“shifted” with respect to the fundamental barrier. As the energy shift, corresponding to
the intrinsic energy, will depend on the deformation, the shift is not constant all along
the fission path. In the following, it will be assumed that these new barrier shapes do
not cross each other, this corresponds to the adiabatic assumptions. By analogy with the
transition states of Chapter 4 defined separately at each barrier hump, these new barrier
shapes will be called continuous global transition states. An illustration of such global
transition states is shown in Fig. 6.20.
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Figure 6.20 – Example of global transition states obtained with the LA–Vmin path. The
two transition states correspond to the first and the seventh transition states related to
the quantum numbers Jπ = 4+.
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In this section the determination of these global transition states will be detailed so
that in fine a fission transmission coefficient T Jπf can be defined for each compound nucleus
Jπ state defined as a sum of a certain set of barrier-related transmission coefficients related
individually to a unique global transition state.

6.5.1 Rotational Band

The global transition states that are “built” on the fundamental barrier are obtained as a
set of excited states having shapes similar to the corresponding fundamental barrier below.
The nature of these latter excited states are due to an internal configuration (intrinsic
excitation) or from collective excitations. These collective excitations can be related to
collective vibrations, with different modes (i.e. related to different degrees of freedom).
They can also be related to the rotation of the whole nucleus. There is an analytical
relation between the energy of a nucleus in its lower rotational state and the energy of a
“higher” rotational state (i.e. with a higher total angular momentum J). Therefore, for a
given deformation, the excited states are defined as a rotational band built on the lowest
rotational state having this deformation (plus a possible intrinsic and vibrational energy
EKπ

int.+vib.).
As only axially symmetric shapes are considered here, the global transition state energy

EJπK
g.t.s. is given by [89]

EJπK
g.t.s. =EKπ

int.+vib. +
~2

2I⊥

[
J(J + 1)−K2

]
(6.63)

=EKπ

int.+vib. +
~2

2I⊥
K

︸ ︷︷ ︸
EK

π
B.H.

+
~2

2I⊥
[J(J + 1)−K(K + 1)] , (6.64)

where I⊥ is the rotational inertia momentum related to an axis perpendicular to the
nucleus symmetry axis. Equation 6.64 also defines the band-head energy EKπ

B.H., i.e. the
energy of the first excited state of the rotational band.

For a given a band-head energy EKπ

B.H., some global transition states cannot be obtained
using Eq. 6.64 because selection rules prevent the possibility to obtain some Jπ states from
a given Kπ band-head. These selection rules are given by [163]

J = K,K + 1, K + 2, ... K 6= 0 ,
J = 0, 2, 4, ... K = 0 and π = +1 ,
J = 1, 3, 5, ... K = 0 and π = −1 .

(6.65)

In the following, explanations will be given on how the band-head state is obtained
(more specifically, how the EKπ

int.+vib. term is obtained). Then two models for the rotational
inertia momentum I⊥ will be presented, so that fission transmission coefficient T Jπf could
be calculated and used to finally obtain a fission cross section.

6.5.2 Rotational Band-Heads

The rotational band-head energy EKπ

B.H. is obtained from a coupling between an intrinsic
excitation state and a vibrational state6 using Eq. 6.64, so that

EKπ

B.H. = EKπ

int.+vib. +
~2

2I⊥
K . (6.66)

6This vibrational state can be composed of several phonons in several vibrational modes.
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The “int.+vib.” state is obtained by a combinatorial method, see for example Ref. [24],
so that energy EKπ

int.+vib. is obtained by

EKπ

int.+vib. =
∑

i

niE
vib.
i +

∑

i

miE
q.p.
i , (6.67)

where Evib.
i is the elementary photon energy of the mode i (here the multi-phonon energy

is obtained assuming a harmonic oscillator model for the vibrations7). The Eq.p.
i term is

the quasiparticle energy of the intrinsic excitation i. It is supplied by the Yukawa-folded
model described in Chapter 5 combined with one of the pairing model described in the
same chapter. The mi and ni numbers correspond to the number of phonons or to the
number of the quasiparticle states of the excited configuration that is provided by the
combinatorial method.

The combinatorial method used was extracted from the AVXSF code [23, 24] and
coupled with the CONRAD code so that the computation of the global transition states
is completely automated. For an excited configuration yielding EKπ

int.+vib. , the K and π
quantum numbers of the band-head are obtained by the following expression

K = |Kvib.
1 ± ...±Kvib.

M ±Kq.p.
1 ...±Kq.p.

N | , (6.68)

π =
M∏

i=1

πvib.i

N∏

j=1

πq.p.j , (6.69)

where M is the number of vibrational phonons, and N is the number quasiparticle states,
that are involved in the configuration leading to EKπ

int.+vib.. They are also provided by the
AVXSF routine. The vibrational states are poorly known except for the ground state
shape, where spectrometry can be used to deduce experimental values. Therefore in the
present study it was assumed that only three basic vibrational states are involved with
no dependence on the deformation. Other vibrational states are built from these basic
states assuming harmonicity. The three basic states [164] are given in Tab. 6.2. These
states correspond to one-phonon vibrational states, assuming harmonicity and no coupling
between vibrational modes, the many-phono states can be obtained from the basis states
by combinatorial calculation.

Table 6.2 – Vibrational one-phonon states used in the rotational band-head combinatorial
computation.

n Evib. [MeV] K π

1 0.15 2 +
2 0.7 0 −
3 0.8 1 −

6.5.3 Rotational Moments of Inertia

To obtain the band-head energy EKπ

B.H. (Eq. 6.66) and the global transition state EJπK
g.t.s.

(Eq. 6.63), the rotational moment of inertia I⊥ must be obtained. In a similar way than
in the PES determination (cf. Chapter 5) and the deformation inertia tensor modeling,
two approaches (“macroscopic” and “microscopic”) for the determination of I⊥ will be
presented.

7This implies that the two-phonon state has an energy twice larger than the one-phonon state, etc.

143



6.5. TRANSITION STATES CHAPTER 6. FROM PES TO FISSION CROSS SECTION

6.5.3.1 Rigid Body (Sharp- and Diffuse-edge)

In the “macroscopic” approach, the nuclear matter is considered a rigid, homogeneous
body8. The rotational moment of inertia can thus be obtained in the framework of
classical mechanics [93] as

I⊥ = πρM

zmax∫

zmin

dz
(
z2ρ2(z) +

ρ4(z)

4

)
+4Ma2

︸ ︷︷ ︸
If shape has diffuse edge

, (6.70)

where M is the mass of the nucleus, and ρM is the nuclear matter mass density. The last
term in Eq. 6.70 must be added if the nuclear shape has diffuse edge. The diffuseness
parameter a corresponds to the range of the Yukawa-folded density function (cf. Chap-
ter 5). Yet, as it will be shown below, the diffuse-edge model has not been investigated
as the rigid body model already overestimates experimental data and the diffuseness of
the shape would increase this discrepancy.

6.5.3.2 Cranking Model

In the microscopic approach, the rotational inertia can be obtained with a cranking
model [18, 19, 166]. It is the same model that has been used to obtain the deforma-
tion inertia tensor can also be used to get the rotational inertia momentum. Just like in
the case of the deformation inertia tensor, the rotational inertia momentum I⊥ is the sum
of the neutron inertia momentum I

(n)
⊥ and the proton inertia momentum I

(p)
⊥ , namely

I⊥ = I
(n)
⊥ + I

(p)
⊥ . (6.71)

The rotational inertia momentum, for instance for neutron, is given by

I
(n)
⊥ = 2~2

∑

νµ

|〈ν|jx|µ〉|2
Eν + Eµ

(uνvµ − uµvν)2 , (6.72)

where |ν〉 and |µ〉 are the single-particle wave functions obtained with the Yukawa-folded
independent particle model presented in Chapter 5. Energies Eν and Eµ are the quasi-
particle energies obtained by the BCS or the Lipkin-Nogami model, and vν , vµ, uν and
uµ are the related occupancy numbers.

In the Yukawa-folded independent particle model, the single-particle wave functions
are obtained as a linear combination of the deformed harmonic oscillator eigenfunctions
|nrnzΛΣ〉. Therefore the coupling matrix elements 〈n′rn′zΛ′Σ′|jx|nrnzΛΣ〉 must be known
so that Eq. 6.72 can be computed with the wave functions provided by the independent
particle model. The only non-vanishing matrix elements are [20,167]

〈nr, nz − 1,Λ− 1,Σ|jx|nr, nz,Λ,Σ〉 = α2

√
2nz(nr + Λ) , (6.73)

〈nr + 1, nz + 1,Λ− 1,Σ|jx|nr, nz,Λ,Σ〉 = −α2

√
2(nz + 1)(nr + 1) , (6.74)

〈nr − 1, nz − 1,Λ + 1,Σ|jx|nr, nz,Λ,Σ〉 = −α2

√
2nznr , (6.75)

〈nr, nz + 1,Λ + 1,Σ|jx|nr, nz,Λ,Σ〉 = α2

√
2(nz + 1)(nr + Λ + 1) , (6.76)

〈nr, nz + 1,Λ− 1,Σ|jx|nr, nz,Λ,Σ〉 = −α1

√
2(nz + 1)(nr + Λ) , (6.77)

8The macroscopic approach for the rotational moment of inertia considers here the nucleus a rigid
body, not a liquid drop. The most exact analogy with PES calculation of Chapter 5 would involve the
irrotational flow model [165].
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〈nr + 1, nz − 1,Λ− 1,Σ|jx|nr, nz,Λ,Σ〉 = α1

√
2nz(nr + 1) , (6.78)

〈nr − 1, nz + 1,Λ + 1,Σ|jx|nr, nz,Λ,Σ〉 = α1

√
2(nz + 1)nr , (6.79)

〈nr, nz − 1,Λ + 1,Σ|jx|nr, nz,Λ,Σ〉 = −α1

√
2nz(nr + Λ + 1) , (6.80)

〈nr, nz,Λ,−Σ|jx|nr, nz,Λ,Σ〉 =
~
2
, (6.81)

where

α1 =
~
4

(√
ωz
ω⊥

+

√
ω⊥
ωz

)
and α2 =

~
4

(√
ωz
ω⊥
−
√
ω⊥
ωz

)
, (6.82)

and where ωz and ω⊥ are the deformed oscillator frequencies defined in Chapter 5.

6.5.3.3 Model Comparison and Validation

The two models implemented to calculate the rotational inertia momentum I⊥ can be
benshmarked on a practical case. For ground state deformation the rotational inertia
momentum can be obtained for some isotopes from the analysis of their low-lying excited
states. For the present work, these low-lying levels have been analyzed using data from
the ENSDF database [168]. The results are shown in Fig. 6.21 and are rather consistent
with those reported in Ref. [169]. It can be seen that the rigid body model overestimates,
at least by a factor two, the experimental data, whereas the cranking model is in better
agreement for small and medium size isotopes but underestimates I⊥ for heavy nuclei.
The ground state shape used to obtained the results shown in Fig. 6.21 are taken from
Ref. [12].
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Figure 6.21 – Rotational inertia momentum calculated with the cranking model (dashed
lines) and the rigid body model (dotted lines). Experimental data are also shown (solid
lines).

The rotational moment of inertia varies as the nucleus deforms towards fission shapes.
Figure 6.22 shows results obtained with both models as a function of the x deformation.
The path (set of shapes) used here is the least-action path LA–Vmin (cf. Fig. 6.6). It can
be seen that the dependency of the rotational inertia is quite similar for both models,
which is quite astonishing when it is reminded that they are obtained with completely
different pictures of the nuclear matter.
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Figure 6.22 – Rotational moments of inertia calculated along the LA–Vmin path for the
240Pu. The red curve stands for moments of inertia calculated with the cranking model,
the green curve for the same quantity obtained with the rigid body model. The shape of
the corresponding fission barrier is displayed on the background (blue curve).

As can be seen in Fig. 6.21, the cranking model gives “slightly” better results than the
rigid body model for ground state moments of inertia. In the interest of simplicity and
representativity, it is only the cranking model that will be used in the next section related
to fission cross section modeling.

6.6 Fission Cross Section
To complete this chapter, an actual calculation of the fission cross section for the (n +
239Pu) reaction is performed. In a first approach, the least-energy method is used. The
steps in the calculation of the eventual fission cross section are recalled below:

1. Considering a shape parameterization (here the (c, h, α) Brack parameterization),
the potential energy of 240Pu is computed for a large number of shapes spanning
corresponding to given rages of the shape parameters.

2. From this PES, the least-energy path is obtained using the method described in
Section 6.1.

3. Once this one-dimensional path is obtained, the single-particle orbits are calculated
again for the shapes of the path, cf. Chapter 5.

4. From the single-particle states (εi and ψi) and occupation numbers (vν and uν), the
rotational inertia I⊥ is calculated for both neutrons and protons.

5. For each point of the path, the rotational band-heads are computed by the com-
binatorial combining of the single-particle energies and the elementary collective
phonons (cf. Tab. 6.2) using the AVXSF routine.

6. These band-heads are calculated for all points along the path, then the transition
states are reconstructed using the moment of inertia I⊥.

7. Several continuous transition states are thus obtained assuming adiabaticity of the
fission process.
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8. A continuous transition state is related to given Jπ quantum numbers, thus each
couple Jπ is related to a set of transition states.

9. For given Jπ and energy E∗ of the compound nucleus, a fission transmission coeffi-
cient can be calculated using the numerical methods described above, here consid-
ering the inertia parameter to be deformation-independent and equal to µconst.

10. Using the Hauser-Feshbach modeling framework described in Chapter 4, the average
fission cross section is computed.

The eventual fission cross section is shown in Fig. 6.23. It can be seen that the calculated
cross section is “only” about 30% higher than the evaluated and experimental data. This
is actually fortunate as many “loose” assumptions were used in the whole treatment, for
instance the definition of the fission abscissa, or the use of single-particle states obtained
from a phenomenological average field. Additionally some less-arbitrary hypothesis were
also made, for instance the inertia parameter is assumed to be constant and equal to a
somehow arbitrary value.
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Figure 6.23 – Fission cross section of 239Pu obtained using an underlying macroscopic-
microscopic model (least-energy path). Evaluated (JEFF-3.2) and experimental data
(Weston [170] and Meadows [171]) are also shown for comparison.

It can be seen that, even if the order of magnitude is correct, the model cannot be used
directly to provide evaluation-quality data. Additionally, the results shown in Fig. 6.23
have some unsatisfactory features. In the low-energy region, the calculated values are quite
higher than the experimental data. For higher energies, the calculated cross section seems
to decease, whereas the evaluated data seem to increase. This feature should be analyzed
comparing also total and other partial cross sections with evaluated data. There was just
enough time in this PhD to perform a theoretical calculation (because of the quantity
of development that were necessary in the CONRAD code; the theoretical calculation
itself takes few hours). Yet it was investigated if these features could be explained (and
balanced) by varying parameters involved in the fission modeling only.

The effect of two parameters has been investigated, namely the value of the inertia
parameter µconst and the cut-off energy used in the combinatorial calculation. In the
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combinatorial calculation all combination of excitation states having an energy higher
than the cut-off energy are discarded. This cut-off energy is analog to the continuum
energy Econt.

X in Eq. 4.68 of Chapter 4. The effect of changing the value of the constant
inertia parameter is illustrated in Fig. 6.24. The theoretical calculation is performed using
increasing values of the inertia parameter: µconst, 2×µconst, 3×µconst and 4×µconst, where
µconst is given by Eq. 6.33. It can be seen that the increase in the value of the inertia
parameter reduces the global level of of the fission cross section. This effect is “global” in
the sense that it operates similarly at low and high energies.
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Figure 6.24 – Effect of varying the constant inertia-parameter value in the calculation
of the 239Pu fission cross section (least-energy path). Evaluated data (JEFF-3.2) are also
shown for comparison.

The effect of the cut-off energy is however less “global” as illustrated in Fig. 6.25. It can
be seen that increasing the cut-off energy increases the value of the fission cross section
specifically in the high-energy range. This is expected because the cut-off energy is given
with reference to the ground-state energy (and is independent of the incident neutron
energy), whereas the number of significant transition states depends on the excitation
energy, which depends on the incident neutron energy. It can thus be expected that
a proper treatment of the “continuum” of continuous transition states could partially
restore the proper trend of the fission cross section in the high energy region. It should
also be noted here that the results here are obtained with a constant inertia parameter of
4× µconst, and that this effect is more pronounced if smaller values are considered.

The last analysis that will be shown here is related to the effect of having a deformation-
dependent inertia parameter. This effect is illustrated using the LA–Vmin fission barrier,
using either the inertia parameter obtained from the least-action method, or the constant
inertia parameter µconst (cf. Fig. 6.13). Figure 6.26 shows the fission cross section obtained
with both least-action methods and with the least-energy method. The difference between
the least-action methods, on one side, and the least-energy method, on the other side, is
believed to be due to the difference in the related barrier heights. It can be noted from
Fig. 6.26 that the deformation-dependent inertia parameter produces a “smoother” fission
cross section. This should be kept in mind while attempting to compare the resonant
structures of the least-energy method with experimental data. The differences between
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Figure 6.25 – Effect of the combinatorial cut-off energy in the calculation of the 239Pu
fission cross section (least-energy path). Evaluated data (JEFF-3.2) are also shown for
comparison. Here the inertia parameter is chosen to be equal to 4× µconst.

the two least-action method (and thus the effect of considering a deformation-dependent
inertia parameter) seem to vanish as the incident neutron energy increases. From about
350 keV, the two methods yield similar gross structures even if the LA–Vmin−µconst exhibit
much more narrow resonances.
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Figure 6.26 – Effect of having a deformation-dependent inertia parameter on the 239Pu
fission cross section (least-action paths). Evaluated (JEFF-3.2) and experimental data
(Weston [170] and Meadows [171]) are also shown for comparison as long as the results
obtained with the least-energy path.

Due to lack of time, it was not possible to investigate further the effect of the other
parameters involved in the calculation. For instance additional details should be carefully
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investigated:

• The barrier heights obtained by both methods are still slightly larger than the values
commonly used in evaluation. As the shapes used involves “only” three degrees of
freedom, it can be expected that the use of a shape parameterization relying on
more degrees of freedom (such as the 3QS parameterization cf. Appendix B.1) may
reduce the second-hump height of the calculated barrier.

• In the present study, only axially symmetric shapes are considered. Yet similar
calculations considering axially asymmetric shapes showed that the first barrier can
be lowered.

• In Fig. 6.21, it was shown that the cranking model used here to calculate the rota-
tional inertia momentum underestimates experimental data for actinides. According
to Eq. 6.63, this would lead to lower the transition state energy and thus, consid-
ering the overall trends of transmission coefficients, it should increase the value of
the fission cross section.

• Finally, the selection rules given by Eq. 6.65 prevent the compound nuclei formed
in a Jπ = 0− from fissioning, which seems unphysical. In the present study, the
transmission coefficients for Jπ = 0+ were used instead.
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Chapter 7

Conclusion & Perspectives

In this chapter, the main results and conclusions of this work are recalled. Additionally,
some perspectives for further developments are detailed.
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7.1 Overview of the Work
This PhD work highlights the importance of the fission-barrier shape as the sound physical
quantity fission cross section evaluation should rely on. This demonstration has been
performed successfully in both energy ranges involved in cross section evaluation: the
Resolved Resonance Range (RRR) and the statistical energy range. The fission barrier
corresponds to the variation of the deformation potential that a nucleus “feels” when it
deforms from the ground-state shape to scission configurations.

7.1.1 Impact of the Fission Barrier in the RRR

Assuming a double-humped shape of the deformation potential, it has been shown that,
for some excitation energies, the nucleus has a high probability to be in a deformation
state corresponding to intermediate potential well. For these energies the probability of
fissioning is thus enhanced due to the fact that a part of the fission barrier has already
been crossed. The inclusion of these considerations in the general theoretical framework
describing resonant cross sections leads to extending the standard Reich-Moore model.
This extension provides a true physical meaning for the fission reduced width amplitude.
This is done by modifying the R-matrix penetration factors, related usually to particle
channels only, to fission channels (related to transition states). This extension is formally
done by using an underlying description of the fission barrier that leads to defining wave
function related to the fission “degree of freedom”. This wave function reveals the most
probable deformation state of the excited nucleus. A fission-related penetration factor
can be obtained from this wave with Lynn’s extension of the R-matrix formalism to the
fission reaction. The resulting fission penetration factor presents an energy dependence
where the usual evaluation approach prescribes a one-unit arbitrary value. Not only
does it depend on energy, but it also exhibits well-defined resonance structures. The
structures of the fission penetration factor have been analyzed here and are satisfactorily
well reproduced by Lorentzian functions. For fertile isotopes, the Lorentzian parameters
can be estimated from the general shape of the fission cross section. For such isotopes,
the used of Lorentzian-shaped fission penetration factors to evaluate fission resonance
parameters (reduced width amplitudes), effectively compensates the energy dependency
that is usually mathematically absorbed by parameter adjustment on experimental data.

7.1.2 Integration of a Nuclear Structure Model

This impact of the fission barrier shape on the fission cross section calls for modeling of the
former. The study of nuclear deformation energy involves Potential Energy Surfaces (PES)
that relates macroscopic shape coordinates to the related deformation energy. Evaluation
requires adjustment of model parameters and thus physics is sometimes disregarded in
favor of faster and more flexible models. To comply with realistic evaluation constraints,
namely in terms of computation time, the macroscopic-microscopic approach has been
selected over alternative approaches such as Hartree-Fock-Bogoliubov (HFB) microscopic
descriptions.

The macroscopic-microscopic models combine the macroscopic picture of the nucleus
being a homogeneous liquid to the corresponding microscopic description of individual nu-
cleons. The Finite-Range Liquid-Drop Model (FRLDM) was chosen for its long-standing
success in describing several nuclear properties. This composite model consists in a prin-
cipal macroscopic energy corrected for microscopic shell and pairing effects. These latter
corrections are obtained from single-particle states related to an average mean potential
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felt by the nucleons. This parameterized potential is chosen to be consistent with the
former macroscopic description. This model is the outcome of many successive improve-
ments that have refined the original liquid-drop model. Implementing this model in the
CONRAD code has been a colossal work because of the model complexity and the related
50 year of legacy. An operational FRLDM has been added to the CONRAD toolbox and
verified by various means. Despite this pragmatical choice, deepest care has been brought
in the implementation in order to meet the speed requirements of evaluation. Advanced
numerical and computational (hardware) solutions have been found and put into effect.
The PES obtained using the macroscopic-microscopic FRLDM describes the deformation
energy of a nucleus allowed to deform according to a related geometrical shape parame-
terization. At least three parameters are necessary to satisfactorily describe the shape of
the fission barrier: elongation, neck size and mass-asymmetry. The corresponding mul-
tidimensional PES must be reduced into a one-dimensional deformation potential. Two
algorithms have been implemented in the CONRAD code to obtain such a one-dimensional
path: the least-energy and least-action paths searching methods. To study the barrier
penetrability, the deformation inertia “along” the fission path must be defined. In many
studies this parameter is explicitly or implicitly chosen to be deformation-independent.
The natural fission abscissa describing the position along the path provided by these meth-
ods has been discussed. The present conclusions advocate for the least-action method as
both the fission abscissa and the inertia parameter are naturally provided by the model.
Yet the least-energy path provides, for the time being, results closer to the experimental
data. It is this pragmatical approach that has been selected in the last section of this
chapter to investigate the impact of some parameters on the eventual fission cross sec-
tion. The one-dimensional deformation potential and the related inertia parameter are
obtained with both of the reduction methods and their effect on barrier penetrability has
been compared with special focus set on the impact of the deformation dependency of the
inertia parameter.

7.1.3 Fission Cross Section in the Statistical Energy Range

The barrier penetrability (more specifically the fission barrier transmission coefficient), can
be used to model average fission cross section. This latter involves the Hauser-Feshbach
theoretical framework that relies on transmission coefficients obtained independently for
the different nuclear reactions. Prior to the start of the PhD work, the CONRAD code
had very limited capability of modeling average cross sections. The TALYS code has been
used as a guideline to identify the missing pieces that needed to be implemented in order
to settle a proper Hauser-Feshbach framework. Analogous transmission coefficient models
have been implemented for neutron elastic and inelastic emission, direct and compound
reactions. A brand new coupled channel optical model was also implemented based on
the approach of the ECIS reference code. Corresponding gamma transmission coefficient
has been introduced in the CONRAD code, so that the complete average cross section
framework makes possible the computation of various partial cross sections. Both the
ECIS and TALYS codes have been used to verify the related implementations and re-
maining differences have been analyzed carefully. Finally, this complete machinery makes
possible to calculate average fission cross sections based on an underlying sophisticated
macroscopic-microscopic model deeply rooted in nuclear physics.
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7.1.4 Summary of the Developments

The work reported in this document involves a large number of models, spanning the
large energy range of interest for reactor physics. The related developments enclose:

• A Reich-Moore model extension (R-matrix theory approximation) to treat fission
channels with Lynn’s extension in the RRR.

• A generic Hauser-Feshbach framework for average cross section modeling.

• Gamma transmission coefficients from various already-implemented level density
and strength function models.

• Neutron transmission coefficients, by driving ECIS calculations or using already-
implemented spherical optical model and an average R-matrix model.

• A brand new C++ coupled channel optical model, based on the ECIS algorithm,
able to treat deformed nuclei.

• Both the FRLDM and an alternative macroscopic-microscopic model, the Finite-
Range Droplet Model (FRDM), have been implemented from scratch. This implies
namely that a single-particle program had to be written. As this represents the most
time-consuming part of the macroscopic-microscopic calculation, it was decided to
write a program able to run on Graphics Processing Units (GPUs).

• Two models providing the deformation inertia tensor (Werner-Wheeler and cranking
approximations).

• Two PES reduction algorithms, used to reduce the multidimensional PES to a one-
dimensional fission barrier.

• Two models related to the rotation inertia momentum (cranking and rigid-body
models).

• Several numerical methods to obtain fission barrier transmission coefficients (from
the one-dimensional fission barrier) that can be used in the already mentioned
Hauser-Feshbach model.

About 80k lines of C++/CUDA-C code have been written in CONRAD, boosting its
modeling capabilities well beyond its original resolved-resonance cross section specialty.

7.2 To Be Continued...

7.2.1 Consistency and Accuracy of the Current Method

The global method presented and carried out here opens the possibility of pouring ad-
vanced nuclear physics more directly into fission cross section modeling and evaluation.
It has been emphasized that models used in practice for current evaluations suffer from
several deficiencies. These deficiencies are related to both non-reproduced features (fluc-
tuations in fission cross section) and lack of predictivity (shape of the fission barrier).
Even if the present attempt tends to resolve some of these issues, the proposed method
is not yet completely rigorous.
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7.2.1.1 PES Reduction to a One-Dimensional Fission Barrier

The fission barrier used in the calculation is indeed obtained from a sound nuclear struc-
ture model (the FRLDM), but the connection between the multidimensional PES and
the one-dimensional fission barrier relies on some arbitrary choices. The validation of the
one-dimensional reduction methods requires a dedicated investigation to verify if such an
approach yield similar results to those obtained if a complete PES is used. To address
this point, one should be able to calculate transmission coefficient from – at least – a 2D
PES without performing a one-dimensional reduction.

In the present work, the PES reduction contains some arbitrariness and unexpected
results. For instance the least-action method (which is expected to described the phe-
nomenon with better physics than the least-energy method) failed to yield a fission barrier
with reliable barrier heights. It is necessary to verify that the method used to obtained the
least-action path from the PES is correct. Analytical cases are thus required to perform
the related investigation.

