
HAL Id: tel-01317577
https://theses.hal.science/tel-01317577

Submitted on 18 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Textual Inference for Machine Comprehension
Martin Gleize

To cite this version:
Martin Gleize. Textual Inference for Machine Comprehension. Computation and Language [cs.CL].
Université Paris Saclay (COmUE), 2016. English. �NNT : 2016SACLS004�. �tel-01317577�

https://theses.hal.science/tel-01317577
https://hal.archives-ouvertes.fr

Le cas échéant, logo de l’établissement
co-délivrant le doctorat en cotutelle
internationale de thèse , sinon mettre le
logo de l’établissement de préparation
de la thèse (UPSud, HEC, UVSQ,
UEVE, ENS Cachan, Polytechnique,
IOGS, …)

NNT : 2016SACLS004

THÈSE DE DOCTORAT
DE

L’UNIVERSITÉ PARIS-SACLAY

PRÉPARÉE À
L'UNIVERSITÉ PARIS-SUD

ECOLE DOCTORALE N° 580
Sciences et technologies de l'information et de la communication (STIC)

Spécialité de doctorat : Informatique

Par

M. Martin Gleize

Textual Inference for Machine Comprehension

Thèse présentée et soutenue à Orsay, le 7 janvier 2016

Composition du Jury :

M. Yvon François Professeur, Université Paris-Sud Président, Examinateur
Mme Gardent Claire Directeur de recherche CNRS, LORIA Rapporteur
M. Magnini Bernardo Senior Researcher, FBK Rapporteur
M. Piwowarski Benjamin Chargé de recherche CNRS, LIP6 Examinateur
Mme Grau Brigitte Professeur, ENSIIE Directeur de thèse

Abstract

With the ever-growing mass of published text, natural language understanding
stands as one of the most sought-after goal of artificial intelligence. In natural
language, not every fact expressed in the text is necessarily written: human read-
ers naturally infer what is missing through various intuitive linguistic skills, com-
mon sense or domain-specific knowledge, and life experiences. Natural Language
Processing (NLP) systems do not have these initial capabilities. Unable to draw
inferences to fill the gaps in the text, they cannot truly understand it. This disser-
tation focuses on this problem and presents our work on the automatic resolution
of textual inferences in the context of machine reading.

A textual inference is simply defined as a relation between two fragments of
text: a human reading the first can reasonably infer that the second is true. A lot
of different NLP tasks more or less directly evaluate systems on their ability to
recognize textual inference. Among this multiplicity of evaluation frameworks,
inferences themselves are not one and the same and also present a wide variety
of different types. We reflect on inferences for NLP from a theoretical standpoint
and present two contributions addressing these levels of diversity: an abstract con-
textualized inference task encompassing most NLP inference-related tasks, and a
novel hierchical taxonomy of textual inferences based on their difficulty.

Automatically recognizing textual inference currently almost always involves
a machine learning model, trained to use various linguistic features on a labeled
dataset of samples of textual inference. However, specific data on complex in-
ference phenomena is not currently abundant enough that systems can directly
learn world knowledge and commonsense reasoning. Instead, systems focus on
learning how to use the syntactic structure of sentences to align the words of two
semantically related sentences. To extend what systems know of the world, they
include external background knowledge, often improving their results. But this
addition is often made on top of other features, and rarely well integrated to sen-
tence structure.

The main contributions of our thesis address the previous concern, with the
aim of solving complex natural language understanding tasks. With the hypothesis
that a simpler lexicon should make easier to compare the sense of two sentences,
we present a passage retrieval method using structured lexical expansion backed
up by a simplifying dictionary. This simplification hypothesis is tested again in a
contribution on textual entailment: syntactical paraphrases are extracted from the

same dictionary and repeatedly applied on the Text to turn it into the Hypothesis.
We then present a machine learning kernel-based method recognizing sentence
rewritings, with a notion of types able to encode lexical-semantic knowledge. This
approach is effective on three tasks: paraphrase identification, textual entailment
and question answering. We address its lack of scalability while keeping most
of its strengths in our last contribution. Reading comprehension tests are used
for evaluation: these multiple-choice questions on short text constitute the most
practical way to assess textual inference within a complete context. Our system
is founded on a efficient tree edit algorithm, and the features extracted from edit
sequences are used to build two classifiers for the validation and invalidation of
answer candidates. This approach reaches second place at the "Entrance Exams"
CLEF 2015 challenge.

2

Résumé

Etant donnée la masse toujours croissante de texte publié, la compréhension
automatique des langues naturelles est à présent l’un des principaux enjeux de
l’intelligence artificielle. En langue naturelle, les faits exprimés dans le texte ne
sont pas nécessairement tous explicites : le lecteur humain infère les éléments
manquants grâce à ses compétences linguistiques, ses connaissances de sens com-
mun ou sur un domaine spécifique, et son expérience. Les systèmes de Traitement
Automatique des Langues (TAL) ne possèdent naturellement pas ces capacités.
Incapables de combler les défauts d’information du texte, ils ne peuvent donc pas
le comprendre vraiment. Cette thèse porte sur ce problème et présente notre travail
sur la résolution d’inférences pour la compréhension automatique de texte.

Une inférence textuelle est définie comme une relation entre deux fragments
de texte : un humain lisant le premier peut raisonnablement inférer que le second
est vrai. Beaucoup de tâches de TAL évaluent plus ou moins directement la capac-
ité des systèmes à reconnaître l’inférence textuelle. Au sein de cette multiplicité
de l’évaluation, les inférences elles-mêmes présentent une grande variété de types.
Nous nous interrogeons sur les inférences en TAL d’un point de vue théorique et
présentons deux contributions répondant à ces niveaux de diversité : une tâche ab-
straite contextualisée qui englobe les tâches d’inférence du TAL, et une taxonomie
hiérarchique des inférences textuelles en fonction de leur difficulté.

La reconnaissance automatique d’inférence textuelle repose aujourd’hui presque
toujours sur un modèle d’apprentissage, entraîné à l’usage de traits linguistiques
variés sur un jeu d’inférences textuelles étiquetées. Cependant, les données spéci-
fiques aux phénomènes d’inférence complexes ne sont pour le moment pas assez
abondantes pour espérer apprendre automatiquement la connaissance du monde
et le raisonnement de sens commun nécessaires. Les systèmes actuels se con-
centrent plutôt sur l’apprentissage d’alignements entre les mots de phrases reliées
sémantiquement, souvent en utilisant leur structure syntaxique. Pour étendre leur
connaissance du monde, ils incluent des connaissances tirées de ressources ex-
ternes, ce qui améliore souvent les performances. Mais cette connaissance est
souvent ajoutée par dessus les fonctionnalités existantes, et rarement bien inté-
grée à la structure de la phrase.

Nos principales contributions dans cette thèse répondent au problème précé-
dent. En partant de l’hypothèse qu’un lexique plus simple devrait rendre plus
facile la comparaison du sens de deux phrases, nous décrivons une méthode de
récupération de passage fondée sur une expansion lexicale structurée et un dictio-
nnaire de simplifications. Cette hypothèse est testée à nouveau dans une de nos

3

contributions sur la reconnaissance d’implication textuelle : des paraphrases syn-
taxiques sont extraites du dictionnaire et appliquées récursivement sur la première
phrase pour la transformer en la seconde. Nous présentons ensuite une méthode
d’apprentissage par noyaux de réécriture de phrases, avec une notion de types per-
mettant d’encoder des connaissances lexico-sémantiques. Cette approche est ef-
ficace sur trois tâches : la reconnaissance de paraphrases, d’implication textuelle,
et le question-réponses. Nous résolvons son problème de passage à l’échelle dans
une dernière contribution. Des tests de compréhension sont utilisés pour son
évaluation, sous la forme de questions à choix multiples sur des textes courts,
qui permettent de tester la résolution d’inférences en contexte. Notre système
est fondé sur un algorithme efficace d’édition d’arbres, et les traits extraits des
séquences d’édition sont utilisés pour construire deux classifieurs pour la valida-
tion et l’invalidation des choix de réponses. Cette approche a obtenu la deuxième
place du challenge "Entrance Exams" à CLEF 2015.

4

Synthèse en français
Etant donnée la masse toujours croissante de texte publié, la comprehension

automatique des langues naturelles est à présent l’un des principaux enjeux de
l’intelligence artificielle. En langue naturelle, les faits exprimés dans le texte ne
sont pas nécessairement tous explicites : le lecteur humain infère les éléments
manquants grâce à ses compétences linguistiques, ses connaissances de sens com-
mun ou sur un domaine spécifique, et son expérience. Les systèmes de Traitement
Automatique des Langues (TAL) ne possèdent naturellement pas ces capacités.
Incapables de combler les défauts d’information du texte, ils ne peuvent donc pas
le comprendre vraiment. Cette thèse porte sur ce problème et présente notre travail
sur la résolution d’inférences pour la compréhension automatique de texte.

Une inférence textuelle est définie comme une relation directionnelle entre
deux fragments de texte, le texte T et l’hypothèse H : un humain lisant T peut
raisonnablement inférer que H est vraie (Dagan et al., 2006). Bien que le terme
implication textuelle désigne généralement la même relation, nous le réservons
pour la tâche spécifique d’évaluation nommée Recognizing Textual Entailment,
introduite par Dagan et al. (2006). Ci-dessous se trouve un exemple d’inférence
textuelle :

(1) T: The sun was still high in the sky, but John was already getting sleepy.
H: John is awake.

John est somnolent, sur le point de s’endormir, ce qui prouve qu’il n’est justement
pas encore en train de dormir. Cet exemple serait une instance positive dans la
tâche RTE, qui consiste à classifier ces couples de phrases en couples d’inférence
textuelle et couples ne représentant pas la relation.

Le processus d’inférence est l’un des moteurs de la compréhension de texte
chez les êtres humains. Le texte T dans l’exemple précédent apporte de la con-
naissance implicite sur John : ce n’est apparemment pas normal que John veuille
dormir en pleine journée. Cette inférence est déjà complexe, mais elle déclenche
de multiples inférences potentielles, comme la raison derrière l’état de John. Si le
texte T n’était qu’une partie d’un plus long texte, nous pourrions nous attendre à
découvrir cette raison avant ou après cette phrase, et peut-être même que nous la
rechercherions activement. Ce type de raisonnement demeure toujours à l’esprit
d’un lecteur humain compétent, mais est pour l’instant hors de portée des ordina-
teurs, ce qui fait de la compréhension automatique un problème encore largement
ouvert.

1

Beaucoup de tâches de TAL évaluent plus ou moins directement la capacité
des systèmes à reconnaître l’inférence textuelle. Au sein de cette multiplicité de
l’évaluation, les inférences elles-mêmes présentent une grande variété de types.
Nous nous intérrogeons sur les inférences en TAL d’un point de vue théorique et
présentons deux contributions répondant à ces niveaux de diversité : une tâche ab-
straite contextualisée qui englobe les tâches d’inférence du TAL, et une taxonomie
hiérarchique des inférences textuelles en fonction de leur difficulté.

La reconnaissance automatique d’inférence textuelle repose aujourd’hui presque
toujours sur un modèle d’apprentissage, entraîné à l’usage de traits linguistiques
variés sur un jeu d’inférences textuelles étiquetées. Cependant, les données spéci-
fiques aux phénomènes d’inférence complexes ne sont pour le moment pas assez
abondantes pour espérer apprendre automatiquement la connaissance du monde
et le raisonnement de sens commun nécessaires. Les systèmes actuels se con-
centrent plutôt sur l’apprentissage d’alignements entre les mots de phrases reliées
sémantiquement, souvent en utilisant leur structure syntaxique. Pour étendre leur
connaissance du monde, ils incluent des connaissances tirées de ressources ex-
ternes, ce qui améliore souvent les performances. Mais cette connaissance est
souvent ajoutée par dessus les fonctionalités existantes, et rarement bien intégrée
à la structure de la phrase.

Nos principales contributions dans cette thèse répondent au problème précé-
dent. En partant de l’hypothèse qu’un lexique plus simple devrait rendre plus
facile la comparaison du sens de deux phrases, nous décrivons une méthode de
récupération de passage fondée sur une expansion lexicale structurée et un dictio-
nnaire de simplifications. Cette hypothèse est testée à nouveau dans une de nos
contributions sur la reconnaissance d’implication textuelle : des paraphrases syn-
taxiques sont extraites du dictionnaire et appliquées récursivement sur la première
phrase pour la transformer en la seconde. Nous présentons ensuite une méthode
d’apprentissage par noyaux de réécriture de phrases, avec une notion de types per-
mettant d’encoder des connaissances lexico-sémantiques. Cette approche est ef-
ficace sur trois tâches : la reconnaissance de paraphrases, d’implication textuelle,
et le question-réponses. Nous résolvons son problème de passage à l’échelle dans
une dernière contribution. Des tests de compréhension sont utilisés pour son
évaluation, sous la forme de questions à choix multiples sur des textes courts,
qui permettent de tester la résolution d’inférences en contexte. Notre système
est fondé sur un algorithme efficace d’édition d’arbres, et les traits extraits des
séquences d’édition sont utilisés pour construire deux classifieurs pour la valida-
tion et l’invalidation des choix de réponses. Cette approche a obtenu la deuxième

2

place du challenge "Entrance Exams" à CLEF 2015.

3

Contents

Introduction 9

1 The need for inference 13
1.1 What is a textual inference? . 14

1.1.1 In human cognition . 14
1.1.1.1 Parallels between human and machine readers . 14
1.1.1.2 Types of inference 15

1.1.2 In Natural Language Processing 17
1.1.3 Link with logical inference 19

1.2 Main inference-related NLP tasks 20
1.2.1 Recognizing Textual Entailment 20
1.2.2 Question Answering . 22
1.2.3 Semantic equivalence . 26

1.3 A new hierarchy of inference classes 27
1.3.1 Literature on inference types and difficulty 28
1.3.2 The hierarchy . 29

1.3.2.1 Tier 1: Word level 32
1.3.2.2 Tier 2: Sentence level 33
1.3.2.3 Tier 3: Beyond the text 35
1.3.2.4 Leaving room for the unexpected 37

1.3.3 Experiments . 38
1.3.4 How to use this going forward 41

1.4 Conclusion . 41

2 A literature review of automatic textual inference 43
2.1 Evaluation . 44

2.1.1 Datasets . 44
2.1.2 Classification measures 45

4

2.1.3 Ranking measures . 47
2.2 Lexical approaches . 48

2.2.1 Lexical overlap on surface forms 48
2.2.1.1 Counting in bag-of-words 48
2.2.1.2 A string of words 50

2.2.2 Leveraging knowledge on words 54
2.2.2.1 Pre-processing tools 54
2.2.2.2 WordNet . 54
2.2.2.3 Other man-made lexical resources 58
2.2.2.4 Drawing on large corpora 59

2.2.3 Conclusion . 61
2.3 Structural approaches . 61

2.3.1 Syntactic dependencies 62
2.3.1.1 Syntax as additional features 62
2.3.1.2 Tree-edit methods 63
2.3.1.3 Tree kernels 66
2.3.1.4 Latent alignments 69
2.3.1.5 Recurrent neural networks 70

2.3.2 Semantic structure . 71
2.3.3 Multi-sentence problems 73

2.3.3.1 Coreference resolution 73
2.3.3.2 Discourse relations 74

2.3.4 Knowledge on structure 77
2.4 Conclusion . 78

3 A theoretical model to solve the “Contextually queried inference” task 82
3.1 Contextually queried inference 83

3.1.1 Definition . 83
3.1.2 Framing classic tasks as contextually queried inference . . 85

3.2 Proof system for CQI . 86
3.2.1 The recursive nature of CQI 86
3.2.2 Capabilities . 87
3.2.3 Proof system . 88
3.2.4 Toward an implementation 90

3.2.4.1 Non-determinism 90
3.2.4.2 Robustness . 91
3.2.4.3 Variable introduction 92

3.3 Our contributions through the lens of CQI 92

5

4 Structured lexical expansion 96
4.1 The simplification hypothesis . 97

4.1.1 Simple English Wiktionary as a paraphrase resource . . . 97
4.2 Querying the text . 98

4.2.1 Dictionary-based passage retrieval 98
4.2.1.1 Pre-processing 99
4.2.1.2 Indexing the document 99
4.2.1.3 Passage retrieval 100

4.2.2 Experiments . 101
4.2.2.1 Data and evaluation methods 101
4.2.2.2 Results . 102
4.2.2.3 Conclusion . 104

4.3 Solving the inference step . 105
4.3.1 Introduction . 106
4.3.2 Acquiring simplifying paraphrases 106

4.3.2.1 Pre-processing 107
4.3.2.2 Argument matching 107
4.3.2.3 Phrasal paraphrases 109

4.3.3 Paraphrasing exercise answers 110
4.3.3.1 Paraphrase generation and pre-ranking 110
4.3.3.2 Classifying student answers 111
4.3.3.3 Evaluation . 112

4.3.4 Discussion . 112
4.4 Conclusion . 113

5 Sentence rewriting as a machine learning task 115
5.1 A Unified Kernel Approach for Learning Typed Sentence Rewritings117

5.1.1 Introduction . 117
5.1.2 Type-Enriched String Rewriting Kernel 118

5.1.2.1 String rewriting kernel 118
5.1.2.2 Typed rewriting rules 119

5.1.3 Computing TESRK . 121
5.1.3.1 Formulation 121
5.1.3.2 Computing K̄k in type-enriched kb-SRK 121
5.1.3.3 Computing Kk 124

5.1.4 Experiments . 127
5.1.4.1 Systems . 127
5.1.4.2 Paraphrase identification 128

6

5.1.4.3 Recognizing textual entailment 131
5.1.4.4 Answer sentence selection 132

5.1.5 Discussion . 134
5.2 Tree Edit Beam Search . 135

5.2.1 Tree edit model . 136
5.2.1.1 The model . 136
5.2.1.2 The implementation 137

5.2.2 Beam search . 138
5.2.3 Feature extraction . 140

5.2.3.1 Pre-processing 140
5.2.3.2 Resources . 140
5.2.3.3 Complete set of features 141

5.2.4 Experiments . 142
5.2.4.1 Data . 142
5.2.4.2 A note on the complete system 142
5.2.4.3 Results . 144

5.2.5 Discussion . 144
5.3 Conclusion . 145

6 Our approach to a complete application of the CQI task: reading
comprehension tests 147
6.1 The Entrance Exams task at CLEF 148

6.1.1 Task definition . 148
6.1.2 The corpus . 149

6.1.2.1 Text . 150
6.1.2.2 Question . 151
6.1.2.3 Answer choice 152

6.1.3 Corpus annotation . 153
6.2 Validation and invalidation . 156

6.2.1 Manual rules . 157
6.2.1.1 System overview 157
6.2.1.2 Decision by validation/invalidation 157
6.2.1.3 Results . 159

6.2.2 Learning from Tree Edit Beam Search 161
6.2.2.1 Passage retrieval 161
6.2.2.2 Training validation and invalidation classifiers . 163
6.2.2.3 Results . 165
6.2.2.4 Error analysis 166

7

6.2.2.5 Discussion . 168
6.3 Conclusion . 169

Conclusion 170

8

Introduction

With the ever-growing mass of published text, natural language understanding
stands as one of the most sought-after goal of artificial intelligence (AI). One
of its research subtopics, machine reading, consists in building a machine, or an
algorithm, capable of automatically reading a text written in natural language and
understanding it, usually so as to represent and extract knowledge in a structured
way for further use in other AI tasks.

One of the characteristics of language is that not every fact expressed in the
text is necessarily written: human readers naturally infer what is missing through
various intuitive linguistic skills, common sense or domain-specific knowledge,
and life experiences. Machines typically do not have these initial capabilities.
Unable to draw inferences to fill the gaps in the text, they cannot truly under-
stand it. This dissertation focuses on this problem and presents our work on the
automatic resolution of textual inferences in the context of machine reading.

Textual inference is defined as a directional relation between two text frag-
ments T, for text, and H, for hypothesis. The statements “H can be inferred from
T” or “T entails H” both mean that a human reading T can reasonably infer that H
is true (Dagan et al., 2006). Although the term textual entailment generally desig-
nates the same relation, we will reserve this phrase for the specific evaluation task
of Recognizing Textual Entailment (RTE), as introduced by Dagan et al. (2006).
Example 1 shows such a textual inference:

(2) T: The sun was still high in the sky, but John was already getting sleepy.
H: John is awake.

John is getting sleepy, which proves that he is not sleeping yet. This example
would thus be a positive instance of the RTE task, which consists in classifying
those pairs of sentences according to whether they constitute an entailment rela-
tion or not.

The process of making inferences is one of the engines that drive reading

9

comprehension for human beings. The text T in the previous example carries
implicit knowledge about John: it is apparently not normal for John to want to
sleep while it is still daytime. This is already a complex inference, but it triggers
more potential inferences to make, like the reason for John to be in such a state.
If text T was part of a longer text, we would expect the reason to be explained at
some point before or after this sentence and maybe even start to look for it actively.
This kind of reasoning is always in the mind of a competent human reader, but is
still as of now inaccessible to computers, making machine reading an unsolved
problem.

Inferences are not one and the same however, so we can expect our systems
to be able to solve the easier ones, or inferences of a particular type, and then
decide from there in which direction to make improvements. The current literature
only scarcely describes ways to classify inference phenomena in useful ways for
Natural Language Processing (NLP). Our first work in this thesis was to reflect on
inferences for NLP from a theoretical standpoint. This led us to two contributions.
The first is a novel hierarchy of textual inferences based on their difficulty. The
second is the design of a preliminary formal system to solve most NLP high-level
tasks based on textual inference in a unified manner.

Question Answering (QA) is a long-standing problem and a well-studied task
in its factoid version, but complex questions needing inference were rarely the
center of attention until more recently. With the appearance of the RTE evaluation
campaigns in 2005 (Dagan et al., 2006), the research community could distance
itself from information retrieval and focus more keenly on the sole task of recog-
nizing textual entailment; most of the present and past techniques that deal directly
with textual inferences are thus evaluated on the RTE datasets. The current trend
almost always involves a machine learning model, trained on a labeled dataset to
use various linguistic features.

However, specific data on complex questions or entailment phenomena are
not currently abundant enough that systems can learn world knowledge and com-
monsense reasoning from them. Instead, systems which attempt to solve those
complex tasks focus on learning how to use the syntactic structures of sentences
or what to make of pre-defined word alignment scoring functions. Including ex-
ternal background knowledge to extend what the system knows of the world is
an intuitive idea, and is often attempted in practice, with decent results. But this
inclusion is often made on top of other features of the system, and rarely well
integrated to sentence structure.

The main contributions of our thesis address this concern, with the aim of

10

solving complex natural language understanding tasks. With the hypothesis that
a simpler lexicon should make easier to compare the sense of two sentences, we
present a passage retrieval method using structured lexical expansion backed up
by a simplifying dictionary. This simplification hypothesis is tested again in a
contribution on textual entailment: syntactical paraphrases are extracted from the
same dictionary and repeatedly applied on the Text to turn it into the Hypothesis.
We then present a machine learning kernel-based method recognizing sentence
rewritings, with a notion of types able to encode lexical-semantic knowledge. This
approach is effective on three tasks: paraphrase identification, textual entailment
and question answering. We address its lack of scalability while keeping most
of its strengths in our last contribution evaluated on reading comprehension tests.
This complete system is founded on a efficient tree edit algorithm, and the features
extracted from edit sequences are used to build two classifiers for the validation
and invalidation of answer candidates.

With the knowledge that inferences are manifold, systems can be progres-
sively designed to take on increasingly harder inferences, but on the practical end,
this raises the question of how to evaluate progress on machine reading. An idea
for an intrinsic evaluation would be to list all the interesting facts that a human
being can retrieve in a text, and treat machine reading as an information retrieval
task. Due to the infinite amount of valid conclusions to draw, this is not done
in practice, especially on open-domain texts. However, there is an extrinsic way
to evaluate a system on its reading comprehension: asking it questions about the
text, like we would do for human readers. Reading comprehension tests are of-
ten composed of multiple-choice questions (MCQ). They are an especially good
evaluation method both of human and machine readers, as they are easy to grade
due to the constrained way the answer is formulated. As a consequence, building
systems which automatically answer these reading comprehension tests was the
main applicative direction of this thesis.

This dissertation is composed of six chapters. The first chapter presents the
reflection which motivated our thesis, from the choice of subject to the direction
of our research. The second chapter gives a review of the literature on textual
inference up to the middle of 2015. In this part, we first describe the major related
tasks that are currently tackled by the NLP community and their evaluation meth-
ods. We then address the systems in term of the increasingly complex linguistic
elements they leverage, and the methods they implement to use these features of
the text.

11

The third chapter presents our novel formal system designed to solve most
NLP high-level tasks based on textual inference in a unified manner. This system
is the answer to our intention of designing theoretical systems that are robust, ex-
tensible and mindful of most obstacles met when dealing with textual inferences.

The subsequent chapters each deal with contributions to solve high-level eval-
uation tasks. Each was evaluated on standard datasets and validated by being pre-
sented at an international conference. The core material of those chapters can be
found individually in our publications. Chapter 4 presents systems which use the
hypothesis that simplifying the lexicon should simplify the process of detecting
semantic equivalences. By replacing words with their definition in a simplifying
dictionary like the Simple English Wiktionary, we hope to be able to bring closer
the ones with similar senses. Chapter 5 frames identifying inferences as being
able to tell if a sentence rewrites into another. We propose a kernel method to
detect sentence rewritings, and a tree-edit method, which are both able to use ex-
ternal knowledge sources to help with the rewriting process. Chapter 6 presents
our work on automatically answering reading comprehension tests in multiple-
choice question form. This problem remained the main underlying goal of our
thesis throughout and each of our three years was rhythmically punctuated by a
participation at a CLEF evaluation workshop on automatically solving reading
comprehension tests for humans. In this last part, we describe this task, our study
of the corpus, and our systems, with performance and error analysis.

12

Chapter 1

The need for inference

Reasoning is a necessary and natural activity of the human mind. Our environment
provides us with evidence, we use it to reach conclusions, and these inferences
help us make decisions and build complicated ideas. As an increasingly prominent
part of our environment, textual data contains a wealth of useful information, but
its sheer mass makes it hard to use effectively without help from computers.

In this chapter, we introduce what motivates research on automatic textual
inference. We first explain the reasons behind inference, from human cognition
to specific work in natural language processing. After presenting what the main
inference-related NLP tasks are, we express them all in a single general problem.
We finally propose a hierarchy of inference classes for NLP, to better exhibit what
is possible today and what is missing for tomorrow.

13

1.1 What is a textual inference?

1.1.1 In human cognition
It is important to realize that there is no particular clever reason to model machine
inference after human inference. After all, machines and humans are of different
nature, and their relation to textual data is different too. We ask of machines what
we cannot do ourselves: to handle the ever-growing mass of textual information
rapidly. We do not require them to do it just like faster humans, or like many
humans with a lot of time on their hands. But these texts are produced by human
minds, and somewhere along the way, a machine encounters a gap between two
sentences, a missing piece, something that a human mind instantly and naturally
provides but the machine fails to. In fact, the machine cannot detect that the
puzzle is not complete and will likely carry this erroneous understanding at all
times, unsuspecting, while executing its task. We do not currently have any other
insight on reading comprehension than what we know or suspect of ourselves.
Therefore, looking at textual inferences in human cognition appears to be a fairly
good starting point.

1.1.1.1 Parallels between human and machine readers

Research in Artificial Intelligence on textual inference can be traced back to the
work of Schank et al. (1973) on single-sentence inference. Several years later,
Norvig (1987) presents the reader of a text as faced with a formidable task: rec-
ognizing the individual words of the text, deciding how they are structured into
sentences, determining the explicit meaning of each sentence, and also making
inferences about the likely implicit meaning of each sentence, and the implicit
connections between sentences. An inference is defined to be any assertion which
the reader comes to believe to be true as a result of reading the text, but which
was not previously believed by the reader, and was not stated explicitly in the
text. Inferences do not need to follow logically from the text; the reader can jump
to conclusions that seem likely but are not 100% certain. This is a definition
that the natural language processing community mostly retained, with an obvious
emphasis on inferences being in the end consistent in their conclusions with the
supporting facts they are supplied.

Reading comprehension is an essential skill required of us early on in our life,
and whose incomplete acquisition has heavy ramifications as we grow; it is natu-
ral that many works in the fields of psychology, education, and cognitive sciences

14

focus on young children’s reading comprehension. This is interesting to the NLP
community in that computers can somewhat be compared to young children in
respect to the task of reading a text: they have to be taught from the ground up.
Young children’s reading comprehension skill has been associated in early studies
with their ability to draw inferences (Oakhill, 1982). Despite intensive instruction,
many children and adolescents fail to reach functional levels of reading compre-
hension, and the literature abundantly focuses on why. Although various theoret-
ical models emphasize different aspects of reading comprehension, they share the
central notion that, at its core, reading comprehension involves the construction
of a coherent mental representation of the text in the readers’ memory (Kendeou
et al., 2014). This mental representation of the text includes textual information
and associated background knowledge interconnected via semantic relations. Se-
mantic relations are identified by the reader through passive and strategic inferen-
tial processes. The passive inferential processes take place automatically but the
strategic processes demand readers’ attentional and working memory resources.
We argue that some major problems that children face when reading a text do
not exist for computers, or at least are not to be urgently addressed. Difficulties
related to attention allocation and working or long-term memories – their size in
particular – are of little concern for today’s computing systems. Computers are
single-minded and hard-working in essence, and their memory is always increas-
ing. There is no point in distinguishing passive and strategic inferences in terms
of the effort computers have to devote to draw them. However, most problems
that children encounter, computers do as well: word decoding, vocabulary knowl-
edge for low level processes, semantic representation building, background world
knowledge and inference making for high level processes (Cain et al., 2001).

1.1.1.2 Types of inference

Cognitive psychology identifies several types of inferences for reading compre-
hension. The most useful distinction for this thesis is between bridging and elabo-
rative inferences. Bridging inferences, also called coherence inferences, maintain
textual integrity (Kispal, 2008). For example, let us consider the following sen-
tence:

(3) Peter begged his mother to let him go to the party.

The reader would have to realize that the pronouns ‘his’ and ‘him’ refer to Peter
to fully understand the meaning. What is usually called coreference resolution in
the field of NLP is not the only phenomenon encompassed by bridging inferences.

15

At its core, these inferences are essentially about identifying textual expressions
that are semantically equivalent even if they use different words.

Elaborative inferences, on the other side, are not required for textual coherence
and even basic comprehension. They serve to enrich the mental representation of
the text and therefore make it more memorable. Generally knowledge-based, they
include inferences about the consequences of an action, predictions about forth-
coming events, speculations regarding the instrument used to perform an action
and suppositions about the physical properties of characters and objects. By way
of illustration, consider the following passage:

(4) The knight lunged towards the dragon and pierced his shining scales. The
dragon turned towards the knight and let out a fiery roar.

It is possible to make many elaborations from this short passage. It could be in-
ferred that the knight attacked the dragon with a sword because that is the usual
tool of the knight and is implied by the verb ’pierced’. However, this is not neces-
sarily the case since the knight could have been using any other sharp object had
he not been in possession of his sword. Furthermore, it could be assumed that the
knight was wounded by the dragon’s fiery breath. However, it may be the case
that the knight was able to avoid the dragon’s attack. Although these elaborations
enrich the model of the text, none of them is necessary in order to form a full and
intelligible representation.

We argue that these two types of inference can overlap and interleave so that
the distinction loses some of its potency. The following sentence is presented as
an example of text prompting an elaborative inference (Kispal, 2008).

(5) Katy dropped the vase. She ran for the dustpan and brush to sweep up the
pieces.

Indeed, the reader would have to draw upon life experience and general knowl-
edge to realize that the vase broke, something of which the text does not make
mention. It enriches the mental representation of the text. However, one can
argue the necessity of this inference: it seems that this inference enriches this
mental representation in order to build a coherent model and link the “pieces”
to the “vase”, hence making it a bridging reference too. Without it, the reader
would be left wondering what happened to the vase and what those pieces are that
popped in suddenly. We believe that the simpler first distinction for computers
to make about inferences is between necessary and unnecessary inferences. And
of course, it seems natural that NLP concerns itself primarily with the necessary

16

kind, but it is important to realize that what may be an unnecessary inference at
the first reading of a text may become necessary when asked a question about it.
Hence, there is interest in automatically drawing all kinds of inferences on texts.

1.1.2 In Natural Language Processing
At its simplest, a textual inference is an assertion or a piece of knowledge that
can be reasonably concluded from textual premises. The premises are deemed
true and complete, and tasks which evaluate inferring skills are more interested
in the correctness of the process rather than the absolute truth of the conclusion
as a self-standing fact. More interestingly, the word “reasonable” opens up a vast
avenue of conflicting interpretations. It mainly means that we do not require that
the conclusion is completely supported by all the facts, but commonsense may
be used to add "everyday life" hypotheses to the problem. The two following
examples, drawn from RTE3’s test data (Giampiccolo et al., 2007), demonstrate
the kind of assumptions that might be needed.

(6) T: Rival generic drug maker ourlan Laboratories Inc. reported revenue of
$1.3 billion for fiscal 2005.
H: ourlan Laboratories Inc. earned $1.3 billion in fiscal year 2005.

(7) T: Ms. Minton left Australia in 1961 to pursue her studies in London.
H: Ms. Minton was born in Australia.

The example 6 is a textual entailment, but the example 7 is not. It is assumed
that generally, if this only thing said of a company is that it reported an amount of
revenue, it is the actual amount they earned: a kind of fiscal and mediatic honesty
is presumed. But on the other hand, just because someone leaves a country to
study does not mean that they were born there – they could have moved in their
childhood – even if that would be true for most people.

The intellectual dance around the word “reasonable” is in itself delicate. It
also implies a cultural dimension that is often forgotten or ignored: some cultures
may not assume the same things we do. Regardless, it is rare that the interpretation
matters a lot in the end-user scenario. For example, it is not absurd to suppose that
the users of a question answering system will be culturally close to its designers.
Even if interpretation errors remain, the system may be robust enough to still find
the correct answer by combining several sources and methods. As a general trend,
current evaluations arguably either focus on great precision of open inference, or
good discrimination between a restricted set of possibilities of variable likelihood.

17

Beyond its simple definition, textual inference is a need that pervades almost
every task in NLP. A relatively low level task such as syntactic parsing presents
countless examples of ambiguous sentences which can only be resolved by having
access to a context and drawing an inference from it.

(8) I saw the man with the binoculars.

(9) They are hunting dogs.

(10) He saw that gas can explode.

(11) We saw her duck.

The previous sentences are well-known examples exhibiting ambiguity. They are
presented without context, which makes two semantic interpretations and parse
trees possible, with no apparent most probable solution. In this next excerpt, from
the movie Animal Crackers (1930):

(12) “One morning I shot an elephant in our pajamas. How he got in our pajamas,
I don’t know.”

The first sentence is ambiguous but intended to be read as “while I was wearing
our pyjamas, I shot an elephant”. But the second one provides context and prompts
the audience to backtrack and modify its interpretation. Immediately, context
appears to be a very crucial notion for inference. This can then come off as a
paradox: the flagship task for evaluating textual inference, RTE, tests systems
mostly on simple pairs of short sentences – less than 10% of text or hypothesis
have multiple sentences –, which do not make for a very rich context. But a
context is not necessarily long in nature: in fact, knowing to pick the minimum
context span sufficient to solve an inference correctly is a capability much desired
of high level systems.

Coreference resolution has also been framed as an inference problem, with
the Winograd Schema challenge (Levesque et al., 2012). A Winograd schema
is a pair of sentences that differ in only one or two words and that contain an
ambiguity –often in the form of a pronoun– that is resolved in opposite ways
in the two sentences and requires the use of world knowledge and reasoning for
its resolution. The schema takes its name from a well-known example by Terry
Winograd (1972)

(13) The city councilmen refused the demonstrators a permit because they [feared/advocated]
violence.

18

If the word is “feared”, then “they” presumably refers to the city council; if it
is “advocated” then “they” presumably refers to the demonstrators. This task is
interesting because it is to our knowledge the only one which allows contexts to
be swapped easily. It is all the more useful that the difference between the two
contexts is often reduced to a single word.

In this section we wrote about the definition of the textual inference in NLP,
some of its specifics, and we showed how it is required even for tasks which may
be considered "low-level" or at least preliminary to solving any end-user problem.
After a brief comparison with logical inference, we will describe more in detail the
tasks whose purpose is to directly evaluate the inference capabilities of systems,
like RTE or machine comprehension.

1.1.3 Link with logical inference
The word “inference” classically refers first and foremost to drawing logical con-
clusions, a central focus of the field of logic. There have naturally been attempts
in the past to build on well-known logical theories, like first-order logic (FOL),
to help in textual inference. However there are two difficulties inherent to bridg-
ing textual and logical inference. One is that it is difficult to accurately translate
natural language into a coherent logical formalism (MacCartney and Manning,
2007). Some tricky linguistics features are not easily included: idioms, intention-
ality and propositional attitudes, modalities, temporal and causal relations, certain
quantifiers, and so on.

The other is that it is unclear if textual inference – being much closer to being
the reference for human inference – actually shares a lot with logical inference.
It is commonly accepted that a system as strict and rigorous as first-order logic
cannot be a satisfactory model for human reasoning (Johnson-Laird et al., 2015).
Moreover, end-user scenarios involving inference are very much interested in con-
clusions that have a part of uncertainty. If a question-answering system cannot find
an answer to a question, giving a set of likely answers is still much appreciated.
The word “reasonably” in the traditional definition of textual inference thus right-
fully allows an element of doubt in the conclusions drawn. Without it, systems get
stuck drawing trivial facts from the premises and by-passing interesting but only
highly plausible conclusions. This is why most models in logic and cognitive psy-
chology for human inference nowadays build on probabilistic reasoning (Chater
et al., 2006; Vityaev et al., 2013). Models for inference based on probabilistic
logic have only very recently surfaced in NLP; they will be addressed later in the
literature review.

19

1.2 Main inference-related NLP tasks
Even if the need for inference can be encountered in nearly all NLP works, only
a few tasks actually evaluate directly a system’s ability to reason on the text. “Di-
rectly” means that the need for some kind of reasoning is so immediate that even
if we assume perfect and ideal subsystems taking care of classic processing like
tagging, syntactic parsing, word-sense disambiguation or resolving coreference
– all difficult tasks in their own right –, the problem is still not trivial, and is in
fact, far from being solved. In this section, we present common modern tasks that
assess a system’s reasoning capabilities on text at various levels. The association
of these tasks to the topic of this thesis is more or less acknowledged and studied;
as it progresses, this section will unfold tasks of gradually less involvement of
inference.

1.2.1 Recognizing Textual Entailment
Traditionally, RTE is the main task dealing with textual inference. The problem’s
definition, as it appears in Dagan et al.’s work in 2005 (Dagan et al., 2006), is
simply stated:

“We say that a text T entails a hypothesis H if, typically, a human reading T
would infer that H is most likely true.”

Other variants of this definition can be encountered in the literature, but they all
come down to the same essential semantics that we discussed earlier. RTE finds it
origin in other tasks like Question Answering (QA), Information Extraction (IE),
(multi-document) summarization, and machine translation, which need a model
for the phenomenon of variability of semantic expression: the same meaning can
be expressed by, or inferred from, different texts. This phenomenon is the source
for the bridging inferences of section 1.1.1.2. Even though different applications
need similar models for semantic variability, the problem is often addressed in an
application-oriented manner and methods are evaluated by their impact on final
application performance, in an extrinsic way. This makes the systems difficult to
compare and hard to re-use for other applications that might benefit from the same
inference capabilities. Lastly, it splits the community so that researchers within
one application area might not be aware of relevant methods that were developed
in the context of another area of research.

The Recognising Textual Entailment (RTE) Challenge is then an attempt to
promote an abstract generic task that captures major semantic inference needs

20

across applications (Dagan et al., 2006). It has been proposed every year in the
period of 2005 to 2011, first by the PASCAL organization, then TAC, and more
sparingly in recent times, with only the Joint Student Response Analysis and 8th
Recognizing Textual Entailment Challenge at Semeval 2013.

The format does not change much between iterations: the participants are
given training or development data, and then asked to submit a run of their system
on previously unseen testing data. A piece of data is a simple pair of two short
texts – most frequently single sentences –, the Text and the Hypothesis, and the
system must tell if that pair is an entailment, that is to say that the hypothesis can
be inferred from the text, or not. Some more fine-grained evaluations add a dis-
tinction inside the class of non-entailments: contradictions, where the hypothesis
actually contradicts the text, and non-relations, where the two sentences are not
related. The sentence pairs are extracted from various sources semi-automatically
– most often from press articles – and annotated manually. Each year adds in gen-
eral less than 1,000 pairs for training and the same amount for testing to the data
pool.

The NLP community has been mainly interested in the simple binary problem,
especially considering it as an information retrieval (IR) task: the most interesting
pairs are those of valid entailment, and we want them selected and separated from
the others. This translates into the choice of evaluation metrics for the systems.
Popular evaluation methods include:

• accuracy: the simple proportion of correct calls (correct Yes’ and No’s)

• precision: the proportion of actually correct entailments out of all of those
judged as entailments by the system

• recall: the proportion of correct entailments that the system indeed retrieved

We will describe evaluation methods more in details in the literature review.
Below are several examples of valid entailment pairs from the RTE 3 dataset:

(14) T: In the Super Nintendo Entertainment System release of the game as Final
Fantasy III , Biggs’ name was Vicks.
H: Final Fantasy III is produced by the Super Nintendo Entertainment Sys-
tem.

(15) T: The black plague lasted four years and killed about one-third of the pop-
ulation of Europe, or approximately 20 million people.
H: Black plague swept Europe.

21

(16) T: Libya had been the target of US air raids in 1986, when the US had
linked Libya to the bombing of a Berlin disco frequented by US servicemen.
H: The US has raided Libya.

And some negative examples:

(17) T: It is in the best interests of the Israeli government, the Israeli econoour,
and Israeli citizens, for the government to negotiate a social security treaty
with the US as soon as possible.
H: The US has made a treaty with Israeli government.

(18) T: David Beckham has announced he no longer wishes to be the captain of
England’s football team.
H: David Beckham plays for Real Madrid.

(19) T: Russia later imposed a hefty duty on oil exports to Belarus, claiming its
neighbour was costing it up to 4bn in lost revenues each year.
H: Russia decreased the cost of oil exports to Belarus.

