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Abstract

In recent years, analyses of available ice buoy and satellite data have revealed the strong heterogeneity and

intermittency of the deformation of sea ice and have demonstrated that the viscous-plastic rheology widely

used in current climate models and operational modelling platforms does not simulate adequately the drift,

deformation and mechanical stresses within the ice pack.

A new alternative rheological framework named Maxwell-Elasto-Brittle (Maxwell-EB) is therefore developed

here in the view of reproducing more accurately the drift and deformation of the ice cover in continuum sea ice

models at regional to global scales. The model builds on an elasto-brittle framework used for ice and rocks. A

viscous-like relaxation term is added to a linear-elastic constitutive law together with an e↵ective viscosity that

evolves with the local level of damage of the material, like its elastic modulus. This framework allows for part

of the internal stress to dissipate in large, permanent deformations along the faults/leads once the material is

highly damaged while retaining the memory of small, elastic deformations over undamaged areas. A healing

mechanism is also introduced, counterbalancing the e↵ects of damaging over large time scales.

The numerical scheme for the Maxwell-EB model is based on finite elements and variational methods. The

equations of motion are cast in the Eulerian frame and discontinuous Galerkin methods are implemented to

handle advective processes.

Idealized simulations without advection are first presented. These demonstrate that the Maxwell-EB rhe-

ological framework reproduces the main characteristics of sea ice mechanics and deformation : the strain

localization, the anisotropy and intermittency of deformation and the associated scaling laws. The successful

representation of these properties translates into very large gradients within all simulated fields. Idealized nu-

merical experiments are conducted to evaluate the amount of numerical di↵usion associated with the advection

of these extreme gradients in the model and to investigate other limitations of the numerical scheme. First

large-deformation simulations are carried in the context of a Couette flow experiment, which allow a comparison

with the result of a similar laboratory experiment performed on fresh-water ice. The model reproduces part of

the mechanical behaviour observed in the laboratory. Comparison of the numerical and experimental results

allow identifying some numerical and physical limitations of the model in the context of large-deformation and

laboratory-scale simulations. Finally, the Maxwell-EB framework is implemented in the context of modelling

the drift and deformation of sea ice on geophysical scales. Idealized simulations of the flow of sea ice through

a narrow channel are presented. The model simulates the propagation of damage along arch-like features and

successfully reproduces the formation of stable ice bridges.

Keywords : sea ice deformation, Maxwell-elasto-brittle rheology, brittle mechanics, elastic interactions,

viscous stress relaxation, heterogeneity, intermittency, anisotropy, finite elements and discontinuous Galerkin

methods.
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Résumé

Depuis quelques années, des analyses statistiques de données satellitales et de bouées dérivantes ont révélé le

caractère hautement hétérogène et intermittent de la déformation de la banquise Arctique, démontrant de ce fait

que le schéma rhéologique visco-plastique traditionellement utilisé en modélisation climatique et opérationnelle

ne simule pas adéquatement le comportement dynamique des glaces ainsi que les e↵orts mécaniques en leur

sein.

Un cadre rhéologique alternatif, baptisé Maxwell-Élasto-Fragile (Maxwell-EB) est donc ici développé dans

le but de reproduire correctement la dérive et la déformation des glaces dans les modèles continus de la banquise

à l’échelle régionale et globale. Le modèle se base en partie sur un cadre de modélisation élasto-fragile utilisé

pour les roches et la glace. Un terme de relaxation visqueuse est ajouté à la relation constitutive d’élasticité

linéaire avec une viscosité e↵ective, ou ”apparente”, laquelle évolue en fonction du niveau d’endommagement

local du matériel simulé, comme son module d’élasticité. Ce cadre rhéologique permet la dissipation partielle

des contraintes internes par le biais de déformations permanentes, possiblement grandes, le long de failles (ou

”leads”) lorsque le matériel est fortement endommagé ainsi que la conservation de la mémoire des contraintes

associées aux déformations élastiques dans les zones où le matériel reste relativement peu endommagé. Un

mécanisme de cicatrisation permettant de représenter le regel le long des failles formées est également inclus.

The schéma numérique du modèle Maxwell-EB est basé sur des méthodes de calcul variationnel et par

éléments finis. Une représentation Eulérienne des équations du mouvement est utilisée et des méthodes dites

Galerkin discontinues sont implémentées pour le traitement des processus d’advection.

Une première série de simulations idéalisées et sans advection est présentée, lesquelles démontrent que

la rhéologie Maxwell-Élasto-Fragile reproduit les caractéristiques principales du comportement mécanique de

la banquise, c’est-à-dire la localisation spatiale, l’anisotropie et l’intermittence de sa déformation ainsi que

les lois d’échelle qui en découlent. La représentation adéquate de ces propriétés se traduit par la présence

de très forts gradients au sein des champs de contrainte, de déformation et du niveau d’endommagement

simulés par le modèle. Des tests visant à évaluer la di↵usion numérique découlant de l’advection de ces

gradients extrêmes ainsi qu’à identifier certaines contraintes numériques du modèle sont ensuite présentés. De

premières simulations en grandes déformations, incluant les processus d’advection, sont réalisées, lesquelles

permettent une comparaison aux résultats d’une expérience de Couette annulaire sur de la glace fabriquée en

laboratoire. Le modèle reproduit en partie le comportement mécanique observé. Par ailleurs, les di↵érences

entre les résultats des simulations et ceux obtenus en laboratoire permettent d’identifier certaines limitations,

numériques et physiques, du modèle en grandes déformations. Finalement, le modèle rhéologique est utilisé

pour modéliser la dérive et la déformation des glaces à l’échelle de la banquise Arctique. Des simulations

idéalisées de l’écoulement de glace dans un chenal étroit sont présentées. Le modèle simule une propagation

localisée de l’endommagement, définissant des failles en forme d’arche, et la formation de ponts de glace stables.
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Chapter 1

Introduction

1.0.1 Context

The ice that covers the polar oceans moves and deforms under the action of the winds and ocean currents.

Making reliable predictions of the drift and deformation of this thin floating sheet of ice is becoming crucial

nowadays for: (1) forecasting the opening of shipping routes across the Arctic, (2) evaluating mechanical

constraints on o↵shore structures and ships and, at larger scales, (3) estimating the future evolution of both its

summer and winter extent in the Arctic and Antarctic to anticipate its short to long-term, regional to global

impacts on climate.

Early aerial pictures of the Arctic ice cover have revealed a highly heterogeneous, ”densely fractured ma-

terial” (Coon et al., 1974), divided in plates, called ”floes”, of sizes ranging from a few meters to several

kilometres (see figure 1.1). The relative motion of these floes translates into the opening of cracks, joining

along larger features called ”leads”, the shearing deformation along opened cracks, the closing of leads and the

formation of pressure ridges (Coon et al., 1974; Feltham, 2008; Weiss, 2013, and others). In more recent years,

satellite remote sensing data such as the RADARSAT Geophysical Processor System sea ice motion products

have allowed observing the strong localization of the deformation of sea ice along linear features, termed ”linear

kinematic features” (Kwok, 2001), which corresponds to active faults within the ice cover and the associated

discontinuities in the drift velocities (see figure 1.2).

From the modelling point of view, the approach that appears the most natural to represent the dynamics of

the ice cover at the scale of an aggregate of a few floes (see figure 1.1) is one in which individual ice plates are

resolved and floe-to-floe interactions are treated explicitly. Discrete element-type methods have indeed been

recently developed to model the mechanics and kinematics of sea ice at these small scales (e.g. Hopkins, 2004;

Herman, 2011; Wilchinsky et al., 2011; Rabatel et al., 2015). In the context of long-term and global scale

simulations of the sea ice cover, such models however remain computationally too expensive. As in general

they do not handle fracturing processes within the floes, they are also better suited for the representation of

a low concentration ice cover (< 80%) than of a dense ice pack. Current regional and global climate models

as well as most operational modelling platforms are instead based on a continuum mechanics description of

sea ice. Besides computational e�ciency, this approach presents the advantage of being more suitable for a

coupling with atmosphere and ocean models. In this case the motion of the thin ice cover is described by a

1
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Figure 1.1: Areal pictures of sea ice (from bottom to top) at the scale of 100 meters, ⇠ 5 km and 60 km. At the smallest
time and space scales, the discontinuous nature of the ice cover cannot be ignored when modelling its deformation and
drift. At large scales (� 104 m), the ice cover is constituted by a large number of individual ice floes of di↵erent shapes
and sizes and is described by mean quantities in continuum models.

two-dimensional Navier-Stokes-type equation of the form

⇢h


@u

@t
+ (u ·r)u

�
= F

ext

+r · (h�), (1.1)

with ⇢ the density, u the mean velocity, h the mean thickness of the ice and Fext, the external forces on the

ice cover, typically the air and ocean drags, the Coriolis force and the sea surface tilt. The last term in this

momentum balance equation stands for the mean internal force that arises from the sum of all mechanical

interactions between ice floes. Without a treatment of the kinematics of the discrete floes or individual leads,

the relationship between the corresponding internal stress tensor, �, and the macroscopic deformation of the

ice cover must be prescribed through a rheological law. Perhaps the biggest challenge of the continuum mod-

elling approach lies in the formulation of this constitutive law (Feltham, 2008), which must allow representing

adequately through mean quantities a material with a inherently discontinuous character.

Current operational modelling platforms, whether assimilating data or not (e.g., TOPAZ4 : Sakov et al.

(2012), GIOPS : Smith et al. (2015)), and global climate models including sea ice dynamics (e.g., the Coupled

Model Intercomparison Project Phase 5 models involved in the IPCC Fifth Assessment Report (Flato et al.,

2013)) are based on the same rheological framework for sea ice developed in the late seventies: the Hibler

Viscous-Plastic (VP) model (Hibler, 1977, 1979). With this approach, the ice creeps very slowly as a viscous

fluid under small stresses and deforms plastically once exceeding a yield criterion. Yet, over the last decade,

the viscous hypothesis and other underlying physical assumptions of this VP framework have been revisited

2



Figure 1.2: Weekly fields of divergence (upper left), vorticity (middle left), shear (lower left) and sea ice mo-
tion (x-component, y-component and magnitude) for the period of February 8 to February 14 2008 over the Arc-
tic basin, showing the concentration of deformation within linear features and clear discontinuities in the velocity
field. The fields are estimated from the 3-days RADARSAT Geophysical Processor System sea ice motion products
(http://rkwok.jpl.nasa.gov/graphics/index.html)

and found inconsistent with the observed mechanical behaviour of sea ice (Weiss et al., 2007; Coon et al., 2007;

Rampal et al., 2008). In the same line of ideas, recent modelling studies have demonstrated that while the

3



VP model can represent with a certain level of accuracy the mean, global (> 100 km) drift of sea ice, it fails

at reproducing the observed properties of sea ice deformation and that, especially at the fine scales (Lindsay

et al., 2003; Kwok et al., 2008; Girard et al., 2009) relevant for operational modelling, thereby stressing the

need to explore alternative rheologies.

Other modelling frameworks have been developed lately with the aim of representing more accurately

some important aspects of the mechanical behaviour of sea ice. Considering the discontinuous and anisotropic

character of the pack, Schreyer et al. (2006) have suggested an elastic-decohesive model that explicitly accounts

for the deformation arising from discontinuities in displacements across leads, the orientation of which is

prescribed. Tsamados et al. (2013) have presented a continuum model based on the rheology of Wilchinsky

and Feltham (2006) that accounts for the subgrid scale anisotropy of the sea ice cover. Their framework

incorporates an evolution equation for the orientation of ice floes, for which a diamond shape is assumed. Our

present work shares the same objective as these previous initiatives: to build a continuum model for sea ice that

is physically consistent with its observed mechanical behaviour. However, we chose to base our approach on

a completely isotropic rheology and, by incorporating the relevant brittle mechanics concepts and long-range

elastic interactions, aim to develop a model that reproduces the anisotropy and extreme gradients within the

sea ice cover naturally, that is, without the need of treating velocity discontinuities explicitly nor prescribing

lead orientations or floe shapes.

1.0.2 The Elasto-Brittle approach

Early on, sea ice scientists have suspected that the sea ice cover behaves in a brittle instead of a viscous manner,

with some strain hardening in compression (Nye, 1973). Studies of fracture patterns, stresses and strains both

in situ and in the laboratory have suggested that the deformation of sea ice is mostly accommodated by a

mechanism of multiscale fracturing and frictional sliding (Marsan et al., 2004; Schulson, 2006a; Schulson and

Duval, 2009; Weiss et al., 2007; Weiss and Schulson, 2009). By investigating the dispersion of ice buoys over the

Arctic, Rampal et al. (2008) recently showed that sea ice deforms in a heterogenous and intermittent manner

over spatial scales of 300 m to 300 km and time scales of 3 hrs to 3 months. The strong space-time coupling in

the scaling laws revealed by their analyses are consistent with (1) a brittle-type material in which permanent

deformations are accommodated by displacements along fractures and fault planes over a wide range of scales

and (2) long-range elastic interactions, allowing for small, local perturbations to trigger much larger damaging

events within the ice pack (Marsan and Weiss, 2010). The form of the scaling laws itself implies that the spatial

heterogeneity and intermittency characterizing sea ice deformation decrease very slowly when increasing the

scale of observation and therefore indicates that even at large scales, averaging the mechanical properties

and deformation rates of the Arctic sea ice does not give rise to a smooth, possibly viscous-like behaviour as

suggested by Hibler (1977).

A close comparison can be made between the deformation of sea ice and that of the Earth crust, in which

brittle fracturing and Coulomb stress redistribution also take place and for which scaling properties have been

recognized for years (Kagan and Knopo↵, 1980; Kagan, 1991; Kagan and Jackson, 1991; King et al., 1994;

Turcotte, 1992; Stein, 1999). Recently, Marsan and Weiss (2010) established a formal analogy between the

mechanical behaviour of sea ice and the Earth crust by demonstrating that the space-time coupling in the

deformation of sea ice, estimated from continuous displacement fields, is equivalent to a coupled scaling of the

discrete ice-fracturing events occurring along the leads, similar to that observed for earthquakes (Kagan, 1991;

Kagan and Jackson, 1991). The authors suggested that the similarity between sea ice and the Earth crust is

4



attributable to a common cascading mechanism of earth-/ice-fracturing events that extends the influence of

local events to longer durations and larger areas than their direct aftershocks.

In the case of rocks, attempts to simulate brittle deformation were first made using random spring-like

models. Combining local threshold mechanics and long-range elastic interactions, these successfully reproduced

the strong localization of rupture in both space and time, the clustering of rupture events along faults and the

multifractal properties of strain fields (Cowie et al., 1993, 1995). Building on similar linear-elastic laws and

introducing some strain softening at the micro scale, the failure model of Tang (1997) succeeded in simulating

the progressive failure leading to the macroscopic non-linear behaviour of brittle rock, thereby processing

discontinuum mechanics by a continuum mechanics method. An analogous approach based on local damage

evolution was also taken by Amitrano et al. (1999), who combined

• a linear-elastic constitutive law for a continuum solid,

• a local Mohr-Coulomb criterion for brittle failure,

• an isotropic progressive damage mechanism for the elastic modulus described by a non-dimensional scalar

damage parameter, allowing for the redistribution of the stress from over-critical to sub-critical areas of

the material, for the triggering of avalanches of damaging events and the propagation of faults.

Their model was shown to reproduce macroscopic brittleness and scaling laws in the distribution of damage

events, consistent with earthquake observations (Amitrano, 2003).

In light of the analyses of sea ice deformation of Marsan et al. (2004); Weiss et al. (2007); Rampal et al.

(2008) and others and of the similarity between the mechanical behaviour of sea ice and that of the Earth

crust emphasized by Marsan and Weiss (2010), this rheological framework, named Elasto-Brittle (EB) was

recently developed in the context of the Arctic ice pack by Girard et al. (2010b) to explicitly introduce brittle

mechanics concepts in continuum sea ice models. First implementations of this rheology into short (3-days),

no-advection, stand-alone simulations of the Arctic pack, but using realistic wind forcing from reanalyses,

showed that a Lagrangian EB model is able to reproduce the strong spatial localization and the anisotropy of

damage within sea ice and to simulate deformation fields in good agreement with that reconstructed from the

RADARSAT Geophysical Processor System (RGPS) ice motion data (Girard et al., 2010b).

1.0.3 The small and large deformations of sea ice

In the context of longer-term simulations of ice conditions and coupling to an ocean component, a suitable sea

ice model needs to represent not only the small deformations associated with the fracturing of the ice pack,

but also the permanent deformations occurring once the pack is fragmented and ice floes move relative to each

other along open leads, as these much larger deformations set the advective processes and overall drift pattern

of the ice cover.

This point is an important and intrinsic limitation of the EB framework. To illustrate this limitation, let us

represent schematically a linear-elastic and damageable material by a spring, with one free end and an initially

undamaged elastic modulus E0, as shown in figure 1.3a. Let us further consider that the maximum stress this

material (i.e., the spring) can sustain without being structurally damaged is �c. If a stress, �, smaller than

�c, is applied at time t, the resulting deformation of the spring, " is purely elastic and directly proportional to

the stress, as shown on figure 1.3b (dotted line). Conversely, if � > �c, the spring becomes damaged, which

translates into a diminution of its elastic modulus E and a non-linear deformation (figure 1.3b, solid black

curve).
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Figure 1.3: (a) Schematic representation of the Elasto-Brittle model, which combines a linear elastic constitutive law
and a progressive damage mechanism. At time t, an overcritical stress, � > �

c

, is applied to the system. It is removed at
time t+�t. In the all-elastic deformation assumption case (1), the damaged spring goes back to its initial position when
the loading is removed. In the all-permanent deformation assumption case (2), it keeps its final position. In both cases,
the damaged spring has a degraded elastic modulus, E < E

0. (b) Stress-strain diagram for the linear elastic (dotted
black line) and EB (solid and dashed lines) model. The black dot indicates the onset of damaging in the EB model,
after which the model behaviour diverges from the linear-elastic case. The dashed red unloading path corresponds to
the all-elastic deformation limit (1) and the dashed purple unloading path, to the all-permanent deformation limit (2).

Because its structure has been damaged, if the spring is released at time t + �t, it is not expected to go

back to its exact initial position. Instead, part of its deformation is expected to remains permanent. Yet,

if the deformation of the spring is modelled using a linear-elastic constitutive law, i.e., Hooke’s law, as is

the Elasto-Brittle framework (Amitrano et al., 1999; Girard et al., 2010b), the model will solve for its total

deformation " : it will not distinguish between the elastic (recoverable) and the potentially permanent part of

its deformation. Hence to estimate the deformation rate (i.e., the velocity) of a damaged elastic material in

such a model, assumptions about the amount of reversible versus irreversible deformation must be made. The

partitioning is bounded by two limit cases, which can be illustrated using the same linear spring system (see

figure 1.3a).

1. If all of the deformation of the damaged material (spring) is assumed elastic, whatever its damage level,

the material goes back to its initial position when unloaded (figure 1.3a, case 1) as represented by the red,

dashed unloading path on figure 1.3b. The elastic modulus of the material is degraded, but its velocity in

this case is zero. This assumption was made by Girard et al. (2010b), who neither updated the position

of mesh element nodes nor estimated advection processes in their Lagrangian, short-term simulations of

the Arctic sea ice cover.

2. If all of the deformation of the material is considered permanent, the material always keeps its final

position when unloaded (see figure 1.3a, case 2 and figure 1.3b, purple dashed unloading path). In this

case, velocities and deformation rates can be trivially estimated as the ratio of the total deformation and

of the time associated with the loading process (�t).

In an Elasto-Brittle model for sea ice, the second assumption might be justified by the fact that elastic
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deformations within an undamaged ice pack are small compared to the permanent deformations associated

with the opening, closing, and shearing along leads. Considering an undamaged elastic modulus between 1.0

and 10.0 · 109 Pa (Timco and Weeks, 2010), the maximum in-situ values of shear stress of 105 Pa reported by

Weiss et al. (2007) and a time scale for these stress measurements of 1 day, upper bound values for daily shear

strain rates in a one meter thick, purely elastic ice pack would be on the order of 10�5 day�1. This is less

than the lower bound deformation rate estimates from RGPS data (between 10�4 and 100 day�1, for Marsan

et al. (2004); Girard et al. (2009)), suggesting a dominant contribution of irreversible deformations. This

assumption is taken in the recently developed neXtSIM sea ice model, which is based on the EB rheology and

does estimate advective processes over the Arctic (Bouillon and Rampal, 2015; Rampal et al., 2015). However in

the all-permanent deformations limit, internal stresses are instantaneously dissipated in the damaged material.

Hence the memory of the stresses associated with elastic deformations is erased whenever the applied loading

is removed or reset. Without carrying this history of previous stresses, the model cannot reproduce the

intermittency intrinsic to the mechanical behaviour of the material. In the context of sea ice modelling, this

implies that the model only reproduces the part of the intermittency that is inherited from fluctuations of

the wind forcing and cannot represent the observed long-range temporal correlations and extreme fluctuations

in the deformation that emanate from elastic interactions within the ice cover (Weiss, 2008; Rampal et al.,

2008). In order to represent the observed properties of the deformation of sea ice and estimate adequate drift

velocities, a suitable rheological model must therefore have the capability to distinguish between reversible and

irreversible deformations.

The goal of this work is to develop such a model allowing a transition from the small/elastic to the

large/permanent deformations and with the capability of damage mechanics models to reproduce the ob-

served space and time scaling properties of sea ice deformation. Our approach consists in introducing a viscous

relaxation term into the linear-elastic constitutive law of the original EB framework. The new constitutive law

takes the form of the Maxwell viscoelastic model. The all-important di↵erence with respect to the Maxwell

framework however is that the viscosity associated with the stress dissipation term is not meant to represent

the viscoplastic creep of bulk ice (Duval et al., 1983). Instead, it is an ”apparent” viscosity which, like the

elastic modulus in the Elasto-Brittle framework, is coupled to the level of damage of the ice cover and allowed to

evolve in both space and time according to a progressive damage mechanism. The coupling is designed so that

strains remain elastic over undamaged portions of the ice and are dissipated through permanent deformations

where the pack is highly fractured.

The use of a viscoelastic rheology and apparent viscosity in the case of sea ice can be supported again by the

similarity between the mechanical behaviour of the ice pack and that of the Earth crust and by the existence of

similar approaches to model lithospheric faulting. Active faults in the Earth crust have been known to deform

in two distinct manners: either abruptly, causing earthquakes, or in a transient, aseismic manner (Scholz, 2002;

Gratier et al., 2014; Cakir et al., 2012; Cetin et al., 2014). Similar to sea ice, co-seismic fracturing activates

aseismic creep, leading to deformations that can be much larger than that associated with the fracturing itself

(Cakir et al., 2012; Cetin et al., 2014) and to slip rates that decrease progressively over years to decades due

to various healing processes (Gratier et al., 2014). Recent studies on aseismic faults (e.g., the Izmit fault) have

suggested that creep relaxes a significant amount of elastic strain along the fault, retarding stress accumulation

along some portions (and concentrating stresses on other locked portions), thereby demonstrating that this

dissipative process needs to be included in earthquakes models (Cakir et al., 2012; Gratier et al., 2014).

A further justification of the introduction of such pseudo-viscosity comes from the rheology of granular

media. As sea ice along leads (see figure 2.5), rocks along active faults are highly fragmented. Sheared granular
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media flow in a viscous manner when inertial e↵ects can be neglected (Jop et al., 2006) with an apparent

viscosity diverging as the packing fraction approaches the closed-packed limit (Aranson and Tsimring, 2006).

This last point will justify the dependence of our apparent viscosity on sea ice concentration.

Viscous-elastic rheological models using apparent viscosities have already been used to model the defor-

mation of rock-like materials. Lyakhovsky et al. (1997) built a viscoelastic damage rheology model with the

intent of representing the di↵erent stages of geological faulting, from subcritical crack growth to increasing

crack concentration and material degradation, macroscopic brittle failure, post failure deformation and heal-

ing. Their progressive damage mechanism involved a scalar variable similar to that used in the EB and our

Maxwell-EB framework, but the evolution of damage in their model was derived from energy conservation

principles rather than from a brittle failure criterion and was coupled to the elastic modulus only. Frederiksen

and Braun (2001) successfully simulated strain localization during lithospheric extension using an elasto-visco-

plastic model together with an ad hoc viscosity. As their work was concerned with the ductile rather than the

brittle deformation regime, strain softening in their model did not involve a progressive damage mechanism

but instead was achieved by coupling the viscosity to the accumulated strain and the elastic modulus of the

material was kept constant. Hamiel et al. (2004) modified the coupled linear elasticity and progressive damage

rheological framework of Lyakhovsky et al. (1997) with a non-linear damage-elastic moduli relation and by

adding a damage-dependent Maxwell-like viscous term (with the damage still evolving according to energy

conservation) to account for the gradual accumulation of irreversible strain observed in typical rock mechanics

experiments. Doing so they obtained better agreement with the observed deformation near the peak loading

stress preceding the macroscopic failure of rock samples. The use of a viscous relaxation term in their rheo-

logical framework therefore had a fundamentally di↵erent purpose than in the present approach in that it was

intended for the representation of small, pre-macroscopic brittle failure deformations, not to bridge between

small and large deformations.

To our knowledge, it is therefore the first time a viscoelastic Maxwell constitutive law is coupled to a

progressive damage (and healing) mechanism through both the elastic modulus and an apparent viscosity with

the intent of reproducing the small deformation associated with brittle fracturing and the large, permanent

post-fracture deformation of geomaterials. It is certainly the first time such a rheological model has been

adapted in the context of sea ice modelling.

1.0.4 A finite element sea ice model

In terms of formulating the discrete approximation of the equations of motion, finite element (FE) are known

for the ease with which they can handle structured or unstructured meshes, complex geometries, boundary

conditions, interface conditions and material properties. Although the relevance of these methods in the context

of sea ice modelling were recognized as early as the 1970’s Arctic Ice Dynamics Joint Experiment (AIDJEX)

(Becker, 1976), finite di↵erences (FD) have been common practice among the sea ice community due to the

practicality of regular grids and because of their widespread use in ocean and climate models.

In late years, significant e↵orts have been put into incorporating FE methods in sea ice and ocean general

circulation models in order to take advantage of multi-resolution mesh grids and better resolve complex flows

with local phenomenons. In 2004, Wang and Ikeda presented a FE formulation for a dynamical sea ice model

based on the Hibler VP rheology and proved their numerical scheme to be both stable and e�cient. Lietaer et al.

(2008) developed a large-scale FE sea ice model, operational for climate studies and destined to be coupled to the

FE Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM, http://www.climate.be/SLIM). They tested
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their unstructured grid approach and investigated the sensitivity of the simulated thickness of Arctic sea ice to

the resolution of the narrow, intricate straits of the Canadian Arctic Archipelago. A first global and coupled sea

ice-ocean FE model, FESOM (The Finite Element Sea Ice-Ocean Model), was recently developed for large-scale

climate simulations (Danilov et al., 2004; Wang et al., 2014; Danilov et al., 2015). The current version of this

model can use both the standard VP rheology and its ”numerically-elastic” version, the Elastic-Viscous-Plastic

rheology of (Hunke and Dukovicz, 1997). The FE approach has also been taken in the development of new

rheological frameworks for sea ice, such as the elatic-decohesive (Schreyer et al., 2006) and the Elasto-Brittle

model (Girard et al., 2010b; Bouillon and Rampal, 2015; Rampal et al., 2015).

In building the Maxwell-EB model, we choose to take advantage of the recent expansion of finite element

methods in the fields of sea ice and climate modelling. The definition of the advection scheme, in particular, is

key to the numerical development of the model. The Maxwell-EB rheology aims, and succeeds, in reproducing

the extreme gradients in the fields of sea ice deformation. A suitable advection scheme must therefore handle

the transport of these gradients. The use of finite elements as opposed to finite di↵erences leaves the option

of a Eulerian, Lagrangian or mixed approach. With the idea of taking the path that is the most compatible

with the numerical habits of the climate modelling community and foreseeing an ineluctable coupling with an

atmosphere and ocean component, we decide on an Eulerian approach. We implement discontinuous Galerkin

methods for handling advection as well as other non-linear terms in the Maxwell-EB constitutive law. To our

knowledge, such methods have not yet been employed in a sea ice model based on an elastic rheology. Lietaer

et al. (2008) for instance, have used in their finite element sea ice model a finite volume upwind-weighted

scheme with constant-by-element approximations for the ice thickness and concentration fields, which coincides

with the discontinuous Galerkin method for FE approximation of order 0, together with linear nonconforming

approximations for the ice velocity. Their mechanical framework however, was based on the viscous-plastic

rheology, which is known to be defective in reproducing the extreme gradients within the ice cover (Girard et al.,

2009, 2010a), and their numerical scheme did not include transport terms for the internal stress tensor. This

makes the implementation and testing of discontinuous Galerkin methods within our Maxwell-EB framework

an interesting experiment in itself.
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1.0.5 Composition of the dissertation

This thesis relates the entire process of building the Maxwell-EB model for sea ice, from the laying of the

theoretical grounds to the validation the physical approach, the building of the numerical scheme and the

implementation of the mechanical framework in the context of sea ice modelling. The report is structured as

follow:

• Chapter 2 presents the Maxwell-EB framework, and in particular the concept of stress relaxation. The

progressive damage and healing mechanisms are described, as well as the coupling between these mech-

anisms and the mechanical properties of the material, which constitute a fundamental feature of the

rheological model. Follows a discussion of the important characteristic times and numbers involved in

the Maxwell-EB framework and of their relative values in the context of sea ice modelling. First idealized

simulations are analyzed that use a simplified, small-deformation version of the model in which advection

processes are not yet included. These simulations provide a validation of the mechanical framework in

terms of its capacity in reproducing a highly heterogeneous, anisotropic and intermittent deformation.

Finally, a sensitivity analysis to the value of one key, yet poorly constrained, model parameter is presented

that allows exploring the range of mechanical behaviours reproduced by the model.

• Chapter 3 describes the transition between the small and the large-deformation Maxwell-EB model.

In terms of the numerics, this transition is twofolds. It consists in (1) introducing advective processes

and (2) treating the full, objective internal stress tensor derivative arising in the Maxwell-EB constitutive

equation. In the first part of this chapter, the discontinuous Galerkin approximation of the advection term

for transported quantities and of the constitutive equation are introduced. Simple tests are performed to

explore the limitations of the numerical scheme. In the second part, the numerical scheme for the full,

large-deformation Maxwell-EB dynamical model is presented. Large-deformation simulations are carried

that use a typical Couette flow geometry. These are compared to the results of a laboratory Couette

experiment performed on a thin plate of fresh-water ice and are discussed in terms of the simulated

mechanical behaviour.

• In chapter 4, the Maxwell-EB framework is implemented in the context of modelling sea ice on regional

to global scales. In particular, evolution equations for the ice thickness and concentration are introduced

in the model and their simple coupling with the Maxwell-EB mechanical parameters is described. Simu-

lations of the flow of ice through a narrow, idealized channel with dimensions consistent with straits over

the Arctic, for instance in the Canadian Arctic Archipelago, are presented. These are analyzed in terms

of the simulated velocity fields, internal stress states and thickness distributions and with a particular

emphasis on the capacity of the mechanical framework to represent the formation of arch-like leads and

stable ice bridges.

• The final chapter restates the novelties of the Maxwell-EB framework with respect to the current rheo-

logical approaches for modelling the drift and deformation of sea ice. Possible solutions to the current

limitations of the Maxwell-EB model, both physical and numerical, are presented and future additions

to the framework are suggested.
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Chapter 2

A Maxwell-Elasto-Brittle rheology for

sea ice modelling

Based on

Dansereau, V., Weiss, J., Saramito, P. and Lattes, P. (2015), A Maxwell-Elasto-Brittle rheology for sea ice

modelling, The Cryosphere Discussion,

and with results from

Weiss, J. and Dansereau, V. (2015), Linking scales in sea ice mechanics, submitted to Philosophical Transactions

of the Royal Society A.

The main objective of this chapter is to introduce the theoretical bases for a viscous-elasto-brittle model

for sea ice and to describe in details the Maxwell-EB rheological framework. Section 2.1 relates and contrasts

the original Maxwell and the Maxwell-EB constitutive laws. Section 2.2 presents the remaining ingredients

of the Maxwell-EB model : the damage criterion, the progressive damage and healing mechanisms and the

coupling of both mechanisms with the material’s mechanical properties. Section 2.2.4 discusses the important

non-dimensional numbers involved in the rheological framework as well as their absolute and/or relative values

in the context of sea ice modelling. The setup of a first set of highly idealized model simulations in which

advective processes are neglected is described in section 2.3. The numerical scheme for these small-deformation

model experiments is presented in section 2.3.1. These simulations are analyzed in section 2.4 on the basis of

the macroscopic behaviour and convergence properties of the model, and in particular, of the heterogeneity,

anisotropy and intermittency of the simulated deformation. Section 2.5 presents an analysis of the sensitivity

of the mechanical model on the value of its least constrained parameter. Conclusions for this chapter are

summarized in section 2.6.
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2.1 The building of a viscous-elastic-brittle continuum model

Viscoelastic materials, whether fluid or solid, exhibit both viscous and elastic properties at the microscopic

scale. Elasticity is inhered from the reversible stretching of bonds along crystallographic planes or from the

flexibility of their molecules. In continuum models, this property is characterized at the macroscopic scale by

an elastic modulus, E. The viscous properties of viscoelastic materials are attributable to rearrangements of

their molecular structure, to the motion of defects (vacancies, dislocations), to the frictional sliding between

grains, or to the friction between polymer and solvent molecules. These irreversible plastic deformations at

the microscopic scale result in energy dissipation when viscoelastic materials are subjected to an external

stress, as opposed to purely elastic materials. At the macroscopic scale, these viscous e↵ects translate into a

dependence of the deformation of the material on time, characterized in continuum models by a constant or

stress-dependent dynamic viscosity ⌘.

In 1867, James Clerk Maxwell presented a linear model suitable for the macroscopic behaviour of a vis-

coelastic material, typically an incompressible fluid, undergoing small deformations (Maxwell, 1867). This

model is represented schematically in one dimension by a spring and dashpot connected in series (see figure

2.1b). The elastic component of this system obeys the linear elastic constitutive relation

� = 2E" (2.1)

where � is the elastic (shear) stress, E is the elastic (shear) modulus and " = D(U) = 1

2

(rU +rUT ) is the

strain tensor, defined in terms of the displacement U. The viscous component of the system is described by a

linear Newtonian fluid constitutive law

� = 2⌘"̇(u) (2.2)

with ⌘, the material’s (stress-independent) viscosity and "̇(u) = D(u) = 1

2

(ru+ruT ), the rate of deformation

tensor, defined in terms of the velocity, u.

When, at a time t, a stress � is suddenly applied to this Maxwell system, the resulting deformation is split

between the instantaneous, reversible, deformation of the spring, "E , and the permanent deformation of the

dashpot, "�, increasing linearly with time, such that the total deformation of the system, ", is given by the

sum

" = "� + "E . (2.3)

(see figure 2.1b). If after a time t + �t the stress is removed, the spring goes back to its initial position, but

the dashpot retains its deformation. Conversely, when a deformation is applied and the system is held to a

given strain rate, the resulting internal stress dissipates exponentially with time.

The Maxwell constitutive law is deduced by summing the viscous and elastic components of the deformation

given by equations 2.1 and 2.2 :
1

E

D�

Dt
+

1

⌘
� = 2"̇(u)

This relationship can be written equivalently in the from

D�

Dt
+

E

⌘
� = 2E"̇(u)

where the ratio ⌘
E is interpreted as a relaxation time, setting the rate of dissipation of the applied stress through

the permanent deformation of the dashpot and hence characterizing the capacity of the viscoelastic material to

retain the memory of reversible deformations. As both the viscous and elastic components of the deformation
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are solved for simultaneously in the Maxwell model, deformation is defined naturally in terms of the strain

rate.

(a)

"E

"

(b)

"�

�

"

�

" = "E + "�

⌘

"�

�

E

t

t + �t

�

" = "E

E

� = 2E"E = 2⌘"̇�

Figure 2.1: Schematic 1-dimensional representations of the linear elastic model (a) and of the Maxwell model (b) for
a uniform material with elastic (shear) modulus E and viscosity ⌘ (top panels) and associated stress-strain diagrams
(bottom panels). At time t, a stress is applied on each material. It is removed at time t + �t. In the linear elastic
case, the material goes back to its initial position when the stress is removed and no energy is dissipated in the
loading-unloading process. In the Maxwell viscoelastic case, the total deformation is split between the deformation
of the elastic (spring) and of the viscous (dashpot) components. When the stress is removed, the elastic part of the
deformation is recovered, but viscous deformations remain permanent. In the Maxwell model, the energy dissipated
through permanent deformations is represented by the area between the loading (blue) and unloading path (red) on the
stress-strain diagram.

2.1.1 Towards a Maxwell-Elasto-Brittle rheology

In developing the Maxwell-EB rheology, we extend the underlying concepts of the Maxwell viscoelastic model

to an isotropic, compressible solid, in particular, the idea of stress relaxation and the partionning of the

deformation into an elastic, recoverable, and a permanent component. As in the Elasto-Brittle framework, the

elastic deformation of the ice cover obeys Hooke’s law for an isotropic material. In tensor form, this linear

elastic constitutive law reads

� = EK : "E (2.4)
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with � the Cauchy stress tensor, E, the elastic (Young) modulus, K a sti↵ness tensor defined in terms of ⌫, the

Poisson’s ratio, such that for all symmetric tensor ✏ = ✏ij 8 i, j; 1  i, j  3, (K : ✏)ij = ⌫
(1+⌫)(1�2⌫) tr(✏)�ij +

2 1

2(1+⌫)✏ij . As in the Maxwell model, we consider the total deformation to be the linear sum of an instantaneous,

elastic and of a time-dependent, permanent contribution, such that " = "� + "E . Substituting for "E in terms

of the total deformation in equation 2.4, the constitutive law writes,

� = E(K : "�K : "�)

or, in terms of the rate of deformation tensor

D�

Dt
= E (K : "̇(u)�K : "̇(u)�) .

