
HAL Id: tel-01316894
https://theses.hal.science/tel-01316894

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic resource allocation and management in virtual
networks and Clouds

Houda Jmila

To cite this version:
Houda Jmila. Dynamic resource allocation and management in virtual networks and Clouds. Net-
working and Internet Architecture [cs.NI]. Institut National des Télécommunications, 2015. English.
�NNT : 2015TELE0023�. �tel-01316894�

https://theses.hal.science/tel-01316894
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT CONJOINT TELECOM SUDPARIS et

L’UNIVERSITE PIERRE ET MARIE CURIE

 Ecole doctorale : Informatique, Télécommunications et Electronique de Paris

Présentée par

Houda JMILA

Pour obtenir le grade de
DOCTEUR DE TELECOM SUDPARIS

Dynamic resource allocation and management
in virtual networks and Clouds

Soutenue le 21 décembre 2015 devant le jury composé de :

Rapporteurs :
Pascal Lorenz Professeur Université de Haute Alsace, France.
Luis Muñoz Professeur Université de Cantabrie, Santander.

Examinateurs :
Steven Martin Professeur Université Paris 11, France.
Lila Boukhatem Mdc. HDR Université Paris 11, France.
Mourad Gueroui Mdc. HDR Université de Versailles, France.
Nadjib Ait Saadi Mdc. Dr Université Paris 12, France.

Directeur de thèse :
Djamal Zeghlache Professeur Télécom SudParis. France.

Thèse N° 2015TELE0023

JOINT THESIS BETWEEN TELECOM SUDPARIS AND UNIVERSITY OF

PARIS 6 (UPMC)

 Doctoral School : Informatique, Télécommunications et Electronique de Paris

Presented by

Houda JMILA

For the degree of
DOCTEUR DE TELECOM SUDPARIS

Dynamic resource allocation and management
in virtual networks and Clouds

Defence date : 21 December 2015

Jury Members :

Reviewers :
Pascal Lorenz Professor University of Haute Alsace, France.
Luis Muñoz Professor University of Cantabria, Santander.

Examiner :
Steven Martin Professor Paris 11 University, France.
Lila Boukhatem Mdc. HDR Paris 11 University, France.
Mourad Gueroui Mdc. HDR University of Versailles, France.
Nadjib Ait Saadi Mdc. Dr Paris 12 University, France.

Thesis Supervidor :
Djamal Zeghlache Professor Télécom SudParis. France.

Thèse N° 2015TELE0023

In Honor of my grandfathers and grandmothers, I dedicate this work as a

token of my deep love.

To my parents Khemais and Zahida,

I am particularly indebted for your sincere love, your unconditional trust

and continuous support during my PhD study years. Thank you for

everything!

To my dear husband Mohamed,

I am especially thankful for your love, your understanding and your

continuous support. You gave me strengths on weak days and showed me

the sun on rainy days. Thanks for always believing in me.

To my son Mouadh,

You are my sunshine, I hope you will be proud of your mom!

To my brothers Aladain and Daly,

Thanks for always standing by my side during difficult times and for the fun

moments I have shared with you!

To all JMILA, FEHRI and IBN KHEDHER family members,

Thanks for your love, kind support and continuous encouragement!

Acknowledgement

I would like to express my deep and sincere gratitude to my

supervisor, Prof. Djamal Zeghlache for his continuous support and

constant guidance during my PhD study years in the SAMOVAR

laboratory. Thank you for everything; it was a truly great experience

working with you!

My special appreciation goes to professors Pascal Lorenz, Luis Muñoz

and Steven Martin, and to Dr. Lila Boukhatem, Dr. Mourad Gueroui

and Dr. Nadjib Ait Saadi.

I would like also to thank the staff of Telecom SudParis. Many thanks

go to all my colleagues and friends inside and outside Telecom

SudParis for the excellent and truly enjoyable ambiance.

Abstract

Cloud computing is a promising technology enabling IT resources reservation and utiliza-
tion on a pay-as-you-go manner. In addition to the traditional computing resources, cloud
tenants expect compete networking of their dedicated resources to easily deploy network
functions and services. They need to manage an entire Virtual Network (VN) or infrastruc-
ture. Thus, Cloud providers should deploy dynamic and adaptive resource provisioning
solutions to allocate virtual networks that reflect the time-varying needs of Cloud-hosted
applications. Prior work on virtual network resource provisioning only focused on the
problem of mapping the virtual nodes and links composing a virtual network request to
the substrate network nodes and paths, known as the Virtual network embedding (VNE)
problem. Little attention was paid to the resource management of the allocated resources
to continuously meet the varying demands of embedded virtual networks and to ensure
efficient substrate resource utilization.

The aim of this thesis is to enable dynamic and preventive virtual network resources
provisioning to deal with demand fluctuation during the virtual network lifetime, and to
enhance the substrate resources usage. To reach these goals, the thesis proposes adaptive
resource allocation algorithms for evolving virtual network requests. First, we will study
in depth the extension of a virtual node, i.e. an embedded virtual node requiring more
resources, when the hosting substrate node does not have enough available resources. Sec-
ond, we will improve the previous proposal to consider the substrate network profitability.
And finally we will deal with the bandwidth demand variation in embedded virtual links.

Consequently, the first part of this thesis provides a heuristic algorithm that deals with
virtual nodes demand fluctuations. The main idea of the algorithm is to re-allocate one or
more co-located virtual nodes from the substrate node, hosting the evolving node, to free
resources (or make room) for the evolving node. In addition to minimizing the re-allocation
cost, our proposal proposal takes into account an reduces the service interruption during
migration. The previous algorithm was extended to design a preventive re-configuration
scheme to enhance substrate network profitability. In fact, our proposal takes advantage
of the resource demand perturbation to tidy up the SN at minimum cost and disruptions.
When re-allocating virtual nodes to make room for the extending node, we shift the

1

2

most congested virtual links to less saturated substrate resources to balance the load
among the SN. Our proposal offers the best trade off between re-allocation cost and load
balancing performance. Finally, a distributed, local-view and parallel framework was
devised to handle all forms of bandwidth demand fluctuations of the embedded virtual
links. It is composed of a Controller and three algorithms running in each substrate node
in a distributed and parallel manner. The framework is based on the self-stabilization
approach, and can manage many and different forms of bandwidth demand variations
simultaneously.

Contents

List of Figures v

List of Tables vii

Acronyms viii

1 Introduction 1
1.1 The Cloud Computing paradigm . 2
1.2 The Cloud service models . 3
1.3 The Cloud environment actors . 3
1.4 Resource provisioning in the NaaS model 5
1.5 Problem statement . 6
1.6 Thesis contribution . 8
1.7 Thesis Structure . 10

2 State of the art: Virtual Network resource provisioning 11
2.1 Introduction . 11
2.2 Network Virtualization . 12

2.2.1 Substrate Network . 12
2.2.2 Virtual Network . 13
2.2.3 Virtual Network Resource Provisioning 13

2.3 Virtual Network Embedding strategies . 14
2.3.1 Initial VNE strategies . 14

2.3.1.1 Problem formulation . 14
2.3.1.2 Overview of existing approaches 17

2.3.2 Dynamic Resource Management strategies 19
2.3.2.1 Management of Virtual Networks resource demand fluctu-

ation . 20
2.3.2.2 Management of the Substrate Network usage 26

2.4 Conclusion . 29

3 Virtual Networks Adaptation: Node Reallocation 31
3.1 Introduction . 31

i

3.2 Problem formulation . 32
3.2.1 Network Model . 33
3.2.2 VN resource Request Model . 33
3.2.3 Mapping Model . 33
3.2.4 Problem formulation . 34

3.3 Heuristic algorithm design . 37
3.3.1 First step: Selection of virtual nodes for reallocation 37
3.3.2 Second Step: finding the best new physical hosts 38
3.3.3 Virtual node reallocation scheme . 39

3.4 Simulation results and evaluation . 39
3.4.1 Simulation environment . 40
3.4.2 Simulation results . 42

3.4.2.1 Re-allocation cost for large size evolving virtual nodes . . . 43
3.4.2.2 Migration cost . 44
3.4.2.3 Elasticity Request Acceptance ratio benefits for saturated

SN . 44
3.4.2.4 Reduced execution time, especially for large Substrate Net-

works . 46
3.5 Conclusion . 46

4 Load balancing aware Virtual Networks adaptation 48
4.1 Introduction . 48
4.2 Problem formulation and model . 49

4.2.1 Problem Formulation . 50
4.2.1.1 Optimization objective . 50

4.3 Heuristic algorithm design . 51
4.3.1 Virtual node selection criteria . 51
4.3.2 Virtual node re-allocation scheme . 53

4.4 Simulation results and evaluation . 53
4.4.1 Simulation environment . 55
4.4.2 Simulation results . 55

4.4.2.1 Better Re-allocation cost for large size evolving virtual nodes 56
4.4.2.2 Better load balancing . 57
4.4.2.3 Load balancing Vs re-allocation cost 58

4.5 Conclusion . 59

5 A Self-Stabilizing framework for Dynamic Bandwidth Allocation 61
5.1 Introduction . 61
5.2 Problem description . 62

5.2.1 Initial VNE . 62
5.2.2 Management of bandwidth demand fluctuation 63

ii

5.3 Self-Stabilization . 65
5.3.1 Introduction to Self-Stabilization . 65
5.3.2 Motivation for Self-stabilization . 67

5.4 A self-stabilizing framework for dynamic bandwidth allocation 67
5.4.1 System model . 67

5.4.1.1 Virtual link description 68
5.4.1.2 Substrate node description 68

5.4.2 The Self stabilizing framework . 69
5.4.2.1 Controller description 69
5.4.2.2 Algorithms description 71
5.4.2.3 Algorithm1: Decrease in Bandwidth Requirement

or Link Removal . 71
5.4.2.4 Algorithm2: Link Addition 76
5.4.2.5 Algorithm3: Increase in Bandwidth Requirement . 85

5.5 Simulation results and evaluation . 93
5.5.1 Simulation environment . 93
5.5.2 Simulation results . 93

5.5.2.1 Algorithm1: Decrease in Bandwidth requirement (DBR)
or Link Removal (LD) . 93

5.5.2.2 Algorithm 2: Link addition (LA) 96
5.6 Conclusion . 100

6 Conclusion and Future Research Directions 101
6.1 Conclusion and discussion . 101
6.2 Future research directions . 102

Bibliography 104

iii

iv

List of Figures

1.1 The Cloud environment actors . 4
1.2 The VN resource provisioning sub-problems 7

2.1 Initial VN embedding . 14

3.1 RSforEVN: Main Algorithm steps . 40
3.2 Reallocation cost . 43
3.3 Reallocation cost . 44
3.4 Acceptance ratio . 45
3.5 Execution time . 46

4.1 Reallocation cost (Bi-RSforEVN) . 57
4.2 Load balancing (Bi-RSforEVN) . 57
4.3 Re-allocation cost Vs Load balancing (Bi-RSforEVN) 58

5.1 Initial VN embedding . 63
5.2 Self-stabilization according to Dijkstra. 65
5.3 Decrease in BW Requirement or Link Removal : Example1 73
5.4 Decrease in BW requirement OR Link Removal : Example1 75
5.5 Decrease in BW Requirement or Link Removal : Example2 76
5.6 Decrease in BW Requirement or Link Removal : Example2 77
5.7 Link addition: Example . 83
5.8 Link addition, Rounds 1-3 . 84
5.9 Link addition, Rounds 4-9 . 86
5.10 Link addition, Rounds 10-15 . 87
5.11 DBR or LR: case of only one bandwidth fluctuation 94
5.12 DBR or LR: Case of multiple bandwidth fluctuations 95
5.13 DBR or LD: Number of executing nodes per round 96
5.14 LA:Acceptance ratio depending on req_l . 97
5.15 LA: Acceptance ratio depending on Timer 97
5.16 LA: Embedding cost . 98
5.17 LA: Convergence Time, ALS=78% . 99
5.18 LA: Convergence Time, ALS=64% . 99

v

5.19 LA: Convergence Time, ALS=50% . 100

vi

List of Tables

3.1 Summary of SN key notations . 33
3.2 Summary of VN key notations . 34
3.3 Summary of the mapping model key notations 34
3.4 Summary of the Cost model key notations 37
3.5 Compared algorithms . 42

4.1 Summary of SN/VN/Mapping key notations 49
4.2 Summary of measurement of SN key notations 52
4.3 Compared algorithmsII . 56

5.1 Summary of Virtual link key notations . 68
5.2 Summary of Substrate node key notations 69
5.3 Actions description . 70
5.4 Summary of all devised actions . 92

vii

Acronyms

BW Bandwidth

DBR Decrease in Bandwidth Requirement

LR Link Removal

LA Link Addition

IBR Increase in Bandwidth Requirement

viii

Chapter 1

Introduction

Contents
1.1 The Cloud Computing paradigm 2

1.2 The Cloud service models . 3

1.3 The Cloud environment actors 3

1.4 Resource provisioning in the NaaS model 5

1.5 Problem statement . 6

1.6 Thesis contribution . 8

1.7 Thesis Structure . 10

The internet is continually evolving, shifting from a mere connectivity network to a

content based network. Likewise, Internet users are nowadays more demanding. In addition

to communicating, they also expect to get on demand, cheap and easily accessible resources

and computing services.

In this context, Cloud computing is a promising technology enabling Utility Computing

(Buyya et al. (2009)) reservation and utilization on a pay-as-you-go manner according to

users applications demand. Therefore, Cloud clients no longer need to buy, maintain, update

and manage their infrastructure resources (Armbrust et al. (2009)).

Although different types of services are supplied by Cloud providers (Software/ Plat-

form/ Infrastructure As A Service), little attention was paid to the network. Recently, the

Network As A Service model (Costa et al. (2012)) has changed this scenario by enabling

dynamic provisioning of entire Virtual Networks (VNs). However, allocating a virtual net-

work in the active and dynamic Cloud environment requires flexible and adaptive resource

provisioning algorithms to deal with the changing demands of the virtual network during

its lifetime.

In fact, most cloud-based applications are characterized by a dynamically fluctuating

workload related to the nature of the offered services. In order to provision network re-

1

sources that support such applications, dynamic virtual network provisioning techniques

are required. More specifically, a continuous down or/and up- scaling of the amount of

allocated resources should be guaranteed to reflect the time-varying needs of Cloud-hosted

applications. Past research investigated the issue of efficiently provisioning virtual net-

work resources. However, most of the work only focused on the problem of mapping the

virtual nodes and links composing a virtual network request to the substrate network nodes

and paths, known as the Virtual network embedding (VNE) problem (Fischer et al.

(2013)). Little attention was paid to the resource management of the allocated resources

to continuously meet the varying demands of embedded virtual networks and to ensure effi-

cient substrate resource utilization. In this thesis we will try to solve this issue by proposing

new efficient adaptive resource allocation schemes.

This chapter is organized as follows. First we will introduce the Cloud Computing

concept and its different service models and environment actors. Then the NaaS model

and the concept of connecting the Cloud will be presented. Afterward, we will describe the

problem addressed in this work and summarize the thesis contributions.

1.1 The Cloud Computing paradigm

Among the many attempts to define the Cloud Computing concept, we cite and rely on the

definition introduced by the National Institute of Standards and Technology (NIST) (Mell

& Grance (2011)):

“Cloud computing is a model for enabling convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction ”

Cloud computing associates several computing concepts: i) Grid computing (Krauter

et al. (2002)), ii) Utility computing (Buyya et al. (2009)) and iii) Virtualization (Chowd-

hury & Boutaba (2009)). Grid computing uses the resources of different computers to

handle a complex problem in a realistic time. Utility Computing defines a service provi-

sioning model where computing resources are provided on demand and charged according

to usage. Virtualization creates virtual version of hardware resources, simpler to manage.

In conclusion, Cloud Computing is a grid computing which uses virtualization technologies

at multiple levels to realize utility computing.

2

1.2 The Cloud service models

Traditionally, three service models are proposed for the Cloud (Zhang et al. (2010)):

• The Software As A Service model (SaaS): The Cloud provides software to the

users by offering on demand applications over the Internet. The software is delivered

and managed remotely by one or more providers. For example, Microsoft 365, Sales-

force, Citrix GoToMeeting are SaaS products.

• The Platform As A Service model (PaaS): The Cloud provides a platform to

deploy user application and software. The Cloud consumers can develop cloud ser-

vices and applications directly on the PaaS cloud. Examples of PaaS providers include

Amazon Web Service, Sales Force, Long Jump and Windows Azure.

• The Infrastructure As A Service model (IaaS): The Cloud allows users to use

computing resources like processing, storage, computing hardware and so on. Users

just pay resources usage. Virtualization is extensively used in IaaS cloud in order to

decompose physical resources and offer virtual instances to customers in an isolated

way. For instance, Amazon Web Service, Microsoft Azure and Google Compute En-

gine are IaaS products.

1.3 The Cloud environment actors

Actors in the Cloud environment are different from those of traditional Internet. In fact,

thanks to virtualization, the role of the Internet Service Provider is decoupled into two

independent entities; the Cloud Infrastructure Provider and the Cloud Service

Provider. The Cloud Infrastructure Provider owns the Cloud resources while the Cloud

Service Provider creates and runs applications on these resources, to offer utility to the

Cloud End user. Hereafter we describe these three actors depicted in figure 1.1.

• The Cloud Infrastructure Provider owns and manages the Cloud resources. Re-

lying on virtualisation tools, the rpovider creates and provides on-demand virtualised

3

Figure 1.1: The Cloud environment actors

resources needed by the the Cloud Service Provider while meeting agreed SLA re-

quirements. Cloud providers can be classified into private, community, public or

hybrid according to their clients/users. Private Clouds are provisioned for exclusive

use by a single organization/entity (e.g. university, company etc). Community Clouds

are provisioned for a specific community of consumers (e.g. ONG, police etc.) while

public Clouds are accessible to the general public. Hybrid Cloud are a composition of

private, community, and public Clouds.

• The Cloud Service Provider is the intermediary between the Cloud provider and

the Cloud End User. He negotiates, allocates and aggregates the virtual resources

made available by the Cloud Infrastructure Provider. He then deploys customized

mechanisms, protocols and algorithms in the allocated resources to offer end-to-end

services for the Cloud End User.

4

• The Cloud End User is the actor that uses the Cloud resources. He is responsible

of formulating a service request, (i.e. a Virtual Network Request in the case of NaaS)

describing his needs. Once the Virtual Network is allocated, the Cloud End User

can access, control and manage it. Note that even if the Cloud End User does not

play a direct role in the resource provisioning process, the behavior of the workloads

he generates can influence the decisions of the Cloud Infrastructure/Service Providers.

1.4 Resource provisioning in the NaaS model

Beyond the traditional Software/ Platform/ Infrastructure as a Service offers (SaaS/ PaaS/

IaaS), the NaaS has been proposed as a key technology for networking the Cloud. Net-

working is the ability to connect the user with Cloud services and to interconnect these

services with an inter-cloud approach.

The NaaS enables customers to deploy their applications on the Cloud and to access

to virtual network functions such as custom addressing, network isolation etc. Moreover,

NaaS users can flexibly place their Virtual Machines (VM), they can inquire connectivity

between them, and even specify the topology and characteristics of the virtual network

they require (Costa et al. (2012)). Hence, with the NaaS model, Cloud providers offer to

customers a service in the form of a Virtual Network. For example, a company operating

video conferencing services could run on a virtual network. Likewise, a university delivering

online courses for distance education may run on a virtual network.

In this context, provisioning resources in the NaaS model can be seen as a problem

of Virtual Network resource Provisioning. It corresponds to mapping/embedding a virtual

network, composed of a set of virtual nodes and links requiring an amount of resources (typi-

cally computing resources and memory for nodes, and bandwidth for links), into a substrate

network formed of physical nodes interconnected by physical links and having limited re-

sources, such that the VN requirements are satisfied and the used substrate resources are

minimized. The allocated resources will then be released at the end of the virtual network

lifetime.

But in the NaaS model, other constraints and scenarios should be investigated when

allocating network resources. In fact, after satisfying the initial requirements of a VN, the

cloud provider should deal with the resource requirements variations during the VN lifetime.

Hereafter we enumerate some scenario examples of Cloud clients demand fluctuation:

5

• A virtual network providing office users with virtual desktop services usually expe-

riences low-workloads at weekends, whereas another virtual network hosting online

gaming services has high-workload during the weekends due to high user demands.

• A commercial gaming service needs to deal with steady and predictable increase in

application traffic while maintaining a good Quality of the Service.

• A company deploying its applications on the Cloud needs to extend application de-

livery capabilities to new tenants (after business changes, like a merger or other event

that affects the users population, for example a sudden increase of the number of users

streaming a new movie, or visiting a website related to a worldwide event etc.)

When the VN user requirements vary, the VN characteristics change (in terms of topol-

ogy and resource requirements). Hence, contrary to classic VNE solutions that allocate a

static amount of resources to the VN, adaptive and dynamic techniques are needed to deal

with new demands. Moreover, due to the dynamic arrival and departure of virtual net-

works, the Cloud infrastructure can drift into an inefficient configuration where resources

are fragmented, hence strategies that continuously ensure an efficient use of the substrate

resources are required.

1.5 Problem statement

In this thesis we deal with the resource requirements fluctuation during virtual networks

lifetime and the efficient use of substrate resources. To describe the problem, illustrated in

figure 1.2, we split the virtual network resource provisioning problem into two sub-problems:

Initial VN embedding (VNE), and Dynamic Resource Management (RDM).

• Initial VN embedding:

The aim of this stage is to efficiently map the initial VN request onto the substrate network.

First, the Cloud end user specifies his service requirements (e.g. network topology, comput-

ing resources, bandwidth, etc.) in the form of a graph with virtual nodes interconnected via

virtual links, then communicates it to the service provider. Upon receiving a VN request,

the Cloud Service Provider in cooperation with the Cloud Infrastructure Provider proposes

a provisioning scheme for the the required VN. The Cloud Service provider identifies the

6

Figure 1.2: The VN resource provisioning sub-problems

best substrate resources, made available by the Infrastructure Cloud provider, that satisfy

the VN request while minimizing the used substrate resources, then allocates them.

• Dynamic resource management:

This stage is the focus of this thesis. It deals with i) the resource demand fluctuation of the

embedded VNs and ii) the re-optimization of the substrate network usage.

When the Cloud End User application demand vary, the VN request changes. These

changes can concern virtual nodes and/or virtual links. For both, there are four general

changes:

• Increase of resource requirements of already embedded virtual node/link

• Decrease of resource requirements of already embedded virtual node/link

• Addition of a new virtual node/link to the VN topology

• Deletion of a virtual node/link from the VN topology

Hence, in order to manage these demand fluctuations and deal with inefficient substrate

resources use, the Cloud Service/infrastructure Providers should update the allocated re-

sources and make mapping reconfigurations while taking into account:

• Virtual node and link new constraints: ensuring that new required resources and

bandwidth are satisfied

• Substrate resources limitations: choosing the best substrate nodes and links to host

new virtual elements, since substrate resources are limited.

7

• Quality of Service requirements: minimizing the service disruption and QoS degrada-

tion when migrating the allocated virtual elements.

• Reconfiguration cost: minimizing the amount of reallocated resources.

• The Cloud infrastructure utilization : maximizing the Cloud infrastructure profitabil-

ity and usage.

• Rapidity and responsiveness : ensuring quick reaction to continuous resource require-

ment changes.

Note that the state of the art has extensively investigated the first stage (Fischer et al.

(2013)) while little attention was paid to the resource management phase. Hence, in this

thesis, we will focus on the latter stage. The next section summarizes the contributions of

this work.

1.6 Thesis contribution

• An overview of the virtual network resource provisioning solutions

We will provide an overview of the most relevant virtual network resource provisioning

algorithms found in the literature. As we organize this problem into two stages, we will

first give a comprehensive description of the main solutions proposed for the initial virtual

network embedding problem (VNE), i.e. we will present the different versions of the problem

definition and resolution. Second, we will give an in-depth survey of the substrate and

virtual resource management schemes recently devised. We will classify the solutions

in two main groups: i) Techniques dealing with the virtual network demand fluctuation,

and ii) approaches enhancing the substrate network usage.

• New reconfiguration algorithms for dynamic resources management

To tackle the problem described above, we will first propose a solution to manage the

resource demand fluctuation in embedded virtual nodes. Second, we will improve the previous

proposal to consider the substrate network profitability. And finally we will deal with the

bandwidth demand variation in embedded virtual links.