1.2.2 Question Answering
QA is the classic NLP task of automatically providing answers to natural language
questions from humans. As a natural and intuitive way for humans to interact with
computers, QA’s stakes for end-user applications are high. However, contrary to
RTE, answering questions does not systematically require systems to be capable
of inference. Whether they do depends on several factors: the type of the question,
its structure and entities involved, the amount and nature of available data where
the answer can be looked for. For example, consider the question:

(20) Why is water essential to life?

This is called a causal question, and is deemed to be one of the harder question
types. But it becomes trivial if we find in our text corpus a sentence like:

(21) Water is essential to life because it helps carry proteins, carbohydrates, fats,
vitamins, and minerals to each cell.

But the answer can be more complicated or even impossible to provide, if our
system encounters only this bit of text:

22

(22) The reactions that form life as we know it need water, but there certainly
could be life as we don’t know it, that doesn’t need water, but we don’t
know how to look for that.

In essence, the type of the question alone does not condition the need for inference.
It is only in combination with the text available, which we can define as the context
of the question, that the inference process becomes an interesting component of
the problem.

With that being said, most QA evaluations in the past were concerned with
factoid questions whose answer could be found with few other difficulties than
the sheer mass of text available to the system. The QA track of the TREC evalu-
ations (Voorhees, 2001), running from 1999 to 2004, is the very example of QA
as information retrieval rather than inference task. QA which requires inference
must be found in other much more recent types of evaluations, under the form of
reading comprehension tests: a short text paired with a series of multiple-choice
questions. Ironically enough, this evaluation format has been used throughout
human academia – especially in anglo-saxon countries – for as long as standard-
ized testing has existed. The reading component of SAT, taken by high-school
students for college entrance in the United States, is a perfect example. For all
their imperfections, multiple-choice questions provide a restricted framework to
grade efficiently and rigorously, yet allow complex reasoning to be harnessed by
students when answering the test.

QA4MRE, Question Answering for Machine Reading Evaluation, at the con-
ference CLEF, has been the leading evaluation of this type since 2011. The
QA4MRE task focuses on the reading of single documents and the identifica-
tion of the answers to a set of questions. Questions are in the form of multiple
choices, each having four to five options, and exactly one correct answer. The
detection of correct answers might require the consideration of previously ac-
quired background knowledge from reference document collections, but most im-
portantly, various kinds of inference (Peñas et al., 2011). From 2011 to 2013, these
questions and the associated answer candidates were extracted from the document
semi-automatically, which made the task essentially evaluations for machines by
machines, introducing biases in how the answer candidates and the question are
formulated. The following example is from the reading tests from QA4MRE
2013:

23

Text:
[. . .]
Whereas EDM has achieved widespread popularity in Europe and the UK,
it remains a comparatively underground phenomenon in the United States.
The production and distribution of EDM has not been particularly adaptable
to the American music industry, whose practices have been largely shaped
by rock and pop. In addition, because EDM does not follow a standard
song structure and often features very lengthy tracks, it does not easily lend
itself to commercial radio.
[. . .]
Question: Name a reason why EDM is not suited to the American music
industry.

1. EDM is influenced by rock and pop

2. EDM often features very lengthy tracks (correct answer)

3. EDM has achieved widespread popularity

4. EDM is produced from the beats up

5. none of the above

The text in the example is only a fragment of the original document, the frag-
ment where the answer can be found. As we can see, most of the answer can-
didates are present in their exact surface forms in the text. The task is still quite
difficult, because the right answer has to be linked to the expression of the ques-
tion in the text, but this reading test does look machine-generated, which makes it
an unsatisfactory way to evaluate systems aspiring to human reading capabilities.

Starting CLEF 2014, QA4MRE was reconducted but in name, to become the
Entrance Exams task of the QA track (Peñas et al., 2013b). Piloted in 2013,
as its name indicates, this task now evaluates computer systems taking entrance
exams, specifically reading comprehension tests for English as a foreign language.
The originality is that the tests are not machine-generated anymore, but extracted
from real entrance exam subjects for future students at the University of Tokyo.
The evaluation has become for machines by humans, much closer to the intended
goal of machine reading comprehension at a human level. Consider the following
example, an excerpt from Entrance exams 2015:

24

Text:
our husband hasn’t stopped laughing about a funny thing that happened to
me. It’s funny now but it wasn’t at the time. Last Friday, after doing all
the family shopping in town, I wanted a rest before catching the train, so
I bought a newspaper and some chocolate and went into the station coffee
shop - that cheap, self-service place with long tables to sit at. I put our
heavy bag down on the floor, put the newspaper and chocolate on the table
to keep a place, and went to get a cup of coffee.
[. . .]
Question: The woman telling the story

1. always went shopping with her family on Fridays

2. had been very busy and needed some time to recover (correct
answer)

3. wanted a newspaper and some chocolate to take home to her family

4. bought a newspaper and some chocolate so that she could keep a
place at the table

Again, the text in the example is but the beginning of the actual document.
As we notice, questions are now much more free-flowing and asked in a less
formal way. However, as would be natural for testing students learning a foreign
language, words of the text are seldom used in the right answer, and can be used as
a misdirection device targeting the unskilled reader. The question can be useful,
but as a trend, much less emphasis is put on the question than on distinguishing
right from wrong answer candidates. This makes this task closer to RTE than
before, interestingly, and the test overall does not have that machine-generated
feel to it anymore.

We participated to this evaluation for the three years it has run. One problem
that all systems encountered is the low amount of questions: between 50 and 60
each year. This made using machine learning, today’s go-to choice throughout
NLP, possible only for the third year, and the design of the system still had to take
the low amount of data into account. An interesting line of research would be to
build training corpora, but few additional reading tests of the same type are openly
available.

25

1.2.3 Semantic equivalence
Several tasks tests systems on their ability to detect if two sentences are seman-
tically equivalent. Paraphrase detection does precisely that and could very well
be seen as a two-way RTE task: does sentence 1 entails sentence 2 and, at the
same time, sentence 2 entails sentence 1? As much as this is a correct theoretical
framing of the problem, the fact remains that paraphrase detection tasks offer less
in the way of inference phenomenons than in simple syntactic rewritings and oc-
casional substitutions of words with their synonyms. The following examples are
two positive and two negative paraphrase pairs from the MSR Paraphrase Corpus
(Brockett and Dolan, 2005), one of the de facto standard datasets for evaluating
paraphrase detection, and were selected to showcase the most elaborate variability
observed:

(23) Sentence 1: The increase reflects lower credit losses and favorable interest
rates.
Sentence 2: The gain came as a result of fewer credit losses and lower
interest rates.

(24) Sentence 1: Dave Tomlin, assistant general counsel of The A.P., said his
organization was still deciding whether to appeal.
Sentence 2: Dave Tomlin, AP’s assistant general counsel, said the parties
are deciding whether to appeal the order.

(25) Sentence 1: The Toronto Stock Exchange opened on time and slightly lower.
Sentence 2: The Toronto Stock Exchange said it will be business as usual
on Friday morning.

(26) Sentence 1: The others were given copies of "Dr. Atkins’ New Diet Revolu-
tion" and told to follow it.
Sentence 2: The researchers gave copies of "Dr. Atkins’ New Diet Revolu-
tion" to the carb-cutters.

Sentences in these pairs are unquestionably close in structure as well as lexi-
con. While they are good for evaluating basic handling of textual transformation
processes in systems, they fall short of revealing the system’s true capabilities for
textual inference.

The more recent task of Semantic Textual Similarity (STS), piloted at Semeval
2012 (Agirre et al., 2012), asks the systems to grade on a continuous scale from

26

0 to 5 the semantic similarity of two sentences. Complete meaning equivalence is
not required, and the annotation guidelines allow for some relaxation. The pairs
which are annotated as not being paraphrases range from completely unrelated
semantically, to partially overlapping, to those that were almost-but-not-quite se-
mantically equivalent. In addition to demanding a more fine-grained assessment
of sentence pairs, the data in STS corpora itself is slightly more complex in vari-
ability than usual paraphrase pairs, though this is done a lot by making the two
sentences more or less irrelevant with each other, or by adding and subtracting
details. In the following examples, from STS 2012, the first pair is rated 4.4, in-
dicating almost complete equivalence, the second is rated 3.2, indicating rough
equivalence, with important details missing, and the third is rated 0.8, not equiva-
lent but possibly on the same topic:

(27) Sentence 1: The problem likely will mean corrective changes before the
shuttle fleet starts flying again.
Sentence 2: He said the problem needs to be corrected before the space
shuttle fleet is cleared to fly again.

(28) Sentence 1: The American Express Corp. has pledged at least $3 million
of more than $5 million needed.
Sentence 2: The city had requested federal funds, but withdrew that request
when American Express pledged at least $3 million.

(29) Sentence 1: The technology-laced Nasdaq Composite Index .IXIC inched
down 1 point, or 0.11 percent, to 1,650.
Sentence 2: The broad Standard & Poor’s 500 Index .SPX inched up 3
points, or 0.32 percent, to 970.

This task’s methodology is rich and interesting, and STS seems poised to re-
place simple binary paraphrase detection as the semantic equivalence main eval-
uation. But the directional and structural aspect of textual inference, necessary to
machine reading and the building of a mental model of the text, is quite absent.

1.3 A new hierarchy of inference classes
In the previous section, we presented several different NLP tasks which evaluate
in a direct way the inference capabilities exhibited by computer systems. There it
was already apparent that if the format is variable, the content itself has to be as

27

well. The broad definitions given both for cognitive psychology and NLP in sec-
tion 1.1 do not say much of what information has to be drawn from the text, how
to do it and whether it is an easy task or not. However, the ability to pinpoint the
kind of inferential phenomena computer systems are realistically able to handle
seems really valuable. One of our first contributions in this thesis is to estab-
lish a typology of inference classes as few have done before. Presented at LREC
2014 (Gleize and Grau, 2014), this work does not focus on the cognitive side of
inference, at least not directly, nor on the content of inferences – which is what
separating spatial and temporal inference represents, for example. We designed
a hierarchical view of classes of inference with several goals in mind: the most
important is being able to categorize instances of problems to spot where the dif-
ficulties lie and what nature and extent of NLP techniques and resources we need
to leverage to handle them. It also allows to conduct more fine-grained diagnostic
evaluations of systems, to complement typical black-box evaluations. In this sec-
tion, we first present previous mentions of categorizing inference phenomenons
in NLP contributions, we then expose a new taxonomy of inferences, which is
finally supported by results of experiments on QA4MRE 2013’s multiple-choice
questions.

1.3.1 Literature on inference types and difficulty
To our knowledge, few attempts have been made to categorize the difficulty of
inferences in a manner helpful to computational systems. The field of cognitive
psychology (McKoon and Ratcliff, 1992) distinguishes bridging and elaborative
inferences. Bridging inferences are drawn to fill the gaps in text and explicit
–often through access to world knowledge– what is untold, yet required to under-
stand what the text means. This is akin to what the machine reading system of
Peñas and Hovy (2010) does: exploring domain-specific predicates and attempt-
ing to fill in missing arguments. Elaborative inferences are not required for textual
coherence, and their status is strange in the context of NLP. As mentioned previ-
ously, it only takes a simple question to turn a potential elaborative inference into
a much needed bridging inference, in the context of, say, answering reading com-
prehension tests.

Such a distinction, although insightful to anticipate the future design of ma-
chine reading and question answering systems, is still far from giving us hints on
the automation of inference. Clark et al. (2012) provide a combination of well-
known language resources used toward the common goal of textual entailment.
Ablation tests are performed to compute the impact of each on the overall accu-

28

racy, but there is no way of knowing which resource helps best on a given type
of questions or entailment pairs. Interestingly, Huang et al. (2013) take the an-
gle of modeling human negative entailment capabilities. Finding in the text hints
of a contradiction with the hypothesis appears to be an effective way to tackle
textual entailment, but the tools and resources are still lacking to yield signifi-
cant improvements over state of the art RTE systems. MacCartney and Manning
(2007) introduce natural logic applied to textual inference. They describe the kind
of inference problems this logic applied to natural language is capable of solv-
ing: natural logic handles monotonicity, in which the concepts or constraints ex-
pressed are expanded or contracted, but it is not designed to deal with paraphrase,
temporal reasoning, or relation extraction. Posterior to our contribution, Weston
et al. (2015) identify a set of 20 elementary subtasks in the problem of complex
question-answering and present them in a similar way we ourselves do in the next
section, by providing a simple example which cannot be solved without dealing
with the related phenomenon.

More generally, contributions which analyze the categories of error of sys-
tems are those we want to build upon, altough quite rare as of late. (Moldovan
et al., 2003) measure their system’s accuracy by question class: factual, simple-
reasoning, fusion-list, interactive-context, speculative. However, these classes are
more about question types than they are about their difficulty. Even if the two are
likely correlated in practice, question type is not theoretically tied to difficulty of
the question (see section 1.2.2), which makes it a brittle indicator to rely on when
attempting to gauge inference difficulty.

1.3.2 The hierarchy
Each of the classes is built to encompass a range of natural language semantic
problems, tools, techniques, resources, and even human cognitive processes and
levels of world knowledge required. As a definition, a problem is of a given class
if it can reliably be solved within that class, but not within the classes below it in
the hierarchy. The aim is to capture the inference phenomena that are sufficient
and necessary to solve the problem. In this respect, those classes can be used in
the same way complexity classes are used: both to characterize problems and the
systems solving them –a system is of a given class if it can solve problems of that
class but not problems from higher classes.

While this all sounds ambitious, this hierarchy does not pretend to be absolute,
and in fact it does not need to: simply setting up the groundwork toward a unified
framework to discuss the contrasts in relative nature and difficulty inside the same

29

problem –and sometimes the same dataset– is already helpful.

Pattern matching

Relatedness

Structure

Concepts and Relations

Events and Discourse

Visualization

?

1

2

3

4

5

6

7

Figure 1.1: Hierarchy of inference classes

The hierarchy is shown in Figure 1.1. There are seven classes, and the first
six (from bottom to top) pair up in three tiers, corresponding roughly to the units
of sense considered. As members of the hierarchy, higher classes will often still
rely on the techniques and resources featured in classes below, and it is reasonable
to assume that a system of a given class behaves well when faced with problems
of lower classes. The difficulty of the problems –and the error rate of the current
state of the art methods– is expected to generally increase with the class.

Knowing what is difficult for machines seems key to us and is one of the goals
addressed in this section. For each class, examples of representative problems are
provided. We choose to frame the problems, when possible, as picking the most
relevant item among several answer candidates to a natural language query. While
it seems reasonable to expect that the classes can still characterize the absolute
difficulty level of the query alone, this level would be difficult to assess without
some elements of context or examples of concurrent wrong items the systems are
susceptible to pick over the right ones. Providing this context and an explicit set
of correct and incorrect items is a satisfying compromise which allows to show-
case which techniques and resources are needed to discriminate reliably between
possible answers to the query. In the examples, the right answer is marked by
“correct”.

30

It is then natural to specify how several well-known natural language tasks
reduce to this common framework.

In question answering, the query can take the form of a natural language ques-
tion, and items can be some choices of answer, the task being naturally to find a
fitting answer to the question. Ranking answer candidates is also how state of the
art question answering systems like IBM’s Watson computer operate (Ferrucci
et al., 2010), so this is a quite direct formulation of the task.

In coreference resolution, the query is a sentence containing a pronoun, asso-
ciated with the text preceding it. The items are entities of the text and the task is to
find which entity the pronoun refers to. Recently, (Levesque et al., 2011) have ar-
gued that the problem of resolving the difficult pronouns in a carefully chosen set
of sentences, which he refers to as the Winograd Schema Challenge, could serve
as a conceptually and practically appealing alternative to the well-known Turing
Test (Turing, 1950). According to Levesque, the pitfalls lie in the difficulty of pro-
viding problems whose resolution is obvious for humans but hard for machines.
We will use examples of Winograd Schemas to demonstrate that coreference res-
olution can reach a very high difficulty level. As a reminder, a Winograd Schema
is a small reading comprehension test involving the question of which of the two
candidate antecedents for the definite pronoun in a given sentence is its correct an-
tecedent. More precisely, there is a word (called the special word) which appears
in the question and sometimes the answer. When it is replaced by another word
(called the alternate word), the text still makes sense, but the answer to the ques-
tion changes. In this special coreference task, the query is set to the sentence and
the question, and the candidate items are pairs of (special/alternate word, corefer-
ent assignment), as shown for the classic Winograd scheme example in table 1.1.
In the example, the test is to answer two questions, one with the word and the
other with the alternate word, and link the 2 candidate entities so that they answer
the right question.

Text: The city councilmen refused the demonstrators a per-
mit because they [feared/advocated] violence.
Question: Who [feared/advocated] violence?
1) feared→ councilmen, advocated→ demonstrators
2) feared→ demonstrators, advocated→ councilmen

Table 1.1: Winograd schema sample

In student answer analysis, an applicative task to Recognizing Textual Entail-

31

ment evaluated in SemEval 2013’s Task 7 (Dzikovska et al., 2013), the query is
a correct reference answer to a question, and items are correct and incorrect stu-
dent answers. The task is to find correct student answers matching one reference
answer. Some of the related examples are sampled from Semeval 2013 Task 7’s
Beetle test data.

Other problems which may fit this framework are word sense disambiguation
and entity linking.

In the next sections, we present the three Tiers and their classes, with definition
and examples. The first tier deals with phenomena at the word level, the second
tier deals with the sentence level, and the third tier goes beyond the text.

1.3.2.1 Tier 1: Word level

Class 1, Pattern matching, pertains to problem instances that can be solved using
only words of the text, without any intent to capture the representation of a higher-
level structure like the sentence, and using minimal world knowledge. Sentence
chunking to create smaller groups of words, filtering words of the text (with a stop-
word list, for example), tokenization, grouping words in n-grams, basic stemming
and lemmatization are the most advanced text processing needed to solve this class
of problems.

Text: Bob is going to the swimming pool.
Question: What is Bob going to do?
1) Eat a sandwich.
2) Go swimming. (correct)

Table 1.2: Question Answering (Class 1)

Reference answer: Terminal 4 and the positive terminal are
separated by the gap
1) Because they aren’t damaged.
2) positive battery terminal is separated by a gap from ter-
minal 4 (correct)

Table 1.3: Semeval 2013 Task 7 (Class 1)

These sample problems (tables 1.2 and 1.3) are easily solved through counting
the number of words common to a choice and the given text. It is enough to
discriminate between the right choice (choice 2) and something irrelevant.

32

Class 2, Relatedness, does not need the inference process to represent a higher
level of sense than Class 1 (we stay at word level), and uses mostly the same pro-
cessing tools, but we add the notion of lexico-semantic variations of words to cap-
ture a shallow notion of semantic relatedness. Lists of synonyms/hypernyms, tax-
onomies, thesauri –including WordNet (Miller, 1995) used in the simplest ways–
and dictionaries are among common resources that are added in to deal with those
problems.

Text: Bob bought this hamburger.
Question: What has Bob done?
1) Obtained a sandwich. (correct)
2) Played in the water.

Table 1.4: Question Answering (Class 2)

In the example (table 1.4), counting the common words between the choices
and the text is not enough and does not distinguish one answer from the other. But
hamburger is an hyponym of sandwich. This can be learned from a good enough
synonym/hypernym resource, like WordNet, or the Wiktionary 1.

1.3.2.2 Tier 2: Sentence level

Inference problems of Class 3, Structure, require the capture of some notion
of higher-level structure in the text, at least higher than the word, generally at
sentence –or clause– level. Several of the most well-studied text processing tech-
niques are useful, like part-of-speech tagging, chunking, syntactic parsing, predicate-
argument extraction, semantic role labeling, or polarity detection. Note that tech-
niques and resources mentioned in Tier 1 are often still needed, but there is now
the extra need to know not only what the words are, but what roles they occupy
relatively to the others in the sentence.

Text: As it’s raining today, Bob won’t go to the beach.
Question: What is going to do Bob?
1) Stay home. (correct)
2) Go to the beach with his friends.

Table 1.5: Question Answering (Class 3)

1http://www.wiktionary.org/

33

Reference answer: Terminal 4 and the positive terminal are
separated by the gap
1) terminal 4 is not connected to the positive battery termi-
nal (correct)
2) because there is no gap between terminal four and the
positive terminal

Table 1.6: Semeval 2013 Task 7 (Class 3)

The problem described in the examples Tables 1.5 and 1.6 is as expected
harder than Tier 1 problems. Simple Tier 1 techniques can work against the sys-
tem and reliably pick the wrong choice. In table 1.5, we have to determine that no
matter what, Bob will surely not go to the beach , by parsing the text and detecting
that this clause is negated, so we pick the other answer. This is also an example
of using negative entailment in the decision process. In the example table 1.6, to
pick the student answer corresponding to the reference answer (choice 1), polar-
ity detection is used on some kind of predicate-argument structure extraction to
establish typed links between the terminal 4 and the positive terminal. Note that
it is necessary to know that separated and connected are antonyms, which can be
found in resources used in Class 2.

Similarly to the first two classes, Class 4, Concepts and relations, takes the
complexity of Class 3 and adds in extended world knowledge. Establishing a
link between a word –or sequence of words– and a real-world concept is now re-
quired, as well as using not only the relations between concepts discovered in the
text, but also those stored in a background knowledge base. Named entity recogni-
tion, paraphrases, ontologies, relations and properties extracted from dictionaries,
WordNet (Miller, 1995) or Wikipedia and even relations extracted through web-
crawling like TextRunner (Yates et al., 2007) are good techniques and resources
to capture concepts and relations. Some basic reasoning engine may be needed.

Text: Bob once gave his sister Alice a pendant.
Question: Who gave Alice the pendant?
1) A brother. (correct)
2) A sister.

Table 1.7: Question Answering (Class 4)

In the question answering example (table 1.7), a system has to know that if

34

Text: The lawyer asked the witness a question, but he was
reluctant to [answer/repeat] it.
Question: Who was reluctant to [answer/repeat] the ques-
tion?
1) answer→ witness, repeat→ lawyer (correct)
2) answer→ lawyer, repeat→ witness

Table 1.8: Winograd schema (Class 4)

a male individual has a sister, then he is the brother of that female individual,
which is not linguistic knowledge easily obtainable in the previous classes. In
the Winograd scheme (table 1.8), there are two main ways to go about it. Either
the system knows that the indirect object of the verb ask often has to answer the
question after it is asked, which is quite complex reasoning that will be handled in
class 5, or it just picks the character that is more likely to answer questions, when a
witness and a lawyer are involved. For this method and this example, TextRunner
gives as potential relations between witness and question only variants of answer
or ask at the passive form, while relations found between lawyer and question are
much more diverse, modeling the fact that the witness is often one who strictly
answers questions.

1.3.2.3 Tier 3: Beyond the text

The phenomena of Class 5, Events and discourse, go beyond a single sentence
and deal with characters and events in the text. In particular, understanding the
overall structure of a sequence of several sentences is required: to know when an
event might have happened without being mentioned in the text, what event might
happen in the future, what roles are filling the characters. NLP techniques and
resources at this stage are much more scarce. Discourse parsing can unveil simple
causal or temporal relations between events. Event chains can help filling out the
blanks in a succession of events. It is likely that common-sense knowledge of
human society and interactions would help at this stage, without needing the full
extent of what Class 6 is about.

All of the choices in the example (table 1.9) are true statements, but are not
the reason asked in the question. This question also deals with common states of
mind of human beings.

The Winograd schema of class 5 (table 1.10) requires keeping track of two
characters and their interaction in the text. Although technically all the informa-

35

Example from QA4MRE 2013, entrance exams task
Text: I probably would have [continued to argue with her],
but as I lay there, I could tell that Susan’s phone call was not
good news. I knew she had a boyfriend back home. From
what I could hear her say, I guessed he had found a new
girlfriend.
Question: Why was Susan so upset by the phone call?
1) Mary’s boyfriend had found a new girlfriend.
2) The call interrupted her argument with Mary.
3) Her boyfriend had lost interest in her. (correct)
4) The caller did not want to talk to Mary.

Table 1.9: Question Answering (Class 5)

Text: Susan knew that Ann’s son had been in a car accident,
[so/because] she told her about it. Who told the other about
the accident?
1) so→ Ann, because→ Susan
2) so→ Susan, because→ Ann (correct)

Table 1.10: Winograd schema (Class 5)

tion is included in the same sentence, there are multiple clauses to link together.
Detecting a causal relationship –with reliable directionality– is a typical class 5
problem.

Class 6, Visualization, goes beyond the text itself, and requires an actual
model of the situation at hand (Zwaan and Radvansky, 1998). A few dedicated
NLP applications exist solely to solve one of the many facets of Class 6 infer-
ences, including: temporal and spatial reasoning, sentiment detection. In general,
computer systems are lacking human senses –vision and hearing– to deal with
these problems in a generic fashion.

The example from table 1.11 is one of the harder questions. One has to know
or evaluate the predicted human population of Earth by 2050 and make a compu-
tation about that number. Several choices are provided so we can pick the likelier
number, but the system still has to be aware of global growing demographics on
Earth, and know how to perform simple calculations. Alternatively, one has to
guess that the other likely number (85 million) is probably just a decoy because
the number 85 is present in the text but not to designate a population count; this

36

Example from QA4MRE 2013, main task
Text: 1 person in 85 will be affected [by Alzheimer’s] by
the year 2050.
Question: How many people affected by Alzheimer’s are
there expected to be in the year 2050?
1) 123 million. (correct)
2) 85 million.
3) none.
4) a pretty small number.
5) None of the above.

Table 1.11: Question Answering (Class 6)

Text: I tried to paint a picture of an orchard, with lemons in
the lemon trees, but they came out looking more like [light
bulbs / telephone poles].
Question: What looked like [light bulbs / telephone poles]?
1) light bulbs → lemons, telephone poles → lemon trees
(correct)
2) light bulbs→ lemon trees, telephone poles→ lemons

Table 1.12: Winograd schema (Class 6)

kind of meta-reasoning about the task format (multiple choice questions) is not
currently handled by systems. It is not intended to be the main natural language
problem to be addressed in the near future, being understandably of less interest
in the grand scheme of things. In the Winograd schema from table 1.12, it is much
easier for a human to just imagine what fruits or trees might look like –relatively
to their visual shape– than for a computer.

1.3.2.4 Leaving room for the unexpected

We chose to leave room for more complex inference problems and techniques that
may arise.

The previously defined classes are intended to help categorize systems and
datasets. In the next section, we perform experiments which demonstrate the value
of our classes with respect to this goal.

37

1.3.3 Experiments
In these experiments, we define an annotation task on reading comprehension
tests. For each question, we annotate both the relevant passage and the answer
choice in term of the lowest estimated class of systems it requires. Two different
corpora are annotated, one made automatically to evaluate machines, and one
made manually to evaluate humans. We show that the second corpus contains
questions of higher classes – hence harder according to our taxonomy – than the
first one.

We first present the multiple-choice question answering dataset. It consists in
the question answering test sets at QA4MRE 2013 (Peñas et al., 2013a). There
are two tasks, the Main task and the Entrance Exams task, and both feature the
same format: a series of long texts, and for each of them, several multiple-choice
questions to answer. The Main task’s questions are traditionally designed to eval-
uate natural language processing systems. But the all new Entrance Exams task
features tests of English as a foreign language at the Japanese University Entrance
exams, hence this dataset is designed to evaluate humans. This is a key difference.

There are 284 questions over 4 topics of 4 reading documents each in the
Main task, and 45 questions over 9 reading documents in the Entrance Exams
task. Questions have 5 answer choices in the Main task (including a None of the
above option to indicate that none of the provided answer choices is correct), 4
answer choices in the Exams task (a None of the above option is not present for
those). Each question has been annotated with its correct answer (as provided by
QA4MRE organizers) and our own annotations of a 3-sentence passage in the text
containing a single answer sentence. We removed questions for which we couldn’t
find a correct passage: in particular, all questions where None of the above is the
correct answer were filtered out (39% of the Main dataset).

Our goal is to annotate each question with their class in our hierarchy. We turn
the question answering problem into 2 separate subtasks: first we need to find
the passage containing the answer, and once this is done –essentially reducing the
search space for the answer from hundreds of sentences to just three– we need to
consider answer candidates present in this passage, and choose the correct one.
Each of these tasks can be framed as described at the beginning of section 1.3.2.
For the passage retrieval subtask (PR), the query is the question and the candidate
items are the passages of the text. For the answer choice subtask (AC), the query
is the question and the 3-sentence passage –now assumed correct and containing
the answer– and the candidate items are the answer choices. The overall difficulty
of the question answering task (QA) can be approximated by taking the maximum

38

of the difficulties of the two subtasks, passage retrieval and answer choice 2.
For convenience purposes, we run a baseline counting the common lemma-

tized non stop-words between candidate items and query and rank the candidate
items according to their score. The tokenizer and lemmatizer used are part of the
Stanford CoreNLP tagging tool (Toutanova et al., 2003). We then annotate for
each question the class which corresponds to the passage retrieval part and the
class which corresponds to the answer choice part, that is to say, the class that is
necessary and sufficient to distinguish the correct item from the incorrect ones.
When our baseline ranks the correct passage in first place, we automatically an-
notate this passage retrieval step as being of class 1. Similarly, when our baseline
ranks the correct answer in first place –that is to say, the correct answer has strictly
more words in common with the correct passage than all the other candidates–,
we automatically annotate this answer choice step as being of class 1. The rest
of the classes are manually annotated by two annotators on the Main task and the
Exams task.

A Cohen’s Kappa score of inter-annotator agreement is computed (Cohen,
1968). We obtain 0.81 on the passage retrieval subtask and 0.86 on the answer
choice subtask for the Main dataset, on 51 questions annotated by both annotators,
which denotes very high agreement. However, we only obtain a Cohen’s Kappa
of 0.49 on the passage retrieval subtask and 0.57 on the answer choice subtask for
the Exams dataset, on 30 questions annotated by both annotators, which is a much
lower agreement.

Table 1.13 reports the class distribution for all three tasks (PR, AC, QA) on
both datasets, Main (M) and Exams (E). We observe that the class distribution for
the overall question answering task is different for Exams questions, even though
the problem and format are the same. Exams contain significantly more questions
of Tier 3 compared to Main. And among Tier 1 classes, they exhibit five times
as much Class 2 phenomena as Class 1, whereas Main’s first two classes are bal-
anced, with even a slight bias toward simple pattern matching questions. This
confirms the hypothesis that the nature of questions in the Entrance Exams corpus
is different from that of the questions in Main. Tests for entrance exams use more
reformulations of the text (pertaining to Class 2 inferences) to test the english
vocabulary of the student. The questions can also involve cognitive processes of

2In practice, we likely misestimate the difficulty of the passage retrieval subtask, because actual
passage retrieval as performed by systems can benefit from including words of the right candidate
answer, but likewise can be noisier as we add words of the wrong candidate answers. Nevertheless,
a human reader can find most of the relevant passages without reading the corresponding provided
candidate answers, so separating the task in those 2 subtasks is reasonable.

39

Class PR (%) AC (%) QA (%)
M E M E M E

1:Pattern matching 55 38 52 33 24 4
2:Relatedness 12 15 6 16 16 19
3:Structure 16 13 32 13 37 17
4:Concepts and Relations 4 0 0 2 2 2
5:Events and discourse 14 32 8 22 18 35
6:Visualization 0 4 2 13 2 17
7:? 0 0 0 0 0 0

Table 1.13: Class distribution for Main (M) and Exams (E), annotated by annota-
tor 1

Annotators Annotator 1 Annotator 2
Annotators PR AC PR AC
1:Pattern matching 50 33 50 33
2:Relatedness 15 13 0 17
3:Structure 8 10 4 7
4:Concepts and Relations 0 3 19 27
5:Events and discourse 27 20 23 7
6:Visualization 0 20 4 10
7:? 0 0 0 0

Table 1.14: Class distributions from 2 annotators for Exams (documents 1 to 7)

higher order (Class 5 and more) which make heavy use of common-sense knowl-
edge, as it is assumed to be naturally available to a human being.
The table 1.14 attempts to provide some insights on why our inter-agreement
rate is much lower on the Exams task than on the Main task. We found that
for more difficult problems, it can be confusing to pinpoint the class to which a
phenomenon belongs. For example, we report that there seems to be confusions
between Class 2 and Class 4 at the passage retrieval level. Class 2 introduces the
notion of semantic relatedness and exterior knowledge can already at this level be
captured through the resources employed, which makes it close to Class 4 in term
of external world knowledge.
Nevertheless, the class distribution of Entrance Exams being skewed towards the
upper Tier 2 and Tier 3, compared to Main’s distribution, we could expect the
performance of systems which ran on both at QA4RME 2013 to be lower because

40

the problem is overall harder. This is indeed the case, as seen in Table 1.15: we
report the accuracy of three systems at the evaluation across the two tasks, with
respect to the class distribution already mentioned. They lose about 30% accuracy
when going from the Main task to the Entrance Exams task. The accuracy loss
is effectively even bigger, because the Entrance exams only feature 4 choices a
question, compared to 5 choices for the Main task.

Systems Main (accuracy) Exams (accuracy)
jucs 0.59 0.42
nara 0.33 0.22
limsi 0.28 0.22
Class Main (%) Exams (%)
1:Pattern matching 24 4
2:Relatedness 16 19
3:Structure 37 17
4:Concepts and Relations 2 2
5:Events and discourse 18 35
6:Visualization 2 17

Table 1.15: Accuracy of systems at QA4MRE 2013 and question classes, for both
tasks

1.3.4 How to use this going forward
This section presents a new hierarchical taxonomy of textual inferences. This tax-
onomy is designed with computational systems in mind, and encompasses tasks,
techniques, tools and resources. As seen in the experiments, it can indeed make
the contrasts within a dataset apparent, both in term of nature and overall diffi-
culty of the task. From there we can evaluate systems in a much finer way, and
really get a grasp of the classes they are designed to handle. We can then guide
further improvements on systems and choose the kind of problems we want to
concentrate on.

1.4 Conclusion
This chapter presented our motivation for this thesis. We introduce textual in-
ference from various angles, from human inference to logical inference. We de-

41

scribe practical NLP problems related to inference as well as some of the standard
datasets on which systems are evaluated. The end of the chapter presents one of
our contribution establishing classes of textual inferences according to their diffi-
culty. Going into the literature review, the reader should now have some knowl-
edge of the main problems the systems are faced with when handling textual in-
ference in actual NLP tasks. The different classes of our taxonomy highlight what
is generally currently done about them and what is definitely missing in the fu-
ture. our literature review loosely follows the progression hinted by those classes,
especially in how structure and background knowledge are added in increasingly
complex systems.

42

Chapter 2

A literature review of automatic
textual inference

Research on inference has officially existed in the NLP landscape since 2005,
when RTE was introduced (Dagan et al., 2006). This is a bold statement, and
of course, references to individual attempts at the resolution of complex inference
phenomena can be found before that point. But overall, the collective effort toward
automatic inference was only really kick-started once the research community had
a common framework to design and evaluate dedicated systems.

This literature review aims at being agnostic with respect to the task. As we
showed in the first chapter, many tasks can be used to evaluate textual inferences,
and we intend to unify contributions on different tasks in term of the nature of
the methods they use. The first part deals with evaluation, with a quick look
at datasets, and the definition of popular evaluation measures. The second part
presents the actual contributions, following the hierarchical structure introduced
in 1.3.2.

43

2.1 Evaluation

2.1.1 Datasets
Intrinsic evaluation in tasks pertaining to textual inference always has the same
format. The system has to automatically label pairs of short fragments of text
with a relation. Oftentimes, these fragments are single sentences, and the possible
relations quantify a degree of inferability existing between them. For example,
in paraphrase identification, the two sentences are either semantically equivalent
or they are not. In RTE, a common task is to assert if there is an entailment re-
lation between two sentences, or if there is not. In those examples, where only
two choices are available, the problem is called a binary classification. Although
binary classification tasks certainly are the most frequent evaluations in this field,
sentence pairs can be labeled with a more fine-grained set of relations. For exam-
ple, at Semeval 2013, the RTE task (Dzikovska et al., 2013) presents pairs with a
reference answer to a question, and a student answer, with the goal of assessing
the correctness of the student answer. Systems have the possibility to classify the
pairs with five different labels: correct, partially correct but incomplete, contradic-
tory – the student answer contradicts content in the reference answer –, irrelevant
– it does not contain information directly relevant to the answer–, or not in the
domain. The “contradiction” label in particular is often the most interesting judg-
ment to add to the basic set of binary alternatives, because it tests systems on their
ability to accurately detect a breach of coherency between two sentences.

Evaluation campaigns build corpora of hundreds of pairs of sentences, possi-
bly thousands. The one common variable in the constitution of a corpus is that
pairs are annotated manually: the task is indeed too difficult to reliably autom-
atize the creation of gold standard sentence pairs both positive and negative in
term of inference. This is especially true when we want two sentences in an en-
tailment relation, but not semantically equivalent. Nonetheless, the sentence pairs
can be automatically generated or extracted from another corpus before being pre-
sented to a human annotator. This is the way datasets for the RTE campaigns have
initially been gathered. For the latest installment at Semeval 2013 however, the
reference answers were the answers given by teachers to a question about their
subject, and the student answers were given by students to the same question dur-
ing a real electronic test. This is what we could call fully manually built data,
corresponding to real-life situations and needs, but this kind of efforts remains
very costly, and hence, very rare.

Extrinsic evaluation of textual inference can use datasets of various other for-

44

mats, and it would be difficult to present them in exhaustive details. An example
that we already mentioned is the Winograd Schema challenge (Levesque et al.,
2012), a coreference resolution problem requiring inference. The one format that
is interesting to this thesis and to the machine reading community in general is
reading comprehension MCQs. Invariably, the system is faced with a set of texts,
and for each of them a series of questions with a fixed number of answer choices
–usually between 4 and 6. Again, semi-automatic approaches to corpus constitu-
tion existed at first, as seen in CLEF 2011 to 2013 with the QA4MRE challenge
(Peñas et al., 2011), but recently, questions for real human test takers have been
tackled, with the Entrance exams track starting from CLEF 2013 (Peñas et al.,
2013b). There is obviously an incredible wealth of such tests, because the for-
mat has been used for a long time throughout the anglo-saxon education system.
However, it is paradoxically hard to find a sizable amount of free and open-access
test samples, because they represent an important commercial interest: past tests
are actually sold to students each year for practice. At the time of writing, there is
still no available large-scale annotated dataset of reading comprehension tests.

2.1.2 Classification measures
Evaluations tend to have first and foremost a quantitative nature. We usually
like to have a single number that characterizes the performance of a system on
a dataset. This allows immediate and straight-forward comparison with other sys-
tems. Several different measures can be used, depending on the task and the
goal of the system. In classification tasks, either the system annotates a test item
with the correct label, or it chooses another label among the others. The simplest
measure is the accuracy, defined as the fraction of correct labels assigned by the
system.

In binary classification, two other measures originating from information re-
trieval are popular: precision and recall. To define these, let us present four no-
tions:

• True positives are elements that were predicted by the system as positive
(meaning, for example, “this is a textual entailment”), and that are indeed
positive in reality.

• True negatives are elements that were predicted by the system as negative
(“this is not a textual entailment”) and that are indeed negative in reality.

45

• False positives are elements that were wrongly predicted by the system as
positive. They are negative in reality.

• False negatives are elements that were wrongly predicted by the system as
negative.

Precision is then defined by Equation 2.1.

Precision = True positive
True positive + False positive

(2.1)

Recall is defined by Equation 2.2.

Recall = True positive
True positive + False negative

(2.2)

Precision is interested in the system being able to say confidently when an element
is positive. If the system ignores some positive elements and misclassifies them,
precision is not penalized. In term of textual inference, a high-precision system
can be used to draw the most trustworthy inferences and ignore everything less
sure. On the other hand, recall is interested in the system being able to retrieve a
lot of positive elements. If the system also captures negative elements by misclas-
sifying them, recall is not penalized. In term of textual inference, a high-recall
system will cover a lot of the complete set of correct inferences.

A combined measure, called F-measure, or F-score or F1 score, is the har-
monic mean of precision and recall, obtained by Equation 2.3.

F1 = 2 · precision · recall
precision + recall (2.3)

Ideally, a system must have both high precision and high recall, but it is also
common to purposely design systems to achieve good precision at the cost of
recall – and vice versa –, as a compromise when obtaining two high values is
not feasible. When the system has a parameter whose value has an impact on
precision and recall, it is interesting to draw a precision-recall curve: plotting the
2D graph of precision on one axis, recall on the other, obtained for configurations
of the system corresponding to different values of the parameter.

When working with multiclass classification, i.e. with more than two labels, it
is possible to compute a pair of precision/recall values for each of the classes, and
then micro-averages and macro-averages of these measures, but as the literature
and this thesis both focus mainly on binary classification problems, we choose to
not detail these here.

46

2.1.3 Ranking measures
Ranking measures are used in the context of ranked information retrieval: when
the task asks for the production of a ranking of candidates for each of its items
–also called queries–, or when the system’s inner workings involve outputting a
ranking, even when the task does not require one. While inference problems are
without a doubt better framed as classification problems, common ranking tasks
like question answering and document/passage retrieval can still require a great
deal of inference making. As in the previous section, different measures evaluate
solutions to different needs and goals.

The mean reciprocal rank (MRR) is the inverse of the rank of the first relevant
ranked candidate, averaged over all the items in the testing data, as shown in
Equation 2.4.

MRR = 1
|Q|

|Q|∑
i=1

1
ranki

(2.4)

with ranki the rank of the first relevant document for query i.
The mean average precision (MAP) is defined in Equation 2.5.

AveP =
∑n
k=1(P (k)× rel(k))

number of relevant documents

MAP =
∑Q
q=1 AveP(q)

Q

(2.5)

where P (k) is the precision up to rank k and rel(k) is an indicator function equal-
ing 1 if the item at rank k is relevant, 0 otherwise.

MRR is a measure which focuses only on the ability of a system to retrieve at
least one relevant candidate with a high rank, the relevant items below the first are
ignored. MAP must be used when there are multiple relevant candidates that we
are interested in retrieving.

Precision at n (p@n) is the fraction of items where the system retrieved one
relevant candidate among the first n of the ranking. In particular, p@1 is the
fraction of the test items for which the system gave the correct answer in the first
position. In the context of a real-world task like web search, a low p@1 does
not necessarily mean that the system cannot be used, if its p@3 or even p@5
are good enough, because the end user can afford to quickly assess 5 web page
titles before picking the one to navigate to. In contrast, in the context of factoid
question answering, p@1 is a very important measure for end users: any wrong
answer before the correct one will confuse the end user and potentially lead him
on with false information.

47

This ends our tour of the most commonly used evaluation measures. The
next section describes the contributions related to inference found in the literature,
organized by the class of linguistic features they rely on.