Following the idea of stress relaxation behind the Maxwell model, we consider the time-dependent part of

the deformation to be a linear function of the applied stress of the form

� = ⌘K : "̇(u)� (2.5)

where ⌘ sets the rate of increase of the permanent deformation with time and has the dimensions of a viscosity.

Substituting for "̇(u)�, the constitutive equation therefore becomes

D�

Dt
= E

✓
K : "̇(u)� 1

⌘
�

◆
,

or
D�

Dt
+

E

⌘
� = EK : "̇(u),

or again, in ”Maxwell-like” form:
1

E

D�

Dt
+

1

⌘
� = K : "̇(u). (2.6)

As in the Maxwell model, the ratio ⌘
E has the dimension of a time, and sets the rate of dissipation of the

internal stress through the permanent deformation of the material. In the following, we refer to this ratio as

the relaxation time for the stress, �. The equation 2.5 for the viscous deformation of the compressible material

implies that this rate is assumed equal for both the volumetric and deviatoric components of its deformation.

The mechanical parameter ⌘ therefore di↵ers intrinsically from the dynamic viscosity of a fluid. This point,

which is further discussed in section 2.1.2, is easier to comprehend when expending K : "̇(u) and introducing

the (adimensional, i.e., normalized by E) Lame parameters ⇤ = ⌫
(1+⌫)(1�2⌫) and G = 1

2(1+⌫) ,

D�

Dt
+

E

⌘
� = E [⇤tr ("̇(u)) I + 2G"̇(u)] . (2.7)

If the material was incompressible, div(u) = tr ("̇(u)) = 0, the constitutive law would then coincide with that

of the original Maxwell model.

2.1.2 Bridging small and large deformations

Besides compressibility, an important distinction between the standard Maxwell and the Maxwell-EB model

pertains to the scale the represented deformations. On the one hand, the linear Maxwell model, based on a
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constant elastic modulus and viscosity, is usually suitable for the representation of the small deformations of

viscoelastic materials (Maxwell, 1867). The Maxwell-EB framework on the other hand was conceived with

the particular intention of allowing the representation of both small and large deformations of a continuum

solid. The transition from small to large deformations requires introducing some non-linearity in the rheological

model. In the Maxwell-EB model, non-linearity is twofold.

First, non-linear terms are introduced in the Maxwell-EB constitutive law through the material derivative

of the internal stress tensor. The material derivative D 
Dt of any scalar quantity ' writes

D'

Dt
=

@'

@t
(u ·r)'

and can be approximated as @'
@t in the limit of small deformations, hence neglecting the non-linear advection

term. In the case of large deformations, advective processes cannot be neglected and this form of the material

derivative is not objective in the case of vectorial or tensorial quantities. In the Maxwell-EB constitutive law, the

material derivative of the internal stress tensor � therefore takes the form of the objective Gordon-Schowalter

derivative (Saramito, 2016)
D�

Dt
=

@�

@t
+ (u ·r)� + �a(ru, �)

where the additional term �a accounts for the e↵ects of rotation and deformation on the evolution of the stress

tensor and expresses as

�a(ru, �) = �W (u)�W (u)� � a (�D(u) + D(u)�)

with D(u) = ru+ru

T

2

the symmetric and W (u) = ru�ru

T

2

the anti-symmetric part of the velocity gradient.

The cases of a = 0, 1 and �1, represent the Jaumann, upper convected and lower convected objective derivative

respectively.

With E and ⌘ constant in the standard Maxwell constitutive equation (2.6), the model is linear with respect

to � (but induces a coupling between � and u as u is also an unknown in the conservation of momentum

equation). When a load, i.e., a stress, is applied to the material, permanent deformations increase linearly

with time. Therefore if the loading is applied for a long enough time, irreversible deformations can accumulate

and become potentially large. Yet, if the viscosity, ⌘, was taken on the order of the dynamic viscosity for

undamaged sea ice (Duval et al., 1983), the simulated strains would remain small on time scales relevant for

the drift and deformation of the ice cover. In order for the total deformation to become large compared to elastic

deformations on the time scales considered in regional and global sea ice models, the mechanical parameters

E and ⌘ in the Maxwell-EB framework are allowed to evolve both spatially and temporally according to its

local characteristics such as its level of damage, which in the original EB model (Amitrano et al., 1999),

represents the weakening of the material when stressed beyond its mechanical resistance (see section 2.2.3).

Another property impacting the mechanical strength of the material is its compactness, referred to as the

packing fraction in the case of granular materials and concentration in the specific case of sea ice (ratio of the

model grid cell covered by ice as opposed to open water). This aspect is further discussed in chapter 4. This

dependence of the mechanical parameter ⌘ and E on the physical characteristics of the material e↵ectively

introduces additional non-linearity in the model, as the constitutive equation becomes coupled to evolution

equations for these characteristics.

The stress-strain diagram of figure 2.2 contrasts the behaviour the linear-elastic (dotted black curve),

original EB (dashed red, blue and purple curves), original Maxwell (solid red and blue curves) and Maxwell-

EB models (solid black curves) in terms of their capacity in partionning the elastic and permanent deformations

and the relative size of both types of deformation.
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Figure 2.2: Loading-unloading paths for a material with initial elastic modulus E

0 in the linear-elastic (dotted black
line), Elasto-Brittle (dashed colored), linear Maxwell (solid colored) and non-linear Maxwell-EB (solid black curves)
model. Unlike the purely elastic and EB models, the viscoelastic models allow partitioning the total deformation into a
permanent and an elastic contribution. The non-linear Maxwell-EB model allows for permanent deformations to become
much greater than in the standard, linear Maxwell model. It is important to note that the diagram is still not to scale
in the context of modelling the lithosphere or sea ice : in these geomaterials, permanent deformations can become much
greater than elastic deformations as damage events accumulate over time.

2.2 The Maxwell-EB model

The previous section has introduced the Maxwell-EB constitutive law and, in particular, the dissipative mech-

anism for the internal stress, which allows part of the deformations of a Maxwell-EB material to become large

and permanent. The present section presents the remaining ingredients of the Maxwell-EB framework, which

are:

1. the criterion for brittle failure,

2. the disorder introduced in the failure criterion, representing the material’s heterogeneity,

3. the damage mechanism,

4. the healing mechanism,

5. the coupling between the Maxwell-EB mechanical parameters and the damage and healing mechanism.

2.2.1 Damage criterion

In agreement with in-situ stress measurements (Weiss et al., 2007; Weiss and Schulson, 2009), and as in the

original EB model, the damage criterion in the Maxwell-EB rheology is based on the Mohr-Coulomb (MC)

theory of fracture. In terms of the principal stress components �
1

and �
2

, and using the rock mechanics

convention that compressive stresses are positive, the MC criterion reads

�
1

= q�
2

+ �c (2.8)
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(or �
2

= q�
1

+ �c, by symmetry of the criterion along the the �
1

= �
2

axis - see figure 2.3). In the following,

symmetry is always implied and only the lower branch of the damage criterion is discussed). The slope of the

envelope in the principal stresses plane, q, is expressed in terms of the internal friction coe�cient µ as

q =
h
(µ2 + 1)1/2 + µ

i
2

. (2.9)

In the model, µ is set to 0.7, a value seemingly scale-independent and consistent with laboratory experiments

on Coulombic shear faults in fresh ice (Schulson et al., 2006b; Fortt and Schulson, 2007; Weiss and Schulson,

2009) and also common for geomaterials (Byerlee, 1978; Jaeger and Cook, 1979). The intercept �c of the MC

criterion with the �
1

axes (see figure 2.3), interpreted as the uniaxial (unconfined) compressive strength, is

given by

�c =
2C⇥

(µ2 + 1)1/2 � µ
⇤ . (2.10)

where C represents the cohesion of the material and sets its resistance to pure shear.

For metals and rocks, the MC theory was shown to be defective in the case of tension (Paul, 1961), as the

mechanism of tensile failure is intrinsically di↵erent to that of compressive failure and, in general, does not

involve friction. In the case of �
1

, �
2

< 0, fracture occurs whenever �
1

or �
2

reaches a critical value. However,

in-situ stress measurements in Arctic sea ice have revealed that pure tensile failure does not significantly modify

the Coulombic-like failure envelope of pack ice and that Coulomb branches well describe this envelope even

under large tensile stresses, up to at least �N ⇠ 50 kPa (Weiss et al., 2007). In the Maxwell-EB model, the

Mohr-Coulomb criterion is therefore extended to tensile stresses. For practical reasons, the critical value is set

to the ultimate tensile stress �t, defined as the intersection of the Mohr-Coulomb criterion with the �
2

axis

(Paul, 1961) (see figure 2.3). The tensile strength cuto↵ therefore takes the form:

�
1

< 0; �
2

= �t, (2.11)

where

�t = ��c

q
= �2C

h
(µ2 + 1)1/2 + µ

i
. (2.12)

This gives a ratio of the ultimate tensile stress and uniaxial compressive stress of �
t

�
c

⇡ 0.27, which might

slightly overestimate the tensile strength of sea ice as measured on the field (Weiss et al., 2007) and in the lab

(Schulson, 2006a) (�t ⇡ 0.2�c). However, as such large values of tensile strength are rarely obtained in the

Maxwell-EB model simulations, this choice does not significantly a↵ect our results.

No truncation to the MC criterion is used to close the envelope towards biaxial compression (i.e., beyond

�c) as instances of such large biaxial compressive stresses are seldom encountered in Arctic sea ice (Weiss et al.,

2007). Besides, imposing a truncation was shown to have little impact on the simulation results. The damage

criterion combining the MC envelope and the tensile strength cuto↵ is represented in figure 2.3 in the principal

stresses plane and has the same shape as deduced by Coon et al. (2007) from measurements in undamaged

pack ice.

2.2.2 Disorder

In the Maxwell-EB model, a noise is introduced in the damage criterion via the spatial distribution of the

cohesion of the material, C (see equations 2.10 and 2.12). This noise represents the natural heterogeneity of a

real material that is associated with various structural defects at the sub-grid scale like vacancies, deviations
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Figure 2.3: Damage criterion of the Maxwell-EB model in the principal stresses plane (solid line) combining the Mohr-
Coulomb and tensile stress criteria. The thick dashed line represents a biaxial compression truncation that would close
the envelope but is not applied in the present model. Compression is taken positive and the dotted line indicates the
�1 = �2 axis. Numbers indicate the states of (1) uniaxial tension, (2) biaxial tension and compression, (3) uniaxial
compression and (4) biaxial compression and their location relative to the envelope. The calculation of the distance to
the damage criterion d

crit

, defined by the intersection (�0
1, �

0
2) of the line relating the state of stress (�1, �2) of a given

element to the origin of the principal stress plane, is represented in red in the case of exceeding the Mohr-Coulomb
criterion and in purple, the tensile strength criterion.

in the crystalline order or thermal cracks in the case of sea ice (Schulson, 2004; Schulson and Duval, 2009),

and which serve as stress concentrators. This heterogeneity causes the progressive failure of the material even

under homogeneous forcing conditions (e.g., Herrmann and Roux, 1990; Amitrano et al., 1999; Tang, 1997). In

the case of the ice pack, the correlation length associated to the natural heterogeneities is likely much smaller

than the typical spatial resolution of models (� 1 km). Hence heterogeneity in the Maxwell-EB model is

introduced at the smallest resolved scale, that is, the mesh element size �x. The value of C over each model

element is therefore drawn randomly from a uniform distribution of values spanning estimates from in-situ

stress measurements in Arctic sea ice (Weiss et al., 2007). Although not physically strictly tied to the cohesion

of the simulated material, heterogeneity is a necessary ingredient in the model, at least when using idealized

domain geometries and homogeneous forcing and initial conditions (Bouillon and Rampal, 2015; Rampal et al.,

2015). In other damage mechanics model it is alternatively introduced through other mechanical resistance

parameters, for instance in the spatial distribution of the elastic modulus (e.g., Cowie et al., 1993). If the

evolution of the sub-grid scale heterogeneity is considered much slower than the propagation of fractures within

the material, the disorder is time-independent, or ”quenched”, and the field of C is set once at the beginning

of a model simulation. Conversely, if disorder is considered to evolve with the fracturing and damaging of the

material (e.g., Amitrano et al., 1999), it is said ”annealed” and the local value of C is then time-dependant.
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In an Eulerian framework, a transport equation of the form

@C

@t
+ (u ·r)C = 0 (2.13)

is necessary to handle the advection of the field of C with the simulated velocity field.

2.2.3 Progressive damage mechanism and healing

As introduced in section 2.1.2, the Maxwell-EB rheology di↵ers fundamentally from the standard Maxwell

rheology in that the mechanical parameters E, ⌘ (and, as discussed below, �) are not constant but coupled

to the spatially and temporally evolving level of damage of the simulated material, which controls its local

degradation and re-increase in strength.

Consistent with previous damage rheological models, this property is represented in the Maxwell-EB frame-

work by a dimensionless scalar parameter, d (e.g., Amitrano et al., 1999; Cowie et al., 1993; Tang, 1997; Hamiel

et al., 2004, and others), and is interpreted as a measure of sub-grid cell defects or crack density (Kemeny and

Cook, 1986). The value of d evolves between 1 (undamaged) and 0 (”completely damaged” material).

The level of damage is allowed to evolve through two competing mechanisms : damaging and healing. On

the one hand, damaging represents fracturing and the opening of faults, or ”leads” in the case of sea ice,

occurring when and where the internal stress exceeds the mechanical resistance of the material and which leads

to its weakening. Healing on the other hand represents the reconsolidating and strengthening of the damaged

material through sintering or, in the case of sea ice, refreezing within open leads. Although these mechanisms

also contribute to the increase in elastic sti↵ness (E ⇥ h, with h, the ice thickness) and e↵ective apparent

viscosity (⌘ ⇥ h) of the ice, healing is distinguished from pure thermodynamic growth or dynamically-driven

thickness redistribution (e.g., Rothrock, 1975) in that it applies only where and when the material has been

damaged. It therefore allows d, E and ⌘ to re-increase at most to their undamaged value; d0 = 1, E0 and ⌘0

respectively.

Because the two processes operate simultaneously within the simulated material, an evolution equation for

d needs to include both mechanisms, while respecting the following constraints:

1. d decreases with damaging, which occurs only when the stress state becomes over-critical,

2. d increases with healing,

3. the increase in d due to healing cannot o↵set its decrease due to damaging, i.e., d cannot increase beyond

its undamaged value of 1.

In the following, damaging and healing are first treated separately and then combined in a single equation for

d.

Damaging

Contrary to typical sea ice modelling frameworks, no plastic (i.e., normal) flow rule is prescribed when the

damage criterion is reached in the Maxwell-EB (and EB) model. Instead, when the stress locally exceeds

the critical stress, the level of damage d and the elastic modulus, are allowed to drop, leading to local strain

softening (Amitrano et al., 1999; Cowie et al., 1993; Tang, 1997). Because of the long-range interactions
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within the elastic medium, local drops in E imply a stress redistribution that can in turn induce damaging

of neighbouring elements (see figure 2.4). By this process, ”avalanches” of damaging events can occur and

damage can propagate within the material over long distances (Amitrano et al., 1999; Girard et al., 2010a). As

the elastic perturbation generated by such events is anisotropic (Eshelby, 1957), this propagation mechanism

naturally leads to the emergence of both spatial heterogeneity and anisotropy in the stress and strain fields,

i.e., to the formation of linear-like faults (see section 2.4).
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Figure 2.4: Schematic representation of the propagation of damage in the Maxwell-EB model. The domain is discretized
in space using a (here, structured) mesh of triangular elements and the damage criterion is set through the field of
cohesion C, in which noise is introduced at the scale of the element. Forcing, homogeneous or not, is applied on the
simulated material as an external force or prescribed displacement and the internal stress within the simulated material
builds up such that at time t it exceeds the damage criterion over a given element (circled in red). At the next time step,
t+�t, the element is by this fact weakened and its post-damaging level of damage is d0 < d. Because it is weaker, the
part of the internal stress it can no longer withstand is redistributed to its close neighbours through elastic interactions.
By this redistribution, some of the neighbouring elements (circled in red) become in turn over-critical. At time t+2�t,
the weakening of these elements triggers further damaging events.

In the Maxwell-EB model, the change in level of damage corresponding to a local damage event is determined

as a function of the distance of the damaged model element to the yield criterion. Three important assumptions

are made when calculating this distance, denoted in the following by dcrit. The first is that the deformation

of each model element is conserved during a damaging event, i.e., at initiation, damage modifies only the local

state of stress, not strains. This assumption holds when considering not a single model element, but a matrix

of elements. In this case, when damaging occurs locally and neighbouring elements remain undamaged, the

first e↵ect is a stress redistribution between these neighbouring elements. The second assumption is that, for

a su�ciently small model time step �t, i.e. very small compared to the viscous relaxation time � (see section

2.2.4), a negligible part of the stress is dissipated into viscous deformations. A third constraint is based on the

fact that stresses outside the failure envelope are not physical because brittle failure would occur before the

material could support them. Hence we consider that damaging acts so that after being damaged, an element

has its state of stress lying just on the failure envelope. With these assumptions made, the following equality

holds for each damaged element:

"0 = "  ! K�1�0

E ⇥ dcrit
=

K�1�

E
, (2.14)

where the superscript 0 denotes the post-damage state of deformation and stress (lying on the failure envelope).

Using Hooke’s law (given by 2.4 and here under plane stress conditions),
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the equality (2.14) can can be written for each component of the stress tensor and principal stress, such that

the change in level of damage of a given element can be written as

dcrit =
�0

1

�
1

=
�0

2

�
2

. (2.15)

Equation (2.15) implies that as the level of damage varies, all stress components vary in the same proportions.

Hence the state of stress �0 after each damaging event is given by the intersection of the failure envelope and

of the line connecting the pre-damage state of stress (�
1

, �
2

) with the origin, in the principal stress plane (see

figure 2.3).

Two cases must be distinguished when calculating �0, hence d, depending on which of the Mohr-Coulomb

or tensile criteria has been exceeded.

1. In the first case, �
1

> 0 and �
1

� q�
2

> 0 and the post-damage state of stress is the intersection of the

two lines of equations

�0
1

= q�0
2

+ �c,

�0
1

=
�

1

�
2

�0
2

.

Hence the increment in damage is

dcrit =

8
<

:
min(1, �

c

�1�q�2
) if �

1

� q�
2

> 0,

1 otherwise.
(2.16)

.

2. In the second case, �
1

< 0 and �
2

< 0 and the post-damage state of stress is given by the intersection of

�0
1

=
�

1

�
2

�0
2

.

�0
2

= �t,

The increment of damage is

dcrit =

8
<

:
min(1, �t

�2
) if �

1

� �
2

,

1 otherwise.
(2.17)

Combining (2.16) and (2.17), dcrit is evaluated simultaneously over all mesh elements of the model domain as:

dcrit = min


1,

�t

�
2

,
�c

�
1

� q�
2

�
. (2.18)

According to equations (2.10) and (2.12) for �c and �t, the local change in d is hence defined entirely in terms

of the local state of stress and the local value of C.

Following previous progressive damage models (e.g., Amitrano et al., 1999; Girard et al., 2010a), the level

of damage, d, of a given element in the Maxwell-EB model at any given time is determined by both its

instantaneous distance to the damage criterion dcrit, i.e., its current state of stress, and its previous damage
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level. This implies that the variable d carries the entire history of damage of model elements and, if discretizing

time as tn = n�t, n � 0, translates into the discrete recursive equation

dn+1 = dn+1

crit dn, 0 < d0  1 (2.19)

with dn+1

crit and dn+1, the distance to the damage criterion and level of damage at the (n+1)th model time step

and dn the level of damage at the previous time step. A continuous evolution equation for d can be obtained

by considering that the time characterizing the redistribution of stress between model elements is intrinsically

tied to the speed, c, of propagation of elastic waves in the material, which carry the damage information. Using

a backward explicit scheme of order 1, and setting the model time step to �t = td with td = �x
c , the exact

time of propagation of an elastic wave with speed c over a distance �x, the following time-discretized equation

for d is obtained

dn+1 � dn

�t
=
�
dn+1

crit � 1
�
dn 1

td
.

Taking the limit of �t! 0 the intrinsically discrete propagation mechanism can therefore be processed through

the continuous equation
Dd

Dt
=

dcrit � 1

td
d. (2.20)

It is important to note that the direct correspondence between the discrete recursive sequence (2.19) and the

continuous equation (2.20) relies on the specific use of an explicit scheme of order 1. This point is central in

the development of the Maxwell-EB numerical scheme. It will be discussed more extensively in chapters 3 and

5.

Healing

By healing, the simulated material is allowed to regain some strength. The characteristic time for this process

is designated in the following by th. It corresponds to the time required for a completely damaged element

(d = 0) to recover its initial sti↵ness (d = 1), which in a dynamic-thermodynamic sea ice model would depend

on the local di↵erence between the temperature of the air near the surface of the ice and the freezing point of

seawater below. In the uncoupled, dynamic model described here, th is set constant in both space and time.

Healing schemes of varying level of complexity could be used in the Maxwell-EB model. One possibility

is the one employed in the EB sea ice model of Girard et al. (2010a), which follows parameterizations of the

vertical growth of sea ice (Maykut, 1986). An underlying assumption is that the rate of healing is inversely

proportional to the level of damaging of the ice. In this case the evolution equation for d reads

Dd

Dt
=

1

th

1

d
, 0  d  1.

However as there is no physical evidence that the healing rate should depend on the level of damage, in the

following description and implementation of the Maxwell-EB model we use an even simpler parameterization

that assumes a constant healing rate set to 1

t
h

:

Dd

Dt
=

1

th
, 0  d  1. (2.21)
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Combining both the damaging and healing mechanisms (Eq. 2.18, 2.20 and 2.21), the complete evolution

equation for d is
Dd

Dt
=

✓
min


1,

�t

�
2

,
�c

�
1

� q�
2

�
� 1

◆
1

td
d +

1

th
, 0  d  1.

Although the two processes apply simultaneously on the level of damage in the model, they are inherently

distinct. On the one hand, damaging is a discrete threshold mechanism, e↵ective only where and when the state

of stress becomes overcritical. The characteristic time for this process, td, is tied to the speed of propagation

of (shear) elastic waves as well as to the scale of heterogeneities within the modelled material. In the case

of an heterogeneous ice pack, an average value for c is on the order of 500 m/s (Marsan et al., 2011), which

is significantly smaller than the theoretical shear wave speed for bulk saline ice (Gammon et al., 1983). For

spatial resolutions between that of current global climate and high resolution regional sea ice models (�x = 1

to 100 km), the characteristic time for damaging, td, therefore varies between O(1) and O(102) s. Healing on

the other hand is a continuous process acting on all model elements, independently of the local distance to the

damage criteria. Studies on the refreezing within leads in sea ice showed that the time for 1 meter of ice to

grow within an opening of 10 cm under atmospheric temperatures of Ta = �15�C is of O(100) hours or O(105)

seconds (Petrich et al., 2007). The orders of magnitude di↵erence between th and td therefore implies that the

two processes are intrinsically decoupled in the case of the ice pack.

Coupling between d, E and ⌘

The coupling between the Maxwell-EB constitutive law and the progressive damage mechanism constitutes one

of the main features of this new modelling framework. It is defined such that:

• Deformations within an undamaged medium are small and reversible, i.e., strictly elastic. Hence undam-

aged portions of the simulated material have a maximum elastic modulus E0 and a very large apparent

viscosity ⌘0. In this case, the viscous term in (2.6) is negligible and a linear-elastic constitutive law is

recovered (figure 2.5, right panel).

• Deformations can accumulate over highly damaged areas of the material to become arbitrarily large.

These deformations are permanent and dissipate most of the the stress applied to the material within

a short relaxation time. Hence the elastic modulus, viscosity and relaxation time drop locally over

damaged areas. In the limit of a completely damaged material, d ! 0, elastic interactions are hindered

and deformations are strictly irreversible (figure 2.5, left panel). In this case, � ! td and a soft elastic-

plastic behaviour is recovered in which the memory of the elastic stresses is totally lost.

• As damaged areas heal, E, ⌘ and � all re-increase, up to their initial undamaged values.

Di↵erent functions could be used to express the dependence of E, ⌘ and � on d that meet these criteria. In the

absence of physical evidences for a higher level of complexity, and consistent with the relationship between the

elastic modulus and crack density used in damage models of rocks (Agnon and Lyakhovsky, 1995; Amitrano

et al., 1999; Schapery, 1999), we use the simplest parameterization and set

E(t) = E0d(t)

⌘(t) = ⌘0d(t)↵,

such that

�(t) =
⌘0

E0

d(t)↵�1 (2.22)
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Figure 2.5: Dependence of the apparent viscosity (⌘) the elastic modulus (E) and the relaxation time (�) on the level
of damage in the Maxwell-EB sea ice model. The image is a SPOT satellite aerial picture of a 59 km ⇥59 km portion
of the Arctic sea ice cover centred around 80.18 N, 108.55 W.

Here ↵ is a constant greater than 1, introduced to fulfil the constraint that the relaxation time for the stress

decreases with increasing damage and increases with healing, as the material respectively looses and recovers

the memory of reversible deformations. In the following, we refer to this constant as the damage parameter.

Using this formulation, both ⌘ and E are entirely defined by their initial value, a constant, and by the level of

damage. Hence the Maxwell-EB constitutive law (2.6) can be written as

1

E0d

D�

Dt
+

1

⌘0d↵
� = K : "̇.

However in this form, the constitutive equation becomes undefined in the limit of d ! 0. This problem

can be handled by imposing a fixed minimum value dmin > 0 for the level of damage. Alternatively, a cuto↵,

⌘min ⌧ ⌘0, on the value of the apparent viscosity can be introduced and the expression for ⌘(d) modified as

⌘ = (⌘0 � ⌘min)d↵ + ⌘min =

8
<

:
⌘0 for d = 1,

⌘min for d = 0.
(2.23)

Substituting for ⌘ in the expression for the relaxation time (2.22), the elastic modulus then becomes

E =
⌘0 � ⌘min

⌘0

E0d +
⌘min

⌘0

1

d↵�1

E0. (2.24)

In this case, E ⇡ E0 for d = 1, E decreases with d until a minimum at d(Emin) =
h

⌘
min

⌘0�⌘
min

(↵� 1)
i 1

↵

and

E ! 1 for d ! 0. The functions E(d) and ⌘(d) above are represented in figure 2.6 for di↵erent values of

↵. Using such a cuto↵ on ⌘, the elastic term in the Maxwell-EB constitutive equation therefore vanishes in

the limit of a ”totally” damaged material and the rate of viscous dissipation is then set by the minimum

viscosity ⌘min. It is important to note that this limit is however has no physical grounds in the context of

a progressive damage model for a continuum solid and is not used here to represent the flow of a Newtonian

fluid. It is rather introduced to insure the mathematical consistency and existence of a solution while retaining

a continuous function for the level of damage. In the following implementation of the Maxwell-EB rheology,

we take this approach instead of imposing a minimum value for d. This choice has no significant e↵ect on our
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Figure 2.6: Elastic modulus (dashed lines) and apparent viscosity (plain lines) as a function of the level of damage, d,
as described in equations (2.24) and (2.23), for di↵erent values of the constant ↵. The right panel zooms into the low
ranges of values of d.

results, since in the simulations presented here d > d(Emin) at all times.

2.2.4 Characteristic numbers and times

In this section, the equations constituting the dynamical Maxwell-EB model are formulated in an adimensional

form. This allows describing the framework in terms of important characteristic numbers and times and to

explore its sensitivity to a reduced set of parameters. In order for the model to represent the intended physics,

these parameters must evolve within a certain range of values, which is discussed at the end of the section.

Here and in the following, the Maxwell-EB rheology is implemented in the context of modelling the drift

and deformation of a continuum material with horizontal extent very large compared to its vertical extent.

The balance of forces is described by a momentum equation of the form 1.1. The model is made adimensional

with respect to the horizontal extent L, the thickness H, the flow velocity U and internal stress ⌃ within the

material. The time characterizing the deformation process is then T = L
U . The superscript ’˜’ is used for all

dimension-less variables and operators, which are listed in table 2.1. In terms of these adimensional variables

and operators, the Maxwell-EB system of equations reads:

(the momentum equation)

⇢h̃H
U2

L

Dũ

Dt̃
= ⌃

H

L
F̃

ext

+
⌃H

L
r̃ · (h̃�̃)

⇢
U2

⌃
h̃

Dũ

Dt̃
= F̃

ext

+ r̃ · (h̃�̃)
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(the constitutive equation)

⌘0

E0

d↵�1

U

L
⌃

D�̃

Dt̃
+ ⌃�̃ =

U

L
⌘0

✓
(1� ⌘min

⌘
0

)d↵ +
⌘min

⌘
0

◆
K(⌫) : ˜̇"(ũ)

⌘0

E0

U

L
d↵�1

D�̃

Dt̃
+ �̃ =

⌘
0

⌃

U

L

✓
(1� ⌘min

⌘
0

)d↵ +
⌘min

⌘
0

◆
K(⌫) : ˜̇"(ũ)

In the following and throughout the text, we use the notation d0↵ =
h⇣

1� ⌘
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min
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i
.

(the damage equation)

1
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Dd
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✓
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1

�̃
1

� q�̃
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�
� 1

◆
1
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1
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, 0 < d  1

Dd

Dt̃
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1

�̃
2

,
�c

⌃

1

�̃
1

� q�̃
2

�
� 1

◆
1

td/T
d +

1

th/T
, 0 < d̃  1

In the limit of small deformations, all velocity gradients are small such that advection, rotation and deformation

terms can all be neglected. If neglecting the e↵ect of the (small) elastic deformations on the material’s density

as well, mass conservation does not need to be imposed and the thickness of the material h̃ remains constant. In

the case of large deformations, additional equations are introduced that handle mass conservation (see chapter

4) and, in the case of quenched disorder, the transport of the field of cohesion C (see equation 2.13).

Variables, dimensions and operators Non-dimensional equivalent

Horizontal dimension x x̃ = x

L

Time t t̃ = t
T

Velocity u ũ = u

U

Internal stress � �̃ = �
⌃

External forcing F
ext

F̃
ext

= F

ext

⌃

L
H

Level of damage d d

Thickness h h̃ = h
H

Del Operator r r̃ = Lr

Table 2.1: Dimensional model variables and operators and their adimensional counterpart.

In viscoelastic models, two di↵erent scalings can be considered for the characteristic stress : either ⌃ scales

as the elastic modulus of the material or as the product of the material’s viscosity and of the characteristic

time for the deformation process, ⌘⇥T . As the Maxwell-EB framework is meant to represent the deformation

of a continuum solid undergoing progressive damage rather than the flow of a fluid material, scaling ⌃ as

E0, the (undamaged, constant) elastic modulus, seems the most appropriate choice here. In this case, the

non-dimensional set of equations reads:

Ca0h̃


@ũ

@ t̃
+ (ũ · r̃)ũ

�
= F̃

ext

+ r̃ ·
⇣
h̃�̃
⌘

(2.25)

We0d↵�1


@�̃

@ t̃
+ (ũ · r̃)�̃ + �a(r̃ũ, �̃)

�
= We0d0↵ �K(⌫) : ˜̇"(ũ)

�
(2.26)

@d

@ t̃
+ (ũ · r̃)d =

✓
min


1, ⌃t

1

�̃
2

, ⌃c
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�̃
1

� q�̃
2

�
� 1

◆
1

Td
d +

1

Th
, 0 < d  1. (2.27)

27



In this form, the model involves 8 characteristic numbers and time scales: Ca0, the (undamaged) Cauchy

number, We0, the (undamaged) Weissenberg number, ⌫, Poisson’s ratio, ⌃t = �
t

E0 , the dimensionless critical

tensile stress, ⌃c = �
c

E0 , the dimensionless critical stress with respect to the Mohr-Coulomb criterion, Td, the

characteristic time for damaging, Th, the characteristic time for healing and ↵, the damage parameter. In the

following we elaborate on the absolute and relative values of those numbers which are the most critical in the

context of sea ice modelling.

The characteristic time of damaging, Td

As mentioned in section 2.2.3, the (adimensional) characteristic time for the propagation of damage, Td = t
d

T ,

is determined by the speed of propagation of elastic waves, c, within the simulated material and therefore is

strongly tied to the mean spatial resolution of the model, as td should be on the order of �x
c . In turn, Td

places a strong constraint on the Maxwell-EB model time step. Setting �t < �x
c is indeed unphysical, as the

time associated to one model iteration would then be too short for the stress to be redistributed from one

overcritical element to its direct neighbour. For the model to resolve the propagation of damage, the time step

must therefore be greater or equal to td.

No strict upper bound to �t is imposed by the damage mechanism. One the one hand, choosing �t > td

could be interesting in terms of reducing computational costs. Physically, it implies that damage is allowed

to propagate beyond the first neighbour barrier and over larger distances within one model time step. On

the other hand, increasing �t with respect to td also implies (1) a decrease in the resolution of damaging,

as the model might miss important intermediate damage events that trigger additional interactions between

neighbouring elements and (2) larger local drops in the level of damage, inducing large stress perturbations

and, potentially, numerical instabilities in the model. Sensitivity analyses on the propagation of the damage

should therefore be performed when choosing �t > td.

The characteristic time of healing, Th

In order for healing not to o↵set damaging in the rate of change of d, the (adimensional) time for healing,

Th = t
h

T , must be set much larger than the (adimensional) time for damage propagation. This separation of

scales ensures that elements cannot recover by healing more strength than they have lost by damaging within

one time step, as excess healing would e↵ectively entail a net growth of the material, a process that is not

intended by this parameterization and should instead be accounted for by thermodynamic balance calculations.

Considering the estimates of the speed of elastic waves and of the healing rate of leads aforementioned (section

2.2.3), pack ice naturally meets this condition.

The Weissenberg number, We

The Weissenberg number, We, defined as the dimensionless product of the viscous relaxation time for the

stress and of the deformation rate or, equivalently, the ratio of the viscous relaxation time and of the time

characterizing the simulated deformation process

We =
⌘

E

U

L
=

�

T
, (2.28)
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sets the viscous versus elastic character of the flow of a viscoelastic material. In the original Maxwell model,

We = 0 represents the limit of zero elastic stresses, while a very large We characterizes a strictly elastic

solid. In the Maxwell-EB model, the Weissenberg number evolves locally according to the level of damage as

We = We0d↵�1 with We0, its maximum, undamaged value.

On the one hand, as viscous dissipation should be insignificant over undamaged and strictly elastic portions

of the material, We0 should be chosen very large, representing the limit of 1

⌘0 ! 0. In this case the viscous term

in the Maxwell constitutive law (2.6) e↵ectively vanishes and a linear elastic rheology is recovered. In practice,

the value of We0 is however limited, first, by the machine precision and second, due to a numerical scheme failure

known in the field of viscoelastic flow computations as the high Weissenberg number problem (Keunings, 1986;

Fattal and Kupferman, 2004, 2005; Saramito, 2014). For values of We approaching 1, numerical instabilities

arise in Maxwell-type models due the presence of deformation source terms (�a) in the transport equation for

the stress tensor. With We0 (or equivalently, �0) too low, simulations can run for a time t ⇠ �0 and unphysical

viscous dissipation can occur over undamaged parts of the simulated material. To get round this problem, the

viscous term in the Maxwell constitutive law can be multiplied by a Heaviside-type function d⇤ that e↵ectively

sets 1

⌘ to 0 when and where d � dc, with dc, a chosen threshold value, and leaves the constitutive equation

unchanged otherwise. In this case the modified constitutive equation reads:

We0d↵�1

D�̃

Dt̃
+ d⇤�̃ = We0d0↵ �K(⌫) : ˜̇"(ũ)

�
with

8
<

:
d⇤ = 0 if d � dc

d⇤ = 1 if 0  d < dc

(2.29)

When using a constant heal rate parameterization, dc can be simply set to 1. For small values of We0 (⌧ 1)

and/or large model time steps, a more regular version of d⇤ could be a more suitable alternative in order to

avoid the generation of numerical instabilities. In small-deformation simulations, i.e., in which the advection,

rotation and deformation of the internal stress tensor are not accounted for and hence the value of We is not

limited, or in simulations run for a time t ⌧ �0, viscous dissipation over undamaged parts of the material is

not significant and the inclusion of such a function, unnecessary.

On the other hand, where damage becomes important, the viscous relaxation time � should decrease

significantly below the characteristic time for healing to allow for internal stresses to ”have time” to dissipate

and deformations to become large. In the case of a constant heal rate parameterization, this implies We0d↵�1 ⌧
Th (or �0d↵�1 ⌧ th) where d is small.

Conversely, for the Weissenberg number to remain within a range of values ensuring the convergence of the

numerical scheme, i.e., We < 1 for most schemes, deformation rates within the material should be smaller than
1

�0 where the material is undamaged, i.e., strictly elastic. This point is discussed further in chapter 3, section

3.3.

