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Abstract

The recent issue of metamaterials design has renewed the interest in homog-
enization theories under dynamic loadings. In particular, the elastodynamic
homogenization theory initiated by J.R. Willis has gained special attention while
studying elastic cloaking. The present thesis reformulates Willis theory for peri-
odic media, investigates its outcome and assesses its physical suitability in the
sense of a few suggested “homogenizability conditions”. Based on the results of
this first part, approximate asymptotic expansions of Willis theory are explored
in connection with strain-gradient media. A necessary convergence condition
then shows that all optical dispersion branches are lost when long-wavelength
low-frequency Taylor asymptotic expansions are carried out. Finally, a new
homogenization theory is proposed to generalize Willis theory and improve it at
finite frequencies in such a way that selected optical branches, formerly lost, are
recovered. It is also proven that the outcome of the new theory is an effective ho-
mogeneous generalized continuum satisfying a generalized elastodynamic version
of Hill-Mandel lemma.

Résumé

La problématique récente de la conception de métamatériaux a renouvelé l’intérêt
dans les théories de l’homogénéisation en régime dynamique. En particulier, la
théorie de l’homogénéisation élastodynamique initiée par J.R. Willis a reçu une
attention particulière suite à des travaux sur l’invisibilité élastique. La présente
thèse reformule la théorie de Willis dans le cas des milieux périodiques, examine
ses implications et évalue sa pertinence physique au sens de quelques “conditions
d’homogénéisabilité” qui sont suggérées. En se basant sur les résultats de cette
première partie, des développements asymptotiques approximatifs de la théorie
de Willis sont explorés en relation avec les théories à gradient. Une condition
nécessaire de convergence montre alors que toutes les branches optiques de la
courbe de dispersion sont omises quand des développements asymptotiques de
Taylor de basse fréquence et de longue longueur d’onde sont déployés. Enfin, une
nouvelle théorie de l’homogénéisation est proposée. On montre qu’elle généralise
la théorie de Willis et qu’elle l’améliore en moyenne fréquence de sorte qu’on
retrouve certaines branches optiques omises auparavant. On montre également
que le milieu homogène effectif défini par la nouvelle théorie est un milieu
généralisé dont les champs satisfont une version élastodynamique généralisée du
lemme de Hill-Mandel.
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General introduction

All right, everybody be cool, this is a robbery!

Pumpkin, Pulp Fiction

1 Metamaterials
Metamaterials are man-made materials purposely tailored to have an unusual behavior
be it optical, electromagnetic, acoustic, elastic or any other physical behavior. Meta-
materials can have a negative permittivity, permeability, shear and bulk moduli, a
negative or an anisotropic mass, a negative refraction index or any combination thereof,
for instance. By featuring these non-standard properties, metamaterials allow for
transcendent applications such as “superlensing”, i.e., lensing beyond the diffraction
limit, and cloaking. Other applications include wave attenuation, wave channeling and,
more generally, any specific and purposeful form of wave control.

On the microscopic scale, a metamaterial appears as an arrangement of multiple
constituents whose shapes, short- and long-range orders convey to the metamaterial
its exquisite properties on the macroscopic scale. In contrast, taken individually, each
constituent has a standard behavior. Therefore, metamaterials are only “meta” on
the macroscopic scale, i.e., when the wavelength of the wave, whether light, sound
or any other disturbance, traveling in the metamaterial is large enough with respect
to the typical size of the constituents so as to interact with them collectively instead
of individually. Furthermore, metamaterials behavior is only observable at specific
frequencies which trigger internal resonant mechanisms. For example, a metamaterial’s
mass will be negative over a more or less narrow band centered around some particular
frequency.

For “negative” electromagnetic and elastic materials, the interested reader is referred
to the pioneering papers by Smith et al. (2000), Pendry (2000) and by Liu et al. (2000).
It is worth mentioning here that the potential of “negative materials” was known long
before (Veselago, 1968) and so were the unusual macroscopic properties of mixtures
(Willis, 1985; Auriault and Bonnet, 1985). However, it is only recently that the complete
chain, from microstructure to application, has been fully recognized. For a recent
exhaustive review of metamaterials, see the introductory chapter of the book edited by
Craster and Guenneau (2012).
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2 Cloaking
Perhaps the most exciting application of metamaterials is the possibility for rendering
objects invisible to probing waves of a given nature, light or sound waves for instance,
by placing a well conceived metamaterial, a cloak, around it. By suitably varying the
index of refraction within the metamaterial, rays can be guided around a region of
space towards the paths they would have followed in the absence of the cloak. An
object is then cloaked by simply putting it in the circumvented region.

Going further into details, there exists a finite transformation which maps the
straight paths of rays, in the absence of the cloak, to the desired curved paths. Then,
this finite transformation seen as a curvilinear change of coordinates can be applied to
the governing wave equation whose coefficients are constants. The coefficients of the
transformed wave equation, interpreted in Cartesian coordinates as varying coefficients,
define then the constitutive properties of the cloak. This idea is at the basis of what
became known as transformation optics and allows for conceiving more general devices
for wave control than cloaks. The founding papers were written by Leonhardt (2006)
and Pendry et al. (2006) in the context of electromagnetic waves. For more references
and insightful remarks see the papers by Kohn et al. (2008) and by Norris (2008).

The transformation method described above will work as long as the governing
equations are invariant under curvilinear changes of coordinates. Otherwise, the
transformed equation will include new terms unaccounted for by the physics. Hence, the
implementation for electromagnetic and acoustic waves is straightforward. In contrast,
the standard full elasticity equations do not retain their form and, in particular, when
a curvilinear change of coordinates is applied, third-order tensors coupling stress to
velocity, on one hand, and strain to momentum, on the other hand, appear. Interestingly,
alternative non-standard elasticity equations somehow derived by Willis (1997) do
feature the mentioned coupling tensors and therefore are form invariant. This was
demonstrated by Milton et al. (2006). See also the paper by Norris and Shuvalov (2011)
for further references.

Next, we shall describe the considerations that lead to the mentioned “Willis
equations”. Accordingly, a few words on micromechanics and homogenization are in
order.

3 Micromechanics and homogenization
Hill (1965) estimated the mechanical properties of an “aggregate of elastoplastic
crystals”, “as a whole”, assuming known the constitutive law of the individual crystals.
He described his theory as being micromechanical. More generally, micromechanics,
as put by Zaoui (2001), is an attempt to invert the “inductive” or “phenomenological”
approach to the characterization of materials behavior into a more “deductive” one.
We speak of a scale transition from the laws governing “the parts” at the microscopic
scale to the laws governing “the whole” at the macroscopic scale. This transition is
called homogenization.
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A material, or a metamaterial as described earlier, when resolved, appears indeed
as an aggregate of different phases or constituents and we are presented with two
options when studying its behavior. One is to model it as an inhomogeneous one on
the microscale and to deal directly with the different constituents. The other is to
model it as an effectively homogeneous one on the macroscale. Undoubtedly, how
the constituents behave individually and how they are geometrically and statistically
distributed over space are decisive to the macroscopic behavior of the material under
consideration. Therefore, ideally, a deductive micromechanical approach permits to
solve inverse problems as in finding a microstructure whose macroscopic behavior is
sought and desired.

Scale transition, under one form or another, appears in multiple branches of physics.
In some circumstances, Keller (1977) notes, “the equations governing the gross behavior
are of a different form from those which govern the small scale behavior”. For instance,
sound traveling at the same speed in all directions in each phase does not imply it
traveling at the same speed in all directions in the mixture. The same as before holds if
“in all directions” is substituted by “at all frequencies”. More fundamental examples are
provided in the context of statistical physics where time reversal symmetry is broken
on the macroscale or in the context of fluid mechanics where Darcy’s law is derived
from the Navier-Stokes equations.

As for the elasticity equations in statics, it is known that a mixture of elastic
phases behave as an elastic, possibly anisotropic, solid. In dynamics however, several
homogenization theories with different outcomes have been suggested depending on the
involved length scales, frequencies and phases. Most remarkably, the homogenization
theory initiated by Willis (1997) features, among other peculiarities, the formerly
mentioned third-order coupling tensors mandatory for elastic cloaking applications.

After the particular framework of the present manuscript has been laid down, a
brief overview of some homogenization theories for elastodynamics, including Willis
theory in particular, is presented.

4 Framework

The present manuscript, hopefully, contributes to the effort of understanding how
the macroscopic properties of (periodic) materials in general, and metamaterials in
particular, relate to their microscopic counterparts for linearly elastic solids. In
connection to the mentioned observation of Keller, we shall focus our attention on the
form taken by the macroscopic behavior, its nature, consistency and physical suitability,
rather than on the actual, numerical, calculation of the parameters involved in said
behavior. In the remainder of this section, we comment on the choices we have made in
terms of the microstructures to be homogenized, the considered frequency regimes and
the adopted homogenization approaches.



4 General introduction

4.1 On random and periodic microstructures
An incident elastic wave interacts with the heterogeneities of a given random medium:
it is scattered by inclusions, reflected, refracted and transmitted across interfaces.
When the wavelength is infinitely larger than the typical “radius” of heterogeneities,
the incident wave is little sensitive to the exact features of the microstructure and only
feels its overall, averaged or smoothed, effect. The inhomogeneous medium behaves
then, at the scale of the wave, as an effective homogeneous medium. Conversely, the
incident wave is weakly scattered. However, even weak scattering from a disordered,
random, distribution of scatterers can perturb drastically the incident wave across large
travel distances. Most of the carried energy gets shifted from the “coherent” mean
wave towards the scattered waves. The effective homogeneous medium approximation
will then only be valid locally for travel distances of the order of several wavelengths.
Beyond this limit, other approximations, of a diffusive nature for instance, are called
for.

In contrast, for a periodic medium, due to the particular distribution of scatterers,
the scattered waves can only have specific, discrete, directions of propagation1. As
a consequence, even when the incident wave is strongly scattered, i.e., even for high
frequencies and small wavelengths, the change in the traveling wave across large
distances is entirely accounted for by simple phase shifts. The energetic content of the
scattered waves will of course depend heavily on frequencies and wavelengths so that
the notion of the effective homogeneous medium will need adaptation but will remain
pertinent for a wider domain of small and finite frequencies as we shall see.

The introductory chapter of the book by Sheng (2006) and the overview by Papan-
icolaou (1998) seem to be good starting points for the reader willing to tackle diffusion
and other wave phenomena in random media. When dealing with the propagation of
(infinitely-) high-frequency waves, scientists speak of ray theory and of geometrical and
physical optics. The relevant chapter of the book by Bender and Orszag (1999) might
be of assistance for readers. In the remainder of the present work, we shall be only
interested in the propagation of waves in periodic media at low and high but finite
frequencies. Note that periodic materials are sufficiently rich in that they offer a wide
array of potential macroscopic properties, including those of metamaterials. Their
manufacturing is also easy and direct.

4.2 Three kinds of homogenization approaches
A microstructured medium can be modeled, as depicted earlier, either microscopically
as an inhomogeneous one or macroscopically as an effective homogeneous one. There
exist at least three points of view regarding how the scale transition should be made.

If one carries out tensile tests on multiple samples of the same (inhomogeneous)
material, and given that these samples are sufficiently representative, the plots of
the obtained stress-strain curves are expected to be identical up to a small statistical

1This fact will later be named “Floquet-Bloch theorem”.
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fluctuation and all of them characterize then the macroscopic constitutive stress-strain
relationship. In a structure made of this material, each representative volume element
corresponds to a macroscopic material point whose constitutive behavior is given by the
results of the performed mechanical tests. Such is the first type of approaches. Its major
advantage is the immediate link it establishes between the macroscopic constitutive
behavior and its straightforward experimental characterization. All homogenization
textbooks discuss the notion of representative volume elements and the suitable tensile
tests to be carried over them. These tests are defined through specific boundary
conditions in relation to a constraint on virtual work known as Hill-Mandel lemma.
For more information, we refer to the book edited by Bornert et al. (2001), to the book
by Forest (2006) and to references therein.

