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Préparation d’oligomères de cellulose par dépolymérisation pour la synthèse de 

nouveaux composés amphiphiles bio-sourcés 

 

Le but de cette thèse est de produire des oligomères de cellulose de dispersité faible. 

Pour ce faire, deux méthodes ont été imaginées : 

 La méthode « fishing » où des oligomères de cellulose sont obtenus par hydrolyse acide 

puis sont séparés par solubilisation sélective dans une phase organique à l’aide d’un 

polymère synthétique. Le ratio des tailles du polymère synthétique et des oligomères de 

cellulose sera responsable de la sélectivité. 

 La méthode « masking » où des portions de cellulose de la taille des futurs oligomères 

sont protégées par un polymère synthétique lors d’une hydrolyse enzymatique. 

Dans les deux cas, les polymères synthétiques contiennent des acides boroniques qui 

permettent une interaction réversible avec les sucres. 

Malgré de nombreuses tentatives, ces deux méthodes n’ont pas été couronnées de 

succès. Pour la première, le procédé n’était pas sélectif. Pour la seconde, le polymère 

permettant  une interaction tout au long de la chaine de cellulose n’a pas pu être synthétisé. 

La dispersité des oligomères obtenus par hydrolyse acide (degrés de polymérisation (DP) de 

1 à 12) a cependant pu être réduite de façon satisfaisante en solubilisant les DP les plus 

faibles dans le méthanol. 

Enfin, la fraction insoluble dans le méthanol, après fonctionnalisation de l’extrémité 

réductrice par un groupement azide, a été couplée à un acide stéarique fonctionnalisé 

alcyne par chimie « click ». L’auto-assemblage de ce nouveau composé amphiphile a été 

étudié dans l’eau, la CMC a été mesurée à 100 mg.L-1. Les objets observés sont sphériques, 

de taille homogène avec un diamètre moyen de 140 nm ce qui indique une morphologie en 

vésicule. 

 

Mots-clés : Cellulose, hydrolyse acide, chimie « click », composé amphiphile, RAFT, acide 

boronique, bio-sourcé 

 

 

 

 

  



   

 

Cellulose oligomers preparation by depolymerisation for the synthesis of new bio-

based amphiphilic compounds 

 

The purpose of this study is to produce uniform cellulose oligomers. In this frame, 

two methods were considered: 

 For the “fishing” method, the oligomers obtained by acidic hydrolysis of cellulose are 

separated by selective solubilisation in an organic phase thanks to a synthetic polymer. 

The size ratio between the synthetic polymer and the cellulose oligomer would be 

responsible for the selectivity. 

 For the “masking” method, parts of cellulose backbone having the size of the future 

oligomers are protected with a synthetic polymer during an enzymatic hydrolysis. 

In both cases, the synthetic polymers contain boronic acid groups that interact 

reversibly with saccharides. 

Despite various attempts, these two methods were not crowned with success. The 

first one was eventually not selective. For the second one, the polymer allowing an 

interaction all along the cellulose backbone could not be synthesised. The dispersity of the 

oligomers obtained by acidic hydrolysis (polymerisation degree (DP) from 1 to 12) was 

satisfactorily decreased by solubilising the smaller DP in methanol. 

To finish, the methanol-insoluble fraction was functionalised at the reducing end with 

an azide group. It was then coupled to an alkyne-functionalised stearic acid by click 

chemistry. The self-assembly of this new amphiphilic compound was studied in water, the 

CMC was measured at 100 mg.L-1. The particles formed were spherical, homogeneous and 

had an average diameter of 140 nm, which indicate a vesicle morphology. 

 

Key words: Cellulose, acidic hydrolysis, click chemistry, amphiphilic compounds, RAFT, 

boronic acid, bio-based 
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« On ne fait jamais attention à ce qui a été fait ; on ne voit que ce qui 

reste à faire. », Marie Curie 

 

 

« En essayant continuellement, on finit par réussir, donc : plus ça rate, 

plus on a de chances que ça marche » (Citation Shadok) 
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Résumé long 
  

La cellulose est un polymère naturel et abondant mais dont le potentiel n’est pas 

entièrement exploité car sa cristallinité empêche sa solubilisation dans la plupart des 

solvants usuels. Seuls des solvants peu courants, et donc parfois chers, y parviennent mais 

les solutions souvent très visqueuses pouvant entrainer des dégradations. Une 

fonctionnalisation améliore grandement la solubilité de la cellulose mais sa structure de 

départ ainsi que certaines propriétés sont altérées. 

Les oligomères de cellulose ont la même structure que cette dernière mais avec un 

degré de polymérisation réduit qui leur permet d’être solubles dans l’eau. Ils sont obtenus 

par synthèse chimique ou enzymatique ou par hydrolyse de la cellulose par voie acide ou 

enzymatique ainsi que par d’autres moyens moins étudiés. Par la suite et selon les 

applications, il est aussi intéressant de les séparer selon leur taille. Pour ce faire, la méthode 

la plus courante est la chromatographie. Cependant, les faibles rendements en font une 

technique utilisée par manque d’alternative. 

 

L’objectif de cette thèse est donc de produire des oligomères de cellulose les plus 

uniformes possible sans utiliser de méthode chromatographique. Deux méthodes ont donc 

été envisagées (Figure 1): 

 La première, appelée « masking », consiste à protéger des portions de cellulose de la 

taille des futurs oligomères avec un polymère synthétique pendant que les parties non-

protégées sont hydrolysées par voie enzymatique. 

 La deuxième, dite « fishing », doit permettre de solubiliser sélectivement des oligomères 

de cellulose dans une phase organique à l’aide d’un copolymère. La sélectivité viendrait 

du ratio entre la taille du polymère et celle de l’oligomère récupéré. Plus long sera le 

polymère, plus long sera l’oligomère solubilisé. 

 

Ces deux méthodes nécessitant une interaction réversible avec la cellulose, les acides 

boroniques ont été choisis car ils permettent une complexation réversible sur les diols 

présents sur les sucres. 
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Figure 1. Schéma des méthodes “masking” et “fishing” 

 

Pour vérifier la faisabilité de ces méthodes, une étude préliminaire sur des composés 

modèles a permis de mieux comprendre et mettre en évidence l’interaction entre les acides 

boroniques et les sucres. Le méthylglucoside et le glucose ont servi de modèle pour la 

cellulose et le polymère a été remplacé par l’acide phénylboronique. Il a été montré que 

l’acide boronique se complexait préférentiellement en position 4,6 sur le methylglucoside et 

en position 1,2 et 3,5 sur la forme α-furanose du glucose. Il a aussi été observé que 

l’anhydride boronique pouvait se complexer sur les positions 2,3 du méthylglucoside. 

 

L’étude préliminaire sur la complexation entre les acides boroniques et les sucres a 

également été effectuée sur d’autres monosaccharides que ceux trouvés dans la cellulose 

pour élargir le champ des applications de ces méthodes à d’autres polysaccharides comme 

les hémicelluloses. Les résultats sont répertoriés dans le Tableau 1. 
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Tableau 1. Structures des complexes déterminées lors de l’étude préliminaire avec l’acide 
phénylboronique selon le sucre étudié et le solvant de complexation 

Sucre étudié 

Complexation dans CDCl3 Complexation dans DMSO-d6 

Forme du 

sucre 

Position de(s) 

acide(s) boronique(s) 

Forme du 

sucre 

Position de(s) acide(s) 

boronique(s) 

Xylose α-furanose 1,2 & 3,5 α-furanose 1,2 & 3,5 

Mannose 
Furanose ou 

pyranose 
2,3 & 5,6 ou 4,6 Non étudié 

Arabinose α-furanose 1,2 & 3,4 α-furanose 1,2 & 3,4 

Galactose Non déterminé 

Pyranose 4,6 

Pyranose 3,4,6 

α-pyranose 1,2 & 3,4,6 

Cellobiose Pas de complexation - 1,2 et/ou 4’,6’ 

 

Sachant que les positions 1 et 4 ne sont pas libres sur la chaîne de cellulose, cette 

étude a permis de définir le type de polymère le plus approprié à chaque méthode : 

 Pour la méthode « masking », un copolymère statistique de styrène et d’acide 4-

vinylphénylboronique (AVB) sous forme d’anhydride avec l’acide phénylboronique (APB) 

(Figure 2) devrait permettre une interaction tout au long de la chaîne de cellulose afin de 

protéger de nombreuses liaisons osidiques lors de la dépolymérisation enzymatique. La 

nécessité d’avoir un polymère comportant des anhydrides boroniques et le besoin 

d’éviter la formation d’un réseau d’anhydride exigent l’utilisation de ces deux composés. 

 Pour la méthode « fishing », un copolymère à blocs polystyrène-poly(acide 4-

vinylphénylboronique) (Figure 2) semble préférable afin d’éviter la formation d’un 

réseau car deux acides boroniques pourraient se complexer sur le même oligomère. 

Cependant, la taille du bloc contenant les acides boroniques doit être ajustée pour éviter 

la formation de réseau et que la méthode ne soit pas compromise par la possible 

formation d’anhydrides. 

 

 
Figure 2. Structure d’un copolymère statistique de styrène et d’AVB sous forme d’anhydride avec 

l’APB et d’un copolymère à blocs polystyrène-poly(AVB) 
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La synthèse des deux polymères définis en Figure 2 a ensuite été étudiée. Tout 

d’abord, comme la dispersité des polymères doit être la plus uniforme possible, la 

polymérisation anionique a été envisagée. Cependant, l’AVB, protégé ou non, désactive les 

anions et la fonctionnalisation post-polymérisation a conduit à des polymères insolubles. 

Pour pallier à ces difficultés, nous nous sommes tournés vers la polymérisation radicalaire de 

type RAFT. Différents paramètres comme la nature du monomère, de l’agent de transfert ou 

du solvant ont été étudiés pour optimiser les conditions de polymérisation. 

Pour le copolymère choisi pour la méthode « masking », deux voies de synthèse ont 

été imaginées : 

 Les anhydrides sont introduits sur un polymère statistique déjà synthétisé. Toutefois, des 

expériences par RMN DOSY (RMN 2D 1H versus coefficient de diffusion, utilisation d’acide 

tolylboronique) ont permis de montrer que les anhydrides n’ont pas pu être formés 

quelles que soient les conditions utilisées. 

 Le monomère d’AVB sous forme d’anhydride avec l’APB est polymérisé. De l’AVB est 

introduit dans un excès d’APB en milieu hydrophobe pour favoriser la formation des 

anhydrides. L’ensemble est ensuite polymérisé en présence de styrène. Dans ce cas, des 

problèmes de solubilité ont empêché une bonne polymérisation. 

Malgré ces essais, le copolymère statistique de styrène et d’AVB sous forme 

d’anhydride avec l’APB n’a donc pas pu être synthétisé avec succès et la méthode de 

« masking » a dû être abandonnée. 

Pour la méthode de « fishing », en revanche, quatre polymères ont pu être 

synthétisés : trois copolymères à blocs avec un bloc de quelques unités d’AVB et un bloc 

styrène de tailles variables. Pour comparaison un polymère statistique ayant la même taille 

et les mêmes proportions de styrène et d’AVB que le plus petit des copolymères à blocs a 

aussi été synthétisé. 

 

Parallèlement, des oligomères de cellulose ont pu être obtenus. En effet, l’acide 

phosphorique a été utilisé pour hydrolyser la cellulose et former des oligomères avec un bon 

rendement. Ce procédé a, de plus, été optimisé par rapport à ceux décrits dans la littérature. 

Juste après l’hydrolyse acide, la cellulose a une masse molaire moyenne réduite et les 

fractions solubles et insolubles dans l’eau sont séparées par solubilisation. Cependant, une 

analyse en SEC après acétylation montre un recouvrement des deux distributions en masse 

molaire indiquant que des oligomères solubles dans l’eau sont encore présents dans la 

fraction insoluble. L’extraction n’a cependant pas pu être poussée davantage probablement 

à cause d’une mauvaise dispersion de la fraction insoluble. Les oligomères ont ensuite été 

caractérisés par différentes techniques. La spectrométrie de masse et la SEC à éluant eau ont 
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démontré la présence d’oligomères de DP de 1 à 12. Leurs ratios ont pu être déterminés par 

HPLC, cependant les DP supérieurs à 6 avaient une concentration trop faible pour être 

détectés. Les oligomères obtenus étaient principalement composés de cellotetraose à 29%. 

Les ratios de glucose, cellobiose, cellotriose et cellopentaose étaient équivalents et compris 

entre 17 et 19%. Le cellohexaose représentait seulement 3% car la solubilité dans l’eau 

diminue avec l’augmentation du DP. 

La méthode « fishing » a ensuite été appliquée. Un « blanc » a d’abord été réalisé et a 

confirmé que les oligomères de cellulose ne sont pas extraits quand la phase organique ne 

contient pas de polymère. Puis les quatre polymères précédents ont été comparés et les 

copolymères à blocs ont bien permis une extraction, toutefois sans aucune sélectivité. Il 

semblerait cependant que ces copolymères aient permis de récupérer la quantité maximale 

d’oligomères. Le copolymère statistique n’a cependant permis l’extraction d’aucun 

oligomère probablement à cause de la formation d’un réseau emprisonnant les oligomères 

dans la phase aqueuse. 

Une autre méthode permettant de séparer les oligomères selon leur taille a donc été 

recherchée. Les alcools étant connus pour solubiliser les oligomères de cellulose, trois 

alcools différents (méthanol, éthanol et isopropanol) ont été utilisés pour séparer les 

oligomères par solubilisation sélective. La séparation la plus intéressante a été obtenue par 

solubilisation dans le méthanol car les deux autres ne solubilisaient que partiellement du 

cellobiose. Ainsi, la fraction soluble dans le méthanol était composée de cellotriose (28%), de 

cellobiose (27%) et de glucose (27%) et la fraction insoluble dans le méthanol contenait 42% 

de cellotetraose et 36% de cellopentaose ainsi que tous les DP les plus élevés. 

 

Dans un deuxième temps, nous avons étudié la synthèse de composés amphiphiles 

basés sur ces oligomères insolubles dans le méthanol et leur auto-assemblage. Afin de 

conserver la structure et les propriétés des oligomères, seule l’extrémité de chaîne a été 

fonctionnalisée par amination réductrice pour introduire un groupement azide terminal. 

L’acide stéarique a été choisi pour le bloc hydrophobe à cause de sa linéarité et de sa 

disponibilité en grande quantité. Il s’agit de plus d’un composé bio-sourcé présent dans les 

graisses animales ou végétales. Une fonction alcyne terminale a été introduite sur l’acide 

gras et les deux blocs ont été couplés par chimie « click » grâce à la cycloaddition d’Huisgen. 

Le catalyseur au cuivre n’a pas pu être complétement éliminé. En effet, le procédé de 

purification usuel est la dialyse, or dans notre cas, trop de produit aurait été perdu à cause 

de leur petite taille. La même réaction a été appliquée à la cellobiose pour comparaison. 

Les équilibres hydrophile/lipophile (HLB) de ces composés ont été calculées et il 

semblerait qu’ils soient plutôt hydrophiles. Cependant, le composé à base de cellobiose 
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s’agrégeait après 24h dans l’eau (Figure 3) probablement à cause d’un ratio longueur de bloc 

hydrophile sur hydrophobe défavorable. Le composé était toutefois soluble dans le DMSO 

qui, étant un bon solvant des deux blocs, n’induisait pas d’auto-assemblage. 

 

 
Figure 3. Photos représentant des solutions de composes amphiphiles à base d’acide stéarique et 
de cellobiose (à gauche) ou d’oligomères de cellulose (à droite) après 24h dans l’eau à 100 mg.L-1 

 

En revanche, le composé à base d’oligomères s’auto-assemblait dans l’eau sans 

agrégation et a pu être étudié dans ce solvant. La concentration micellaire critique (CMC) a 

été mesurée à 100 mg.L-1 ce qui est plutôt faible pour de tels composés. La taille moyenne 

des particules observée à 200 mg.L-1 était de 140 nm avec un PDI de 0,21 et reste plutôt 

stable dans le temps. La Figure 4 présente les images de microscopie électronique en 

transmission (MET) des objets observés à 200 mg.L-1 dans l’eau. Les particules sont plus ou 

moins sphériques et assez homogènes. Elles sont probablement des vésicules compte tenu 

de leur grande taille en milieu aqueux. L’homogénéité de la distribution des tailles de 

particules indique une bonne dispersion des différentes tailles d’oligomères. 

 

 
Figure 4. Images de MET observées avec des composés amphiphiles à base d’oligomères de 

cellulose et d’acide stéarique à 200 mg.L-1 dans l’eau 

 

 

Les perspectives de ce travail sont de produire les oligomères de cellulose par voie 

enzymatique qui est plus en phase avec la chimie verte que l’hydrolyse acide. Pour cela, une 

hydrolyse fractionnée semblerait être la meilleure solution, cependant, un gros travail 

d’optimisation est à prévoir. La méthode de « fishing » devra aussi être plus étudiée pour 
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essayer d’obtenir une sélectivité. La méthode de « masking » pourrait aussi être testée avec 

un copolymère à bloc qui protégerait les futurs oligomères par encombrement stérique ou 

par enroulement autour de la chaîne cellulose. Pour cela, un bloc autre que le styrène 

pourrait être choisi pour favoriser une interaction par liaison hydrogène par exemple. La 

séparation par solubilité pourrait aussi être améliorée par une précipitation sélective. En 

effet, les oligomères seraient solubilisés dans l’eau et l’ajout graduel d’un anti-solvant les 

feraient précipiter au fur et à mesure. Pour finir, l’impact sur l’auto-assemblage de la 

longueur et de la nature du bloc hydrophobe des composés amphiphiles à base d’oligomères 

de cellulose pourrait être étudié. Ces composés pourraient être étudiés pour la libération 

contrôlée de principe actif. 
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Abbreviations 
 

2D  Two dimensional 

 

A 

AFM  Atomic force microscopy 

AIBN  Azobisisobutyronitrile 

[Amim]Cl 1-allyl-3-methylimidazolium chloride 

APBA  3-acrylamidophenylboronic acid 

ARS  Alizarin red S 

ATRP  Atom transfer radical polymerisation 

 

B 

[Bmim]Cl 1-butyl-3-methylimidazolium chloride 

BSPA  3-(benzylthiocarbonothioylthio)propanoic acid 

BTTCP  2-(butylthiocarbonothioylthio)propanoic acid 

 

C 

CAS  Chemical abstracts service 

CAZy  Carbohydrate-active enzymes 

CB-SA  Amphiphilic compound based on cellobiose and stearic acid 

CBH  Cellobiohydrolase 

CESA  Cellulose synthase 

CMC  Critical micelle concentration 

CPADB  4-cyanopentanoic acid dithiobenzoate 

CO-SA  Amphiphilic compound based on cellulose oligomers and stearic acid 

COSY  Correlation spectroscopy (1H-1H) 

CTA  Chain transfer agent 

Cuam  Cuprammonium hydroxide 

CuAAC  Copper-catalysed azide-alkyne cycloaddition 

Cuen  Cupriethylenediamine hydroxide 

Cuoxam Cuprammonium hydroxide 

 

D 

Đ  Dispersity 

DBTTC  Dibenzyl trithiocarbonate 
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DLS  Dynamic light scattering 

DMAc  Dimethylacetamide 

DMF  Dimethylformamide 

DMSO  Dimethyl sulfoxide 

DMP  2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl-propionic acid 

DOSY  Diffusion-ordered spectroscopy 

DP  Polymerisation degree 

DPth  Theoretical polymerisation degree 

DS  Substitution degree 

DSC  Differential scanning calorimetry 

 

E-F 

EA  Ethyl acetate 

EG  Endoglucanase 

ELSD  Evaporating light scattering detector 

[Emim]Ac 1-ethyl-3-methylimidazolium acetate 

FT-IR  Fourier transformation infra-red 

 

H 

ΔHc  Crystallisation enthalpy 

ΔHm  Melting enthalpy 

HEMA  Tris-(2-hydroxyethyl)-methylammonium methylsulfate 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HCW  Hot compressed water 

HLB  Hydrophilic-lipophilic balance 

HPILC  High performance “ionic liquid” chromatography 

HPLC  High performance liquid chromatography 

HSQC  Heteronuclear single quantum correlation (1H-13C) 

 

I-J 

IR  Infra-red 

JC-C  Carbon-carbon coupling constant 

JH-H  Proton-proton coupling constant 

JMOD  J-modulated spin-echo 
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L 

LAMA  2-lactobionamidoethylmethacrylate 

LCST  Lower critical solution temperature 

LPMO  Lytic polysaccharide monooxygenases 

 

 

M 

MALDI  Matrix-assisted laser desorption/ionisation 

MBSP  Methyl 3-benzylsulfanylthiocarbonylsulfanylpropionate 

MeOH  Methanol 

Mn  Number average molar mass 

Mth  Theoretical molar mass 

Mw  Mass average molar mass 

MW  Microwave 

 

N 

N2B  Naphthalene-2-boronic acid 

NMMO N-methylmorpholine-N-oxide 

NMR  Nuclear magnetic resonance 

 

P 

PAPBA  Poly(3-acrylamidophenylboronic acid) 

PBA  Phenylboronic acid 

PBS  Phosphate buffered saline 

PBLG  Poly(γ-benzyl-L-glutamate) 

PDI  Polydispersity index 

PDMA  Poly(N,N-dimethylacrylamide) 

PEG  Poly(ethylene glycol) 

PLAMA Poly(2-lactobionamidoethylmethacrylate) 

PNIPAM Poly(N-isopropylacrylamide) 

PS  Polystyrene 

PTMSS  Poly(4-trimethylsilylstyrene) 

PVBA  Poly(4-vinylphenylboronic acid) 

 

R-S 

RAFT  Reversible addition-fragmentation chain transfer 
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RI  Refractive index 

RT  Room temperature 

SEC  Size exclusion chromatography 

SEM  Scanning electron microscopy 

 

T 

Tb  Boiling point 

TBAF  Tetrabutylammonium fluoride 

Tc  Crystallisation temperature 

Td 5%  Degradation at 5% temperature 

TEM  Transmission electron microscopy 

Tg  Glass transition temperature 

TGA  Thermogravimetric analysis 

THF  Tetrahydrofuran 

Tm  Melting temperature 

 

U 

UDP  Uridine diphosphate 

UV  Ultraviolet 

 

V-W 

VBA  4-vinylphenylboronic acid 

V-70  2,2'-azobis(4-methoxy-2.4-dimethyl valeronitrile) 

WIF  Water insoluble fraction 

 

X 

XOS-Ol  Amphiphilic compound based on xylo-oligomer and oleic acid 

XOS-Ric Amphiphilic compound based on xylo-oligomer and ricinoleic acid 
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General introduction 
 

The European Association for Chemical and Molecular Sciences listed six intertwined 

problems that humanity will be facing soon but that cannot be easily solved on the basis of 

our current technology: Energy, Raw materials, Water, Food, Health and Air[1]. 

Nowadays, the chemists are mainly focused on the “Raw materials” problem as they 

are delving into greener alternatives to the materials currently used at large scale[2,3] 

(production of polymers in 2012: 265 millions of tons[4]). Their work is starting to pay even 

though the production of bio-based plastics in 2013 represented less than 1% of the global 

production of plastics. In the same period, bio-based plastics only involved 0.01% of the 

worldwide agricultural area of 5 billion hectares[4] and are consequently not in competition 

with the “Food” issue. Regrettably, only 37.6% of the bio-based plastics possibly produced 

are biodegradable (Figure 5). 

 

 
Figure 5. Global production capacities of bio-based plastics in 2013 (by material)[4] – 1 Contains 

durable starch blends, Bio-PC, Bio-TPE, Bio-PUR (except thermosets), 2 Bio-based content amounts 
to 30 %, 3 Contains PBAT, PBS, PCL, 4 Biodegradable cellulose ester 

 

PA: polyamide, PTT: polytrimethylene terephthalate, PE: polyethylene, PET30: polyethylene 

terephthalate 30% glass reinforced, PLA: polylactic acid, PHA: polyhydroxyalkanoates, PC: 

polycarbonate, TPE: thermoplastic elastomer, PUR: polyurethane, PBAT: polybutyrate, PBS: 

polybutylene succinate, PCL: polycaprolactone. 

 

 

The bio-based and biodegradable “regenerated cellulose”[5] only represents 1.7% of 

the total production capacities of bio-based plastics in 2013 (Figure 5) while cellulose is one 

of the most abundant natural polymers on the planet. Moreover, cellulose is renewable in a 

short time frame compared to oil, which is currently indispensable (≤ 50 years versus 
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millions of years). This small percentage is the result of great difficulties for transformation 

and process. The chemists’ society is however aware of its exceptional potential as the 

number of publications on the subject exceeds a thousand per year (Figure 6). 

 

 
Figure 6. Number of references about cellulose per year from 1920 to mid-August 2015 (references 

containing the appellation as entered, data from SciFinder) 

 

 

Cellulose oligomers are materials with the same structure as cellulose but with a 

smaller molar mass that grants them water-solubility. The currently commercialised 

cellobiose does not have the same properties as cellulose because its reactivity is drastically 

influenced by the reducing end group. Cellulose oligomers of higher polymerisation degree 

(DP) are seldom commercially available and at very high prices. Moreover, no more than a 

few hundreds of milligrams are purchasable at once because of their time-consuming 

production. 

The processes currently proposed in the literature are difficult to put in place or only 

allow small oligomer sizes (DP 3-4). Some protocols allow the production of oligomers in 

good yield but the separation according to their size (necessary for some applications) is 

achieved by affinity chromatography, which is a low yields method. 

 

 

The goal of this work is to produce low dispersed cellulose oligomers with an easily 

accessible production and separation technique. In this frame, two new and innovative 

strategies were probed. They both involve the use of a synthetic polymer to either protect 

parts of the cellulose during a hydrolysis or to enable a selective solubilisation. 
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The first chapter establishes a state of the art on the structure, solubility and 

characterisation of cellulose and on the cellulose oligomers production and separation 

methods currently available. 

As the synthetic polymers employed in the considered strategies are required to have 

a reversible interaction with cellulose, boronic acids will be utilised. The second chapter thus 

deals with a preliminary study about the complexation of boronic acids on sugars to 

determine the synthetic polymer structure best suited for both of the strategies put in place. 

In the third chapter, the syntheses of the boronic acid containing polymers will be 

investigated. 

In the fourth chapter, the strategies to produce and separate the cellulose oligomers 

will be tested. 

To finish, in the fifth chapter, an application of the cellulose oligomers will be 

investigated. Amphiphilic compounds based on the cellulose oligomers produced will be 

synthesised and their self-assembly studied. 
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I. 1. Generality on cellulose 

Anselme Payen, a French chemist, discovered cellulose in 1838 when he treated 

various plants with acids and ammonia followed by extractions[1]. Cellulose constituted the 

remaining fibrous product that could not be treated. The name “cellulose” comes from “cell” 

that refers to the plant cells where the production occurs and “ose” the French suffix 

referring to saccharides. Nowadays, cellulose represents 1.5x1012 tons of the total annual 

biomass production and is thus considered as almost inexhaustible[2]. Most of it ends up in 

the paper industry but its numerous and fascinating properties are the reason why various 

fields like electrical displays[3], nanotechnology[4] or biomedical applications[5] made use of it 

under the native form or chemically modified form. 

 

I. 1. A) Biosynthesis 

The main production source of cellulose is annual plants like tree or cereal straw but 

some algae and bacteria[6–9] also produce it. 

Cellulose is synthesised in the plants cell walls among with lignin and 

hemicelluloses[10] (Figure I-1a and b) in different ratio depending on the source of the 

lignocellulosic biomass (Table I-1). Each of them is playing a specific role in the cell: 

 Lignin[11] is a natural aromatic polymer that acts like glue to maintain all the components 

of the cell together. Its antioxidant and hydrophobic properties also shield the plant cell. 

Its structure is complex with three different monomers (p-coumaryl alcohol, coniferyl 

alcohol and sinapyl alcohol) bound by ether or carbon-carbon bonds. The ratio between 

the three monomers depends on the lignin origin. 

 Hemicelluloses[12] are branched polysaccharides that act as bridges between the 

cellulose microfibrils. The branching prevents any crystallinity and confers solubility in 

water. The hemicelluloses chains are composed of several monosaccharides like xylose, 

mannose and galactose among other, and contain 500 to 3 000 sugars. 

 Cellulose microfibrils are the main component of the cell wall (Table I-1) and contribute, 

with lignin, to the rigidity of the assembly. They are composed of 36 cellulose chains[13] 

coming from 6 rosette subunits[14] (Figure I-1c). 
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Figure I-1. Composition of a) cells in plants, b) cell walls (adapted from Sticklen[10]) and c) rosette 

(adapted from Doblin et al.[14]) 

 

 

Table I-1. Chemical composition of several types of lignocellulosic biomass (from Becer and coll.[15]) 

 Cellulose (%) Hemicellulose (%) Lignin (%) 

Hardwood 40.4 – 54.1 18.4 – 35.9 15.5 – 24.1 

Softwood 42.0 – 50.0 11.0 – 27.0 20.0 – 27.9 

Agricultural waste 25.0 – 47.0 12.0 – 36.0 6.1 – 25.0 

Grasses 25.0 – 40.0 25.0 – 50.0 10.0 – 30.0 

 

 

Cellulose is synthesised by a large complex of cellulose synthases[16] (CESA), which are 

organised in rosettes (Figure I-1c). CESA complexes use uridine diphosphate (UDP)-α-glucose 

(Figure I-2a) as the substrate for the cellulose synthesis[10,17]. Every other monomer is turned 

by the enzymes at 180° as represented in Figure I-2b. The chains are then associated in 

microfibrils[18] by enzymes called the “terminal complex”[19]. As the cellulose chains have a 

high affinity toward themselves due to hydrogen bonding, a high crystallinity is induced. But 

from time to time, they are disordered causing amorphous-like areas[20]. 
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Figure I-2. a) Structure of UDP-α-glucose and b) Proposed model for the synthesis and 

translocation of cellulose (adapted from Zimmer and coll.[21]) 

 

I. 1. B) Structure and properties 

Cellulose chains are linear and consist of anhydroglucose units linked together by     

β-1,4 bonds (Figure I-3a). 1 and 4 are the positions of the glycosidic bonds on the glucose. 

The numbering starts at the anomeric proton as represented in Figure I-3b. The β notation 

indicates that the substituent on the 1-position is in equatorial conformation (Figure I-3c). 

The other configuration where this substituent is in axial conformation is called α and is 

found in other polysaccharide. Each anhydroglucose unit has a length of 0.515 nm and every 

other is turned at 180° to form the real repeating unit that is cellobiose (Figure I-3a). 

 

 
Figure I-3. a) Cellulose structure (polymerisation degree, DP = 2n+2), b) Numbering of saccharides 

carbons (example of glucose), c) Definition of an α- or a β-bond 
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I. 1. B) i) Open form 

The propensity of saccharides to present an “open” form explains the equilibrium 

between the α- and β-form and is present on all the mono- and polysaccharides. The 

saccharide can “open” and form an alcohol and an aldehyde as represented Figure I-4. For 

cellulose, the only glucose per chain that has this property is the one at the extremity called 

the reducing end. The other extremity is called the non-reducing end. 

 

 
Figure I-4. Definition of the reducing and non-reducing end of cellulose 

 

For saccharides in solvents such as water, the α- and β- forms are in equilibrium. 

When the sugar “closes”, the bond can be created again on both sides of the alcohol leading 

to either the α- or the β-form of the saccharide. For the glucose, this interconversion has a 

half-life time of 5 minutes at 37°C in water[22]. In water at 27°C, aqueous D-glucose usually 

contains 37% of the α-form and 63% of the β-form, the ratio becomes 43.5%/56.5% in 

dimethyl sulfoxide (DMSO) at 27°C[23]. 

This equilibrium is often used to functionalise this particular position in the view of 

click-chemistry for example. It is the most reactive position of all the cellulose backbone. 

I. 1. B) ii) Pyranose/Furanose equilibrium 

Because of the “open”/“closed” equilibrium, the pyranose/furanose equilibrium also 

occurs. The glucose form presented until now is called pyranose and has a 6-bonds cycle. But 

when the “open” form closes, the hydroxyl group on the 4-position may also react and the 

sugar has then a 5-bonds cycle (Figure I-5). This form, called furanose, is thermodynamically 

less stable than pyranose[24] and is present at less than 0.05% in aqueous D-glucose[25]. 

 

 
Figure I-5. Equilibrium between the pyranose and furanose forms (adapted from Isbell and 

Wade[26]) 
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These four forms of glucose are differentiable by NMR (Table I-2). The α- and β-forms 

have different chemical shifts (Appendix I.I, p 49) and pyranose and furanose forms have 

different coupling constants. 

 

Table I-2. Possible forms of glucose and how to differentiate them by NMR 

 Pyranose form Furanose form Difference 

α-form 

  

1H and 13C 

NMR chemical 

shifts 
β-form 

  

Difference JH-H or JC-C coupling constants[27]  

 

I. 1. B) iii) Crystallinity/Morphology 

Another major property coming from the cellulose structure is its crystallinity. The 

numerous hydroxyl groups present on its backbone induce intra- and inter-chains hydrogen 

bonding (Figure I-6). 

 

 
Figure I-6. Representation of the different hydrogen bonding responsible of the cellulose 

crystallinity (adapted from Kadokawa[28]) 

 

Cellulose crystallinity and morphology depend on its origin as observed in Figure I-7. 

Cellulose from cotton is one of the most crystalline. Cellulose from wood pulp has a 

polymerisation degree (DP) between 300 and 1 700 but cellulose from cotton or other plant 

fibres have a DP between 800 and 10 000. 
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a) 

 

b) 

 

c) 

 
Figure I-7. Electron micrographs of cellulosic microfibrils of varying origins: a) algae (Valonia spp.), 

b) cotton linters and c) spruce sulphite pulps (from Klemm et al.[2]) 

 

Cellulose also exists in several polymorphs, identified in 1996 by Kroon-Batenburg 

and coll. in 1996[29] and summarised in Figure I-8a. Native cellulose is only found under the 

polymorph I and is invariably transformed into polymorph II after any regeneration 

treatment. If the regeneration occurs at high temperatures, cellulose IV can be produced[30]. 

Cellulose III is obtained after a treatment with ammonia. 

Considering the structures (Appendix I.II, p 50), the Iα polymorph consists in a one-

chain triclinic P1 structure whereas Iβ corresponds to two chains organised along a P21 

monoclinic space group[31]. Cellulose I has a parallel orientation and cellulose II has an 

antiparallel orientation (Figure I-8b). It is a fact established by the literature but the 

mechanism of the transformation from one to the other is still debated[2,29]. The 

conformation of the chain in cellulose III has features similar to cellulose II but with parallel 

chains like in cellulose I[32]. And cellulose IV has a two chain P1 structure with parallel 

orientation for IVI and antiparallel for IVII
[33]. 