2.2 Lexical approaches
The rawest view of written text is that of a succession of characters representing
graphemes. However, this view does not help in any way the resolution of high-
level semantic problems. The first step toward making sense of the text is to
extract information of a more helpful nature. This information is often called the
features of the text in the context of machine-learned NLP, and we will keep using
this denomination even when machine learning is not used in the described work.
For each kind of feature, we present here previous work making use of it to solve
inference-related problems.

Words form the most basic unit of sense in most natural languages. As such,
the intuitive solution to the problem of establishing any semantic relation between
two sentences is to just compare their words in some way. The methods of this
section do not assume any other structure in the sentence than its pure sequen-
tiality. And although they are quite low in our hierarchy of inference problems,
these methods are currently still used very effectively to obtain state-of-the-art
performance on a lot of tasks.

2.2.1 Lexical overlap on surface forms
Surface forms are words as they appear in the text. Methods based purely on them
require minimal NLP machinery and lexical resources, but also typically are not
effective for high-level tasks. In today’s inference tasks, they are used as weak
baseline systems, and represent what can be obtained without injecting additional
knowledge about words in the process.

2.2.1.1 Counting in bag-of-words

There are several ways to extract surface form features from the text. At its sim-
plest, a sentence can be viewed as a so-called bag-of-words, the set of its words.
Simple features can be the presence or the number of occurrences of a given word
in the sentence, but they are seldom used in textual inference-related fields, due to
the limited size of datasets. More commonly, the similarity of two sentences can

48

be measured by the number of words they share, which is the size of the intersec-
tion of their bag-of-words. These “counting” features are often normalized, so as
to not give an unfair advantage to long sentences. One can choose to normalize
by the size of the union of both sentences – the Jaccard index (Rajaraman et al.,
2012) – or the length of either sentence for a more directional measure. This kind
of measure can seem overly simplistic at first glance, but remains relatively effec-
tive, with respect to how little effort it takes to implement. In recent work, Yih
et al. (2013) use this exact measure as a baseline to solve a problem of answer
sentence selection, essentially sentence ranking for QA, on past TREC data gath-
ered by Wang et al. (2007). An example of question and answer candidates, with
annotations of correctness, can be found below.

Question: What do practitioners of Wicca worship?
Candidate answer sentences:

1. An estimated 50,000 Americans practice Wicca, a form of polytheis-
tic nature worship. [correct]

2. The inch-thick chaplain handbook includes a five-page primer on
Wicca, described as “a re-construction of the Nature worship of tribal
Europe.” [correct]

3. Wicca – sometimes spelled Wycca – comes from the Old English
word for witch. [incorrect]

4. . . .

10. “When people think of Wicca, they think of either Satanism or silly
mumbo jumbo.” [incorrect]

Yih et al. (2013) report that it yields a MAP and MRR of 0.57 and 0.63. This is to
be compared with the random baseline (answer sentences are ordered at random)
which yields 0.40 and 0.49, and the actual system described in the article, which
yields 0.69 and 0.79, the best at the time. On MRR, this means that the simple
baseline based on word counts does 43% better than random, and the best system
only improves that baseline itself by 25%, which is not as great of a leap. We will
see that there are very straight-forward ways to improve on that baseline to bring
it even closer to the state-of-the-art method.

49

2.2.1.2 A string of words

To go beyond IR-like tasks toward inference, it is necessary to account for the se-
quential nature of sentences. Similar counting features as above can be used, but
on n-grams, the subsequences of n consecutive words of the sentence. The Leven-
shtein distance counts the number of elementary operations – insertion, deletion,
substitutions – necessary to turn one sequence of words into another (Levenshtein,
1966). These features offer more diversity and combinatorial complexity than the
previous unigram features, and as such, are used in more varied and effective
methods. It is also notable that a lot of approaches based on these features draw
inspiration in the field of machine translation, especially their evaluation measures
like BLEU (Papineni et al., 2002). To solve paraphrase identification, Madnani
et al. (2012) propose a classifier with machine translation metrics as sole features.
Some of the basic metrics they use rely only on surface n-grams, like BLEU, NIST
and TER rely only on surface n-grams. BLEU computes the amount of n-gram
overlap –for different values of n – between one sentence and another reference
sentence. NIST (Doddington, 2002) is a variant of BLEU that uses the arithmetic
mean of n-gram overlaps, rather than the geometric mean. It also weights each n-
gram according to its informativeness, as indicated by its frequency. TER (Snover
et al., 2006) is a measure counting the number of edits, operations like insertion,
deletion and substitution of a word meant to transform a sentence into another. It
accounts for sequentiality with a heuristic algorithm to deal with shifts of n-grams.
A classifier is learned on training data, with different set of those measures as fea-
tures. This work is evaluated on MSRP, the Microsoft Research Paraphrase corpus
(Dolan et al., 2004), one of the standard dataset to evaluate paraphrase identifica-
tion. Two examples, the first one, positive – a true paraphrase – and the second,
negative, can be found below. Other examples can be read in Section 1.2.3.

(30) Sentence 1: The virus kills roughly 36,000 people in an average year, ac-
cording to the U.S. Centers for Disease Control and Prevention.
Sentence 2: Complications from flu kill roughly 36,000 Americans in an
average year, according to the U.S. Centers for Disease Control and Pre-
vention.

(31) Sentence 1: In midafternoon trading, the Nasdaq composite index was up
8.34, or 0.5 percent, to 1,790.47.
Sentence 2: The Nasdaq Composite Index .IXIC dipped 8.59 points, or 0.48
percent, to 1,773.54.

50

This dataset contains 66.5% of positive paraphrases, which sets the accuracy
for an “all-paraphrase” baseline. Table 2.2 (p. 81) summarizes the results of all
the relevant contributions on this dataset. The classifier using only the three basic
evaluation measures presented obtains an accuracy of 74.1%, beating several sys-
tems from up to 2008. Their best result, including modern measures with lexico-
syntactic resources, obtains 77.4%. Again, we see that surface form features can
perform quite well on inference-related tasks.

Techniques based on string of words are still employed in recent years, like
at SemEval 2013. SemEval 2013 was a special edition of the conference on se-
mantic evaluation, at least as far as textual entailment is concerned. Its Task 7,
entitled Joint Student Response Analysis and 8th Recognizing Textual Entailment
Challenge (Dzikovska et al., 2013) consists in automatically evaluating student
answers to a question, given reference answers. As its title indicates, this evalu-
ation frames the task as a problem of RTE, and is in fact the latest edition of the
RTE challenge to date. It marks a break with earlier RTE challenges, because the
dataset is quite different. While RTE 1 to 7 present datasets of pairs of sentences,
often extracted from news articles, sentences from Semeval 2013 Task 7 are an-
swers from real high-school students to questions, with reference answers from
teachers. Questions often pertain to very specific subjects like physics or elec-
tronics problems. The lexicon, also domain-specific as a consequence, is limited
enough that using external resources does not prove useful, as demonstrated by the
top systems at the evaluation. The task also evaluates on two, three or five judg-
ments, or levels of entailment. Two or three (with the relation “contradictory”)
are quite common in RTE challenges, but five is a novelty. The student answer
can be correct, incomplete, contradictory, irrelevant – when it does not address
the question topic – and not-in-the-domain – when it goes outside the question-
answer frame, like “I don’t understand”. An example of question, with annotated
student and reference answers can be found below.

51

Question: Explain why you got a voltage reading of 1.5 for terminal 1 and
the positive terminal.
Reference answers:

• Terminal 1 and the positive terminal are separated by the gap.

• Terminal 1 and the positive terminal are not connected.

Student answers:

• because they are connected to opposite terminals [correct]

• because there is a gap [incomplete]

• because it’s connected to the positive terminal [contradictory]

• because 1.5 v minus 0 v equals 1.5 v [irrelevant]

• It was a mistake. I looked at it wrong. [not-in-the-domain]

The two best systems are interesting in that they do not use any external lexi-
cal, syntactic or semantic resources. SOFTCARDINALITY (Jimenez et al., 2013)
introduces the eponym measure of soft cardinality of a set of elements. Compared
to classical set cardinality, this measure computes for each element a weighted
inverse of its overall similarity with every element in the set. This means that an
element is more valued in this measure if it differs greatly from the other elements,
which makes sense when talking about cardinality. This measure leaves the user
free to decide the weighting function and the similarity function. The system uses
both a similarity on words (with characters as the elements) and a similarity on
sentences (with words as the elements). In the case of the soft cardinality of sen-
tences, the weights are weights derived from the cardinality over the words. The
system extracts features based on the soft cardinality of various intersections of
question, student answer and reference answer and learns decision tree classifiers.
Interestingly enough, SOFTCARDINALITY (SC) does not use sequentiality in
the sentence, but sequentiality of characters in the words, to deal with typograph-
ical errors in student answers. It also includes as a feature the lexical overlap
similarity, a strong baseline provided by the organizers of the task, which does
use n-grams. On the other hand, ETS (Heilman and Madnani, 2013) builds a clas-
sifier with the lexical overlap baseline, character-level n-gram features and BLEU
and PERP as its text similarity features. PERP is an edit-based approach to text

52

System 2-way 5-way
Baseline 0.690 0.430
SC 0.715 0.513
ETS 0.713 0.519

Table 2.1: Top overall accuracy results at Semeval 2013 Task 7

similarity. It computes the similarity of sentence pairs by finding sequences of
edit operations (e.g., insertions, deletions, substitutions, and shifts) that convert
one sentence in a pair to the other. Then, using various features of the edits and
weights for those features learned from labeled sentence pairs, it assigns a similar-
ity score 1. No syntactic parsing is needed and no external knowledge resources is
used. The two systems slightly improve the overall accuracy of the lexical overlap
baseline on the 2-way task. They improve it greatly on the 5-way task, as can be
seen in Table 2.1. It is notable that both use character-level n-gram features and
greatly improve their performance doing so: on domain-specific question and an-
swers such as these, given that one cannot very well look up words in traditional
lexical resources, it is important to be able to closely match two similar-looking
words, taking into account variations and typographical errors. Features of this
level are to our knowledge specific to this dataset as far as inference goes, in other
datasets, they are rarely used.

Finally, in some systems, and contrary to the norm in NLP, features are sec-
ondary in importance and complexity to the machine learning method employed.
Bu et al. (2012) introduces a kernel method to solve paraphrase identification and
RTE. The kernel function operates on two pairs of sentences, and aims at eval-
uating how similar a pair of sentences is to another. To do that, it counts pairs
of n-grams (as a kind of small n-gram rewriting rule) that occur in both pairs of
sentences. The features are very simple, yet, this method is able to capture the
structure of the sentences and the alignment between entities, obtaining state-of-
the-art results on the MSRP paraphrase identification corpus (MRR of 0.76). We
will come back to this kind of methods in Section 5, when we present our own
string re-writing kernel.

1For more information on edit-based approaches, refer to Section 5, which presents our own
contribution of this type

53

2.2.2 Leveraging knowledge on words
As explained in Section 1.3.2.1, to solve a textual inference task, it is often re-
quired to bridge the gap between two different formulations of the same concept.
The previously described methods can be very effective, but they can also most
of the time be improved by using external knowledge resources. In this section,
we present lexical resources used for textual inference and a few methods which
combine them with a sequential model of the sentence.

2.2.2.1 Pre-processing tools

Every Natural Language Processing system calls on some pre-processing tools
to handle raw data. We view them as a kind of knowledge resource. Their use
obviously differs from knowledge resources that we can typically look up, but
they nonetheless often add to our data a layer of linguistic information drawn from
other sources. A tokenizer is needed to delimit words and sentences. A Part-Of-
Speech (POS) tagger annotates the words in the sentence with their grammatical
category, offering a first glimpse of non-sequential structure. A lemmatizer, which
annotates the words with their lemma, or a stemmer, for their stems, are a good
way to abstract words from their inflections and derivations. One may want to
remove words that do not carry sense (like articles), called stop-words, and this is
usually done in the most basic way by filtering with a manually constituted list.

Most methods we presented previously most likely call on a mandatory pre-
processing step as well, but they could very well be implemented with minimal
performance loss with a white-space tokenizer and a list of stop-words, so we
deemed interesting to separate them from methods which truly rely on complex
lexical knowledge.

2.2.2.2 WordNet

WordNet (Miller, 1995) is without a doubt the most popular lexical-semantic
database. It groups English words into sets of synonyms called synsets, provides
short definitions and usage examples, and records a number of relations among
these synonym sets or their members. As of 2012, WordNet contains 155,287
words organized in 117,659 synsets for a total of 206,941 word-sense pairs. In
modern NLP systems, especially when dealing with inference, WordNet has be-
come the de facto resource to include, and it is often interesting to compare the
system with it and without it, to evaluate the performance gain brought by lexical-
semantics resources – WordNet standing for their representative. In earlier pre-

54

RTE work, WordNet has been found to help passage ranking in question answer-
ing: in the evaluation conducted by Tellex et al. in 2003 on the TREC-10 dataset,
scoring functions which use WordNet synonyms as the primary query expansion
method do consistently better than pure surface form methods (Tellex et al., 2003).

In RTE and more recent inference tasks however, WordNet becomes an even
richer resource. In query expansion and paraphrase identification, the equiva-
lence of sense is a strong condition to using a word in place of another, so syn-
onyms are often the only WordNet relation worth using without great risk of in-
troducing noise. Textual entailment asks for a one-way relation between sen-
tences, which logically allows for one-way relations between words of these sen-
tences. WordNet contains a lot of interesting one-way relations. On nouns, hy-
pernyms/hyponyms allow for a gain or loss of generality, and meronyms/holonyms
capture which is a part of what. On verbs, hypernyms/troponyms also exist for
gain/loss of generality, but more importantly, the entailment relation, with the
same meaning as in “textual entailment”. Early after the introduction of RTE,
Corley and Mihalcea (2005) propose a knowledge-based method for measuring
the semantic similarity of texts. They use word-to-word similarity metrics ap-
plied on WordNet. Defined on taxonomies in general, these metrics are still being
used nowadays and are worth presenting here. The Leacock & Chodorow measure
(Leacock and Chodorow, 1998) is determined as in Equation 2.6, with length the
length of the shortest path between two concepts, and D the maximum depth of
the taxonomy.

Simlch = −log length2×D (2.6)

The Lesk similarity of two concepts is defined as the word overlap between the
corresponding definitions, as provided by a dictionary (Lesk, 1986). In WordNet,
the definitions are the glosses of each synset. The last measures all make use of
the least common subsumer (LCS) of two concepts, i.e. their least common ances-
tor in the hypernym hierarchy in WordNet. Wu and Palmer normalizes the depth
of the LCS with the sum of depths of the two concepts (Wu and Palmer, 1994).
Resnik returns the information content (IC) of the LCS (Resnik, 1995), with the
IC defined as IC(c) = −logP (c) where P (c) is the probability of encountering
the concept c in a large corpus. Finally, Lin adds to Resnik’s measure a nor-
malization factor consisting of the IC of the two concepts (Lin and Hovy, 2003).
Corley and Mihalcea (2005) combine via a weighted sum the word-to-word sim-
ilarities to compute the text-to-text similarity. The weights are the Inverse Doc-

55

ument Frequency (IDF) of the words 2. They evaluate each similarity measure
on the MSRP corpus in paraphrase identification (Dolan et al., 2004), and on the
first RTE dataset (Dagan et al., 2006). The final decision is taken by comparing
the text-to-text similarity with a threshold learned on training data. They compare
with a lexical overlap baseline: the normalized number of common words. On
both datasets, the accuracy produced by each similarity measure alone is signif-
icantly better than that of the lexical overlap, using a paired t-test (p < 0.001).
They also combine with a voting perceptron all measures, and this obtains the
best results on both datasets: an accuracy of 0.688, for only 0.661 for the baseline
on MSRP3, and 0.583 against 0.545 on RTE. We detailed this early contribution
because we deem it foundational for how WordNet and corpus statistics are gener-
ally used today to solve textual inference tasks like paraphrase identification and
RTE.

In 2006, for the second RTE challenge, Bar-Haim et al. (2006) note that most
participants use some form of lexical resource, in particular WordNet. But most
well-performing systems also use the structure of a sentence as a tree or a graph,
often obtained through dependency parsing. From this point on, most systems will
use that structured model of the sentence, and this is the subject of our next part.
But changing the language model is no small leap, and we next highlight several
recent contributions which do not assume any syntactic layer to the sentence, yet
obtain state-of-the-art results on textual inference datasets, proving that a system
can still be competitive in current NLP while keeping to the Tier 1 methods of our
hierarchy of inference (Section 1.3.2).

Let us go back to Madnani et al. (2012), who use machine translation metrics
as features for a classifier on paraphrase identification. As already mentioned,
classic translation metrics based purely on surface n-grams do relatively well.
But they also use modern machine translation measures that include knowledge
resources. TERp (TER-Plus) (Snover et al., 2009) builds upon the core TER algo-
rithm by providing additional edit operations based on stemming, synonymy and
paraphrase. METEOR (Denkowski and Lavie, 2010) uses a combination of both
precision and recall unlike BLEU which focuses on precision, and incorporates
stemming, synonymy with WordNet and paraphrase. Paraphrase is handled by
those 2 measures using phrasal paraphrasing on strings (and not on parse trees).
While it is difficult to conclude that the inclusion of lexical resources is the main

2IDF, as an important metric in information retrieval, will be presented more in detail in the
next part

3As a reminder, a simple system which answers “yes” to all paraphrase candidates gets an
accuracy of 0.665

56

reason of the TERp and METEOR’s success, it remains that these two measures
are the top-performing individual metrics when used alone as features, with re-
spectively 74.3% and 73.1% of accuracy. When added to the three basic metrics
mentioned earlier, the combined features yield an accuracy of 76.6%. With other
translation metrics that may be checked out in their article, the complete system
reaches 77.4%.

One of the most crucial problems in textual entailment is that of alignment:
linking various parts of the Text to their semantic equivalent in the Hypothesis. In
fact, this problem is so important that it has spawned the subtask of monolingual
alignment. The task has been evaluated on the same corpus as RTE, with each
text-hypothesis pair additionally annotated with alignments by MSR (Brockett
and Dolan, 2005; Brockett, 2007). Figure 2.1 shows an example of gold standard
alignment. In recent years, competitive aligners who do not depend on the syn-

Figure 2.1: Gold standard alignment in the MSR corpus

tactic view of language have been designed. The MANLI aligner (MacCartney
et al., 2008) is one of the first monolingual aligners to use the MSR dataset. At
training time, sentences are represented as the set of its subsequences. An encod-
ing procedure based on edit operations produces alignments and finally, a scoring
function using several features is defined on the edits to score the alignment. The
feature set includes the edit type, lexical similarity using aforementioned Word-
Net metrics like Lin, and context (the neighborhood of words). At testing time, the
decoding of the best alignment for an unseen sentence pair is computed with a sim-
ulated annealing-like procedure. The system beats every known baselines at the

57

time in term of averages of correct alignments. In recent years, the JacanaAlign
aligner (Yao et al., 2013b) uses a CRF model (a machine learning graphical model
designed for sequence prediction (Lafferty et al., 2001)) combined with a rich
feature set including string similarity (with measures like the Jaccard index and
n-gram overlapping), POS tag features, positional features (which evaluate the
difference in position from one word with another aligned with it) and WordNet
features (using basically all previously introduced relations), but no syntactic fea-
tures. It outperforms by 66% the reported exact match rate – every alignment in
the text-hypothesis pair is correct – of the MANLI aligner (35.3% to 21.3%). They
further improve their results on full textual entailment (Yao et al., 2013c) by using
a semi-Markov CRF model, an extension of their previous work which allows for
phrasal alignment, and not simple word-to-word alignment like in JacanaAlign.

Question Answering has also benefited from extensive use of lexical-semantic
resources with no syntactic structure. Yih et al. (2013) in 2013 present lexical-
semantic models for the answer sentence selection problem. WordNet is one of
their sources of hypernymy and hyponymy. The MRR of their system only includ-
ing word matching, lemma matching and WordNet reaches 0.715, to be compared
with the word counting baseline at 0.652. They complete the system using a vari-
ety of automatically built resources, which we will explore later, to remedy several
well-known issues. Indeed, WordNet has a rather limited or skewed concept dis-
tribution and lacks in coverage of the “IS-A” relation (Song et al., 2011).

2.2.2.3 Other man-made lexical resources

Manually created resources other than WordNet have of course been used in the
past. NOMLEX (Meyers et al., 1998) and CATVAR (Habash and Dorr, 2003)
provide nominalizations of verbs and other categorial variations of words (e.g.,
“to invent” and “invention”). It is not worth it nowadays to want to manually
create new lexical resources for English. Automatic construction methods are
too appealing in term of cost-effectiveness; WordNet is so far ahead in quality
and quantity and so standard as a lexical-semantic database that a newly manual
resource would not see much use.

However, collaborative lexical resources, like the Wiktionary (Wiktionary,
2002), are promising. As they build slowly over time through volunteers, their
coverage becomes remarkable: 618,859 entries for the English language in the En-
glish Wiktionary as of 2015. The Wiktionary contain entries with senses and defi-
nitions of the word, and can even be parsed for relations like synonymy, antonymy,
hypernymy and hyponymy. Some issues remain, like the lack of consistency in

58

the format of the definitions – despite the existence of guidelines – and the uneven
quality of dictionary entries, depending on their popularity and the people who
edit them.

2.2.2.4 Drawing on large corpora

As much as it is possible to manually build quality lexical resources, the modern
trend in NLP is to build them automatically from a large corpus of text. It is a
much cheaper alternative and has become increasingly effective with advances in
machine learning and especially the volume and diversity increase of available
data.

Simple statistics have been since long computed from large corpora to better
model word usage in a language. For example, tf-idf is a numerical statistic that
is intended to reflect how important a word is to a document in a collection or
corpus. It is defined as the product of term frequency – the number of times the
word occurs – and inverse document frequency (Sparck Jones, 1972), defined in
Equation 2.7.

idf(t,D) = log N

|{d ∈ D : t ∈ d}| (2.7)

where t is a term (a word), N the number of document in the corpus D, and
|{d ∈ D : t ∈ d}| is the number of documents where the term t appears. IDF
is a measure of word specificity and as such, is useful for weighting words in in-
formation retrieval tasks (Salton and Buckley, 1988). The word counting baseline
used by Yih et al. (2013) for answer sentence selection, presented in Section 2.2.1,
improves from 0.627 to 0.652 MRR when the words are weighted with their IDF
value – considering each candidate sentence as a “document” and the “corpus”
as the set of candidates for the same question. Other ranking functions inspired
by tf-idf have been later introduced and used as the state-of-the-art in document
retrieval, such as Okapi BM25 (Robertson et al., 1995), successful at TREC-3.

A large amount of automatically built lexical resources is founded on the dis-
tributional hypothesis, the idea that linguistic items with similar distributions have
similar meanings, or more simply, that words that are used and occur in the same
contexts tend to carry similar meanings. The earlier trend was about distributional
thesauri, thesauri generated automatically from a corpus by precisely using this
hypothesis (Lin, 1998; Moore, 2001; Brockett and Dolan, 2005; Claveau et al.,
2014). But we found that they did not find much success in the past RTE evalua-
tions: Mirkin et al. (2009a) reports in 2009 that Lin’s distributional thesaurus has
the less impact out of a multitude of other resources, like WordNet and WikiFS

59

(Wiki First-sentence, a lexical resource built from first sentences in wikipedia ar-
ticles used as “IS-A” relations). Their other article in 2009 further evaluates the
inferential utility of lexical-semantic resources (Mirkin et al., 2009b). They look
for relations of lexical entailment from one word to another. Although Lin’s the-
saurus has better coverage than WordNet, its precision is a lot lower: it provides
pairs of contextually similar words, of which many have non-entailing relation-
ships.

It makes sense that distributional resources should not be expected to effec-
tively characterize highly directional and precise semantic relations like entail-
ment. However, the current trend of word embeddings has found successful use
in recent work on high-level textual inference tasks, like paraphrase identification,
answer sentence selection and RTE. They are a kind of word vector space mod-
els, which are surveyed in (Turney et al., 2010). With the resurgence of neural
networks and the growing popularity of deep learning in the NLP community,
several methods have produced word vectors of low dimension out of large cor-
pora, like word2vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014).
Without worrying about the technical details – which are outside the scope of this
part –, users of these models can simply view these vectors as lexical resources.
Neural networks are used to learn a vectorial representation of words with real
values, which can be compared using measures like cosine-similarity – which is
just computing the cosine of the angle between the vectors. In answer sentence
selection, Yih et al. (2013) uses the word vectors from (Mikolov et al., 2010), with
a dimension of 640, which helps them reach a MRR of 0.790, their best score and
the current state-of-the-art on this task, improving on the MRR of 0.715 obtained
by their system using only WordNet as additional resource.

On the same task of answer sentence selection, a kind of recurrent neural net-
works newly popular in NLP called long short-term memory (LSTM) network has
been used to reach the best performance to date (Wang and Nyberg, 2015). As all
recurrent neural networks, the goal is to go from word vectors to sentence vectors
of the same dimension, with the hope that the vector representing the sentence is a
semantically close combination of its words. In this case, no dependency parsing
is used, and the question and candidate answer sentence are simply concatenated
and fed to the network. LSTM has the nice property of dealing with the vanishing
gradient effect (Hochreiter et al., 2001) by creating more non-linear connections
in the nodes of the network. In particular, this allows in the question-answer con-
catenation to create a dependency of the answer to the question and the question
to the answer. This model uses the vectors in word2vec (Mikolov et al., 2013) and
only performs extra processing for numbers and proper nouns, obtaining an MRR

60

of 0.791.

2.2.3 Conclusion
The first approaches we intuitively think of when solving linguistic problems op-
erate at the word level, which is the Tier 1 of our hierarchy of inferences. They
can use different language models, like bag-of-words or sequence of words, and
also different external lexical resources. At its most basic, a unigram overlap
on surface forms can be computed, but this approach is no longer competitive:
it lacks a way to know how the sentence is organized, and the presence of any
lexical variation destroys its chances of answering correctly. Doing as little as
using n-gram overlaps metrics improves a lot what the method can capture, and is
still used to today. Ultimately, on datasets with a lot of lexical variation, systems
need to integrate some form of lexical knowledge, which can be found in external
resources.

In the next section, we move up a Tier in the hierarchy and examine ap-
proaches founded on a structured view of sentences.

2.3 Structural approaches
Natural language, on the surface, has a sequential nature. A word is pronounced,
written, read or heard, and then another. This probably stems from the nature of
our primary physical channel of communication. Our voice is naturally mono-
phonic and time is for all intents and purposes a continuous stream, so spoken
words come out as a sequential signal. Then, written language followed, and
while having theoretically more dimensions to work with, was based mostly on
spoken language. It is interesting that our most intuitive symbols are initially pic-
tures – be it for a small child or prehistoric people –, quite different from writing.

Nevertheless, it is obvious that there should be an underlying structure to lan-
guage, different from that of a sequence, because language expresses ideas, and
ideas do not seem themselves obviously sequential. In this section, we examine
approaches to solve textual inference problems that use structural properties of
written language. There are several views of structure that can be adopted, with
several different related tools and algorithms. Most have been used in some fash-
ion to solve textual inference problems, but some are of course dominant, like
syntactic trees or graphs.

61

2.3.1 Syntactic dependencies
Using the syntactic structure of a sentence is one of the most common traits
of modern NLP approaches. Syntax can imply constituent trees or dependency
graphs, obtained by using a parser at pre-processing time. Dependency graphs
in particular are preponderant in textual inference, because they allow a straight-
forward access to relations between words of the sentence without worrying about
the distinction between terminal and non-terminal nodes.

We identify five main methods which are based on syntactic features: depen-
dencies as added features, tree-edit methods, tree kernels, latent alignments and
recurrent neural networks.

2.3.1.1 Syntax as additional features

Early work with dependency relations applied to textual inference tasks used them
mostly as additional features for the same machine learning methods or similar-
ity measures used in previously mentioned contributions. In other words, in this
section, the tree or graph structure is not used as the basis of new methods, or
a fundamental guide in algorithms, but syntactic features are simply extracted
alongside lexical features to enrich the model.

Cui et al. (2005) focus on the benefits of using dependency paths to solve
passage ranking on TREC questions. Where others had tries strict matching of re-
lations, they perform fuzzy relation matching, with the idea that two sentences can
be semantically equivalent even if the dependencies between entities are not ex-
actly the same. For example, the sentence “Tennis player Jennifer Capriati is 23”
answers the question “What sport does Jennifer Capriati play?” even if “Jennifer
Capriati” does not have the same dependency relation at all with “Tennis player”
as with “play sport”. Cui et al. extract pairs of paths, one from the question,
and one from the candidate passage, linking the same two words. Then a match-
ing score is computed, considering every alignment of relations from the paths,
and using a probabilistic relation-to-relation similarity model. The probabilities
are set from two different sources, one with mutual information, and one with
weights trained with GIZA. They improve in MRR over three baselines which do
not make use of dependencies, by at least 55%. Later, Aktolga et al. (2011) im-
proves that passage ranking method by taking into account the type of the answer
and named entities.

In textual entailment, De Marneffe et al. (2006) use dependency graphs as
pure representation of the text and the hypothesis. In the first step, their system

62

computes the best alignment between the graphs. Their hand-crafted scoring mea-
sure is designed to favor alignments which align semantically similar subgraphs,
irrespective of polarity. It assigns the highest score to pairs of semantically simi-
lar words, like synonyms and antonyms. They take into account lemma and POS
tag, and use several resources, like WordNet and LSA matrices. They also locally
favor alignments which preserve dependency edges. A beam search is used to
build the alignments, using the scoring function as heuristic. A logistic regres-
sion classifier is then trained with several features on the dependencies and the
best alignment, including: polarity, antonymy, adjunct, modality, factuality, num-
bers, structure, and if the alignment is good or bad based on manually defined
thresholds. They evaluate their systems on the RTE 2 dataset, and report through
ablation tests that alignment and structure are the most impactful features of their
system by far.

In paraphrase identification, Wan et al. (2006) use features like n-gram over-
lap, as described in the previous section, difference in lengths of the sentences
and then add relation overlap features. The relation only takes into account the
pair of linked words, and not the label carrying its syntactic-semantic role. They
test several learning algorithms, with support vector models performing the best.
Their system improves the accuracy significantly over lexical overlap baselines on
the MSR Paraphrase Corpus. It is also noted that they include two simple tree-edit
distance features. Tree-edit methods are a major class of methods all across the
different types of textual inference tasks and are the topic of the next part.

2.3.1.2 Tree-edit methods

Dependency features are not straight-forward to include effectively as features.
Recent approaches generally avoid simply adding them to their model, which is
why the previous paragraphs did not mention recent work. Care has to be taken to
really improve on lexical methods, especially when some recent approaches are
successful without using any explicit structural features. One of the most consis-
tent way of using dependencies in past years has been tree-edit methods. Their
goal is to characterize a sequence of transformations applied to one dependency
tree/graph to obtain another. Those transformations are called edit operations, or
simply edits. They always include at least the insertion of a node, the deletion of
a node and the substitution of one node by another. These three edits are shown in
Figure 2.2. The first tree-edit algorithms date back to Tai (1979). Basically, differ-
ent edits are iteratively applied to the source tree, modifying it each time, so that
the edited tree becomes closer to the target tree. Eventually, an edit sequence is

63

Figure 2.2: (a) Substituting node l2 to node l1. (b) Deleting node l2. (c) Inserting
node l2 as child of node l1. (Bille, 2005)

found that completely turns one tree into the other and further methods then look
at the nature of edits that were effectively applied. They try to characterize if they
are elements of proof that the first sentence is in some kind of semantic relation
with the other (equivalence, relatedness or entailment), or if the edit sequence is
too long or too far-fetched to conclude anything. The exact relation characterized
depends on the definition of edits and the definition of their cost or the features
extracted from the resulting edit sequence. For example, in paraphrase identifica-
tion, we might want to prioritize edits which turns a word into a synonym over any
other relation like hypernyms or meronyms. In textual entailment, all the relations
will probably be more evenly important.

One of the first methods to use tree edits in a high-level NLP task is that of
Punyakanok et al. (2004), with a contribution on question answering on TREC
data. Trying to transform the question sentence into the full answer sentence does
not really correspond to the task of finding and extracting the answer. That is why
their edit distance is specifically designed to allow entire subtrees to be deleted at
once. They report an accuracy on correct answer passages of 36.6% compared to
their bag-of-words baseline at 26.2%.

Several recent tree-edit methods are able to integrate complex edit operations

64

and sometimes lexical resources. Heilman and Smith (2010) employ a tree kernel4

as a heuristic in a greedy search routine in the search space of edited trees, to
efficiently extract sequences of edits. Their extended edit set includes moving a
subtree from one parent node to another, and also moving siblings, to shorten the
edit sequences. They extract features from the obtained edit sequences – mostly
counts of edits, with separate features for type of edits, words, lemma, POS tags,
proper nouns – and use them in a logistic regression learning model. Interestingly,
they evaluate their method on three tasks: paraphrase identification on the MSRP
corpus, textual entailment on RTE 3 (using RTE 1 and 2 as training) and answer
sentence selection, on Wang’s TREC dataset (Wang et al., 2007). RTE 1,2,3 are
the most freely available RTE datasets, so are still very standard in today’s RTE
research. Table 2.2 (p. 81) presents the results of the contributions described
in this literature review. Likewise, Wang’s dataset has become standard in the
sentence selection part of today’s small-scale QA research. Table 2.2 (p. 81)
also compiles the results of contributions in this literature review. Heilman and
Smith obtain competitive results in term of recall on paraphrase identification,
textual entailment, and the best results at the time on the question answering task
in both MAP and MRR, without using WordNet like the previous systems, which
is remarkable. The results table include the three tasks, so that it is easier to
assess the quality of systems evaluated on several tasks, compared to systems
only dedicated to one.

The previous method requires a separate alignment-finding phase and resorts
to ad-hoc distance metrics. Unlike Heilman and Smith (2010), Wang and Man-
ning (2010) treats alignments as structured latent variables, and learn both the
alignments and the final decision in the RTE and answer sentence selection tasks.
At the core of the model is a tree-edit algorithm. As systems dealing with latent
alignments are the topic of Section 2.3.1.4, we will detail their system in this part.

(Yao et al., 2013a), working on question answering, propose the use of a CRF
(Lafferty et al., 2001) in order to cast the problem as one of sequence tagging by
labeling each token in a candidate sentence as either Beginning, Inside or Out-
side (BIO) of an answer. They use traditional contextual features based on POS
tagging, dependency parsing and named entities, but also features from tree edit
distance model for aligning an answer sentence tree with the question tree. In that
respect, this system is pretty similar to Wang and Manning’s system, but it is capa-
ble to extract the exact answer, and not just select the sentence containing it. They
additionally use n-gram context features and question type features. Interestingly,

4A function that measures the similarity of two trees, as we will see in the next part

65

their system is only trained on positive examples (sentences with the correct an-
swer) because otherwise the system became too reluctant to label an answer. They
obtain state-of-the-art results on answer sentence selection (Table 2.2 p. 81) and
report a gain of 0.02 MRR with the use of WordNet in the edit operations.

Tree edits are very convenient for specifying the kind of transformations we
expect to encounter between two sentences semantically related. Although this
formalism is very flexible, it has some limitations. First, it proceeds most of
the time in two steps: edit applications, and then some kind of cost computation
or feature extraction. It is difficult to integrate those two parts, especially in a
coherent machine learning method. Second, it is difficult to know what features
are interesting after computing the edit sequences, because the meaning of the
final edit sequences is quite unpredictable: a delete edit could mean that the word
is superfluous, or that it changes the sense completely. Finally, tree edit methods
often feature a lot of hyper-parameters to fine-tune. Values of these parameters
might not be transferable to other tasks.

The next major class of methods does not explicitly extract features for each
sentence pair or text-hypothesis pair. Instead, they rely on computing a similarity
function between two instances of the problem, that is to say, between two pairs
of two sentences, hence involving 4 dependency graphs.

2.3.1.3 Tree kernels

Kernel functions measure the similarity between two elements. Used in machine
learning methods like SVM, they allow complex decision functions to be learned
in classification tasks Vapnik and Vapnik (1998). The goal of a well-designed
kernel function is to have a high value when computed on two instances of same
label, and a low value for two instances of different label. We will be coming
back to kernel methods later in Chapter 5 to present our own contributions. For
now it is enough to know that the crux of the next contributions is in the design
of a function capable of assigning a real value to a pair of pairs of sentences – as
we are working on the similarity between two text-hypothesis instances. These
methods are useful when features for an individual instance are hard to formulate
and especially when they are computational expensive. We do not care about the
whole of 100,000 features of a text-hypothesis pairA when it only has in common
10 values with another similar text-hypothesis pair B. Kernel functions allow to
only consider what is similar or different in two instances and not what a single
instance represents.

66

Zanzotto et al. (2007) use a kernel method on pairs of syntactic trees, inspired
by their previous work introducing a cross-pair similarity on text-hypothesis tree
pairs. They later expand on graph kernels in a second method (Zanzotto et al.,
2010). Their method first aligns tree nodes of a pair of sentences to form a sin-
gle tree with placeholders. The placeholders are linked to anchors attached to
word nodes, so that placeholders link semantically equivalent words. Figure 2.3
shows a text-hypothesis pair with numbered anchors on equivalent words. Figure
2.4 shows the resulting tripartite graph obtained by linking 2 graphs via place-
holder nodes. They then use a simple tree kernel (Moschitti, 2006) to compute the
number of common subtrees of two of those tripartite trees (representing a T-H
pair). A SVM is used to finally classify T-H pairs. One of the weaknesses of the
method is that they are forced to align the sentences as a separate first step, which
is usually done with ad-hoc methods. To get a better matching, they use WordNet
relations and a WordNet similarity metric similar to the ones described in Sec-
tion 2.2.2 (Jiang and Conrath, 1997). Their method obtains the best accuracy to
date on RTE 3 (Table 2.2 p. 81), out of all systems using only dependencies and
WordNet.

Severyn and Moschitti (2013) build upon this work to design a very similar
system, but for question answering. This system leverages additional resources
and features, like question classification, lexical answer types, and named entities.
They get the best results at the time in MAP and MRR on Wang’s answer sentence
selection dataset (Table 2.2 p. 81), and also report that answer typing with named
entities improve their results considerably: they do not get the best results without
it.

To conclude this section, we briefly present the very recent work of Filice et al.
(2015). They provide detailed evaluation of a multitude of such tree and graph
kernel methods. While the background algorithms are pretty much the same as
Zanzotto’s previous contributions (adding only the kernel defined by Costa and
De Grave (2010), they add many more lexical-semantic resources and similar-
ity measures as features, including: Linked Open Data and WordNet, syntactic
and kernel similarities, longest common subsequence and other string similarity
measures, Resnik similarity, Wikipedia, Wiktionary. The combination of multi-
ple kernels yields the best result to date on the MSR Paraphrase corpus (Table
2.2 p. 81), and they report their best competitive results on RTE 3 using the sole
Smoothed Partial Tree Kernel (Croce et al., 2011).

67

Figure 2.3: A pair of text and hypothesis trees, with anchors

Figure 2.4: (b) A tripartite graph, showing placeholders

68

2.3.1.4 Latent alignments

The previous syntactic methods dealing with alignments do not propose an inte-
grated process for both learning the alignments and the decision to the inference
problem. For example, Zanzotto et al. (2010) are designed to compute an align-
ment a priori, using heuristics, and only then learn the textual inference judgment
assuming that alignment. The following methods implement structured predic-
tion by taking into account in the learning model the hidden or latent alignments
from one sentence to the other. This aims at being more robust under unpredicted
phenomena and pre-processing errors.

Probabilistic quasi-synchronous grammars have been used with some success
(Wang et al., 2007; Das and Smith, 2009). This class of grammars generates both a
source sentence and a target sentence according to probabilistic rules akin to those
in probabilistic context-free grammars. It allows to compute probabilities of one
sentence tree being generated knowing another sentence tree. Probability compu-
tations include conditional distributions over parts-of-speech, named-entity labels,
dependency relation labels, and mixed with probabilities involving WordNet rela-
tions. Finally, a log-linear model learns those parameters. Wang et al. (2007) use
this model to select answer sentences to questions from TREC data, already men-
tioned in this section. They outperform previous passage retrieval methods like
the one of Cui et al. (2005) and report a significant improvement when using their
mixture model with WordNet (Table 2.2 p. 81). Das and Smith (2009) use a simi-
lar model for paraphrase identification, adapting the original model by Wang et al.
from question-answer pairs to paraphrase pairs. They also add a product of expert
to include another posterior probability estimate based on lexical overlap. Evalu-
ating on the MSRP corpus, they report their best results when using this method
over only using the quasi-synchronous grammar or the lexical overlap probability
estimates (Table 2.2 p. 81) and outperform previous work.

Wang and Manning (2010) use probabilistic finite state machines to model the
transformations from one sentence to another in textual entailment and question
answering. They use a rich edit operation set that takes into account relations
in WordNet (editions of synonym, hypernym, antonym), if the edited word is a
modal verb, a word that expresses likelihood (like “maybe”, or “possibly”) or a
named entity. Their model is a tree-edit CRF (Lafferty et al., 2001) with a finite-
state machine-based method for mapping edit sequences to optimal weights. Their
features include internal information of their model, like the state of their FSM,
and also typical linguistic features, like word matching and tree structure. They
obtain competitive results with comparable systems on RTE 3 and the best results

69

at the time on the QA task in MRR (Table 2.2 p. 81). There is a duality between
probabilistic FSMs and probabilistic formal languages, which they used in their
previous work (Wang et al., 2007). Even if their more recent contribution models
transformations and their previous one models sentence pair generation, using
otherwise different classes of formal languages, it is still interesting to observe that
latent alignments can be captured using formal languages designed specifically for
sentence pairs.

Finally, the recent contribution of Yih et al. (2013) propose one model based
on latent syntactic alignments, comparing it with their aforementioned lexical
methods. In order to leverage the latent alignments between question and answer,
they adapt the framework of learning constrained latent representations (LCLR)
proposed by Chang et al. (2010). Without going into too much detail, this method
involves accounting for structure as constraints of an Integer Linear Programming
problem. The coefficients of the solution of the ILP formulation are added to the
objective function of the learning method, which effectively allows to iteratively
both learn the decision to a classification problem and the latent structure of the
sentences. All of Yih et al.’s models are enriched with the same lexical-semantic
resources, and they report better results in term of MAP for LCLR, but worse
results in term of MRR, than their bag-of-word model.