Alternatively, homogenization can be seen as a limit process during which a scale
separation parameter, namely the ratio of the typical size of heterogeneities to the size
of the loading wavelength, tends to zero. The wave solution to the microscopic motion
equation has then increasingly finer and smaller fluctuations and converges toward a
macroscopic solution of another motion equation interpreted as the macroscopic motion
equation. Several mathematical theories define and deal with suitable convergence
notions of motion equations such as G-, Γ-, H- and two-scale convergence. The
interested reader might start with the book dedicated to “beginners” by Braides (2002).
See also the paper by Allaire (1992) and references therein.

Finally, instead of filtering microstructure-related fluctuations by passing to the
limit, one can smooth the microscopic wave by carrying averages of some kind. When
smoothed, the microscopic wave becomes a macroscopic wave and the motion equation
whose solutions are the macroscopic waves is taken to be the macroscopic motion
equation. These approaches are discussed subsequently in more detail.

All three kinds of approaches seem to yield the same effective homogeneous behavior
for infinitely large wavelengths and infinitely low frequencies. However, for finite
wavelengths and wavenumbers, it is unclear how the standard quasi-static theory
should be improved. We shall be interested in Willis and similar theories and in
approaches of the third kind more generally. These are rigorous methods in the
sense that they transform a microscopic motion into a macroscopic one but lack the
convergence results of the methods of the second kind. It is freeing to some extent
to escape strict mathematical rigor. Nonetheless, this comes at the cost of some
inconsistencies that will be encountered.

Concluding our comparison, approaches of the first kind can be described as local
as they deal with representative volume elements regardless of the whole structure or
medium whereas approaches of the second and third kinds can be said to be global since
they are concerned with the structure as a whole. In particular, the latter viewpoint
does not presume the existence of a representative volume element nor the locality of
the effective constitutive behavior. This being said, the three paradigms need not to
be opposed but to complete one another.
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5 A brief overview of homogenization theories

One can divide the homogenization approaches of the third kind, described above, into
two major categories. The first one includes theories which make no assumptions on the
involved frequencies and wavelengths. These are mostly variations or particular cases of
the smoothing method by Keller such as Willis theory. Methods of the second category
are based on a scaling of frequencies, wavelengths and other physical parameters. It
is obvious in what follows that the theory initiated by Willis holds a special place.
Indeed, it was our starting point and its assessment motivated several developments in
connection with other homogenization approaches.

Bibliographical elements are provided within each chapter. Hereafter is a brief
overview which helps integrate the references to come in a relatively coherent body.
Many, if not all, approximate variational, self-consistent and numerical, among other,
methods have been left out. These can be found in the book by Bornert et al. (2001)
or in the surveys by Zaoui (2002) and by Charalambakis (2010).

5.1 The smoothing method

A microscopic displacement field is expected to vary on two different scales. It will
have large scale variations induced by the macroscopically applied loading, or the long-
wavelength incident wave, and will fluctuates on the scale of the heterogeneities. The
macroscopic displacement field is then thought of as an approximation to the microscopic
field where the rapid small scale fluctuations have been smoothed. Smoothing can be
done in different ways. One popular approach devised by Keller (1960, 1977, 1979) and
others is to define the macroscopic wave as the average of the microscopic one over an
ensemble of realizations of the microstructure for a random medium. In other words,
the macroscopic wave is the expectancy of the microscopic one when the microstructure
is randomized. The macroscopic wave is then what is referred to as the coherent wave.

Keller only spoke in terms of motion equations and did not investigate the reper-
cussions of the smoothing method on the constitutive behavior. Furthermore, only low
contrast media were handled due to the complexity of the required calculations. A
few years later, it is Willis who suggested systematic variational methods for approxi-
mating the effective behavior of composites of arbitrary microstructures. As for the
corresponding effective constitutive law, it first appeared in 1997.

One should underline the fact that the formalism based on projectors that Keller
(1977) came up with is highly insightful. Indeed, speaking in terms of projections
clarifies the meaning of the approximation made in the course of the upscaling process.
More importantly, known properties of projections regarding the conservation of
scalar products entail an energy equivalency property between the microscale and the
macroscale usually referred to as Hill-Mandel lemma. Such is the main driving idea of
chapter 4 for instance.



5. An overview 7

5.2 Willis theory
In an attempt to describe the scattering of an incident wave by a single inclusion, Willis
(1980a) transformed the differential motion equation into a fixed point integral one.
The integral formulation is based on the use of a fictional homogeneous comparison
medium. The idea was not new and undoubtedly reminds of the Eshelby problem in
statics. For instance, such a scattering problem was earlier investigated by Gubernatis
et al. (1977) by means of integral equations as well. The novelty of Willis’ approach
was to substitute the displacement integral equation with two other equations written
in terms of two auxiliary unknown fields: the formerly known stress polarization field
and the newly introduced momentum polarization field.

In the second part of his paper, Willis (1980b) adapted his polarization approach
in order to deal with scattering by multiple inclusions. Randomness arises hence
necessarily when describing the distribution of scatterers in space. Then, speaking
of the solution to the integral equations, and in the spirit of the smoothing method,
Willis notes that “the solution of these equations, even if it could be obtained, would
contain an excess of detail and a reasonable objective would be to extract from it some
“locally-averaged” information”. Nonetheless, unlike periodic media as shall be seen,
defining suitable local space averages over a random medium is far from being obvious.
Regretfully, Willis seeks for the expectancy value of the displacement field, i.e., the
coherent wave, instead of its local space averages.

In a more general fashion than for matrix-inclusion composites, an approach by
polarizations allow to construct new variational principles of the Hashin-Shtrikman
type describing the motion of the coherent wave in an inhomogeneous medium. These
are stationarity principles in general and hence do not produce any bounds except in
the Laplace domain for a real Laplace variable. Willis (1981) explored these possibilities
without speaking of any effective constitutive law the first mention of which came 4
years later while investigating the overall effective mass density of composites and
the possibility for nonlocal and anisotropic effects (Willis, 1985). Incidentally, in that
paper, in order to focus attention on inertial considerations, Willis assumed stiffnesses
to be homogeneous in which case the effective constitutive law takes a much simpler
form. In fact, back then, the existence of a coupling between stresses and velocities or
between momenta and strains was not suspected at all.

The chapter “Dynamics of composites” written by Willis (1997) is the first instance
where the outcome of the smoothing method of Keller is written in terms of an effective
constitutive behavior. It turns out that, at the macroscopic level, the existence of some
coupling terms allow for velocity-generated stresses and for strain-generated momenta.
In addition, the behavior is nonlocal in both space and time and, as hinted earlier, the
effective mass density is possibly anisotropic.

Finally, Willis theory was generalized to describe at the macroscopic scale some
weighted expectancy of the displacement field by Milton and Willis (2007) and by
Willis (2011). Some examples are treated in (Willis, 2009, 2012a) and a remake of the
paper from 1981 on variational methods in light of recent developments can be found
in (Willis, 2012b).



8 General introduction

The renewed interest in Willis theory in recent years is caused by two aspects
both related to the very trending metamaterials. On one hand, the outcome of Willis
theory is sufficiently rich to account for all kinds of unusual effects: anisotropic masses,
negative masses and stiffnesses, nonlocal effects, non-propagating frequencies, . . . On
the other hand, the Willis elasticity equations retain their form under curvilinear
changes of coordinates as demonstrated by Milton et al. (2006) so that the macroscopic
effective behavior outcome of Willis theory can be used to realize elastic cloaks.

When the distribution of scatterers is periodic, the wave takes a simple form which
separates microstructure related fluctuations from loading related variations. The
coherent wave can then be obtained by space averaging some periodic amplitude over
a unit cell thanks to what is known as Floquet-Bloch expansions1. This idea was
first pursued independently from Willis theory by Amirkhizi and Nemat-Nasser (2008)
for electromagnetic waves and then by others for elastic waves (Nemat-Nasser and
Srivastava, 2011, 2013; Nemat-Nasser et al., 2011; Norris et al., 2012; Shuvalov et al.,
2011; Srivastava and Nemat-Nasser, 2011).

5.3 Asymptotic theories
For infinitely long wavelengths and low frequencies, there exists a well-established more
or less standard theory of homogenization based on two-scale asymptotic expansions
and dealing with static and quasi-static behaviors. This theory is usually traced
back to the work of Bensoussan et al. (1978) and Sanchez-Palencia (1980). It proves,
by convergence analysis, that the macroscopic behavior is homogeneous and of the
same nature as the microscopic one with possible elastic anisotropy, the effective mass
density being simply the arithmetic mean of the phases mass densities. Unfortunately,
the macroscopic behavior thus obtained has its limitations. Most remarkably, all
information related to internal length scales are lost and no dispersion phenomena, i.e.,
phenomena related to the frequency dependence of the speed of sound, are captured.

In the language of Taylor expansions, the above theory is of the lowest order in
frequency. One would want to improve the accuracy of the above described effective
behavior by relaxing the corresponding assumptions and allowing for relatively higher
frequencies. Two ways for doing this can be found in the literature. The first one
simply pushes farther in the Taylor expansion and takes into account higher order terms
(see2, e.g., Boutin and Auriault, 1993; Boutin, 1996; Smyshlyaev and Cherednichenko,
2000; Andrianov et al., 2008; Kalamkarov et al., 2009; Andrianov et al., 2011). These
macroscopic models capture well some weak dispersive effects but miss stronger ones
related to internal oscillation modes3. Note that these approaches, except to lowest
order, lack convergence results.

1These, and related references, are discussed in detail in the next chapter.
2Not to mention all “continualization” schemes such as those of Askes et al. (2002), Askes

and Aifantis (2011) and Polyzos and Fotiadis (2012) and references therein.
3Think of the difference between standard and spinning roller coasters . . .
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Another way of looking at things is to say that, strictly speaking, infinite wave-
lengths correspond to uniform translatory rigid body motions. The macroscopic waves
described by the standard homogenization theory can then be seen as slow or large
scale modulations of rigid body motions. A particularity of rigid body motions is that
the medium can sustain them in the absence of external loadings. They are a particular
case, and the only static kind, of what is called a free wave. Therefore, a natural
generalization of the quasi-static theory is to consider large scale modulations of other
high frequency free waves. In terms of Taylor expansions, instead of increasing the order
of the expansion, the neighborhood of the expansions, which was centered around the
null frequency, is now modified and centered around another non-null eigenfrequency
of the medium. This theory was first suggested by Craster et al. (2010) and further
developed by Nolde et al. (2011), Antonakakis et al. (2014), Colquitt et al. (2014) and
by Boutin et al. (2014). The advantage of the outlined high-frequency homogenization
theory is that it captures some high-frequency internal oscillation modes (in the same
manner in which the quasi-static theory captures the trivial oscillation mode: rigid
body motion) and the related dispersive effects. Its major inconvenience is that it is a
local theory: in the vicinity of each eigenfrequency, a motion equation describing the
modulations of the corresponding free wave is needed.

5.4 High contrasts

Say a matrix-inclusion composite is to be homogenized and assume that the matrix
is infinitely stiffer than the inclusions. When the matrix experiences a low-frequency
motion, the inclusions, being softer, would still oscillate in a high-frequency manner.
Taking this fact into account when carrying Taylor expansions leads to a high-contrast
low-frequency long-wavelength asymptotic homogenization theory capable of capturing
the large scale modulations of rigid body transformations in addition to some localized
states induced by the internal oscillations of inclusions. The earliest1 investigations of
this idea in the context of elastodynamics were carried by Auriault and Bonnet (1985)2

and later pursued by others. We refer to (Smyshlyaev, 2009), to (Auriault and Boutin,
2012) and to references therein for more details.

The described high-contrast theory has two (expected) inconveniences. First, it
only approximates the microscopic displacement field in the stiff matrix. Second, the
presence of an infinite number of internal oscillation modes makes that the effective
behavior is nonlocal. Consequently, the effective behavior, just like for Willis theory,
can turn out to be highly inextricable.