Poisson’s ratio, ⌫

Poisson’s ratio is a measure of the compressibility of a homogeneous material. ”Perfectly compressible” mate-

rials, i.e., showing no lateral expansion when compressed longitudinally, have ⌫ ! 0. Incompressible materials,

Newtonian viscous fluids for instance, have ⌫ = 0.5. In this case, the first (adimensional) Lame parameter is

⇤ ! 1 and hence, r · u ! 0 (see equation 2.7). Sea ice is somewhat compressible, with a dynamic Poisson

ratio of 0 < ⌫ < 0.5 depending on its temperature (Timco and Weeks, 2010). As mentioned in section 2.1.1,

this is an important di↵erence between the Maxwell-EB and the standard Maxwell viscoelastic model. In the
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limit of ⌫ = 0.5 the Maxwell-EB constitutive equation (2.7) takes the form of the standard Maxwell constitutive

law.

In the current implementation of the Maxwell-EB rheology, ⌫ = 0.3 and is constant in both space and time,

whatever the level of heterogeneity of the simulated material. Yet, rock mechanics experiments have shown that

⌫ e↵ectively increases with damaging (Heap et al., 2009), consistent with a dilatation of the fractured material

(Jaeger and Cook, 1979; Martin and Chandler, 1994). In other progressive damage models of elastic materials,

Poisson’s ratio is therefore also allowed to evolve as a function of d (e.g. Hamiel et al., 2004). However, tests

performed with the EB model of Amitrano et al. (1999) suggest that accounting for this additional level of

complexity has no significant impact on the simulated mechanical behaviour. The e↵ect of coupling ⌫ and d

could be further investigated in future refinements of the Maxwell-EB rheology.

The Cauchy number, Ca

The dimensionless number that arises in place of the Reynolds number when adimensionalizing stresses in the

momentum equation with respect to the elastic modulus as opposed to ⌘ ⇥ T , is the Cauchy number

Ca =
⇢U2

E
(2.30)

which interprets as the ratio of inertial to elastic forces.

If inertial forces are comparable to elastic forces and Ca ⇠ 1, the e↵ect of the propagation of viscoelastic

waves in the material cannot be neglected. Yet, setting �t � td, that is �t at least equal to the period of shear

elastic waves, implies that the model does not resolve these waves, but only their consequence of transmitting

the damage information within the material. In order for the wave contribution not to have a significant e↵ect

on simulated deformation and stress fields, Ca must be ⌧ 1.

Dimensional analysis indicates that over an undamaged ice pack with velocity ranging between 0.001 and

1 m/s, Ca0 is in the range [10�12, 10�6]. Hence inertial e↵ects can be safely neglected. For simulated ice

velocities U < 1 ms�1 and ↵ > 2, inertial e↵ects in the Maxwell-EB model remain small when damage

becomes important. In the case of faster flows the value of ↵ should be set > 2 in order for inertial e↵ects to be

negligible. However, in the context of the ice pack, drift velocities larger than 1 ms�1 on space scales relevant

for continuum sea ice models are seldom, perhaps never, encountered.

The damage parameter, ↵

The damage parameter ↵ is introduced in the Maxwell-EB framework in a completely ad-hoc manner, to control

the rate at which the apparent viscosity drops and the material looses its elastic properties with damaging.

As mentioned in previous sections, one physical constraint on the value of ↵ is that the relaxation time should

decrease with damaging : hence ↵ should be set greater than 1. The requirements that (1) the viscous relaxation

time drops well below the time for healing over highly damaged areas and (2) inertial e↵ects remain negligible

for high deformation rates somehow place a constraint on the minimum value of ↵. Conversely, there is no

theoretical upper bound for the value of ↵. However, one can think that for ↵ large, the relaxation time �

becomes very small at the onset of damage, whatever the damage level (see section 2.2.3). In this case elastic

deformations are readily dissipated after damaging, which can a↵ects the mechanical behaviour of the Maxwell-

EB model over time. Sensitivity analysis are required in order to determine a range of adequate values for this

poorly constrained parameter. This point is discussed in more details in section 2.5.
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2.3 Small-deformation simulations

Each of the three terms composing the objective time derivative of the Cauchy stress tensor in the constitutive

law - the inertial, the advection, and the rotation and deformation term �a, see equation (2.1.2) - implies a

di↵erent level of mechanical and numerical complexity in the Maxwell-EB model. In developing the numerical

scheme, our approach was to introduce each term separately in order to evaluate their relative importance and

impact on the simulated mechanical behaviour.

On the one hand, neglecting the advection and �a terms allows retaining a Lagrangian scheme, similar to the

original EB model (Girard et al., 2010a,b). Without any remeshing of the domain, the model is then suitable

for small-deformation simulations only. In this minimal form, its mechanical behaviour can be analyzed in

terms of the statistical and scaling properties of the simulated damage and deformation fields. On the other

hand, when permanent deformations accumulate over long simulation times, the advection term is no longer

negligible and the rotation and deformation of the stress tensor terms become potentially important.

In the remaining of this chapter, the results of small-deformation simulations performed with a highly ideal-

ized configuration for the domain geometry, the applied loading and boundary conditions are presented. These

will demonstrate that the principal features of the Maxwell-EB model (the spatial heterogeneity, anisotropy

and intermittency) naturally emerge from the underlying physics and do not need to be implemented in an

ad hoc manner. The treatment of advection and the implementation of rotation and deformation terms is

presented in chapter 3.

(b)

Z

Y

XX

Y

Z

� · n = 0

⌦

L

� · n = 0

(a)

�R�L

�T

�B

u(0, 0) = 0

uy(x, 0) = �xy(x, 0) = 0, x > 0

�xy(x, L) = 0, x � 0

uy(x, L) = �U, x � 0

Figure 2.7: (a) Domain and boundary conditions for the uniaxial compression experiment. (b) Example of finite
element mesh with N = 10.

The small-deformation simulations presented here represent a uniaxial compression experiment and are

conceived to be consistent and easily comparable to similar numerical experiments conducted by Girard et al.
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(2010a) with the original EB model. In terms of the prescribed forcing and boundary conditions, it is perhaps

the simplest test case that could be performed.

The domain is rectangular with dimensions of L
2

⇥L (see figure 2.7a). Compression is applied by prescribing

a constant velocity U on the upper short edge of the plate with the opposite edge maintained fixed in the

direction of the forcing. No confinement is applied on the lateral sides. Hence F̃ext = 0. The velocity U is

set small enough to ensure a low driving rate, i.e. slow compared to time scale of damage propagation (Cowie

et al., 1993) and to be consistent with a small deformation regime. The Cauchy number (equation 2.30) being

very small over both undamaged and highly damaged portions of the material throughout the experiment, the

inertial term is neglected in the momentum equation. As advection is also neglected and simulations are run

for a short enough time such that the macroscopic and local deformations within the ice cover remain small

(⇠ 1% of the area of model elements), dynamics-induced variations (through convergence-divergence) of the

ice volume are not accounted for and conservation of mass is therefore not imposed. The ice thickness h is

constant and set to 1 m.

All simulations are started from an initially undamaged ice cover with uniform elastic modulus and viscosity.

Undamaged mechanical parameter values are chosen so that to be representative of sea ice on geophysical scales

(c = 500 ms�1 and ⌫ = 0.3). The undamaged elastic modulus is given by the relation E0 = 2c2(1 + ⌫)⇢ and

the undamaged viscosity ⌘0 is set such that the initial relaxation time �0 is as large as possible to accurately

represent the limit of strictly elastic deformations within an undamaged material while the numerical scheme

converges in a reasonable runtime. The field of cohesion is set once at the beginning of each simulation, as in

quenched disorder, by drawing randomly the value of C over each grid element from a uniform distribution

spanning in-situ stress measurements in Arctic sea ice (Weiss et al., 2007).

In all simulations presented in section 2.4, the damage parameter ↵ is set to 4 and the characteristic healing

time to 105 s. These values allows representing both the brittle behaviour and the relaxation of the internal

stress within a material with mechanical parameters set as above. All numerical and mechanical parameter

values for these uniaxial compression simulations are listed in table 2.2.

In these simulations, the model is made adimensional with respect to the length of the rectangular plate,

L, the prescribed velocity U on the top boundary and the undamaged elastic modulus E
0

. The system of

equations is given by (2.25) to (2.27), where D˜u

D˜t
= 0, h̃ = 1 and F̃

ext

= 0 and is solved for the 6 unknowns

: ũ (2 components), �̃ (3 components) and d̃. Finite elements and variational methods are used to solve

the time-discretized problem on a Lagrangian grid within the C++ environment RHEOLEF (Saramito, 2013:

http://cel.archives-ouvertes.fr/cel-00573970). As cumulative deformations are small, the deformation of the

mesh is not calculated and the position of grid nodes, not updated in time. Meshes with triangular elements

are built using the Gmsh grid generator (Geuzaine and Remacle, 2009) (see figure 2.7b). These are chosen

unstructured so that to avoid introducing preferential orientations for the propagation of the damage and be

consistent with our fully isotropic rheological framework (see figure 2.7b). The average spatial resolution, �x,

is set by choosing the number N of elements along the short side of the domain, such that �x = L
2N . The

model time step is set equal to the characteristic time for damage propagation, which is estimated based on

this mean element size, �x. The numerical scheme is described in section 2.3.1.
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Parameters Values

Poisson’s ratio ⌫ 0.3

Internal friction coe�cient µ 0.7

Shear wave propagation speed c 500 ms�1

Undamaged elastic modulus E0 2c2(1 + ⌫)⇢ Pa

Undamaged apparent viscosity ⌘0 107 ⇥ E0 Pa s

Minimum apparent viscosity ⌘min 104 Pa s

Cohesion C (5.0� 10.0) · 10�5 ⇥ E0 Pa

Damage parameter ↵ 4

Undamaged relaxation time �0 107 s

Characteristic time for damage td �t s

Characteristic time for healing th 105 s

Dimensions of compression experiment Values

Length of the ice plate L 200 · 103 m

Prescribed velocity of top edge U 10�3 ms�1

Number of elements along short edge N 10, 20, 40, 80, 100

Mean model resolution �x L
2N m

Model time step �t �x
c s

Ice thickness h 1 m

Table 2.2: Model variables, parameters and domain dimensions for the uniaxial compression experiment of
section 2.4.
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2.3.1 Numerical scheme : the small-deformation Maxwell-EB model

This section presents the time and space discretizations as well as the numerical algorithm employed to solve

the Maxwell-EB system of equations in the limit of small deformations and in the particular case of the uniaxial

compression experiment described in 2.3.

The (adimensional) system of equations (2.25) to (2.27), with D˜u

D˜t
= 0, h̃ = 1 and F̃

ext

= 0 is solved over

the closed domain ⌦ 2 R2 (see figure 2.7a) with boundary partitioned as @⌦ = �T [ �L [ �B [ �R. Let

us consider the time t
T = t̃ 2 [0, 1[. Let us further denote the velocity ũ = (ũx, ũy), the strain rate tensor

˜̇"(ũ) = D̃(ũ) = 1

2

(r̃ũ + r̃ũT ) and the stress tensor

�̃ =

"
�̃xx �̃xy

�̃xy �̃yy

#
(2.31)

Boundary conditions are mixed: compression is applied by prescribing the Dirichlet conditions ũy = �1 on �T

and ũy = 0 on �B . No confinement is applied on the lateral sides, hence the Neumann condition �̃ · n = 0

with n the unit normal vector on �L and �R. The top and bottom edges of the plate are allowed to deform

in the x�direction, implying �̃xy = 0 on �T and �B . At the lower left corner of the plate (�B \ �B), ũ = 0.

Simulations are started form rest and from a homogeneous, undamaged state. The strain-driven uniaxial

compression problem writes :

(P ) : Find ũ, �̃, d, defined in ⌦⇥]0, 1[, such that

r̃ · �̃ = 0 in ⌦⇥]0, 1[,

We0d↵�1

@�̃

@ t̃
+ �̃ = We0d0↵K : D̃(ũ) in ⌦⇥]0, 1[,

@d

@ t̃
=

✓
min


1, ⌃t

1

�̃
2

, ⌃c
1

�̃
1

� q�̃
2

�
� 1

◆
1

Td
d +

1

Th
, 0 < d  1 in ⌦⇥]0, 1[,

with initial conditions

ũ(t̃ = 0) = 0 in ⌦,

�̃(t̃ = 0) = 0 in ⌦,

d(t̃ = 0) = 1 in ⌦

and boundary conditions

ũy(t̃) = 0 on �B⇥]0, 1[,

ũy(t̃) = �1 on �T⇥]0, 1[,

ũ(t̃) = 0 on �L \ �B⇥]0, 1[,

�̃(t̃) · n = 0 on �L⇥]0, 1[ and �R⇥]0, 1[,

�̃xy(t̃) = 0 on �T⇥]0, 1[ and �B⇥]0, 1[.
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Time discretization

Advection and �a terms being neglected, non-linearity in the small-deformation Maxwell-EB model arises only

through the coupling of the constitutive relationship and of the damage evolution equations. Let us discretize

time t such that tn = n�t, with �t > 0 and n = 0, 1, 2, .... Problem (P ) is solved using a backward Euler

(implicit) scheme of order 1 for the momentum and constitutive equations, and a semi-implicit scheme for the

damage evolution equation. The discretized system of equations reads:

r̃ · �̃n+1 = 0,

We0

�
dn+1

�↵�1

�̃n+1 � �̃n

�̃t
+ �̃n+1 = We0

⇣
d0n+1

⌘↵
K : D̃(ũn+1),

dn+1 � dn

�̃t
=

✓
min


1,

⌃t

�̃
2

n+1

,
⌃c

�̃
1

n+1 � q�̃
2

n+1

�
� 1

◆
1

Td
dn +

1

Th
, 0 < dn+1  1.

For simplicity, in the following description of the numerical scheme we drop the superscript 0̃0 for adimensional

variables.

The discretized problem is solved using a fixed-point (FP) algorithm which allows linearizing the system of

equation. In this scheme, the field of d is initialized with its value at the previous time step and the momentum

and constitutive equations are first solved simultaneously for �n+1 and un+1 (P1). The level of damage is then

updated using the field of �n+1 (P2). The algorithm iterates between these two steps until the residual of the

linearized constitutive equation drops below a chosen tolerance (tol) ensuring the convergence of the solution.

Using the superscript k = 0, 1, 2, ... for sub-iterations, FP the algorithm reads:

For k = 0, let
�
�n+1,0,un+1,0, dn+1,0

�
= (�n,un, dn),

For k � 0,

• (P1) Find �n+1,k+1 and un+1,k+1 such that

r · �n+1,k+1 = 0, (2.32)

We0

�
dn+1,k

�↵�1

�n+1,k+1 � �n

�t
+ �n+1,k+1 = We0

⇣
d0n+1,k

⌘↵
K : D(un+1,k+1). (2.33)

and with

un+1,k+1

y = 0 on �B ,

un+1,k+1

y = �1 on �T ,

un+1,k+1 = 0 on �L \ �B ,

�n+1,k+1 · n = 0 on �L and �R,

�n+1,k+1

xy = 0 on �T and �B . (2.34)

• (P2) Find dn+1,k+1, such that 0 < dn+1,k+1  1 and

dn+1,k+1 � dn

�t
=

 
min

"
1,

⌃t

�n+1,k+1

2

,
⌃c

�n+1,k+1

1

� q�n+1,k+1

2

#
� 1

!
1

Td
dn +

1

Th
. (2.35)
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• Stopping criterion : compute

res� =

����We0

�
dn+1,k+1

�↵�1

�n+1,k+1 � �n

�t
+ �n+1,k+1 �We0

⇣
d0n+1,k+1

⌘↵
K : D(un+1,k+1)

���� ,

If res� < tol STOP ,

and set
�
�n+1,un+1, dn+1

�
=
�
�n+1,k+1,un+1,k+1, dn+1,k+1

�
.

Subproblem P1 is solved by first substituting for �n+1,k+1 as a function of un+1,k+1

�n+1,k+1 = K


We0

�
dn+1,k

�↵�1

1

�t
�n + We0

⇣
d0n+1,k

⌘↵ �
⇤div(un+1,k+1) + 2GD(un+1,k+1)

��
(2.36)

where K =
h
We0

�
dn+1,k

�↵�1

1

�t + 1
i�1

and ⇤ and G are the dimensionless Lamé coe�cients, into the mo-

mentum equation (2.32). The internal stress �n+1,k+1 is then computed explicitly by substituting the velocity

un+1,k+1 back into (2.36). Subproblem P1 make use of variational methods. The level of damage dn+1,k+1 is

solved for exactly by estimating the distance of the known field of �n+1,k+1 to the local damage criterion.

Variational formulation and finite element approximations

To obtain the weak form of the momentum equation, let us introduce a test function v 2 V with V, the

functional space

V = {v = (v
1

, v
2

) 2 H1(⌦)2; v
2

= 0 on �T [ �B ,v = 0 on �L \ �R}.

and H1 the Hilbert space of functions whose gradient is square integrable. Multiplying equation (2.32) by this

virtual displacement and integrating over ⌦ :

Z

⌦

�r · �n+1,k+1

� · v dx = 0, 8v 2 V.

Let us now make use of the vectorial Green formula (Saramito, 2016), and write the momentum equation in

the form

Z

⌦

�r · �n+1,k+1

� · v dx = �
Z

⌦

�n+1,k+1 : D(v) dx +

Z

@⌦

(�n+1,k+1 · n) · v ds, 8v 2 V. (2.37)

where the boundary integral vanishes over �L and �R because of the Neumann condition and on �T and �B

because of the Dirichlet conditions (equations 2.34).

Substituting for �n+1,k+1 (equation 2.36) into (2.37) leads to a linear expression of the momentum equation

in terms of un+1,k+1 :

Z

⌦

KWe0

�
dn+1,k

�↵�1

1

�t
�n : D(v) +

⇣
d0n+1,k

⌘↵ �
⇤div(un+1,k+1) · div(v) + 2GD(un+1,k+1) : D(v)

��
dx = 0

The variational formulation of this subproblem therefore reads:

(P1.1) : Find un+1,k+1 2 V such that

a(un+1,k+1,v) = l(n+1,k+1)(v), 8v 2 V,
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where the bilinear form a() and linear form l() are defined for all u,v 2 H1(⌦)2 as

a(u,v) =

Z

⌦

KWe0

�
d0n+1,k

�↵
[⇤div(u) · div(v) + 2GD(u) : D(v)] dx

l(n+1,k+1)(v) = �
Z

⌦

KWe0

�
dn+1,k

�↵�1

1

�t
�n : D(v) dx

and where dn+1,k, d0n+1,k and �n are known quantities, calculated at the nth iteration and kth subiteration.

The computation of �n+1,k+1 (P1.2), is done by substituting un+1,k+1 into equation (2.36). The level of

damage dn+1,k+1 is computed explicitly as well from equation (2.35) and by comparing the field of �n+1,k+1

to the local damage criteria (i.e., to ⌃c and ⌃t).

The 2-dimensional domain ⌦ is discretized in space as ⌦h and its boundary as �h using a family of tri-

angulations Th made of triangular finite elements, with h > 0 is the discretization parameter representing

the greatest diameter of a triangle in Th. The subscript h is used throughout to denote the finite element

approximations a continuum quantity. We introduce

1. Xh, the finite element (FE) space for the velocity field uh and by Vh the space for the associated test

function vh:

Xh = {vh 2
�
H1(⌦)

�
2

;vh/K 2 (Pk)2, 8K 2 Th}
Vh = Xh \V

with k � 1, the degree of the polynomial functions on each mesh triangle.

2. Th, the FE space for the field of internal stress �h

Th = {⌧h 2
�
L2(⌦)

�
2⇥2

; ⌧h = ⌧T
h and ⌧h/K 2 (Pk�1

)2⇥2, 8K 2 Th, } (2.38)

As the stress tensor is a function of the velocity gradient, the approximations in the space Th is of degree

k � 1 and discontinuous at inter-element boundaries.

3. Sh the space for the level of damage, mechanical parameters and other scalar quantities.

Sh = {'h 2 L2(⌦); 'h/K 2 Pk�1

, 8K 2 Th} (2.39)

which, in the case of dh, is bounded and defined on the interval [0, 1].

In the Maxwell-EB framework, the degree k of the polynomial functions for each of these finite element spaces

is chosen based on the degree of the polynomial approximations for the field of cohesion, Ch, in which disorder

is introduced to represent the material’s heterogeneity. As mentioned in previous sections, in the case of sea ice

the correlation length of heterogeneities, ⇠, is much smaller than the mean model resolution. Hence disorder

is introduced at the smallest resolved scale: the scale of the mesh element, �x. This sets the degree of the

polynomial approximations for the field of cohesion to 0, i.e., constant by element. The FE approximations for

scalar mechanical parameters, for the level of damage dh, the distance to the damage criterion and the local

damage criteria (⌃ch and ⌃th), all defined in Sh, are therefore necessarily P
0

. In turn, the degree of polynomial

approximations in Th is also 0, which makes Vh for the velocity field P
1

, piecewise linear. In finite element

models, higher levels of precision in the computed solutions are usually obtained by increasing the degree of
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the polynomial functions of the FE spaces. With the degree of the FE approximation fixed in the current

implementation of the Maxwell-EB rheology, the structure and convergence of the model solution is analyzed

in section 2.4 only in terms of the spatial resolution. This point is further discussed in details in chapter 3.

Using these temporal and spatial discretizations, the strain driven uniaxial compression problem becomes:

(P )h : Initialization (n = 0)

un
h = 0 in ⌦h,

�n
h = 0 in ⌦h,

dn
h = 1 in ⌦h,

For n � 0

• For k = 0,
⇣
�n+1,0

h ,un+1,0
h , dn+1,0

h

⌘
= (�n

h ,un
h, dn

h).

• For k � 0

(P1.1)h : With �n
h and dn+1,k

h known, find un+1,k+1

h 2 Vh such that

ah(un+1,k+1

h ,vh) = l(n+1,k+1)

h (vh) 8vh 2 Vh

with the bilinear and linear forms ah and lh defined for all uh,vh 2 Vh by

ah(uh,vh) =

Z

⌦

h

KWe0

⇣
d0n+1,k

h

⌘↵
[⇤div(uh) · div(vh) + 2GD(uh) : D(vh)] dx

l(n+1,k+1)

h (vh) = �
Z

⌦

h

KWe0

⇣
dn+1,k

h

⌘↵�1 1

�t
�n

h : D(vh) dx

(P1.2)h : With un+1,k+1

h , �n
h and dn+1,k

h known, compute �n+1,k+1

h 2 Th explicitly from (2.36).

(P2)h : With �n+1,k+1

h known, compute dn+1,k+1

h 2 Sh explicitly from (2.35).

Compute

res�
h

=

�����We0

⇣
dn+1,k+1

h

⌘↵�1 �n+1,k+1

h � �n
h

�t
+ �n+1,k+1

h �We0

⇣
d0n+1,k+1

h

⌘↵
K : "̇(un+1,k+1

h )

�����

If res�
h

< tol STOP,

Set
�
�n+1

h ,un+1

h , dn+1

h

�
=
⇣
�n+1,k+1

h ,un+1,k+1

h , dn+1,k+1

h

⌘
.

To ensure that the cumulative deformation of the simulated material is small enough so that the small

deformation approximation is valid, the uniaxial compression simulations are run up to a maximum of n �
20% ⇥ 1

˜

�t
1

N model time steps (i.e., until the total, cumulative deformation prescribed on the top edge of the

domain is of maximum 20% of the size of an average mesh element).
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At each time step, the model exits the fixed-point iteration (in k) when the residual, res�
h

, evaluated as the

L2 norm | · | of the sum of the residuals of the constitutive equation on ⌦h, drops below a chosen tolerance. The

log-linear plot of figure 2.8b shows the evolution of res�
h

as a function of the number of fixed-point iterations k

at di↵erent time steps (identified by di↵erent colour curves) of a uniaxial compression simulation with N = 10.

Figure 2.8a shows the evolution of the macroscopic stress (dashed-dotted curve) and damage rate (solid grey

curve) for this simulation. During periods of stress-buildup and low damaging activity, the residual drops to

the machine precision within a few iterations of the fixed point algorithm. The convergence is slower and a

larger number of sub-iterations are required to reach convergence when damage rates are high, such as during

macro-rupture events. As these events are highly localized in time, the fixed-point numerical scheme remains

computationally e�cient for relatively small systems. In the uniaxial compression simulations, the tolerance

on res�
h

(tol) is fixed to 10�12.
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Figure 2.8: (a) Macroscopic stress (dashed-dotted line) and damage rate (solid grey line) as a function of time for
a uniaxial compression experiment with N = 10. (b) Residual of the constitutive equation (res

�

h

) as a function of
the number of fixed-point sub-iterations k for a few model time steps, equally spaced along the interval of simulation
delimited by the colorbar in (a).
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2.4 Results

In this section we analyze the mechanical behaviour of the Maxwell-EB model. In particular, we evaluate

its capacity to reproduce the main characteristics of sea ice deformation, which are its spatial heterogeneity,

intermittency and anisotropy, following the methodology developed in previous observational studies of the

deformation and drift of the Arctic ice pack.

One signature of the strong heterogeneity of sea ice deformation is the emergence of a spatial scaling in

the deformation fields over a wide range of scales. Using a coarse-graining procedure, Marsan et al. (2004)

performed a scaling analysis of the deformation of sea ice over the Arctic using the 3-days, 10 km ⇥ 10 km

gridded RGPS ice motion product. They estimated deformation rate invariants (shear, divergence and total

deformation rates) at di↵erent spatial scales by averaging the components of the 3-days strain rate tensor over

square boxes of length 10 km  l  1000 km. Doing so, they obtained a power-law relationship between the

total deformation rate < "̇tot >l and the corresponding averaging scale l of the form

< "̇tot >l⇠ l�� (2.40)

with a constant exponent � > 0, indicating correlations in the deformation fields over 2 orders of magnitude

in l and an increase in the mean strain rate with decreasing scale of observation, in agreement with a strong

spatial localization of the deformation.

This coarse-graining calculation was later extended to ice buoy data (e.g., Rampal et al., 2008; Hutchings

et al., 2011). With a higher temporal resolution than the RGPS motion products, ice buoys positions allowed

performing scaling analyses of Arctic sea ice deformation in the temporal dimension as well. Using the dispersion

rate of buoys as a proxy for the strain rate, Rampal et al. (2008) obtained a power-law relationship between

the total deformation rate < "̇tot >t computed at a chosen space scale and the time scale of observation t

< "̇tot >t⇠ t�� (2.41)

with a constant exponent � > 0 over 2 orders of magnitudes in t (3 hours to 3 months), indicating an increase

of strain rates with decreasing temporal scale, consistent with an intermittent deformation process. Recently,

these temporal and spatial scaling properties have been used as benchmarks to validate (or invalidate) sea ice

models (e.g., Girard et al., 2009, 2010a; Bouillon and Rampal, 2015; Rampal et al., 2015).

An additional and all-important characteristic of the deformation of sea ice that is not captured by these

scaling analyses is its strong anisotropy. This property has been made evident since the availability of satellite

imagery-derived ice motion products (e.g. Stern et al., 1995), which showed that high strain rates concentrate

along oriented, linear-like faults, or leads, often termed ”linear kinematic features” (Kwok, 2001).

2.4.1 Spatial resolution, convergence and dependence on the initial conditions

In a first time, we analyze the overall, macroscopic behaviour of the Maxwell-EB model, its convergence

properties and the dependance of the solution on the prescribed initial conditions. To do so, a set of four

uniaxial compression simulations is run using di↵erent spatial resolutions, with N = 10, 20, 40 and 80. The

values of the initial, undamaged mechanical parameters are identical between the simulations as well as the

field of cohesion, which is defined at the lowest resolution (N = 10) and interpolated onto the higher resolution

mesh grids. In this section and the remaining of this chapter, results are expressed in terms of adimensional

variables and parameters. However for the sake of simplicity, we drop the superscript 0̃0 for all quantities.
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Figure 2.9 shows the (adimensional) macroscopic stress, �m (normal stress integrated on the upper boundary

of the domain), as a function of the (adimensional) macroscopic strain, "m, set by the prescribed displacement

of the upper boundary, for these four simulations. The dotted line represents the damage rate (the number of

damaged elements per model time step times their distance to the damage criterion, 1�dcrit) for the simulation

with N = 40. Inspection of the initial loading and damaging sequence suggests that the mechanical behaviour

is similar to that obtained with other elasto-brittle models (e.g., Tang, 1997; Amitrano et al., 1999; Girard

et al., 2010a). The Maxwell-EB model simulates

1. a strictly linear-elastic behaviour at the initial stage of the experiment, as the material is initially un-

damaged,

2. a deviation from the linear-elastic behaviour after the onset of damage (marked by the red dot 1), indica-

tive of macroscopic strain softening, with damage distributed homogeneously throughout the material

(see figure 2.9 b1),

3. the formation of clusters of damaged elements, non-interacting at first, then joining along linear features.

This stage is marked by a rapid increase in the number of damaged elements,

4. a sharp stress drop associated with the macroscopic failure of the sample and propagation of a main fault

spanning the entire domain (see figure 2.9 b2).

In the Maxwell-EB model, this last stage is characterized by a drop in the Weissenberg number (i.e., in

�) localized along the main fault (not shown), where strain rates are orders of magnitude higher than over

undamaged parts of the material. Then, as damaged areas heal, stress builds up again within the material. In

all four cases, the macroscopic behaviour is not linear in the early stage of the stress build-up phase, consistent

with the significant contribution of viscous-like dissipation within the highly damaged material. The behaviour

then becomes nearly linear as the material heals. The associated slope of the macroscopic stress-strain curve

indicates an ”e↵ective” elastic modulus E < E0, i.e., lower for the partially damaged than for the initially

undamaged material. At all spatial resolutions, the model simulates cycles of slow stress build-ups (healing

phase) and rapid stress relaxations (damaging phase).

Because the simulations use the same spatial distribution of the damage criteria (i.e., of C) the locations

of the first damage events are the same at all resolutions, as shown by the maps of the instantaneous level

of damage d near the onset of damaging (figure 2.9 b1). However, soon after these first failure events, model

solutions do not converge (figure 2.9 b2-4) and fractures form with a shape and orientation di↵ering between

simulations. This divergence between the post-damage solutions illustrates an all-important and intrinsic

characteristic of the Maxwell-EB framework arising from the fact that there is no physical scale associated

with the localization of damage in the model. Through elastic interactions, damage and deformation tend

to localize at the finest scale (the mesh element), resulting in a di↵erent redistribution of the stress between

neighbouring elements at di↵erent spatial resolutions and hence a non-identical propagation of the damage.

Put another way, the divergence of the solutions indicates that while the disorder in C sets the location

of the first damage events, the heterogeneities introduced in the stress field by these events prevail in setting

the location and timing of subsequent events. This result is consistent with previous elasto-brittle model

simulations which have shown that the number of active faults as well as the degree of localization of the

deformation over long time scales do not depend systematically on the disorder initially introduced in the

model (Cowie et al., 1993) and that once formed, faults produce their own stress field which dominates further

fracture growth (Sornette et al., 1994; Tang, 1997).
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Another important property of the deformation made evident by this set of experiments is its strong

anisotropy. The fields of d and of the total deformation ("̇tot, see section 2.4.2) represented on figure 2.9

indeed show that at all spatial resolutions, the simulated damage and deformation are both highly localized

and oriented along linear features. This is an important result, as no anisotropy is introduced at the local scale

on either the elastic or viscous properties, or in the damage parameterization. This property arises naturally

due to elastic interactions within the material and without the need to prescribe fault orientations. It was

reproduced by the original EB model (Amitrano et al., 1999; Girard et al., 2010a,b) and is not lost when

including a viscous dissipation term for the stress in the Maxwell-EB constitutive law.

2.4.2 Heterogeneity

As shown in the previous section, when simulations are started from an undamaged state, the simulated

mechanical behaviour of the material is intrinsically di↵erent between the first and subsequent loading and

damaging cycles. The path to the first rupture in ”irreversible damage” (i.e., models without healing) elasto-

brittle models has already been investigated in depth (e.g. Tang, 1997; Amitrano et al., 1999; Girard et al.,

2010a). Hence in the following we focus our analysis of the spatial dependence of the Maxwell-EB model strain

rate fields on the post macro-rupture behaviour.

To quantify the heterogeneity of the simulated deformation, we follow Marsan et al. (2004) and estimate

deformation rates over two orders of magnitude in space scales using a coarse-graining procedure. The calcu-

lation is similar to that performed by Girard et al. (2010a). This analysis uses the outputs of strain rate fields

from simulations with N = 100, averaged over a time interval corresponding to the time of propagation of an

elastic shear wave with speed c through the width of the domain (L
2

1

T⇥c = N time steps). The invariants and

total deformation rates are first computed at the largest scale, l = L, by averaging the components of the strain

rate tensor over the whole domain. Then, deformation rates are estimated at di↵erent space scales l = L
2n

with 1  n  N/2 by dividing the domain into 2⇥ n2 square boxes of equal size l, the smallest scale therefore

corresponding approximately to two times the width of a mesh grid element. At each scale l, the components

of the strain rate tensor are first averaged spatially over each individual box by finding all elements that have

their centre lying inside that box, with their contribution weighted by their actual area. The shear, divergence

and total deformation rates are computed over each box as

"̇div =
@u

@x
+

@v

@y
, (2.42)

"̇shear =

 
@u

@x
� @v

@y

�
2

+


@u

@y
+

@v

@x

�
2

! 1
2

, (2.43)

"̇tot =
�
"̇2

div + "̇2

shear

� 1
2 , (2.44)

with the overline indicating the space-averaged components. The three invariants are then averaged over all

boxes of same size. The mean total deformation rates is denoted by < "̇tot >l.

The dependence of the deformation rates on the spatial scale of observation is investigated at di↵erent

stages of the healing-damaging cycle. Figure 2.10 (a and b) shows the total deformation rate < "̇tot >l as a

function of the space scale l at 5 equally-spaced steps along the path towards a given macroscopic failure event,

that is, between the minimum in macroscopic stress that follows the propagation of a fault and the maximum

that precedes the next macro-rupture, as indicated in figure 2.10(a). Deformation rates are normalized by

< "̇tot > at the smallest averaging scale (L/N). At the first stage, just following the rupture (red curve), the
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Figure 2.9: (a) Macroscopic stress versus macroscopic strain (solid lines) for four uniaxial compression simulations with
di↵erent spatial resolutions and damage rate (dashed grey line) for the simulation with N = 40. All simulations are
initialized with the same values of mechanical parameters and cohesion field C defined at the lowest spatial resolution
(N = 10). (b) Fields of the instantaneous damage (left panels) and of the order of magnitude of the total deformation
rate (log10("̇tot), right panels) at the four di↵erent times indicates on figure (a) and for the four simulations (resolution
increasing from top to bottom).

43



 l
10 -1 10 0

 <
� to

t>
l

0.98

0.985

0.99

0.995

1

 l
10 -1 10 0

 <
� to

t>
l

0.5

0.6

0.7

0.8

0.9

1

1

(d)

2 3 4 5
log

10

("̇tot)

|�m | �10 -3
0 0.5 1 1.5

|�
m
|

�10 -4

0

0.5

1

1.5

2

(a)

(b) (c)

Figure 2.10: (a) Macroscopic stress as a function of the macroscopic strain for one realization of the uniaxial compression
experiment with N = 100. (b) Total deformation rate as a function of the spatial scale l (l = L

2n with 1  n  N/2),
normalized at the smallest scale L/N , at the five stages indicated on panel (a). (c) Zoom into panel (b) for the second,
third and fourth stages. (d) Corresponding fields of the order of magnitude of the total deformation rate (log10("̇tot))
normalized by the maximum value of "̇

tot

.
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total deformation rate shows a clear power law decrease with increasing spatial scale of the form of equation

(2.40) over nearly two orders of magnitude of l, consistent with a strong localization of the deformation. At the

subsequent stages (yellow and green curves), damaged elements progressively recover their mechanical strength

by healing. Deformation rates decrease along the main fault and re-increases over undamaged areas, hence

deformation homogenizes over the domain and the rate of decrease of < "̇tot >l with l is reduced. Then, as

healing allows stress to build up within the material, damaging resumes and clusters in space and the exponent

� re-increases towards its post macro-rupture value (blue and purple curves).

Repeating the procedure for subsequent healing and damaging cycles and for multiple realizations of the

experiment initialized with di↵erent cohesion fields showed a similar evolution of the rate of decrease of < "̇tot >l

with l between macro-ruptures events, with values of � in the vicinity of the rupture consistent with previous

EB model analyses (e.g., Girard et al., 2010a, � = 0.15 ± 0.02). However, an important di↵erence between the

present results and that of Girard et al. (2010a), who performed a similar analysis for the path to the first

macro-rupture simulated with their irreversible-damage EB model, is the absence of a clear cross-over scale for

which < "̇tot >l becomes independent of l and which implies a finite correlation length of damage events. This

suggests that the Maxwell-EB system progressively looses the memory of it’s initial homogeneous, undamaged

state and that an elasto-brittle material experiencing both healing and damaging enters a marginally stable

state with scale invariance spanning the size of the system. This result is consistent with the spatial scale

dependence analysis of RGPS-derived deformation rates of Marsan et al. (2004) and Stern and Lindsay (2009),

in which no cuto↵ scale was observed for l varying between 10 and 1000 km, suggesting that Arctic sea ice is

most often in a near-critical state.

2.4.3 Intermittency

In this section we characterize the temporal behaviour of the Maxwell-EB model. Figure 2.11(a) represents

the simulated macroscopic stress as a function of time (black dashed-dotted line) along with the corresponding

damage rate (grey solid line) record for one realization of the uniaxial compression experiment with N = 40.