If the least-action method shows no inconsistency, the inertia tensor should also be
verified. It should be reminded here that the inertia tensor is obtained with a cranking
model that uses the single-particle energies and wave functions. These single-particle
results are obtained from a “simple” phenomenological model. An equivalent inertia tensor
obtained with a self-consistent approach may lead to different least-action paths. Yet to
make consistent comparisons between inertia tensors and least-actions paths, the collective
coordinates should be consistent. This means that the shape coordinates (for instance c
and h) should be replaced by the quantities used in HFB approaches (for instance Q20

and Q40). Yet even with such variable changes, the HFB method would lead to a PES,
for which energy is already minimized with respect to implicit degrees of freedom. An
alternative approach consists in enforcing the self-consistent mean field to have “shapes”
similar to the ones obtained in the macroscopic-microscopic approach.

7.2.1.2 Inertia Parameter

The least-energy method seems pragmatically promising considering results shown in
Chapter 6. In this approach however, the value of the constant inertia parameter is
quite arbitrary and may seem to only balance model defects. No direct measurements
of the inertia parameter is possible, and thus it is difficult to say that the adjusted
value is reliable or not. It should be nevertheless stated here that this method has the
advantage of highlighting the effect of this parameter where the “traditional” models ignore
it completely.

7.2.1.3 Continuum of Transition States

Finally the treatment of the continuum of the transition state is also somehow tedious.
The combinatorial approach cannot be performed up to sufficient energies. In the present
method, transition states higher than a cut-off energy are simply omitted. It has been
shown that the remaining transition states may have significant effect, thus a proper
treatment should be found to include states above the cut-off energy.

7.2.2 Further Refinements of the Presented Method

In the previous section, some points are discussed and aim to strengthen the presented
approach. The present work yields a completely integrated method that can be used to
investigate the effect of options in the nuclear structure model on various observables.
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7.2.2.1 Fission Barrier Described down to the Scission Point

It was mentioned in Chapter 6 that to properly describe the nucleus shape when to
nascent fragments appear, the Brack shape parameterization (c,h,α) may be insufficient.
Indeed, in this parameterization the α parameter and the deformations of individual
fragments are correlated. To obtain a proper description, more degrees of freedom should
be considered and alternative shape parameterizations must be used, for instance the
three quadratic surfaces (3QS) (cf. Appendix B.1). This refined description of the shape
becomes necessary if the PES is expected to describe shapes beyond the “fission line”. To
study the effect of describing the fission barrier “below” the fission point, down to the
scission point, the 3QS parameterization should be used. As was mentioned in Chapter 3,
this domaine of the fission barrier may have a significant effect on transmission coefficients.

7.2.2.2 Axially-Asymmetric Shapes

In the present study, only axially-symmetric shapes are considered. To investigate if the
nucleus takes axially-asymmetric shapes as it deforms from ground-state shape to fission,
the present implementation of the macroscopic-microscopic model should be modified. For
axially-asymmetric shapes, the shape-dependent terms in the macroscopic models become
more complex to evaluate as some trivial integrations cannot be performed anymore. In
the microscopic model, the treatment of axially-asymmetric shapes is even more tedious
because the expansion method described in Chapter 5 cannot be used. Instead of the axial
harmonic-oscillator base, one should use a triaxial harmonic-oscillator base. This base
would lead to calculate matrix elements consisting of triple integrals whereas it was only
double integrals in the present method. Additionally, the splitting of the Hamiltonian
matrix into Ω-sub-matrices cannot be performed as Ω is not a good quantum number
anymore. The matrix to be diagonalized is thus much larger in this case. Considering
axially-asymmetric shapes increases a lot the computation time for a given shape and thus
the study of axial asymmetry is not as “simple” of the investigation of an additional shape
(axially-symmetric) degree of freedom. Yet some actinides are expected to have axially-
asymmetric shape corresponding to the first barrier hump. This can significantly reduces
the corresponding hump height and thus increases the value of the fission transmission
coefficient and consequently the fission cross section. For comprehensiveness, the code
should be extended to be able to treat axially-asymmetric shapes.

7.2.2.3 Vibrational Phonons, Inertia Momentum and Transition States

In the calculation of global transition states as described in Chapter 6, the elementary
vibrational phonons are shape-independent. Additionally, the harmonic composition of
phonons used in the presented method is a crude approximation. In current phenomeno-
logical approaches, these phonons are described individually and do not combine “har-
monically”. They are also described differently for the two barrier humps on the basis of
the expected symmetries of the nucleus for these states. It could also be expected that
advanced theories such as the Random Phase Approximation could yield such phonons
and could thus bring more consistency in the current approach.

The Inglis-Belyaev cranking model has been used to calculate rotational inertia mo-
menta. This model has been extended to include excitation energy dependency [172], this
could also be studied as it is expected to have an impact on global transition states.

The rotational band-heads calculation uses a combinatorial method. The calculation of
rotational states on these band-heads relies on the assumption of axially-symmetric shape
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of the nucleus. For the shapes considered in the present study it is strictly valid, but if
axially-asymmetric shapes are considered, for instance to study the first barrier hump,
then this point must be questioned. Additionally, the selection rules used in the present
method yield no 0− transition states, which inherently prevent a compound nucleus in
a 0− state from fissioning. As mentioned in Chapter 6, it is nonphysical and should be
investigated.

7.2.2.4 Odd Compound Nuclei

In the present state of the code, only odd compound nuclei can be studied. This is
not due to the PES calculation, as in the related implementation, the different cases
are specifically treated. The present limitation is due to the calculation of the inertia
quantities: the deformation inertia tensor and the rotational inertia momentum. For
both of them, treating an odd number of nucleons is not possible for the time being.
Models readily exist in literature but there was not enough time to implement them in
the code.

7.2.2.5 Nuclear Structure Models

Several refinements or alternative routes to obtained the PES can also be studied. It
could be of course considered to use a HFB model to calculate the PES. Alternatively,
the HFB model could used to provide intermediate data, for instance the single-particle
energies required for the macroscopic-microscopic model. This would imply to establish a
correspondence between “shapes” obtained with the HFB approach1 and the geometrical
definition of the shape used in the macroscopic model. This is similar to the correspon-
dance that is necessary to use HFB inertia tensor. This approaches mixing could be
an interesting method to identify the origin of differences between the two “mainstream”
models.

In a more short-term view, the presented “standard” approach could be also slightly
modified to investigate the impact of some features discussed in this manuscript. For
instance the impact of using diffuse-edge potential in the icroscopic part of the FRLDM
can be considered. Thus a better consistency could be ensured between the macroscopic
and microscopic description of the models. The impact of the continuum removal as
described in Appendix B.2.2 could be also investigated to see the effect on masses, PES
(and fission cross section), and also on the plateau condition of the shell correction. It
could also be interesting, as this method allows to use an expansion base (containing a
larger number of functions) in the microscopic model, to verify the convergence of the
results with respect of the size of the expansion base. It would be also interesting to see
the related impact on the pairing correction.

1In HFB approaches, there is no notion of generating shapes, yet an idea of the shape can be obtained
considering the volume containing a certain amount of the nuclear matter.
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APPENDIX A. COUPLED CHANNEL EQUATIONS

Appendix A

Coupled Channel Equations

The purpose of this appendix is to detail the general equations that must be computed by
a coupled channel program.
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A.1. OVERVIEW APPENDIX A. COUPLED CHANNEL EQUATIONS

A.1 Overview

For comprehensive information about optical models see Refs. [1,66–70]. In the interest of
simplicity, the flowing derivation will be restrained to spinless particles, its generalization
to particles with spin does not lead to special issues. The equation derived in the following
are a synthesis of the references mentioned here-above. In the case of an incoming particle
scattered by a target nucleus, the wave function Ψ of the system is solution of

[
T̂ + V̂ (~r, ξ) + ĤT(ξ)

]
Ψ(~r, ξ) = EΨ(~r, ξ) , (A.1)

where T̂ = −d ~2

2µ
∆~r is the projectile kinetic-energy operator, HT is the target Hamiltonian

(that operates only on the intrinsic coordinates ξ) and V̂ (~r, ξ) is the interaction potential
that also operates on the degrees of freedom ~r if relevant (cf. Chapter 2 Section 2.1),
meaning the distance between the target and projectile centers of mass and the relative
orientation of the nucleus and projectile. Here µ is the reduced mass of the system and
E the energy of the incident particle in the center-of-mass framework. Let χα(ξ) be an
eigenfunction of HT and εα its related eigenvalue so that

ĤTχα(ξ) = εαχα(ξ) . (A.2)

The set of orthonormal wave functions (χα)α is assumed to be complete, thus Ψ can be
expanded as

Ψ(~r, ξ) =
∑

α

Ψα(~rα)χα(ξ) , (A.3)

where ~rα is defined differently wherever it may be a relevant degree of freedom. Inserting
Eq. A.3 into Eq. A.1 it becomes

∑

α′

[
T̂ + V̂ (~rα′ , ξ) + ĤT(ξ)

]
Ψα′(~rα′)χα′(ξ) =

∑

α′

EΨα′(~rα′)χα′(ξ) , (A.4)

which can be multiplied from the left by χ∗α(ξ) and integrated over the internal coordi-
nates ξ, so that one gets

[
T̂ + εα − E

]
Ψα(~r) = −

∑

α′

[∫
dξχ∗α(ξ)V̂ (~rα′ , ξ)χα′(ξ)

]
Ψα′(~r) . (A.5)

The coupled interaction potential Vαα′(~r) can be defined as

V̂αα′(~rα) =

∫
dξχ∗α(ξ)V̂ (~rα′ , ξ)χα′(ξ) . (A.6)

It can be introduced in Eq. A.4, which becomes
[
T̂ + εα − E

]
Ψα(~rα) = −

∑

α′

Vαα′(~rα′)Ψα′(~rα′) . (A.7)

To simplify the following derivation, the left-hand-side indices of Eq. A.7 are modified, so
that the equation becomes

[
T̂ + εα′′ − E

]
Ψα′′(~rα′′) = −

∑

α′

Vα′′α′(~rα′)Ψα′(~rα′) . (A.8)
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If the potential is central1 the wave function Ψα(~r) can be further expanded using the
spherical harmonics functions Y m

` as

Ψα(~rα) =
∞∑

`=0

∑̀

m=−`

uc(rα)

rα
Y m
` (Ω̂α) , (A.9)

where the channel notation c is introduced to take into account the dependence of u on `
and m (cf. Chapter 2 Section 2.1). Here the hat sign above Ω̂α means that it is a direction
vector (unitary), not an operator like Ĥ. Inserting Eq. A.9 into Eq. A.8, multiplying by
Y m∗
` (Ω̂α′′) from the left and integrating over the solid angle Ω̂α′′ , it yields

[
− ~2

2m

(
d2

dr2
α′′
− `′′(`′′ + 1)

r2
α′′

)
+ εα′′ − E

]
δ``′′δmm′′uc′′(rα′′) =

−
∑

α′

∑

`′,m′|α′



∫

4π

d2Ω̂α′′Y
m∗
` (Ω̂α′′)V̂α′′α′(~rα′)Y

m′
`′ (Ω̂α′)


uc′(rα′) . (A.10)

Choosing Y m∗
` (Ω̂α′′) so that ` = `′′ and m = m′′, Eq. A.10 can be refurbished as

[
− ~2

2m

(
d2

dr2
α

− `(`+ 1)

r2
α

)
+ εα − E

]
uc(rα) =

−
∑

α′

∑

`′,m′|α′



∫

4π

d2Ω̂αY
m∗
` (Ω̂α)V̂αα′(~rα′)Y

m′
`′ (Ω̂α′)


uc′(rα′) . (A.11)

The channel wave number kc and the radial coupling potential Ŵcc′ can be defined as

k2
c =

2m

~2
(E − εα) , (A.12)

Ŵcc′(rα′) =
2m

~2

∫

4π

d2Ω̂αY
m∗
` (Ω̂α)V̂cc′(~r )Y m′

`′ (Ω̂α′) . (A.13)

Using Eqs. A.12 and A.13 into Eq. A.11, one finally obtains the general coupled channel
equation [

d2

dr2
α

− `(`+ 1)

r2
α

+ k2
c

]
uc(rα) =

∑

c′

Wcc′(rα′)uα′(rα′) . (A.14)

A.2 Expansion of the Interaction Potential
The dependence of the interaction potential V (~r, ξ) on the internal coordinates ξ is made
through a dependence on the orientation of the nucleus r̂′ (expressed in the laboratory
framework). More precisely, the potential is made dependent on the angle between the
incidence direction of the projectile and the orientation axis of the target nucleus (r̂ · r̂′).
The potential is also dependent on the distance r between the centers of mass of the
projectile and the target, it can be written as

V (~r, ξ) = V (r, r̂ · r̂′) . (A.15)
1This approximation is valid only when the distance between the target and the nucleus is “large

enough”.
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Such a potential can be expanded using the Legendre polynomials base

V (r, r̂ · r̂′) =
∞∑

λ=0

(2λ+ 1)Vλ(r)Pλ(r̂ · r̂′) , (A.16)

where Vλ is given by

Vλ(r) =
1

2

+1∫

−1

dxPλ(x)V (r, x) . (A.17)

The spherical harmonics addition theorem gives

Pλ(r̂ · r̂′) =
4π

2λ+ 1

λ∑

µ=−λ
Y µ
λ (r̂)Y µ

λ (r̂′)∗ . (A.18)

Using Eq. A.18 into Eq. A.16, the interaction potential can be expanded as

V (~r, ξ) = V (r, r̂ · r̂′) = 4π
∞∑

λ=0

Vλ(r)
λ∑

µ=−λ
Y µ
λ (r̂)Y µ

λ (r̂′)∗ . (A.19)

The projectile is assumed to be in a state |jimi〉 coupled with a nucleus in a state |IiMi〉.
Additionally the ejectile, in a state |jfmf〉 leaves the residual nucleus in a state |IfMf〉. In
this whole process, there is conservation of the total angular momentum ~J = ~ji+~Ii = ~jf+~If
and it z-projected component Jz = jz + Iz. Only channels having the same J and M
quantum numbers can be coupled. The coupling matrix element is defined as

〈ΨJM
f |V (~r, ξ)|ΨJM

i 〉 . (A.20)

The integration must be performed over the coordinates ξ and r̂. In the present case ξ is
only r̂′, the matrix element can thus be written as

〈ΨJM
f |V (r, r̂ · r̂′)|ΨJM

i 〉r̂,r̂′ . (A.21)

Using the expansion of V on the spherical harmonics (Eq. A.19), the coupling matrix
element can be written as

〈ΨJM
f |V (~r, ξ)|ΨJM

i 〉 = 4π
∞∑

λ=0

Vλ(r)
λ∑

µ=−λ
〈ΨJM

f |Y µ
λ (r̂)Y µ

λ (r̂′)∗|ΨJM
i 〉r̂,r̂′ . (A.22)

As the integration is not performed over r, Vλ(r) has been moved out of the integral. The
wave function

∣∣ΨJM
i

〉
can be expressed, using the Clebsch-Gordan coefficients, as a sum

of coupled target and projectile states (respectively |IiMi〉 and |jimi〉), so that
∣∣ΨJM

i

〉
=
∑

miMi

〈JM |IijiMimi〉|IiMi〉|jimi〉 . (A.23)

Hence, the coupling matrix element that needs to be computed is

〈ΨJM
f |Y µ

λ (r̂)Y µ
λ (r̂′)∗|ΨJM

i 〉r̂,r̂′
=

∑

miMimfMi

〈JM |IijiMimi〉〈JM |IfjfMfmf〉〈jfmf|Y µ
λ (r̂)|jimi〉r̂〈IfMf|Y µ

λ (r̂′)∗|IiMi〉r̂′ .

(A.24)
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A.2.1 Nucleus Coupling Matrix Element 〈IfMf|Y µ
λ (r̂′)∗|IiMi〉r̂′

To compute the nucleus coupling matrix element 〈IfMf|Y µ
λ (r̂′)∗|IiMi〉r̂′ , the following prop-

erty is used (cf. Eq. 4.17 of Ref. [56])

〈IfMf|Y µ
λ (r̂′)∗|IiMi〉r̂′ = (−1)µ〈IfMf|Y −µλ (r̂′)|IiMi〉r̂′ , (A.25)

= (−1)µ〈IfMf|IiλMi(−µ)〉
[

(2Ii + 1)(2λ+ 1)

4π(2If + 1)

]1/2

〈If0|λIi00〉 .
(A.26)

A connection can be made between the Clebsch-Gordan coefficients and the Wigner 3-j
symbols

〈IfMf|IiλMi(−µ)〉 =

(
Ii λ If
Mi −µ −Mf

)
(2If + 1)1/2(−1)Ii−λ+Mf , (A.27)

and in particular (cf. Eq. 3.3 of Ref. [56])

〈If0|λIi00〉 =

(
λ Ii If
0 0 0

)
(2If + 1)1/2(−1)λ−Ii . (A.28)

Inserting Eqs. A.27 and A.28 into Eq. A.26 it yields

〈IfMf|Y µ
λ (r̂′)∗|IiMi〉r̂′ =

(−1)Mf+µ

[
(2Ii + 1)(2λ+ 1)(2If + 1)

4π

]1
2
(
Ii λ If
Mi −µ −Mf

)(
λ Ii If
0 0 0

)
. (A.29)

The Wigner 3-j symbols are invariant by circular permutation of the columns, so that

〈IfMf|Y µ
λ (r̂′)∗|IiMi〉r̂′ =

(−1)Mf+µ

[
(2Ii + 1)(2λ+ 1)(2If + 1)

4π

]1
2
(

If Ii λ
−Mf Mi −µ

)(
Ii If λ
0 0 0

)
. (A.30)

The Wigner 3-j symbols property
(
a b c
α β γ

)
= (−1)a+b+c

(
a b c
−α −β −γ

)
, (A.31)

is used for both Wigner 3-j symbols of Eq. A.30, so that it becomes

〈IfMf|Y µ
λ (r̂′)∗|IiMi〉r̂′ =

(−1)Mf+µ

[
(2Ii + 1)(2λ+ 1)(2If + 1)

4π

]1
2
(
If Ii λ
Mf −Mi µ

)(
Ii If λ
0 0 0

)
. (A.32)

The first Wigner 3-j symbol is different from zero only if Mf −Mi + µ = 0. Hence the
nucleus coupling matrix element 〈IfMf|Y µ

λ (r̂′)∗|IiMi〉r̂′ can be written

〈IfMf|Y µ
λ (r̂′)∗|IiMi〉r̂′ =

(−1)Mi

[
(2Ii + 1)(2λ+ 1)(2If + 1)

4π

]1
2
(
If Ii λ
Mf −Mi µ

)(
Ii If λ
0 0 0

)
. (A.33)
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A.2.2 Particle Coupling Matrix Element 〈jfmf|Y µ
λ (r̂)|jimi〉r̂

To compute the particle coupling matrix element 〈jfmf|Y µ
λ (r̂)|jimi〉r̂, the following prop-

erties are used (cf. Eq. 4.15 of Ref. [56])

〈jfmf|Y µ
λ (r̂)|jimi〉r̂ = 〈`fsjfmf|Y µ

λ (r̂)|`isjimi〉 (A.34)
= (−1)2λ〈`fsjf‖Yλ(r̂)‖`isji〉〈jfmf|jiλmiµ〉, (A.35)

and (cf. Eq. 5.9 of Ref. [56])

〈`fsjf‖Yλ(r̂)‖`isji〉 = (−1)jf−λ−s+`i [(2`f + 1)(2ji + 1)]1/2W (`f`ijfji;λs)〈`f‖Yλ‖`i〉, (A.36)

where W is the Racah coefficient. Finally one has (cf. Eq. 4.17 of Ref. [56])

〈`f‖Yλ‖`i〉 =

[
(2`i + 1)(2λ+ 1)

4π(2`f + 1)

]1/2

〈`f0|λ`i00〉. (A.37)

Using Eq A.37 into Eq. A.36, it yields

〈`fsjf‖Yλ(r̂)‖`isji〉 =

(−1)jf−λ−s+`i
[

(2`i + 1)(2λ+ 1)(2ji + 1)

4π

]1
2

W (`i`fjijf;λs)〈`f0|λ`i00〉. (A.38)

The last Clebsch-Gordan coefficient of Eq. A.38 can be turned into a Wigner 3-j symbol
using Eq. A.28

〈`f0|λ`i00〉 =

(
λ `i `f
0 0 0

)
(2`f + 1)1/2(−1)λ−`i , (A.39)

So that Eq. A.38 becomes

〈`fsjf‖Yλ(r̂)‖`isji〉 =

(−1)jf−s
[

(2`i + 1)(2`f + 1)(2λ+ 1)(2ji + 1)

4π

]1
2

W (`i`fjijf;λs)

(
λ `i `f
0 0 0

)
. (A.40)

The remaining Clebsch-Gordan of Eq. A.35 can be turned into a Wigner 3-j symbol using
Eq. A.27:

〈jfmf|jiλmiµ〉 =

(
ji λ jf
mi µ −mf

)
(2jf + 1)1/2(−1)ji−λ+mf . (A.41)

Inserting Eqs. A.41 and A.40 into Eq. A.35, the particle coupling matrix element can be
finally obtained as

〈jfmf|Y µ
λ (r̂)|jimi〉r̂ = (−1)λ+jf−s+ji+mf

[
(2`i + 1)(2`f + 1)(2λ+ 1)(2ji + 1)(2jf + 1)

4π

]1/2

×W (`i`fjijf;λs)

(
λ `i `f
0 0 0

)(
ji λ jf
mi µ −mf

)
. (A.42)
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A.2.3 Full Matrix Element 〈ΨJM
f |Y µ

λ (r̂)Y µ
λ (r̂′)∗|ΨJM

i 〉r̂,r̂′
The full matrix element is calculated using the nucleus and particle matrix elements as
in Eq. A.24 recalled below

〈ΨJM
f |Y µ

λ (r̂)Y µ
λ (r̂′)∗|ΨJM

i 〉r̂,r̂′
=

∑

miMimfMi

〈JM |IijiMimi〉〈JM |IfjfMfmf〉〈jfmf|Y µ
λ (r̂)|jimi〉r̂〈IfMf|Y µ

λ (r̂′)∗|IiMi〉r̂′ .

(A.43)

The Clebsch-Gordan coefficients of Eq. A.43 are then turned into Wigner 3-j symbols
(cf. Eq. 3.3 of Ref. [56])

〈JM |IijiMimi〉 =

(
Ii ji J
Mi mi −M

)
(2J + 1)1/2(−1)Ii−ji+M , (A.44)

〈JM |IfjfMfmf〉 =

(
If jf J
Mf mf −M

)
(2J + 1)1/2(−1)−If+jf−M . (A.45)

Using both of these expressions into Eq. A.43 it leads to

〈ΨJM
f |Y µ

λ (r̂)Y µ
λ (r̂′)∗|ΨJM

i 〉r̂,r̂′ =

∑

miMimfMi

(2J + 1)(−1)Ii−ji−If+jf
(
Ii ji J
Mi mi −M

)(
If jf J
Mf mf −M

)

× 〈jfmf|Y µ
λ (r̂)|jimi〉r̂〈IfMf|Y µ

λ (r̂′)∗|IiMi〉r̂′ . (A.46)

The µ-summation is introduced back, as in Eq. A.22, so that

〈ΨJM
f |

λ∑

µ=−λ
Y µ
λ (r̂)Y µ

λ (r̂′)∗|ΨJM
i 〉r̂,r̂′

=
∑

miMimfMiµ

(2J + 1)(−1)Ii−ji−If+jf
(
Ii ji J
Mi mi −M

)(
If jf J
Mf mf −M

)

× 〈jfmf|Y µ
λ (r̂)|jimi〉r̂〈IfMf|Y µ

λ (r̂′)∗|IiMi〉r̂′ . (A.47)

Replacing the particle matrix element 〈jfmf|Y µ
λ (r̂)|jimi〉r̂ and the nucleus matrix elements

〈IfMf|Y µ
λ (r̂′)∗|IiMi〉r̂′ given by Eqs. A.42 and A.33 respectively, it yields

〈ΨJM
f |

λ∑

µ=−λ
Y µ
λ (r̂)Y µ

λ (r̂′)∗|ΨJM
i 〉r̂,r̂′

=
(2J + 1)(2λ+ 1)

4π
[(2Ii + 1)(2If + 1)(2ji + 1)(2jf + 1)]

1
2

×
(
Ii If λ
0 0 0

)
[(2`i + 1)(2`f + 1)]1/2W (`i`fjijf;λs)

(
λ `i `f
0 0 0

)
(−1)J+λ−s

×
∑

miMimfMiµ

[
(−1)−J+Ii−If+2jf+Mi+mf

(
Ii ji J
Mi mi −M

)(
If jf J
Mf mf −M

)

×
(
ji λ jf
mi µ −mf

)(
If Ii λ
Mf −Mi µ

)]
. (A.48)
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As (−1)Ii+If+λ = 1, Eq. A.48 “simplifies” to

〈ΨJM
f |

λ∑

µ=−λ
Y µ
λ (r̂)Y µ

λ (r̂′)∗|ΨJM
i 〉r̂,r̂′

=
(2J + 1)(2λ+ 1)

4π
[(2Ii + 1)(2If + 1)(2ji + 1)(2jf + 1)]

1
2

×
(
Ii If λ
0 0 0

)
[(2`i + 1)(2`f + 1)]1/2W (`i`fjijf;λs)

(
λ `i `f
0 0 0

)
(−1)J+λ−s

×
∑

miMimfMiµ

[
(−1)−J+2Ii+λ+2jf+Mi+mf

(
Ii ji J
Mi mi −M

)(
If jf J
Mf mf −M

)

×
(
ji λ jf
mi µ −mf

)(
If Ii λ
Mf −Mi µ

)]
. (A.49)

The following sum X can be calculated

X =
∑

miMimfMiµ

(−1)−J+2Ii+λ+2jf+Mi+mf

(
Ii ji J
Mi mi −M

)(
If jf J
Mf mf −M

)

×
(
ji λ jf
mi µ −mf

)(
If Ii λ
Mf −Mi µ

)
. (A.50)

By successive indices permutations, it yields

X =
∑

miMimfMiµ

(−1)−J+2Ii+λ+2jf+Mi+mf

(
Ii ji J
Mi mi −M

)(
ji λ jf
mi µ −mf

)

×
(
If Ii λ
Mf −Mi µ

)(
If jf J
Mf mf −M

)
, (A.51)

and

X =
∑

miMimfMiµ

(−1)Ii+ji+4jf+λ+Mi+mf

(
Ii ji J
Mi mi −M

)(
ji λ jf
−mi −µ mf

)

×
(
λ Ii If
µ −Mi Mf

)(
jf If J
mf Mf −M

)
. (A.52)

As jf is either an integer of a half-integer, therefore (−1)4jf = 1. One has mf = mi + µ,
and (−1)mf = (−1)−mf = (−1)−mi(−1)−µ. As µ is an integer, (−1)−µ = (−1)µ. Finally,
(−1)mf = (−1)−mi+µ, so that Eq. A.52 becomes

X =
∑

miMimfMiµ

(−1)Ii+λ+ji+Mi−mi+µ

(
Ii ji J
Mi mi −M

)(
ji λ jf
−mi −µ mf

)

×
(
λ Ii If
µ −Mi Mf

)(
jf If J
mf Mf −M

)
. (A.53)

The X sum can be turn into a Wigner 6-j symbol using (cf. Appendix II of Ref. [56])

∑

αβγα′β′

(−1)A+B+C+α+β+γ

(
A B c
α −β γ′

)(
B C a
β −γ α′

)(
C A b
γ −α β′

)(
a b c
α′ β′ γ′

)
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=
1

2c+ 1

{
a b c
A B C

}
. (A.54)

Applied to X, one gets

X =
1

2J + 1

{
jf If J
Ii ji λ

}
=

1

2J + 1

{
Ii If λ
jf ji J

}
. (A.55)

Gathering all terms, Eq. A.49 becomes

〈ΨJM
f |

λ∑

µ=−λ
Y µ
λ (r̂)Y µ

λ (r̂′)∗|ΨJM
i 〉r̂,r̂′ =

2λ+ 1

4π
[(2Ii + 1)(2If + 1)(2ji + 1)(2jf + 1)]

1
2

×
(
Ii If λ
0 0 0

)
(−1)J+λ−s[(2`i + 1)(2`f + 1)]1/2W (`i`fjijf;λs)

×
(
λ `i `f
0 0 0

){
Ii If λ
jf ji J

}
. (A.56)

Equation A.56 can be written using Racah coefficients only

〈ΨJM
f |

λ∑

µ=−λ
Y µ
λ (r̂)Y µ

λ (r̂′)∗|ΨJM
i 〉r̂,r̂′

=
2λ+ 1

4π
[(2Ii + 1)(2If + 1)(2ji + 1)(2jf + 1)]

1
2

(
Ii If λ
0 0 0

)
(−1)J+λ−s+If+jf+Ii+ji

× [(2`i + 1)(2`f + 1)]1/2W (`i`fjijf;λs)

(
λ `i `f
0 0 0

)
W (IiIfjijf;λJ). (A.57)

Finally, one obtains the full matrix element:

〈ΨJM
f |V (~r, ξ)|ΨJM

i 〉 =
∞∑

λ=0

Vλ(r)(2λ+ 1) [(2Ii + 1)(2If + 1)(2ji + 1)(2jf + 1)]1/2
(
Ii If λ
0 0 0

)

× (−1)J+λ−s+If+jf+Ii+ji [(2`i + 1)(2`f + 1)]1/2

W (`i`fjijf;λs)

(
λ `i `f
0 0 0

)
W (IiIfjijf;λJ). (A.58)

A.3 Special Cases
Two special cases are treated here, depending if the the incident particle has a 0- or 1

2
-spin.