2.3.1.5 Recurrent neural networks

Recurrent neural networks are the latest trend in NLP and have been recently
adapted for use throughout most NLP applications. Their effectiveness remains
to be proven on complex textual inference like machine comprehension but nev-
ertheless has already been shown on simple two-sentence inference problems. We
already presented the work of Wang and Nyberg (2015) on LSTM networks for
question answering. This model is used to capture the relation between words
of the question and words of the answer sentence candidate, but they only use a
sequential chaining of the words, and not their syntactic structure. The idea is that
LSTM may be powerful enough to capture sufficient context and solve a sentence
retrieval task on factoid questions.

Socher et al. (2011) propose a recursive auto-encoder to learn a vector repre-
sentation of a sentence given vector representations of its words. Two vectors of
children nodes of the parse tree are combined through a matrix operator to obtain
a single fixed-sized vector representing their parent. An encoding matrix and a
decoding matrix are learned. What is interesting in their method is that this op-
eration can be executed recursively over the tree structure to produce only one

70

vector representing the whole sentence. In the paraphrase identification problem,
sentences are then compared using the cosine-similarity of their vector represen-
tations. They learn the initial recursive auto-encoder on 150,000 sentences from
the NYT and AP sections of the Gigaword corpus. In the final classifier evaluated
on the MSRP corpus, they also add unigram overlap features and features about
numbers (as this is generally important to get exact matches for numbers in this
dataset) to word-vector features. They report the best results at the time (Table 2.2
p. 81). The recursive auto-encoder alone does worse than the added basic features
alone (on the level of 2006 methods), which shows that some information is lost
in the encoding and decoding phases, but the combination yields a considerable
improvement over both sets of features.

At the time of writing, we do not know of deep learning methods which solve
one-way textual inference. The problem is that contrary to paraphrases, general
textual inference is not only interested in modeling the sense of one sentence,
to compare it with other sentences with close semantic similarity, but is most
interested in the relation between a specific pair of sentences, which has not as of
yet correctly been modeled by neural network approaches.

Syntactic dependencies are often a way to assess which entities are linked together
in the sentence, without having a clear idea of what their semantic role actually
is. The next section presents methods that assume a much more semantically
significant layout of the sentence, in particular by setting aside the distinction
between verb and noun phrases and focus on predicate-argument structures.

2.3.2 Semantic structure
Textual inference is definitely a problem about semantics. Syntax can be seen as
only a low-level approximation for semantics, but some contributions also use
higher-level representations, in the form of predicate-argument structures and
with a notion of semantic roles. It is worth noting that to our knowledge, these
methods are not competitive on our tasks when they choose to completely ignore
dependency structure and replace it with semantic roles. The reason is most likely
the insufficient precision and coverage performance of tools employed to access
the semantic layer of the sentence. Those tools are quickly reviewed in Section
2.3.4.

Qiu et al. (2006) use prototypical predicate-arguments structures in addition
to parse trees, in the task of paraphrase identification. Usually following the Prop-

71

Bank notation (Kingsbury and Palmer, 2002), these annotations are limited to
roles like “predicate”, “argument 1”, “argument 2”. This work uses predicate-
arguments as information nuggets, to be compared between one another, and
aligned. To better perform this matching, they use the distributed thesaurus by
Lin (1998). Manual rules determine what is important and what is superfluous in
the nugget so that extra information generally does not affect the matching neg-
atively. After the first alignment phase, a classic feature extraction is performed,
including features on dependency paths, and predicate or argument mismatches.
Their SVM obtains high recall on the MSR paraphrase corpus, and outperforms
simple baselines (Table 2.2 p. 81).

Recently, Lien and Kouylekov (2015) tackles textual entailment with a rule-
based system, i.e. without machine learning. They use the English Resource
Grammar (ERG) (Flickinger, 2000), a general-purpose open-domain semantic
parsing system that outputs logical-form representations. This output is naturally
translated to a variable-free semantic dependency graphs, with nodes annotated
in simple semantic roles like ARG1, ARG2, or BV (bound variable) on words
like pronouns. Lien and Kouylekov then produce RDF graphs5. The graphs are
enriched in a forward-chaining spirit using rules in SWRL format, and the Jena
reasoner6. The rules include: abstract rules (to match indefinite and personal pro-
nouns in the hypothesis to existing Noun Phrases in the Text), simplification of
predicate, structural rules (to handle phenomena like conjunction), filtering to re-
move superfluous graph nodes. Then the hypothesis is converted to a SPARQL
query and the graph is queried that way. Depending on the answer, a final decision
process decides between 3 classes: entailment, contradiction and neutral. They
report high accuracy on the Parser Evaluation using Textual Entailments (PETE)
task (Yuret et al., 2010) and on SemEval 2014 Task 1 (Marelli et al., 2014). Note
that we did not mention those datasets before, because the corresponding evalu-
ation challenges initially aimed at evaluating textual entailment in very specific
settings: one evaluates parsers, and the other compositional distributional seman-
tic models. As such, in our understanding, those datasets are not yet mainstream
in the textual inference field because comparison with the previous methods is
difficult.

Semantic information of higher level can also be accessed. Shen and Lapata
(2007) use the semantic role annotations defined in Framenet (Baker et al., 1998).

5Resource Description Framework (RDF) is a popular format for modeling data in the Seman-
tic Web.

6https://jena.apache.org/, (Carroll et al., 2004)

72

https://jena.apache.org/

They allow a sentence to be annotated like in the following example:

(32) [Lee]Seller sold [a textbook]Goods [to Abby]Buyer.

Semantic role labelers with FrameNet annotations were not available at the time,
so they instead apply an ad-hoc lookup method to match verbs to FrameNet pred-
icates, and their syntactic dependencies to FrameNet arguments. They then use
a pairwise similarity measure to create matchings between these semantic struc-
tures, in the same fashion as Qiu et al. work. As they work on TREC questions,
they also assign to the question word its corresponding semantic role. If they can
find an argument with a matching identical role in the candidate answer sentence,
they answer the question by that argument. On the task of question answering,
they report a vast improvement in performance when compared to a pure depen-
dency path matching baseline and another baseline using Shalmaneser, a state-of-
the-art shallow semantic parser (Erk and Pado, 2006).

Up until this point, we have only explored systems dealing with pairs of single
sentences. Sometimes they can process pairs of multi-sentence text snippets – for
example, by simply concatenating the sentences – but for the most part, they were
not designed to handle multiple sentences. In the next section, we expose several
problems arising from multi-sentence text.

2.3.3 Multi-sentence problems
Most of the real-world textual inference problems concern texts with multiple
sentences. The problem of RTE, with 2 sentences (in most cases), was created
specifically to simplify and have more control on the difficulty of the problem.
RTE remain a very hard NLP question and is far from solved, but it is obvious
that multiple sentences have to be addressed. A part of research on textual in-
ference is already trying to, with the effort revolving around automatic reading
comprehension tests. In this section we focus on two important types of process-
ing: coreference resolution and discourse relations parsing.

2.3.3.1 Coreference resolution

There are several kinds of coreference: anaphora, cataphora, split antecedents
and coreferring noun phrases (Jurafsky and Martin, 2000). No matter the type,
the non-trivial problem is always to bind two entities, given that one is generally
well-defined and the other is semantically vague or ambiguous, like a pronoun.

73

The need for coreference resolution can happen within the same sentence, but in
general ignores sentence boundaries.

In reading comprehension tests, questions are asked on a full text, with more
than 50 sentences, most of the time narrative. There is a fixed set of characters,
and their names are not used in every sentence they appear. Coreference resolu-
tion is hence one of the most important cross-sentence phenomenon to take into
account when solving this automatically. At CLEF 2014 in the Entrance Exams
task, Peñas et al. (2014) report that 4 out of 5 participants use coreference resolu-
tion. The best system in 2014 and 2015 is that of Synapse Développement (Lau-
rent et al., 2014, 2015). Their anaphora resolution step considers personal pro-
nouns (“I”, “me”, “myself”), demonstrative pronouns and adjectives (“this” and
“that”), possessive pronouns (“my”, “mine”), relative pronouns (“who”, “whom”,
“whose”, “that”) and the pronouns “one” and “ones”. During parsing, the sys-
tem builds a table with all possible referents for anaphora ((proper nouns, com-
mon nouns, phrases, clauses, citations) and bind them using features like gender,
number, type of named entity, category in their in-house taxonomy, position of
the sentence. They report that their method obtains state-of-the-art results when
evaluated intrinsically. They use many more in-house resources in their system,
like negation, modality, semantic relations like WordNet’s, semantic frames a la
FrameNet. It is impossible to really know how much anaphora resolution truly
contributes to their system, but they still obtain remarkable results on the task,
beating the second system 0.58 to 0.36 in accuracy.

Coreference resolution is not really used outside of tasks dealing with full
texts. Tasks like paraphrase identification and RTE most often feature instances
with only two sentences. This does not justify the risk of adding noise in the
global system because of errors in the coreference resolution step.

2.3.3.2 Discourse relations

Discourse parsers have seen very little use in textual entailment tasks so far, proba-
bly due to the low coverage of annotations on complex narrative texts. Some tools
are based on Rhetorical Structure Theory (RST), which defines relations like Elab-
oration, Evidence, Condition, Means, Purpose, Unless between two large word
spans (most of the time between two complete propositions) (Mann and Thomp-
son, 1988).

Recently, Sachan et al. (2015) tackles machine comprehension, on a new
dataset by Microsoft Research, called MCTest (Richardson et al., 2013). MCTest
is a set of 660 stories and associated questions intended for research on the ma-

74

Figure 2.5: Answer-entailing structure for an example from MCTest500 dataset

chine comprehension of text (also called machine reading, cf Chapter 1). The data
was gathered using Mechanical Turk. Each short narrative text is provided with
4 questions, each with 4 answer choices. An example of reading comprehension
test is available on the next page.
Sachan et al. learn latent answer-entailing structures, i.e. the best (latent) align-
ment between a hypothesis (formed from the question and an answer choice) with
appropriate snippets in the text that are required to answer the question. Figure 2.5
shows an example of answer-entailing structure. Their learning process integrates
the ranking structure for text-hypothesis alignment to the features, which allows
their objective function to capture the alignment optimization. This is called struc-
tured prediction. They again specialize their objective function by capturing the
notion of “multi-tasks”, the idea that a complex task such as reading comprehen-
sion has to be divided in a variety of subtasks. The technical aspects can be further
read in the article. Their features set include: word-level surface-form match-
ing; word similarity for synonymy using word vectors; relations from WordNet;
named entities and events; contextual features based on n-grams, dependencies
and predicate-argument structures; additional global features like a tree kernel;
RST (with the discourse parser HILDA (Feng and Hirst, 2014)) and coreference
links; string edit features using paraphrase databases. They note that their model
cannot handle negation well (or any kind of polarity), so incorporate a small set
of manual heuristic rules to that effect.

Before addressing their experiments, let us present a very recent submission
from Weston et al. (2015). They identify a set of 20 elementary subtasks in the
problem of complex question-answering and present them in the same way we
did in Section 1.3.2, by providing a simple example which cannot be solved with-
out dealing with the related phenomenon. They define subtasks like Factoid QA
with a single supporting fact, with more supporting facts, Two argument relations,

75

Text: James the Turtle was always getting in trouble. Sometimes he’d reach
into the freezer and empty out all the food. Other times he’d sled on the
deck and get a splinter. His aunt Jane tried as hard as she could to keep him
out of trouble, but he was sneaky and got into lots of trouble behind her
back.
One day, James thought he would go into town and see what kind of trouble
he could get into. He went to the grocery store and pulled all the pudding
off the shelves and ate two jars. Then he walked to the fast food restaurant
and ordered 15 bags of fries. He didn’t pay, and instead headed home.
His aunt was waiting for him in his room. She told James that she loved
him, but he would have to start acting like a well-behaved turtle.After
about a month, and after getting into lots of trouble, James finally made up
his mind to be a better turtle.

Questions:

1. What is the name of the trouble making turtle?

A Fries
B Pudding
C James
D Jane

2. What did James pull off of the shelves in the grocery store?

A pudding
B fries
C food
D splinters

3. Where did James go after he went to the grocery store?

A his deck
B his freezer
C a fast food restaurant
D his room

4. What did James do after he ordered the fries?

A went to the grocery store
B went home without paying
C ate them
D made up his mind to be a better turtle

76

Yes/No Questions, Counting, Coreference, Deduction/Induction, Spatial reason-
ing and others, whose complete description can be read in their article.

Sachan et al. (2015) use that classification to annotate the questions in MCTest.
This allows their multi-task model to indeed have a different behavior on different
types of questions. For their experiments, they use several baselines, and evaluate
on answers with single and multiple justification sentences in the text. Interest-
ingly, the “RTE” baseline performs better than their system on single sentences,
but its performance drops greatly on multiple sentences. Overall, their multi-
sentence multi-task model yields the best overall accuracy, with 67.8%, improv-
ing over 59.9% the best previously-published result, obtained using the recursive
neural network for factoid question answer of Iyyer et al. (2014).

2.3.4 Knowledge on structure
As with lexical methods, structural methods can be improved by enriching them
with knowledge. With pre-processing tools specific to structure, resources at the
lexical level, described in Section 2.2.2, are still the most commonly used. This
section gives a brief overview of knowledge resources pertaining to how several
words are combined, as opposed to only one word.

The following pre-processing tools all extract a particular layout of words ex-
pliciting different kinds of relation between them. A syntactic parser outputs an
analysis of a sentence as a tree of its constituents or a graph of dependencies
between words. These dependencies can be seen as a primal form of seman-
tics but are generally of a more purely functional nature. Many parsers include
coreference resolution, tasked with linking expressions in the text referring to the
same entity. They are often limited to simple anaphora and cataphora involving
pronouns, but do not handle coreferring noun phrases well: one might say this
last linguistic phenomenon is one of the very goals of textual inference. Most
NLP toolkits include a state-of-the-art syntactic parser and coreference resolu-
tion, like Stanford CoreNLP (Manning et al., 2014), NLTK (Bird et al., 2009)
and OpenNLP (Morton et al., 2005). As far as availability is concerned, depen-
dency parsers are generally a bit more difficult to create than simple tokenizers
and POS-taggers, and often rely on training data such as a labeled tree bank. As
such, effective implementations may not be available for less studied languages.
A Semantic role labeler provides a more direct access to a semantic layer of the
sentence. It annotates a predicate and its arguments in the sentence and assigns
roles in relation to each other. SRL is generally less successful than syntactic
parsing and less tools are available: Illinois Semantic Role Labeler (Punyakanok

77

et al., 2008), based on the Propbank annotations, and SEMAFOR (Das et al.,
2014) based on Framenet’s frame semantics.

A paraphrase collection is a natural knowledge resource in textual inference.
It contains equivalences between phrases, often in the form of patterns around a
verb, with variables as arguments. For example, here are the top five paraphrases
for "X solves Y" generated by DIRT (Lin and Pantel, 2001): Y is solved by X,
X resolves Y, X finds a solution to Y, X tries to solve Y, X deals with Y. The
variables allow for shifts in argument order and position. The more recent PPDB
(Ganitkevitch et al., 2013) offers roughly the same format for some 169 million
rules for their most inclusive set, and has been created with bilingual parallel
corpora. (Hickl et al., 2006) present a rich system obtaining the best result at
RTE 3 (Table 2.2 p. 81) and still unrivaled ever since on this dataset. They use
a lot of pre-processing tools, resources and sub-modules, but most importantly,
they incorporate a method for automatic paraphrase acquisition on a large cor-
pus. They report that the largest gains in accuracy are obtained by adding features
based on the paraphrases extracted that way. When used alone, paraphrase fea-
tures yield 66% in accuracy, which is in the range of the best systems based on
lexical-syntactic features with WordNet as of today.

Other resources which could be used in textual inference are automatically and
manually created triplet relation databases. TextRunner (Yates et al., 2007) and
ReVerb (Fader et al., 2011) are automatic methods to identify and extract relations
from English sentences, to be used on Web texts. ConceptNet (Havasi et al.,
2007) is a relation graph on commonsense knowledge built entirely manually.
Finally, databases like Freebase (Bollacker et al., 2008), Yago (Mahdisoltani et al.,
2014) and DBpedia (Auer et al., 2007) provide knowledge on named entities, like
people, organisations and locations. They are usually built collaboratively, with
Freebase being built directly by its community, and the other two databases being
extracted from Wikipedia pages. Although this type of resources has recently seen
major use with tasks like Question-Answering on Linked Data (Cimiano et al.,
2013), their use remains for now limited to factoid question answering and they
have not been used in more open types of textual inference problems.

2.4 Conclusion
This literature review presented what has been accomplished so far in textual in-
ference. Systems implement a lot of different methods and are evaluated on a lot of
different tasks. We chose the angle of the features they use to organize this chap-

78

ter. After introducing the evaluation methods, we first focus on lexical approaches,
that is to say, the Tier 1 of the taxonomy introduced in Chapter 1. Bag-of-words
on surface forms alone are not effective enough, but n-gram overlap methods can
still be used today with success. We then explore structural approaches, modeling
a more hierarchical arrangement of the sentence than its simple sequentiality. This
corresponds to the Tier 2 of the taxonomy. In practice, systems often use syntacti-
cal structure to assess the semantics of a sentence, rather than relying directly on
tools or methods annotating its semantic structure. On the word level as well as
the structure level, methods can integrate external resources to bridge the surface
variations and boost their performance.

We note that there was no part corresponding to Tier 3. We believe that a great
limitation imposed on current systems is the lack of data to train and evaluate on.
The available data is small in size: most of the datasets we mentioned contain a
number of instances in the order of a thousand at most. And it is not designed for
higher level inference phenomena like those of Tier 3. Admittedly, this data would
be very hard to produce at a large scale. The consequence for systems is that first,
they must restrict what to try to learn on this amount of data, and second, there is
no interest in designing scalable systems in the first place. We believe the research
community should devote some effort to the construction of large-scale datasets
and large-scale systems. The case of systems has been addressed recently with the
Excitement Open Platform (Magnini et al., 2014), an open scalable textual entail-
ment system. It provides the capability of using multiple knowledge resources and
textual entailment algorithms, as well as including any new resource or algorithm
within the pipeline. Our literature review focused more on methods and features,
and mostly ignored these scalability and dataset issues. We did not address them
in our contributions either, but they must remain an important consideration for
any researcher in this field.

What we conclude from this review for the direction of our own work is that
there is no sure-fire way to improve a system by just adding features like syntax or
knowledge resources. Tier 1 methods can be as successful as Tier 2 methods, on
just about any inference-related task. This is not in contradiction with the classes
of our taxonomy: a class represents the lowest level necessary to solve completely
the task, in an ideal setting. As it stands, inference is still far from being solved by
any system, so the performance ceiling of the various approaches is still unknown.
Some general principles still seem to hold. Ignoring structure altogether – even a
simple n-gram model – is not a viable approach in highly directional and precise
tasks like recognizing textual entailment. Also, a lot of contributions seem to
draw a significant benefit in the application of external knowledge like WordNet

79

and paraphrase databases. In the remainder of this dissertation, we build on those
two principles and try to integrate them tightly in our systems.

In the next chapter, to detach ourselves from the distinctions between all the
tasks related to inference, we propose a more general abstract problem encom-
passing all the applications described up to this point. We match this problem
with a formal proof system solving it, and show that it can shed some light on the
capabilities required of systems.

80

MSRP RTE 3 TRECWang2007
System Accuracy F-score Accuracy MAP MRR
All-positive baseline 66.5 79.9 51.2 0.397 0.493
Punyakanok et al. (2004) 0.419 0.494
Cui et al. (2005) 0.435 0.557
IDF word-count 0.596 0.650
Qiu et al. (2006) 72.0 81.6
Wang et al. (2007) 0.603 0.685
Heilman and Smith (2010) 73.2 81.3 62.8 0.609 0.692
Wan et al. (2006) 75.6 83.0
Das and Smith (2009) 76.1 82.7
Wang and Manning (2010) 0.595 0.695
Bu et al. (2012) 76.3 N/A 65.1
Zanzotto et al. (2007) 65.8
Socher et al. (2011) 76.8 83.6
Madnani et al. (2012) 77.4 84.1
Severyn and Moschitti (2013) 0.678 0.736
Yao et al. (2013a) 0.631 0.748
Yih et al. (2013) 0.709 0.770
TESRK (Chapter 5) 77.2 84.0 66.1 0.672 0.768
Filice et al. (2015) 79.1 85.2 67.0
Hickl et al. (2006) 80.0

Table 2.2: Results on MSR Paraphrase (MSRP), RTE 3, and Answer Sentence
Selection (TRECWang2007)

81

Chapter 3

A theoretical model to solve the
“Contextually queried inference”
task

In the context of this thesis, we tackle multiple different tasks all related in some
way to textual inference. In this section, we define a general abstract super-task
representing our vision of what most – if not all – these tasks derive from. We
argue that this is useful for several reasons. First, such a task would only focus
on what we deem necessary to the larger textual inference problem, rather than
contingent to a specific application, like question-answering. We can formalize
these principles and set them as the foundation of any system intending to solve
inference. Then, a hypothetical system designed for this task would be usable on
all the derivative applications and could leverage all the data available for different
tasks as one single training corpus. Finally, by doing so, this system would be able
to use capabilities traditionally not sought-after for a specific application of tex-
tual inference, simply because these capabilities are inherently required for other
applications; we believe that incorporating all these capabilities into one single
framework could help advance textual inference in all directions of its applicative
field.

In this chapter, we first define the general problem of Contextually Queried
Inference. Then, we present a proof system providing a formal way of solving
CQI. Finally, we introduce the practical contributions of the thesis, detailed in
Chapters 4 to 6. We take a look at them through the lens of CQI, that is to say,
we present which capabilities of the proof system each of our contributions is
designed to capture.

82

3.1 Contextually queried inference

3.1.1 Definition
Contextually queried inference (CQI) is our proposition for a general textual infer-
ence task. To the notion of inference, it adds the less commonly associated notions
of context and queries. The classic textual inference task, recognizing textual en-
tailment (RTE), generally deals with on very short text fragments, no longer than
two or three sentences, which makes for minimal context, and there is no “query”
to speak of. This was, of course, intentional when the task was designed: the goal
was to bring a more focused and precise evaluation as well as allow less complex
and costly implementations.

A CQI instance is defined by a tuple 〈Q,K, T,H〉, defined as follows:

• Q is the query

• K is the context

• T is the text

• H is the hypothesis

The text and the hypothesis are in textual form and have the same role as in the
RTE task. The decision problem is, at its core, “can a human reasonably infer H
from T ”. But this time, the machine reader is given a larger context K, repre-
senting some sort of knowledge base in unstructured (textual) form or structured
form, to help its decision, for example by looking it up for helpful details about
H and T. The query Q is an initial clue that the reader is presented with, separate
from K, which generally prompts it to look for a relevant bit of information in K.
The complete problem can be phrased as:

“Having retrieved information by querying K with Q, can a human reasonably
infer H from T?”

By convention, an empty query means that the entire context K has to be con-
sidered. The way the actual information retrieval step is achieved is open-ended.
We originally mean it to be done purely by the same human reader, simply read-
ing some words or a question (as Q), and a sizable text (as K), but it would be
interesting for other applications to consider how humans draw inferences given
the output of a given automatic search engine. The answer can be presented under

83

several forms, as the original RTE: yes or no, multiple classes, numeric judgment.
An interesting variant of the complete problem is to give 3 elements of the CQI
tuplet, and ask for a fourth one (among a list of choices) such that the answer to
the question is “yes”.

Why is adding Q and K interesting? One might argue this is only going back
to question-answering and all its quirks and difficulties, something RTE distanced
itself from. A big restriction on the current form of RTE is that the two short
text fragments – let us assume they are two sentences, which is most of the time
true – have to be self-sufficient for the RTE instance to make sense and evaluate
automatic systems in a fair way. Consider the following positive instance (from
RTE 3 data):

(33) T: She was transferred again to Navy when the American Civil War began,
1861.
H: The American Civil War started in 1861.

The machine does not have to know what the American Civil War is. Now con-
sider the following positive example:

(34) T: It didn’t happen because the cream of England’s thugs was smoking pot
which is easily and legally available in the Netherlands.
H: Drugs in Holland are easily bought.

Here, the machine does have to know that the Netherlands and Holland mean the
same thing. If machines are required to know certain things, why not include in
the task an indication for where to learn the needed information? Now consider
the following negative example:

(35) T: The existing education legislation does not recognise home schooling.
H: Reform allows home schooling.

This example is more tricky. Both existing legislation and a reform are men-
tioned, and it would make sense that if they are paired with the same topic (home
schooling), they behave differently regarding that topic. It would be an interesting
reasoning step for a machine to perform, but it is not the correct one in this case:
the machine has to decide it has too little information to conclude on that infer-
ence. This also is interesting reasoning, but some additional context would allow
for an even more focused evaluation in this case, if we could somehow isolate one
or the other reasoning idea. CQI is an answer to that need.

In the next section, we present classic textual inference tasks in a CQI form.

84

3.1.2 Framing classic tasks as contextually queried inference
RTE in its classic form is obviously the simplest task to frame as a contextually
queried inference problem. With empty context and query, all that is left in CQI
is the original textual entailment problem, the core inference part of CQI. Let us
examine other tasks.

Paraphrase identification is also straight-forward: it is equivalent to solving
two problems with empty context and query, switching roles of T and H.

What about question-answering? Let Q[Wh] be a factoid question containing
a question word Wh (this includes noun phrases like “which country”). With K a
text or a database, the problem is then to find a passage P[A] in K containing an an-
swer candidate A such that the answer to the CQI problem 〈Q[Wh], K, P [A], Q[A]〉
is “yes”, with Q[A] the affirmative form of Q with A replacing the question word.
Translating this CQI tuple in words, the answer to “Having retrieved information
by querying K with Q[Wh], can a human reasonably infer Q[A] from P[A]?” is
yes. In less formal words: after searching for an answer to a question in the text,
does the most relevant passage justifies that A answers the question. This formula-
tion captures the essence of factoid question answering, because both the retrieval
phase and the answer validation phase are expressed.

CQI was intended for machine comprehension and specifically reading test
comprehension, and is easily adapted for multiple-choice questions on short texts.
The following is an example from CLEF 2014 Entrance exams test data. With K
an informational text on monkeys (omitted here for space), Q is the sentence “It
is difficult to study monkeys at play in cages because” and the shortened version
“It is difficult to study monkeys at play in cages” is the hypothesis H. Then, each
of the 4 answer choices is a potential text T, yielding 4 CQI instances:

1. it is hard to tell whether they are playing or not

2. they don’t always play when scientists want them to

3. they play for such a long time that observers have to sit patiently

4. they prefer playing with humans to playing with other monkeys

Given how CQI is defined, there should be exactly one positive CQI instance if
and only if there is exactly one correct answer to the question. CQI also encodes
that the system has to read the text and find the passage relevant to the question,
which is exactly what reading test comprehensions are all about.

85

Simple coreference resolution problems can also be encoded by CQI. If we
have a first sentence A[r1, r2] containing two potential referents r1 and r2, fol-
lowed by a second sentenceB[p] containing a pronoun p. We can ask the two CQI
problems 〈∅, A[r1, r2], B[p], B[r1]〉 and 〈∅, A[r1, r2], B[p], B[r2]〉. One should be
positive and the other negative, corresponding to the correct and incorrect refer-
ents.

Winograd schemas (Levesque et al., 2011), a richer form of coreference reso-
lution aiming at testing inference are naturally encoded by CQI. A typical Wino-
grad schema is composed of a statement involving two parties, then an explanation
introduced by “because” and referring with a pronoun to one of the two parties,
and including a wording alternative enough to change the referent. For example:

(36) The city councilmen refused the demonstrators a permit because they [feared/advocated]
violence. Who [feared/advocated] violence?

If “feared” is selected, the answer to the question is the councilmen. If “advo-
cated”, it is the demonstrators. There are several ways to turn this problem into
CQI, the simplest is probably to answer one CQI instance with Q, K empty, “The
city councilmen refused the demonstrators a permit” as H, and “the city coun-
cilmen advocated violence” as T and conclude. This example is a veiled textual
entailment problem, but others do not contain “because” and can be seen as CQI
following the above encoding for coreference resolution. This is an example of
such a Winograd scheme:

(37) The sun was covered by a thick cloud all morning, but luckily, by the time
the picnic started, it was [gone/out]. What was [gone/out]?

3.2 Proof system for CQI
The previous section presents the problem of Contextually Queried Inference
(CQI). This section deals with solving this problem, first in a formal and theo-
retical setting, then from a more concrete standpoint with hints at an initial imple-
mentation.

3.2.1 The recursive nature of CQI
Contrary to RTE’s, CQI’s formulation already hints at how systems should pro-
ceed to deal with inference and provides them with natural guides: a context and

86

a query. These additional two elements capture a preliminary information gather-
ing phase before trying to draw conclusions. In reading comprehension, a human
reader exploring the text for the answer to a question will most likely need to draw
other inferences and ask himself more questions. Likewise, when solving CQI, a
system should be able to spawn from itself smaller and simpler CQI problems
to either help the retrieval process or the inference resolution. This is not really
feasible in RTE given the short length of the textual data. This is what we mean
by the recursive nature of CQI: a large context and a query aiming at extracting a
reduced portion of it precisely call for a recursive system.

In the next part, we present a formal proof system which theoretically solves
CQI. The system works in a non-deterministic way and makes several assumptions
which render its immediate concrete implementation unlikely at best. So why de-
fine such a theoretical system? It is very useful to reflect on the capabilities of real
systems. We can abstract the rules we present from any tedious real-world con-
siderations like algorithms, tools or resources. We can give this system as much
freedom as we want in term of chaining capabilities: which rule can be applied
after another. We can identify useful capabilities that might be completely ignored
by current concrete implementations. Then we can express the inner workings of
real systems in term of the rules of the formal system that they can implement
and cannot, and in term of the intermediary processes they can spawn and solve
and those they cannot even consider. In other words, this formal proof system is
just another way of qualitatively assessing practical implementations dealing with
inference problems.

3.2.2 Capabilities
The three capabilities presented in this section are the ones we deem essential, we
do not pretend that they are universally essential, as that would be a very difficult
statement to prove.

To solve CQI, a system must necessarily be able to solve elementary inference
steps. Without going into detail about what is elementary inference and what is
not, we will just assume that systems are able to reliably solve the simpler RTE
instances. This assumption is actually close to the truth, given the high perfor-
mance of a few complex systems participating to the RTE challenges (Table 2.2
p. 81). But this capability is obviously not enough if the CQI instance is harder
than RTE, which it very well can be: for example, reading comprehension tests.

A second crucial capability is recognizing a lack of a specific information.
This is what will drive the system to ask intermediary questions: if the system

87

detects that the information in the text or hypothesis is incomplete, it can create
another query focusing on the specific lack and a new CQI problem is instantiated.
The initial CQI problem will require this new one to be solved. The context is
assumed complete as a simplification: there cannot be a lack of information when
querying the context. Of course, in real problems, it sometimes happens that what
we read is not enough to answer a question or draw a conclusion, but evaluations
rarely focus on this issue and in our case, detecting a lack in the context could
simply indicate to extend it and include more text or more data.

Finally, the system has to be able to leverage external knowledge sources.
Indeed, we cannot expect all the required knowledge to be available in the context.
Hence, it has access to what we call a background knowledge base (BKB), which
we will simply represent by a collection of textual entailment rules of the form
T −→ H , meaning T implies H. These general rules also include simple facts, by
setting T to an empty text.

3.2.3 Proof system
The proof system we present in this section uses rules visually inspired from clas-
sic sequent calculus. There is a certain appeal to using a proof formalism in the
context of textual inference: indeed, when solving a CQI problem, we should be
constructing a step-by-step reasoning made out of other inferences and justified
in the end by axioms representing elementary knowledge. The application of a
single rule looks like this:

Premise1 Premise2
Conclusion

It is both the rule and a single-step proof, and represents that whenever we
have a proof of premise Premise1 and a proof of Premise2, then we have a proof
of the Conclusion. It may be more natural to read the proof bottom-up to get an
idea of how a system would work, the conclusion is the problem at hand, and the
premises decompose that problem into simpler ones to solve.

Premises and conclusion are CQI instances 〈Q,K, T,H〉, under the syntax:

Q?K ` T −→ H

Without further ado, let us start with the axioms.

te
∅?∅ ` T −→ H

88

The above rule is the basic textual entailment capability. When a system can
ignore query and context, what remains is the resolution of a simple textual en-
tailment problem, which is assumed to be done in one step.

bkb
Q?K ` A −→ B

The above rule is the ability for a system to use the inference rules in its back-
ground knowledge base. No matter the query or the context, if A −→ B is a
commonsense fact, true under most circumstances, it should be resolved in one
step.

We then add two rules using directly the query or the context.

Q?K ` T −→ H
ctxt-search

Q?K ∪K ′ ` T −→ H

∅?K ` T −→ H
ctxt-found

Q?K ` T −→ H

The first one enables the search process. The system can discard portions of
the context (theK ′ in the conclusion) and continue querying on only the remaining
context K. The second one discards the query, effectively marking the end of
the search process. Remember that such a proof system is non-deterministic in
nature. If a path exists to an elementary valid textual entailment (axiom), there is
a combination of the above rules that will lead to it. If however the wrong choices
are made, and we discard the query too soon, or discard the relevant passage, the
textual entailment step at axiom level will generally fail, because it is not applied
in the right context.

The next rule introduces variables.

Q′[X]?K,T ` P [a] −→ Q′[a] Q?K ` T [a] −→ H
var-T

Q?K,X = a ` T [X] −→ H

VariableX represents a lack of information, in the text T in this case. The idea
is to spawn another problem with a different query Q′ about this variable, to find
a plausible assignation of the variable in the final problem instance. The new sub-
problem’s form will vary depending on the variable and the type of information
itself, but we present it here as a simple generic question-answering problem on
X . Eventually, an answer a is found, and the final context is modified to account
for the assumption made on X . That way, the system keeps track of variables that

89

spawned sub-problems, and one can find the details of the sub-problem resolutions
in the final result. The other premise assumes the variable is not present, which
enables recursive resolution.

We can have a similar rule for H, or just consider T −→ H as a whole. The
following rule would replace the above rule and its symmetric “var-H” in a com-
pact way.

Q′[X]?K,T,H ` P [a] −→ Q′[a] Q?K ` (T −→ H)[a]
var-TH

Q?K,X = a ` (T −→ H)[X]

Finally, we need rules to enable the chaining of inferences.

Q?K ` A −→ C Q?K ` C −→ B
trans

Q?K ` A −→ B

With the above rule, called “trans” for transitivity, we can solve a more com-
plicated inference problem in several steps using the intermediary C. Note that
with the “bkb” axiom (the second rule presented in this section), this rule enables
the seamless integration of background knowledge to other inference processes.

3.2.4 Toward an implementation
The previous system remains very abstract and intentionally generic. It integrates
all the capabilities we mentioned before, without constraining their implemen-
tation. There are several challenges to face when designing an implementation
following this ruleset. This section presents these challenges, and also provides
the opportunity to offer examples to illustrate how the proof system combines its
rules.

3.2.4.1 Non-determinism

The proof system is intrinsically non-deterministic: there are a lot of different
rules and sets of premises that lead to the same conclusion. So, starting from the
CQI problem like a real system would, it would have to take multiple decisions
over which rules to apply, in which order to explore the search space and which
proof branches to prune.

Here are two examples of the same conclusion reached through different means.

90

bkb
Q?K ` T −→ A

bkb
Q?K ` A −→ B

bkb
Q?K ` B −→ H

trans
Q?K ` A −→ H

trans
Q?K ` T −→ H

te
∅?∅ ` T −→ H

ctxt-search
∅?K ′ ` T −→ H

ctxt-found
Q?K ′ ` T −→ H

ctxt-search
Q?K ` T −→ H

The first system relies more on successive applications of background knowl-
edge to build the inference, and the second goes through a more heavy retrieval
process to end with the use of the basic textual entailment capability.

Potential solutions to the non-determinism include: smart heuristics to decide
the order of rule applications, or parallel execution with all possible rules. We lean
toward the second solution as the more future-proof approach. Classic systems
operate pretty much like the second proof example: first perform a retrieval step,
then apply a textual entailment module.

3.2.4.2 Robustness

As it stands, the application of a given rule is all-or-nothing: either it applies or
it does not. This system is thus probably not very flexible. It could miss possible
human-like inference steps because premises do not fit or there is no rule to exactly
perform them.

Let us consider the following pseudo-rule:

A −→ C B −→ C
A −→ B

It is not included in our initial system because it is obviously incorrect in a
logic sense. But in a linguistic and pragmatic one, there is a chance a link exists
between A and B if they yield the same conclusion. “Ravaillac stabbed Henry IV
to death” and “Ravaillac murdered Henry IV” both imply “Henry IV is dead”, and
“Ravaillac stabbed Henry IV to death” implies “Ravaillac murdered Henry IV”.
This rule is not to be applied everywhere nor to be trusted completely, but it can
help in some cases. The previous system cannot handle this subtlety.

A solution to this problem would be to assign probabilities or at least weights
to the rules, representing their confidence level given the confidence level of the

91

premises. This probabilistic framework would be harder to specify, but would
probably be more flexible. Weights would also give insights on which rules to
pursue first, which would help our first point.

3.2.4.3 Variable introduction

Finally, the variable introduction rule is hard to implement and is by far the less
studied aspect of our system in current NLP. It is not easy to detect lack of in-
formation in the first place, and it is even harder to balance such a capability so
that you only look for information that will help the system. Some features of
current systems are comparable to this desirable capability, like coreference reso-
lution. Other than that, potential solutions could be to look for missing arguments
in frame semantics. For example, Framenet’s lexical unit “hit” meaning “direct
a blow at with one’s hand or a tool or weapon” contains the “Instrument” and
“Manner” arguments. When annotating a text and encountering “hit”, if those ar-
guments are absent, one could spawn CQI instances to find the instrument or the
manner, because these elements could be useful in the inference problem.

3.3 Our contributions through the lens of CQI
The subsequent chapters detail our contributions to the implementation of various
capabilities of the aforementioned system. We introduce them briefly in this sec-
tion and evaluate the design of their inner workings relatively to what rules of the
proof system they may indeed implement.

We remind the names of the rules in our proof system and a concise and con-
crete description of what their role is:

• te: solving the classic textual entailment problem, as posed by RTE.

• bkb: including a background knowledge base of any kind.

• ctxt-search, ctxt-found: retrieval of a useful fragment in the con-
text, using the query.

• var-T, var-H: detecting a lack of information and spawning a sub-
problem.

• trans: chaining two inference steps.

92

Each contribution is designated by a short description, followed by the capa-
bilities it is designed to implement in parenthesis. A fuller description is then pro-
vided, justifying why this set of capabilities is indeed implemented. We preface
this introduction by admitting that none of our systems seeks lacks of informa-
tion, and they are generally unable to spawn sub-problems equivalent in form to
the initial task (no var-T, var-H).

A passage retrieval method using structured lexical expansion backed up by
a dictionary (ctxt-search, ctxt-found, bkb)

We design a word similarity metric measuring what the dictionary definitions
of two words have in common. The word similarity is easily extended to passage
relevance rating with respect to a query, in order to select the best rated passage as
the most relevant ctxt-search, ctxt-found. We do not use any arbitrary
dictionary, but place this method in the context of a “simplification hypothesis”:
the simpler the lexicon, the easier it should be to compare the sense of two sen-
tences. The dictionary must thus obey this simplification principle, so we pick the
Simple English Wiktionary, a collaborative resource designed to use a simplified
version of English. This is our lexical background knowledge base (bkb).

The method is evaluated on the Entrance Exams dataset at CLEF 2013, and on
TREC QA Passages task. It has been published in a working note for CLEF 2013
(Gleize et al., 2013) and is detailed in this thesis in the first part of Chapter 4.

A textual entailment method using successive syntactical transformations ex-
tracted from a dictionary (te, bkb, trans)

The same simplification hypothesis is used as in the previous contribution,
hence the same resource (Simple English Wiktionary). This approach transforms
a Text into a Hypothesis, using paraphrase rules automatically extracted from the
simplifying dictionary (bkb). Several paraphrase rules can be applied succes-
sively to further transform the initial sentence (trans). Features of the input
textual entailment pairs are computed and used in a trained classifier to learned
the textual entailment decision (te).

The method is evaluated on Semeval 2013 Task 7’s dataset. It has been pub-
lished in a working note at Semeval 2013 (Gleize and Grau, 2013) and is detailed
in this thesis in the second part of Chapter 4.

A kernel method for recognizing sentence rewritings, with a notion of types
able to encode lexical-semantic resources (te, bkb)

93

A kernel function on sentence pairs is defined: this means that it evaluates
the similarity between two pairs of two sentences. It does so by computing the
number of common rewriting rules within the first pair and the second pair. Each
pair of sentences can be viewed as a textual entailment instance (te). Rewriting
rules are really any 2 patterns of k-grams, and the kernel method actually learns
which of those arbitrary rules is useful on the task and training data. Rewriting
rules cannot directly be chained. To improve the performance, we allow rewriting
rules to be equal modulo their types, which encode any kind of lexical-semantic
variation the user chooses to add. In particular, one may add variations from
background resources like WordNet (bkb). The kernel is then used in a SVM to
produce a classifier.

The method is evaluated on paraphrase identification (MSR Paraphrase), tex-
tual entailment (RTE 3) (te), and answer sentence selection (a weak form of ques-
tion answering) on a TREC dataset. It has been published at ACL 2015 (Gleize
and Grau, 2015c) and at TALN 2015 (Gleize and Grau, 2015b). It is detailed in
this thesis in the first part of Chapter 5.

A system for reading comprehension tests, with features extracted from a tree
edit model and used in validation/invalidation classifiers (ctxt-search,
te, bkb, trans)

This contribution describes the full system for automatically answering read-
ing comprehension tests at the Entrance Exams task of CLEF 2015. We first use
the question and answer choices as the query and find a ranking of relevant pas-
sages of the text. We are not too concerned about finding the correct passage at
this point, as we believe this will be naturally done by the following processes
(ctxt-search). Passages and answer choices are then viewed as their depen-
dency trees, and a tree edit model is applied to try to turn the passage into the
answer choice, using successive elementary tree edit operations (trans). Many
such edits are possible at each step, so we use a beam search to reduce the search
space. Features are extracted, including resources like WordNet and ConceptNet
(bkb). Classifiers are trained using the features, on CLEF 2013-2014 data, to
evaluate if a passage validates an answer choice, or if it invalidates. This last
decision step can be seen as a textual entailment task (te). Our final answer to
the multiple-choice question is then selected using the validation and invalidation
scores of the choices.