Inspection of both temporal series reveals two types of mechanical behaviour of the Maxwell-EB material.

First, the evolution of the macroscopic stress is clearly characterized by cycles of slow stress build-ups and

very fast relaxations. The strong asymmetry of the signal in time is confirmed by a high (negative) skewness

(-6) of the distribution of the macroscopic stress increments ��
m

�t (not shown). Associated with these cycles

is a succession of progressive increases in damage events and very sharp drops, after which damaging stops

momentarily (red arrow on figure 2.11a).

Second, as identified on the same time series, some periods (e.g., the interval delimited by the dashed

red box) are characterized by a continuous damage activity and by both low amplitude and low frequency

fluctuations of the stress. This contrasted behaviour translates into a significantly more symmetric (skewness

of -1.9) distribution of ��
m

�t . Inspection of the spatial distribution of damage (figure 2.11b) and strain rate fields

(not shown) over this time interval indicates that the same system of interacting faults remains activated, with

not much damaging activity over the rest of the domain and therefore suggests that ”creep-like” deformation

along this system slowly dissipates all of the input loading. Here, creep is defined by analogy with creeping

faults in the Earth crust showing a continuous micro-earthquake activity (Amelung and King, 1997), not in

terms of the dislocation-mediated creep of ice. This period of creep is interrupted by a macro-failure event

as evident by the abrupt and complete cessation of damaging, and the formation of a new fault outside the

system (last panel of figure 2.11b). The partitioning between the two types of mechanical behaviour depends
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on the rate of healing and of viscous dissipation set in the model through through the parameters th and ↵.

Sensitivity analysis on the value of ↵ are presented in section 2.5.
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Figure 2.11: (a) Macroscopic stress (black dashed-dotted line) and damage rate (solid grey line) as a function of time
for one realization of the uniaxial compression experiment with N = 40. The dashed red box indicates an interval
of uninterrupted damaging activity, during which deformation is accommodated by a persisting system of interacting
faults. (b) Instantaneous fields of level of damage at the five times indicated by blue dots on the macroscopic stress
curve, showing the formation of the system of faults (first panel), which remains active for some time (three following
panels), until the propagation of a new, non-interacting fault (last panel).

Following the approach taken for fracture-type models which record the number of broken fibres, ruptured

bounds, depinning events, etc., we investigate the time-dependence of the simulated damage activity by analyz-

ing time series of the discrete failure events. We estimate the power spectral density (PSD) of the damage rate.

Time series are truncated by removing the first macro-rupture event and the squared Fourier coe�cients are

averaged over 5 realizations of the compression experiment initialized with di↵erent fields of C over domains

with N = 40. Figure 2.12(a) represents the spectral density estimated by averaging the power over a 5 values

window centred on each frequency f . We checked that using a smaller averaging window does not a↵ect the

shape of the PSD discussed below.

At low frequencies, the PSD is almost flat, suggesting that the damage rate is uncorrelated in time. As these

frequencies are lower than 1

T
h

, this is consistent with the fact that the Maxwell-EB material entirely looses the

memory of previous damage events when allowed to heal completely. At higher frequencies, the PSD shows

a decrease with increasing f reminiscent of a temporal correlation of damaging events in the material. This

expresses as a power law decay with PSD(f) = 1/f� . At intermediate frequencies, we estimate a slope � = 2,

suggesting that the instantaneous damage rate is correlated in time but that increments of the damage rate

are uncorrelated. At the highest frequencies, � > 2, indicating that the damage rate is correlated in time and

increments of the damage rate are anti-correlated. The break in the slope occurs around f = 106, a frequency
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Figure 2.12: (a) Average power spectral density of the damage rate time series for 5 realizations of the uniaxial
compression experiment initialized with di↵erent fields of C and with N = 40. Blue dashed lines indicate, from left to
right, the frequency associated with the characteristic time for healing, the inverse time of propagation of damage across
the width of the domain and 1

2⇥ the frequency associated with the characteristic time for damage. The red dashed line
indicates the frequency of the healing and damaging cycle marked with an arrow on figure 2.11(a). (b) Total deformation
rate < "̇

tot

>

t

as a function of the observation time t, for 20 realizations of the coarse graining calculation centred on
di↵erent arbitrary times t0 along a uniaxial compression experiment with N = 40 (coloured lines) and average of the
20 realizations (thick black line).

that we relate to the minimum propagation time of a macro-rupture, i.e., the time of propagation of damage

(i.e., of an elastic shear wave with speed c) across the width L
2

of the domain (N time steps). The transition

between the flat and power law decaying parts of the PSD is marked by a clear peak spanning the range of

frequencies corresponding to the cycles of healing and damaging, the red dashed line indicating the frequency

of such a cycle, as identified by the double arrow on figure 2.11(a).

Finally, we analyze the dependance of the simulated deformation on the time scale of observation using a

temporal coarse-graining method (e.g., Rampal et al., 2008). Components of the strain rate at a given spatial

scale are averaged over a time window of duration t to compute the mean total deformation < "̇tot >t. The

window is centred on an arbitrary time t
0

and has a size t = 2n ⇥ (N�t) with n = 1, 2, 3, ... and with the

smallest averaging time scale corresponding to the time of propagation of an elastic shear wave with speed c

across the width L
2

of the domain. The chosen spatial averaging scale is that of the highest deformation rate,

which as shown in section 2.4.2 is of L
N . The domain is therefore divided in square boxes of equal size l = L

N

and the calculated deformation invariants are averaged over all available boxes.

Figure 2.12(b) shows the total deformation rate < "̇tot >t as a function of the time of observation t

(thick black line) averaged over 20 realizations of the coarse graining calculation (thin, coloured lines) centred

on di↵erent t
0

for a simulation with N = 40. Consistent with the localizing of the deformation and an

intermittent process, < "̇tot >t decreases with increasing t over almost two orders of magnitudes of t. The

observed scaling is however altered in two ways, which relate to the specific geometry, loading and boundary

conditions used in the present simulations. First, as one main fault always dominates the deformation in the

system, curves of < "̇tot >t are strongly modulated by a succession of peaks associated with the cycles of

stress build-up and macro-rupture, the amplitude of which decreases with the scale of observation t. The

fact that the average of the 20 realizations of the coarse-graining calculation is rather smooth indicates that

these cycles are not associated to a single frequency but instead span a range of frequencies, consistent with
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the PDS of the damage rate signal. Second, at large t, the scaling assymptotes to a value corresponding to

the prescribed forcing. Simulations over larger systems using non-homogeneous surface forcing should allow

for multiple macroscopic scale faults to be active simultaneously and hence to observe a clearer scaling of the

simulated deformation over larger time spans.

For t . 10�5, no scaling is observed. This time corresponds to the average time of macroscopic failure, as

measured from fields of the deformation rate. It is about one order of magnitude larger than the minimum

time of propagation of damage across the width of the domain (for which a break in the scaling is observed on

the PSD of the damage rate), consistent with the fact that deformation evolves as a function of the local state

of damage d, not of the damage rate (⇠ 1 � dcrit). The average of the 20 realizations of the coarse graining

calculation also indicates a change of scaling exponent � (equation 2.41) associated with the period of stress

build-up/relaxation cycles (red dotted line). Beyond this period, � is much reduced but the scaling is not

entirely lost, in agreement with the point discussed at the beginning of this section that creeping faults can

remain activated over an extended period of time.

2.5 Sensitivity analyses

In this section, we investigate the dependence of the Maxwell-EB model behaviour on the value of the damage

parameter ↵, which is the only truly ad-hoc parameter of the Maxwell-EB rheological framework and perhaps

the least constrained, both physically and numerically. Based on the coupling between ⌘, E, � and the level of

damage d described in section 2.2.3, we can distinguish and comment on the following values of this parameter.

• For ↵ = 0, the apparent viscosity of the material, ⌘ is independent of d and hence constant in both

space and time. If the initial undamaged value of ⌘0 is chosen very large, such that 1

⌘0 ! 0, the viscous

dissipation term in the constitutive equation (2.6) vanishes and all deformations are elastic.

• For ↵ = 1, the apparent viscosity decreases with d in the same proportions as the material’s elastic

modulus. Hence the relaxation time is constant in both space and time, implying that the rate of

dissipation of the internal stress in permanent deformations does not depend on the level of damage.

• For ↵ > 1, the elastic modulus, apparent viscosity and relaxation time all decrease with increasing level of

damage, consistent with a degradation in both the mechanical strength and the capacity of the material

to retain the memory of elastic deformations.

• In the limit of ↵!1, the relaxation time drops to zero at the onset of damaging and the local memory

of elastic deformations is lost.

Here we analyze a set of uniaxial compression experiments in which the value of the damage parameter is varied

over the interval [0, 100]. The value of the characteristic healing time and of all other mechanical parameters

are identical to that used in section 2.3 (see table 2.2). The domain is as shown in figure 2.7 and the mean

mesh resolution is �x = 1

N with N = 40. Simulations are started from an undamaged state and initialized

with the same field of cohesion.

We first briefly investigate the cases of ↵ = 0 and ↵ = 1, which both violate the principle of stress relaxation

in the context of the Maxwell-EB framework. With ↵ = 0, the elastic modulus decreases with damaging but

the apparent viscosity remains constant. Hence � increases with damaging. As �0 is set very large over the

initially undamaged material to represent the limit of pure elasticity (see section 2.2.4), there is virtually no
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Figure 2.13: Time series of (a) the macroscopic stress and (b) the damage rate in uniaxial compression experiments
with ↵ = 0 (solid curves) and ↵ = 1 with We0 = 5 · 10�2 (dotted line), We0 = 5 · 10�4 (dashed-dotted line) and
We0 = 5 · 10�6 (dashed line).

viscous dissipation and stress relaxation occurs only through damaging. No abrupt drop of the macroscopic

stress is observed after the onset of damaging in this case. Instead, the damage and deformation slowly cluster

along linear features (see 2.15) and the macroscopic stress stabilize after some time (see figure 2.13a, solid

black curves), suggesting a balance is reached between the rate of loading and the rate of damaging. This is

can be explained by the fact that in the Maxwell-EB model, the part of the stress relaxation due to elastic

deformation is ”prescribed” by calculating the change in level of damage of any given element according to

its exact distance to the damage criterion, dcrit (see section 2.2.3). Without viscous dissipation, all damaged

elements have their state of stress lying just on the damage envelope and all undamaged elements, just inside

the envelope, near the maximum uniaxial compressive strength (⌃c) state at which the first damaging events

preferentially occur under uniaxial compression forcing conditions (see figure 2.16a). As the maximum value

of �, or equivalently the value of We, is unbounded in this case, numerical instabilities arises as the level of

damage drops over the domain and the simulations stop after a short runtime.

For ↵ = 1, viscous stress relaxation is e↵ective. However, as the rate at which it operates is independent

of the level of damage, the model behaviour depends strongly on the chosen value of �0, which sets the elastic

versus viscous character of the deformation. Here we vary �0, or equivalently, the adimensional Weissenberg

number (We0 = �0

U
L ) for the simulations, over four orders of magnitudes. Figures 2.13a and 2.13b show

respectively the evolution of the macroscopic stress and of the damage rate for We0 = 0.05 (dotted lines),

which is the value otherwise used in all simulations presented in this chapter and which approaches the limit of

pure elasticity for the undamaged material, We0 = 5 · 10�4 (dashed-dotted lines) and We0 = 5 · 10�6 (dashed

lines). For the highest value of We0, the behaviour is similar to the ↵ = 0 case : the input loading is balanced

by the stress relaxation associated to small, elastic deformations and states of stress are always near-critical.

Damage does concentrate along linear features (see figure 2.15). However the structure of these features does

not evolve in time and no main fault emerges that dominates the deformation. When lowering the value of We0
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and allowing for more significant viscous dissipation (We0 = 5 · 10�4), deformation localizes along one main

fault (see 2.15). However this localization happens very slowly, not in an abrupt, brittle-like manner, and the

damage rate still shows no significant fluctuations over time. For even smaller values of We0, the behaviour is

essentially viscous-like: no damaging occur and all of the applied loading is readily dissipated into permanent

deformations.

For values of ↵ greater than 1 (and We0 = 0.05), time series of the stress and damage rate reveal a range

of di↵erent mechanical behaviours (see figures 2.14a and 2.14b). The case of ↵ = 2 (darkest blue curves) is

similar to ↵ = 0 and ↵ = 1 and We0 = 0.05 : no brutal stress relaxation is observed after the initial elastic

loading and damage rates stabilize after a long period of softening.

For ↵ = 3 (blue curves), the macroscopic stress shows a small but rapid drop associated to the propagation

of a first system of faults across the domain. The stress subsequently builds up and stabilizes. States of

stress are scattered near the damage envelope (see figure 2.16b). The damage rate time series shows low

amplitudes and high-frequency fluctuations of the damaging (see figure 2.14c), which concentrates along the

initially activated faults. Some small macroscopic drops in the stress are observed that are associated with

higher damaging activity and to the reactivation of a portion of the same system of faults. Figures 2.14a and

2.14b represent only 10% of the time series for this simulation. During the entire simulation, the same feature

remained activated, slowly dissipating the applied loading through creep-like deformation.

The case of ↵ = 4 (clear blue curves) was described in section 2.4.3. The mechanical behaviour is partionned

between extended periods of creep-like deformation and cyclic, sharp stress relaxations associated with the

activation of new features. The behaviour is similar for ↵ = 5 (green curves) and ↵ = 6 (not shown), suggesting

that there is a range of values of ↵ for which both types of deformation can coexist.

When increasing ↵ further, episodes of creep-like deformation disappear. After each macro-rupture event,

states of stress drop well inside the damage envelope (see figure 2.16c). Damaging clusters in time (see 2.14b,

yellow curve), and somewhat localizes in space (see figure 2.15). For ↵ = 10, the same fault is formed again at

each stress-build up and relaxation cycle, equivalent to re-starting the experiment from its initial undamaged

state, thereby suggesting the total suppression of the memory of previous damaging events within one stress-

build up cycle. At ↵ = 100 (orange curves), there is almost no precursory damaging activity to the propagation

of macro-ruptures (see figure 2.14b and 2.14c). The stress drops to near-zero values at each failure event. The

fluctuations in the stress near peak values are due to the fact that the numerical scheme does not converge in

the set maximum value of iterations of the fixed-point algorithm.

Figure 2.17 shows power spectral densities calculated for the damage rate time series in the case of ↵ =

2, 3, 4, 5, 10 and 100 (time series were truncated by removing the first macro-rupture event). An averaging

window of 15 frequencies centred on any given frequency is used. For ↵ = 3, the PSD shows no distinct

peak. A power law decay with a slope of � ⇡ 2 is observed for frequencies larger than that associated with the

prescribed time of healing, Th. As ↵ is increased beyond 3, a characteristic frequency appears that is associated

with the cycles of stress build-ups and relaxation. The PSD flattens starting at the lowest frequencies, consistent

with the loss of the long-term memory of damaging events. At ↵ = 100, the PSD is flat, except around a peak

centred on the frequency of healing (which appears broader due to the failure of the numerical scheme near the

peak macroscopic stress), indicating a complete loss of temporal correlations of the damage rate, at all time

scales.

To summarize, by varying only the value of the damage parameter the Maxwell-EB model can represent

widely di↵erent mechanical behaviours, even under homogeneous and highly idealized forcing conditions. The

cases of ↵ = 0 and ↵ = 1 are pathological, as expected from the misrepresentation of the dependence of the
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Figure 2.14: Time series of (a) the macroscopic stress and (b) damage rate in uniaxial compression experiments with
↵ > 1. The initial elastic loading is identical between all simulations, as all other mechanical parameter values are the
same, and time series hence start at the onset of damaging. (c) Zoom in on the damage rate time series.

relaxation time for the stress on the level of damage, central to the rheological framework. With ↵ = 3, the

scale invariance observed all time scales below the prescribed healing time is consistent with a marginally-stable

state and the maintenance of a stable structure and orientation of the fault by short-term damage fluctuations.

In this case, a scaling analysis of the deformation in space would likely reveal stable statistical properties, i.e.

a spatial scaling exponent �, (see section 2.4.2) that is constant in time. For ↵ � 10, the model is essentially

elasto-plastic. The memory of elastic deformations is lost just after a few model time steps. Deformation over

damaged elements becomes readily permanent, whatever their level of damage. The macroscopic behaviour is

characterized by a single fault pattern and a single damaging frequency, corresponding to the healing frequency,

and is hence completely predictable. In this elasto-plastic limit, the model could reproduce the activation of

faults with di↵erent shapes and orientations and over a range of frequencies, provided a non-homogeneous

and su�ciently complex forcing is used. However, any intermittency in the system would then be inherited

from the applied forcing, not from the mechanical framework itself. In the context of sea ice modelling, this

implies that the model would not reproduce the extreme fluctuations and long-range temporal correlations that

characterize the intermittency of deformation of the ice pack (Rampal et al., 2008; Weiss, 2008).
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Figure 2.15: Instantaneous fields of the order of magnitude of the total deformation rate (log10("̇tot)) normalized by
the maximum value of "̇

tot

(upper panels) and of the level of damage (lower panels) at the instant indicated by the dot
on figures 2.13a and 2.14a and for ↵ = 0, ↵ = 1 (We0 = 5 · 10�4 and We0 = 5 · 10�2), ↵ = 3 and ↵ = 10.

One question remains unanswered at this point. Consistent with the work of Frederiksen and Braun (2001)

who used a strain-dependent apparent viscosity to model strain localization during lithospheric extension with

an elasto-visco-plastic mechanical framework, we note that increasing the rate of change of the viscosity ⌘ with

the level of damage, i.e., increasing ↵, leads to a somewhat higher degree of localization of the deformation.

However, figure 2.15 (↵ = 10) suggests that in the limit of ↵ large, damage concentrates along a single feature

and is otherwise homogeneously distributed over the domain. Hence we can wonder if spatial scale-invariance

is still maintained in the elasto-plastic limit, or if characteristic scales eventually arise for the deformation.

This point remains to be clarified through appropriate spatial scaling analyses.

Finally, it is important to note that the range of values of ↵ for which a creep-like, elastic-brittle or

elastic-plastic dynamics is simulated with the Maxwell-EB model is expected to depend on the value of other

parameters such as the healing time, th, and the initial, undamaged relaxation time for the stress �0. It also

depends on the magnitude, temporal and spatial structure of the applied forcing and, possibly, on the level of

heterogeneity initially introduced in the model (i.e., the width of the distribution of C). Hence, in order to

determine the values of ↵ that are appropriate to represent either kind of mechanical behaviour under specific

conditions, or for a specific material, sensitivity analysis should be performed with the model.
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Figure 2.16: Principal states of stress at the instant indicated by the dot on figures 2.13a and 2.14a for the uniaxial
compression experiments with (a) ↵ = 1 and We0 = 5 · 10�2, ↵ = 3 and ↵ = 10. The case of ↵ = 0 is identical to the
case of ↵ = 1 and We0 = 5 · 10�2. The solid black lines represent the damage envelope corresponding to the minimum
and maximum values of the cohesion C over the domain.
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Figure 2.17: Power spectral density of the damage rate time series in uniaxial compression experiments with ↵ =
{3, 4, 5, 10, 100}.
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2.6 Concluding remarks

In this chapter, we have presented all the components of the Maxwell-EB model. Analyses of small-deformation

simulations using the simplest, most idealized domain, forcing and boundary conditions have revealed :

1. A highly heterogeneous deformation, translating into a power law decrease of the deformation rate with

increasing spatial scale. The associated exponent varies periodically: it is highest in the vicinity of

macro-rupture events and decreases between events as the material partially heals. The disappearance

after a few ”spinup” rupture events of a cross-over scale at which deformation rates become independent

of the scale of observation suggests that the Maxwell-EB model, including both damaging and healing

processes, successfully reproduces a ”marginally stable” state, as observed for Arctic sea ice.

2. An intermittent deformation, manifested by the highly asymmetric temporal evolution of the internal

stress within the material, which shows a succession of slow build-ups and very rapid relaxation phases.

This intermittency is supported by the existence of temporal correlations in the rate of damage at all

timescales below the material’s characteristic healing time. A temporal scaling of the deformation rate

is also obtained but due to the specific setup of the simulations analyzed here, it is modulated by the

cycles of stress build-up and relaxation and its span is limited by the prescribed forcing.

Considering the highly idealized setup of the simulations analyzed here, these temporal and spatial scaling

properties in the deformation fields cannot be inherited from the prescribed forcing. Instead, their emergence

is a signature of the rheological framework itself. Moreover, the simulations have demonstrated that anisotropy

in the Maxwell-EB model arises naturally from elastic interactions, although the material’s properties are fully

isotropic at the element scale. This is likely due to the anisotropy of the elastic kernel representing the

redistribution of stresses within the material after a damaging event.

Furthermore, sensitivity analysis on the damage parameter ↵ have demonstrated that the Maxwell-EB

dynamical framework, with few numbers of independent variables, can represent a large range of mechanical

behaviours, from a regular, predictable stick-slip-like behaviour with a single damaging frequency corresponding

to the prescribed healing rate, to a marginally stable, unpredictable, creep-like deformation with temporal

correlations in the damaging activity at all time scales below the material’s healing time. Our simulations

show that over a limited range of values of ↵, the model can reproduce both the persistence of creeping leads

and the activation of new leads with di↵erent shapes and orientations and that, under completely homogeneous

forcing conditions. Ultimately, comparisons to temporal scaling analysis based on measurements of the stress

and/or deformation rates would be required in order to determine the values of ↵ most relevant for sea ice.
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Chapter 3

Towards a large-deformation

Maxwell-EB model

This chapter is concerned with the transition from the small-deformation to the large deformation Maxwell-

EB model. The two principal aspects of this transition are the introduction of advection processes, and the

treatment of the rotation and deformation terms of the internal stress tensor. In chapter 2, a reduced form of

the constitutive equation was solved. At the end of chapter 3, the full constitutive equation is incorporated in

the Maxwell-EB framework.

3.1 From small to large deformations in the Maxwell-EB framework

From the continuum mechanics point of view, sea ice is both (1) a solid whose mechanical properties depend

on the history of its deformation and (2) a material experiencing high strains. In this sense, modelling the

deformation and drift of the ice pack lies between a solid mechanics (small deformations) and a fluid dynamics

(large deformations) problem. The numerical experiments carried in chapter 2 suggest that in the small-

deformation regime, the Maxwell-EB rheology succeeds in representing the mechanical behaviour of sea ice

and, in particular, in reproducing the linear and highly localized features that concentrate its deformation. The

advection scheme that handles the large deformations along these features once formed and their transport

with the mean flow must allow retaining the strong gradients and the high degree of heterogeneity arising

within all simulated fields.

On the one hand, the most common approach to model the deformation of continuum solids is to cast

the equations of motion in Lagrangian form. In this case computational points, i.e, mesh grid nodes, are

tied to the material and therefore keep a historical record of its mechanical properties. Strain and strain

rates are computed from the deformation of the mesh. Hence if deformations within the material become large,

restructuring of the grid is necessary to preserve a homogeneous sampling and maintain a numerically workable

grid. Remeshing inevitably results in interpolation-related di↵usion of the recorded information, which can be

somewhat minimized if one is willing to pay the computational price and call the remeshing scheme frequently.

Remeshing also introduces some inaccuracy in the model solution, as the restructured fields might not respect

the local force balance or yield criterion.

On the other hand, typical fluid flow problems make use of an Eulerian advection scheme and fixed model

grid, which allows dealing with arbitrary large strain rates, best defined in terms of the velocity field. This
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approach is less suitable however if the mechanical properties of the material are allowed to evolve in both

space and time, as transport implies interpolating the properties onto the grid point positions where velocity is

estimated, which lead to numerical di↵usion of gradients and to a deterioration of the material’s history over

time.

Most climate models including sea ice dynamics use an Eulerian-type advection scheme. As these are based

on a viscous-plastic rheology (Hibler, 1979; Hunke and Dukovicz, 1997; Tsamados et al., 2013), their mechanical

framework is indeed compatible with a fluid-type numerical approach. Besides, Eulerian sea ice models present

the advantage of being easily coupled with an ocean and atmospheric components.

One exception in the sea ice community is the recently developed NeXtSIM model (Bouillon and Rampal,

2015; Rampal et al., 2015), which is based on the solid mechanics-type Elasto-Brittle rheological framework of

Girard et al. (2010b) and uses a Lagrangian scheme together with a remeshing method. With their remeshing

criterion (based on a threshold for the smallest angle of a triangular mesh element), the model grid needs to

be updated on average every hour (in simulation time). So far this model has been used for relatively short

(10 days to 2 months) simulations over the Arctic. Even if adaptive remeshing techniques are becoming more

and more computationally e�cient, these might still not be practical for long-term, global climate simulations.

Between the Lagrangian and Eulerian approaches, alternative methods have been developed to e�ciently

handle large deformations within geomaterials in continuum models. Braun and Sambridge (1994) have devel-

oped a Dynamical Lagrangian Remeshing (DLR) scheme, based on a Lagrangian finite element method and the

Delaunay triangulation, in which the mesh was defined using the same material particles throughout the entire

simulation but the connectivity between the particles was updated at the end of each time step to accommodate

the material’s deformation. The DLR method was shown to successfully simulate fault propagation and the

large deformations in an elasto-plastic model of the Earth crust. However, one downside of this method is that

while it eliminates the need to interpolate scalar values associated with the mesh nodes, some interpolation is

still implied for values defined over mesh elements, like stress tensors. Particle-in-cell (PIC, Evans and Harlow,

1957) methods combine the Eulerian and Lagrangian approaches by tying material properties to non-interacting

particles that can move through an Eulerian mesh grid with fixed nodal points. Their main advantage is that

they allow casting the equations of motion in the frame of reference of the moving particles, which limits the

numerical di↵usion of gradients. These methods, originally designed for hydrodynamics problems, have been

used in sea ice models based on the Hibler viscous-plastic rheology, in particular to advect the ice thickness

and compactness (i.e, concentration) and take advantage of a Lagrangian representation of the ice edge (e.g.,

Flato, 1993).

PIC approaches were later extended to solids with history-dependent variables (Sulsky et al., 1994, 1995)

by allowing for the evaluation of the constitutive equation on the material points rather than on the grid

nodes. These so-called Material Point Methods (MPM) were implemented in the context of sea ice modelling

by Sulsky et al. (2007), which demonstrated their robustness for the transport of material properties and the

representation of large deformation within a continuum material. Moresi et al. (2003) developed a variant of

the MPM approach for viscoelastic material, called the Lagrangian Integration Point - finite element method,

with the aim of solving convection problems in geodynamics. A general limitation of these methods however

arises for certain configurations of the flow, for instance under local convergence or divergence, which can

leave some grid elements empty of material points and others significantly overepresented. Then, the density

of points need to be made more uniform over the computational domain by somehow splitting, merging,

creating or destroying particles (Moresi et al., 2003). In the case of sea ice, this can be dealt with through

thermodynamics considerations: material points can be created through refreezing within diverging leads and

destroyed where the ice melts (Sulsky et al., 2007). However, if thermodynamic processes are not (or not yet)
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accounted for, other, possibly non-trivial, artefacts need to be implemented that deal with this issue.

Here, we base our choice of an advection scheme for the Maxwell-EB model on its flexibility and its capacity

in handling the advection of strong gradients while keeping in mind an eventual coupling of the rheological

framework to an ocean and atmospheric component. We cast the equations of motion in the Eulerian frame

and write their variational formulation using discontinuous Galerkin methods. Doing so, we therefore retain a

finite element framework and trade continuous trial and test functions for discrete polynomial approximations

and the associated numerical fluxes at element interfaces.

Discontinuous Galerkin methods have experienced a significant expansion in recent years owing to their

many appealing properties (Di Pietro and Ern, 2012). First, as all finite element-based approaches, they allow

dealing with complex geometries and boundary conditions. Second, these methods, which can be viewed as a

higher order upwind finite volume scheme in which the solution is approximated over each mesh element as a

polynomial function instead of being piecewise constant, are known to be very stable. This makes them well-

suited for problems where advection is dominant. DG methods were also shown to be e�cient for high Reynolds

flows (Di Pietro and Ern, 2012; Kanschat, 2007; Saramito, 2013) and for discontinuous approximation of stress

tensors in viscoelastic (Saramito, 2014) and elasto-visco-plastic (Cheddadi and Saramito, 2013) flow problems.

In the context of ocean modelling, continuous finite elements and finite volume schemes (with upwinding) were

found to generate unphysical oscillations and have problems handling steep gradients. Their discontinuous

and non-conforming counterparts were found to perform better (Hanert et al., 2004). Finally, discontinuous

Galerkin methods also represent a practical framework for the development of high-order accurate numerical

schemes and are known to be readily parallelizable, which in the context of modelling sea ice on large scales,

can eventually prove to be a highly valuable property.

As we introduce the full objective internal stress tensor to deal with the large deformations of a Maxwell-

EB material, we also become concerned with numerical constraints a↵ecting the representation of its elastic

character. In practice, purely elastic deformations cannot be exactly represented by standard viscoelastic

models due to the failure of their numerical schemes when the value of the adimensional number characterizing

the elastic versus the viscous nature of the flow, the Weissenberg number We, becomes large, a limitation

widely known and referred to in the applied mathematics literature as the high Weissenberg number problem

(Keunings, 1986). The origin of these numerical instabilities has been traced to the rotation and deformation

terms in the transport equation for the stress tensor. Fattal and Kupferman (2004; 2005) attributed them to

the inaccurate representation of the exponential growth of the stress tensor by polynomial FE approximations.

In the rheological framework presented here, the deformation of an undamaged medium, for instance an

unfractured ice pack, is expected to be strictly elastic. The numerical limitation on the value of the Weissenber

number however can lead to unphysical viscous dissipation within the material. Hence in developing the

Maxwell-EB framework, the high Weissenberg number problem represents ”more than a mathematical issue

for purist” (Keunings, 1986), and its impact on the range of applications of the rheological model must be

assessed.

For the first tests of the large-deformations Maxwell-EB model, we choose to tackle a Couette flow problem.

The annular Couette setting allows (1) to test the model in a fundamentally di↵erent configuration than that

used in the small-deformations simulations presented in chapter 2, i.e., in simple shear as opposed to uniaxial

compression, (2) to maintain an idealized, easily interpretable simulation setup while having the possibility

of applying arbitrarily large strains and (3) to compare the model’s solution to known analytical solutions of

standard viscoelastic models as well as to the results of a laboratory experiment performed on ice.
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The chapter is structured as follow. Section 3.2 presents the discontinuous Galerkin approximation of the

advection term for transported scalar quantities in the Maxwell-EB framework and assesses the capacity of the

DG method in handling the advection of the strong gradients and discontinuous fields simulated by the model.

Section 3.3 presents the DG approximation of the objective derivative for the stress tensor in the Maxwell-EB

constitutive law in the context of a homogeneous, undamaged material and evaluates the maximum allowed

value of the Weissenberg number that ensures the convergence of the numerical scheme. Section 3.4 presents

the numerical scheme for the full, large-deformation dynamical Maxwell-EB model, compares the results of

a numerical annular Couette flow experiment to that of a similar laboratory experiment and addresses some

numerical and physical limitations of the rheological framework.

59



3.2 Advection and di↵usion

In this section, we evaluate the ability of a discontinuous Galerkin-based numerical scheme of handling the

advection of fields showing very strong gradients, as the fields of u, �, d and C generated by the Maxwell-EB

model. To to so, we compare the analytical and numerical solutions of a solid body rotation problem, the

configuration of which is shown in figure 3.1a. The di↵usivity of the numerical scheme is analyzed as a function

of the time and space resolutions and investigated for di↵erent orders of the temporal discretization scheme

and of the finite element approximations.

(b)

r
✓

(a)

�ext

�int

u = �!re✓

Rint

Rext

Figure 3.1: (a) Domain and boundary conditions for the solid body rotation problem. (b) Example of low resolution
mesh with (adimensional) mean element size of �x = 1

10 .

The domain ⌦ ⇢ R2 is delimited by the circular external boundary �ext and concentric, interior boundary

�int. The 2-dimensional object is rotated by prescribing a constant angular frequency, !. In this case the

velocity, u(r, ✓), depends only on the radius r and is given everywhere over [Rint, Rext] by

u(t) = �!re✓, (3.1)

with

e✓ =

 
sin ✓

cos ✓

!

and ✓ = arctan y
x . We consider a passive scalar field � transported by this velocity field. With the time t

defined over the interval [0, 1], the problem reads:

(P ) : Find � in ⌦⇥ [0, 1], such that

@�

@t
+ (u ·r)� = 0. (3.2)

We compare the accuracy of the numerical scheme between three fields of � with di↵erent levels of regularity.

1. In the first case, � is a cosine function 2 �H2(⌦) \ C1(⌦̄)
�
2

given by

�
1

(✓) =

8
<

:

1

2

(cos(4✓) + 1) on ✓ 2 [�⇡
4

, ⇡
4

]

0 on ✓ /2 [�⇡
4

, ⇡
4

]
(3.3)
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2. In the second case, � is a locally discontinuous step function in H0 \ C�1(⌦̄) defined as

�
2

(✓) =

8
<

:
1 on ✓ 2 [�⇡

4

, ⇡
4

]

0 on ✓ /2 [�⇡
4

, ⇡
4

]
(3.4)

3. In the third case, �
3

2 L2 represents a field of uncorrelated noise. It is defined locally such that the value

of �
3

over each model element is drawn randomly from a uniform distribution spanning the range [0, 1].

It is thus discontinuous everywhere and non-di↵erentiable (see figure 3.2c).

Here �
3

is of the same form as the field of cohesion described in chapter 2, which represents the material’s

heterogeneity in the current implementation of the Maxwell-EB framework. The regularity of the fields of level

of damage (d) and of the internal stress (�) simulated by the model, which are characterized by the presence

of highly localized linear features arising from the propagation of damage (see for instance, figure 2.9), can be

considered to lie somewhere between that of �
3

and �
2

: as these linear features introduce spatial correlations,

at least in one dimension, d and � are more regular than pure uncorrelated noise, but, due to the tendency

of the model to localize damage and deformation at the scale of the element, they show more discontinuities

than the 2-dimensional step function defined by (3.4). Di↵usion of the strong gradients within these fields is

therefore expected to be somewhat less important than for �
3

, but more than for �
1

and �
2

.

Problem (P) is solved using a Euler implicit scheme and discretizing the time t such that tn = n�t, with

�t > 0 and n = 0, 1, 2, ... . The domain ⌦ is discretized in space using a two-dimensional mesh, Th, made of

triangles. The transport equation is written in weak form by introducing a scalar test function 'h for the field

� and the discontinuous finite element space

Sh = {'h 2 L2(⌦); 'h|K 2 Pk, 8K 2 Th} (3.5)

with discontinuous elements Pk of degree k > 0. We obtain

Z

⌦

h

1

�t
�n+1 �

Z

⌦

h

1

�t
�n +

Z

⌦

h

(u ·rh)�n+1

h 'h dx = 0.

Broken gradients are involved when computing the gradient of the discretized field �h. The discontinuous

Galerkin approximation of the advection term reads

X

K

Z

K

(u ·rh)�n+1

h 'h dx +
X

K

X

S2@K

Z

S

✓
#

2
|u · n| [[�n+1

h ]][['h]]� (u · n)[[�n+1

h ]]{{'h}}
◆

ds, 8'h 2 Sh

where # = 1 for an upwinding scheme, [[·]] and {{·}} denote respectively the jump and the average of discontin-

uous sets across inter-element boundaries and n is the normal on an oriented element side (Di Pietro and Ern

(2012), chapter 2, Saramito (2013), chapter 1). Since in this case there is no flux of � in or out of the domain

and hence, no contribution from the domain boundaries, the second sum representing the jumps in � across

all element sides S can be expressed alternatively as a single sum over the sides belonging to the set L(i)
h of

internal sides of the mesh Th. With these definitions and using a backward scheme of order 1, the discretized

problem (P )n,h reads:
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For n � 0 and with �n
h known, find �n+1

h 2 Sh such that

bh(�n+1

h , 'h) = on+1

h ('h), 8'h 2 Sh

with the bilinear form bh() and linear form oh() given by

bh(�n+1

h , 'h) =
1

�t

Z

⌦

h

�n+1

h 'h dx +
X

K

Z

K

(u ·r)�n+1

h 'h dx

+
X

S2L
(i)
h

Z

S

✓
1

2
|u · n| [[�n+1

h ]][['h]]� (u · n)[[�n+1

h ]]{{'h}}
◆

ds

on+1

h ('h) =
1

�t

Z

⌦

h

�n
h'h dx

For a backward scheme of order 2, and with �n
h and �n�1

h known,

bh(�n+1

h , 'h) =
3

2�t

Z

⌦

h

�n+1

h 'h dx +
X

K

Z

K

(u ·r)�n+1

h 'h dx

+
X

S2L
(i)
h

Z

S

✓
1

2
|u · n| [[�n+1

h ]][['h]]� (u · n)[[�n+1

h ]]{{'h}}
◆

ds,

on+1

h ('h) =
4

2�t

Z

⌦

h

�n
h'h � 1

2�t

Z

⌦

h

�n�1

h 'h dx

and in the case of the order 3, with �n
h, �n�1

h and �n�2

h known,

bh(�n+1

h , 'h) =
11

6�t

Z

⌦

h

�n+1

h 'h dx +
X

K

Z

K

(u ·r)�n+1

h 'h dx

+
X

S2L
(i)
h

Z

S

✓
1

2
|u · n| [[�n+1

h ]][['h]]� (u · n)[[�n+1

h ]]{{'h}}
◆

ds,

on+1

h ('h) =
18

6�t

Z

⌦

h

�n
h'h � 9

6�t

Z

⌦

h

�n�1

h 'h dx +
2

6�t

Z

⌦

h

�n�2

h 'h dx.