A.3.1 Spin-1
2 Projectile

For s = 1
2
, the following relation can be used

[(2`i + 1)(2`f + 1)]1/2W (`i`fjijf;λ
1
2
)

(
λ `i `f
0 0 0

)
= −

(
ji jf λ
−1

2
1
2

0

)
. (A.59)

Hence, Eq. A.58 reduces to
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〈ΨJM
f |V (~r, ξ)|ΨJM

i 〉 =
∞∑

λ=0

Vλ(r)(2λ+ 1) [(2Ii + 1)(2If + 1)(2ji + 1)(2jf + 1)]1/2

(
Ii If λ
0 0 0

)
(−1)J+ 1

2
+λ

(
jf λ ji
−1

2
0 1

2

){
Ii If λ
jf ji J

}
. (A.60)

A.3.2 Spin-0 Projectile

Using Appendix II of Ref. [56], it can be shown that

W (`i`fjijf;λ0) = W (ji`ijf`f; 0λ) =
(−1)ji+jf−λ√

(2ji + 1)(2jf + 1)
δji`iδjf`f . (A.61)

Hence, Eq. A.58 reduces to

〈ΨJM
f |

λ∑

µ=−λ
Y µ
λ (r̂)Y µ

λ (r̂′)∗|ΨJM
i 〉r̂,r̂′

=
2λ+ 1

4π
[(2Ii + 1)(2If + 1)(2li + 1)(2lf + 1)]

1
2

(
Ii If λ
0 0 0

)

× (−1)J+`f+`i

(
λ `i `f
0 0 0

){
Ii If λ
jf ji J

}
,

(A.62)

=
2λ+ 1

4π
[(2Ii + 1)(2If + 1)(2li + 1)(2lf + 1)]1/2

(
Ii If λ
0 0 0

)

× (−1)J+λ

(
λ `i `f
0 0 0

){
Ii If λ
`f `i J

}
,

(A.63)

=
2λ+ 1

4π
[(2Ii + 1)(2If + 1)(2li + 1)(2lf + 1)]1/2

(
Ii If λ
0 0 0

)

× (−1)J+λ

(
`i `f λ
0 0 0

){
`f `i λ
Ii If J

}
.

(A.64)

A.4 Spin-Orbit Term
The spin orbit coupling potential has a different nature than the scalar potential treated
so far in this appendix. It has a general form named the full Thomas term

Vs.o.(~r) = ~∇V (~r)×
~∇
i
· ~σ , (A.65)

where V can be any function. First apply the expansion method is applied to a particular
multipole Vλ(r)Y µ

λ (r̂). Then the following property of the Pauli vector ~σ is used:

∀~a,~b, (~σ · ~a) · (~σ ·~b) = (~a ·~b) + i(~a×~b) · ~σ. (A.66)

Applying Eq. A.66 to Eq. A.65 it yields

Vs.o.(~r) =
(
~∇ [Vλ(r)Y

µ
λ (r̂)] · ~∇

)
−
(
~σ · ~∇ [Vλ(r)Y

µ
λ (r̂)]

)
·
(
~σ · ~∇

)
. (A.67)
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It can be observed that ~L = −i~~r × ~∇, so that by taking the triple cross product

~r × ~L = −i~~r × ~r × ~L = −i~
(
~r · (~r · ~∇)− r2~∇

)
. (A.68)

The gradient operator ~∇ can be expressed as

~∇ =
~r

r

∂

∂r
− i~r × ~L

~r2
. (A.69)

Using Eq. A.69 for the ~σ · ~∇ operator, one obtains

~σ · ~∇ = ~σ ·
(
~r

r

∂

∂r
− i~r × ~L

~r2

)
=
~σ · ~r
r

∂

∂r
− i

~r2
~σ · (~r × ~L), (A.70)

=
~σ · ~r
r

∂

∂r
− 1

~r2

[
(~σ · ~r) · (~σ · ~L)− ~r · ~L

]
. (A.71)

As ~r · ~L = 0 (triple product containing two identical vectors), one gets

~σ · ~∇ =
(~σ · ~r)
r

[
∂

∂r
− 1

~r
(~σ · ~L)

]
. (A.72)

Gathering terms into Eq. A.67, it yields

Vs.o.(~r) =

([
~r

r

∂

∂r
− i~r × ~L

~r2

]
[Vλ(r)Y

µ
λ (r̂)] ·

[
~r

r

∂

∂r
− i~r × ~L

~r2

])

−
(

(~σ · ~r)
r

[
∂

∂r
− 1

~r
(~σ · ~L)

]
[Vλ(r)Y

µ
λ (r̂)]

)
· (~σ · ~r)

r

[
∂

∂r
− 1

~r
(~σ · ~L)

]
. (A.73)

The general properties of the Pauli vectors (Eq. A.66) imply that (~L · ~σ) and (~σ · ~r)
anticommtues, so that

(~L · ~σ) · (~σ · ~r) = i(~r × ~L) · ~σ = −i(~L× ~r) · ~σ = −(~r · ~σ) · (~σ · ~L). (A.74)

The second term of Eq. A.73 becomes

−
(

(~σ · ~r)
r

[
∂

∂r
− 1

~r
(~σ · ~L)

]
[Vλ(r)Y

µ
λ (r̂)]

)
· (~σ · ~r)

r

[
∂

∂r
− 1

~r
(~σ · ~L)

]

= −
(

(~σ · ~r)2

r2

[
∂

∂r
+

1

~r
(~σ · ~L)

]
[Vλ(r)Y

µ
λ (r̂)]

)
·
[
∂

∂r
− 1

~r
(~σ · ~L)

]
. (A.75)

From Eq. A.66 it can be seen that (~σ · ~r)2 = r2, so that

Vs.o.(~r) =

([
~r

r

∂

∂r
− i~r × ~L

~r2

]
[Vλ(r)Y

µ
λ (r̂)] ·

[
~r

r

∂

∂r
− i~r × ~L

~r2

])

−
[
∂

∂r
+

1

~r
(~σ · ~L)

]
[Vλ(r)Y

µ
λ (r̂)] ·

[
∂

∂r
− 1

~r
(~σ · ~L)

]
. (A.76)

The first term of Eq. A.76 simplifies because ~r · (~r × ~L) = 0. One obtains
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Vs.o.(~r) =
~r

r

∂

∂r
[Vλ(r)Y

µ
λ (r̂)] · ~r

r

∂

∂r
− ~r × ~L

~r2
[Vλ(r)Y

µ
λ (r̂)] · ~r ×

~L

~r2

−
[
∂

∂r
+

1

~r
(~σ · ~L)

]
[Vλ(r)Y

µ
λ (r̂)] ·

[
∂

∂r
− 1

~r
(~σ · ~L)

]
. (A.77)

The terms with two derivatives in Eq. A.77 cancel, and thus

Vs.o.(~r) = −~r ×
~L

~r2
[Vλ(r)Y

µ
λ (r̂)] · ~r ×

~L

~r2
− 1

~r
(~σ · ~L) [Vλ(r)Y

µ
λ (r̂)] ·

[
∂

∂r
− 1

~r
(~σ · ~L)

]

+
∂

∂r
[Vλ(r)Y

µ
λ (r̂)] ·

[
1

~r
(~σ · ~L)

]
. (A.78)

In the two first terms of Eq. A.78, the first ~L operators act only on the spherical harmonics
Y µ
λ (r̂), so that

~r × ~L[Y µ
λ (r̂)] · ~r × ~L =

[
(~r × ~L[Y µ

λ (r̂)])× ~r
]
· ~L, (A.79)

=
[
r2~L[Y µ

λ (r̂)]− (~L[Y µ
λ (r̂)] · ~r)~r

]
~L, (A.80)

=r2~L[Y µ
λ (r̂)] · ~L. (A.81)

Using Eq. A.81 into Eq. A.78, one obtains

Vs.o.(~r) =− Vλ(r)

~2r2
~L[Y µ

λ (r̂)] · ~L− 1

~r
(~σ · ~L) [Vλ(r)Y

µ
λ (r̂)] ·

[
∂

∂r
− 1

~r
(~σ · ~L)

]

+
∂

∂r
[Vλ(r)Y

µ
λ (r̂)] ·

[
1

~r
(~σ · ~L)

]
,

(A.82)

=− Vλ(r)

~2r2
~L[Y µ

λ (r̂)] · ~L− Vλ(r)

~r
(~σ · ~L) [Y µ

λ (r̂)]
∂

∂r

+
Vλ(r)

~2r2
(~σ · ~L) [Y µ

λ (r̂)] · (~σ · ~L) +
∂

∂r
[Vλ(r)Y

µ
λ (r̂)] · 1

~r
(~σ · ~L).

(A.83)

In the last term of Eq. A.83, (~L · ~σ) operates only on the right-hand side and thus can
be replaced by the related eigenvalue γi. In the second term, (~L · ~σ) operates only on the
spherical harmonics Y µ

λ (r̂). One can see that it is equivalent to the case it were operating
on the whole term, minus γi. This can be seen from the fact that ~L is a sum of first order
differential operators, namely

~̂L =



L̂x
L̂y
L̂z




~ex,~ey ,~ez

= −i~




− sinϕ
∂

∂θ
− cosϕ

tan θ

∂

∂ϕ

cosϕ
∂

∂θ
− sinϕ

tan θ

∂

∂ϕ
∂

∂ϕ



~ex,~ey ,~ez

. (A.84)

And thus the following property can be obtained:

~L[ab] = a~Lb+ b~La → `abab = a`bb+ b`aa,

a~Lb = ~L[ab]− b~La → a`bb = `abab− b`aa.
(A.85)

The related eigenvalue is written γf − γi. In the penultimate term of Eq. A.83, the
operators can be replaced by (γf−γi)γi. For the remaining term (the first one in Eq. A.83)
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~L[Y µ
λ (r̂)] · ~L, which is equivalent to ~λ · ~̀i must be studied. Again, as ~L is a sum of first

order differential operators, one has

~L[Y µ
λ (r̂)b] = Y µ

λ (r̂)~L[b] + b~L[Y µ
λ (r̂)]→ `abY

µ
λ (r̂)b = Y µ

λ (r̂)`bb+ b`λY
µ
λ (r̂). (A.86)

The notation ~̀f = ~̀i + ~λ is introduced, so that

~̀ 2
f = (~̀i + ~λ)2 = ~̀ 2

i + ~λ 2 + 2~̀i · ~λ, (A.87)

which is justified because ~̀i and ~λ commute. This corresponds to

~L2Y µ
λ (r̂) = Y µ

λ (r̂)~L2 + ~L2[Y µ
λ (r̂)] + 2~L[Y µ

λ (r̂)] · ~L. (A.88)

The special case of spin-1
2
incident particle is now considered to show the relation:

~L2 = (~L · ~σ)2 + (~L · ~σ). (A.89)

Starting from
~L · ~σ = ` for j = `+ 1

2
,

~L · ~σ = −`− 1 for j = `− 1
2
,

(A.90)

one obtains
(~L · ~σ)2 = (`+ 1)2 for j = `+ 1

2
,

(~L · ~σ)2 = `2 for j = `− 1
2
,

(A.91)

and

(~L · ~σ)2 + (~L · ~σ) = (`+ 1)2 − (`+ 1) = `(`+ 1) for j = `+ 1
2
,

(~L · ~σ)2 + (~L · ~σ) = `2 − ` = `(`+ 1) for j = `− 1
2
,

(A.92)

Hence
~L2 = (~L · ~σ)2 + (~L · ~σ) , (A.93)

so that the term

~L[Y µ
λ (r̂)] · ~L =

1

2

[
~L2Y µ

λ (r̂)− Y µ
λ (r̂)~L2 − ~L2[Y µ

λ (r̂)]
]
, (A.94)

can be replaced by
1

2
Y µ
λ (r̂)

[
γ2
f + γf − γ2

i − γi − λ(λ+ 1)
]
. (A.95)

Finally the spin-orbit coupling term can be written

Vs.o.(~r) =Y µ
λ (r̂)

(
−Vλ(r)

2~2r2

[
γ2
f + γf − γ2

i − γi − λ(λ+ 1)
]

− Vλ(r)

~r
(γf − γi)

∂

∂r
+
Vλ(r)

~2r2
(γf − γi)γi +

1

~r
∂Vλ(r)

∂r
· γi
)
,

(A.96)

=Y µ
λ (r̂)

(
−Vλ(r)

2~2r2

[
γ2
f + γf − 2γiγf + γ2

i − γi − λ(λ+ 1)
]

− Vλ(r)

~r
(γf − γi)

∂

∂r
+
γi
~r
∂Vλ(r)

∂r

)
,

(A.97)

=Y µ
λ (r̂)

(
Vλ(r)

2~2r2
[λ(λ+ 1) + (γi − γf)(γf − γi)] +

Vλ(r)

~r
(γi − γf)

∂

∂r
+
γi
~r
∂Vλ(r)

∂r

)
.

(A.98)
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APPENDIX B. MACRO-MICROSCOPIC MODELS IN CONRAD

Appendix B

Macroscopic-Microscopic Models in the
CONRAD code

In this appendix, details are given about the actual FRLDM and FRDM implementation
in the CONRAD code.
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B.1 Generating Shapes
The starting point of the macroscopic, microscopic and thus macroscopic-microscopic
models, as described in the document, relies on the definition of the nucleus shape. This
shape can be given as a “geometrical” function (e.g. ρ(z) or r(θ)), that depends on shape
parameters ~q (cf. Chapter 5). In the following, the shape parameterizations that have
been used in the present study will be presented.

B.1.1 Legendre Polynomials Expansion

In a quite general treatment, the nuclear radius is expanded using the spherical harmonics

r(θ, ϕ) =
R

λ

[
1 +

∞∑

`=1

∑̀

m=−`
a`mYlm(θ, ϕ)

]
, (B.1)

where R = r0A
1/3 is the radius of the equivalent spherical shape, the a`m coefficients are

the ~q parameters describing the shape, and the λ parameter is used to enforce volume
conservation as the shape evolves (~q varies). Real value of the radius is ensured by the
condition a`−m = (−1)ma∗`m. For axially-symmetric shapes, the alternative definition is
often favored:

r(θ) = R/λ(β2, β3, ...)

[
1 +

∞∑

i=2

βiPi(cos θ)

]
, (B.2)

where Pi are the Legendre polynomials and where the βi parameters play a role similar to
a`m. Figure B.1 shows nuclear shape layouts using this parameterization (exploring only
the (β2,β4) plane).

0 0.2 0.4 0.6 0.8

−0.2

−0.1

0

0.1

0.2

β2

β
4 β3 = 0.0

β3 = 0.2

Figure B.1 – Nuclear shape layouts obtained using the Legendre polynomials expansion
of the nuclear radius (cf. Eq. B.2). Examples of mass asymmetric shapes are also shown
(red curves).

One can notice from the red curves that the first “mass-asymmetric” term (i.e., the
first odd term in the Legendre polynomial expansion), does not describe properly the
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mass-asymmetry but rather the deformations of the nascent fragments. To investigate
mass-asymmetric fission path, one would need higher order (odd) terms. Adding terms
increases exponentially the computation time, hence this parameterization is not suitable
for mass-asymmetry exploration.

B.1.2 Hill-Wheeler Parameterization

Hill and Wheeler [11] gave a prescription for the nucleus shape in terms of a single pa-
rameter y, called fissility. The nucleus radius r(θ) is given by

r(θ) = a0(y)

[
1 +

4∑

i=1

a2i(y)P2i(cos θ)

]
, (B.3)

where

a0(y) = 1− y2

[
1.06 +

9.76× 10−4

(0.49− y)4

]
, a2(y) = y

[
2.3 +

5.42× 10−4

(0.49− y)4

]
,

a4(y) = y2

(
1.6 + y

[
3.0 +

2.84× 10−3

(0.49− y)4

])
, a6(y) = −2.36× 10−5

(0.49− y)4
,

a8(y) = −4.72× 10−5

(0.49− y)4
, ∀i > 8⇒ ai(y) = 0 .

(B.4)

This parameterization is somehow outdated as it was defined using the Liquid Drop Model
version of that time. For instance this parameterization does not yield mass-asymmetric
shapes. However it can be seen as a “satisfactory” 1-D parameterization because it results
from a model rather than just from a geometrical description (as in the Legendre expansion
presented above with only a β2 term). Figure B.2 shows layouts of nuclear surfaces using
this parameterization.

0.0 0.05 0.1 0.15 0.2 0.25 0.3
y

Figure B.2 – Nuclear shape layouts obtained using the Hill-Wheeler prescription of the
nuclear radius (cf. Eq. B.4). No mass asymmetric shapes are described by this parame-
terization.

B.1.3 Perturbed Spheroid

An alternative approach of the polynomial expansion of the nuclear radius can be the
perturbed spheroids [12, 173]. For these shapes the radius is given by

r(θ) =
R0

ω0/ω̊0




1− 1
3
ε2 − 2

9
ε22 + ε2

(
1 + 1

3
ε2
)
u2

(
1 + 1

3
ε2
)2 (

1− 2
3
ε2
) [

1− 2
3
ε2P2(u) + 2

6∑
i=3

εiPi(u)

]




1
2

, (B.5)
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where the εi are the shape parameters ~q, and

u =

[
1− 2

3
ε2

1− 1
3
ε2(3 cos2 θ − 1)

]1
2

cos θ, (B.6)

and where the ω0/ω̊0 term ensures the volume conservation. It satisfies

(
ω

ω̊0

)3

=
1

2

[(
1 +

1

3
ε2

)2(
1− 2

3
ε2

)]−1
2

1∫

−1

du

[
1− 2

3
ε2P2(u) + 2

6∑

i=3

εiPi(u)

]−3
2

.

(B.7)
This expression seems fairly complex compared to the Legendre polynomial expansion.
Their origins are in fact, rather similar. In the Legendre expansion, the radius is expanded
on Legendre polynomials. In the perturbed spheroids approach, one considers a deformed
Nilsson harmonic oscillator potential that is expanded on Legendre polynomials. If one
considers an equipotential surface of this potential and “scales” it so that the nuclear
volume is conserved and equal to 4

3
πR3, one finally obtains the perturbed spheroid formula.

Figure B.3 shows nuclear surface layouts using this parameterization (exploring only the
(ε2,ε4) plane).

0 0.2 0.4 0.6 0.8

−0.2

−0.1

0

0.1

0.2

ε2

ε 4

ε3 = 0.0 ε3 = 0.1

Figure B.3 – Example of perturbed spheroid surfaces defined by Eq. B.5. Examples of
mass asymmetric shapes are also shown (red curves).

One can notice that for negative values of ε4, one obtains rapidly nonphysical shapes
as ε2 increases. If axially-asymmetric shapes are to be investigated, a “γ” deformation
term can be added in a generalization of this expression [12]. One can also notice
from Fig. B.3 that this parameterization is not particularly relevant to describe mass-
asymmetric nascent fragments. Just like in the Legendre polynomials expansion, Fig. B.3
shows that odd terms lead to different shapes for the fragments, not really in different
masses.

B.1.4 Generalized Spheroid

Studies of fission process requires a better description of the scission configurations and
mass-asymmetric shapes have to be investigated. A new shape parameterization was
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introduced [20] so that asymmetric shapes are described as well as spherical, elongated
shapes and diamond-like shapes. This class of shapes is the generalized spheroids fam-
ily. This parameterization allows nuclei to have diamond-like shapes, as such shapes are
believed to be closer to actual ground-state shapes than the spherical shape. In this pa-
rameterization, the nuclear radius is given in terms of the distance ρ of the surface to the
symmetry axis z:

ρ2(z) =

{
(1− z2) (a+ bz2 + αz) , b ≥ 0
(1− z2) (a+ αz) exp (bc3z2) , b < 0

, (B.8)

where

b =
1

2
(c− 1) + 2h, a =





1

c3
− b

5
, b ≥ 0

−4b

3

[
ep +

√−πp
(

1 +
1

2p

)
erf(
√−p)

]−1

, b < 0
,

(B.9)
and p = bc3. Examples of shapes provided by this parameterization are shown in Fig. B.4.
One can notice that shapes with α 6= 0 render mass-asymmetry in a better way than
in the Legendre expansion or in the perturbed spheroid approaches, especially for scis-
sion shapes or for shapes with well separated fragments. This parameterization leads
to fragments at scission with unsatisfactory deformations. The ground state obtained
with this parameterization (and also with the perturbed spheroid parameterization) has
a diamond-like shape (for instance (c, h) = (1.2,−0.4) in Fig. B.4). It is thus interesting
to investigate scission shapes where fragments can have such diamond-like shapes. Yet
the generalized spheroid parameterization leads to scission shapes where fragments are
flattened on a plane perpendicular to the symmetry axis (as can be seen for instance for
(c, h) = (2.2, 0.4) in Fig. B.4). This seems nonphysical and shows the limitations of such
a 3D parameterization where only elongation, “neck size” and mass-asymmetry can be
easily handled.

1 1.2 1.5 1.8 2.2

−0.4

−0.2

0

0.2

0.4

c

h

α = 0.0
α = 0.2

Figure B.4 – Example of nuclear shapes using the generalized spheroid parameterization
(cf. Eq. B.8). Examples of mass-asymmetric shapes are shown with red solid curves.
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B.1.5 Three Quadratic Surfaces (3QS)

A proper way of getting rid of the drawbacks of the previous parameterizations is to
increase the number of degrees of freedom. Nix introduced another parameterization [174,
175] that relies on two additional degrees of freedom. In this case, as for the generalized
spheroid parameterization, the radius is given in terms of ρ(z) instead of r(θ):

ρ(z)2 =





a2
1 −

a2
1

c2
1

(z − l1)2, l1 − zmin ≤ z ≤ z1

a2
2 −

a2
2

c2
2

(z − l2)2, z2 ≤ z ≤ l2 + zmax

a2
3 −

a2
3

c2
3

(z − l3)2, z1 ≤ z ≤ z2

, (B.10)

where zmax = l2 + c2 and zmin = l1 − c1. One can see that, in this formula, eleven
parameters are necessary to describe this shape. However from the smooth continuity
relations at z = z1 and z = z2, four parameters can be dropped. Additionally the
volume conservation and the center-of-mass position are two degrees of freedom that can
be removed. Finally only five parameters are necessary to provide a proper description
of the shape. This shape parameterization is particularly suitable for the description
of scission configurations because it makes possible to set specific deformations for each
fragment. It seems well adapted to describe the fission process.

For such a parameterization with five degrees of freedom, it is difficult to give a layout
of the available shapes. However in Fig. B.5, one can see the geometrical meaning of
the parameters involved in the shape formula (Eq. B.10) and some examples of related
shapes.

z

ρ

c1 c2
a1

a2
a3

z1

z2

l1
l3
lCM

l2

Figure B.5 – Examples of three quadratic surfaces

Out of the eleven geometrical parameters used in Eq. B.5, one could select only five
and use them as the degrees of freedom. Yet these geometrical parameters do not lin-
early and independently affecting the expected degrees of freedom (elongation, neck size,
mass-asymmetry and deformation of nascent fragments). The symmetric σ1, σ2, σ3 and
asymmetric α1, α2, α3 parameters are used to get closer to the targeted degrees of free-
dom. These parameters are defined in Tab. B.1. Six parameters are involved as the degree
of freedom related to the center-of-mass position in not yet removed. Additionally a size
parameter u is introduced so that the volume degree of freedom can be removed later.

These parameters are not yet quite satisfactory, instead the global parameters Q2, αg,
d, ε1 and ε2, defined in Ref. [16] operate on the desired degrees of freedom. A connection
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Table B.1 – Relations between global and symmetrical/asymmetrical parameters used in
the 3QS parameterization.

symmetrical asymmetrical dimensional

σ1 =
l2 − l1
u

σ2 =
a2

3

c2
3

σ3 =
1

2

(
a2

1

c2
1

+
a2

2

c2
2

)

α1 =
1

2

l2 + l1
u

α2 =
a2

1 − a2
2

u2

α3 =
a2

1

c2
1

− a2
2

c2
2

u =
[

1
2
(a2

1 + a2
2)
]1/2

between the symmetric and asymmetric parameters and the global parameters is shown
in Tab. B.2. More detailed can be found in Ref. [16,175].

Table B.2 – Global shape parameters used in the 3QS parameterization.

From global to symmetrical/asymmetrical From symmetrical/asymmetrical to global

σ3 =
1

2

[(
3− 2εf1
3 + εf1

)2

+

(
3− 2εf2
3 + εf2

)2
]

εf1 =
1−√2σ3 + α3√

2σ3 + α3 + 2

α3 =
1

2

[(
3− 2εf1
3 + εf1

)2

−
(

3− 2εf2
3 + εf2

)2
]

εf2 =
1−√2σ3 − α3√

2σ3 − α3 + 2

α2 = 2

[(
αg + 1

αg − 1

)2
2σ3 + α3

2σ3 − α3

]1/3

− 1

[(
αg + 1

αg − 1

)2
2σ3 + α3

2σ3 − α3

]1/3

+ 1

αg =

[
2σ3 − α3

2σ3 + α3

(
1 + 1

2
α2

1− 1
2
α2

)3
]1/2

+ 1

[
2σ3 − α3

2σ3 + α3

(
1 + 1

2
α2

1− 1
2
α2

)3
]1/2

− 1

The Q2 parameter is defined by

Qλ = 2

(
Z

4
3
πR3

)∫

V

d3~rrλPλ(cos θ) =

(
3Z

R3

) zmax∫

zmin

dz

ρ(z)∫

0

dρ′
[
ρ′

2
+ z2

]λ/2
ρ′Pλ

(
z√

ρ′2 + z2

)
.