1. A dynamic scheme to deal with virtual nodes demand fluctuation (Jmila

et al. (2014))

8

We will study in depth the extension of a virtual node, i.e. an embedded virtual node

requiring more resources, when the hosting substrate node does not have enough available

resources. In such situation, prior work (Sun et al. (2013); Zhou et al. (2013); Zhani et al.

(2013)) move the virtual nodes requiring more resources to other available physical nodes.

This induces a downtime or unavailability period of the service running in the migrated

virtual resource, not considered. Such downtime needs to be taken into account and mini-

mized.

In order to satisfy the extension demand while minimizing the service interruption during

migration, we propose a heuristic algorithm RSforEV N . Its main idea is to re-allocate

one or more co-located virtual nodes from the substrate node, hosting the evolving node,

to free resources (or make room) for the evolving node. The virtual nodes selected for

migration are those i) incurring the lowest cost and load during migration, and ii) are the

most tolerant to QoS degradation. The new host is chosen with respect to a maximal

allowed downtime during migration, and all the links associated with the selected virtual

node are re-established after re-embedding.

2. A preventive re-configuration algorithm to enhance substrate network

profitability (Jmila & Zeghlache (2015))

In spite of the good performance results of RSforEV N (in terms of migration/ reallo-

cation cost and convergence time), this proposal does not consider the substrate network us-

age/ profitability. To fill this gap, we propose a new bi-objective algorithm Bi−RSforEV N

that i) responds to increasing node requirements and ii) tidies up the substrate network at

minimum cost and disruptions in the same time. In other terms Bi− RSforEV N jointly

deals with resource demand fluctuation and improves the SN profitability in the same step.

In more detail, like RSforEV N , Bi − RSforEV N re-allocates virtual nodes to make

room for the node requiring more resources, but the selected nodes are chosen according to

their congestion impact. For a given node, this criterion measures the ”degree of involve-

ment” of the virtual links attached to it, in congesting their hosting substrate paths. These

resources (nodes and their hanging virtual links) are then re-allocated and shifted to less

saturated substrate resources to balance the load among the SN.

3. A self stabilizing framework for dynamic bandwidth allocation (Jmila et al.

(2016))

In the third contribution, we concentrate on bandwidth demand fluctuation in vir-

tual links. We propose a distributed, parallel and local view approach, based on the Self-

9

Stabilization concept. In fact, in spite of their advantages, centralized approaches are not

suitable for the wide and dynamic Cloud environment, as they require a real-time up-to-date

description of all the substrate network dynamic parameters (such as the available resources

and mapping).

Our solution is a framework composed of a Controller, and three algorithms running

locally on each substrate node to deal with all types of virtual links evolution: either topo-

logically (add/delete new virtual links) or in terms of resource requirements (increase/

decrease of required bandwidth of an embedded virtual link).

Each algorithm is composed of a set of actions. The Controller is responsible of setting

the actions execution scheme. Different nodes execute the algorithms in parallel and only

a local view is required.

Algorithm 1 handles the case of increase of bandwidth requirements or virtual link

addition (add a link to the VN topology). It manages an end-to end update among the

substrate nodes of the hosting path to meet the request. Algorithm 2 is used to find the

most cost-effective path, to support a new virtual link added to the topology. And finally

Algorithm 3 makes a virtual link migration if needed, to handle an increase of bandwidth

requirements of an embedded link.

1.7 Thesis Structure

The remainder of the this thesis is organized as follows. Chapter 2 presents the most rel-

evant virtual network resource provisioning strategies found in the literature. Chapter 3

outlines the design of the proposed algorithm to deal with virtual node extensions. Chap-

ter 4 presents an improvement of the previous work to deal with the substrate network

profitability. Chapter 5 proposes a novel resource management framework to deal with the

bandwidth demand fluctuation of embedded virtual links. Finally, chapter 6 concludes the

thesis and discusses direction for future research.

10

Chapter 2

State of the art: Virtual Network
resource provisioning

Contents
2.1 Introduction . 11
2.2 Network Virtualization . 12

2.2.1 Substrate Network . 12
2.2.2 Virtual Network . 13
2.2.3 Virtual Network Resource Provisioning 13

2.3 Virtual Network Embedding strategies 14
2.3.1 Initial VNE strategies . 14
2.3.2 Dynamic Resource Management strategies 19

2.4 Conclusion . 29

2.1 Introduction

In spite of the rapid evolution of the Cloud Computing paradigm, it is still facing many

challenges (Mahmood & Hill (2011)) such as security and data confidentiality, service deliv-

ery and billing, energy and resource management etc. In this thesis we concentrate on the

issue of Dynamic resource provisioning. In fact, given the dynamicity and impredictability

of the applications running on the Cloud, most Cloud users can not estimate the amount

of resources they will need in the future. To continue satisfying its clients, the Cloud

provider should handle demand fluctuations during the lifetime of the allocated resources.

It requires elastic resources provisioning mechanisms to adapt the mapping/embedding of

supplied resources along with new demands.

To achieve such dynamic resource allocation, one of the most promising, enabling tech-

nologies is Network Virtualization (Chowdhury & Boutaba (2009)). It is the abstraction of

11

physical resources and their location. In more detail, computing resources (servers, applica-

tions, desktops, storage and networks) are separated from physical devices and presented as

logical systems. Thanks to such abstraction, one physical resource can be shared by differ-

ent logical systems in a transparent and isolated way. More specifically, thanks to network

virtualization, the Cloud infrastructure can be used by various clients simultaneously. In

particular, Network As A Service consumers can control different Virtual Networks running

in the same Cloud infrastructure. Once embedded, the VN resource requirements can evolve

dynamically according to the users applications demands. In this thesis, we will tackle the

issue of managing such evolutions rapidly and with minimum cost.

This chapter gives an overview of the different Virtual Network resource provisioning

solutions present in the literature and is organized as follows: first we will describe in

detail the Network Virtualization environment. Second we will present the virtual network

resource provisioning problem and describe its two sub-problems : Initial Virtual Network

embedding, and Dynamic resource management. The main approaches of each sub-problem

will be outlined, then a conclusion will end the chapter.

2.2 Network Virtualization

Network Virtualization (NV) was proposed as a solution to internet ossification. It provides

an abstraction between computing, storage and networking hardware, and the applications

running on it. Network Virtualization main merit is the ability to consolidate safely multiple

networks in one physical platform. Hence, the Network Virtualization environment is made

up of essentially two entities: the Virtual Network and the Substrate Network. Multiple

Virtual Networks can run simultaneously over one or more substrate networks. Below, we

describe in detail theses two systems.

2.2.1 Substrate Network

A Substrate Network (SN) is a physical infrastructure composed of a set of substrate nodes

interconnected through substrate links. It is characterized by an amount of limited avail-

able resources: typically storage, CPU and memory in physical nodes, and bandwidth in

substrate links, and a per unit cost of node/link resources.

A substrate node is an active electronic device, able to send, receive, or forward

information to other substrate nodes. It can host one or more virtual nodes of different

networks. The virtualization of a substrate node can be performed using several techniques,

namely "‘Operating System Virtualization"’ that allows the physical node to run multiple

12

instances of different operating systems, hence different virtual nodes/machines can be

hosted on one substrate node and use the same functionalities as a normal machine.

A substrate link is a physical medium connecting two substrate nodes. To virtualize

this medium, the substrate link is split into distinct channels, and the sender and receiver

are under the illusion that they own the link. Hence, the physical link can be shared by

many virtual links from different virtual networks. It may host the whole virtual link or

only a portion of the virtual link demand in case of path splitting (Yu et al. (2008)).

2.2.2 Virtual Network

Similarly to Substrate Network, a Virtual Network is composed of virtual nodes and virtual

links. Its is characterized by an amount of required resources, that the VN user defines

when formulating the VN request. This amount can change during the VN lifetime.

A virtual node is a software component, for example a virtual machine encapsulating

CPU, memory, operating system, and network devices. In addition to the amount of required

resources, other constraints can determine the virtual node location or type (router, switch)

etc. A virtual node can be hosted by one and only one substrate node. Virtual nodes are

interconnected through virtual links, forming the virtual network topology.

A virtual link is a logical interconnection of two virtual nodes. Usually defined by the

amount of required bandwidth and the maximum allowed delay, it can span over one or

more physical links that form the hosting substrate path.

2.2.3 Virtual Network Resource Provisioning

While many aspects of network virtualization have received attention from the research

community (Wang et al. (2013)), a few facets remain unexplored or can be improved. Virtual

Network resource provisioning is one of the areas that still require attention as it affects the

physical resources utilization efficiency and the quality of service guaranties.

As stated in the first chapter, this thesis decouples the Virtual Network resource pro-

visioning problem into two sub-problems: Initial VN embedding (VNE), and Dynamic

Resource Management (DRM). Initial VN embedding provides an efficient mapping of the

Virtual Network onto the Substrate Network, while Dynamic Resource Management deals

with the resource demand fluctuation of the embedded VN and the re-optimization of the

substrate network usage. When a VN request arrives, a VNE is attempted, if it succeeds, a

dynamic resource allocation process is then initiated for the embedded VN, and continues

throughout its lifetime.

13

(a) (b)

Figure 2.1: Initial VN embedding

Although the initial VNE is well covered in the literature, the Dynamic Resource Man-

agement is not sufficiently explored. In the following sub-sections we present the main results

found in the state of the art to solve the two sub-problems of VN resource provisioning.

2.3 Virtual Network Embedding strategies

2.3.1 Initial VNE strategies

2.3.1.1 Problem formulation

The initial virtual network embedding problem consists in mapping each virtual node of

the VN to one substrate node that has enough available resources, and each virtual link to

one or more available substrate links connecting the source and destination virtual nodes.

Other constraints may be taken into account, like the virtual path maximum delay, the

geographical nodes location etc.

To explain in depth this problem, we will present a “generic” modeling of the Initial

VNE problem, including a modelling for the Substrate Network, the Virtual Network, the

Mapping, the Revenue and the Cost as used by most of related work:

• The Substrate Network Model

A substrate network is generally represented by a weighted undirected graph Gs = (Ns, Ls),

where Ns is the set of substrate nodes ns and Ls is the set of substrate links ls.

To each substrate node ns ∈ Ns is associated an amount of available resource capacity,

denoted ans and a per unit cost of node resource cost(ns).

14

Similarly, als denotes the available bandwidth on link ls and cost(ls) is the per-unit cost

of bandwidth. A variable p is used to denote a substrate path (a single or a sequence of

substrate links) between two substrate nodes. Ps represents the set of loop-free substrate

paths in Gs. The available bandwidth ap associated to a substrate path p can be evaluated

as the smallest available bandwidth on the links along the substrate path.

Figure 2.1(a) presents an example of a substrate network, where the numbers in rect-

angles next to the nodes represent the amount of available node resources at the nodes and

the numbers next to the edges represent the available bandwidth in the edges.

• The Virtual Network Model

Like the Substrate Network, the VN request topology is represented by a weighted undi-

rected graph Gv = (Nv, Lv), where Nv is the set of required virtual nodes and Lv is the

set of required virtual links. Each virtual node nv ∈ Nv is associated with a minimum

requested capacity denoted by rnv . Each virtual link lv ∈ Lv is associated with a minimum

required bandwidth denoted by rlv .

Figure 2.1(a) present an example of a virtual network. The numbers in rectangles next

to the virtual nodes represent the amount of node resources requested by the nodes and the

numbers next to the virtual edges represent the edge required bandwidth.

• The Mapping model

When a VN request arrives, the infrastructure provider has to perform a suitable VN em-

bedding/mapping and allocate substrate resources to the VN such that the VN resource

requirements are satisfied and the embedding cost is minimized. The allocated resources

will be released when the VN request expires.

Hence, A virtual network embedding for a VN request is equivalent to the problem of

finding a mapping M from Gv to Gs , with respect to the resource requirements of Gv

and such that the revenue of the service provider is maximized and its embedding cost

minimized.

Formally, let us decompose the Virtual Network Embedding into two sub-problems: the

node mapping problem and the link mapping problem:

Node mapping: is to find a mapping M : Nv → Ns, nv 7→M(nv), such that

• aM(nv) ≥ rnv ,∀nv ∈ Nv (the hosting substrate node has enough available resources)

15

• M(nv) = M(mv) iff nv = mv, ∀nv, mv ∈ Nv (a virtual node can be hosted by only

one substrate node)

Link mapping: is to find a mapping M : Lv → Ps, lv 7→M(lv), such that

• M(lv) = p, ∃p ∈ Ps ∀lv ∈ Lv(a hosting path exists)

• ap ≥ rlv (and has enough available bandwidth)

Figure 2.1(b) shows an example of embedding result.

• The Revenue Model

The revenue of a cloud service provider when embedding a VN can be defined according

to different economic models, but most of the proposals (Lu & Turner (2006); Chowdhury

et al. (2012); Wei et al. (2010)) use the revenue model defined as the sum of amounts of

computing and bandwidth resources requested by the VN. Formally:

Revenue(Gv) =
∑

nv∈Nv

rnv +
∑

lv∈Lv

rlv (2.1)

• The Cost Model

When the VN is allocated, it consumes physical resources such as electricity, software and

hardware etc. which incur the embedding cost. Thus, the cost of embedding a virtual

network Gv is the sum of the resources allocated to/consumed by this virtual network (per

unit cost). Formally:

Cost(Gv) =
∑

nv∈Nv

cost(M(nv)) ∗ rnv +
∑

lv∈Lv

∑
ls∈M(lv)

cost(ls) ∗ rlv (2.2)

Finally, finding an initial embedding to a VN Gv can be formulated as:

• Finding node and link mapping solutions (M : Nv → Ns and M : Lv → Ps,

with respect to resource requirements).

• such that Revenue(Gv) is maximized and Cost(Gv) minimized

16

2.3.1.2 Overview of existing approaches

Solving the above problem is NP-hard, as it is related to the multi-way separator problem

(Andersen (2002)). Even when all virtual nodes are mapped, mapping each virtual link

to a single substrate paths is an unsplittable flow problem (Baveja & Srinivasan (2000);

Kolliopoulos & Stein (1997)) which is also NP-hard. Therefore, most solutions proposed for

the VNE are based on heuristics.

Moreover, by varying the defined constraints and objectives, different versions of the

problem can be proposed. Depending on the scenario, diverse solutions were proposed.

Hereafter we present the main categories of the approaches found in the literature.

a Offline Vs Online: Depending on the arrival of virtual network requests, the em-

bedding problem can be tackled as online or offline problem. In fact, in most real

situations, VNE has to be tackled online. In fact, as the VN requests arrive to the

system dynamically, and demands are not known in advance, the VNE algorithm has

to handle each VN request as it arrives without waiting for future requests. Examples

of such approaches can be found in (Fajjari et al. (2011a); Di et al. (2012)). In con-

trary, the offline scenario (Lu & Turner (2006); Houidi et al. (2011)) assumes that all

all VN requests and demands are known in advance, and the system can handle all the

VNs at once. Note that the online scenario is more realistic, but more difficult to solve.

b Multi-domain Vs Single-domain: A VN request can be provided by a single or

multiple infrastructure providers. Hence, two scenarios: single domain and multi-

domain can be distinguished. Although multi-domain is more realistic, it is not well

investigated in the literature. In consists in mapping a VN request over a set of sub-

strate networks managed by different infrastructure providers, each offering a part of

the virtual network. These networks are interconnected with external links and gen-

erally coordinated by a service provider that splits the request in several sub-requests

and maps each of them to the most convenient SN to minimize to total embedding cost.

(Houidi et al. (2011)) is an example of VNE across multiple infrastructure providers

problem. The authors proposed an exact and heuristic virtual network graph splitting

algorithms to divide the VN request among different providers.

c Mapping coordination: As stated above, the VNE problem can be decomposed

in two sub-problems: the node mapping problem and the link mapping problem.

17

One alternative to handle these subs-problems is called uncoordinated VNE and it

consists on solving each sub-problem in an isolated and independent way. In this case,

the node mapping is performed first to provide the input for the link mapping. An

example of uncoordinated mapping was proposed and evaluated in (Zhu & Ammar

(2006)) where the VNE is solved in two steps. First virtual nodes are mapped in a

greedy way (assign the virtual nodes with biggest demands to the substrate nodes with

most available resources). Second, the virtual links are mapped using the k-shortest

path algorithm (Eppstein (1999)) for increasing k.

However, the lack of coordination between the two stages might result in inefficient

virtual link mapping as the solution space will be reduced after the node mapping.

In fact, neighboring virtual nodes can be widely separated in the substrate network

which increases the cost of mapping the virtual links connecting them.

Therefore, coordinated VNE approaches were proposed. Two versions exist: either

the embedding is achieved in two coordinated stages, or performed in one stage/one

shot.

In the two stages coordinated VNE, the node mapping is performed while taking

into account the VN topology (virtual links). An example of this approach is proposed

in (Chowdhury et al. (2012)). Authors take into account a new node constraint

measuring how far a virtual node of the VN request can be from its requested substrate

location. They propose that, each time a Virtual Network (VN) request is received, the

substrate network graph is augmented with meta-nodes (representing virtual nodes).

These meta-nodes are connected to all substrate nodes within a given distance from

the requested location of the corresponding virtual node. Over this augmented graph,

a relaxed Mixed Integer Programming algorithm is performed to find a node mapping

solution. Thereafter, link mapping is achieved following the same solution.

In the one stage coordinated VNE, virtual links are mapped at the same time as

virtual nodes. When the first virtual node pair is mapped, the virtual link between

them is also mapped and, when a virtual node is mapped, the virtual links connecting

it with already embedded virtual nodes are also mapped. An example of this variant is

proposed in (Cheng et al. (2011)). The authors propose a new parameter of a network

node (substrate or virtual) to describe its position inside the topology, this parame-

ter measures the quality of links connection around the node. Then, inspired by the

Google PageRank algorithm, nodes are ranked according to their available resources

and their topological position. When such topology attributes are incorporated in

18

node mapping, the acceptance ratio and the link mapping efficiency are improved.

d Splittable Vs Unsplittable link mapping: Depending on the requirements of the

substrate network, two different ways can be used for link mapping: Unsplittable link

mapping and splittable link mapping. In the first case, each virtual link is mapped to

one and only one substrate path. The shortest path and k-shortest path algorithms

(Eppstein (1999)) can be used to solve the problem. When the substrate network

supports path splitting, a virtual link can be mapped over multiple substrate paths.

Each supporting a part of the virtual link requirements. This concept, introduced

by (Yu et al. (2008)), improves the SN usage and the success rate of virtual network

mapping, but can face the problem of out-of order packet arrival. In (Chowdhury

et al. (2012); Lu & Turner (2006); Houidi et al. (2011)), path splitting based embed-

ding VNE solutions are proposed using linear programming algorithms.

e Centralized Vs Distributed: In a centralized VNE system, one central entity

is responsible of performing the embedding. It has a global view of the SN and takes

decisions according to the up-to-date description of the available substrate resources.

The majority of VNE solutions present in the literature are centralized. The advantage

of such approach is that the mapping is performed while the entity is aware of the

overall SN situation, which makes the embedding more optimal. However, it faces

scalability problems in large networks, and presents a single point of failure (if the

central entity fails, the entire mapping process fails). Examples of centralized VNE

approaches can be found in (Fajjari et al. (2011a); Zhu & Ammar (2006); Razzaq

& Rathore (2010); Cheng et al. (2011); Di et al. (2012)). On the contrary, in a

distributed VNE system, multiple entities compute the embeddings. The principal

advantage of such approach is scalability, but communication cost and synchronization

overhead need to be minimized. (Houidi et al. (2008); Till Beck et al. (2013); Esposito

et al. (2014)) are distributed VNE approaches.

2.3.2 Dynamic Resource Management strategies

During their lifetime, VN resource requirements can evolve according to end users fluctu-

ating demands. Hence reserving a fixed amount of resources is inefficient to satisfy them.

Moreover, the dynamic arrival and departure of VNs can drift the Substrate Network into

an inefficient configuration where resources are fragmented. To cope with theses problems,

19

some dynamic resource management strategies where proposed. They can be classified in

two main groups: i) Management of VN resource demand fluctuation and ii) Re-optimization

of the SN usage. Hereafter we present the main solutions present in the literature, for each

category.

2.3.2.1 Management of Virtual Networks resource demand fluctuation

Most cloud-based applications are characterized by a dynamically fluctuating workload due

to the nature of the offered services and/or other external events that can influence their

use (sudden increase of the number of users streaming a new movie, or visiting a website

related to a worldwide event etc).

In order to provision network resources that support such applications, dynamic VN

provisioning techniques are required. In fact, a continuous down or/and up- scaling of the

amount of allocated resources should be guaranteed to reflect the time-varying needs of

Cloud-hosted applications.

• In (Mijumbi et al. (2014b)), authors propose a decentralized multi-agent resource man-

agement system based on Reinforcement Learning (Sutton & Barto (1998)) to deal

with demand fluctuation of embedded VNs. They model the substrate network as a

decentralized system with a learning algorithm in each substrate node and substrate

link. The aim is to use evaluative feedback to learn an optimal policy to deal with

each resource demand fluctuation in a distributed and coordinated manner. Hence

each agent (substrate node/link) dynamically adjusts the allocated resources to avoid

underutilization of the substrate network. To satisfy new demands, the agent should

choose an action among 9 pre-defined actions (Decrease/increase allocated resources

by 50/37/25/12.5 percent or maintain the currently allocated resources). The choice

is made according to the results of a decentralized Q-learning based algorithm that

iteratively approximates the state action values. An agent learning is evaluated us-

ing a reward function that measures link delays, packet drops and network resource

utilization.

Note that, in this proposal, a limited set of actions is allowed (increasing or deceas-

ing the amount of allocated resources by a fixed percentage), this comes at a cost of

efficiency, as the learning algorithm is constrained in terms of perception and action

granularity. Moreover, authors assume that the VN topology does not change during

its lifetime, and did not investigate the case where a new link or node is added to

20

the VN topology. Besides, virtual resources are always hosted in the same physical

nodes/links and authors do not take advantage of moving resources to other free sub-

strate resources.

• (Mijumbi et al. (2014a)) propose to improve the efficiency of the previous system

by conceiving an autonomous system based on artificial neural networks (ANN) to

achieve an adaptable allocation of resources to virtual networks. They first represent

each substrate node and link as an ANN whose input is the network resource usage

status and the output is an allocation action. Then, an error function is used to

evaluate the desirability of ANN outputs, and hence perform online training of the

ANN.

For each agent (substrate node or link), a 3-layer ANN is used; i) the input layer

consists of 3 neurons describing the a) percentage of the virtual resource demand

currently allocated, b) the percentage of allocated resources currently unused, and

c) the percentage of total substrate resources currently unused, ii) the output layer

consists of one neuron representing the action that should be taken to change the

resource allocation for a given virtual resource and iii) the hidden layer is composed of

a number N of neurons, where N is an optimal number determined by experimentation.

An error function is used to measure the deviation of an agent actual action from

a target action, with the aim of encouraging high virtual resource utilization while

punishing the agents for QoS degradation (packets drop for nodes, and delay for links).

To do so, the degree of desirability or undesirability of an agent action is measured

according to resources allocated to virtual resources, substrate resources utilization

and QoS degradation.

Note that even if neural networks are important for their learning and generalization

capabilities, they do not have a clearly defined way on how the number of layers as

well as the number of neurons in each layer are determined. Moreover, like the pre-

vious proposal, this algorithm does not not investigate topological changes of a VN

during its lifetime.

• (Mijumbi et al. (2015)) This work is an extension of the previous one and proposes an

adaptive hybrid neurofuzzy (Nürnberger (2001)) system composed of neural networks,

fuzzy systems and reinforcement learning to achieve dynamic resource allocation in

21

virtualized networks. The system dynamically adjusts both the substrate network

usage, and the substrate network structure by adding or removing links, in form of

rules. To do so, the substrate network is first modeled as a distributed system of

autonomous, adaptive and cooperative agents. Then, an initial knowledge base for

each agent is defined using supervised learning. To achieve this, a base with max-

imum possible rules was defined, then pruned using examples from a training data

set. This knowledge base is continuously improved using a Reinforcement Learning

evaluative feedback mechanism. Finally, authors devise a procedure for agents to co-

operate and coordinate their resource allocation actions to prevent conflicting actions

and share their knowledge to enhance their respective performances and ensure faster

convergence of the system. We note the same criticism of ignoring the VN topological

evolution.