1Earliest to my knowledge that is . . .
2It is worth mentioning that the cited paper is hard to find, written in French and poorly

recognized.
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6 An outline
We start by investigating Willis theory due to its close connection to modern research
on metamaterials and cloaking. It turns out that the mathematical rigor of this
theory cannot avoid many physical inconsistencies. Chapter 2 shall reformulate and
assess said theory without going as far as applications however. Our conclusions
will call for two kinds of developments. One pushes toward simplifying the Willis
effective behavior by the use of asymptotics (chapter 3). The results are discussed in
connection with the so-called higher-order strain-gradient media (Mindlin, 1964; Askes
and Aifantis, 2011). The other invites us to give up the coherent wave in favor of other
more significant components of the microscopic wave and will give rise to macroscopic
behaviors resembling those of a class of generalized continua, i.e., continua with an
extended set of degrees of freedom (Maugin, 2010). Chapter 1, on the other hand, is a
technical introduction to the elastodynamics of periodic media and should recall, and
make the reader familiar with, some basic useful tools of a geometrical nature, such as
direct and reciprocal lattices, unit cells and Brillouin zones, and others of an analytical
nature, such as Fourier and Floquet-Bloch transforms.

Bibliography
Allaire, G., 1992. Homogenization and two-scale convergence. SIAM Journal on

Mathematical Analysis 23, 1482–1518.

Amirkhizi, A.V., Nemat-Nasser, S., 2008. Microstructurally-based homogenization
of electromagnetic properties of periodic media. Comptes Rendus Mécanique 336,
24–33.

Andrianov, I.V., Awrejcewicz, J., Danishevs’kyy, V.V., Weichert, D., 2011. Wave
propagation in periodic composites: Higher-order asymptotic analysis versus plane-
wave expansions method. Journal of Computational and Nonlinear Dynamics 6,
1–8.

Andrianov, I.V., Bolshakov, V.I., Danishevs’kyy, V.V., Weichert, D., 2008. Higher order
asymptotic homogenization and wave propagation in periodic composite materials.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
464, 1181–1201.

Antonakakis, T., Craster, R.V., Guenneau, S., 2014. Homogenisation for elastic
photonic crystals and dynamic anisotropy. Journal of the Mechanics and Physics of
Solids 71, 84–96.

Askes, H., Aifantis, E.C., 2011. Gradient elasticity in statics and dynamics: An overview
of formulations, length scale identification procedures, finite element implementations
and new results. International Journal of Solids and Structures 48, 1962–1990.



Bibliography 11

Askes, H., Suiker, A.S.J., Sluys, L.J., 2002. A classification of higher-order strain-
gradient models - linear analysis. Archive of Applied Mechanics (Ingenieur Archiv)
72, 171–188.

Auriault, J.L., Bonnet, G., 1985. Dynamics of periodic elastic composites (Dynamique
des composites élastiques périodiques). Archiwum Mechaniki Stosowanej 37, 269–284.

Auriault, J.L., Boutin, C., 2012. Long wavelength inner-resonance cut-off frequencies
in elastic composite materials. International Journal of Solids and Structures 49,
3269–3281.

Bender, C.M., Orszag, S.A., 1999. Advanced mathematical methods for scientists and
engineers I: Asymptotic methods and perturbation theory. Springer-Verlag New
York.

Bensoussan, A., Lions, J.L., Papanicolaou, G., 1978. Asymptotic analysis for periodic
structures. North-Holland Publishing Company.

Bornert, M., Bretheau, T., Gilormini, P. (Eds.), 2001. Homogénéisation en mécanique
des matériaux, Tome 1: Matériaux aléatoires élastiques et milieux périodiques.
Mécanique et ingénierie des matériaux, Hermes science.

Boutin, C., 1996. Microstructural effects in elastic composites. International Journal
of Solids and Structures 33, 1023–1051.

Boutin, C., Auriault, J.L., 1993. Rayleigh scattering in elastic composite materials.
International Journal of Engineering Science 31, 1669–1689.

Boutin, C., Rallu, A., Hans, S., 2014. Large scale modulation of high frequency waves
in periodic elastic composites. Journal of the Mechanics and Physics of Solids 70,
362 – 381.

Braides, A., 2002. Gamma-convergence for beginners. Oxford lecture series in mathe-
matics and its applications, Oxford University Press.

Charalambakis, N., 2010. Homogenization techniques and micromechanics. A survey
and perspectives. Applied Mechanics Reviews 63, 1–10.

Colquitt, D.J., Craster, R.V., Antonakakis, T., Guenneau, S., 2014. Rayleigh-Bloch
waves along elastic diffraction gratings. Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 471, 20140465.

Craster, R.V., Guenneau, S. (Eds.), 2012. Acoustic metamaterials: Negative refrac-
tion, imaging, lensing and cloaking. Springer Series in Materials Science, Springer
Netherlands.



12 Bibliography

Craster, R.V., Kaplunov, J., Pichugin, A.V., 2010. High-frequency homogenization for
periodic media. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 466, 2341–2362.

Forest, S., 2006. Milieux continus généralisés et matériaux hétérogènes. Collection
Sciences de La Matière, Presses de l’Ecole des Mines.

Gubernatis, J.E., Domany, E., Krumhansl, J.A., 1977. Formal aspects of the theory of
the scattering of ultrasound by flaws in elastic materials. Journal of Applied Physics
48, 2804–2811.

Hill, R., 1965. Continuum micro-mechanics of elastoplastic polycrystals. Journal of
the Mechanics and Physics of Solids 13, 89–101.

Kalamkarov, A.L., Andrianov, I.V., Danishevs’kyy, V.V., 2009. Asymptotic homog-
enization of composite materials and structures. Applied Mechanics Reviews 62,
1–20.

Keller, J.B., 1960. Wave propagation in random media. Technical Report. DTIC.

Keller, J.B., 1977. Effective behavior of heterogeneous media, in: Landman, U. (Ed.),
Statistical mechanics and statistical methods in theory and application. Springer
US, pp. 631–644.

Keller, J.B., 1979. Progress and prospects in the theory of linear wave propagation.
SIAM Review 21, 229–245.

Kohn, R.V., Shen, H., Vogelius, M.S., Weinstein, M.I., 2008. Cloaking via change of
variables in electric impedance tomography. Inverse Problems 24, 015016.

Leonhardt, U., 2006. Optical conformal mapping. Science (New York, N.Y.) 312,
1777–1780.

Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P., 2000. Locally
resonant sonic materials. Science (New York, N.Y.) 289, 1734–1736.

Maugin, G.A., 2010. Generalized continuum mechanics: What do we mean by that?,
in: Maugin, G.A., Metrikine, A.V. (Eds.), Mechanics of generalized continua: One
hundred years after the Cosserats. Springer Science Business Media, New York, pp.
3–14.

Milton, G.W., Briane, M., Willis, J.R., 2006. On cloaking for elasticity and physical
equations with a transformation invariant form. New Journal of Physics 8, 248–267.

Milton, G.W., Willis, J.R., 2007. On modifications of Newton’s second law and linear
continuum elastodynamics. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 463, 855–880.



Bibliography 13

Mindlin, R.D., 1964. Micro-structure in linear elasticity. Archive for Rational Mechanics
and Analysis 16, 51–78.

Nemat-Nasser, S., Srivastava, A., 2011. Overall dynamic constitutive relations of layered
elastic composites. Journal of the Mechanics and Physics of Solids 59, 1953–1965.

Nemat-Nasser, S., Srivastava, A., 2013. Bounds on effective dynamic properties of
elastic composites. Journal of the Mechanics and Physics of Solids 61, 254–264.

Nemat-Nasser, S., Willis, J.R., Srivastava, A., Amirkhizi, A.V., 2011. Homogenization
of periodic elastic composites and locally resonant sonic materials. Physical Review
B 83, 104103.

Nolde, E., Craster, R.V., Kaplunov, J., 2011. High frequency homogenization for
structural mechanics. Journal of the Mechanics and Physics of Solids 59, 651–671.

Norris, A.N., 2008. Acoustic cloaking theory. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 464, 2411–2434.

Norris, A.N., Shuvalov, A.L., 2011. Elastic cloaking theory. Wave Motion 48, 525–538.

Norris, A.N., Shuvalov, A.L., Kutsenko, A.A., 2012. Analytical formulation of three-
dimensional dynamic homogenization for periodic elastic systems. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 468, 1629–1651.

Papanicolaou, G., 1998. Mathematical problems in geophysical wave propagation.
Documenta Mathematica, Extra Volume ICM I, 403–427.

Pendry, J.B., 2000. Negative refraction makes a perfect lens. Physical Review Letters
85, 3966–3969.

Pendry, J.B., Schurig, D., Smith, D.R., 2006. Controlling electromagnetic fields. Science
(New York, N.Y.) 312, 1780–1782.

Polyzos, D., Fotiadis, D.I., 2012. Derivation of Mindlin’s first and second strain gradient
elastic theory via simple lattice and continuum models. International Journal of
Solids and Structures 49, 470–480.

Sanchez-Palencia, E., 1980. Non-homogeneous media and vibration theory. Springer-
Verlag.

Sheng, P., 2006. Introduction to wave scattering, localization and mesoscopic phenom-
ena. Springer Series in Materials Science, Springer Berlin Heidelberg.

Shuvalov, A.L., Kutsenko, A.A., Norris, A.N., Poncelet, O., 2011. Effective Willis
constitutive equations for periodically stratified anisotropic elastic media. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences 467, 1749–
1769.



14 Bibliography

Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., 2000. Compos-
ite medium with simultaneously negative permeability and permittivity. Physical
Review Letters 84, 4184–4187.

Smyshlyaev, V.P., 2009. Propagation and localization of elastic waves in highly
anisotropic periodic composites via two-scale homogenization. Mechanics of Materials
41, 434–447.

Smyshlyaev, V.P., Cherednichenko, K.D., 2000. On rigorous derivation of strain
gradient effects in the overall behaviour of periodic heterogeneous media. Journal of
the Mechanics and Physics of Solids 48, 1325–1357.

Srivastava, A., Nemat-Nasser, S., 2011. Overall dynamic properties of three-dimensional
periodic elastic composites. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 468, 269–287.

Veselago, V.G., 1968. The electrodynamics of substances with simultaneously negative
values of ε and µ. Soviet Physics Uspekhi 509, 509–514.

Willis, J.R., 1980a. A polarization approach to the scattering of elastic waves-I.
Scattering by a single inclusion. Journal of the Mechanics and Physics of Solids 28,
287–305.

Willis, J.R., 1980b. A polarization approach to the scattering of elastic waves-II.
Multiple scattering. Journal of the Mechanics and Physics of Solids 28, 307–327.

Willis, J.R., 1981. Variational principles for dynamic problems for inhomogeneous
elastic media. Wave Motion 3, 1–11.

Willis, J.R., 1985. The nonlocal influence of density variations in a composite. Interna-
tional Journal of Solids and Structures 21, 805–817.

Willis, J.R., 1997. Dynamics of composites, in: Suquet, P. (Ed.), Continuum Microme-
chanics. Springer-Verlag New York, Inc., pp. 265–290.

Willis, J.R., 2009. Exact effective relations for dynamics of a laminated body. Mechanics
of Materials 41, 385–393.

Willis, J.R., 2011. Effective constitutive relations for waves in composites and metama-
terials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 467, 1865–1879.

Willis, J.R., 2012a. A comparison of two formulations for effective relations for waves
in a composite. Mechanics of Materials 47, 51–60.

Willis, J.R., 2012b. The construction of effective relations for waves in a composite.
Comptes Rendus Mécanique 340, 181–192.



Bibliography 15

Zaoui, A., 2001. Changement d’échelle: motivation et méthodologie, in: Bornert, M.,
Bretheau, T., Gilormini, P. (Eds.), Homogénéisation en mécanique des matériaux,
Tome 1: Matériaux aléatoires élastiques et milieux périodiques. Hermes science, pp.
19–39.

Zaoui, A., 2002. Continuum micromechanics: Survey. Journal of Engineering Mechanics
128, 808–816.





Chapter 1

Preliminaries

[Subject appears well-rested and enthusiastic. Apparently, ignorance is
bliss.] All right, let us begin.