 

 
Figure I-8. a) Polymorphs of cellulose (adapted from Kroon-Batenburg et al.[29]) and b) 

Representation of a parallel and antiparallel orientation of cellulose chains (adapted from 
Kadokawa[28]) 
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I. 1. C) Cellulose solubility 

To solubilise cellulose, the solvent has to break the hydrogen bonding network in 

place and prevent it from occurring again[34,35] by creating interactions with cellulose that 

have an energy above 25.0 kJ.mol-1 [36]. No common solvents meet this requirement but 

some mixtures or unusual solvents do, as described below. Cellulose solvents are 

categorised between derivatizing/non-derivatizing and aqueous/non-aqueous (Figure I-9). A 

non-derivatizing solvent procures a physical solubilisation whereas a derivatizing solvent 

functionalise some hydroxyl groups of the cellulose thus changing its solubility. 

Another reason to the cellulose insolubility could be its amphiphilic character[37]. The 

hydrophobic sides tend to stick together in aqueous solvents creating insoluble hydrophobic 

“pockets”. Consequently, solubility would be facilitated in amphiphilic solvents, as ionic 

liquids, or in the presence of cosolutes. 

 

 
Figure I-9. Classification of cellulose solvents and examples (adapted from Heinze and Koschella[38]) 

 

I. 1. C) i) Inorganic metal complexes 

The forces that take place to solubilise cellulose in inorganic metal complexes 

solutions are complex coordination with the cellulose anionic oxygen and Coulomb 

interaction[39]. Even at low cellulose content, these solutions usually have a high viscosity[40] 

that prevents the incorporation of more material. 

The most used of these types of solutions are cupriethylenediamine hydroxide (Cuen, 

[Cu(H2N─(CH2)2─NH2)2](OH)2) and cuprammonium hydroxide (Cuam or Cuoxam, 

[Cu(NH3)4](OH)2). Cuen solutions main application is to determine the cellulose 

polymerisation degree depending on the solution viscosity[41]. This method was principally 

used in the pulp and paper industry. The concentration of cellulose in 0.5 M of Cuen can 

reach 8 g.L-1 [41]. 

A French chemist Louis-Henri Despeissis patented in 1890 an industrial process to 

produce textile fibres using cellulose dissolved in Cuam[42]. This process is still used 
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nowadays notably in Asahi (Japan) but the high cost coming from the need of using cellulose 

cotton and copper salts prevents it from reaching larger scale[43]. 

I. 1. C) ii) Aqueous bases and additives 

Mercerization which consists in soaking cellulose in a strong aqueous base is one of 

the most technically relevant processes in cellulose technology and is used to change the 

crystal structure from cellulose I to cellulose II[44] (Figure I-8a, p 22). 

At low temperature, hydrates of NaOH are able to form hydrogen bonds with the 

cellulose chains[34]. However, above a certain concentration the cellulose forms aggregates 

in the NaOH solution and a suspension is obtained[45]. Only 2% w/v of cellulose could be 

totally dissolved in 5% w/v NaOH solution[44]. 

The addition of urea increases the solubility by helping the introduction of the 

molecules into the cellulose network and by screening the hydrophobic effect that would 

create cellulose aggregation[46,47]. The ratio 6 wt% NaOH/ 4 wt% urea was found to be one of 

the best to dissolve cellulose I with around 5 wt% of cellulose of bagasse solubilised[48]. 

The disadvantage of these systems is that the solubility greatly depends on the 

cellulose morphology[49], crystallinity, molar mass and on the temperature[50]. Nevertheless, 

films, membranes, microspheres, hydrogels and fibres can be produced from this solvent 

system[51]. This process was patented by Jiangsu Long-Ma Green Chemical Fiber Co. Ltd[52] 

with a cellulose concentration of 3 to 8 wt% in NaOH at 7.0-7.5 wt% and urea at               

11.0-12.0 wt% at low temperature (-12°C). 

Other bases can be used with urea[53], lithium hydroxide is more efficient but less 

used because of health and environmental considerations; potassium hydroxide is really less 

efficient than sodium hydroxide. 

One of the most important industrial 

processes for cellulose is based on its dissolution in 

sodium hydroxide. The viscose process was invented 

by a French scientist Hilaire de Chardonnet. After 

solubilisation, cellulose xanthate (Figure I-10) is 

produced by reaction with carbon disulphide. The 

cellulose fibres are then regenerated by 

defunctionalisation using mineral acids.  

 
Figure I-10. Cellulose xanthate 

structure 

I. 1. C) iii) Molten salts hydrates 

Molten salts hydrates, like LiClO4∙3H2O or ZnCl2∙4H2O, were first employed to 

solubilise cellulose in the early 20th century because of their low cost and low toxicity[54]. 

Cellulose can be precipitated from these solutions by a simple addition of water and the salt 
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recovered after evaporation. The nature of the salt tunes the crystallinity, the surface area 

and the morphology of the cellulose obtained after precipitation[55]. For instance, cellulose I 

is obtained after regeneration from LiCl∙5H2O as it is a weak swelling agent whereas 

LiCl∙2H2O, inducing a greater swelling, produces cellulose II. 

Interaction between cellobiose, as cellulose model, and Li+ cation was investigated by 
7Li NMR[56]. Cellobiose was found to be part of the first coordination sphere of the lithium 

cation replacing the water molecules. The hydroxyl groups thus form direct coordination 

bonds with the Li+ cation which explains the good solvation of cellulose in such solvents. The 

same conclusions were drawn with the Ca+ cation after dissolution of cellulose in Ca(SCN)2 

and analysis by IR spectroscopy[57]. 

Only low concentrations can be reached with these solutions[55], for instance, 

LiCl∙2ZnCl2∙8H2O, one of the most promising systems, could only dissolve 5 wt% of cellulose 

because of the high viscosity of the solution. 

These solvents have no industrial applications probably due to the fact that their 

effectiveness greatly depends on the water content and that their inherent acidity 

unavoidably depolymerise the cellulose yielding to lower molar masses[54,55]. The acidic 

hydrolysis is also favoured by the high temperature needed (up to 100°C) to solubilise the 

cellulose. 

I. 1. C) iv) Dimethylacetamide (DMAc)/Lithium chloride 

DMAc/LiCl mixture was first patented for the solubilisation of cellulose by McCormick 

in 1981[58]. The dissolution mechanism represented in Figure I-11 was determined by several 

NMR studies[59]. This interaction is put in jeopardy by the presence of water that induces 

aggregation[60]. This is why no industrial application uses this type of solvent. In addition, it 

takes more than three weeks at 25°C to solubilise cellulose at 20 wt% [60]. 

This system is mostly known for its good compatibility with SEC columns which allows 

direct measurement of the cellulose molar mass[61]. Unfortunately, the hydrodynamic 

volume of the cellulose and the elution behaviour is deformed by polymer-polymer and/or 

polymer-solvent interactions[62]. 

 

 
Figure I-11. Mechanism of the dissolution of cellulose in DMAc/LiCl (from McCormick et al.[59]) 

 



 Chapter I. State of the art  

26 

I. 1. C) v) N-methylmorpholine-N-oxide (NMMO) 

N-methylmorpholine-N-oxide (NMMO, Figure I-12) is the most industrially successful 

of all non-derivatizing solvents. It is used in the Lyocell process to produce cellulose fibres 

such as the commercial Courtaulds’ Tencel[63]. However some side-reaction may occur 

during this process, especially in the presence of water, like NMMO decomposition, cellulose 

depolymerisation, rheological inconstancies or temporary or permanent discoloration[64]. 

Some stabilisers like propyl gallate may be added to the solution to avoid them. 

Cellulose concentrations can reach up to 23 wt% in this solvent[35]. As the N─O bond 

is highly dipolar (Figure I-12), the oxygen creates hydrogen bonds with the hydroxyl groups 

of the cellulose thus cleaving intermolecular interaction[35]. 

 

 

Melting point: 180-184°C 

Soluble in water 

Figure I-12. Structure and some properties of NMMO 

 

I. 1. C) vi) DMSO/tetrabutylammonium fluoride (TBAF) 

DMSO/TBAF solutions are able to dissolve cellulose with a DP up to 1 200 at 16 g.L-1 

in fifteen minutes at room temperature[65]. The dissolution occurs thanks to the fluoride that 

is able to break intermolecular hydrogen bonding in the cellulose. In the presence of water, 

the cations are withdrawn from the chains and gelation occurs if the H2O/F- ratio exceeds 

2/1[66]. 

These systems have no industrial application but allow the analysis of cellulose in 

solution by NMR spectroscopy[67]. 

I. 1. C) vii) Ionic liquids 

An ionic liquid is a salt with a melting point below 100°C. They have many interesting 

properties like chemical and thermal stability, non-flammability and very low vapour 

pressure. Due to these properties, they are sometimes considered as “green” solvents as 

they can also be recycled[68] even though their inner toxicity is undeniable[69,70]. But more 

and more research are oriented toward the design of environmentally friendly ionic 

liquids[71]. 

They were first used to solubilise cellulose in 2002 by Rogers and coll.[72]. The most 

promising at that time was 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) with a cellulose 

concentration of 10 wt% at 100°C. The interaction between the chloride anions and the 

cellulose hydroxyls was found to occur with a 1:1 stoichiometry[73]. An addition of water 
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breaks these interactions and makes the cellulose precipitate. The precipitated cellulose 

structure had evolved from cellulose I to cellulose II while losing crystallinity. This process 

may cause some depolymerisation[74]. Many other ionic liquids were tested later on for their 

efficacy to solubilise cellulose[75] and the better results were observed for [Bmim]Cl,              

1-ethyl-3-methylimidazolium acetate ([Emim]Ac) and 1-allyl-3-methylimidazolium chloride 

([Amim]Cl) as represented in Table I-3. For now, [Emim]Ac is the only one to be found at 

industrial scale, TITK (Thüringisches Institut für Textil) adapted a dry-wet spinning process 

especially for this solvent[76]. Industrial applications of ionic liquids will probably increase 

over the years as, for now, this technology is still quite recent and their prices are still high. 

 

Table I-3. Characteristics of three ionic liquids 

Name 
1-butyl-3-methyl 

imidazolium chloride 

1-ethyl-3-methyl 

imidazolium acetate 

1-allyl-3-methyl 

imidazolium chloride 

Abreviation [Bmim]Cl [Emim]Ac [Amim]Cl 

Structure 

   

Melting point 73°C - 20°C 49-51°C 

Max cellulose 

concentration a 

25 wt% 

(microwave, 100°C)[72] 

15 wt% 

(110°C)[77] 

14.5 wt% 

(80°C)[78] 

Price (€/g) b 1.19 2.67 5.41 

a The time allowed for the dissolution was not mentioned in the publication cited, b For the 

larger packaging from Sigma-Aldrich in May 2015 

 

Recently, Jérôme and coll.[79] proposed a new enzyme-compatible, biodegradable and 

inexpensive ionic liquid that could solubilise cellulose up to 6 wt% in 10 minutes at 110°C: 

choline acetate in association with 15 wt% of tributylmethylammonium chloride. This 

dissolution rate is really small compared to [Bmim]Cl that requires 30 min under microwave 

for a 8 wt% concentration[80] or [Emim]Ac that necessitates 2h for a 5 wt% concentration[81]. 

 

I. 1. D) Characterisation 

A characterisation by direct dissolution may cause some degradation or too viscous 

solutions, as seen previously, which could influence the analysis. To prevent this issue, the 

solubility of cellulose can be tuned by functionalisation. 
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I. 1. D) i) Cellulose functionalisation  

Cellulose functionalisation is possible in all of the solvents cited in §I. 1. C) as the 

chains are well dispersed and accessible[82]. Ionic liquids have several advantages like a 

better control, mild conditions, low excess of reagent, short reaction time and recycling of 

the solvent[83]. But the ionic liquid has to be chosen carefully otherwise unwanted reaction 

may occur. For example, a tosylation in [Emim]Ac produced cellulose acetate, instead of 

tosylate, as the toluenesulfonyl chloride activated the acetate ions of the solvent[84]. 

The substitution degree (DS) is employed to determine the extent of a 

functionalisation and is defined as the average number of substituted hydroxyl groups per 

glucose unit. The theoretical maximal value is thus 3.0. The determination is usually done by 

NMR analysis after perpropionylation of the remaining hydroxyls groups (Figure I-13). The 

DS is then calculated thanks to the integration of specific peaks following a method 

introduced by Goodlett et al. in 1971[85] and further developed later on[86] (Appendix I.III,     

p 51). Some other methods exist to calculate the DS like sulphur analysis for tosylation[87], 

elemental analysis[83], HPLC after complete depolymerisation[88], from the weight loss in 

thermogravimetric analysis (TGA) after a functionalisation with an isocyanate as its 

elimination causes a step in the TGA curve[89] or fluorescence if the substituents are 

fluorescence active[90]. 

 

 
Figure I-13. Representation of cellulose peracetate and cellulose peracetate perpropionylated 

 

The solubility in a targeted solvent depends on the kind of functionalisation and on 

the substitution degree. For example, cellulose triacetate is soluble in chloroform but 

cellulose acetate with a DS between 0.6 and 0.9 is soluble in water[82]. 

Other characterisation methods can be applied on functionalised cellulose compared 

to the natural one like size exclusion chromatography (SEC) in tetrahydrofuran (THF) for 

cellulose tricarbanilate[91] or NMR analysis in CDCl3 of cellulose acetate[92]. Figure I-14 

represents some examples of functionalisation. 
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Figure I-14. Examples of cellulose functionalisation (adapted from Mecerreyes and coll.[93]) with 

examples of reactants (X is any halogen and for grafting many methods exist) 

 

Functionalisation also tunes the material properties. For example, cellulose acetate 

that is used in paper industry and textiles but also in pharmaceuticals, plastics and 

coatings[94]. Cellulose diacetate is a component of cigarette filters. Celluloid, a material 

considered as the first thermoplastic[95], was created by Parkesine in 1856 as an ivory 

replacement and is composed of cellulose nitrate and camphor. Because of a high 

flammability, this material has been gradually replaced since then. Functionalised cellulose 

are produced industrially. Cellulose acetate represented 900 000 tons per year in 2001 and 

cellulose xanthate (Figure I-10, p 24) that composes cellophane or the viscose fabric, was 

produced at 3 200 000 tons per year[82].  

I. 1. D) ii) Molar mass determination 

Over the years, several ways of measuring the molar mass of cellulose were 

developed as it is critical information for its characterisation. 

 

By viscosity 

As seen previously in §I. 1. C) i) (p 23), the molar mass can be determined by 

measuring the viscosity of a solution of cellulose in Cuen[96], thanks to the Kuhn–Mark–

Houwink relations[40] (Equation I-1). 
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[𝜂] = 𝐾 𝑀𝑤
𝑎 Equation I-1 

With [𝜂]: the intrinsic viscosity measured based on the flowing time of a cellulose solution in 

Cuen in a capillary viscometer at 25°C[96] and 𝐾 and 𝑎 the Mark–Houwink parameters that 

depends on the solvent and on the temperature (Table I-4). 

 

Other solvents can also be used like N-methylmorpholine-N-oxide (NMMO), 

DMAc/LiCl or NaOH/urea (Table I-4). 

 

Table I-4. Some examples of Mark–Houwink parameters for cellulose in solution 

Solvent Temperature 

Molar mass 

range 

(kg.mol-1) 

𝐾 𝑎 Reference 

Cuen 25°C 50 ─ 1360 6.531 x 10-2 0.735 Ref [40] 

NMMO∙H2O 80°C 50 ─ 1360 3.428 x 10-2 0.735 Ref [40] 

DMAc + 0.5% LiCl 80°C 
27 ─ 180 7.9 x 10-6 1.0 

Ref [97] 
42 ─ 330 1.0 x 10-4 0.7 

DMAc + 9% LiCl 30°C 125 ─ 700 1.278 x 10-4 1.19 Ref [59] 

6 wt% NaOH + 

4 wt% urea 
25°C 32 ─ 129 2.45 x 10-2 0.815 Ref [98] 

 

By Size Exclusion Chromatography (SEC) 

Cellulose tricarbanilate can be analysed by SEC in THF[91,99]. The main drawbacks of 

this method are the lack of cellulose tricarbanilate standards for the calibration and the 

necessity to accurately measure the DS, which influences the molar mass. 

The functionalisation step could be avoided by adapting the solvent of the SEC to 

cellulose. For example, Spiess et al.[100] characterised their products directly by a SEC in 

dimethylformamide (DMF) containing 10% v/v of [Emim]Ac. The celluloses employed had an 

average molar mass from 28 to 109 kg.mol-1. Ohno and coll. even developed a High 

Performance “Ionic Liquid” Chromatography (HPILC)[101] with 1-ethyl-3-methylimidazolium 

methylphosphonate as the eluent. The system was thermostated so the ionic liquid viscosity 

allowed a constant flow. The flow rate had to be really slow (0.01 mL.min-1) to stay below 

the operating pressure. Pullulan standards with a molar mass from 112 to 5.9 kg.mol-1 were 

used to calibrate the apparatus. 
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By Light Scattering 

Light scattering allows determining the cellulose molar mass but a solubilisation step 

is necessary. This method has many limitations and is not much employed. 

The relationship between the Rayleigh factor 𝑅𝜃 and the molar mass 𝑀𝑤 is 

represented in Equation I-2[59]. This equation validity domain is with a low angle photometer 

used for quasi-elastic light scattering measurement, at a small forward scattering angle and 

low sample concentration.  

 

𝐾𝑐

𝑅𝜃
=

1

𝑀𝑤
+ 2𝐴2𝑐 Equation I-2 

With 𝑐 the sample concentration in g.mL-1, 𝐴2 the second viral coefficient and 𝐾 the polymer 

optical constant (Equation I-3). 

 

𝐾 =
2𝜋2𝑛2

𝜆4𝑁𝐴
(
𝑑𝑛

𝑑𝑐
)²(1 + 𝑐𝑜𝑠2𝜃) Equation I-3 

With 𝑛 the refractive index of the solution, 𝜆 the incident beam wavelength, 𝑁𝐴 the Avogadro 

number, 
𝑑𝑛

𝑑𝑐
 the specific refractive index increment that can be found in the literature and 𝜃 

the angle of the scattered light collection. 

 

Then 
𝐾𝑐

𝑅𝜃
 is plotted depending on the concentration of the sample and the average 

molar mass is calculated from the intercept and 𝐴2 from the slope[59]. This method does not 

give any indication over the dispersity of the sample. 

 

By calculation of the reducing end concentration 

Another method to determine the average DP is to calculate the ratio between the 

glycosyl monomer concentration and the reducing end concentration[102]. 

The glycosyl monomer concentration can be calculated by the phenol-sulphuric acid 

method[103] and the reducing end concentration via the 2,2’-bicinchoninate method[104]. This 

method only gives an average of the molar mass with no indication of the initial dispersity. 
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I. 2. Cellulose oligomers 

Cellulose oligomers (Appendix I.IV, p 52) are cellulose chains with a low DP that grant 

them the property of being water-soluble (Figure I-15). This property makes them easier to 

process and characterise compared to native cellulose. They serve as cellulose models[105,106] 

as they conserve their inherent structure unlike functionalised cellulose. The commercial 

cellobiose does not have the same properties as cellulose because its reactivity is drastically 

influenced by the reducing end group, this is why a higher DP is needed. 

 

 
Figure I-15. Schematic representation of the water solubility depending on cellulose DP 

 

They have other applications like substrate for the measurement of cellulase 

activity[107]. Besides, as they are not digested by the human organism that does not possess 

the necessary enzymes[108,109], they thus could be used for their prebiotic status[110] as 

dietary fiber, sweetener or weight controlling agent[111]. Cellulose oligomers were patented 

for their help in the prevention or improvement of lifestyle-related diseases in the field of 

food and medicines as they decrease neutral fat and total cholesterol concentrations in the 

liver by oral intake[112]. All these specific applications explain the growing interest they arise, 

limited by their difficult production in large scale (Figure I-16). Notwithstanding, BASF 

deposited a patent on their production by enzymatic depolymerisation very recently[113]. 

 

Several pathways were developed to obtain these oligomers over the years. The four 

main ones are by chemical synthesis, enzymatic synthesis, enzymatic depolymerisation and 

acidic depolymerisation. 
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Figure I-16. Number of references per year depending on the appellation from 1980 to mid-August 

2015 (references containing the appellation as entered, data from SciFinder) 

 

I. 2. A) Chemical synthesis 

The pathway that chemists would consider first is chemical synthesis. The first team 

to succeed such a challenge was Nakastubo et al. in 1996[114]. It was done by cationic ring 

opening polymerisation of 3-O-benzyl-6-O-pivaloyl-α-glucopyranose (Figure I-17). The 

starting monomer is synthesised from commercially available 1,2:5,6-di-O-isopropylidene-α-

D-glucopyranose via an eight step reaction pathway with a final yield of around 60%[115]. The 

specific positions of the protecting groups allow a great stereoselectivity[116–118]. The 

polymerisation occurred in dichloromethane with triphenylcarbenium tetrafluoroborate at 

20°C and after 2h a DP around 20 was obtained with a yield of 62%[114]. The benzylated 

cellulose is soluble in THF and was analysed by SEC with a polystyrene calibration. If the 

initial monomer concentration is divided by two, a DP of around 10 with a yield of 93% is 

obtained after a 14h polymerisation at 20°C. After that, the protecting groups have to be 

removed to obtain un-functionalised cellulose.  

 

 
Figure I-17. Cationic ring opening polymerisation of 3-O-benzyl-6-O-pivaloyl-α-glucopyranose (Bn = 

benzyl –C6H5, Piv = pivaloyl –C(O)C(CH3)3) 
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Smaller cellulose oligomers can also be obtained by long chemical synthesis involving 

the use of a glycosyl acceptor and a glycosyl donor[119,120]. The glycosyl acceptor bears a good 

leaving group, as tosyls[121,122] or halogens[123], at the position where the bound is to be 

formed. For the glycosyl donor, the relative reactivity of the positions is of great importance: 

if a more reactive position than the one where the bound is to be formed is available, it has 

to be protected. The protection is usually done either by functionalisation with acetate or 

benzyl groups, or by the use of protecting agents like boronic acids[123,124]. But in the end, the 

higher the DP, the more numerous the chemical steps. For example, cellooctaose could be 

obtained either starting from 3-O-benzyl-6-O-pivaloyl-α-glucopyranose (structure 

represented in Figure I-17) and cellobiose after more than 15 steps[125] or starting from a 

functionalised glucose after 11 steps[126]. 

 

I. 2. B) Enzymatic synthesis 

To mimic the nature, enzymatic synthesis can also be considered[127–129]. The enzymes 

used are hydrolases, phosphorylases, glycosyltransferases or sucrase-type[28]. Hydrolases are 

the enzymes that catalyse the in vivo depolymerisation of their corresponding substrate. In 

vitro however, they catalyse a glycosylation to produce saccharidic chains (Figure I-18a). 

Phosphorylase breaks glycosylic linkage in the presence of inorganic phosphate to produce 

monosaccharidic phosphate. But as the bond energy of the produced compound is 

comparable with a glycosylic bond, the reaction is reversible (Figure I-18b). Leloir 

glycosyltransferase are the enzymes that catalyse the synthesis of saccharidic chains in vivo 

(Figure I-18c). Sucrase-type, which is specific to glucans and fructans (Figure I-18d 

representing the case of glucans), break sucrose to produce either glucan chains and 

fructose or fructan chains and glucose. 
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Figure I-18. Typical enzymes involved in the synthesis of polysaccharide (adapted from 

Kadokawa[28]) 

 

An example of in vitro enzymatic synthesis of cellulose catalysed by hydrolases is the 

work of Kobayashi and his team in the 80’s. β-cellobiosyl fluoride (Figure I-19) was used as 

substrate in a mixed solvent of acetonitrile and acetate buffer (pH 5) (5/1)[130,131] [for the 

mechanism, Appendix I.V, p 53]. This substrate is well recognised by the enzymes and is 

obtained from 1,2,4,6-tetra-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-α-D-

glycopyranose (itself obtained from controlled acid-catalysed acetolysis of Actigum CS6 

containing scleroglucan) by a three steps synthesis with a total yield of 71%[132]. The 

polymerisation is stopped by adding methanol so the anomeric position of the cellulose 

obtained is methylated[133,134]. A polymerisation degree of around 22 is reached but by 

changing the reaction conditions oligomers with a DP of 8 can be produced 

predominantly[130]. 

 

 
Figure I-19. β-D-cellobiosyl fluoride enzymatic polymerisation 

 

Another example[135] employed a mutant glycosynthase on tetrahydropyranyl- 

cellobiosyl fluoride and the β-methyl form of glucose, for example, to obtain methyl             

β-cellotriose. Other β-methylated substrate could also be used. The yields obtained were 
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78% for the production of methyl β-cellotriose, 90% for methyl β-cellotetraose, 83% for 

methyl β-cellopentaose and 60% for methyl β-cellohexaose. 

Reactions catalysed by phosphorylase allows to reach a wide range of carbohydrate 

structures[136]. Svensson and coll.[137] used α-D-glucose 1-phosphate as donor with glucose 

and cellobiose as acceptor and succeeded to produce cellulose oligomers with DP from 3 to 

9 with a 48% yield. Their respective ratio was dependent on the reaction time. In a more 

recent work[138], the distribution of the cellulose oligomers produced was found to be 

dependent on the cellobiose concentration. A cellobiose concentration of 10, 5, 1 or 0.2 mM 

gave an average DP of 7, 9, 11 or 13, respectively, with a low dispersity.  The α-D-glucose     

1-phosphate concentration was 20 times higher than the cellobiose concentration and no 

cellobiose was found in the oligomers obtained. The reaction was thus complete. 

Another type of reaction studied was the transglycosylation of cellobiose or 

cellotriose by cellulolytic enzyme endo-acting endoglucanase I[139]. The reaction took place in 

acetate buffer (pH 4.0) at 50°C for 1 hour. The oligomer formation is observed by an increase 

of the turbidity which decreases if the reaction lasts more than 1h. Cellobiose gave a DP of 

up to 7 while cellotriose gave oligomers with DP from 4 to 16 with a 30% yield. 

 

I. 2. C) Enzymatic depolymerisation 

The enzymatic depolymerisation of extracted cellulose[140,141] can also be a good 

alternative to obtain cellulose oligomers. However, in the literature, enzymatic 

depolymerisation was mainly studied for the production of bio-ethanol from glucose without 

any by-products that would decrease the fermentation yield[142–152]. 

I. 2. C) i) Mechanism 

The enzymatic depolymerisation mechanism involves three different kinds of 

cellulases (Figure I-20)[141,153]: the endoglucanases[154] (EC 3.2.1.4) are the only one to attack 

high molecular weight cellulose, they break β-bond randomly and thus increase the 

concentration of reducing end in the medium. The exoglucanases (EC 3.2.1.91), also called 

cellobiohydrolases[155], break shorter cellulose chain (DP 30-60[153]) from both reducing and 

non-reducing ends releasing cellobiose which is then broken down into glucose by β-

glucosidases[156]. The cellulase system produced by the most common cellulose fungi 

producers, Trichoderma reesei, is made up of two exoglucanases Cel7A (CBH I) and Cel6A 

(CBH II), and at least five endoglucanases Cel7B (EG I), Cel5A (EG II), Cel12A (EG III), Cel61A 

(EG IV), and Cel45A (EG V)[157] (Appendix I.VI, p 54). Cel7A, Cel7B, Cel5A and Cel12A 

hydrolyse cellulose according to a conformation retaining mechanism whereas Cel6A and 
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Cel45A produce a substrate this an inversion of its conformation[158,159] [for the 

representation of the mechanisms, Appendix I.VII, p 56]. 

 

 
Figure I-20. Schematic process of the enzymatic hydrolysis of cellulose 

 

Their actual structure was described by Davies and Henrissat in 1995[160]: 

 Endoglucanases have a cleft structure (Figure I-21a) that favours the random binding 

 Exoglucanases have a tunnel structure (Figure I-21b) which allows them to move 

progressively and release the hydrolysis product while staying bonded to the substrate 

 β-glucosidases have a pocket structure (Figure I-21c) granting them a good recognition of 

the non-reducing end 

On Figure I-21, the red part corresponds to the catalytic centre which is composed of 

aspartic acid that donate the proton necessary to the hydrolysis (Appendix I.VII, p 56)[159]. 

 

 
Figure I-21. Structure of a) endoglucanase, b) exoglucanase and c) β-glucosidase (adapted from 

Davies and Henrissat[160]); the red part is the catalytic centre 

 

Lytic polysaccharide monooxygenases (LPMO) also have the propensity of 

hydrolysing cellulose by an oxidative mechanism. These enzymes degrade crystalline 
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substrate[161] as well as cellulose oligomers[162]. They can also be used in combination with 

other enzymes to increase the hydrolysis efficiency[163]. 

To increase the enzyme accessibility to the cellulose chains, there is usually a pre-

treatment before the actual hydrolysis[164,165]. One of the most studied nowadays is the use 

of ionic liquids[166–170]. They were introduced previously in §I. 1. C) vii) (p 26) for the cellulose 

solubility but it was found that after introducing an anti-solvent, the cellulose precipitates 

with a cellulose II morphology and thus a decreased crystallinity[171]. However, some traces 

of ionic liquids stay bound to the cellulose and have an impact on the activity of the 

enzymes. For example, [Bmim]Cl was found to totally deactivate the enzymes[172] because of 

the harmful effect of the chloride anion. On the other hand, ionic liquids could be specially 

designed to simultaneously solubilise cellulose and be compatible with the enzymes. Zhao et 

al.[77] tested many ionic liquids, some of them especially designed for the purpose, and 

found out that the acetate anion was the most suited for such applications and that oxygen-

containing cations and low cation bulkiness were beneficial to the cellulose solubilisation. 

Choline acetate is enzyme-compatible[79]. Tris-(2-hydroxyethyl)-methylammonium 

methylsulfate (HEMA) also presented great result as endoglucanase had the same activity 

after 2 h in citrate buffer at 45°C or in HEMA at 75°C[173]. 

The other kind of pre-treatments are acidic (but it produces by-product that inhibit 

further fermentation)[174], alkaline[175–177], biological[178], mechanical[179,180], by irradiation[181], 

by ammonia expansion[182] or by chemical modification[183]. They are currently less studied 

but all serve to decrease the cellulose crystallinity. 

I. 2. C) ii) Cellulose oligomers 

The production of cellulose oligomers by enzymatic depolymerisation induces many 

challenges as they are produced in the early stage of the hydrolysis[184] and are also 

hydrolysed by the enzymes[153,185]. The exoglucanase CBH II was found to degrade the 

oligomers with different rate depending on their size as following[186]: 

Cellohexaose > cellotetraose > cellopentaose > cellotriose 

After the enzymatic depolymerisation, the main product is cellobiose as highlighted 

in Table I-5. Cellobiose is an enzyme inhibitor[157,187] (Figure I-20, p 37) and the inhibition 

extant depends on the enzyme concentration, the cellulose surface area accessible to the 

enzyme, the substrate concentration, and β-glucosidase activity (as it is the only enzyme to 

reduce the cellobiose concentration)[188]. Nevertheless, 100% of conversion can still be 

reached depending, mainly, on the enzymes, substrate and pre-treatment[189]. 
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Table I-5. Molar percentages of products formed by the action of CBH I on cellulose oligomers of 
different polymerisation degree[190] (in bold is the higher percentage per row) 

Substrate DP 
Products (%) 

DP 1 DP 2 DP 3 

4 17 68 15 

5 26 56 17 

6 26 47 25 

7 19 71 8 

8 20 64 17 

 

Consequently, the hydrolysis has to be stopped before the oligomers of interest are 

hydrolysed. The most effective pathway to do so is probably by a multi-stage hydrolysis 

where the substrate is removed from the reaction media, washed, and hydrolysed again 

with fresh buffer and enzymes (Figure I-22). The buffer retrieved contains the water-soluble 

fraction. This optimises the rate and yield of enzymatic hydrolysis reactions as the substrate 

is regularly washed from all the inactive enzymes irreversibly adsorbed that prevent the 

intervention of new active ones[191]. For the washing, the substrate was flushed repeatedly 

with sodium acetate buffer and deionized water, and freeze-dried. Yong and coll.[184] 

compared a two stages and three stages hydrolysis with several stage durations using an 

enzyme cocktail without β-glucosidases. The higher cellulose oligomer yield (52%) was 

obtained after a three stage hydrolysis of 6h/6h/12h. The DP distribution was not studied. 

For comparison, in the same conditions, a single stage hydrolysis of 24h gave a 25% yield. 

 

 
Figure I-22. Principle of a multi-stage enzymatic hydrolysis 
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Moreover, when the cellulose is methylated uniformly on the 6-position all along the 

backbone, only endoglucanase attacks it and the main product is cellulose oligomers with an 

average DP of around 8[192]. No more than 10% of the initial product was hydrolysed even 

after 96h of reaction; the reason could be the decrease of the substrate DP as the enzymes 

predominantly acting on such substrate are the endoglucanases. When the 2- and                 

3-positions of a cellulose chain are methylated, the β-1,4 bonds are covered by the methyl 

groups and were not reached by the enzymes unless an unsubstituted glucose unit was 

nearby. The effect of the defunctionalisation was not studied. 

 

I. 2. D) Acidic depolymerisation 

Compared to enzymatic hydrolysis, acidic depolymerisation requires harsher 

conditions thus producing unwanted by-products but the kinetic is faster and has a higher 

yield in producing cellulose oligomers. 

Acidic hydrolysis of cellulose is usually used to produce cellulose nanocrystals[193] by 

breaking only the amorphous zones. Nevertheless, the hydrolysis pushed further also 

degrade the crystalline parts and decrease the average molar mass [see Appendix I.VIII for 

the mechanism, p 58]. The main drawback is the formation of furanic by-product due to the 

acidic dehydration of glucose (Appendix I.IX, p 58). 

Several types of acids were used to produce water soluble cellulose oligomers as 

listed on Table I-6. An important factor influencing the DP obtained is the precipitation 

solvent (Entry 1a to 1d). The acid influences greatly the yield, the best one was obtained 

with phosphoric acid (Entry 1 and 2) or hydrochloric acid but at high temperature (Entry 9i). 