• In (Zhou et al. (2013)), authors propose an incremental re-embedding scheme for

evolving VNs requirements relying on the notion of physical resource migration on

nodes reported in (Zhou et al. (2010b)) that distributes virtual resources across mul-

tiple interconnected physical resources. Considering that for each VN, re-embedding

a virtual node is one kind of operation cost; their objective is to reduce the number of

virtual nodes or resources that need to be re-embedded when the resources demand

fluctuates.

To do so, they select a neighboring node to provide the newly required resources

then allocate bandwidth resource to provision necessary bandwidth between the two

substrate nodes hosting the shared virtual node. If this is not possible, the virtual

node and its hanging virtual links are re-embedded into other substrate resources

greedily.

Note that the proposed algorithm leads to increased bandwidth usage to connect the

substrate nodes supporting the same virtual node, which limits the acceptance ratio

of new requests. Moreover, authors do not minimize the per-node reallocation. They

minimize only the number of reallocated nodes.

• Authors of (Sun et al. (2013, 2012)) addressed the problem of evolving resource re-

quests in VN embedding and listed four VN evolution cases: i) adding new nodes and

links to an ongoing VN allocation ii) deleting no longer needed resources when services

end iii) releasing resources when a task requires less resources to run and finally iv)

22

requesting more resources when VN nodes or/and links require more resources at spe-

cific stages of an application lifetime. The Authors optimally reconfigure the evolving

VNs using a Mixed Integer Problem formulation with the objective of minimizing the

reconfiguration cost. Since the problem is NP-hard, they suggest heuristic algorithms

to deal with each case to avoid exponential explosion.

They unfortunately consider exhaustively all mapping combinations to adapt virtual

resources by evaluating the cost for each substrate node and select finally the most ef-

fective one. This strategy is not suitable for large physical networks and can not meet

the swift and rapid adaptation required by dynamic cloud applications and services.

Moreover, note that only one demand fluctuation can be handled at a given time.

• (Xu et al. (2014b)): Motivated by the fact that most enterprise virtual networks have

periodic resource demands, authors propose a virtual network embedding algorithm

that periodically explores these resource demands, if known, else predicts them using

the VN requests history. For each virtual node/link, they consider i) the maximal

demand, ii) the periodic demand and iii) the actual demand. The VN user pays for

the maximal resource demand, and the VN embedding cost is defined according to

the amount of used resources.

The proposed algorithms aim at maximizing the Cloud service provider revenue while

keeping its service cost (the used resources) minimized, such that i) the resource

demands of each VN are met, if the periodic demand is known else ii) the resource

violation of each VN is controlled, where the ”resource violation” is defined as the

ratio of the amount of violated (not met, not allocated) resources to the amount of

total resource demands.

To do so, authors first propose an embedding metric to model the dynamic workloads

of substrate resource usage. In fact, they suggest that the ”embedding ability” of a

substrate resource in admitting a virtual resource is jointly determined by the amount

of available resources and their utilization ratio, since the more the substrate resources

are utilized, the higher is the risk of SLA violations they face.

Second they propose an algorithm to embed a VN with static resource demand in two

coordinated stages: the virtual nodes are first mapped into substrate nodes chosen as

closely as possible in the substrate network, then the virtual links are mapped later

with lowest cost using the shortest path algorithm.

23

For VNs with known periodic resource demand, graphs with different resource de-

mands at different time slots are constructed then allocated using the first algorithm.

For VNs with unknown periodic demand, each VN is initially allocated with its max-

imal resource demand, and then the embedding is reconfigured at each time interval

to take into account the predicted requirements.

• (Zhang et al. (2014b,a)) devise an opportunistic resource sharing-based mapping

framework to efficiently deploy virtual networks with time-varying resource demand.

A work-conserving allocation algorithm is presented. This algorithm performs in two

stages: i) in the global stage, the virtual nodes are placed in a first-fit fashion, and

virtual links are split among multiple paths, ii) in the local stage, physical resource

usage is optimized through opportunistic sharing among different resource demands.

• In (Dab et al. (2013)), the authors propose a dynamic resource reconfiguration ap-

proach to achieve high resource utilization and to increase the infrastructure providers

revenue. The authors handle the bandwidth resources requirements of an expanding

VN. They propose to adjust allocated resources in the SN according to the new users

needs by reconfiguring the resource allocation in the SN.

To achieve a cost-efficient reconfiguration, the proposal, based on Genetic metha-

heuristic, sequentially generate populations of reconfiguration solutions that minimize

both the migration and mapping cost and then select the best solution. Note that

virtual links are migrated simultaneously for better efficiency.

• In (Seddiki et al. (2013)), an automated controller is proposed to distribute the band-

width among virtual networks. This controller adapts the resource allocation accord-

ing to dynamic change of the workload of each VN. It uses a prediction-based approach

to find the optimal configuration for virtual resources that meets QoS requirements.

The system is composed of Service provider controllers and Infrastructure provider

controllers. The former, composed of VN sub-controllers, periodically estimates and

optimizes the VN bandwidth requirements. The latter, in turn, is responsible for al-

locating the available bandwidth on substrate links between multiple VNs in the aim

of providing fair bandwidth allocation and avoiding bottlenecks.

24

• In (Blenk & Kellerer (2013)), authors address VN reconfiguration when the VN re-

source requirements change according to services traffic patterns. Considering pre-

dictable traffic patterns, they propose an embedding algorithm that reduces the num-

ber of link migrations to minimize the impact of reconfigurations while achieving an

acceptable load balancing over substrate links.

They unfortunately reallocate virtual nodes randomly and focus only on virtual link

reallocation.

• (Fajjari et al. (2012)) deal with adaptive resource allocation in the Cloud back-

bone network. authors propose an Adaptive Virtual Network Embedding algorithm

(Adaptive-VNE) based on the ”divide and conquer” strategy that dynamically adapts

the virtual links bandwidth allocation in order to take advantage of the unused re-

served bandwidth. The algorithm divides the VN topology into many star topolo-

gies, then assigns each star using an approximation-algorithm for bottleneck problems

(Hochbaum & Shmoys (1986)). The residual physical resources are taken into account

when choosing the physical host. It is worth noting that a monitoring module is used

to estimate an upper-bound of usage rate for each virtual link.

• In (Zhang et al. (2012)), a robust dynamic bandwidth allocation algorithm to period-

ically adjust bandwidth allocation of VNs is proposed. It consists of two stages: first,

each VN uses a traffic model to forecast its traffic demand, second, a robust dynamic

bandwidth allocation algorithm is applied to reassign the predicted bandwidth. The

robust bandwidth allocation problem is formulated as a semi-infinite optimization

problem based on path-flow model, then solved through a distributed algorithm using

the Primal decomposition technique (Boyd et al. (2006)).

• Authors of (Wei et al. (2010)) present a dynamic bandwidth allocation algorithm for

Virtual Networks. The issue is formulated as a Multi-Commodity Flow problem. In

order to avoid bottlenecks, a traffic predictor is integrated into the MCF solver to pre-

dict traffic forecast on the most congested physical links, bandwidth is then allocated

based on that prediction. Note that traffic forecast are made with the assumption of

Poisson process traffic pattern. However, this assumption does not reflect necessarily

the real traffic pattern in a network virtualization environment.

25

2.3.2.2 Management of the Substrate Network usage

Adaptation of already embedded VNs to dynamically optimize resource utilization has re-

ceived little attention. The existing strategies can be classified into two main families: i)

periodic and ii) reactive approaches. The first family periodically selects and re-allocates

the entire or parts of the underlying VNs, but this induces high reconfiguration cost and

network instability. The second family executes the re-allocation scheme only when a vir-

tual network request is rejected thus affecting user satisfaction.

Periodic approaches

• The authors of (Zhu & Ammar (2006)) propose an online virtual network reconfigura-

tion algorithm that operates on VNs using congested substrate resources. A periodic

scheme first marks the set of VNs to re-allocate by checking the overloaded physical

nodes and links. A VN making use of at least one overloaded physical node or link

is marked. By comparing the ratio of the maximum link/node stress over the aver-

age link/node stress, authors determine the most imbalanced (overloaded) substrate

resources. In a second stage, the algorithm reassigns the entire marked VN topology

by re-running the initial embedding algorithm.

Unfortunately, such periodic re-allocation is very costly and mapping again the whole

VN topology disrupts more running services than needed because of the global rear-

rangements.

• Work in (Yu et al. (2008)) uses a periodic path migration algorithm to minimize

used bandwidth to increase the VN acceptance ratio. To do so, the authors fix the

node mapping of already embedded virtual networks then the initial link-mapping

algorithm is performed again to find new underlying paths. The path migration is

performed by either changing the splitting ratio for the existing paths or selecting new

paths.

Note that the authors do not take advantage of migrating traffic sources and sinks (i.e.

virtual nodes) and unfortunately limit the reconfiguration problem to path migration.

• The authors of (He et al. (2008)) propose DaVinci, a periodic adaptive resource allo-

26

cation strategy to maximize the substrate network usage. In the Davinci architecture,

each virtual network runs a distributed customized protocol, derived from optimiza-

tion theory to maximize its own performance objective, while, at a larger timescale,

each substrate link periodically adjusts bandwidth shares across virtual networks based

on local link loads. Davinci supports i) multipath traffic management, ii) customized

protocols for each traffic class and iii) separate resources at each edge router to iso-

late different traffic classes. For each VN, the aim of the optimization problem is

to maximize its customized objective function under some capacity constraints, then,

leveraging on primal decomposition technique, the authors derive the bandwidth share

adaptation algorithm, performed by the substrate network. The system convergence is

proved using optimization theoretic tools, (under some assumptions related to convex-

ity of the optimization problem, timescale of adaptation and selection of some tuning

metrics,) and numerical experiments evaluate the system efficiency under different

scenarios.

The main criticism of this approach is that each substrate link needs to know the

performance objective of all virtual networks to perform bandwidth allocation, which

is not reasonable if the VNs do not belong to the same institution. Besides, DaVinci

does not assume malicious and greedy behaviors of virtual networks when running

their customized protocols, and this can harm the performance of the other virtual

networks.

• The authors of (Botero & Hesselbach (2009)) studied the problem of bandwidth alloca-

tion among VNs especially when there are bottleneck substrate links. A substrate link

is a bottleneck when the bandwidth required from it exceeds the bandwidth actually

available. Authors propose to fairly distribute the bandwidth among competing VNs

to avoid their strangulation. To do so, they define two types of connections for virtual

links: restricted connections limited by the reserved bandwidth of a previous link, and

unrestricted connections limited by the reserved bandwidth for the current link. To

fairly distribute the bandwidth, first, restricted connections are allocated bandwidth

based on their requirements and then the remaining bandwidth is distributed equally

among unrestricted connections. However, we notice that the allocation scheme itself

is static, and only supports virtual link allocation, hence virtual node allocation must

be investigated. Besides, authors suppose that only one service class crosses a virtual

link, thus, the work should be extended to support service differentiation.

27

• The authors of (Marquezan et al. (2009, 2010)) propose a distributed reallocation

scheme for virtual network resources. It is an online algorithm based on self-organizing

techniques that uses local view features to equalize the bandwidth and storage con-

sumption on physical nodes by moving some virtual nodes. The main idea is to shorten

the physical path embedding a virtual link that overloads at least one substrate link

according to its incoming/outgoing traffic. To do this, either the source or the des-

tination of traffic (i.e. virtual node) is moved. The proposed algorithm is divided in

five stages. First, each physical node determines if there is some cut-through traffic to

be eliminated by moving/receiving a virtual node. In the second and third stages, the

physical neighbors exchange and analyze information about which and where these

virtual nodes might be moved. The decision and reservation of the resources are made

in the forth stage, and finally the virtual resources are moved. However, note that

contracting a path may require a great deal of moving until the path length becomes

equal to one hop. Moreover, the migration frequency of routers depends on the traffic

load, which is actually unstable and correlated to the running applications.

• In (Zhou et al. (2010a)), the authors proposed a bandwidth allocation scheme based

on game theory. The proposal is a non-cooperative game where each VN tries to max-

imize its utility function when sharing physical resources. The latter depends on i)

the available bandwidth, ii) the congestion cost according to the assigned bandwidth

and iii) the cost of resource. An iterative algorithm is used to find Nash Equilibrium.

The convergence of the algorithm is shown using a very simple scenario (a physical

topology containing two nodes and two links).

Reactive approaches

• Authors of (Farooq Butt et al. (2010)) propose a reactive reconfiguration scheme that

operates when a VN request is rejected. The authors first introduced two new metrics

when mapping. The first measures the likelihood of a resource of becoming bottle-

neck. The second denotes the saturation of a substrate resource. Based on these

metrics, the reconfiguration algorithm first detects the unmapped virtual nodes and

links causing the rejection of the VN request, and then moves the congested links and

nodes to less critical hosts.

28

• (Fajjari et al. (2011b)) proposed a greedy approach for reallocating star components

within individual VNs with the objective of freeing physical resources whenever a new

VN request is rejected. The proposal first sorts the embedded virtual nodes according

to a criterion that measures their suitability for migration. It takes into account i)

the number of congested links in the paths embedding the virtual links attached to

the virtual node, and ii) the VN residual lifetime. Second, the most suitable virtual

node, as well as its hanging virtual links are migrated to other underutilized substrate

resources. Note that the links re-assignment is based on the shortest path algorithm,

where a path length is defined according to its saturation degree. Thereafter, the

algorithm tries to map again the rejected VN. The next iteration of the algorithm mi-

grates the following virtual node and the process is repeated until the VNR is mapped

or until a predefined number of iterations is reached.

• Authors of (Tran et al. (2012); Tran & Timm-Giel (2013)) propose a reconfiguration

strategy that takes into account the cost incurred by the service disruption during

re-allocation. The proposal is a reactive mechanism, which reacts to any rejection of

a VN request. Indeed, the algorithm reconfigures the currently-mapped networks to

free physical resources to embedd the new request. The reconfiguration also mini-

mizes the number of necessary changes in order to reduce the service disruption. The

mechanism was mathematically formulated as a Linear Programming problem, which

minimizes the number of affected virtual nodes and links during reconfiguration while

guaranteeing that the new VN request can be cost effectively mapped. A heuristic to

pre-select the VNs involved in the reconfiguration process was also introduced.

2.4 Conclusion

In this thesis, we concentrate on resource demand fluctuation on nodes and links.

First, we focus on virtual nodes, of already embedded VNs, requiring more resources.

Compared to most previously cited approaches who ignore the service interruption during

virtual nodes migration, the latter is taken into account and minimized. Moreover, unlike

(Zhou et al. (2013)), both the per-node reallocation cost and the number of reallocated

nodes are reduced. On the other hand, contrary to (Mijumbi et al. (2014b,a, 2015)) who

29

does not take advantage of moving virtual resources to other available locations, we re-

allocate convenient virtual nodes to make room on saturated hosts.

Many resource management algorithms concentrate on the bandwidth demand fluctua-

tion problem. Compared to (Sun et al. (2013); Xu et al. (2014a); Zhou et al. (2013); Fajjari

et al. (2012)), our proposal is distributed and relies on a local view, more suitable for the

large and dynamic Cloud environment. Moreover, we consider the VN topological changes,

ignored by (Mijumbi et al. (2014b,a, 2015)). Hence, our framework is the first decentralized

approach that deals with all forms of bandwidth demand changes. Besides, our system does

not require a learning phase to initialize the decision making process as designed in (Mi-

jumbi et al. (2014b)). Finally, we deal with online bandwidth variations, unlike (Blenk &

Kellerer (2013); Zhang et al. (2012); Seddiki et al. (2013)), who try to predict the workload.

None of all previously cited work was concerned jointly by efficient SN utilization and

satisfying new resource requirements. We fill this gap by combining the two objectives.

We adapt resource allocation at minimum cost to meet new demands of already embed-

ded virtual nodes, respect quality of service of all running applications and simultaneously

maximize utilization by balancing the load on the SN links. In other terms, unlike the

periodic and reactive approaches that lead to network instability and service disruption of

reconfigured VNs, we propose a preventive solution to “tidy up ” the SN when responding

to fluctuating resource requirements at minimum cost and disruptions.

30

Chapter 3

Virtual Networks Adaptation:
Node Reallocation

Contents
3.1 Introduction . 31

3.2 Problem formulation . 32

3.2.1 Network Model . 33

3.2.2 VN resource Request Model . 33

3.2.3 Mapping Model . 33

3.2.4 Problem formulation . 34

3.3 Heuristic algorithm design . 37

3.3.1 First step: Selection of virtual nodes for reallocation 37

3.3.2 Second Step: finding the best new physical hosts 38

3.3.3 Virtual node reallocation scheme 39

3.4 Simulation results and evaluation 39

3.4.1 Simulation environment . 40

3.4.2 Simulation results . 42

3.5 Conclusion . 46

3.1 Introduction

This chapter addresses the dynamic re-allocation of virtual nodes to support cloud services

according to varying applications and user resource requirements. More specifically we

focus on virtual nodes of already embedded VNs when more resources are required from the

hosting physical machine or node. The need for more resources may have multiple reasons

such as increasing applications requirements, the need to maintain quality of service of

multiple services sharing the same physical nodes, etc.

31

Reacting to these dynamic changes and growing needs may require allocation of addi-

tional resources from the hosts themselves when feasible, or the reallocation and optimal

reshuffling of virtual resources across physical nodes or hosts. When hosts do not have

enough resources, prior work on Virtual Networks Embedding (Zhu & Ammar (2006); Sun

et al. (2013)), move the virtual nodes requiring more resources to other physical nodes to

maintain the service. This affects the active application or service running in the virtual

resource. The service will experience a downtime or unavailability period that needs to be

taken into account and minimized (Kapil et al. (2013)). In real situations, VN users often

impose Service Level Agreements with penalties for service disruptions caused by migra-

tion (e.g. penalty imposed to Amazon EC2 for violating VM availability SLA, Zhani et al.

(2013)). Avoiding such disruptions and penalties are essential. The migration of the virtual

resource will also induce load on the physical network links proportionally to the size of the

migrated virtual resource.

In order to minimize these impacts, we propose to select the virtual nodes in the affected

physical node that will incur the lowest cost and load during migration. Virtual resources

that are intuitively candidates for such migration are those that are tolerant to disruptions

and/or are of small size since the migration will be faster and will induce less load. When

making migration decisions, the selected virtual resource connectivity has to be taken into

account since it has to be maintained, actually all the links associated with the selected

virtual resource have to be re-established.

This chapter is organized as follows: the next section describes and formulates the

problem. Section 3.3 presents our proposed heuristic algorithm to achieve minimum cost

and service interruption when additional resources are required. Performance evaluation

of the proposed heuristic algorithm is presented and compared to prior art in section 3.4.

Finally, section 3.5 concludes the chapter.

3.2 Problem formulation

This section presents a mathematical model to allocate additional resources to active VNs

hosted by shared infrastructures (or SNs). Fulfilling the requests for more resources can be

achieved by moving, out of the physical host, only the concerned virtual nodes themselves

or by migrating other virtual nodes to other hosts. The goal is to derive from the model

an objective function that will realize the re-allocation of virtual nodes at minimum overall

adaptation cost. Remapping and migration costs, downtime and optimization performance

need to be taken into account in the derivation.

32

3.2.1 Network Model

The cloud infrastructure (referred in this thesis as substrate network) can be represented

by a weighted undirected graph Gs = (Ns, Ls), where Ns is the set of substrate nodes ns

(e.g. physical servers) and Ls is the set of substrate links ls (e.g. data center links). Gs is

used to represent the substrate.

Let at
ns

denote the available capacity of node ns (typically CPU and memory) and at
ls

denote the available bandwidth on link ls at time t. Variable ϕ is used to denote a substrate

path (a single or a sequence of substrate links) between two substrate nodes. Parameter Pϕ

represents the set of substrate paths. The available bandwidth aϕ associated to a substrate

path ϕ can be evaluated as the smallest available bandwidth on the links along the substrate

path.

Table 3.1: Summary of SN key notations

Notation Description
Gs Substrate Network
Ns Set of substrate nodes ns

Ls Set of substrate links ls
at

ns
Available capacity of substrate node ns at time t

at
ls

Available bandwidth on substrate link ls at time t

Pϕ Set of loop-free substrate paths ϕ

aϕ Available bandwidth associated to a substrate path ϕ

3.2.2 VN resource Request Model

This section models the user expressed VN requests (supporting cloud services) that are sent

to cloud providers. A VN request is a set of virtual nodes interconnected via virtual links.

The VN request topology is represented by a weighted undirected graph Gv = (Nv, Lv),

where Nv is the set of required virtual nodes and Lv is the set of required virtual links.

Each virtual node nv ∈ Nv is associated with a minimum required capacity denoted by bt
nv
.

Each virtual link lv ∈ Lv is associated with a minimum required bandwidth denoted by bt
lv
.

The set of active VNs on Gs at time t is defined as V N t and the evolving node (requiring

more resources) of the virtual network i is represented by mi
v with i ∈ V N t and with a

new resource requirement bt+1
mi

v
> bt

mi
v
.

3.2.3 Mapping Model

For each VN request Gr
v in the substrate network, let M t

Nr resp. M t
Lr) describe the node

mapping resp. the link mapping of Gr
v in the substrate network at time t, such that resource

33

Table 3.2: Summary of VN key notations

Notation Description
Gr

v Virtual Network r of V N t

N r
v Set of virtual nodes nr

v of VN Gr
v

Lr
v Set of virtual links lrv of VN Gr

v

bt
nr

v
Minimum required capacity of virtual node nr

v

bt
lrv

Minimum required bandwidth on virtual link lrv

constraints are respected. More precisely, M t
Nr : N r → Ns describes the node mapping and

M t
Lr : Lr → Pϕ describes the link mapping.

Table 3.3: Summary of the mapping model key notations

Notation Description
M t

Nr
v

: N r
v → Ns Node mapping related to VN Gr

v

M t
Lr

v
: Lr

v → Pϕ Link mapping related to VN Gr
v

3.2.4 Problem formulation

• A. Reallocation strategy When an evolving node mi
v requiring additional resources

and a substrate host h with M t
Nr

v
(mi

v) = h has insufficient resources a strategy for

re-allocation of resources is needed to maintain the service. This may require a migra-

tion of the virtual node or other nodes in the host. A trivial and suboptimal strategy

is to move the evolving node to another less loaded host. A more elaborate strategy

should take into account multiple criteria such as migration and re-mapping costs. We

accordingly adopt a strategy where we reorganize and redistribute virtual nodes in the

initial host and its neighbors while minimizing overall re-allocation cost. Intuitively,

the nodes inducing the smallest migration cost and disruptions should be selected in

priority to find a good solution.

• B. Optimization objective With this strategy in mind, we implement the vir-

tual node re-allocation in two phases: Re-mapping and Migration. The Re-mapping

(remap) phase consists in finding alternative substrate resources to host the real-

located components. The virtual node would be remapped onto another substrate

node found to have enough available resources. The links associated to the original

(or source) virtual node will be also remapped to restore connectivity with the new

hosting (destination) node. Secondly, the Migration phase (migrate) will move tasks

or jobs previously running on the source virtual node onto the selected destination

34

virtual node to resume tasks. Moving tasks requires the establishment of a tem-

porary connection between the old and new hosts to support task migration. This

induces a transfer cost that we take into account in the reallocation cost assessment.

The resource re-allocation incurs both a re-mapping cost Costremap and a migration

cost Costmig.

– Re-mapping cost: Similar to previous work in (Sun et al. (2013)), the mapping/re-

mapping cost of a VN request is equal to the sum of the costs of allocating/re-

allocating its virtual nodes and links from the data center or infrastructure re-

sources (physical nodes and substrate paths). Let cost (ns) (and cost (ls)) be the

cost unit of substrate node (and substrate link) respectively.

Let nr
v ∈ N r

v , r ∈ V N t denote a virtual node selected to be re-allocated related to

request r and let Snr
v
represent the star topology formed by nr

v and its connected

virtual links. We define the cost of re-mapping nr
v as the sum of total substrate

resources reallocated to the node nr
v and its attached virtual links. Formally:

Costremap (nr
v) = bt+1

nr
v
∗ cost

(
M t+1

Nr
v

(nr)
)

+
∑

lr
v∈Snr

v

∑
ls∈M t+1

Lr
v

(lr
v)

bt+1
lr
v
∗ cost(ls) (3.1)

Where bt+1
nr

v
is the new resource demand of node nr

v, (M t+1
Nr

v
, M t+1

Lr
v

) describes the

mapping of re-allocated elements, and cost
(
M t+1

Nr
v

(nr)
)
is the cost of new map-

ping.