This method is evaluated on the Entrance Exams task at CLEF 2015. It has
been published in a working note at CLEF 2015 (Gleize and Grau, 2015a), with

94

some groundwork on validation and invalidation accomplished at CLEF 2014
(Gleize et al., 2014). It is detailed in this thesis in the last part of Chapter 5,
as well as in Chapter 6.

95

Chapter 4

Structured lexical expansion

One needs several building blocks when trying to solve the problem of Contex-
tually Queried Inference (CQI). Among them, a retrieval step uses the query to
narrow down the useful portion of the context. Then, once the right context is
found, a textual entailment step is used to solve what is left of the initial CQI
instance. In this chapter, we describe our first approach to both mandatory steps
of an ideal system. Having a common approach to solve the two phases, or at
least two sharing many design similarities, tools and resources, is desirable when
aiming for a later integration into a larger system. The methods can then share
resources, pre-computed structures and algorithm outputs.

The following set of approaches actually predates the conception of CQI and
in a way inspired it. In particular, it is in essence recursive and both methods
can be applied indefinitely on sub-problems the same way they are applied to the
initial problem. They try to modify the lexicon used in the sentences so that it is
easier to handle and compare. For these reasons, the chapter is entitled “Structured
Lexical Expansion”. The first section presents our simplification hypothesis, then
the second is dedicated to retrieval and finally the third to solving the textual
entailment task.

96

4.1 The simplification hypothesis
Our hypothesis is that the simpler the language lexicon is, the easier it will be
to access and compare meaning of sentences. This assumption is justified by the
multiple attempts at controlled natural languages Schwitter (2010) and especially
simplified forms of English. We expect both positive and negative effects from
reducing the number of words in the lexicon. The major positive effect is that as
the lexicon, and likely the grammar, are simplified, it is easier to model in a for-
mal and exact way. The negative effect to overcome is the expressiveness of the
language: some ideas will likely become harder to express, or will be expressed
in lengthier sentences. It also does not get rid of ambiguity, and may in fact am-
plify this phenomenon as the more common words are even more employed than
before and hence tasked with representing several of their possible senses more
frequently. We however believe that this is a fair price to pay for a simpler surface
language, and one that we will be able to handle when words are associated with
each other within their context.

4.1.1 Simple English Wiktionary as a paraphrase resource
Simple English Wiktionary1 is a collaborative dictionary written in a simplified
form of English, primarily for children and English learners. It has adopted Basic
English (Ogden, 1944) as its de facto language. Its definitions are clear, concise
and get to the essence of the word without superfluous details. They seem fitted to
acquire the “common sense knowledge” we need to solve open-domain inference
problem.

The biggest flaw of this resource remains its low coverage: 24,330 words are
defined at the time of writing. Also, its formatting presents inconsistencies which
make it difficult to parse and use correctly, probably due to its collaborative na-
ture. Guidelines for formatting definitions exist, but on one hand, they are not
systematically applied and on the other hand, other untold conventions have sur-
faced. A Simple English Wiktionary parser thus has to be robust, and a “perfect”
tool is likely too expensive to build relatively to the low coverage of the resource.

1http://simple.wiktionary.org

97

http://simple.wiktionary.org

4.2 Querying the text
We first test our hypothesis on the task of passage retrieval of complex non-factoid
question answering. Our main idea is that by simplifying the words of the query
and the words of the text simultaneously, semantically relevant passages will sur-
face more easily even when initially presenting to the inference system a distant
surface form. We introduce a method based on recursive enriching of a word by
the words of its definition in a dictionary with the property of simplification, like
the Simple English Wiktionary (SEW). This method has been presented at CLEF
2013 in the Entrance Exams task (Gleize et al., 2013).

4.2.1 Dictionary-based passage retrieval
In a question answering system, passage retrieval aims at extracting from a rele-
vant document the short text excerpt most likely to contain the answer. For the
most realistic questions, direct matching of the surface form of the query and text
sentences is not enough. As one of the most challenging and important processes
in a QA system, passage retrieval would thus benefit from a more semantic ap-
proach.

We propose a passage retrieval method focusing on finding deep semantic
links between words. The idea is that semantically-related words will share com-
mon words in their dictionary definitions. This is not a novel idea: Lesk (1986)
defines a similarity measure based on the word overlap of WordNet gloses. But
we go further and view a word as a kind of tree structure: the word itself is the
root, and the words in its dictionary definition are the children. Recursively, we
also use the dictionary definitions of these children to build a deeper tree.

Then, we use this word-tree structures to define a similarity measure. The
idea is that semantically-related words will share descendants in their respective
tree. And we can account for the descendants’ depth to rate their “importance” in
the similarity of the 2 initial words. Figure 4.1 (p. 99) shows an example. Both
SEW definitions of the words “cat” and “wolf” contain the word “animal”. But
cat’s definition contains “pet”. It is not contained in the wolf’s definition, but is
however in the definition of one of its children: “dog”. This is consistent with the
idea that a wolf and a cat have more in common the fact of being animals, than
the trait of being pets.

From this point forward we shall designate as words only lemmas from verbs,
nouns, adjectives, adverbs and pronouns that are not stop-words. We assume a
single purely textual document. Document words are words in the document. We

98

Figure 4.1: What have a cat and a wolf in common?

freely use the words children, descendants and ancestors to refer to the word-tree
structure built out of dictionary definitions.

4.2.1.1 Pre-processing

We use Stanford CoreNLP (Manning et al., 2014) for POS-tagging and lemmati-
zation. Penn Treebank tags are manually translated into their Wiktionary simpli-
fied counterparts (like “Noun”, “Verb”, “Adjective” or “Adverb”). This is all we
need to access the Wiktionary entries of words, although they still may present
different senses for the same part-of-speech.

4.2.1.2 Indexing the document

The document pre-processing phase builds a semantic index off of all the words
in the document and their descendants in a given dictionary. This is similar to
the index expansion of Attardi et al. (2012), except we use dictionaries and not
background documents.

We look at all the document words consecutively. For each one, we build its
word-tree up to a maximum depth of dmax (a parameter of the method). This is
done just by looking up our dictionary and retrieving definitions. Then we build
the index. The index contains an entry for each word w contained in a word-tree.
So it can be a document word (because those are roots of trees) or a definition
word found in the dictionary. The main information available for an entry is the

99

document word ancestors, Anc(w). This is the list of document words whose
word-tree contains w. For each document word in this list, we also record the
depth of w in its tree. In other words, w is a descendant of all the words in
Anc(w).

Why do we record those document words? Because this list Anc(w) is pre-
cisely a list of document words sharing a definition word (w) at some depth,
which indicates that Anc(w) are semantically related in some way. Back to our
example from Figure 4.1, Anc(“pet”) would contain (“cat”, 1) and (“wolf”, 2).
Anc(“animal”) would contain (“cat”, 1) and (“wolf”, 1). Just looking at those
lists, we know that “cat” and “wolf” share some similarity.

Our indexing process is implemented so as to share a lot of its data structures
to preserve computing time and space as much as possible. For example, the word-
trees are implemented with pointers to index entries. That way, we only build as
many nodes as words we encounter and index, and we do not build several for
identical words.

This is the basis of our indexing, bar minor implementation details, like han-
dling of multiple senses and POS-tags.

4.2.1.3 Passage retrieval

Our passage retrieval follows the following steps: we consider words of the ques-
tion (or query), use the index to score their relevance, and combine these scores
to rank candidate passages.

We build the word-tree for each word wq in the query. For w in a tree, we
have a corresponding entry in the index or not. If not, that means that w was not
a definition word shared by any document word at any level of depth, so w is
useless for finding matches for wq in the document. If however, there is an entry
in the index for w, it means that a document word shares this definition word with
wq. Not only one, but in fact, all the words in Anc(w) share w with wq. We can
then compute a similarity relatively to w between wq and those document words
wdoc_anc, therefore rating the relevance of document words relatively to the query
word:

Sim(wq, wdoc_anc, w) = idf(wdoc_anc)× base−(dq+ddoc_anc) (4.1)

The depths dq and ddoc_anc are the depths of w in the word-tree of respectively wq
and wdoc_anc. We choose base depending on how strongly we want to penalize
words as we go deeper in the tree. We found base = 2 to be a good start, but
the final system uses a variable number based on children count: the intuition is

100

that the more words used in the definition of w, the less confident we are that each
definition word is semantically related to w.

We compute the similarity for each wq in the query and each wdoc in document
word ancestors and sum over the wq to obtain a relevance score for the document
word:

Relevance(wdoc) =
∑

wq∈ query
max
wdoc,w

Sim(wq, wdoc, w) (4.2)

Finally, we select candidate passages with a sliding window of 3 consecutive
sentences, we rank them by the sum of all the Relevances of their words normal-
ized by word count. In our system, we also implemented a similar method to
SiteQ’s density-based scoring function (Lee et al., 2001): we add two consecutive
Relevance scores of two words in the candidate passage and we normalize this by
the square of their distance in the passage. This complexifies the indexing process
quite a bit, but the details of the implementation would be too tedious to describe
here.

4.2.2 Experiments
4.2.2.1 Data and evaluation methods

In our experiments, we work with two corpora of different nature. The first, and
the one we are most interested in, is the set of reading comprehension tests pro-
vided by the task “Entrance exams” at CLEF (Peñas et al., 2013b) (cf Section
1.2.2). Short texts are provided with questions, and for each question, 4 answer
choices are available, with exactly one correct. The length of the texts can vary be-
tween 60 sentences and 200 sentences. In general, questions are rather complex,
and answer choices present an important lexical variation from the passages of the
text they refer to, especially when the answer choice is the correct one. We eval-
uate our system for passage retrieval on the 9 reading tests (46 questions) of the
test set of 2013, following Tellex’s quantitative evaluation methodology (Tellex
et al., 2003). We first annotate the test set in passages (which 2-to-4-sentence
passage must be read to answer the question) to create a gold standard. The an-
notation with contiguous passages is quite straight forward, and only 2 questions
need disjoint passages.

The second corpus is from the Question Answering track of TREC, specifi-
cally its Passages Task at TREC 2003. For each question, the top 1000 documents
in the ACQUAINT corpus are provided, and the gold standard is a short sentence

101

from one of the documents. Questions are of factoid nature and are quite sim-
ple, but the pool of passage candidates is important in size, so the task remains
challenging.

All the experiments report mainly three types of evaluation measures:

• MRR: mean reciprocal rank

• p@n: number of correct passages found in the top n

• nf: number of correct passages which were not found at all

4.2.2.2 Results

We are most interested in the results on the Entrance exams dataset: given the dif-
ficulty of the questions and the lack of background knowledge, passage retrieval
quickly appear as a strong bottleneck for any question-answering system attempt-
ing to solve this task.

We implement several runs:

• MITRE as a weak baseline: simple word overlap algorithm (Light et al.,
2001)

• SiteQ as a strong baseline: sentences are weighted based on query term
density (Lee et al., 2001)

• SI(dmax), our Simple English Wiktionary-based indexing system, parame-
terized by dmax

We experiment on three types of queries:

• Question alone: this only uses the question.

• Question + Correct answer: the question and the correct answer are con-
catenated to form one query.

• Question + Incorrect answer: the question and each incorrect answer are
concatenated to form several queries.

Results for Entrance Exams are shown on Table 4.1. Our system outperforms
both baselines significantly on all types of queries (question alone, question + right
answer, question + wrong answer) and measures. The difference is most notice-
able when the systems do not have access to choices of answers, which is really

102

what we seek for the broader view of question answering. The performances is
globally higher when the system uses the correct answer instead of wrong an-
swers. This is not as helpful as it seems: on the real task, we do not know which is
the correct answer and which are the incorrect ones. This observation only means
that the words of the correct answer choices will be more likely to lead to the right
passage than the incorrect answer choices, which is, at best, reassuring. What is
also interesting is the increase in performance for SI as we increase the maximum
depth of search in the dictionary. This seems to confirm that Simple English Wik-
tionary fits this task well and that our scoring functions scale correctly with the
amount of knowledge that it provides.

Algorithm MRR p@1 p@3 p@5 p@10 nf
Question alone

MITRE 0.215 0.13 0.20 0.26 0.37 0.13
SiteQ 0.337 0.22 0.39 0.52 0.61 0.37
SI(1) 0.355 0.22 0.43 0.59 0.69 0.28
SI(2) 0.392 0.24 0.46 0.63 0.76 0.20
SI(3) 0.420 0.28 0.46 0.63 0.74 0.20

Question + Correct answer
MITRE 0.320 0.20 0.33 0.49 0.50 0

SiteQ 0.506 0.37 0.57 0.65 0.89 0.07
SI(3) 0.523 0.35 0.65 0.74 0.93 0.07

Question + Incorrect answer
MITRE 0.254 0.14 0.22 0.31 0.53 0

SiteQ 0.466 0.32 0.54 0.62 0.81 0.09
SI(3) 0.480 0.33 0.57 0.72 0.83 0.15

Table 4.1: Evaluation of passage retrieval on QA4MRE 2013 Entrance exam task

Our results on TREC are shown on Table 4.2. On this dataset, we can compare
with existing passage retrieval methods, like the one presented by Cui et al. (2005).
They report scores for the baselines (MITRE, SiteQ and NUS). Their system is
described in our literature review (page 62), but we remind the reader here that
it implements matching of dependency relation paths, with a learning method to
fuzzily align dependencies. They report results for strict matching (Rel_strict
in our table), without the learned alignments, and for expectation maximization
(Rel_EM in our table). Their system actually re-rank passages already processed
by the baselines MITRE and NUS, hence the indication between parenthesis. For

103

a fairer comparison with (Cui et al., 2005), we add dependency bigrams in our
scoring model. We call dependency bigrams all the pairs in the sentence of words
linked by a dependency relation. For a pairs of document words (w1, w2), we use
the formula described in Equation 4.2 and the distance in position of the 2 words
(dist) to compute the relevance of the dependency bigram:

Relevance(w1, w2) = Relevance(w1) ∗Relevance(w2)
dist(w1, w2) (4.3)

We report the results of our Semantic Indexing method with Simple English
Wiktionary as the dictionary, with a depth varying from 0 (no dictionary words)
to 3, without or with dependency bigrams. We first see that our method vastly
outperforms all the baselines. Adding levels of depth seems to scale correctly
from 0 to 2, but at depth 3 we start to notice an MRR and p@1 loss. Adding
dependency bigrams improve the results a lot which proves that adding structure,
even in the most basic way, can help passage retrieval. It also helps us match the
strict relation matching method of Cui et al., but with training, their fuzzy relation
matching gets far ahead of our results. Using trained parameters in our scoring
functions could probably have helped but we also think that experiments on TREC
do not benefit as much from lexical expansion (which Cui et al. (2005) does not
implement). Our method was designed primarily for the Entrance Exams task,
and we use it in the evaluation campaigns of CLEF 2013 and CLEF 2014.

4.2.2.3 Conclusion

In this part, we designed and implemented a passage retrieval method based on re-
cursive lexical expansion using freely available dictionaries. Our scoring function
shows some promise on two evaluation datasets, and especially seems to scale
correctly with how deep we look up in the dictionary. Its limitations are visible on
the second evaluation task (TREC), where a method from 2005 outperforms it by
using dependency relation matching and learning.

If we want to refer to our inference hierarchy (Section 1.3.2 p. 29), our pre-
vious system stayed at the Tier 1 of methods, and did not use the structure of the
sentence, although it did use a structured view of the lexicon. The only attempt
at integrating sentence structure was adding dependency relation bigrams, and it
improved our results a lot. In the next section, we keep the same simplification
hypothesis and resources but go up a Tier in the hierarchy. We also switch to
another elementary task described in contextually queried inference: solving the

104

Algorithm MRR p@1
Baseline
MITRE 0.2 0.1235

SiteQ 0.2765 0.1975
NUS 0.2677 0.1759

(Cui et al., 2005)
Rel_strict (MITRE) 0.299 0.2253

Rel_strict (NUS) 0.3625 0.2716
Rel_EM (MITRE) 0.4218 0.3457

Rel_EM (NUS) 0.4761 0.3889
SI, no bigrams

SI(0) 0.3035 0.1927
SI(1) 0.3244 0.2141
SI(2) 0.3331 0.211
SI(3) 0.3298 0.211

SI, with bigrams
SIb(0) 0.3208 0.1988
SIb(1) 0.3511 0.2171
SIb(2) 0.3640 0.2355
SIb(3) 0.3583 0.2324

Table 4.2: Evaluation of passage retrieval on TREC 2003, Passages Task

textual entailment step, which will benefit more from taking into account sentence
structure than the task of passage retrieval.

4.3 Solving the inference step
In this section, we describe a textual entailment method, based on substitution by
Basic English variants. Basic English paraphrases are acquired from the Simple
English Wiktionary. Substitutions are applied both on the text and the hypothesis
in order to reduce the diversity of their vocabulary and map them to a common
vocabulary. The evaluation of our approach on the SemEval 2013 Joint Student
Response Analysis and 8th Recognizing Textual Entailment Challenge data shows
promising results, and this work is a first step toward an open-domain system able
to exhibit composable text understanding capabilities as imagined in Chapter 3.
This work has been published at SemEval 2013 (Gleize and Grau, 2013).

105

4.3.1 Introduction
Automatically assessing student answers is a challenging natural language pro-
cessing task (NLP). It is a way to make test grading easier and improve adaptive
tutoring (Dzikovska et al., 2010), and is the goal of the SemEval 2013’s task 7, ti-
tled Joint Student Response Analysis. More specifically, given a question, a known
correct “reference answer” and a 1- or 2-sentence student answer, the goal is to
determine the student’s answer accuracy (Dzikovska et al., 2013). This can be
seen as a paraphrase identification problem between student answers and refer-
ence answers.
Paraphrase identification searches whether two sentences have essentially the same
meaning (Culicover, 1968). Automatically generating or extracting semantic equiv-
alences for the various units of language – words, phrases, and sentences – is an
important problem in NLP and is being increasingly employed to improve the per-
formance of several NLP applications (Madnani and Dorr, 2010), like question-
answering and machine translation.
Paraphrase identification would benefit from a precise and broad-coverage seman-
tic language model. This is unfortunately difficult to obtain to its full extent for
any natural language, due to the size of a typical lexicon and the complexity of
grammatical constructions. This is why we choose to test our simplification hy-
pothesis on this task as well.

Our method starts with acquiring paraphrases from the Simple English Wik-
tionary’s definitions. Using those, we generate variants of both sentences whose
meanings are to be compared. Finally, we compute traditional lexical and seman-
tic similarity measures on those two sets of variants to produce features to train a
classifier on the SemEval 2013 datasets in order to take the final decision.

4.3.2 Acquiring simplifying paraphrases
Simple Wiktionary word definitions are different from usual dictionary defini-
tions. Aside from the simplified language, they often prefer to give a complete
sentence where the word – e.g. a verb – is used in context, along with an expla-
nation of what it means. To define the verb link, Simple Wiktionary states that If
you link two or more things, you make a connection between them, whereas the
standard Wiktionary uses the shorter and more cryptic To connect two or more
things.

We notice in this example that the definition from Simple Wiktionary consists
of two clauses, linked by a subordination relation. It is actually the case for a lot of

106

Word (POS-tag) Word part Defining part
link (V) you link two or more things you make a connection between them

giraffe (N) the giraffe the tallest land animal in the world
bright (Adj) something is bright it gives out or fills with much light

Table 4.3: Word part and defining part of some Simple Wiktionary definitions

verb definitions: a quick statistical study shows that 70% of these definitions are
composed of two clauses, an independent clause, and a subordinate clause (often
an adverbial clause). One clause illustrates how the verb is used, the other gives
the explanation and the actual dictionary definition, as in the previous example.
Using this structural pattern did not make much sense with our previous semantic
indexing method for passage retrieval, but the structure of these dictionary defini-
tions are at the basis of our method for acquiring paraphrases.

4.3.2.1 Pre-processing

We use the Stanford Parser to parse the definitions and get a dependency graph
(De Marneffe and Manning, 2008). Using a few hand-written rules, we then re-
trieve both parts of the definition, which we call the word part and the defining
part (see table 4.3 page 107 for examples). We can do this for definitions of verbs,
but also for nouns, like the giraffe is the tallest land animal in the world to de-
fine giraffe, or adjectives, like if something is bright it gives out or fills with much
light to define bright. We only provide the details of our method for processing
verb definitions, as they correspond to the most complex cases, but we proceed
similarly for noun, adjective and adverb definitions.

4.3.2.2 Argument matching

Word and defining parts alone are not paraphrases, but we can obtain phrasal
paraphrases from them. If we see word part and defining part as two semantically
equivalent predications, we have to identify the two predicates with their argu-
ments, then match arguments with corresponding meaning, i.e. match arguments
which designate the same entity or assume the same semantic function in both
parts, as showed in Table 4.4.

For verb definitions, we identify the predicates as the main verbs in both
clauses (hence link matching with make in table 4.4) and their arguments as a

107

you → you
link → make
∅ → a connection
∅ → between

two or more things → them

Table 4.4: Complete matching for the definition of verb link

POS-filtered list of their syntactic descendants. Then, our assumption is that ev-
ery argument of the word part predicate is present in the defining part, and the
defining part predicate can have extra arguments (like a connection).

We define s(A,B), the score of the pair of arguments (A,B), with argument
A in the word part and argument B in the defining part. We then define a match-
ing M as a set of such pairs, such that every element of every possible pair of
arguments is found at most one time in M . A complete matching is a matching M
that matches every argument in the word part, i.e., for each word part argument
A, there exists a pair of arguments in M which contains A. Finally, we compute
the matching score of M , S(M), as the sum of scores of all pairs of M .

The score function s(A,B) is a linear combination of the following features
computed on a pair of arguments (A,B):

• Raw string similarity. Sometimes the same word is reused in the defining
part or words share the same stem.

• Having an equal/compatible dependency relation with their respective main
verb. For example, we consider direct and indirect object as compatible
dependencies, but not the same.

• Relative position in clause. The relative position of a word is its position
divided by the length of the sentence.

• Depth difference in parsing tree. These last 3 features assess if the two
arguments play the same syntactic role.

• Same gender and number. If different, it is unlikely that the two arguments
designate the same entity.

• If (A,B) is a pair (noun phrase, pronoun). We hope to capture an anaphoric
expression and its antecedent.

108

Feature Weight
Exact word (b) 100
Same stem (b) 30
Same dependency with verb (b) 20
Compatible dependency (b) 5
Relative position difference 5
Depth difference in parse tree 1
Same number (plural) 20
Same number (singular) 10
Same gender (if not neutral) (b) 30
Same gender (if neutral) (b) 5
Noun/pronoun pair (b) 10
WordNet similarity 30

Table 4.5: Feature weights

• WordNet similarity by Lin (1998). (cf Section 2.2.2.2 p. 54). If words
belong to close synsets, they’re more likely to identify the same entity.

The weights in the linear sum are set following the Table 4.5. “(b)” indicates a
boolean feature, which can be equal to 1 or 0.

4.3.2.3 Phrasal paraphrases

We compute the complete matching M which maximizes the matching score
S(M). Although it is possible to enumerate all matchings, it is intractable; there-
fore when predicates have more than 4 arguments, we prefer constructing a best
matching with a beam search algorithm. After replacing each pair of arguments
with linked variables, and attaching unmatched arguments to the predicates, we
finally obtain phrasal paraphrases of this form:

〈 X link Y , X make a connection between Y 〉

We extract about 20,650 paraphrases from the Simple Wiktionary using this method.

109

4.3.3 Paraphrasing exercise answers
4.3.3.1 Paraphrase generation and pre-ranking

Given a sentence, and our Simple Wiktionary paraphrases, we can generate sen-
tential paraphrases by simple syntactic pattern matching –and do so recursively
by taking previous outputs as input–, with the intent that these new sentences use
increasingly more Basic English. Figure 4.2 illustrates the whole process. We
generate as many variants starting from both reference answers and student an-
swers as we can in a fixed amount of time, as an anytime algorithm would do.
We prioritize substituting verbs and adjectives over nouns, and non Basic En-
glish words over Basic English words. Given a student answer and reference
answers, we then use a simple Jaccard distance (on lowercased lemmatized non-
stopwords) to score the closeness of student answer variants to reference answer
variants: we measure how close the vocabulary used in the two statements has
become. For each reference answer A, we keep only the n closest variants of the
student answer toA’s variant set (in our experiments, n = 10). We finally rank the
reference answers according to the average distance from their n closest variants
to A’s variant set and keep the top-ranked one for our classification experiment.

RA1

RA2
...

SA
0

1

2

3

4

5

RA2

RA1

1. 1

A
B

C
1. 5
2. 3

2. 3
...

...

Figure 4.2: Variants are generated from all reference answers (RA) and the student
answer (SA). For each reference answer RA, student answer variants are ranked
based on their lexical distance from the variants of RA. The reference with the n
closer variants to the student variants is kept (here: RA1).

110

4.3.3.2 Classifying student answers

SemEval 2013 task 7 offers 3 problems: a 5-way task, with 5 different answer
judgements, and 3-way and 2-way tasks, conflating more judgement categories
each time. Two different corpora, Beetle and SciEntsBank, were labeled with the 5
following labels: Correct, Partially_correct_incomplete, Contradictory, Irrelevant
and Non_Domain, as described in Dzikovska et al. (2012). We see the n-way task
as a n-way classification problem. The instances of this problem are the pairs
(student answer, reference answer).

We compute for each instance the following features: For each of the n closest
variants of the student answer to some variant of the reference answer computed
in the pre-ranking phase:

• Jaccard similarity coefficient on non-stopwords.

• A boolean representing if the two statements have the same polarity or not,
where polarity is defined as the number of neg dependencies in the Stanford
Parser dependency graph.

• Number of “paraphrasing steps” necessary to obtain the variant from a raw
student answer.

• Highest WordNet similarity of their respective nouns.

• WordNet similarity of the main verbs.

General features:

• Answer count (how many students typed this answer), provided in the datasets.

• Length ratio between the student answer and the closest reference answer.

• Number of (non-stop)words which appear neither in the question nor the
reference answers.

We train an SVM classifier (with a one-against-one approach to multiclass classi-
fication) on both Beetle and SciEntsBank, for each n-way task.

111

System
Beetle

unseen answers
SciEntsBank

unseen questions
Majority 0.4010 0.4110
Lexical
overlap 0.5190 0.4130

Mean 0.5326 0.4078
ETS-run-1 0.5740 0.5320
ETS-run-2 0.7150 0.4010

Simple
Wiktio 0.5330 0.4820

Table 4.6: SemEval 2013 evaluation results.

4.3.3.3 Evaluation

Table 4.6 presents our system’s overall accuracy on the 5-way task, along with
the top scores at SemEval 2013, mean scores, and baselines –majority class and
lexical overlap– described in Dzikovska et al. (2012).

Our system performs slightly better in overall accuracy on Beetle unseen an-
swers and SciEntsBank unseen questions than both baselines and the mean scores.
While results are clearly below the best system trained on the Beetle corpus ques-
tions, we hold the third best score for the 5-way task on SciEntsBank unseen
questions, while not fine-tuning our system specifically for this corpus. This is
rather encouraging as to how suitable Simple Wiktionary is as a resource to ex-
tract open-domain knowledge from.

4.3.4 Discussion
The system we present in this section is a step towards an open-domain machine
reading system capable of understanding and reasoning as envisioned in Chapter
3.
Direct modeling of the semantics of a full natural language appears too difficult.
We therefore decide to first project the English language onto a simpler English,
so that it is easier to model and draw inferences from. The projection is done by
applying several paraphrase rules consecutively. In a way, this system proposes
an instanciation of two rules proposed in Chapter 3, the textual entailment axiom
and the inference chaining, reminded to the reader below:

112

te
∅?∅ ` T −→ H

Q?K ` A −→ C Q?K ` C −→ B
trans

Q?K ` A −→ B

In this contribution, we do not take into account that texts present information
lacks: missing information that cannot be inferred by reasoning on the text alone,
but requires a certain amount of background knowledge. On open-domain, this is
quite hard to detect and to our knowledge has never been attempted. On closed-
domain however, Peñas and Hovy (2010) show that these gaps can be filled by
maintaining a background knowledge base built from a large corpus.

Although Simple Wiktionary is not a large corpus by any means, it can serve
our purpose of acquiring basic knowledge for assessing exercise answers, which
present similarities to closed-domain data, and has the advantage to be in constant
evolution and expansion, as well as interfacing very easily with the richer Wik-
tionary and Wikipedia.

4.4 Conclusion
This chapter dealt with a method of structured lexical expansion, first applied
at word level on passage retrieval, then at sentence level on textual entailment.
While performing rather well, it requires a lot of fine-tuning to obtain performance
comparable to early retrieval methods – on passage retrieval – and methods using
only surface forms – on textual entailment. The resource backing the method has
a rather poor coverage relatively to today’s standards, which naturally translates
into a poor robustness.

One of the weaknesses of previous systems is that the way we perform the
transformations on the sentence, either lexical or structural, is determined by hand.
It means that the methods will not be able to translate easily on other datasets, and
will at some point fail on words or patterns ignored by our rules: for example,
when the word is not included in the dictionary, or when the correct paraphrase is
not contained in our paraphrase bank.

The idea of a structured and iterative transformation of a word or sentence
remains a very appealing point, certainly in line with what Chapter 3 deems as
essential. Indeed, viewing the task of detecting textual inference as finding a valid
rewriting sequence between two sentences is natural. The next chapter extends on

113

this idea to present machine learning methods for specifically rewriting sentences,
applied to CQI-related tasks. These methods retain the ability to include lexical-
semantic resources, as used in this chapter, but can also be trained on standard
datasets to learn which rule to use when turning a sentence into another.

114

Chapter 5

Sentence rewriting as a machine
learning task

In this chapter, we explore in a deeper way the concept of sentence rewriting, the
way a sentence can be transformed into another. We are of course not interested
in any kind of transformation, but only those which preserve some of the sense
in the initial sentence: ideally, we only want transformations such that the initial
sentence entails the final sentence. This chapter does not address the integration
of the query and the context defined in Chapter 3 and focuses solely on the textual
entailment step, with possibly some form of chaining of inference rules.

We build on the ideas of the previous chapter, especially the applications of
paraphrase rules to rewrite sentences. While our previous systems were not really
robust and were too much tied to one resource and to specific syntactical patterns,
in the following we design and implement two methods with several new advan-
tages. They do not require much fine-tuning, they allow the easy integration of
a variety of lexical and semantic resources, and can be used on multiple CQI-
related tasks and datasets. The general idea is to define a vast number of potential
rewriting rules, each with interesting properties and potentially including lexical-
semantic resources, but whose application may introduce noise in the inference.
Which rules are used and how they are applied is then learned on standard training
data.

The first method is based on string kernels and performs well on three tasks
(RTE, answer sentence selection and paraphrase identification). As a kernel method,
it does not scale well to huge training datasets. And as a string-based method, it
actually does require a decent amount of training data to be effective.

This duality is addressed by the second method. It is based on a tree-edit

115

model and obtains the second best performance at CLEF 2015’s Entrance exams.
Like the string kernel method, it also deals with sentence rewriting, as tree edit
operations indeed model some form of sentence transformations. But in particular,
it is designed to not require much training data to be effective, and instead relies
on efficient tree heuristics and a comprehensive set of edit features.

116

5.1 A Unified Kernel Approach for Learning Typed Sen-
tence Rewritings

The inference problems we are interested in can be framed as determining if two
given sentences are a rewriting of each other. In this section, we propose a class of
kernel functions, referred to as type-enriched string rewriting kernels, which, used
in kernel-based machine learning algorithms, allow to learn sentence rewritings.
Unlike previous work, this method can be fed external lexical semantic relations
to capture a wider class of rewriting rules. It also does not assume preliminary
syntactic parsing but is still able to provide a unified framework to capture syntac-
tic structure and alignments between the two sentences. We experiment on three
different natural sentence rewriting tasks and obtain state-of-the-art results for all
of them. This work has been published at ACL 2015 (Gleize and Grau, 2015c)
and TALN 2015 (Gleize and Grau, 2015b).

5.1.1 Introduction
Detecting implications of sense between statements can naturally be framed as
classification tasks, and as such most current solutions make use of supervised
machine learning. They have to tackle several challenges: picking an adequate
language representation, aligning semantically equivalent elements and extract-
ing relevant features to learn the final decision. Bag-of-words and by extension
bag-of-ngrams are traditionally the most direct approach and features rely mostly
on lexical matching (Wan et al., 2006; Lintean and Rus, 2011; Jimenez et al.,
2013). Moreover, a good solving method has to account for typically scarce la-
beled training data, by enriching its model with lexical semantic resources like
WordNet (Miller, 1995) to bridge gaps between surface forms (Mihalcea et al.,
2006; Islam and Inkpen, 2009; Yih et al., 2013). Models based on syntactic trees
remain the typical choice to account for the structure of the sentences (Heilman
and Smith, 2010; Wang and Manning, 2010; Socher et al., 2011; Calvo et al.,
2014). Usually the best systems manage to combine effectively different meth-
ods, like Madnani et al.’s meta-classifier with machine translation metrics (Mad-
nani et al., 2012).
A few methods (Zanzotto et al., 2007, 2010; Bu et al., 2012) use kernel func-
tions to learn what makes two sentence pairs similar. Building on this work, we
present a type-enriched string rewriting kernel giving the opportunity to specify
in a fine-grained way how words match each other. Unlike previous work, rewrit-

117

Figure 5.1: Rewriting rule (A) matches pair of strings (B) but does not match (C).

ing rules learned using our framework account for local syntactic structure, term
alignments and lexical-semantic typed variations in a unified approach.

Going back to our formal CQI system in Chapter 3, this method does not
directly allow the generalized chaining of rewriting rules:

A −→ C C −→ B
A −→ B

What is does model very well however is local transformations inside the same
sentence, with varying spanning length:

A1 −→ B1 A2 −→ B2
A1A2 −→ B1B2

The next two sections describe the definition of the kernel and its efficient
implementation.

5.1.2 Type-Enriched String Rewriting Kernel
Kernel functions measure the similarity between two elements. Used in machine
learning methods like SVM, they allow complex decision functions to be learned
in classification tasks (Vapnik, 2000). The goal of a well-designed kernel function
is to have a high value when computed on two instances of same label, and a low
value for two instances of different label.

5.1.2.1 String rewriting kernel

String rewriting kernels (Bu et al., 2012) count the number of common rewritings
between two pairs of sentences seen as sequences of words. The rewriting rule
(A) in Figure 5.1 can be viewed as a kind of phrasal paraphrase with linked vari-
ables (Madnani and Dorr, 2010). Rule (A) rewrites (B)’s first sentence into its
second but it does not however rewrite the sentences in (C), which is what we try

118

to fix in this work.
Following the terminology of string kernels, we use the term string and charac-
ter instead of sentence and word. We denote (s, t) ∈ (Σ∗ × Σ∗) an instance of
string rewriting, with a source string s and a target string t, both finite sequences
of elements in Σ the finite set of characters. Suppose that we are given train-
ing data of such instances labeled in {+1,−1}, for paraphrase/non-paraphrase or
entailment/non-entailment in applications. We can use a kernel method to train
on this data and learn to automatically classify unlabeled instances. A kernel on
string rewriting instances is a map:

K : (Σ∗ × Σ∗)× (Σ∗ × Σ∗)→ R

such that for all (s1, t1), (s2, t2) ∈ Σ∗ × Σ∗,

K((s1, t1), (s2, t2)) = 〈Φ(s1, t1),Φ(s2, t2)〉 (5.1)

where Φ maps each instance into a high dimension feature space. Kernels al-
low us to avoid the potentially expensive explicit representation of Φ through
the inner product space they define. The purpose of the string rewriting kernels
is to measure the similarity between two pairs of strings in term of the num-
ber of rewriting rules of a set R that they share. Φ is thus naturally defined by
Φ(s, t) = (φr(s, t))r∈R with φr(s, t) = n the number of contiguous substring
pairs of (s, t) that rewriting rule r matches.

5.1.2.2 Typed rewriting rules

Let the wildcard domain D ⊆ Σ∗ be the set of strings which can be replaced
by wildcards. We now present the formal framework of the type-enriched string
rewriting kernels.
Let Γp be the set of pattern types and Γv the set of variable types.
To a type γp ∈ Γp, we associate the typing relation

γp≈ ⊆ Σ× Σ.
To a type γv ∈ Γv,we associate the typing relation γv

; ⊆ D ×D.
Together with the typing relations, we call the association of Γp and Γv the typing
scheme of the kernel. Let Σp be defined as

Σp =
⋃
γ∈Γ
{[a|b] | ∃a, b ∈ Σ, a

γ
≈ b} (5.2)

We finally define typed rewriting rules. A typed rewriting rule is a triple r =
(βs, βt, τ), where βs, βt ∈ (Σp ∪ {∗})∗ denote source and target string typed pat-
terns and τ ⊆ ind∗(βs)× ind∗(βt) denotes the alignments between the wildcards

119

in the two string patterns. Here ind∗(β) denotes the set of indices of wildcards in
β.
We say that a rewriting rule (βs, βt, τ) matches a pair of strings (s, t) if and only
if the following conditions are true:

• string patterns βs, resp. βt, can be turned into s, resp. t, by:

– substituting each element [a|b] of Σp in the string pattern with an a or
b (∈ Σ)

– substituting each wildcard in the string pattern with an element of the
wildcard domain D

• ∀(i, j) ∈ τ , s, resp. t, substitutes the wildcards at index i, resp. j, by
s∗ ∈ D, resp. t∗, such that there exists a variable type γ ∈ Γv with s∗

γ
; t∗.

A type-enriched string rewriting kernel (TESRK) is simply a string rewriting ker-
nel as defined in Equation 5.1 but with R a set of typed rewriting rules. This class
of kernels depends on wildcard domain D and the typed rewriting rules R which
can be tuned to allow for more flexibility in the matching of pairs of characters in
a rewriting rule.
Within this framework, the k-gram bijective string rewriting kernel (kb-SRK) is
defined by the wildcard domain D = Σ and the ruleset

R = {(βs, βt, τ) | βs, βt ∈ (Σp ∪ {∗})k, τ bijective}

under Γp = Γv = {id} with a
id≈ b, resp. a id

; b, if and only if a = b.
We now present an example of how kb-SRK is applied to real pairs of sen-

tences, what its limitations are and how we can deal with them by reworking its
typing scheme. Let us consider again Figure 5.1, (A) is a rewriting rule with βs =
(heard, ∗, ∗), βt = (∗, was, ∗), τ = {(2, 1); (3, 3)}. Each string pattern has the
same length, and pairs of wildcards in the two patterns are aligned bijectively.
This is a valid rule for kb-SRK. It matches the pair of strings (B): each aligned
pair of wildcards is substituted in source and target sentences by the same word
and string patterns of (A) can indeed be turned into pairs of substrings of the sen-
tences. However, it cannot match the pair of sentences (C) in the original kb-SRK.

We change Γp to {hypernym, id} where a
hypernym
≈ b if and only if a and b have

a common hypernym in WordNet. And we change Γv to Γv = {same_pronoun,
entailment, id} where a same_pronoun

; b if and only if a and b are a pronoun of the

120

same person and same number, and a entailment
; b if and only if verb a has a rela-

tion of entailment with b in WordNet.
By redefining the typing scheme, rule (A) can now match (C).

5.1.3 Computing TESRK
5.1.3.1 Formulation

The k-gram bijective string rewriting kernel can be computed efficiently (Bu et al.,
2012). We show that we can compute its type-enriched equivalent at the price
of a seemingly insurmountable loosening of theoretical complexity boundaries.
Experiments however show that its computing time is of the same order as the
original kernel.
A type-enriched kb-SRK is parameterized by k the length of k-grams, and its
typing scheme the sets Γp and Γv and their associated relations. The annotations
of Γp and Γv to Kk and K̄k will be omitted for clarity and because they typically
will not change while we test different values for k.
We rewrite the inner product in Equation 5.1 to better fit the k-gram framework:

Kk((s1, t1), (s2, t2)) =
∑

αs1 ∈k-grams(s1)
αt1 ∈k-grams(t1)

∑
αs2 ∈k-grams(s2)
αt2 ∈k-grams(t2)

K̄k((αs1 , αt1), (αs2 , αt2)) (5.3)

where K̄k is the number of different rewriting rules which match two pairs of
k-grams (the same rule cannot trigger twice in k-gram substrings):

K̄k((αs1 , αt1), (αs2 , αt2)) =
∑
r∈R

1r(αs1 , αt1)1r(αs2 , αt2) (5.4)

with 1r the indicator function of rule r: 1 if r matches the pair of k-grams, 0 oth-
erwise.
Computing Kk as defined in Equation 5.3 is obviously intractable. There is
O((n − k + 1)4) terms in the sum, where n is the length of the longest string,
and each term involves enumerating every rewriting rule in R.

5.1.3.2 Computing K̄k in type-enriched kb-SRK

Enumerating all rewriting rules in Equation 5.4 is itself intractable: there are more
than |Σ|2k rules without wildcards, where |Σ| is conceivably the size of a typical
lexicon. In fact, we just have to constructively generate the rules which substitute

121

their string patterns correctly to simultaneously produce both pairs of k-grams
(αs1 , αt1) and (αs2 , αt2).

Let the operator ⊗ be such that α1 ⊗ α2 = ((α1[1], α2[1]), ..., (α1[k], α2[k])).
This operation is generally known as zipping in functional programming. We
use the function CountPerfectMatchings computed by Algorithm 1 to recursively
count the number of rewriting rules matching both (αs1 , αt1) and (αs2 , αt2). The
workings of the algorithm will make clearer why we can compute K̄k with the
following formula:

K̄k((αs1 , αt1), (αs2 , αt2)) = CountPerfectMatchings(αs1⊗αs2 , αt1⊗αt2) (5.5)

Algorithm 1 takes as input remaining character pairs in αs1 ⊗ αs2 and αt1 ⊗ αt2 ,
and outputs the number of ways they can substitute aligned wildcards in a match-
ing rule.
First (lines 2 and 3) we have the base case where both remaining sets are empty.
There is exactly 1 way the empty set’s wildcards can be aligned with each other:
nothing is aligned. In lines 4 to 9, there is no source pairs anymore, so the al-
gorithm continues to deplete target pairs as long as they have a common pattern
type, i.e. as long as they do not have to substitute a wildcard. If a candidate wild-
card is found, as the opposing set is empty, we cannot align it and we return 0.
In the general case (lines 11 to 19), consider the first character pair (a1, a2) in the
reminder of αs1 ⊗ αs2 in line 12. What follows in the computation depends on its
types. Every character pair in αt1 ⊗ αt2 that can be paired through variable types
with (a1, a2) (lines 15 to 19) is a new potential wildcard alignment, so we try all
the possible alignment and recursively continue the computation after removing
both aligned pairs. And if (a1, a2) does not need to substitute a wildcard because
it has common pattern types (lines 13 and 14), we can choose to not create any
wildcard pairing with it and ignore it in the recursive call.
This algorithm enumerates all configurations such that each character pair has a
common pattern type or is matched 1-for-1 with a character pair with common
variable types, which is exactly the definition of a rewriting rule in TESRK.