A mixture of 80/20 HCl/H2SO4 was tested at room temperature (Entry 8) and seemed to 

increase the yield compared to the corresponding pure acids (Entry 3 to 7). HF/SbF5 and 

trifluoroacetic acid also give good yields (Entry 9 and 10) but their cost and corrosive aspect 

make them second-rate candidates. 
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Table I-6. Parameters and result of several acidic hydrolysis of cellulose to produce water soluble 
oligomers (the yields in bold are above 65%) 
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Some teams were also interested in keeping the water insoluble part after the acidic 

hydrolysis as the polymerisation degree was also decreased. Dilute HCl, H3PO4 at room 

temperature or H3PO4 at 8°C produced hydrolysed cellulose with an average DP, determined 

by SEC in DMAc/LiCl, of around 50, 35 and 70 respectively[204]. Schütz et al.[205] used 

Amberlyst 15, an acidic resin, in [Bmim]Cl so the purification step was really simplified. They 

obtained hydrolysed cellulose with an average DP of around 30 with a yield of 81%. The DP 

was determined by SEC in THF after tricarbanilation with a polystyrene calibration. More 

recently, betaïne hydrochloride in tributylmethylammonium chloride produced cellulose 

with a polymerisation degree of 65 ± 5 with a 75% yield after 10 minutes or 40 ± 5 with a 

40% yield after 20 minutes at 150°C[206]. The DP was determined by viscosity in a Cuen 

solution. Both ionic liquid and acid could be almost entirely recovered after the hydrolysis. 

 

I. 2. E) Other pathways 

I. 2. E) i) Pivaloylysis 

Pivaloylysis is a degradation of cellulose triacetate to produce acetylated cellulose 

oligomers[207,208]. The protocol involves pivalic anhydride and boron trifluoride diethyl 

etherate in dichloromethane. The oligomers obtained were functionalised at both 

extremities with a pivalic group. They were then separated by a chromatographic method 

and the yields obtained are listed in Table I-7. 

 

Table I-7. Yield of the pivaloylysis reaction depending on the reaction time (reaction at 40°C)[207] 

DP 1 2 3 4 5 6 7 8 

Reaction time > 200h 200h 95h 60h 45h 36h 24h 24h 

Yield 100% 44% 23% 25% 17% 7% 3.7% 3.7% 

 

I. 2. E) ii) Mechanical depolymerisation 

Cellulose, impregnated with sulphuric acid, was milled in a planetary ball mill at     

300 rpm for 15 minutes which produced cellulose oligomers with an average DP of around 

7[209]. However, ramifications were formed during the treatment and changed the cellulose 

properties and particularly its solubility[209,210]. The ramification increased the water-

solubility for oligomers of DP > 10. 

I. 2. E) iii) Pyrolysis 

The pyrolysis of cellulose at high temperature (400 to 600°C) leads to the competition 

of two degradation mechanisms: the “unzipping” mode[211] and the random chain cleavage. 
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The latter occurs at short reaction time and induces the production of most of the 

oligomers[212]. Oligomers from DP 2 to 7 were obtained with a yield of up to 20% depending 

on the reaction parameters[212] while oligomers with DP from 1 to 10 were also produced at 

lower temperature 100-350°C for 30 minutes but with a lower yield (3%)[213]. No change of 

structure was mentioned. 

I. 2. E) iv) Hot compressed water (HCW)/Supercritical water 

Hot compressed water acts as solvent as well as reactant. When the hydrolysis occurs 

at 280°C and 20 MPa, oligomers with polymerisation degrees from 1 to 25 are recovered but 

only oligomers with a DP from 1 to 5 stay soluble in water even at ambient conditions, the 

oligomers with higher DP precipitate[214]. Another study presented 40% yield of cellulose 

oligomers with a DP from 1 to 5 after a treatment at 380°C for 16 seconds[215]. More 

recently, cellulose oligomers with a DP from 2 to 9 were obtained with a yield of 42% after a 

treatment with supercritical water at 380°C and 250 bar for 0.4 seconds[216]. 

I. 2. E) i) Plasma irradiation 

A partial depolymerisation was also observed after non-thermal atmospheric plasma 

irradiation due to the formation of hydroxyl radicals[217]. The DP of α-cellulose was 

decreased from 1000 to 160 after a 3 hours irradiation. The procedure also formed 22 wt% 

of glucose so it is possible that oligomers were also formed but in too low quantity to be 

observed. 

 

I. 2. F) Summary 

All of the approaches to produce cellulose oligomers mentioned in §I. 2. are 

summarised in Figure I-23. From all these methods, the ones that give the higher yield in 

water soluble cellulose oligomers are acidic hydrolysis, enzymatic depolymerisation, 

supercritical water treatment and enzymatic synthesis. The last two require either specific 

and expensive equipment or substrates with time-consuming preparations. 
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Figure I-23. Summary of the cellulose oligomer production methods seen in §I. 2. depending on the 

cellulose conversion and DP obtained 

 

 

I. 3. Cellulose oligomers separation 

I. 3. A) Currently used separation 

After the cellulose oligomers are produced, their separation is sometimes necessary 

for specific applications such as biological ones. The usual method employed is 

chromatography. After acidic hydrolysis, a column based on activated charcoal and celite 

using a gradient of water/ethanol as eluent was able to produce oligomers ranging from   

700 mg of cellotriose to 200 mg of celloheptaose from 10 g of native cellulose over five 

days[218]. More recently, after acidic hydrolysis with a mixture of HCl and H2SO4 (Table I-6, 

Entry 8, p 41), a two-column system based on Bio-Gel P-4 (fine polyacrylamide beads) and 

Bio-Rad AG 50W-X4 resin (cation exchange resin) had been used to obtain oligomer 

preparations at 240 mg/day for cellotriose, 330 mg/day for cellotetraose, 260 mg/day for 

cellopentaose, and 130 mg/day for cellohexaose, with purity >99% for DP from 3 to 5 and 

>95% for DP 6[201]. 

Cation exchange resins are really efficient to separate oligosaccharides. Because of 

the many hydroxyl groups present on their backbone, the oligomers are well adsorbed on 
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the column. The eluent then breaks these interactions and desorb them in order of 

decreasing molar mass. Even sugars of the same molecular weight (as glucose and mannose) 

are separated with this method as the separation also depends on ion exclusion, steric 

exclusion, electrostatic attraction or repulsion and Van der Walls forces among other[219]. 

The most commonly used column is based on calcium cation, Ca2+, as it can be eluted with 

water alone[220] which prevents the use of co-solvent that could precipitate the oligomers of 

higher DP. Other examples are silver based column that provides an increased retention and 

resolution than the calcium ones[221] or diethylaminoethyl derivatives of Spheron® using 

borate buffer as the eluent[222]. 

Nevertheless, the chromatographic separation low yield explains the high prices of 

the cellulose oligomers seldom commercially available as highlighted in Table I-8. 

 

Table I-8. Price of cellulose oligomers in €/mg depending on the supplier (data from the 
corresponding supplier website seen in May 2015) 

Supplier Elicityl (FR) Megazyme (IR) Dextra (UK) Carbosynth (UK) TCI 

DP 3 6.10 2.63 7.97 3.74 10.00 

DP 4 9.70 2.63 7.97 3.74 22.30 

DP 5 14.50 2.67 6.18 11.52 10.06 

DP 6 21.80 8.15 - 24.00 - 

DP 7 42.60 - - 37.44 - 

 

Cellulose oligomers may also be separated according to their solubility in different 

solvent. For example, DP 5 and 6 are not soluble when the ratio of ethanol in an 

ethanol/water solution exceeds 80%[199]. This method was also represented in Table I-6, 

Entry 1a to 1d (p 41) as the precipitation solvent influences the range of cellulose DP that are 

obtained[194]. In another study[223], several successive solubilisations were applied to 

separate cellulose oligomers according to their sizes (Table I-9). 

 

Table I-9. Solubility of cellulose oligomers according to their DP in several solvent (adapted from 
Claisse[223]) 

Solvent Water Methanol 
Methanol/Ethyl 

acetate 50/50 v/v 

DP 1-2 Soluble Soluble Soluble 

DP 3-4 Soluble Soluble Insoluble 

DP 5-9 Soluble Insoluble Insoluble 

DP ≥ 10 Insoluble Insoluble Insoluble 

 



 Chapter I. State of the art  

46 

I. 3. B) Looking for alternatives 

The purpose of this project was to find alternative pathways to obtain low dispersed 

cellulose oligomers. Two procedures, detailed below, were considered: the “masking” 

method, based on enzymatic depolymerisation, and the “fishing” method, based on acidic 

hydrolysis. 

I. 3. B) i) Masking method 

The principle, represented in Figure I-24, was to “protect” parts of the cellulose from 

the attack of enzymes with a polymer containing boronic acid groups that act as interaction 

points (see Chapter II). The length between two interaction points would determine the 

length of the oligomers obtained. The polymer/oligosaccharide complex would then be 

extracted using an organic phase and finally the low dispersed cellulose oligomers would be 

recovered after breaking the complex with another aqueous phase. 

 

 
Figure I-24. Principle of the “masking” method 
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I. 3. B) ii) Fishing method 

The “fishing” method principle is to use boronic acid containing polymers to 

selectively extract cellulose oligomer into an organic phase. First, they would be produced by 

acidic hydrolysis to obtain a mixture of different DP. Then, the extraction selectivity would 

result from the length of the polymer used and, more specifically, its ratio compared to the 

cellulose oligomer “caught”. The longer the polymer, the longer the DP solubilised in the 

organic phase (Figure I-25). The process will be helped by a phase transfer catalyst. 

 

 
Figure I-25. Principle of the “fishing” method 
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Chapter conclusion 

 

Cellulose is an abundant natural polymer with many valuable properties. 

Unfortunately, its poor solubility in common solvents reduces its application 

range and functionalisation alters its inherent structure and features. 

Cellulose oligomers are really interesting products that have the 

structure of cellulose but are soluble in water. They can be produced by several 

pathways like chemical synthesis, enzymatic synthesis, enzymatic 

depolymerisation or acidic hydrolysis among other. 

 

As the goal of this study was to produce uniform cellulose oligomers 

without using chromatography, two pathways were considered: the “masking” 

method based on enzymatic depolymerisation and the “fishing” method using 

acidic hydrolysis. Both methods employ the sugar/boronic acid interaction, the 

first one to control the cellulose oligomer length and the second one to 

selectively solubilise oligomers in an organic solvent. 

 

A preliminary study on the interaction of boronic acid with sugars is thus 

necessary to determine the polymer structure the most suited for each method. 
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Appendix I.I: Attributed 1H NMR spectra of glucose in DMSO-d6 

 

 
1H δ (ppm) Hydroxyl groups Backbone protons 

Position 1 2 3 4 6 1 2 3 4 5 6a 6b 

α-glucose 

 

6.19 4.43 4.61 4.81 4.46 4.90 
3.10

-
3.04 

3.10
-

3.04 
3.57 3.42 3.65 3.42 

β-glucose 

 

6.56 4.81 4.81 4.75 4.34 4.27 2.89 
3.10

-
3.04 

3.10
-

3.04 

3.10
-

3.04 
3.57 3.42 
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Appendix I.II: Structure of cellulose polymorphs[159] 
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Appendix I.III: DS calculation method[87] 

 

 
 

 
1H NMR spectra in CDCl3 of cellulose acetate perpropionylated 

 

𝐷𝑆 = 3 −
7 × 𝐼𝑝𝑒𝑟𝑝−𝐶𝐻2

2 × 𝐼𝐶𝑒𝑙𝑙−𝐶𝐻
 

 

With 𝐼𝑝𝑒𝑟𝑝−𝐶𝐻2: Peak integral of ethyl protons of propionoyl moieties (perp-CH2) 

 𝐼𝐶𝑒𝑙−𝐶𝐻: Peak integral of all protons of anhydroglucose unit (Cell-CH) 

 

Here, DS = 2.86 
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Appendix I.IV: Cellulose oligomer characteristics 
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Appendix I.V: Enzymatic polymerisation mechanism[224] 
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Appendix I.VI: T. reesei QM9414 and QM6a cellulases reported in CAZy[159]  

 

Su
b

st
ra

te
 s

p
ec

if
ic

it
y 

p
-n

it
ro

p
h

en
yl

-β
-D

-g
lu

co
si

d
e,

 p
-n

it
ro

p
h

en
yl

-β
-D

-c
el

lo
b

io
si

d
e

, 

m
et

h
yl

u
m

b
el

lif
er

yl
-β

-D
gl

u
co

si
d

e,
 5

-b
ro

m
o

-4
-c

h
lo

ro
-3

-i
n

d
o

ly
l-

β
-D

-g
lu

co
si

d
e 

p
re

d
ic

te
d

 β
-g

lu
co

si
d

as
e 

ac
ti

vi
ty

 

G
lc

2
/G

lc
3
/G

lc
4
/G

lc
5
/G

lc
6
, g

en
ti

o
b

io
se

, l
am

in
ar

ib
io

se
, 

la
m

in
ar

it
ri

o
se

, s
o

p
h

o
ro

se
, 2

-c
h

lo
ro

-4
-n

it
ro

p
h

en
yl

-β
-D

-

gl
u

co
p

yr
an

o
si

d
e,

 p
-n

it
ro

p
h

en
yl

-β
-D

-g
lu

co
p

yr
an

o
si

d
e,

 C
M

C
, 

la
m

in
ar

in
, β

-g
lu

ca
n

 

p
re

d
ic

te
d

 β
-g

lu
co

si
d

as
e 

ac
ti

vi
ty

 

p
re

d
ic

te
d

 β
-g

lu
co

si
d

as
e 

ac
ti

vi
ty

 

p
re

d
ic

te
d

 β
-g

lu
co

si
d

as
e 

ac
ti

vi
ty

 

p
re

d
ic

te
d

 β
-g

lu
co

si
d

as
e 

ac
ti

vi
ty

 

C
M

C
-N

a,
 A

vi
ce

l, 
b

al
l-

m
ill

ed
 c

el
lu

lo
se

, P
A

SC
 

p
re

d
ic

te
d

 e
n

d
o

gl
u

ca
n

as
e 

ac
ti

vi
ty

 

A
vi

ce
l, 

C
M

C
, G

lc
3
/G

lc
4
/G

lc
5
/G

lc
6
, P

A
SC

 

G
lc

x:
 C

el
lu

lo
se

 o
lig

o
m

er
 o

f 
D

P
 x

, 
C

M
C

: 
ca

rb
o

xy
m

et
h

yl
 c

el
lu

lo
se

, 
C

M
C

-N
a

: 
so

d
iu

m
 c

a
rb

o
xy

m
et

h
yl

 c
el

lu
lo

se
, 

P
A

SC
: 

p
h

o
sp

h
o

ri
c 

a
ci

d
 

sw
o

lle
n

 c
el

lu
lo

se
 

P
ro

d
u

ct
 

co
n

fi
gu

ra
ti

o
n

 

re
ta

in
in

g 

re
ta

in
in

g 

re
ta

in
in

g 

re
ta

in
in

g 

re
ta

in
in

g 

re
ta

in
in

g 

re
ta

in
in

g 

re
ta

in
in

g 

re
ta

in
in

g 

in
ve

rt
in

g 

C
o

m
m

o
n

 n
am

e
 

β
-g

lu
co

si
d

as
e 

2
 

β
-g

lu
co

si
d

as
e 

β
-g

lu
co

si
d

as
e 

1
 

β
-g

lu
co

si
d

as
e 

β
-g

lu
co

si
d

as
e 

β
-g

lu
co

si
d

as
e 

β
-g

lu
co

si
d

as
e 

En
go

gl
u

ca
n

as
e 

II 

En
go

gl
u

ca
n

as
e 

C
el

lo
b

io
h

yd
ro

la
se

 II
 

C
A

Zy
[2

2
5]

 

n
am

e
 

G
H

1
 C

el
1

A
 

G
H

1
 C

el
1

B
 

G
H

3
 C

el
3

A
 

G
H

3
 C

el
3

B
 

G
H

3
 C

el
3

C
 

G
H

3
 C

el
3

D
 

G
H

3
 C

el
3

E 

G
H

5
 C

el
5

A
 

G
H

5
 C

el
5

B
 

G
H

6
 C

el
6

A
 

C
la

ss
ic

al
 n

am
e

 

B
gl

2
 E

C
3

.2
.1

.2
1

 

EC
3

.2
.1

.2
1

 

B
g1

 E
C

3
.2

.1
.2

1
 

EC
3

.2
.1

.2
1

 

EC
3

.2
.1

.2
1

 

EC
3

.2
.1

.2
1

 

EC
3

.2
.1

.2
1

 

EG
II

 (
fo

rm
e

rl
y 

EG
II

I)
 /

 
EC

3
.2

.1
.4

 

EC
3

.2
.1

.4
 

C
B

H
II 

/ 
EC

3
.2

.1
.9

1
 

 

 



 Chapter I. State of the art  

55 

Appendix I.VI (following): T. reesei QM9414 and QM6a cellulases reported in CAZy[159] 
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Appendix I.VII: Enzymatic hydrolysis mechanism with retention or inversion of the anomeric 
conformation[158,159] 

 

Anomeric retaining conformation 
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Appendix I.VII (following): Enzymatic hydrolysis mechanism with preservation or inversion of the 
anomeric conformation[158,159] 

 

Anomeric conformation inversion 
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Appendix I.VIII: Mechanism of the cellulose acidic hydrolysis[226] 
 

 
 

 

 

Appendix I.IX: Mechanism of the formation of hydroxymethylfurfural from glucose in acidic 
conditions[227,228] 
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Chapter Purpose 
 

 
 

This chapter deals with the determination of boronic acids propensity to complex on 

sugars. Such information is essential to pick the type of polymer that will be synthesised for 

the “fishing” and/or the “masking” methods (block, random, other). Thus, a preliminary 

study was performed on analogues: glucose for the cellulose and phenylboronic acid for the 

polymer. Other mono-saccharides were also investigated to enlarge the application of both 

methods to other polysaccharides. 
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II. 1. Bibliography 

II. 1. A) Structure of boronic acids 

Boronic acids were first discovered by the English scientist Edward Frankland in 

1860[1,2] by treating diethylzinc with triethyl borate. They are defined as “a trivalent boron-

containing organic compounds that possess one alkyl substituent and two hydroxyl 

groups”[3]. They have only six valence electrons and a deficiency of two electrons. The vacant 

p orbital is orthogonal to the three substituents which are oriented in a trigonal planar 

geometry[3] (Figure II-1). 

 

 
Figure II-1. Boronic acid vacant p orbital and planar structure 

 

Boronic acids cannot be found in nature and ultimately degrade into boric acid[3] 

B(OH)3. They usually ionise in water as represented in Figure II-2. The negative charge is 

drawn on the boron atom but is actually spread out on the three oxygen atoms[3]. The pKa of 

a boronic acid can thus be calculated. The usual method is by an absorbance change at     

268 nm that occurs upon conversion from the trigonal form (low pH) to the tetrahedral form 

(high pH)[4]. For instance, the phenylboronic acid (Figure II-1 with R being a phenyl group) 

has a pKa of 8.8. 

 

 
Figure II-2. Ionisation of boronic acids in water 

 

Table II-1 lists the length and energy of some bonds found in the phenylboronic acid. 

B─C bonds are slightly longer, less energetic, than C─C bonds whereas B─O bonds are really 

more energetic thus shorter, than C─O bonds. Interestingly, the two B─O bonds do not have 

exactly the same length probably because of a dimer formation[5] (Figure II-3). 

 

Table II-1. Length and energy of several bonds in the phenylboronic acid compared to references 

 C─C (ref) C─O (ref) B─C B─O1 B─O2 

Length (Å) 1.54 a 1.43 a 1.568 b 1.378 b 1.362 b 

Energy (kJ.mol-1) c 358 384 323 519 519 
a Average bond length, b Data from reference[6], c Data from reference[7] 
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Figure II-3. Structure of a boronic acid dimer 

 

II. 1. B) Properties and applications 

In organic chemistry, boronic acids are mostly known for the Suzuki coupling 

reaction[8,9] that creates C─C bonds (Figure II-4). The reaction takes place between a boronic 

acid and a halide and is catalysed by a palladium catalyst and a base. 

Boronic acids are also intensively studied because of their capacity to easily and 

reversibly bond to diols as detailed below.   

 

 
Figure II-4. General pathway for a Suzuki coupling reaction (X being a halogen) 

 

II. 1. B) i) Complexation with diols 

The complexation with diols (Figure II-5) is favoured at alkaline pH  as demonstrated 

by Wang and coll.[4,10]. The determination of binding constants by the ARS method [method 

detailed in Appendix II.I, p 104] highlighted an increase with the pH. For example, with the 

phenylboronic acid/glucose system in phosphate buffer the constants are 0.84 M-1, 4.6 M-1 

or 11 M-1 at pH 6.5, 7.5, 8.5 respectively; the predicted optimal pH being 10.6[10] (definition 

in Appendix II.I, p 104). Similar results were obtained with a different binding constant 

calculation method based on affinity capillary electrophoresis[11]. 

This property opens widely the applications scope of boronic acids (Table II-2). 

 

 
Figure II-5. Complexation of boronic acids on diol depending on the pH 
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Table II-2. Some applications of boronic acids in different fields 

Application field Property of interest Reference 

Biomedical 

Antibacterial, antiviral     Ref [12,13] 

Glucose monitoring     Ref [14] 

Capture and release of cancer cells     Ref [15] 

Drug Velcade®     Ref [16] 

Separation and molecular recognition     Ref [17] 

Organic chemistry 

Protecting group     Ref [18,19] 

Diol stereoisomer differentiation     Ref [20] 

Determination of enantiomeric excess     Ref [21] 

Self-assembly Self-repairing polymers (poly(dioxaborolane)s)     Ref [22] 

Chromatography Monitoring, identification and isolation of compounds     Ref [23] 

Transport Molecular recognition and transmembrane transport     Ref [24] 

Electrochemistry Sensor for many types of analytes     Ref [25] 

 

II. 1. B) ii) Boronic anhydride 

Boronic acids are often found in equilibrium with their anhydride analogue, also 

called boroxines[26] (Figure II-6). They are produced by thermal dehydration or by exhaustive 

drying over phosphorus pentoxide[27]. 

 
Figure II-6. Scheme of the boronic anhydride formation 

 

Boroxines may possess an aromatic character[28] and have a planar conformation 

when steric hindrance does not forbid it[26]. Their applications differ from the ones of 

boronic acid (Table II-3). 

 

Table II-3. Some applications of boronic anhydride/ boroxine 

Application field Property of interest References 

Polyelectrolyte Enhancement of ion dissociation     Ref [29] 

Materials 

Covalent organic framework (zeolite analogue)     Ref [30] 

Flame retardant material (additives)     Ref [31] 

Non-linear optical materials     Ref [32] 
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II. 1. B) iii) Particular case of the benzoboroxoles 

Benzoboroxoles (Figure II-7) were first studied 

for their ability to complex sugars by Hall and 

coll. in 2006[33]. Their binding constants 

(determined by the ARS method) with glucose 

and  fructose  at  neutral  pH  were  found  to be  Figure II-7. Structure of benzoboroxole 

higher than the ones obtained with phenylboronic acid (for glucose 17 M-1 versus 0 M-1 and 

for fructose 606 M-1 versus 79 M-1 in D2O[33]). Moreover, this boronic acid does not have an 

anhydride analogue as the stable form, the 5-bond cycle, cannot rearrange into a boroxine. 

 

II. 1. C) Sugar interaction 

In the literature, some divergences, which are summarised below, were found 

concerning the structure of boronic acid/mono-saccharide complexes. The determination of 

a structure often starts with a methylated analogue on the anomeric position to avoid the 

pyranose/furanose equilibrium. 

II. 1. C) i) Glucose 

The complexed form between α- or β-methylglucoside and boric acid in water[34,35], 

1-butaneboronic acid in pyridine[36], phenylboronic acid in toluene[37] or benzoboroxoles in 

phosphate buffer[38] have all the same structure: a complexation on the 4- and 6-positions 

(Figure II-8). However, no complexation was observed in water at pH 9.5[39] as, according to 

the authors, no diols are coplanar in the methylglucoside molecule. 

A complexation on the 2- and 3-positions was also observed when boroxines were 

added in anhydrous conditions to Structure MGlu46[37] (Figure II-9). 

 

 
Figure II-8. Structure of complexes on α-methylglucoside with boronic acid (Structure MGlu46) and 

benzoboroxole (Structure MGlu46’) 

 

 
Figure II-9. Reaction mechanism for the formation of Structure MGlu2346 



 Chapter II. Boronic acid/sugar interaction  

77 

With glucose, two structures are proposed and confronted in the literature. For the 

one determined by Eggert and Norrild[40], the glucose is under an α-furanose form and two 

boronic acids are on the 1,2 and 3,5 positions (Figure II-10, Structure Glu1235). For the other 

proposed by Shinkai[41], the glucose is under an α-pyranose form and two boronic acids are 

on the 1,2 and 4,6 positions (Figure II-10, Structure Glu1246). Eventually, Eggert and 

Norrild[42] also observed Structure Glu1246 by using anhydrous glucose in deuterated 

methanol in a 1:1 ratio with the boronic acid and by instantaneously recording the NMR 

spectrum. However, the complex rearranged with time into Structure Glu1235. Structure 

Glu1246 was not detected when monohydrate glucose was used in the same conditions. In 

conclusion, this study showed that Structure Glu1246 is only present in non-aqueous 

conditions and rearranges into the thermodynamically more stable Structure Glu1235 

depending on time and water content. The complexation with boronic acid thus seems to 

stabilise the furanose form as otherwise the pyranose form is the most stable[43]. 

Structure Glu1235 was also produced by complexation in deuterated DMSO[40,44,45], in 

pyridine[36], in water at pH 9.5[39] or in dioxane[46]. However, in D2O at pH 11, a similar 

structure was observed with one of the boronic acids under a tridentate form and no free 

hydroxyl groups (Figure II-10, Structure Glu12356)[40]. 

 

 
Figure II-10. Structures found in the literature for the complexation of boronic acid on glucose 

(Structure Glu1235, Glu1246 and Glu12356) 

 

II. 1. C) ii) Xylose 

Xylose has the same structure as glucose without the 6-hydroxymethyl group. The 

complexation of xylose in D2O at pH 9.5[39] formed two kinds of complex: Structure Xyl12 and 

Structure Xyl135 (Figure II-11). The authors explained that a complexation on the 3- and      

5-positions on Structure Xyl12 (Figure II-11, Structure Xyl1235) did not seem likely because of 

the rotational freedom of the 5-hydroxyl group[39]. This structure, the xylose analogue of 

Structure Glu1235 (Figure II-10), was however observed while using boric acid[47]. 
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Figure II-11. Structures found in the literature for the complexation of boronic acid on xylose 

(Structure Xyl12, Xyl135 and Xyl1235) 

 

II. 1. C) iii) Galactose 

Galactose has the same structure as glucose with the hydroxyl group in the 4-position 

in axial conformation. The complexation between boronic acid and α-methylgalactose in dry 

pyridine occurred on the 4- and 6-positions[36] (Figure II-12, Structure MGal46). As it was also 

the case with methylglucoside (Figure II-8, Structure MGlu46, p 76), the conformation of the 

4-position does not influence a boronic acid complexation between the 4- and 6-positions on 

a sugar. With benzoboroxole, the similar complex on the 4,6 positions is less stable than the 

one on the 3,4 positions[38] (Figure II-12, Structure MGal34’). 

 

 
Figure II-12. Structures found in the literature for the complexation on α-methylgalactose of 

boronic acid (Structure MGal46) or benzoboroxole (Structure MGal34’) 

 

For boronic acid:galactose ratios of 1:1 or 2:1 in water at pH 9.5, only a tridentate 

complex was formed on the α-furanose form on the 1-, 2- and 5-positions (Figure II-13, 

Structure Gal125)[39]. However, for a 5:1 ratio in the same pH conditions, the complexation 

occurred on the α-pyranose form on the 1,2 and 3,4 positions (Figure II-13, Structure 

Gal1234)[39]. The structure found was confirmed by modelling calculations. 

 

 
Figure II-13. Structures found in the literature for the complexation of boronic acid on galactose 

(Structure Gal125 and Gal1234) 
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II. 1. C) iv) Arabinose 

Arabinose has the same structure as galactose without the 6-hydroxymethyl group. 

The complexation on arabinose with a boronic acid:sugar 2:1 ratio in D2O at pH 9.5[39] 

presented two complexes on the α-furanose form: Structure Ara12 and the tridentate 

Structure Ara125 (Figure II-14). Both structures are equivalents of Structure Gal125 (Figure 

II-13). An increase in boronic acid ratio was not studied with arabinose. 

 

 
Figure II-14. Structures found in the literature for the complexation of boronic acid on arabinose 

(Structure Ara12 and Ara125) 

 

II. 1. C) v) Mannose 

Mannose has the same structure as glucose with the hydroxyl group on the                

2-position in axial conformation. With α-methylmannoside in dry pyridine, two boronic acids 

are complexed on one sugar on the 2,3 and 4,6 positions[36] (Figure II-15, Structure 

MMAn2346). The axial and equatorial conformations for 2- and 3-hydroxyl groups, 

respectively, allow the formation of this complex, which was not observed for                        

α-methylglucoside (except with boronic anhydride). 

With mannose, two structures were found in the literature. One of them was 

observed after complexation in dry pyridine, the sugar was under its α-furanose form with 

two boronic acids on the 2,3 and 5,6 positions (Figure II-15, Structure Man2356)[36]. The 

other one was observed in water at pH 9.5, the sugar is under its β-pyranose form with a 

tridentate boronic on the 1-, 2- and 6-positions (Figure II-15, Structure Man126)[39]. 

 

 
Figure II-15. Structures found in the literature for the complexation of boronic acid on                      

α-methylmannose (Structure MMan2346) or on mannose (Structure Man2356 and Man126) 
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II. 1. C) vi) Cellobiose 

As α-methylglucoside, β-methylcellobiose was also studied for the complexation with 

boronic anhydrides in toluene. In this case, two boroxines were located on the 2,3 and 2’,3’ 

positions and a boronic acid was on the 4’- and 6’-positions[48] (Figure II-16, Structure MC). 

Only one free hydroxyl group was left. 

For cellobiose in D2O at pH 9.5, the authors considered that β-1,4 linkage between 

the two anhydroglucose units prevented the rearrangement into furanose[39]. Hence, it was 

proposed that a boronic acid could only be located on the reducing end ring on the 1- and   

2-positions of the α-form, as it supposedly is the only coplanar diol function present on the 

molecule (Figure II-16, Structure C12). 

 

 
 Figure II-16. Structure of β-methylcellobiose complexed with boroxines (Structure MC) or the most 

probable structure of cellobiose complexed with boronic acid (Structure C12) 

 

 

 

II. 2. Acid / Anhydride equilibrium 

Before starting the study of complexation on sugars, the behaviour of phenylboronic 

acid (PBA) in several solvents was investigated.  

PBA after a treatment at 70°C for several days and neat PBA were analysed by NMR 

spectroscopy in CDCl3. Increasing the anhydride ratio allowed to assign the corresponding  
1H NMR signals to each compounds. The same approach was done in DMSO-d6, a hydrophilic 

solvent (Figure II-17). 
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Figure II-17. Comparison of 1H NMR spectra in CDCl3 (left) or DMSO-d6 (right) of neat PBA (above) 

or PBA after treatment at 70°C (below)  

 

Acid and anhydride have specific NMR signals, some of which were attributed by 

integrations and 1H-1H 2D NMR analysis (COSY). The acid:anhydride ratio can then be 

calculated according to Equation I-1. The calculation is based on integrals ratio so no 

external reference is needed. 

 

𝜏𝑎𝑛 =
𝐼𝑎𝑛1

𝐼𝑎𝑛1 + 3𝐼𝑎𝑐1
 Equation II-1 

With 𝐼𝑎𝑛1 the intensity of the peak an1 and 𝐼𝑎𝑐1 the intensity of the peak ac1 (peaks defined 

in Figure II-17). an1 and ac1 correspond to 6 and 2 protons respectively. 

 

Then, the spectra were recorded from time to time over several days and the 

anhydride:acid ratio against time was plotted for different solvents (Figure II-18). 

Hydrophobic solvents, represented by circles, promoted the anhydride whereas hydrophilic 

solvents, represented by triangles, break them thus engendering the acid form. While 

DMSO-d6, THF-d8 and MeOD could go as far as 100% of the acid form, for toluene-d8 and 

CDCl3 a thermodynamic equilibrium between the two entities seems to be reached. 
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Figure II-18. Evolution of the anhydride ratio in different solvents starting from a) phenylboronic 

acid or b) PBA after treatment at 70°C 

 

Then, the stability of the anhydride against complexation was investigated. An NMR 

tube containing phenylboronic anhydride in CDCl3 was prepared and a diol was added into 

the tube. The three peaks corresponding to ac1 for the acid, an1 for the anhydride       

(Figure II-17) and c1 for the complex (Appendix II.II, p 106) could be identified. The ratio of 

each compound could then be determined using the corresponding integrations (as 

explained in Appendix II.II, p 106). 

With pinacol and 4-methylcatechol, the complexation was so fast and complete that 

only the complex was observed directly after introoduction. With α-methylglucoside, 

anhydrides were broken in less than two days but then the complex and the acid alone 

reached an equilibrium (Figure II-19a). This observation was unexpected as the acid should 

not be promoted in this solvent but as the experiment was done over a long period of time, 

some water could have disturbed the results.  For glucose, both the phenylboronic acid and 

anhydride formed a complex after 30h (Figure II-19b). This experiment also indicated that, 

for glucosides, the equilibrium was displaced toward the complex formation in CDCl3. With 

cellobiose, no complexation was observed meaning that it was not soluble enough in this 

solvent for the complexation to occur and for the equilibrium to be shifted. 

 

 
Figure II-19. Stability of the phenylboronic anhydride against complexation in CDCl3 with                 

a) α-methylglucoside and b) glucose 
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II. 3. Complexation on glucosides 

To ascertain the structure of phenylboronic acid/sugar complexes, DMSO-d6 was 

selected to record the 1H NMR spectrum as the signals of the hydroxyl groups can be 

observed in this solvent and their positions on the sugar determined. The location of the 

boronic acid could then be deduced as the protons of the hydroxyl groups, involved in the 

complexation, are removed. 

 

II. 3. A) Complexation of the phenylboronic acid on methylglucoside 

The structure determination of the PBA:glucose complex started with the study on 

methylglucoside to avoid the pyranose/furanose equilibrium. Moreover, it is a model of the 

cellulose backbone and of the non-reducing end. 

Several ratios of PBA and α-methylglucoside were prepared and directly dissolved in 

DMSO-d6 (Figure II-20). Considering the number of signals between 7.5 and 8.0 ppm, only 

one complex seemed to be formed and its structure did not change with the PBA:                 

α-methylglucoside ratio. 

 

 
Figure II-20. 1H NMR spectra of PBA and α-methylglucoside mixtures in DMSO-d6 

 

Further analyses were then performed on the mixture with a 2:1 ratio to avoid the 

overlapping of NMR signals between free α-methylglucoside and complex. The position of 
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the CH2 group was deduced from the 1H-13C 2D NMR analysis (HSQC) as well as the signals 

corresponding to hydroxyl groups (Figure II-21b). Then, the COSY allowed to attribute the 

proton spectrum starting from the protons attributed to the CH2 group on the 6-position 

(Figure II-21a) and the carbon spectrum was finally attributed via the HSQC (Figure II-21b). 