∗ Migration Cost: During the migration step, migrated tasks experience a

downtime that depends on i) the migration technique Kapil et al. (2013),

ii) the size of the migrated task and iii) the bandwidth allocated for task

migration. Migration is a topic on its own that is beyond the scope of this

thesis.

For our study, we consider that the downtime depends primarily on the size

of the migrated task and the bandwidth available during the migration.

In our model, a maximum downtime for each virtual node nr
v, downtimer, is

imposed by each VN end-user. To respect this condition, sufficient resources

should be allocated from the target host depending on the size of the task to

35

migrate. Formally, we define minBW nr
v
as the minimum required bandwidth

to migrate a virtual node nr
v :

minBW nr
v

=
bt+1

nr
v

downtimer
(3.2)

Where bt+1
nr

v
is the size of the re-allocated virtual node. The cost of task

migration costmig (nr
v) is the sum of all resources allocated (needed) for mi-

gration.

Formally, if pmig(nr
v) ∈ Pϕ denotes the substrate path used for migrating the

node nr
v, the migration cost is defined as:

costmig (nr
v) =

∑
ls∈pmig(nr

v)

minBW nr
v
∗ cost(ls) (3.3)

∗ Reallocation cost Finally, the reallocation cost of a virtual node is the

sum of its re-mapping cost and its migration cost:

Costrealloc (nr
v) = Costremap (nr

v) + Costmig (nr
v) (3.4)

To satisfy the demand of an evolving node mi
v for additional resources, the

re-allocation of more than one virtual node may be required. The global

re-allocation cost RealloCostmi
v
related to an evolving node mi

v is the sum

of all re-allocation costs:

RealloCostmi
v

=
∑

nr
v isReallocated

Costrealloc (nr
v) (3.5)

Our objective is to find the best re-allocation scheme in order to satisfy the

evolving node additional resource request while minimizing all re-allocation

costs. This leads to the following objective function:

Objective function:

minimize(RealloCostmi
v
) (3.6)

36

Table 3.4: Summary of the Cost model key notations

Notation Description
Costremap(nr

v) Cost of re-mapping a virtual node nr
v

Costmig(nr
v) Cost of migrating a virtual node nr

v

Costrealloc(nr
v) Cost of re-allocating a virtual node nr

v

RealloCostmi
v

Total re-allocation cost of an evolving virtual node mi
v

downtimer Maximum downtime imposed for nr
v

minBW nr
v

Minimum required bandwidth to migrate nr
v

pmig(nr
v) The substrate path used for migrating the node nr

v

3.3 Heuristic algorithm design

Finding the optimal re-allocation for an evolving node while minimizing cost is NP-Hard

(Baveja & Srinivasan (2000)). We resort to a heuristic algorithm called RSforEVN (Re-

allocation Scheme for Evolving Virtual Node request) to reduce complexity, improve con-

vergence times and to provide a scalable solution. The heuristic algorithm must decide

which virtual nodes to reallocate and where to move them. This reorganization should

incur minimum overall reallocation and migration cost.

• The heuristic algorithm proceeds in two optimization steps. It first finds the best

set of virtual nodes to reallocate and migrate to free resources for the benefit of the

evolving node (unless the best solution is to move the evolving node itself, in which

case the objective is to find a new host for it). In this step, the heuristic algorithm

selects the minimum number of less constraining virtual nodes (typically of small sizes

and most tolerant to disruptions and QoS degradations).

• The second step consists of finding the best destination or target hosts for the selected

virtual nodes. The heuristic algorithm will have to map efficiently nodes and links

to meet the minimum reallocation and migration cost objective. The two steps are

described in more detail in the sequel

3.3.1 First step: Selection of virtual nodes for reallocation

We use the following notations to describe the selection process: mi
v identifies the evolving

node asking for additional resources and coloct
h the set of all virtual nodes hosted in the

same physical node h as mi
v (i.e. M t

Nr
v
(mi

v) = h). The heuristic algorithm main idea is

to re-allocate one or more co-located virtual nodes from the substrate node, hosting the

evolving node, to free resources (or make room) for the evolving node (needing additional

resources).

37

The virtual nodes are selected according to their size and QoS requirements. The size of

a virtual node includes its intrinsic size and the aggregate bandwidth of its associated links.

The QoS corresponds to the maximum acceptable downtime of the virtual node during

migration:

Reem(nr
v) = (bt

mr
v

+
∑

lr
v∈Snr

v

bt
lr
v
) ∗ downtimer (3.7)

Hence, the Reem expression is the product of two terms: the first term represents the

“size” of the virtual node, whereas the second one is related to QoS requirements. The

purpose behind considering the ranking criterion Reem (nr
v) is twofold.

• First favor reallocation of candidate virtual nodes and their attached links that require

the smallest amount of resources to minimize re-mapping cost (3.1).

• Second re-allocate the smaller and more QoS degradation tolerant nodes to optimize

the migration cost (3.3) since the amount of bandwidth required to perform task

migration will be minimized.

As a result of this ranking, all virtual nodes in coloct
h are sorted in a list ~coloct

h in

increasing order of their Reem value.

3.3.2 Second Step: finding the best new physical hosts

The next step consists in re-allocating virtual nodes that have the lowest Reem values.

Thus, one or more virtual nodes from the ranked list ~coloct
h should be re-allocated with

their associated virtual links. The number of virtual nodes to re-allocate is dictated by

the amount of requested additional resources by the evolving nodes. The sum of resources

to free by migrating virtual nodes should be equal or greater than the amount of required

additional resources for the evolving node. Virtual nodes will not be migrated if there

are enough resources in the original physical node since the evolving node would receive

additional resource directly from its host.

When remaining resources are insufficient, co-located virtual nodes will be migrated to

free the needed resources for the evolving node. If virtual nodes can not be migrated for

QoS reasons, the evolving node will be moved if possible otherwise the request is rejected.

In fact, this will be the case each time all virtual nodes ranked ahead of the evolving node

in ~coloct
h vector can not offer enough resources to satisfy the evolving node.

As presented in figure 3.1 our proposed algorithm takes into account two special cases:

38

1. If the amount of resources that could be freed after multiple re-allocations is not

sufficient to satisfy the request, our algorithm tries to re-allocate the evolving node.

If the re-allocation succeeds, the request is satisfied, otherwise it is rejected.

2. Else, our proposal remaps the first node in the ranked list. If it succeeds, the algorithm

verifies if the resources released after this re-allocation are sufficient to satisfy mi
v new

demand, if it is the case, the elasticity request is satisfied. Otherwise, the next node is

selected and the process is repeated until the elasticity request is satisfied or the evolv-

ing node is re-allocated, as long as ~coloct
h is not empty (The do-while loop in figure 3.1.

3.3.3 Virtual node reallocation scheme

After selecting virtual nodes for reallocation, the algorithm has to find the optimal nodes to

host these selected virtual nodes and restore their connectivity with all their peers (previous

neighbors) by finding new substrate paths to restore all the broken links. To reallocate

a virtual node nr
v, the star Snr

v
(the node and its links) should be re-mapped, and task

migration should be performed. To find the best new substrate hosts, our heuristic algorithm

explores the nearest neighbors of the initial host h to find nodes that have enough resources

and can reconstruct all the links associated with each virtual node candidate to migration.

Links must also be established to ensure migration respecting the downtime constraints of

each virtual node.

If neart
h is the set of potential (candidate) hosts for the re-allocated node, this neighbor

set neart
h has to minimize migration cost (3.3). The shortest path algorithm is used to find

the optimal substrate paths.

The Virtual node reallocation scheme is listed below

3.4 Simulation results and evaluation

We compare our algorithm with relevant prior art to assess performance with a focus on re-

mapping and migration costs, execution time (or convergence time) and the acceptance rate

of requests for additional resources. We also describe the settings, conditions and scenarios

used to conduct the evaluation.

39

Figure 3.1: RSforEVN: Main Algorithm steps

3.4.1 Simulation environment

The GT-ITM (Zegura et al. (1996)) tool is used to generate random topologies of the sub-

strate and VN networks. Similar parameter settings and simulation conditions to existing

work was adopted to be able to compare in equivalent scenarios the performance of our

algorithm (Chowdhury et al. (2012); Fajjari et al. (2011b)).

The SN (Substrate Network) size is set to 50 nodes and each pair of substrate nodes

is randomly connected with probability 0.5 (a realistic value for typical deployed and op-

erational networks, since they are seldom fully meshed and often have connectivity below

40

Algorithm 1 Node reallocation scheme
One Node Reallocation steps
Reallocate(nr

v, RealoCostmi
v
)

3: ReallocationResult← failure
remapCostbest ←∞
Search neart

nr
v

if neart
nr

v
is not empty then

6: for all ns ∈ neart
nr

v
do

map nr
v in ns

for all lrv ∈ Snr
v
do

9: re-map virtual link lrv onto a substrate path ϕ using shortest path algorithm
end for
if Snr

v
mapping succeeds then

12: ReallocationResult← success
if remapCost

(
Snr

v

)
< remapCostbest then

remapCostbest←remapCost(Snr
v
)

15: end if
end if

end for
18: if ReallocationResult = Success then

Add costmig (nr
v) + costremap (nr

v) to RealoCostmi
v

end if
21: end if

return ReallocationResult

50%).The node resource capacity and edge resource capacity are real numbers uniformly

distributed between 0 and 50 in order to span reasonably the search space without making

any specific assumption on the statistical characteristic of this parameter. Without loss of

generality, we set the per unit node and edge resources costs to 1 (one)unit.

The requested VNs have between 2 and 10 virtual nodes in their topologies with an

average connectivity also set to 50%. The node resource capacity is uniformly distributed

between 0 and 20 and the edge resource capacity is uniformly distributed between 0 and 50.

In order to initialize the scenario and start the system from a typical situation we map

the virtual nodes greedily and follow with the shortest path algorithm to map edges. This

step leads to suboptimal embedding that can reflect or mimic the state of a SN subject to

multiple virtual nodes evolutions.

To create a highly dynamic environment and unpredictable states or situations, we select

randomly N virtual nodes among those hosted by the SN as nodes that require additional

resources. The increasing resource requests are measured using the parameter “Increase

Factor” (IF):

bt+1
mi

v
= IF ∗ bt

mi
v

(3.8)

41

Where bt+1
mi

v
is the new resource requirement of the evolving node mi

v.

3.4.2 Simulation results

Only (Mijumbi et al. (2014b, 2015, 2014a); Sun et al. (2013); Zhou et al. (2013); Blenk

& Kellerer (2013)) deal with the problem of evolving virtual nodes. Since the objective

functions in (Mijumbi et al. (2014b, 2015, 2014a); Zhou et al. (2013); Blenk & Kellerer

(2013)) differ and are not sufficiently close to our proposed algorithm, we do not retain

them for performance comparison.

Authors of (Mijumbi et al. (2014b, 2015, 2014a)) do not take advantage of moving

virtual resources to other available substrate hosts. Moreover, in (Zhou et al. (2013))

authors minimize the number of re-allocated virtual nodes, while in (Blenk & Kellerer

(2013)) authors minimize the number of virtual link reconfigurations after a VN evolves.

The authors of (Sun et al. (2013)) considered the same objective function as that of

our proposal and it is more relevant and appropriate to compare performance with their

algorithm named DVNMA_NS.

The algorithms compared in our simulations are listed in the table below.

Table 3.5: Compared algorithms

Notation Algorithm description
RSforEVN Makes a convenient choice of virtual nodes to re-allocate

and selects the most cost effective new host among nearest
neighbors

DVNMA_NS Systematically re-allocates the evolving node, and selects
the most cost effective new host among all substrate nodes

In the simulations, the following performance metrics are used:

1. Re-allocation Cost, that reports RealloCost of all evolving nodes if their new de-

mands are successfully satisfied.

2. Migration Cost measuring the amount of resource (bandwidth) required to achieve

task migrations to fulfill the evolving node requests. This corresponds to the sum of

all costmig of re-allocated nodes.

3. Acceptance ratio of elasticity requests that measures the percentage of accepted

additional resources requests for evolving nodes

4. Total execution time (or convergence time) that measure the algorithms con-

vergence time to assess how fast the algorithms find a solution to fulfill the additional

42

resource requests.

All reported results are obtained by averaging the collected performance from 100 inde-

pendent runs for each simulation point.

3.4.2.1 Re-allocation cost for large size evolving virtual nodes

Figure 3.2: Reallocation cost

The first simulation assesses the re-allocation cost of our algorithm for evolving virtual

nodes of large sizes (Equation 4.3). To produce scenarios with large virtual nodes instances

to re-allocate, 20 virtual nodes are selected randomly from the top 100 largest virtual nodes

currently hosted in the SN among a total of 214 nodes. The reallocation cost is measured

for variable Increase Factors, representing the amount of additional resources that will be

required by the 20 selected virtual nodes.

Figure 3.2 depicts the results of 100 averaged runs and indicates that our algorithm

(RSforEVN) outperforms the DVNMA_NS algorithm in terms of re-allocation cost by 50%.

Our algorithm reduces the re-allocation cost by selecting primarily small virtual nodes as

candidates before resorting to re-mapping virtual nodes of large sizes.

This also makes our algorithm less sensitive and more robust to increasing IF val-

ues while DVNMA_NS re-allocation cost increases significantly for increasing IF values.

The RSforEVN algorithm always selects the smallest virtual nodes first as opposed to the

DVNMA_NS always re-allocates the evolving nodes themselves and this induces high re-

mapping costs when the evolving nodes are of large size.

43

3.4.2.2 Migration cost

Figure 3.3: Reallocation cost

As depicted in 3.3, our algorithm, RSforEVN, performs also much better than DVMA_NS,

in migration cost as a function of downtime tolerance of the virtual nodes. Without loss of

generality, we assumed that all virtual nodes have the same downtime in the simulations.

This is again due to the small virtual nodes selected by RSforEVN since these smaller nodes

require less bandwidth for migration according to the downtime constraint.

In addition, RSforEVN selects the nearest neighbors to the substrate node hosting the

evolving nodes that require more resources whereas DVNMA_NS searches for the best

new hosting node in the entire substrate network and has to do so for the evolving nodes

inducing high penalty and even higher cost if the evolving nodes are large. Once the best

node is found, DVNMA_NS deduces the migration substrate path using the shortest path

algorithm.

Migration cost increases for both algorithms when the downtime migration constraints

become tighter as more link resources (bandwidth) are needed (is needed) to achieve faster

migration.

3.4.2.3 Elasticity Request Acceptance ratio benefits for saturated SN

The next set of simulations address the performance of the algorithms with respect to the

acceptance ratio of requests for additional resources and their speed in finding solutions (or

execution/convergence time) to fulfill such requests for more resources. The evaluation is

conducted for several scenarios as a function of the number of involved evolving nodes, the

44

(a) (b)

(c)

Figure 3.4: Acceptance ratio

Increase factor that measures the amount of requested additional resources and the load in

the substrate network or the SNs.

Figures 3.4(a) and 3.4(b) show close performance in percentage of accepted requests for

both algorithms when the substrate network is not heavily loaded. However, when the sub-

strate network is saturated our algorithm accepts 3 times more requests than DVNMA_NS

that has difficulty in finding hosts available for large evolving virtual nodes. RSforEVN

that moves smaller virtual nodes can instead find more easily some space available in new

hosts for these small resource requests.

Figure 3.4(c) confirms that RSforEVN outperforms DVNMA_NS when the required

amount of additional resources increases with the RSforEVN algorithm resisting much better

to the increased stress for IF = 3 compared to IF = 1.5 (looking at Fig 2.c and Fig 2.d

joinlty).

The acceptance rate for RSforEVN degrades smoothly while that of DVNMA_NS is

more significant and rather abrupt. RSforEVN performs consistently better for overloaded

substrate networks.

45

3.4.2.4 Reduced execution time, especially for large Substrate Networks

(a) (b)

Figure 3.5: Execution time

The convergence time of the algorithm also matters in terms of swift response to addi-

tional resources requests since some applications require elasticity services and high avail-

ability and can thus put very stringent requirements on extended resource allocations.

Figure 3.5(a) and 3.5(b) present the collected required time to find a solution for

the resource requests for both algorithms and depict better performance in convergence

time for the RSforEVN algorithm that finds solutions 2 to 3 times faster for the simulated

scenarios with increasing number of substrate and evolving nodes. Figures 3.5(a) and

3.5(b) corresponding to SN = 50 and SN = 100 respectively for involved virtual nodes

ranging from 5 to 50 nodes. This gap in speed performance for DVNMA_NS is expected

as it searches for new hosting nodes amongst all substrate nodes while SFforEVN searches

only in the vicinity or neighborhood of the host currently hosting the evolving nodes.

RSforEVN does in addition favor migration of smaller virtual nodes. In fact when

analyzing all the performance results for the simulated scenarios and settings, RSforEVN

performs consistently better and provides the best trade-offs in reallocation cost, migration

cost, downtime and speed of convergence.

3.5 Conclusion

This chapter addressed the allocation of additional resources for extending virtual nodes

and proposes an algorithm that offers the best trade-off in terms of re-mapping and mi-

gration costs, service downtime and convergence speed when compared to prior art. The

performance of the proposed algorithm, RSforEVN, is compared to the DVNMA_NS and

shown to be consistently superior in all reported performance metrics.

In the next chapter, we will improve RSforEVN to solve a bi-objective problem : i)

46

meeting evolving virtual nodes demands and ii) increasing the substrate resources prof-

itability.

47

Chapter 4

Load balancing aware Virtual
Networks adaptation

Contents
4.1 Introduction . 48
4.2 Problem formulation and model 49

4.2.1 Problem Formulation . 50
4.3 Heuristic algorithm design . 51

4.3.1 Virtual node selection criteria . 51
4.3.2 Virtual node re-allocation scheme 53

4.4 Simulation results and evaluation 53
4.4.1 Simulation environment . 55
4.4.2 Simulation results . 55

4.5 Conclusion . 59

4.1 Introduction

In this chapter, we extend and enhance the algorithm proposed in chapter 3 to adapt

dynamically virtual networks to additional resource requirements while balancing load and

avoiding fragmentation in the substrate network. In fact, since VN requests arrive and

depart over time, the SN can quickly drift to an inefficient configuration, where resources

are progressively fragmented, leading to more VN request rejections.

To avoid such configuration, we propose to tidy up the SN when responding to fluctu-

ating (increasing) VN resources requirements at minimum cost and disruptions. In more

detail, we adapt resource allocations at minimum cost, respect quality of service of all run-

ning applications and simultaneously maximize utilization by balancing the load on the SN

links while meeting new resource requirements of already embedded virtual nodes.

48

The next section analyzes and formulates the problem. Section 4.3 presents our proposed

heuristic algorithm to achieve minimum cost and load balancing. The results of performance

evaluation and a comparison to prior art are reported in section 4.4. Section 4.5 concludes

the chapter.

4.2 Problem formulation and model

The problem to solve is that of allocating additional infrastructure resources, from a sub-

strate network (SN), to virtual nodes of already embedded and active virtual networks. Our

goal is to adapt previous assignments while minimizing nodes and links re-allocations costs

and the average saturation of the links to ensure load balancing in the SN. We consequently

propose a bi-objective function to minimize jointly i) the cost of re-allocations and ii) the

average link saturation in SN to provide the required elasticity for evolving nodes while

maximizing SN utilization (or profitability).

To formulate the problem, we adopt the same network/VN/Mapping model of the pre-

vious chapter. To avoid repetition, only the summary of key notations are provided below.

Table 4.1: Summary of SN/VN/Mapping key notations

Notation Description
Gs Substrate Network
Ns Set of substrate nodes ns

Ls Set of substrate links ls
at

ns
Available capacity of substrate node ns

at
ls

Available bandwidth on substrate link ls
Pϕ Set of loop-free substrate paths ϕ

aϕ Available bandwidth associated to a substrate path ϕ

Gr
v Virtual Network r of V N t

N r
v Set of virtual nodes nr

v of VN Gr
v

Lr
v Set of virtual links lrv of VN Gr

v

bt
nr

v
Minimum required capacity of virtual node nr

v

bt
lrv

Minimum required bandwidth on virtual link lrv

M t
Nr

v
: N r

v → Ns Node mapping related to VN Gr
v

M t
Lr

v
: Lr

v → Pϕ Link mapping related to VN Gr
v

In order to quantify the amount of resources used by the substrate network to fulfill

the VN requests, we use the notion of stress. As most VN request rejections are caused by

bandwidth shortage (Fajjari et al. (2011b)), we focus on avoiding substrate links saturation

by balancing the load. Similarly to (Chowdhury et al. (2012)) we define the link stress of a

substrate link ls as the ratio of the total amount of bandwidth allocated to the virtual links

whose substrate paths pass through ls over the amount of bandwidth initially available in

49

ls. Formally:

st
ls =

∑
lv→ls bt

lv

a0
ls

=
a0

ls
− at

ls

a0
ls

(4.1)

where lv → ls indicates that the substrate path of virtual link lv passes through the substrate

link ls, and a0
ls
is the initial available bandwidth in ls. The average link stress ALSt in SN

is defined consequently as:

ALSt =
∑

ls∈Ls
st

ls

|Ls|
(4.2)

where |Ls| is the total number of substrate links in SN.

4.2.1 Problem Formulation

For a running evolving node mi
v requiring additional resources in a substrate host h (with

M t
Nr

v
(mi

v) = h) that has insufficient resources, we need a strategy to re-allocate resources to

other alternate candidate nodes (those having enough resources) to maintain the service. A

trivial and suboptimal strategy is to move the entire evolving node to another less loaded

host (Sun et al. (2013)). We proposed a more elaborate strategy in the previous chapter by

reorganizing virtual nodes in the initial host in neighboring hosts while minimizing overall

re-allocation cost without considering SN utilization.

In this chapter we extend the work by moving some candidate virtual nodes in the

affected physical node to make room for the additional needs and balance the load on the

SN at the same time in order to also optimize SN utilization and profitability. This is

achieved by minimizing the average link saturation of the entire SN in addition to making

cost effective re-allocation and migration decisions.

Intuitively, the most congestion causing virtual nodes in the initial host should be se-

lected in priority as candidates for re-allocation and migration.

4.2.1.1 Optimization objective

As in the previous chapter, we consider two phases for node re-allocation: remapping and

migration. We briefly remind the reader that the remapping phase consists in finding

alternate resources to host the candidate evolving virtual node and its associated virtual

links while the migration phase tries in a second stage to migrate tasks running on the virtual

node onto the selected destination node to resume these tasks. The node re-allocation cost

incurring a remapping cost Costremap and a migration cost Costmig is the same in used in

chapter 3:

• Re-allocation cost

50

Costrealloc (nr
v) = Costremap (nr

v) + Costmig (nr
v) (4.3)

and the global re-allocation cost RealloCostmi
v
related to an evolving node mi

v is:

RealloCostmi
v

=
∑

nr
v is

re− allocated

Costrealloc (nr
v) (4.4)

Our objective is to find the best re-allocation scheme that satisfies the evolving node

additional resource request while minimizing all re-allocation costs and the average link

saturation (4.2). This leads to the following “Objective function”:

minimize(RealloCostmi
v
, ALSt+1) (4.5)

4.3 Heuristic algorithm design

The problem outlined above is a multi-objective optimization problem with conflicting ob-

jectives known to be NP-Hard (). Since we are looking for practical, implementable and

scalable solutions, we resort to a heuristic algorithm called Bi-RSforEVN (Bi-objective Re-

allocation Scheme for Evolving Virtual Node request) to solve it. This heuristic algorithm

proceeds in two steps which consist in first selecting the virtual nodes/links should be re-

allocated and then finds the best new hosts for them. The sequel of the algorithm is the

same as RS-forEVN ref. However, the virtual node selection criteria and the one node-

reallocation algorithm differ. Below we present the main differences.

4.3.1 Virtual node selection criteria

Assume that mi
v is the evolving node asking for additional resources and that coloct

h is the

set of all virtual nodes hosted in the same physical node h as mi
v (i.e. M t

Nr
v
(mi

v) = h).