(B.11)
Handling this parameterization is quite tedious, especially for shapes with small elonga-
tion, and robust numerical methods must be settled. This parameterization has been only
used for some tests in the present document. Yet it should be used more extensively in
future studies.

B.2 About Shell and Pairing Correction
Once single-particle energies are obtained from the Yukawa-folded microscopic model, the
shell and pairing corrections must be calculated.

B.2.1 Shell Correction

The method used in the present study for the calculation of the shell energy correction
is described in Ref. [87]. Additional calculation details of interest are provided in the
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following. As explained in Chapter 5.4.1, the shell correction is calculated as

δEshell =
N∑

n=1

εn −
N∫

0

ε̄(n)dn . (B.12)

As a starting point, one can consider Eq. 5.84 giving the discrete state density, recalled
here

g(ε) =
1

γ

∞∑

n=0

δ(un), (B.13)

where
un =

ε− εn
γ

. (B.14)

The delta function Dirac δ can be expanded using the Hermite polynomials:

δ(x) =
∞∑

m=0

e−x2

√
π

Hm(x)Hm(0)

2mm!
. (B.15)

From the orthogonality condition of the Hermite polynomials, namely

∞∫

−∞

dxe−x
2

Hn(x)Hm(x) =
δnm√
π2nn!

, (B.16)

it can be verified that:
∞∫

−∞

δ(x)dx =
∞∑

m=0

Hm(0)√
π2mm!

∞∫

−∞

e−x
2

Hm(x)dx , (B.17)

=
∞∑

m=0

Hm(0)√
π2mm!

√
π2mm!δm0 , (B.18)

= H0(0) , (B.19)
= 1 . (B.20)

The value of the Hermite polynomials at the origin is given by

Hm(0) =





(−1)m/2
m!

(m/2)!
, m even ,

0, m odd ,
(B.21)

Hence g(ε) defined in Eq. B.13 can be written

g(ε) =
1

γ

∞∑

n=0

∞∑

m=0

e−u2
n

√
π

Hm(un)Hm(0)

2mm!
. (B.22)

The cumulative number of state n(ε) is given by

n(ε) =

ε∫

−∞

g(ε′)dε′ , (B.23)
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=
1

γ
√
π

∞∑

n=0




ε∫

−∞

e−v
2
nH0(vn)dε′ +

∞∑

m=1

Hm(0)

2mm!

ε∫

−∞

e−v
2
nHm(vn)dε′


 , (B.24)

where
vn =

ε′ − εn
γ

. (B.25)

Making the variable change ε′ → vn, one obtains

n(ε) =
1√
π

∞∑

n=0




un∫

−∞

e−v
2
nH0(vn)dvn +

∞∑

m=1

Hm(0)

2mm!

un∫

−∞

e−v
2
nHm(vn)dvn


 . (B.26)

As H0(x) = 1 and using Ref. [48] (p. 298), one gets

1√
π

x√
2∫

−∞

e−t
2

dt =
1

2

[
1 + erf

(
x√
2

)]
, (B.27)

so that n(ε) can be written

n(ε) =
∞∑

n=0


1

2
[1 + erf (vn)] +

1√
π

∞∑

m=1

Hm(0)

2mm!

un∫

−∞

e−v
2
nHm(vn)dvn


 . (B.28)

The integral in Eq. B.28 can be put in the form

un∫

−∞

e−v
2
nHm(vn)dvn =

0∫

−∞

e−v
2
nHm(vn)dvn +

un∫

0

e−v
2
nHm(vn)dvn . (B.29)

For m even, Hm is an even function and thus

0∫

−∞

e−v
2
nHm(vn)dvn =

1

2

+∞∫

−∞

e−v
2
nHm(vn)dvn =

1

2

δ0m√
π2nn!

. (B.30)

As m = 0 is not included in the second sum of Eq. B.28, one gets

n(ε) =
∞∑

n=0


1

2
[1 + erf (vn)] +

1√
π

∞∑

m=1

Hm(0)

2mm!

un∫

0

e−v
2
nHm(vn)dvn


 . (B.31)

Reference [48] (p. 786) gives the following relation

x∫

0

e−t
2

Hm(t)dt = Hm−1(0)− e−x
2

Hm−1(x) , (B.32)

which can be used with Eq. B.30 and yield

m even,m > 0⇒
x∫

−∞

e−t
2

Hm(t)dt = Hm−1(0)− e−x
2

Hm−1(x). (B.33)
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Hence Eq. B.28 can be written

n(ε) =
∞∑

n=0

(
1

2
[1 + erf (vn)] +

1√
π

∞∑

m=1

Hm(0)

2mm!

[
Hm−1(0)− e−u

2
nHm−1(un)

])
. (B.34)

Either m or m− 1 is odd so the first term of the second sum is null, so that

n(ε) =
∞∑

n=0

(
1

2
[1 + erf (vn)]− 1√

π

∞∑

m=1

Hm(0)

2mm!
e−u

2
nHm−1(un)

)
. (B.35)

The average number of level n̄(ε), required in Eq. 5.90 to obtained the Fermi energy λ̄ of
the smooth distribution, is obtained by restraining the sum over m up to a cutoff order p.
To obtain the shell correction (cf. Eq. 5.91 or Eq. B.12), one also needs to compute
expression of the type

N∫

0

ε(n)dn =

λ̄∫

−∞

εg(ε)dε =
1

γ
√
π

∞∑

n=0

∞∑

m=0

Hm(0)

2mm!

λ̄∫

−∞

dε ε e−u
2
nHm(un). (B.36)

Making the variable change ε → un and separating the m = 0 term from the rest of the
sum, one obtains

N∫

0

ε(n)dn =
1√
π

∞∑

n=0




λ̄−εn
γ∫

−∞

dun(γun + εn)e−u
2
n

+
∞∑

m=1

Hm(0)

2mm!

λ̄−εn
γ∫

−∞

dun(γun + εn)e−u
2
nHm(un)


 . (B.37)

Defining ũn =
λ̄− εn
γ

, the first term in the parentheses of Eq. B.37 becomes

ũn∫

−∞

dun(γun + εn)e−u
2
n = γ

ũn∫

−∞

dunune−u
2
n + εn

ũn∫

−∞

dune−u
2
n , (B.38)

= −γ
2

[
e−u

2
n

]ũn
−∞

+ εn
√
π

1

2
[1 + erf(ũn)] , (B.39)

= −γ
2
e−ũ

2
n +

εn
√
π

2
[1 + erf(ũn)] . (B.40)

For the second term in the parentheses of Eq. B.37, one has

ũn∫

−∞

dun(γun+ εn)e−u
2
nHm(un) = γ

ũn∫

−∞

dunune−u
2
nHm(un)+ εn

ũn∫

−∞

dune−u
2
nHm(un). (B.41)

Reference [48] (p. 782) gives the recurrence relation between Hermite polynomials:

xHm(x) =
1

2
Hm+1(x) +mHm−1(x). (B.42)
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The second term in the parentheses of Eq. B.37 becomes

ũn∫

−∞

dun(γun + εn)e−u
2
nHm(un) =

γ

2

ũn∫

−∞

dune−u
2
nHm+1(un) + γm

ũn∫

−∞

dune−u
2
nHm−1(un) + εn

ũn∫

−∞

dune−u
2
nHm(un). (B.43)

Equation B.33 cannot be used because m + 1 and m − 1 are both even. However for m
even, one can use Ref. [48] (p. 786), namely

x∫

−∞

dte−t
2

Hm+1(t) =

0∫

−∞

dte−t
2

Hm+1(t) +

x∫

0

dte−t
2

Hm+1(t) , (B.44)

= −
+∞∫

0

dte−t
2

Hm+1(t) +

x∫

0

dte−t
2

Hm+1(t) , (B.45)

= −Hm(0) +Hm(0)− exHm(x) = −exHm(x). (B.46)

Hence, using Eqs. B.46 and B.33, the second term in the parentheses of Eq. B.37 becomes

ũn∫

−∞

dun(γun − εn)e−u
2
nHm(un) =

− γ

2
e−ũ

2
nHm(ũn)− γme−ũ

2
nHm−2(ũn) + εn

[
Hm−1(0)− e−ũ

2
nHm−1(ũn)

]
. (B.47)

As m is even, m− 1 is odd and Hm−1(0) = 0, inserting Eqs. B.40 and B.47 into Eq. B.37,
one obtains the smooth energy term

N∫

0

ε(n)dn =
∞∑

n=0

(
εn
2

[1 + erf(ũn)]− γ

2
√
π
e−ũ

2
n

−e−ũ2
n

√
π

∞∑

m=1

Hm(0)

2mm!

[γ
2
Hm(ũn) + γmHm−2(ũn) + εnHm−1(ũn)

])
. (B.48)

To obtain the smooth equivalent to Eq. B.48, namely

N∫

0

ε̄(n)dn, (B.49)

used in Eq. 5.91 and Eq. B.12 for the calculation of the actual shell correction energy, one
should limit, in Eq. B.48, the second sum on m up to the cutoff parameter p.

B.2.2 Discussion about the Shell Correction

In Fig. B.6, one can see an example for 208
82Pb126 that was calculated and put into the same

format than in Ref [87] for comparison. The calculation is done for neutrons only. The
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number of cumulative levels for the discrete distribution n(ε) using Eqs. 5.83 and 5.84
and for the corresponding smooth distribution n̄(ε) using Eq. 5.89 is shown. The Fermi
energy λ̄ of the smooth distribution can be read from the smooth curves at the point where
n̄(λ̄) = N = 126. As is explained later in Chapter 5 Section 5.5.1, levels are computed
using a base expansion method. The accuracy of the calculation depends on the choice
of the base and on the size of the base. The largest the base, the more accurately the
level energies are computed. This method provides level energies for positive and negative
energies and the number of energies provided by the method is equal to the number of
elements in the base. Only a limited physically-constrained number of negative energy
levels exist, therefore as the base size increases, the number of positive energies increases
while the number of negative energies remains identical.

In Fig. B.6, on can additionally see the dependence of the number of cumulative levels
as the base size increases. The size of the expansion base is characterized by a cutoff
number N0 that is not the number of elements in the base, but as N0 increases the base
size increases. As the size increases, the single-particle energies converge for bound levels
(εn < 0). For unbound energy levels the change is more effective. As all positive energies
are eigenvalues of the Hamiltonian (they are related to the continuum), hence in a small
interval of positive energies dε, an infinity of energy levels are possible. As the base size
increases these levels are better described by the expansion method and the infinity of
levels tends to be reproduced. In such positive energy region, n in Fig. B.6 should be
completely flat and one should considered instead the level density dn/dε where dn the
variation in the cumulative number of levels in the range dε.

This yields unsatisfactory features for the shell correction. As the sum over n in
Eq. 5.93 goes to infinity (and thus related to positive levels) this would bend downwards
the smooth curves in the negative energy region too. The eventual effect on the shell
correction is also shown in Fig. B.6b. This kind of analysis led to limit the size of the
expansion base.

0 50 100 150 200 250 300

−40

−30

−20

−10

0

10

126

λ̄

Cumulative number of single-particle states

S
in
gl
e-
p
ar
ti
cl
e
en

er
gi
es
ε n
,ε̄

[M
eV

]

n(ε) N0 = 12

n(ε) N0 = 16

n̄(ε) N0 = 12

n̄(ε) N0 = 16

(a)

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14
−12

−10

−8

−6

8
12

30

1/N0

δE
sh

e
ll
[M

eV
]

(b)

Figure B.6 – Energies of neutron single-particle states of the 208
82Pb126 (B.6a) and corre-

sponding shell correction convergence as a function of the base size criterion N0 (B.6b).
Results reproduced for comparison with Ref [87].

This issue can be avoided by using of the following ad hoc method given in Ref. [176].
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In this approach, the level density g of Eq. 5.84 is replaced by

gbound(ε) =
∞∑

n=1

δ(ε− εn)−
∞∑

n=1

δ(ε− ε0n), (B.50)

where ε0n are eigenvalues of the “free” Hamiltonian Ĥ = T̂ as given in Chapter 5, Sec-
tion 5.5.1. It has been shown that this method leads to converged shell correction as the
base size increases [177] and thus corrects the unsatisfactory divergent behavior of the
shell correction that is shown in Fig. B.6b.

B.2.3 Pairing Correction

Two pairing models are used this study, the BCS and the Lipkin-Nogami models, that have
been well presented in Ref. [110]. Therefore the related development will not be reported
here. It could yet be noted that for the BCS model a slightly different version [87] has
been implemented for the present study.

B.3 Finite Range Droplet Model

The Finite-Range Droplet Model (FRDM) has also been implemented as long as the
Finite-Range Liquid-Drop Model (FRLDM) for the present work (cf. Chapter 5). This
was made in order to perform additional verifications of the FRLDM implementation (cf.
Section 5.4.2). The droplet model, which is the original version of the macroscopic model
used in the FRDM will be detailed below.

B.3.1 Droplet Model

Myers and Swiatecki elaborated [106,178] an alternative macroscopic model to the liquid
drop model named the droplet model. In this approach different densities are considered
for the neutrons and protons (ρn(~r) and ρp(~r)). The evolution of the different energy
terms (Volume, Surface and Coulomb) is analyzed as ρn(~r) and ρp(~r) differ from their
standard (liquid drop model) value ρ0 = [4

3
πr3

0]−1. The density functions ρn(~r) and ρp(~r)
considered here are called bulk density functions. One can also define the total bulk density
ρ(~r) = ρn(~r) + ρp(~r). These densities are illustrated, in the case of spherical nucleus, by
dashed line in Fig. B.7, along with the actual densities shown in solid line. The bulk
density is a continuation of the actual density in the nucleus interior up to a given radius.
For instance the neutron bulk density ρn extends from r = 0 up to Rn, with and excess of
density with respect to the actual density for r < Rn which is equal to the corresponding
density deficiency beyond Rn. In particular this implies

∫

∞

d3~rρactualn (~r) = N =

∫

VΣn

d3~rρbulkn (~r) . (B.51)

The definition of the radii Rn, Rp and RΣ and the related densities, as shown in Fig B.7,
are defined for a spherical nucleus, but the extension to arbitrary shapes is straightforward.
In this latter case, the surface Σn, Σp and Σ are considered instead of radii Rn, Rp and
RΣ. In the following of this presentation of the droplet model, densities ρn, ρp and ρ refer
to the bulk quantities. Assuming a normal vector ~n to both surfaces Σn and Σp, if nn is a
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RΣ

ρ

Rn

ρn

Rp

ρp

R0

r

ρactual

ρbulk

Figure B.7 – Generating functions of the Droplet model, reproduced from Ref. [106].

normal coordinate (along ~n) locating Σn and np is the similar quantity locating Σp, then
the position nΣ of Σ is given by

nΣ =
nnρn(nn) + npρp(np)

ρn(nn) + ρp(np)
. (B.52)

Thus the excess of neutrons in the generating distribution between Σ and Σn is the same
than the deficiency of protons between Σp and Σ. The density deviation function ε and
the neutron-excess deviation function δ are defined by

ε(~r) = −1

3

(
ρ(~r)− ρ0

ρ0

)
and δ(~r) =

ρn(~r)− ρp(~r)

ρ(~r)
. (B.53)

Additionally one can define a neutron skin thickness τ as

τ =
nn − np
r0

. (B.54)

This neutron skin thickness is a function of the position on the surface Σ. The derivation
of the model final expression is obtained in two steps:

1. The energy terms (Volume, Surface and Coulomb) are written in terms of the
volume-averaged quantities ε̄, δ̄, surface-averaged quantity τ̄ and the deviation func-
tions δ̃(~r) = δ(~r)− δ̄, ε̃(~r) = ε(~r)− ε̄ and τ̃(~r) = τ(~r)− τ̄ .

2. The energy expression is made stationary with respect to variations of ε̄, δ̄, δ̃(~r),
ε̃(~r) and τ̃(~r). The expression is not made explicitly stationary with respect of
parameter τ̄ because there is a relation between τ̄ and δ̄, thus it is not a free degree
of freedom.

One can notice that a non-zero value of ε̄ corresponds to a nuclear volume VΣ = 4
3
πR3

Σ

that differs from the standard nuclear volume V = 4
3
πR3

0 where R0 = r0A
1/3. The

spherical-equivalent radius RΣ in the droplet model model is given by

RΣ = (1− 3ε̄)−1/3R0 ≈ (1 + ε̄)R0. (B.55)
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This is related to the compressibility of the nuclear matter inside the nucleus. The volume
energy term EV can be written as

EV =

∫

VΣ

d3~rρ(~r)e(~r) , (B.56)

where e is a local energy density per particle that can be developed in terms of δ and ε
according to

e(~r) = −a1 + Jδ2(~r) +
1

2
Kε2(~r)− Lε(~r)δ2(~r) +

1

2
Mδ4(~r) , (B.57)

where a1, J , K, L and M are constants that will be eventually adjusted on experimental
masses. This leads to

EV =

[
−a1 + Jδ̄2 +

1

2
Kε̄2 − Lε̄δ̄2 +

1

2
Mδ̄4

]
A+ ρ0

∫

VΣ

d3~r

(
Jδ̃2(~r) +

1

2
Kε̃2(~r)

)
. (B.58)

Similarly, the surface term ES is written as

ES =
1

4πr2
0

∫

SΣ

d2S

[
a2 + Fε(~r) +Hτ 2(~r) + 2Pτ(~r)δ(~r)−Gδ2(~r) +

1

2
a3r0κ(~r)

]
, (B.59)

where a2, F , G, P , G and a3 are constants and κ(~r) is the local curvature at the surface
point ~r. This leads to

ES = a2A
2/3(1 + 2ε̄)BS(~q) +

1

3
ρ0r0

∫

SΣ

d2S
[
Fε(~r) +Hτ 2(~r) + 2Pτ(~r)δ(~r)−Gδ2(~r)

]

+ a3
1

8πr0

∫

SΣ

d2Sκ(~r) . (B.60)

The last term is often written as a3A
1/3Bk(~q), where

Bk(~q) =
1

8πRΣ

∫

SΣ

d2Sκ(~r) . (B.61)

Finally the Coulomb energy term EC is written

EC =
1

2
e2

∫

VΣp

d2~r1

∫

VΣp

d3~r2
ρp(~r1)ρp(~r2)

‖~r1 − ~r2‖
+ Ediff + Eexch, (B.62)

where Ediff is the correction for the diffuseness of the proton density given by Eq. 5.15
and Eexch is the exchange correction introduced in Eq. 5.6. This leads to

EC = c1
Z2

A1/3
(1−ε̄)BC(~q)− eρ0r0

4

∫

SΣ

d2Sτ(~r)ṽ(~r)− eρ0

2

∫

VΣ

d3~rv(~r)(3ε̃(~r)+δ̃(~r))+Ediff+Eexch,

(B.63)
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where c1 = 3
5
e2

r0
and v is the Coulomb potential generated by an uniform density ρ̄p = Ze

VΣ

contained in the sharp edge surface SΣ. It is given by

v(~r1) =

∫

VΣ

d3~r2
eρ̄p

‖~r1 − ~r2‖
. (B.64)

The average value v̄ of v over VΣ and its deviation function ṽ are defined by

v̄ =
1

VΣ

∫

VΣ

d3~r1v(~r1) and ṽ(~r1) = v(~r1)− v̄ . (B.65)

The total energy E = EV + ES + EC is thus

E =

[
−a1 + Jδ̄2 +

1

2
Kε̄2 − Lε̄δ̄2 +

1

2
Mδ̄4

]
A

+ ρ0

∫

VΣ

d3~r

(
Jδ̃2(~r) +

1

2
Kε̃2(~r)

)
+ a2A

2/3(1 + 2ε̄)BS(~q)

+
1

3
ρ0r0

∫

SΣ

d2S
[
Fε(~r) +Hτ 2(~r) + 2Pτ(~r)δ(~r)−Gδ2(~r)

]
+ a3A

1/3Bk(~q)

+ c1
Z2

A1/3
(1− ε̄)BC(~q)− eρ0r0

4

∫

SΣ

d2Sτ(~r)ṽ(~r)− eρ0

2

∫

VΣ

d3~rv(~r)(3ε̃(~r) + δ̃(~r))

+ Ediff + Eexch. (B.66)

Applying all stationary conditions
(
∂E

∂ε̃
=
∂E

∂δ̃
=
∂E

∂τ̃
=
∂E

∂δ̄
=
∂E

∂ε̄
= 0

)
to Eq. B.66

yields

∂E

∂ε̃
= 0⇒ ε̃ =

3e

2K
ṽ, (B.67)

∂E

∂δ̃
= 0⇒ δ̃ =

eṽ

4J
, (B.68)

∂E

∂τ̃
= 0⇒ τ̃ =

3

8

e

Q
(ṽS − ¯̃vS), (B.69)

∂E

∂δ̄
= 0⇒ δ̄ =

I + c1
Q
ZBv(~q)

3
16
A−2/3

1 + 9
4
J
Q
A−1/3BS(~q)

, (B.70)

∂E

∂ε̄
= 0⇒ ε̄ =

1

K

[
Lδ̄2 − 2A−1/3a2BS(~q) + c1

Z2

A4/3
BC(~q)

]
, (B.71)

where ṽS is the restriction of ṽ on the surface SΣ, and ¯̃vS is its average value on SΣ defined
by

¯̃vS =
1

SΣ

∫

SΣ

d2SṽS(~r) , (B.72)

and Q = 3
2
JP
G
. The Bv term appearing in Eq. B.70 is defined by

Bv(~q) = − 5

4πRΣZe

∫

SΣ

d2Sṽ(~r) . (B.73)
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Inserting all stationary conditions into Eq. B.66, it yields

E =

[
−a1 + Jδ̄2 +

1

2
Kε̄2 +

1

2
Mδ̄4 − Lε̄δ̄2

]
A− c2A

1/3Z2(1 + ε̄)Br(~q)

+

[
a2 +

9

4

J2

Q
δ̄2

]
A2/3(1 + 2ε̄)BS(~q)− c5Z

2Bw(~q)

+ a3A
1/3(1 + ε̄)Bk(~q) + c1

Z2

A1/3
(1− ε̄)BC(~q) + Ediff + Eexch, (B.74)

where c5 =
c21

43Q
. The Br and Bw terms are defined by

Br(~q) =
700π

RΣZ2e2

∫

VΣ

d3~r ṽ2 and Bw(~q) =
25

4Z2πe2

∫

SΣ

d2Sṽ2(~r) . (B.75)

Finally, as ε̄
∂E

∂ε̄
= 0, one can consider E = E − ε̄∂E

∂ε̄
and the final expression for the

total energy becomes

E =

[
−a1 + Jδ̄2 +

1

2
Kε̄2 +

1

2
Mδ̄4

]
A− c2A

1/3Z2Br(~q) +

[
a2 +

9

4

J2

Q
δ̄2

]
A2/3BS(~q)

− c5Z
2Bw(~q) + a3A

1/3Bk(~q) + c1
Z2

A1/3
BC(~q) + Ediff + Eexch. (B.76)

B.3.2 Finite Range Droplet Model

Just like the Finite Range Liquid Drop Model (FRLDM) was an extension of the Liquid
Drop Model (LDM), the Finite Range Droplet Model (FRDM) is a similar extension of
the Droplet Model (DM). The major change between the DM and the FRDM is related to
the surface and Coulomb terms. Roughly speaking the a2A

2/3BS(~q) and c1Z
2A−1/3BC(~q)

terms of Eq. B.76 would be replaced by a2A
2/3B1(~q) and c1Z

2A−1/3B3(~q) respectively
where B1 and B3 are defined by Eq. 5.45 and 5.46. Additionally the effect of nucleus
compresibility must be considered. In Eq. B.74 terms a2A

2/3(1 + 2ε̄)BS(~q) and c1
Z2

A1/3 (1−
ε̄)BC(~q) must be seen as the first order expansion of the related surface and Coulomb
energy terms with respect of variation of the nuclear volume (i.e. of ε̄). For instance,
defining the standard volume V0 = 4

3
πR3

0 and the DM volume VΣ = 4
3
πR3

Σ (here RΣ =
R0(1 + ε̄)), the surface energy term ES for a volume V0 is given by

ES(ε̄ = 0) = a2A
2/3 1

4πR2
0

∫

S0

d2S, (B.77)

where S0 is the surface containing the volume V0. The surface energy term ES for a
volume VΣ is

ES(ε̄ 6= 0) = a2A
2/3 1

4πR2
0

∫

SΣ

d2S, (B.78)

where SΣ is the surface containing the volume VΣ. As the shapes in Eqs. B.77 and B.78
are identical, the change in volume consists only on a rescale of ES(ε̄ = 0), namely

ES(ε̄ 6= 0) = ES(ε̄ = 0)

(
RΣ

R0

)2

= ES(ε̄ = 0) (1 + ε̄)2 ≈ ES(ε̄ = 0) (1 + 2ε̄) . (B.79)
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Applying this to the finite-range terms B1, one obtains for the volume V0

ES(ε̄ = 0) = a2A
2/3B1(~q) =

a2A
2/3

8π2R2
0a

4

∫

V0

d3~r1

∫

V0

d3~r2(2− ξ)e
−ξ

ξ
, (B.80)

where ξ = ‖~r1 − ~r2‖/a.
Equation B.80 must now be obtained for a volume VΣ 6= V0. Considering a function f

of parameters ε̄ and a defined as the double volume integral of a function g depending of
ξ = ‖~r1 − ~r2‖/a so that for the volume V0

f(ε̄ = 0, a) =

zmax∫

zmin

dz
zmax∫

zmin

dz′
ymax∫

ymin

dy

ymax∫

ymin

dy′
xmax∫

xmin

dx
xmax∫

xmin

dx′g(ξ). (B.81)

For a non zero value of ε̄, Eq. B.81 can be written

f(ε̄ 6= 0, a) =

zmax(1+ε̄)∫

zmin(1+ε̄)

dz

zmax(1+ε̄)∫

zmin(1+ε̄)

dz′
ymax(1+ε̄)∫

ymin(1+ε̄)

dy

ymax(1+ε̄)∫

ymin(1+ε̄)

dy′
xmax(1+ε̄)∫

xmin(1+ε̄)

dx

xmax(1+ε̄)∫

xmin(1+ε̄)

dx′g(ξ).