The remaining two free hydroxyl groups were bound to the 2- and 3-positions which 

corresponds to Structure MGlu46 with a complexation on the 4- and 6-positions as 

represented on Figure II-21b and as previously observed in the literature[34–37]. 

The same structure was obtained with β-methylglucoside (Appendix II.III, p 107). 

 

 

 
Figure II-21. a) COSY and b) HSQC of PBA:α-methylglucoside 2:1 in DMSO-d6 – The stars correspond 

to free α-methylglucoside 
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II. 3. B) Complexation of the phenylboronic acid on glucose 

As for α-methylglucoside, several ratios of PBA and glucose were prepared and the 

evolution of the spectrum were observed and recorded over several days. Figure II-22 

represents the 1H NMR spectra of glucose alone and the three studied ratios taken at the 

same reaction time (10 days). The ratios PBA:glucose 1:1 and 1:2 seemed to be a mixture of 

several compounds whereas for the ratio 2:1 one structure was dominant because of the 

small number of peaks in the 3.5 - 6.5 ppm range (Figure II-22d). 

 

 
Figure II-22. 1H NMR spectra of glucose alone and three PBA:glucose ratios after 10 days in 

deuterated DMSO 

 

II. 3. B) i) Determination of the complexes structure 

The ratio PBA:glucose 2:1 was analysed further by 13C NMR, COSY and HSQC 

(Appendix II.IV, p 108). Only one free hydroxyl group was observed and the COSY analysis 

revealed a correlation with the peak at 3.66 ppm whose integration was consistent with the 

CH2 on the 6-position. All the other positions were involved in the complexation. 

To determine whether the sugar was under the pyranose or the furanose form, 

several criteria, listed in Table II-4, can be considered. 
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Table II-4. NMR criteria indicating a furanose form 

Name Criteria indicating a furanose form Reference 

1H criterion 
The anomeric proton 1H chemical shift increment between 

the complexed and un-complexed sugar is above 0.6 ppm 
Ref [39] 

13C criterion 

All the carbons and especially the anomeric one have 

higher 13C chemical shift (usually chemical shift of the 

anomeric carbon above 100 ppm) 

Ref [35,40,42,49] 

JH-H criterion 

The proton-proton coupling constants J2,3 and J3,4 are small 

thus excluding the vicinal diaxial arrangement of the 

protons 

Ref [36,40] 

 

In this case, the anomeric proton had a 1H chemical shift of 6.28 ppm, which was  

1.38 ppm higher than the one of α-glucose (4.90 ppm) and 2.02 ppm higher than the one of 

β-glucose (4.26 ppm) (Figure II-22a and 20d). Its 13C chemical shift was 104.1 ppm        

(Figure II-23) and the coupling constants J2,3 (1.8 Hz) and J3,4 (2.5 Hz) were small      

(Appendix II.IV, p 108). All the conditions were thus fulfilled to conclude that the sugar was 

under the furanose form. 

Finally, steric considerations implied that the furanose was in α-configuration 

otherwise the hydroxyl groups on the 1- and 2-positions are not coplanar and the 

complexation cannot take place[39]. 

Based on all these conclusions, the structure of the complex observed was the same 

as Structure Glu1235 (Figure II-10, p 77) determined in the literature as the most stable one. 

The glucose is under the α-furanose form with two boronic acids on the 1,2 and 3,5 positions 

as represented on Figure II-23. 

 

 
Figure II-23. Attributed HSQC for the 2:1 PBA:glucose ratio in DMSO-d6 
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Identifying the structure of all the compounds present in the 1:1 and 1:2 ratios from 

the 1H NMR spectra would be quite difficult because of signals overlapping. Consequently, 

the 13C NMR spectrum was further investigated. 

Two unidentified anomeric carbons with chemical shifts close to the ones of free 

glucose were observed by 13C NMR after 8h in DMSO-d6 (Figure II-24, see Appendix II.V for 

the full 13C NMR spectra, p 109). The chemical shifts of the corresponding protons had an 

increment lower than 0.25 ppm compared to free glucose. The 1H and 13C criterion implied 

that the glucose of the undetermined complex was under a pyranose form (proton coupling 

constants were not calculated because of signal overlapping). The two anomeric protons 

might correspond to the α- and β- forms because of the closeness and likeness of the peaks 

so the 1-position seemed to be free. 

 

 
Figure II-24. HSQC in DMSO-d6 of the 1:1 PBA:glucose ratio zoomed on the anomeric carbons – 

Reaction time: 8h 

 

To try to go further in the identification of these complexes, DOSY NMR experiments 

were performed. The DOSY is a 2D NMR analysis that gives the plot of the 1H NMR spectrum 

versus the diffusion constant. Among other parameters, this diffusion constant depends on 

the molar mass and a difference of around 100 g.mol-1 can be detected[50]. The molar mass 

of PBA being 122 g.mol-1, this method would thus indicate whether the complex possessed 

one or two boronic acids (Figure II-25). According to the diffusion coefficient of the peaks 

that were attributed on Figure II-24, the undetermined complex seemed to bear only one 

boronic acid. Unexpectedly, the undetermined complex had the same diffusion coefficient as 

glucose. 
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Figure II-25. DOSY in DMSO-d6 of the 1:1 PBA:glucose ratio (light grey stars corresponds to 

Structure Glu1235 and dark grey ones to free glucose) 

 

To summarise, only one boronic acid was complexed on the pyranose form and the 

anomeric position seemed to be free. Based on the literature and on the study with 

methylglucoside, the conclusion would be that the complexation probably occurred on the 

4- and 6-positions. The structure formed was thus supposedly Structure Glu46. 

 

 

The evolution of the ratio between these complexes with time could give information 

about the transformation mechanism. 

II. 3. B) ii) Evolution with time 

Because of 1H NMR signals overlapping, the ratio between the compounds could not 

be accurately calculated. 

For the 1:1 PBA:glucose ratio (Figure II-26), the disappearance of the second complex 

was clearly observed confirming its lower stability compared to Structure Glu1235. With the 

1:2 and 2:1 PBA:glucose ratios (Appendix II.VI, p 110), the conclusions were the same only 

the evolution rate changed. 
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Figure II-26. Evolution with time of the 1:1 PBA:glucose ratio in DMSO-d6 (peaks highlighted in 
purple correspond to free α- or β-glucose, in green to Structure Glu1235 and in orange to the 

second complex) 

 

Finally, the mechanism proposed in Figure II-27 is in line with the one previously 

established by Eggert and coll.[42] except for the structure of the first complex. 

First, Structure Glu46 is formed but then evolves to the more thermodynamically 

stable Structure Glu1235. Unfortunately, the 4-position, necessary for the furanose 

rearrangement (Figure I-5, p 20), is not free leading to a likely decomplexation. Some water 

coming from the complexation and the hygroscopic character of DMSO allows this process. 

Then, the boronic acid complexes the 3,5 positions to stabilise the furanose form. As this 

complex is not detected, the complexation of the second boronic acid must happen quickly 

leading predominantly to the stable Structure Glu1235. 

 

 
Figure II-27. Mechanism proposed for the evolution of the complexes of PBA on glucose 
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Both the identified structures involve either the 1- or the 4-positions which are not 

available along the cellulose backbone. This means that the complexation would only occur 

at the cellulose extremities where these positions are free. 

Thankfully, a complexation on the 2- and 3-positions, available all along the cellulose 

backbone, was found in the literature by complexation of the boronic anhydride on the       

α-methylglucoside[37] (Figure II-8, Structure MGlu2346, p 76). This kind of complexation will 

thus be investigated. 

 

II. 3. C) Complexation of the phenylboronic anhydride 

II. 3. C) i) Methylglucoside 

The same protocol performed by Liebert and coll.[37] to complex boronic anhydride 

on α-methylglucoside was reproduced. It involved the formation of boronic anhydride in 

toluene at 100°C and the addition of α-methylglucoside for the complexation. The boronic 

acid ratio had to be increased with respect to the 3:1 stoichiometry of the complex. After a 

6h reaction, the 1H NMR spectrum of the complex was recorded in DMSO-d6 and was in 

accordance with the structure observed previously with α-methylglucoside except for the 

reduction of the two hydroxyl groups signals (Figure II-28). This confirmed the formation of 

Structure MGlu2346. No free α-methylglucoside was observed because of its insolubility in 

toluene. 

 

 
Figure II-28. Comparison of the 1H NMR of the complex of PBA:α-methylglucoside obtained in 
DMSO-d6 or after treatment in toluene (the stars correspond to the free α-methylglucoside) 
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This kind of complex could never be observed directly in DMSO-d6 as this solvent 

breaks the anhydride to form the acid (Figure II-18, p 82). However, chloroform favoured the 

anhydride formation and complexation in this solvent was already observed even though the 

structure of the complex had not been determined (Figure II-19a, p 82). 

 

A 3:1 PBA:α-methylglucoside ratio was solubilised overnight in chloroform at room 

temperature. The sugar not solubilised was removed by filtration before evaporating the 

solvent. The complex was then studied in DMSO-d6 to observe the hydroxyl groups. The 

same complex as the one obtained after toluene treatment was observed with even smaller 

hydroxyl groups peaks (Figure II-29). The complexation in chloroform had several 

advantages over the treatment in toluene such as milder conditions and a more easily 

removed solvent. 

The complexation in chloroform is thus the protocol chosen to obtain the complexes 

on different sugars but an analysis in DMSO-d6 is still necessary to determine their structure. 

 

 
Figure II-29. Comparison of the 1H NMR of the complexes of PBA:α-methylglucoside obtained in 

DMSO-d6, after treatment in toluene and after complexation in chloroform 

 

The same protocol was performed on β-methylglucoside and the same result was 

obtained with a complexation of the boronic anhydride on the 2,3 positions (Figure II-30 and 

Appendix II.VII, p 111). The coupling constant J2,3 was found to be 9.1 Hz, which is high as it 

is a pyranose form. 
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Figure II-30. Comparison of the 1H NMR of the complexes of PBA:β-methylglucoside obtained in 

DMSO-d6 and after complexation in chloroform 

 

II. 3. C) ii) Glucose 

Glucose and PBA complexation was also performed in chloroform. Interestingly, the 

resulting compound corresponded to Structure Glu1235 (Figure II-31). Complexation in 

chloroform was thus a faster way to produce and isolate this complex. However, a 

complexation of the boronic anhydride on the 2- and 3-positions of glucose did not occur. 

 

 
Figure II-31. Comparison of the 1H NMR of the complexes of PBA:glucose obtained after 

complexation in chloroform or in DMSO-d6 
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To the best of our knowledge, the complexation in chloroform was never studied in 

the literature. The structures obtained with other saccharides by this method were thus 

determined. But beforehand, the study of the complexation of boronic acid on glucoside will 

be completed with the phenylboroxole. 

 

II. 3. D) Complexation of phenylboroxole 

II. 3. D) i) In DMSO-d6 

The 1H NMR spectrum in DMSO-d6 of the 2:1 phenylboroxole:α-methylglucoside ratio 

corresponded to the sum of the spectra of the two entities alone even after several days 

(Figure II-32). As no shift in the NMR signals were observed, the complexation between 

these two entities did not occur. 

The same observation was made for glucose and cellobiose (Appendix II.VIII, p 112). 

 

 
Figure II-32. 1H NMR spectra of phenylboroxole alone, 2:1 phenylboroxole:α-methylglucoside ratio 

and α-methylglucoside alone in DMSO-d6 

 

II. 3. D) ii) In chloroform 

As done previously in §II. 2 (p 80), glucose was added in a NMR tube containing 

phenylboroxole in CDCl3. Even after five days, no new aromatic peaks corresponding to a 

complex had appeared so the complexation in chloroform also did not occur. 
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II. 3. D) iii) In D2O 

In the literature, the complexation between phenylboroxole and glucose occurred in 

water at neutral pH. These conditions were performed on a 1:1 ratio in D2O. Unfortunately, 

even after 44h, no complexation was observed (Figure II-33). Phenylboroxole was found to 

be not entirely soluble in water. Even at higher pH by addition of NaOD, no complexation 

was observed as the spectrum of the mixture was the addition of the two spectra of the 

species alone. The pH did not seem to have an effect on the phenylboroxole solubility. 

Moreover, after a few days the glucose started to degrade. 

 

 
Figure II-33. 1H NMR spectra of phenylboroxole alone, 1:1 phenylboroxole:glucose ratio and 

glucose alone in D2O 

 

 

Because of the impossibility to observe a complexation with phenylboroxole, this 

particular boronic acid was forsaken for the rest of the study. 

 

 

II. 4. Complexation on other saccharides 

As already mentioned the complexation in chloroform was not studied in the 

literature. Other monosaccharides were thus studied to enlarge the oligomer producing 

methods to polysaccharides other than cellulose. 
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II. 4. A) Complexation on D-xylose 

After complexation in chloroform, no hydroxyl group was observed on the 2:1 

PBA:xylose complex (Appendix II.IX, p 113) meaning that there are two boronic acids per 

sugar. 

The anomeric proton chemical shift had an increment of 1.5 ppm (Figure II-34a and 

b), the anomeric carbon had a chemical shift of 104.9 ppm and the coupling constants J2,3 

(0.8 Hz) and J3,4 (2.6 Hz) were small (Appendix II.IX, p 113) confirming a furanose form. In 

light of steric considerations, the sugar was under the α-furanose form with a complexation 

on the 1,2 and 3,5 positions. Obtaining Structure Xyl1235 (Figure II-11, p 78) contradicts 

Nicholls and Paul’s hypothesis[39] which was that the rotational freedom of the 5-hydroxyl 

prevents a complexation on this position. 

The same complex was also obtained from complexation in DMSO-d6 with a 2:1 

PBA:xylose ratio (Figure II-34c). With the 1:1 ratio in DMSO-d6, another complex was 

observed (Figure II-34d, orange arrows) but the structure was not determined. Our 

hypothesis, considering the boronic acid:xylose ratio and the chemical shifts of the peaks, 

was that the sugar was under the furanose form with a boronic acid either on the 1,2 or 3,5 

positions.   

 

 
Figure II-34. Attributed 1H NMR spectra of xylose and PBA:xylose complexes 
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II. 4. B) Complexation on D-mannose 

For the mannose complex, only one hydroxyl group was observed and seemed to be 

located on the anomeric position (Appendix II.X, p 114). Hence the four other hydroxyl 

groups were involved in the complexation. The anomeric proton chemical shift of the 

complex had an increment of 0.50 ppm from the α-form and 0.83 from the β-form (Figure 

II-35) which was quite close to the 0.6 ppm limit. The anomeric carbon had a 13C chemical 

shift of 101.0 ppm and the coupling constants J2,3 (6.2 Hz) and J3,4 (0.7 Hz) (Appendix II.X,     

p 114) seemed to indicate a pyranose form even though they were quite close to the limits. 

In the literature, both types of complexation on the 2,3 and 4,6 positions of the        

α-methylmannose and on the 2,3 and 5,6 complex on the α-furanose form of mannose were 

observed (Figure II-15, Structure MMan2346 and Man2356, p 79). Consequently, none of 

the two possibilities can be discarded. 

On this report, the structure on the pyranose form is used (Figure II-35) but the 

furanose form is not firmly denied. 

 

 
Figure II-35. Attributed 1H NMR spectra of mannose and PBA:mannose complex 

 

II. 4. C) Complexation on D-arabinose 

After complexation in chloroform, the PBA:arabinose complex did not present any 

hydroxyl groups (Appendix II.XI, p 115) indicating that one sugar bore two boronic acids. 
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The 1H chemical shift increment of the anomeric proton was 1.1 ppm (Figure II-36a 

and b) but the anomeric carbon had a 13C chemical shift of 92.76 ppm and the coupling 

constants J2,3 (2.5 Hz) and J3,4 (8.7 Hz) were high. Even though the 1H criterion was not met, 

we concluded that the sugar was under the pyranose form. 

Because of steric considerations, the complexation was found to occur on the 1,2 and 

3,4 positions of the α-pyranose form (structure represented on Figure II-36). The same 

complex was observed by complexation in DMSO-d6 with a 2:1 PBA:arabinose ratio      

(Figure II-36c). 

In the literature, complexation was only found on the furanose form on the 1,2 or, as 

a tridentate, on the 1,2,5 positions. Both these complexes have at least one free hydroxyl 

group. The complexation in chloroform thus probably allowed the formation and isolation of 

a new complex on arabinose. 

 

 
Figure II-36. Attributed 1H NMR spectra of arabinose and PBA:arabinose complexes 

 

II. 4. D) Complexation on D-galactose 

The spectrum of the complex on galactose obtained after complexation in chloroform 

was too crowded and had a too small intensity to accurately identify all the species present 

(Figure II-37). 
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Figure II-37. 1H NMR spectra in DMSO-d6 of the galactose alone and of the PBA:galactose complex 

obtained after complexation in chloroform 

 

Consequently, the complexation was only studied in DMSO-d6. The evolution of the 

PBA:galactose 1:1 and 2:1 ratios was recorded over time and an evolution of the ratio 

between the different peaks was observed. Three complexes were identified           

(Appendix II.XII, p 116) and Figure II-38 represents their structure as well as their evolution 

over time for the two ratios studied. On the PBA:galactose 1:1 ratio, a small percentage of 

Structure 2/1 was detected (below 10%) and Structure b1/1 seemed to evolve into Structure 

t1/1 which is probably more thermodynamically stable. For the PBA:galactose 2:1 ratio, 

Structure 2/1 seemed to rearrange into Structure t1/1 until an equilibrium was reached 

where the three structures had the same proportion. 

 

 
Figure II-38. a) Structure of the three complexes observed by complexation of PBA on galactose in 

DMSO-d6 and evolution with time of the PBA:galactose b) 1:1 ratio and c) 2:1 ratio 



 Chapter II. Boronic acid/sugar interaction  

99 

II. 4. E) Complexation on cellobiose 

As mentioned in §II. 2 (p 80), no complexation was observed between cellobiose and 

phenylboronic anhydride in chloroform. The complexation in DMSO-d6 was thus 

investigated. Several ratios were studied (Figure II-39b to g) and the mixture in DMSO-d6 

was heated to displace the equilibrium toward the complex formation (Figure II-39h and i). 

In all of these conditions, only one complex seemed to be formed as only one new peak 

appeared in the 7.5-8.0 ppm region. If we consider the literature and the small changes 

observed for the rest of the spectra, Structure C12 (Figure II-16, p 80) with a complexation 

on the 1- and 2- positions of the reducing end sugar, was most probably formed. However, a 

complexation on the 4’- and 6’-positions of the non-reducing end sugar was not excluded 

considering the results of the complexation on methylglucoside. 

 

 
Figure II-39. 1H NMR spectra of several ratios of PBA cellobiose in DMSO-d6 
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II. 4. F) Summary 

Table II-5 summarises the structures and Appendix II.XIII (p 119) and II.XIV (p 120) 

the 1H and 13C assignments of the complexes determined in this chapter. 

For cellulose, the complexation would only occur at the extremities as the 1- and      

4-positions are not available along the backbone. The boronic acid would be on the 1- and  

2-positions of the reducing end as confirmed by the study on cellobiose and/or on the 4- and 

6-positions on the non-reducing end as determined with β-methylglucoside. Only boronic 

anhydride can be located on the 2- and 3- positions. 

 

Table II-5. Summary of all the structures determined in this chapter 

Complexation in DMSO-d6 Chloroform 

α-methylglucoside 

 
 

β-methylglucoside 

 
 

Glucose 
rearranging into 

 

 

Xylose 

and at least another one not 

confirmed 
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Table II-5 (following). Summary of all the structures determined in this chapter 

Complexation in DMSO-d6 Chloroform 

Mannose Not determined 
or 

 

Arabinose 

  

Galactose 

 

 
 

Evolving toward 

an equilibrium 

with the same 

ratio for the 

three structures 

Not determined (1H NMR 

spectrum too crowded) 

Cellobiose 
 

or 

 

No complexation 
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Chapter conclusion 

 

A bibliographic study highlighted that boronic acids complexation on sugars 

could occur in water and that their association constant increased with the pH. 

The formation of the anhydride form was favoured in hydrophobic solvents 

even though an equilibrium with the acid form was observed. However, with 

hydrophilic solvents, 100% of acid form was reached. 

 

After that, a complexation study on analogues suggested that the 

complexation of boronic acid on cellulose would only occur at the extremities. For 

the “fishing” method, it is not an issue but for the “masking” method several 

interaction points between the cellulose chain and the polymer along the 

backbone are needed to protect the future oligomers. Fortunately, boronic 

anhydrides were able to complex the 2- and 3-positions. 

 

As a result, two polymer structures were chosen: a 4-vinylphenylboronic 

acid (VBA)-styrene block copolymer for the “fishing” method (Figure II-40a) and a 

random copolymer of styrene and 4-vinylphenylboronic acid under the anhydride 

form with phenylboronic acid for the “masking” method (Figure II-40b). 

 

 
Figure II-40. Structure of a) a VBA-styrene block copolymer and b) a random copolymer 

of styrene and VBA under the anhydride form with PBA 

 

For the “fishing” method, a block is necessary as two boronic acids may 

complex the same oligomer and a random copolymer could induce a network 

formation. The boronic acid block needs to be small to prevent networking and 

anhydride formation by steric hindrance but not too small so an anhydride 

formation does not jeopardise the method. 
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Appendix II.I: ARS method to determine boronic acid/diol binding constants[4,10] 

 

The Alizarin Red S (ARS) method is based on a fluorescence change after 

complexation with a boronic acid. However, the presence of a second diol in the mixture 

leads another competitive equilibrium as represented below. This new equilibrium perturbs 

the one between boronic acid and ARS thus quenching the fluorescence. 

 

 
 

The determination of a binding constant is performed by first calculating the constant 

with ARS alone and then, a titration of the boronic acid/ARS solution with the target diol 

compound has to be carried out. 

 

Determination of the binding constant of ARS alone[4] 

The fluorescence of solutions of ARS in phosphate buffer with different equivalent of 

boronic acid (from 10 to 200) has to be measured. The fluorescence intensities are measured 

with an excitation wavelength of 468 nm and an emission wavelength of 572 nm. The 

equation below explicates the relationship between the fluorescence intensity changes and 

the equilibrium constant. The binding constant with ARS 𝐾𝑒𝑞1 is thus the quotient of the 

intercept over the slope of the plot of 1 Δ𝐼𝑓
⁄ depending on 1 [𝐿]⁄ . 

 

Δ𝐼𝑓 =
(Δ𝑘p0𝐾𝑒𝑞1)[𝐿][𝐼0]

1 + 𝐾𝑒𝑞1[𝐿]
   ⇔    

1

Δ𝐼𝑓
= (Δ𝑘p0𝐾𝑒𝑞1[𝐼0])−1

1

[𝐿]
+ (Δ𝑘p0[𝐼0])−1 

 

With 𝛥𝐼𝑓 the fluorescence intensity change, 𝛥𝑘𝑝0 a constant derived from the intrinsic 

fluorescence and the laser power, 𝐾𝑒𝑞1 the association constant of the ARS/boronic acid 
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system, [𝐿] the ligand concentration (here, in the considered boronic acid) and [𝐼0] the total 

indicator concentration (here, ARS) 

 

Determination of the binding constant of the targeted diol[4] 

The binding constant is determined by plotting 1
𝑃⁄  depending on 𝑄 with both of 

those values defined as below. 𝑄 is determined by the change of fluorescence of the 

solution. 

 

𝑃 = [𝐿0] −
1

𝑄𝐾𝑒𝑞1
−

[𝐼0]

𝑄 + 1
 𝑄 =  

[𝐼]

[𝐼𝐿]
 

 

With [𝐿0] the total amount of boronic acid, 𝐾𝑒𝑞1 the binding constant with ARS alone 

determined previously, [𝐼0] the total indicator concentration (here, ARS), [𝐼] concentration of 

free ARS and [𝐼𝐿] concentration of complexed ARS 

 

This last equation highlights the relation between the binding constant, 𝑃 and 𝑄. The 

binding constant 𝐾𝑒𝑞 is thus determined by dividing the slope of the plot of 1 𝑃⁄  depending 

on 𝑄 by the constant 𝐾𝑒𝑞1 determined previously. 

 

[𝑆0]

𝑃
=

𝐾𝑒𝑞1

𝐾𝑒𝑞
𝑄 + 1 

 

With [𝑆0] the total amount of targeted diol, 𝐾𝑒𝑞1 the binding constant with ARS alone 

determined previously and 𝐾𝑒𝑞 the binding constant with the targeted diol 

 

Determination of the predicted optimal pH 

The predicted optimal pH is defined as the average between the pKa of the 

considered boronic acid and the pKa of the targeted diol. 
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Appendix II.II: Calculation of the acid/anhydride/complex ratios 

 

 
1H NMR spectra in CDCl3 

 

As an1 corresponds to 6 protons when ac1 and c1 correspond to only 2, the ratios of 

each compound were calculated as follow: 

𝜏𝑎𝑐𝑖𝑑 =
𝐼𝑎𝑐1

𝐼𝑎𝑐1 +
𝐼𝑎𝑛1

3⁄ + 𝐼𝑐1

 
𝜏𝑎𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒 =

𝐼𝑎𝑛1
3⁄

𝐼𝑎𝑐1 +
𝐼𝑎𝑛1

3⁄ + 𝐼𝑐1

 

𝜏𝑐𝑜𝑚𝑝𝑙𝑒𝑥 =
𝐼𝑐1

𝐼𝑎𝑐1 +
𝐼𝑎𝑛1

3⁄ + 𝐼𝑐1

 

With 𝜏𝑥 the ratio of the compound 𝑥 and 𝐼𝑝 the integration of the peak 𝑝 defined on the 

figure above 

 

The calculation is based on the ratio of integrals so no external reference is needed. 
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Appendix II.III: Phenylboronic acid:β-methylglucoside complex in DMSO-d6 

 

 
COSY in DMSO-d6 of the phenylboronic acid:β-methylglucoside complex 

 

 
HSQC in DMSO-d6 of the phenylboronic acid:β-methylglucoside complex 
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Appendix II.IV: Phenylboronic acid:glucose 2:1 ratio in DMSO-d6 

 

 
COSY in DMSO-d6 of phenylboronic acid:glucose 2:1 ratio 

 

 
HSQC in DMSO-d6 of phenylboronic acid:glucose 2:1 ratio 

 

JH-H coupling constants of the sugar part of the PBA:glucose 2:1 complex 

J1,2 J2,3 J3,4 J4,5 J5,6a J5,6b J6a,6b 

4.3 Hz 1.8 Hz 2.5 Hz Not measured 
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Appendix II.V: Phenylboronic acid:glucose 1:1 ratio in DMSO-d6 (
13C NMR) 

 

 
13C NMR in DMSO-d6 of free glucose, phenylboronic acid:glucose 1:1 ratio and 2:1 ratio 
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Appendix II.VI: Evolution with time of the 1:2 and 2:1 PBA:glucose ratios in DMSO-d6 

 

 
Evolution with time of the 1:2 PBA:glucose ratio in DMSO-d6 (peaks highlighted in purple 

correspond to free α- or β-glucose, in green to Structure Glu1235 and in orange to the 

second complex) 

 

 
Evolution with time of the 2:1 PBA:glucose ratio in DMSO-d6 (same colour code as above) 
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Appendix II.VII: Complex PBA:β-methylglucoside after complexation in chloroform 

 

 
COSY in DMSO-d6 of the phenylboronic acid:β-methylglucoside complex obtained after 

complexation in chloroform 

 

  
HSQC in DMSO-d6 of the phenylboronic acid:β-methylglucoside complex obtained after 

complexation in chloroform 

 

JH-H coupling constants of the sugar part of the PBA:β-methylglucoside complex 

J1,2 J2,3 J3,4 J4,5 J5,6a J5,6b J6a,6b 

7.7 Hz 9.1 Hz Not measured 
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Appendix II.VIII: Complexation of phenylboroxole on glucose and on cellobiose 

 

 
1H NMR spectra of phenylboroxole alone, 2:1 phenylboroxole:glucose ratio and glucose 

alone in DMSO-d6 

 

 
1H NMR spectra of phenylboroxole alone, 4:1 phenylboroxole:cellobiose ratio and cellobiose 

alone in DMSO-d6 
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Appendix II.IX: Complex PBA:xylose after complexation in chloroform 

 

 
COSY of the complex of PBA and xylose obtained after the complexation in chloroform 

 

 
HSQC of the complex of PBA and xylose obtained after the complexation in chloroform 

 

JH-H coupling constants of the sugar part of the PBA:xylose complex 

J1,2 J2,3 J3,4 J4,5a J4,5b J5a,5b 

4.3 Hz 0.8 Hz 2.6 Hz Not measured Not measured Not measured 
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Appendix II.X: Complex PBA:mannose after complexation in chloroform 

 

 
COSY of the complex of PBA and mannose obtained after the complexation in chloroform 

 

 
HSQC of the complex of PBA and mannose obtained after the complexation in chloroform 

 

JH-H coupling constants of the sugar part of the PBA:mannose complex 

J1,2 J2,3 J3,4 J4,5 J5,6a J5,6b J6a,6b 

Not measured 6.2 Hz 0.7 Hz 3.7 Hz 10.3 Hz 2.1 Hz 9.1 Hz 
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Appendix II.XI: Complex PBA:arabinose after complexation in chloroform 

 

 
COSY of the complex of PBA and arabinose obtained after the complexation in chloroform 

 

 
HSQC of the complex of PBA and arabinose obtained after the complexation in chloroform 

 

JH-H coupling constants of the sugar part of the PBA:arabinose complex 

J1,2 J2,3 J3,4 J4,5a J4,5b J5a,5b 

6.1 Hz 2.5 Hz 8.7 Hz 0.9 Hz 2.2 Hz 13.9 Hz 



 Chapter II. Boronic acid/sugar interaction  

116 

Appendix II.XII: Complexes observed by complexing PBA on galactose in DMSO-d6 

Structure t1/1 

 
COSY in DMSO-d6 of the PBA:galactose 1:1 ratio after 6h15 in DMSO-d6 

 

 
HSQC in DMSO-d6 of the PBA:galactose 1:1 ratio after 6h15 in DMSO-d6 

 

The anomeric proton 1H chemical shift increment was 0.07 ppm and the anomeric 

carbon 13C chemical shift was 93.1 ppm. The proton coupling constants were not calculated. 
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Appendix II.XII (following): Complexes observed by complexing PBA on galactose in DMSO 

Structure 2/1 

 
COSY in DMSO-d6 of the PBA:galactose 2:1 ratio after 9h15 in DMSO-d6 

 

 
HSQC in DMSO-d6 of the PBA:galactose 2:1 ratio after 9h15 in DMSO-d6 

 

The anomeric proton 1H chemical shift increment was 1.09 ppm and the anomeric 

carbon 13C chemical shift was 97.1 ppm. The proton coupling constants were not calculated. 

Even though both criteria were not consistent, considering the structure of the other 

complexes found, the pyranose form was more probable. 
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Appendix II.XII (following): Complexes observed by complexing PBA on galactose in DMSO 

Structure b1/1 

 
COSY in DMSO-d6 of the PBA:galactose 1:1 ratio after 7 days in DMSO-d6 

 

 
HSQC in DMSO-d6 of the PBA:galactose 1:1 ratio after 7 days in DMSO-d6 

 

The anomeric proton 1H chemical shift increment was -0.52 ppm and the anomeric 

carbon 13C chemical shift was 97.2 ppm. The proton coupling constants were not calculated. 
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Appendix II.XIII: Summary of the assignments of the 1H NMR spectra of the different complexes 
studied in this chapter 
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Appendix II.XIV: Summary of the assignments of the 13C NMR spectra of the different complexes 
studied in this chapter 
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Chapter Purpose 
 

 
 

The following polymer structures were determined to be the best suited for the 

“masking” and the “fishing” methods after the preliminary study of the complexation 

between phenylboronic acid and different cellulose models. Their preparation will be 

investigated in this chapter. 

 

 
 

A high control of the molar masses is essential as the dispersity of the cellulose 

oligomers retrieved after the “fishing” or the “masking” methods depends on it. 
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III. 1. Bibliography on polymers containing boronic acid entities 

III. 1. A) Synthesis 

Boronic acid polymers are usually prepared by either polymerisation of a boronic acid 

monomers or a polymer modification reaction[1].  

III. 1. A) i) Polymerisation 

Boron containing monomers can be polymerised by free radical, metathesis[2]   

(Figure III-1a and b) or Ziegler-Natta[3,4] (Figure III-1c) polymerisations. These last two types 

require expensive catalysts and monomers compared to radical polymerisation. They thus 

will not be discussed further. 

 

 
Figure III-1. Examples of a) acyclic diene metathesis[2], b) ring-opening metathesis[2] and c) Ziegler-

Natta polymerisation[4] to obtain boron containing polymers 

 

Even though 3-acrylamidophenylboronic acid (APBA, Figure III-2) is less commercially 

available than 4-vinylphenylboronic acid (VBA, Figure III-2), its solubility in water and pKa 

close to physiological value aroused the interest of many authors in the literature. The 

boronic acid is often protected, generally by pinacol, before being polymerised (Figure III-2) 

to avoid the formation of anhydrides induced by the solvent and/or the required elevated 

polymerisation temperatures. However, unprotected boronic acid monomers are able to 

polymerise in hydrophilic solvents like acetonitrile[5] or ethanol[6], or with a small percentage 

of water into the reaction medium[7]. 
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Figure III-2. Structure of some boronic acid containing monomers protected or free 

 

To have a control over a radical polymerisation, the main two techniques employed 

with boronic acids are reversible addition-fragmentation chain transfer (RAFT)[8] or atom 

transfer radical polymerization (ATRP)[9,10] (see Appendix III.I for the respective mechanisms, 

p 145). 

For RAFT polymerisation, the chain-transfer agent (CTA) mostly used is                        

2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl-propionic acid (DMP, Figure III-3a) with 

azobisisobutyronitrile (AIBN) as the initiator at 70°C in DMF/H2O 95/5 v/v for un-protected 

monomers[11–14] or in DMF[15,16] or anisole[17] with protected monomers. Dibenzyl 

trithiocarbonate (DBTTC, Figure III-3b) or 2-(butylthiocarbonothioylthio) propanoic acid 

(BTTCP, Figure III-3c) and their PEGylated equivalents also presented good results for the 

homo-polymerisation of VBA in DMF/H2O 95/5 v/v[18]. Other CTA were also seldom reported 

like 4-cyanopentanoic acid dithiobenzoate (CPADB, Figure III-3d) that was used for APBA 

with AIBN at 70°C in DMSO/H2O 95/5 v/v[19] or methyl 3-benzylsulfanylthio 

carbonylsulfanylpropionate (MBSP, Figure III-3e) that was used for the polymerisation of a 

luminescent boron quinolate monomer[20]. 