In order to satisfy the elasticity request for mi
v, we will re-allocate one or more co-located

virtual nodes to free resources and make room in the hosting substrate node. Recall that

we also aim at simultaneously “tidy up ” the substrate networks and balance the load. To

do so we move (migrate) congestion causing virtual nodes to less saturated substrate nodes

(hosts).

To identify the virtual nodes causing the congestion, we define a “congestion impact

” metric to use as the selection criterion. In fact, we use the notion of occupancy rate

OR(lrv, ls) of a virtual link lrv passing through a substrate link ls to evaluate the congestion

impact. The occupancy rate OR(lrv, ls) is the ratio of the virtual link lrv required bandwidth

51

bt
lr
v
to the total bandwidth of ls:

OR(lrv, ls) =
bt

lr
v

a0
ls

(4.6)

We derive the congestion impact of lrv on ls as the product of its occupancy rate and ls

stress:

CIt(lrv, ls) = OR(lrv, ls) ∗ st
ls (4.7)

CIt measures the “degree of involvement ” of lrv in saturating ls. The average congestion

impact of a virtual link is the average of its congestion impacts on all substrate links hosting

it:

ACIt(lrv) = 1
|M t

Lr
v
|
∑

ls∈M t
Lr

v

CI(lrv, ls) (4.8)

Where |M t
Lr

v
| is the number of substrate links hosting lrv. Since the congestion impact of a

virtual node nr
v is the sum of the congestion impacts of its attached virtual links, we get:

CIt(nr
v) =

∑
lr
v∈Snr

v

ACIt(lrv) (4.9)

Table 4.2: Summary of measurement of SN key notations

Notation Description
st

ls
Stress of substrate link ls

ALSt Average link stress on SN
OR(lrv, ls) Occupancy rate of lrv on ls
CIt(lrv, ls) Congestion impact of lrv on ls
ACIt(lrv) Average congestion impact of lrv
CIt(nr

v) congestion impact of virtual node mr
v

The virtual nodes are selected according to

• their size and QoS requirements

• their congestion impact

The size of a virtual node includes its intrinsic size and the aggregate bandwidth of its

associated links. The QoS corresponds to the maximum acceptable downtime of the virtual

node during migration, and the congestion impact of a virtual node nr
v is defined by equation

(12).

To select the virtual nodes for re-allocation, we use a selection metric Reem that ranks

the nodes according to their contribution to the overall congestion in a decreasing order.

The selection variable Reem is defined as:

52

Reem(nr
v) = CIt(nr

v)
(bt

mr
v

+
∑

lr
v∈Snr

v
bt

lr
v
) ∗ downtimer

(4.10)

The Reem expression is a fraction composed of three terms. The numerator is the virtual

node congestion impact. The denominator is the product of two terms: one term represents

the “size ” of the virtual node and the second one is related to the QoS requirements.

The purpose behind considering the ranking criterion Reem (nr
v) is threefold.

• First, we favor re-allocation of candidate virtual nodes and their attached links re-

quiring the smallest amount of resources to minimize the re-mapping cost (equation

3.1).

• Second re-allocate in priority the smaller and more QoS degradation tolerant nodes

to optimize the migration cost (equation 3.3) since the amount of bandwidth required

to perform task migration will be minimized.

• And finally, favor the re-allocation of the most congestion causing virtual links 4.7 by

moving (migrating) them to less saturated hosts.

As a result of this ranking, all virtual nodes in coloct
h are sorted in a list ~coloct

h in decreasing

order of their Reem value.

4.3.2 Virtual node re-allocation scheme

To re-allocate a virtual node nr
v, its associated star topology Snr

v
(the node and its links)

should be re-mapped, in order to maintain nr
v connectivity with all its peers and resume

tasks through migration.

In order to minimize the re-allocation cost 4.3, the new substrate host for the re-allocated

node is chosen among the nearest neighbors, neart
h of the initial host h, that have enough

resources and that can reconstruct all the links in Snr
v
.

In order to balance the load, these virtual links are re-allocated using the shortest path

algorithm, where the weight of each physical link is defined by its stress 4.1. Among the set

neart
h, the selected node is the one minimizing the total re-allocation cost and the average

links saturation. The Virtual node re-allocation scheme is illustrated in algorithm 2.

4.4 Simulation results and evaluation

In this section, we will study the efficiency of our proposal, Bi-RSforEVN. To achieve this,

we will first describe the settings, conditions and scenarios used to conduct the evaluation.

53

Algorithm 2 Bi-RSforEVN: One node re-allocation Scheme
1: re-allocate(nr

v, RemapCostmi
v
, MigCostmi

v
)

2: re− allocationResult← failure
remapCostbest ←∞, ANSbest ← ANSt

3: Search neart
nr

v

4: if neart
nr

v
is not empty then

5: for all ns ∈ neart
nr

v
do

6: map nr
v in ns

7: for all lrv ∈ Snr
v
do

8: re-map virtual link lrv onto a substrate path ϕ using shortest path algorithm
9: end for

10: if Snr
v
mapping succeeds then

11: re− allocationResult← success
12: if remapCost(Snr

v
)∗ANSt+1<remapCostbest∗

ANSbest then
13: remapCostbest←remapCost(Snr

v
)

ANSbest ← ANSt+1

14: end if
15: end if
16: end for
17: if re− allocationResult = Success then
18: Add costmig (nr

v) to MigCostmi
v

19: Add costremap (nr
v) to RemapCostmi

v

20: end if
21: end if
22: return re− allocationResult

54

Then we will compare our algorithm with relevant prior art with a focus on the total

re-allocation cost and the average link saturation observed after accepting requests for

additional resources.

4.4.1 Simulation environment

We used the same VN embedding simulator implemented in chapter 3 and used the GT-

ITM tool (Zegura et al. (1996)) to generate random topologies of the substrate and VN

networks. We adopt the similar simulation conditions to existing work to be able to compare

in equivalent scenarios the performance of our algorithm. As described in section 3.5, the

SN (Substrate Network) size is set to 50 nodes and each pair of substrate nodes is randomly

connected with probability 0.5.The node resource capacity and edge resource capacity are

real numbers uniformly distributed between 0 and 50. Without loss of generality, we set the

per unit node and edge resources costs to 1 unit. The requested VNs have between 2 and

10 virtual nodes in their topologies with an average connectivity also set to 50%. The node

resource capacity is uniformly distributed between 0 and 20 and the edge resource capacity

is uniformly distributed between 0 and 50.

In order to initialize the scenario and start the system from a typical situation we map

the virtual nodes greedily and follow with the k-shortest path algorithm to map edges (we

choose the longest path, k=5) . This step leads to suboptimal embedding that can reflect

the state of a SN subject to multiple virtual nodes evolutions.

To create a highly dynamic environment and unpredictable states or situations, we select

randomly N evolving nodes among the virtual nodes hosted in SN as nodes that require

additional resources. We define r, the ratio of the number of evolving nodes to the total

number of virtual nodes in SN. r = N
|SN | . The increasing resource requests are expressed

using the parameter “Increase Factor” (IF):

bt+1
mi

v
= IF ∗ bt

mi
v

(4.11)

Where bt+1
mi

v
is the new resource requirement of the evolving node mi

v.

4.4.2 Simulation results

As stated in previous chapter, only the authors of (Sun et al. (2013)) considered the same

assumptions and objective function as that of our proposal, so it is more relevant and

appropriate to compare performance with their algorithm named DVNMA_NS.

In order to measure the effectiveness of our algorithm regarding its two main objectives,

55

we define two other variants of Bi-RSforEVN, each focusing on one of the two goals:

LB-RSforEVN is a re-allocation scheme aiming at balancing the load over substrate links

regardless of the re-allocation cost, whereas RSforEVN minimizes the re-allocation cost

regardless of SN state, it is the algorithm proposed in our previous work (Jmila et al. (2014)).

More details on the compared algorithms are given below.

Table 4.3: Compared algorithmsII

Notation re-allocated virtual
nodes

Chosen new host Link re-allocation
strategy

DVNMA_NS The evolving node (sys-
tematically)

The most cost effective
node among all sub-
strate nodes

Shortest path (all
weights=1)

RSforEVN The smallest and more
QoS degradation toler-
ant virtual nodes

The most cost effec-
tive node among nearest
neighbors

Shortest path (all
weights=1)

LB-RSforEVN Virtual nodes with
highest congestion
impact

The node leading to
minimum ALS among
nearest neighbors

Shortest path
(weight=links
stress)

Bi-RSforEVN The smallest and more
QoS degradation toler-
ant virtual nodes with
highest congestion im-
pact

The most cost effective
node leading to mini-
mum ALS among near-
est neighbors

Shortest path
(weight=links
stress)

4.4.2.1 Better Re-allocation cost for large size evolving virtual nodes

The first simulation assesses the re-allocation cost of our algorithm for evolving virtual nodes

of large sizes (Equation 4.10). To produce scenarios with large virtual nodes instances to

re-allocate, 14 (r = 1/12) virtual nodes are selected randomly from the top 50 largest

virtual nodes currently hosted in the SN among a total of 112 nodes. The re-allocation cost

is measured for variable Increase Factors, representing the amount of additional resources

that will be required by the 14 selected virtual nodes.

Figure 4.1 depicts the results of 100 averaged runs and indicates that Bi-RSforEVN

and RSforEVN have the lowest re-allocation cost. In fact, these algorithms reduce the

re-allocation cost by selecting small virtual nodes as candidates for re-allocation. This also

makes them less sensitive and more robust to increasing IF values, contrary toDVNMA_NS

that always re-allocates the evolving nodes themselves inducing high re-mapping costs when

the evolving nodes are of large size.

Note that LB-RSforEVN has the highest re-allocation cost. In fact, this algorithm

selects the virtual nodes to re-allocate regardless of their size and only considering their

56

Figure 4.1: Reallocation cost (Bi-RSforEVN)

congestion impact, besides, when re-allocating Snr
v
, the new host is chosen as the one mini-

mizing ALS in spite of the re-allocation cost. And finally, we notice that Bi-RSforEVN is

slightly outperformed by RSforEVN that only focuses on minimizing re-allocation cost.

4.4.2.2 Better load balancing

Figure 4.2: Load balancing (Bi-RSforEVN)

A substrate link is called congested if its is over stressed regarding the average link stress

in SN (st
ls

> ALSt). The number of congested substrate links is denoted nbCongested.

57

We measure ALS and nbCongested observed after re-allocating N evolving nodes (while

maintaining r = 1/12), for different initial ALS values.

Figure 4.2 shows that Bi-RSforEVN (resp.LB-RSforEVN) reduces by 17% (resp.

19%) the average link saturation and 24% (resp. 27%) the number of congested substrate

links, leading to a better load balancing compared to DVNMA_NS and RSforEVN.

The gap is more significant when the SN is slightly saturated, in fact, in such situation

these algorithms find more easily less saturated hosts for re-allocated resources as a part of

substrate resources is still available. This task is more difficult when the SN is saturated

as almost all resources are congested, but they still perform well, reducing the ALS by

11% (resp. 13%) and nbCongested by 17% (resp 19%). Note that DVNMA_NS and

RSforEVN minimize slightly the ALS thanks to the use of the shortest path algorithm,

compared to the k-shortest path algorithm in the initial embedding.

We also notice that Bi-RSforEVN is slightly outperformed by LB-RSforEVN that

only focuses on load balancing.

4.4.2.3 Load balancing Vs re-allocation cost

Figure 4.3: Re-allocation cost Vs Load balancing (Bi-RSforEVN)

In this simulation, we aim at measuring the effectiveness of our algorithm regarding

58

the two main objectives simultaneously. For different values of evolving nodes number, we

measure the ALS observed after accepting all elasticity requests, while noting the total

re-allocation cost.

Figure 4.3 shows that, for all algorithms, when the number of re-allocated nodes in-

creases, the total re-allocation cost trivially increases and the ALS decreases, in fact, the

more we make reconfigurations, the more we "‘tidy up"’ the SN and resolve eventual con-

gestion problems.

We notice that RSforEVN realizes the best re-allocation cost, but it has the worst

performance in term of load balancing. LB-RSforEVN is the best load balancing algorithm

in spite of being the most costly. DVNMA_NS is less costly then LB-RSforEVN, but

it is outperformed by Bi-RSforEVN, and does not reduce significantly the ALS. Only

Bi-RSforEVN has good performances in both adjectives, in fact it reduces by 46% the

ALS (for r=9/20) with a reasonable cost (30% less then DVNMA_NS).

In conclusion Bi-RSforEVN offers the best trade-off between re-allocation cost and

load balancing strategy.

4.5 Conclusion

In this chapter we investigated two issues: i) allocating additional resources for virtual nodes

in virtual networks and ii) maximizing substrate networks profitability. We proposed an

algorithm that offers the best trade-off in terms of re-allocation cost and load balancing when

compared to prior art. In the next chapter, we concentrate on the problem of bandwidth

demand fluctuation on virtual links, and propose a distributed algorithm based on the self

stabilization concept.

59

60

Chapter 5

A Self-Stabilizing framework for
Dynamic Bandwidth Allocation

Contents
5.1 Introduction . 61

5.2 Problem description . 62

5.2.1 Initial VNE . 62

5.2.2 Management of bandwidth demand fluctuation 63

5.3 Self-Stabilization . 65

5.3.1 Introduction to Self-Stabilization 65

5.3.2 Motivation for Self-stabilization 67

5.4 A self-stabilizing framework for dynamic bandwidth allocation 67

5.4.1 System model . 67

5.4.2 The Self stabilizing framework 69

5.5 Simulation results and evaluation 93

5.5.1 Simulation environment . 93

5.5.2 Simulation results . 93

5.6 Conclusion . 100

5.1 Introduction

Chapters 3 and 4 concentrated on node resource requirements fluctuation, and a centralized

and global-view re-allocation approach. In spite of its advantages, a centralized approach is

not suitable to the wide and dynamic Cloud environment. In fact, maintaining a global up-

to-date description of all dynamic network parameters (available resources and mapping)

is very costly and causes real-time monitoring overhead. Indeed, the changing demands

of embedded VNs, the arrival and departure of others, the substrate resources failures,

61

etc. influence continuously the substrate network description. Hence, maintaining a cen-

tral database containing this dynamic information induces a high latency of analysis and

enforcement of changes, and produces an overhead related to the management traffic of the

central entity. This leads to low responsiveness to the infrastructure evolution and affects

the Cloud user satisfaction.

For these reasons, we opt for a distributed and local-view solution to address the band-

width demand fluctuation problem. In fact, the proposal is an algorithm running on each

substrate node to deal with the VN topological changes or variations on bandwidth require-

ments. The model is based on the Self-Stabilization concept that guaranties the convergence

of the system to a stable/legitimate state in a finite time regardless of its initial situation.

In our model, a bandwidth requirement fluctuation/perturbation drifts the system (the sub-

strate network) into an “illegitimate state”, while satisfying the new resource requirements

takes it back to the “legitimate” state.

This chapter is organized as follows. In the next section, we expose the dynamic band-

width allocation problem. Section 5.3 introduces the concept of self-stabilization, while

section 5.4 describes our proposal. The performance of our algorithm is evaluated in section

5.5 and section 5.6 concludes the chapter.

5.2 Problem description

This section describes the problem of dynamic bandwidth allocation to deal with demand

fluctuation during the VN lifetime. To do so, recall that the virtual network embedding

is composed of two stages: the initial VNE, and the dynamic resource management. The

first stage efficiently maps the initial VN request onto the substrate network, whereas the

second stage deals with the resource demand fluctuation of the embedded VNs and the re-

optimization of the substrate network usage. In the next section we propose a preliminary

model for both stages.

5.2.1 Initial VNE

As in previous chapters, let Gs = (Ns, Ls) be a weighted undirected graph that represents

the substrate network, where Ns is the set of substrate nodes and Ls is the set of substrate

links. To simplify the notations, a substrate node ns ∈ Ns will be represented by n̂ in the

rest of the document. Each substrate node n̂ is characterized by an amount of available

resources n̂av (typically CPU and memory) and a unit cost cost(n̂) and each substrate link

ls ∈ Ls is associated with an available bandwidth ls
av and a unit cost cost(ls). Figure 5.1(a)

62

(a) (b)

Figure 5.1: Initial VN embedding

represents an example of a substrate network, where the numbers in rectangles next to the

nodes represent the amount of available node resources and the numbers next to the edges

represent the available bandwidth.

Similarly, the VN request topology is represented by a weighted undirected graph G =

(N, L), where N is the set of required virtual nodes and L is the set of required virtual

links. Let reqn denote the minimum required capacity of the virtual node n ∈ N and reql

the minimum required bandwidth on link l ∈ L. Figure 5.1(a) shows an example of a virtual

network request. The numbers in rectangles next to the virtual nodes represent the amount

of node requested resources and the numbers next to the virtual edges represent the required

bandwidth.

Diverse approaches in the literature can be used to find an efficient embedding of the VN

requests (centralized and distributed solutions cf. Chapter 2). An example of embedding

result is shown in figure 5.1(b), where the SN available resources are updated. In this chapter

we concentrate on the second stage of the VNE, and more precisely on the management of

bandwidth demand fluctuation on virtual links.

5.2.2 Management of bandwidth demand fluctuation

The second stage follows successful initial embedding of VNs, the result is multiple VNs

running simultaneously over the substrate network. To represent this situation, we denote

by Nn̂ the set of virtual nodes hosted by the substrate node n̂, and Ln̂ the set of virtual

links incident to or passing through the substrate node n̂. For example, in figure 5.1(b),

Nâ = {a} and Lâ = {(a, d), (a, c)}.

Over time, the VN end user requirements can change, for instance when staring/ com-

63

pleting a new task/ application, or when their required resources change, consequently, the

corresponding VN characteristics (topology and resources requirements of virtual nodes and

links) will dynamically change. In such situation, adaptive techniques come into play. In

this work, we concentrate on the bandwidth requirement fluctuation and we enumerate four

scenarios of bandwidth demand fluctuation:

• i) partially release no more required bandwidth of an embedded virtual link,

• ii) completely remove a virtual link,

• iii) add a new virtual link to connect two embedded virtual nodes,

• iv) allocate more bandwidth to an embedded virtual link.

To cope with the scenarios i) and ii), the substrate network provider should release some

bandwidth. As for iii) and iv) the provider should allocate more bandwidth to the em-

bedded virtual link when feasible, otherwise find a new substrate path to support the new

required bandwidth.

To model the bandwidth demand fluctuation on a virtual link l, let allol denote the

amount of bandwidth currently allocated to l. If the resource requirements of link l are

satisfied, we have reql = allol. Else, we formulate the four bandwidth fluctuation scenarios

as follows:

• if 0 < reql < allol, the required resources are lower then the currently allocated

resources, there is a Decrease in Bandwidth Requirement (DBR, scenario i).

• if reql = 0 and 0 < allol, the virtual link l does not require the currently allocated

bandwidth any more, and should be removed. Link Removal (LR, scenario ii).

• if 0 < reql and allol = 0, the virtual link l should be added to the VN topology (it

requires an amount of bandwidth not allocated yet). Link Addition (LA, scenario

iii).

• if 0 < allol < reql, the required resources are higher then the currently allocated

resources, there is an Increase in Bandwidth Requirement (IBR, scenario iv).

64

As discussed in the introduction, for scalability reasons, we opt for a distributed and

local-view solution. To do so, we will propose a “Self Stabilization” based approach. First,

we will introduce the Self-stabilization theory, then explain our motivation for such concept.

Afterward, we will describe our solution.

5.3 Self-Stabilization

5.3.1 Introduction to Self-Stabilization

Self-Stabilization (Dijkstra (1974)) is related to Autonomic Computing (Parashar & Hariri

(2005)), which entails several "Self-*" attributes: self-management, self-configuration, self-

healing, self-optimization, and self-protection. It is the property of an autonomous process

to obtain correct behavior (reach a “legitimate state”) no matter what initial state is given.

Hence a self-stabilizing system will eventually correct itself automatically without the need

for an outside intervention.

Figure 5.2: Self-stabilization according to Dijkstra.

We give the following simplified definition of a self-stabilizing system:

Definition: (Schneider (1993))

A system is self-stabilizing if and only if :

65

1. Regardless of its initial state, it has a tendency to be stable over time. (Convergence)

2. Once it is in a legitimate state, it remains stable unless perturbed by external force.

(Closure)

In a self stabilizing system, each of the individual entities (nodes) composing it main-

tains local variables determining its local state. A node can be either stable or active and

can change its local state by making a move. As the global state of a self-stabilizing system

is the union of all local states of its nodes, the system is said to be stable when all the nodes

are stable. Hence all the active nodes should make moves to reach the system stability.

The number of moves (or rounds if nodes make moves simultaneously) required to reach

the legitimate state is often used to measure the efficiency of the algorithm.

The notion of Deamon

Central to the theory of self-stabilization is the notion of the daemon (Dubois & Tixeuil

(2011)), it is the entity responsible for setting the order of actions/moves execution, it de-

termines if several nodes can act together or one after the other. In fact, in each round, it

selects some of/ or all active nodes to make a move, and the process continues until there

are no active nodes in the system, i.e. the legitimate state is reached.

In the self stabilization literature, a daemon is often viewed as an adversary to the

system that tries to prevent stabilization by scheduling the worst possible nodes for exe-

cution. However, in our work, this definition seems unnecessarily restrictive. In fact, most

resource management systems (Seddiki et al. (2013); Amshavalli & Kavitha (2014); Carter

et al. (1998)) employ a centralized manager (or controller, orchestrator, scheduler etc) to

supervise and harmonize the distributed entities behavior. In the same perspective, we

rather replace the daemon by a scheduler that helps the system to converge by

setting the best nodes execution scheme to take the system to stability. In the

following, this scheduler is called Controller.

Nevertheless, note that there is a difference between the Controller we propose and a

classic central entity in charge of resource allocation (as that proposed in related work).

In fact, to take scheduling decisions, our Controller does not require any description of the

dynamic attributes related to the physical resources (like the actually available resources in

nodes/links, the actual mapping etc). Only the network topology (generally static) and the

list of the physical nodes scheduled to execute are needed. In fact, the nodes are the only

66

responsible of choosing the actions they need to perform, the Controller simply sets the

execution order using an elementary scheduling algorithm that sorts the nodes according to

their action priority.

5.3.2 Motivation for Self-stabilization

The following advantages of self stabilization motivated us to explore this concept:

• Local-view: A self-stabilizing algorithm it is local-view, hence maintaining a global

up-to-date description of the physical infrastructure (which is costly in the highly

dynamic Cloud environment) is not required.

• Parallel-processing: Self stabilization can allow parallel processing (by allowing

many nodes to make a move simultaneously), hence managing multiple and different

demand fluctuations in the same time is possible.

• Dynamism: Self-stabilizing property is well suitable to the topology changing net-

works : the code does not need to be modified when adding or removing nodes or

edges in the substrate network, topological changes are tolerated during the system

operation.

• Initialization: No system initialization is required as the self-stabilization ensures

the convergence of the system to the legitimate state disregarding its original state.

Hereafter we present our solution; we will extend the network model proposed in section

5.2 with self stabilizing elements and propose a distributed framework to deal with the

bandwidth demand fluctuations in virtual links.

5.4 A self-stabilizing framework for dynamic bandwidth al-
location

5.4.1 System model

This section extends the network model proposed in section 5.2 with self stabilizing elements

that will be used in the framework design. Namely, we expand the virtual link and substrate

node models.

67

5.4.1.1 Virtual link description

In order to describe a virtual link mapping, we note ~Pl the substrate path hosting the virtual

link l, ~Pl is the ordered list of substrate nodes composing the path. For example in figure

5.1(b), for l = (a, c), ~Pl =
{

â, b̂, ĉ, d̂, ê
}
. Moreover, let srcl and desl be the source and

destination virtual nodes connected by l (i.e. for l = (a, c), srcl = a and desl = c). Table

5.1 summarizes the variables describing a virtual link.

Table 5.1: Summary of Virtual link key notations

Notation Description
reql The amount of bandwidth required by l

allol The amount of bandwidth allocated to l
~Pl Ordered list of substrate nodes composing the path hosting l

srcl The source virtual node l

desl The destination virtual node l

5.4.1.2 Substrate node description

Each substrate node has a list of local variables. We suppose that each substrate node

knows the local variables of its neighbors (through periodic message passing or a shared

memory (Gambette (2006))), yet it can modify only its local variables (but not those of

other neighbors).