(B.82)
Using variable change X = x/(1 + ε̄), one gets

f(ε̄ 6= 0, a) = (1 + ε̄)6

zmax∫

zmin

dZ
zmax∫

zmin

dZ ′
ymax∫

ymin

dY

ymax∫

ymin

dY ′
xmax∫

xmin

dX
xmax∫

xmin

dX ′g(ξ′), (B.83)

where ξ′ is now given by

ξ′ =

√
(x− x′)2 + (y − y′)2 + (z − z′)2

a
, (B.84)

=

√
(X −X ′)2 + (Y − Y ′)2 + (Z − Z ′)2

a
(1 + ε̄) , (B.85)

=

√
(X −X ′)2 + (Y − Y ′)2 + (Z − Z ′)2

a′
, (B.86)

where a′ = a(1 + ε̄)−1. Therefore Eq. B.83 becomes

f(ε̄ 6= 0, a) = (1 + ε̄)6f(ε̄ = 0,
a

1 + ε̄
) , (B.87)

≈ (1 + 6ε̄)f(ε̄ = 0, a(1− ε̄)) , (B.88)

≈ (1 + 6ε̄)

[
f(ε̄ = 0, a)− aε̄ ∂f

∂a

∣∣∣∣
ε̄=0,a

]
, (B.89)

≈ f(ε̄ = 0, a) + 6ε̄f(ε̄ = 0, a)− aε̄ ∂f
∂a

∣∣∣∣
ε̄=0,a

. (B.90)

This can be applied to Eq. B.80, where f = fS corresponding to g(ξ) = (2 − ξ)e
−ξ

ξ
, so

that one obtains the surface energy term ES related to a volume VΣ as

ES(ε̄ 6= 0) = a2A
2/3B1 , (B.91)
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=
a2A

2/3

8π2R2
0a

4
fS(ε̄, a) , (B.92)

= a2A
2/3

[
(1 + 6ε̄)B1 −

aε̄

8π2R2
0a

4

∂fS
∂a

∣∣∣∣
ε̄=0,a

]
. (B.93)

It can be shown that this expression can be written more simply as

ES(ε̄ 6= 0) = a2A
2/3(B1 + 2ε̄B2), (B.94)

where
B2 =

1

2λ

dλ2B1

dλ
and λ = R0/a . (B.95)

This is justified by

ES(ε̄ 6= 0) = a2A
2/3(B1 + 2ε̄B2) , (B.96)

= a2A
2/3

[
B1 +

ε̄

λ

dλ2B1

dλ

]
, (B.97)

= a2A
2/3

[
B1 +

ε̄

λ

(
2λB1 + λ2dB1

dλ

)]
, (B.98)

= a2A
2/3

[
B1 + 2ε̄B1 + ε̄λ

dB1

dλ

]
, (B.99)

= a2A
2/3

[
B1 + 2ε̄B1 −

R0

a

a2

R0

ε̄
dB1

da

]
, (B.100)

= a2A
2/3

[
B1 + 2ε̄B1 − aε̄

dB1

da

]
, (B.101)

= a2A
2/3

[
B1 + 2ε̄B1 −

aε̄

8π2R2
0a

4

∂fS
∂a

∣∣∣∣
ε̄=0,a

+ 4ε̄B1

]
, (B.102)

= a2A
2/3

[
B1 + 6ε̄B1 −

aε̄

8π2R2
0a

4

∂fS
∂a

∣∣∣∣
ε̄=0,a

]
. (B.103)

Comparing Eqs. B.93 and B.103 thus justifies Eq. B.96.
A similar procedure is applied to the Coulomb term EC, so that for a volume VΣ it

becomes

EC(ε̄ = 0, aden) =
15c1Z

2A−1/3

32π2R5
0aden

fC(ε̄ = 0, aden), (B.104)

where fC is the equivalent of fS and is related to g(ξ) = 1
ξ

(
1−

(
1 + ξ

2

)
e−ξ
)
. For ε̄ 6= 0

this expression becomes

EC(ε̄ 6= 0, aden) =
15c1Z

2A−1/3R0

32π2R6
Σaden

fC(ε̄ 6= 0, aden) , (B.105)

=
15c1Z

2A−1/3R0

32π2R6
0(1 + ε̄)6aden

(1 + ε̄)6fC(ε̄ = 0, aden(1− ε̄)) , (B.106)

=
15c1Z

2A−1/3

32π2R5
0aden

[
fC(ε̄ = 0, aden)− ε̄aden

∂fC
∂aden

∣∣∣∣
ε̄=0,aden

]
. (B.107)

Applying Eq. B.90 to fC, one obtains

EC(ε̄ 6= 0) = c1Z
2A−1/3

[
(1 + 6ε̄)B3 −

15

32π2R5
0

ε̄
∂fC
∂aden

∣∣∣∣
ε̄=0,aden

]
. (B.108)
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It can also be shown that this expression can be written more simply as

EC(ε̄ 6= 0) = c1Z
2A−1/3(B3 − ε̄B4), (B.109)

where
B4 = −λ2dB3/λ

dλ
and λ = R0/aden . (B.110)

This again can be justified because

EC(ε̄ 6= 0) = c1Z
2A−1/3

(
B3 + ε̄λ2dB3/λ

dλ

)
, (B.111)

= c1Z
2A−1/3

[
B3 + ε̄λ2

(
− 1

λ2
B3 +

1

λ

dB3

dλ

)]
, (B.112)

= c1Z
2A−1/3

[
B3(1− ε̄) + ε̄λ

dB3

dλ

]
, (B.113)

= c1Z
2A−1/3

[
B3(1− ε̄)− ε̄ R0

aden

a2
den

R0

dB3

daden

]
, (B.114)

= c1Z
2A−1/3

[
B3(1− ε̄)− ε̄aden

dB3

daden

]
, (B.115)

= c1Z
2A−1/3

[
B3(1− ε̄)− ε̄aden

(
−15fC

32π2R5
0a

2
den

+
15

32π2R5
0aden

∂fC
∂aden

∣∣∣∣
ε̄=0,aden

)]
,

(B.116)

= c1Z
2A−1/3

[
B3 −

15ε̄

32π2R5
0

∂fC
∂aden

∣∣∣∣
ε̄=0,aden

]
. (B.117)

Thus, comparison between Eqs. B.107 and B.117 justifies the definition of B4 by Eq. B.110.
Now that the surface and Coulomb terms are defined in a “finite range” way, Eqs. B.94

and B.109 can be inserted into Eq. B.66. Then stationary condition Eq. B.71 is applied
and yields

ε̄(~q) =
1

K

(
Ce−γA

1/3 − 2a2
B2(~q)

A1/3
+ Lδ̄2(~q) + c1

Z2

A4/3
B4(~q)

)
, (B.118)

where the term CAe−γA1/3 is non-analytic and is introduced for empirical reasons. This
adds two new adjustable parameters C and γ. The addition of this term showed to have
significant advantages [179]. Finally the dependency of the surface energy on the neutron
excess can be taken into account [179] “simply” by replacing Q by QB1

BS
. Equation B.70

thus becomes

δ̄(~q) =

I +
3

16

c1

Q

Z

A2/3

Bv(~q)BS(~q)

B1(~q)

1 +
9

4

J

Q

1

A1/3

B2
S(~q)

B1(~q)

. (B.119)

The final expression of the FRDM can be summarized as [12]

EFRDM
macro (Z,A, ~q) = MHZ +MnN +

[(
−a1 + Jδ̄2(~q)− 1

2
Kε̄2(~q)

)
A

+

(
a2B1(~q) +

9

4

J2

Q
δ̄2(~q)

B2
S(~q)

B1(~q)

)
A2/3

192



APPENDIX B. MACRO-MICROSCOPIC MODELS IN CONRAD B.3. FRDM

− c2Z
2A1/3Br(~q)− c5Z

2Bw(~q)BS(~q)

B1(~q)
+ a3A

1/3Bk(~q) + f0
Z2

A

]

+ a0A
0 + c1

Z2

A1/3
B3(~q)− c4

Z4/3

A1/3
− ca(N − Z)

+W

(
|I|+ 1

A
δZNδZodd

)
+





∆̄p + ∆̄n − δnp, Z and N odd
∆̄p, Z odd and N even
∆̄n, Z even and N odd
0, Z and N even

− aelZ2.39, (B.120)

where c2 and c5 are given by

c2 =
1

336

(
1

J
+

18

K

)
c2

1 and c5 =
1

64Q
c2

1 . (B.121)

The new shape-dependent terms compared with the FRLDM are given by

B2(~q) =
1

2

[
∂B1(~q)

∂ε̄

]

ε̄=0

, B4(~q) = −
[
∂B3(~q)

∂ε̄

]

ε̄=0

,

Bv(~q) = −15A−4/3

16π2r4
0

∫

S

d2S1W̃ (~r1), Bw(~q) =
225A−2

64π3r6
0

∫

S

d2S1W̃
2(~r1),

Bk(~q) =
A−1/3

8πr0

∫

S

d2S1

(
1

R1(~r1)
+

1

R2(~r1)

)
, Br(~q) =

1575A−7/3

64π3r7
0

∫

V

d3~r1W̃
2(~r1),

(B.122)
where

W (~r1) =

∫

V

d3~r2

‖~r1 − ~r2‖
, (B.123)

W̄ =
3

4πr3
0A

∫

V

d3~r1W (~r1), (B.124)

W̃ (~r1) = W (~r1)− W̄ , (B.125)

and R1 and R2 are the principal radii of curvature, the calculation of which is detailed in
Appendix B.4.3. All integrations are made on a volume 4

3
πR3

0, or on a surface containing
a volume of 4

3
πR3

0.
For the numerical validation of the FRDM, it can be noted that all shape-dependent

terms, expect B1, B2, B3 and B4 in Eqs. B.120 and B.122 are normalized to unity for
spherical shapes. For B1 and B3, analytical expressions are given in Eqs. 5.48 and 5.49
respectively. For B2 and B4, analytical expressions also exists for spherical shapes1

B2(~qsphere) = 1− (1 + 2x0 + 2x2
0)e−2x0 , (B.126)

B4(~qsphere) = 1 + 5

[
− 3

y2
0

+
15

2y3
0

− 63

4y5
0

+
3

4

(
2

y0

+
12

y2
0

+
32

y3
0

+
42

y4
0

+
21

y5
0

)
e−2y0

]
, (B.127)

where

x0 =
r0A

1/3

a
and y0 =

r0A
1/3

aden
. (B.128)

1The B2 expression is corrected here for a misprint that occurred in [12,180].
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B.4 Computational Forms

In this section computational forms used in the implementation of the various integrals
that are involved in this work are presented.

B.4.1 Reduction of Integration Domain

In the present study, volume and double volume integrations must be performed many
times. Here the volume integration method will be detailed. Similar computational forms
can be derived for double volume integrals. In practice, volume integrals can be turned
into surface integrals using the divergence theorem, for instance considering a function f
defined within a volume V . Its volume integral is defined by

If (~r1) =

∫

V

d3~r2f(‖~r1 − ~r2‖) = IF (~r1) =

∫

S

d2~S2 · (~r1 − ~r2)F (‖~r1 − ~r2‖) (B.129)

where ~r1 is the point where the “potential” is evaluated, ~r2 denotes the running integration
point. The divergence theorem transforms the volume integral of f on a surface integral
of a related function F . Some of the volume-defined f and surface-defined F functions
used in this work are presented in Tab. B.3.

Table B.3 – Examples of volume- and surface-defined functions used in the present study.

potential f F

Coulomb
1

‖~r1 − ~r2‖
−1

2

1

‖~r1 − ~r2‖

Yukawa
exp (−‖~r1 − ~r2‖/a)

‖~r1 − ~r2‖/a
−
(‖~r1 − ~r2‖

a

)−3[
1−

(
1 +
‖~r1 − ~r2‖

a

)
exp

(
−‖~r1 − ~r2‖

a

)]

In the following the computational forms to obtain IF are derived for both shape
parameterization types r(θ) and ρ(z). The cylindrical coordinate system shown in Fig. 5.4
will be used in the following derivations.

B.4.1.1 r(θ) Parameterization

In the surface integral (cf. Eq. B.129), d2~S2 = ~n2d2S where the unit vector ~n2 normal to
the surface S at ~r2 is given by

~n2 =
~r2θ × ~r2ϕ

‖~r2θ × ~r2ϕ‖
, (B.130)

and where ~r2θ and ~r2ϕ are defined by





~r2θ =
∂~r2

∂θ2

=
∂r2

∂θ2

~er2 + r2~eθ2 ,

~r2ϕ =
∂~r2

∂ϕ2

= r2 sin θ2~eϕ2 .

(B.131)
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The cross-product ~r2θ × ~r2ϕ can thus be calculated, and is

~r2θ × ~r2ϕ =




∂r2

∂θ2

r2

0



r2θ2ϕ2

×




0
0

r2 sin θ2



r2θ2ϕ2

= r2 sin θ2




r2

−∂r2

∂θ2

0



r2θ2ϕ2

. (B.132)

The norm of ~r2θ × ~r2ϕ is given by

‖~r2θ × ~r2ϕ‖ = r2 sin θ2

√
r2

2 +

(
∂r2

∂θ2

)2

. (B.133)

So the related normalized vector ~n2 can be written

~n2 =
(r2~er2 −

∂r2

∂θ2

~eθ2)
√
r2

2 +

(
∂r2

∂θ2

)2
. (B.134)

The scalar product (~r1 − ~r2) · ~n2 involved in the surface integral of Eq. B.129 can be
calculated

(~r1 − ~r2) · ~n2 = (r1~er1 − r2~er2) · ~n2 , (B.135)

= −
(
r2

2 +

(
∂r2

∂θ2

)2
)−1/2(

r2
2 − r1(r2~er1 · ~er2 −

∂r2

∂θ2

~er1 · ~eθ2)

)
. (B.136)

Since only axially spherical shapes are considered, the calculation can be performed as-
suming ϕ1 = 0. The base vectors in the cylindrical coordinate system are defined by




~er1 = cos θ1~ez + sin θ1~ex ,
~er2 = cos θ2~ez + sin θ2 cosϕ2~ex + sin θ2 sinϕ2~ey ,
~eθ2 = cos θ2 cosϕ2~ex + cos θ2 sinϕ2~ey − sin θ2~ez .

(B.137)

So that the following scalar products can be computed
{
~er1 · ~er2 = cos θ1 cos θ2 + sin θ1 sin θ2 cosϕ2 ,

~er1 · ~eθ2 = cos θ2 cosϕ2 sin θ1 − sin θ2 cos θ1 .
(B.138)

As r1 cos θ1 = z1 and r1 sin θ1 = x1, one obtains
{
r1~er1 · ~er2 = z1 cos θ2 + x1 sin θ2 cosϕ2 ,
r1~er1 · ~eθ2 = x1 cos θ2 cosϕ2 − z1 sin θ2 .

(B.139)

Using Fig. B.8, d2S can be expressed as

d2S = r2 sin θ2dϕ2d` , (B.140)

= r2 sin θ2dϕ2

(
(r2dθ2)2 +

(
∂r2

∂θ2

dθ2

)2
)1/2

, (B.141)

= r2 sin θ2dϕ2

(
r2

2 +

(
∂r2

∂θ2

)2
)1/2

dθ2 . (B.142)
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z2

ρ2

r2
(θ2

)

r 2
(θ

2
+
dθ

2
)

θ2

dθ2

r2dθ2

d`

∂r2

∂θ2

dθ2

r2 sin θ2

Figure B.8 – Surface element scheme.

So that the (~r1 − ~r2) · ~n2d2S term can be written

(~r1 − ~r2) · ~n2d2S = −
(
r2

2 − r1(r2~er1 · ~er2 −
∂r2

∂θ2

~er1 · ~eθ2)

)
r2 sin θ2dϕ2dθ2 . (B.143)

This latter results can be inserted into Eq. B.129 so that IF can be written

IF (~r1) = −
π∫

0

dθ2

2π∫

0

dϕ2r2 sin θ2

(
r2

2 − r2 (z1 cos θ2 + x1 sin θ2 cosϕ2)

+
∂r2

∂θ2

(x1 cos θ2 cosϕ2 − z1 sin θ2)

)
F (‖~r1 − ~r2‖). (B.144)

Changing the θ2 variable into µ2 = cos θ2, and defining ν2 = sin θ2 =
√

1− µ2
2, Eq. B.144

can be written

IF (~r1) = −
1∫

−1

dµ2

2π∫

0

dϕ2r2

(
r2

2 − r2(z1µ2 + x1ν2 cosϕ2)

+
∂r2

∂θ2

(x1µ2 cosϕ2 − z1ν2)

)
F (‖~r1 − ~r2‖). (B.145)

As r2 = r2(µ2), one has

IF (~r1) = −
1∫

−1

dµ2r2

2π∫

0

dϕ2

[(
r2

2 − r2z1µ2 −
∂r2

∂θ2

z1ν2

)

+ cosϕ2

(
∂r2

∂θ2

x1µ2 − r2x1ν2

)]
F (‖~r1 − ~r2‖). (B.146)

This latter expression is particularly useful for numerical computation. Still a practical
expression for ‖~r1 − ~r2‖ needs to be given. Using

{
~r1 = x1~ex + z1~ez ,
~r2 = r2µ2~ez + r2ν2 cosϕ2~ex + r2ν2 sinϕ2~ey ,

(B.147)
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one obtains

‖~r1 − ~r2‖ =(x1 − r2ν2 cosϕ2)2 + (z1 − r2µ2)2 + r2
2ν

2
2 sin2 ϕ2, (B.148)

=x2
1 − 2x1r2ν2 cosϕ2 + r2

2ν
2
2 cosϕ2

2 + (z1 − r2µ2)2 + r2
2ν

2
2 sin2 ϕ2, (B.149)

=x2
1 + ν2

2r
2
2 + (z1 − r2µ2)2 − 2x1ν2r2 cosϕ2, (B.150)

=x2
1 + ν2

2r
2
2 + z2

1 − 2z1r2µ2 + r2
2µ

2
2 − 2x1ν2r2 cosϕ2, (B.151)

=x2
1 + r2

2 + z2
1 − 2z1r2µ2 − 2x1ν2r2 cosϕ2. (B.152)

B.4.1.2 ρ(z) Parameterization

Considering axially symmetric shapes, one can assume that ϕ1 = 0. So that ~r1 and ~r2

can be written 


~r1 = ρ1~ex + z1~ez ,

~r2 = ρ2 cosϕ2~ex + ρ2 sinϕ2~ey + z2~ez .
(B.153)

The vector normal to the surface ~n2 is defined as

~n2 =
~r2z × ~r2ϕ

‖~r2z × ~r2ϕ‖
, (B.154)

where 



~r2z =
∂~r2

∂z2

=
∂ρ2

∂z2

(cosϕ2~ex + sinϕ2~ey) + ~ez ,

~r2ϕ =
∂~r2

∂ϕ2

= ρ2(− sinϕ2~ex + cosϕ2~ey) .

(B.155)

The ~r2θ × ~r2ϕ term can be thus calculated as

~r2θ × ~r2ϕ =




∂ρ2

∂z2

cosϕ2

∂ρ2

∂z2

sinϕ2

1



xyz

×



−ρ2 sinϕ2

ρ2 cosϕ2

0



xyz

= ρ2




− cosϕ2

− sinϕ2

∂ρ2

∂z2



xyz

. (B.156)

Its norm ‖~r2θ × ~r2ϕ‖ is given by

‖~r2θ × ~r2ϕ‖ = ρ2

[
1 +

(
∂ρ2

∂z2

)2
]1/2

. (B.157)

So that ~n2 can be written

~n2 =

[
1 +

(
dρ2

dz2

)2
]−1/2(

dρ2

dz2

~ez − cosϕ2~ex − sinϕ2~ey

)
. (B.158)

The integration element d2S is defined as

d2S = ρ2dϕ2d`, (B.159)

where d` can be calculated using Fig. B.9.
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z2

ρ2

z2 + dz2

ρ
2
(z

2
+

dz
2
)

z2

ρ
2
(z

2
)

d`

Figure B.9 – Surface element scheme.

And is thus given by

d` =
√

(ρ2(z2)− ρ2(z2 + dz2))2 + (dz2)2 ,

=

√(
ρ2(z2)− ρ2(z2)− dρ2

dz2

dz2

)2

+ (dz2)2 ,

=

[
1 +

(
dρ2

dz2

)2
]1/2

dz2 .

(B.160)

To compute Eq. B.129, one also needs to compute

~r1 − ~r2 = (ρ1 − ρ2 cosϕ2)~ex − ρ2 sinϕ2~ey + (z1 − z2)~ez , (B.161)

so that (~r1 − ~r2) · ~n2d2S can be written

(~r1 − ~r2) · ~n2d2S = ρ2dϕ2dz2

(
dρ2

dz2

(z1 − z2)− cosϕ2(ρ1 − ρ2 cosϕ2) + ρ2 sin2 ϕ2

)
,

= ρ2dϕ2dz2

(
(z1 − z2)

dρ2

dz2

− ρ1 cosϕ2 + ρ2

)
.

(B.162)
Finally the surface integral IF (~r1) in Eq B.129 can be computed as

IF (~r1) =

zmax∫

zmin

dz2ρ2

2π∫

0

dϕ2

[(
−(z1 − z2)

dρ2

dz2

− ρ2

)
+ ρ1 cosϕ2

]
F (‖~r1 − ~r2‖). (B.163)

The form ‖~r1 − ~r2‖ is also given explicitly by

‖~r1 − ~r2‖2 = (z1 − z2)2 + ρ2
2 sin2 ϕ2 + (ρ1 − ρ2 cosϕ2)2 ,

= (z1 − z2)2 + ρ2
1 + ρ2

2 − 2ρ1ρ2 cosϕ2 .
(B.164)

B.4.2 Coulomb Potential in ρ(z) Parameterization

A term involved very often in many calculations presented here is (or involves) the coulomb
potential generated by a uniform charge distribution contained within a given sharp-
edge volume V . The diverge theorem can reduces the volume integration to a surface
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integration. A special modification of the surface integral can then turn the surface
integral into a one-dimension integral. This can be done only when using the ρ(z) shape
parameterization. This method will be presented in the following.

In the general case, the Coulomb potential is defined as

VC(~r1) =

∫

V

ρC(~r2)
d3~r2

‖~r1 − ~r2‖
, (B.165)

where ρC is the charge density. The integration is performed over a volume V that contains
all existing charges of the system. In all generality this volume can be the universe. The
case we are interested in is when this volume is finite and corresponds to the volume inside
the sharp surface of the homogeneous nucleus. Therefore ρC(~r2) is constant within the
nucleus and can be moved outside the integral. The considered integral is thus

ṼC(~r1) =

∫

V

d3~r2

‖~r1 − ~r2‖
. (B.166)

The divergence theorem states that
∫

V

div ~Fd3~r2 =

∫

S

~F · d2~S . (B.167)

One can notice that
1

‖~r1 − ~r2‖
= −1

2
div

~r1 − ~r2

‖~r1 − ~r2‖
, (B.168)

which is applied to the Coulomb potential given by Eq. B.166. It yields

ṼC(~r1) = −1

2

∫

S

~r1 − ~r2

‖~r1 − ~r2‖
· d2~S. (B.169)

The integration element d2~S is decomposed as

d2~S = d2S~n2, (B.170)

where ~n2 is a normalized vector normal to the nucleus surface at the point ~r2 and oriented
outward. This normal vector can be expressed in the local coordinate system with vectors

~eρ2 and ~ez. From Fig. B.10, we define the angle θ = arctan
dρ2

dz2

.

The normal vector coordinates are thus given by

nρ2 = cos(arctan
dρ2

dz2

) =
1√

1 +

(
dρ2

dz2

)2
, (B.171)

nz = − sin(arctan
dρ2

dz2

) =
−dρ2

dz2√
1 +

(
dρ2

dz2

)2
. (B.172)

It can be seen that vector ~n2 = nρ2~eρ2 + nz~ez is normalized and can finally be written

~n2 =

(
1 +

(
dρ2

dz2

)2
)−1/2(

~eρ2 −
dρ2

dz2

~ez

)
. (B.173)
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z2
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~eρ2

~n2nρ2
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dz2

θ

Figure B.10 – Normal vector to the nucleus surface.

From Fig. B.11, one can derive the definition of d2S as

d2S = ρ2dϕ2dX . (B.174)

ρ
2 (z

2
+

d
z

2 )

ρ
2 (z

2 )

dz2

dX

θ = arctan
dρ2

dz2

Figure B.11 – Infinitesimal surface element.

As dX =
1

cos θ
dz2 =

√
1 +

(
dρ2

dz2

)2

dz2, one has

d2S = ρ2dϕ2dz2

(
1 +

(
dρ2

dz2

)2
)1/2

. (B.175)

Using the local coordinate system, one can write ~r1 − ~r2 as

~r1 − ~r2 = ρ1~eρ1 + z1~ez − ρ2~eρ2 − z2~ez = ρ1~eρ1 − ρ2~eρ2 + (z1 − z2)~ez. (B.176)

Its norm is given by

‖~r1 − ~r2‖2 = (z1 − z2)2 + (ρ1~eρ1 − ρ2~eρ2)2 = (z1 − z2)2 + ρ2
1 + ρ2

2 − 2ρ1ρ2~eρ1~eρ2 . (B.177)

Hence the scalar product (~r1 − ~r2) · ~nρ2 can be calculated. It yields

(~r1 − ~r2) · ~nρ2 =

(
1 +

(
dρ2

dz2

)2
)−1/2 [

ρ1~eρ1~eρ2 − ρ2 −
dρ2

dz2

(z1 − z2)

]
. (B.178)
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Finally the integral can be written

ṼC(~r1) = −1

2

zmax∫

zmin

dz2ρ2

2π∫

0

dϕ2

[
ρ1~eρ1~eρ2 − ρ2 −

dρ2

dz2

(z1 − z2)

]

×
[
(z1 − z2)2 + ρ2

1 + ρ2
2 − 2ρ1ρ2~eρ1~eρ2

]−1
2 . (B.179)

It can be shown that
~eρ1 · ~eρ2 = cos(ϕ2 − ϕ1). (B.180)

The variable change ϕ′2 = ϕ2−ϕ1 is made. This change impacts the integration boundaries
but as long as the whole 2π are taken into account it does not matter. ṼC(~r1) can thus
be written

ṼC(~r1) =
1

2

zmax∫

zmin

dz2ρ2

2π∫

0

dϕ′2

[
ρ2 +

dρ2

dz2

(z1 − z2)− ρ1 cosϕ′2

]

×
[
(z1 − z2)2 + ρ2

1 + ρ2
2 − 2ρ1ρ2 cosϕ′2

]−1
2 . (B.181)

The integration can be performed over the first half of the 2π range only, and the result
is multiplied by 2. One obtains

ṼC(~r1) =

zmax∫

zmin

dz2ρ2

π∫

0

dϕ′2

[
ρ2 +

dρ2

dz2

(z1 − z2)− ρ1 cosϕ′2

]

×
[
(z1 − z2)2 + ρ2

1 + ρ2
2 − 2ρ1ρ2 cosϕ′2

]−1
2 . (B.182)

The k parameter is defined as

k2 =
4ρ1ρ2

(ρ1 + ρ2)2 + (z1 − z2)2
. (B.183)

One can notice that (z1 − z2)2 + ρ2
1 + ρ2

2 = (z1 − z2)2 + (ρ1 + ρ2)2 − 2ρ1ρ2, so that ṼC(~r1)
can be written

ṼC(~r1) =

zmax∫

zmin

dz2ρ2

π∫

0

dϕ′2
[
ρ2 +

dρ2

dz2

(z1 − z2)− ρ1 cosϕ′2

][4ρ1ρ2

k2
− 2ρ1ρ2 − 2ρ1ρ2 cosϕ′2

]−1/2

,

(B.184)

=

zmax∫

zmin

dz2ρ2

π∫

0

dϕ′2

[
ρ2 +

dρ2

dz2

(z1 − z2)− ρ1 cosϕ′2

]
k√

4ρ1ρ2

[
1− k2 cosϕ′2 + 1

2

]−1/2

.