The effectiveness of the CTA is influenced by the monomer(s) being polymerised but 

also depends strongly on the free radical leaving groups which stabilises or not the 

intermediate radicals[21,22] (Appendix III.II, p 146). 

 

 
Figure III-3. Structure of several chain transfer agents (CTA): DMP, DBTTC, BTTCP, CPADB and MBSP 

 

For ATRP, only one example was found in the literature concerning the direct 

polymerisation of a boronic acid containing monomer. In fact, the polymerisation by ATRP of 



 Chapter III. Polymer synthesis  

129 

a boronic acid monomer occurs at a considerably slower rate than for 4-trimethyl 

silylstyrene for example (Figure III-4). 

 

 
Figure III-4. Kinetic data for ATRP of several monomers in anisole (adapted from Jäkle and coll.[23]) 

 

Poly(4-trimethylsilyl styrene) (PTMSS) can be modified afterwards into a boronic acid 

containing polymer (Figure III-5). However, this method is time-consuming compared to 

RAFT polymerisation and, moreover, BBr3 is toxic and highly corrosive and needs to be 

handled very carefully. 

 

 
Figure III-5. General method to transform PTMSS  into a boronic acid containing polymer (adapted 

from Jäkle and coll.[24]) 

 

To de-protect the monomers, one of the most efficient method is by 

transesterification either with a polystyrene-boronic acid resin in acetonitrile containing 2% 

of trifluoroacetic acid under reflux at least 18h[17,25] or with diethanolamine followed by a 

mild acidic hydrolysis[26]. 

III. 1. A) ii) Un-functionalised polymer post-modification 

The transformation of PTMSS into a boronic acid containing polymer has been 

explained previously but this post-modification can also be done on un-functionalised 

polymers as polystyrene. The aromatic ring needs first to be activated with n-butyllithium 

and then functionalised with a borate. An hydrolysis step releases the boronic acid residues 

(Figure III-6) which are expected to be introduced in para and in meta positions to the 
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backbone[27]. To obtain solely the para position, 4-bromostyrene can be copolymerised with 

the styrene followed by a bromide-lithium exchange[27,28]. 

 

 
Figure III-6. Example of polystyrene functionalisation with boronic acid[27] 

 

III. 1. B) Applications 

All the applications presented in this part were only studied in lab-scale. To our 

knowledge, boronic acid polymers do not have industrial applications yet. 

III. 1. B) i) Glucose detection 

The main application of boronic acid containing polymers is glucose detection. For 

instance, poly(3-acrylamidophenylboronic acid)-b-poly(N-isopropylacrylamide) (PAPBA-b-

PNIPAM) was found to be sensitive to pH, temperature and glucose concentration[12] as 

represented in Figure III-7. As seen previously in Chapter II, the influence of the pH occurs 

around the PAPBA units pKa (≈ 9). Below the pKa, the boronic acids are dehydrated and form 

micelles with a hydrophilic PNIPAM corona and a hydrophobic PAPBA core. When these 

micelles are exposed to an increase of pH or the addition of polyol such as glucose, they 

dissociate to form unimers as the PAPBA block becomes soluble in water. These particles can 

thus be loaded with a dye, or another compound, which release is triggered by pH change or 

glucose concentration[16]. Then, a temperature increase leads to the PNIPAM block 

dehydration and interchain aggregation[12]. The transition occurs at the lower critical 

solution temperature (LCST) that increased from 32°C for PNIPAM alone to 42°C for the 

block copolymer. 

 

 
Figure III-7. Block copolymer self-assembly/dissociation in response to changes of pH or 

temperature (adapted from Sumerlin and coll.[12]) 

 

The LCST of a boronic acid containing polymer however depends on the glucose 

presence[6]. As a matter of fact, a random poly(N,N-dimethylacrylamide)-PAPBA with           
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15 mol% of APBA at 0.1 wt% in HEPES buffer had a LCST of around 25°C without glucose and 

this latter jumped to around 40°C with glucose at 16.7 g.L-1. 

III. 1. B) ii)  Self-assembly and loading 

The boronic acid propensity to complex saccharides was also employed to induce 

self-assembly. APBA was polymerised by RAFT to obtain a block copolymer with a lactose 

containing monomer (2-lactobionamidoethylmethacrylate, LAMA). Inter and intra-chain 

interactions led to self-assembled structures in water[19] (Figure III-8). These particles had no 

cytotoxicity on Chinese hamster ovary cells and human colorectal carcinoma. They were 

loaded with insulin with an encapsulation efficiency between 70% and 86% depending on 

the length of the PLAMA block. The controlled delivery of the peptide occurred gradually 

over 12h in phosphate buffered saline (PBS) buffer. 

 

 
Figure III-8. PAPBA-b-PLAMA structure and self-assembly in water (adapted from Li and coll.[19]) 

 

In another example[14], PAPBA and poly(N,N-dimethylacrylamide)-b-PAPBA (PDMA-b-

PAPBA) were cross-linked into a dynamic-covalent macromolecular network or multi-arms 

stars, respectively, after a treatment with multi-functional diols (Figure III-9). This cross-

linking was driven by boronic esters formation and was thus reversible. The disruption could 

be induced by the introduction of mono-functional diols but a new addition of a multi-

functional diol could rebuild the cross-linking. 

 

 
Figure III-9. a) Dynamic-covalent macromolecular network or b) reversible multi-arms stars 

formation (adapted from Sumerlin and coll.[14]) 
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III. 1. B) iii) Telechelic polymers 

Polymers containing only one boronic acid per chain can be produced by introducing 

the moiety into the RAFT agent[29] or by ATRP with an initiator bearing a trimethylsilyl group 

that can be subsequently transformed[30]. Three polymer chains can thus organise 

themselves into a boroxine star upon the addition of amine ligand[29] or water elimination[30] 

(Figure III-10). The glass transition temperature (Tg) of the polymer after boroxine formation 

had increased from 80°C for the trimethylsilyl equivalent to 101°C which confirms the 

rearrangement into anhydrides and a more rigid structure[30]. 

 

 
Figure III-10. Schematic rearrangement into a boroxine star formation 

 

Polymers obtained by ATRP having a boronic acid at one extremity can be coupled at 

the other extremity by atom transfer radical coupling hence possessing a boronic acid 

moiety at each extremity[30]. Such polymers can also form anhydrides as proven by an 

increased Tg (112°C compared to the previous 101°C) which confirms the formation of an 

even more rigid structural framework. 

 

 

III. 2. Anionic polymerisation 

A polymerisation technique leading to small molar masses with a great control over 

the dispersity is required for the application aimed by this work. Anionic polymerisation is 

thus the logical choice. Unfortunately, 4-vinylphenylboronic acid (VBA) could not be directly 

polymerised by this method as it deactivated the polymerisation. Even after protection with 

pinacol, either the monomer or the remaining free diol induced the same result. 

Consequently, polystyrenes (PS) with a theoretical polymerisation degree (DPth) of 10 and 50 

were obtained by anionic polymerisation of styrene (Figure III-11) with sec-butyllithium in 

cyclohexane at 40°C. The polymers were modified afterwards to introduce boronic acid 

residues as seen previously (Figure III-6, p 130). 
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Figure III-11. SEC in THF of two polystyrenes made by anionic polymerisation (Mn and Mw given in 

g.mol-1 and based on polystyrene calibration, value between brackets is the corresponding DP) 

 

In theory, 50% of the phenyl pendant group were modified. Some solubility issue 

seemed to arise after modification as the SEC signals in THF either decreased instead of 

increasing or disappeared for the polymer of higher molar mass (Figure III-12). Protection 

with pinacol had a positive effect on the characterisation of PS 10 – B(OH)2 but had no 

impact on PS 50 – B(OH)2 SEC in THF signal.  

 

 
Figure III-12. SEC in THF of a) PS 10 and b) PS 50 of the polystyrene alone (PS), after modification 

(PS – B(OH)2) and protection with pinacol (PS pinacol) (Mn in g.mol-1 based on PS calibration) 

 

The solubility of these polymers in other solvents than THF was also investigated 

(Table III-1) and chloroform appeared to be a good alternative to characterise the polymers 

modified and protected with pinacol even at high molecular weight. 1H NMR spectra seemed 

to confirm the good solubility (Figure III-13). 
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Table III-1. Solubility issues depending on the polymer and the solvent 

Solvent PS 10 – B(OH)2 
a PS 50 – B(OH)2 

a PS 10 pinacol b PS 50 pinacol b 

Tetrahydrofuran + + - - 

Cyclohexane -- -- - - 

Dichloromethane - -- + + 

Acetone - -- - - 

Methanol + -- -- -- 

Chloroform - - + + 

a Polystyrene after modification to introduce boronic acid moieties, b Polystyrene after 

modification protected with pinacol – + : Clear solution, - : Blurry solution, -- : Not solubilised 

 

 
Figure III-13. 1H NMR spectra in CDCl3 of polystyrene alone (above) and after modification and 

protection with pinacol (below) for a) PS 10 and b) PS 50 

 

SEC in chloroform was then tentatively applied to the polymers after protection with 

pinacol but, unfortunately, no signals were usable (Figure III-14). 

 

 
Figure III-14. SEC in chloroform of a) PS 10 and b) PS 50 of the polystyrene alone (PS) and after 

modification and protection with pinacol (PS pinacol) (Mn based on PS calibration) 

 

The quantity of boronic acid introduced was reduced to 10% but the solubilisation 

was still an issue. Eventually, another polymerisation technique was chosen. 
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III. 3. RAFT polymerisation 

Due to the bad results achieved with anionic polymerisation, some control over the 

dispersity of small molar masses had to be surrendered. Based on the literature, the RAFT 

polymerisation was one of the best and simplest alternatives. 

 

III. 3. A) General parameters determined on polystyrene 

DMP, in association with AIBN, was chosen to start the study as it is the most used 

RAFT agent for the polymerisation of boronic acid containing monomers. The influence of 

several parameters on the polymerisation kinetics of styrene alone was evaluated         

(Table III-2). The molar masses obtained for Polymer 1 were low compared to the expected 

ones so the polymerisation was still not finished after 8h whereas, for Polymer 2, the 

polymerisation was more advanced. Consequently, when a high DP is targeted, the 

polymerisation time have to be increased to reach a higher conversion. Similarly, a higher 

AIBN/DMP ratio improved the conversion but the dispersity had also slightly increased 

(Polymer 3). The solvent (anisole or cyclohexane) had no effect on the polymer 

characteristics (Polymer 4).  

 

Table III-2. Variation of several parameters of the RAFT polymerisation of polystyrene, values in 
bold highlight the changes compared to Polymer 1 

 
Polymer 1 Polymer 2 Polymer 3 Polymer 4 

Solvent Anisole Anisole Anisole Cyclohexane 

DPth 50 10 50 50 

AIBN/DMP ratio 0.31 0.46 1.24 0.31 

Mass yield 44% 83% 95% 41% 

Mn (g.mol-1) a 2 040 820 3 520 1 970 

Mw (g.mol-1) a 2 210 950 4 400 2 230 

Đ a 1.08 1.16 1.25 1.13 

Polymerisation of styrene at 4.57 M in different solvent for 8h at 70°C, a Determined by SEC in 

THF based on polystyrene calibration 

 

III. 3. B) Random copolymers 

III. 3. B) i) AIBN/DMP ratio 

As seen previously, the AIBN/DMP ratio is critical to the control of the polymerisation 

and consequently was subjected to further investigation. The conversion calculated by NMR 
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(calculation detailed in Appendix III.III, p 147) and the mass yield slightly increased with the 

AIBN/DMP ratio but the control over the polymerisation decreased as the dispersity 

increased from 1.1 to 1.6 (Figure III-15). Consequently, the best compromise is probably a 

ratio below 0.8. 

 

 
Figure III-15. Effect of the AIBN/DMP ratio on the conversion, mass yield and dispersity 

(determined by SEC in THF based on polystyrene calibration) – Polymerisation of a random PS-
PVBA of DPth 50 with styrene at 2.41 M and VBA at 0.61 M in DMF/H2O 95/5 v/v at 70°C for 24h 

 

III. 3. B) ii) Determination of the VBA content 

Before going further in determining the best polymerisation parameters, a method to 

determine the actual ratio of VBA in the polymer was elaborated. The guideline was to 

complex a diol onto the boronic acid groups carried by the polymer that would have specific 

peaks in 1H NMR, for the complexed and free forms, which do not overlap signals from the 

polymer. 

Three diols (pinacol, 4-methylcatechol and 4-tert-butylcatechol) were considered and 

only 4-methylcatechol fulfilled the requirements (Figure III-16a). The complexation on the 

polymer was confirmed by DOSY as the specific peak corresponding to the complexed form 

had the same diffusion coefficient than the polymer (Figure III-16b). The method was thus 

employed and the VBA ratio calculated as detailed in Appendix III.III (p 147). 
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Figure III-16. a) 1H NMR spectrum of a random PS-PVBA copolymer in CDCl3, the arrows correspond 
to the specific peaks of the diols complexed (full) or free (doted) and b) DOSY of a random PS-PVBA 

copolymer complexed with 4-methylcatechol 

 

III. 3. B) iii) Selection of the monomer and the solvent 

Several options about the monomer (protected or not) and the solvent (anisole or 

DMF and water) were compared (Table III-3). 

The yield, conversion, molar masses and VBA content of Polymer 5 (protected VBA 

polymerised in anisole) are really low compared to the other ones. It could be due to 

solubility issues which would be difficult to recognise as both monomers and anisole are 

uncoloured liquids. Moreover, a deprotection step, that may not be complete, is necessary 

to free the boronic acid moieties from this type of polymer. 

As the molar mass obtained was higher than the expected one (i.e. 5 600 g.mol-1), the 

control of Polymer 6 polymerisation was lost. The reason was that the reaction medium 

viscosity had greatly increased over time. Moreover, anisole was difficult to remove from the 

polymer which explains the great mass yield observed, higher than the conversion, as the 

polymer was not completely dry. 

As Polymer 7 presented the best results and the higher VBA content, the monomer 

and solvent chosen for the rest of the report are un-protected VBA in DMF/H2O 95/5 v/v. 
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Table III-3. Comparison of several monomer and solvent for the synthesis of random copolymers 

 Polymer 5 Polymer 6 Polymer 7 

Monomer VBA pinacol VBA VBA 

Solvent Anisole Anisole DMF/H2O 95/5 

DPth 47 50 51 

Ratio AIBN/DMP 0.78 0.69 0.78 

Mass yield 37.4% 95.7% 56.0% 

Conversion (NMR) a 19.0% 62.6% 57.8% 

VBA content a 4.9% 17.5% 22.7% 

Mn (g.mol-1) b 2 990 5 790 4 140 

Mw (g.mol-1) b 3 400 6 780 4 940 

Đ b 1.14 1.17 1.19 

Polymerisation of random copolymers with styrene at 1.0 M and boronic acid containing 

monomer at 0.9 M at 70°C for 6h – a See Appendix III.III (p 147) for the calculation detail, b 

Determined by SEC in THF based on polystyrene calibration – Polymer 6 and Polymer 7 were 

protected with pinacol before the analysis for comparison with Polymer 5 

 

III. 3. B) iv) Boronic anhydrides containing polymer 

Other solvents were investigated for the synthesis of the random copolymer of 

styrene and VBA under the anhydride form with phenylboronic acid (PBA). The goal was to 

polymerise styrene and VBA in the presence of an excess of PBA in an anhydrous solvent to 

favour the anhydride formation. With the excess of PBA, the probability to form anhydride 

monomers with only one vinyl group was increased (Figure III-17). 

 

 
Figure III-17. Formation of the monomer anhydride by increasing the PBA ratio 

 

This approach was assayed with cyclohexane and toluene. With 10 or 4 equivalents 

of PBA, a complete solubilisation was only reached for a large dilution. Unfortunately, the 

monomer concentration was then too low for the polymerisation to occur. The complete 
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solubilisation and the consequent polymerisation were achieved in chloroform but with a 

really low rate. In fact, the boiling point of chloroform (Tb = 62°C) is low compared to the 

dissociation temperature of AIBN (usually used at or above 70°C). A new adequate initiator 

was employed: the 2,2'-azo-bis(4-methoxy-2.4-dimethyl valeronitrile) (V-70, Figure III-18) as 

it has a 10 hour half-life decomposition at 30°C[31]. 

 

 
Figure III-18. V-70 (2,2'-azobis(4-methoxy-2.4-dimethyl valeronitrile)) structure 

 

This initiator was thus investigated with styrene but did not present good conversion 

result after 24h of polymerisation (Table III-4). As no purification step was done before using 

the V-70, the initiator/CTA ratio had to be increased (Polymer 8 and 9) but the conversion 

was still below 50%. Another RAFT agent, the 3-(benzylthiocarbonothioylthio)propanoic acid 

(BSPA), was tried but the results were unsatisfactory. 

 

Table III-4. Investigation of V-70 as a polymerisation initiator for polystyrene 

 
Polymer 8 Polymer 9 Polymer 10 

RAFT agent DMP DMP BSPA 

DPth 50 54 57 

Ratio V-70/CTA 1.5 3.0 3.2 

Concentration (M) 2.82 3.88 3.88 

Yield (mass) 21.3% 32.5% 9.1% 

Conversion (NMR) a 25.1% 41.5% 24.2% 

Mn (g.mol-1) b 1 820 1 920 2 000 

Mw (g.mol-1) b 1 990 2 230 2 370 

Đ b 1.09 1.16 1.19 

Polymerisation of styrene in chloroform with V-70 as the initiator at 30°C for 24h, a See 

Appendix III.III (p 147) for the calculation detail, b Determined by SEC in THF based on 

polystyrene calibration 

 

Even with these bad results, the synthesis of the boronic anhydrides containing 

polymer was tested with 5 equivalents of PBA per VBA in chloroform with V-70 at 30°C but 

after 24h the 1H NMR spectrum presented no characteristic signals for polymers           

(Figure III-19).  
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Figure III-19. 1H NMR spectrum in CDCl3 of the reaction media after 24h of polymerisation of 

styrene and VBA in the presence of PBA in chloroform with DMP and V-70 at 30°C 

 

As the boronic anhydrides containing polymer could not be directly synthesised, 

another protocol was thus elaborated where the anhydride would be formed after 

polymerisation of a random copolymer PS-PVBA (Figure III-20). 

 

 
Figure III-20. Formation of the polymer anhydride by complexing PBA on an already synthesised 

polymer 

 

This protocol was tested with o-tolylboronic acid thus the outcome could be 

confirmed by DOSY analysis as the methyl group would have the same diffusion coefficient 

as the polymer. Unfortunately, it was not verified as no additional signals had the same 

diffusion coefficient as the polymer (Figure III-21). 

 

 
Figure III-21. DOSY in CDCl3 of the polymer anhydride obtained from a random PS-PVBA copolymer 
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Hence, the attempts to obtain the boronic anhydrides containing polymer were 

dropped. 

 

III. 3. C) Block copolymers 

III. 3. C) i) RAFT agent selection 

Changing the RAFT agent was tested to decrease the reaction time as for block 

copolymers, 24h reaction need to be allowed for each block (Table III-5). 

BSPA was less efficient than DMP considering all the parameters studied (Polymer 11 

and 12). The high dispersity indicated a loss over the polymerisation control. DBTTC     

(Figure III-3b, p 128) did not significantly improve the results obtained with DMP (Polymer 

11 and 13). Consequently, DMP was kept as the RAFT agent for the synthesis of the polymers 

produced for the “fishing” method. 

 

Table III-5. Comparison of several RAFT agents on the synthesis of block copolymers PS-b-PVBA 

 
Polymer 11 Polymer 12 Polymer 13 

RAFT agent DMP BSPA DBTTC 

DPth 50 47 48 

Ratio AIBN/CTA 1.5 1.4 1.5 

 PS block Copolymer PS block Copolymer PS block Copolymer 

Conversion (NMR) a 93.1% 94.8% 91.7% 92.9% 91.8% 91.3% 

Yield (mass) - 90.1% - 69.2% - 92.2% 

VBA content a - 1.3% - 0.2% - 1.6% 

Mn (g.mol-1) b 2 680 2 720 1 750 1 770 3 020 2 610 

Mw (g.mol-1) b 3 620 3 650 2 950 2 980 3 950 3 510 

Đ b 1.35 1.34 1.69 1.69 1.31 1.35 

Polymerisation of block copolymers with a 94 mol% styrene ratio with AIBN and a monomer 

concentration of 3.68 M of styrene and 0.24 M of VBA in DMF/H2O 95/5 v/v at 85°C for 48h, 

VBA introduction after 24h, a See Appendix III.III (p 147) for the calculation detail, b 

Determined by SEC in THF based on polystyrene calibration 

 

III. 3. C) ii) Copolymers for the “fishing” method 

Three diblock copolymers and a random one were synthesised to be applied to the 

“fishing” method. Even though, based on previous information and steric hindrance, block 
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copolymers are supposed to be more efficient than random ones for the extraction of 

cellulose oligomers, their efficiency will be tested. 

The theoretical total DP of the block copolymers were 50, 75 and 100 with a PS block 

DP of 45, 69 and 95 respectively. For the random copolymer, the length and monomer ratio 

was the same as the smaller block with a DPth of 50 and 10 mol% of VBA. Block or random 

copolymers had the same conversion evolution for similar DPth otherwise the conversion 

was slightly slower when DPth increased (Figure III-22). 

 

 
Figure III-22. Evolution of the conversion (NMR) with time (Polymerisations at 1.0 g/mL in 

DMF/H2O 95/5 v/v with an AIBN/DMP ratio of 0.50 at 70°C) 

 

The VBA content was measured by the previously described method (Appendix III.III, 

p 147) and the average number of VBA and styrene per chain was then deduced (Table III-6). 

The copolymers obtained were rather composed by a block of PS and a gradient between 

the two monomers than two pure blocks since the average number of styrene per chain 

increased after the VBA introduction. The average number of VBA per chain decreased when 

the PS block DPth increased as the initiator probably started to deactivate before the VBA 

introduction. The random copolymer however had the higher VBA content. 
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Table III-6. Characterisation of the different polymers for the “fishing” method 

 Block 45/5 Block 69/6 Block 95/5 Random 45/5 

Before VBA introduction    

Mn (g.mol-1) a 3 090 4 820 6 940 - 

Mw (g.mol-1) a 3 830 5 740 8 110 - 

Đ a 1.24 1.19 1.17 - 

Average number of 

styrene per chain b 
30 46 61 - 

After VBA introduction – Final polymer   

Conversion (RMN) b 93.6% 90.9% 84.7% 93.2% 

Yield (mass) 89.6% 86.6% 81.6% 89.4% 

VBA content b 6.7% 3.4% 1.5% 11.0% 

Mn (g.mol-1) a 3 920 6 180 7 060 4 150 

Mw (g.mol-1) a 4 810 7 260 9 340 4 840 

Đ a 1.23 1.18 1.32 1.17 

Average number of 

VBA per chain b 
1.8 1.4 0.7 3.1 

Average number of 

styrene per chain b 
35 57 67 35 

a Determined by SEC in THF based on polystyrene calibration, b See Appendix III.III (p 147) for 

the calculation detail 
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Chapter conclusion 

 

The goal of this study was to synthesise two types of polymer. As their size 

had to be small and well controlled, the first investigated technique was anionic 

polymerisation. Unfortunately, boronic acid monomers protected or not 

deactivated the polymerisation. Polystyrenes synthesised this way were tentatively 

modified to introduce boronic acid moieties but the polymers obtained could not 

be characterised because of solubility issues. 

Based on the literature, the logical choice for an alternative polymerisation 

technique was RAFT. Several parameters were investigated to optimise the 

outcomes and the characterisation. The boronic anhydride containing polymer 

synthesis was then tried either by polymerising a boronic anhydride containing 

monomer or by forming the anhydride on an already synthesised polymer. Despite 

several attempts, both of these methods were unsuccessful. 

Four polymers were however synthesised for the “fishing” method, one 

random and three “blocks” copolymers. The random one will be used for 

comparison and had the same length and monomer ratio as the smaller block. The 

three “blocks” had different polystyrene block length and the same theoretical VBA 

DP. The VBA block was found to be a mixture of styrene and VBA. It was also 

observed that the longer the styrene block, the smaller the VBA content probably 

because of radical deactivation during the polymerisation. 

Only the “fishing” method will be inquired in the subsequent chapter. 
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Appendix III.I: RAFT and ATRP polymerisation mechanism 

  

RAFT mechanism[32] 

 

 

ATRP mechanism[9] 
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Appendix III.II: Selection of RAFT agent for the polymerisation of various monomers[33] 
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Appendix III.III: Detailed calculation of several parameters 

 

Polystyrene polymerisation conversion 

Two or three drops of the reaction media were diluted in CDCl3 and the 1H NMR 

spectrum was recorded (see below for an example). 

 

 
 

Conversion = 1 −
IM(t)

IM(t) + IP(t)
 

With 𝐼𝑀(𝑡) the integral value of one proton from the monomer and 𝐼𝑃(𝑡) the integral value of 

one proton from the polymer. 

 

 Here, 

IM(t) = M IP(t) =
P − 2M

5
 

 

Conversion for copolymers PS-PVBA 

Two or three drops of the reaction media were diluted in CDCl3 and the 1H NMR 

spectrum was recorded (see below for an example). 
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Conversion = 1 −
IM(t)

IM(t) + IP(t)
 

With IM(t) the integral value of one proton from the monomer and IP(t) the integral value of 

one proton from the polymer. 

 

Here, 

IM(t) = M
2⁄  IP(t) =

P − 2M + V
2⁄

9
 

 

VBA content 

The polymer concerned was solubilised in CDCl3, 4-methylcatechol was added to the 

solution and the 1H NMR spectrum was recorded (see below for an example). 

 

 
C corresponds to the diol complexed on the polymer and L the free one (Figure III-16b, p 

137). 

 

VBA content =    
Number of boronic acid per chain

Total DP of the polymer
 

 

VBA content =  
5

3
  

C − 3
2⁄ V

P − 2 (C − 3
2⁄ V) − 2 M − L − V

 

 

Block polymerisation degree 

The average number of VBA or styrene per chain were calculated as follow: 

 

DPVBA =  
VBA content × Mn measured by SEC

MVBA
 DPPS =

Mn measured by SEC − (DPVBA × MVBA)

Mstyrene
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Chapter Purpose 
 

 
 

 

The synthesis of the polymer anhydride necessary to the “masking” method had not 

been achieved in Chapter III. Consequently, this method was not further investigated. 

However, four polymers were synthesised for the “fishing” method: three block copolymers 

of different sizes and a random one. 

In this chapter, the production of cellulose oligomers by acidic hydrolysis was 

optimised and the efficiency of the “fishing” method assessed. 
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IV. 1. Acidic hydrolysis of cellulose 

IV. 1. A) Optimisation of the cellulose acidic hydrolysis protocol 

As mentioned in Chapter I, the hydrolysis of cellulose by the phosphoric acid is one of 

the safest ways to obtain cellulose oligomers with a good yield (Table I-6, p 41). The 

hydrolysis protocol was inspired by already published results[1] and is summarised in     

Figure IV-1. Each step is developed below. 

 

 
Figure IV-1. Schematic representation of a cellulose acidic hydrolysis protocol 

 

1st step: Swelling 

To avoid the formation of big clusters when the cellulose was poured into the 

aqueous phosphoric acid (85 wt%), the introduction had to be done under mechanical 

blades stirring. Magnetic stirring or ultrasounds were not sufficient to break the clusters and 

the resulting solution was too heterogeneous. 

Several cellulose concentrations were tested: at 100 g.L-1, the heterogeneity and the 

viscosity of the solution were too high; the clusters formed were not broken during the 

hydrolysis thus diminishing the final yield. At 80 g.L-1 and lower, the viscosity and 

homogeneity became acceptable. At 50 g.L-1, the mass yield in cellulose oligomers was the 

same as with 80 g.L-1 but the final quantity was proportionally smaller. A cellulose 

concentration of 80 g.L-1 was then selected for the rest of the study. 

2nd step: Hydrolysis 

When the hydrolysis occurred at 55°C for 20h[1], only a small black charred solid was 

produced, indicating that the cellulose was degraded. The same result was obtained at 50°C 

for 48h. An hydrolysis at 50°C for 20h gave acceptable results and was used for the rest of 

the study. 

After the hydrolysis, the formation of hydroxymethylfurfural (HMF), a by-product 

coming from the dehydration of glucose in acidic media[2] (Appendix I.IX, p 58), was 

observed by a colour change from white to brownish. Its content was quantified as it was 

the only component of the solution that absorbs in UV. 
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3rd step: Precipitation 

THF was chosen as the precipitation solvent because it gave better yield than acetone 

or isopropanol[1] and no precipitation was observed with ethanol. The solid obtained was 

thus cellulose with a decreased average molar mass from which the water-soluble oligomers 

were separated by solubilisation. 

4th step: Separation by solubilisation 

After removing the water-insoluble fraction (WIF) by filtration, the pH of the solution 

containing the cellulose oligomers was around 1, confirming the presence of residual 

phosphoric acid. Its removal was critical to prevent further degradation. An aqueous solution 

of calcium hydroxide was used to neutralise the solution as calcium cation and phosphate 

anion form the precipitate Ca2(PO4)2 that can be easily removed by filtration. 

5th step: Recovery 

Two ways were then compared to get the dried oligomers after concentration of the 

aqueous solution: precipitation in THF or further drying over phosphorus pentoxide in a 

desiccator under vacuum. The second way was selected because no glucose was detected 

after the first one, probably because of its solubility in the precipitation solvent. This 

indicated that some products were probably lost during the first precipitation (3rd step). 

 

This acidic hydrolysis procedure was repeated three times with exactly the same 

conditions and the repeatability was found to be about ± 5% for the yield of each fraction 

(Table IV-1). The water-soluble oligomers had an average yield of around 23% whereas the 

WIF corresponded to the majority of the cellulose recovered with an average yield of 45%. 

Less than 0.5% of the total cellulose was hydrolysed as far as HMF and around one third of 

the total cellulose was missing after the hydrolysis. This phenomenon was already 

observed[1] with the same protocol and in the same proportion but no explanation was 

provided. The THF filtered after the 3rd step (Figure IV-1) was brown meaning that it did not 

only contain the dispersed phosphoric acid but also some other product which could explain 

the missing mass. Their characterisation was not performed as they were not of interest 

here, cellulose oligomers being insoluble in THF. The unknown product probably was an 

HMF polymer[3,4] as the polymerisation is catalysed in acidic condition (Figure IV-2). 

 

 
Figure IV-2. HMF polymerisation in acidic conditions (adapted from James et al.[5]) 
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Table IV-1. Composition of the product obtained after hydrolysis 

 WIF (%) 
Water-soluble 

oligomers (%) 
HMF (%) 

Difference to 

100% 

Hydrolysis A 39.6 27.5 0.4 32.5 

Hydrolysis B 42.1 25.3 0.3 32.3 

Hydrolysis C 53.0 16.8 0.3 29.9 

Average 45 ± 6 23 ± 5 0.4 ± 0.1 32 ± 1 

 

IV. 1. B) Optimisation of the hydrolysis products characterisation 

As the oligomers were water-soluble, a direct characterisation by SEC with water as 

the eluent, HPLC or MALDI was possible. On the contrary, the WIF and the initial cellulose 

needed a functionalisation step to be characterised. The usual one for a SEC analysis is a 

carbanilation as cellulose tricarbanilate is THF-soluble[6,7]. A signal was observed with the 

initial cellulose after carbanilation but not with the WIF (Figure IV-3). Moreover, this method 

was not really adequate as the calculation of the corresponding molar mass and DP rests on 

polystyrene calibration.  

 

 
Figure IV-3.SEC in THF of initial cellulose and a WIF after carbanilation (UV data) 

 

In order to detect the WIF, a new characterisation method was considered: SEC with 

chloroform as the eluent, on cellulose functionalised as acetate. In fact, a good solubility in 

chloroform is obtained for cellulose acetate with high DS (2.8-3.0[8]). This analysis was 

performed with a viscosity detector so the molar masses were calculated via a universal 

calibration. This method was found efficient as detailed in §IV. 1. C). 

 

IV. 1. C) Characterisation of the different fractions obtained 

The water-soluble oligomers, obtained previously (§IV. 1. A), p 155), were analysed 

by MALDI and no phosphorylation (+ 79 g.mol-1) was noticed (Figure IV-4). DP up to 12 were 

observed as water-soluble. 
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Figure IV-4. Typical MALDI spectra observed for the water-soluble oligomers (the peaks crossed 

come from the matrix) 

 

Solubility in chloroform was reached for all the acetylated fractions. They thus were 

analysed by SEC in the same solvent to accurately compare their molar mass distributions. 

The molar mass of the WIF happened to be really reduced compared to the native cellulose 

(Figure IV-5 and Table IV-2). The spectra of soluble and insoluble in water fractions 

overlapped and some cellobiose was found in the WIF (Figure IV-5). When the WIF was 

dispersed in water again, only 1% of the initial solid was extracted. A poor dispersion of the 

WIF in water seemingly prevented a total recovery of the water-soluble oligomers. 

The molar mass distributions obtained were repeatable (Table IV-2). For the 

calculation of the corresponding DP, we considered that no [Bmim]Cl molecule stayed 

complexed on the compounds after the acetylation. 

 

 
Figure IV-5. SEC in chloroform of several acetylated fractions and references 
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Table IV-2. Determination of the molar mass and the polymerisation degree (DP) of the acetylated 
cellulose before and after hydrolysis 

 
Cellulose before 

hydrolysis 
Hydrolysis A Hydrolysis B Hydrolysis C 

Acetylated water-insoluble fraction  

Mn (g.mol-1) a 12 130 (43) 2 160 (7) 2 060 (7) 2 260 (8) 

Mw (g.mol-1) a 35 210 3 150 3 060 3 150 

Ð a 2.9 1.5 1.5 1.4 

Acetylated water-soluble fraction   

Mn (g.mol-1) b - 1 000 (3) 800 (3) 1020 (3) 

Mw (g.mol-1) b - 1 260 1 120 1 340 

Ð b - 1.3 1.4 1.3 
a Determined with SEC in chloroform using a universal calibration, b Determined with SEC in 

chloroform using a polystyrene calibration (calculation based on the viscosity detector not 

accurate enough). The bold values between braces are the corresponding calculated DP (see 

Appendix IV.I for the calculation, p 169). 

 

A more accurate distribution of the different DP present in the water-soluble 

oligomers was obtained by HPLC and was found to be repeatable at ± 1% (Table IV-3). A 

majority of cellotriose (32.4%) and cellotetraose (26.8%) were present then came cellobiose 

and glucose at 18.3% and 11.9%, respectively. The solubility in water decreases with an 

increasing DP. As a result, cellopentaose was present at 9.7% and cellohexaose only at 0.8%. 