(Süli and Mayers, 2003, p. 349).

Model simulations are run with (adimensional) time steps �t 2 { 1

10

, 1

100

, 1

1000

, 1

10000

, 1

100000

}. Unstructured

meshes with mean (adimensional) element size �x = 1

N are used, with N 2 {10, 20, 40, 80}. Figure 3.1b shows

an example of a mesh with �x = 1

10

. The simulations are compared on the basis of the error e�, defined as the

Euclidian (L2) norm of the di↵erence between the model solution, �h, and the projection of the exact solution

� onto the space of the FE approximation after one complete revolution (at t = 1)

e� = k�h(t = 1)�⇧S
h

(�)(t = 1)kL2
(⌦)

, (3.6)

with ⇧S
h

representing the Lagrange interpolation operator. Under some reasonable assumption on the mesh

family and the regularity of the solution, we expect the error to converge optimally with �t and �x as

e�(�x, �t) = C
1

�tp + C
2

�xk+1, (3.7)
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where p is the order of the temporal discretization scheme and k the order of the FE polynomial approximation,

and C
1

and C
2

are some constants (Richter, 1988).

3.2.1 P0 approximations

The di↵usivity of the numerical scheme is first evaluated for finite element approximations of order k = 0. The

function �h is then constant by element, as are the fields of �, d and C in the implementation of the Maxwell-

EB framework described in the previous chapter (see section 2.3.1). In this case the DG method coincides

with a finite volume approximation with upwinding. The first sum in the bilinear form bh(), equation (3.31),

disappears as the gradient of �h is zero inside elements. The only remaining contribution to the gradient of �h

is that of the jumps in �h across the set of internal sides of the mesh elements, L(i)
h .

Figure 3.2 gives a taste of the amount of di↵usion to expect in the model for P
0

FE approximations. The

initial fields of �
1

, �
2

and �
3

are compared to their values after one quarter and a complete revolution, in

the case of a relatively high temporal and spatial resolution (�t = 1

10000

, �x = 1

40

). For the most regular

function, �
1

, the di↵erence in amplitude of the initial and final approximations of �
1

is of 25%-35% (note

that the solution appears very noisy due to the fact that we plot the value of � as a function of ✓ for all

elements in ⌦h, i.e., not along a constant radius). In the case of the step function �
2

, initially discontinuous at

✓ = ±⇡
4

, di↵usion is such that the peak of the function decreases while its width increases. After one complete

revolution, the function looks like a smooth sinusoid. In the case of the field of noise, as we are not interested

in the specific spatial structure of �
3

, we instead evaluate the numerical di↵usion based on the evolution of its

distribution. Figure 3.2c shows that after 1/4 of a revolution, �
3

is almost completely homogenized. In the

context of the Maxwell-EB model, this implies an essentially complete suppression of the spatial noise in the

damage criteria.

Figure 3.3 shows the error, e�, as a function of �t, for simulations run at di↵erent spatial resolutions �x

(coloured lines) and using a time discretization scheme of order 1 (solid lines), 2 (dashed lines) and 3 (dotted

lines). In the case of �
1

(see figure 3.3a) and �
2

(figure 3.3b), the error becomes independent of �t for �x
�t

between 10�2 and 10�3 and that, for all orders of the time discretization scheme. In the case of sea ice on

geophysical scales, this ratio is of the same order of magnitude as the speed of propagation of elastic waves

(c ⇡ 500 ms�1, see chapter 2) which sets the relative values of the spatial and temporal resolutions in the

Maxwell-EB framework (i.e., when using P
0

approximations for the damage criterion). This suggests that, in

a Maxwell-EB sea ice model using P
0

approximations for the fields of C, d and � (1) the value of the time step

would be such that the error depends essentially on the spatial resolution and (2) the use of a higher order

temporal discretization scheme would therefore not be e�cient in reducing the numerical di↵usion of gradients.

In the case of �
1

(figure 3.4a), the rate of convergence of the error, minimized with respected to �t,

e�(�t ! 0), with decreasing spatial resolution is O(�x
1
2 ), consistent with the DG method error estimates of

Johnson and Pitkaranta (1986) for polynomial approximations of order 0. This is smaller however than the

O(�xk+1) convergence rate demonstrated by Richter (1988) assuming some regularity on the solution and often

observed for common mesh families. This could be due to the fact that here, �
1

2 H2 as the second derivative

is locally discontinuous at ✓ = ±⇡
4

, and hence is not a su�ciently smooth function. For the step function �
2

,

the error is larger than for �
1

but does converge as O(�x
1
4 ) (see figure 3.4b). The error calculated for the

field of noise, �
3

, does not converge neither in space nor in time and for any order of the time discretization

scheme (see figures 3.3c and 3.4c). For P
0

approximations of d and �, we can therefore expect the numerical
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Figure 3.2: (Upper panels) Fields of (a) �1, (b) �2 and (c) �3 at t = 0 interpolated onto T
h

using FE approximations
of order k = 0. (Lower panels) Corresponding P0 approximation of the fields of �1 and phi2 at t = 0 (black curve),
t = 1/4 (blue curve) and t = 1 (red curve) and distribution of phi3 at t = 0, t = 1/4 and t = 1.

di↵usion of gradients in the Maxwell-EB model to be important and to decrease slowly with increasing spatial

resolution, that is, at a rate of at most O(�x
1
4 ).

3.2.2 Higher order FE approximations

We repeat the error calculations for higher order FE approximations and compare the di↵usivity of the numer-

ical scheme to the P
0

case. Similar to figure 3.2, figures 3.5 and 3.6 (upper panels) compare the initial fields

of �
1

, �
2

and the initial distribution of �
3

to their values after one quarter and one complete revolution in the

case of P
1

and P
2

discontinuous approximations respectively. The order of the time discretization scheme is

increased to p = 2 in the P
1

and to p = 3 in the P
2

case and �t = 1

10000

and �x = 1

40

. For the most regular

function �
1

2 H2, increasing the order of the FE approximations by 1 degree is su�cient to practically elimi-

nate numerical di↵usion (see figure 3.5a). An optimal convergence rate of the error of O(�x2) is recovered. For

the step function �
2

, the numerical scheme preserves much sharper gradients around the initial location of the

discontinuities and presents a higher rate of convergence of the error, that is, of O(�x
1
3 ) for P

1

approximations

and of O(�x
1
2 ) for P

2

approximations. Increasing the order of the polynomial approximations does decrease

the rate at which the field of noise, �
3

, homogenizes, but does not increase the rate of convergence of the error

(see figure 3.5c). For P
2

approximations, the error somewhat increases at the highest resolution.

One important point is that in the case of an implicit time discretization scheme, the DG method results in

non-monotonic dispersion and generates values of � outside the interval over which it is initially defined. This

e↵ect is more important around local discontinuities and as the advected gradients are strong (compare for

instance figures 3.5a and 3.6a with figures 3.5b and 3.6b around ✓ = ±⇡
4

). Yet, in the Maxwell-EB framework,

some of the advected fields must evolve within a certain range of values, for instance the level of damage d,
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Figure 3.3: L

2 norm of the error between the simulated and exact (interpolated) solutions of the rigid body rotation
problem as a function of �t calculated over meshes with spatial resolution �x = 1/10, 1/20, 1/40, 1/80, using a backward
(Euler) finite di↵erence scheme of order 1 (solid lines), 2 (dashed lines) and 3 (dotted lines) for (a) �1, (b) �2 and (c)
�3
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Figure 3.4: L

2 norm of the error for �t = 1
100000 (i.e., minimized with respect to time) as a function of the spatial

resolution �x calculated for (a) �1, (b) �2 and (c) �3.

which is defined on the interval [0, 1]. As will be discussed in chapter 4 in the context of sea ice modelling,

it is also the case for the ice thickness (strictly positive) and the ice concentration, defined on the interval

[0%, 100%]. While these variables could be ”manually” reset within their prescribed interval in the model, the

generation of spurious oscillations and unphysical values could also be avoided by replacing the implicit time

discretization scheme used here by a Strong Stability-Preserving Runge-Kutta scheme (Gottlieb et al., 2008)

for which the dispersion of the DG method is known to be strictly monotonic (e.g., Hanert et al., 2004). When

using a time discretization scheme of order 1, the implicit method presented above can be replaced by a Euler

explicit scheme, in which case the advection terms in the bilinear form bh() simply move to the linear form oh().

For su�ciently small time steps, i.e., on the order of that set for sea ice (i.e, �t ⇡ �x
c with c ⇡ 102 � 103), we

find that the magnitude of the error associated with the numerical di↵usion is comparable between the Euler

implicit and Euler explicit schemes (results not shown).

These simple tests suggest that the DG method could be e�cient in handling the advection of the strong

gradients generated by the Maxwell-EB model, provided that the order of the FE element approximations for

the advected fields can be of order k > 0. However, using polynomial approximations of order k > 0 pose a

consequential problem when evaluating the distance of the internal stress to the local damage criterion, which

in the current implementation of the framework varies at the scale of the mesh element.

To allow increasing the order of the FE approximations, disorder needs to be introduced in the model by

a more regular function, varying on scales larger than �x. This amounts to assuming a correlation length
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Figure 3.5: (Upper panels) P1 discontinuous FE approximations of the fields of (a) �1 and (b) �2 at t = 0 (black
curve), t = 1/4 (blue curve) and t = 1 (red curve) and (c) of the distribution of �3 at t = 0, t = 1/4 and t = 1. (Lower
panels) corresponding L

2 norm of the error for �t = 1
10000 (i.e., the minimum error with respect to time) as a function

of the spatial resolution �x for the implicit scheme of order 2. Note the di↵erent extent of the vertical axis between
panel (a) and panels (b) and (c).

⇠ > �x for heterogeneities within the Maxwell-EB material. Doing so, the characteristic time for propagation

of damage would then be set as ⇠
c . Due to elastic interactions, deformation would tend to localize at a scale

< ⇠, but > �x. In the case of sea ice modelling on regional to global scales, this assumption is however not

physical, as the true correlation length of associated with strong fluctuations within the ice cover is likely much

smaller than that of the model grid cell (Schulson, 2004).

When choosing the order of the FE approximations for the Maxwell-EB model, there is therefore a tradeo↵

between the mitigation of di↵usion and the resolution of the progressive damage mechanism. In the following

implementation of the rheology, we persist in introducing disorder at the scale of the model element and hence

use P
0

approximations for the fields of C, d and � (i.e., all advected fields in small Cauchy number flow

problems). Given the current formulation of the damage mechanism (equation 2.27), we believe this is the

most rigorous choice in terms of respecting the underlying physics. This also allows for the highest resolution

of the damaging process. In the simulations presented here, levels of numerical di↵usion comparable to a finite

volume scheme with upwinding are therefore to be expected.

At this point, the problem of the homogenization of the field of cohesion in the case of quenched disorder

(i.e., when noise is introduced in the field of C once, at the beginning of the simulations) remains unsolved.

In order for the mechanical framework to reproduce an heterogeneous and intermittent mechanical behaviour

when deformations within the material are large and advection processes are important, or when simulation

times become long, spatial disorder needs to be regularly ”re-injected” in the model. One way to handle this

is to redraw the local value of cohesion from its initial distribution every time a given element becomes over-

critical. This annealed-type disorder can be thought as to represent the heterogeneity in the strength of an

elasto-brittle material during the damage increase (Amitrano et al., 1999) and does not a↵ect the macroscopic
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Figure 3.6: (Upper panels) P2 discontinuous FE approximations of the fields of (a) �1 and (b) �2 at t = 0 (black
curve), t = 1/4 (blue curve) and t = 1 (red curve) and (c) of the distribution of �3 at t = 0, t = 1/4 and t = 1. (Lower
panels) corresponding L

2 norm of the error for �t = 1
10000 (i.e., the minimum error with respect to time) as a function

of the spatial resolution �x for the implicit scheme of order 3. Note the di↵erent extent of the vertical axis between
the three panels.

behaviour nor the scaling laws characterizing the deformation of the material (Herrmann and Roux, 1990).

3.3 Rotation and deformation

In this section we present the numerical scheme for solving the Maxwell-EB constitutive equation in which

the convection, rotation and deformation terms are all included and we evaluate the capacity of this scheme

to handle large Weissenberg numbers. To do so, we solve a simplified version of the Maxwell-EB system of

equations in which the mechanical parameters E, ⌘ and � are kept constant, that is, in which the level of

damage does not evolve. With d = 1 everywhere and at all times, the (adimensional) Maxwell-EB system of

equations reduces to:

Ca


@ũ

@ t̃
+ (ũ · r̃)ũ

�
= F̃ext + r̃ · �̃ (3.8)

We


@�̃

@ t̃
+ (ũ · r̃)�̃ + �a(r̃ũ, �̃)

�
+ �̃ = We

⇣
⇤d̃iv(ũ) · I + 2GD̃(ũ)

⌘
(3.9)

with Ca = U2

E and We = ⌘
E

U
L , the Cauchy and Weissenberg numbers introduced in section 2.2.4 and

�a(r̃ũ, �̃) = �̃W (ũ) � W (ũ)�̃ � a (�̃D(ũ) + D(ũ)�̃), with a 2 {�1, 0, 1}. In our implementation of the

Maxwell-EB framework, we use the upper-convected objective derivative for � and hence set a = 1.

The geometry and boundary conditions of the problem solved here are that of a typical annular Couette

flow experiment (see figure 3.7). In such an experiment, a material is being sheared in between two concentric
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circular boundaries, the angular velocity of which is prescribed. In the present case, the Maxwell-EB material

is 2-dimensional, homogeneous and undamaged, the external boundary is fixed (u = 0), the internal boundary

has a velocity u = �Ue✓ and Fext = 0. The axial symmetry in this particular geometry is such that the

solutions of u and �, when cast in polar coordinates, are expected to vary only in the radial direction. With

Ca small, as estimated in the case of an ice pack drifting on large scales (see section 2.2.4), and the inertial

term neglected in the momentum equation, the only adimensional parameters characterizing the Couette flow

problem are the Weissenberg number, We = �U
L = �

T , with L = Rext �Rint the distance between the internal

and external boundaries, and the adimensional model time step, �̃t = �t
T . In the following, the convergence

towards a stationary solution is investigated for a semi-implicit and implicit numerical scheme and for di↵erent

values of We and �̃t.

(b)

�int

u = 0

r
✓

(a)�ext

�int

Rext

Rint

Figure 3.7: (a) Domain and boundary conditions for the annular Couette flow problem, in both the no-damage (section
3.3) and full Maxwell-EB (section 3.4) simulations. (b) Finite element mesh used in the full Maxwell-EB Couette flow
simulations (section 3.4). The element size is a function of the radius r and is set as �x(r) = R

ext

N

(r)2, with N = 10.

3.3.1 Numerical scheme

Equations (3.8) and (3.9) with Ca = 0 and F̃ext = 0 are solved over an unstructured Eulerian grid with trian-

gular elements of constant mean size (see figure 3.1b). We consider the domain ⌦ ⇢ R2 represented in figure

3.7a and delimited by the boundary @⌦ = �ext [ �int, with R
int

R
ext

= 0.4, and the time t̃ 2 [0, +1[. Forcing

is applied on the system by prescribing the angular velocity on the boundaries. The Dirichlet conditions are

ũ(t) = 0 on �ext and ũ(t) = �1e✓ on and �int. There are no flux in or out of the domain. The problem reads:

(P ) : Find ũ and �̃ defined in ⌦⇥]0, +1[, such that

0 = r̃ · �̃

We


@�̃

@ t̃
+ (ũ · r̃)�̃ + �a(r̃ũ, �̃)

�
+ �̃ = We

⇣
⇤d̃iv(ũ) · I + 2GD̃(ũ)

⌘

with initial conditions

ũ(t̃ = 0) = 0 in ⌦,

�̃(t̃ = 0) = 0 in ⌦,
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and boundary conditions

ũ(t̃) = 0 on �ext⇥]0, +1[

ũ(t̃) = �1e✓ on �int⇥]0, +1[

In the following, we drop the superscript 0˜ 0 for the adimensional variables and operators.

Non-linearity in this problem arises through the advection, rotation and deformation of the stress tensor

�. Discretizing time such that tn = n�t, with �t > 0 and n = 0, 1, 2, ..., the constitutive equation can be

linearized by using either (1) a semi-implicit scheme in which the advection, rotation and deformation terms

are estimated using the field of velocity and internal stress at the previous (nth) model time step or (2) an

implicit scheme together with a fixed-point iteration for the non-linear terms. We present the details of the

semi-implicit version of the numerical scheme. The passage from the semi-implicit to the implicit formulation

is then straightforward. With a semi-implicit scheme, the time-discretized system of equations reads

r · �n+1 = 0 (3.10)

We


�n+1 � �n

�t
+ (un ·r)�n + �a(run, �n)

�
+ �n+1 = We K : D(un+1) (3.11)

With the constitutive equation linearized, problem P is solved in two steps as in the small-deformation, uniaxial

compression case (see section 2.3.1). First, the momentum equation is solved for un+1 by substituting for the

following expression of �n+1 into equation (3.10) :

�n+1 = KWe


1

�t
�n � [(r · un)�n + �a(run, �n)] + K : D(un+1)

�
(3.12)

where K =
⇥
We

�t + 1
⇤�1

. Second, the internal stress, �n+1, is computed explicitly by substituting back for un+1

into (3.12). In the following, we present the continuous and discrete variational formulations of the problem.

Introducing the continuous functional spaces

V
0

= {v 2 H1(⌦)2;v = 0 on �} (3.13)

and

V = {v 2 H1(⌦)2;v = �1e✓ on �int and v = 0 on �ext} (3.14)

the weak form of the momentum equation writes:

Z

⌦

�r · �n+1

�
v dx = �

Z

⌦

�n+1 : D(v) dx +

Z

@⌦

�
�n+1 · n�v ds = 0, 8v 2 V

0

,

with the boundary integral vanishing because the test function v vanishes on the boundary. Substituting for

�n+1 given by (3.12) leads to a linear problem expressed in terms of un+1 only:

(P.1) : Find un+1 2 V such that

a(un+1,v) = l(v), 8v 2 V
0
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where the bilinear form a() and linear form l() are defined for all u,v 2 H1(⌦)2 as

a(u,v) =

Z

⌦

KWe (K : D(u)) : D(v) dx

l(v) =

Z

⌦

KWe


(un ·r)�n + �a(run, �n)� 1

�t
�n

�
: D(v) dx

and where un and �n are known from the nth model time step. In terms of the dimensionless Lamé coe�cients

⇤ and G, the bilinear form a() writes

a(u,v) =

Z

⌦

KWe [⇤div(u) · div(v) + 2GD(u) : D(v)] dx. (3.15)

The problem is discretized in space by introducing the two-dimensional mesh Th and the functional space

of P
1

elements

Xh = {vh 2
�
H1(⌦) \ C0(⌦̄)

�
2

;vh|K 2 P 2

1

, 8K 2 Th} (3.16)

for the velocity field. Let us define another test function ⌧h 2 Th with Th, the functional space

Th = {⌧h 2 (L2(⌦))2⇥2; ⌧h = ⌧T
h and ⌧h|K 2 (P

0

)2⇥2, 8K 2 Th} (3.17)

for the stress tensor. Then the discontinuous Galerkin approximation of the convective term for the stress

tensor leads to the following approximation of the linear form l():

lh(v) =

Z

⌦

h


⌧n
h + �a(run

h, �n
h)� 1

�t
�n

h

�
: D(vh) dx (3.18)

where �n
h 2 Th is the piecewise approximation of �n, un

h 2 Xh is the approximation of un and ⌧n
h 2 Th is an

approximation of (un ·r)�n defined for all ⌧h 2 Th by

Z

⌦

⌧n
h : ⌧h dx =

X

K2T
h

Z

K

(un
h ·r) �n

h : ⌧h dx +
X

K2T
h

X

S2@K

Z

S

[[�n
h ]] :

✓ |un
h · n|
2

[[⌧h]]� (un
h · n){{⌧h}}

◆
ds (3.19)

with n, the normal on an oriented element side. In the case of a P
0

FE approximation for the stress tensor,

(3.19) simplifies as the sum of the gradient of �h is zero inside elements and the contribution from jumps in

�h across element sides is non-zero only over the set of the internal sides of the mesh Th, L(i)
h . The discrete

version of expression (3.12) for the stress tensor reads:

�n+1

h = KWe


1

�t
�n

h � [⌧n
h + �a(run

h, �n
h)] + K : D(un+1

h )

�
. (3.20)

With these definitions, the finite dimensional Couette problem for an homogeneous, or undamaged, material

writes:
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(P )h : Initialization (n = 0)

un
h = 0 in ⌦h

�n
h = 0 in ⌦h

For n � 0

• (P.1)h : With un
h and �n

h known, find un+1

h 2 Vh such that

a(un+1

h ,vh) = ln+1

h (vh), 8vh 2 V
0,h

where

V
0,h = {vh 2 Xh,vh = 0 on �}

Vh = {vh 2 Xh,vh = �1e✓ on �int and vh = 0 on �ext}

and with the bilinear form a() and linear form lh() defined by (3.15) and (3.18) respectively.

• (P.2)h : With un+1

h known, compute �n+1

h 2 Th explicitly from (3.20).

This scheme can be enhanced into an implicit version by using a fixed-point algorithm to update the values

of ⌧n
h and of �a(ruh, �h). In this case, the momentum and constitutive equations are solved iteratively until

the residual of the constitutive equation drops below a chosen tolerance, tol. Using the superscript k = 0, 1, 2, ...

for the sub-iterations, the discretized fully implicit scheme writes:

(P )h : Initialization (n = 0)

un
h = 0 in ⌦h

�n
h = 0 in ⌦h

For n � 0

• For k = 0, set
⇣
�n+1,0

h ,un+1,0
h

⌘
= (�n

h ,un
h),

• For k � 0

– (P.1)h : With un
h and �n

h known, find un+1

h 2 Vh such that

a(uh,vh) = l(n+1,k+1)

h (vh), 8vh 2 V
0,h,

with with the bilinear form a() given by (3.15) and the linear form lh() given by

ln+1,k+1

h (vh) =

Z

⌦

h

KWe


⌧n+1,k
h + �a(run+1,k

h , �n+1,k
h )� 1

�t
�n

h

�
: D(vh) dx

71



and with

Z

⌦

⌧n+1,k
h : ⌧h dx =

X

K2T
h

Z

K

⇣
un+1,k

h ·r
⌘

�n+1,k
h : ⌧h dx

+
X

S2L
(i)
h

Z

S

[[�n+1,k
h ]] :

 
|un+1,k

h · n|
2

[[⌧h]]� (un+1,k
h · n){{⌧h}}

!

– (P.2)h : With un+1,k+1

h known, compute �n+1,k+1

h 2 Th explicitly from

�n+1,k+1

h = KWe


1

�t
�n

h �
⇣
⌧n+1,k
h + �a(run+1,k

h , �n+1,k
h )

⌘
+ K : D(un+1,k+1

h )

�

– Compute

res�
h

=

�����We

"
�n+1,k+1

h � �n
h

�t
+
⇣
⌧n+1,k+1

h + �a(rhu
n+1,k+1

h , �n+1,k+1

h

⌘#
+ �n+1,k+1

h �We K : D(un+1,k+1

h )

����� ,

If res�
h

< tol STOP ,

• Set
�
�n+1

h ,un+1

h

�
=
⇣
�n+1,k+1

h ,un+1,k+1

h

⌘
.

For the simulations presented in this section that use this implicit scheme, the tolerance was set to the machine

precision.

3.3.2 Stationary solution

We first establish the convergence of both the semi-implicit and implicit numerical schemes towards a stationary

solution for We 2 {0.001, 0.01, 0.1, 1} and �t 2 {1, 1

10

, 1

100

, 1

1000

, 1

10000

, 1

100000

}. For We = 1, neither the semi-

implicit nor the implicit scheme converges, and that, for any value of �t. For We = 0.1, a stationary solution

is obtained for �t  1

100

using both schemes, with a practically equivalent rate of convergence (see figure

3.8). For lower values of We, both schemes converge for all �t. Comparing simulations using mesh grids with

�x = 1

10

, 1

20

, 1

40

, 1

80

(not shown) indicates that the convergence towards the stationary solution does not depend

on the spatial resolution (Keunings, 1986).
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Figure 3.8: Torque on the inner domain boundary, �
int

, as a function of the simulation time in the explicit and implicit
scheme (black curves) and di↵erence between the solutions for both schemes (red curve) for We0 = 0.1 and �t = 1

100 .
The di↵erence is of maximum 0.3% of the calculated torque between the explicit and implicit schemes.
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We therefore conclude that (1) the semi-implicit and implicit schemes presented above are equivalent in

terms of handling the convection, rotation and deformation terms for high We values and (2) the highest value

of the Weissenberg number that can be used to ensure the stability and convergence of our numerical scheme

in this geometry is of about 0.1.

In light of these tests, we therefore use an explicit formulation of the discretized advection, rotation and

deformation terms in the following implementation of the rheology. Compared to the implicit formulation,

the explicit approach reduces computational costs considerably since the piecewise approximations ⌧h and

�a(ruh, �h) defined above are then calculated once per model time step, instead of an indeterminate number

of times within a fixed-point iteration. In order to ensure the convergence of our numerical scheme in the flow

geometries explored here, we set the undamaged (i.e., maximum) relaxation time �0 in all model simulations

started from an undamaged state to at most �0 = 0.1 ⇥ U
L , with U

L the rate of deformation characterizing

the simulated process on the large scale. Considering the small time-stepping imposed by our discrete-like

formulation of the progressive damage mechanism, the requirement that the (adimensional) model time step

be �t < 1

100

for the convergence of the numerical scheme with We0 = 0.1 is naturally met in the case of regional

to global sea ice models. The dependance of We on the deformation rate U
L implies that the maximum allowed

value of the relaxation time for the internal stress �0 decreases as the simulated strain-rates are large, hence

that the capacity of the model to represent the limit of strictly elastic deformations within an undamaged

material decreases in the case of large-deformation simulations. When and where the Maxwell-EB material

becomes damaged, deformation rates are expected to increase as the material weakens. However, as the local

value of the relaxation time, � = �0d↵�1 drops like d↵�1 (with ↵ > 1), the damaging process acts so that to

keep the local value of We small.

In the case of the ice cover, we can deduce the maximal allowed value of the undamaged relaxation time �0

for the current implementation of the Maxwell-EB model based on observational deformation rate estimates.

Marsan et al. (2004) and Girard et al. (2009), among others, have estimated deformation rates between 10�4

and 100 day�1 from the 10 km RGPS motion products. Assuming for instance that the lower bound of this

interval corresponds to small elastic deformations over low-damaged portions of the ice pack, this implies a

maximum value of �0 in simulations with spatial resolution of ⇠ 10 km and intended for the representation

the deformation of the ice pack on daily time scales, of about 103 days (⇠ 3 years). As this is much larger

than the length of the polar winter (about 180 days), during which large portions of the ice pack are expected

to remain relatively undamaged and hence to retain the memory of elastic deformations, unphysical viscous

dissipation in the model is not expected to be significant. Conversely, where deformation rates are large, i.e. on

the order of 100 day�1, the relaxation time should drop with d to values below ⇠ 0.1 day to ensure numerical

stability. Appropriate scaling laws should be used when interpolating these estimates onto di↵erent time and

space scales (Rampal et al., 2008).

We can now further comment on the form the solution obtained in these Couette simulations. Analytical

solutions have been derived for the laminar Couette flow problem in the case of the (upper and lower-convected)

Oldroyd and Bingham models (e.g., Saramito, 2016; Cheddadi et al., 2008; Cheddadi, 2010) for viscoelastic

fluids. The Maxwell model is a special, simpler case of these models, without a plastic threshold for the

deformation or a solvent viscosity term. With the divergence of the velocity being zero in incompressible

fluids, the radial velocity in this problem is, by construction, also zero. For the upper and lower-convected

derivatives (a ± 1), the equations are linear and the system can be solved explicitly (e.g., Cheddadi, 2010).

With the domain geometry and boundary conditions as shown on figure 3.7 and a = 1, the analytical solution
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Figure 3.9: Stationary solution for (upper panels) the velocity components u

r

(red circles) and u

✓

(purple circles)
and the stress components (lower panels) �

rr

(dark blue circles), �
r✓

(light blue circles) and �

✓✓

(green circles) for (a)
We0 = 0.1 (b) and We0 = 0.01 and (c) We0 = 0.001.

is given by:

u✓ =
URintR2

ext

R2

ext �R2

int


1

r
� r

R2

ext

�
,

ur = 0,

�rr = 0,

�r✓ = �2WeG
URintR2

ext

R2

ext �R2

int

1

r2

,

�✓✓ = 2G


2We

URintR2

ext

R2

ext �R2

int

1

r2

�
2

.

As here we consider a compressible material and do not impose mass conservation, the solution to (3.8) and

(3.9) with Ca = 0 and F̃ext = 0 cannot be derived explicitly in the case of a Maxwell-EB material. Figure

3.9 shows the P
0

approximation of the (adimensional) stationary solution for the velocity and stress tensor

components in polar coordinates, as a function of the radial distance to the centre of the domain, r, for a mesh

resolution of �x = 1

40

. It is important to note that, as in section 3.2, the solutions appear noisy due to the

fact that we plot the value of the fields over all elements (or nodes) of the unstructured mesh, instead of along

a radial cut though the domain. We otherwise checked that the solutions converge with increasing spatial

resolution. Comparing the model and analytical solution for an incompressible Maxwell fluid (black curves),

we indeed find the largest di↵erence for the normal component �rr and for We = 0.1. With a Poisson’s ratio

of ⌫ = 0.3 and We = 0.001, 0.01, 0.1, we find that the model solution for the shearing stress �r✓ and the �✓✓

component is close to the analytical solution for an incompressible Maxwell fluid (black curves). This suggests

that �r✓ and �✓✓ in the Maxwell-EB model vary approximately as We and We2 respectively.

If neglecting the rotation and deformation terms, i.e., the �a term, in the Maxwell-EB constitutive equation,
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both �rr and �✓✓ would then be 0. According to the solution with We ⇡ 0.1, with the Weissenberg number

taken as large as possible to represent the limit of a purely elastic solid, we can expect these normal stresses

to be important in an undamaged material where velocity gradients are large. However, because the largest

velocity gradients in the Maxwell-EB material arise were the material is highly damaged and the e↵ective

Weissenberg number, We, varies as d↵�1 with ↵ > 1, the magnitude of these normal stresses is expected to

decrease as d2(↵�1) and hence become negligible.

3.4 The full, large-deformation Maxwell-EB model

In this section, we investigate the behaviour of the full Maxwell-EB model in the context of large-deformation

simulations. With the progressive damage mechanism included, there is obviously no analytical solution avail-

able to us for the validation the Maxwell-EB framework. Hence here we compare the mechanical behaviour

of the model to the results of a laboratory Couette flow experiment that was performed on a thin sheet of

fresh-water ice with the objective of investigating the competing e↵ects of fracturing and healing within a fault

formed naturally by shear failure.

3.4.1 Laboratory Couette experimental setup

The experimental setup is represented in figure 3.10. A circular tank of radius Rext = 0.5 m was filled with

fresh water. A circular disk of radius Rint = 0.2 m was partially immersed at the middle of the tank. The

apparatus was placed in a cold room at subzero temperatures so that to form a layer of ice about 4 mm (±1

mm) thick. The temperature of the water was regulated by placing heating pads at the bottom of the tank.

The thin ice plate was deformed by prescribing the constant angular velocity of the inner rotating disk. The

associated torque, �(t), was measured using a torquemeter with precision of 1 Nm�1. The circular Couette

geometry implies a tangential shear stress in an homogeneous, elastic material that varies in 1

r2 , with r the

radial distance from the centre of the apparatus. Hence the shear stress in the initially undamaged ice plate

was expected to be maximum at Rint. In order to avoid for the ice to fail right along the rotating disk, it was

sanded to enable the ice to better ”stick” and grow a narrow meniscus. This e↵ectively allowed for the main

shearing fault to form a few centimetres away from the disk.

3.4.2 Numerical Couette experiment setup

In the numerical simulations designed to represent this annular Couette flow experiment, the thin ice plate

formed at the surface of the water tank is assimilated to a 2-dimensional continuum Maxwell-EB material. The

domain is shown in figure 3.7a and has dimensions Rext and Rint as in the laboratory experiment. Loading is

applied on the material by prescribing the angular velocity on the inner boundary, while u = 0 on the outer

boundary. No other external forcing is applied on the ice (Fext = 0) and the drag from the underlying water,

probably negligible considering the applied rotation speeds, is not represented. Thermodynamic e↵ects and

dynamic variations of the ice volume are not accounted for either and mass conservation is not enforced, as

in the small-deformation experiments. Simulations are run until the cumulated displacement along the inner

boundary is of at least a few degrees. Hence advection, rotation and deformation terms are all potentially

important and the complete constitutive equation (2.6) is solved.
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Rext = 0.5 m
Rint = 0.2 m

2

13

4

5

Figure 3.10: Schematic representation of the Couette experimental setup, showing (1) the ice plate, (2) the heating
mat at the bottom of the tank, (3) the rotating disk, (4) the torquemeter and (5) the engine. Adapted from V. Pellisier,
Ph.D. thesis.

As the value of the undamaged Weissenberg number We0 is limited by the numerics (see section 3.3) and

the simulations are run for a long enough time such that viscous dissipation can occur over undamaged areas of

the ice plate, a damaged-based Heaviside function d⇤ is used to kill the pseudo-viscous term in the constitutive

equation when and where the level of damage is of d = 1 (i.e., dc = 1, see equation (2.29), section 2.2.4). In

the following, d⇤ is expressed in terms of the ceil function d e (rounding to the next integer) as d⇤ = d1 � de.
We checked that the introduction of this step-like function does not generate numerical instabilities and does

not significantly impact the simulations results presented here.

Based on the analytical solution of the annular Couette flow problem of an homogeneous Maxwell material

and as in the laboratory experiments, the shear stress in the initially undamaged Maxwell-EB material is

expected to be maximum at Rint, hence deformation and damaging are expected to concentrate at the inner

domain boundary. In order to resolve the propagation and width of shearing faults, the critical strength of

the simulated ice plate is increased near the rotating inner boundary by adding an increment to the field of

cohesion, C, defined as 4Cmin(1 � [r � Rint])40 with Cmin the lower bound of the uniform distribution of C.

The form of this completely ad hoc function ensures that this increment is restricted to a few grids cells near

�int. As the ice meniscus in the laboratory experiments, it allows for the simulated macroscopic fault to form

a few grid cells away from the inner domain boundary.

In these simulations, the Maxwell-EB model is made adimensional with respect to the undamaged elastic

modulus of the (fresh) ice plate E0, the lower bound of the distribution of C, Cmin, the distance L = Rext�Rint,

between the inner and outer domain boundaries, the prescribed velocity on the inner boundary, U = !Rint, and

the corresponding shearing deformation rate U
L = 1

T . The velocity on the inner boundary is small enough so

that Ca0 ⌧ 1 and the inertial term is neglected in the momentum equation. The complete system of equations
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Mechanical and model parameters Values

Poisson’s ratio ⌫ 0.3

Internal friction coe�cient µ 0.7

Undamaged elastic modulus E0 10 · 109 Pa

Distribution of cohesion values C 4� 8 · 108 Pa

Undamaged relaxation time �0 ⇠ 2.0 · 103 s

Minimum (adimensional) apparent viscosity ⌘
min

⌘0
10�12

Damage parameter ↵ 4

Characteristic time for damage td -

Characteristic time for healing th 104 s

Mean model resolution �x R
ext

10

r2

Model time step �t 1 s

Dimensions of the domain/experiment Values

Radius of the tank Rext 0.5 m

Radius of the rotating disk Rint 0.2 m

Angular frequency of the rotating disk ! 2⇡ rad day�1 (1 rpd)

Angular velocity of the rotating disk Ue✓ !Rint ms�1

Table 3.1: Dimensions, variables and parameters for the numerical and laboratory Couette experiments.

therefore reads:

r̃ · �̃ = 0

We0d↵�1


@�̃

@ t̃
+ (ũ · r̃)�̃ + �a(r̃ũ, �̃)

�
+ d1� de�̃ = We0d0↵K : ˜̇"(ũ)

@d

@ t̃
+ (ũ · r̃)d =

 
min

"
1, ⌃t

C̃

�̃
2

, ⌃c
C̃

�̃
1

� q�̃
2

#
� 1

!
1

Td
d +

1

Th
, 0 < d  1

@C̃

@ t̃
+ (ũ · r̃)C̃ = 0

(3.21)

Table 3.1 lists the variables, dimensions and parameters relevant to the laboratory and numerical experiments.

As deformation and damaging are expected to concentrate along a circular fault near the inner boundary,

leaving a large portion of the domain motionless, we do not set the mean mesh element size constant here but

instead let it vary as �x(r) = R
ext

N r2, with R
ext

N the spatial resolution at the outer boundary (see figure 3.7b)

and N = 10. This choice was made to allow increasing the spatial resolution where required while maintaining

computational costs low. We verified the convergence of the algorithm towards a stationary solution over this

mesh grid in the no-damaging case and for the values of (adimensional) model time step and We0 used here.