Sheldon Cooper, The Big Bang Theory

Before speaking of homogenization, hereafter is a brief introduction to the study
of wave propagation in infinite periodically inhomogeneous media. The necessary
mathematical tools, both analytical and geometrical, are introduced: direct and reciprocal
lattices, the first Brillouin zone, virtual work theorem, Fourier transform and, most
importantly, Floquet-Bloch transform. The latter allows in particular to simplify the
motion equation by reducing the domain of definition of the fields. Two “educational”
examples are treated and commented last. Much of the (scientific) materials presented
here are reformulations of what can be found in classic literature on the subject. The
books by Graff (2012), by Achenbach (2012) and by Brillouin (1953) were most helpful.

1 Elastodynamics of infinite homogeneous me-
dia

In this first section, we briefly recall some facts about wave propagation in infinite
homogeneous media. This is an opportunity to introduce the infinite elastic body Ω
and its constitutive law and motion equation.

1.1 Ω, the infinite medium
Let Ω be the d-dimensional Euclidean point space and E be the associated vector space.
Vectors r ∈ E act as translations on points x ∈ Ω. These two spaces can be identified
with one another according to

E Ð→ Ω
r z→ xo + r,
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once an arbitrary origin xo ∈ Ω has been chosen. Note that distinguishing Ω and E will
turn out to be occasionally of use and that, otherwise, they can be thought of as equal.

We assume that the motion of Ω is completely described by a displacement field u
function of time t ∈ R and position x ∈ Ω, in contrast with generalized continua where
other kinematical degrees of freedom come into play (see Mindlin, 1964, for instance).
The infinitesimal strain ε and the velocity v are given by

ε ≡ ∇⊗su, v ≡ u̇,
where ≡ stands for equality by definition, ∇ is the nabla operator,⊗ designates tensor
product, the superscript s implies symmetrization and a superscripted dot denotes
differentiation with respect to time. The stress σ and the linear momentum density p
measures are related to strains and velocities through the constitutive law of Ω:

σ = C ∶ ε, p = ρv,
with C and ρ being the x-dependent t-independent fourth-order elastic stiffness tensor
and scalar mass density, respectively, and the colon (∶) standing for double contraction.

The motion equation reads
∇ ⋅σ + f = ṗ,

where the symbol (⋅) stands for the dot product and f is a field of body forces1.
Finally, we will mostly be interested in harmonic motion for various frequencies ω ∈ R.
Correspondingly, time dependency is taken to be of the form eiωt (with i2 = −1) and is
replaced by an implicit dependency over ω while time differentiation is systematically
substituted by iω-multiplication. Consequently, the motion equation in terms of u
becomes the Helmholtz equation

∇ ⋅ [C ∶ (∇⊗su)] + f = −ω2ρu. (1.1)

So far, we have assumed that Ω is infinite, made of local linearly elastic materials
and that it undergoes an infinitesimal transformation2. For the purposes of the present
section, we make one additional assumption: C and ρ are x-independent.

1One can account for initial displacement and velocity conditions by changing the unknown
displacement field according to

u(x, t) ↦H(t)u(x, t),
where H(t) is the Heaviside function, and correspondingly altering the body force following

f(x, t) ↦ f(x, t) + δ(t)ρ(x)u̇(x, t = 0) + δ̇(t)ρ(x)u(x, t = 0),
where δ(t) is the Dirac function. Initial conditions can then be thought of as a particular
loading applied at t = 0.

2For the derivation of the linearized theory, see the book by Achenbach (2012) and references
therein.
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1.2 Forced waves
Let E ∗ be the space dual to E . A wavenumber k ∈ E ∗ acts on a translation r ∈ E to
produce a phase shift k ⋅ r. By identifying Ω and E , we abuse notations and write k ⋅x
instead of k ⋅ (x − xo). Then, a scalar or tensorial field h is called a plane wave if it
admits the form

h(x) = h̃keik⋅x
for some x-independent amplitude h̃ and wavenumber k. Its wavelength is then 2π/∥k∥
where ∥k∥ is the modulus of k. By Fourier analysis, we know that all fields h can be
expanded into a sum of plane waves such that

h(x) = ˆ
E ∗

h̃ke
ik⋅x dk,

with the amplitudes h̃ given by

h̃k = 1(2π)d
ˆ

Ω
h(x)e−ik⋅x dx.

Assuming that body force is a plane wave, one can look for a solution in the form
of a plane wave as well:

f(x) = f̃keik⋅x, u(x) = ũkeik⋅x.
In other words, we apply Fourier transform to the motion equation which becomes

ik ⋅ [C ∶ (ik⊗sũk)] + f̃k = −ω2ρũk

thanks to the formal rule ∇ ↦ ik. Consequently, I being the second-order identity
tensor, it comes that

Zk ⋅ ũk ≡ (k ⋅C ⋅ k − ω2ρI) ⋅ ũk = f̃k,
where we have defined the impedance1 Z. Inverting the above equation yields

ũk = Z−1
k ⋅ f̃k ≡Gk ⋅ f̃k,

where G denotes the inverse of the impedance Z and is the Green’s tensor of Ω. Last,
the displacement solution for an arbitrary body force f can be obtained by summation
with respect to k ∈ E ∗ according to

u(x) = ˆ
E ∗

Gk ⋅ f̃keik⋅x dk = 1(2π)d
ˆ

Ω
G(x − y) ⋅ f(y)dy.

Note that both G and Z depend on ω and that the transient field u(x, t) can similarly
be obtained by integration with respect to ω ∈ R.

1This is not standard terminology. An impedance is usually defined as the ratio of a force
to a velocity (Graff, 2012) but here is defined as the ratio of a volume force density to a
displacement.
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1.3 Free waves
The body Ω can sustain waves, called free waves, even when body forces vanish. Free
waves of wavenumber k and frequency ω are therefore non-null solutions of the equation

ik ⋅ [C ∶ (ik⊗sũk)] + 0 = −ω2ρũk.

Their existence is subject to the condition

detZk ≡ det (k ⋅C ⋅ k − ω2ρI) = 0,

called dispersion relation, on the couple (k, ω). The set of all couples (k, ω ≥ 0)
satisfying the dispersion relation, hereafter referred to as eigenmodes, defines the
dispersion curve1 C .

Given a wavenumber k ∈ E ∗, the second-order tensor k ⋅C ⋅ k/ρ is positive and
symmetric and has therefore d positive eigenvalues ω2

n = ω2
n(k) to which are associated

d linearly independent eigenvectors or free waves ψ̃k,n, for n = 1, . . . d. Hence, curve C
is constituted of d branches. Since ωn is taken to be positive by definition, it is easy to
see that ωn is a positively homogeneous function of degree 1 in k, namely2

∀a ∈ R, ωn(ak) = ∣a∣ωn(k),
because the impedance Z, involved in the dispersion relation, itself is a homogeneous
polynomial of degree 2 in k and ω. Consequently, the phase velocity ωn(k)/∥k∥ may
depend on the selected branch n and on the direction of k but not on its amplitude∥k∥. In addition, for k = 0 all branches pass by ω = 0.

The infinite homogeneous Cauchy continuum3 has therefore two characteristics or
two limitations, depending on the point of view.

1. All waves of a given branch propagating in a given direction travel at the same
velocity. The medium Ω is then said to be non-dispersive. Intuitively, dispersion
cannot arise when the medium does not provide any characteristic internal length
in which case the medium is the same at all scales and shortening wavelengths
by a factor a simply amounts to increasing the frequency by the same factor.

2. Other than rigid body translations, there are no uniform oscillation modes. All
branches pass by (0, 0) and are said to be acoustic branches in contrast to optical
branches which yield a finite frequency for a null wavenumber.

Of course, dispersion phenomena and optical branches can still occur for Cauchy
media for instance either by allowing for an inhomogeneous constitutive behavior or by

1In (Graff, 2012), this curve is called the “frequency spectrum”, while the term “dispersion
curve” is reserved to the plot of phase velocity against wavenumber.

2∣a∣ ≡ max(a,−a).
3I.e., a continuum with kinematics fully described by one displacement field and whose

constitutive behavior is the previously introduced classical “first order” one.
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considering geometries with finite cross sections. In the latter case, we speak of wave
propagation in waveguides1 and one can refer to exact rode, beam or plate theories for
examples (Achenbach, 2012; Graff, 2012).

Now, on a different note, by symmetry, we have2

ω2
nρψ̃k,m ⋅ ψ̃k,n = ψ̃k,m ⋅ (k ⋅C ⋅ k) ⋅ ψ̃k,n = ω2

mρψ̃k,n ⋅ ψ̃k,m,
which entails (ω2

n − ω2
m)ρψ̃k,m ⋅ ψ̃k,n = 0.

Therefore, there exists an orthonormal basis of the space of amplitudes composed of
eigenvectors satisfying

ρψ̃k,n ⋅ ψ̃k,m = δnm
where δnm is the Kronecker delta. By carrying the corresponding diagonalization of Z,
we obtain the expression

Zk = d∑
n=1

(ω2
n − ω2)ρ2ψ̃k,n⊗ψ̃k,n

valid for all couples (k, ω). We finally deduce the following representation of the
Green’s tensor

Gk = d∑
n=1

1
ω2
n − ω2 ψ̃k,n⊗ψ̃k,n.

The above representations show that the distinction between the study of forced and
free motions is, to some extent, artificial. We conclude however with the following
remarks:

1. the dispersion curve on its own holds information on propagation velocities in
all directions and related potential anisotropy or dispersion phenomena,

2. but it needs to be completed by attributing a polarization, or an eigenvector, to
each eigenmode.

3. Finally, only C/ρ can be characterized this way and some genuine forced solutions
need to be obtained in order to access C and ρ separately.

For more details on dispersion curves, wave velocities and the Green’s function in
the isotropic case, we refer to the textbooks by Achenbach (2012) and Graff (2012).
Anisotropic materials seem to be much harder to deal with. A good starting point
might be the reference (Burridge, 1996).

1It seems that “waveguide” is a “clever” word meaning “cylinder”.
2This is basically a direct consequence of the virtual work theorem.
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2 Elastodynamics of infinite periodic media
Next, periodically inhomogeneous media are introduced. Some geometrical and an-
alytical elements useful to the study of periodic microstructures are recalled. Most
importantly, Floquet-Bloch transform and theorem are exploited to significantly simplify
the elastodynamic problem at hand.

2.1 Periodicity
We say that Ω “is periodically inhomogeneous”, “has a periodic microstructure”, or
simply “is periodic” when the elastic stiffness tensor C and the scalar mass density ρ are
invariant with respect to a family {bj}j=1...d ⊂ E of d linearly independent translations
which we assume henceforth. It follows immediately that C and ρ are invariant with
respect to the set R ⊂ E called a lattice and defined by

R = d∑
j=1

Zbj

as the set of all integer combinations of the bj . More generally, we say that a scalar or
tensor field h is R-periodic whenever h satisfies the invariance property

∀x ∈ Ω, ∀r ∈ R, h(x + r) = h(x).
It is clear that such functions, C and ρ in particular, are characterized by the values
they take over the unit cell

T = xo + d∑
j=1

[−1
2 ,

1
2[bj ⊂ Ω,

of center xo. An example in 2D (d = 2) of {b1,b2}, R and T is given in figure 1.1.
Note that given a notion of periodicity defined by a lattice R, many choices for the bj ,
for xo and for T are possible1.

Let ξ ∈ E ∗ be a wavenumber, then the plane wave eiξ⋅x is R-periodic if and only if

∀r ∈ R, ξ ⋅ r ∈ 2πZ.

The set of all such wavenumbers is called the reciprocal lattice R∗. It can be constructed
as

R∗ = d∑
j=1

Zb∗j

where the wavenumbers b∗j satisfy

b∗i ⋅ bj = 2πδij .
1In other words, R is intrinsic, T is conventional.
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b1

b2 T

Figure 1.1. A 2D lattice. Each point represents a vector r of the lattice R. Many
choices for b1, b2 and T are possible.