The concentration of DP 7 and above was too low to be detected by HPLC. Their presence in 

the sample was however confirmed by MALDI (Figure IV-4). 

The average DP calculated based on this distribution was 3.1, which corresponds to 

the one determined by SEC in chloroform (Table IV-2). This new method is thus relevant to 

determine the molar mass of cellulose.  

 

Table IV-3. Average ratio and standard deviation of each DP in the water-soluble fraction for the 
three hydrolyses determined by HPLC 

Cellulose oligomer Ratio (%) a Relative surface 

Glucose 17.6 ± 0.6 11.9 ± 1.0 

Cellobiose 16.5 ± 0.0 18.3 ±0.0 

Cellotriose 19.3 ± 0.1 32.4 ± 0.4 

Cellotetraose 28.6 ± 0.2 26.8 ± 0.5 

Cellopentaose 15.2 ± 0.4 9.7 ± 0.3 

Cellohexaose 2.8 ± 0.0 0.8 ± 0.1 

a See Appendix IV.II (p 170) for the calculation 
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IV. 2. The “fishing” method 

IV. 2. A) Optimisation of the “fishing” method conditions on cellobiose 

IV. 2. A) i) Initial conditions 

The protocol of the “fishing” method was based on a previously patented[9] and 

published[10] procedure where xylose, glucose or cellobiose were extracted from an ionic 

liquid aqueous solution into an organic phase with the use of phenylboronic acid (PBA) or 

naphthalene-2-boronic acid (N2B). The conditions used are detailed in Table IV-4. 

 

Table IV-4. Optimised conditions to extract cellobiose from an aqueous IL solution[10] 

Extraction 
Sugar recovery 

Aqueous phase Organic phase Reaction condition 

- Total volume: 5 mL 

- Various % of [Emim]Ac 

- 10 mM of sugar (9.0 

mg of glucose or 17.1 

mg of cellobiose) 

- 0.15 M of NaHCO3 

buffer 

- pH 11 (adjusted with 

NaOH) 

- Total volume: 5 mL 

- 70 mM of PBA or 

N2B (42.7 mg of PBA 

or 60.2 mg of N2B) 

- Solvent: 85/15 v/v 

n-hexane/1-octanol 

- 150 mM of Aliquat 

336TM (7 vol%) 

Stirring at 1 400 rpm 

 

Duration: 2 h 

 

Temperature: Room 

temperature (RT) 

Phase separation: 

centrifugation at 

13 000 rpm for 5 

minutes 

 

Stripping solution: 

HCl at 0.5 M 

 

This high pH was necessary because the binding constant between a boronic acid and 

a sugar increases with the pH (§II. 1. B) i), p 74). N2B was more efficient than PBA to extract 

sugar[10] probably because N2B is around 100 times less soluble in water (at 25°C, 25 g.L-1 for 

PBA[11] versus 0.21 g.L-1 for N2B[12]). Up to 84% of the initial quantity of cellobiose was 

extracted with N2B from a 100% [Emim]Ac solution by this method. 

IV. 2. A) ii) Adaptation 

To adapt this model to the method aimed, several changes were necessary. First, at it 

was not the purpose here, no ionic liquid were employed 

Then, to have 70 mM of boronic acid in a 5 mL volume, more than 13 g of polymer 

would have been necessary (see Appendix IV.III for the calculation, p171). As this 

concentration would create solubilisation and probably viscosity issues, 2 g of polymer were 

employed. The value was chosen arbitrarily. 
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10 mM of cellohexaose in 5 mL represent 49.5 mg. To make sure that the maximal 

amount of oligomer extractable was reaped, 0.5 g of oligomers were used. The value was 

also chosen arbitrarily. 

IV. 2. A) iii) Influence of several parameters 

The conditions of the fishing method were optimised by using the commercial 

cellobiose. 

Solvents of both phases 

n-hexane was not used because of its high toxicity and was first replaced by 

cyclohexane, which presented similar extraction results[13]. Toluene was also tested and 

seemed to increase the quantity of sugar extracted, probably because of its small solubility 

in water that may have helped the complexation by enhancing the contact between the two 

phases. Toluene was used for the rest of the study. 

To determine the role of 1-octanol, a “fishing” protocol was performed without it and 

a very stable gel was obtained after centrifugation (Figure IV-6a) most likely caused by the 

fact that the polymer/sugar complex was amphiphilic. As the sugar was probably trapped in 

the gel, 1-octanol was thus necessary to the extraction in the organic phase. 

As the chain transfer agent used for the polymer synthesis contained a carboxylic 

acid, the impact of the pH change on the polymer was investigated. Polystyrene synthesised 

by RAFT with DMP as the chain transfer agent was solubilised in cyclohexane and stirred 

with a NaOH basified aqueous solution in the usual conditions and an emulsion was formed 

(Figure IV-6b). No emulsion was observed for the same experiment with sodium bicarbonate 

alone as the base (Figure IV-6b). Cellulose oligomers are presumably more pH sensitive than 

glucose or cellobiose[14]. The pH of the aqueous solution was thus decreased from 11 to 9. 

Sodium carbonate was chosen as the base because NaOH formed emulsions and it was 

stronger than sodium bicarbonate. 

For the same reasons, the stripping solution HCl concentration was reduced to obtain 

pH 3 (500 mM reduced to 1 mM). 
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Figure IV-6. a) Picture of a gel formed after an extraction without 1-octanol (tube held vertically) 

and b) Picture of an emulsion formed by mixing polystyrene is a NaOH (right) or NaHCO3 (left) 
basified aqueous solution 

 

Phase transfer catalyst 

The complex formed with the boronic acid at pH > pKa is anionic (pKa PBA = 8.8[15],    

pKa N2B = 9.5[16]). The phase transfer catalyst Aliquat 336TM is cationic (Figure IV-7a), which 

also helped to stabilise the boronic acid/oligomer complex as illustrated on Figure IV-7b. 

With the initial conditions (Table IV-4, p 160), the polymers of high molecular weight 

were not well solubilised in the solvent. The solubilisation was found to increase when the 

ratio of Aliquat was reduced. As a result, the Aliquat 336TM ratio was decreased from 7 vol% 

to 1 vol%. 

 

 
Figure IV-7. a) Structure of the Aliquat 336TM, b) Representation of a polymer/cellulose oligomer 

complex stabilised by the Aliquat 336TM (not to scale) 

 

Stirring and duration 

At 1 400 rpm, solution splashed on the round bottom flask walls and product was 

lost. The stirring speed was thus reduced to 1 000 rpm. 

The experiment duration was increased to 4h as the macromolecules used here were 

heavier than the ones used in the initial conditions. As their diffusion was going to be slower, 

more time would presumably be necessary for their complexation. 

Increasing the time that cellulose oligomer spent in an aqueous solution increased 

the probability for microbial contamination, consequently and as a precaution, a small 

quantity of sodium azide was added to the solution (0.3 wt%). 
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Centrifugation 

After a protocol with the chosen conditions so far, the 

organic phase obtained was blurry and after centrifugation, both 

phases were clear and a friable film was observed at the interface 

(Figure IV-8). It was recovered and analysed by NMR in D2O and in 

THF-d8 (Appendix IV.IV, p 172), the first 1H NMR spectrum 

presented characteristic signals of cellobiose whereas the second 

confirmed the presence of the polymer. These characterisations 

proved that the recovered film was the polymer/cellobiose 

complex. As such conditions probably broke some of the cellulose 

oligomer/polymer complex and made the recovery more difficult, 

the centrifugation step was replaced by a decantation on standing. 

 

 
Figure IV-8. Friable 

interfacial film after 
centrifugation 

 

Based on all this information, Table IV-5 summarises the chosen conditions for the 

rest of the study. 

 

Table IV-5. “Fishing” method conditions 

Extraction 
Sugar recovery 

Aqueous phase Organic phase Reaction condition 

- Total volume: 5 mL 

- 50 mM of Na2CO3 

(NaOH forms 

emulsions) 

- pH 9 (to prevent 

oligomer degradation) 

- 0.5 g of cellulose 

oligomers (arbitrary) 

- 0.3% of NaN3 

- Total volume: 5 mL 

- 2 g of polymer 

(arbitrary) 

- Solvent: 84/15/1 

v/v/v toluene/ 

octanol/Aliquat 336TM 

Stirring at 1 000 

rpm 

 

Duration: 4h 

 

Temperature: RT 

Phase separation: 

decantation for 2h 

 

Stripping solution: 

HCl at 1 mM (pH 3 

to prevent cellulose 

degradation) 

 

IV. 2. B) The “fishing” method on cellulose oligomers 

The same batch of cellulose oligomer was used for the four “fishing” experiments 

with the polymer synthesised for this purpose (§III. 3. C) ii), p 141). Unfortunately, the 

aqueous phases became a stable gel/emulsion for the four polymers (Figure IV-9). The 

organic phase was still recovered and the supposed oligomers stripped with an acidic 

solution. The organic phase was not recovered in totality to stay away from the interface and 

make sure that no aqueous solution was also taken. 
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Figure IV-9. Emulsions observed after the “fishing” method on cellulose oligomers (pictures taken 

after the organic phase recovery) 

 

The acidic solutions were neutralised with NaOH at 0.1 M before being analysed by 

HPLC (Figure IV-11a). No extraction was observed without polymer. With the random 

polymer, the decantation took a longer time than with the blocks and no oligomers were 

extracted. Moreover, the limit between the aqueous and organic phases was not well 

defined (Figure IV-9). A network was probably formed, trapping the oligomers in the 

aqueous phase or, as represented on Figure IV-10, an amphiphilic brush copolymer had 

formed at the interface and could not be solubilised in the organic phase. The composition 

of the samples extracted with the blocks was deduced from the area ratio of each peak of 

the HPLC spectra (Figure IV-11b). .Unexpectedly, no selectivity was detected.  

 

 
Figure IV-10. Reversible amphiphilic brush copolymer formed at the interface during a “fishing” 

method with a random copolymer – Scheme not to scale 

 

As the HPLC had been calibrated, the quantity of oligomer extracted was calculated 

(Table IV-6). As the molar quantity of boronic acid used corresponded to the maximal 

quantity of oligomer extracted and considering the approximations done to make the 

calculations, it seemed that .all the oligomers that could be extracted were reaped. . 

 

 
Figure IV-11. a) HPLC and b) composition of the oligomers before and after the “fishing” method 

depending on the polymer used (see Appendix IV.V (p 173) for calculation) 
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Table IV-6. Percentage of oligomer extracted depending of the polymer used 

 No polymer Block 45/5 Block 69/6 Block 95/5 Random 45/5 

DP styrene/DP VBA 

measured a 
- 35/1.8 57/1.4 67/0.7 35/3.1 

Quantity of boronic 

acid in 2 g of 

polymer b 

- 34 µmol 11 µmol 4 µmol 53 µmol 

Quantity of 

oligomer extracted c 
none 42 µmol 47 µmol 4 µmol none 

a See Table III-6 (p 143), b See Appendix IV.III (p 171), c Determined by HPLC 

(Appendix IV.V, p 173) 

 

 

IV. 3. Separation of the cellulose oligomers according to their solubility 

IV. 3. A) Preliminary study 

As the “fishing” method did not separate the cellulose oligomers, another method 

was developed involving differential solubilisation in alcohols which are known to solubilise 

cellulose oligomers depending on their sizes[17,18]. The other common solvents such as 

acetone or THF were used for precipitation[1], which implies a  poor to no solubilisation. 

Methanol, ethanol and isopropanol were tested (4h of solubilisation with an oligomer 

concentration of 0.25 g.mL-1). Ethanol and isopropanol had solubilised only a small amount 

of cellobiose whereas methanol had solubilised a larger DP range (Figure IV-12a to c). The 

raw oligomers used here were recovered by precipitation in THF at the 5th step so no glucose 

was present. Then precipitation was investigated, the oligomers were solubilised in water, 

introduced in 10 times the volume of the corresponding alcohol and left to stir for 4h. The 

separation between the two fractions was less clear (Figure IV-12d and e) or less efficient 

(Figure IV-12f) than the solubilisation in methanol (Figure IV-12a). 
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Figure IV-12. SEC of several fractions after solubilisation or precipitation in different alcohols – The 

block arrow corresponds to the retention time of cellobiose 

 

IV. 3. B) Separation by solubilisation in methanol 

As a consequence, methanol (MeOH) alone was chosen to separate the cellulose 

oligomers by solubilisation. The three water-soluble fractions previously obtained in          

§IV. 1. A) (p 155) were submitted to this separation for a repeatability study. Almost the 

same amount of MeOH-soluble fraction was extracted from all the samples (52.5% ± 1%)       

(Table IV-7). 

 

Table IV-7. Composition of the oligomers after solubilisation in methanol – See Appendix IV.II        
(p 170) for calculation 

 
MeOH-insoluble 

fraction (%) 

MeOH-soluble 

oligomers (%) 

Hydrolysis A 44.6 52.5 

Hydrolysis B 42.8 51.2 

Hydrolysis C 45.3 53.7 

Average 44.2 ± 1.1 52.5 ± 1.0 

 

Considering the molar mass distributions, an overlap was observed (Figure IV-13) as 

previously with the solubilisation in water. The explanation was also probably the poor 

dispersion in the solvent. The separation however seemed to occur between DP 3 and 4. The 

composition of the sample before separation was in agreement with the one determined by 

HPLC (Table IV-3, p 159) and DP up to 12 were observed as it was the case on the MALDI 

spectra (Figure IV-4, p 158). 
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Figure IV-13. SEC with water as the eluent of the different fractions from the hydrolysis A (same 

behaviour observed for the hydrolysis B and C): before separation (black line), MeOH-soluble 
fraction (full grey line) and MeOH-insoluble fraction (dotted grey line) 

 

.The separation was confirmed to occur between DP 3 and 4 by HPLC (Figure IV-14).  

In a previous study[18], the cellulose oligomer separation by solubilisation in MeOH was 

found to occur between DP 4 and 5 (Table I-9, p 45). 

The MeOH-soluble fraction contains 27% of glucose, 27% of cellobiose and 28% of 

cellotriose. For cellotetraose, the percentage dropped to 15% as the solubility in MeOH 

decreased with an increasing DP. The MeOH-insoluble fraction was composed at 42% of 

cellotetraose, 36% of cellopentaose and 6% of cellotriose. Glucose and cellobiose 

represented less than 11% of the composition, and cellohexaose 5%. 

 

 
Figure IV-14. a) Normalised HPLC spectra of the different fractions from hydrolysis A (same 

behaviour observed for the hydrolysis B and C): before separation (black line), MeOH-soluble 
fraction (full grey line) and MeOH-insoluble fraction (dotted grey line); b) Average of the 

composition of the different fractions: before separation (black), MeOH-soluble fraction (grey full) 
and MeOH-insoluble fraction (grey dotted) – Average and standard deviation calculated over the 

hydrolyses A, B and C – See Appendix IV.II (p 170) for calculation 
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Chapter conclusion 

 

The goal of this chapter was to determine the efficiency of the “fishing” 

method. To do so, the acidic hydrolysis of cellulose was performed to produce 

cellulose oligomers. The samples obtained had a majority of cellotriose and 

cellotetraose with 19.3% and 28.6% respectively. The oligomer yield was 23% ± 5% 

(over three hydrolyses). 

 

The oligomers were then submitted to the “fishing” method with four 

styrene/VBA copolymers. No extraction was observed without any polymer and a 

network preventing the extraction was probably formed with the random one. The 

maximal amount of cellulose oligomers that could be extracted seemed to have 

been reaped. Unexpectedly, no selectivity had been detected. 

 

Another separation method based on differential solubility in alcohol was 

thus investigated. Methanol was found to be the best candidate. The methanol-

soluble fraction contained mainly cellotriose (28%), cellobiose (27%) and glucose 

(27%) whereas the methanol-insoluble fraction contained 42% of cellotetraose and 

36% of cellopentaose. 
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Appendix IV.I: Cellulose acetate DP calculation 

 

 
 

M1 = C6H7O + 4 3⁄  DS x C2H3O2 + (4 – 4 3⁄  DS) x OH 

 

M2 = C6H7O2 + DS x C2H3O2 + (3 – DS) x OH 

 

M3 = C6H7O2 + 4 3⁄  DS x C2H3O2 + (4 – 4 3⁄  DS) x OH 

 

For DP ≥ 2,   MSEC = M1 + (DP – 2) x M2 + M3 

With MSEC the number average molar mass of the acetylated cellulose measured by SEC in 

chloroform. 

 

The DP was calculated according to the following equation: 

 

DP = 2 +  
𝑀sec − 𝑀1 − 𝑀3

𝑀2
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Appendix IV.II: Cellulose oligomer ratio calculation (Calibration A) 

 

The analyses corresponding to this method were performed using an evaporating 

light scattering detector (ELSD, Varian 380-LC). The cellulose oligomers concentrations were 

calculated based on the following calibration (done on the same apparatus). The ratios were 

then calculated based on the concentrations obtained. 

 

 
 

The picture below represents an example of how the areas were measured. 
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Appendix IV.III: Calculations for the “fishing” method 

 

70 mM of boronic acid in 5 mL of solution corresponds to 0.35 mmol of boronic acid. 

 

The number 𝜏 of mmol of boronic acid per gram of polymer is: 

 

𝜏 =  
1

𝑀
 × 𝑉𝐵𝐴 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 % × 1000 

 

Then, the quantity mpolym of polymer necessary to have 70 mM of boronic acid in a    

5 mL volume is: 

 

mpolym = 0.35
𝜏⁄  

 

The calculation was done for the four polymers synthesised for the “fishing” method 

(see §III. 3. C) ii), p 141) and summarised in the table below. 

 

 Block 45/5 Block 69/6 Block 95/5 Random 45/5 

M a (g.mol-1) 3 920 6 180 7 060 4 150 

VBA content b 6.7% 3.4% 1.5% 11.0% 

𝝉 (µmol.g-1) 17 5 2 27 

mpolym (g) 20.6 64.5 162.5 13.2 

a Mn determined by SEC in THF based on a polystyrene calibration, b Determined by the         

4-methylcatechol method (see §III. 3. B) ii), p 136) 
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Appendix IV.IV: 1H NMR spectra of the interfacial film 

 

 
1H NMR spectra of the interfacial film in D2O (the peaks highlighted with stars 

correspond to the Aliquat 336TM) 

 

 

 
1H NMR spectra of the interfacial film in THF-d8 (the peaks highlighted with stars 

correspond to the Aliquat 336TM) 
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Appendix IV.V: Cellulose oligomer ratio calculation (Calibration B) 

 

The analyses corresponding to this method were performed on a Dionex Ultimate 

3000 (Thermo Scientifc) equipped with a Corona Veo detector. The cellulose oligomers 

concentrations were calculated based on the following calibration (done on the same 

apparatus). The ratios were then calculated based on the concentrations obtained. 

 

 
 

The picture below represents an example of how the areas were measured. 
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V. 1. Bibliography 

To the best of our knowledge, only a few examples of amphiphilic compounds based 

on water-soluble cellulose oligomers are found in the literature[1] and most of the time, they 

are based on the commercial cellobiose[2–4]. Nevertheless, native cellulose and other oligo-

saccharides were also investigated in this frame. Beforehand, the chemical syntheses and 

characterisation of such compounds will be explored. 

 

V. 1. A) Generality on amphiphilic compounds based on polysaccharides 

V. 1. A) i) Synthesis 

Hydrophilic polysaccharides can be modified to become amphiphilic either by 

grafting (Figure V-1a) or by end-to-end coupling with a hydrophobic block (Figure V-1b). 

 

 
Figure V-1. a) Graft and b) block amphiphilic structures based on polysaccharides 

 

For the synthesis of graft copolymers, the three methods that can be used are 

summarised in Figure V-2[5,6]. 

 

Figure V-2. Methods for the synthesis of 
graft copolymers (from Huang and coll.[5]) 

“Grafting onto” involves a coupling reaction 

between antagonist functions carried by two 

polymers 

“Grafting from” corresponds to the 

polymerisation of a second monomer from the 

first polymer, which had been functionalised all 

along the backbone to initiate RAFT[7,8], ATRP[9,10] 

or ring opening[11,12] polymerisations, for example 

“Grafting through” is the copolymerisation of 

macromonomers (this technique cannot be 

applied to cellulose) 
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To obtain an amphiphilic compound based on block copolymers, the polysaccharide 

can also serve as a macro-initiator like for the “grafting from” method but with a 

functionalisation only on the reducing end. The usual way to specifically target this position 

is by reductive amination[13] with sodium cyanoborohydride[14]. This reaction is based on the 

“open” form property of saccharides (Figure V-3) and thus only the reducing end is affected. 

 

 
Figure V-3. Reductive amination mechanism – R group possessing a function able to start a 

polymerisation 

 

Another way to obtain block copolymers from polysaccharides is by end-to-end 

coupling with another polymer[13], which can be performed by click-chemistry. Click-

chemistry reactions were defined, by Sharpless and coll. in 2001[15], as: 

 Modular 

 Stereospecific 

 Wide in scope 

 With high yields 

 With inoffensive by-products 

 Using simple reaction conditions 

 With available reagents 

 With no or benign solvents 

 

Figure V-4 represents some examples of reaction that fulfil these requirements. 

Huigsen 1,3-dipolar cycloaddition, also called copper-catalysed azide-alkyne cycloaddition 

(CuAAC)[16–19], thiol-ene[20]and thiol-yne[21] reactions (Figure V-4b, c and d) are among the 

most used ones when polysaccharides are involved[22]. 

 

 
Figure V-4. Some examples of click-chemistry reactions – For reaction e) R1 and R2 different from 
alkyl groups as the hydrogen needs to be activated and R3 conjugated and electron withdrawing 
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V. 1. A) ii) Characterisation of the self-assembly 

The self-assembly of amphiphilic compounds is driven by an unfavourable mixing 

enthalpy coupled with a small mixing entropy, macroscopic phase separation being avoided 

because of the covalent bond connecting the blocks[23]. Three main parameters are used for 

the characterisation: 

 The total degree of polymerisation (𝑁) which influences the entropy of the system  

 The Flory-Huggins parameter (𝜒𝐴𝐵), defined by Equation I-1[24], which can be measured, 

for instance, by spectroscopic ellipsometry[25], atomic force microscopy (AFM)[26] or 

thermal analysis[27]. 

 

𝜒𝐴𝐵 =
𝑧

𝑘𝐵𝑇
[𝜀𝐴𝐵 −

1

2
(𝜀𝐴𝐴 + 𝜀𝐵𝐵)] Equation V-1 

With 𝑧 the number of nearest neighbours per repeat unit in the polymer, 𝑘𝐵𝑇 the thermal 

energy, 𝜀𝐴𝐵, 𝜀𝐴𝐴 and 𝜀𝐵𝐵 the interaction energies between the corresponding different parts. 

 

 A geometric parameter, the volume fractions of the two parts (𝑓𝐴 and 𝑓𝐵) (Figure V-5) 

 

 
Figure V-5. Representation of the influence of the volume fraction on the morphology of an AB 

diblock (from Eisenberg[23]) 

 

The self-assembly in solution involves six Flory-Huggins parameters[23]: 𝜒𝐴𝐵, 𝜒𝐴𝑆, 𝜒𝐴𝑁, 

𝜒𝐵𝑆, 𝜒𝐵𝑁 and 𝜒𝑆𝑁 with S a good solvent for both blocks and N a non-solvent for one of the 

blocks. These parameters can be determined by viscosity and cloud point measurements[28] 

or by solvent vapour swelling[29]. 

 

Over 20 morphologies obtained after self-assembly had been identified and some of 

them are represented on Figure V-6[23]. A micelle morphology (Figure V-6a) is confirmed 

when the radius of the core does not exceed the longest hydrophobic chain. Rods are 

composed of a cylindrical core and a corona surrounding the core (Figure V-6b). Their 

diameter is usually around 30 nm but their length that can exceed tens of micrometers. 

Bicontinuous rods (Figure V-6c) are a three-dimensional networks of interconnected 

branched rods and are not observed frequently. Lamellae (Figure V-6d) are flat or slightly 
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curved bilayers and are less seen than vesicles (Figure V-6e) because of their lower 

thermodynamic stability. Large compound micelles (Figure V-6f) are an aggregation of 

inverse micelles [hydrophilic core and hydrophobic corona] with the outer surface stabilised 

by a thin layer of hydrophilic chains. The morphology of self-assembled objects is usually 

determined by a microscopy technique like transmission electron microscopy (TEM). 

 

 
Figure V-6. Examples of morphologies formed by amphiphilic compounds self-assembly (adapted 

from Mai and Eisenberg[23]) – The blue part is hydrophilic and the red hydrophobic 

 

The surfactant properties of an amphiphilic compounds are characterised by both the 

critical micelle concentration (CMC) and the hydrophilic-lipophilic balance (HLB). 

The CMC is marked out by a drop of the surface tension and the formation of 

micelles[30] (Figure V-7).  As the compounds have more interesting propertied above this 

concentration, the lower the CMC, the smaller the surfactant quantity needed, which is 

preferred for industrial applications. For example, one of the smallest commercial surfactant 

CMC is 13-15 mg.L-1 for Tween® 80. 

 

 
Figure V-7. Critical micelle concentration (CMC) definition (adapted from Saha and coll.[30]) 
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The CMC is usually determined by the pyrene method[31,32]. Pyrene has five 

predominant peaks in the fluorescence spectrum (Figure V-8), the ratio between the first 

and the third one (II/IIII) is sensitive to the environment of the molecule[33] and shows a sharp 

break at the CMC. 

 

 
Figure V-8. Fluorescence spectra of pyrene with the definition of the five peaks 

 

The HLB is a value between 0 and 20 that indicates the degree of hydrophilicity or 

lipophilicity of a surfactant. It is usually calculated by the Griffin’s method[34] (Equation V-2). 

 

𝐻𝐿𝐵 = 20 ×
𝑀ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐

𝑀𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
 Equation V-2 

 

The HLB predicts the surfactant properties and applications of a molecule[30,35] as 

represented in Figure V-9. 

 

 
Figure V-9. HLB scale showing surfactant function and properties 
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V. 1. A) iii) Applications 

Amphiphilic compounds based on polysaccharides were applied to a wide range of 

applications[13]: 

 Compatibility agent: Cellulose-b-polystyrene was used to enhance the miscibility of 

cellulose/polystyrene blends in the view of film casting[10] 

 Surfactant/Emulsifier: Xylo-oligomers-b-polydimethylsiloxane[3] or dextran-g-poly(methyl 

methacrylate)[36] were found to decrease the water-air surface tension and were thus 

used as non-ionic surfactants 

 Cell targeting: The tri-block folic acid-b-chitosan oligomers-b-polylactic acid was found to 

target the HeLA cancer cells and was a suitable drug delivery system[37] 

 Thermo-responsive materials: The cloud point temperature of several cellulose-g-

polyacrylamide copolymers was found dependant on the molecular weight but was 

around 22°C ± 3°C[7] 

Some compounds associating a saccharide and an alkyl chain as octyl                           

β-D-glucopyranoside, decyl β-D-maltopyranoside and dodecyl β-D-maltoside are currently 

commercialised by Sigma-Aldrich, for example, but in small quantity and at high prices. 

 

V. 1. B) Self-assembly of amphiphilic compounds based on cellulose 

A really interesting example[38] of “grafting onto” with cellulose (average DP around 

200) was obtained with the grafting of stearoyl ester moieties (Figure V-10a). The 

compound, with a substitution degree of 3, was solubilised in dichloromethane and 

introduced into three volumes of ethyl acetate. The scanning electron microscopy (SEM) of 

the large particles obtained presented a flower-like structure (Figure V-10b). The same 

structures were obtained with butanol, dioxane and acetone as the non-solvent. 

 

 
Figure V-10. a) Structure of cellulose-g-stearoyl ester, b) SEM of the particles obtained in ethyl 

acetate (data from Zhang et al.[38]) 

 

In another example, poly(acrylic acid) had been “grafted from” ethyl cellulose by 

ATRP[39]. Ethyl cellulose is used so a small substitution degree for poly(acrylic acid) can be 

obtained (in this work, 0.25). The polymerisation kinetic was of first-order. The particles 

obtained in water at 1.0 g.L-1 had an average diameter of around 100 nm. 
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As native cellulose is not soluble in common solvents, functionalisation is necessary 

to obtain block copolymers, thus the cellulose block possibly becomes the hydrophobic one. 

In this frame, cellulose triacetate had been end-to-end coupled by CuAAC with the amino 

acid poly(γ-benzyl-L-glutamate) (PBLG)[40]. The goal was to produce a microphase-separated 

membrane for biological application. A microphase separation of the film and bulk, caused 

by crystallisation, had been thermally induced and observed by atomic force microscopy 

(Figure V-11). 

 

 
Figure V-11. AFM of a cellulose triacetate-b-PBLG thin film, topographic images a) before and        

b) after annealing at 180°C for 24h (from Kamitakahara et al.[40]) 

 

V. 1. C) Self-assembly of amphiphilic compounds based on other oligo-

saccharides 

Malto-oligomers are easily obtained by a ring-opening reaction of commercially 

available cyclodextrins with iron(III) chloride[41]. Cyclodextrins are cage molecules obtained 

from the enzymatic degradation of starch by glucoamylase or α-amylase[42]. α, β and γ are 

the three types of cyclodextrins industrially produced that are composed of 6, 7 or 8 

anhydro-glucose units, respectively, linked by α-1,4 bonds (Figure V-12). 

 

 
Figure V-12. Cyclodextrins and malto-oligomers structures 
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Maltoheptaose, obtained from β-cyclodextrins, were coupled by CuAAC with their 

acetylated analogues to obtain amphiphilic compounds[43]. The same kind of reaction was 

applied to xylo-oligomers obtained from controlled enzymatic depolymerisation[44] and 

Table V-1 compares the properties of the compounds obtained. Spherical micelles were 

obtained in both cases after self-assembly. 

 

Table V-1. Properties obtained after the end-to-end coupling of oligo-saccharide and their 
acetylated equivalents 

 Maltoheptaose[43] Xylo-oligomers[44] 

DP of the starting oligomers 7 Mixture (7-8-9) 

CMC (pyrene method) 100 mg.L-1 40 mg.L-1 

Self-assembly in water Spherical micelles Spherical micelles 

Average diameter 30 nm 25 nm 

 

In our group[45], well defined xylo-oligomers obtained by acidic hydrolysis with a DP 

of 6 were coupled by CuAAC with two different fatty acids (oleic and ricinoleic, Figure V-13).  

 

 
Figure V-13. Structure of the compounds studied in our group, R=H for the oleic acid (XOS-Ol) and 

R=OH for the ricinoleic acid (XOS-Ric) (from Chemin[45]) 

 

Both compounds were soluble in water and chloroform even though the formation of 

aggregates was observed. Smaller particles were still retrieved after filtration at 0.45 µm. 

The characteristics of the self-assembly of both compounds are summarised in Table V-2. 

 

Table V-2. Characteristics of self-assembly of XOS-Ol and XOS-Ric (from Chemin[45]) 

 XOS-Ol XOS-Ric 

 in water in chloroform in water in chloroform 

Size of the small particles 50 nm 50 nm 

Same as XOS-Ol Size of the 

aggregates 

at 10 g.L-1 800 nm 2 500 nm 

at 1 g.L-1 400 nm 1 500 nm 

at 0.1 g.L-1 250 nm 700 nm 

CMC (pyrene method) 260 mg.L-1 - 100 mg.L-1 - 
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V. 2. Synthesis of the amphiphilic compounds based on cellulose oligomers 

Based on the literature, the easiest way to obtain the desired amphiphilic compounds 

would be by copper-catalysed azide-alkyne cycloaddition (Figure V-14). The model 

compound chosen for the hydrophobic part is stearic acid as it is bio-based, commercially 

available and linear. 

 

 
Figure V-14. General reaction scheme to obtain amphiphilic compounds based on cellulose 

oligomers with a) the azido-functionalisation, b) the alkyne introduction and c) the coupling 

 

The same protocol was performed on cellobiose and the two compounds, CB-SA and 

CO-SA (Figure V-15), were compared on their self-assembly. The composition of the 

cellulose oligomers used is listed in Table V-3. 

 

 
Figure V-15. Structure and notation of the amphiphilic compound based on stearic acid and             

a) cellobiose (CB-SA) or b) cellulose oligomers (CO-SA) 

 

 

Table V-3. Composition of the cellulose oligomer used – Determined by HPLC 

Glucose Cellobiose DP 3 DP 4 DP 5 DP 6 DP 7 

1.9% 4.1% 15.8% 38.1% 30.2% 8.2% 1.6% 
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V. 2. A) Azido-functionalisation 

The azide group was introduced on the saccharides via a reductive amination 

reaction with 2-azidoethylamine (Figure V-14a). The reaction was performed in 

water/methanol 1/1 v/v in a microwave at 80°C for 2h[44]. The characterisation of the 

cellobiose azide is reported on Appendix V.I (p 197). 

For the cellulose oligomers, the reaction was achieved as confirmed by MALDI 

spectroscopy (Figure V-16) but some partial acetylation was also observed probably due to 

the presence of acetic acid for the pH adjustment before the microwave heating. 

 

 
Figure V-16. MALDI spectra of the cellulose oligomers azide 

 

The total conversion was confirmed by NMR and DOSY with the shift of the anomeric 

proton and only one diffusion coefficient observed (Figure). The presence of un-

functionalised cellulose oligomers detected by MALDI could be due to some 

defunctionalisation induced by the ionisation necessary to the analysis. 

 

 
Figure V-17. a) 1H NMR spectra in D2O of the cellulose oligomers before and after azido-

functionalisation 
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Figure V-17. b) DOSY in D2O of the azido-functionalised cellulose oligomers 

 

Interestingly, the thermal resistance, observed by thermogravimetric analysis (TGA), 

of the azido-functionalised saccharides increased compared to the starting material. In fact, 

the residue at 800°C increased by 21% for the cellobiose and by 15% for the cellulose 

oligomers (Figure V-18). This phenomenon was probably caused by some crosslinking as 

azide groups had already been used for this purpose[46]. Several reactions could occur[47,48] 

but the one that actually did was not determined. 

 

 
Figure V-18. Comparison of thermal resistance determined by TGA (N2, 10°C/min) of a) cellobiose 

and cellobiose azide or b) cellulose oligomers and cellulose oligomers azide 

 

V. 2. B) Stearic alkyne 

The reaction between stearic acid and propargyl chloride (Figure V-14b, p 185) was 

performed in DMF in the presence of potassium carbonate at 50°C for 72h. Ethyl acetate 

(EA) was used to extract the compound from the reaction medium. The formation of the 

compound was confirmed by 1H NMR (Figure V-19), which also allowed calculating the 

conversion. 
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Figure V-19. 1H NMR spectra of stearic alkyne in CDCl3 

 

The reaction was also confirmed by a change in the thermal behaviour observed by 

TGA and differential scanning calorimetry (DSC). The temperature of degradation at 5%      

(Td 5%), crystallisation (Tc) and melting (Tm) had all decreased by around 30°C after 

esterification (Figure V-20). The enthalpy values, however, were similar meaning that the 

esterification had almost no impact on the crystallisation state (Figure V-20b). 