Section 3.4.3 describes the time and space discretizations and gives the details of the discontinuous Galerkin

methods-based numerical scheme employed to solve the system of equations (3.21).
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3.4.3 Numerical scheme : the large-deformation Maxwell-EB model

The computational domain ⌦ ⇢ R2 with boundary @⌦ = �
ext

[ �
int

is represented in figure 3.7a. Dirichlet

conditions apply on both �
ext

and �
int

. There is strictly no flux in or out of the domain. Simulations are

started from rest, from a homogeneous undamaged state (d = 1) and run for a time t̃ 2 [0, +1[. With these

definitions, the annular Couette flow problem for a damageable material reads:

(P ) : Find ũ, �̃, d and C̃, defined in ⌦⇥]0, +1[, such that

r · �̃ = 0 in ⌦⇥]0, +1[,

We0d↵�1


@�̃

@ t̃
+ (ũ · r̃)�̃ + �a(r̃ũ, �̃)

�
+ d1� de�̃ = We0d0↵K : D̃(ũ) in ⌦⇥]0, +1[,

@d

@ t̃
+ (ũ · r̃)d =

 
min

"
1, ⌃t

C̃

�̃
2

, ⌃c
C̃

�̃
1

� q�̃
2

#
� 1

!
1

Td
d +

1

Th
,

0 < d  1 in ⌦⇥]0, 1[,

@C̃

@ t̃
+ (ũ · r̃)C̃ = 0, in ⌦⇥]0, +1[,

where

⌃c =
Cmin

E0

2⇥
(µ2 + 1)1/2 � µ

⇤ , in ⌦⇥]0, +1[,

⌃t = �2
Cmin

E0

h
(µ2 + 1)1/2 + µ

i
, in ⌦⇥]0, +1[,

and with initial conditions

ũ(t̃ = 0) = 0 in ⌦,

�̃(t̃ = 0) = 0 in ⌦,

d(t̃ = 0) = 1 in ⌦,

C̃(t̃ = 0) = C̃0 in ⌦,

and boundary conditions

ũ(t̃) = 0 on �
ext

⇥]0, +1[,

ũ(t̃) = �1e✓ on �
int

⇥]0, +1[.

Here C̃0 represents the initial field of cohesion, in which spatial noise is introduced at the scale of the element.

To facilitate the reading, the superscript 0̃0 for adimensional variables is dropped in the remaining of this

section.

Time discretization

Non-linearity in the full, large-deformation Maxwell-EB model arises through advection, through the rotation

and deformation of the stress tensor � in the constitutive equation, through the coupling of the cohesion trans-
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port and damage equations and, as in the small-deformation model, through the coupling of the constitutive

and damage equations. The system of equations is discretized in time as follow.

• A Euler implicit scheme of order 1 is used for the momentum equation.

• A semi-implicit scheme is used for the constitutive equation, in which the advection, rotation and defor-

mation terms are estimated using the field of velocity and internal stress computed at the previous (nth)

model time step.

• A semi-implicit scheme is used for the damage equation. The advection term is explicit and uses the

velocity at the nth time step. The distance to the damage criterion (dcrit) is evaluated using the field of

internal stress at the current time step (n + 1) and the local damage criterion (i.e., C) at the previous

time step.

• An explicit scheme with the value of the velocity field at the n+1 model iteration is used for the cohesion

transport equation.

Let us discretize t such that tn = n�t, with �t > 0 and n = 0, 1, 2, .... The system of equations then writes:

r · �n+1 = 0

We0dn+1

↵�1


�n+1 � �n

�t
+ (un ·r)�n + �a(run, �n)

�
+ d1� dn+1e�n+1 = We0d0n+1

↵
K : D(un+1)

dn+1 � dn

�t
+ (un ·r)dn =

✓
min


1, ⌃t

Cn

�n+1

2

, ⌃c
Cn

�n+1

1

� q�n+1

2

�
� 1

◆
1

Td
dn +

1

Th
, 0 < dn+1  1

Cn+1 � Cn

�t
+ (un+1 ·r)Cn+1 = 0

The problem is solved using a fixed-point algorithm, which divides it in three linear subproblems. Initializing d

with its previous time step value, the constitutive and momentum equations are first solved for �n+1 and un+1

(subproblem P1) as in the small-deformation model. Then the damage evolution equation is solved using the

fields of �n+1 and un (subproblem P2). The value of d is updated and these computations are iterated until

the residual of the constitutive equation drops below a chosen tolerance. The cohesion transport equation is

then solved using un+1 and the value of the local damage criterion (i.e., ⌃cC and ⌃tC) is updated (subproblem

P3). Using the superscript k = 0, 1, 2, ... for the sub-iterations, the fixed point algorithm reads:

For k = 0, let
�
�n+1,0,un+1,0, dn+1,0

�
= (�n,un, dn),

For k � 0

• (P1) Find �n+1,k+1 and un+1,k+1 such that

r · �n+1,k+1 = 0 (3.22)

We0

�
dn+1,k

�↵�1


�n+1,k+1 � �n

�t
+ (un ·r)�n + �a(run, �n)

�
+ d1� dn+1,ke�n+1,k+1 =

We0

�
d0n+1,k

�↵
K : D(un+1,k+1) (3.23)

and with

un+1,k+1 = 0 on �
ext

, (3.24)

un+1,k+1 = �1e✓ on �
int

. (3.25)
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• (P2) Find dn+1,k+1, such that 0 < dn+1,k+1  1 and

dn+1,k+1 � dn

�t
+ (un ·r)dn+1 =

⇣
min

h
1, ⌃

t

Cn

�2
n+1,k+1 , ⌃

c

Cn

�n+1,k+1
1 �q�n+1,k+1

2

i
� 1
⌘

1

T
d

dn + 1

T
h

. (3.26)

• Stopping criterion : compute

res� =

����We0(dn+1,k+1)↵�1


�n+1,k+1 � �n

�t
+ (un ·r)�n + �a(run, �n)

�
+ d1� dn+1,k+1e�n+1,k+1

�We0

�
d0n+1,k+1

�↵
K : D(un+1,k+1)

���

If res� < tol STOP ,

and set
�
�n+1,un+1, dn+1

�
=
�
�n+1,k+1,un+1,k+1, dn+1,k+1

�
.

As in the small-deformations and no-damaging case (see sections 2.3.1 and 3.3), subproblem P1 is solved in two

steps. The momentum equation (3.22) is first solved for un+1,k+1 by substituting for the following expression

of �n+1,k+1 :

�n+1,k+1 = K

"
We0

�
dn+1,k

�↵�1

�t
�n

�We0

�
dn+1,k

�↵�1

[(un ·r)�n + �a(run, �n)] + We0

�
d0n+1,k

�↵
K : D(un+1,k+1)

i
(3.27)

with K =
h
We0

�
dn+1,k

�↵�1

1

�t + d1� dn+1,ke
i�1

. The internal stress �n+1,k+1 is then calculated by substi-

tuting un+1,k+1 back into (3.27). All subproblems make use of a variational formulation and of discontinuous

Galerkin finite element methods.

Variational formulation and discontinuous Galerkin FE approximation

Subproblem P1

Introducing the continuous functional spaces V
0

and V defined by (3.13) and (3.14) respectively, and substi-

tuting for (3.27) in the weak form of equation (3.22), the momentum balance subproblem P1.1 reads:

(P1.1) : Find un+1,k+1 2 V such that

a(un+1,k+1,v) = l(v), 8v 2 V
0

with a() and l() defined for all u,v 2 H1(⌦)2 as

a(u,v) =

Z

⌦

KWe0

⇣
d0n+1,k

⌘↵
(K : D(u)) : D(v) dx (3.28)

l(v) =

Z

⌦

KWe0

�
dn+1,k

�↵�1


(un ·r)�n + �a(run, �n)� 1

�t
�n

�
: D(v) dx

Here, dn+1,k, d0n+1,k, un and �n are known from the kth subiteration and from the nth time step.

Problem P1 is discretized in space as in section 3.3, by introducing a two-dimensional mesh Th made of

triangular elements and the functional spaces Xh and Th defined by (3.16) and (3.17). Using discontinuous
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Galerkin methods, the convective term for the stress tensor is approximated by ⌧n
h 2 Th such that

Z

⌦

⌧n
h : ⌧h dx =

X

K2T
h

Z

K

(un
h ·r) �n

h : ⌧h dx +
X

S2L
(i)
h

Z

S

[[�n
h ]] :

✓ |un
h · n|
2

[[⌧h]]� (un
h · n){{⌧h}}

◆
ds, 8⌧h 2 Th

and the linear form l() reads:

lh(v) =

Z

⌦

h

KWe0

⇣
dn+1,k

h

⌘↵�1


⌧n
h + �a(run

h, �n
h)� 1

�t
�n

h

�
: D(vh) dx. (3.29)

With these definitions, the finite dimensional version of P1.1 writes

(P1.1)h : Find un+1,k+1

h 2 Vh such that

a(un+1,k+1

h ,vh) = ln+1,k+1

h (vh), 8vh 2 V
0,h

where

V
0,h = {vh 2 Xh,vh = 0 on �}

Vh = {vh 2 Xh,vh = 0 on �
ext

[ �
int

}

and the computation of �n+1,k+1

h is explicit using the following discrete version of (3.27) :

�n+1,k+1

h = K

2

64
We0

⇣
dn+1,k

h

⌘↵�1

�t
�n

h

�We0

⇣
dn+1,k

h

⌘↵�1

[⌧n
h + �a(run

h, �n
h)] + We0

�
d0

h
n+1,k

�↵
K : D(un+1,k+1

h )

�
(3.30)

Subproblem P2

The damage evolution equation is written in weak form by introducing a scalar test function 'h and the

discontinuous finite element space Sh defined by equation 3.5 (see section 3.2). Using the broken gradient, the

damage evolution equation reads

Z

⌦

h

1

�t
(dn+1,k+1

h � dn
h)'h dx +

X

K

Z

K

(un
h ·r)dn

h'h dx

+
X

K

X

S2@K

Z

S

✓
1

2
|un

h · n| [[dn
h]][['h]]� (un

h · n)[[dn
h]]{{'h}}

◆
ds

=

Z

⌦

h

 
min

"
1,

⌃tCn
h

�
2

n+1,k+1

h

,
⌃cCn

h

�
1

n+1,k+1

h � q�
2

n+1,k+1

h

#
� 1

!
1

Td
dn

h'h dx +

Z

⌦

h

1

Th
'h dx, 0 < dn+1,k+1

h  1

As dh is defined constant by element (P
0

) and there is no flux of d across the domain boundary, the sum of the

gradient of d inside elements vanishes and the jumps of d across element boundaries are non-zero only over the

subset S 2 L(i)
h of internal mesh element sides. The discrete variational formulation of the damage subproblem
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reads:

(P2)h: Find dn+1,k+1

h 2 Sh, 0 < dn+1,k+1

h  1, such that

bh(dn+1,k+1

h , 'h) = mn+1,k+1

h ('h), 8'h 2 Sh,

with bh() and mh() given by

bh(dn+1,k+1

h , 'h) =

Z

⌦

h

1

�t
dn+1,k+1

h 'h dx (3.31)

mn+1,k+1

h ('h) =

Z

⌦

h

"
1

�t
+

 
min

"
1,

⌃tCn
h

�
2

n+1,k+1

h

,
⌃cCn

h

�
1

n+1,k+1

h � q�
2

n+1,k+1

h

#
� 1

!
1

Td

#
dn

h'h dx +

Z

⌦

h

1

Th
'h dx

�
X

S2L
(i)
h

Z

S

✓
1

2
|un

h · n| [[dn
h]][['h]]� (un

h · n)[[dn
h]]{{'h}}

◆
ds (3.32)

Subproblem P3

As the damage evolution equation, the cohesion transport equation is written in weak form using a scalar test

function 'h:

Z

⌦

h

1

�t
(Cn+1

h � Cn
h )'h dx +

X

K

Z

K

(un+1

h ·r)Cn
h 'h dx

+
X

K

X

S2@K

Z

S

✓
1

2

��un+1

h · n�� [[Cn
h ]][['h]]� (un+1

h · n)[[Cn
h ]]{{'h}}

◆
ds = 0

where the sum of the gradient of Ch over the elements vanishes and the jumps in Ch at inter-element boundaries

are non-zero only on the subset S 2 L(i)
h of internal mesh element sides. The discrete formulation of this problem

writes:

(P3)h: With un+1

h known, find Cn+1

h 2 Sh such that

ch(Cn+1

h , 'h) = on+1

h ('h), 8'h 2 Sh,

with ch() and oh() given by

ch(Cn+1

h , 'h) =

Z

⌦

h

1

�t
Cn+1

h 'h dx (3.33)

on+1

h ('h) =

Z

⌦

h

1

�t
Cn

h 'h dx�
X

S2L
(i)
h

Z

S

✓
1

2

��un+1

h · n�� [[Cn
h ]][['h]]� (un+1

h · n)[[Cn
h ]]{{'h}}

◆
ds (3.34)

Using this FE spatial discretization, the complete annular Couette flow problem, (P )h leads to the following

scheme:
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(P )h : Initialization (n = 0)

un
h = 0 in ⌦h,

�n
h = 0 in ⌦h,

dn
h = 1 in ⌦h,

Cn
h = C0 in ⌦h,

For n � 0

• For k = 0,
⇣
�n+1,0

h ,un+1,0
h , dn+1,0

h

⌘
= (�n

h ,un
h, dn

h),

• For k � 0

– (P1.1)h: With �n+1,k
h ,un+1,k

h , dn+1,k
h known, find un+1,k+1

h 2 Vh such that

a(un+1,k+1

h ,vh) = l(n+1,k+1)

h (vh), 8vh 2 V
0,h,

with the bilinear and linear forms a() and lh() defined by equations (3.28) and (3.29) respectively

and with

V
0,h = {vh 2 Xh,vh = 0 on �}

Vh = {vh 2 Xh,vh = �1e✓ on �
int

and vh = 0 on �
ext

}.

– (P1.2)h : With un+1,k+1

h and dn+1,k
h known, compute �n+1,k+1

h 2 Th explicitly from (3.30).

– (P2)h: With �n+1,k+1

h known, find dn+1,k+1

h 2 Sh, 0 < dn+1,k+1  1, such that

bh(dn+1,k+1

h , 'h) = mn+1,k+1

h ('h), 8'h 2 Sh,

with bh() and mh() given by (3.31) and (3.32).

– Compute

res�
h

=

�����We0(dn+1,k+1

h )↵�1

"
�n+1,k+1

h � �n
h

�t
+ (⌧n

h + �a(rhu
n
h, �n

h)

#
+ d1� dn+1,k+1

h e�n+1,k+1

h

�We0

⇣
dn+1,k+1

0

h

⌘↵
K : D(un+1,k+1

h )
��� ,

If res�
h

< tol STOP .

– Set
�
�n+1

h ,un+1

h , dn+1

h

�
=
⇣
�n+1,k+1

h ,un+1,k+1

h , dn+1,k+1

h

⌘
.

• (P3)h: With un+1

h known, find Cn+1

h 2 Sh such that

ch(Cn+1

h , 'h) = on+1

h ('h), 8'h 2 Sh,

with ch() and oh() given by (3.33) and (3.34).
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In the simulations presented in this section, the tolerance, tol, was set to 103 times the machine precision,

thereby ensuring that res�
h

drops by several orders of magnitude with respect to its initial (k = 0) value.

While using an implicit formulation for the advection, rotation and deformation terms and updating their

value within the fixed-point loop would not increase the level of complexity of the numerical scheme, the explicit

formulation used here allows building the transport form for the stress tensor (⌧n
h + �a(run

h, �n
h)) outside this

loop, i.e., once per model time step. This reduces the numerical cost of the algorithm compared to the implicit

case, especially over large systems. As the model time step is always very small, it does not impact the stability

of the scheme (see section 3.3) and has no significant e↵ect on the simulated mechanical behaviour.

3.4.4 A comparison of Couette experiments

In the laboratory, Couette experiments were started from an unbroken ice place with an (approximately)

uniform thickness. Within minutes, a circular fault a few millimetres wide was formed about 1 to 2 centimetres

away from the inner rotating disk, concentrating most of the shearing deformation (see figure 3.11). The

subsequent mechanical behaviour emanated from a competition between fracturing and refreezing of the fault.

The relative importance of the two processes was set primarily by (1) the prescribed angular frequency of the

inner disk (!) and (2) the temperature of the cold room, which determined the rate of refreezing within the

fault. These parameters were varied in a set of 25 realizations of the experiment: rotation rates ! between 1

and 80 revolutions per day (rpd) and the cold room temperature between �5 and �15�C.

Figure 3.11: Photography of the ice layer during one realization of the laboratory Couette flow experiment showing
the main fault (2) of mean width ⇡ 5 mm, between a thin region of ”fast” ice (1) along the inner rotating disk and a
large motionless region (3). Credit: V. Pellisier.

At high rotation rates, the mean (temporally averaged) shear stress along the fault was low. Time series

of the shear stress averaged along the fault showed high frequency and low asymmetry fluctuations, similar to
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typical shear stress records obtained for dry granular materials (J. Weiss et al., in prep). This suggests that

healing within the fault was not significant. For relatively low temperatures and slow rotation rates, shear

stress time series were characterized by a succession of slow build-ups and rapid drops, which were associated

with the re-activation of large portions of the fault. These strongly asymmetric cycles are visible on the records

of the measured torque. Figure 3.12a shows such a time series for a realization of the experiment with ! = 1

rpd and the temperature of the cold room set to �10�C. In between large rupture events, some periods of

high mean stress values and low frequency, low asymmetry fluctuations were also observed, as indicated by

the dashed red box on figure 3.12, consistent with a slow dissipation of the applied loading through creep-like

deformation along the fault (Amelung and King, 1997). It is important to note that the positive trend observed

on this record is related to an unavoidable thickening of the ice during the experiment.

Looking at this time series, we cannot help but notice the similarity with the macroscopic stress-strain

curves discussed in chapter 2 in the context of the uniaxial compression simulations, which exhibit a succession

of slow stress build-ups and rapid relaxation associated with cycles of healing and damaging as well as periods

of creep-like deformation with lower amplitude and asymmetry of the stress fluctuations. Yet, the mechanical

behaviour observed in the laboratory experiments is highly complex and the possibilities of analyses, multiple.

Here we do not aim to perform a thorough comparison of the Maxwell-EB model and Couette experimental

data. Instead, we simply seek to establish if the large-deformation Maxwell-EB model is capable of reproducing

the cycles of slow stress build-up and rapid relaxation emanating from the competition between healing and

fracturing observed in the laboratory Couette experiment under the simple shear loading conditions described

above and if not, why.

Our choice of model parameter values for the Couette simulations is based on one realization of the exper-

iment performed at a room temperature of �10�C and with a rotation rate of ! = 1 rpd during which the

refreezing of the gouge within the fault was indeed significant. The torque record for this particular experiment

was described in the previous paragraph and is represented on figure 3.12a. A characteristic healing time for

this experiment is estimated as follow. Assuming a linear variation of the temperature within a thin ice layer

(Maykut, 1986), a rate of heat exchange that is proportional to the temperature di↵erence between the air and

the surface of the ice plate and estimating an average coe�cient for both the sensible and latent heat exchanges

from records of the temperatures and ice thickness during the experiment, a simple growth model was obtained

for the ice plate (J. Weiss et al., in prep). According to this model, the thickening of the very thin plate was

almost linear in time. The time required to grow a 4 mm plate over the initially ice-free basin at �10�C was

of about th = 104 s. This estimate of the characteristic healing time is in agreement with the power spectrum

density analysis performed in section 2.4.3 in the context of the uniaxial compression Maxwell-EB simulations.

In these analyses, we indeed identified a range of frequencies for the healing-damaging cycles (equivalent to

the stress build-up and relaxation cycles) that is 1 to 3 times larger than the frequency associated with the

prescribed characteristic healing time (see figure 2.12a). From figure 3.12c, we can estimate visually the fre-

quency of stress build-up and relaxation cycles: we count 4 such cycles in ⇠ 6 hours, equivalent to a frequency

of 2.0 ·10�4 s�1. This is e↵ectively twice as high as the inverse estimated healing time (10�4 s�1). This ”back-

of-the-envelope” calculation increases our confidence in our assumption that the stress build-up and relaxation

cycles observed in the Couette experiment are indeed controlled by the rate of healing of the shearing fault

and that healing can be adequately represented in the Maxwell-EB model using the simple parameterization

introduced in section 2.2.3.

With the angular frequency of the inner boundary set to ! = 1 rpd, the shearing deformation rate within

the initially undamaged ice plate is of U
L = 2⇡R

int

24·3600
1

R
ext

�R
int

⇡ 5.0 · 10�5s�1. In order to approach the limit
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Figure 3.12: (a) Time series of the measured torque during one realization of the laboratory Couette flow experiment
with ! = 1 rpd. Arrows along the time axis indicate 4 cycles of stress build-up and rupture. The dashed red box
indicate a period of low frequency and low asymmetry stress fluctuations. (b) Photograph during the initial elastic
loading showing the intact ice plate. (c) Photograph indicating the position and shape of the shearing fault (green
shading). Credit: V. Pellisier.

of a strictly elastic undamaged ice plate, while ensuring the convergence of the numerical scheme, we set the

initial Weissenberg number to We0 = 0.1, based on the results of the sensitivity analyses of section 3.3. This

gives �0 = 0.1⇥ L
U ⇡ 2 · 103 s. The damage parameter ↵ is set to 4 as in the uniaxial compression experiments.

The order of magnitude of the values of cohesion is chosen based on the duration of the initial elastic loading

in the laboratory experiment (⇠ 20 minutes, see figure 3.12). The local value of C is re-drawn from the same

uniform distribution of values every time a given element becomes overcritical, as in annealed disorder. The

model time step is set as follow.

Considering for instance an unstructured mesh with constant element size �x (i.e., independent of r) and

N = 10, such that �x = R
ext

N = 0.05 m and a speed c of propagation of shear elastic waves of 2 · 103 ms�1,

consistent with estimations of the Young modulus of laboratory fresh ice (e.g., Gammon et al., 1983, 10 GPa),

the characteristic time of propagation of damage in the ice plate, td, would then be of at most �x
c ⇡ 2.5 · 10�5

s. If choosing �t = td, on the order of 108 model time steps would be required to simulate one hour in real

time. With a rotation rate of ! = 1 rpd, one quarter of a revolution of the inner disk would represent 109

time steps. Considering instead a mesh grid with resolution �x varying as r2, as used here, one quarter of a

revolution would require on the order of 1010 model time steps and would represent several months of runtime.

Here, we therefore choose a model time step based on a reasonable runtime for our simulations. We set �t = 1

s. Doing so, the characteristic time for the propagation of damage, td, can be set in di↵erent ways. We explore

2 possibilities :

1. td = �t with �t = 1 s, which amounts to assuming a slow propagation of the damage within the ice
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plate,

2. td = c
�x , with �x the size of the smallest element of our mesh grid and c representative of the speed

of propagation of shear elastic waves in laboratory fresh ice. In this case, td ⇡ 1.0 · 10�6 s and hence

td ⌧ �t.

(a)

(b)

(c)

Figure 3.13: (a) Time series of the (adimensional) torque on the inner boundary (black line) and of the damage rate
(blue line) for a Couette simulation with ! = 1 rpd , and t

h

= 104 s. The time is expressed in terms of the fraction
(percentage) of one complete revolution (25% of a revolution represents 6 hours in real time). Fields of the order of
magnitude of the (adimensional) shearing deformation rate (log10("̇S), left panels) and of level of damage (d, right
panels) just after (b) the first macro-rupture event and (c) a subsequent stress relaxation phase.

All model simulations are started from an initially undamaged ice plate with uniform elastic modulus

and viscosity. Consistent with the behaviour observed in the laboratory experiment, the time series of the

(adimensional) torque on the inner boundary, �, shows an initially linear-elastic loading phase, followed by an

abrupt drop of the stress (see figure 3.13). In the case of td ⌧ �t, the numerical scheme does not converge at

this point and simulations stop. This can be trivially explained by the large separation of scales between �t

and td. According to the time-discretized equation (3.26) for the level of damage, if �t� td (or equivalently,

�̃t � Td), d drops to near zero values over damaged elements within very few time steps, hence rapidly
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generating numerical instabilities. In this case, the model does not resolve the progressive propagation of the

damage. Here we therefore only discuss ”slow damage” simulations, in which td is set equal to �t and the

model does resolve the progressive damage mechanism.
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Figure 3.14: Power spectral density of the damage rate time series in 5 realizations of the Couette simulations with
! = 1 rpd, ↵ = 4 and the characteristic healing time set to (a) t

h

= 104 s and (b) t

h

= 103 s. The dashed blue
line indicates the (adimensional) frequency associated to the (adimensional) healing time in both cases. An averaging
window of 5 frequencies is used to compute the PSD in both cases.

In these simulations, the abrupt stress relaxation is associated with a sharp increase in the damage rate and

with a propagation of damage along a roughly circular feature a few grid cells away from the inner boundary

which concentrates virtually all of the simulated deformation (see figure 3.13a and 3.13b). Consistent with the

Couette experiment, the stress within the partially damaged material subsequently build-ups to values lower

than the pre-macro-rupture maximum. The torque time series shows some macroscopic fluctuations which

correlate with small increases in the damage rate and are associated with the reactivation of small portions of

the fault (see figure 3.13c).

As the spatial extent of these damaging events is relatively small, the torque in the Maxwell-EB Couette

simulations never drops to low values after the first rupture event, as opposed to the torque measured in

the laboratory (see figure 3.12). Another obvious di↵erence between the simulation and experiment results

pertains to the symmetry of the torque signal. In the model, no abrupt stress relaxation is simulated after

the first macro-rupture event. The time series of � shows almost symmetric increases and decreases. The

distribution of torque fluctuations, ��

�t after the first rupture (not shown), is characterized by a (negative)

skewness of -1.2, which is indeed low compared to the (negative) skewness of -6 computed for the distribution

of the macroscopic stress fluctuations, ��
m

�t , in the uniaxial compression simulations presented in 2 (see figure

2.11, section 2.4.3). The frequency of the macroscopic stress build-up and relaxation cycles also appears much

higher in the simulations than in the laboratory experiment. The average power spectral density of the damage

rate time series, calculated for 5 simulations initialized with di↵erent fields of cohesion (see figure 3.14a) shows

a factor of 5 separation between the frequency of these cycles (indicated by the dashed red line) and that

associated with the prescribed value of th, suggesting a decoupling between the small-extent damage events

and the healing mechanism. Beyond the frequency of these cycles and up to f ⇡ 103, the PSD shows a

power-law decrease consistent with a long-term memory of the damage rate within the material.
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One can think of two possible adjustments to the model parameters that could result in a more pronounced

asymmetry of the simulated macroscopic behaviour and more widespread damaging events. The first consists

in increasing the value of the poorly constrained damage parameter, ↵, which in the case of small-deformation

simulations was shown to result in more abrupt drops of the internal stress at the onset of damaging and to a

higher temporal localization of damaging events (see section 2.5). In the present case however, using a larger ↵

does not help obtaining a better agreement with the observed macroscopic behaviour. Figure 3.15 represents

for instance the torque and damage rate time series for one realization of the Couette simulation using ↵ = 6

which shows lower amplitude fluctuations of the damaging activity compared to the ↵ = 4 case and more

symmetric variations of � (skewness of -0.8).

Figure 3.15: (a) Time series of the (adimensional) torque on the inner boundary (black line) and of the damage rate
(blue line) for a Couette simulation with ! = 1 rpd, t

h

= 104 s and ↵ = 6.

The second adjustment consists in decreasing the prescribed time of healing, so that to allow for a widespread

refreezing and a rapid increase of the internal stress within the simulated fault. In the context of the laboratory

experiment, this amounts to lowering the cold room temperature, which was indeed shown to induce larger

fracturing events. Here, we try simulating a more rapid freeze-up of the shearing fault by decreasing our

estimated value of th by a factor of 10 (th = 103 s). Figure 3.16 indicates that this does amplify the simulated

fluctuations of both the torque and damaging activity and somewhat increases the temporal asymmetry of

the torque signal (skewness of the ��

�t distribution of -2). Fields of the level of damage and deformation rates

indicate that in this case the highly damaged zone almost completely heal between damaging events, which

”forces” the system to enter phases of extensive damaging activity and to form a new fault. The power spectral

density of the damage signal (see figure 3.14b) shows a clear and narrow peak at a frequency that is about twice

as high as the prescribed healing time, consistent with the fact that widespread healing is the main driving

mechanism of these healing and damaging cycles.

89



1 2 3 4

1 2 3 4

1 3

2 4

Figure 3.16: (a) Time series of the (adimensional) torque on the inner boundary (black line) and of the damage rate
(blue line) for a Couette simulation with ! = 1 rpd, t

h

= 103 s and ↵ = 4. Fields of the instantaneous level of damage
(d, upper pannels) and order of magnitude of the shearing deformation rate (log10("̇S), lower pannels), at the four (pre-
and post-rupture) instants indicated on the time series.
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3.4.5 Discussion

Here we elaborate on the possible reasons why the Maxwell-EB model with the present set of numerical and

physical parameters does not fully reproduce the mechanical behaviour observed in the laboratory.

• Considering the adimensional form of the constitutive and damage equations (2.26 and 2.27), the five

parameters controlling the simulated mechanical behaviour in these experiments are (1) the e↵ective

Weissenber number, We = We0d↵�1, (2) the (adimensional) model time step �̃t, (3) the characteristic

time of damage, Td, (4) the damage parameter, ↵, and (5) the characteristic healing time, Th.

As already discussed in chapter 2 (section 2.2.4), for We� Td the relaxation time for the internal stress

is much larger than the time of propagation of the damage : permanent deformations are small and

elastic interactions are e↵ective in redistributing the internal stress within the material. For We ⇠ Td,

deformations are essentially permanent, elastic interactions and the propagation of damage are hindered.

The rate at which the transition between elastic and permanent deformation occurs depends on the initial

separation between the values of Td and We0.

On the one hand, in the present simulations the time step is chosen conveniently large and Td is set equal

to �̃t so that to resolve the propagation of damage. On the other hand, the value of We0 is limited by

the numerics. Therefore, the initial separation between We0 and �̃t is such that the e↵ective value of We

readily drops to ⇠ Td as the material becomes damaged. Elastic interactions are by this fact inhibited

and the extent of the damaging, restricted. Consistent with this idea, increasing the damage parameter

↵, which controls the rate of decrease of We with the level of damage, does not lead to larger damaging

events but instead to an even ”softer”, viscous-like behaviour.

Put another way, the propagation of damage in these Couette simulations is too slow. Considering the

value chosen for td (1 s), the maximal resolution of the mesh grid, �x ⇡ R
ext

10

r2 at r = Rint (near the

inner boundary) and the e↵ective speed of propagation of damage near the inner boundary c = �x
t
d

, we

can estimate the minimum time for propagation of damage along the circular fault as 2⇡R
int

c ⇡ 600 s.

This time is smaller than the undamaged value of relaxation time for the internal stress (�0 ⇡ 2 · 103 s),

consistent with the fact that the model does represent the initial propagation of the macro-rupture with

large damage rates and a first abrupt relaxation of the stress. However, considering an average level of

damage of the material of d = 0.5 in in the vicinity of a partially healed fault near the point of rupture

and ↵ = 4, the e↵ective relaxation time, �0d↵�1 (⇡ 300 s) is then less then the time for the propagation

of damage around the inner boundary. Viscous dissipation therefore dominates the mechanical behaviour

before damage has time to propagate along the fault, hence explaining the small extent of damaging

events after the first macro-rupture.

To better resolve the brittle character of ice deformation, a larger separation of scales between the time

for the propagation of damage and the relaxation time for the internal stress in the model is necessary.

As the maximum value of We0 is set by the construction (convergence) of our numerical scheme, in

the current implementation of the Maxwell-EB model this implies using a smaller time step and hence

long, unpractical simulation times. The representation of laboratory-scale experiments with the Maxwell-

EB model therefore calls for a reformulation of the ”discrete-like” progressive damage mechanism in a

truly continuous form. This would (1) eliminate the requirement of an explicit scheme for the damage

evolution equation and the necessity of a small model time step, (2) allow exploiting fully-implicit and

higher-order numerical methods and (3) perhaps exploring numerical schemes that were designed to
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handle larger values of the Weissenberg number in viscoelastic flow problems, for instance those based

on a log-conformation formulation (e.g., Fattal and Kupferman, 2005; Saramito, 2014).

• Another important point related to the choice of model parameters and characteristic numbers in these

Couette simulations concerns the relative value of the (adimensional) healing time Th and of the Weis-

senberg number, We. With th = 104 s, Th is always larger than We, which means that the rate of

relaxation of the internal stress in permanent deformations is always larger than the rate of healing of

the material. Using this value of the characteristic healing time, healing does not seem e�cient in re-

increasing the mechanical strength over damaged areas and slowing deformation rates. With th = 103 s,

the rate of healing is about two times lower than the rate of viscous dissipation within the undamaged

material (�0 ⇡ 2 · 103 s). The simulations presented here demonstrate that healing is then e↵ective in

lowering levels of damage and allow the stress to significantly build-up within the material so that to

trigger subsequent large damaging events. Although the balance between the rate of healing and damag-

ing also depends on the applied driving rate, a necessary condition to represent the competition between

the fracturing and refreezing within the ice plate might be th < �0 or, equivalently, Th < We0.

• In the case of large deformations simulations and relatively high driving rates, we can think that the

di↵usion of the strong gradients and local weakening of the material through advection can also smooth

elastic interactions and the propagation of damage and hence lead to a ”softer” macroscopic behaviour.

However, as the e↵ect of numerical di↵usion is hard, perhaps impossible, to quantify here, we can only

suppose it is of second order in the present problem.

• Finally, some physical processes might also be missing in our rheological framework that prevent the

Maxwell-EB model from representing adequately the mechanical behaviour of a shearing fault. Based on

the Couette simulations presented here, it appears that healing, at a rate consistent with the laboratory

conditions, alone is not su�cient for the stress to build up to critical values over large enough portions

of the fault so that to trigger large-scale damaging events. In the laboratory, friction along the fault

acts to slow the movement and hence might allow for more e�cient refreezing. Because of the irregular

geometry of the fault, frictional sliding can also concentrate the stress locally by locking some portions

of the fault, thereby initializing fracturing events. In the Maxwell-EB framework, the friction associated

with the shearing deformation along activated faults is not represented. The inclusion of a threshold on

the value of the internal stress for the deformation of damaged elements might be a necessary ingredient

in simple shear conditions. This point is further discussed in chapter 5.
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3.5 Concluding remarks

In this chapter a numerical scheme for the large-deformation Maxwell-EB model based on discontinuous

Galerkin methods was presented. Three series of numerical experiments with di↵erent level of complexity

were performed in the context of large deformations simulations.

In the first series of tests, a solid body rotation problem was solved, hence only advective processes were

represented. These have allowed evaluating the capability of the discontinuous Galerkin method in handling

the advection of fields presenting extreme gradients and a high level of discontinuity, such as the fields of the

level of damage, d, and of the stress, �, simulated by the model. Using polynomial approximations of order 0

for the advected fields, the DG scheme coincides with a finite volume method with upwinding. In this case the

numerical scheme is di↵usive and di↵usion decreases slowly with increasing spatial resolution. In the current

implementation of the Maxwell-EB model, all advected fields are approximated constant by element. Di↵usion

is therefore expected to be important, and most important when and where the level of damage is high and

internal stresses are low. Conversely, where internal stresses are high, it might be mitigated by the tendency of

the model to ”re-localize” deformation and damaging at the scale of the model element. This point is further

discussed in the next chapter.

In the second series of simulations, the advection, rotation and deformation terms for the stress tensor were

all accounted for and the Maxwell-EB system of equations was solved in the case of a homogeneous, undamaged

material under simple shear conditions. These have allowed evaluating the highest value of the Weissenberg

number that the numerical scheme can handle while ensuring the convergence towards a stationary solution

and to discuss its impact in terms of unphysical viscous dissipation of the stress in the Maxwell-EB model.

Finally, the full, large-deformation Maxwell-EB framework was implemented in the context of a Couette flow

experiment which allowed comparing the simulated mechanical behaviour to that observed in the laboratory

for a naturally formed shearing fault in fresh-water ice. The model was found to simulate adequately the failure

of the ice plate and the formation of the shearing fault. The subsequent healing and fracturing within the fault

was however underrepresented in the model: in particular, the spatial extent of damage events was limited

and the amplitude of the associated stress relaxation was small. The simulated behaviour was explained in

terms of numerical and possible physical limitations of the Maxwell-EB model. An important, perhaps the

most important, limitation in the context of these experiments stems from our treatment of the progressive

damage mechanism, which requires using an explicit time stepping scheme and setting the model time step to

a value comparable to that of the characteristic time of propagation of damage td in the simulated material. In

the case of ice at the laboratory scale, this requirement translates into unpractical simulation times. A slower

propagation of damage in the material therefore needs to be assumed, which results in a too small separation

between the rate of damage propagation and the rate of viscous relaxation of the internal stress within the

material where the level of damage is low and a too soft, viscous-like behaviour.

In the case of sea ice on geophysical scales, setting the model time step equal to the characteristic time

of propagation of damage places the time step between a couple of seconds and a couple of minutes, for

spatial resolutions of 1 km to 100 km respectively. Although small, such a time step is comparable to that of

current ocean models and translates into reasonable simulation times. In this case, the separation between td

and the viscous relaxation time within a relatively undamaged ice cover is large enough for the Maxwell-EB

model to simulate adequately the brittle character of sea ice deformation. This point is further discussed, and

demonstrated, in the next chapter.
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Chapter 4

A Maxwell-EB sea ice model

After the highly idealized, small-deformations and large-deformations simulations presented in chapters 2 and

3, we finally use the Maxwell-EB rheological framework in the context of modelling the sea ice cover on

geophysical scales. The problem presented here represents the flow of sea ice through a narrow channel and

constitutes a relevant test case in multiple respects.