The reciprocal lattice R∗ plays the role of the support of all R-periodic functions.
Precisely, if h is R-periodic then its Fourier transform h̃ is zero everywhere except over
R∗. The plane-wave expansion reads then

h(x) = ∑
ξ∈R∗

h̃ξe
iξ⋅x,

with1,2

h̃ξ = 1∣T ∣
ˆ
T
h(x)e−iξ⋅x dx,

where ∣T ∣ is the volume of T .
For later purposes, define the first Brillouin zone T ∗ as the set of wavenumbers

closer to the null wavenumber than to any other wavenumber of R∗, i.e.,

T ∗ = {k ∈ E ∗ ∣ ∀ξ ∈ R∗ − {0}, ∥k∥ < ∥k − ξ∥} ⊂ E ∗.

This zone helps segregate short and long wavelengths. As a matter of fact, wavenumbers
ξ of R∗ − {0} correspond to R-periodic plane waves oscillating at least as fast as C
and ρ. By proximity, all k close to such ξ define “rapidly” oscillating fields and all
k close to 0, i.e., k ∈ T ∗, define “slowly” oscillating fields. In addition, note that if
a wavenumber k does belong to T ∗ then k + ξ does not, whatever is ξ ∈ R∗ − {0}.
In other words, T ∗ is isomorphic to the quotient E ∗/R∗ implying that the partition
E ∗ = T ∗ +R∗ holds3.

In 1D, if R = ∣T ∣Z then R∗ = (2π/ ∣T ∣)Z and T ∗ =]−π/ ∣T ∣ , π/ ∣T ∣ [. In 2D, examples
of {b∗1 ,b∗2}, R∗ and T ∗ are depicted in figure 1.2.

1All choices of T are equivalent by R-periodicity.
2Using the same notation for Fourier transform and series is consistent as far as we are

concerned.
3In fact, for this to be rigorously true, one has to add to T ∗ “half” of its boundary, which

we assume done henceforth.
1Vectors bi and b∗i have different dimensions (respectively, a length and the inverse of a

length) and their magnitudes, therefore, cannot be compared.
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b∗1

b∗2

T ∗

Figure 1.2. The reciprocal lattice1 R∗ of the direct lattice R depicted in figure 1.1
and its first Brillouin zone T ∗. Note that T ∗ is uniquely defined and is independent of
the choice of T .

2.2 Fourier Transform
Now that C and ρ are not uniform anymore, applying Fourier transform to the motion
equation (1.1) is poorly motivated. As a matter of fact, for general stiffnesses and mass
densities, both writings of the motion equation, as a differential one over Ω or as an
integral one over E ∗, are equally complicated. Periodicity, we hope, will imply some
simplification.

In any case, by the convolution theorem, the Fourier transform of (1.1) reads2

∀k ∈ E ∗, ik ⋅ ∑
ξ∈R∗

Cξ ∶ [(ik − iξ)⊗sũk−ξ] + f̃k = −ω2 ∑
ξ∈R∗

ρξũk−ξ,

where each equation is indexed by k. Then, it is easy to see that the sub-system of
equations indexed by k + ξ, for ξ ∈ R∗, is uncoupled from all other equations indexed
by k′ whenever k − k′ ∉ R∗. Having E ∗ = T ∗ +R∗ as mentioned earlier, and upon the
corresponding change of variable k → k + ζ, we re-write the above motion equation as

∀k ∈ T ∗,
∀ζ ∈ R∗, (ik + iζ) ⋅ ∑

ξ∈R∗

Cξ ∶ [(ik + iζ − iξ)⊗sũk+ζ−ξ] + f̃k+ζ = −ω2 ∑
ξ∈R∗

ρξũk+ζ−ξ,

(1.2)

where now the sub-system indexed by k ∈ T ∗ is uncoupled from all others and involves
only and exclusively the components {ũk+ξ}ξ∈R∗ of the displacement field.

2.3 Floquet-Bloch transform
The above decomposition of the motion equation into uncoupled sub-systems motivates
a similar decomposition of the displacement field into uncoupled components according

2The fields {u,f ,v,p,ε,σ} are “tilded” when written in Fourier domain. Other quantities,
such as G, Z, C and ρ are given the same name in both Fourier and real domains. Context
shall help clear any ambiguities.
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to the Floquet-Bloch-wave expansion

u(x) = ˆ
E ∗

ũke
ik⋅x dk = ˆ

T ∗+R∗

ũke
ik⋅x dk

= ˆ
T ∗

∑
ξ∈R∗

ũk+ξe
iξ⋅xeik⋅x dk ≡ ˆ

T ∗
ũk(x)eik⋅x dk

where we have introduced the Floquet-Bloch transform1 of the displacement field:

∀k ∈ T ∗, ∀x ∈ Ω, ũk(x) = ∑
ξ∈R∗

ũk+ξe
iξ⋅x.

Note that a Floquet-Bloch (FB) component, or amplitude, ũk(x) is R-periodic with
respect to x due to its definition as a Fourier series.

Three preemptive remarks are in order.

1. It is always possible to expand thusly any field h whether it is a solution or
not to a motion equation. The motion equation only motivated the use of this
particular type of expansions.

2. This expansion has two parameters. The first one is the lattice R which is
chosen to be the periodicity lattice of C and ρ for convenience. The second one
is T ∗ which can be replaced by any other domain isomorphic to E ∗/R∗. We
make use of T ∗, however, as it generally has nice symmetry properties and, most
importantly, it is the support of slowly oscillating fields.

3. Regarding notations: h̃k(x) designates a Fourier component of h whenever it is
x-independent and an FB component otherwise.

In order to apply FB transform to the kinematical, constitutive and motion equa-
tions, one needs to study its behavior with respect to two fundamental operations.

Differentiation.
b = ∇a Ô⇒ b̃k = (ik +∇)ãk.

Indeed,

b̃k(x) = ∑
ξ∈R∗

(ik + iξ)ak+ξeiξ⋅x
= ik ∑

ξ∈R∗

ak+ξe
iξ⋅x +∇ ∑

ξ∈R∗

ak+ξe
iξ⋅x = (ik +∇)ãk(x).

In other words, the operator ∇ is not transformed into ik anymore as by Fourier
transform but into ∇ + ik.

1Named after Gaston Floquet and Felix Bloch.
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Multiplication. Let c be an R-periodic function. Then,

b = ca Ô⇒ b̃k = cãk.
As a matter of fact, we have

b̃k+ξ = ∑
ζ∈R∗

c̃ζ ãk+ξ−ζ ,

so that

b̃k(x) = ∑
ξ,ζ∈R∗

c̃ζ ãk+ξ−ζe
iξ⋅x = ∑

ξ,ζ∈R∗

c̃ζe
iζ⋅xãk+ξ−ζe

(iξ−iζ)⋅x

= ∑
ζ∈R∗

c̃ζe
iζ⋅x ∑

ξ∈R∗

ãk+ξe
iξ⋅x = c(x)ãk(x),

where the change of variable ξ ↦ ξ + ζ has been exploited.
In conclusion, using the above first property of the FB transform, we can re-write

the kinematical relations and the motion equation in terms of the FB components as,
respectively,

ε̃k = (∇ + ik)⊗sũk, ṽk = iωũk, (1.3)

and (∇ + ik) ⋅ σ̃k + f̃k = iωp̃k, (1.4)

whereas the second property permits to transform the constitutive relations into

σ̃k = C ∶ ε̃k, p̃k = ρṽk.
2.4 The central equation
In terms of ũk, the motion equation reads

(∇ + ik) ⋅ {C(x) ∶ [(∇ + ik)⊗sũk(x)]} + f̃k(x) = −ω2ρ(x)ũk(x), (1.5)

which is equivalent to the previously derived equation (1.2) in Fourier domain. All
fields involved above being R-periodic implies that it is enough to solve this equation
over a unit cell T under periodic boundary conditions1.

For a homogeneous medium, each Fourier component of the displacement field
satisfies an algebraic equation independently of all other Fourier components. For a
periodic medium, each FB component satisfy a differential equation independently
of all other FB components. The benefit of using FB transform in the latter case
resides in the reduction of the domain of the unknowns from Ω to T by periodicity.

1There seems to be an implicit agreement on the meaning of the term “periodic boundary
conditions” in the literature. It is really the continuity of displacements and tractions which
matters the most.
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In both homogeneous and periodic settings, one needs to carry an integration over
wavenumbers to recover the total displacement field.

More on FB transform can be found in the lecture notes by Muthukumar (2014).
As for the FB theorem properly speaking, it will be presented in a following subsection
on free waves. Meanwhile, we present the virtual work theorem and formal solutions
to the above central equation in forced regime using Green’s tensor.

2.5 Virtual work theorem
Whenever a and b are regular enough1, the divergence theorem dictates that

ˆ
T
(∇ ⋅ b)adV = ˆ

∂T
(b ⋅n)adS − ˆ

T
b ⋅ (∇a)dV

where n is the unitary outward vector normal to the boundary ∂T of T and where dV
and dS designate volume and surface measures, respectively. If, in addition, a and
b are R-periodic, and a and b ⋅n are continuous across ∂T , then the boundary term
vanishes and we have the algebraic identity

ˆ
T
(∇ ⋅ b)a = −ˆ

T
b ⋅ (∇a).

It goes without saying that the same holds for tensors of all orders.
Now let (ε,v) be a kinematically admissible strain-velocity couple of fields deriving

from one displacement field u and (σ′,p′) be a stress-momentum couple of fields
dynamically equilibrated by a body force field f ′. Their respective FB components are
mutually related through (1.3) and (1.4). Hence,
ˆ
T
f̃ ′k ⋅ ũ∗k =

ˆ
T
[−(∇ + ik) ⋅ σ̃′k + iωp̃′k] ⋅ ũ∗k

= ˆ
T
σ̃′k ∶ [(∇ + ik)⊗sũk]∗ − p̃′k ⋅ (iωũk)∗ =

ˆ
T
σ̃′k ∶ ε̃∗k − p̃′k ⋅ ṽ∗k,

where a superscripted ∗ denotes complex conjugation for fields. By summing with
respect to k over T ∗, we obtain

ˆ
Ω
f ′ ⋅u∗ = ˆ

Ω
σ′ ∶ ε∗ − p′ ⋅ v∗.

The last step needs perhaps some explanation. It is not surprising that FB transform
inherits from Fourier transform a Plancherel equality stated as

ˆ
Ω
f ′ ⋅u∗ = (2π)d∣T ∣

ˆ
T ∗

ˆ
T
f̃ ′k(x) ⋅ ũ∗k(x)dxdk,

1Assuming piecewise regularity, the continuity of a and b ⋅n “across pieces” is the important
property for our purposes.
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valid for all couples (u,f ′). Indeed,ˆ
Ω
f ′ ⋅u∗ = (2π)d ˆ

E ∗

f̃ ′k ⋅ ũ∗k dk, (Plancherel’s, Fourier transform)

= (2π)d ˆ
T ∗

∑
ξ∈R∗

f̃ ′k+ξ ⋅ ũ∗k+ξ dk, (by E ∗ = T ∗ +R∗)

= (2π)d∣T ∣
ˆ
T ∗

ˆ
T
f̃ ′k(x) ⋅ ũ∗k(x)dxdk. (Parseval’s, Fourier series)

Again, same holds for tensors of all orders.
Therefore, we have given the virtual work theorem two forms.
1. The first one, ˆ

Ω
f ′ ⋅u∗ = ˆ

Ω
σ′ ∶ ε∗ − p′ ⋅ v∗,

is fully written in the real domain. It only concerns the whole body Ω and does
not generally hold for sub-domains, nor does it hold for unit cells.

2. The second one,

∀k ∈ T ∗, ˆ
T
f̃ ′k ⋅ ũ∗k =

ˆ
T
σ̃′k ∶ ε̃∗k − p̃′k ⋅ ṽ∗k,

thanks to Parseval’s identity, is equivalent to the first one except that it is written
in terms of FB components. Therein, even though the integration domain is
a unit cell, one should recall that the definition of a FB component involves
contributions from all of the medium Ω. In other words, this second form is
not a restriction of the first one to a unit cell T , but an expansion based on FB
waves1.