(B.185)

Noticing that
k√

4ρ1ρ2

=
1

[(ρ1 + ρ2)2 + (z1 − z2)2]1/2
, (B.186)

ṼC(~r1) simplifies to
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ṼC(~r1) =

zmax∫

zmin

dz2ρ2

π∫

0

dϕ′2
[
ρ2 +

dρ2

dz2

(z1 − z2)− ρ1 cosϕ′2

]

×
[
1− k2 cosϕ′2 + 1

2

]−1
2 [

(ρ1 + ρ2)2 + (z1 − z2)2
]−1

2 , (B.187)

which becomes

ṼC(~r1) =

zmax∫

zmin

dz2ρ2

[(
ρ1 + ρ2 +

dρ2

dz2

(z1 − z2)

) π∫

0

dϕ′2

[
1− k2 cosϕ′2 + 1

2

]−1/2

− ρ1

π∫

0

dϕ′2
cosϕ′2 + 1

[
1− k2

cosϕ′2 + 1

2

]1/2

]
[
(ρ1 + ρ2)2 + (z1 − z2)2

]−1/2
. (B.188)

The two integrals that are involved in this expression are

I1 =

π∫

0

dϕ′2[
1− k2

cosϕ′2 + 1

2

]1/2
and I2 =

π∫

0

dϕ′2
cosϕ′2 + 1

[
1− k2

cosϕ′2 + 1

2

]1/2
. (B.189)

Using the relation

cosϕ′2 + 1 = 2 cos2 ϕ
′
2

2
, (B.190)

and making the variable change ϕ′′2 =
ϕ′2
2
, one can write the I1 and I2 integrals as

I1 =

π∫

0

dϕ′2[
1− k2 cos2

ϕ′2
2

]1/2
= 2

π/2∫

0

dϕ′′2
[1− k2 cos2 ϕ′′2]1/2

, (B.191)

I2 = 2

π∫

0

dϕ′2
cos2 ϕ

′
2

2[
1− k2 cos2

ϕ′2
2

]1/2
= 4

π/2∫

0

dϕ′′2
cos2 ϕ′′2

[1− k2 cos2 ϕ′′2]1/2
. (B.192)

Using that cos(π
2
− ϕ′′2) = sinϕ′′2, the final variable change with ϕ′′′2 = π

2
− ϕ′′2 is made, so

that one obtains

I1 = −2

0∫

π/2

dϕ′′′2[
1− k2 sin2 ϕ′′′2

]1/2 = 2

∫

0

π/2
dϕ′′′2[

1− k2 sin2 ϕ′′′2
]1/2 , (B.193)

I2 = −4

0∫

π/2

dϕ′′′2
sin2 ϕ′′′2[

1− k2 sin2 ϕ′′′2
]1/2 = 4

π/2∫

0

dϕ′′′2
sin2 ϕ′′′2[

1− k2 sin2 ϕ′′′2
]1/2 . (B.194)

It can be seen that I1 = 2K(k) where K is the complete elliptic integral of first kind [48].
Additionally, I2 can also be expressed in terms of a sum the complete elliptic integrals of
first (K) and second kinds (E). Indeed

K(k) =

π/2∫

0

dθ
(1− k2 sin2 θ)1/2

, (B.195)
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E(k) =

π/2∫

0

(1− k2 sin2 θ)1/2dθ. (B.196)

So that

K − E =

π/2∫

0

(
1

(1− k2 sin2 θ)1/2
− 1− k2 sin2 θ

(1− k2 sin2 θ)1/2

)
dθ = k2

π/2∫

0

sin2 θ

(1− k2 sin2 θ)1/2
dθ.

(B.197)
And therefore

I1 = 2K(k), (B.198)

I2 = 4
K(k)− E(k)

k2
. (B.199)

Finally, the Coulomb potential ṼC(~r1) is expressed [11] using K and E

ṼC(~r1) = 2

zmax∫

zmin

dz2ρ2

(
ρ1 + ρ2 +

dρ2

dz2

(z1 − z2)

)
K(k)− 2

ρ1

k2
(K(k)− E(k))

[(ρ1 + ρ2)2 + (z1 − z2)2]1/2
. (B.200)

The implementation of these complete elliptic integrals in the Boost C++ library [154]
that is used in CONRAD showed a low efficiency that actually reduce the overall program
speed compared with the surface integration. Thus a new implementation of these func-
tions using the Fukushima’s method [181] has been done an led to significant speed-ups.

B.4.3 Principal Curvatures of 2D-Surfaces

A final computational feature is presented in the following and is related to the calculation
of the principal radii of curvature involved in the Bk term of the FRDM model (cf.
Eq. B.122). It should be noted that this term has actually no effects in the implemented
version as its related mass coefficient in Eq. B.120, a3 is zero when using parameters values
given in Ref. [12]. These radii are calculated differently according to the parameterization
ρ(z) or r(θ) of the nucleus shape. For more information about differential geometry see
for instance Ref. [182].

B.4.3.1 ρ(z) Parameterization

In case, the considered surface is defined by the parameterized vector ~X defined by

~X(z, ϕ) =



ρ(z) cosϕ)
ρ(z) sinϕ

z



xyz

. (B.201)

The following derivative vectors can be calculated

∂ ~X

∂z
=



ρ′(z) cosϕ
ρ(z) sinϕ

1


 ,

∂ ~X

∂ϕ
=



−ρ(z) sinϕ
ρ(z) cosϕ

0


 ,

∂2 ~X

∂ϕ∂z
=



−ρ′(z) sinϕ
ρ′(z) cosϕ

0


 ,

∂2 ~X

∂z2
=



ρ′′(z) cosϕ
ρ′′(z) sinϕ

0


 ,

∂2 ~X

∂ϕ2
=



−ρ(z) cosϕ
−ρ(z) sinϕ

0


 ,

∂ ~X

∂z
× ∂ ~X

∂ϕ
=



−ρ(z) cosϕ
−ρ(z) sinϕ
ρ′(z)ρ(z)


 .

(B.202)
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The norm

∥∥∥∥∥
∂ ~X

∂z
× ∂ ~X

∂ϕ

∥∥∥∥∥ is given by

∥∥∥∥∥
∂ ~X

∂z
× ∂ ~X

∂ϕ

∥∥∥∥∥ =
√
ρ2(z) + ρ2(z)[ρ′(z)]2 = ρ(z)

√
1 + [ρ′(z)]2. (B.203)

Therefore the normal vector ~n orthogonal to the surface at the point ~X(z, ϕ) is given by

~n =

∂ ~X

∂z
× ∂ ~X

∂ϕ∥∥∥∥∥
∂ ~X

∂z
× ∂ ~X

∂ϕ

∥∥∥∥∥

=
1√

1 + [ρ′(z)]2



− cosϕ
− sinϕ
ρ′(z)


 . (B.204)

The first and second fundamental forms are defined as

I =

[
E F
F G

]
, II =

[
L M
M N

]
, (B.205)

where

E =
∂ ~X

∂z
· ∂

~X

∂z
= [ρ′(z)]2 + 1, F =

∂ ~X

∂z
· ∂

~X

∂ϕ
= 0, G =

∂ ~X

∂ϕ
· ∂

~X

∂ϕ
= ρ2(z),

L =
∂2 ~X

∂z2
· ~n = − ρ′′(z)√

1 + [ρ′(z)]2
, M =

∂2 ~X

∂z∂ϕ
· ~n = 0, N =

∂2 ~X

∂ϕ2
· ~n =

ρ(z)√
1 + [ρ′(z)]2

.

(B.206)
The shape operator S is defined by

S =I−1II , (B.207)

=
1

EG− F 2

[
LG− FM GM − FN
ME − FL EN − FM

]
, (B.208)

=
1

ρ2(z)(1 + [ρ′(z)]2)


−

ρ2(z)ρ′′(z)√
1 + [ρ′(z)]2

0

0 ρ(z)
√

1 + [ρ′(z)]2


 , (B.209)

=



− ρ′′(z)

(1 + [ρ′(z)]2)3/2
0

0
1

ρ(z)
√

1 + [ρ′(z)]2


 . (B.210)

The principal curvatures k1 and k2 are the eigenvalues of the shape operator. They are
given as

k1 = − ρ′′(z)

(1 + [ρ′(z)]2)3/2
and k2 =

1

ρ(z)
√

1 + [ρ′(z)]2
. (B.211)

The principal radii of curvature are the inverse of the curvatures. The shape operator
is diagonal in the chosen parameterization (z, ϕ). It can be deduced that the directions
generated by the derivation of ~X with respect to these parameters are the principal
directions. The definition of the principal curvatures was verified on a practical example
shown in Fig. B.12. It was possible to verify that, given a point on the surface (yellow dot
on the figure), the normal vector is properly calculated (black line) and the two circles in
red and blue are properly tangent to the surface at the chosen point.
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Figure B.12 – Example of verification of the calculation of the principal radii of curvature
for a ρ(z)-defined shape, here a three-quadratic-surface shape.

B.4.3.2 r(θ) Parameterization

For this shape parameterization, the surface is defined using the parameterized vector ~X
given by

~X(θ, ϕ) =



r(θ) sin θ cosϕ
r(θ) sin θ sinϕ
r(θ) cos θ



xyz

. (B.212)

The following derivatives can be computed

∂ ~X

∂θ
=




(r′ sin θ + r cos θ) cosϕ
(r′ sin θ + r cos θ) sinϕ

r′ cos θ − r sin θ


, ∂ ~X

∂ϕ
=



−r sin θ sinϕ
r sin θ cosϕ

0


,

∂2 ~X

∂θ∂ϕ
=



−(r′ sin θ + r cos θ) sinϕ
(r′ sin θ + r cos θ) cosϕ

0


, ∂2 ~X

∂θ2
=




(r′′ sin θ + 2r′ cos θ − r sin θ) cosϕ
(r′′ sin θ + 2r′ cos θ − r sin θ) sinϕ

r′′ cos θ − 2r′ sin θ − r cos θ


,

∂2 ~X

∂ϕ2
=



−r sin θ cosϕ
−r sin θ sinϕ

0


, ∂ ~X

∂θ
× ∂

~X

∂ϕ
=




(−r′ cos θ + r sin θ)r sin θ cosϕ
−(r′ cos θ − r sin θ)r sin θ sinϕ

(r′ sin θ + r cos θ)r sin θ


.

(B.213)

So that the norm

∥∥∥∥∥
∂ ~X

∂θ
× ∂ ~X

∂ϕ

∥∥∥∥∥ is obtained by

∥∥∥∥∥
∂ ~X

∂θ
× ∂ ~X

∂ϕ

∥∥∥∥∥ = r sin θ
[
(r′ cos θ − r sin θ)2 + (r′ sin θ + r cos θ)2

]1/2
, (B.214)

= r sin θ
[
r′2 cos2 θ − 2r′r sin θ cos θ + r2 sin2 θ

+ r′2 sin2 θ + 2r′r sin θ cos θ + r2 cos2 θ
]1/2

,
(B.215)

= r sin θ
[
r′2 + r2

]1/2
. (B.216)
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Therefore the normalized vector ~n orthonormal to the surface at the point ~X is given by

~n =

∂ ~X

∂θ
× ∂ ~X

∂ϕ∥∥∥∥∥
∂ ~X

∂θ
× ∂ ~X

∂ϕ

∥∥∥∥∥

=
1√

r2 + r′2




(r sin θ − r′ cos θ) cosϕ
(r sin θ − r′ cos θ) sinϕ

r′ sin θ + r cos θ


 . (B.217)

The first fundamental form is defined as

I =

[
E F
F G

]
, (B.218)

where

E =
∂ ~X

∂θ
· ∂

~X

∂θ
= (r′ sin θ + r cos θ)2 + (r′ cos θ − r sin θ)2 , (B.219)

= r′2 sin2 θ + 2r′r sin θ cos θ + r2 cos2 θ

+ r′2 cos2 θ − 2r′r cos θ sin θ + r2 sin θ ,
(B.220)

= r′2 + r2 , (B.221)

F =
∂ ~X

∂θ
· ∂

~X

∂ϕ
= 0 , (B.222)

G =
∂ ~X

∂ϕ
· ∂

~X

∂ϕ
= r2 sin2 θ . (B.223)

The second fundamental form is defined as

II =

[
L M
M N

]
, (B.224)

where

L =
∂2 ~X

∂θ2
· ~n =

√
r2 + r′2

[
(r sin θ − r′ cos θ)(r′′ sin θ + 2r′ cos θ − r sin θ)

+ (r′ sin θ + r cos θ)(r′′ cos θ − 2r′ sin θ − r cos θ)
]
,

(B.225)

=
√
r2 + r′2

[
rr′′ sin2 θ + 2r′r sin θ cos θ − r2 sin2 θ − r′r′′ sin θ cos θ

− 2r′2 cos2 θ + r′r cos θ sin θ + r′r′′ sin θ cos θ

− 2r′2 sin2 θ − r′r sin θ cos θ + rr′′ cos2 θ

− 2rr′ sin θ cos θ − r2 cos2 θ
]
,

(B.226)

=
√
r2 + r′2[−r2 − 2r′2 + rr′′], (B.227)

M =
∂2 ~X

∂θ∂ϕ
· ~n =

√
r2 + r′2

[
− (r′ sin θ + r cos θ)(r sin θ − r′ cos θ) cosϕ sinϕ

+ (r′ sin θ + r cos θ)(r sin θ − r′ cos θ) sinϕ cosϕ
]
,

(B.228)

N =
∂2 ~X

∂ϕ2
· ~n =

√
r2 + r′2[r sin θ − r′ cos θ](−r sin θ). (B.229)

The shape operator S is defined by

S = I−1II =
1

EG− F 2

[
LG− FM GM − FN
ME − FL EN − FM

]
. (B.230)
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It can be expressed as

S =
1

r2 sin2 θ(r2 + r′2)

×
[
r2 sin2 θ[r2 + r′2]−1/2[−r2 − 2r′2 + rr′′] 0

0 −
√
r2 + r′2r sin θ[r sin θ − r′ cos θ]

]
.

(B.231)

The principal curvatures k1 and k2 are the eigenvalues of the shape operator, and given
by

k1 = [r2 + r′2]−3/2[rr′′ − 2r′2 − r2] and k2 = −[r2 + r′2]−1/2

[
1− r′

r

cos θ

sin θ

]
.

(B.232)
The shape operator is diagonal in the chosen parameterization. It can be deduced that
the directions generated by the derivation of ~X with respect to these parameters are
the principal directions. As for the ρ(z)-parameterization, the definition of the principal
curvatures was also verified on a practical example shown in Fig. B.13 for the r(θ)-
parameterization. It was possible to verify that given a point on the surface (yellow dot
on the figure), the normal vector is properly calculated (black line) and the two circles in
red and cyan are properly tangent to the surface at the chosen point.

Figure B.13 – Example of verification of the calculation of the principal radii of curvature
for a r(θ)-defined shape, here a perturbated-spheroid shape.
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APPENDIX C. MATRIX ELEMENTS

Appendix C

Matrix Elements of the Single Particle
Hamiltonian

This appendix details how to calculate matrix elements involved in the single-particle
model presented in Chapter 5. The following explanations are a detailed version of
expressions given in Refs.1 [117,131].
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C.1 Wave-Functions Basis |nrnzΛΣ〉 . . . . . . . . . . . . . . . . . . 210
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C.2.1 Kinetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . 210

C.2.2 ξ-Diagonal Matrix Element 〈Ψn′z |T̂ξ|Ψnz〉 . . . . . . . . . . . . 211
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1Reference [130] corrects misprints of Ref. [131].
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C.1. WAVE-FUNCTIONS BASIS |NRNZΛΣ〉 APPENDIX C. MATRIX ELEMENTS

C.1 Wave-Functions Basis |nrnzΛΣ〉
In the cylindrical coordinate system (ρ, ϕ, z) defined in Fig. 5.4, the basis wave functions
used in the expansion method are the deformed harmonic oscillator egienfunction (cf.
Eq. 5.58) defined as

|nrnzΛΣ〉 = Ψ(nr, nz,Λ,Σ) = ΨΛ
nr(ρ)Ψnz(z)ΨΛ(ϕ)χ(Σ), (C.1)

where

ΨΛ(ϕ) =
1√
2π

eiΛϕ, (C.2)

Ψnz(z) =Nnz

[mωz
~

] 1
4 e−

ξ2

2 Hnz(ξ), (C.3)

ΨΛ
nr(ρ) =N |Λ|nr

[
2mω⊥

~

] 1
2

η
|Λ|
2 e−

η
2L|Λ|nr (η), (C.4)

whereHnz and L
|Λ|
nr are respectively the Hermite and associated Laguerre polynomials [48],

η and ξ are the reduced coordinates, and Nnz and NΛ
nr are normalization factors defined

by

η
1
2 =

√
mω⊥
~

ρ, ξ =

√
mωz
~

z,

Nnz =
1√√
π2nznz!

, NΛ
nr =

√
nr!

(nr + Λ)!
.

(C.5)

Only the functions where Λ ≥ 0 are kept. The corresponding negative states having
negative values of Λ can be obtained using Eqs. 5.70 and 5.71. The Pauli spin matrices
lead to using the vector representation for the intrinsic spin function χ(Σ)

χ(Σ = +1
2
) =

(
1
0

)
, χ(Σ = −1

2
) =

(
0
1

)
. (C.6)

C.2 Kinetic Matrix Element 〈Ψf|T̂ |Ψi〉
C.2.1 Kinetic Operators

The kinetic operator T̂ related to the nucleon motion is

T̂ = − ~2

2m
∆, (C.7)

which can be expressed in the cylindrical coordinate system as

T̂ = − ~2

2m

(
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂ϕ2
+

∂2

∂z2

)
. (C.8)

Using the variable changes ρ→ η and z → ξ one gets

T̂ =− ~2

2m

mω⊥
~

(
1

η
1
2

∂

∂η
1
2

(
η

1
2
∂

∂η
1
2

)
+

1

η

∂2

∂ϕ2

)
− ~2

2m

mωz
~

(
∂2

∂ξ2

)
, (C.9)

=− 1

2
~ω⊥

(
1

η
1
2

∂

∂η
1
2

(
η

1
2
∂

∂η
1
2

)
+

1

η

∂2

∂ϕ2

)
− 1

2
~ωz

∂2

∂ξ2
. (C.10)
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APPENDIX C. MATRIX ELEMENTS C.2. KINETIC MATRIX ELEMENT 〈ΨF|T̂ |ΨI〉

In the following the convention Ψi = |nrnzΛΣ〉 and Ψf = 〈n′rn′zΛ′Σ′| will be used. The Σ-
independence of T̂ makes the matrix elements 〈Ψf|T̂ |Ψi〉 diagonal in Σ. The integration
over ϕ is straightforward and leads to diagonal matrix elements in Λ with a partially
integrated kinetic operator T̂Λ defined by

T̂Λ = −1

2
~ω⊥

(
1

η
1
2

∂

∂η
1
2

(
η

1
2
∂

∂η
1
2

)
− Λ2

η

)
− 1

2
~ωz

∂2

∂ξ2
. (C.11)

Therefore the kinetic matrix elements can be written

〈Ψf|T̂ |Ψi〉 = δΣΣ′δΛΛ′〈Ψn′zΨ
Λ′
n′r
|T̂Λ|ΨnzΨ

Λ
nr〉. (C.12)

Because Ψn′z and Ψnz on one side, and ΨΛ
n′r

and ΨΛ
nr on the other side, are orthonormal,

the matrix elements can be split into two diagonal parts:

〈Ψf|T̂ |Ψi〉 = δΣΣ′δΛΛ′δnrn′r〈Ψn′z |T̂ξ|Ψnz〉+ δΣΣ′δΛΛ′δnzn′z〈ΨΛ′
n′r
|T̂Λη|ΨΛ

nr〉, (C.13)

where T̂ξ and T̂Λη are defined by

T̂ξ = −1

2
~ωz

d2

dξ2
and T̂Λη = −1

2
~ω⊥

(
1

η
1
2

d
dη

1
2

(
η

1
2

d
dη

1
2

)
− Λ2

η

)
. (C.14)

C.2.2 ξ-Diagonal Matrix Element 〈Ψn′z |T̂ξ|Ψnz〉
The matrix element related to the T̂ξ operator is given by

〈Ψn′z |T̂ξ|Ψnz〉 = −1

2
~ωz

+∞∫

−∞

dzΨn′z

d2

dξ2
Ψnz . (C.15)

By change of the integration variable (z → ξ), one obtains

〈Ψn′z |T̂ξ|Ψnz〉 = −1

2
~ωz

(mωz
~

)−1/2
+∞∫

−∞

dξΨn′z

d2

dξ2
Ψnz . (C.16)

Replacing Ψnz and Ψn′z by their expressions (cf. Eq. C.3) in Eq. C.16 it yields

〈Ψn′z |T̂ξ|Ψnz〉 = −1

2
~ωz

(mωz
~

)−1/2
+∞∫

−∞

dξΨn′z

d2

dξ2
Ψnz , (C.17)

= −1

2
~ωz

(mωz
~

)−1/2
+∞∫

−∞

dξNn′z

[mωz
~

] 1
4 e−

ξ2

2 Hn′z

d2

dξ2
Nnz

[mωz
~

] 1
4 e−

ξ2

2 Hnz ,

(C.18)

= −1

2
~ωzNnzNn′z

+∞∫

−∞

dξe−
ξ2

2 Hn′z

d2

dξ2
e−

ξ2

2 Hnz , (C.19)

= −1

2
~ωzNnzNn′z

+∞∫

−∞

dξe−
ξ2

2 Hn′z

d
dξ

(
−ξe− ξ

2

2 Hnz + e−
ξ2

2
dHnz

dξ

)
, (C.20)
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= −1

2
~ωzNnzNn′z

+∞∫

−∞

dξe−ξ
2

Hn′z

(
−Hnz − ξ

dHnz

dξ
+ ξ2Hnz − ξ

dHnz

dξ
+

d2Hnz

dξ2

)
,

(C.21)

=
1

2
~ωzNnzNn′z

+∞∫

−∞

dξe−ξ
2

Hn′z

(
Hnz + 2ξ

dHnz

dξ
− ξ2Hnz −

d2Hnz

dξ2

)
. (C.22)

The Hermite polynomials satisfy the differential equation (cf. Ref. [183])

d2Hnz

dξ2
= 2ξ

dHnz

dξ
− 2nzHnz . (C.23)

Equation C.23 can be used into Eq. C.22, so that derivatives vanish

〈Ψn′z |T̂ξ|Ψnz〉

=
1

2
~ωzNnzNn′z

+∞∫

−∞

dξe−ξ
2

Hn′z

(
Hnz + 2ξ

dHnz

dξ
− ξ2Hnz − 2ξ

dHnz

dξ
+ 2nzHnz

)
,

(C.24)

=
1

2
~ωzNnzNn′z

+∞∫

−∞

dξe−ξ
2

Hn′z

(
(1 + 2nz)Hnz − ξ2Hnz

)
. (C.25)

The Hermite polynomials also satisfy the recurrence relation (cf. Ref. [183])

ξHnz =
1

2
Hnz+1 + nzHnz−1 (C.26)

The recurrence relation (Eq. C.26) can be used into Eq. C.25, so that terms containing ξ
vanish

〈Ψn′z |T̂ξ|Ψnz〉 =
1

2
~ωzNnzNn′z

+∞∫

−∞

dξe−ξ
2

Hn′z

(
(1 + 2nz)Hnz − ξ(

1

2
Hnz+1 + nzHnz−1)

)
,

(C.27)

=
1

2
~ωzNnzNn′z

+∞∫

−∞

dξe−ξ
2

Hn′z

×
(

(1 + 2nz)Hnz −
1

2
(
1

2
Hnz+2 + (nz + 1)Hnz)− nz(

1

2
Hnz + (nz − 1)Hnz−2)

)
,

(C.28)

=
1

2
~ωzNnzNn′z

+∞∫

−∞

dξe−ξ
2

Hn′z

×
(

(1 + 2nz −
nz
2
− 1

2
− nz

2
)Hnz −

1

4
Hnz+2 − nz(nz − 1)Hnz−2)

)
,

(C.29)

=
1

2
~ωzNnzNn′z

+∞∫

−∞

dξe−ξ
2

Hn′z

(
(
1

2
+ nz)Hnz −

1

4
Hnz+2 − nz(nz − 1)Hnz−2)

)
. (C.30)
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Due to the orthogonality property Hermite polynomials (with weight e−ξ2), the matrix
element 〈Ψn′z |T̂ξ|Ψnz〉 has non-zero value only for few values of n′z and nz, namely

n′z = nz ,
n′z = nz + 2 ,
n′z = nz − 2 .

(C.31)

Using that the normalization
+∞∫

−∞

dξe−ξ
2

H2
nz =

√
π2nznz! and the definition of Nnz (cf.

Eq. C.5), the matrix elements 〈Ψn′z |T̂ξ|Ψnz〉 can expressed as

〈Ψnz |T̂ξ|Ψnz〉 =
1

2
~ωzN2

nz(
1

2
+ nz)

+∞∫

−∞

dξe−ξ
2

H2
nz =

1

2
~ωz(

1

2
+ nz), (C.32)

〈Ψnz+2|T̂ξ|Ψnz〉 = − 1

8
~ωzNnzNnz+2

√
π2nz+2(nz + 2)! , (C.33)

= − 1

8
~ωz

√
2nz+2(nz + 2)!

2nznz!
, (C.34)

= − 1

4
~ωz
√

(nz + 2)(nz + 1), (C.35)

〈Ψnz+2|T̂ξ|Ψnz〉 = − 1

2
~ωzNnzNnz−2nz(nz − 1)

√
π2nz−2(nz − 2)! , (C.36)

= − 1

2
~ωznz(nz − 1)

√
2nz−2(nz − 2)!

2nznz!
, (C.37)

= − 1

4
~ωz
√
nz(nz − 1). (C.38)

C.2.3 η-Diagonal Matrix Element 〈ΨΛ
n′r
|T̂Λη|ΨΛ

nr
〉

The matrix element related to the T̂Λη operator is given by

〈ΨΛ
n′r
|T̂Λη|ΨΛ

nr〉 = −1

2
~ω⊥

+∞∫

0

ρdρΨΛ
n′r

(
1

η
1
2

d
dη

1
2

(
η

1
2

d
dη

1
2

)
− Λ2

η

)
ΨΛ
nr . (C.39)

Using the variable change ρ → η (cf. Eq. C.5), the integration element dρ is replaced
by dη according to

ρdρ =
1

2
d(ρ2) =

~
2mω⊥

dη. (C.40)

The derivative operators are also modified according to

d
dη

1
2

= 2η
1
2
d
dη

, (C.41)

so that Eq. C.39 becomes

〈ΨΛ
n′r
|T̂Λη|ΨΛ

nr〉 = − 1

2
~ω⊥

~
2mω⊥

+∞∫

0

dηΨΛ
n′r

(
4
d
dη

(
η
d
dη

)
− Λ2

η

)
ΨΛ
nr , (C.42)
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= − 1

2
~ω⊥

~
2mω⊥

+∞∫

0

dηΨΛ
n′r

(
4

(
d
dη

+ η
d2

dη2

)
− Λ2

η

)
ΨΛ
nr . (C.43)

Replacing ΨΛ
n′r

and ΨΛ
nr by their expressions (cf. Eq. C.4) in Eq. C.43, one obtains

〈ΨΛ
n′r
|T̂Λη|ΨΛ

nr〉 = − 1

2
~ω⊥

~
2mω⊥

+∞∫

0

dηNΛ
n′r

[
2mω⊥

~

] 1
2

η
Λ
2 e−

η
2LΛ

n′r

×
(

4

(
d
dη

+ η
d2

dη2

)
− Λ2

η

)
NΛ
nr

[
2mω⊥

~

] 1
2

η
Λ
2 e−

η
2LΛ

nr ,

(C.44)

= − 1

2
~ω⊥NΛ

nrN
Λ
n′r

+∞∫

0

dηη
Λ
2 e−

η
2LΛ

n′r

(
4

(
d
dη

+ η
d2

dη2

)
− Λ2

η

)
η

Λ
2 e−

η
2LΛ

nr .