4.1 A realistic case study

The formation of ice bridges in narrow passages is a common phenomenon over the Arctic, occurring for instance

in the Amundsen Gulf and Bering Strait as well as in many channels of the Canadian Arctic Archipelago (CAA).

Because ice bridges stop the flow of ice and can remain stable for several weeks, maybe months in the northern

CAA, understanding the conditions under which they form is important in terms of assessing the variability

of the Arctic ice circulation and export through these pathways (Kwok et al., 2010). Expenses of ice-free

water and polynyas open downstream of these bridges and strongly impact the local atmosphere-ocean heat

exchanges, while also leading to the recurrent generation of new ice. As the geometry of these bridges is always

concave and arch-like, they are also commonly referred to as ice arches. Figure 4.1b shows an example of

such a bridge present in May 2005 at the Lincoln Sea entrance to Nares Strait, CAA (see figure 4.1a), an

important and extensively studied outflow pathway for thick, multi-year Arctic sea ice (Ingram et al., 2002;

Kwok et al., 2010). In the case of Nares Strait, ice bridges have been known to form preferentially throughout

the winter, at the entrance of the Strait and south of Kane Basin (Gudmandsen, 2004), leading to the opening

of Smith Sound and to the formation of the North Water polynya (NOW). The ice breakup is thought of

being primarily mechanically driven, as opposed to thermally (i.e., ocean upwelling) driven (Ingram et al.,

2002; Gudmandsen, 2004). The opening and the drift of sea ice within the channel has been associated to the

prevalence of northerly winds, associated with strong pressure gradients between the Lincoln sea, to the north,

and Ba�n Bay, to the south and orographically channeled by the steep coastal topography of Ellesmere Island

and Greenland (Gudmandsen, 2004; Samelson et al., 2006).

Granular materials have been known for a long time to form concave stress-free surfaces and exhibit self-

obstruction to flow under certain conditions (e.g., Richmond and Gardner, 1962; Walker, 1966). By assimilating

sea ice as a 2-dimensional continuum material that obeys Coulomb’s failure criterion, Sodhi (1977) showed

that the formation and shape of stable ice bridges in the Arctic ice cover can be explained by two-dimensional
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Coulombic granular models and obtained deformation patterns over Bering Strait and the Amundsen Gulf

that were in good agreement with satellite (Landsat) imagery. Stable ice bridges have also been successfully

reproduced by plastic-type sea ice models, providing the prescribed plastic yield criteria allowed some cohesion

or tensile strength (Ip, 1993; Hibler et al., 2006). Recently, Dumont et al. (2009) were able to simulate the

formation of ice arches in both an idealized and a realistic representation of Nares Strait using the Viscous-

Plastic model of Hibler (1979). As their model was based on the widely used elliptical yield curve, it did not

account for uniaxial or biaxial tensile strength of the ice. Stable ice bridges and flow stoppage were obtained

by decreasing the ellipticity of the yield curve below the standard value (2, Hibler, 1979), hence by increasing

the area of the yield envelope in the second and fourth quadrants in the principal stress space, corresponding

to a cohesive state.

Channel flow simulations have not yet been performed using elastic-brittle models. Hence such experiments

constitute an interesting test case of their mechanical behaviour. Here we therefore establish the capability

of the Maxwell-EB model to simulate the formation of stable ice bridges and self-obstruction to flow under

strong along-channel wind conditions. Moreover, while other rheological models have been shown to simulate

both the occurrence of ice bridges and flow stoppage, it is not at all clear if they are also able to represent the

presence of multiple, fine arch-like leads within and upstream of the channel (Sodhi, 1977), as observed from

satellite imagery (e.g., see figure 4.1b). With its ability to represent the propagation of damage along highly

localized faults, the Maxwell-EB model might be more suited to simulate these features. Although using a

realistic configuration of Nares Strait would not represent much technical di�culty in the present model, here

we retain an idealized, symmetric domain geometry and simple, homogeneous forcing conditions to facilitate

the analysis of the dynamical behaviour and, in particular, of the states of stress within the channel.

Once a stable ice bridge forms, the ice downstream is expected to detach from the bridge and be driven out

of the channel without any mechanical resistance. Extreme gradients are therefore expected to arise in the ice

velocity as well as in the ice thickness field (see figures 4.1b and 4.2a). These represent severe conditions for

testing the limits of the numerical scheme in terms of its di↵usivity and capability in handling discontinuities

within the simulated fields.
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(a) (b)

Figure 4.1: (a) Moderate Resolution Imaging Spectroradiometer reflectance (MODIS) image indicating the location of
Nares Strait, open on July 2 2010. (b) MODIS image showing the presence of an ice bridge at the entrance of Nares
Strait on July 8, 2010, with arch-like leads upstream of the bridge, before a partial breakup event. From NASA/GSFC
MODIS Rapid Response at http://rapidfire.sci.gsfc.nasa.gov/imagery/ .

This chapter goes as follow. The complete Maxwell-EB dynamical sea ice model is presented in section

4.2. In particular, two new variables pertaining to the description of the sea ice cover are introduced: the

ice thickness, h, and the ice concentration, A, together with their respective conservation equations and their

coupling to the ice mechanical properties. The channel flow simulations are set up in section 4.3 and the

complete numerical scheme is described in section 4.4. Simulation results are presented in section 4.5 and first

discussed in terms of the simulated dynamical behaviour. In particular, the formation of a stable ice bridge

is investigated for di↵erent values of the cohesion, C, a determinant mechanical property in this context as

it sets the ultimate tensile stress (�t) in the Maxwell-EB model. The evolution of the simulated fields and

distributions of the ice thickness and concentration are then analyzed. Conclusions are summarized in section

4.6.

97



4.2 The complete picture

In this section, the Maxwell-EB rheology is implemented in the context of sea ice modelling. As in regional

and global sea ice models, the ice cover is considered as a 2-dimensional plate due to its very large aspect ratio.

In this case, the complete dynamical model is given by the following system of equations:

1. The momentum equation:

⇢h


@u

@t
+ (u ·r)u

�
= A(⌧a + ⌧w)� ⇢hfk⇥ u� ⇢hgrH +r · (h�), (4.1)

with ⇢, the ice density, h, the mean ice thickness, A, the ice concentration, defined as the fraction of a

model grid cell covered by ice, ⌧a and ⌧w, the air and water drags, �⇢hfk⇥ u, the Coriolis pseudo-force

with f , the Coriolis parameter and k, the upward unit vector normal to the ice surface, and �⇢hgrH,

the force due to gradients in the sea surface dynamic height, H, with g the gravitational acceleration.

This last term is often expressed alternatively in terms of the geostrophic ocean current velocity, uw, as

⇢hfk ⇥ uw. We assume the internal stress to be homogeneously distributed throughout the ice depth

h and, as in the models of Bouillon and Rampal (2015) and Sulsky et al. (2007), write the momentum

equation in terms of the internal stress rather than the vertically integrated stress tensor commonly used

in the sea ice modelling community.

2. Conservation equations for the ice concentration and mean ice thickness:

@h

@t
+r · (hu) = Sh, h � 0, (4.2)

@A

@t
+r · (Au) = SA, 0  A  1. (4.3)

Mass conservation is ensured by this first equation for the evolution of the mean ice thickness, hence ne-

glecting the compressibility e↵ect on the ice density, ⇢. The mean thickness is assumed to be the weighted

sum of two ice categories: thick ice, with thickness hthick = h
A , and open water, with thickness hthin = 0

m (Hibler, 1979). The terms Sh and SA represent the mechanical redistribution and thermodynamic

sources and sinks of ice. In the following implementation of the model, thermodynamics processes are

not represented.

Mechanical redistribution is accounted for following Hibler (1979) and Thomson et al. (1988). If over a

given element, the ice concentration A exceeds unity, the excess concentration, max[0, (1 � A)], is used

to increment the thickness of thick ice over that element, and the ice concentration is reset to 1. With

this approach, the mechanical source (h+) and sink (A�) terms of h and A read:

h+ = max[0, (1�A)]h (4.4)

A� = �max[0, (A� 1)] (4.5)

Again, our formulation of the mechanical redistribution of ice neglects any compressibility e↵ects. Based

on the order of magnitude di↵erence between elastic and permanent deformations within sea ice (see

chapter 1), the error associated with this approach is expected to be small. Comparison of channel flow

simulations in which equations (4.2) and (4.3) were solved using the total versus the permanent part of

the deformation (i.e., of u) only indeed showed no significant di↵erence in terms of the simulated spatial

distribution of the ice thickness and concentration.
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3. The constitutive law:
1

E


@�

@t
+ (u ·r)� + �a(ru, �)

�
+

1

⌘
� = K : "̇(u).

As in chapter 3, the upper convected form of the objective tensor derivative is used here (a = 1). An

additional relation of E and ⌘ in terms of the ice concentration A is introduced, such that :

E = f
1

(E0, ⌘0, ⌘min, d) exp [�c⇤(1�A)], (4.6)

⌘ = f
2

(⌘0, ⌘min, d) exp [�c⇤(1�A)], (4.7)

with f
1

and f
2

, the functional dependance of E and ⌘ on the level of damage of the ice cover d given

by (2.24) and (2.23) respectively and c⇤, a non-dimensional parameter characterizing the dependence of

the mechanical parameters on the ice concentration. This exponential function of the ice concentration

allows the value of both mechanical properties to be maximal when the ice concentration is of 100%

(A = 1) and to decrease rapidly when leads open and A drops. This function is of the same form as

that used for the pressure term (P , or ice strength in compression) in the VP rheology of Hibler (1979)

and the e↵ective elastic sti↵ness in the elasto-brittle models of Girard et al. (2010b) and of Bouillon and

Rampal (2015). In the case of ⌘, this dependence on ice concentration is compatible with the rapid decay

of the apparent viscosity of granular media when decreasing their packing fraction from the close-packed

limit (Aranson and Tsimring, 2006). In the present implementation of the Maxwell-EB model, the value

of the parameter c⇤ is constant and set to 20 as in the model of Hibler (1979) for both E and ⌘, but this

parameterization could eventually be refined.

4. The equation for the evolution of damage:

@d

@t
+ (u ·r)d =

✓
min


1,

�t

�
2

,
�c

�
1

� q�
2

�
� 1

◆
1

td
d +

1

th
, 0 < d  1, (4.8)

in which a constant healing rate is assumed. The damage criterion is defined by equations (2.8) and

(2.11), with q, �c and �t given by equations (2.9), (2.10), (2.12) in terms of the cohesion, C, and of the

constant internal friction coe�cient, µ.

5. The transport equation (2.13) handles the advection of the passive field of C.

4.3 Channel flow simulations

The domain for the channel flow simulations presented here represents a 120 km wide rectangular basin,

converging into a 40 km wide, 40 km long channel (see figure 4.2b). It is symmetric with respect to the y axis.

The geometry and dimensions are similar to that used in the idealized simulations of Dumont et al. (2009) and

conceived to be roughly consistent with the shape of the constriction between Kane Basin and Smith Sound, in

Nares Strait. The dynamics described in the next section is not specific to this geometry. Indeed, simulations

were also performed over di↵erent domains (narrower, longer channels, smaller basins) and produced similar

results.

A reduced form of the momentum equation (4.1) is solved here, in which the advection and acceleration

terms are neglected. To retain symmetry in forcing conditions, the Coriolis term is also set to zero. The

prescribed wind forcing is made as simple as possible to facilitate the analysis. A uniform northerly wind
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u = 0 u = 0

� · n = 0

� · n = 0

⌧a

�
left

�
right

�
out

�
in

40 km

120 km

channels, hoppers, and silos. This last problem has been
extensively studied using the granular theory for bulk
solids (Richmond and Gardner 1962; Walters 1973;
Savage and Sayed 1981). In contrast to fluids, bulk solids
can transmit shear stresses while at rest. Cohesive ma-
terials (e.g., damp sand), which are able to support
higher static shear stresses, are capable of forming a
self-obstruction to flow (Walker 1966). Accordingly, ice
arching has been observed and modeled assuming sea
ice to be a plastic (discontinuous flow under continuous
forcing) and cohesive (with the ability to maintain its
integrity while submitted to tensile forces) material. Sodhi
(1977) compared ice arches forming in Bering Strait and
in the Amundsen Gulf with a cohesive Mohr–Coulomb
granular rheology and found a good correspondence
between the modeled ice arch form and the observed
profile. He followed the analytical analysis of Morrison
and Richmond (1976) that relates the arching process
with the cohesive strength of the granular material.
Ip (1993) studied the problem of ice arching in con-
verging channels with different rheologies and showed
that plastic yield curves lying on or crossing the princi-
pal stress axes allow ice arch formation, given the ade-

quate loading and thickness. His main conclusion is that
only cohesive materials are able to form arches.

The elliptical yield curve for sea ice, first introduced
by Hibler (1979), has become the most widely used
dynamic sea ice model in climate and process studies. It
represents a cohesive material because a part of it covers
the second and fourth quadrants of the principal stress
space (Fig. 2). It does not allow pure tension, which
occurs when both principal stress components are pos-
itive. Shear strength relative to compressive strength is
scaled by the major to minor axis ratio parameter e.
Cohesion increases along with shear strength as e de-
creases. A value of e 5 2 was originally chosen by Hibler
(1979) to approximately match the ratio of energy dis-
sipation in shear to energy dissipation in sea ice ridging
calculated by Rothrock (1975). Hibler (1979) showed
that decreasing e stiffens the ice flow throughout the
Arctic Basin but does not significantly alter spatial
patterns of modeled ice thickness. On the other hand,
such a change has a drastic impact on both the flow and
spatial distribution of ice thickness in smaller enclosed
areas. Kubat et al. (2006) used the ellipse and showed
that modifications of the shear strength (cohesion) may

FIG. 1. Moderate Resolution Imaging Spectroradiometer (MODIS) image of the North
Water polynya fully opened by 25 May 2001. The ice bridge prevents ice from drifting in the
polynya: (a) Kane Basin; (b) Smith Sound; (c) Greenland; and (d) Ellesmere Island, Canada.

JUNE 2009 D U M O N T E T A L . 1449

(a) (b)

Figure 4.2: (a) MODIS image of the North Water polynya on May 25 200, indicating the presence of a stable ice bridge
at the constriction point between Kane Basin and Smith Sound, blocking the flow of ice through Nares Strait. The
letters indicates a, Kane Basin, b, Smith Sound, c, Greenland and d, Ellesmere Island. From Dumont et al. (2009). (b)
Domain and boundary conditions for the idealized channel flow simulations.

stress, ⌧a, is applied and increased steadily between 0 and 1 Nm�2 over a period of 24 hours, then held

constant. Considering a quadratic wind drag of the form

⌧
a

= ⇢aCda|ua|ua, (4.9)

with ⇢a = 1.3 kg m�3, the surface air density and Cda, the air drag coe�cient, commonly set to 1.2 · 10�3

in sea ice models following Hibler (1979), this corresponds to a maximum wind speed of ⇠ 22 ms�1 (⇠
82 km h�1). These conditions are thought as to represent a strong, along-strait, winter wind episode in Nares

Strait (Samelson et al., 2006). The ocean is at rest (uw = 0), hence the force associated to gradients in the sea

surface dynamic height is also zero. The ocean drag is given by the following quadratic formula

⌧
w

= ⇢wCdw|u|u, (4.10)

where ⇢w = 1027 kg m�3 is the density of sea water and Cdw is the drag coe�cient, set to 5.5 · 10�3 (McPhee,

1980). Following Gray and Morland (1994), both drag terms are weighted by the local ice concentration, A,

to account for the fraction of open water within a grid cell.

The ice is initially undamaged (d = 1) and has a uniform thickness of 1 m, representative of thin first year

ice in Nares Strait (Haas et al., 2006). Contrary to Dumont et al. (2009), the domain is initially completely

covered with ice (A = 100%), so that to avoid prescribing the location of ice bridges. Mechanical parameter

values are based on measurements within sea ice. A speed of propagation of shear elastic waves of c =

500 ms�1 is considered (Marsan et al., 2011), such that the undamaged elastic modulus, E0 = 2c2(1 + ⌫)⇢,

is of approximately 5.0 · 108 Pa. Poisson’s ratio is set to ⌫ = 0.3 (Timco and Weeks, 2010). The undamaged
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relaxation time is set to 107 s (⇠ 115 days), a value that allows the numerical scheme to converge, while also

ensuring that unphysical viscous dissipation over low damage areas of the ice cover is insignificant. The time

for healing, th, is set to 5 · 105 s based on the ice growth rate estimates of Petrich et al. (2007) (see section

2.2.3). The field of cohesion is set once at the beginning of each simulation as in quenched disorder, to allow

a direct comparison between simulations run with a di↵erent range of values of C. All simulations use the

same spatial distribution of the noise in C, set by randomly drawing a value over each model element over the

non-dimensional interval [1, 2]. The local value is multiplied by a minimum value of the cohesion, Cmin, such

that C 2 [Cmin, 2 ⇥ Cmin], and the value of Cmin is varied between simulations. Table 4.1 summarizes all

model parameter values employed in these simulations.

An unstructured mesh with triangular elements is used. The average spatial resolution, �x, is of 2 km.

Hence the characteristic time for damage, td, and the model time step, �t, are set to �x
c = 4 seconds. The

numerical scheme is described in the following section.

Parameters Values

Poisson’s ratio ⌫ 0.3

Internal friction coe�cient µ 0.7

Ice density ⇢ 900 kg m�3

Shear wave propagation speed c 500 ms�1

Undamaged elastic modulus E0 2c2(1 + ⌫)⇢ Pa

Undamaged apparent viscosity ⌘0 107 ⇥ E0 Pa s

Undamaged relaxation time �0 107 s

Minimum apparent viscosity ⌘min 104 Pa s

Minimum cohesion Cmin 2000, 5000, 10000, 20000, 30000 Pa

Damage parameter ↵ 4

Characteristic time for damage td �t s

Characteristic time for healing th 5 · 105 s

Mean model resolution �x 2000 m

Model time step �t 4 s

c⇤ 20

Air drag coe�cient Cda 1.5 · 10�3

Air density ⇢a 1.3 kg m�3

Water drag coe�cient Cdw 5.5 · 10�3

Water density ⇢w 1027 kg m�3

Table 4.1: Model parameters for the channel flow simulations.
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4.4 Numerical scheme

The computational domain, ⌦ ⇢ R2, for the channel flow simulations is shown in figure 4.2b. The domain

boundary @⌦ is partionned as @⌦ = �
in

[ �
left

[ �
out

[ �
right

. A no-slip condition is applied at the lateral

boundaries (�
left

, �
right

). The channel is open at its top (�
in

) and bottom (�
out

) boundaries with the Neumann

condition � · n = 0. Simulations are started from rest, from a homogeneous, undamaged ice cover with d = 1,

A = 1, h = 1 m, � = 0 Pa, from undamaged mechanical parameters E0, ⌘0, �0 and from an initial field of

cohesion, C0. The numerical scheme here includes the use of a Heaviside-type function d⇤ = d1� de that kills

the pseudo-viscous term in the constitutive equation for d = 1, as in the Couette flow simulations 3.4. As the

value of the undamaged relaxation time, �0, is very large compared to the duration of the present simulations

(115 days versus 2 days in simulation time), including this threshold has no significant impact on the simulation

results. The value of the transported quantities �, d, C, A and h are all prescribed on the upstream part of

the top and bottom boundaries, ��, defined as

�� = {x 2 ⌦;u(x) · n(x) < 0}.

These are chosen so that to represent inflowing undamaged ice, with d = 1, A = 1, h = 1 m, � = 0 and C

randomly drawn from the same uniform distribution prescribed as initial condition. Simulations are run for a

time t 2 [0, +1[ and the channel flow problem reads:

(P ) : Find u, �, d, C, A, and h defined in ⌦⇥]0, +1[, such that

0 = A (⌧
a

� ⇢wCdw|u|u) +r · (h�) in ⌦⇥]0, +1[,

�0d↵�1


@�

@t
+ (u ·r)� + �a(ru, �)

�
+ d1� de� = ⌘0d0↵ exp[�c⇤(1�A)]K : D(u) in ⌦⇥]0, +1[,

@d

@t
+ (u ·r)d =

✓
min


1,

�c

�
2

,
�t

�
1

� q�
2

�
� 1

◆
1

td
d +

1

th
,

0 < d  1, in ⌦⇥]0, +1[,

@C

@t
+ (u ·r)C = 0 in ⌦⇥]0, +1[,

@h

@t
+ (u ·r)h = �h(r · u) in ⌦⇥]0, +1[,

@A

@t
+ (u ·r)A = �A(r · u) in ⌦⇥]0, +1[,

with �c and �t defined in terms of C as (2.10) and (2.12) respectively, d0↵ = (1 � ⌘
min

⌘0
)d↵ + ⌘

min

⌘0
and with

initial conditions

u(t = 0) = 0 ms�1 in ⌦,

�(t = 0) = 0 Pa in ⌦,

d(t = 0) = 1 in ⌦,

h(t = 0) = 1 m in ⌦,

A(t = 0) = 1 in ⌦,

C(t = 0) = C0 (Pa) in ⌦,
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and boundary conditions

u(t) = 0 ms�1 on �
left

⇥]0, +1[ and �
right

⇥]0, +1[,

�(t) · n = 0 Pa on �
in

⇥]0, +1[ and �
out

⇥]0, +1[,

d(t) = d� = 1 on ��⇥]0, +1[,

h(t) = h� = 1 m on ��⇥]0, +1[,

A(t) = A� = 1 on ��⇥]0, +1[,

�(t) = �� = 0 Pa on ��⇥]0, +1[,

C(t) = C� (Pa) on ��⇥]0, +1[.

4.4.1 Time discretization

Non-linearity in this version of the model is seven-folds: it arises through (1) the advection terms, (2) the

rotation and deformation terms, �a, in the constitutive equation, (3) the coupling between the damage and

constitutive equations, (4) the coupling between the momentum and the mass (thickness) and ice concentration

conservation equations, (5) the coupling between the constitutive and ice concentration equations, (6) the

coupling between the cohesion transport and damage equations (7) the quadratic formulation of the water

drag term in the momentum equation. The system of equations is discretized in time as follow.

• A semi-implicit scheme is used for the momentum equation. The internal stress term is discretized using

an implicit scheme while the water drag term is linearized as ⌧
w

= ⇢wCdw|un|un+1. The ice thickness

and concentration are both taken at the nth time step.

• As in the Couette flow simulations, a semi-implicit scheme is used for the constitutive equation in which

the advection, rotation and deformation terms are estimated using the fields of velocity and internal

stress at the nth model time step. The ice concentration is also taken at the previous model time step.

• The damage evolution equation is discretized using a semi-implicit scheme as in the Couette simulations.

• The cohesion, ice thickness and concentration equations use an explicit scheme and the value of the ice

velocity at the (n + 1)th time step.

Discretizing the time, t, such that tn = n�t, with �t > 0 and n = 0, 1, 2, ..., the system of equations reads:

An
�
⌧
a

� ⇢wCdw|un|un+1

�
+r · (hn�n+1) = 0

�0(dn+1)↵�1


�n+1 � �n

�t
+ (un ·r)�n + �a(run, �n)

�
+ d1� dn+1e�n+1 = ⌘0(d0n+1)↵ exp[�c⇤(1�An)]K : D(un+1)

dn+1 � dn

�t
+ (un ·r)dn =

✓
min


1,

�n
t

�n+1

2

,
�n

c

�n+1

1

� q�n+1

2

�
� 1

◆
1

td
dn +

1

th
, 0 < dn+1  1

Cn+1 � Cn

�t
+ (un+1 ·r)Cn = 0

hn+1 � hn

�t
+ (un+1 ·r)hn = �hn(r · un+1)

An+1 �An

�t
+ (un+1 ·r)An = �An(r · un+1)
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The channel flow problem (P) is divided into four linear subproblems. A fixed point algorithm is used in which

the momentum and constitutive equations are first solved simultaneously, as in the small deformation and

Couette flow numerical schemes (subproblem P1). The damage equation is then solved exactly for dn+1 using

the fields of �n+1 and un (subproblem P2). The value of d is updated in the constitutive equation and the two

computations are iterated until the residual of the constitutive equation drops below a prescribed tolerance.

The conservation equation for the ice thickness and concentration are solved using un+1 and both fields are

adjusted for mechanical redistribution (subproblem 4). The cohesion transport equation is then solved using

un+1 and the local damage criterion (i.e., �c and �t) is updated (subproblem P5).

Using the superscript k = 0, 1, 2, ... for the sub-iterations, the fixed point algorithm for solving the momen-

tum, constitutive and damage equations reads :

For k = 0, let
�
�n+1,0,un+1,0, dn+1,0

�
= (�n,un, dn),

For k � 0

• (P1) Find �n+1,k+1 and un+1,k+1 such that

An
�
⌧
a

� ⇢wCdw|un|un+1,k+1

�
+r · (hn�n+1) = 0 (4.11)

�0(dn+1)↵�1


�n+1 � �n

�t
+ (un ·r)�n + �a(run, �n)

�
+ d1� dn+1e�n+1 =

⌘0(d0n+1

)↵ exp[�c⇤(1�An)]K : D(un+1) (4.12)

and with

un+1,k+1 = 0 on �
left

[ �
right

,

�n+1,k+1 · n = 0 on �
in

[ �
out

,

dn+1,k+1 = d� on ��,

hn+1,k+1 = h� on ��,

An+1,k+1 = A� on ��,

�n+1,k+1 = �� on ��,

Cn+1,k+1 = C� on ��.

• (P2) Find dn+1,k+1, such that 0 < dn+1,k+1  1 and

dn+1,k+1 � dn

�t
+ (un ·r)dn =

⇣
min

h
1, �n

t

�2
n+1,k+1 , �n

c

�n+1,k+1
1 �q�n+1,k+1

2

i
� 1
⌘

1

t
d

dn + 1

t
h

. (4.13)

• Stopping criterion : compute

res� =

�����
0(dn+1,k+1)↵�1


�n+1,k+1 � �n

�t
+ (un ·r)�n + �a(run, �n)

�
+ d1� dn+1,k+1e�n+1,k+1

�⌘0(d0n+1,k+1

)↵ exp[�c⇤(1�An)]K : D(un+1,k+1)
���

If res� < tol STOP ,

and set
�
�n+1,un+1, dn+1

�
=
�
�n+1,k+1,un+1,k+1, dn+1,k+1

�
.
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While the value of the ice thickness and concentration could also be updated as part of the fixed point iteration,

modulations of these fields and their impact on the momentum balance are slow-evolving compared to that

associated with damaging. Hence variations of h and A do not a↵ect the stability of the numerical scheme nor

the rate of convergence of the solution and can be estimated outside of the FP iterations together with the

transport of the field of cohesion. This approach has also no significant impact on the model results.

As in previous numerical schemes, subproblem P1 is solved in two steps. The momentum equation (4.12)

is solved for un+1,k+1 by substituting for the following expression of �n+1,k+1 :

�n+1,k+1 = K

"
�0

�
dn+1,k

�↵�1

�t
�n � �0

�
dn+1,k

�↵�1

[(un ·r)�n + �a(run, �n)]

+⌘0

�
d0n+1,k

�↵
exp[�c⇤(1�An)]K : D(un+1,k+1)

i
(4.14)

with K =
h
�0

�
dn+1,k

�↵�1

1

�t + d1� dn+1,ke
i�1

. The internal stress �n+1,k+1 is calculated exactly by substi-

tuting un+1,k+1 into (4.14).

4.4.2 Variational formulation and discontinuous Galerkin FE approximation

Subproblem P1

Introducing the continuous functional space

V = {v 2 H1(⌦)2;v = 0 on �
left

and �
right

},

the weak form of the time-discretized momentum equation writes:

Z

⌦

�
⌧
a

� ⇢wCdw|un|un+1,k+1

� · v dx�
Z

⌦

hn�n+1 : D(v) dx +

Z

@⌦

hn
�
�n+1 · n�v ds = 0,

with the boundary integral vanishing because v = 0 on the lateral boundaries (�
left,right

) and because of the

Neumann condition � · n = 0 on the top and bottom boundaries (�
in

, �
out

). Substituting for �n+1,k+1 given

by (4.14), the variational formulation of the linear momentum subproblem reads:

(P1.1) : Find un+1,k+1 2 V such that

a(un+1,k+1,v) = l(v), 8v 2 V,

with the bilinear form a() and linear form l() defined for all u,v 2 H1(⌦)2 as

a(u,v) =

Z

⌦

K⌘0

�
d0n+1,k

�↵
exp [�c⇤(1�An)]hn [K : D(u)] dx + ⇢wCdw

Z

⌦

|un|u · v dx, (4.15)

l(v) =

Z

⌦

⌧
a

· v dx +

Z

⌦

K�0

�
dn+1,k

�↵�1

hn


(un ·r)�n + �a(run, �n)� 1

�t
�n

�
: D(v) dx

and with dn+1,k, d0n+1,k, hn, An, un and �n known from the previous fixed point or model iteration.

The problem is discretized in space by introducing the two-dimensional mesh Th, the functional space Xh
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of P
1

elements for the velocity field given by (3.16) (section 3.3), the functional space Th of P
0

discontinuous

elements for the internal stress tensor given by (3.17) and the functional space Sh of P
0

discontinuous elements

for the damage level field and other mechanical properties given by (3.5). We define the discontinuous Galerkin

approximation of the convective term for the stress tensor, ⌧n
h 2 Th, as

Z

⌦

h

⌧n
h : ⌧h dx =

X

S2L
(i)
h

Z

S

[[�n
h ]] :

✓ |un
h · n|
2

[[⌧h]]� (un
h · n){{⌧h}}

◆
ds +

Z

@⌦

h

max(0,�un
h · n) �n

h : ⌧h, 8⌧h 2 Th.

where the last term handles the flux of � through the upstream part of the boundary (Di Pietro and Ern, 2012;

Saramito, 2013). With these definitions, the finite dimensional version of P1.1 reads:

(P1.1)h : Find un+1,k+1

h 2 Vh such that

a(un+1,k+1

h ,vh) = ln+1,k+1

h (vh), 8vh 2 Vh

where

Vh = {vh 2 Xh,vh = 0 on �
left

[ �
right

}

and the discretized form of l() is

ln+1,k+1

h (v) =

Z

⌦

h

⌧
a

· vh dx +

Z

⌦

h

K�0

⇣
dn+1,k

h

⌘↵�1

hn
h


⌧n
h + �a(run

h, �n
h)� 1

�t
�n

h

�
: D(vh) dx

�
Z

@⌦

h

hn
h max(0,�un

h · n) �� : D(vh) ds (4.16)

with �n
h 2 Th, the piecewise approximation of �n, un

h 2 Xh, the approximation of un and dn+1,k
h 2 Sh, the

piecewise approximations of dn+1,k.

The computation of �n+1,k+1

h is once again explicit. The discrete version of (4.14) writes:

�n+1,k+1

h = K

2

64
�0

⇣
dn+1,k

h

⌘↵�1

�t
�n

h

��0

⇣
dn+1,k

h

⌘↵�1

[⌧n
h + �a(run

h, �n
h)] + ⌘0

⇣
d0

h
n+1,k

⌘↵
exp[�c⇤(1�An

h)]K : D(un+1,k+1

h )

�
.

(4.17)

Subproblem P2

The weak form of the damage evolution equation is obtained by introducing a scalar test function 'h 2 Sh.

The discontinuous Galerkin approximation of the advection term leads to the following discretized form of the

damage evolution subproblem:

(P2)h: Find dn+1,k+1

h 2 Sh, 0 < dn+1,k+1

h  1, such that

bh(dn+1,k+1

h , 'h) = mn+1,k+1

h ('h), 8'h 2 Sh,
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with bh() and mh() given by

bh(dn+1,k+1

h , 'h) =

Z

⌦

h

1

�t
dn+1,k+1

h 'h dx (4.18)

mn+1,k+1

h ('h) =

Z

⌦

h

"
1

�t
+

 
min

"
1,

�t
n
h

�
2

n+1,k+1

h

,
�c

n
h

�
1

n+1,k+1

h � q�
2

n+1,k+1

h

#
� 1

!
1

td

#
dn

h'h dx +

Z

⌦

h

1

th
'h dx

�
X

S2L
(i)
h

Z

S

✓
1

2
|un

h · n| [[dn
h]][['h]]� (un

h · n)[[dn
h]]{{'h}}

◆
ds

�
Z

@⌦

h

max(0,�un
h · n) (dn

h � d�)'h ds (4.19)

where the last terms in both (4.18) and (4.19) handle the flux of ice through the upstream boundaries.

Subproblem P3

The transport equation for the cohesion is written in weak form using the test function 'h 2 Sh. The dis-

cretized subproblem writes :

(P3)h: With un+1

h known, find Cn+1

h 2 Sh such that

ch(Cn+1

h , 'h) = on+1

h ('h), 8'h 2 Sh,

with ch() and oh() given by

ch(Cn+1

h , 'h) =

Z

⌦

h

1

�t
Cn+1

h 'h dx (4.20)

on+1

h ('h) =

Z

⌦

h

1

�t
Cn

h 'h dx�
X

S2L
(i)
h

Z

S

✓
1

2

��un+1

h · n�� [[Cn
h ]][['h]]� (un+1

h · n)[[Cn
h ]]{{'h}}

◆
ds

�
Z

@⌦

h

max(0,�un+1

h · n) (Cn
h � C�)'h ds (4.21)

Subproblem P4

The conservation equations for the ice thickness and concentration are also written in weak form using the

scalar test function 'h 2 Sh. Both problems read similarly as

(P4.1)h: With un+1

h known, find An+1

h 2 Sh such that

ch(An+1

h , 'h) = pn+1

h ('h), 8'h 2 Sh,

(P4.2)h: With un+1

h known, find hn+1

h 2 Sh such that

ch(hn+1

h , 'h) = pn+1

h ('h), 8'h 2 Sh,
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with the bilinear form ch() and linear form ph() given by

ch(An+1

h , 'h) =

Z

⌦

h

1

�t
An+1

h 'h dx (4.22)

pn+1

h ('h) =

Z

⌦

h

1

�t
An

h'h dx�
X

S2L
(i)
h

Z

S

✓
1

2
|un+1

h · n|[[An
h]][['h]]� (un+1

h · n)[[An
h]]{{'h}}

◆
ds

�
Z

@⌦

h

max(0,�un+1

h · n) (An
h �A�)'h ds�

Z

⌦

h

An
h(r · un+1

h ) dx (4.23)

and similarly for hh. After solving these equations, mechanical redistribution is applied to both quantities such

that :

h0
h = max[0, (1�An+1

h )]hn+1

h + hn+1

h

A0
h = An+1

h �max[0, (An+1

h � 1)]

and the fields of hn+1

h and An+1

h are set respectively to h0
h and A0

h.

Combining all these definitions leads to the following scheme for the complete discretized channel flow

problem, (P )h:

(P )h: Initialization (n = 0)

un
h = 0 ms�1 in ⌦

h

�n
h = 0 Pa in ⌦h,

dn
h = 1 in ⌦h,

Cn
h = C0 (Pa) in ⌦h,

An
h = 1 in ⌦h,

hn
h = 1 m in ⌦h,

For n � 0

• For k = 0,
⇣
�n+1,0

h ,un+1,0
h , dn+1,0

⌘
= (�n

h ,un
h, dn

h),

• For k � 0

– (P1.1)h: With �n+1,k
h ,un+1,k

h , dn+1,k
h , hn

h and An
h being known, find un+1,k+1

h 2 Vh such that

a(un+1,k+1

h ,vh) = l(n+1,k+1)

h (vh), 8vh 2 Vh,

with the bilinear and linear forms a() and lh() defined by (4.15) and (4.16) respectively and with

Vh = {vh 2 Xh,vh = 0 on �
left

[ �
right

}

– (P1.2)h : With un+1,k+1

h and dn+1,k
h known, compute �n+1,k+1

h 2 Th explicitly from (4.17).
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– (P2)h: With �n+1,k+1

h known, find dn+1,k+1

h 2 Sh, 0 < dn+1,k+1

h  1, such that

bh(dn+1,k+1

h , 'h) = mn+1,k+1

h ('h), 8'h 2 Sh,

with bh() and mh() given by (4.18) and (4.19).

– Compute

res�
h

=

������
0(dn+1,k+1

h )↵�1

"
�n+1,k+1

h � �n
h

�t
+ (⌧n

h + �a(run
h, �n

h)

#
+ d1� dn+1,k+1

h e�n+1,k+1

h

�⌘0(d0
h

n+1,k+1

)↵ exp[�c⇤(1�An
h)]K : D(un+1,k+1

h )
���

If res�
h

< tol STOP .

– Set
�
�n+1

h ,un+1

h , dn+1

h

�
=
⇣
�n+1,k+1

h ,un+1,k+1

h , dn+1,k+1

h

⌘
.

• (P3)h: With un+1

h known, find Cn+1

h 2 Sh such that

ch(Cn+1

h , 'h) = on+1

h ('h), 8'h 2 Sh,

with ch(Cn+1

h , 'h) and oh() given by (4.20) and (4.21).

• (P4.1)h: Find An+1

h 2 Sh such that

ch(An+1

h , 'h) = pn+1

h ('h), 8'h 2 Sh,

(P4.2)h: Find hn+1

h 2 Sh such that

ch(hn+1

h , 'h) = pn+1

h ('h), 8'h 2 Sh,

with ch(An+1

h , 'h), ch(hn+1

h , 'h) given by (4.22) and ph() given by (4.23) respectively. Apply mechanical

redistribution, such that 0  An+1

h  1 and 0  hn+1

h .