 

 
Figure V-20. Comparison of thermal properties of stearic acid and alkyne by a) TGA (N2, 10°C.min-1) 

or b) DSC (N2, 20°C.min-1) 

 

V. 2. C) Coupling reaction 

The coupling between the azide and the alkyne (Figure V-14c, p 185) took place in 

DMSO with copper sulphate and sodium ascorbate as catalysts at 50°C for three days. After 

the reaction, no dialysis was performed to remove the catalyst as the compounds sizes were 

smaller or close to the smallest pores sizes of available dialysis bags and too much product 

would have been lost. 

The characterisation of the cellobiose based amphiphilic compound (CB-SA) is 

reported on Appendix V.II (p 198). For the compound based on cellulose oligomers (CO-SA), 

the azide band totally disappeared in FT-IR (Figure V-21f). 
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Figure V-21. FT-IR of several compounds – The grey band corresponds to the azide group 

 

The reaction was confirmed by 1H NMR in DMSO-d6 with the appearance of the 

triazole peak (Figure V-22a). The NMR DOSY also confirmed the reaction as the signals 

corresponding to the saccharide and the fatty acid parts had the same diffusion coefficient 

(Figure V-22b). 

 

The reaction could not be confirmed by MALDI as the molar masses of the 

compounds obtained and the oligomers azide were too close, modulo two glucose units: 

 

Cellulose oligomer + azido-ethylamine = Molig + 68 

Cellulose oligomer + stearic block = Molig + 390 

= Molig + 2 x 162 (glucose) + 66 (≈ azido-ethylamine) 
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Figure V-22. a) 1H NMR spectra of several compounds in DMSO-d6 – The portion zoomed on the  

CO-SA spectra corresponds to the triazole signal and b) DOSY of CO-SA in DMSO-d6 
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V. 3. Characterisation of the amphiphilic compounds 

V. 3. A) Thermal characteristics 

The thermal stability of the amphiphilic compounds was similar to the sugar part but 

a smaller amount of residue was obtained (Figure V-23a and b). The last drop at 755°C for 

CB-SA and 743°C for CO-SA corresponded to the remaining catalyst degradation, which 

decomposed into copper(II) oxide and sulphur trioxide above 700°C[49]. This drop indicated 

that the products contained around 8% of catalyst (initial content of copper sulphate:          

18 wt%). The presence of residual solvent (Figure V-23a’ and b’) prevented the 

determination of Td 5%. 

 

 
Figure V-23. TGA curves (N2, 10°C.min-1) in weight loss (a and b) or the first derivative (a’ and b’) of 
the cellobiose based compounds (a and a’) or the cellulose oligomers based compounds (b and b’) 
– The corresponding azido-functionalised compound (green) and amphiphilic compound (red) are 

represented as well as the stearic alkyne (orange) 

 

A glass transition temperature (Tg) was observed for the cellulose oligomers but not 

for cellobiose (Figure V-24a and b). The Tg disappeared after the coupling and only a melting 

temperature was observed probably corresponding to the fatty acid part (Figure V-24f). The 

great decrease of the melting enthalpy for the two amphiphilic compounds compared to the 

stearic alkyne indicated that a great disorder was induced by the sugar block, which had 

partially prevented the crystallisation of the fatty acid block (Figure V-24d to f). 
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Figure V-24. DSC graphs (N2, 20°C.min-1) of several compounds 

 

V. 3. B) Self-assembly 

First, to determine in which solvent the self-assembly would be investigated, a 

solubilisation study was performed. CB-SA was not soluble in any solvent tested except for 

DMSO whereas CO-SA was soluble in DMSO and water (Figure V-25). As DMSO was a good 

solvent for both blocks, no self-assembly was induced. However, water was a non-solvent 

for the stearic acid, self-assembly was thus probably induced in this solvent. 

 

 
Figure V-25. Solubilisation of a) CB-SA and b) CO-SA in several solvents over time – Concentration: 
1 g.L-1, from left to right: chloroform, dichloromethane, ethyl acetate, toluene, water and DMSO 

 

The difference of micellisation between the two compounds came from an 

unfavourable size ratio of the corresponding blocks. In fact, the stearic acid is twice the size 

of cellobiose whereas stearic acid and cellulose oligomers have similar sizes for DP > 4  
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(Table V-4). This size difference probably caused some destabilisation for CB-SA resulting in 

aggregation. 

Considering the HLBs, the compounds studied were mainly hydrophilic and should be 

oil-in-water emulsifiers (Figure V-9, p 181). This was likely the reason of their inexistent 

solubilisation in hydrophobic solvents. 

Consequently, only the self-assembly in water of CO-SA was studied in the rest of the 

study. 

 

Table V-4. Size ratio and HLB of the amphiphilic compounds depending on the cellulose oligomer 

Cellulose 

oligomer 

Oligomer length 

(Å)[50] 

Stearic acid 

length (Å) a 
Size ratio HLB b 

Cellobiose 14.6 

27.7 

0.5 9.3 

Cellotriose 20.2 0.7 11.3 

Cellotetraose 26.2 0.9 12.6 

Cellopentaose 31.8 1.1 13.6 

Cellohexaose 37.6 1.4 14.4 

a Calculated as 18 times a C–C bond length, b Calculated based on Equation V-2 (p 181) 

 

The CMC of CO-SA was determined by the pyrene method and was found to be 

around 100 mg.L-1 (Figure V-26). Xylo-oligomers-b-ricinoleic acid[45] had the same CMC 

(Table V-2, p 184). Compared to some commercial amphiphilic compounds based on 

saccharides (Appendix V.III, p 200), the value obtained here is in a good range. 

 

 
Figure V-26. CMC determination for CO-SA 

 

The particle size distribution measured by dynamic light scattering (DLS) did not 

depend on the solution concentration and appeared to be stable over time (Figure V-27). 

The particle size at 200 mg.L-1 was 143 nm with a PDI of 0.21 meaning that they were 

quite homogeneous but too large to be micelles considering that the radius of the core 

probably exceeded the hydrophobic chain size (30 Å). Interestingly, the dispersity of the 
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particle size was homogeneous even though the cellulose oligomers DP varied from 3 to 6. 

This indicated that each cellulose oligomer DP was homogenously distributed over all the 

particles. 

 

 
Figure V-27. a) DLS spectra and b) average particle size (column) and PDI (circles) of several 

solutions of CO-SA measured at different time – The samples were not filtrated before analysis 

 

To determine the morphology of the obtained objects, TEM pictures of a solution of 

CO-SA at 200 mg.L-1 in water, which was higher but close to the CMC, were taken         

(Figure V-28). The average particle size observed by TEM was really smaller than the one 

determined by DLS (≈ 50 nm versus 140 nm). The reason was that for DLS the particles were 

in solution whereas for TEM, they were “dried” which induced shrinkage. This shrinkage may 

also explain the not exactly round shape of the particles. 

.The objects obtained are most probably vesicles.  

 

 
Figure V-28. TEM pictures of CO-SA in water at 200 mg.L-1 
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The DLS study was also performed on CB-SA. Although some small particles seemed 

to be formed at first at 100 mg.L-1, they quickly aggregated (Figure V-29). After filtration, no 

particles were seen meaning that all the small particles had aggregated and none of them 

stayed in solution. After 3 days at 100 mg.L-1, the average object size was 450 nm with a PDI 

of 0.19. 

 

 
Figure V-29. a) DLS spectra and b) average particle size (column) and PDI (circles) of several 

solutions of CB-SA measured at different time – The samples were not filtrated before analysis 
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Chapter conclusion 

 

Cellobiose and water-soluble/methanol-insoluble cellulose oligomers 

were successfully coupled with a stearic acid to form amphiphilic compounds by 

copper-catalysed azide-alkyne cycloaddition. 

Considering their HLB, they tended to be hydrophilic compounds. In fact, 

none of them showed any sign of solubilisation with any of the hydrophobic 

solvents tested. 

The cellobiose based compound (CB-SA) also aggregated in water. The 

phenomenon was observed by DLS. After 3 days at 100 mg.L-1 in water, the 

objects had an average diameter of 450 nm with a PDI of 0.19. 

The solubilisation of the compounds based on cellulose oligomers      

(CO-SA) in water resulted in a clear solution. The CMC of this compound was 

found to be around 100 mg.L-1 which was in a good range for such type of 

compounds. At 200 mg.L-1 in water, the particles had an average diameter of 

140 nm with a PDI of 0.21. The TEM pictures taken at this concentration 

represented quite round particles. The objects were thus probably vesicles 

considering their large sizes in solution. 

As the particles sizes distribution was homogeneous (small PDI), the 

different cellulose oligomers DP seem well distributed over the particles.  



 Chapter V. Amphiphilic compounds based on cellulose oligomers  

197 

Appendix 
 

Appendix V.I: Characterisation of the azido-functionalised cellobiose ................................. 197 

Appendix V.II: Characterisation of amphiphilic compound based on cellobiose (CB-SA) ..... 198 

Appendix V.III: Characteristics of some commercial amphiphilic compounds based on 

saccharides ............................................................................................................................. 200 

 

 

Appendix V.I: Characterisation of the azido-functionalised cellobiose 

 

 
1H NMR spectra in D2O comparison of the cellobiose before and after azido-

functionalisation 

 

 
DOSY NMR spectra in D2O of the cellobiose after azido-functionalisation 
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Appendix V.II: Characterisation of amphiphilic compound based on cellobiose (CB-SA) 

 

 
FT-IR of several compounds – The grey band corresponds to the azide group 

 

 
1H NMR spectra of several compounds in DMSO-d6 – The portion zoomed on the CB-SA 

spectra corresponds to the triazole signal 
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Appendix V.II (following): Characterisation of amphiphilic compound based on cellobiose (CB-SA) 

 

 
DOSY NMR spectra of CB-SA in DMSO-d6 
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Appendix V.III: Characteristics of some commercial amphiphilic compounds based on saccharides 

 

C
A

S 
n

u
m

b
er

 

5
9

1
2

2
-5

5
-3

 

5
8

8
4

6
-7

7
-8

 

6
9

9
8

4
-7

3
-2

 

2
9

8
3

6
-2

6
-8

 

 

C
A

S 
n

u
m

b
er

 

6
9

2
2

7
-9

3
-6

 

8
2

4
9

4
-0

9
-5

 

1
0

6
4

0
2

-0
5

-5
 

8
2

4
9

4
-0

8
-4

 

C
M

C
 (

m
g.

L-1
) 

6
6 

7
0

4 

5
 5

1
5

 

7
 3

0
5

-8
 7

6
6

 

 

C
M

C
 (

m
g.

L-1
) 

7
7

-9
7 

8
6

9 

2
 8

1
0

 

1
0

 8
1

7
 

C
M

C
 (

m
M

) 

0
.1

9
 

2
.2

 

1
8

-2
0 

2
5

-3
0 

 

C
M

C
 (

m
M

) 

0
.1

5
-0

.1
9

 

1
.8

 

6
.0

 

2
3

.8
 

M
 (

g.
m

o
l-1

) 

3
4

9 

3
2

0 

3
0

6 

2
9

2  

M
 (

g.
m

o
l-1

) 

5
1

1 

4
8

3 

4
6

8 

4
5

5 

St
ru

ct
u

re
 

n
 =

 1
1

 

n
 =

 9
 

n
 =

 8
 

n
 =

 7
 

 

St
ru

ct
u

re
 

n
 =

 1
1

 

n
 =

 9
 

n
 =

 8
 

n
 =

 7
 

 

 

 

A
lk

yg
lu

co
si

d
es

 

n
-D

o
d

ec
yl

-β
-D

-

gl
u

co
p

yr
an

o
si

d
e 

n
-D

ec
yl

-β
-D

-

gl
u

co
p

yr
an

o
si

d
e 

n
-N

o
n

yl
-β

-D
-

gl
u

co
p

yr
an

o
si

d
e 

n
-O

ct
yl

-β
-D

-

gl
u

co
p

yr
an

o
si

d
e 

 

A
lk

ym
al

to
si

d
es

 

n
-D

o
d

ec
yl

-β
-D

-

m
al

to
si

d
e 

n
-D

ec
yl

-β
-D

-

m
al

to
si

d
e 

n
-N

o
n

yl
-β

-D
-

m
al

to
si

d
e 

n
-O

ct
yl

-β
-D

-

m
al

to
si

d
e 



 Chapter V. Amphiphilic compounds based on cellulose oligomers  

201 

References 
 

[1] H. Kamitakahara, F. Nakatsubo, D. Klemm, Cellulose 2007, 14, 513–528. 

[2] S. Berson, D. Viet, S. Halila, H. Driguez, E. Fleury, T. Hamaide, Macromol. Chem. Phys. 
2008, 209, 1814–1825. 

[3] S. Halila, M. Manguian, S. Fort, S. Cottaz, T. Hamaide, E. Fleury, H. Driguez, Macromol. 
Chem. Phys. 2008, 209, 1282–1290. 

[4] H. Kamitakahara, F. Nakatsubo, Cellulose 2005, 12, 209–219. 

[5] H. Kang, R. Liu, Y. Huang, Polymer 2015, 70, A1–A16. 

[6] D. Roy, M. Semsarilar, J. T. Guthrie, S. Perrier, Chem. Soc. Rev. 2009, 38, 2046–2064. 

[7] A. Hufendiek, V. Trouillet, M. A. R. Meier, C. Barner-Kowollik, Biomacromolecules 
2014, 15, 2563–2572. 

[8] Y. Liu, X. Jin, X. Zhang, M. Han, S. Ji, Carbohydr. Polym. 2015, 117, 312–318. 

[9] X. Sui, J. Yuan, M. Zhou, J. Zhang, H. Yang, W. Yuan, Y. Wei, C. Pan, Biomacromolecules 
2008, 9, 2615–2620. 

[10] S. Yagi, N. Kasuya, K. Fukuda, Polym. J. 2010, 42, 342–348. 

[11] Y. Habibi, A.-L. Goffin, N. Schiltz, E. Duquesne, P. Dubois, A. Dufresne, J. Mater. Chem. 
2008, 18, 5002–5010. 

[12] Y. Guo, X. Wang, Z. Shen, X. Shu, R. Sun, Carbohydr. Polym. 2013, 92, 77–83. 

[13] C. Schatz, S. Lecommandoux, Macromol. Rapid Commun. 2010, 31, 1664–1684. 

[14] R. F. Borch, M. D. Bernstein, H. D. Durst, J. Am. Chem. Soc. 1971, 93, 2897–2904. 

[15] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004–2021. 

[16] S. Dedola, S. A. Nepogodiev, R. A. Field, Org. Biomol. Chem. 2007, 5, 1006–1017. 

[17] V. V Rostovtsev, L. G. Green, V. V Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 
41, 2596–2599. 

[18] V. D. Bock, H. Hiemstra, J. H. van Maarseveen, Eur. J. Org. Chem. 2006, 51–68. 

[19] M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952–3015. 

[20] C. E. Hoyle, C. N. Bowman, Angew. Chem. Int. Ed. 2010, 49, 1540–1573. 

[21] A. B. Lowe, Polymer 2014, 55, 5517–5549. 

[22] X. Meng, K. J. Edgar, Prog. Polym. Sci. 2015, ASAP. 

[23] Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969–5985. 

[24] F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32–38. 

[25] H. Elbs, G. Krausch, Polymer 2004, 45, 7935–7942. 

[26] E. A. Men’shikov, A. V Bol’shakova, I. V Yaminskii, Prot. Met. Phys. Chem. Surfaces 
2009, 45, 295–299. 

[27] H. S. Lee, W. N. Kim, C. M. Burns, J. Appl. Polym. Sci. 1997, 64, 1301–1308. 

[28] L. Xu, F. Qiu, Polymer 2014, 55, 6795–6802. 

[29] J. A. Emerson, D. T. W. Toolan, J. R. Howse, E. M. Furst, T. H. Epps, Macromolecules 



 Chapter V. Amphiphilic compounds based on cellulose oligomers  

202 

2013, 46, 6533–6540. 

[30] S. De, S. Malik, A. Ghosh, R. Saha, B. SAHA, RSC Adv. 2015, 5, 65757–65767. 

[31] J. Aguiar, P. Carpena, J. A. Molina-Bolıv́ar, C. Carnero Ruiz, J. Colloid Interface Sci. 
2003, 258, 116–122. 

[32] G. Basu Ray, I. Chakraborty, S. P. Moulik, J. Colloid Interface Sci. 2006, 294, 248–254. 

[33] K. Kalyanasundaram, J. K. Thomas, J. Am. Chem. Soc. 1977, 99, 2039–2044. 

[34] W. C. Griffin, J. Soc. Cosmet. Chem. 1954, 5, 249–256. 

[35] W. C. Griffin, J. Soc. Cosmet. Chem. 1949, 1, 311–326. 

[36] L. Dupayage, C. Nouvel, J.-L. Six, J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 35–46. 

[37] Q. Yang, C. He, Y. Xu, B. Liu, Z. Shao, Z. Zhu, Y. Hou, B. Gong, Y.-M. Shen, Polym. Chem. 
2015, 6, 1454–1464. 

[38] K. Zhang, A. Geissler, X. Chen, S. Rosenfeldt, Y. Yang, S. Förster, F. Müller-Plathe, ACS 
Macro Lett. 2015, 4, 214–219. 

[39] H. Kang, W. Liu, B. He, D. Shen, L. Ma, Y. Huang, Polymer 2006, 47, 7927–7934. 

[40] H. Kamitakahara, A. Baba, A. Yoshinaga, R. Suhara, T. Takano, Cellulose 2014, 21, 
3323–3338. 

[41] E. Farkas, L. Jánossy, J. Harangi, L. Kandra, A. Lipták, Carbohydr. Res. 1997, 303, 407–
415. 

[42] G. Crini, Chem. Rev. 2014, 114, 10940–10975. 

[43] S. de Medeiros Modolon, I. Otsuka, S. Fort, E. Minatti, R. Borsali, S. Halila, 
Biomacromolecules 2012, 13, 1129–1135. 

[44] C. Gauche, V. Soldi, S. Fort, R. Borsali, S. Halila, Carbohydr. Polym. 2013, 98, 1272–
1280. 

[45] M. Chemin, Valorisation Des Xylanes Du Bois : Vers La Synthèse de Copolymères 
Amphiphiles Bio-Sourcés, Bordeaux, 2014. 

[46] M. Zhou, F. G. Brunetti, E. Martin, S. Becker, I. Doi, R. N. Santoso, M. S. Lam, Azide-
Based Crosslinking Agents, 2014, WO2015004563 A1. 

[47] S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chemie - Int. Ed. 2005, 44, 5188–
5240. 

[48] A. L. Logothetis, J. Am. Chem. Soc. 1965, 87, 749–754. 

[49] A. M. Gadalla, Int. J. Chem. Kinet. 1984, 16, 655–668. 

[50] A. Huebner, M. R. Ladisch, G. T. Tsao, Biotechnol. Bioeng. 1978, 20, 1669–1677. 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VI. General 

conclusions and 

perspectives 
 

 

 

 

 

 
 

 

  



 Chapter VI. General conclusions and perspectives  

204 

Table of Contents 

 

VI. 1. General conclusions .......................................................................................... 205 

VI. 2. Perspectives ..................................................................................................... 208 

VI. 2. A) Cellulose oligomer synthesis .......................................................................... 208 

VI. 2. B) The “fishing” method ..................................................................................... 209 

VI. 2. C) The “masking” method ................................................................................... 209 

VI. 2. D) Cellulose oligomer separation by solubilisation ............................................. 209 

VI. 2. E) Amphiphilic compounds ................................................................................. 209 

Appendix................................................................................................................................. 211 

References .............................................................................................................................. 213 

 

 

 

 

 



 Chapter VI. General conclusions and perspectives  

 

VI. 1. General conclusions 

 

The goal of this work was to produce low dispersed cellulose oligomers with an easily 

accessible production and separation process. The second objective was to synthesise 

amphiphilic compounds based on these oligomers and to study their self-assembly. 

 

Cellulose oligomers were obtained by acidic hydrolysis. After hydrolysis, the cellulose 

had a reduced average molar mass and the oligomers were separated by solubilisation in 

water. The molar mass distribution of the water-soluble and insoluble fractions presented an 

overlap but no more oligomers could be extracted from the water-insoluble fraction 

probably because of a poor dispersion. The actual composition of the cellulose oligomers 

was calculated by HPLC. Cellotriose and cellotetraose were the main components with 19% 

and 29%, respectively (average over three experiments). Glucose (17%) and cellobiose (16%) 

were present in smaller amount. DP 7 and above were not detected by HPLC but their 

presence was confirmed by MALDI and SEC in water as the eluent. DP up to 12 were 

detected. 

The separation method investigated was based on differential solubilisation. Several 

alcohols were tested and methanol was found to be the most efficient. The methanol-

soluble fraction contained 27% of glucose, 27% of cellobiose and 28% of cellotriose whereas 

the methanol-insoluble fraction was concentrated in higher sizes with 42% of cellotetraose, 

36% of cellopentaose. Cellotriose (6%), cellobiose (4%) and glucose (8%) were also present 

but in really small amounts. 

 

The methanol-insoluble fraction was then used for the formation of amphiphilic 

compounds. The cellulose oligomers of higher DP and cellobiose for comparison were 

functionalised at the reducing extremity with an azide group, which was coupled with a 

stearic acid, alkyne-functionalised, by copper-catalysed azide-alkyne cycloaddition. Stearic 

acid was chosen as the hydrophobic block for its linearity, bio-based character and large 

availability. The self-assembly of these compounds was then investigated. The cellobiose 

based compound aggregated in all the solvents tested. Only DMSO, a good solvent for both 

blocks, could solubilise it but no self-assembly was induced. For the oligomer based 

compound, self-assembly in water without aggregation was detected. Their CMC was 

calculated at around 100 mg.L-1 which is a good range compared to similar compounds 

found commercially. The TEM pictures at 200 mg.L-1 showed more or less spherical particles 

but their shape may have been altered by shrinkage. The average diameter at 200 mg.L-1 was 
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measured by DLS to be 140 nm with a PDI of 0.21. This size distribution hardly changed over 

12 days. The particles presented a great homogeneity meaning that the different cellulose 

oligomers DP were well distributed over the particles. Because of their large sizes in solution, 

the particles were probably vesicles. 

 

 

Two new and innovative strategies were also probed to improve the cellulose 

oligomers separation (Figure VI-1). 

 

 
Figure VI-1. Representation of a) the "masking" method and b) the "fishing" method 

 

Boronic acids were chosen to act as interaction points. A preliminary study on models 

was performed to determine the polymer structure the best suited for each strategy. 

Phenylboronic acid (PBA) was found to be placed on the α-furanose form of glucose on the 
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1,2 and 3,5 positions (Figure VI-2a). As the 1- and 4-positions are not available along the 

cellulose backbone, only an interaction at the cellulose oligomer end would be possible in 

this case. Fortunately, phenylboronic anhydride was able to complex the 2- and 3-positions 

of the β-methylglucoside (Figure VI-2b) allowing a possible complexation along the cellulose 

backbone. 

Other mono-saccharides were also analysed in this complexation study in the view of 

extending the methods application to other polysaccharides. 

 

 
Figure VI-2. Structure of the complex of a) phenylboronic acid on glucose and b) phenylboronic 

anhydride on β-methylglucoside 

 

As a consequence, a random copolymer of styrene and 4-vinylphenylboronic acid 

(VBA) under the anhydride form with phenylboronic acid (PBA) (Figure VI-3a) was chosen for 

the “masking” method and a block copolymer of styrene and 4-vinylphenylboronic acid 

(Figure VI-3b) were used for the “fishing” method. 

 

 
Figure VI-3. Structure of a) a random copolymer of styrene and VBA under the anhydride form with 

PBA and b) a block copolymer of styrene and VBA 

 

 

As the boronic anhydride containing polymer was never synthesised before to the 

best of our knowledge, two different strategies were considered: 

 VBA was tried to be polymerised with styrene in an excess of PBA in an hydrophobic 

solvent that favoured the anhydride form. Unfortunately, no polymer was obtained after 

several polymerisation attempts because of poor monomer solubility or an inefficient 

initiator. 

 The boronic anhydride was then tried to be formed on an already synthesised random 

copolymer but again all the attempts failed 
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Eventually, the trials to synthesise the boronic anhydride containing polymer were 

dropped. 

On the other hand, three block and one random copolymers of styrene and VBA were 

synthesised and characterised to be used for the “fishing” method. The VBA block had 

theoretically the same size for the three blocks copolymers, only the styrene block length 

changed. Nevertheless, it was found that the longer the styrene block, the shorter the VBA 

block, probably because of a loss of active radicals during the reaction. Moreover, the VBA 

block was actually a random one as the average number of styrene per chain had increased 

after the VBA introduction. The random copolymer had the same length and monomer ratio 

as the smallest block copolymer. 

 

The “fishing” method process and initial conditions were inspired by a previously 

published method where glucose and cellobiose were extracted from an aqueous phase via 

phenylboronic acid[1,2]. This method was adapted to the requirements involved by the use of 

cellulose oligomers and boronic acid containing polymers. 

The four previously synthesised copolymers were then tested on their capacity to 

extract cellulose oligomers from an aqueous phase. No oligomers were solubilised in the 

organic phase without copolymers. The three block copolymers reaped all the oligomers that 

could be extracted. Unexpectedly, their composition was the same as before the extraction 

whatever the copolymer used, indicating that no selectivity had occurred. The polymers 

were seemingly already too long to be selective. 

As expected, the random copolymer was not able to extract cellulose oligomers in 

the organic phase probably because of a network formation trapping the oligomers in the 

aqueous phase. 

 

 

VI. 2. Perspectives 

VI. 2. A) Cellulose oligomer synthesis 

To make a step toward a greener process, the cellulose oligomers could be produced 

by enzymatic hydrolysis. The cellulose has first to be pre-treated with choline acetate, for 

instance, as it is a green and enzyme-compatible ionic liquid that reduces cellulose 

crystallinity and increases accessibility[3]. A multi-stage hydrolysis is then one of the most 

efficient ways to produce oligomers, according to the literature[4]. 
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VI. 2. B) The “fishing” method 

Other parameters need to be investigated to determine whether selectivity of the 

“fishing” method is achievable. Perhaps, the copolymers used were already too long. The 

better way to reduce the copolymer molar mass, while keeping a small dispersity, is by 

anionic polymerisation of styrene and 4-bromostyrene. The bromide groups just have to be 

subsequently transformed into boronic acid groups. 

The selectivity could already be checked by using naphthalene-2-boronic acids as if 

this compound does not induce selectivity, polymers never will. 

The “fishing” method as it is could also be tested on the water-insoluble fraction. 

 

VI. 2. C) The “masking” method 

Even though the anhydride containing polymer was not obtained in this work, the 

“masking” method could be tried with block copolymers that protect cellulose portions by 

steric hindrance or by possible “wrapping”. The “wrapping” could be increased by changing 

the styrene block into another one that favours hydrogen bonding for example. Enzymatic 

hydrolysis in the presence of Block 45/5 and Random 45/5 (see §III. 3. C) ii), p 141) were 

tried (Appendix VI.I, p Error! Bookmark not defined.). As the evolution of the HPLC profiles 

seemed to be the same with or without the presence of polymers, the boronic acid 

containing polymer did not deactivate the enzymes. 

 

VI. 2. D) Cellulose oligomer separation by solubilisation 

The cellulose oligomer separation by solubilisation may also be improved by the use 

of solvent mixtures. Selective precipitation could also be investigated by solubilising the 

oligomers in water, gradually adding a non-solvent and recovering the precipitate from time 

to time. 

 

VI. 2. E) Amphiphilic compounds 

It would be interesting to determine the impact of the hydrophobic block nature 

(presence of an hydroxyl group or an instauration inducing a non-linear fatty acid) or size on 

the surfactant characteristics. For a same hydrophobic block structure, the longer the length, 

the smaller the CMC, the smaller the HLB. 

The amphiphilic compound synthesis could also be changed to decrease the final 

copper content. If the stearic acid is first coupled with the azidoethylamine, the final product 
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is then solubilised in an organic solvent while the copper catalyst stays in the aqueous phase. 

The reductive amination is then performed on such compound (Figure VI-4). 

 

 
Figure VI-4. Alternative protocol to obtain a final product without copper catalyst 

 

In addition, another type of reaction, as thiolene for example, could be employed to 

prevent the use of azide and simplify the purification as the reaction is catalysed by UV. 

The compounds obtained could also be characterised further for encapsulation 

efficiency, for instance, to target cosmetic or drug delivery applications. 
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Appendix 
 

Appendix VI.I: Enzymatic hydrolysis profiles of [Emim]Ac pre-treated cellulose in the presence or 
not of boronic acid containing polymers 

 

 
HPLC of samples taken at different time during an [Emim]Ac pre-treated cellulose 

enzymatic hydrolysis without polymer 

 

 
HPLC of samples taken at different time during an [Emim]Ac pre-treated cellulose 

enzymatic hydrolysis with Block 45/5 (see §III. 3. C) ii), p 141) 
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Appendix VI.I (following): Enzymatic hydrolysis profiles of [Emim]Ac pre-treated cellulose in the 
presence or not of boronic acid containing polymers 

 

 
HPLC of samples taken at different time during an [Emim]Ac pre-treated cellulose 

enzymatic hydrolysis with Random 45/5 (see §III. 3. C) ii), p 141) 
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VII. 1. Materials and protocols 

VII. 1. A) Products and materials 

VII. 1. A) i) General 

All the solvents used were purchased from Aldrich and used as received. Deionized 

water was obtained from a Millipore Direct 8 system. All the deuterated solvents (DMSO-d6, 

CDCl3, D2O, toluene-d8, THF-d8, MeOD) were purchased from Euriso-top. 

Hydrochloric acid at 37% and sodium hydroxide pellets were purchased from Aldrich. 

The centrifuge used was an Eppendorf Centrifuge 5804 R. 

VII. 1. A) ii) Chapter II 

Phenylboronic acid was purchased from ABCR. α-methylglucoside was purchased 

from Janssen. β-methylglucoside and NaOD at 40 wt% in D2O were purchased from Aldrich. 

Glucose was purchased from Euromedex. Xylose, mannose, galactose and arabinose were 

purchased from Fluka. Cellobiose was purchased from Alfa Aeasar. Phenylboroxole was 

purchased from TCI. 

VII. 1. A) iii) Chapter III 

4-bromostyrene, 4-vinylphenylboronic acid, tetramethylethylenediamine, anhydrous 

pinacol, anisole, 1-dodecanethiol, 2-bromo-2-methylpropionic acid and o-tolylboronic acid 

were purchased from Alfa Aesar. Azobisisobutyronitrile (AIBN) and trimethyl borate were 

purchased from Acros Organics. Phenylboronic acid, 4-methylcatechol and potassium 

phosphate tribasic were purchased from ABCR. 4-tert-butylcatechol was purchased from 

Fluka. Styrene, sec-butyllithium at 1.4 M in cyclohexane, n-butyllithium at 1.6 M in hexane, 

magnesium turnings, triisopropyl borate, carbon disulphide, 1-mercaptopropionic acid, 

benzyl bromide, sodium sulphide (60 wt%), tetrabutylammonium bromide, benzyl chloride 

and 1,2,4-trichlorobenzene (SEC flow marker) were purchased from Aldrich. 2,2'-azobis(4-

methoxy-2.4-dimethyl valeronitrile) (V-70) was kindly supplied by Wako Pure Chemicals 

Industries. 

AIBN was recrystallized twice from methanol before use. V-70 was kept at -20°C and 

used without purification. 

The THF used for the Grignard reaction was dried over sodium benzophenone. The 

styrene used for the anionic polymerisation was dried over calcium hydride. The 

cyclohexane for the anionic polymerisation was dried over polystyryllithium (obtained from 

sec-butyllithium and styrene). All these solvents were cryo-distilled just before use. 

Tetramethylethylenediamine was dried over molecular sieve. 



 Chapter VII. Materials and methods  

220 

VII. 1. A) iv) Chapter IV 

Microcrystalline cellulose, phosphoric acid (85 wt%), hydroxymethylfurfural (for the 

UV calibration), 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), phenyl isocyanate, acetic 

anhydride, 1-octanol and Aliquat 336TM were purchased from Aldrich. Calcium hydroxide, 

sodium carbonate and sodium azide were purchased from Alfa Aesar. Phosphorus pentoxide 

was purchased from Acros Organics. For the SEC in water and HPLC calibrations, pure 

cellulose oligomers with a DP from 1 to 7 were purchased from Elicityl. For the SEC in 

chloroform references, glucose pentaacetate was purchased from Fluka and cellobiose 

octaacetate from Janssen. 

The mechanical stirring for the swelling phase was performed with an IKA® RW 20 

digital with five rectangular blades (Figure VII-1). 

 

 
Figure VII-1. Blades used for the swelling phase of the cellulose acidic hydrolysis 

 

VII. 1. A) v) Chapter V 

2-bromoethylamine hydrobromide was purchased from Fluka. Sodium azide, 

cellobiose and sodium ascorbate were purchased from Alfa Aesar. Acetic acid, stearic acid 

and pyrene were purchased from Aldrich. Sodium cyanoborohydride and potassium 

carbonate were purchased from Fisher. Propargyl chloride was purchased from TCI. Copper 

(II) sulfate pentahydrate was purchased from Prolabo. Uranyl acetate (contrast agent for 

TEM) was purchased from TAAB. 

The microwave used for the reductive amination was a Milestone Ethos. 

VII. 1. A) vi) Chapter VI 

Microcrystalline cellulose (batch MKBB9775) and acetic acid were purchased from 

Aldrich. Choline chloride, anion exchange resin Amberlite IRA 400 (OH), sodium azide, citric 

acid, trisodium citrate dehydrate and sodium acetate were purchased from Alfa Aesar.        

1-ethyl-3-methyl-imidazolium acetate ([Emim]Ac) and potassium phosphate tribasic were 

purchased from ABCR. The enzymes used (Celluclat 1.5L, batch CCN03138) were purchased 

from Novozymes. 
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The acetate buffer was prepared by mixing 7.4 mL of acetic acid at 0.2 M, 17.6 mL of 

sodium acetate at 0.2 M and 80 mL of deionised water. The final pH was 5.0. 

The citrate buffer was prepared by solubilising 40 mL of citric acid at 0.1 M and 60 mL 

of trisodium citrate dehydrate at 0.1 M. The final pH was 4.8. 

The enzymatic hydrolysis was performed in an incubator Thermo Scientific Heraeus. 