(C.45)

The function η
Λ
2 e−

η
2LΛ

nr satisfies the differential equation (cf. Ref. [183])

du
dη

+ η
d2u

dη2
=− (Λ− 2

Λ

2
)
du
dη
−
[
nr +

Λ + 1

2
− η

4
+

Λ
2
(Λ

2
− Λ)

η

]
u , (C.46)

=−
[
nr +

Λ + 1

2
− η

4
− Λ2

4η

]
u . (C.47)

Using Eq. C.45 into Eq. C.45 makes the differential operators vanish. Equation C.45
becomes

〈ΨΛ
n′r
|T̂Λη|ΨΛ

nr〉

= − 1

2
~ω⊥NΛ

nrN
Λ
n′r

+∞∫

0

dηη
Λ
2 e−

η
2LΛ

n′r

(
−4

[
nr +

Λ + 1

2
− η

4
− Λ2

4η

]
− Λ2

η

)
η

Λ
2 e−

η
2LΛ

nr ,

(C.48)

=
1

2
~ω⊥NΛ

nrN
Λ
n′r

+∞∫

0

dηηΛe−ηLΛ
n′r

(
[4nr + 2(Λ + 1)]LΛ

nr − ηLΛ
nr

)
. (C.49)

The associated Laguerre polynomials satisfy the recurrence relation (cf. Ref. [183])

ηLΛ
nr = (2nr + Λ + 1)LΛ

nr − (nr + 1)LΛ
nr+1 − (nr + Λ)LΛ

nr−1 . (C.50)

So that the recurrence relation (Eq. C.50) can be used into Eq. C.49 so that the term in
factor of η vanishes. It yields

〈ΨΛ
n′r
|T̂Λη|ΨΛ

nr〉 =1
2
~ω⊥NΛ

nrN
Λ
n′r

+∞∫

0

dηηΛe−ηLΛ
n′r

(
[4nr + 2(Λ + 1)]LΛ

nr

− (2nr + Λ + 1)LΛ
nr + (nr + 1)LΛ

nr+1 + (nr + Λ)LΛ
nr−1

)
,

(C.51)

= 1
2
~ω⊥NΛ

nrN
Λ
n′r

+∞∫

0

dηηΛe−ηLΛ
n′r

×
(
[2nr + Λ + 1]LΛ

nr + (nr + 1)LΛ
nr+1 + (nr + Λ)LΛ

nr−1

)
.

(C.52)
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Due to the orthogonality property of the associated Laguerre polynomials (with weight
ηΛe−η), the matrix element 〈ΨΛ

n′r
|T̂Λη|ΨΛ

nr〉 has non-zero value only for few values of n′r
and nr, namey

n′r = nr,
n′r = nr + 1,
n′r = nr − 1.

(C.53)

Using that
+∞∫

−∞

dξe−ηηΛ(LΛ
nr)

2 =
(nr + Λ)!

nr!
and the definition of NΛ

nr (cf. Eq. C.5) the

matrix elements 〈ΨΛ
n′r
|T̂Λη|ΨΛ

nr〉 can be expressed as

〈ΨΛ
nr |T̂Λη|ΨΛ

nr〉 =
1

2
~ω⊥(NΛ

nr)
2(2nr + Λ + 1)

+∞∫

0

dηηΛe−η(LΛ
nr)

2, (C.54)

=
1

2
~ω⊥(2nr + Λ + 1), (C.55)

〈ΨΛ
nr+1|T̂Λη|ΨΛ

nr〉 =
1

2
~ω⊥NΛ

nrN
Λ
nr+1(nr + 1)

(nr + 1 + Λ)!

(nr + 1)!
, (C.56)

=
1

2
~ω⊥(nr + 1)

√
(nr + 1 + Λ)!

(nr + 1)!

nr!

(nr + Λ)!
, (C.57)

=
1

2
~ω⊥

√
(nr + 1)(nr + 1 + Λ), (C.58)

〈ΨΛ
nr−1|T̂Λη|ΨΛ

nr〉 =
1

2
~ω⊥NΛ

nrN
Λ
nr−1(nr + Λ)

(nr − 1 + Λ)!

(nr − 1)!
, (C.59)

=
1

2
~ω⊥(nr + Λ)

√
(nr − 1 + Λ)!

(nr − 1)!

nr!

(nr + Λ)!
, (C.60)

=
1

2
~ω⊥

√
nr(nr + Λ). (C.61)

C.2.4 General Kinetic Matrix Element

Using Eqs. C.38 and C.61, the general kinetic matrix element 〈Ψf|T̂ |Ψi〉 can be expressed
as

〈Ψf|T̂ |Ψi〉 = δΣΣ′δΛΛ′

[
δnrn′r

~ωz
4

(
δnzn′z(2nz + 1)

− δnz+2,n′z

√
(nz + 2)(nz + 1)

− δnz−2,n′z

√
nz(nz − 1)

)

+ δnzn′z
~ω⊥

2

(
δnrn′r(2nr + Λ + 1)

+ δnr+1,n′r

√
(nr + 1)(nr + 1 + Λ)

+ δnr−1,n′r

√
nr(nr + Λ)

)]
. (C.62)
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C.3 Scalar Potential Matrix Element 〈Ψf|V̂C+N|Ψi〉
The matrix element related to the scalar potential is written 〈Ψf|V̂C+N|Ψi〉. The scalar
potential operator is the sum of the Coulomb potential VC and nuclear potential VN. In
our case, the Coulomb scalar potential and the nuclear mean fields are given by

VC(~r1) = CρC

∫∫∫

V

d3~r2

‖~r2 − ~r1‖
, (C.63)

VN(~r1) = − V0

4πa3

∫∫∫

V

exp (−‖~r2 − ~r1‖/a)

‖~r2 − ~r1‖/a
d3~r2. (C.64)

Yet the derivation given in the following is general and does not depend on the properties
of the scalar potential. The scalar potential matrix elements are diagonal in Λ and Σ, so
that it can be written

〈Ψf|V̂C+N|Ψi〉 = δΛ′ΛδΣΣ′

+∞∫

−∞

dz
+∞∫

0

ρdρΨn′z(z)ΨΛ
n′r

(ρ)V (ρ, z)Ψnz(z)ΨΛ
nr(ρ). (C.65)

Performing the variable changes z → ξ and ρ→ η
1
2 (cf. Eq. C.5), Eq. C.65 becomes

〈Ψf|V̂C+N|Ψi〉 = 2δΛ′ΛδΣΣ′Nn′zN
Λ
n′r
NnzN

Λ
nr

+∞∫

−∞

dξ
+∞∫

0

η
1
2dη

1
2 e−ξ

2

ηΛe−η

×Hnz(ξ)Hn′z(ξ)L
Λ
nr(η)LΛ

n′r
(η)V (ρ, z). (C.66)

Performing the additional variable change η
1
2 → η, Eq. C.66 becomes

〈Ψf|V̂C+N|Ψi〉 = δΛ′ΛδΣΣ′Nn′zN
Λ
n′r
NnzN

Λ
nr

+∞∫

−∞

dξ
+∞∫

0

dηe−ξ
2

ηΛe−η

×Hnz(ξ)Hn′z(ξ)L
Λ
nr(η)LΛ

n′r
(η)V (ρ, z). (C.67)

This can be eventually computed numerically using Gauss-Hermite and Gauss-Laguerre
quadrature rules.

C.4 Spin-Orbit Coupling Matrix Element 〈Ψf|V̂s.o.|Ψi〉
The spin-orbit coupling operator has the general form

V̂s.o. = −λ
(

~
2mc

)2

¯̄σ · ~∇VN ×
~p

~
, (C.68)

where ¯̄σ is a column vector containing the Pauli matrices, and VN is the nuclear scalar
potential. As the total angular momentum projection on the symmetry axis Ω = Λ + Σ is
a good quantum number, the only possibly non-zero elements are between wave functions
having the same Ω number, namely

〈n′r, n′z,Λ,Σ|V̂s.o.|nr, nz,Λ,Σ〉 ,
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〈n′r, n′z,Λ + 1,−1
2
|V̂s.o.|nr, nz,Λ,+1

2
〉 ,

〈n′r, n′z,Λ− 1,+1
2
|V̂s.o.|nr, nz,Λ,−1

2
〉 .

The spin-orbit coupling matrix element can be written

〈n′r, n′z,Λ′,Σ′|V̂s.o.|nr, nz,Λ,Σ〉 = 〈Ψf|V̂s.o.|Ψi〉, (C.69)

where the trivial integration over ϕ has already been performed.

C.4.1 Diagonal Spin-Orbit Matrix Element (Σ′ = Σ)

The direct spin-orbit matrix element is characterized by Λ′ = Λ and Σ′ = Σ. Using
Eq. 5.69, the spin-orbit coupling can be written as

〈Ψf|V̂s.o.|Ψi〉 = +−λ
(

~
2mc

)2
+∞∫

−∞

dz
+∞∫

0

ρdρΨ∗f
Λ

ρ

∂VN
∂ρ

Ψi, (C.70)

where VN still depends on z and ρ. In the remaining of this appendix, the following color
convention will be used

Σ = +1
2
, Σ = −1

2
. (C.71)

Performing again the variable changes z → ξ and ρ→ η (cf. Eq. C.5), Eq. C.70 becomes

〈Ψf|V̂s.o.|Ψi〉 = +−λ
(

~
2mc

)2

Λ

(
~

mωz

)1/2
+∞∫

−∞

dξ
+∞∫

0

dη
∂VN
∂η

Ψ∗f Ψi. (C.72)

Integrating Eq. C.72 by parts on η, it yields

〈Ψf|V̂s.o.|Ψi〉 = +−λ
(

~
2mc

)2

Λ

(
~

mωz

)1/2

×
+∞∫

−∞

dξ


[VNΨ∗f Ψi]

+∞
0 −

+∞∫

0

dηVN
[
∂Ψ∗f
∂η

Ψi +
∂Ψi

∂η
Ψ∗f

]
 . (C.73)

The integral term [VΨ∗f Ψi]
+∞
0 in Eq. C.73 is not necessarily zero for η = 0 but this can

occur only for Λ = 0, value of Λ for which the whole element is zero. Hence Eq. C.73
simplifies to

〈Ψf|V̂s.o.|Ψi〉 = +−λ
(

~
2mc

)2

Λ

(
~

mωz

)1/2
+∞∫

−∞

dξ
+∞∫

0

dηVN
[
∂Ψ∗f
∂η

Ψi +
∂Ψi

∂η
Ψ∗f

]
. (C.74)

Replacing Ψf and Ψi by their expressions and using the Ψnz and ΨΛ
nr definitions (cf.

Eq. C.4), one obtains

〈Ψf|V̂s.o.|Ψi〉 = +−λ
(

~
2mc

)2

Λ
2mω⊥

~
Nn′zN

Λ
n′r
NnzN

Λ
nr

+∞∫

−∞

dξe−ξ
2

HnzHn′z

+∞∫

0

dη

× VN
(
ηΛ/2e−η/2LΛ

nr

d(ηΛ/2e−η/2LΛ
n′r

)

dη
+ ηΛ/2e−η/2LΛ

n′r

d(ηΛ/2e−η/2LΛ
nr)

dη

)
, (C.75)
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where the Hermite (H) and associated Laguerre (L) polynomials still depend of ξ and η
respectively. Equation C.75 can be developed (the derivatives with respected of η are
developed), so that it yields

〈Ψf|V̂s.o.|Ψi〉 = +−λ
(

~
2mc

)2

Λ
2mω⊥

~
Nn′zN

Λ
n′r
NnzN

Λ
nr

+∞∫

−∞

dξe−ξ
2

HnzHn′z

+∞∫

0

dηVNηΛ/2e−η/2

×
(
LΛ
nr

[(
Λ

2
η

Λ
2
−1e−η/2 − ηΛ/2

2
e−η/2

)
LΛ
n′r

+ ηΛ/2e−η/2
dLΛ

n′r

dη

]

+ LΛ
n′r

[(
Λ

2
η

Λ
2
−1e−η/2 − ηΛ/2

2
e−η/2

)
LΛ
nr + ηΛ/2e−η/2

dLΛ
nr

dη

])
,

(C.76)

= +−λ
(

~
2mc

)2

Λ
mω⊥
~

Nn′zN
Λ
n′r
NnzN

Λ
nr

+∞∫

−∞

dξe−ξ
2

HnzHn′z

+∞∫

0

dηVNηΛe−η

×
(
LΛ
nr

[
(
Λ

η
− 1)LΛ

n′r
+ 2

dLΛ
n′r

dη

]
+ LΛ

n′r

[
(
Λ

η
− 1)LΛ

nr + 2
dLΛ

nr

dη

])
,

(C.77)

= +−λ
(

~
2mc

)2

Λ
mω⊥
~

Nn′zN
Λ
n′r
NnzN

Λ
nr

+∞∫

−∞

dξe−ξ
2

HnzHn′z

+∞∫

0

dηVNηΛ−1e−η

×
(
LΛ
nr

[
(Λ− η)LΛ

n′r
+ 2η

dLΛ
n′r

dη

]
+ LΛ

n′r

[
(Λ− η)LΛ

nr + 2η
dLΛ

nr

dη

])
.

(C.78)

The associated Laguerre polynomials satisfy the differential equation (cf. Ref. [183])

η
dLΛ

nr

dη
= nrL

Λ
nr − (nr + Λ)LΛ

nr−1, nr ≥ 1. (C.79)

Using the recurrence relation (Eq. C.79) into Eq. C.78, it becomes

〈Ψf|V̂s.o.|Ψi〉 = +−λ
(

~
2mc

)2

Λ
mω⊥
~

Nn′zN
Λ
n′r
NnzN

Λ
nr

+∞∫

−∞

dξe−ξ
2

HnzHn′z

+∞∫

0

dηVNηΛ−1e−η

×
(
LΛ
nr

[
(Λ− η)LΛ

n′r
+ 2n′rL

Λ
n′r
− 2(n′r + Λ)LΛ

n′r−1

]

+ LΛ
n′r

[
(Λ− η)LΛ

nr + 2nrL
Λ
nr − 2(nr + Λ)LΛ

nr−1

] )
,

(C.80)

= +−λ
(

~
2mc

)2

Λ
2mω⊥

~
Nn′zN

Λ
n′r
NnzN

Λ
nr

+∞∫

−∞

dξe−ξ
2

HnzHn′z

+∞∫

0

dηVNηΛ−1e−η

×
(
(Λ− η + nr + n′r)L

Λ
nrL

Λ
n′r
− (n′r + Λ)LΛ

nrL
Λ
n′r−1 − (nr + Λ)LΛ

n′r
LΛ
nr−1

)
.

(C.81)
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To simplify the expression obtained, the following notation is introduced

L̃Λ
nr = ΛLΛ

nr − ηLΛ
nr + 2η

dLΛ
nr

dη
= (2nr + Λ− η)LΛ

nr − 2(nr + Λ)LΛ
nr−1. (C.82)

Using L̃Λ
nr in Eq. C.81, 〈Ψf|V̂s.o.|Ψi〉 simplifies to

〈Ψf|V̂s.o.|Ψi〉 = +−λ
(

~
2mc

)2

Λ
mω⊥
~

Nn′zN
Λ
n′r
NnzN

Λ
nr

×
+∞∫

−∞

dξe−ξ
2

HnzHn′z

+∞∫

0

dηVNηΛ−1e−η
(
LΛ
nrL̃

Λ
n′r

+ LΛ
n′r
L̃Λ
nr

)
. (C.83)

Observing that 2Σ = +−1, the final expression for the direct spin-orbit coupling matrix
element can be written

〈Ψf|V̂s.o.|Ψi〉 = 2λ

(
~

2mc

)2

ΣΛ
mω⊥
~

Nn′zN
Λ
n′r
NnzN

Λ
nr

×
+∞∫

−∞

dξe−ξ
2

HnzHn′z

+∞∫

0

dηVNηΛ−1e−η
(
LΛ
nrL̃

Λ
n′r

+ LΛ
n′r
L̃Λ
nr

)
. (C.84)

C.4.2 Cross Spin-Orbit Matrix Element (Σ′ = −Σ)

The cross spin-orbit coupling matrix elements correspond to the cases where Λ′ 6= Λ
(Σ′ = −Σ). Those cases have possibly non-zero values are more specifically given by

〈n′r, n′z,Λ + 1,−1
2
|V̂s.o.|nr, nz,Λ,+1

2
〉 and 〈n′r, n′z,Λ− 1,+1

2
|V̂s.o.|nr, nz,Λ,−1

2
〉.

Both cases will be treated simultaneously using the following convention

〈Ψf|V̂s.o.|Ψi〉 = 〈n′r, n′z,Λ+−1, +−1
2
|V̂s.o.|nr, nz,Λ, +−1

2
〉. (C.85)

The cross matrix element 〈Ψf|V̂s.o.|Ψi〉 is defined as (cf. Eq. 5.69)

〈Ψf|V̂s.o.|Ψi〉 = λ

(
~

2mc

)2
+∞∫

−∞

dz
+∞∫

0

ρdρΨ∗f

(
Λ

ρ

∂VN
∂z

+−∂VN
∂z

∂

∂ρ
+−∂VN
∂ρ

∂

∂z

)
Ψi. (C.86)

Performing the the variable changes z → ξ and ρ→ η (cf. Eq. C.5), Eq. C.86 becomes

〈Ψf|V̂s.o.|Ψi〉 = λ

(
~

2mc

)2( ~
mω⊥

)1
2

+∞∫

−∞

dξ
+∞∫

0

dηΨ∗f

(
Λ

2η
1
2

∂VN
∂ξ

+−∂VN
∂ξ

η
1
2
∂

∂η
+−∂VN
∂η

η
1
2
∂

∂ξ

)
Ψi.

(C.87)

The partial derivatives of the nuclear potential VN will be removed by integration by parts.
First Eq. C.87 is expanded and ordered, so that

〈Ψf|V̂s.o.|Ψi〉

=
1

2
λ

(
~

2mc

)2( ~
mω⊥

)1
2

+∞∫

−∞

dξ
+∞∫

0

dηΛη−
1
2 Ψ∗f

∂VN
∂ξ

Ψi

+−λ
(

~
2mc

)2( ~
mω⊥

)1
2

+∞∫

−∞

dξ
+∞∫

0

dηη
1
2 Ψ∗f

(
∂VN
∂ξ

∂

∂η
− ∂VN

∂η

∂

∂ξ

)
Ψi,

(C.88)
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=
1

2
λ

(
~

2mc

)2( ~
mω⊥

)1
2

+∞∫

0

dηΛη−
1
2

+∞∫

−∞

dξΨ∗f Ψi
∂VN
∂ξ

+−λ
(

~
2mc

)2( ~
mω⊥

)1
2

[ +∞∫

0

dηη
1
2

+∞∫

−∞

dξΨ∗f
∂Ψi

∂η

∂VN
∂ξ
−

+∞∫

−∞

dξ
+∞∫

0

dηη
1
2 Ψ∗f

∂Ψi

∂ξ

∂VN
∂η

]
.

(C.89)

Then the integration by parts is performed for the first two terms involving partial deriva-
tives of VN. One obtains

〈Ψf|V̂s.o.|Ψi〉 =
1

2
λ

(
~

2mc

)2( ~
mω⊥

)1
2

+∞∫

0

dηΛη−
1
2

[
[Ψ∗f ΨiVN]+∞−∞

−
+∞∫

−∞

dξVN
(
∂Ψ∗f
∂ξ

Ψi + Ψ∗f
∂Ψi

∂ξ

)]

+−λ
(

~
2mc

)2( ~
mω⊥

)1
2

[ +∞∫

0

dηη
1
2

([
Ψ∗f
∂Ψi

∂η
VN

]+∞

−∞

−
+∞∫

−∞

dξVN
[∂Ψ∗f
∂ξ

∂Ψi

∂η
+ Ψ∗f

∂2Ψi

∂η∂ξ

])
−

+∞∫

−∞

dξ
+∞∫

0

dηη
1
2 Ψ∗f

∂Ψi

∂ξ

∂VN
∂η

]
. (C.90)

The two integrated terms (terms in brackets [ ]) are zeros because lim
ξ→±∞

Ψ∗f (η, ξ) = 0. The

last term involving a partial derivative of VN is integrate by part. Equation C.90 becomes

〈Ψf|V̂s.o.|Ψi〉 = − 1

2
λ

(
~

2mc

)2( ~
mω⊥

)1
2

+∞∫

0

dηΛη−
1
2

+∞∫

−∞

dξVN
(
∂Ψ∗f
∂ξ

Ψi + Ψ∗f
∂Ψi

∂ξ

)

+−λ
(

~
2mc

)2( ~
mω⊥

)1
2

[ +∞∫

0

dηη
1
2

+∞∫

−∞

dξVN
(
∂Ψ∗f
∂ξ

∂Ψi

∂η
+ Ψ∗f

∂2Ψi

∂η∂ξ

)

+

+∞∫

−∞

dξ

([
VNη

1
2 Ψ∗f Ψi

]+∞

0
−

+∞∫

0

dηVN
[

1

2η
1
2

Ψ∗f
∂Ψi

∂ξ
+ η

1
2
∂Ψ∗f
∂η

∂Ψi

∂ξ
+ η

1
2 Ψ∗f

∂2Ψi

∂ξ∂η

])]
. (C.91)
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The integrated term also vanishes because lim
η→+∞

Ψ∗f (η, ξ) = 0. The last term of Eq. C.91

is split according to its power of η, so that Eq. C.91 becomes

〈Ψf|V̂s.o.|Ψi〉 = − 1

2
λ

(
~

2mc

)2( ~
mω⊥

)1
2

+∞∫

0

dηΛη−
1
2

+∞∫

−∞

dξVN
(
∂Ψ∗f
∂ξ

Ψi + Ψ∗f
∂Ψi

∂ξ

)

+−λ
(

~
2mc

)2( ~
mω⊥

)1
2

[ +∞∫

0

dηη
1
2

+∞∫

−∞

dξVN
(
∂Ψ∗f
∂ξ

∂Ψi

∂η
+ Ψ∗f

∂2Ψi

∂η∂ξ

)

−
+∞∫

−∞

dξ
+∞∫

0

dηVN
(
η

1
2
∂Ψ∗f
∂η

∂Ψi

∂ξ
+ η

1
2 Ψ∗f

∂2Ψi

∂ξ∂η

)]

+−λ
(

~
2mc

)2( ~
mω⊥

)1
2

+∞∫

−∞

dξ
+∞∫

0

dηVN
1

2η
1
2

Ψ∗f
∂Ψi

∂ξ
.

(C.92)

Gathering terms in Eq. C.92, one obtains

〈Ψf|V̂s.o.|Ψi〉 = − 1

2
λ

(
~

2mc

)2( ~
mω⊥

)1
2

+∞∫

0

dηη−
1
2

+∞∫

−∞

dξVN
(

Λ
∂Ψ∗f
∂ξ

Ψi + (Λ+−1)Ψ∗f
∂Ψi

∂ξ

)

+−λ
(

~
2mc

)2( ~
mω⊥

)1
2

+∞∫

0

dηη
1
2

+∞∫

−∞

dξVN
(
∂Ψ∗f
∂ξ

∂Ψi

∂η
− ∂Ψ∗f

∂η

∂Ψi

∂ξ

)
. (C.93)

Replacing Ψf and Ψi by their expressions and using the Ψnz and ΨΛ
nr definitions (cf.

Eq. C.4), one obtains

〈Ψf|V̂s.o.|Ψi〉 = − λ
(

~
2mc

)2(
m2ωzω⊥

~2

)1
2

NnzNn′zN
Λ
nrN

Λ+−1
n′r

+∞∫

0

dηη−
1
2ηΛ/2η

Λ+−1
2 LΛ

nrL
Λ+−1
n′r

e−η

×
+∞∫

−∞

dξe−ξ
2/2VN

(
(Λ+−1)Hn′z

dHnze−ξ
2/2

dξ
+ ΛHnz

dHn′ze
−ξ2/2

dξ

)

+−2λ

(
~

2mc

)2(
m2ωzω⊥

~2

)1
2

NnzNn′zN
Λ
nrN

Λ+−1
n′r

+∞∫

0

dηη
1
2

+∞∫

−∞

dξVN

×
(
Hnze

−ξ2/2η
Λ+−1

2 e−η/2
dHn′ze

−ξ2/2

dξ
dLΛ

nre
−η/2ηΛ/2

dη
LΛ+−1
n′r

−Hn′ze
−ξ2/2ηΛ/2e−η/2

dHnze−ξ
2/2

dξ
LΛ
nr

dLΛ+−1
n′r

e−η/2η
Λ+−1

2

dη

)
,

(C.94)
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= − λ
(

~
2mc

)2(
m2ωzω⊥

~2

)1
2

NnzNn′zN
Λ
nrN

Λ+−1
n′r

+∞∫

0

dηη−
1
2ηΛ/2η

Λ+−1
2 LΛ

nrL
Λ+−1
n′r

e−η

×
+∞∫

−∞

dξe−ξ
2

VN

(
(Λ+−1)Hn′z

[
−ξHnz+

dHnz

dξ

]
+ΛHnz

[
−ξHn′z+

dHn′z

dξ

])

+−2λ

(
~

2mc

)2(
m2ωzω⊥

~2

)1
2

NnzNn′zN
Λ
nrN

Λ+−1
n′r

+∞∫

0

dηη
1
2 e−η/2

+∞∫

−∞

dξe−ξ
2

VN

×
[
Hnzη

Λ+−1
2

(
−ξHn′z +

dHn′z

dξ

)

×
(

(
Λ

2
η

Λ
2
−1e−η/2 − 1

2
ηΛ/2e−η/2)LΛ

nr + e−η/2ηΛ/2dL
Λ
nr

dη

)
LΛ+−1
n′r

−Hn′zη
Λ/2

(
−ξHnz +

dHnz

dξ

)
LΛ
nr

×
(

(
Λ+−1

2
η

Λ+−1
2
−1e−η/2 − 1

2
η

Λ+−1
2 e−η/2)LΛ+−1

n′r
+ e−η/2η

Λ+−1
2

dLΛ+−1
n′r

dη

)]
.

(C.95)

Equation C.95 can be further simplified to become

〈Ψf|V̂s.o.|Ψi〉 = − λ
(

~
2mc

)2(
m2ωzω⊥

~2

)1
2

NnzNn′zN
Λ
nrN

Λ+−1
n′r

+∞∫

0

dηη(2Λ+−1−1)/2LΛ
nrL

Λ+−1
n′r

e−η

×
+∞∫

−∞

dξe−ξ
2

VN

[
(Λ+−1)Hn′z

(
−ξHnz+

dHnz

dξ

)
+ΛHnz

(
−ξHn′z+

dHn′z

dξ

)]

+−2λ

(
~

2mc

)2(
m2ωzω⊥

~2

)1
2

NnzNn′zN
Λ
nrN

Λ+−1
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+∞∫

0
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+∞∫

−∞

dξe−ξ
2
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×
[
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(
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(

Λ
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− 1

2
)LΛ
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dLΛ

nr

dη

)
LΛ+−1
n′r

−Hn′z

(
−ξHnz +

dHnz

dξ

)
LΛ
nr

(
(
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− 1

2
)LΛ+−1

n′r
+

dLΛ+−1
n′r

dη

)]
,

(C.96)
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= − λ
(

~
2mc

)2(
m2ωzω⊥

~2

)1
2

NnzNn′zN
Λ
nrN

Λ+−1
n′r

+∞∫

0

dηη(2Λ+−1−1)/2LΛ
nrL

Λ+−1
n′r

e−η

×
+∞∫

−∞

dξe−ξ
2

VN

[
(Λ+−1)Hn′z

(
−ξHnz+

dHnz

dξ

)
+ΛHnz

(
−ξHn′z+

dHn′z

dξ

)]

+−λ
(

~
2mc

)2(
m2ωzω⊥
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)1
2

NnzNn′zN
Λ
nrN

Λ+−1
n′r

+∞∫

0

dηη(2Λ+−1−1)/2e−η
+∞∫

−∞

dξe−ξ
2
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×
[
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(
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)(
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+2η

dLΛ+−1
n′r

dη

)]
.