4.5 Results

4.5.1 Dynamical behavior

We first investigate the formation of arches and stable ice bridges by analyzing the evolution of damage and

ice velocity over the channel. As a determining factor for the formation of free arches is the cohesive nature

of the material, here simulations with a di↵erent range of values of C are compared, with the lowest value,

Cmin 2 2000, 5000, 10000, 20000, 30000 Pa and the maximum value set to 2 ⇥ Cmin. Besides impacting the

formation and stability of ice arches, the local value of C sets the local damage criterion in the Maxwell-EB

model, i.e., the local value of both the uniaxial compressive strength and tensile strength, �c and �t. Hence

the minimum value of C obviously controls the timing of the onset of damaging in these simulations and the

width of the distribution of C is expected to impact the rate at which damage propagates over the domain as

well as the extent of the damaging, with the propagation being more progressive for a larger distribution of C,

leading to a higher localization of the damage.
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Figures 4.3 through 4.6 represent the evolution of the wind forcing (blue curve) and of the damage rate

(grey curve), together with the spatial distribution of the level of damage and the profiles of the x� and

y�components of the ice velocity (ux, uy) along the central meridional axis of the channel (i.e., at x = 0) at

di↵erent times during the simulations, in the case of Cmin = 2000, 50000, 10000 and 20000 Pa respectively.

Apart for the timing and level of localization of the damage, the simulated dynamics is similar in between the

simulations (this is also true for the case of Cmin = 30000 Pa, not shown).

Near the onset of damaging, indicated by dot number 0 on the wind forcing curves, panels a, the (down-

stream) ice velocity at the centre of the channel is on the order of 10�5 ms�1 (not shown), consistent with small

and strictly elastic deformations. In all cases, the first peak in the damage rate corresponds to the propagation

of damage in the interior and downstream of the channel. Damage is observed to concentrate along curved

and concave features (see figures 4.3b to 4.6b, panel 1), which appear more localized as the value of Cmin is

increased. After this first damaging event, the flow of ice upstream of the channel stops in all simulations

(see figures 4.3c to 4.6c, panel 1). The profile of uy indicates a jump in the ice velocity that coincides with

the location of a concave arch, meeting the channel boundaries at the constriction point. Downstream of this

arch, uy varies between �10�2 to �10�1 ms�1 and is hence several orders of magnitude larger than within the

initially undamaged ice cover, consistent with an important contribution of viscous stress relaxation into large

deformations. In all cases, the profile of uy is ”stair-case”-like, indicating some regions of piecewise rigid motion

separated by strong discontinuities. Comparison of fields of the magnitude of u and of the level of damage (see

figure 4.7, panel 1 and figure 4.6b, panel 1) indeed indicate that narrow, highly damaged areas divide the ice

into relatively undamaged plates, themselves moving like solid bodies, consistent with the motion of the Arctic

sea ice cover as revealed by Synthetic Aperture Radar imagery analysis and RGPS motion products (Kwok,

2001; Moritz and Stern, 2001, see figure 1.2, chapter 1).

Damaging resumes as the wind forcing is increased beyond this point. First, it slowly propagates upstream

of the channel along closed, concave arches, along with the no-flow transition (see figures 4.3b, c and 4.4b,

c, panel 2). We observe that closed arches form somewhat further northward of the constriction point as the

range of values of C is increased. Damage then propagates rapidly along open arches in the interior and along

nearly strait features towards the exterior of the domain, leaving low damage areas in the centre and near the

domain boundaries in the converging part of the basin (see figures 4.3b to 4.6b, panel 3). These features define

a converging channel within the basin, with some regions of fast ice attached to the domain boundaries (see

figure 4.7, panel 3). Similar results were also obtained by Dumont et al. (2009). At the centre of this inner

channel, the southward flow of ice is almost uniform (see figures 4.3c to 4.6c, panel 3).

From that point on, the dynamics di↵ers between the simulations. In the case of Cmin = 2000 Pa, the

flow of ice keeps increasing as the wind stress is further intensified. Inflowing ice gets damaged as it enters

the basin. In the case of Cmin = 5000 Pa, the flow of ice both upstream and within the channel subsequently

slows down and almost, but not quite, stops (see 4.4 c, panel 4). At that point the damage rate time series

shows a third, smaller peak indicating the partial collapse of an ice bridge within the channel, after which the

ice velocity re-increases (see 4.4 c, panel 5). In the simulations with Cmin � 10000 Pa, the flow of ice upstream

and within the channel decreases and e↵ectively stops (see figures 4.5c and 4.6d, panels 4). The ice over the

basin and channel remains motionless while uy subsequently increases with the wind forcing downstream of

the channel, suggesting the formation of a stable ice bridge near the opening of the channel.

We further investigate the evolution of the internal stress in the simulations with Cmin � 10000 Pa.

Figures 4.5d and 4.6d represent the instantaneous profiles along the central meridional axis of the domain of
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Figure 4.3: (a) Time series of the wind forcing (blue curve) and of the damage rate (grey curve) in the channel
simulation using C

min

= 2000 Pa. (b) Instantaneous spatial distribution of the level of damage at the times indicated
by dots 1 to 4 on the wind forcing time series. (c) Corresponding profiles of the x� and y�components of the ice
velocity (u

x

, u
y

) along the central meridional axis of the channel.

the principal (i.e., the maximum and minimum normal) stresses, defined as

�
1

= � (�
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+ �
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�
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12

,

�
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�
s

�
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� �
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2

�
2
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,

with the convention that compressive stresses are positive.
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Figure 4.4: (a) Time series of the wind forcing (blue curve) and of the damage rate (grey curve) in the channel
simulation using C

min

= 5000 Pa. (b) Instantaneous spatial distribution of the level of damage at the times indicated
by dots 1 to 5 on the wind forcing time series. (c) Corresponding profiles of the x� and y�components of the ice
velocity (u

x

, u
y

) along the central meridional axis of the channel.

The principal stresses within the initially undamaged ice cover (panels 0) are compressive (�
1

, �
2

> 0) over

the basin, change sign at the middle of the channel (y = 0) and are tensile (�
1

, �
2

< 0) downstream of the

channel (not shown). After the first damaging event, �
2

becomes negative (tensile) over the converging part

of the basin, with �
1

> 0 (compressive), hence indicating a stress state dominated by shear (panels 1). A

maximum in �
1

collocated with a minimum in �
2

coincides with the position of the ice arch at the mouth of

the channel and with the no-flow transition, suggesting this arch was e↵ectively formed by Coulomb failure.

Downstream of this arch, other local maxima in �
1

are collocated with local minima in �
2

, consistent with

the presence of multiple arch-like features. The subsequent stress profiles (panels 2) suggest a similar failure

mechanism for the arches forming upstream of the channel. After the second damaging event, both stress

components show large fluctuations over the basin, with stress states on average compressive for y > 0 and

tensile for y < 0. Panels 4 corresponds to the stopping of the flow over the the basin and formation of the

stable bridge near the opening point of the channel. In the case of Cmin = 10000 Pa, a clear maximum in �
1

,
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Figure 4.5: Time series of the wind forcing (blue curve) and of the damage rate (grey curve) in the channel simulation
using C

min

= 10000 Pa. (b) Instantaneous spatial distribution of the level of damage at the times indicated by dots 1
to 5 on the wind forcing time series. Corresponding profiles of (c) the x� and y�components of the ice velocity and
(d) of the principal stresses, �1 and �2, along the central meridional axis of the channel.

compressive, and minimum in �
2

, tensile, indicates a state of biaxial tension and compression, hence of shear.

In the case of Cmin = 20000 Pa, both �
1

and �
2

are negative just upstream of no-flow transition, suggesting
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Figure 4.6: Time series of the wind forcing (blue curve) and of the damage rate (grey curve) in the channel simulation
using C

min

= 20000 Pa. (b) Instantaneous spatial distribution of the level of damage at the times indicated by dots 1
to 5 on the wind forcing time series. Corresponding profiles of (c) the x� and y�components of the ice velocity and
(d) of the principal stresses, �1 and �2, along the central meridional axis of the channel.

a state of biaxial tension. This is an important point, as most viscous-plastic sea ice models, based on an

elliptical yield curve suggested by Hibler (1977), do not account for pure (uniaxial or biaxial) tensile strength.
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Figure 4.7: (a) Instantaneous fields of the magnitude of the ice velocity, |u|, for the simulation with C

min

= 20000 Pa,
at the times 1, 3, 4, indicated on the corresponding time series of the wind forcing (figure 4.6a).

This suggests that these models would not be able to reproduce a stable ice bridge and self-obstruction to flow

under the conditions simulated here.

As the wind stress is further increased, both principal stresses goes to zero downstream of the ice bridge,

consistent with the formation of a stable stress-free surface. Fields of |u| show a sharp discontinuity in the drift

velocity at the location of the bridge (see figure 4.7, panel 4), with near zero velocities to the north and uniform

drift speed south of the bridge, indicating the detachment of the ice downstream of the bridge. Velocity profiles

indeed suggest a free drift state (i.e., r · (h�) = 0) south of the ice edge. Figure 4.6d, panel 5, for instance

indicates a value of uy of ⇠ 0.44 ms�1 for a northerly wind forcing of ⌧a = 1 Nm�1, consistent with the free

drift ice velocity, given by

uy =

r
⌧a

⇢wCdw

(4.24)

or

uy =

s
⇢aCda

⇢wCdw

ua ⇡ 2% ua, (4.25)

with ua ⇡ 22 ms�1 in this case.

We further comment on the nature, i.e., tensile, compressive, biaxial tensile-compressive (i.e. shear-

dominated), of the internal stress within the simulated ice cover and compare the simulated stress states

to the in-situ stress measurements over the Beaufort Sea, Arctic Ocean, reported by Weiss et al. (2007) and

Weiss and Schulson (2009). Instantaneous stress states are plotted for each model element after the second

damaging event (figure 4.8b, panel number 3), that is, before the formation of a stable ice bridge, and after

the formation of the bridge and stoppage of the ice flow (panel number 5). Figure 4.8 shows the results of the

simulation with Cmin = 20000 Pa. Similar results are obtained with lower and higher values of Cmin.

In agreement with stress measurements over the open Arctic Ocean, biaxial tensile stresses occur in a

large number before the formation of the ice bridge and large biaxial compressive stresses are not so frequent

compared to pure tensile and biaxial tensile-compressive states (Weiss et al., 2007). After the formation of the

bridge, biaxial compressive stresses become more frequent, consistent with the convergence of the flow over
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(a)

(b)

Figure 12. Strain-rate fields of the Arctic sea ice cover over a 3-day
period in winter (13–16 January 1997), obtained at a scale of
∼10 km from successive SAR satellite images
(http://www-radar.jpl.nasa.gov/rgps/radarsat.html). (a) Shear
strain-rate (in 1 day−1): the 10 × 10 km2 cells with a shear strain-rate
larger than 0.065 day−1 are indicated, revealing linear faults where
deformation is concentrated. Although these cells represent only
7.2% of the area covered by the data, they concentrate 54% of the
total shear. Other cells, with a shear strain-rate below this threshold,
are plotted in grey. (b) Divergence rate (in 1 day−1): the 10 × 10 km2

cells with a divergence rate larger than 0.02 day−1 are indicated,
revealing the same faults observed in (a). Although these cells
represent only 7.2% of the area covered by the data, they concentrate
74% of the total divergence. Other cells are plotted in uniform grey.

value increases with decreasing scale of measurement (see
Marsan et al (2004), Rampal et al (2008)) and section 3.3).
This confirms that the conditions for Coulombic faulting are
fulfilled for the sea ice cover.

3.2. In situ failure envelopes, scale-independent friction and
scale-dependent cohesion

The observations summarized in section 3.1 offer strong
support for the argument of scale-independent fracture physics
and for Coulombic faulting as a major deformation mechanism
in sea ice, but remain essentially qualitative. In situ stress
measurements were performed in the Arctic by researchers
from CRREL during several field campaigns (Richter-Menge

(a)

(b)

Figure 13. Stress states recorded during the SHEBA experiment in
the Beaufort sea at one stressmeter, from mid-October, 1997 to end
of June, 1998 (1 measure per hour). (a) plotted in a principal stress
space. The dotted line represents σ1 = qσ2 + σc with q = 5.2 and
σc = 250 kPa; (b) plotted in a τ versus σN graph. The dotted line
represents |τ | = |τ0| + µσN, with |τ0| =40 kPa and µ = 0.7. If one
assumes that the fault orientation (unknown) corresponding to the
stress states along the dotted lines maximizes the Coulomb stress,
the internal friction coefficient is given by relation (4a), µi = 0.9.
(From Weiss et al (2007).)

and Elder 1998, Richter-Menge et al 2002). The stress sensors
determine the stress acting on a point in the horizontal plane of
the ice cover by measuring changes in the radial deformation of
a cylindrical annulus, allowing one to estimate the associated
maximum (σ1) and intermediate (σ2) principal stresses (Cox
and Johnson 1983). Figure 13 shows in principal stress
space the stress states recorded at one sensor from October
1997 to July 1998 (one measure/hour) in the Beaufort sea
during the SHEBA experiment (Richter-Menge et al 2002,
Weiss et al 2007). Data recorded on different sensors or
during different field campaigns give similar results. In
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Figure 4.8: (a) Stress states in principal stress space recorded by one stress-meter (one measurement per hour) during
the SHEBA experiment in the Beaufort sea (from mid-October, 1997 to end of June, 1998). The dashed red lines
represent the Coulombic branches of a failure envelope for �

c

= 250 kPa and q = 5.2. From Weiss and Schulson (2009).
(b) Instantaneous stress states simulated with the Maxwell-EB model using C

min

= 20000 Pa (20 kPa), before and after
the formation of the ice bridge (at the times numbered 3 and 5 on the corresponding time series of the wind forcing,
figure 4.6a). The dashed red lines represent the damage criterion corresponding to the highest value of cohesion over
the domain (�

c

⇡ 154 kPa, �
t

= 42 kPa, q = 3.7). In both cases, (�1,�2) and (�2,�1) are plotted, resulting in symmetry
about the axis �1 = �2.

the basin and within the channel. Tensile stresses on the other hand are less frequent, but still present in

a significant number. This again supports the relevance of accounting for some resistance of the ice in pure

tension in sea ice models. It is also important to note that isotropic stresses (�
1

= �
2

) are frequent in the

observations and absent in the model. Theses are associated with thermal processes, i.e., thermal expansion

and fracturing (Richter-Menge et al., 2002), which are not represented in the present Maxwell-EB framework.

4.5.2 Ice thickness and concentration

In this section we briefly describe the evolution of the fields of ice concentration and thickness simulated by the

Maxwell-EB model. Figures 4.9 and 4.10 show respectively the instantaneous fields of A and h at the times

3 to 7 indicated on the time series of the damage rate and wind forcing, figure 4.5a, for the simulation with

Cmin = 10000 Pa. Simulations using other values of Cmin show a similar evolution of both A and h.

The presence of multiple arch-like features within and downstream of the channel appears clearly on the

fields of ice concentration (see figure 4.9, panel number 3). The value of A rapidly drops to  0.9 at the

opening point of the channel and along the domain boundaries downstream of the channel. As our functional

dependance of the mechanical parameters on the ice concentration, based on the dependance of the ice strength

in compression (P ) in the VP model of Hibler (1979) (see equations 4.6 and 4.7), allows for the value of E

and ⌘ to drop by almost 90% for A = 0.9 and c⇤ = 20, this is consistent with the detachment of the ice at the

opening point of the channel, i.e., where the velocity field becomes divergent. Observational studies of sea ice

in narrow straits however have emphasized a preferential location of stable ice bridges near constriction points

(e.g. Kwok et al., 2010). As in most channel geometries explored in the present simulations (not shown), an ice

arch does form near the constriction point but ice preferentially detaches along an arch located at the opening

point of the channel, this might indicate that a lower value of c⇤ would be more appropriate in the Maxwell-EB

model, in which case a sensitivity study of the ice bridge position on the value of c⇤ would be needed.
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Also evident from these fields is the di↵usivity of the numerical scheme. While the ice edge is clearly defined

at the location of the bridge, the edge of the detached, free drifting ice is much less clearly defined. After a

short time, gradients in ice concentration associated with the presence of arch-like features downstream of the

bridge are also significantly smoothed due to di↵usion. Strong di↵usion also appears obvious from the fields of

the level of damage (see figures 4.3b to 4.6b). It is most important within the free-drifting ice. Upstream of

the ice bridge, damaging tends to refine and re-increase gradients in all fields.

3 4 5 6 7

Figure 4.9: Fields of the instantaneous ice concentration, A, at the times indicated by numbers 3 to 7 on figure 4.5a.

3 4 5 6 7

Figure 4.10: Fields of the instantaneous mean ice thickness, h, at the times indicated by numbers 3 to 7 on figure 4.5a.

The fields of ice thickness also show a sharp gradient at the location of the ice bridge and a smoothed edge of

the detached ice. Over the converging part of the basin, the thickness increases over time along linear features,

defining ice ridges. Figure 4.11b shows the log-normal frequency histogram of the ice thickness corresponding

to the fields of figure 4.10. At all times, the distribution of h is dominated by a strong mode at the initial

value of h = 1 m. It is also strongly asymmetric, consistent with thickness distributions estimated for first and

second-year ice at the end of the growth season, i.e., for an ice cover with little history of melting (e.g., Haas,

2009). The tail of the distribution (h > 1 m), appears to fit a negative exponential function. The associated

slope decreases with time as the ice in the converging part of the domain thickens. This statistical property

has been observed for the tail of probability density functions (PDF) calculated for in-situ sea ice thickness

measurements (Wadhams, 1994; Haas, 2009), indicating the strong spatial localization of the thick, ridged ice.

In the Maxwell-EB model, this property seems to arise naturally from the capacity of reproducing the strong

spatial localization of sea ice deformation.
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The part of the frequency histogram for h < 0.8 m corresponds to the ice at the opening and downstream

of the channel. As ice drifts out of the domain, a second mode appears and progressively moves towards h = 0,

consistent with the increasing presence of open water. The distribution of the ice concentration, figure 4.11a,

shows a similar behaviour. This mode however, is not nearly as important as that normally obtained for PDF

of sea ice thickness measurements in the presence of open water (e.g., Wadhams, 1981, 1994; Haas et al., 2006;

Haas, 2009). The fact that this mode is small here and the frequency histogram (approximating a PDF here)

almost flat between h = 0 and h ⇡ 0.8 m is mostly attributable to the numerical di↵usion of gradients within

and especially at the edge of the free drifting ice.
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Figure 4.11: Log-normal frequency distribution of (a) the ice concentration and (b) the ice thickness corresponding to
the fields of A and h shown in figures 4.9 and 4.10.
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4.6 Concluding remarks

In this chapter, the Maxwell-EB rheological framework was used for modelling the dynamics of sea ice on

geophysical scales. The simulations described here represent the fracturing and drift of sea ice within a narrow

strait under the action of orographically channeled winds. The simulations have shown that the model is able

to reproduce:

• The formation of concave arch-like faults within, downstream and, when increasing the value of C, further

upstream of the channel. As opposed to previous viscous-plastic model simulations, both idealized and

realistic, of the flow through Nares strait and in agreement with observations, the Maxwell-EB model

reproduces a high density of arch-like faults within the ice cover, with the associated narrow zones of low

ice concentration.

• The formation of a stable ice bridge and the stoppage of the flow of ice upstream of the channel, provided

that the ice has su�cient cohesion, and the opening of the basin downstream of the bridge. It is important

to note that the simulations presented here are by no means an attempt to determine a physically

appropriate range of values of the cohesion and of the critical tensile strength for the sea ice cover in

the Maxwell-EB model, as the presence of a stable ice bridge is expected to depend on the applied wind

forcing, on the domain geometry, the channel width, etc. Adequate values of C at the scale of the

model element should rather be determined from in-situ stress measurements within sea ice and from the

appropriate scaling laws (Weiss et al., 2007; Schulson, 2004).

• Discontinuities in the ice velocity fields between regions of uniform, plate-like motion, consistent with

RGPS observations (see figure 1.2, left panels). In particular, the model reproduces the very sharp

gradients in ice velocity, concentration and thickness associated with the edge of the bridge.

• States of stress that are overall in good agreement with in-situ measurements in Arctic sea ice.

• The formation of ice ridges, with a strong localization of the thickest ice and an associated thickness

frequency distribution that fits a negative exponential, in agreement with probability density functions

calculated from thickness measurement within sea ice. Due to the high di↵usion of the numerical scheme,

the mode associated with the presence of open water is underrepresented.

This last point is an important outcome of this first implementation of the Maxwell-EB rheological frame-

work in a realistic context, as the adequate representation of the mechanical redistribution of the ice thickness,

in particular the formation of ice ridges, has been the subject of numerous studies since the 1970’s and contin-

ues to challenge the sea ice modelling community to this day. Multi-thickness categories schemes based on the

pioneer work of Thorndike et al. (1975) and Rothrock (1975) are widely used in models to allow accounting

for the presence of di↵erent ice thicknesses at the subgrid scale and determining the thickness of the sea ice

involved in the ridging process. Such schemes handle an evolution equation for the thickness distribution over

each model grid cell and use redistribution functions based on the simulated strain rates. As the strain rate

tensor itself does not directly provide the information on the relative amount of opening and ridging (and also

sliding) within the ice cover, expressions for these modes of redistribution need to be prescribed in such models,

the form of which can be set in an ad-hoc manner (Thorndike et al., 1975), estimated empirically from strain

rates observations (Stern et al., 1995) or determined based on of the prescribed form of the yield criteria and

flow rule in the case of plastic models (Rothrock, 1975).
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Although the excessively simple redistribution function used here does not include multiple ice categories

nor allow prescribing the thickness of the ice involved in the ridging, the Maxwell-EB model seems to be able

to reproduce the observed distribution of extreme thickness values corresponding to ridged ice because of its

adequate representation of the mechanical processes and, in particular, of the strong spatial localization of

strain rates within the sea ice cover. Of course, larger scale and longer term simulations would be required

in order to investigate more extensively the behaviour of the Maxwell-EB model in terms of the mechanical

redistribution of sea ice. A thorough comparison of simulated and measured thickness distributions also calls

for the representation of thermodynamic processes in the model, which contrary to mechanical redistribution,

are expected to ”seek the mean” (Thorndike et al., 1975) and smooth the distribution by allowing ice to grow

over open water in the winter, thinner ice to thicken faster than thick ice and thick ice to melt in the summer

(Haas, 2009).
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Chapter 5

Conclusions

5.1 A brief summary

This thesis presents a new continuum mechanics framework suited for modelling the brittle behaviour and

deformation of the sea ice cover that is built from the following ingredients:

1. a constitutive law combining linear elasticity and a dissipative mechanism for the stress,

2. a threshold mechanism for brittle failure, in the form of a Mohr-Coulomb and tensile damage criterion,

3. disorder in the local damage criterion, representing the material’s natural heterogeneity and expressing

the spatial variability of its mechanical strength,

4. an isotropic progressive damage mechanism allowing for the elastic redistribution of the stress from over-

to sub-critical areas of the material and involving a non-dimensional scalar damage parameter that reflects

the integrated history of the damaging,

5. a recovery, or healing, mechanism for the material’s mechanical properties.

The leading novelty of this mechanical framework, named Maxwell-Elasto-Brittle, with respect to the original

Elasto-Brittle (Amitrano et al., 1999; Girard et al., 2010a) and to the recent EB-based sea ice model NeXtSIM

(Bouillon and Rampal, 2015; Rampal et al., 2015) lies in the formulation of the constitutive law, that is, in the

inclusion of a viscous-like relaxation term for the elastic stresses. Like the elastic modulus in the EB model,

the associated apparent viscosity was coupled to the local level of damage, with the idea of letting internal

stresses dissipate into large, permanent deformations where the ice cover is highly fractured while allowing for

relatively undamaged areas of the ice to retain the memory of the stresses associated with elastic deformations.

The following paragraphs summarize the main conclusions drawn from the analysis of the Maxwell-EB

simulations presented in this manuscript.

A first series of conclusions relates to the mechanical behaviour reproduced by the Maxwell-EB model.

The set of small-deformations simulations presented in chapter 2 has allowed demonstrating that the model

represents:

• the strong localization of deformation in both space and time, indicative of its heterogeneity and inter-

mittency, and the associated scaling laws,
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• the anisotropy of the deformation due to the elastic kernel describing the Coulomb stress redistribution

at the onset of damaging,

• a competition between healing and damaging within the material, which translates into two main types

of behaviour : (1) a succession of rapid damaging events with the associated stress relaxation and slower

recovery periods, characterized by the activation of new faults with di↵erent shapes and orientations and

(2) creep-like deformation and the persistence of activated faults,

• the emergence of a marginally stable state in which the material remains near criticality, with long range

temporal correlations in the damage rate that translate into an invariance of scales at all time scales

below the characteristic time of healing of the material.

The last point in particular is the consequence of allowing for the relaxation of the internal stresses, at a rate

that depends on the local level of damage. A sensitivity analysis on the rate of decrease of the relaxation time

with increasing level of damage, set by the damage parameter ↵, has revealed that a too brutal relaxation of

the internal stress at the onset of damaging e↵ectively results in the loss of temporal correlations in the damage

rate. In this case the model becomes essentially elasto-plastic. The deformation is still highly localized in space,

although the emergence of spatial scale invariance remains to be established, but exhibits no intermittency.

Chapter 3 described the transition from a small-deformation to a large-deformation Maxwell-EB model and,

in particular, the treatment of the advection processes and of the rotation and deformation of the internal stress

tensor terms in the constitutive equation. A numerical scheme for the large-deformation dynamical model was

presented, and used in the context of simulating a laboratory Couette experiment performed on a thin sheet

of ice. The main outcomes of this chapter are:

• As the model reproduces the very strong gradients observed within sea ice, our current discontinuous

Galerkin approximation of advection terms using finite element approximations of order 0 is expected to

lead to significant numerical di↵usion within the advected fields.

• The Couette flow simulations allowed identifying some numerical limitations of the model as well as

some important requirements on the relative value of the model parameters. An important numerical

limitation pertains to the treatment of the progressive damage mechanism and the implicit requirement

that the time step be comparable to that of the propagation of damage, td, within the simulated material.

In the context of ice (fresh ice or sea ice) at the laboratory scale, this requirement results in unpractical

simulation times. Hence a slower propagation of damage was assumed. This assumption translated

into an insu�cient separation of scales between the rate of damage propagation and the rate of viscous

relaxation of the internal stress within the material, itself limited by the numerics, i.e., by the ”large

Weissenberg number problem”. Consequently the simulated deformation was too viscous-like. One

important requirement for the adequate representation of the brittle character of the deformation in the

Maxwell-EB model hence consists in that the relaxation time for the stress over low damage areas of the

ice be orders of magnitude higher than the characteristic time for the propagation of damage.

• Another important requirement for the proper representation of the competition between fracturing and

refreezing within the ice cover when large deformations occur is that the relaxation time for the internal

stress over low damage areas be larger than the characteristic time for healing. This condition ensures

that healing is e�cient in allowing damaged areas to recover and the stress the material to significantly

build up, so that to trigger subsequent extensive damaging events.
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Finally, chapter 3 presented a first implementation of the Maxwell-EB sea ice model in a realistic context.

The main conclusions drawn from the channel flow simulations are:

• The Maxwell-EB rheological framework simulates the propagation and localization of damage along

narrow, concave arch-like features and the formation of a stable ice bridge within the channel with the

associated stoppage of the ice flow.

• The model represents the formation of ice ”plates”, or floes, and their piecewise rigid motion, with clear

discontinuities in the velocity field between the floes, consistent with observations.

• The simulated states of stress are in good agreement with measurements within the Arctic ice pack.

Uniaxial and biaxial (i.e., ”pure”) tensile stresses were shown to be frequent, hence emphasizing the

importance of accounting for some resistance in pure tension in sea ice models.

• The model reproduces the formation of ice ridges, with the associated thickness distribution fitting a

negative exponential, also in agreement with observations. Numerical di↵usion however leads to an

underrepresentation of the mode corresponding to open water.

Another point worth mentioning is that in these realistic simulations, setting the time step to the charac-

teristic time for damage, td, estimated from the speed of propagation of shear elastic waves within the ice cover

and from the model spatial resolution (2 km), lead to reasonable simulation times. The relaxation time for the

internal stress, �, was set to 107 seconds over undamaged ice, allowing the convergence of the numerical scheme.

The large separation between �t (4 seconds) and �0 lead to a proper representation of the brittle character

of the deformation. This value of the undamaged relaxation time corresponds to about 115 days (almost four

months), and hence is comparable to the duration of the polar winter (about 5 months). Therefore, unphysical

viscous dissipation is expected to be negligible in these realistic simulations of the Arctic sea ice cover.

5.2 Some perspectives

5.2.1 Towards a fully continuous formulation of the Maxwell-EB rheology

Some 95 pages ago, in chapter 2, a continuous expression was presented for the damage term in the damage

evolution equation (see equation 2.20). At that point, it was mentioned that this formulation relies on the

specific use of a backward explicit time discretization scheme of order 1. The progressive damage mechanism

in the Maxwell-EB framework is indeed an intrinsically discrete process, tied to the local value of the damage

criterion and to the spatial discretization of the model. The current representation of this mechanism constitutes

a limiting factor in the numerical development of the model in many respects.

• First, the precise representation of this mechanism implies setting the model time step to the characteristic

time for damage, td. In some applications of the model, in particular when simulating the deformation of

ice at the laboratory scale, this leads to unpractical simulation times. This issue can be handled in two

ways. First, the model time step can be increased with respect to td. However for time steps significantly

larger than td, elastic interactions within the simulated material are hindered and numerical instabilities

arise. Second, for the sake of computational e�ciency the time of propagation of damage in the material

can be assumed longer. However, this assumption might result in an inadequate representation of the
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brittle character of the deformation. Luckily, in some sense, for regional and global sea ice model spatial

resolutions, td, and hence �t, falls between a couple of seconds and a couple of minutes, leading to

reasonable simulation times. However, the dependance of the model time step on the spatial resolution

and speed of propagation of damage within the simulated material still represents a limitation of the

current Maxwell-EB framework as it restricts its range of applications.

• Second, the dependance of td (hence of �t) on the spatial resolution of the model precludes the use of

multi-resolution mesh grids, otherwise one of the main advantage of the finite element approach. On the

one hand, setting td based on the largest element of a multi-resolution grid would indeed result in a loss

in the resolution of the damage propagation over higher resolution areas of the domain. On the other

hand, setting td based on the smallest model element would not be physically rigorous as it implies a

speed of propagation of damage that is locally (i.e., over the largest elements) higher the speed of elastic

waves in the material.

It is also important to note that the introduction of disorder in the damage criterion at the smallest

resolved scale, combined to the tendency of the model to localize deformation and damaging at the scale

of the mesh element, whatever the element size, also precludes the use of adaptive remeshing techniques

with the Maxwell-EB model. Increasing spatial resolution where gradients are steep would e↵ectively lead

to finer features, but would not help ”capturing” the solution. Instead, the solution would be ever-evolving

towards an increased localization. In a model based on a finite correlation length for the damaging and

allowing the convergence of the solution at a finite scale, adaptive remeshing would otherwise be easily

implemented in our discontinuous Galerkin numerical scheme.

• Finally, our current treatment of the damage evolution, based on the direct calculation of the distance of

the local state of stress to the local damage criterion, is consistent with finite element approximations of

order 0 for the fields of cohesion, internal stress and level of damage.

These numerical limitations prompts for a truly continuous mathematical representation of the damage

mechanism in the Maxwell-EB model. This would allow the use of implicit, higher-order time-stepping schemes,

of a larger model time step, of multi-resolution mesh grids and of higher order finite element approximations for

the internal stress and damage fields, which as demonstrated in section 3.2, would significantly help reducing

the numerical di↵usion stemming from advection.

It is also important to note that the use of low order finite element approximations is not restricted to the

present mechanical framework. To our knowledge, in no Eulerian finite element scheme for sea ice modelling

the degree of polynomial approximations have been increased beyond 1 for the velocity (e.g., Lietaer et al.,

2008; Terwisscha van Scheltinga et al., 2010; Danilov et al., 2015) and the ice thickness and concentration

(e.g., Terwisscha van Scheltinga et al., 2010; Danilov et al., 2015) and beyond 0 for the internal stress and

ice strength (i.e., the pressure P in viscous-plastic type models, e.g., Lietaer et al., 2008; Danilov et al.,

2015). Lietaer et al. (2008), who have used the two-levels thickness model of (Hibler, 1979) and a mechanical

redistribution scheme consistent with a constant-by-element thickness and concentration similar to the one

employed here, have also used order 0 FE approximations for the ice thickness and concentration. Increasing

the order of the finite element approximations would probably result in important improvements of model

performances. Discontinuous Galerkin methods would represent a compact, numerically e�cient and flexible

way to do so.

On the physical point of view however, a critical question remains unanswered: are we dealing with an

inherently discrete problem? In other words, can we represent the mechanical behaviour simulated with
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the Maxwell-EB framework with a truly continuous model? The same question was asked in the context

of modelling the Earth crust (Main, 1996). This point might constitute the main challenge in the future

development of EB-type sea ice models. On the one hand, the classical viscous-plastic framework might be

numerically more convenient, especially in the context of a coupling with an atmosphere and ocean component,

but it raises issues about the representation of the brittle character of the ice deformation. The present Maxwell-

EB framework on the other hand, reproduces the brittle character of the deformation, with the observed strong

spatial gradients within the ice velocity, strain and stress fields, but this performance comes at the cost of

numerical limitations.

5.2.2 Future developments and additions to the rheology

Besides numerical improvements, we can also think of relevant additions to the Maxwell-EB rheological frame-

work itself. Here some of these possible enhancements are briefly discussed.

• Coupling Poisson’s ratio to the level of damage:

In the present implementation of the Maxwell-EB rheology, Poisson’s ratio, ⌫, is taken constant. As

mentioned in section 2.2.4, rock mechanics experiments have shown that ⌫ e↵ectively increases within

a fractured material consistent with its dilatation (Jaeger and Cook, 1979; Martin and Chandler, 1994;

Heap et al., 2009). This additional level of complexity could be easily accounted for in the Maxwell-EB

model by allowing Poisson’s ratio to evolve with the level of damage, equivalent to letting the sti↵ness

tensor K be a function of d. In this case, an appropriate form for the coupling between ⌫ and d would

need to be determined and tested through sensitivity analyses. In particular, the dependance of ⌫ on d

is expected to impact the orientation of the simulated sets of faults.

• Coupling the cohesion and level of damage:

Another possible refinement to the rheology would consist in letting the cohesion of the material vary as

a function of the level of damage, consistent with a local decrease of the failure threshold over weakened

elements. In general, this is expected to result in more abrupt fracturing events as elements are susceptible

to get damaged over successive time steps. By the same fact, it can result in a more rapid loss of the

memory of elastic stresses within the fault. The form of this additional coupling, as well as its impacts

on the spatial and temporal localization of the deformation and associated scaling laws needs to be

determined.

• A threshold for permanent deformations:

In the Maxwell-EB framework, a damage threshold is introduced in the form of a Mohr-Coulomb and

tensile criterion to represent terminal failure within a brittle material. The model does not include a

deformation threshold. Besides mechanical strength recovery through healing, no mechanism represents

impediments to permanent deformations nor ”true” friction along faults once formed. Such mechanisms

could be roughly accounted for by prescribing a minimum value of the internal stress for permanent

deformations. This is represented schematically on figure 5.1a by the sliding friction element, connected

in parallel to the dashpot and in series with the spring. One possible formulation for this threshold is

represented on figure 5.1b by the branch of equation

�
1

� q�
2

= 0. (5.1)
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Combining both this threshold and the damage criterion, the simulated deformation would be partionned

as follow:

– The deformation of undamaged elements would be strictly elastic,

– The deformation of damaged elements with �
1

> q�
2

would be split between small, elastic and

permanent, potentially large, deformations,

– The deformation of damaged elements with �
1

< q�
2

would again be strictly elastic.

(b)

�c

�t

�c

�t

�
2

(a)

�1

� q�2

= 0

Figure 5.1: (a) Schematic representation of the Maxwell-EB model including a threshold for permanent deformations.
(b) Damage criterion of the Maxwell-EB model in the principal stresses plane, combining the Mohr-Coulomb and
maximum tensile stress criteria (solid line), and the criteria for the deformation in the viscous regime, with q (i.e., µ)
set to the same value as in the Mohr-Coulomb criteria (dashed black lines). With the inclusion of a threshold on the
permanent deformations, the deformation of elements with a state of stress lying inside the grey shaded area would be
strictly elastic.

Finally, the next logical step in the development of the Maxwell-EB sea ice model consists in a complete

validation of the mechanical framework by comparison of the simulated deformation rates and associated scaling

properties to that estimated from the available ice buoy and RGPS Arctic ice motion data. These analyses will

necessitate carrying numerical experiments with both realistic wind forcing and ocean currents over periods

of days to months and over domains of regional to global scales. Over such long time scales, thermodynamics

e↵ects will also need to be accounted for. Parameterizations of heat fluxes between the atmosphere, the

ice cover and the ocean, as well as a refined formulation of the healing rate in terms of the local di↵erence

between the surface air temperature and underlying water temperature will need to be included. Conversely,

the representation of thermodynamic processes in the model will open multiple perspectives of analyses. For

instance, it will allow assessing the impact of the Maxwell-EB rheology on the simulated thickness distribution

of sea ice, as well as on the simulated heat fluxes and ice melt and growth rates of over the Arctic.
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