We model each substrate node local-view of its environment using the following nota-

tions:

• Local view of mapping: For all the virtual links passing through or incident to n̂,

i.e. for for all l ∈ Ln̂, let n̂x denote the feature x describing l and saved in (seen by) n̂

(x ∈
{

l, allol, srcl, desl, ~Pl

}
). For example, n̂allol

describes the amount of bandwidth

allocated to l as seen by n̂. In other terms, each substrate node saves “a copy” of the

virtual link description, for all l ∈ Ln̂. Ideally, i.e when the system is in the legitimate

state, all the substrate nodes in ~Pl share the same l description. In case of bandwidth

demand fluctuation, an end to end update within ~Pl is required.

• Local view of available resources: Let Neigh(n̂) denote the set of n̂ neighbors

(adjacent substrate nodes). Let m̂ ∈ Neigh(n̂) be such a neighbor. To describe the

substrate link connecting n̂ and m̂ in a distributed manner, node n̂ (resp. m̂) holds

a variable (n̂, m̂)av (resp (m̂, n̂)av) defining the available bandwidth on the substrate

link (m̂, n̂). When the SN is stable, (n̂, m̂)av = (m̂, n̂)av, elsewhere an update is

required.

68

Table 5.2 summarizes the variables describing a substrate node.

Table 5.2: Summary of Substrate node key notations

Notation Description
n̂av Available computing resources in n̂

Nn̂ The set of virtual nodes hosted by n̂

Ln̂ The set of virtual links incident to/ or passing
through n̂

n̂x,x ∈
{

l, reql, allol, srcl, desl, ~Pl

}
The feature x describing l as viewed by n̂

Neigh(n̂) The set of n̂ neighbors
(m̂, n̂), m̂ ∈ Neigh(n̂) The substrate link connecting n̂ to a neighbor

m̂

(n̂, m̂)av The available bandwidth in the substrate link
(m̂, n̂) as seen by n̂

5.4.2 The Self stabilizing framework

We propose a framework to deal with bandwidth demand fluctuation in already embedded

virtual links. The framework contains algorithms, composed of a set of actions executed

locally by the substrate nodes, and a Controller defining the actions execution scheme.

We propose three different algorithms to deal with the four types of bandwidth fluctuation

described in section 5.2.2, and show that theses algorithms can run simultaneously without

conflict. In the following, we will first describe the Controller role and the general execution

plan, then we will detail the three proposed algorithms.

5.4.2.1 Controller description

In order to manage the different bandwidth fluctuation types, the substrate nodes should

execute different actions (reserve bandwidth, release bandwidth, allocate, de-allocate etc.

cf table 5.3) to update the evolving virtual link mapping and the substrate resources de-

scription (available bandwidth).

The Controller is responsible of setting the general execution plan of these algorithms.

It is an entity able to exchange messages with all the substrate nodes of the network. It

holds a local database containing the list of active nodes, scheduled to execute some actions.

Each action A is associated with a ”priority”, pA that defines the urgency of its execution.

To execute a task, an active node requires the permission of the Controller.

In fact, the general framework execution plan is organized into rounds. In each round,

the Controller examines the list of active nodes in its database. Depending on the scheduled

actions/tasks priorities, it selects a set of nodes allowed to execute their algorithms: the

69

Table 5.3: Actions description

Action Description
Reserve BW Set aside an mount of bandwidth without as-

signing it to a particular virtual link
Allocate BW Assign an amount of reserved bandwidth, to a

virtual link
Release BW Release an mount of reserved bandwidth (not

assigned to a virtual link yet)
De-llocate BW De-assign an amount of bandwidth previously

allocated to a virtual link

nodes wishing to execute the highest priority task can perform simultaneously. If each of

these nodes need to execute a different number of actions during the round, the Controller

determines the lowest number as the number of actions that all the selected nodes should

execute, hence all the nodes running simultaneously will consume the same amount of time,

and the round duration is determined by these tasks execution time. After executing,

the Controller updates its database (the nodes that executed are removed, the others are

kept for the next round). This process continues until all the nodes of the system are stable.

Active nodes: A node is said to be active if it is scheduled for executing a task (i.e.

if it figures in the Controller database). In our model, two reasons can activate a substrate

node: either a new bandwidth request is submitted, or the node is solicited by another

neighboring node:

• Activation due to a new bandwidth request: When a virtual link l requires a

new amount of bandwidth reql 6= allol, the substrate node hosting srcl (host(srcl)) is

activated. In more detail, an entry of the form (host(srcl), A, l, reql) is added to the

Controller database, where host(srcl) is the activated node, A is the action that this

node should perform, l is the concerned virtual link and reql is its new bandwidth

demand. This active node will trigger a cooperation among the substrate nodes to

satisfy the new request.

Note that there are two ways to define the new bandwidth request: either the VN user

submits a new bandwidth request to the Controller, or the substrate network provider

runs specific workload prediction algorithms to foresee the new resource requirements

(Gmach et al. (2007); Wei et al. (2010); Seddiki et al. (2013)), and depending on the

prediction results, it schedules an action in the Controller database to a meet the

70

new demand. In this work we do not investigate this issue and simply suppose that

depending on the new bandwidth demand type, a first action is scheduled.

• Activation when solicited by a neighboring node: To reach stability, sub-

strate nodes should cooperate. Indeed, a substrate node n̂ can request its neighbor

m̂ ∈ Neigh(n̂) to perform an action A for a specific virtual link l requiring a new

amount of bandwidth reql 6= allol. To do so, n̂ asks the Controller to add (m̂, A, l,

reql) in its database (by sending a message).

The different actions that can be executed are described in the following.

5.4.2.2 Algorithms description

Three algorithms are proposed to deal with different types of bandwidth fluctuation. Each

algorithm is composed of a list of actions. The first algorithm concerns scenarios i) and ii)

i.e the case of Decrease in Bandwidth Requirement or Link Removal. The second deals with

the Link addition (scenario iii). And the last proposal focuses on the Increase in Bandwidth

requirement (scenario iv).

5.4.2.3 Algorithm1: Decrease in Bandwidth Requirement or Link Removal

This algorithm deals with the two following cases: i) a virtual link l requires less band-

width or ii) should be completely removed from the VN topology. In such situation, no

more required bandwidth should be removed and the virtual link mapping should be up-

dated along its hosting path.

In fact, upon receiving the new request, the origin substrate node, hosting srcl, is

activated (as described above). If selected by the Controller, this node executes the following

action: Trigger Allocation, to i) update its state (mapping and available resources) and

ii) activate the next node in ~Pl. If selected by the Controller in the next round, the latter

runs an other action: De-allocate; it updates its local description to synchronize with

host(srcl), then activates the next node in ~Pl. This process continues until reaching the

substrate path last node.

The action Trigger Allocation is associated with a priority pT A, and the De-allocate

action is associated with pD, such that pT A > pD. The idea behind this choice is to

favor managing multiple requests simultaneously. In fact, as meeting a new bandwidth

71

Algorithm 1: Decrease in Bandwidth Requirement/Link Removal
This algorithm is composed of the following two actions:

Inputs:
1: The executing node : n̂
2: The concerned virtual link : l
3: The new required bandwidth : reql

Action 1: Trigger de-allocation (Priority=pT A)
Steps:

1: (n̂, ô)av += (n̂allol
−reql) where ô = ~Pl

next
(release no more required

bandwidth in the substrate link (n̂, ô) where ô is the next node in l hosting
path)

2: n̂allol
= reql (Update the amount of resources allocated to l)

3: Add (ô, Deallocate, l, reql) to the Controller database (Activate
the next node in ~Pl)

4: if reql = 0 (In case of virtual link removal) then
5: Ln̂.remove(l) (Remove l from n̂ mapping list)
6: end if

Action 2: De-allocate (Priority=pD)
Steps:

1: (n̂, m̂)av += (n̂allol
− reql) (Update available bandwidth in (n̂, m̂) to

synchronize with the the soliciting node m̂, i.e. the previous node in in l
hosting path

2: n̂allol
= reql (Update the amount of resources allocated to l)

3: if desl /∈ Nn̂ (if n̂ is not the last node in ~Pl) then
4: (n̂, ô)av += (ôallol

− reql) where ô = ~Pl

next
(release no more

required bandwidth in (n̂, ô) where ô is the next node in l hosting path)

5: Add (ô, Deallocate, l, reql) to the Controller database (Acti-
vate ô)

6: end if
7: if reql = 0 (In case of virtual link removal) then
8: Ln̂.remove(l) (Remove l from n̂ mapping list)
9: end if

demand requires many node moves, tackling various requests simultaneously will reduce the

algorithm convergence time.

The Algorithm 1 and the following examples give more information about these actions.

Examples:

The next two examples will show a step by step execution of Algorithm 1. In the first

example, only one bandwidth request is managed. In the second example, we tackle two

bandwidth requests at the same time to show how our algorithm deals with multiple band-

width demands simultaneously. For both examples, we will use the same VN and SN

depicted in the initial VN embedding figure 5.1(b).

For each round, we will show two tables: one describing the most relevant substrate

72

Figure 5.3: Decrease in BW Requirement or Link Removal : Example1

node parameters at the start/ end of the round, and the second illustrating the Controller

database (at the start/ end of the round). The latter is represented by a 4 column table,

where the first column lists the active nodes, and the others define the i) scheduled actions,

ii) the concerned virtual links and iii) the new bandwidth requests. In each round, the

executing substrate nodes and the main changes will be colored in red.

• Example 1:

Suppose that the virtual link l = (a, c), initially demanding 20 bandwidth units and

hosted by the substrate path ~Pl = (â, b̂, ĉ, d̂, ê), is now requiring a new amount of bandwidth

= 10 units, and let us run through the algorithm.

• Initial situation

Initially, the substrate network is stable: all the required bandwidth is met for all the

embedded virtual links, in particular, reql = âallol
= 20, where â is the substrate node

hosting srcl. Moreover, (â, b̂)av = (b̂, â)av = 30 and the Controller database is empty.

• Round 1

After receiving l’s new bandwidth request, the substrate node â is activated to run

the action Trigger de-allocation. As there is only one node in the Controller database,

â is selected to run. It executes the following steps: i) it updates l mapping to have

âreql
= âallol

= 10, ii) it frees the no longer required bandwidth in the substrate link (â, b̂)

((â, b̂)av = 40), and finally iii) it schedules the next node in ~Pl for execution: b̂ is added to

the Controller database.

73

• Round 2

The substrate node b̂ is selected by the Controller to execute the action De − allocate. It

i) updates l mapping and the available bandwidth in (â, b̂) to synchronize with â, then ii)

releases bandwidth from (b̂, ĉ) and finally activates ĉ.

• Rounds 3, 4 and 5

In rounds 3 and 4, substrate nodes ĉ and d̂ execute the same steps as b̂. In the last

round, node ê runs the same steps as b̂ excepting the activation of the next node in ~Pl,

because ê is the last node in the path.

• Comments

Note that the system has reached stability in 5 rounds, which corresponds to the number

of substrate nodes composing ~Pl. Moreover, all the substrate nodes in ~Pl have the same new

l description at the end of execution, and the amount of available bandwidth is updated

through the entire substrate path.

Example 2: This example shows the performance of our algorithms in case of band-

width fluctuation in multiple virtual links. We imagine that both virtual links l = (a, c) and

l′ = (a, d) have new demands. More precisely, (a, d) needs to be removed and (a, c) requires

only 10 bandwidth units (like in the previous example).

• Initial situation

Initially, âallol
= reql = 20, â.allol′ = reql′ = 10, and Lâ = {l, l′}. Moreover, (â, b̂)av =

(b̂, â)av = 30, (â, ĥ)av = (ĥ, â)av = 50, and the Controller database is empty.

• Round 1

In the first round, â is activated to execute the same action : Trigger de-allocation for

two demands fluctuation. As there is only one active node, â is selected to execute both

actions: it updates l and l′ mapping and both (â, b̂)av and (â, ĥ)av, then activates b̂ and ĥ.

• Round 2

74

Initial situation Round 1

Round 2 Round 3

Round 4 Round 5

Figure 5.4: Decrease in BW requirement OR Link Removal : Example1

In the second round, both b̂ and ĥ are active to run the same action, hence the Con-

troller selects both of them to execute simultaneously the De-allocate action. They both

synchronize with â, then activate the next nodes in each path: b̂ activates ĉ, and ĥ activates

ĝ.

75

Figure 5.5: Decrease in BW Requirement or Link Removal : Example2

• Round 3, 4, 5

Like in the round 3, the active nodes ĉ and ĝ will execute simultaneously the De-allocate

action. They update with b̂ and ĥ, then ĉ activates d̂. In the rounds 4 and 5, d̂ and ê will

run like in the previous example to meet l new request.

• Comments

Note that the algorithm converges in 5 rounds like the case of only one fluctuation.

Moreover, remark that in case of multiple fluctuation requests, the number of rounds is at

least equal to the number of nodes composing the longest hosting path of evolving links (as

these nodes will run in separate rounds). In this example, l has the longest hosting path.

5.4.2.4 Algorithm2: Link Addition

This is the case where a new virtual link l should be added to connect two embedded virtual

nodes. To do so, a substrate path connecting the substrate nodes hosting srcl and desl,

and having enough available bandwidth (> reql) should be found.

We define the cost of embedding a virtual link l as the sum of costs of the substrate

links hosting l (as described in section 2.3.1.1). The aim of this algorithm is to find the most

cost effective substrate path, in a distributed, and self stabilizing manner. To achieve this,

our proposal runs in two steps: first step consists of searching and reserving the substrate

path, and second is the bandwidth allocation step.

• The first step consists of i) searching all available paths (having enough bandwidth)

to connect the two substrate nodes hosting srcl and desl, and ii) saving the required

amount of bandwidth in each of them.

76

Initial situation Round 1

Round 2 Round 3

Figure 5.6: Decrease in BW Requirement or Link Removal : Example2

• In the second step, the most cost effective substrate path is selected among the K

first arriving path proposals (where K is a tuning variable), then, the virtual link l is

mapped to the best path, and the bandwidth previously reserved on other paths is

released.

Four actions manage this algorithm. Trigger searching and reserving bandwidth, Search and

reserve bandwidth, Release bandwidth and Allocate bandwidth. Hereafter we give a short

description of each action, details can be found in the corresponding algorithms:

• Action 1: Trigger searching and reserving bandwidth:

This action concerns the source substrate node (hosting srcl), called n̂. It aims at triggering

the first step (path research and reservation). To do so, the node n̂ first checks if all its

attached substrate paths are saturated, in this situation, the new bandwidth request is

immediately rejected, as no path connecting host(srcl) and host(desl) can be found. Else,

77

n̂ starts building the new hosting path by adding n̂ to ~Pl, initially empty. Then, for all

available attached substrate links, the node first reserves bandwidth on the substrate link

and then activates the corresponding neighboring node to continue searching and reserving

the path.

Note that the existence of an available substrate path to connect host(srcl) and host(desl)

is not guarantied. Hence, we risk to search infinitely for a nonexistent substrate path and

never reach stability. To avoid this situation, we define Timerl, a “timer” that limits the

duration allowed for searching an available path, this duration is defined in terms of rounds,

and depends on the SN dimension. Timerl is launched when the path research starts. If

Timerl expires and no path is found, the new bandwidth request is rejected.

Algorithm 2: Link Addition

Action 1: Trigger searching and reserving BW (Priority=pT SR)
Inputs:

1: The executing node : n̂
2: The concerned virtual link : l
3: The new required bandwidth : reql

Steps:
1: Launch Timerl (start l’s Timer)
2: if (∀ô ∈ Neigh(n̂), (n̂, ô)av < reql) (if all connected substrate links

are saturated) then
3: Reject the New bandwidth request
4: else
5: ~Pl.add(n̂) (start building the new path)
6: for ô ∈ Neigh(n̂) | (n̂, ô)av > reql (for all attached substrate links

having enough bandwidth) do
7: (n̂, ô)av -= reql (reserve bandwidth in (n̂, ô))
8: Add (ô, Search and reserve BW, l, reql) to the Controller

database (activate ô)
9: end for

10: end if

• Action 2: Search and reserve bandwidth:

This action concerns the other substrate nodes searching for an available path for the

evolving virtual link. If the virtual link timer has not expired yet, and no hosting path

is found yet, depending on the situation, a node n̂ executing this action can run different

operations:

• IF n̂ is not the end node (does not host desl), then there are two cases:

– First case: If for all adjacent substrate links, either there is no more available

bandwidth or the corresponding neighbor node is already in l path (i.e. there is

78

a risk to produce a loop!), then we conclude that n is the end of a no-through

path!. In this situation, previously reserved bandwidth should be released from

the saved path. To do so, n̂ re-activates m̂ (where m̂ is the soliciting node) to

perform a Release bandwidth action, described later, that will be spread back

through the reserved path.

– Second case: else, n̂ synchronizes with its soliciting node (updates the available

bandwidth in the substrate link), then goes on reserving bandwidth on available

substrate links, and solicits corresponding neighbors to do so.

• ELSE n̂ hosts desl and the path end is reached, hence n̂ synchronizes with its soliciting

node (updates the available bandwidth in the substrate link). As the end node must

wait K path proposals to select the most cost effective one, depending on the rank R

of the arriving proposal, there are three cases:

– First case: R < K: then n̂ simply saves the path proposal.

– Second case: R = K: then, n̂ selects the most cost effective path, thereafter,

first it embeds l in this path and adds new l mapping to its list. Next it re-

activates the previous node in the selected path to spread back the Allocate

bandwidth update (described below) through the selected path. Third, for all

non selected paths, the reserved bandwidth is released, and the previous node in

each path is activated to execute a Release bandwidth action. Finally, n̂ informs

the Controller that a path proposal was found for l to stop reserving other paths.

– Third case: R > K: In this case, the proposal is arriving late, and it is rejected:

a Release bandwidth action is triggered among the reserved path.

• ENDIF

Note that if a path proposal is already found or the timer has expired, all the nodes

activated to continue searching and reserving BW for the concerned link will no longer

execute the previously described steps, but will only spread back a Release BW action

through the previously reserved paths to cancel previous reservation.

• Action 3: Allocate bandwidth:

To allocate already reserved bandwidth, to a virtual link l, the substrate node n̂ first updates

l mapping (add l to Ln̂), note that no update for the available bandwidth on substrate links

is required as the bandwidth was already reserved. Then,if n̂ is not the origin node (not

79

hosting srcl), it spreads back a the Allocate bandwidth request by activating the previous

node in ~Pl (note that this action is spread back through the previously reserved path, i.e.

it starts from host(srcl) to host(desl)).

• Action 4: Release bandwidth:

n̂ releases previously reserved bandwidth in (n̂, ô) where ô is the soliciting node (i.e. the

next node in the path, as this action is spread back through the previously reserved path).

If n̂ is not the origin node (does not host srcl), it releases reserved bandwidth in (n̂,m̂) (m̂

is the previous node in ~Pl) and activates m̂ to make a Release bandwidth update for l.

Note that a reserved substrate link can be common to many paths, as shown in the next

example, hence, before updating available bandwidth on substrate links ((n̂, ô) and (n̂,m̂)),

n̂ checks if the bandwidth was not already released or used in a previous move, in this case,

no other updates are required.

Action priority: We choose the following priorities to schedule the previous actions:

• Trigger searching and reserving BW: pT SR

• Search and reserve bandwidth : pSR

• Allocate bandwidth : pAll

• Release bandwidth : pRel

Such that pSR<pRel<pAll<pT SR. The motivation is threefold: first we give the highest

priority to Trigger searching and reserving bandwidth action to favor dealing with new

arriving requests, and thus handle many demands simultaneously. Allocate bandwidth action

comes next, in order to allocate the virtual links as soon as an available path proposal is

found. Finally, by giving Release bandwidth a higher priority then Search and reserve

bandwidth, we release bandwidth before searching for an available path to increase the

number of path solutions.

Note that when two neighboring substrate nodes execute the actions Trigger searching

and reserving BW and Search and reserve bandwidth, they risk to reserve bandwidth on the

same substrate link connecting them simultaneously, thinking that there is enough band-

width, which is not always the case as both nodes are still executing and their parameters

values are not determined yet. To avoid such situation, the Controller selects a set of non

adjacent active nodes to execute Trigger searching and reserving BW or Search and

reserve bandwidth actions. The other nodes should wait for the next round. More details

of theses actions can be found in Algorithm 2 and the following example.

80

Algorithm 2: Link Addition
Action 2: Search and reserve BW (Priority=pSR)
Inputs:

1: n̂, l, reql

Steps:
1: if Timerl has not expired yet and no path is found for l yet then
2: if desl /∈ Nn̂ (if n̂ does not host the destination node) then
3: if (∀ô ∈ Neigh(n̂) , (n̂, ô)av < reql or ô ∈ ~Pl) (if for all neighboring nodes, either the

substrate link is saturated, or the node is already in ~Pl, i.e. we risk to form a loop) then
4: Add (m̂, Release BW, l, reql) to the Controller database, where m̂= ~Pl

end

(activate m̂ to Release BW, m̂ is the soliciting node, i.e. the last node added to ~Pl)
5: else
6: (n̂, m̂)av -= reql, ~Pl.add(n̂) (reserve bw to synchronize with m̂, and add n̂ to the

path)
7: for ô ∈ Neigh(n̂) | (n̂, ô)av > reql and ô /∈ ~Pl (for all neighbors connected to n̂

with enough bw and not in ~Pl) do
8: (n̂, ô)av -= reql (reserve bw in (n̂, ô))
9: Add (ô, Search and reserve BW, l, reql) to the Controller database (activate

ô to Reserve BW)
10: end for
11: end if
12: else
13: The path end is reached and this is the Rth path proposal for l, n̂ should select

the best path among K proposals
14: (n̂, m̂)av -= reql, ~Pl.add(n̂) (reserve bw to synchronize with m̂, and add n̂ to the path)
15: if R < K then
16: Save the path solution
17: end if
18: if R = K then
19: BestPath= The most cost effective path among the K proposals
20: Ln̂.add(l) (n̂ ~Pl

= BestPath, and n̂allol
= reql) (save the new mapping)

21: Add (ĵ, Allocate BW, l, reql) to the Controller database, where j =
BestPathprevious (activate ĵ to Allocate BW, where j is the previous node in BestPath)

22: for all non selected paths do
23: (n̂, î)av -= reql (release previously reserved BW, where î is the last node in a non

selected path)
24: Add (̂i, Release BW, l, reql) to the Controller database (activate î to continue

releasing Release BW through the path)
25: end for
26: end if
27: if R > K (this proposal is arriving late, the virtual path is already embedded) then
28: (n̂, m̂)av += reql (release previously reserved bw on (n̂, m̂))
29: Add (m̂, Release BW, l, reql) to the Controller database (activate m̂ to Release BW)
30: end if
31: end if
32: else
33: Add (m̂, Release BW, l, reql) to the Controller database (activate m̂ to Release BW)
34: end if

• Example:

81

Algorithm 2: Link Addition

Action 3: Allocate BW (Priority=pAll)
Inputs:

1: The executing node : n̂
2: The concerned virtual link : l
3: The new required bandwidth : reql

Steps:
1: Ln̂.add(l) save l new mapping
2: if srcl /∈ Nn̂ (if n̂ does not host l source, i.e. this is not the origin node)

then
3: Add (m̂, Allocate BW, l, reql) to the Controller database,

where m̂= ~Pl

previous
(activate m̂ to continue propagating back the

Allocate BW action through the path)
4: end if

Algorithm 2: Link Addition

Action 4: Release BW (Priority=pRel)
Inputs:

1: The executing node : n̂
2: The concerned virtual link : l
3: The new required bandwidth : reql

Steps:
1: if the reserved BW on (n̂, ô) was not already released or allo-

cated, where ô= ~Pl.next (ô it is the next node in ~Pl because this
action travels back through the path) then

2: (n̂, ô)av += reql (release previously reserved bandwidth in (n̂, ô))
3: end if
4: if srcl /∈ Nn̂ (if this is not the origin node) then
5: if the reserved BW on (n̂, m̂) was not already released or

allocated, where m̂ = ~Pl

previous
then

6: (n̂, m̂)av += reql (release previously reserved bandwidth in (n̂, m̂))
7: end if
8: Add (m̂, Release bandwidth, l, reql) to the Controller

database (activate m̂ to Release bandwidth), i.e. propagate back the
Release bandwidth action

9: end if

This example gives a round per round explanation of the Algorithm 2 execution. To do

so, imagine that a new virtual link l should be added to the VN topology to connect the

two virtual nodes a and b, with reql = 30. To simplify the example, we set K, the number

of proposals that the end node should wait to 1 (the first path proposal is embedded) and

suppose that all substrate links have the same cost 1, besides, we imagine that Timerl is

long enough to find a path solution for l.