Finally, when (u,f) and (u′,f ′) are two solutions to the motion equation for the
same frequency ω, C and ρ being symmetric and real valued, we have

σ′ ∶ ε∗ = σ∗ ∶ ε′, p′ ⋅ v∗ = p∗ ⋅ v′,
which immediately implies the reciprocity law2

ˆ
Ω
f ′ ⋅u∗ = ˆ

Ω
f∗ ⋅u′,

or, using the FB components,

∀k ∈ T ∗, ˆ
T
f̃ ′k ⋅ ũ∗k =

ˆ
T
f̃∗k ⋅ ũ′k.

1Taking the risk of over-insisting: using Fourier transform, we know that

∀k ∈ E ∗, f̃k ⋅ ũ∗k = σ̃k ∶ ε̃∗k − p̃k ⋅ ṽ∗k.
However, f ⋅u∗ = σ ∶ ε∗ − p ⋅ v∗ does not hold pointwisely. Furthermore, it does not hold when
integrated over sub-domains of Ω.

2Also known as “Betti reciprocal theorem”, also known as “dynamic reciprocal identity”,
also known as “Betti-Rayleigh theorem”, also known as “Maxwell-Betti theorem”, . . .



2. Elastodynamics of infinite periodic media 29

2.6 Forced waves
We denote by gk(⋅,y) the second-order Green’s tensor solution, under periodic boundary
conditions imposed on T , to the equation

(∇ + ik) ⋅ {C ∶ [(∇ + ik)⊗sgk(⋅,y)]} + ∣T ∣ δyI = −ω2ρgk(⋅,y) (1.6)

where y is a parameter and δy is the Dirac function centered at y. The component[gk]ij(x,y) is then interpreted as the displacement observed at position x in the
direction i when a concentrated load, of intensity ∣T ∣, is applied at y in the direction j.

Letting ũk be the solution to equation (1.5), the reciprocity law dictates
ˆ
T
∣T ∣ δy(x)ũ∗k(x)dx = ˆ

T
f̃∗k (x) ⋅ gk(x,y)dx

entailing
ũk(y) = 1∣T ∣

ˆ
T
f̃k(x) ⋅ g∗k(x,y)dx.

In particular, substituting for f̃k a concentrated load, of intensity ∣T ∣, applied at y′ in
the direction j gives rise to the following symmetry property of the Green’s tensor:

[gk]ij(y,y′) = [gk]∗ji(y′,y).
Hence,

ũk(y) = 1∣T ∣
ˆ
T
gk(y,x) ⋅ f̃k(x)dx,

and
u(y) = 1∣T ∣

ˆ
T ∗

ˆ
T
gk(y,x) ⋅ f̃k(x)eik⋅y dxdk.

Recall that g depends implicitly on the frequency ω. Finally, unlike for homogeneous
media, the above localization equation cannot be written as a convolution one, the
inhomogeneous medium lacking translation invariance.

2.7 Free waves: Floquet-Bloch theorem
A free wave u, when it exists, is a non-null solution to the motion equation

∇ ⋅C ∶ (∇⊗su) = −ω2ρu. (1.7)

We then say that ω is an eigenfrequency. Just like before, periodicity of C and ρ does
not imply that of u. Therefore, in order to reduce the domain of resolution of the
above differential equation, we apply FB transform and obtain the central equation
particularized to f = 0, namely1

(∇ + ik) ⋅C ∶ [(∇ + ik)⊗sũk] = −ω2ρũk. (1.8)
1This is the so-called “shifted cell problem” in mathematical literature.
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A free wave being non-null, the consequences are such that: ω is an eigenfrequency
if and only if there exist a wavenumber k ∈ T ∗ and a non-null R-periodic field ũk
satisfying (1.8). The free wave associated with the eigenmode (k, ω) takes then the
form

uk(x) = ũk(x)eik⋅x.
The above theorem is originally due to Floquet (1883) who proved it for ordinary

differential equations of arbitrary orders with periodic coefficients. He demonstrated
the existence of one particular “fundamental system of solutions” composed of “periodic
functions of the second kind” satisfying h(⋅ + r) = λh(⋅) for all (1D) lattice translations
r and where λ is named “multiplier” of the solution h. The presented proof is
somehow direct and hence a bit lengthy. Another proof was presented by Bloch (1928)
while trying to describe the eigenstates of an electron in a crystal, i.e., a periodic
potential. The relevant equation is now the Schrödinger equation. Once the group of
lattice translations acting on fields was represented as a matrix group, the problem of
finding said fundamental system became a matrix diagonalization problem. It is worth
mentioning that Bloch made use of the Born-von Karman boundary conditions1. For a
rather detailed survey of proofs, one can refer to the paper by Gazalet et al. (2013).
The Bloch proof can be found in virtually any book on solid state physics. The lecture
notes by Quéré (1988) were particularly helpful.

Whatever the proof is, the key point resides in the fact that if u is a free wave then
so is u(⋅+r), for r ∈ R, due to the R-periodicity of C and ρ. Here, using FB transform,
this fact was hidden in the commutativity property we have presented earlier between
FB transform and multiplication by R-periodic functions: c̃a = cã for all R-periodic c.

Back to the statement of the theorem, we now have a way of indexing the eigen-
frequencies and the corresponding free waves. Letting k ∈ T ∗, we already know2 that
equation (1.8) admits a countable set3 of eigenfrequencies {ωn(k)}n≥1 and eigenvector
solutions {ψ̃k,n}n≥1. Then, by the FB theorem, the set of all eigenfrequencies of (1.7)
can be obtained as

S ≡ {ωn(k),k ∈ T ∗}n≥1 = ⋃
n≥1

[min
k∈T ∗

ωn(k),max
k∈T ∗

ωn(k)], (1.9)

the corresponding free waves being the

ψk,n(x) = ψ̃k,n(x)eik⋅x.
Up to multiplicity, a free wave of the above fundamental system of solutions is

uniquely designated by two indices, k ∈ T ∗ and n ∈ N − {0}.
1Unfortunately, I do not speak German. The equations and a dictionary are enough however

to manage through selected parts of the original paper.
2by spectral theory, or vibration theory.
3For discrete media, this set is finite and has d ×N elements where N is the number of

particles per unit cell.
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1. The first one relates to the eigenvalue of the free wave seen as an eigenvector of
all of the translation operators

tr ∶ h(⋅) ↦ h(⋅ + r),
for r ∈ R. Indeed,

ψk,n(⋅ + r) = eik⋅rψk,n(⋅).
However, the set of eigenvalues {eik⋅r}r∈R can be characterized with the d
values {eik⋅bj}j=1...d eigenvalues of the operators {tbj}j=1...d. Moreover, these d
values only determine k modulo R∗ and uniquely over T ∗ and similar domains
isomorphic to E ∗/R∗. In any case, it is possible, and sometimes convenient, to
extend the definition of ψk,n and of ωk,n as functions of k from T ∗ to E ∗ by
R∗-periodicity. As for its significance, k informs on how the periodic amplitude
ψ̃k,n propagates and on the phase shifts it undergoes across large distances.

2. The dispersion curve C , set of all eigenmodes {(k, ωn(k)) ∈ T ∗ ×R+}n≥1, is now
composed of an infinite, but countable, number of branches in general. We know
that the eigenmode (0,0) corresponds to exactly d free waves: the d rigid body
translations. Hence, only the first d branches, n = 1, . . . d, pass through (0, 0) and
are called acoustic branches. All other branches yield a non-null finite frequency
for k = 0 and are called optical branches. Now, the second index relates to
the eigenvalue of ψk,n seen as an eigenvector of the motion equation, i.e., its
frequency. Thus, n, the branch number, dictates the shape of ψ̃k,n as a mode
of vibration of the unit cell T . For the acoustic branches, we expect ψ̃k,n to
have small fluctuations and the particles of T to have an in-phase overall motion
whereas for optical branches, energy gets shifted toward shorter wavelengths and
out-of-phase motion will eventually take over. Illustrations of this phenomenon,
and much more, can be found in the book by Brillouin (1953).

Last, the spectrum S has a band structure described by equation (1.9). Unlike for
homogeneous media, it is unclear whether S is equal to R+. In general, it is not. The
gaps, R+ −S , are called band gaps, or stop bands, and correspond to frequencies at
which no free waves can propagate. More details are given subsequently.

2.8 Green’s tensor revisited
To conclude this section, we re-write the already introduced Green’s tensor in terms of
the eigenvectors ψ̃k,n. In fact, for each k, the set {ψ̃k,n}n≥1 is an orthonormal basis for
R-periodic vector fields. We can easily check orthogonality while normality is a matter
of choice. It is understood henceforth that the eigenfrequencies depend implicitly on k.

Let m ≥ 1 and n ≥ 1 be two integers, then by definition

(∇ + ik) ⋅C ∶ [(∇ + ik)⊗sψ̃k,n] = −ω2
nρψ̃k,n,(∇ + ik) ⋅C ∶ [(∇ + ik)⊗sψ̃k,m] = −ω2
mρψ̃k,m.
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The latter equation can be slightly altered to give

(∇ + ik) ⋅C ∶ [(∇ + ik)⊗sψ̃k,m] + (ω2
m − ω2

n)ρψ̃k,m = −ω2
nρψ̃k,m,

so that both eigenvectors, number m and n, now satisfy two motion equations of the
same frequency. Application of the reciprocity law yields

(ω2
m − ω2

n)
ˆ
T
ρψ̃k,m ⋅ ψ̃∗

k,n = 0.

Accordingly, whenever ω2
m(k) ≠ ω2

n(k), the eigenvectors are automatically orthogonal
with respect to the weighted scalar product with weight ρ. If ω2

m(k) = ω2
n(k), the

eigenvectors belong to the same eigenspace and can always be chosen orthogonal. It is
as good a time1 as any to introduce the averaging operator ⟨⟩ which acts, exclusively,
on R-periodic fields and yields their average over a unit cell, say T :

⟨⟩ ∶ h↦ ⟨h⟩ ≡ 1∣T ∣
ˆ
T
h.

Then, if normalized properly, the ψ̃k,n satisfy

∀k ∈ T ∗, ∀m,n ≥ 1, ⟨ρψ̃k,m ⋅ ψ̃∗
k,n⟩ = δmn,

and any R-periodic vector field h can be expanded into the series

h = ∑
n≥1

⟨ρh ⋅ ψ̃∗
k,n⟩ ψ̃k,n.

If now ũk is a solution to the forced motion equation (1.5) with a forcing term f̃k
then the same kind of manipulation combined with the reciprocity law ensures that

⟨[(ω2 − ω2
n)ρũk + f̃k] ⋅ ψ̃∗

k,n⟩ = 0,

or

⟨ρũk ⋅ ψ̃∗
k,n⟩ = ⟨f̃k ⋅ ψ̃∗

k,n⟩
ω2
n − ω2 .

Therefore, the expansion of ũk can be written in terms of the work done by f̃k in the
course of the virtual fields ψ̃k,n. Precisely, we have

ũk = ∑
n≥1

⟨f̃k ⋅ ψ̃∗
k,n⟩

ω2
n − ω2 ψ̃k,n.

Since
ũk(y) = ⟨gk(y, ⋅) ⋅ f̃k(⋅)⟩ ,

1I have been reluctant to introduce averages. Their use is purely conventional here and
has no profound meaning. I would go farther and say that their use in homogenization is also
purely conventional but I would be getting ahead of myself.
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we identify Green’s tensor as

gk(y,x) = ∑
n≥1

ψ̃k,n(y)⊗ψ̃∗
k,n(x)

ω2
n − ω2 .

Therein, the eigenvectors ψ̃k,n and eigenfrequencies ωn depend on k but not on ω. The
ω-dependency was made completely explicit.

The total displacement response to a harmonic point load centered at x can now
be obtained by summing with respect to k over T ∗:

g(y,x) = ˆ
T ∗
∑
n≥1

ψk,n(y)⊗ψ∗
k,n(x)

ω2
n(k) − ω2 dk = ˆ

T ∗
∑
n≥1

ψ̃k,n(y)⊗ψ̃∗
k,n(x)

ω2
n(k) − ω2 eik⋅(y−x) dk.

Depending on the frequency of the harmonic load, we can examine two cases of figure.