 

VII. 1. B) Protocols used for Chapter II 

VII. 1. B) i) Complexation in DMSO-d6 or D2O 

To complex phenylboronic acid or phenylboroxole on sugar in DMSO-d6 or D2O, the 

calculated amount of both entities was weighted, in large enough quantity for the balance 

error to be negligible. Then the solvent was added to reach usual NMR concentration        

(20-30 mg.mL-1). If time evolution was studied, the solvent introduction was the starting 

point. After solubilisation, 0.5 mL of the solution was introduced in an NMR tube. 

In Figure II-39h and i (p 99), the cellobiose and phenylboronic acid in solution in 

DMSO-d6 were heated in a vial at 80°C in an oil bath for the corresponding amount of time 

before being introduced in the NMR tube. 

VII. 1. B) ii) Complexation in toluene 

To complex phenylboronic acid on α-methylglucoside in toluene, the protocol found 

in the literature[1] was adapted as follow. 

Molecular sieve was activated in a round bottom flask before adding phenylboronic 

acid (0.40 g, 3.3 mmol) and 10 mL of toluene. The solution was heated at 100°C for               

30 minutes to form boronic anhydrides. Then α-methylglucoside (0.22 g, 1.1 mmol) was 

added and the solution was kept at 100°C for 5h30. The solvent was then evaporated to 

obtain the aimed complex. 

VII. 1. B) iii) Complexation in chloroform 

Phenylboronic acid and the studied sugar in the determined ratio were dispersed in 

chloroform overnight. Then the solution was filtrated to remove the un-solubilised sugar and 

the solvent was left to evaporate. Once the complex was dried, it was solubilised in DMSO-d6 

for analysis. 
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VII. 1. C) Protocols used for Chapter III 

VII. 1. C) i) 4-vinylphenylboronic acid (VBA) synthesis 

The VBA was synthesised by the following protocol[2,3] for the first trials with anionic 

polymerisation. For the RAFT, commercial VBA was used. 

 
Dried magnesium (1.06 g, 43.5 mmol) and freshly cryo-distilled THF (30 mL) were 

introduced into a dry three necked round bottom flask under inert atmosphere. The solution 

was heated to 40°C before adding a few drops of 4-bromostyrene. Once the solution turned 

green indicating that the Grignard reagent had been formed, the remaining 4-bromostyrene 

(4 mL, 30.6 mmol) were slowly introduced to the mixture. After the complete introduction, 

the temperature was dropped to -80°C with a mixture of acetone and dry ice. Trimethyl 

borate (8 mL, 71.8 mmol) solubilised into 20 mL of dry THF was slowly introduced. The low 

temperature prevented the formation of the by-products diarylborane and triarylborane[4]. 

After complete introduction, the solution was allowed to warm up to room temperature 

overnight. 100 mL of hydrochloric acid at 4 M was added to the solution to hydrolyse the 

borate. The solution was then extracted twice with 100 mL of diethyl ether. The organic 

phases were combined and concentrated and the product was obtained by recrystallization 

from water. 2.11 g of white crystals were obtained (yield 46.7%). 
1H NMR (δ ppm, DMSO-d6): 5.30 (1H, d, CH2=CH–Ph), 5.90 (1H, d, CH2=CH–Ph), 5.90 

(1H, CH2=CH–Ph), 7.43 (2H, d, m-Ph–B(OH)2), 7.77 (2H, d, o-Ph–B(OH)2), 8.01 (2H, s, Ph–

B(OH)2). 

VII. 1. C) ii) VBA protection by pinacol 

 
VBA and pinacol were introduced in a dry round bottom flask containing activated 

molecular sieve and dichloromethane. The solution was stirred overnight at room 

temperature and then filtrated over celite to remove the molecular sieve as well as most of 

the un-reacted pinacol. A colourless liquid was obtained after drying (yield 72.7%). 
1H NMR (δ ppm, CDCl3): 1.26 (12H, 4 CH3), 5.21 (1H, CH2=CH–Ph), 5.75 (1H, 

CH2=CH–Ph), 6.65 (1H, CH2=CH–Ph), 7.33 (2H, d, m-Ph–BPin), 7.70 (2H, d, o-Ph–BPin). 
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VII. 1. C) iii) Synthesis of polystyrene by anionic polymerisation 

 

The values given here were used for the synthesis of 

a polystyrene with a DP 10 (Mth = 1 050 g.mol-1). Freshly 

cryo-distilled cyclohexane (50 mL) was introduced into a 

dry  round  bottom  flask.  The  “zero point” was reached by 

introducing one drop of styrene and as much sec-butyllithium (at 1.4 M in cyclohexane) as 

needed for a yellow colour to start appearing. Once this point was reached, the temperature 

was decreased to -10°C before adding the remaining sec-butyllithium (total volume: 3.4 mL). 

The remaining styrene (total volume: 5.5 mL) was also added dropwise. The initiation was 

left to occur for 20 minutes at -10°C then the temperature was increased to 40°C for 1h for 

the propagation step. After that, the polymerisation was deactivated by the addition of 

methanol in the amount necessary for the solution to become colourless. The polymer was 

precipitated in cold methanol and dried. 4.61 g of a white solid were obtained (yield: 87%). 

The polymerisation was confirmed by proton NMR in CDCl3 with a typical double hill 

in the range of 6.0 to 7.5 ppm. 

SEC in THF (polystyrene calibration): Mn = 1 030 g.mol-1, Mw = 1 120 g.mol-1, Đ = 1.08. 

 

For DP 50 (Mth = 5 100 g.mol-1), 0.7 mL of sec-butyllithium at 1.4 M in cyclohexane 

were used for the same amount of styrene (yield: 92%). 

SEC in THF (polystyrene calibration): Mn = 4 380 g.mol-1, Mw = 4 560 g.mol-1, Đ = 1.04 

VII. 1. C) iv) Introduction of boronic acid moieties on a polystyrene 

This protocol was based on published literature[5] and the values given here were 

used to obtain 50% functionalisation. 

 
The previously synthesised polystyrene with a DP 10 (2 g) was solubilised in freshly 

cryo-distilled cyclohexane (20 mL). n-butyllithium (7.5 mL) and the co-initiator 

tetramethylethylenediamine (1.3 mL) were added to the solution before heating at 65°C for    

3h. After that, the solvent was removed under vacuum and replaced by freshly cryo-distilled 

THF (20 mL). The boration occured with the introduction of triisopropyl borate (2.2 mL) at 

room temperature overnight. A solution containing 67 vol% of dioxane, 25 vol% of water and 

8 vol% of commercial hydrochloric acid at 37% (12 mL) was used to hydrolyse the borate at 

60°C for 2h. The solvents were then tried to be removed by evaporation and 4.09 g of 

polymer were obtained. 



 Chapter VII. Materials and methods  

224 

With the DP 50, 6.0 mL of n-butyllithium and 2.8 mL of tetramethylethylenediamine 

were used for the same amount of polystyrene. The rest of the quantities were the same 

and 4.04 g of polymer was obtained. 

 

The yield for both of these reactions seemed to be over a 100% because some 

residual solvent was probably still present. It could not be removed as these polymers were 

insoluble in all the solvents tested. 

VII. 1. C) v) Polymer protection by pinacol 

The same protocol used with VBA was employed, see §VII. 1. C) ii). 

VII. 1. C) vi) RAFT chain transfer agent synthesis 

DMP (2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid) 

The synthesis of DMP was adapted from the literature[6] as follow. 

 
In a suspension of K3PO4 (3.87 g, 18.2 mmol) in 60 mL of acetone was added               

1-dodecanethiol (4.4 mL, 18.4 mmol). The solution was stirred at room temperature for      

10 minutes before adding carbon disulphide (3.0 mL, 49.6 mmol). The solution turned yellow 

and was stirred like this for 10 additional minutes. To finish, 2-bromo-2-methylpropionic acid 

(2.31 g, 13.8 mmol) was added. The solution was stirred at room temperature overnight      

(≈ 16h). A KBr precipitate was observed. Then the reaction was quenched by the addition of 

280 mL of hydrochloric acid at 1 M, the acetone was evaporated and the product extracted 

twice with 300 mL of dichloromethane even though the aqueous phase had lost its colour 

after the first extraction. The organic phases were combined, concentrated to reach around 

150 mL and washed with 150 mL of water and 150 mL of brine. It was then dried over MgSO4 

before being evaporated. The oil obtained was dispersed in heptane and left at -20°C for few 

hours for re-crystallisation. 3.73 g of a yellow solid was obtained (yield: 74.0%). 
1H NMR (δ ppm, CDCl3): 0.81 (3H, S–CH2–(CH2)10–CH3), 1.32-1.19 (20H, S–CH2–

(CH2)10–CH3), 1.66 (6H, S–C(CH3)2–COOH), 3.21 (2H, S–CH2–(CH2)10–CH3). 
13C NMR (δ ppm, CDCl3): 14.3 (S–CH2–(CH2)10–CH3), 22.8 (S–CH2–(CH2)10–CH3), 25.4 

(S–C(CH3)2–COOH), 28.0, 29.1, 29.3, 29.5, 29.6, 29.7, 29.8, 32.1 (S–CH2–(CH2)10–CH3), 37.2 (S–

CH2–(CH2)10–CH3), 55.7 (S–C(CH3)2–COOH), 178.1 (S–C(CH3)2–COOH). 

 

BSPA (3-(benzylthiocarbonothioylthio)propanoic acid) 

The synthesis of BSPA was adapted from the literature[6] as follow. 
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In a suspension of K3PO4 (3.92 g, 18.5 mmol) in 40 mL of acetone was added               

1-mercapto propionic acid (1.6 mL, 18.4 mmol). The solution was stirred at room 

temperature for 10 minutes before adding carbon disulphide (3.4 mL, 56.3 mmol). The 

solution turned yellow and was stirred for 10 additional minutes. To finish benzyl bromide 

(2.2 mL, 18.5 mmol) was added. A KBr precipitate was observed. The solution was stirred at 

room temperature for 20 minutes before evaporating the solvent. The product was 

dispersed in 195 mL of brine and extracted twice with 200 mL of dichloromethane. The 

organic phases were combined and washed with brine before being concentrated.  5.04 g of 

a yellow solid were obtained (yield > 99%). 

1H NMR (δ ppm, CDCl3): 2.76 (2H, S–CH2–CH2–COOH), 3.55 (2H, S–CH2–CH2–COOH), 

4.54 (2H, Ph–CH2–S), 7.15-7.32 (5H, Ph–CH2–S). 
13C NMR (δ ppm, CDCl3): 31.1 (S–CH2–CH2–COOH), 33.1 (S–CH2–CH2–COOH), 41.7 

(Ph–CH2–S), 128.0, 128.9, 129.4, 134.9 (Ph–CH2–S), 177.4 (S–CH2–CH2–COOH). 

 

DBTTC (Dibenzyl trithiocarbonate) 

The synthesis of DBTTC was adapted from the literature[7] as follow. 

 
Sodium trithiocarbonate was first obtained by reacting sodium sulfide (60 wt%,     

1.74 g, 22.3 mmol) with carbon disulfide (1.5 mL, 24.8 mmol) at room temperature for 2h in 

3.6 mL of water containing tetrabutylammonium bromide (0.2 g, 0.7 mmol). 

In a second step, benzyl chloride (4.9 mL, 42.6 mmol) was added dropwise to the 

solution for 10 min. The reaction was performed at room temperature for 3h, followed by a 

period of 1h at 70°C. Once the reaction medium was back to room temperature, an 

additional charge of tetrabutylammonium bromide (0.21 g, 0.66 mmol) dissolved in 0.4 mL 

of water was added. The solution was then stirred overnight (≈15h) to complete the 

reaction. After separation of the organic (orange) and aqueous (yellow) phases, DBTTC was 

obtained by extraction in chloroform. 5.01 g of an orange oil was obtained (yield: 77.5%). 
1H NMR (δ ppm, CDCl3): 4.64-4.70 (4H, S–CH2–Ph x2), 7.33-7.46 (10H, S–CH2–Ph x2). 
13C NMR (δ ppm, CDCl3): 41.6 (S–CH2–Ph x2), 127.8, 128.7, 129.3, 134.9 (S–CH2–Ph 

x2). 
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VII. 1. C) vii) RAFT polymerisation: general procedure 

The required amount of monomer(s), initiator, CTA and solvent were introduced into 

a Schlenk. The oxygen was removed from the reaction media by three vacuum/argon cycles. 

The temperature was then increased to the required value for the required amount of time. 

Then the polymer was precipitated in methanol and dried. 

Before the SEC analysis of the PS-PVBA copolymers, the polymer was further dried 

overnight at 80°C in an oven. 

VII. 1. C) viii) Synthesis of the random copolymer PS-boronic 

anhydride 

The required amount of polymer 

and o-tolylboronic acid were solubilised 

in ethyl acetate. The solution was then 

heated overnight in an oven at 80°C for 

the solvent to be removed and to favour 

the anhydride formation. 
 

 

VII. 1. D) Protocols used for Chapter IV 

VII. 1. D) i) Acidic hydrolysis of cellulose 

 
As previously described[8] and if not specified otherwise, cellulose (5 g) was added 

into phosphoric acid at 85 wt% (60 mL) under mechanical blade stirring at 250 rpm. The 

cellulose was left to swell at room temperature for 30 minutes. Before starting the 

hydrolysis, oxygen was removed by three vacuum/argon cycles and then the solution was 

heated at 50°C for 20h. The solution obtained was dark brown and 0.1 mL of the solution 

was extracted to measure the HMF quantity. The cellulose was then precipitated in 600 mL 

of THF and filtered off. To separate the water-soluble fraction, the obtained brownish solid 

was introduced into 50 mL of deionized water under stirring for 1h. The mixture was then 

centrifuged; the remaining solid obtained was the water-insoluble fraction (WIF). The 

solution containing the water-soluble fraction (oligomers) was neutralised with aqueous 

calcium hydroxide at 0.1 g.mL-1 and then filtered to remove the formed precipitate. The 

solution was concentrated by evaporation and both fractions were dried over phosphorus 

pentoxide in a desiccator under vacuum until no mass decrease was detected. 

The percentages of water-soluble or insoluble fractions were calculated as follow. 
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𝜏𝑜𝑙𝑖𝑔 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑖𝑒𝑑 𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟𝑠

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑒𝑑
 𝜏𝑊𝐼𝐹 =

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑖𝑒𝑑 𝑊𝐼𝐹

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑒𝑑
 

 

VII. 1. D) ii) Cellulose carbanilate 

 
Based on a previously published procedure[9], cellulose (0.5 g) was solubilised in 

[Bmim]Cl (4.5 g) at 80°C. Once the solution was homogenised, phenyl isocyanate (3.5 mL) 

was added to the solution and a small emission of CO2 was observed (reaction with water 

that produces CO2 and phenyl amine, the water came from the hygroscopic character of 

[Bmim]Cl). The solution was left to react for 2h at 80°C then 2 mL of methanol was added to 

quench the reaction. The product was then precipitated in methanol and dried to obtain   

0.9 g of a white solid. 

The reaction was achieved when the final product was THF-soluble. The yield was not 

calculated as the reaction with methanol produced a known by-product, the methyl phenyl 

carbamate, which could not be removed from the carbanilated cellulose. 

 
1H NMR (δ ppm, CDCl3): 3.78 (3H, –C(O)–O–CH3), 6.61 (NH), 7.07 (1H, p-Ph), 7.31 (2H, m-Ph), 

7.37 (2H, o-Ph). 

VII. 1. D) iii) Cellulose acetate 

 
Cellulose (0.2 g) was solubilised in [Bmim]Cl (2 g) at 90°C. After solubilisation, the 

temperature was decreased to 80°C and acetic anhydride (2 mL) was added to the solution. 

The reaction occurred at 80°C for 4h. The cellulose acetate was then precipitated in 50 mL of 

water and dried over phosphorus pentoxide in a desiccator under vacuum until no mass 

decrease was detected. 

For all the functionalised samples, the substitution degree (DS) was approximated to 

2.8-3.0 as they were entirely soluble in chloroform after acetylation[10]. 

VII. 1. D) iv) “Fishing” method 

If not stated otherwise, the polymer (2 g) was solubilised in toluene (4.2 mL) 

containing octanol (0.75 mL) and Aliquat 336TM (0.06 mL). Separately, cellulose oligomers 

(0.5 g) were solubilised in 5 mL of deionized water. The pH was adjusted to 9 with the 
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addition of around 250 µL of Na2CO3 at 1 M and 0.08 mL of sodium azide at 2 wt% was 

added to prevent microbial contamination. Both of the solutions were then introduced into 

a 50 mL round bottom flask and stirred at 1 000 rpm for 4h. The stirring was stopped, the 

solution was introduced in a narrow vial and left to decant. The blurry organic phase was 

retrieved with a syringe away from the interface and introduced in a new 50 mL round 

bottom flask containing 5 mL of HCl at 1 mM (pH 3). Both solutions were stirred at 400 rpm 

for 30 minutes and decanted in less than 10 minutes. The aqueous phase was retrieved, 

neutralised with NaOH at 0.1 M and 50 µL of sodium azide at 2 wt% was added. The solution 

was then analysed by HPLC. 

VII. 1. D) v) Separation by solubilisation 

Unless stated otherwise, the water soluble oligomers were introduced in methanol 

(MeOH) at 20 g.L-1 and stirred for 24h at room temperature. Then the soluble and insoluble 

fractions were separated by centrifugation, the solvent was evaporated and the samples 

were finished to dry over phosphorus pentoxide in a desiccator under vacuum until no mass 

decrease was detected. 

The percentages of MeOH-soluble or insoluble fractions were calculated as follow: 

𝜏𝑀𝑒𝑂𝐻−𝑠𝑜𝑙 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑖𝑒𝑑 𝑀𝑒𝑂𝐻 − 𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟𝑠
 

 

𝜏𝑀𝑒𝑂𝐻−𝑖𝑛𝑠𝑜𝑙 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑖𝑒𝑑 𝑀𝑒𝑂𝐻 − 𝑖𝑛𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟𝑠
 

 

VII. 1. E) Protocols used for Chapter V 

VII. 1. E) i) Azido-ethylamine synthesis 

 
Based on a previously published procedure[11], 2-bromoethylamine hydrobromide 

(10.2 g, 50 mmol) was dissolved in 40 mL of water. Separately, sodium azide (9.75 g,          

150 mmol, 3 eq) was dissolved in 20 mL of water. Both homogeneous solutions were then 

mixed and stirred under reflux for 16h. The temperature was then reduced and kept below 

5°C with an ice bath. Sodium hydroxide (12 g) was added to the solution and left to react for 

several minutes. The product was extracted twice with 100 mL of diethyl ether, a yellowish 

oil was obtained (yield: 82.1%). 
1H NMR (δ ppm, CDCl3): 1.17 (NH2), 2.81 (2H, NH2–CH2), 3.31 (2H, CH2–N3)                 

[2-bromoethylamine hydrobromide is not soluble in CDCl3]. 
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VII. 1. E) ii) Azide group introduction 

 
Based on a previously published procedure[12], cellobiose (1.0 g, 2.9 mmol) was 

dissolved in 30 mL of distilled water/methanol 1/1 v/v and acidified to pH 5-6 using acetic 

acid at 0.2 M. Azido-ethylamine (0.50 g, 5.8 mmol, 2 eq) and sodium cyanoborohydride  

(0.37 g, 5.8 mmol, 2 eq) were added to the mixture and the solution was heated at 40°C 

under stirring until complete solubilisation. The reaction took place in a microwave (MW) 

oven (560 W) at 80°C for 2h. The solution was precipitated in 200 mL of isopropanol and the 

solid was separated by centrifugation at 8000 rpm for 10 min at 4°C. The residual 

isopropanol was eliminated by dissolving again the product in water. After drying, a white 

powder was obtained (yield: 70.8%, conversion 1H NMR: 100%). See Appendix V.I (p 197) for 

the characterisation. 

The same protocol was used for water-soluble/methanol-insoluble cellulose 

oligomers with 0.75 g in 24 mL water/methanol 1/1 v/v, 0.52 g of azido-ethylamine and   

0.28 g of sodium cyanoborohydride (yield: 87%, conversion 1H NMR: 100%). See §V. 2. A),   

(p 186) for the characterisation. 

VII. 1. E) iii) Stearic alkyne synthesis 

The stearic alkyne synthesis was adapted from the literature[13] as follow. 

 
Stearic acid (3.6 g, 13 mmol), propargyl chloride (2 mL, 27 mmol, 2 eq) and potassium 

carbonate (4 g, 29 mmol) were dissolved in 40 mL of DMF. The reaction took place at 50°C 

for 72h. The product was extracted with 200 mL of ethyl acetate and the organic phase was 

washed twice with a 1 M of HCl (200 mL), brine (200 mL) and aqueous NaHCO3 (200 mL). 

After drying, a white powder was obtained (yield: 98.5%, conversion: 95.5%). 
1H NMR (δ ppm, CDCl3): 0.81 (3H, (CH2)16–CH3), 1.18 (28H, CH2–CH2–(CH2)14–CH3), 

1.57 (2H, CH2–CH2–(CH2)14–CH3), 2.28 (2H, CH2–CH2–(CH2)14–CH3), 2.39 (1H, CH≡C–CH2), 4.61 

(2H, CH≡C–CH2). 
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VII. 1. E) iv) Azide-alkyne coupling reaction 

 
Cellobiose-azide (0.51 g, 1.2 mmol) and stearic alkyne (0.39 g, 1.2 mmol, 1 eq) were 

dissolved completely in 18 mL of DMSO. Copper (II) sulphate pentahydrate (0.31 g,              

1.2 mmol, 1 eq) and sodium ascorbate (0.48 g, 2.4 mmol, 2 eq) were also added and the 

coupling reaction took place at 50°C for 72h. The solution was then precipitated in 250 mL of 

isopropanol. The solid obtained was separated by centrifugation at 8000 rpm for 10 min and 

washed several times with water. After solvent evaporation, the product was dried over 

P2O5 for 72h (1.37 g of product obtained, yield not calculated due to residual catalyst and 

solvent). 

The product formation was confirmed by the disappearance of the azide peak in FT-

IR and the appearance of the triazole signal in 1H NMR in DMSO-d6 (8.5 - 7.5 ppm). 

 

The same protocol was used for water-soluble/methanol-insoluble cellulose 

oligomers azide with 0.40 g of the corresponding azide, 0.32 g of stearic alkyne in 15 mL of 

DMSO with 0.24 g of CuSO4∙5H2O and 0.38 g of sodium ascorbate. 1.22 g of product obtained 

(yield not calculated due to residual catalyst and solvent). 

 

VII. 1. F) Protocols investigated for Chapter VI 

VII. 1. F) i) Choline acetate 

 
Choline chloride was solubilised in water and flushed through an anion exchange 

resin (Amberlite IRA 400 (OH)) to form the choline hydroxide. The pH of the solution was 

reduced with acetic acid until pH 4.9 where a pH plateau was detected. To finish, the water 

was evaporated. 

1H NMR (δ ppm, D2O): 1.96 (3H, CH3-acetate), 3.21 (9H, CH3-choline), 3.52 (2H, N-

CH2-CH2-OH), 4.06 (2H, N-CH2-CH2-OH). 

VII. 1. F) ii)  Cellulose pre-treatment with [Emim]Ac 

Cellulose (0.64 g) was introduced into [Emim]Ac (6.4 g) and heated at 120°C for 2h. 

The solution became red. The temperature was decreased to 70°C and 25 mL of a solution at 

40 wt% of potassium phosphate tribasic was introduced. The precipitated cellulose was 
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filtrated and washed several times with acetate buffer until the coloration had disappeared. 

The cellulose morphology change was visible with a naked eye (Figure VII-2). 

 

 
Figure VII-2. Comparison of cellulose after and before pre-treatment with [Emim]Ac 

 

VII. 1. F) iii) Cellulose enzymatic hydrolysis 

The protocol was based on the corresponding Laboratory Analytical Procedure[14]. As 

kinetics were performed, it was chosen to prepare as many vials as points needed in order to 

not disturb the reaction medium by taking aliquot. In each of them was introduced [Emim]Ac 

pre-treated cellulose (0.3 g), citrate buffer (5 mL), a solution at 2 wt% of sodium azide        

(50 µL), deionized water (5 mL) and, if needed, polymer (0.2 g). The solutions are heated at 

50°C before the enzymes introduction (50 µL) and kept at this temperature. At chosen times, 

a vial was removed, introduced in water at 100°C to deactivate the enzymes and centrifuged 

at 4 000 rpm for 10 minutes. The supernatant was then analysed by HPLC. 

 

 

VII. 2. Characterisation 

VII. 2. A) Spectroscopy 

VII. 2. A) i) Nuclear magnetic resonance (NMR) 

The NMR analyses were performed on a Bruker Avance I NMR spectrometer 

operating at 400.2 MHz for 1H and 100.6 MHz for 13C. If not stated otherwise, the 

parameters used for each analysis is listed in Table VII-1. The coupling constants were 

calculated based on JRES experiments displaying a 2D spectra of 1H versus the multiplicity. 
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Table VII-1. Parameters used for several NMR analyses 

Analysis 
Bruker topspin 

software program 
Number of scans 

1H NMR Proton 16 

13C NMR Carbon1024 1024 

COSY COSYGPSWZG 8 

HSQC HSQCGPSWZG 8 

JMOD C13APT 512 

 

Around 8 mg of samples were solubilised in 0.4 mL of deuterated solvents. The 

solvent peak was used as reference to determine the chemical shifts (Table VII-2). 

 

Table VII-2. Peaks of reference for several deuterated solvents[15] 

Deuterated solvent 1H δ (ppm) 13C δ (ppm) 

DMSO-d6 2.50 (centre) 39.52 (centre) 

D2O 4.79 - 

CDCl3 TMS at 0 77.16 (centre) 

THF-d8 3.58 and 1.72 - 

 

All DOSY (Diffusion Ordered Spectroscopy)[16,17] measurements were performed at 

298K on a Bruker Avance III HD 400 spectrometer operating at 400.33 MHz and equipped 

with a 5 mm Bruker multinuclear z-gradient direct cryoprobe-head capable of producing 

gradients in the z direction with strength 53.5 G.cm-1. For each sample, 2 mg was dissolved in 

0.4 ml of deuterated solvent for internal lock and spinning (only when CDCl3 is used as the 

solvent) was used to minimise convection effects. The DOSY spectra were acquired with the 

ledbpgp2s pulse program from Bruker topspin software. The duration of the pulse gradients 

and the diffusion time were adjusted in order to obtain full attenuation of the signals at 95 % 

of maximum gradient strength (Table VII-3). The gradients strength was linearly 

incremented in TD steps (Table VII-3) from 5% to 95% of the maximum gradient strength. 

The data were processed using 8192 points in the F2 dimension and 128 points in the F1 

dimension with the Bruker topspin software. Field gradient calibration was accomplished at 

25°C using the self-diffusion coefficient of H2O+D2O at 19.0 x 10-10 m2.s-1 [18,19]. 
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Table VII-3. Coefficient used for the DOSY analyses 

 
Duration of the 

gradient pulses (µs) 

Diffusion time 

(ms) 
TD 

 Delay between 

echoes (s) 

Chapter II 2 000 150 32 3 

Chapter III  1 200 100 16 3 

Chapter V 1 800 100 16 3 

 

VII. 2. A) ii) Ultraviolet (UV) spectroscopy 

HMF concentration was estimated by measuring the absorbance at 286 nm       

(Figure VII-3a) with an UV spectrometer (model Lambda 18, Perkin Elmer). A calibration 

curve was set up using HMF solutions of concentrations going from 0.098 to 0.0049 mmol.L-1 

(Figure VII-3b). 

 

 
Figure VII-3. a) UV spectra and b) calibration curve used to determine the HMF concentration 

 

To determine the concentration of HMF in solution after the cellulose acidic 

hydrolysis, 0.1 mL of solution was taken right after the reaction and diluted 40 times with 

distilled water to reach a concentration within the calibration range. The solution obtained 

was placed in a 3 mL quartz cell for the spectrometric analysis. 

VII. 2. A) iii) Fourier transformation infra-red (FT-IR) spectroscopy 

The FT-IR spectra were recorded on a Nicolet iS10 (Thermo Scientific) system. The 

diamond Smart Orbit went from 30 000 to 200 cm-1. The spectra were recorded with           

16 scans in transmission. 

VII. 2. A) iv) Matrix-assisted laser desorption/ionisation (MALDI) 

MALDI analyses were performed in the CESAMO (ISM, Bordeaux University), on a 

Voyager mass spectrometer (Applied Biosystems). The instrument was equipped with a 

pulsed N2 laser (337 nm) and a time-delayed extracted ion source. Spectra were recorded in 

the positive-ion mode using the reflectron and with an accelerating voltage of 20 kV. 

Products and matrix were dissolved in water. The matrix 2,5-dihydroxybenzoic acid (Fluka 
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Chemika, >98.5%) solution was prepared at 10 g.L-1. The solutions were combined in a 10:1 

volume ratio of matrix to product. 1–2 µL of the obtained solution was deposited onto the 

product target and vacuum-dried. 

 

VII. 2. B) Chromatography 

VII. 2. B) i) Size exclusion chromatography (SEC) 

With THF as the eluent 

The apparatus (PL-GPC 50, Polymer laboratories – Varian) was equipped with four 

columns TSK gel HXL-L (guard column, 6.0 mm ID x 4.0 cm L) G4000HXL (7.8 mm ID x 30.0 cm 

L) G3000HXL (7.8 mm ID x 30.0 cm L) G2000HXL (7.8 mm ID x 30.0 cm L) from Tosoh 

Bioscience as well as an UV (K-2501, Knauer) and a RI detector included in the apparatus 

(polystyrene calibration). The eluent flow was fixed at 1 mL.min-1. 

The samples were solubilised at around 3-5 g.L-1 in THF containing 0.2 vol% of     

1,2,4-trichlorobenzene as a flow marker. Only the UV data were used but the RI and UV 

spectra were similar. 

 

With chloroform as the eluent 

The molar mass of the acetylated cellulose was determined by SEC in chloroform 

(Viscotek TDA Model 305 from Malvern Instruments) using two columns PLgel 5µm MIXED-C 

300 x 7.5 mm with a flow rate of 1 mL.min-1. The molar masses presented were calculated 

using several detectors included in the apparatus as RI (polystyrene calibration) and viscosity 

(universal calibration). 

The samples were solubilised in chloroform containing 1,2,4-trichlorobenzene as the 

flow marker at a concentration accurately measured varying from 3 to 5 mg.mL-1. 

 

With water as the eluent 

The apparatus (Jasco PU-980) was equipped with two TSK gel columns G3000PW 

G2000PW with a RI detector (Wyatt Optilab Rex). The columns were calibrated using 

cellulose oligomers standards. The eluent was an aqueous buffer at pH 7 containing 0.2 M of 

sodium nitrate and 0.01 M of disodium phosphate with 0.03% of sodium azide to prevent 

microbial contamination. The eluent low rate was 0.5 mL.min-1. 

The samples were dissolved in the eluent at a concentration of 6 g.L-1. 

Based on the SEC of cellulose oligomers references, Figure VII-4 was used as the 

calibration curve to obtain the SEC spectra as a function of the DP. 
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Figure VII-4. SEC in water calibration curve 

 

VII. 2. B) ii) High performance liquid chromatography (HPLC) 

For Calibration A (Appendix IV.II, p 170), the apparatus used was a HPLC with an 

evaporating light scattering detector (ELSD, Varian 380-LC) and a Prevail carbohydrate ES 5µ 

column. The evaporator and nebuliser temperatures were set at 90°C and 25°C, respectively. 

10 µL of the samples were injected. The eluent was a solution of 65/35 v/v 

acetonitrile/water with a flow rate of 0.5 mL.min-1. The samples were dissolved at 10 g.L-1 in 

water with 0.03% of NaN3 to prevent microbial contamination. The peaks were identified 

thanks to cellulose oligomers standards. 

For Calibration B (Appendix IV.V, p 173),  a Dionex Ultimate 3000 (Thermo Scientifc) 

equipped with a Corona Veo detector was used with the same column and conditions as 

previously.  

The commercial cellotetraose, cellopentaose and cellohexaose, used for both 

calibrations, were only pure at 97.3%, 97.5% and 85.3% according to the supplier. These 

values were used to adjust the concentration. 

 

VII. 2. C) Thermal analysis 

VII. 2. C) i) Thermogravimetric analysis (TGA) 

The TGA were performed on a TGA-Q50 V6.7 Build 203 (TA Instrument) apparatus. 

The sample was heated from 30°C to 800°C at 10°C per minutes under a nitrogen flow of    

90 mL per minutes. 

VII. 2. C) ii) Differential scanning calorimetry (DSC) 

The DSC analyses were obtained from a DSC-Q100 V9.9 Build 303 (TA Instruments) 

apparatus. The sample was placed in an aluminium hermetic pan and submitted to a first 

increase from 10°C to 160°C then the temperature was decreased to -80°C and heated again 

to 200°C. For the amphiphilic compounds, the first increase of temperature went up to 
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200°C to remove the residual DMSO that may still be present. The heating rate was 20°C per 

minutes and the samples were under a nitrogen flow of 50 mL per minutes. 

The data shown corresponded to the second heating; the cooling was sometimes also 

represented. 

 

VII. 2. D) Dynamic light scattering (DLS) 

The DLS analyses were performed on a Malvern Nano ZS ZetaSizer equipped with a 

HeNe standard laser at 632.8 nm. The measurements were done at 25°C and at a 90° angle. 

The particle size and distribution were determined by the cumulant method (second order). 

 

VII. 2. E) Transmission electron microscopy (TEM) 

TEM pictures were taken at the BIC (Bordeaux Imaging Centre), on a microscope 

Hitachi H7650. 

The TEM grids were prepared by deposing a drop of the solution and letting it adsorb 

for 90 seconds. The excess of solvent was carefully removed with a tissue while trying to not 

displace all the particles on one side. A contrast agent was then deposited to be able to 

observe the organic materials. As previously, uranyl acetate at 1 wt% in water was deposited 

on the grid. 

 

VII. 2. F) Fluorescence 

The pyrene fluorescence data were recorded from a Fluoromax-4 (Horiba Scientific) 

fluorimeter. The solutions were excited at 334 nm and the emission spectra were recorded 

from 365 to 420 nm. The excitation slit was 8 nm and the emission slit 2 nm[20]. II and IIII 

peaks respectively corresponded to the wavelengths 373 nm and 384 nm[20,21]. 

The stock solution of pyrene was prepared by dissolving 12 mg of pyrene in 1 L of 

ethanol (left to stir for 24h). 1 mL of this solution was dispersed in 1 L of water; a solution at 

0.06 µM was then obtained. A stock solution of the sample dissolved in the pyrene solution 

was prepared and diluted, as needed, with the pyrene solution. The fluorescence spectra 

were recorded 24h after the solutions were prepared. 
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