This problem is actually equivalent to counting the perfect matchings of the bi-
partite graph of potential wildcards. It has been shown intractable (Valiant, 1979)
and Algorithm 1 is a naive recursive algorithm to solve it. In our implementation
we represent the graph with its biadjacency matrix, and if our typing relations are
independent of k, the function has a O(k) time complexity without including its
recursive calls. The number of recursive calls can be greater than k!2 which is the
number of perfect matchings in a complete bipartite graph of 2k vertices. In our

122

Algorithm 1: Counting perfect matchings
1 CountPerfectMatchings(remS, remT)

Data: remS: remaining char. pairs in source
remT: remaining char. pairs in target
graph: αs1 ⊗ αs2 and αt1 ⊗ αt2 as a bipartite graph, not added in the
arguments to avoid cluttering the recursive calls
ruleSet: Γp and Γv
Result: Number of rewriting rules matching (αs1 , αt1) and (αs2 , αt2)

2 if remS == ∅ and remT == ∅ then
3 return 1;
4 else if remS == ∅ then
5 (b1, b2) = remT.first();

6 if ∃γ ∈ Γp | b1
γ
≈ b2 then

7 return CountPerfectMatchings(∅, remT - {(b1, b2)});
8 else
9 return 0;

10 else
11 result = 0;
12 (a1, a2) = remS.first();

13 if ∃γ ∈ Γp | a1
γ
≈ a2 then

14 res += CountPerfectMatchings(remS - {(a1, a2)}, remT);

15 for (b1, b2) ∈ remT
16 | ∃γ ∈ Γv | a1

γ
; b1 and a2

γ
; b2 do

17 res += CountPerfectMatchings(
18 remS - {(a1, a2)},
19 remT - {(b1, b2)}
20);

123

Figure 5.2: Bipartite graph of character pairs, with edges between potential wild-
cards

experiments on linguistic data however, we observed a linear number of recursive
calls for low values of k, and up to a quadratic number for k > 10 –which is way
past the point where the kernel becomes ineffective.

As an example, Figure 5.2 shows the zipped k-grams for source and target as
a bipartite graph with 2k vertices and potential wildcard edges. Assuming that
vertices (a, a) and (b, b′) have common pattern types, they can be ignored as in
lines 7 and 14. (c1, c2) to (f1, f2) however must substitute wildcards in a matching
rewriting rule. If we align (c1, c2) with (e1, e2) in line 16, the recursive call will
return 0 because the other two pairs cannot be aligned. A valid rule is generated
if c’s are paired with f ’s and d’s with e’s. This kind of choices is the main source
of computational cost. This problem did not arise in the original kb-SRK because
of the transitivity of its only type (identity). In type-enriched kb-SRK, wildcard
pairing is less constrained.

5.1.3.3 Computing Kk

Even with an efficient method for computing K̄k, implementingKk directly by ap-
plying Equation 5.3 remains impractical. The main idea is to efficiently compute a
reasonably sized set C of elements ((αs1 , αt1), (αs2 , αt2)) which has the essential
property of including all elements such that K̄k((αs1 , αt1), (αs2 , αt2)) 6= 0.
By definition of C, we can compute efficiently

Kk((s1, t1), (s2, t2)) =
∑

((αs1 ,αs2),(αt1 ,αt2))∈C
K̄k((αs1 , αt1), (αs2 , αt2)) (5.6)

There are a number of ways to do it, with a trade-off between computation time
and number of elements in the reduced domain C. The main idea of our own algo-
rithm is that K̄k((αs1 , αt1), (αs2 , αt2)) = 0 if the character pairs (a1, a2) ∈ αs1 ⊗
αs2 with no common pattern type are not all matched with pairs (b1, b2) ∈ αt1⊗αt2

124

such that a1
γ
; b1 and a2

γ
; b2 for some γ ∈ Γv. This is conversely true for char-

acter pairs in αt1 ⊗ αt2 with no common pattern type. More simply, character
pairs with no common pattern type are mismatched and have to substitute a wild-
card in a rewriting rule matching both (αs1 , αt1) and (αs2 , αt2). But introducing
a wildcard on one side of the rule means that there is a matching wildcard on the
other side, so we can eliminate k-gram quadruples that do not fill this wildcard
inclusion. This filtering can be done efficiently and yields a manageable number
of quadruples on which to compute K̄k.

Algorithm 2 computes a set C to be used in Equation 5.6 for computing the
final value of kernel Kk. In our experiments, it efficiently produces a reasonable
number of inputs. All maps in the algorithm are maps to multisets, and multisets
are used extensively throughout. Multisets are an extension of sets where elements
can appear multiple times, the number of times being called the multiplicity. Typ-
ically implemented as hash tables from set elements to integers, they allow for
constant-time retrieval of the number of a given element. Union (∪) and intersec-
tion (∩) have special definitions on multisets. If 1A(x) is the multiplicity of x in
A, we have 1A∪B(x) = max(1A(x),1B(x)) and 1A∩B(x) = min(1A(x),1B(x)).

125

Algorithm 2: Computing a set including all elements on which K̄k 6= 0
Data: s1, t1, s2, t2 strings, and k an integer
Result: Set C which include all inputs such that K̄k 6= 0

1 Initialize maps eis→t and maps eit→s, for i ∈ {1, 2};
2 for i ∈ {1, 2} do
3 for a ∈ si, b ∈ ti | a

γ
; b, γ ∈ Γv do

4 eis→t[a] += (b, γ); eit→s[b] += (a, γ);

5 ws→t, aPt = OneWayInclusion(s1, s2, t1, t2, e
1
s→t, e

2
s→t);

6 wt→s, aPs = OneWayInclusion(t1, t2, s1, s2, e
1
t→s, e

2
t→s);

7 Initialize multiset res;
8 for (αs1 , αs2) ∈ aPs do
9 for (αt1 , αt2) ∈ aPt do

10 res += ((αs1 , αs2), (αt1 , αt2));

11 res = res ∪ws→t ∪ wt→s.map(swap);
12 return res;
13

14 OneWayInclusion(s1, s2, t1, t2, e
1, e2) Initialize map d multisets

resWildcards, resAllPatterns;
15 for (αs1 , αs2) ∈ kgrams(s1)× kgrams(s2) do
16 for (b1, b2) | ∃γ ∈ Γv, (a1, a2) ∈ αs1 ⊗ αs2 , (bi, γ) ∈ ei[ai] ∀i ∈ {1, 2}

do
17 d[(b1, b2)] += (αs1 , αs2);

18 for (αt1 , αt2) ∈ kgrams(t1)× kgrams(t2) do

19 for (b1, b2) ∈ αt1 ⊗ αt2 | b1
γ

6= b2∀γ ∈ Γp do
20 if compatWkgrms not initialized then
21 Initialize multiset compatWkgrms = d[(b1, b2)];
22 compatWkgrms = compatWkgrms ∩ d[(b1, b2)];
23 if compatWkgrms not initialized then
24 resAllPatterns += (αt1 , αt2);

25 for (αs1 , αs2) ∈ compatWkgrms do
26 resWildcards+=((αs1 , αs2), (αt1 , αt2));

27 return (resWildcards, resAllPatterns);

126

Let us now comment on how the algorithm unfolds. In lines 1 to 4, we index
characters in source strings by characters in target strings which have common
variable types, and vice versa. It allows in lines 15 to 19 to quickly map a character
pair to the set of opposing k-gram pairs with a matching –in the sense of variable
types– character pair, i.e. potential aligned wildcards. In lines 20 to 28 we keep
only the k-gram quadruples whose wildcard candidates (character pairs with no
common pattern) from one side all find matches on the other side. We do not
check for the other inclusion, hence the name of the function OneWayInclusion.
At line 26, we did not find any character pair with no common pattern, so we save
the k-gram pair as "all-pattern". All-pattern k-grams will be paired in lines 8 to 10
in the result. Finally, in line 11, we add the union of one-way compatible k-gram
quadruples; calling swap on all the pairs of one set is necessary to consistently
have sources on the left side and targets on the right side in the result.

5.1.4 Experiments
5.1.4.1 Systems

We experimented on three tasks: paraphrase identification, recognizing textual
entailment and answer sentence selection. The setup we used for all experiments
was the same save for the few parameters we explored such as: k, and typing
scheme. We implemented 2 kernels, kb-SRK, henceforth simply denoted SRK,
and the type-enriched kb-SRK, denoted TESRK. All sentences were tokenized
and POS-tagged using OpenNLP (Morton et al., 2005). Then they were stemmed
using the Porter stemmer (Porter, 2001) in the case of SRK. Various other pre-
processing steps were applied in the case of TESRK: they are considered as types
in the model and are detailed in Table 5.1. We used LIBSVM (Chang and Lin,
2011) to train a binary SVM classifier on the training data with our two kernels.
The default SVM algorithm in LIBSVM uses a parameter C, roughly akin to a reg-
ularization parameter. We 10-fold cross-validated this parameter on the training
data, optimizing with a grid search for f-score, or MRR for question-answering.
All kernels were normalized using K̃(x, y) = K(x,y)√

K(x,x)
√
K(y,y)

. We denote by "+"

a sum of kernels, with normalizations applied both before and after summing. Fol-
lowing Bu et al. (Bu et al., 2012) experimental setup, we introduced an auxiliary
vector kernel denoted PR of features named unigram precision and recall, de-
fined in (Wan et al., 2006). In our experiments a linear kernel seemed to yield the
best results. Our Scala implementation of kb-SRKs has an average throughput of
about 1500 original kb-SRK computations per second, versus 500 type-enriched

127

Type Typing relation on words (a, b) Tool/resources
id same surface form and tag OpenNLP tagger
idMinusTag same surface form OpenNLP tokenizer
lemma same lemma WordNetStemmer
stem same stem Porter stemmer
synonym, antonym words are [type] WordNet
hypernym, hyponym b is a [type] of a WordNet
entailment, holonym
ne tagged with the same NE BBN Identifinder
lvhsn words at edit distance of 1 Levenshtein distance

Table 5.1: Types

kb-SRK computations per second on a 8-core machine. It typically takes a few
hours on a 32-core machine to train, cross-validate and test on a full dataset.
Finally, Table 5.1 presents an overview of our types with how they are defined and
implemented. Every type can be used both as a pattern type or as a variable type,
but the two roles are different. Pattern types are useful to unify different surface
forms of rewriting rules that are semantically equivalent, i.e. having semantically
similar patterns. Variable types are useful for when the semantic relation between
2 entities across the same rewriting is more important than the entities themselves.
That is why some types in Table 5.1 are inherently more fitted to be used for one
role rather than the other. For example, it is unlikely that replacing a word in a
pattern of a rewriting rule by one of its holonyms will yield a semantically similar
rewriting rule, so holonym would not be a good pattern type for most applica-
tions. On the contrary, it can be very useful in a rewriting rule to type a wildcard
link with the relation holonym, as this provides constrained semantic roles to the
linked wildcards in the rule, thus holonym would be a good variable type.

5.1.4.2 Paraphrase identification

Paraphrase identification asks whether two sentences have the same meaning. The
dataset we used to evaluate our systems is the MSR Paraphrase Corpus (Dolan
and Brockett, 2005), containing 4,076 training pairs of sentences and 1,725 test-
ing pairs. For example, the sentences "An injured woman co-worker also was
hospitalized and was listed in good condition." and "A woman was listed in good
condition at Memorial’s HealthPark campus, he said." are paraphrases in this
corpus. On the other hand, "’There are a number of locations in our community,

128

Paraphrase system Accuracy F-score
All paraphrase 66.5 79.9
Wan et al. (2006) 75.6 83.0
Bu et al. (2012) 76.3 N/A
Socher et al. (2011) 76.8 83.6
Madnani et al. (2012) 77.4 84.1
PR 73.5 82.1
SRK + PR 76.2 83.6
TESRK 76.6 83.7
TESRK + PR 77.2 84.0

Table 5.2: Evaluation results on MSR Paraphrase

which are essentially vulnerable,’ Mr Ruddock said." and "’There are a range of
risks which are being seriously examined by competent authorities,’ Mr Ruddock
said." are not paraphrases.

We report in Table 5.2 our best results, the system TESRK + PR, defined by
the sum of PR and typed-enriched kb-SRKs with k from 1 to 4, with types Γp =
Γv = {stem, synonym}. We observe that our results are state-of-the-art and in
particular, they improve on the orignal kb-SRK by a good margin. We tried other
combinations of types but it did not yield good results, this is probably due to
the nature of the MSR corpus, which did not contain much more advanced varia-
tions from WordNet. The only statistically significant improvement we obtained
was between TESRK + PR and our PR baseline (p < 0.05). The performances
obtained by all the cited systems and ours are not significantly different in any
statistical sense. We made a special effort to try to reproduce as best as we could
the original kb-SRK performances (Bu et al., 2012), although our implementation
and theirs should theoretically be equivalent.

Figure 5.3 plots the average number of recursive calls to CountPerfectMatch-
ings (algorithm 1) during a kernel computation, as a function of k. Composing
with logk, we can observe whether the empiric number of recursive calls is closer
to O(k) or O(k2). We conclude that this element of complexity is linear for low
values of k, but tends to explode past k = 7. Thankfully, counting common rewrit-
ing rules on pairs of 7-to-10-grams rarely yields non-zero results, so in practice
using high values of k is not interesting.
Figure 5.4 plots the average size of set C computed by algorithm 2, as a func-

129

0 2 4 6 8 10

1

1.2

1.4

1.6

1.8

2

2.2

k

lo
g k

(#
re

cu
rs

iv
e

ca
lls

)

Figure 5.3: Evolution of the number of recursive calls to CountPerfectMatchings
with k

2 4 6 8 10
0

0.5

1

1.5

2

2.5

k

|C
|

Σ
se

nt
en

ce
le

ng
th

s

Figure 5.4: Evolution of the size of C with k

130

RTE system Accuracy
All entailments 51.2
Heilman and Smith (2010) 62.8
Bu et al. (2012) 65.1
Zanzotto et al. (2007) 65.8
Hickl et al. (2006) 80.0
PR 61.8
TESRK (All) 62.1
SRK + PR 63.8
TESRK (Syn) + PR 64.1
TESRK (All) + PR 66.1

Table 5.3: Evaluation results on RTE-3

tion of k (divided by the sum of lengths of the 4 sentences involved in the kernel
computation). We can observe that this quantity is small, except for a peak at low
values of k, which is not an issue because the computation of K̄k is very fast for
those values of k.

5.1.4.3 Recognizing textual entailment

Recognizing Textual Entailment asks whether the meaning of a sentence hypothe-
sis can be inferred by reading a sentence text. The dataset we used to evaluate our
systems is RTE-3. Following similar work (Heilman and Smith, 2010; Bu et al.,
2012), we took as training data (text, hypothesis) pairs from RTE-1 and RTE-2’s
whole datasets and from RTE-3’s training data, which amounts to 3,767 sentence
pairs. We tested on RTE-3 testing data containing 800 sentence pairs. For exam-
ple, a valid textual entailment in this dataset is the pair of sentences "In a move
widely viewed as surprising, the Bank of England raised UK interest rates from
5% to 5.25%, the highest in five years." and "UK interest rates went up from 5% to
5.25%.": the first entails the second. On the other hand, the pair "Former French
president General Charles de Gaulle died in November. More than 6,000 people
attended a requiem mass for him at Notre Dame cathedral in Paris." and "Charles
de Gaulle died in 1970." does not constitute a textual entailment.

We report in Table 5.3 our best results, the system TESRK (All) + PR, defined
by the sum of PR, 1b-SRK and typed-enriched kb-SRKs with k from 2 to 4, with
types Γp = {stem, synonym} and Γv = {stem, synonym, hypernym, hyponym,

131

entailment, holonym}. Our results are to be compared with systems using tech-
niques and resources of similar nature, but as reference the top performance at
RTE-3 is still reported. This time we did not manage to fully reproduce Bu et al.
2012’s performance, but we observe that type-enriched kb-SRK greatly improves
upon our original implementation of kb-SRK and outperforms their system any-
way. Combining TESRK and the PR baseline yields significantly better results
than either one alone (p < 0.05), and performs significantly better than the system
of (Heilman and Smith, 2010), the only one which was evaluated on the same three
tasks as us (p < 0.10). We tried with less types in our system TESRK (Syn) + PR
by removing all WordNet types but synonyms but got lower performance. This
seems to indicate that rich types indeed help capturing more complex sentence
rewritings. Note that we needed for k = 1 to replace the type-enriched kb-SRK
by the original kernel in the sum, otherwise the performance dropped significantly.
Our conclusion is that including richer types is only beneficial if they are captured
within a context of a couple of words and that including all those variations on
unigrams only add noise.

5.1.4.4 Answer sentence selection

Answer sentence selection is the problem of selecting among single candidate
sentences the ones containing the correct answer to an open-domain factoid ques-
tion. The dataset we used to evaluate our system on this task was created by
(Wang et al., 2007) based on the QA track of past Text REtrieval Conferences
(TREC-QA)1. The training set contains 4718 question/answer pairs, for 94 ques-
tions, originating from TREC 8 to 12. The testing set contains 1517 pairs for 89
questions. As an example, a correct answer to the question:

(38) What do practitioners of Wicca worship?

is

(39) An estimated 50,000 Americans practice Wicca, a form of polytheistic na-
ture worship.

On the other hand, the answer candidate:

(40) When people think of Wicca, they think of either Satanism or silly mumbo
jumbo.

1Available at http://nlp.stanford.edu/mengqiu/data/qg-emnlp07-data.tgz

132

System MAP MRR
Random baseline 0.397 0.493
Wang et al. (2007) 0.603 0.685
Heilman and Smith (2010) 0.609 0.692
Wang and Manning (2010) 0.595 0.695
Yao et al. (2013) 0.631 0.748
Yih et al. (2013) LCLR 0.709 0.770
IDF word-count (IDF) 0.596 0.650
SRK 0.609 0.669
SRK + IDF 0.620 0.677
TESRK (WN) 0.642 0.725
TESRK (WN+NE) 0.656 0.744
TESRK (WN) + IDF 0.678 0.759
TESRK (WN+NE) + IDF 0.672 0.768

Table 5.4: Evaluation results on QA

is incorrect. Sentences with more than 40 words and questions with only pos-
itive or only negative answers were filtered out (Yao et al., 2013a). The average
fraction of correct answers per question is 7.4% for training and 18.7% for testing.
Performances are evaluated as for a re-ranking problem, in term of Mean Aver-
age Precision (MAP) and Mean Reciprocal Rank (MRR). We report our results
in Table 5.4. We evaluated several combinations of features. IDF word-count
(IDF) is a baseline of IDF-weighted common word counting, integrated in a lin-
ear kernel. Then we implemented SRK and TESRK (with k from 1 to 5) with
two typing schemes: WN stands for Γp = {stem, synonym} and Γv = {stem,
synonym, hypernym, hyponym, entailment, holonym}, and WN+NE adds type
ne to both sets of types. We finally summed our kernels with the IDF baseline
kernel. We observe that types which make use of WordNet variations seem to in-
crease the most our performance. Our assumption was that named entities would
be useful for question answering and that we could learn associations between
question type and answer type through variations: NE does seem to help a little
when combined with WN alone, but is less useful once TESRK is combined with
our baseline of IDF-weighted common words. Overall, typing capabilities allow
TESRK to obtain way better performances than SRK in both MAP and MRR,
and our best system combining all our features is comparable to state-of-the-art

133

systems in MRR, and significantly outperforms SRK + IDF, the system without
types (p < 0.05).

5.1.5 Discussion
Lodhi et al. (Lodhi et al., 2002) were among the first in NLP to use kernels:
they apply string kernels which count common subsequences to text classifica-
tion. Sentence pair classification however require the capture of 2 types of links:
the link between sentences within a pair, and the link between pairs. Zanzotto et
al. (Zanzotto et al., 2007) used a kernel method on syntactic tree pairs. They ex-
panded on graph kernels in (Zanzotto et al., 2010). Their method first aligns tree
nodes of a pair of sentences to form a single tree with placeholders. They then
use tree kernel (Moschitti, 2006) to compute the number of common subtrees of
those trees. Bu et al. (Bu et al., 2012) introduced a string rewriting kernel which
can capture at once lexical equivalents and common syntactic dependencies on
pair of sentences. All these kernel methods require an exact match or assume
prior partial matches between words, thus limiting the kind of learned rewriting
rules. Our contribution addresses this issue with a type-enriched string rewriting
kernel which can account for lexico-semantic variations of words. Limitations of
our rewriting rules include the impossibility to skip a pattern word and to replace
wildcards by multiple words.

Some recent contributions (Chang et al., 2010; Wang and Manning, 2010) also
provide a uniform way to learn both intermediary representations and a decision
function using potentially rich feature sets. They use heuristics in the joint learn-
ing process to reduce the computational cost, while our kernel approach with a
simple sequential representation of sentences has the benefit of efficiently com-
puting an exact number of common rewriting rules between rewriting pairs. This
in turn allows to precisely fine-tune the shape of desired rewriting rules through
the design of the typing scheme.

A strong point of our work is its evaluation on 3 tasks, with state-of-the-art
results in two of them. To our knowledge, the only other system evaluated on
the same three tasks is that of Heilman and Smith (2010), which we outperform
significantly on all tasks. Let us look closer to the task of RTE, where we are
far behind the top result: Hickl et al. (2006) has an accuracy of 80.0% on RTE
3, while our system only tops at 66.1%. Already mentioned in our literature re-
view, Hickl et al. (2006) include many features we do not have, like extra pre-
processing: semantic parsing, coreference resolution, modality, polarity, factivity,
or extra resources, like their paraphrase database. The inclusion of paraphrases as

134

a resource is something this current kernel method is not capable of, but some-
thing we thought about and would like to explore going forward. The problem is
that our current types are restricted to single words, and a paraphrase would be
a kind of typing spanning several words. This calls for either a redesign of the
type system and as such, of the entire computation method, or maybe more inter-
estingly, for a clever combination of several types to encode the application of a
paraphrase on several words.

We can also identify some clear limitations of our system. It is expensive in
term of computing power – it could not run standard evaluations in acceptable
times on a current personal computer – and does not scale well with the number
of training examples. This is a huge downside at a time where data is becoming
more and more available. Paradoxically enough, the way the kernel is defined also
implies a good amount of training examples, otherwise rewriting rules occur too
sparsely to be really learned by the model.

In the next section, we look to keep this idea of rewritings backed up by
lexical-semantic resources, but we instead use a tree edit model instead of a kernel.
From the edit sequences, we extract features to be used in a classic logistic regres-
sion classifier, which is much more scalable. The edit-based features, heuristics
on trees and the resources we can include allow this method to be effective even
with few training examples.

5.2 Tree Edit Beam Search
Tree-edit methods are easy to conceptualize and run: a set of elementary oper-
ations on tree is applied iteratively to a source tree to transform it into a target
tree. Generally, to solve a decision problem, edit sequences – i.e. a succession
of edit operations – are extracted and the related features are used in a machine
learning classifier. But the crux of such methods is not in the definition of the
edit operations, nor the definition of the edit sequence features, as these are rather
straight-forward. The hard part is to know which edit to apply at which moment,
among a lot of possible transformations.

In this section, we present an algorithm called Tree Edit Beam Search. “Beam
search” precisely refers to the method for picking the right edit operations. The
algorithm starts from a source tree and applies a complete set of classic edits to
form as many new trees. As this is usually too high a number of trees to handle,

135

Edit operation Description
Delete(d: Tree) Delete the node d and replace it with its children.
Insert(i: Word, p: Tree) Insert the word i under its new parent p.
Rename(t: Tree, w: Word) Replace the word attached to the node t with w.
Move(m: Tree, op: Tree, np: Tree) Move the subtree m from under op to under np.

Table 5.5: Edit operations on trees

for the next step of editing we only keep the most promising trees. A tree kernel
evaluates the distance from one of these trees to the target tree. We extract a
limited number of edit sequences from the source tree to the target tree. Finally,
features are computed and used in a logistic regression classifier.

This method has been evaluated on the task of reading comprehension tests,
“Entrance exams” at CLEF 2015 and published at the related conference (Gleize
and Grau, 2015a). We detail in this section the features used, and especially the
resources we leveraged. Our results at CLEF 2015 are mentioned, but the full
system is further detailed in Chapter 6.

5.2.1 Tree edit model
5.2.1.1 The model

The basis of this method is the tree edit model. Edit operations are applied one
at a time, to produce a new tree per edit. The process is then iterated on the
new structures, and the list of consecutive edit operations applied in this way
constitutes the edit sequence. Figure 5.5 shows an example of an edit sequence.
Edit operations are generally simple transformations of the tree applied locally to
one or at most 2 nodes. The set we use is very classic, and is shown in Table
5.5. The “delete”, “insert” and “rename” operations are the minimal operations
in any edit model. The “move” operation is more unusual and allows to make
seemingly important changes to the sentence just by attaching one node from its
former parent to a new parent. Because of how trees work, a move operation can
indeed change the position of a large span of words (all the descendants of the
moved node). We note that the algorithm does not use the dependency labels that
are found on the relations between nodes in the tree. However, the features will
use them.

It is important to keep in mind that we want to apply a lot of those edit oper-
ations to produce a lot of different trees. We will be able to discard most of them

136

Figure 5.5: Examples of successive edit operations

eventually, as shown in the next part, but a good model should be able to handle
as most edits as possible, to not miss any useful edit that might lead easily to the
target tree. This implies the necessity of an efficient memory structure.

5.2.1.2 The implementation

We initially thought about encoding all edits in a single tree with “choice” nodes,
nodes that would imply a choice between several edits or the original node at this
position. However, we realized that it was not possible to do so in a simple way:
indeed, subsequent edits depend on the edits applied beforehand, and as such,
the order in which they are applied cannot be determined freely. The obvious
examples are that we cannot delete a node twice, nor rename a node we deleted
before, nor delete a node that we did not insert before.

So we had to represent each tree in a very efficient way. What we do is rep-
resent the children of a node as an immutable indexed sequence called a vector.
Vectors are implemented as tries – another tree structure – with a high branching
factor (the branching factor of a tree or a graph is the number of children at each
node). These tries must not be confused with our trees of words however, they
only are the background implementation of the children. Every trie node contains
up to 32 elements of the vector or contains up to 32 other trie nodes. Vectors with
up to 32 elements can be represented in a single node. Vectors with up to 32 * 32
= 1024 elements can be represented with a single indirection. For all vectors of
reasonable size, an element selection involves up to 5 primitive array selections.
So element access is effectively constant time. Updating an element in the mid-
dle of a vector can be done by copying the node that contains the element, and
every node that points to it, starting from the root of the trie. This means that a
functional update creates between one and five nodes that each contain up to 32 el-
ements or subtrees. While this is certainly more expensive than an in-place update

137

representing the edit operation in a tree as we intended before, this is much more
efficient than a full copy of the tree. Considering we only work on trees with small
branching factors (no linguistic tree node has more than 32 children), applying an
edit operation is pretty much done in constant time and space, and especially does
not depend on the size of the tree and the number of already applied edits. Con-
cretely, we did not have to implement the vector structure, as Vectors are one of
the standard data structures in the programming language we use, Scala; we just
had to identify that it indeed fulfills our needs nicely.

We have defined the edit operations and have an efficient way of representing
them in memory, but we still need to pick the ones to explore as it is too expensive
in time to consider all possible edit sequences. As we are technically searching
for the target tree, exploring many other trees along the way, this problem can be
seen as a search on graph.

5.2.2 Beam search
Starting from a tree at any point in the algorithm, there are many possible edits to
apply: each node can be deleted, each node can be renamed to any arbitrary label,
any arbitrary node can be inserted and any subtree can be moved to any remaining
node. We will apply simple heuristics to limit the number of edits to consider at
each step (for example, we do not need to insert nodes that do not help reach the
target tree, and we do not have to rename or delete a node if it is already present
in the target tree), but a lot of choices remain. As the number of trees increases
exponentially as we do more edit steps, we rapidly become unable to handle the
number of possible trees in the search space. Thus, we need some kind of efficient
exploration method.

Beam search is an optimization of best-first search that reduces its memory
requirements. It uses breadth-first search to build its search space. At each step
of the search, we generate all possible edits of the trees at the current step, sort-
ing them in increasing order of some heuristic cost function. However, we only
store a predetermined number of best trees at each level, called the beam width.
Only those trees are edited next and the rest is discarded. This method allows to
fine-tune via the beam width the probability to find useful edit sequences and the
memory and time costs. Figure 5.6 shows an example of how beam search re-
duces the search space. On the figure, the circles represent each of the trees, with
the root circle being the source tree. Using a beam width of 2, at each step we
only keep the 2 most promising trees. We see that each edit tree is ranked using
the heuristic cost function (that we will present below), and only the top 2 trees

138

Figure 5.6: Beam search with a beam width of 2

are further edited. Crossed out circles are all the trees that the algorithm did not
have to explore at any point. The effective search space is reduced to the narrow
colored band, the so-called “beam”.

In practice, parent trees actually re-enter the pool of possible trees to keep in
the beam-search. If their heuristic cost is somehow lower than that of some of
their children, they will have priority in the next beam search step. This is much
less easy to represent graphically, and one can imagine we can add another edit
operation that alters nothing so as to keep the original trees in the search.

The beam width is obviously a parameter of this search procedure and has to
be chosen carefully, but what is much more important to address is the heuristic
cost function. In our case, it has to measure the distance from a tree to the target
tree, so as to evaluate how far we still have to go. The closest trees to the target
tree will have priority in the beam search. We use the Partial Tree Kernel as the
heuristic. It is defined by Moschitti (2006) to compute a similarity between trees.
As a tree kernel, it classically computes the number of common subtrees between
2 trees, but this particular version of the tree kernel is adapted to n-ary trees,
which is what dependency structures are. The kernel computation is normalized
with K̃(x, y) = K(x,y)√

K(x,x)
√
K(y,y)

, for K the kernel and x, y the trees.

We limit the number of edits at each step by only testing the ones likely to
help reach the target tree.

• Only insert/rename a word as many times as needed to match its count in
the target tree

• Only move a node under a new parent so that the same parent-child relation
is present in the target tree

139

• Delete a word only as long as there are enough remaining occurrences in
the tree to match the number of occurrences in the target tree

The beam search runs until 10 different edit sequences leading to the target
tree are found. We note that there is always such an edit sequence: delete all the
nodes of the source tree, then insert all the nodes of the target tree.

5.2.3 Feature extraction
The goal is to classify an edit sequence with a machine-learned classifier. We
experiment on reading comprehension tests, where the target tree is the tree of
answer choice. The only gold standard annotation available is if the answer is
correct or not. The design of features is thus primordial. First we describe our pre-
processing tools, then the resources we used, and finally we present the complete
set of features.

5.2.3.1 Pre-processing

We use Stanford CoreNLP as the main Natural Language annotation tool. Each
sentence from the document, questions or answer choices is tagged with Part-
Of-Speech (Toutanova et al., 2003) and syntactically parsed (Klein and Manning,
2003). In addition, a coreference resolution system (Recasens et al., 2013) is ap-
plied on the whole document as well as question-answer pairs. We add to this
coreference resolution process manual rules specific to the task (“Entrance ex-
ams”) and its dataset: we replace first person pronouns in non-dialogue context
with “the author” or “the writer”, depending on which is used in the questions.

Also, contrary to previous methods, we have to handle multi-sentence texts.
The answer choice is a single sentence, but the relevant passages in the document
can span several sentences. We fuse the trees of the passages together by linking
their roots with a followed-by arc which materializes in the single remaining graph
that a sentence is followed by another in the passage.

5.2.3.2 Resources

First, we use the following WordNet relations for lexical-semantic variations: syn-
onymy, antonymy, hypernymy and hyponymy2. These are not added right away

2We already described WordNet in this dissertation so we will not dwell on it further in this
section

140

to the source or target trees before the tree-edit run, but will be considered when
computing the features.

We also use ConceptNet (Liu and Singh, 2004) to enrich the source tree. Con-
ceptNet is a semantic triplet base containing relations about common-knowledge
of the world, designed to be used especially for machine understanding of text
written by people. It is built from nodes representing words or short phrases of
natural language, and labeled relationships between them (the nodes are called
"concepts" for tradition, but they would be better known as "terms".) For example,
ConceptNet contains everyday basic knowledge, like MotivatedByGoal(learn, knowl-
edge): you would learn because you want knowledge. It also contains cultural
knowledge, like UsedFor(saxophone, jazz): a saxophone is used for jazz. Our
assumption is that understanding the documents in the Entrance exams corpus re-
quires a lot of human common-sense, easily acquired by human readers of that
level, but difficult to grasp for computers. So we want to enrich the text with
relations that attempt to fill that gap.

Concepts from ConceptNet are mainly single words, like “saxophone” or “jazz”,
so they are easy to link to our original tree. However, it is not easy to integrate
relations to our graph, because they have labels that are potentially composed of
several words, like UsedFor or MotivatedByGoal. We could split those labels into
words and use those in the graph, but we preferred attaching to the original graph
the parse tree of the surfaceText element of the relations. Surface texts are the
original natural language text that expressed the statement, like “a saxophone is
used for jazz”. We attach the parse tree of these sentences to any concept whose
head word is in the original graph, prior to the tree-edit run. We only retrieve
from ConceptNet relations that are indicative of an entailment relation of any kind,
namely: IsA, PartOf, MemberOf, UsedFor, CapableOf, Causes, HasPrerequisite,
MotivatedByGoal, Desires.

The source tree is now enriched by a lot of most likely useless relations. How-
ever, the tree-edit model will delete these naturally. The features presented in the
following section will record when we use a ConceptNet addition in a more in-
teresting way, like moving it in another part of the graph, or renaming one of its
words.

5.2.3.3 Complete set of features

Most features are counts of specific edit unigrams or bigrams in the edit sequence,
and are summarized in Table 5.6. Pre-processing informations that were not used
in the beam search are used at this point, like dependency relations in the parse

141

tree, coreferences, and whether what we edit was part of the ConceptNet additions
or can be linked in WordNet.

This feature set is interesting when compared to the “features” of the typed
string re-writing kernel presented in Section 5.1 (p. 117). The feature vectors in
the kernel method are intentionally of very high dimension: they represent the
number of occurrencs of every possible k-gram rewriting rule. Our inability to
represent in a concrete way such a feature set is why we use a kernel in the first
place. In this case however, the features are of low dimension. As we have access
to a small amount of training data, a tree-edit model felt like a natural way to both
capture structured rewriting processes on sentences, and to learn how to use all
these rules and resources. In the next section, we briefly describe our experiments
and results to see if this guess turned out to be successful.

5.2.4 Experiments
We used the Tree Edit Beam Search as part of our submission in the Entrance
Exams task of CLEF 2015 (Rodrigo et al., 2015).

5.2.4.1 Data

Our data consist of the trial and test sets at CLEF 2015 Question Answering Track,
Task 2: Entrance Exams. The trial data is composed of the test sets at CLEF
2013 and 2014, each containing a series of 12 texts, and for each of them, 4 to 6
multiple-choice questions to answer, for about 120 questions in total. In the 2015
test set, there are 19 documents, and a total of 89 questions. There are 4 answer
choices possible for each of the questions. This corpus has been extracted from
the Tokyo University Entrance Exam in English as a foreign language.

5.2.4.2 A note on the complete system

The complete system is described in the last chapter of this thesis, but here is a
summary of what we add on top of the Tree Edit Beam Search for it to work on
this task. We implemented a passage ranking method, and the best passages are
turned into trees as input for the tree edit method. We extract features from the
resulting edit sequences as described previously. We train 2 classifiers, one to
validate the answer choice and one to invalidate the answer choice: the features
stay the same, the training data are the ones to vary. We test with 2 different kinds
of classifiers: random forest (Liaw and Wiener, 2002) and logistic regression. The

142

Feature Description
editTotal Total number of edits in the sequence
deleteTotal
deleteVerb
deleteNoun
deleteProperNoun
deleteSubject
deleteObject
deleteRoot
deleteNegation
deleteConceptNet

Number of total delete edits, edits
which delete a verb, a noun, a proper
noun, a subject (indicated by the
subj Stanford dependencies), an ob-
ject, the root of the tree, a negation (in-
dicated by the neg dependency), and
something added to the graph through
ConceptNet

insertTotal
insertVerb
insertNoun
insertProperNoun
insertNegation

Analogous to the above, for insert ed-
its

renameTotal
renameVerb
...
renameSyn
renameAnt
renameHypHyp
renameStrongWordVectorSim
renameCoref
renameNonCoref

Analogous, for rename edits + edits
which rename a word into its syn-
onym/antonym/hypernym/hyponym
in Wordnet, edits which rename a
word into another with strong word
vector similarity, edits which rename
a pronoun into its referent, ...

moveTotal
moveVerb
...
moveConceptNet
moveMoreThan2Nodes

Analogous to the above, for move ed-
its + edits which move more than 2
nodes

All bigram combinations of the above Number of pairs of the successive
given edits in the sequence

dependencyEditSequence Number of pairs of successive edits
applied to 2 nodes in a dependency re-
lation

originalTotal
originalVerb
...

Fraction of the original words, verbs,
nouns, proper nouns, that was not
edited in the sequence

Table 5.6: Features of an edit sequence143

same kind of classifier is used for both validation and invalidation, it just means
that the machine learning algorithm is seen as a kind of parameter of our system.
We pick the answer choice with the best score, taking into account its validation
and invalidation classification.

5.2.4.3 Results

Table 5.7 shows our results on the test data. We officially submitted to the evalu-
ation task only two runs, one with random forest as the learning method and one
with logistic regression. With an accuracy of 0.36, the random forest run obtained
the second best result at the evaluation, behind the run of Laurent et al. (2015), at
0.58. We remind that the random baseline, picking among the 4 answer choices at
random, get 0.25.

We performed further tests only afterward. These tests are ablation tests on
the resources used by the system: WordNet and ConceptNet. Our original system
only performed the enrichment of the tree by ConceptNet relations on passage
trees, not on the trees representing the answer choices. Our intention was for the
answer choice to stay in its original form, so as to not introduce unnecessary noise
in the heuristic cost function of our method. We test the same enrichment on the
tree of the answer choice, in addition to applying it on the passages (“Concept-
Net on answer too”). Then we test by removing ConceptNet relations altogether.
Finally, we also remove WordNet, which means that our system only relies on its
pre-processing tools in this run.

First, we notice that adding ConceptNet relations to the answer directly was
not a good idea, as the performance drops dramatically. The rest of the results
are less clear-cut. Removing WordNet does seem to affect the system negatively,
but not as much as one might think. Removing ConceptNet also decreases the
performance by a small amount.

5.2.5 Discussion
Tree-edit models offer a lot of freedom in the choice of rewriting rules that can be
applied to a sentence. In comparison, the first work we presented in this chapter
seems to restrict its rules more, although types somewhat alleviate the problem.
But this freedom of choice also leads to a huge search space to explore, forcing the
system to use some kind of search heuristic (like our beam search). In contrast, our
first method was computing an exact measure of the number of common rewriting

144

Random forest Logistic regression
Questions answered 89 89
Errors 57 61
Accuracy 0.360 0.315
- ConceptNet on answer too
Accuracy 0.292 0.270
- Without ConceptNet
Accuracy 0.348 0.303
- Without WordNet
Accuracy 0.337 0.292

Table 5.7: Results on Entrance exams at CLEF 2015

rules between sentence pairs. In both cases, it seems quite difficult to analyze in a
qualitative manner which types of rules are really learned by the models.

Tree edit models are popular in the literature, as shown in our literature review,
but the one contribution that is the most similar to us is that of Heilman and Smith
(2010). They use roughly the same set of edit operations. Where our methods dif-
fer is in the choice of search algorithm and the features. They implement a greedy
best-first search, while we use a beam search. The two algorithms are actually not
that different, but the greedy best-first search filters out more potentially good edit
sequences to focus first on the best apparently available (that is the “greedy” as-
pect). We include ConceptNet as an extra resource, where they only use WordNet.
This richer feature set does seem to help a bit in our task.

5.3 Conclusion
This chapter presented sentence rewriting methods which integrate the use of
background resources and machine learning.

The first, the type-enriched string rewriting kernel, deals with a string model
of the sentence, but still can capture local structure through its definition of the
n-gram rewriting rules. We extended an existing model to accept “types”, which
really are used to include lexical-semantic variations of words and extra layers of
annotation. We show that the cost in space and time complexity of this addition
is manageable, and show good results on three different CQI-related tasks. Its
limitations are however as clear as its benefits: as a kernel method, it cannot scale
directly to huge training datasets.

145

The second method is designed to fulfill some of the requirements the first
method by-passes. Most of the heavy lifting is performed by a tree edit beam
search algorithm, which defines a reduced search space of edited trees to go from
a source tree (for example, a Text) to a target tree (a Hypothesis). The machine
learning itself only uses a simple feature set extracted from the edit sequences,
and we can choose the algorithm so that the method is very scalable. We evaluate
this method on reading comprehension tests and obtained good results, even if the
benefit of the inclusion of resources is not obvious.

This chapter did not deal with the full magnitude of the Contextually Queried
Inference problem. Our systems only ever deal with two sentences, and at best
a passage and a sentence. Our first system is only as of yet evaluated on sim-
ple textual inference tasks involving no context. In the next chapter, we focus
solely on the task of reading comprehension tests, which was identified early on
in this thesis as one of the most complete, yet easy-to-evaluate textual inference
problem.

146

Chapter 6

Our approach to a complete
application of the CQI task: reading
comprehension tests

Contextually Queried Inference is our idea of a generic and complete textual infer-
ence task. In Chapter 3, we showed that a lot of tasks are certainly encompassed
by CQI. But solving CQI is not necessary to solve RTE, paraphrase identification
or answer sentence selection as they were defined previously. In this last chapter,
we are interested in a task fitting most completely the definition of CQI: reading
comprehension tests. These tests are usually taken by human students, at the en-
trance of universities or to test their knowledge in a foreign language. In the form
of multiple-choice questions tied to a text, they are easy to evaluate and can test
abilities ranging from lexicon size to complex inference.

In the first part, we describe a corpus built throughout the three years of the
Entrance Exams task at CLEF 2013-2015. This corpus is quite unique in term of
the type of linguistic and inferential phenomena it covers. We added to it manual
annotations, which we intend to use as training data in our submission to the
evaluation campaign.