82

Figure 5.7: Link addition: Example

• Round 1

To handle the new request, the substrate node â is scheduled to execute a Trigger BW

research and allocation action, to initiate the research for a substrate path for l. When

selected by the Controller, â updates (â, b̂)av and (â, ĥ)av to reserve bandwidth on the

available substrate links, then ~Pl is updated to save the reserved path (~Pl = {â}). Finally,

â activates b̂ and ĥ to continue searching for available paths.

• Round 2 and 3

In the second round, b̂ and ĥ execute simultaneously: they reserve bandwidth in all available

attached substrate links ((ĥ, ĝ) for ĥ, (b̂, ĉ) and (b̂, ĵ) for b̂), update the reserved path and

then activate the next nodes (ĝ, ĉ and î), that will execute the same steps in the following

round.

• Round 4

In the round 4, f̂ , d̂ and ĵ execute simultaneously. f̂ remarks that all its attached substrate

links are unavailable ((f̂ .ê).av = 0 and ĝ ∈ ~Pl), hence, it activates ĝ to perform a Release

BW action to cancel the bandwidth reservation among the saved path.

As for d̂, only the substrate link (d̂.ĵ) is available ((d̂.ê) = 20 < reql) , so, it reserves

bandwidth on this link and activates ĵ to do so.

ĵ who was activated by î in round 3, is the end node: it hosts desl = b, it concludes that

it has just received the first path proposal for l. As K = 1, ĵ immediately embeds l onto

this path, it updates its mapping list Lj (add l), it synchronizes with î (update (ĵ .̂i).av)

and then it activates back î to Allocate BW and update l mapping among the chosen entire

83

substrate path: ~Pl =
{

â, b̂, î, ĵ
}
. Finally, ĵ informs the Controller that a path was found

for l.

Initial situation Round 1

Round 2 Round 3

Figure 5.8: Link addition, Rounds 1-3

• Rounds 5, 6, 7

In the round 5, three substrate nodes are active to execute three different actions: ĝ is

scheduled to Release BW (priority = pRel), ĵ is scheduled to Search and reserve BW

(priority = pSR) and î is scheduled to Allocate BW (priority = pAll). Hence the Controller

selects the one with highest priority: Âll, because pAll > pRel > pSR.

Thus, î updates its mapping to add l, and activates b. b and a also update their mapping

in rounds 6 and 7, to embed l on ~Pl =
{

â, b̂, î, ĵ
}

• Rounds 8, 9, 10

84

In the round 8, only the nodes ĝ and ĵ are active (they where activated in round 4), as â,

did not activate any node in the previous round. Node ĝ , having the highest priority is

selected to execute a Release bandwidth action, hence it updates the available resources on

substrate links (ĝ, f̂) and (ĝ, ĥ) and activates ĥ to do the same thing in order to release the

reserved bandwidth on the substrate link ~Pl =
{

â, ĥ, ĝ, f̂
}
. This is accomplished in rounds

9 and 10.

• Rounds 11, 12, 13, 14, 15

In round 11, only ĵ is active, it is selected by the Controller to execute a Search and

reserve BW action. As a path was already found, ĵ triggers a Release BW update among
~Pl =

{
â, b̂, ĉ, d̂, ĵ

}
to release previously reserved bandwidth. This will be completed in

rounds 12, 13, 14 and 15.

• Comments: Note that although this algorithm converges in 15 rounds (for this

example), the substrate path hosting l was found since the fourth round.

5.4.2.5 Algorithm3: Increase in Bandwidth Requirement

This is the case where an already embedded virtual link l requires more bandwidth. To

handle such request, we propose a two step algorithm: first, we check if there is enough

bandwidth on the path hosting l to meet the new demand. If it is the case, the required

bandwidth is allocated and the request is satisfied. Else we move to the second step that

consists of i) finding a new path for l, and ii) de-allocating l from its old hosting path, in

other terms, we perform a virtual link migration.

To do so, we will use a slightly modified version of already defined actions in previous

Algorithms.

• Action 1: Trigger reserving bandwidth:

This action concerns the substrate node hosting srcl and aims at triggering bandwidth

reservation among the path supporting l. Note that the main differences between this action

and the Trigger searching and reserving bandwidth action defined in Algorithm 2 are: i) no

path research is required as the bandwidth is reserved only among l’s hosting path, already

known, and ii) the amount of reserved bandwidth is only reql − allol, (compared to reql in

Trigger searching and reserving bandwidth action) as allol is already allocated to l.

The node n̂ executing this action first checks if there is enough bandwidth on the sub-

strate link (n̂, ô), where ô is the next node in ~Pl. If it is the case, n̂ reserves bandwidth on

85

Round 4 Round 5

Round 6 Round 7

Round 8 Round 9

Figure 5.9: Link addition, Rounds 4-9

(n̂, ô) and activates m̂ to do so (using action Reserve bandwidth, defined below). Else,

the new bandwidth demand can not be supplied over ~Pl, and a virtual link migration is

required. To do so, n̂ performs the steps of Trigger searching and reserving bandwidth ac-

tion defined in Algorithm 2 in order to start searching and reserving a new path to support

86

Round 10 Round 11

Round 12 Round 13

Round 14 Round 15

Figure 5.10: Link addition, Rounds 10-15

l, then executes the stages of action Trigger de-allocation of Algorithm 1, to delete l old

mapping and release bandwidth on the old path. Details about this action can be found in

algorithm 3.

87

Algorithm 3: Increase in BW requirement

Action 1: Trigger reserving bandwidth (Priority=pT R)
Inputs:

1: The executing node : n̂
2: The concerned virtual link : l
3: The new required bandwidth : reql

Steps:
1: if (n̂, ô)av > (reql − allol), where ô = ~Pl

next
, if there is enough BW

on the substrate link (n̂, ô), where m̂ is the next node in ~Pl then
2: (n̂, ô)av− = (reql − allol) (reserve bandwidth in (n̂, m̂))
3: Add (ô, Reserve bandwidth, l, reql) to the Controller database

(activate ô to spread the BW reservation along the path)
4: else
5: A virtual link migration is required:
6: First : Perform the steps of the action Trigger searching and

reserving bandwidth of Algorithm 2:
7: Start n̂.T imerl (start l Timer)
8: if (∀m̂ ∈ Neigh(n̂), (n̂, m̂)av < reql) (if all connected substrate

links are saturated) then
9: Reject the New bandwidth request

10: else
11: ~Pl.add(n̂) (save the new path)
12: for m̂ ∈ Neigh(n̂) | (n̂, m̂)av > reql (for all attached substrate

links having enough bandwidth) do
13: (n̂, m̂)av -= reql (reserve bandwidth in (n̂, m̂))
14: Add (m̂, Search and reserve bandwidth, l, reql) to the

Controller database (activate m̂)
15: end for
16: end if
17: Second : Perform the steps of the action Trigger de-

allocation of Algorithm 1, with reql = 0:
18: (n̂, m̂)av += n̂allol

where m̂ = n̂next
~Pl

(release previously allocated
bandwidth in the substrate link (n̂, m̂) where m̂ is the next node in l’s
hosting path)

19: Add (m̂, Deallocate, l, reql) to the Controller database (Acti-
vate the next node in ~Pl)

20: Ln̂.remove(l) (Remove l from n̂ mapping list)
21: end if

• Action 2: Reserve bandwidth:

This action aims at spreading the bandwidth reservation through l’s hosting path. To do

so, n̂ performs the following steps depending on the situation:

• IF n̂ is not the last node in ~Pl, it checks if there is enough bandwidth on (n̂, ô), where

ô is the next node in ~Pl.

– IF it is the case, it synchronizes with its soliciting node (the previous node in
~Pl), then reserves bandwidth on (n̂, ô) and activates ô to continue bandwidth

88

reservation.

– ELSE, we conclude that l’s supporting substrate path can not provide more

bandwidth to meet reql. In this case, previously reserved bandwidth among ~Pl

should be released: node n̂ activates m̂ to do so (using action Release band-

width v2, described below, a slightly modified version of action Release band-

width of Algorithm 2), where m̂ is the previous node in ~Pl.

• ELSE the end of the path is reached and required bandwidth was successfully re-

served, and we only need to assign it to l. Hence, n̂ synchronizes with its soliciting

node, then updates l mapping (n̂allol
= reql), and spreads back through ~Pl an Update

bandwidth allocation action, described below.

Algorithm 3: Increase in BW requirement

Action 2: Reserve BW (Priority=pRes)
Inputs:

1: if n̂ 6= ~Pl.end (if n̂ is not the last node in the path) then
2: if (n̂, ô)av > (allol − reql), where ô= ~Pl

next
, (if there is enough

BW on (n̂.ô), with ô the next node in ~Pl) then
3: (n̂, m̂)av -= (allol − reql), where m̂= ~Pl

previous
(reserve band-

width to synchronize with the soliciting node)
4: (n̂, ô)av -= (allol − reql) (reserve bandwidth on (n̂, ô))
5: Add (ô, Reserve bandwidth, l, reql) to the Controller

database (activate ô to Reserve bandwidth)
6: else
7: We conclude that l hosting substrate path can not support the new

required bandwidth, hence
8: Add (m̂, Release bandwidth v2, l, (allol − reql)) to the

Controller database (activate m̂ to Release previously reserved
bandwidth)

9: end if
10: else
11: (n̂ is the last node in the path, hence)
12: n̂allol

= reql (update l mapping, i.e. allocate the reserved bandwidth
to l)

13: Add (m̂, Update bandwidth allocation, l, reql) to the Con-
troller database (activate m̂ to update l mapping through its hosting
path)

14: end if

• Action 3: Release bandwidth v2 :

This action aims at releasing reserved bandwidth among l path. The same steps of action

Release bandwidth of Algorithm 2 are used, except when n̂ is the source node (hosting srcl),

89

Algorithm 3: Increase in BW requirement

Action 4: Update bandwidth allocation (Priority=pU)
Inputs:

1: The executing node : n̂
2: The concerned virtual link : l
3: The new required bandwidth : reql

Steps:
1: nallol

= reql (update l mapping
2: if srcl /∈ Nn̂ (if n̂ does not host l source, i.e. this is not the origin node)

then
3: Add (m̂, Allocate bandwidth, l, reql), where to the Controller

database, where m̂= ~Pl

previous
activate the previous node in the

path to continue the update (because this action travels back through
the substrate path)

4: end if

in fact, in this case, n̂ concludes that l path can not support the new bandwidth require-

ments, and that a virtual link migration is required. Hence, it starts searching a new path

for l and de-allocating l from its old path (like in the Trigger reserving bandwidth action).

More detail can be found in the algorithm.

• Action 4: Update bandwidth allocation:

This action simply serves to update l’s mapping (allol) through the hosting path.

Action priority

Similarly to Algorithm 2, we choose the following priorities to schedule the previous

actions:

• Trigger reserving bandwidth: pT R

• Reserve bandwidth : pRes

• Release bandwidth : pRelv2

• Update bandwidth allocation : pU

Such that pU < pRes < pT R < pRelv2. In fact, the order pU < pRelv2 < pT R follows the

chronological order of these actions execution: we first check if there are enough bandwidth

in old path, then allocate more bandwidth if possible. Moreover, we always give releasing

bandwidth the highest priority to avoid SN saturation when the reserved bandwidth is not

used (pRelv2 is the highest).

As actions of all defined algorithms can be performed simultaneously, we will set the

following order of priority to orchestrate their execution (see next table):

90

Algorithm 3: Increase in bandwidth requirement

Action 3: Release BW v2 (Priority=pRelv2)
Inputs:

1: The executing node : n̂
2: The concerned virtual link : l
3: The new required bandwidth : reql

Steps:
1: (n̂, ô)av += reql, where ô= ~Pl.next (release previously reserved band-

width in (n̂, ô)), where ô is the soliciting node, it is the next node in ~Pl

because this action travels back through the path
2: if srcl /∈ Nn̂ (if this is not the source node) then
3: (n̂, m̂)av += reql, where m̂ = n̂previous

~Pl
(release previously reserved

bandwidth in (n̂, m̂)), where m̂ is the previous node in ~Pl

4: Add (m̂, Release bandwidth, l, reql) to the Controller
database (activate m̂ to execute a release bandwidth action), i.e. prop-
agate back the release bandwidth action

5: else
6: This is the source node, and a path migration is required to satisfy the

new request:
7: First : Perform the steps of the action Trigger searching and

reserving bandwidth of Algorithm 2:
8: Start n̂.T imerl (start l Timer)
9: if (∀m̂ ∈ Neigh(n̂), (n̂, m̂)av < reql) (if all connected substrate

links are saturated) then
10: Reject the New bandwidth request
11: else
12: ~Pl.add(n̂) (save the new path)
13: for m̂ ∈ Neigh(n̂) | (n̂, m̂)av > reql (for all attached substrate

links having enough bandwidth) do
14: (n̂, m̂)av -= reql (reserve bandwidth in (n̂, m̂))
15: Add (m̂, Search and reserve bandwidth, l, reql) to the

Controller database (activate m̂)
16: end for
17: end if
18: Second : Perform the steps of the action Trigger de-

allocation of Algorithm 1, with reql = 0:
19: (n̂, m̂)av += n̂allol

where m̂ = n̂next
~Pl

(release previously allocated
bandwidth in the substrate link (n̂, m̂) where m̂ is the next node in l’s
hosting path)

20: Add (m̂, Deallocate, l, reql) to the Controller database (Acti-
vate the next node in ~Pl)

21: Ln̂.remove(l) (Remove l from n̂ mapping list)
22: end if

Th selected order is as follows: we give the first actions of each algorithm the three

highest priorities (pT D = 10,pT R = 9, pT SR = 8) in order to favor dealing with different

fluctuations simultaneously. Then, we enhance releasing no used reserved resources (pD = 7,

pRel = 6, pRelv2 = 5). Finally, we respect the previously selected order for Algorithms 2

and 3.

91

Algorithm 1: Decrease in bandwidth requirements/ Link Removal
Action1: Trigger
de-allocation

pT D =
10

Starts the de-allocation of an embedded virtual link

Action2: De-
allocation

pD = 7 Continuous the de-allocation of an embedded virtual link

Algorithm 2: Link Addition
Action1: Trigger
searching and re-
serving bandwidth

pT SR =
8

Starts searching an available path to host a non embedded
virtual link

Action2: Search
and reserve band-
width

pSR =
1

Continuous searching an available path to host a non em-
bedded virtual link

Action3: Allo-
cate bandwidth

pAll =
4

Continuous allocating a virtual link in an already reserved
path (this action travels back among the substrate nodes hosting
the reserved path)

Action4: Release
bandwidth

pRel =
6

Continuous releasing bandwidth from a reserved path (this
action travels back among the substrate nodes hosting the re-
served path)

Algorithm 3: Increase in Bandwidth Requirement
Action1: Trig-
ger reserving
bandwidth

pT R =
9

Starts checking if enough bandwidth exist in the old hosting
path of an evolving link and reserves this bandwidth

Action2: Re-
serve bandwidth

pRes =
3

Continuous reserving bandwidth through the old hosting
path of an evolving link

Action3: Release
bandwidth v2

pRelv2 =
5

Continuous releasing reserved bandwidth in the old hosting
of an evolving link, then triggers searching for a new hosting
path (this action travels back among the substrate nodes hosting
the reserved path)

Action4: Update
bandwidth alloca-
tion

pU = 2 Continuous updating the evolving link mapping through its
hosting path (this action travels back among the substrate nodes
of the hosting path)

Table 5.4: Summary of all devised actions

92

5.5 Simulation results and evaluation

In this section, we will evaluate and validate the effectiveness of our proposed framework

and algorithms by conducting extensive simulations. To achieve this, we will first describe

the simulation environment and present the used performance parameters. Then, we will

present our main simulation results.

5.5.1 Simulation environment

We adjusted the C++ simulator used in previous chapters to fit our scenario: substrate

nodes with local view, and a round per round execution of the algorithms.

As in previous chapters, the GT-ITM tool (Zegura et al. (1996)) is used to generate

random topologies of the substrate and VN networks. The SN (Substrate Network) size is

set to 50 nodes and each pair of substrate nodes is randomly connected with probability

0.5.The node resource capacity and edge resource capacity are randomly drawn between 0

and 50 for nodes and between 0 and 100 for links. The per unit node and edge resources

costs are selected randomly between 0 and 50. The VNs requests have between 2 and 10

virtual nodes in their topologies with an average connectivity also set to 50%. The node

resource capacity is randomly selected between 0 and 20 and the edge resource capacity is

uniformly distributed between 0 and 50.

As in chapter 3, in order to initialize the scenario and start the system from a typical

situation we map the virtual nodes greedily and follow with the shortest path algorithm

to map edges. This step leads to suboptimal embedding that can reflect the state of a SN

subject to multiple virtual link evolutions.

The central performance metric will be the the number of rounds required to reach the

stable state (i.e. to converge), called Convergence_Time later. Other metrics will be

presented later.

5.5.2 Simulation results

This section presents preliminary results of simulations conducted to evaluate our proposal.

5.5.2.1 Algorithm1: Decrease in Bandwidth requirement (DBR) or Link Re-
moval (LD)

We simulate two scenarios to figure out the effectiveness of this algorithm:

• Case 1: only one bandwidth fluctuation is considered

93

In the first case, only one bandwidth fluctuation is considered, and results showed that,

in accordance with the example 5.10, Convergence_Time only depends on the number of

substrate nodes supporting the substrate path hosting the evolving virtual link. In more

detail: Convergence_Time = NbNodesP ath, (see fig 5.11), where NbNodesP ath is the

number of nodes in the hosting path.

Figure 5.11: DBR or LR: case of only one bandwidth fluctuation

• Case 2: Multiple bandwidth fluctuations occur simultaneously

To create a highly dynamic environment and unpredictable states or situations, we select

randomly N virtual links among the 96 links hosted by the SN as virtual links with fluc-

tuating bandwidth demands. To each selected virtual link l, we associate a Decrease in

Bandwidth Requirement or Link Removal request randomly. For the DBR, we set the new

bandwidth requirements as reql = allol/2.

Note that, as explained in the example , if only one bandwidth request is considered,

the Convergence_Time depends on the length (in term of number of nodes) of the sub-

strate path hosting the evolving link. Hence, in case of multiple bandwidth demands, the

Convergence_Time will be at least equal to the number of substrate nodes supporting the

longest path among those hosting the evolving links.

With this idea in mind, we try to evaluate the performance of our algorithm in handling

multiple bandwidth fluctuations at the same time. To do so, we consider N bandwidth

requests, and measure both i) the Convergence_Time when handling all the requests,

called CT_Multiple_Requests and ii) the Convergence_Time when managing only the

virtual link with the longest supporting path, called CT_One_Request and compare.

94

Figure 5.12: DBR or LR: Case of multiple bandwidth fluctuations

Figure 5.12 depicts the results of 200 averaged runs and shows that the convergence

time increases with the number of bandwidth requests for both CT_Multiple requests and

CT_One request. Moreover, note that the gap between the convergence time of the two

scenarios is small (CT_Multiple_Requests/CT_One_Request < 1.4), compared to the

number N of requests handled in the second case: in other terms, managing multiple band-

width fluctuations is at most 1.5 more time expensive then managing only one request (the

two convergence times are even equal for low N values). Note also that CT_One_Request

stabilizes at 12, which is the number of substrate nodes supporting the longest hosting path

in the network.

In order to understand better the behavior of the algorithm, we plot the number of

substrate nodes executing simultaneously in each round, called Nb_Executing_Nodes for

N = 10, N=15, N = 20 and N = 25.

Figure 5.13 depicts the results of 200 averaged runs and shows that all the curves have

the same shape: the number of executing nodes is initially high, then drops sharply in the

second round, thereafter it increases again in the third and fourth rounds and finally drops

off linearly until reaching stability.

This can be explained as follows: initially, all the active nodes in the system are scheduled

to execute the same action (Trigger de-allocation), hence have the same priority. As there

is generally at least a node wishing to execute only one action, the Controller selects all the

active nodes to run one action (note that Nb_Executing_Nodes in the first round is not

equal to the N , the total number of handled requests as some nodes are active for more then

an action). In the second round, there will be substrate nodes active to execute the Trigger

95

Figure 5.13: DBR or LD: Number of executing nodes per round

de-allocation action (those remaining from the previous round, i.e. nodes supporting more

then a virtual link with new bandwidth requirements), and nodes active to execute the

action De-allocate, which were activated by the executing nodes of the first round.

Hence the nodes scheduled for the Trigger de-allocation are selected to execute first, be-

cause they have the highest priority, which explains the sharp decrease of Nb_Executing_Nodes

in round 2, as the majority of active nodes for Trigger de-allocation already performed in

the first round. Since the fourth round, all the active nodes are scheduled to execute the

same action and thus are always selected to run simultaneously. Nb_Executing_Nodes

will then decrease progressively as the request of the virtual links with shortest hosting

paths will be met rapidly.

5.5.2.2 Algorithm 2: Link addition (LA)

Remind that this is the case where a new virtual link is added to the VN topology. To meet

the request, our proposal searches available paths to connect the source and destinations

nodes, then select the most cost effective one for embedding. In this simulation, we will

concentrate on the case where only one new bandwidth request is submitted, and we will

examine three metrics to evaluate the performance of our algorithm: the evolving requests

acceptance ratio, the virtual link embedding cost and the convergence time.

In order to simulate dynamic and unpredictable LA requests, we select randomly a pair

of virtual nodes among the 133 hosted in the substrate network, as source and destination

of the new virtual link. Note that both nodes composing each pair belong to the same VN

and are non adjacent (not connected by a virtual link, in order to avoid multi-graphs).

96

Figure 5.14: LA:Acceptance ratio depending on req_l

Figure 5.15: LA: Acceptance ratio depending on Timer

• Evolving requests acceptance ratio

We will evaluate the acceptance ratio of evolving requests depending on three parameters:

i) the substrate network saturation, ii) the amount of new required bandwidth, and iii) the

evolving virtual link Timer (the maximum allowed time to search for a path solution). All

the figures will depict the results of 100 averaged runs.

First, we measure the acceptance ratio of evolving demands in three substrate net-

works with different substrate links saturation. We keep the same definition of the average

links saturation as in section 4 4.2, and consider three values: ALS = 78%, 64% and

50%. In each scenario, we calculate the average available bandwidth on substrate links

Average_available_BW , and consider different values of new bandwidth demand reql,

such that the ratio reql/Average_available_BW is equal to 0.2, 0.5, 0.8 ... 2. and mea-

sure the acceptance ratio for different values of this ratio:

97

Figure 5.16: LA: Embedding cost

Figure 5.14 shows that the acceptance ratio decreases when reql increases for all sce-

narios, in fact, when the bandwidth demand is small, it is easier to find a hosting path.

Moreover, notice that the best acceptance ratios are obtained when the substrate links are

less congested, this is predictable as there is more available bandwidth in such network.

Second, we fix the ALS to 64%, and the reql/Average_available_BW to 0.8, and

measure the acceptance ratio for different values of Timer (in terms of rounds). Figure 5.14

shows that the acceptance ratio increases with the Timer, in fact, the more time we have

to search for an available path, the more chance we find a solution.

• Virtual link embedding cost

Now we will evaluate the cost-efficiency of our proposal. To do so, recall that end node

of an evolving virtual link should wait for K path proposals to select the most cost effective

one. We will measure the virtual link embedding cost for K = 1 and K = 2, for different

values of new bandwidth demand reql, and compare it to the shortest path cost, found with

a global view of the system. Figure 5.15 shows the ratio of the embedding cost found with

our algorithm, and that of the shortest path algorithm,

Our_embedding_Cost/The_shortest_Path_Cost for different values of

reql/Average_available_BW , for 100 accepted requests.

Note that the ratio decreases with K : the most path proposals we wait, the most

chance we have to find the best path. Moreover, for small values of reql, our algorithm

fails in finding the shortest path (for K = 1 and K = 2) as there are many path solutions

that can meet the demand, however, when reql increases, the number of available paths

decreases and the gap between the two algorithms costs decreases. For instance, for K = 2,

98

we see that since reql/Average_available_BW = 1.1, the two algorithms have the same

embedding cost, that means that there are at most two available paths, so if we find both

of them, we necessarily find the shortest path.