1. When ω belongs to S , there exist modes n and wavenumbers k such that
ωn(k) = ω. The corresponding terms in the expression of g will have a zero
denominator and their contributions will be dominant. A combination of the
relevant free waves will then propagate to infinity while decaying slowly for higher
than 1 dimensions and without decay in 1D.

2. In contrast, if ω is chosen in the band gap S −R+, there are no real wavenumbers
k satisfying ωn(k) = ω and no free waves will propagate to infinity. Instead,
for increasing distances ∥y −x∥, the radiated field will decay exponentially1 in
all dimensions. The speed of the decay will then be given by the imaginary
part β of the complex wavenumbers k solution to ωn(k) = ω. The inverse of a
component of β in a given direction is homogeneous to a distance and estimates
the penetration depth of the decaying wave in that particular direction before it
approximately ceases to exist.

Note that the motion remains harmonic and that the described “decay”, in both cases
of passing and stopping bands, happens in space over distances and not over time. No
viscosity or damping of any kind are involved.

3 Two examples
Many aspects of the above, more or less, postulated phenomena (optical branches,
band gaps, exponential decay) can be understood by inspecting simple examples. Now
when it comes to simplicity, one can hardly compete with the work of Brillouin (1953).

1. The following first example is barely a generalization of what is referred to,
therein, as “Born’s model for sodium chloride”. The studied structure has the
minimal requirements to qualify as a periodic medium. The (educational) benefit
is that closed form expressions for many quantities can be easily obtained.

1In a slightly different context, a fairly simple proof based on Cauchy’s integral theorem
can be found in (De Boor et al., 1993, page 82). See also the paper by Martin (2006).
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2. The second example deals with a homogeneous medium whose stiffness and
mass density are weakly and periodically perturbed. This is a class of standard
problems widely and exhaustively investigated in solid state physics literature
(see Quéré, 1988, for instance). Brillouin (1953), among many others, studied
these problems formulated for the 1, 2 and 3D wave equation1. Here, we slightly
generalize the study to the elastodynamics of 1D media2. We will focus our
attention on the dispersion curve and, in particular, on the mechanism by which
band gaps and optical branches appear.

3.1 A 1D 2-periodic mass-spring lattice
For the purposes of this example, Ω is a discrete medium embedded in a 1D space,
and correspondingly R reduces to a 1D lattice defined by {ab, a ∈ Z} with b being
the only basis vector. A unit cell T is formed of two different masses and two springs
of distinct stiffnesses but of the same length as shown in figure 1.3. In the situation

c1 c2
m1 m2

b

Figure 1.3. The model unit cell T .

under consideration, the space variable x is discrete. Given the characteristic length
` = ∣T ∣ /2 = ∥b∥/2 of the structure, all positions can be specified by x = n` with n ∈ Z.
With no loss of generality, we take ` to be the unit length, and refer to position x
with the integer n. Masses m and stiffnesses c are functions of n ∈ Z. The periodicity
of the system dictates that for every position n in Z, mn+2 =mn and cn+2 = cn. The
displacement u, velocity v and momentum p are defined pointwisely only for the masses
while the strain ε and stress σ make sense only for the springs. Concerning these
quantities, we have

εn = un+1 − un, pn =mnvn, σn = cnεn.
The motion equation reads

σn − σn−1 + fn = iωpn
where fn is a concentrated force applied to mass number n.

1This is: ∇ ⋅ (∇⊗u) + ω2/V 2u = 0 where u is some potential and V is a periodic function.
2To the best of my knowledge, weak periodic perturbations have never been applied to the

full equations of elasticity where a coupling between many types of waves, shear and pressure
for instance, can arise. Our first intention was to treat a 2D example for the mentioned reason
but calculations turned out to be a bit lengthy and necessitated an undesirable digression.



3. Two examples 35

In order to obtain the central equation (1.5), we postulate that u and f are both
FB waves:

un = ũneikn, fn = f̃neikn,
where ũ and f̃ are 2-periodic. The above kinematical and constitutive equations become

ε̃n = ũn+1 − ũn + (eik − 1)ũn+1, p̃n =mnṽn, σ̃n = cnε̃n,
while the motion equation transforms into

σ̃n − σ̃n−1 + (1 − e−ik)σ̃n−1 + f̃n = iωp̃n.
Note that the modified differential operator does not include ik anymore, as in ∇ + ik,
but some discrete version (eik − 1) or (1 − e−ik) depending on whether the operator is
a gradient or a divergence one. It is of course enough to consider n = 1 then n = 2 by
2-periodicity. In matrix form, this leads to

[−ω2m1 + c1 + c2 −c1e
ik − c2e

−ik

−c2e
ik − c1e

−ik −ω2m2 + c1 + c2
] [ũ1
ũ2

] = [f̃1
f̃2

] .
The inversion of the above system is straightforward and entails

[ũ1
ũ2

] = 1
Dk,ω

[−ω2m2 + c1 + c2 c1e
ik + c2e

−ik

c2e
ik + c1e

−ik −ω2m1 + c1 + c2
] [f̃1
f̃2

] ,
where D is the determinant of the stiffness matrix and reads

Dk,ω = (−ω2m1 + c1 + c2)(−ω2m2 + c1 + c2) − (−c1e
ik − c2e

−ik)(−c2e
ik − c1e

−ik).
The dispersion relation is evidently

Dk,ω = 0.

After elementary manipulations, it takes the form

m1m2
4c1c2

ω4 − c1 + c2
2c1c2

m1 +m2
2

ω2 + sin2(k) = 0.

It can be insightful to define a dimensionless frequency ν by

ν2 = c1 + c2
2c1c2

m1 +m2
2

ω2,

and to re-write the dispersion relation thusly

δν4/4 − ν2 + sin2(k) = 0, (1.10)

with
δ = δcδm, δc = 2c1c2

c1 + c2

2
c1 + c2

, δm = 2m1m2
m1 +m2

2
m1 +m2

.
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These dimensionless parameters can be interpreted as measuring the heterogeneity of
the structure or the contrast between the phases. They are all comprised between 0 and
1 by the harmonic-arithmetic means inequality and are equal to 1 for a homogeneous
structure. When one spring is infinitely stiffer than the other, δc tends to 0 and when
one mass is infinitely lighter that the other, δm tends to 0 and in either cases δ vanishes.
Is is remarkable that up to a change in units, δ alone characterizes the dispersion curves
of all similar 1D 2-periodic lattices. Some of these curves are plotted in figure 1.4.
Solving the dispersion equation, we see that the spectrum of the motion equation is

k
π
2

ν

2

δ=1

δ=0,9

δ=0,8

δ=0,7

δ=0,6

Figure 1.4. Dispersion curves family (equation (1.10)) indexed by δ (decreasing with
the arrows). Since the homogeneous medium (δ = 1) is treated as a 2-periodic medium,
its dispersion curve is folded into the first Brillouin zone of a 2-periodic medium and
has only one branch. All other curves have two branches (of the same shade of red):
an acoustic one of low frequency ν, and an optical one of higher frequency ν.

composed of two passing bands, namely

S = [0,√2(1 −√
1 − δ)/δ ]⋃[√2(1 +√

1 − δ)/δ,2/√δ] ,
separated by a band gap of width

ν2(π/2) − ν1(π/2) = √
2(1 +√

1 − δ)/δ −√
2(1 −√

1 − δ)/δ.
The frequency 2/√δ is the cut-off frequency and no waves can propagate beyond it.
We underline the fact that the band gap “closes” for a homogeneous medium (δ = 1)
and is increasingly wide for high contrasts (δ → 0). Moreover, we see that, for higher
contrasts, the band gap appears at lower frequencies. Finally, there is a drastic change



3. Two examples 37

in the oscillation modes when comparing the in-phase motion at acoustic frequencies
and the out-of-phase motion at optical ones. Unsurprisingly, for more details and
illustrations, we refer to the book of Brillouin (1953, figure 15.3, for instance).

3.2 Weak periodic perturbations
This second example shall help to understand the mechanism by which the acoustic
branches of a homogeneous medium break into pieces and give birth to new optical
ones. In other words, using perturbation theory, we gradually transform a homogeneous
medium into a periodic one and capture the moment when new degrees of freedom
start manifesting themselves.

3.2.1 Setup

Let Ω be a weakly and periodically perturbed homogeneous medium in the sense that
its stiffness and inertia can be written as

C = C0 +C′, ρ = ρ0 + ρ′,
where C0 and ρ0 are constant and C′ and ρ′ are small R-periodic perturbations. For
simplicity, we make two assumptions. The medium Ω is taken to be 1D. Tensors hence
become scalars. Also, we take C ′ and ρ′ to have zero average so that1

C0 = ⟨C⟩ = C0, ρ0 = ⟨ρ⟩ = ρ0.

Our purpose is to calculate the dispersion curve, up to the first order in the perturbation
magnitude. Given k ∈ E ∗, we denote by uk some free wave and by ν = ω2 its frequency
(squared). The weak perturbation assumption suggests we look for solutions in the
form

ũk = ũ0
k + ũ′k + . . . , ν = ν0 + ν′ + . . . ,

where ũ0
k and ν0 are the zero order terms, ũ′k and ν′ are the first order corrections and

higher order corrections have been omitted.

3.2.2 A discussion

Equation (1.8) remains the relevant motion equation. To the lowest order, it reads

(∇ + ik)C0 [(∇ + ik)ũ0
k] = −ν0ρ0ũ0

k.

The solutions are the free waves of the homogeneous medium satisfying the periodicity
constraint: ũ0

k(x) = ũ0
k+ηe

iηx where ũ0
k+η is a constant amplitude and η belongs to R∗.

1The superscript 0 relates to the order of magnitude whereas the subscript 0 designates a
Fourier component.
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However, since we have allowed for arbitrary k, k and k + η span the same set so that
taking η = 0 will be enough. Then, to the lowest order, the eigenfrequency is given by

ν0 = c0k2

where c0 is the speed (squared) of waves traveling in the unperturbed homogeneous
medium, i.e., C0/ρ0.

At the first order, the motion equation is

(∇ + ik)C0 [(∇ + ik)ũ′k] + (∇ + ik)C ′ [(∇ + ik)ũ0
k]= −ν0ρ0ũ′k − ν0ρ′ũ0

k − ν′ρ0ũ0
k. (1.11)

The above equation admits a solution if and only if the forcing term, driven by ũ0
k, is

orthogonal to all the oscillation modes of the unperturbed medium at frequency ν0:

∀ξ ∈ R∗, ν0 = c0(ξ + k)2 Ô⇒ [(iξ + ik)C ′
ξik + (ν0ρ′ξ + ν′ρ0δ0(ξ))] ⋅ ũ0

k = 0. (1.12)

The wavenumber ξ = 0 always satisfies the if-clause of (1.12). The existence of other
wavenumbers ξ ≠ 0 solutions to said if-clause entails

k2 = ν0/c0 = (ξ + k)2,

which means that k is on the boundary of a Brillouin zone1.
We distinguish in what follows two types of points. Regular points are those k

which do not fall on a Brillouin zone boundary and jump points are those which do.
The latter points form the subset (1/2)R∗ − {0} of E ∗.

3.2.3 Regular points

For these points, all we need is to check (1.12) for ξ = 0. In fact, it immediately yields

ν′ = 0,

so that the dispersion relation of the unperturbed medium holds at the first order as
well:

ν = c0k2.

Finally, the first order correction to the free wave ũ0
k can be obtained from (1.11). Its

Fourier series components are such, for all ξ ∈ R∗,

ũ′k+ξ = −(ξ + k)C ′
ξk + ν0ρ′ξ(ξ + k)C0(ξ + k) − ν0ρ0 ũ

0
k. (1.13)

Under these circumstances, Ω can be said to have only one degree of freedom, ũ0
k. The

other components of the displacement field are obtained as the result of the diffraction
of the “incident wave” ũ0

ke
ikx by the “weak” heterogeneities.