(C.97)

The Hermite and associated Laguerre polynomials satify the differential equations (cf.
Ref. [183])

dHnz

dξ
= 2nzHnz−1 and η

dLΛ
nr

dη
= nrL

Λ
nr − (nr + Λ)LΛ

nr−1. (C.98)

Using the convention H−1(ξ) = 0 and LΛ
−1(η) = 0, Eq. C.97 simplifies to

〈Ψf|V̂s.o.|Ψi〉 = −λ
(

~
2mc

)2(
m2ωzω⊥

~2

)1
2

NnzNn′zN
Λ
nrN

Λ+−1
n′r

+∞∫

0
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nrL

Λ+−1
n′r

e−η

×
+∞∫

−∞

dξe−ξ
2

VN

[
(Λ+−1)Hn′z (−ξHnz + 2nzHnz−1) + ΛHnz

(
−ξHn′z + 2n′zHn′z−1

)]

+−λ
(

~
2mc

)2(
m2ωzω⊥
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)1
2

NnzNn′zN
Λ
nrN

Λ+−1
n′r

+∞∫

0
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+∞∫
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2

VN

×
[
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(
−ξHn′z + 2n′zHn′z−1

) (
[Λ− η]LΛ

nr + 2nrL
Λ
nr − 2[nr + Λ]LΛ

nr−1

)
LΛ+−1
n′r

−Hn′z (−ξHnz + 2nzHnz−1)LΛ
nr

×
(

[Λ+−1− η]LΛ+−1
n′r

+ 2n′rL
Λ
n′r
− 2[n′r + Λ]LΛ

n′r−1

) ]
. (C.99)

The L̃Λ
nr notation (cf. Eq. C.82) is used and an equivalent notation for the Hermite

polynomials is also introduced

H̃nz = −ξHnz +
dHnz

dξ
= −ξHnz + 2nzHnz−1. (C.100)
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Observing that Λ′ = Λ+−1, Eq. C.99 can be written as

〈Ψf|V̂s.o.|Ψi〉 =− λ
(

~
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Using again that Λ− Λ′ = +−1, one finally obtains the cross spin-orbit matrix element
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Appendix D

Numerical Transmission Coefficients

D.1 Numerical Methods for Transmission Coefficient
Calculation

This appendix describes of the numerical methods that have been implemented to obtain
a barrier transmission coefficient from an arbitrary one-dimensional barrier shape cf.
Section 6.4 of Chapter 6. It also present some analytical cases that have been used to
verify the accuracy of the implemented methods.
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D.1. NUMERICAL METHODS APPENDIX D. NUMERICAL TRANSMISSION COEFFICIENTS

D.1.1 Piece-wise Methods

In both piece-wise methods, the potential is locally approximated by either a constant or
a linear function thus defining several intervals as illustrated in Fig. D.1.

η

V (η)

V0

V1

V2

V3

VN
VN+1

η0 η1 η2 η3 ηN−1 ηN

ψ1 ψN

(a) Piecewise constant potential.

η

V (η)

V0

V1

V2

VN−1

VN

η0 η1 η2 ηN−1 ηN

ψ1 ψN

(b) Piecewise linear potential.

Figure D.1 – Examples of discretization of the potential.

In both methods, two linearly independent solutions can be defined in each interval.
They are respectively the positive- and negative-argument exponentials for the piece-
wise constant potential (Fig D.1a) and the Airy functions Ai and Bi for piece-wise linear
potential (Fig D.1b). In each interval, the analytical solution of the wave function can be
expressed as a linear combination of the two linearly independent solutions.

In zone n ∈ J1, NK, the wave function has the form

ψn(η) =

{
bneiknη + cne−iknη (constant)
bn Ai[Xn(η)] + cn Bi[Xn(η)] (linear) , ηn−1 ≤ η ≤ ηn (D.1)

where (bn, cn) ∈ C2 are the expansion coefficients and the kn coefficient is given by

kn =

[
2µ

~2
(E − Vn)

]1/2

∈ C∗ . (D.2)

When kn is real, it corresponds to the wave number associated with the constant potential
in region n. The parameter Xn is given by

Xn(η) = α1/3
n η +

βn

α
2/3
n

, (D.3)

and is an intermediate linear function of η introduced so that the wave function can be
expressed in terms of Airy functions. Parameters αn and βn are defined as

αn =
2µ

~2

Vn − Vn−1

ηn − ηn−1

and βn =
2µ

~2
(Vn−1 − E)− αnηn−1 . (D.4)

By convention, parameters related to the outermost part of the potential has∞ subscript.
The smooth matching conditions of the wave functions (Eq. D.1) at each interval bound-
aries provide a linear relation between expansion coefficients (cn, bc) and (cn+1, bn+1). In

226



APPENDIX D. NUMERICAL TRANSMISSION COEFFICIENTS D.1. NUMERICAL METHODS

both extremal intervals (and in both methods), the wave function is expanded using the
exponential functions.

ψ0(η) = b0eik0η + c0e−ik0η , η ≤ η0 ,
ψ∞(η) = ψN+1(η) = b∞eik∞η + c∞e−ik∞η , η ≥ ηN .

(D.5)

The conditions c∞ = 0 and b∞ ∈ C∗, are often used in order to easily compute the eventual
transmission coefficient1. From this condition, the smooth continuity relation leads to a
recursive relation

[
bn
cn

]
= Mn

[
bn+1

cn+1

]
,

[
b0

c0

]
=

(
N∏

n=0

Mn

)[
b∞
0

]
, (D.6)

where Mn is the matching matrix that defines the relation between coefficients b and c
related the n− 1th segment to those of the nth segment. Finally one obtains a linear
relation between b0 and b∞, and the transmission coefficient

T (E) =
k∞
k0

∣∣∣∣
b∞
b0

∣∣∣∣
2

. (D.7)

For the piecewise-constant method, the matching matrix Mn is

Mpc
n =

1

2kn

[
(kn + kn+1)ei(kn+1−kn)ηn (kn − kn+1)e−i(kn+1+kn)ηn

(kn − kn+1)ei(kn+1+kn)ηn (kn + kn+1)e−i(kn+1−kn)ηn

]
. (D.8)

For the linear-constant method the matching matrix Mn, n ∈ J1, N − 1K is

M lc
n = π

[
Bi’[X−n ] Ai[X+

n ]−X′n+1

X′n
Ai’[X+

n ] Bi[X−n ] Bi’[X−n ] Bi[X+
n ]−X′n+1

X′n
Bi’[X+

n ] Bi[X−n ]
X′n+1

X′n
Ai’[X+

n ] Ai[X−n ]−Ai’[X−n ] Ai[X+
n ]

X′n+1

X′n
Bi’[X+

n ] Ai[X−n ]−Ai’[X−n ] Bi[X+
n ]

]

(D.9)
where

X ′n =
dXn

dη
= α1/3

n , (D.10)

X+
n =Xn+1(ηn) , (D.11)

X−n =Xn(ηn) . (D.12)

For n = 0 and n = N , different matching matrices must be used as the potential for
η < η0 and η > ηN is constant. The related M0 and MN matrices are thus given by

M lc
N = π




Bi’[X−N ]eik∞ηN − ik∞
X ′N

Bi[X−N ]eik∞ηN 0

ik∞
X ′N

Ai[X−N ]eik∞ηN − Ai’[X−N ]eik∞ηN 0


 , (D.13)

M lc
0 =

π

2k0

[(
k0 Ai[X+

0 ]− iX ′1 Ai’[X+
0 ]
)
e−ik0η0

(
k0 Bi[X+

0 ]− iX ′1 Bi’[X+
0 ]
)
e−ik0η0(

k0 Ai[X+
0 ] + iX ′1 Ai’[X+

0 ]
)
eik0η0

(
k0 Bi[X+

0 ] + iX ′1 Bi’[X+
0 ]
)
eik0η0

]
.

(D.14)

A similar approach can be considered with a piece-wise quadratic potential using
parabolic cylinder functions as expansion functions, yet the expected gain in the number
of intervals is balanced by the cost of “complex” function evaluations.

1In practice b∞ is set to unity, b∞ = 1.
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In practice this piecewise-linear method cannot be used alone. Indeed if in a given
discretized step n, the slope of the potential is very low then αn (Eq. D.4) tends to zero
and Xn (Eq. D.3) becomes infinite. This leads to numerical issues in the evaluation of the
Airy functions. This problem can be solved by considering that for low slopes, the Airy
base function are “replaced” by the exponential functions. The method relies thus on a
mixed piecewise-constant/linear discretization of the potential.

D.1.2 JWKB Method

An widely-used alternative method to compute transmission coefficient for arbitrary bar-
rier shapes is the JWKB method [78, 184, 185]. In this so-called semi-classical approach,
the wave function of the system Ψ is expressed as the exponential of another function Φ,
Ψ = eΦ, that satisfies the differential equation (cf. Eq. 6.35)

Ψ′′(η) + [Ψ′(η)]2 =
2µ

~2
(V (η)− E). (D.15)

The Φ′ function is split in its real A and imaginary B parts, which are expanded as a
power series in ~. To the lowest orders in ~, assuming that B varies slowly with η, and
assuming E smaller than V over the considered range of η, one finally obtains [186]

Ψ ∝ C±

[
2µ

~2
(V (η)− E)

]1/4

exp

[
±
∫

dη
√

2µ

~2
(V (η)− E)

]
. (D.16)

Finally, for a single-humped barrier, the transmission coefficient can obtained by [78]

T (E) = exp


−2

ηmax∫

ηmin

dη
√

2µ

~2
(V (η)− E)


 , (D.17)

where ηmin and ηmax are defined by V (ηmin) = V (ηmax) = E and are called turning points.
In the case of a double-humped barrier, assuming a1 and a2 to be the turning points of
the first hump and a3 and a4 those of the second hump, the transmission coefficient is
obtained by [185]

T (E) =
64PAPB

(PAPB + 16)2 cos2 ϕ+ 16(PA + PB)2 sin2 ϕ
, (D.18)

where

PA(E) = exp


−2

a2∫

a1

dη|k(η)|


 , PB(E) = exp


−2

a4∫

a3

dη|k(η)|


 ,

k(η) =

[
2µ

~2
[E − V (η)]

]1/2

, φ(E) =

a3∫

a2

dηk(η) .

(D.19)

D.1.3 Derivation of the Numerov Method

Here the differential equation (Eq. 6.36) is considered

f ′′(x) +W (x)f(x) = 0 . (D.20)
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The f function can be written, using a Taylor expansion about x+ h and x− h as

f(x+ h) =f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f (3)(x) +

h4

4!
f (4)(x) +

h5

5!
f (5)(x) +O(h6),

(D.21)

f(x− h) =f(x)− hf ′(x) +
h2

2!
f ′′(x)− h3

3!
f (3)(x) +

h4

4!
f (4)(x)− h5

5!
f (5)(x) +O(h6).

(D.22)

Using abscissa discretization {xn}n and {fn}n (fn = f(xn)), summing the two above
expressions yields

fn+1 + fn−1 = h2f ′′n +
h4

12
f (4)
n +O(h6), (D.23)

= −h2Wnfn +
h4

12
f (4)
n +O(h6), (D.24)

where the relation in Eq. D.20 has been used and where Wn = W (xn). The double
differentiation of Eq. D.20, yields

f (4)(x) = − [W (x)f(x)]′′ . (D.25)

The right-hand side of Eq. D.25 can be approximated by its centered finite difference
expression

[W (x)f(x)]′′ ≈ Wn+1fn+1 − 2Wnfn +Wn−1fn−1

h2
. (D.26)

Inserting Eqs. D.26 and D.25 into Eq. D.24, one finally obtains

fn−1 =

(
2− 5h2

6
Wn

)
fn −

(
1 +

h2

12
Wn+1

)
fn+1

1 +
h2

12
Wn−1

. (D.27)

D.2 Analytical Cases

To verify the calculation of transmission coefficient for any numerical barrier shape, some
analytic cases are tested with the implemented methods. The three types of potential are
detailed below:

• The Step Potential.

• The Triangular Potential.

• The Cramer-Nix Original and “Modified” Potentials.

In this section analytical solutions of the Schrödinger equation

−~2

2µ

d2ψ

dη2
+ (V (η)− E)ψ = 0 , (D.28)

are given for the three potentials V , and the related analytical transmission coefficient
are derived.
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D.2.1 Step Potential

The step potential is illustrated in Fig. D.2, and is defined by

V (η) =





0, η < 0
VF, 0 < η < a

−V∞, η > a
, (D.29)

where a, VF and V∞ are defined in Fig. D.2.

η

V (η)

0 a

V∞

VF

zone-I zone-II zone-III

Figure D.2 – Step Potential.

Different analytical wave functions can be defined according to the η-zones shown in
Fig. D.2.

ψI(η) = Aeik0η +Be−ik0η, (D.30)
ψII(η) = CeikFη +De−ikFη, (D.31)
ψIII(η) = F eik∞η (D.32)

where the wave numbers for the different zones of this potential are defined as

k0 =

√
2BE

~2
, (D.33)

kF =

√
2B (E − VF)

~2
(= iκF, ifE < VF), (D.34)

k∞ =

√
2B (E − V∞)

~2
. (D.35)

Only the plane wave propagating toward η > 0 (eik∞η) is considered in zone III, so that
the derivation of the transmission coefficient is eased. The smooth matching conditions
for the wave functions at η = 0 and η = a leads to a linear relation between A and F .
The eventual transmission coefficient is obtained by

Tf =
k∞
k0

∣∣∣∣
F

A

∣∣∣∣
2

. (D.36)
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The analytical transmission coefficient, shown in Fig. D.3, is obtained using Eq. D.36 and
can be written

T (E) =





4k2
Fk0k∞

[k4
F − k2

F(k2
0 + k2

∞) + k2
0k

2
∞] sin2(kFa) + k2

F(k0 + k∞)2
, E ≥ VF ,

4κ2
Fk0k∞

[κ4
F + κ2

F(k2
0 + k2

∞) + k2
0k

2
∞] sinh2(κFa) + κ2

F(k0 + k∞)2
, E ≤ VF .

(D.37)
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Figure D.3 – Transmission coefficient for a step potential with a = 0.5, VF = 5 MeV,
V∞ = 0 MeV and µ/~2 = 0.054A5/3 (in MeV−1) where A = 240.

D.2.2 Triangular Potential

In this case the potential is given by

V (η) =





0, η < 0(
a− x
a

)
V0, 0 < η ≤ a

0, η ≥ a

, (D.38)

where a and V0 are defined in Fig. D.4.
In zones I and III the solutions of the Schrödinger equation have the same form than

in the case of the step potential, namely

ψI(η) = Aeikη +Be−ikη, (D.39)
ψIII(η) = F eikη. (D.40)
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η

V (η)

0 a

V0

zone I zone II zone III

Figure D.4 – Triangular potential.

For zone II, the Schrödinger equation is

−~2

2µ

d2ψII

dη2
+

(
a− η
a

V0 − E
)
ψII = 0. (D.41)

It can be turned into
d2ψII

dη2
− (αη + β)ψII = 0, (D.42)

where
α =

−2BV0

~2a
and β =

2B(V0 − E)

~2
. (D.43)

The variable change

X(η) = α1/3η +
β

α2/3
, (D.44)

is performed. It leads to a simple form of the differential equation

d2ψII

dX2
−XψII = 0 . (D.45)

Two real linearly independent solutions exist for this equation, they are the Airy functions
Ai and Bi. The general solution can be expressed as a linear combination of the two,
namely

ψII(η) = C Ai[X(η)] +DBi[X(η)] . (D.46)

The continuity conditions of the value and derivative of the wave functions ψI and ψII at
η = a leads to the system of equations

{
C Ai[Xa] +DBi[Xa] = F eika ,
CX ′Ai’[Xa] +DX ′ Bi’[Xa] = ikF eika , (D.47)

where Xa = X(a) and X ′ =
dX
dη

= α1/3. Using that the Wrońskian of the Airy func-

tions [48] W (Ai,Bi) = π−1, the system can be solved as long as the slope V0/a is not zero.
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The coefficients C and D are thus obtained by

C =
πF

X ′

∣∣∣∣∣∣
eika Bi[Xa]

ikeika X ′ Bi’[Xa]

∣∣∣∣∣∣
, D =

πF

X ′

∣∣∣∣∣∣
Ai[Xa] eika

X ′Ai’[Xa] ikeika

∣∣∣∣∣∣
. (D.48)

The smooth continuity conditions in η = 0 leads to a second system of equations

{
A+B = C Ai[X0] +DBi[X0] ,

ikA− ikB = CX ′Ai’[X0] +DX ′ Bi’[X0] ,
(D.49)

where again X0 = X(η = 0). The system can be written as

{
A+B = C Ai[X0] +DBi[X0] ,

A−B = C
X ′

ik
Ai’[X0] +D

X ′

ik
Bi’[X0] .

. (D.50)

Finally A can then be expressed as

A =
1

2

[
C

(
Ai[X0] +

X ′

ik
Ai’[X0]

)
+D

(
Bi[X0] +

X ′

ik
Bi’[X0]

)]
. (D.51)

The transmission coefficient for this potential can be computed as

T =

∣∣∣∣
F

A

∣∣∣∣
2

. (D.52)

Figure D.5 shows an illustration of calculations using this type of transmission coefficient.
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Figure D.5 – Transmission coefficient for triangular potential having a = 0.5, V0 = 5 MeV
and µ/~2 = 0.054A5/3 (in MeV−1) where A = 240.
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D.2.3 Cramer-Nix Original Potential

In this case the potential is given by [22]

V (η) =





E1 − 1
2
µω2

1(η − η1)2, η ≤ a

E2 + 1
2
µω2

2(η − η2)2, a ≤ η ≤ b

E3 − 1
2
µω2

3(η − η3)2, η ≥ b

(D.53)

and is illustrated in Fig. D.6, where the related paratmeters E1, E2, E3, η1, η2, η3, a and
b are shown. Parameters ω1, ω2, ω3 characterize the curvature of the parabola shown in
Fig. D.6, and µ is the inertia parameter.

η

V (η)

E1

E2

E3

η1 η2 η3a b0
zone I zone II zone III

Figure D.6 – Triple parabola barrier.

By imposing a smooth continuity of the potential in a and b, the number of parameters
required to define the potential can be reduced. By additionally setting V (η = 0) = 0 –
as shown in Fig. D.6 – the number of required parameters drops to six. Those are chosen
to be E1, E2, E3, ω1, ω2 and ω3. The other parameters are deduced according to

η1 =

[
2E1

µω2
1

]1/2

,

a = η1 +

[
2(E1 − E2)

µω2
1

]1/2(
1 +

ω2
1

ω2
2

)−1/2

,

η2 = a+

[
2(E1 − E2)

µω2
2

]1/2(
1 +

ω2
2

ω2
1

)−1/2

,

b = η2 +

[
2(E3 − E2)

µω2
2

]1/2(
1 +

ω2
2

ω2
3

)−1/2

,

η3 = b+

[
2(E3 − E2)

µω2
3

]1/2(
1 +

ω2
3

ω2
2

)−1/2

.

(D.54)

In zone I, the Schrödinger equation is

−~2

2µ

d2ψI

dη2
+

(
E1 −

1

2
µω2

1(η − η1)− E
)
ψI = 0 . (D.55)
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Performing the variable change u =

√
2µω1

~
(η − η1), Eq. D.55 becomes

d2ψI

du2
+

(
E − E1

~ω1

+
u2

4

)
ψI = 0 . (D.56)

Defining the parameter α1 =
E1 − E
~ω1

and using it in Eq. D.56, one obtains

d2ψI

du2
+

(
−α1 +

u2

4

)
ψI = 0 . (D.57)

The solutions of this equation are know as the parabolic cylinder functions E and E ∗ (cf.
Ref. [48]) and ψI can be expanded using these functions

ψI(η) = AE ∗[α1,−u(η)] +BE [α1,−u(η)]. (D.58)

In zone II, the Schrödinger equation is

−~2

2µ

d2ψII

dη2
+

(
E2 +

1

2
µω2

2(η − η2)− E
)
ψII = 0 (D.59)

This equation is transformed using the variable change v =

√
2µω2

~
(η − η2) into

d2ψII

dv2
+

(
E − E2

~ω2

− v2

4

)
ψII = 0 . (D.60)

Defining the coefficient α2 =
E2 − E
~ω2

, one gets

d2ψII

dv2
−
(
α2 +

v2

4

)
ψII = 0 . (D.61)

Solutions of this equation are different kinds of parabolic cylinder functions U and V (cf.
Ref. [48]), so that ψII can be expressed as

ψII(η) = CU [α2, v(η)] +DV [α2, v(η)]. (D.62)

For zone III, a similar treatment than for zone I is made. Defining w =

√
2µω3

~
(η−η3)

and α3 =
E3 − E
~ω3

, one obtains

d2ψIII

dw2
+

(
−α3 +

w2

4

)
ψIII = 0 , (D.63)

and
ψIII(η) = FE [α3, w(η)] . (D.64)

Only one terms is considered in this case as only the component associated with the wave
propagating towards η > 0 (E ) is kept (in order to obtain the transmission coefficient
more easily).
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Coefficients A, B, C, D can be expressed in terms of F by successively matching
the value and derivative of the wave functions at η = b and η = a. The transmission
coefficient can be computed as [22]

T =

√
ω3

ω1

∣∣∣∣
F

A

∣∣∣∣
2

, (D.65)

where

F

A
=

v′u′2i
√

2/π∣∣∣∣∣∣∣∣

Ea(α1,−u) −Va(α2, v) −Ua(α2, v) 0

−u′E (−u)
a (α1,−u) −v′V (v)

a (α2, v) −v′U (v)
a (α2, v) 0

0 Vb(α2, v) Ub(α2, v) −Eb(α3, w)

0 v′V (v)
b (α2, v) v′U (v)

b (α2, v) −w′E (w)
b (α3, w)

∣∣∣∣∣∣∣∣

. (D.66)

The subscripts on the parabolic cylinder functions specify the value of η at which the
second parameter must be evaluated. The superscript on the functions indicates the first
order derivative of the function with respect of the variable in parentheses. The prim over
u, v or w stands for their derivatives with respect of η. The energy dependence of the
related transmission coefficient is shown in Fig. D.7.
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Figure D.7 – Transmission coefficient for a triple parabola potential with values E1 =
E3 = 6 MeV, E2 = 2 MeV, ~ω1 = ~ω3 = 1 MeV, ~ω2 = 0.5 MeV, µ/~2 = 0.054A5/3 (in
MeV−1) where A = 240.

D.2.4 Cramer-Nix “Modified” Potential

With the approach of the previous section, no reflected wave is considered in zone III. In
the following, the Cramer-Nix model is modified so that a reflection in the outer barrier
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zone can be added. The following potential is considered

V (η) =





0, η ≤ 0

E1 − 1
2
µω2

1(η − η1)2, 0 ≤ η ≤ a

E2 + 1
2
µω2

2(η − η2)2, a ≤ η ≤ b

E3 − 1
2
µω2

3(η − η3)2, b ≤ η ≤ c

V∞, η ≥ c

(D.67)

An illustration is shown in Fig. D.8 where the same parameters than in Fig. D.6 are
introduced with the addition of the parameters c and V∞.

ba
c η

V (η)

V∞

E1

E2

E3

η1 η2 η30

zone I zone II zone III zone IV zone V

Figure D.8 – Triple parabola barrier with reflection condition.

Relations D.54 are still valid, but there is a need for a new parameter to describe the
potential. It can be either c or V∞, here V∞ is selected and c is deduced by

c = η3 +

[
2(E3 − V∞)

Bω2
3

]1/2

. (D.68)

The wave numbers related to zone-I and zone-V are given by

k0 =

√
2BE

~2
and k∞ =

√
2B(E − V∞)

~2
. (D.69)

The wave function forms can be deduced from the previous sections

ψ(η) =





ψI(η) = Y eik0η + Ze−ik0η η ≤ 0

ψII(η) = AE ∗[α1,−u(η)] + BE [α1,−u(η)] 0 ≤ η ≤ a

ψIII(η) = CU [α2, v(η)] + DV [α2, v(η)] a ≤ η ≤ b

ψIV(η) = FE [α3, w(η)] + GE ∗[α3, w(η)] b ≤ η ≤ c

ψV(η) = Heik∞η η ≥ c

. (D.70)

A similar attempt was made in Ref. [187], were the original Cramer-Nix model was refined
in order to keep a parabolic cylinder function expansion up to the second hump maximum.
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The present attempt is more suited for the validation of the numerical methods that have
been implemented for the present study. The transmission coefficient is defined by

T (E) =
k∞
k0

∣∣∣∣
H

Y

∣∣∣∣
2

. (D.71)

The H coefficient can be chosen arbitrarily in C∗ (e.g. H = 1). The smooth continuity
relations at η = c, b, a, 0 provide the remaining coefficients. The smooth continuity relation
in η = c gives

F =
iHeik∞c

2w′

∣∣∣∣
1 E ∗c (α3, w)

ik∞ w′E ∗c
(w)(α3, w)

∣∣∣∣ , G =
iHeik∞c

2w′

∣∣∣∣
Ec(α3, w) 1

w′E (w)
c (α3, w) ik∞

∣∣∣∣ . (D.72)

The smooth continuity relation in η = b gives

C =

√
π

2

1

v′

∣∣∣∣
Lb Vb(α2, v)

Rb v′V (v)
b (α2, v)

∣∣∣∣ , D =

√
π

2

1

v′

∣∣∣∣
Ub(α2, v) Lb

v′U (v)
b (α2, v) Rb

∣∣∣∣ , (D.73)

where
Lb = FEb(α3, w) +GE ∗b (α3, w) ,

Rb = Fw′E (w)
b (α3, w) +Gw′E ∗b

(w)(α3, w) .
(D.74)

The smooth continuity relations in η = a give

A =
−i
2u′

∣∣∣∣
La Ea(α1,−u)

Ra −u′Ea(−u)(α1,−u)

∣∣∣∣ , B =
−i
2u′

∣∣∣∣
E ∗a (α1,−u) La

−u′E ∗a (u)(α1,−u) Ra

∣∣∣∣ , (D.75)

where
La = CUa(α2, v) +DVa(α2, v) ,

Ra = Cv′U (v)
a (α2, v) +Dv′V (v)

a (α2, v) .
(D.76)

The smooth continuity relation in η = 0 gives
{
Y + Z = AE ∗0 (α1,−u) +BE (α1,−u) = L0 ,

ik0Y − ik0Z = −u′AE ∗0
(−u)(α1,−u)− u′BE (−u)

0 (α1,−u) = R0 .
(D.77)

So that finally coefficient Y can be obtained by

Y =
1

2

(
L0 +

R0

ik0

)
. (D.78)

Finally, the transmission coefficient can be computed inserting Eq. D.78 into Eq. D.71.
The energy dependency of this coefficient is shown in Fig. D.9 and is compared with the
Cramer-Nix original model. It can be seen that this modification can have significant
effects compared with the original model, expecially for energies near the barrier height.
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Figure D.9 – Transmission coefficient for a triple parabola potential with values E1 =
E3 = 6 MeV, E2 = 2 MeV, ~ω1 = ~ω3 = 1 MeV, ~ω2 = 0.5 MeV, µ/~2 = 0.054A5/3 (in
MeV−1) where A = 240.
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