• Convergence time

Figure 5.17: LA: Convergence Time, ALS=78%

Figure 5.18: LA: Convergence Time, ALS=64%

Remember that this algorithm is composed of two steps: a first step to search for

available paths, and a second step to embedd the selected path and release bandwidth from

other paths. In this simulation, we will measure two times: the duration of the first phase:

the time required to find a path solution, and the total convergence time, i.e. the total time

required to reach stability (after completing the first and second step). We set K to one,

and Timer to 25 rounds, and make evaluation for three SN configurations: ALS = 78%,

64% and 50%. We will measure the time in seconds for more precision as all rounds do not

necessarily have the same duration (depending on the number and type of executed actions

in each round).

99

Figure 5.19: LA: Convergence Time, ALS=50%

Figures 5.16, 5.17, 5.18 depict the results of 100 averaged runs and show that the Total

convergence time and the Time to find a path decrease when reql increases. This is explained

by the fact that, when the required bandwidth is high, there are few available links, hence

few substrate nodes will be activated to search for a path, and thus the system will reach

stability more rapidly. In contrary, when reql is small, the majority of the substrate nodes

in SN will be activated to search for a path, and the system needs more time to stabilize.

For instance, for ALS = 50% and reql/Average_available_BW = 0.2, the convergence

time exceeds 6 seconds.

Moreover, notice that both the Total convergence time and the Time to find a path

decrease with the average link saturation, for the same reasons explained above. Finally,

note that the gap between Total convergence time and the Time to find a path increases

with ALS, we can explain this as follows: when there are more available substrate resources

(ALS low), more substrate paths will be reserved during the first phase of the algorithm,

hence, after finding a path solution, releasing bandwidth from reserved paths will take more

time.

5.6 Conclusion

In this chapter, a self stabilizing framework was proposed to deal with bandwidth demand

fluctuation in embedded virtual networks. The solution is composed of a central Controller,

and three parallel, distributed and local view algorithms running in each substrate node

to handle all types of bandwidth demand fluctuations. Simulation results show that many

requests can be managed simultaneously in a time effective way. Moreover, our distributed

algorithms find solutions (cost effective paths to embedd new virtual links added to the VN

topology) that are very close to the global solutions (using a global view) .

100

Chapter 6

Conclusion and Future Research
Directions

Contents
6.1 Conclusion and discussion . 101

6.2 Future research directions . 102

This chapter outlines the contributions of this thesis and discusses the work to be carried

out in the future. In section 6.1, we will summarize the proposals described in this thesis,

then we will formulate possible research for the future in section 6.2.

6.1 Conclusion and discussion

In this thesis, we addressed the virtual network resource provisioning problem, with a fo-

cus on the virtual and substrate resource management. In fact, we seperate the virtual

network resource provisioning issue into two sub-problems: the initial virtual network em-

bedding (VNE) that aims at finding an optimal mapping between virtual nodes and links

and substrate nodes and links, and the dynamic management of virtual and substrate re-

sources that deals with resource demand fluctuation of embedded virtual networks, and

the re-optimization of the substrate network usage. The key contributions of the thesis are

listed below:

• A heuristic algorithm that deals with virtual nodes demand fluctuations. It manages

the case where an embedded virtual node requires more resources, whereas the hosting

substrate node does not have enough available resources. The main idea of the algo-

rithm is to re-allocate one or more co-located virtual nodes from the substrate node,

hosting the evolving node, to free resources (or make room) for the evolving node.

101

In addition to minimizing the re-allocation cost, our proposal takes into account the

service interruption during migration and reduces it.

• The previous algorithm was extended to design a preventive re-configuration scheme

to enhance substrate network profitability. In fact, our proposal “takes advantage”

of the resource demand perturbation to tidy up the SN at minimum cost and dis-

ruptions. When re-allocating virtual nodes to make room for the extending node, we

shift the most congested virtual links to less saturated substrate resources to balance

the load among the Substrate network. Our proposal offers the best trade off between

re-allocation cost and load balancing performance.

• A distributed, local-view and parallel framework was devised to handle all forms of

bandwidth demand fluctuations of the embedded virtual links. It is composed of a

Controller and three algorithms running in each substrate node in a distributed and

parallel manner. The framework is based on the self-stabilization approach, and can

manage many and different forms of bandwidth demand variations simultaneously.

6.2 Future research directions

Suggested future research work resulting from this thesis can be summarized as follows:

• Enhance the previous contributions by:

– Extending the self-stabilizing framework to manage the node demand fluctua-

tions: in fact, when re-allocating a virtual node, its attached links should be

re-embedded too. To do so, the proposed algorithms for allocating virtual links

and deleting others can be used.

– Boosting the Controller performance to allow the execution of different types of

actions simultaneously, to reduce the convergence time.

– Making more exhaustive simulations on the self-stabilizing algorithms to better

evaluate their performance and understand their limits in different conditions,

for instance in case of multiple bandwidth requests of different types.

– Improving the substrate network profitability at the same time as managing the

bandwidth demand fluctuation, by balancing the load among substrate links. To

do so, the cos unit of substrate links can be defined according to their stress.

102

– Expanding the contribution of chapter 3 to manage bandwidth demand fluctua-

tion.

– Managing the case where a whole sub-graph is added to the embedded virtual

network

• Explore other Virtual Network resource provisioning problems, namely the

Substrate Network Survivability problem Rahman et al. (2010)

103

Bibliography

Amshavalli, R.S., & Kavitha, G. 2014 (May). Increasing the availability of cloud re-

sources using broker with semantic technology. Pages 1578–1582 of: Advanced Communi-

cation Control and Computing Technologies (ICACCCT), 2014 International Conference

on.

Andersen, David G. 2002. Theoretical Approaches To Node Assignment.

Armbrust, Michael, Fox, Armando, Griffith, Rean, Joseph, Anthony D.,

Katz, Randy, Konwinski, Andy, Lee, Gunho, Patterson, David, Rabkin,

Ariel, Stoica, Ion, & Zaharia, Matei. 2009 (February). Above the Clouds: A

Berkeley View of Cloud Computing. Tech. rept. University of California at Berkeley.

Baveja, Alok, & Srinivasan, Aravind. 2000. Approximation Algorithms for Disjoint

Paths and Related Routing and Packing Problems. Math. Oper. Res., 25(2), 255–280.

Blenk, Andreas, & Kellerer, Wolfgang. 2013. Traffic Pattern Based Virtual Net-

work Embedding. In: Proceedings of the 2013 Workshop on Student Workhop.

Botero, J.F., & Hesselbach, X. 2009 (Sept). The bottlenecked virtual network problem

in bandwidth allocation for network virtualization. Pages 1–5 of: Communications, 2009.

LATINCOM ’09. IEEE Latin-American Conference on.

Boyd, S., Xiao, L., Mutapcic, A., & Mattingley, J. 2006. Notes on Decomposition

Methods. Stanford University.

Buyya, Rajkumar, Yeo, Chee Shin, Venugopal, Srikumar, Broberg, James,

& Brandic, Ivona. 2009. Cloud computing and emerging IT platforms: Vision, hype,

and reality for delivering computing as the 5th utility. Future Generation Comp. Syst.,

25(6), 599–616.

104

Carter, R.L., St.Louis, D., & Andert, E.P., Jr. 1998 (Oct). Resource allocation

in a distributed computing environment. Pages C32/1–C32/8 vol.1 of: Digital Avionics

Systems Conference, 1998. Proceedings., 17th DASC. The AIAA/IEEE/SAE, vol. 1.

Cheng, Xiang, Su, Sen, Zhang, Zhongbao, Wang, Hanchi, Yang, Fangchun,

Luo, Yan, & Wang, Jie. 2011. Virtual network embedding through topology-aware

node ranking. Computer Communication Review, 41(2), 38–47.

Chowdhury, M., Rahman, M.R., & Boutaba, R. 2012. ViNEYard: Virtual Net-

work Embedding Algorithms With Coordinated Node and Link Mapping. Networking,

IEEE/ACM Transactions on, 20, 206–219.

Chowdhury, N.M.M.K., & Boutaba, R. 2009. Network virtualization: state of the

art and research challenges. Communications Magazine, IEEE, 47(7), 20–26.

Costa, Paolo, Migliavacca, Matteo, Pietzuch, Peter, & Wolf, Alexander L.

2012. NaaS: Network-as-a-Service in the Cloud. In: Presented as part of the 2nd USENIX

Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and

Services.

Dab, B., Fajjari, I., Aitsaadi, N., & Pujolle, G. 2013 (Dec). VNR-GA: Elastic

virtual network reconfiguration algorithm based on Genetic metaheuristic. Pages 2300–

2306 of: Global Communications Conference (GLOBECOM), 2013 IEEE.

Di, Hao, Yu, Hongfang, Anand, Vishal, Li, Lemin, Sun, Gang, & Dong, Bin-

hong. 2012. Efficient Online Virtual Network Mapping Using Resource Evaluation. J.

Network Syst. Manage., 20(4), 468–488.

Dijkstra, Edsger W. 1974. Self-stabilizing Systems in Spite of Distributed Control.

Commun. ACM, 17(11), 643–644.

Dubois, Swan, & Tixeuil, Sebastien. 2011. A Taxonomy of Daemons in Self-

stabilization. CoRR, abs/1110.0334.

Eppstein, David. 1999. Finding the K Shortest Paths. SIAM J. Comput., 28(2), 652–673.

Esposito, F., Di Paola, D., & Matta, I. 2014. On Distributed Virtual Network

Embedding With Guarantees. Networking, IEEE/ACM Transactions on, PP(99), 1–1.

Fajjari, I, Aitsaadi, N., Pujolle, G., & Zimmermann, H. 2011a. VNE-AC: Virtual

Network Embedding Algorithm Based on Ant Colony Metaheuristic. In: (ICC) 2011.

105

Fajjari, I, Aitsaadi, N., Pujolle, G., & Zimmermann, H. 2012 (Dec). Adaptive-

VNE: A flexible resource allocation for virtual network embedding algorithm. Pages

2640–2646 of: Global Communications Conference (GLOBECOM), 2012 IEEE.

Fajjari, Ilhem, Aitsaadi, Nadjib, Pujolle, Guy, & Zimmermann, Hubert. 2011b.

Vnr algorithm: A greedy approach for virtual networks reconfigurations. Pages 1–6 of:

Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE. IEEE.

Farooq Butt, Nabeel, Chowdhury, Mosharaf, & Boutaba, Raouf. 2010.

Topology-Awareness and Reoptimization Mechanism for Virtual Network Embedding.

In: NETWORKING 2010. Springer Berlin Heidelberg.

Fischer, A, Botero, J.F., Till Beck, M., de Meer, H., & Hesselbach, X. 2013.

Virtual Network Embedding: A Survey. Communications Surveys Tutorials, IEEE, 15(4),

1888–1906.

Gambette, J. Beauquierand P. 2006. Introduction à l’algorithmique répartie et à

l’auto-stabilisation.

Gmach, Daniel, Rolia, Jerry, Cherkasova, Ludmila, & Kemper, Alfons. 2007.

Workload Analysis and Demand Prediction of Enterprise Data Center Applications. Pages

171–180 of: Proceedings of the 2007 IEEE 10th International Symposium on Workload

Characterization. IISWC ’07. Washington, DC, USA: IEEE Computer Society.

He, Jiayue, Zhang-Shen, Rui, Li, Ying, Lee, Cheng-Yen, Rexford, Jennifer, &

Chiang, Mung. 2008. Davinci: Dynamically adaptive virtual networks for a customized

internet. In: Proceedings of the 2008 ACM CONEXT Conference.

Hochbaum, Dorit S., & Shmoys, David B. 1986. A unified approach to approximation

algorithms for bottleneck problems. J. ACM, 33(3), 533–550.

Houidi, I, Louati, W., & Zeghlache, D. 2008 (May). A Distributed Virtual Net-

work Mapping Algorithm. Pages 5634–5640 of: Communications, 2008. ICC ’08. IEEE

International Conference on.

Houidi, Ines, Louati, Wajdi, Ben Ameur, Walid, & Zeghlache, Djamal. 2011.

Virtual Network Provisioning Across Multiple Substrate Networks. Comput. Netw., 55,

1011–1023.

106

Jmila, Houda, & Zeghlache, Djamal. 2015 (Jan.). An Adaptive Load Balancing

Scheme for Evolving Virtual Networks. Pages 494–500 of: 2015 12th Annual IEEE

Consumer Communications and Networking Conference (CCNC) (CCNC 2015).

Jmila, Houda, Houidi, Ines, & Zeghlache, Djamal. 2014 (June). RSforVNE: Node

Reallocation Algorithm for Virtual Networks Adaptation. In: 19th IEEE Symposium on

Computers and Communications (IEEE ISCC 2014).

Jmila, Houda, Drira, Kaouther, & Zeghlache, Djamal. 2016. A Self-Stabilizing

framework for dynamic bandwidth allocation in Virtual Networks. IEEE/IFIP Network

Operations and Management Symposium (NOMS).

Kapil, D., Pilli, E.S., & Joshi, R.C. 2013. Live virtual machine migration techniques:

Survey and research challenges. In: Advance Computing Conference (IACC), 2013 IEEE

3rd International.

Kolliopoulos, Stavros G., & Stein, Clifford. 1997. Improved Approximation Al-

gorithms for Unsplittable Flow Problems. Pages 426–435 of: FOCS. IEEE Computer

Society.

Krauter, Klaus, Buyya, Rajkumar, & Maheswaran, Muthucumaru. 2002. A

taxonomy and survey of grid resource management systems for distributed computing.

Softw., Pract. Exper., 32(2), 135–164.

Lu, Jing, & Turner, Jonathan. 2006. Efficient Mapping of Virtual Networks onto a

Shared Substrate. Tech. rept. Washington University in St. Louis.

Mahmood, Zaigham, & Hill, Richard. 2011. Cloud Computing for Enterprise Archi-

tectures. London: Springer.

Marquezan, C.C., Nobre, J.C., Granville, L.Z., Nunzi, G., Dudkowski, D., &

Brunner, M. 2009. Distributed Reallocation Scheme for Virtual Network Resources.

In: Communications, 2009. ICC ’09. IEEE International Conference on.

Marquezan, C.C., Granville, L.Z., Nunzi, G., & Brunner, M. 2010. Distributed

autonomic resource management for network virtualization. In: Network Operations and

Management Symposium (NOMS), 2010 IEEE.

Mell, Peter, & Grance, Timothy. 2011 (September). The NIST Definition of Cloud

Computing. Tech. rept. 800-145. National Institute of Standards and Technology (NIST),

Gaithersburg, MD.

107

Mijumbi, R., Gorricho, J.-L., Serrat, J., Claeys, M., Famaey, J., & De Turck,

F. 2014a (June). Neural network-based autonomous allocation of resources in virtual

networks. Pages 1–6 of: Networks and Communications (EuCNC), 2014 European Con-

ference on.

Mijumbi, Rashid, Gorricho, Juan-Luis, Serrat, Joan, Claeysy, Maxim, Tur-

cky, Filip De, & Latré, Steven. 2014b. Design and Evaluation of Learning Algo-

rithms for Dynamic Resource Management in Virtual Networks. Network Operations and

Management Symposium (NOMS 2014).

Mijumbi, Rashid, Gorricho, Juan-Luis, Serrat, Joan, Shen, Meng, Xu, Ke,

& Yang, Kun. 2015. A neuro-fuzzy approach to self-management of virtual network

resources. Expert Syst. Appl., 42(3), 1376–1390.

Nürnberger, Andreas. 2001. A Hierarchical Recurrent Neuro-Fuzzy System.

Parashar, Manish, & Hariri, Salim. 2005. Autonomic computing: An overview. Pages

247–259 of: Unconventional Programming Paradigms. Springer Verlag.

Rahman, MuntasirRaihan, Aib, Issam, & Boutaba, Raouf. 2010. Survivable Vir-

tual Network Embedding. Pages 40–52 of: Crovella, Mark, Feeney, LauraMarie,

Rubenstein, Dan, & Raghavan, S.V. (eds), NETWORKING 2010. Lecture Notes

in Computer Science, vol. 6091. Springer Berlin Heidelberg.

Razzaq, A., & Rathore, M.S. 2010 (Sept). An Approach towards Resource Efficient

Virtual Network Embedding. Pages 68–73 of: Evolving Internet (INTERNET), 2010

Second International Conference on.

Schneider, Marco. 1993. Self-stabilization. ACM Comput. Surv., 25(1), 45–67.

Seddiki, M.S., Nefzi, B., Song, Ye-Qiong, & Frikha, M. 2013 (Dec). Automated

controllers for bandwidth allocation in network virtualization. Pages 1–7 of: Performance

Computing and Communications Conference (IPCCC), 2013 IEEE 32nd International.

Sun, Gang, Anand, V., Yu, Hong-Fang, Liao, Dan, Cai, Yanyang, & Li, Le Min.

2012 (Dec). Adaptive provisioning for evolving virtual network request in cloud-based

datacenters. Pages 1617–1622 of: Global Communications Conference (GLOBECOM),

2012 IEEE.

108

Sun, Gang, Yu, Hongfang, Anand, Vishal, & Li, Lemin. 2013. A cost efficient

framework and algorithm for embedding dynamic virtual network requests. Future Gen-

eration Comp. Syst., 29, 1265–1277.

Sutton, Richard S., & Barto, Andrew G. 1998. Reinforcement Learning I: Intro-

duction.

Till Beck, M., Fischer, A., de Meer, H., Botero, J.F., & Hesselbach, X. 2013

(June). A distributed, parallel, and generic virtual network embedding framework. Pages

3471–3475 of: Communications (ICC), 2013 IEEE International Conference on.

Tran, Phuong Nga, Casucci, Leonardo, & Timm-Giel, Andreas. 2012. Optimal

mapping of virtual networks considering reactive reconfiguration. In: Cloud Networking

(CLOUDNET), 2012.

Tran, P.N., & Timm-Giel, A. 2013. Reconfiguration of virtual network mapping con-

sidering service disruption. In: (ICC), 2013.

Wang, Anjing, Iyer, M., Dutta, R., Rouskas, G.N., & Baldine, I. 2013. Network

Virtualization: Technologies, Perspectives, and Frontiers. Lightwave Technology, Journal

of, 31(4), 523–537.

Wei, Yongtao, Wang, Jinkuan, Wang, Cuirong, & Hu, Xi. 2010 (Sept). Band-

width Allocation in Virtual Network Based on Traffic Prediction. Pages 1–4 of: Wireless

Communications Networking and Mobile Computing (WiCOM), 2010 6th International

Conference on.

Xu, Li, Tan, Guozhen, & Zhang, Xia. 2014a (Oct). A cost sensitive approach for

Virtual Network reconfiguration. Pages 191–196 of: Computing, Communications and

IT Applications Conference (ComComAp), 2014 IEEE.

Xu, Zichuan, Liang, Weifa, & Xia, Qiufen. 2014b. Efficient virtual network embed-

ding via exploring periodic resource demands. Pages 90–98 of: LCN. IEEE Computer

Society.

Yu, Minlan, Yi, Yung, Rexford, Jennifer, & Chiang, Mung. 2008. Rethink-

ing Virtual Network Embedding: Substrate Support for Path Splitting and Migration.

SIGCOMM Comput. Commun. Rev., 38, 17–29.

Zegura, E.W., Calvert, K.L., & Bhattacharjee, S. 1996. How to model an inter-

network. In: INFOCOM.

109

Zhang, Min, Wu, Chunming, Yang, Qiang, & Jiang, Ming. 2012. Robust dynamic

bandwidth allocation method for virtual networks. Pages 2706–2710 of: Proceedings of

IEEE International Conference on Communications, ICC 2012, Ottawa, ON, Canada,

June 10-15, 2012.

Zhang, Qi, Cheng, Lu, & Boutaba, Raouf. 2010. Cloud computing: state-of-the-art

and research challenges. Journal of Internet Services and Applications, 1(1), 7–18.

Zhang, Sheng, Qian, Zhuzhong, Wu, Jie, & Lu, Sanglu. 2014a (Aug). Leveraging

tenant flexibility in resource allocation for virtual networks. Pages 1–8 of: Computer

Communication and Networks (ICCCN), 2014 23rd International Conference on.

Zhang, Sheng, Qian, Zhuzhong, Wu, Jie, Lu, Sanglu, & Epstein, L. 2014b. Vir-

tual Network Embedding with Opportunistic Resource Sharing. Parallel and Distributed

Systems, IEEE Transactions on, 25(3), 816–827.

Zhani, M.F., Zhang, Qi, Simon, G., & Boutaba, R. 2013. VDC Planner: Dynamic

migration-aware Virtual Data Center embedding for clouds. In: Integrated Network Man-

agement (IM 2013), 2013 IFIP/IEEE International Symposium on.

Zhou, Ye, Li, Yong, Sun, Guang, Jin, Depeng, Su, Li, & Zeng, Lieguang. 2010a

(Dec). Game Theory Based Bandwidth Allocation Scheme for Network Virtualization.

Pages 1–5 of: Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE.

Zhou, Ye, Li, Yong, Jin, Depeng, Su, Li, & Zeng, Lieguang. 2010b. A virtual

network embedding scheme with two-stage node mapping based on physical resource

migration. In: Communication Systems (ICCS), 2010 IEEE International Conference

on.

Zhou, Ye, Yang, Xu, Li, Yong, Jin, Depeng, Su, Li, & Zeng, Lieguang. 2013.

Incremental Re-Embedding Scheme for Evolving Virtual Network Requests. Communi-

cations Letters, IEEE, 17, 1016–1019.

Zhu, Yong, & Ammar, Mostafa H. 2006. Algorithms for Assigning Substrate Network

Resources to Virtual Network Components. In: INFOCOM.

110

	List of Figures
	List of Tables
	Acronyms
	Introduction
	The Cloud Computing paradigm
	The Cloud service models
	The Cloud environment actors
	Resource provisioning in the NaaS model
	Problem statement
	Thesis contribution
	Thesis Structure

	State of the art: Virtual Network resource provisioning
	Introduction
	Network Virtualization
	Substrate Network
	Virtual Network
	Virtual Network Resource Provisioning

	Virtual Network Embedding strategies
	Initial VNE strategies
	Problem formulation
	Overview of existing approaches

	Dynamic Resource Management strategies
	Management of Virtual Networks resource demand fluctuation
	Management of the Substrate Network usage

	Conclusion

	Virtual Networks Adaptation: Node Reallocation
	Introduction
	Problem formulation
	Network Model
	VN resource Request Model
	Mapping Model
	Problem formulation

	Heuristic algorithm design
	First step: Selection of virtual nodes for reallocation
	Second Step: finding the best new physical hosts
	Virtual node reallocation scheme

	Simulation results and evaluation
	Simulation environment
	Simulation results
	Re-allocation cost for large size evolving virtual nodes
	Migration cost
	Elasticity Request Acceptance ratio benefits for saturated SN
	Reduced execution time, especially for large Substrate Networks

	Conclusion

	Load balancing aware Virtual Networks adaptation
	Introduction
	Problem formulation and model
	Problem Formulation
	Optimization objective

	Heuristic algorithm design
	Virtual node selection criteria
	Virtual node re-allocation scheme

	Simulation results and evaluation
	Simulation environment
	Simulation results
	Better Re-allocation cost for large size evolving virtual nodes
	Better load balancing
	Load balancing Vs re-allocation cost

	Conclusion

	A Self-Stabilizing framework for Dynamic Bandwidth Allocation
	Introduction
	Problem description
	Initial VNE
	Management of bandwidth demand fluctuation

	Self-Stabilization
	Introduction to Self-Stabilization
	Motivation for Self-stabilization

	A self-stabilizing framework for dynamic bandwidth allocation
	System model
	Virtual link description
	Substrate node description

	The Self stabilizing framework
	Controller description
	Algorithms description
	Algorithm1: Decrease in Bandwidth Requirement or Link Removal
	Algorithm2: Link Addition
	Algorithm3: Increase in Bandwidth Requirement

	Simulation results and evaluation
	Simulation environment
	Simulation results
	Algorithm1: Decrease in Bandwidth requirement (DBR) or Link Removal (LD)
	Algorithm 2: Link addition (LA)

	Conclusion

	Conclusion and Future Research Directions
	Conclusion and discussion
	Future research directions

	Bibliography