In the second part, we present our approach to this task, based on validation
and invalidation. Each question presents four choices, and we quickly realized
that it is often easier to invalidate several incorrect answers, then decide on the
correct one, rather than validate an answer choice in a vacuum, independently
from the others. Our first method uses manual rules and does not meet much suc-
cess, but the second method leverages a more sizable training corpus to learn two
classifiers, one for validation and one for invalidation. This last method obtains

147

the second best result at CLEF 2015’s Entrance Exams evaluation.

6.1 The Entrance Exams task at CLEF
In this section, we describe the Entrance Exams task at CLEF. As we have already
mentioned it several times in this thesis, we focus more on the nature of the corpus
itself, rather than the modalities of the evaluation. In particular, we present an
extra annotation layer that we added to the texts: relevant passages for all the
answer choices.

6.1.1 Task definition
Entrance exams is an evaluation task which ran at CLEF in 2013, 2014, 2015.
The participants’ performance steadily increased throughout these years, as par-
ticipants gained insight on the data and built resources and modules. Nonetheless,
it remains one of the hardest task in natural language understanding.

At the basis of this evaluation is a text, from 300 to 800 words long. It is
provided with 3 to 6 multiple-choice questions to answer. Each question has 4
answer choices, and exactly one is the correct one. CLEF 2013 and 2014 datasets
had each 12 texts and 60 questions. CLEF 2015 has 19 texts and 89 questions.
An example of question from the 2015 corpus, with the relevant passage of the
text, is provided below. These tests come from Japanese entrance exams at Tokyo
University and evaluate English as a foreign language. The exams are created
by the Japanese National Center for University Admissions Tests. The specific
"Entrance Exams" corpus used in the evaluation is provided by NII’s Todai Robot
Project (Fujita et al., 2014) and NTCIR RITE (Matsuyoshi et al., 2014).

148

Text:
It was early morning. Peter Corbett helped Mark Wellman out of his
wheelchair and onto the ground. They stood before El Capitan, a huge
mass of rock almost three-quarters of a mile high in California’s beautiful
Yosemite Valley. It had been Mark’s dream to climb El Capitan for as long
as he could remember. But how could a person without the use of his legs
hope to try to climb the highest vertical cliff on earth?
[. . .]
Question: What had Mark Wellman long desired to do?

1. To accomplish one of the most difficult rock climbs in the world.
(correct answer)

2. To be the first to conquer El Capitan.

3. To climb the highest mountain in California.

4. To help his friend Peter climb El Capitan.

The goal is to correctly answer as many questions as possible, and the evalu-
ation measures are simple. The accuracy is the main measure, i.e. the fraction of
correctly answered questions. Systems are also evaluated according to their c@1,
defined in equation 6.1.

C@1 = 1
n

(nR + nU
nR
n

) (6.1)

with n the total number of questions, nR the number of correctly answered
questions, nU the number of unanswered questions. This measure favors systems
who would be able to decide to purposely answer only some questions and not
others, but so far, over the 3 years the evaluation has run, no system has been able
to manifest that capability.

6.1.2 The corpus
In this section, we explain the characteristics of the reading test corpus, for each
of its three types of component: text, question and answer choice.

149

6.1.2.1 Text

Texts are quite short, ranging from 300 words to 800 words. Generally, the smaller
the text, the fewer the questions provided with it. We start this section with a few
examples of the first few sentences of texts. This choice of examples is meant to
show the variety in content and tone.

(41) Several years ago, certain scientists developed a way of investigating the
nature of the atmosphere of the past by studying air caught in the ice around
the North or South Pole. According to their theory, when snow falls, air
is trapped between the snowflakes. The snow turns to ice with the air still
inside.

(42) Butterflies are insects as familiar to us as dragonflies. Many of us remember
chasing them in the countryside or seeing them pinned neatly in boxes in
museums. There are many people who collect butterflies because they are
fascinated by their beauty and variety. Butterfly shapes have also been used
for patterns on kimono for a long time. Nowadays butterflies are usually
considered to be objects of beauty.

(43) Old Fred Ford had gone to live with his daughter, Kate, and her family
shortly after his wife, Mary, died. Kate was an energetic woman who ex-
pected people always to be doing something, and she found plenty of jobs
for Fred to do. This made him feel part of the household, but now he really
wanted to be able to sit and reflect on the events of his life.

(44) On his first day of elementary school, Johnny came home, banged the front
door open, threw his cap on the floor, and shouted, “Isn’t anybody here?”
At dinner he spoke rudely to his father and spilled his baby sister’s milk.
“How was school today?” I asked casually. “All right” Johnny said. “Did
you learn anything?” his father asked. “I didn’t learn nothing,” he said.

(45) The first time I met him, everybody seemed to think that he was crazy and
very dangerous. However, I was fascinated with him and gradually a new
friendship was born between us. It all began on the day I visited a yacht in
Newport Harbor. A friend of mine, Richard, owned the yacht. He and his
wife had two female relatives staying with them during the summer.

At first glance, these examples denote two very different types of texts. The
first and second samples are the beginning sentences of informative texts, maybe

150

even newspaper articles. The texts of this type are mostly texts of pop-science or
explaining social trends. For example, there are no texts about politics or history.
Well-known figures, personalities or groups are only rarely mentioned.

The last three examples are the beginning sentences of narrative texts, most
likely fiction novels. Some are third-person narratives, like the third example, and
the others are first-person narratives. The text can also contain a heavy amount of
dialogue, as shown in the fourth example.

These texts share in common one very important aspect: they do not require
knowledge on named entities or important events or locations to be understood.
Commonsense knowledge is enough to understand the topic of the text and most
likely its development. We remind the reader that these texts are used in exams
of English as a foreign language. Thus, it seems natural for the texts to remain
neutral on any cultural knowledge and focus more on day-to-day knowledge, as
this form is likely to be universally accessible to any student who takes the test.
This allows the evaluation to put an emphasis on language understanding.

What does this mean for systems? Very simply, pre-processing tools like
Named Entity Recognizers are not needed. Databases on named entities are not
needed. However, a system still has to identify entities, especially the characters
in a narrative text, as they remain major actors throughout the whole text, and no
prior knowledge on them is available.

6.1.2.2 Question

Questions are of two types. Here are some examples:

(46) Who helped create and spread the modern image of butterflies?

(47) What does the writer say about butterflies in this passage?

(48) Many people are now uneasy about increased leisure because

(49) The main point the writer wishes to make is that

Either the question is really a full question, with a “Wh” interrogative and a
question mark, or it is the beginning of a sentence ended by each answer choice.
Full questions are almost never of a factoid nature, like our first example. A
quick sampling of the Wh-questions indicate that only 10 to 12% of them are of a
factoid nature, and they seem even more difficult that the other questions, because
it requires the system to gather the necessary entities from the text, with no other

151

indication than the question. Special handling of those questions seems pointless
as a first approach.

The other type of question, the incomplete sentence, varies in usefulness from
essential to useless: in the third example, the answer is the reason of the stated fact
so it seems important to use it when searching the text; in the fourth example, the
answer choices most likely contain the full information and the question is only a
mere introduction.

We also note that the questions can refer to “the writer” or “the passage”,
words that do not designate anything in the textual content, but which could be
called “meta-entities”. These mentions appear quite frequently, so it seems useful
to have some special handling method for them.

From a human reader standpoint, questions feel useful to locate the relevant
passage in the text quickly. They rarely feel essential in choosing the correct
answer choice however. Once the relevant passage is located, it is often enough to
check the passage and each answer choice for coherency. In conclusion, answer
choices are really the most important elements in this task.

6.1.2.3 Answer choice

The answer choice is the most interesting component of a reading comprehension
test. It is designed to lure weak test takers toward a wrong answer, and still be
completely unambiguous, so that strong test takers consistently succeed in finding
the right answer. The Entrance Exams are no different, as they were originally
meant for human test takers.

Let us look at the full example given in Section 6.1.1 (p. 148). The four
answer choices are clearly on topic: they all deal with one of the characters doing
climbing. The 3 wrong answers have something interesting and very important in
common: all their words, without exception, are present in the text, in the exact
same surface form. Even when they are not in the passage we provided, the words
can be found somewhere further in the text. What about the right answer choice?
Some of its words are actually not included anywhere in the text, like “one of the
most difficult”. This means that the usually most trusted features as described in
the literature review, like word overlap and other surface form matching methods,
are actually not to be trusted at all, or at least not alone.

We ran a test to confirm it: we computed the word overlap of answer choice
with the text, eliminated the answer choice with the highest score among them,
and picked at random one of the three remaining answer choices. This way, we ob-
tained an accuracy of 0.27, better than picking at random one of the four choices,

152

which yields 0.25. It also means that an elementary “reasonable” baseline method
will perform worse than a nonsensical method like what we just described. We
conclude that a system needs to capture some form of lexical-semantic variation
or sentence structure to be able to simply pick the right answer more frequently
than an incorrect answer.

In our submissions, we thought about using this knowledge and meta-reasoning
about multiple-choice question structure to improve our performance, for exam-
ple by eliminating the closest answer for surface matching. This however is not
helpful in the grand scheme of things, which is to solve a general textual infer-
ence problem, not a textual inference problem purposely rigged to trick people. In
our three years of participation to this task, we never came across any submission
which used this kind of assumptions.

Observing the answer choices, we also realize that finding the relevant passage
is actually a difficult task in itself. This confirms that reading comprehension tests
are a really complete form of CQI. The task most likely requires to implement
all capabilities described in Chapter 3, including searching the context (the short
texts of the test) through the query (the questions), with corresponding rule:

Q?K ` T −→ H
ctxt-search

Q?K ∪K ′ ` T −→ H

If we plan to apply passage retrieval on the text, we need to be able to evaluate
this step independently. This is why we describe the annotation of the corpus in
passages in the next section.

6.1.3 Corpus annotation
The Entrance Exams dataset is provided with the gold standard answers. These
annotations are easy to do anyway, because it simply comes down to answering
the reading test like a test taker would. We need another layer of annotation on
passages.

A passage is any kind of sequence of contiguous sentences from the text, usu-
ally between one and four. Then we can define the relevant passage for questions,
correct answer choice, incorrect answer choice or any combination of those ele-
ments – but mostly, a question plus an answer choice. The relevant passage is the
passage in the text where one of these notions is expressed in its closest mean-
ing. The passage is often unique and rather obvious: due to the short size of the
text, a competent human reader can most of the time find unambiguously what the

153

question/answer choice refers to in the text. More rarely, the question or answer
choice is not expressed anywhere in the text, or at least at no one location that
we can pinpoint. This happens on approximately one question in twelve for the
correct answer, but more frequently for the incorrect answer choice. Even more
rarely, we need two different passages in the text that are far apart to answer the
question: this happened 3 times in the entire combined corpus for the 3 years. So
the existence of a passage containing something very close in meaning to what the
question or answer choice is about is a rather safe assumption.

We manually annotated the relevant passages for question and individual an-
swer choices, with the BRAT annotation tool (Stenetorp et al., 2012). These an-
notations are far from requiring an important expressive power of the annotating
rules, they are mostly continuous spans of words in the text. Annotators are still
invited to be as precise as possible when annotating a passage, possibly skipping
over irrelevant elements. This does not mean the passages are actually disjoint,
just that the final complete passages may contain extra information. Different hu-
man annotators may include more context sentences than others, but where the
passages are centered around is otherwise pretty much an easy consensus, espe-
cially for question plus answer choice combined. Two answer choices to the same
question can share a relevant passage when they are very similar in meaning.

Let us consider an example. The following excerpt is the beginning of a text
in the 2014 dataset.

(50) "We’re going," Mimi called out to her mother in the family’s grocery store
next to her house. This was her first date, and Robert Rovere had just arrived
to take her to a dance. She could hardly believe it was happening. During
the long wait she had wondered again and again what to wear, finally putting
on her favorite blouse. Now at last Robert was here. He looked beautiful to
her. His hair was neatly combed and he wore a yellow sweater she hadn’t
seen before. Mimi felt wonderful.

The question is :

(51) What particular point suggests that Mimi was nervous about her date?

We annotate as relevant passage for this question the segments: “This was her
first date” and “During the long wait she had wondered again and again what to
wear, finally putting on her favorite blouse”. These are sufficient as they contain
the topic of the question: Mimi’s date and Mimi’s nervousness. Let us look at the
answer choices.

The answer choices are:

154

1. She could hardly believe she had taken such a long time to get ready.

2. She kept Robert waiting for a long time until she was ready.

3. She spent a long time making herself look nicer. (correct answer)

4. She wondered many times whether Robert would like the yellow sweater.

Our annotations are respectively:

1. She could hardly believe it was happening

2. Robert Rovere had just arrived to take her to a dance

3. During the long wait she had wondered again and again what to wear, finally
putting on her favorite blouse

4. His hair was neatly combed and he wore a yellow sweater she hadn’t seen
before.

In the 1st answer choice, “she could hardly believe” is targeted as the main
topic. The 2nd passage is the passage which directly contradicts the 2nd answer
choice while dealing with the same topic. The 3rd passage corresponds to the
correct answer, and justifies it nicely. The 4th passage is the only mention of a
yellow sweater anywhere in the text, and this is clearly the topic of the answer
choice, so this is again an easy annotation.

In the process of making these annotations to allow further evaluation of a
passage retrieval step, we gained valuable insight on how to solve the textual
entailment step once we assume we can reliably retrieve the relevant passage. A
hybrid method of validation and invalidation might be successful. Indeed, on the
previous example, it is easy to invalidate the 1st answer choice: its first part and its
second part are completely unrelated in the text. But it is not easy to validate the
3rd answer choice because its formulation is quite distant from what is expressed
in the relevant passage.

When studying the invalidating passages, we found three main causes of inva-
lidity. In a second annotation phase, we only labeled incorrect answer choice with
these causes. The three possible labels are:

• missing

• context

155

• fact

Missing is the idea that the answer choice is not expressed in the text: a relevant
passage is hard to find. This generally happens for the following reasons: the
only possible passage is too long (more than 5 sentences); words of the answer
choice are all found in the text, but never linked as in the answer choice; the
answer choice simply introduces a foreign concept never expressed anywhere in
the text, or only through a single polysemous word. Context indicates that the
context – the passage – indeed contains the answer choice, but the answer choice
still does not answer the question. We figure it is important in this case to rely
on context to make this conclusion. Fact represents the most common cause,
where the answer choice is just not factual in the text. The related information
is present in the document, often easy to find because the answer choice uses the
same words as the passage, but it is at the very least incorrect, and sometimes even
contradictory. It can come from a lot of mismatches: subject/argument inversions,
polarity/modality, antonyms, temporality . . .

In the next section, we try to leverage these types of error cause identified
during the annotation process in our approach to validation and invalidation as a
decision method for this task.

6.2 Validation and invalidation
The validation of an answer choice requires a system to do two things: one is con-
firming that the relevant passage is consistent with the answer and even justifies it,
the other is checking that the answer choice does address the question – it cannot
be any random fact contained in the text.

Invalidating an answer choice is obviously doing the opposite, but one must
only find one incoherent element between the answer choice and its passage: one
argument inversion is enough, one polarity mismatch is enough.

We try to use this duality to our advantage in our submissions to the Entrance
Exams task. First, we do not opt for a machine learning method as we deem the
training data not big enough in size (in 2014), so we design manual validation and
invalidation rules that turn out to be ineffective on the test data. Then, we design
and implement a machine learning method, hoping that this time we have enough
data (in 2015). This method was successful and obtains the second best result at
the most recent evaluation.

156

6.2.1 Manual rules
Our manual validation and invalidation method is used in our submission at CLEF
2014. This work was not particularly successful and most of its components are
already described in this thesis, so we will keep the description of the system short.
A complete description can be found in the working note published at CLEF 2014
(Gleize et al., 2014).

6.2.1.1 System overview

The system starts by ranking passages by their relevance to the question, using
the same method as described in Section 4.2.1 (p. dbpr). It then extracts from
the passages and the answer choices predicate-argument structures (PAS) built
from pruned dependency parsing. A procedure aligns the predicates and the ar-
guments in the passage and the answer choice, with a 1-to-1 similarity measure
based again on our structured lexical expansion and an Integer Linear Program-
ming optimization. We summarize the information available in those alignments.
For each aligned word pair, we know:

• the function that each word plays in its respective PAS: subject, predicate
or argument.

• a semantic relatedness score.

• truth value annotations, as annotated by TruthTeller.

TruthTeller (Lotan et al., 2013) is a semantic annotator that assigns truth values
to predicate occurrences in a sentene. More details about the annotation types are
available in its presentation paper, but we generally only use the Predicate Truth
annotation, which is the final value assigned by TruthTeller. It is one of P (Posi-
tive), U (Uncertain) or N (Negative), and indicates whether the predicate itself is
entailed by its containing sentence, in the classical sense of textual entailment.

6.2.1.2 Decision by validation/invalidation

Our goal in the last step of our system is to eliminate as many answer choices
as possible without eliminating the right answer. If it eliminates too many an-
swer choices or not enough, our system chooses not to answer (which is quite
unusual when compared to the other submission at CLEF). Let K be the maxi-
mum number of answer choices we are allowed to keep to take the final decision

157

(in experiments, K = 2). The following algorithm computes whether we take
a final decision for the current question. The align function returns PAS align-
ments (PASAlignments). The validate and invalidate functions apply our
manual rules.

ALL_ANSWERS := all answer choices
AnswersChoices := all answers
Passages := all relevant passages
While (|AnswersChoices| > K && |Passages| > 0) {

Passage = Passages.pop()
Validated = {}
Invalidated = {}
Foreach (AnswerChoice in AnswerChoices) {

PASAlignments = align(AnswerChoice, Passage)
Foreach (PASAlignment in PASAlignments) {
if (validate(PASAlignment))
Validated.add(AnswerChoice)

if (invalidate(PASAlignment))
Invalidated.add(AnswerChoice)

}
}
ToRemove := {}
if (|Invalidated| < |ALL_ANSWERS|) {

ToRemove := Invalidated
if (|Validated| > 0) {

ToRemove := ToRemove U (ALL_ANSWERS \ Validated)
AnswersChoices := AnswersChoices \ ToRemove

}
return |AnswersChoices| <= K

We provide a rough explanation of what goes on in this pre-decision process. We
explore all the ranked relevant passages as long as we have not eliminated enough
answers. When faced with a new passage, we align the PAS of each answer choice
with the passage. The ranked alignments go through validation and invalidation
rules and the corresponding answer is invalidated if a PAS alignment is found
invalid.

Finally, we present our rules. We manually built 2 validation rules and 3 in-
validation rules. They operate on PAS alignments. The validation rules must be
fired simultaneously to validate an answer choice, whereas only one invalidation

158

rule fired is enough to invalidate an answer choice. This corresponds to what
we wrote earlier about the relative difficulty of validating, compared to invali-
dating. In the description of the rules, polarity means the predicate truth value
of the aligned words. Compatible polarities are P with P, N with N, and U with
P,N,U. Strong alignment means that the word-to-word alignment score is above a
threshold, manually set in this system.

The validation rules are as follows:

• Rule 1: Subject and Predicate are strongly aligned in both PAS, and all
polarities are compatible.

• Rule 2: Predicate and one Argument are strongly aligned in both PAS, and
all polarities are compatible.

The invalidation rules are as follows:

• Rule 1: One polarity mismatch is found in a strong alignment.

• Rule 2: Predicates are strongly aligned, but their Subjects are not aligned at
all.

• Rule 3: The alignment is located at least 2 sentences before the best (ques-
tion, passage) alignment. We noticed on the trial corpus that the correct
answer was usually found after the mention of the question in the docu-
ment.

These rules are fairly intuitive, except maybe for the third invalidation rule. It
checks that the answer choice is expressed after the question is expressed in the
text. An order inversion usually means that answer choice and question are unre-
lated.

6.2.1.3 Results

Trial refers to the Entrance exams dataset of 2013 while Test refers to the 2014
version. Table 6.1 reports global results of our system on both sets of questions.
As we can see, performance is quite satisfactory on the trial dataset, but really
poor –at the level of the random baseline in c@1– on the test dataset.

We also analyze in a fine-grained way the accuracy and efficiency of our vali-
dation and invalidation rules. Table 6.2 describes the error rate on questions where
invalidation rules end up eliminating a correct answer choice. In each cell, we find

159

Trial Test
Questions answered 42/60 36/60
Errors 22 25
Accuracy 0.48 0.31
c@1 0.43 0.25

Table 6.1: Results on trial and test

Trial Test
Rule 1 2 / 21 4 / 13
Rule 2 6 / 25 8 / 22
Rule 3 8 / 26 10 / 28

Table 6.2: Invalidation errors on trial and test

the number of questions where the particular rule eliminated a correct answer, and
we also find the number of questions it fires on –where it eliminates at least one
answer choice. As we can see, all rules misfire more on the test dataset, which
seems to correlate well with the overall poor test performance. Validation rules
do not fire as often as the invalidation rules (4 times for trial, and 5 times for test).

It is possible to frame our rule system as a kind of information retrieval system
and evaluate it in term of validation precision and recall, and invalidation precision
and recall. For validation, relevant items are the correct answers, and for invali-
dation, relevant items are the incorrect answer choices. We compare our results
in both trial and test datasets with a random baseline, which basically has a 50%
chance of validating and invalidating each answer choice and stops under the same
conditions as our system (whenK or less answer choices remain). Results in term
of precision and recall are shown in table 6.3. As we can see, surprisingly, vali-
dation/invalidation do not seem to perform significantly differently from random
guesses on test data, while it is not the case at all on trial data.

Barring a bug in our implementation, we do not have a satisfying explanation
for this, except that we may have over-tuned our rules on trial data. The test data
also presents format differences with the trial data, but surely not enough to affect
the results that much. A lot of the modules in our system can be responsible
for the performance loss on test data. However, one could not reasonably expect
impressive results with only those few manual validation and invalidation rules.
Our next – and last – contribution presents a validation and invalidation machine-
learning method based on tree edit beam search.

160

System Random Rules (Trial) Rules (Test)
Validation precision 0.24 0.36 0.25
Validation recall 0.40 0.57 0.42
Invalidation precision 0.75 0.83 0.74
Invalidation recall 0.60 0.66 0.56

Table 6.3: Precision/recall of validation/invalidation

6.2.2 Learning from Tree Edit Beam Search
This last contribution to the Entrance Exams task refers to the machine learning
method described in Section 5.2 (p. 135). We already described the core of the
method, the Tree Edit Beam Search algorithm. The full architecture is described
in Figure 6.1. Its pipeline is composed of mainly five modules: preprocessing,
passage retrieval, graph enrichment, beam search with tree edit model and final
classifiers for validation/invalidation. The graph enrichment module refers to the
addition of ConceptNet relations which we also already talked about. In this sec-
tion, we mostly focus on the passage retrieval and validation/invalidation modules,
as well as experiments and error analysis.

6.2.2.1 Passage retrieval

The passage retrieval module aims at extracting relevant short snippets from the
document to pass to the more computationally expensive modules further down
the pipeline. Words of the question and the answer choice act as the query of CQI.
However, it is very rare that words of the question exactly appear in the relevant
passage of the document, so we have to use some form of query expansion.

We enrich the lemmas with coreference information, WordNet relations (syn-
onyms, antonyms, hypernyms, hyponyms), and weigh the words by the IDF score
of the original word in the document.

If the words of the query are not found using the previous expansion methods,
we use a vector-based representation of words to compute a similarity measure.
Word vectors are those provided by Huang et al. (2012). To each word, we assign
a vector of 50 values. Huang et al.’s resource actually provides multiple vectors
for each word, to account more accurately for polysemy, so we use the same
window-based disambiguation method as the author to compute the right one.
We then pair the query word vectors with the document word vectors with the
highest cosine similarity. We also take into account bigram vectors, by summing

161

Document / Question / Answer choice

Preprocessing

Passage retrieval

Graph enrichment

Tree edit beam search

Machine-learned classifier

Validation score / Invalidation score

Figure 6.1: System Architecture at CLEF 2015

162

2 vectors, which means that we can effectively handle 1-to-2, 2-to-1 and 2-to-2
word scored alignments.
Passages are ranked according to the scoring function defined by Equation 6.2 and
are then naturally extended to the full sequence of sentences they span.

score(passage) = #matchedWords

#queryWords
×

n−1∑
i=1

score(wi) + score(wi+1)
dist(i, i+ 1)2 (6.2)

We take into account the potential absence of query words by multiplying the
passage score by the fraction of query words the passage contains. Each document
word wi ∈ {w1, ..., wn}matching a query word is given a simple alignment score
(1 if they have same lemmas, 0.9 if they are WordNet synonyms, 0.8 if they are
in another WordNet relation, and their word vector cosine similarity otherwise),
weighted with the IDF of the word, and the formula is normalized by the square
of the distance between the words in the sentence.
This passage retrieval method retrieves a lot of short passages, most of which will
overlap or will not be correct, but the Tree Edit Beam Search which uses them is
designed to handle numerous source passages.

6.2.2.2 Training validation and invalidation classifiers

The classifier pair, for validation and invalidation, uses the feature set defined in
Section 5.2.3.3 (p. 141). We experimented with two models, logistic regression
and random forest, both implemented in Weka (Hall et al., 2009), and results are
presented in the next subsection. It must be clear that we use only one of those two
models to learn both classifiers with the same feature set: the features characterize
an edit sequence, and an edit sequence can transform a passage into an incorrect
answer choice, or turn it into a correct choice. The only thing we change between
the two classifiers is their training set. We focus here on how we built the training
data.

What we want to avoid is trying to learn how to transform any random text
snippet in the document into any random answer choice, because it serves no
purpose. Indeed, as readers, we cannot validate the right answer choice by looking
at a couple of arbitrary sentences in the text, nor can we invalidate a wrong answer
choice if the passage we are reading is not even related to the question. Thus,
during the training phase, only our annotated relevant passages are selected (cf
Section 6.1.3), and the algorithm runs on them, without a passage retrieval phase.

We create the learning (passage, answer choice) pairs by annotating them fol-
lowing the semantics described in Figure 6.2. In this figure, RP stands for right

163

RP / RA

RP / WA

WPx / WAx

WPx / RA

WPx / WAy

OP / RA

OP / WA

Cannot judge

Invalidated

Validated 1

0

1

Validation
Classifier

Invalidation
Classifier

Figure 6.2: Semantics of (passage, answer) pairs

passage, RA for right answer, WA for any wrong answer, WAx for the wrong an-
swer choice x, WPx for the passage expressing it, OP for any other passage than
the one expressing the paired answer choice. To summarize, the only time we can
either validate or invalidate are when we operate on passages relevant to some an-
swer choice: we annotate as validated only if we have both the right passage and
the right answer, and invalidated if we have a wrong answer choice with either
the passage which expresses it in the document or the right passage. This follows
the intuition that as readers, given a question, a passage and an answer choice, we
can probably tell if the provided passage is self-sufficient in expressing the right
answer to the question or if there is a mismatch between an answer choice and the
passage in the text it refers to.

Then the edit sequences for this data are computed, their features are extracted,
and sequences for both classifiers are labeled using the aforementioned seman-
tics. Implicitly, as this is not visible in Figure 6.2, if an edit sequence is labeled 1
(valide/invalidate) for one classifier, it is labeled 0 for the other. The thin dashed
arrows simply symbolize that the label is 0 for both classifiers.

164

Random forest Logistic regression
Questions answered 89 89
Errors 57 61
Accuracy 0.360 0.314
of tests
with c@1 ≥ 0.5

8 4

c@1 0.360 0.314

Table 6.4: Our results on Entrance exams at CLEF 2015

System c@1
Synapse 0.58
LIMSI (our system) 0.36
cicnlp 0.30
NTUNLG 0.29
CoMiC 0.29

Table 6.5: Best results of all teams at CLEF 2015

For the test run, the algorithm runs on the test data, and the answer is chosen
based on the regression numbers output by the two classifiers. First, for each
answer choice, the edit sequence with the highest max(validationScore,
invalidationScore) is selected. Ideally we want an edit sequence which
is characteristic of either a high confidence validation, or a high confidence inval-
idation, so that we may classify the answer choice confidently as either correct or
incorrect in the next step. Then, the answer choice whose selected sequence has
the highest validationScore − invalidationScore is finally picked:
we want as much separation as possible between the validation and invalidation
scores of correctly classified answer choices as possible. If they have a similar
validation and invalidation score, the system behaves as if randomly guessing be-
tween validation and invalidation.

6.2.2.3 Results

Table 6.4 is a simple reminder of our results, already described in Section 5.2.3.3
(p. 141). Table 6.5 lists the best results of all teams which submitted runs to the
evaluation. The next section deals with error analysis.

165

6.2.2.4 Error analysis

A pertinent qualitative analysis is always delicate to do for machine learning sys-
tems with such low performances. It is indeed always possible to draw examples
that look like the system is obviously supposed to correctly handle but end up as
errors. Conversely, it is always possible to find a complex instance on which the
system somewhat miraculously worked (i.e. made a lucky guess).

Nevertheless, we first report some of the simple errors that our system made.
In the following passage/question pair, our system got lured by answer 3, clos-
est in surface form to the relevant passage. ConceptNet does not link "held" to
"trapped", and "its original nature" from the correct answer could not be linked to
anything in the passage (it is however found further in the text).

Several years ago, certain scientists developed a way of investigating
the nature of the atmosphere of the past by studying air caught in the
ice around the North or South Pole. According to their theory, when
snow falls, air is trapped between the snowflakes. The snow turns to ice
with the air still inside.
Certain scientists claimed that
1) atmospheric gases increase the yearly amount of snow
2) falling snowflakes change the chemical balance of the air
3) the action of atmospheric gases causes snow to turn into ice
4) the air held between snowflakes keeps its original nature (correct)

In the following passage/question pair, our system picked the answer choice 3. It
would have been easy to pick the correct answer 1 if "wrong" could have been
linked to "mistake", but in ConceptNet, this is a RelatedTo relation, which we did
not consider. We realize that there is actually a lot of information in those Relat-
edTo relations, and ideally our system should handle them, but we decided in the
design phase to remove them because they are not semantically precise.

166

Everyone stared. That was embarrassing enough, but it was worse when
I finished my coffee and got ready to leave. My face went red - as red
as his hair - when I realized I’d made a mistake.
The woman’s face turned red
1) because she realized that she had been quite wrong about the boy
(correct)
2) because she realized that the boy was poor and hungry
3) because she saw everyone staring at her
4) because she hated being shouted at

In both those cases, a more precise characterization of correct passages would
have been useful, because in the first case, our answer choice skips over the sen-
tence which contains the correct answer, and in the second case, the sentence
containing our answer choice appears way before the sentence containing both
question and correct answer.
Finally we report an example of correctly answered question through mostly in-
validation. In the following passage/question pair, our system easily invalidated
answer choice 1 (due to the added negation) and answer choice 4 (due to the first
sentence of the passage saying the opposite). Then, answer choice 2 had edit
sequences which hinted at both validation and invalidation, so it was still a risky
pick (but with slightly more invalidation). In the end, the remaining answer choice
(3), for which the system found neither validation nor invalidation, was correctly
picked by default.

167

Kate was an energetic woman who expected people always to be doing
something, and she found plenty of jobs for Fred to do. This made
him feel part of the household, but now he really wanted to be able
to sit and reflect on the events of his life. If he had continued to live
alone, he would have had the time to do this to his heart’s content. One
afternoon he felt he simply had to get away from the house. "I’m going
for a walk," he said, closing the door behind him. Leaving the town,
he walked across the fields and followed a slow-moving stream toward
the hills. After a while he came to a pool in the stream under some
trees. Here, he thought, was a place he could come to when he needed
to reflect on the past. Although the stream seemed unlikely to have any
fish, he would simply tell Kate he had found a place to go fishing. When
he mentioned the stream that night, his son-in-law, Jim, said in disbelief,
"There aren’t any fish there. That stream runs dry half the summer."
Why did Fred tell Kate that he had found a place to go fishing?
1) He didn’t feel part of the household with Kate and Jim.
2) He enjoyed fishing very much and was glad to be able to do it again.
3) He wanted a way to leave the house without hurting Kate’s feelings.
(correct)
4) He was bored in the house because there were few things to do.

As for quantitative analysis, the general trend is that our system performs bet-
ter when edit sequences remain short, with over 40% accuracy when the chosen
edit sequences are shorter than 6 edits (on average on all the answer choices). We
considered this was still not significant enough of an advantage to choose not to
answer questions based on a length threshold of edit sequences to improve our
results on c@1.

6.2.2.5 Discussion

In this part, we present an original method of training two classifiers using the
same features and learning algorithms but asymmetric training sets. This allows
us to implement a pair of distinct validation and invalidation classifiers. This
has the obvious benefit of leveraging our passage annotations on the whole En-
trance Exams corpus, instead of having to determine validation/invalidation rules
by hand, like in our first system.

As of now, we do not have a clear idea of the impact of each classifier sepa-
rately. We would like to address it in the future.

168

Also, we did not take advantage of the possibility to choose not to answer a
question. In our experience, every missed answer adds variance when running
on the test set: we are evaluated on even fewer questions, and the initial dataset
is already quite small. Thus, we did not prioritize exploiting this feature of the
evaluation. However, we believe our learning method has the potential to handle
it. In future works, it would be interesting to design a meta-classifier working on
the output of the two current classifiers.

6.3 Conclusion
This chapter concludes our thesis by tackling a complete Contextually Queried
Inference problem: reading comprehension tests. Our study and annotations of
the corpus built throughout three years of Entrance Exams tasks at CLEF leads
to methods based on validation and invalidation. The first one suffers from not
having enough training data and being constrained to manual rules probably over-
fitting the trial set. The second one builds on better performing elements of this
thesis and instances a lot of capabilities of CQI. It uses a passage retrieval method
including a lot of resources and metrics to pinpoint the most relevant context to the
query. Its tree edit model captures sentence rewriting which is a simplified form
of inference chaining. Its decision functions actually solve a textual entailment
problem more than a question answering problem. The use of relations in con-
cept graphs like ConceptNet could point to identifying lacks of information: for
example, a tree node enriched by the relation “HasPrerequisite” begs the question
of said prerequisite in the text: what is it? Is it fulfilled?

The duality of validation and invalidation of a textual inference did not appear
in Chapter 3 when we formulated the capabilities we deem essential to solve CQI.
One might wonder if these two processes are only two sides of the same coin, or
really two essential notions we have to integrate in a CQI problem, as some sort
of “coherency checks”. When we designed CQI, we preferred viewing validation
and invalidation as a choice of implementation to solve the problem rather than
being part of its definition.

169

Conclusion

As Natural Language Processing heads toward Natural Language Understanding
– and in a way goes back to it, as NLU was always one of the main goals in AI –,
textual inference becomes an increasingly important goal. It is currently evaluated
in multiple ways, across various tasks and various datasets. While the diversity is
welcome because it allows to tackle multiple linguistic phenomena, this lack of
unity can also be detrimental: the research community is divided and the greater
goal may drift out of sight. This thesis first attempted to reconcile several different
tasks around the core features and algorithms they rely on. We proposed a hierar-
chical taxonomy which defines ways of classifying inference tasks in term of their
difficulty, regardless of their evaluation format. We then defined a more generic
problem, Contextually Queried Inference (CQI), encompassing most inference-
related tasks. A formal system implements the theoretical capabilities we deem
essential for its resolution. We view these two contributions, the taxonomy and
CQI, as complementary. The first focuses more on the pratical tools and resources
required to solve the problems, and the second spawns a theoretical discussion
about inferential capabilities.

In this thesis, we also implemented methods to solve concrete aspects of tex-
tual inference. All our methods either solve the full CQI problem – at least the
task closest to it – or are easily transferable to a wide range of CQI-related ap-
plications. Our structured lexical expansion uses a simplification hypothesis to
solve both passage retrieval and textual entailment. The idea is that the simpler
the lexicon, the easier it is to compare the sense of two sentences. The results
on passage retrieval are not conclusive, most likely due to the static nature of our
manually-defined similarity measures. However, the results on textual entailment
are promising, which might be due to the availability of training data at the eval-
uation campaign we took part in.

After these systems, we came to the conclusion that we needed a machine
learning model capable of seamlessly integrating structural similarity and lexical-

170

semantic resources. Such a model would have to be robust and sufficiently ex-
pressive. We proposed a type-enriched string rewriting kernel which fits those
requirements perfectly. The ability to incorporate various resources to loosen the
word-to-word matching is the originality of our contribution, and it allows our
system to be competitive on multiple tasks: paraphrase identification, textual en-
tailment and question answering. We showed that the kernel still runs efficiently
compared to the untyped kernel, but it still suffers from limitations in scalability:
the running time of kernel-based machine learning methods like SVM depends
quadratically on the number of training examples.

From the beginning, the main application of this thesis was meant to be read-
ing comprehension tests. They are an easy way to test machine reading and deep
textual inference capabilities. We frame their multiple-choice questions as a dual
task of validation and invalidation: sometimes, it is easier to invalidate an incor-
rect answer choice than validate the correct one. After early experiments with
manual rules which allowed us to better study the problem, we implemented two
classifiers extracting their features from a tree edit model called Tree Edit Beam
Search. This algorithm shares a lot with the string rewriting kernel: uses rewriting
rules, includes lexical-semantic resources, captures syntactical transformations.
It also has the benefit of having a low dimension feature set, as well as scaling
naturally well with the number of training examples: a logistic regression only
depends linearly on it. Our corpus annotation of passages on CLEF 2013-2015’s
data provided us with two asymmetric training sets, which is how we produced
two classifiers for validation and invalidation. With this system, we obtained the
second best result at the Entrance Exams task at CLEF 2015. This is a satisfying
result, but systems remain closer to random guessing than to the performance of
competent human readers. Looking at the top systems, it is clear that the current
methods will eventually reach a performance ceiling on this task, if it has not hap-
pened already. We think that general textual inference will remain unsolved in the
near future and that we will ultimately need something more, which makes it all
the more interesting to work on.

Future directions
In this section we describe interesting topics which would build on our work and
extend it. We first present short-term goals, which represent the direct continua-
tion of this work. Then we close this thesis with long-term goals, which are what
we think our research field could investigate in the next few years.

171

Our short-term goals focus mainly on our two most important contributions,
type-enriched string rewriting kernels (TESRK) and tree edit beam search (TEBS).
Our kernel method is very promising, but cannot scale in its current version to
large datasets. We already had troubles running the method on a personal com-
puter, and needed 64-core computers to comfortably test different sets of types on
datasets not usually considered sizable, like RTE 1-2-3. What we could investi-
gate is scalable adaptations for kernel methods, like the one of Dai et al. (2014).
These methods usually rely on stochastic heuristics to reduce the dimension of
the problem. Succeeding in implementing a scalable kernel method would allow
to train models on huge datasets, like the very recent large corpus for textual in-
ference from Stanford (Bowman et al., 2015), containing 570,000 inference pairs
(for comparison, RTE 3 contains 800 inference pairs).

Currently, TESRK only handles types on single words, which are only use-
ful when matching one word with another. It would be interesting to see if the
model can be modified to include types on several words, in order to include, for
example, background paraphrase knowledge. A quick idea is to encode a type
on a span of words with a set of types on single words. The single types would
encode that they are preceded or followed by another specific single type, part
of the same multi-word relation (like the pattern of a paraphrase rule). Adding
paraphrase rules using this method would have a very positive impact on the ex-
pressive power of the model: currently, TESRK cannot model a true chaining of
several inference rules, like our CQI formulation advocates: rewriting rules are
just applied directly from one existing sentence to another. Extra paraphrase rules
as types would model that we can apply an extra intermediary rewriting rule in-
serted in the middle of this process.

A number of experiments and additions can be attempted on TEBS and the
full system used at CLEF 2015. This is the last system we were able to implement
but we lacked the time to do multiple interesting experiments. First, in the current
iteration, the scores of validation and invalidation are combined using a simple
manually-defined formula. It would be easy to combine them with an additional
meta-classifier. A much deeper analysis of the model, its parameters and the re-
sults is required to really judge the impact of each feature and hyper-parameter.
What is the impact of the beam width, the number of top passages considered,
or the number of edit sequences extracted? How does each individual classifier
perform on a subtask of validation or invalidation? These are all questions that
have to be answered before deciding to make any change to the system.

Regarding our structured lexical expansion, especially the successive applica-
tion of paraphrase rules to solve textual entailment, we still think there is some-

172

thing to be done with dictionary definitions used as highly structured paraphrases.
The Simple English Wiktionary definitely lacks in coverage, but the standard En-
glish Wiktionary is one of the largest lexical resources available today. More than
800,000 definition sentences could make for a good paraphrase database if parsed
and transformed correctly.

The most urgent long-term goal in textual inference is surely acquiring more
training data. We think the future of textual inference data is not as bright as
one might think, compared to factoid question answering and machine transla-
tion. The current problem is that textual inference does not translate directly into
a commercial need or user experience. People do not ask complicated questions to
their phone (maybe because they cannot be answered today, but probably more be-
cause they have less of a need for immediate answers to tough questions). Finding
the answer may require some kind of inference to fill missing entities, but overall,
easy factoid questions predominate on smart search engines: the top 10 questions
asked from Google in 2011 were all “What is” definition questions. Thus, there
is not currently a high interest in manually producing a large dataset for textual
inference, nor is it easy to produce automatically. Bowman et al. (2015)’s massive
new inference dataset is certainly promising, but has appeared too recently for us
to really have an idea of the positive impact it might bring. This depends a lot on
the types of inference featured by their inference pairs.

Paradoxically, there exists a vast untapped wealth of reading comprehension
tests. The problem is that these tests are actually great commercial assets, so
the datasets are generally not freely available. Indeed, each year a lot of read-
ing comprehension tests are produced, for use in standardized testing of students
throughout the world. However, the tests are re-used after the exam as part of
books of practice tests sold to the next wave of students.

We did not address IBM’s Watson in this thesis (Ferrucci et al., 2010). Watson
was first and foremost designed as a powerful factoid question answering engine,
and we know that it leverages plenty of resources and machine learning methods,
but it is actually hard to evaluate its true inferential capabilities. As Watson’s
popularity continually grows, the shroud of mystery around its inner workings
seemingly thickens. Not much can confirm it, but Watson might already have
very strong textual inference capabilities.

In the end, perfect inference capabilities may rest on the advent of a strong
AI, an artificial intelligence functionally equal to that of humans. We believe this
is unlikely to be achieved on pure linguistic data, like texts. As mentioned in our
hierarchy of inferences, the hardest problems may require other senses available
to humans, like sight, taste, smell or touch.

173

Bibliography

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor Gonzalez-Agirre. Semeval-2012
task 6: A pilot on semantic textual similarity. In Proceedings of the First Joint
Conference on Lexical and Computational Semantics-Volume 1: Proceedings
of the main conference and the shared task, and Volume 2: Proceedings of the
Sixth International Workshop on Semantic Evaluation, pages 385–393. Associ-
ation for Computational Linguistics, 2012. 26

Elif Aktolga, James Allan, and David A Smith. Passage reranking for question
answering using syntactic structures and answer types. In Advances in Infor-
mation Retrieval, pages 617–628. Springer, 2011. 62

Giuseppe Attardi, Luca Atzori, and Maria Simi. Index expansion for
machine reading and question answering. In CLEF (Online Working
Notes/Labs/Workshop), 2012. 99

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. Dbpedia: A nucleus for a web of open data. Springer, 2007.
78

Collin F Baker, Charles J Fillmore, and John B Lowe. The berkeley framenet
project. In Proceedings of the 17th international conference on Computational
linguistics-Volume 1, pages 86–90. Association for Computational Linguistics,
1998. 72

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo
Magnini, and Idan Szpektor. The second pascal recognising textual entail-
ment challenge. In Proceedings of the second PASCAL challenges workshop
on recognising textual entailment, volume 6, pages 6–4, 2006. 56

Philip Bille. A survey on tree edit distance and related problems. Theoretical
computer science, 337(1):217–239, 2005. 64

174

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
Python. " O’Reilly Media, Inc.", 2009. 77

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international confer-
ence on Management of data, pages 1247–1250. ACM, 2008. 78

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-
ning. A large annotated corpus for learning natural language inference. In Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, 2015. 172,
173

Chris Brockett. Aligning the rte 2006 corpus. Microsoft Research, 2007. 57

Chris Brockett and William B Dolan. Support vector machines for paraphrase
identification and corpus construction. In Proceedings of the 3rd International
Workshop on Paraphrasing, pages 1–8, 2005. 26, 57, 59

Fan Bu, Hang Li, and Xiaoyan Zhu. String re-writing kernel. In Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics: Long
Papers-Volume 1, pages 449–458. Association for Computational Linguistics,
2012. 53, 81, 117, 118, 121, 127, 129, 131, 134

Kate Cain, Jane V Oakhill, Marcia A Barnes, and Peter E Bryant. Comprehension
skill, inference-making ability, and their relation to knowledge. Memory &
cognition, 29(6):850–859, 2001. 15

Hiram Calvo, Andrea Segura-Olivares, and Alejandro García. Dependency vs.
constituent based syntactic n-grams in text similarity measures for paraphrase
recognition. Computación y Sistemas, 18(3):517–554, 2014. 117

Jeremy J Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: implementing the semantic web recommen-
dations. In Proceedings of the 13th international World Wide Web confer-
ence on Alternate track papers & posters, pages 74–83. ACM, 2004. URL
https://jena.apache.org/. 72

175

https://jena.apache.org/

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):
27, 2011. 127

Ming-Wei Chang, Dan Goldwasser, Dan Roth, and Vivek Srikumar. Discrimi-
native learning over constrained latent representations. In Human Language
Technologies: The 2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages 429–437. Association for
Computational Linguistics, 2010. 70, 134

Nick Chater, Joshua B Tenenbaum, and Alan Yuille. Probabilistic models of cog-
nition: Conceptual foundations. Trends in cognitive sciences, 10(7):287–291,
2006. 19

Philipp Cimiano, Vanessa Lopez, Christina Unger, Elena Cabrio, Axel-
Cyrille Ngonga Ngomo, and Sebastian Walter. Multilingual question answering
over linked data (qald-3): Lab overview. In Information Access Evaluation.
Multilinguality, Multimodality, and Visualization, pages 321–332. Springer,
2013. 78

Peter Clark, Philip Harrison, and Xuchen Yao. An entailment-based approach
to the QA4MRE challenge. In CLEF (Online Working Notes/Labs/Workshop).
Citeseer, 2012. 28

Vincent Claveau, Ewa Kijak, and Olivier Ferret. Improving distributional thesauri
by exploring the graph of neighbors. In International Conference on Computa-
tional Linguistics, COLING 2014, pages 12–p, 2014. 59

Jacob Cohen. Weighted kappa: Nominal scale agreement provision for scaled
disagreement or partial credit. Psychological bulletin, 70(4):213, 1968. 39

Courtney Corley and Rada Mihalcea. Measuring the semantic similarity of texts.
In Proceedings of the ACL workshop on empirical modeling of semantic equiva-
lence and entailment, pages 13–18. Association for Computational Linguistics,
2005. 55

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise dis-
tance kernel. In Proceedings of the 26th International Conference on Machine
Learning, pages 255–262. Omnipress, 2010. 67

176

Danilo Croce, Alessandro Moschitti, and Roberto Basili. Structured lexical simi-
larity via convolution kernels on dependency trees. In Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, pages 1034–
1046. Association for Computational Linguistics, 2011. 67

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. Question
answering passage retrieval using dependency relations. In Proceedings of the
28th annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 400–407. ACM, 2005. 62, 69, 81, 103,
104, 105

Peter W Culicover. Paraphrase generation and information retrieval from stored
text. Mechanical Translation and Computational Linguistics, 11(1-2):78–88,
1968. 106

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising
textual entailment challenge. In Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification, and Recognising Tectual
Entailment, pages 177–190. Springer, 2006. 1, 9, 10, 20, 21, 43, 56

Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and
Le Song. Scalable kernel methods via doubly stochastic gradients. In Advances
in Neural Information Processing Systems, pages 3041–3049, 2014. 172

Dipanjan Das and Noah A Smith. Paraphrase identification as probabilistic quasi-
synchronous recognition. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Nat-
ural Language Processing of the AFNLP: Volume 1-Volume 1, pages 468–476.
Association for Computational Linguistics, 2009. 69, 81

Dipanjan Das, Desai Chen, André FT Martins, Nathan Schneider, and Noah A
Smith. Frame-semantic parsing. Computational Linguistics, 40(1):9–56, 2014.
78

Marie-Catherine De Marneffe and Christopher D Manning. Stanford typed depen-
dencies manual. Technical report, Technical report, Stanford University, 2008.
107

Marie-Catherine De Marneffe, Bill MacCartney, Trond Grenager, Daniel Cer,
Anna Rafferty, and Christopher D Manning. Learning to distinguish valid tex-
tual entailments. In Second Pascal RTE Challenge Workshop, 2006. 62

177

Michael Denkowski and Alon Lavie. Meteor-next and the meteor paraphrase ta-
bles: Improved evaluation support for five target languages. In Proceedings of
the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR,
pages 339–342. Association for Computational Linguistics, 2010. 56

George Doddington. Automatic evaluation of machine translation quality using
n-gram co-occurrence statistics. In Proceedings of the second international
conference on Human Language Technology Research, pages 138–145. Morgan
Kaufmann Publishers Inc., 2002. 50

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large
paraphrase corpora: Exploiting massively parallel news sources. In Proceed-
ings of the 20th international conference on Computational Linguistics, page
350. Association for Computational Linguistics, 2004. 50, 56

William B Dolan and Chris Brockett. Automatically constructing a corpus of
sentential paraphrases. In Proc. of IWP, 2005. 128

Myroslava O Dzikovska, Diana Bental, Johanna D Moore, Natalie B Steinhauser,
Gwendolyn E Campbell, Elaine Farrow, and Charles B Callaway. Intelligent tu-
toring with natural language support in the beetle ii system. In Sustaining TEL:
From Innovation to Learning and Practice, pages 620–625. Springer, 2010. 106

Myroslava O Dzikovska, Rodney D Nielsen, and Chris Brew. Towards effective
tutorial feedback for explanation questions: A dataset and baselines. In Pro-
ceedings of the 2012 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pages
200–210. Association for Computational Linguistics, 2012. 111, 112

Myroslava O Dzikovska, Rodney D Nielsen, Chris Brew, Claudia Leacock, Danilo
Giampiccolo, Luisa Bentivogli, Peter Clark, Ido Dagan, and Hoa Trang Dang.
SemEval-2013 task 7: The joint student response analysis and 8th recogniz-
ing textual entailment challenge. In Second Joint Conference on Lexical and
Computational Semantics (* SEM), volume 2, pages 263–274. Association for
Computational Linguistics, 2013. 32, 44, 51, 106

Katrin Erk and Sebastian Pado. Shalmaneser-a flexible toolbox for semantic role
assignment. In Proceedings of LREC, volume 6, 2006. 73

Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for
open information extraction. In Proceedings of the Conference on Empirical

178

Methods in Natural Language Processing, pages 1535–1545. Association for
Computational Linguistics, 2011. 78

Vanessa Wei Feng and Graeme Hirst. A linear-time bottom-up discourse parser
with constraints and post-editing. In Proceedings of The 52nd Annual Meeting
of the Association for Computational Linguistics (ACL 2014), Baltimore, USA,
June, 2014. 75

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,
Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John
Prager, et al. Building Watson: An overview of the DeepQA project. AI maga-
zine, 31(3):59–79, 2010. 31, 173

Simone Filice, Giovanni Da San Martino, and Alessandro Moschitti. Structural
representations for learning relations between pairs of texts. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1003–1013, Beijing, China, July 2015. Asso-
ciation for Computational Linguistics. URL http://www.aclweb.org/
anthology/P15-1097. 67, 81

Dan Flickinger. On building a more effcient grammar by exploiting types. Natural
Language Engineering, 6(01):15–28, 2000. 72

Akira Fujita, Akihiro Kameda, Ai Kawazoe, and Yusuke Miyao. Overview of
todai robot project and evaluation framework of its nlp-based problem solving.
World History, 36:36, 2014. 148

Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. PPDB: The
paraphrase database. In Proceedings of NAACL-HLT, pages 758–764, Atlanta,
Georgia, June 2013. Association for Computational Linguistics. URL http:
//cs.jhu.edu/~ccb/publications/ppdb.pdf. 78

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third
pascal recognizing textual entailment challenge. In Proceedings of the ACL-
PASCAL workshop on textual entailment and paraphrasing, pages 1–9. Asso-
ciation for Computational Linguistics, 2007. 17

Martin Gleize and Brigitte Grau. Limsiiles: Basic english substitution for student
answer assessment at semeval 2013. In Second Joint Conference on Lexical and

179

http://www.aclweb.org/anthology/P15-1097
http://www.aclweb.org/anthology/P15-1097
http://cs.jhu.edu/~ccb/publications/ppdb.pdf
http://cs.jhu.edu/~ccb/publications/ppdb.pdf

Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh Inter-
national Workshop on Semantic Evaluation (SemEval 2013), pages 598–602,
Atlanta, Georgia, USA, June 2013. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/S13-2100. 93, 105

Martin Gleize and Brigitte Grau. A hierarchical taxonomy for classifying hardness
of inference tasks. In Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC-2014), Reykjavik, Iceland, May
26-31, 2014., pages 3034–3040, 2014. URL http://www.lrec-conf.
org/proceedings/lrec2014/summaries/1168.html. 28

Martin Gleize and Brigitte Grau. Limsi-cnrs@clef 2015: Tree edit beam search
for multiple choice question answering. In Working Notes of CLEF 2015 -
Conference and Labs of the Evaluation forum, Toulouse, France, September
8-11, 2015., 2015a. URL http://ceur-ws.org/Vol-1391/115-CR.
pdf. 94, 136

Martin Gleize and Brigitte Grau. Noyaux de réécriture de phrases mu-
nis de types lexico-sémantiques. In Actes de la 22e conférence sur le
Traitement Automatique des Langues Naturelles, pages 170–181, Caen,
France, June 2015b. Association pour le Traitement Automatique des
Langues. URL http://www.atala.org/taln_archives/TALN/
TALN-2015/taln-2015-long-015. 94, 117

Martin Gleize and Brigitte Grau. A unified kernel approach for learning typed
sentence rewritings. In Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Pa-
pers, pages 939–949, 2015c. URL http://aclweb.org/anthology/
P/P15/P15-1091.pdf. 94, 117

Martin Gleize, Brigitte Grau, Van-Minh Pho, Anne-Laure Ligozat, Gabriel Il-
louz, Frédéric Gianetti, and Loïc Lahondes. Selecting answers with structured
lexical expansion and discourse relations limsi’s participation at QA4MRE
2013. In Working Notes for CLEF 2013 Conference , Valencia, Spain,
September 23-26, 2013., 2013. URL http://ceur-ws.org/Vol-1179/
CLEF2013wn-QA4MRE-GleizeEt2013.pdf. 93, 98

180

http://www.aclweb.org/anthology/S13-2100
http://www.lrec-conf.org/proceedings/lrec2014/summaries/1168.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/1168.html
http://ceur-ws.org/Vol-1391/115-CR.pdf
http://ceur-ws.org/Vol-1391/115-CR.pdf
http://www.atala.org/taln_archives/TALN/TALN-2015/taln-2015-long-015
http://www.atala.org/taln_archives/TALN/TALN-2015/taln-2015-long-015
http://aclweb.org/anthology/P/P15/P15-1091.pdf
http://aclweb.org/anthology/P/P15/P15-1091.pdf
http://ceur-ws.org/Vol-1179/CLEF2013wn-QA4MRE-GleizeEt2013.pdf
http://ceur-ws.org/Vol-1179/CLEF2013wn-QA4MRE-GleizeEt2013.pdf

Martin Gleize, Anne-Laure Ligozat, and Brigitte Grau. Limsi-cnrs@clef 2014:
Invalidating answers for multiple choice question answering. In Working
Notes for CLEF 2014 Conference, Sheffield, UK, September 15-18, 2014.,
pages 1386–1394, 2014. URL http://ceur-ws.org/Vol-1180/
CLEF2014wn-QA-GleizeEt2014.pdf. 95, 157

Nizar Habash and Bonnie Dorr. Catvar: A database of categorial variations for
english. In Proceedings of the MT Summit, pages 471–474, 2003. 58

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009. 163

Catherine Havasi, Robert Speer, and Jason Alonso. Conceptnet 3: a flexible, mul-
tilingual semantic network for common sense knowledge. In Recent advances
in natural language processing, pages 27–29. Citeseer, 2007. 78

Michael Heilman and Nitin Madnani. Ets: domain adaptation and stacking for
short answer scoring. In Proceedings of the 2nd joint conference on lexical and
computational semantics, volume 2, pages 275–279, 2013. 52

Michael Heilman and Noah A Smith. Tree edit models for recognizing textual
entailments, paraphrases, and answers to questions. In Human Language Tech-
nologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 1011–1019. Association for
Computational Linguistics, 2010. 65, 81, 117, 131, 132, 134, 145

Andrew Hickl, John Williams, Jeremy Bensley, Kirk Roberts, Bryan Rink, and
Ying Shi. Recognizing textual entailment with lcc’s groundhog system. In
Proceedings of the Second PASCAL Challenges Workshop, 2006. 78, 81, 134

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gra-
dient flow in recurrent nets: the difficulty of learning long-term dependencies,
2001. 60

Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. Im-
proving word representations via global context and multiple word prototypes.
In Proceedings of the 50th Annual Meeting of the Association for Compu-
tational Linguistics: Long Papers-Volume 1, pages 873–882. Association for
Computational Linguistics, 2012. 161

181

http://ceur-ws.org/Vol-1180/CLEF2014wn-QA-GleizeEt2014.pdf
http://ceur-ws.org/Vol-1180/CLEF2014wn-QA-GleizeEt2014.pdf

Hen-Hsen Huang, Kai-Chun Chang, and Hsin-Hsi Chen. Modeling human in-
ference process for textual entailment recognition. In Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 446–450, Sofia, Bulgaria, August 2013. Asso-
ciation for Computational Linguistics. URL http://www.aclweb.org/
anthology/P13-2079. 29

Aminul Islam and Diana Inkpen. Semantic similarity of short texts. Recent Ad-
vances in Natural Language Processing V, 309:227–236, 2009. 117

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal
Daumé III. A neural network for factoid question answering over paragraphs.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 633–644, 2014. 77

Jay J Jiang and David W Conrath. Semantic similarity based on corpus statistics
and lexical taxonomy. arXiv preprint cmp-lg/9709008, 1997. 67

Sergio Jimenez, Claudia Becerra, Alexander Gelbukh, Av Juan Dios Bátiz, and
Av Mendizábal. Softcardinality: hierarchical text overlap for student response
analysis. In Proceedings of the 2nd joint conference on lexical and computa-
tional semantics, 2013. 52, 117

PN Johnson-Laird, Sangeet S Khemlani, and Geoffrey P Goodwin. Logic, prob-
ability, and human reasoning. Trends in cognitive sciences, 19(4):201–214,
2015. 19

Daniel Jurafsky and James H Martin. Speech and language processing: An intro-
duction to natural language processing, computational linguistics, and speech
recognition, 2000. 73

Panayiota Kendeou, Paul Broek, Anne Helder, and Josefine Karlsson. A cognitive
view of reading comprehension: implications for reading difficulties. Learning
Disabilities Research & Practice, 29(1):10–16, 2014. 15

Paul Kingsbury and Martha Palmer. From treebank to propbank. In LREC. Cite-
seer, 2002. 72

Anne Kispal. Effective teaching of inference skills for reading. Technical report,
Research Report DCSF-RR031). Cheshire, UK: National Foundation for Edu-
cational Research, Department of Education (Division of Children, School and
Families), 2008. 15, 16

182

http://www.aclweb.org/anthology/P13-2079
http://www.aclweb.org/anthology/P13-2079

Dan Klein and Christopher D Manning. Accurate unlexicalized parsing. In
Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1, pages 423–430. Association for Computational Linguis-
tics, 2003. 140

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data.
In Proceedings of the Eighteenth International Conference on Machine Learn-
ing (ICML 2001), Williams College, Williamstown, MA, USA, June 28 - July 1,
2001, pages 282–289, 2001. 58, 65, 69

Dominique Laurent, Baptiste Chardon, Sophie Nègre, and Patrick Séguéla. En-
glish run of synapse développement at entrance exams 2014. CLEF 2014 Work-
ing notes, 2014. 74

Dominique Laurent, Baptiste Chardon, Sophie Nègre, Camille Pradel, and Patrick
Séguéla. Reading comprehension at entrance exams 2015. CLEF 2015 Working
Notes, 2015. 74, 144

C Leacock and M Chodorow. Combining local context and wordnet sense similar-
ity for word sense identification. wordnet, an electronic lexical database, 1998.
55

Gary Geunbae Lee, Jungyun Seo, Seungwoo Lee, Hanmin Jung, Bong-Hyun Cho,
Changki Lee, Byung-Kwan Kwak, Jeongwon Cha, Dongseok Kim, JooHui An,
et al. Siteq: Engineering high performance qa system using lexico-semantic
pattern matching and shallow nlp. In TREC, 2001. 101, 102

Michael Lesk. Automatic sense disambiguation using machine readable dictio-
naries: how to tell a pine cone from an ice cream cone. In Proceedings of the
5th annual international conference on Systems documentation, pages 24–26.
ACM, 1986. 55, 98

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966. 50

Hector J Levesque, Ernest Davis, and Leora Morgenstern. The Winograd schema
challenge. In AAAI Spring Symposium: Logical Formalizations of Common-
sense Reasoning, 2011. 31, 86

183

Hector J Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema
challenge. In KR, 2012. 18, 45

Andy Liaw and Matthew Wiener. Classification and regression by randomforest.
R news, 2(3):18–22, 2002. 142

Elisabeth Lien and Milen Kouylekov. Semantic parsing for textual entailment.
IWPT 2015, page 40, 2015. 72

Marc Light, Gideon S Mann, Ellen Riloff, and Eric Breck. Analyses for elucidat-
ing current question answering technology. Natural Language Engineering, 7
(04):325–342, 2001. 102

Chin-Yew Lin and Eduard Hovy. Automatic evaluation of summaries using n-
gram co-occurrence statistics. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on
Human Language Technology-Volume 1, pages 71–78. Association for Compu-
tational Linguistics, 2003. 55

Dekang Lin. Automatic retrieval and clustering of similar words. In Proceed-
ings of the 36th Annual Meeting of the Association for Computational Linguis-
tics and 17th International Conference on Computational Linguistics-Volume
2, pages 768–774. Association for Computational Linguistics, 1998. 59, 72,
109

Dekang Lin and Patrick Pantel. Discovery of inference rules for question-
answering. Natural Language Engineering, 7(04):343–360, 2001. 78

Mihai C Lintean and Vasile Rus. Dissimilarity kernels for paraphrase identifica-
tion. In FLAIRS Conference, 2011. 117

Hugo Liu and Push Singh. Conceptnet—a practical commonsense reasoning tool-
kit. BT technology journal, 22(4):211–226, 2004. 141

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris
Watkins. Text classification using string kernels. The Journal of Machine
Learning Research, 2:419–444, 2002. 134

Amnon Lotan, Asher Stern, and Ido Dagan. Truthteller: Annotating predicate
truth. In HLT-NAACL, pages 752–757, 2013. 157

184

Bill MacCartney and Christopher D Manning. Natural logic for textual inference.
In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Para-
phrasing, pages 193–200. Association for Computational Linguistics, 2007. 19,
29

Bill MacCartney, Michel Galley, and Christopher D Manning. A phrase-based
alignment model for natural language inference. In Proceedings of the con-
ference on empirical methods in natural language processing, pages 802–811.
Association for Computational Linguistics, 2008. 57

Nitin Madnani and Bonnie J Dorr. Generating phrasal and sentential paraphrases:
A survey of data-driven methods. Computational Linguistics, 36(3):341–387,
2010. 106, 118

Nitin Madnani, Joel Tetreault, and Martin Chodorow. Re-examining machine
translation metrics for paraphrase identification. In Proceedings of the 2012
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 182–190. Associa-
tion for Computational Linguistics, 2012. 50, 56, 81, 117

Bernardo Magnini, Roberto Zanoli, Ido Dagan, Kathrin Eichler, Günter Neumann,
Tae-Gil Noh, Sebastian Pado, Asher Stern, and Omer Levy. The excitement
open platform for textual inferences. ACL 2014, page 43, 2014. 79

Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. Yago3: A knowl-
edge base from multilingual wikipedias. In 7th Biennial Conference on Inno-
vative Data Systems Research. CIDR 2015, 2014. 78

William C Mann and Sandra A Thompson. Rhetorical structure theory: Toward
a functional theory of text organization. Text-Interdisciplinary Journal for the
Study of Discourse, 8(3):243–281, 1988. 74

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pages 55–60, 2014. URL
http://www.aclweb.org/anthology/P/P14/P14-5010. 77, 99

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano
Menini, and Roberto Zamparelli. Semeval-2014 task 1: Evaluation of com-

185

http://www.aclweb.org/anthology/P/P14/P14-5010

positional distributional semantic models on full sentences through semantic
relatedness and textual entailment. SemEval-2014, 2014. 72

Suguru Matsuyoshi, Yusuke Miyao, Tomohide Shibata, Chuan-Jie Lin, Cheng-
Wei Shih, Yotaro Watanabe, and Teruko Mitamura. Overview of the ntcir-11
recognizing inference in text and validation (rite-val) task. In Proceedings of
the 11th NTCIR Conference, pages 223–232, 2014. 148

Gail McKoon and Roger Ratcliff. Inference during reading. Psychological review,
99(3):440, 1992. 28

Adam Meyers, Catherine Macleod, Roman Yangarber, Ralph Grishman, Leslie
Barrett, and Ruth Reeves. Using nomlex to produce nominalization patterns
for information extraction. In Proceedings: the Computational Treatment of
Nominals, Montreal, Canada,(Coling-ACL98 workshop), volume 2, 1998. 58

Rada Mihalcea, Courtney Corley, and Carlo Strapparava. Corpus-based and
knowledge-based measures of text semantic similarity. In AAAI, volume 6,
pages 775–780, 2006. 117

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In INTERSPEECH
2010, 11th Annual Conference of the International Speech Communication As-
sociation, Makuhari, Chiba, Japan, September 26-30, 2010, pages 1045–1048,
2010. 60

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.
60

George A Miller. WordNet: a lexical database for english. Communications of
the ACM, 38(11):39–41, 1995. 33, 34, 54, 117

Shachar Mirkin, Roy Bar-Haim, Jonathan Berant, Ido Dagan, Eyal Shnarch,
Asher Stern, and Idan Szpektor. Addressing discourse and document structure
in the rte search task. Proc. of TAC, 2009a. 59

Shachar Mirkin, Ido Dagan, and Eyal Shnarch. Evaluating the inferential utility of
lexical-semantic resources. In Proceedings of the 12th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics, pages 558–566.
Association for Computational Linguistics, 2009b. 60

186

Dan Moldovan, Marius Paşca, Sanda Harabagiu, and Mihai Surdeanu. Perfor-
mance issues and error analysis in an open-domain question answering system.
ACM Transactions on Information Systems (TOIS), 21(2):133–154, 2003. 29

Robert C Moore. Towards a simple and accurate statistical approach to learn-
ing translation relationships among words. In Proceedings of the workshop on
Data-driven methods in machine translation-Volume 14, pages 1–8. Associa-
tion for Computational Linguistics, 2001. 59

Thomas Morton, Joern Kottmann, Jason Baldridge, and Gann Bierner. Opennlp:
A java-based nlp toolkit. http://opennlp.sourceforge.net, 2005. 77, 127

Alessandro Moschitti. Efficient convolution kernels for dependency and con-
stituent syntactic trees. In Machine Learning: ECML 2006, pages 318–329.
Springer, 2006. 67, 134, 139

Peter Norvig. Inference in text understanding. In AAAI, pages 561–565, 1987. 14

Jane Oakhill. Constructive processes in skilled and less skilled comprehenders’
memory for sentences. British Journal of Psychology, 73(1):13–20, 1982. 15

Charles Kay Ogden. Basic English: A general introduction with rules and gram-
mar. K. Paul, Trench, Trubner, 1944. 97

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th
annual meeting on association for computational linguistics, pages 311–318.
Association for Computational Linguistics, 2002. 50

Anselmo Peñas and Eduard Hovy. Filling knowledge gaps in text for machine
reading. In Proceedings of the 23rd International Conference on Computational
Linguistics: Posters, pages 979–987. Association for Computational Linguis-
tics, 2010. 28, 113

Anselmo Peñas, Eduard H Hovy, Pamela Forner, Álvaro Rodrigo, Richard FE
Sutcliffe, Corina Forascu, and Caroline Sporleder. Overview of qa4mre at clef
2011: Question answering for machine reading evaluation. In CLEF (Notebook
Papers/Labs/Workshop), pages 1–20. Citeseer, 2011. 23, 45

Anselmo Peñas, Eduard Hovy, Pamela Forner, Álvaro Rodrigo, Richard Sutcliffe,
and Roser Morante. QA4MRE 2011-2013: Overview of question answering for

187

machine reading evaluation. In Information Access Evaluation. Multilinguality,
Multimodality, and Visualization, pages 303–320. Springer, 2013a. 38

Anselmo Peñas, Yusuke Miyao, P Forner, and N Kando. Overview of qa4mre
2013 entrance exams task. In CLEF (Online Working Notes/Labs/Workshop),
pages 1–6, 2013b. 24, 45, 101

Anselmo Peñas, Yusuke Miyao, Álvaro Rodrigo, Eduard Hovy, and Noriko
Kando. Overview of clef qa entrance exams task 2014. In CLEF (Online Work-
ing Notes/Labs/Workshop). CLEF, 2014. 74

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP 2014), pages 1532–
1543, 2014. URL http://www.aclweb.org/anthology/D14-1162.
60

Martin F Porter. Snowball: A language for stemming algorithms, 2001. 127

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. Mapping dependencies trees:
An application to question answering. In Proceedings of AI&Math 2004, pages
1–10, 2004. 64, 81

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. The importance of syntactic
parsing and inference in semantic role labeling. Computational Linguistics, 34
(2):257–287, 2008. 77

Long Qiu, Min-Yen Kan, and Tat-Seng Chua. Paraphrase recognition via dissim-
ilarity significance classification. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing, pages 18–26. Association
for Computational Linguistics, 2006. 71, 73, 81

Anand Rajaraman, Jeffrey D Ullman, Jeffrey David Ullman, and Jeffrey David
Ullman. Mining of massive datasets, volume 77. Cambridge University Press
Cambridge, 2012. 49

Marta Recasens, Marie-Catherine de Marneffe, and Christopher Potts. The life
and death of discourse entities: Identifying singleton mentions. In HLT-NAACL,
pages 627–633, 2013. 140

188

http://www.aclweb.org/anthology/D14-1162

P Resnik. Using information content to evaluate semantic similarity. In Proceed-
ings of the 14th International Joint Conference on Artificial Intelligence, pages
448–453, 1995. 55

Matthew Richardson, Christopher JC Burges, and Erin Renshaw. Mctest: A chal-
lenge dataset for the open-domain machine comprehension of text. In EMNLP,
volume 1, page 2, 2013. 74

Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-
Beaulieu, Mike Gatford, et al. Okapi at trec-3. NIST SPECIAL PUBLICATION
SP, pages 109–109, 1995. 59

Álvaro Rodrigo, Anselmo Peñas, Yusuke Miyao, Eduard Hovy, and Noriko
Kando. Overview of clef qa entrance exams task 2015. Working Notes of CLEF
2015 - Conference and Labs of the Evaluation forum, 2015. 142

Mrinmaya Sachan, Avinava Dubey, Eric P Xing, and Matthew Richardson. Learn-
ing answer-entailing structures for machine comprehension. In Proceedings of
ACL, 2015. 74, 75, 77

Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic
text retrieval. Information processing & management, 24(5):513–523, 1988. 59

Roger C Schank, Neil M Goldman, Charles J Rieger III, and Christopher Ries-
beck. Margie: Memory analysis response generation, and inference on english.
In IJCAI, pages 255–261, 1973. 14

Rolf Schwitter. Controlled natural languages for knowledge representation. In
Proceedings of the 23rd International Conference on Computational Linguis-
tics: Posters, pages 1113–1121. Association for Computational Linguistics,
2010. 97

Aliaksei Severyn and Alessandro Moschitti. Automatic feature engineering for
answer selection and extraction. In EMNLP, pages 458–467, 2013. 67, 81

Dan Shen and Mirella Lapata. Using semantic roles to improve question answer-
ing. In EMNLP-CoNLL, pages 12–21, 2007. 72

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John
Makhoul. A study of translation edit rate with targeted human annotation. In
Proceedings of association for machine translation in the Americas, pages 223–
231, 2006. 50

189

Matthew G Snover, Nitin Madnani, Bonnie Dorr, and Richard Schwartz. Ter-
plus: paraphrase, semantic, and alignment enhancements to translation edit rate.
Machine Translation, 23(2-3):117–127, 2009. 56

Richard Socher, Eric H Huang, Jeffrey Pennin, Christopher D Manning, and An-
drew Y Ng. Dynamic pooling and unfolding recursive autoencoders for para-
phrase detection. In Advances in Neural Information Processing Systems, pages
801–809, 2011. 70, 81, 117

Yangqiu Song, Haixun Wang, Zhongyuan Wang, Hongsong Li, and Weizhu
Chen. Short text conceptualization using a probabilistic knowledgebase. In
Proceedings of the Twenty-Second international joint conference on Artificial
Intelligence-Volume Volume Three, pages 2330–2336. AAAI Press, 2011. 58

Karen Sparck Jones. A statistical interpretation of term specificity and its appli-
cation in retrieval. Journal of documentation, 28(1):11–21, 1972. 59

Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Anani-
adou, and Jun’ichi Tsujii. Brat: a web-based tool for nlp-assisted text annota-
tion. In Proceedings of the Demonstrations at the 13th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics, pages 102–107.
Association for Computational Linguistics, 2012. 154

Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the ACM (JACM),
26(3):422–433, 1979. 63

Stefanie Tellex, Boris Katz, Jimmy Lin, Aaron Fernandes, and Gregory Marton.
Quantitative evaluation of passage retrieval algorithms for question answering.
In Proceedings of the 26th annual international ACM SIGIR conference on Re-
search and development in informaion retrieval, pages 41–47. ACM, 2003. 55,
101

Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer.
Feature-rich part-of-speech tagging with a cyclic dependency network. In Pro-
ceedings of the 2003 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics on Human Language Technology-Volume
1, pages 173–180. Association for Computational Linguistics, 2003. 39, 140

Alan M Turing. Computing machinery and intelligence. Mind, pages 433–460,
1950. 31

190

Peter D Turney, Patrick Pantel, et al. From frequency to meaning: Vector space
models of semantics. Journal of artificial intelligence research, 37(1):141–188,
2010. 60

Leslie G Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421, 1979. 122

Vladimir Vapnik. The nature of statistical learning theory. Springer Science &
Business Media, 2000. 118

Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning theory,
volume 1. Wiley New York, 1998. 66

Evgenii E Vityaev, Leonid I Perlovsky, Boris Ya Kovalerchuk, and Stanislav O
Speransky. Probabilistic dynamic logic of cognition. Biologically Inspired
Cognitive Architectures, 6:159–168, 2013. 19

Ellen M Voorhees. The trec question answering track. Natural Language Engi-
neering, 7(04):361–378, 2001. 23

Stephen Wan, Mark Dras, Robert Dale, and Cécile Paris. Using dependency-
based features to take the "para-farce" out of paraphrase. In Proceedings of the
Australasian Language Technology Workshop, volume 2006, 2006. 63, 81, 117,
127

Di Wang and Eric Nyberg. A long short-term memory model for answer sentence
selection in question answering. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), pages
707–712, Beijing, China, July 2015. Association for Computational Linguis-
tics. URL http://www.aclweb.org/anthology/P15-2116. 60, 70

Mengqiu Wang and Christopher D Manning. Probabilistic tree-edit models with
structured latent variables for textual entailment and question answering. In
Proceedings of the 23rd International Conference on Computational Linguis-
tics, pages 1164–1172. Association for Computational Linguistics, 2010. 65,
69, 81, 117, 134

Mengqiu Wang, Noah A Smith, and Teruko Mitamura. What is the jeopardy
model? a quasi-synchronous grammar for qa. In EMNLP-CoNLL, volume 7,
pages 22–32, 2007. 49, 65, 69, 70, 81, 132

191

http://www.aclweb.org/anthology/P15-2116

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards
ai-complete question answering: A set of prerequisite toy tasks. CoRR,
abs/1502.05698, 2015. URL http://arxiv.org/abs/1502.05698.
29, 75

Wiktionary. Wiktionary, the free dictionary. https://en.wiktionary.org/, 2002. 58

Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection. In Pro-
ceedings of the 32nd annual meeting on Association for Computational Lin-
guistics, pages 133–138. Association for Computational Linguistics, 1994. 55

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter Clark. An-
swer extraction as sequence tagging with tree edit distance. In HLT-NAACL,
pages 858–867. Citeseer, 2013a. 65, 81, 133

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter Clark. A
lightweight and high performance monolingual word aligner. In ACL (2), pages
702–707, 2013b. 58

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter Clark. Semi-
markov phrase-based monolingual alignment. In EMNLP, pages 590–600,
2013c. 58

Alexander Yates, Michael Cafarella, Michele Banko, Oren Etzioni, Matthew
Broadhead, and Stephen Soderland. Textrunner: open information extraction on
the web. In Proceedings of Human Language Technologies: The Annual Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Demonstrations, pages 25–26. Association for Computational Lin-
guistics, 2007. 34, 78

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and Andrzej Pastusiak. Ques-
tion answering using enhanced lexical semantic models. In Proceedings of
the 51st Annual Meeting of the Association for Computational Linguistics,
ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers, pages
1744–1753, 2013. URL http://aclweb.org/anthology/P/P13/
P13-1171.pdf. 49, 58, 59, 60, 70, 81, 117

Deniz Yuret, Aydin Han, and Zehra Turgut. Semeval-2010 task 12: Parser evalu-
ation using textual entailments. In Proceedings of the 5th International Work-
shop on Semantic Evaluation, pages 51–56. Association for Computational Lin-
guistics, 2010. 72

192

http://arxiv.org/abs/1502.05698
http://aclweb.org/anthology/P/P13/P13-1171.pdf
http://aclweb.org/anthology/P/P13/P13-1171.pdf

Fabio Massimo Zanzotto, Marco Pennacchiotti, and Alessandro Moschitti. Shal-
low semantics in fast textual entailment rule learners. In Proceedings of the
ACL-PASCAL workshop on textual entailment and paraphrasing, pages 72–77.
Association for Computational Linguistics, 2007. 66, 81, 117, 134

Fabio Massimo Zanzotto, Lorenzo Dell’Arciprete, and Alessandro Moschitti. Ef-
ficient graph kernels for textual entailment recognition. Fundamenta Informat-
icae, 2010. 67, 69, 117, 134

Rolf A Zwaan and Gabriel A Radvansky. Situation models in language compre-
hension and memory. Psychological bulletin, 123(2):162, 1998. 36

193

Titre : Inférence textuelle pour la compréhension de texte

Mots clés : compréhension automatique de la langue naturelle, inférence textuelle, question réponse

Résumé : Étant donnée la masse toujours
croissante de texte publié, la compréhension
automatique des langues naturelles est devenue un
enjeu majeur de l'intelligence artificielle. En langue
naturelle, les faits exprimés dans le texte ne sont
pas nécessairement tous explicites : le lecteur
humain infère les éléments manquants grâce à
diverses compétences que n'ont initialement pas les
ordinateurs. Une inférence textuelle est définie
comme une relation entre deux fragments de texte :
un humain lisant le premier peut raisonnablement
inférer que le second est vrai. Beaucoup de tâches
de évaluent plus ou moins directement la capacité
des systèmes à reconnaître l'inférence textuelle. Au
sein de cette multiplicité de l'évaluation, les
inférences elles-mêmes présentent une grande
variété de types.

Nous nous interrogeons sur les inférences
textuelles d'un point de vue théorique et
présentons deux contributions répondant à ces
niveaux de diversité. La reconnaissance
automatique d'inférence textuelle repose
aujourd'hui presque toujours sur un modèle
d'apprentissage, entraîné à l'usage de traits
linguistiques variés sur un jeu d'inférences
textuelles étiquetées. Cependant, les données
spécifiques aux phénomènes d'inférence
complexes ne sont pour le moment pas assez
abondantes pour espérer apprendre
automatiquement la connaissance du monde et le
raisonnement de sens commun nécessaires. Cette
thèse propose des systèmes intégrant apprentissage
d'alignements entre les mots de phrases et
utilisation de connaissances tirées de ressources
externes.

Title: Textual Inference for Machine Comprehension

Keywords: natural language understanding, textual inference, question answering

Abstract: With the ever-growing mass of published
text, natural language understanding stands as one
of the most sought-after goal of artificial
intelligence. In natural language, not every fact
expressed in the text is explicit: human readers infer
what is missing through various skills that
computer systems do not initially have. A textual
inference is simply defined as a relation between
two fragments of text: a human reading the first can
reasonably infer that the second is true. A lot of
different NLP tasks more or less directly evaluate
systems on their ability to recognize textual
inference. Among this multiplicity of evaluation
frameworks, inferences themselves are not one and
the same and also present a wide variety of different
types.

We reflect on inferences for NLP from a
theoretical standpoint and present two
contributions addressing these levels of diversity.

Automatically recognizing textual inference
currently almost always involves a machine
learning model, trained to use various linguistic
features on a labeled dataset of samples of textual
inference. However, specific data on complex
inference phenomena is not currently abundant
enough that systems can directly learn world
knowledge and commonsense reasoning. This
thesis presents systems which tighltly integrate the
learning of word-to-word alignments and the use
of external background knowledge.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction
	The need for inference
	What is a textual inference?
	In human cognition
	Parallels between human and machine readers
	Types of inference

	In Natural Language Processing
	Link with logical inference

	Main inference-related NLP tasks
	Recognizing Textual Entailment
	Question Answering
	Semantic equivalence

	A new hierarchy of inference classes
	Literature on inference types and difficulty
	The hierarchy
	Tier 1: Word level
	Tier 2: Sentence level
	Tier 3: Beyond the text
	Leaving room for the unexpected

	Experiments
	How to use this going forward

	Conclusion

	A literature review of automatic textual inference
	Evaluation
	Datasets
	Classification measures
	Ranking measures

	Lexical approaches
	Lexical overlap on surface forms
	Counting in bag-of-words
	A string of words

	Leveraging knowledge on words
	Pre-processing tools
	WordNet
	Other man-made lexical resources
	Drawing on large corpora

	Conclusion

	Structural approaches
	Syntactic dependencies
	Syntax as additional features
	Tree-edit methods
	Tree kernels
	Latent alignments
	Recurrent neural networks

	Semantic structure
	Multi-sentence problems
	Coreference resolution
	Discourse relations

	Knowledge on structure

	Conclusion

	A theoretical model to solve the ``Contextually queried inference'' task
	Contextually queried inference
	Definition
	Framing classic tasks as contextually queried inference

	Proof system for CQI
	The recursive nature of CQI
	Capabilities
	Proof system
	Toward an implementation
	Non-determinism
	Robustness
	Variable introduction

	Our contributions through the lens of CQI

	Structured lexical expansion
	The simplification hypothesis
	Simple English Wiktionary as a paraphrase resource

	Querying the text
	Dictionary-based passage retrieval
	Pre-processing
	Indexing the document
	Passage retrieval

	Experiments
	Data and evaluation methods
	Results
	Conclusion

	Solving the inference step
	Introduction
	Acquiring simplifying paraphrases
	Pre-processing
	Argument matching
	Phrasal paraphrases

	Paraphrasing exercise answers
	Paraphrase generation and pre-ranking
	Classifying student answers
	Evaluation

	Discussion

	Conclusion

	Sentence rewriting as a machine learning task
	A Unified Kernel Approach for Learning Typed Sentence Rewritings
	Introduction
	Type-Enriched String Rewriting Kernel
	String rewriting kernel
	Typed rewriting rules

	Computing TESRK
	Formulation
	Computing k in type-enriched kb-SRK
	Computing Kk

	Experiments
	Systems
	Paraphrase identification
	Recognizing textual entailment
	Answer sentence selection

	Discussion

	Tree Edit Beam Search
	Tree edit model
	The model
	The implementation

	Beam search
	Feature extraction
	Pre-processing
	Resources
	Complete set of features

	Experiments
	Data
	A note on the complete system
	Results

	Discussion

	Conclusion

	Our approach to a complete application of the CQI task: reading comprehension tests
	The Entrance Exams task at CLEF
	Task definition
	The corpus
	Text
	Question
	Answer choice

	Corpus annotation

	Validation and invalidation
	Manual rules
	System overview
	Decision by validation/invalidation
	Results

	Learning from Tree Edit Beam Search
	Passage retrieval
	Training validation and invalidation classifiers
	Results
	Error analysis
	Discussion

	Conclusion

	Conclusion