1Not necessarily the first one T ∗, but a similar one. See (Brillouin, 1953, figure 31.5).
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3.2.4 Jump points

Let k = −ζ/2 for some ζ ∈ R∗ − {0} so that k2 = (k + η)2 has over R∗ the two solutions
η = 0 and η = ζ ≠ 0. The former solution injected in the existence condition entails
ν′ = 0 just like before whereas the latter requires

(iζ + ik)C ′
ζik + (ν0ρ′ζ + ν′ρ0δ0(ζ)) = 0,

or simply
C ′
ζ + ρ′ζc0 = 0.

The above condition has no particular reason to hold. When it does, a second free
wave solution can be added at first order but when it does not, said solution must
be added at order zero. As a matter of fact, a violation of the existence condition
can be understood as a divergence problem in formula (1.13) where one of the Fourier
components of the correction becomes infinitely large. One should therefore “move”
said component to a lower order in the asymptotic series. Correspondingly, we change
the zero order solution into

ũ0
k + ũ0

k+ζe
iζx,

where ũ0
k and ũ0

k+ζ are two constant amplitudes. We underline the fact that this is
possible since ν0 = c0k2 = c0(k + ζ)2. We now look for ν′ by writing the existence
condition of the first order motion equation. We immediately have

[(iζ + ik)C ′
ζik + ν0ρ′ζ] ũ0

k + ν′ρ0ũ0
k+ζ = 0,

ν′ρ0ũ0
k + [ikC′

−ζ(iζ + ik) + ν0ρ′−ζ] ũ0
k+ζ = 0,

which amounts to no more than

det
⎡⎢⎢⎢⎢⎣

ν′ρ0 π2

`2 C
′
−ζ + ν0C ′

−ζ
π2

`2 C
′
ζ + ν0ρ′ζ ν′ρ0

⎤⎥⎥⎥⎥⎦ = 0,

where ` is the direct lattice parameter. Now since C and ρ are real functions of x, their
Fourier transforms satisfy

C−ξ = C∗
ξ , ρ−ξ = ρ∗ξ .

In conclusion, the first order correction to the acoustic branch at jump points is given
by

ν′ = ±π2

`2
∣ρ′ζ
ρ0 ∣

RRRRRRRRRRR
C ′
ζ

ρ′ζ
+ C0

ρ0

RRRRRRRRRRR .
3.2.5 Comments

We have seen that the dispersion curve is not perturbed, at first order, at regular points
and experiences jumps over the discrete set (1/2)R∗ − {0}. It is when k crosses jump
points that the zero order displacement field needs to be enriched and that the degrees
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of freedom of the inhomogeneous medium start manifesting themselves. The new
component turns out to have a well-defined wavenumber k + ζ of the same magnitude
as k.

It should be noted that the calculations in 1D setting are misleadingly simple,
especially for large wavenumbers for which, in higher dimensions, the boundaries of
Brillouin zones get increasingly closer to one another (Brillouin, 1953, figure 31.5).
Nonetheless, as far as physical interpretation goes, things are better understood in a d
dimensional setting. So let be given a wavenumber k. Jump points are now those for
which there exists at least one ξ ∈ R∗ − {0} such that

c0
I∥k∥2 = ν0 = c0

R∥k + ξ∥2, (1.14)

where c0
I is the speed (squared) of the original component of the zero order displacement

field and c0
R is that of the new component. This equality can be understood as the

“time part” of some reflexion law. Indeed, let kI = k be the wavenumber of an “incident”
wave of speed c0

I . Reflexion will occur on planes of heterogeneities and will produce a
wave of wavenumber kR and speed c0

R and of the same frequency (squared) ν0. Hence,

c0
I∥kI∥2 = ν0 = c0

R∥kR∥2.

For the reflected amplitude to be significant, the reflexion must be systematic in the
sense that it must take place over a family of identical parallel planes of heterogeneities
of common normal ξ ∈ R∗. Accordingly, the “spatial part” of the reflexion law will
state that

kI − kR ∥ ξ,
or that kI − kR = αξ for some real number α. Finally, for the interference between all
reflected waves to be constructive, α must be an integer. Hence, αξ is also a reciprocal
lattice wavenumber. Renaming variables, we recover kR = kI + ξ.

The sketched reflection formalism is a brief summary, and perhaps a light gener-
alization to elasticity, of what is known as Bragg’s reflexion. Equation (1.14) would
then be the generalized Bragg law. We refer as usual to the book by Brillouin (1953)
for a more thorough study and insightful illustrations. Note that passing from the
wave equation to full elasticity requires dealing with a coupling between many types of
waves and hence the boundaries of new zones will come into play. The corresponding
generalization of the first Brillouin zone would be

T ∗IR = {k ∈ E ∗ ∣ ∀ξ ∈ R∗ − {0}, cI∥k∥2 < cR∥k − ξ∥2} ,
from which T ∗ is recovered when the incident and reflected waves have the same speed.

Finally, as for energy considerations, when a jump occurs, the dominant part of
the displacement field keeps the same polarizations and wavenumbers. What changes
is the energy repartition among components. Indeed, we expect the carried energy to
get shifted towards larger wavenumbers, i.e., shorter wavelengths.
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3.3 A remark on contrast
Twice so far we have seen that contrast plays a major role in determining the position
and the width of band gaps. The second example, in particular, showed that the
frequency at which the first band gap appears for low contrast media is of the order of(π/`)√⟨C⟩ / ⟨ρ⟩. Hence, strong dispersion and band-gap-related effects are only visible
at similar and higher frequencies. For some soundproofing applications, a material is
designed to have a band gap around an audible frequency, say 1kHz. The structure, the
wall for instance, should then have a thickness comparable to L = 5`, i.e., 5 unit cells,
at least so that the transmitted wave decays sufficiently. Using the stiffness and density
of a concrete- or wood-like material, we obtain L ≥ 7m. In conclusion, high contrast
composites seem then to be inevitable in the design of the so-called “metamaterials”
(Liu et al., 2000, for instance).

In the literature, periodically inhomogeneous materials are referred to either as
metamaterials or as phononic crystals. Orders of magnitude seem to be one way of
segregating them. Metamaterials are only “meta” if their weird effects are observable
at low frequencies, otherwise they are simply inhomogeneous materials solicited at high
frequencies. Physically speaking, the mechanism which triggers dispersion and band
gaps is Bragg’s reflexion for low contrast composites as discussed earlier. For high
contrast composites, the resonance of some phase freely oscillating within another is
key (Liu et al., 2000, again).
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Chapter 2

Willis elastodynamic
homogenization theory revisited

Do not try and bend the spoon – that’s impossible. Instead, only try
to realize the truth. There is no spoon. Then you will see that it is not
the spoon that bends, it is only yourself.

Spoon boy, The Matrix

The theory of elastodynamic homogenization initiated by J.R. Willis is revisited
for periodically inhomogeneous media through a careful scrutiny of the main aspects of
that theory in the 3D continuum context and by applying it to the thorough treatment
of a simple 1D discrete periodic system. Floquet-Bloch transform appears to be central
to appropriately defining and interpreting effective fields. Based on some physical
arguments, three necessary conditions are derived for the transition from the microscopic
description to the macroscopic description of periodic media. The parameters involved
in the Willis effective constitutive relation are expressed in terms of two localization
tensors and specified with the help of the corresponding Green’s function in the spirit of
micromechanics. These results are illustrated and discussed for the 1D discrete periodic
system considered. In particular, inspired by Brillouin’s study, the dependency of the
effective constitutive parameters on the frequency is physically interpreted in terms of
oscillation modes of the underlying microstructure. The contents of this chapter, as
well as the present abstract, are a somehow matured version of the paper by Nassar,
He and Auffray (2015).

1 Introduction
The beginnings of the elastodynamic homogenization theory of J.R. Willis can be
traced back to the relevant papers he published during the first half of the 1980s
(Willis, 1980a,b, 1981, 1985). The main body of this theory was, in a rather complete
manner, presented more than 10 years later in a chapter of a book edited after a course
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dedicated to continuum micromechanics (Willis, 1997). Recently, increasing interest in
acoustic metamaterials and cloaking (see, e.g., papers by Chen and Chan 2010; Lee
et al. 2012; Liu et al. 2000, 2012; Milton et al. 2006; Norris 2008; Norris and Shuvalov
2011; Simovski 2007) has, in particular, given an impetus to the development and
application of the elastodynamic homogenization theory of Willis (Milton and Willis,
2007, 2010; Nemat-Nasser and Srivastava, 2011, 2013; Nemat-Nasser et al., 2011; Norris
et al., 2012; Shuvalov et al., 2011; Srivastava and Nemat-Nasser, 2011; Willis, 2009,
2011, 2012).

The elastodynamic homogenization theory of Willis exhibits the following salient
features: (i) in the microscopic-to-macroscopic upscaling process, no approximation
hypotheses are made, so that, in this sense, the resulting theory can be considered as
exact; (ii) the effects of material microscopic inhomogeneities are, after homogenization,
all incorporated only in the resulting non-classical effective constitutive law, so that
the macroscopic (or effective) motion equation takes the same classical form as the
one at the microscopic level; (iii) for a composite formed of elastic phases whose
constitutive laws are local in time and space, the effective constitutive law obtained by
homogenization becomes generally nonlocal both in time and space; (iv) the effective
mass density is, in general, no longer a scalar but a second-order tensor quantity1;
(v) a non-classical coupling between the effective stress tensor and the effective velocity,
and another one between the effective momentum and the effective strain tensor, occur
generally in the effective constitutive law; (vi) the parameters involved in the effective
constitutive law are non-unique but can be rendered unique by prescribing, for example,
an additional eigenstrain field. Note that the features (iii) through (vi) make that the
effective constitutive law derived in the homogenized elastodynamic theory of Willis is
very different from the constitutive law involved in the classical elastodynamic theory
and that its explicit determination in terms of the phase properties is a quite tough
task and in general necessitates using a numerical method.

The present work consists in revisiting the elastodynamic homogenization theory
of Willis for periodic composites so as to reach the following threefold objective. First,
it aims to derive, on the basis of some physically sound arguments, a few necessary
conditions for the application of that theory to be physically meaningful. Second, it
has the purpose of expressing the effective constitutive parameters of the effective
constitutive law in terms of some appropriate localization tensors in the spirit of
micromechanics, so that a general numerical method, such as the finite element method,
can be directly used to numerically compute said parameters. Thirdly, it aims to gain
physical insights into the general theory by applying it to thoroughly and analytically
study a simple one-dimensional (1D) periodic discrete system. By achieving these three
objectives, the present work contributes not only to getting a better understanding of
but also developing the elastodynamic homogenization theory initiated by Willis.

The next sections of this chapter are structured and summarized as follows. In
section 2, the elastodynamic homogenization theory of Willis is carefully reformulated

1More accurately, the effective mass density is no longer an isotropic second-order tensor
but an anisotropic one, in general.
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mathematically and examined physically for periodic composites. Floquet-Bloch (FB)
expansions are shown to play a central role in properly defining and interpreting the
effective (or macroscopic) fields. Three necessary conditions are then proposed for the
elastodynamic homogenization theory of Willis applied to a periodic composite to lead
to a physically meaningful effective behavior. The first necessary condition corresponds
to the requirement that the microscopic virtual work be equal to the effective (or
macroscopic) virtual work, which is reminiscent of the well-known Hill-Mandel relation
in micromechanics. The second necessary condition concerns wavenumbers and demands
that the effective (or macroscopic) fields capture the long-wavelength parts of the
relevant microscopic fields. The third necessary condition is relative to frequencies and
comes from the requirement that the effective elastodynamic behavior of a composite
be a good approximation of its microscopic one. In section 3, the original ensemble-
average-based approach of Willis is presented and commented. Finally, in section
4, inspired by the work of Brillouin (1953), a simple 1D periodic discrete system is
analytically and exhaustively studied to illustrate and discuss the main results of
section 2.

2 Elements of an elastodynamic homogenization
theory for periodic media

Considering the periodic medium Ω of chapter 1, we recall the kinematical relations,

∀k ∈ T ∗, ε̃k = (∇ + ik)⊗sũk, ṽk = iωũk, (2.1)

the motion equation,

∀k ∈ T ∗, (∇ + ik) ⋅ σ̃k + f̃k = iωp̃k, (2.2)

and constitutive law,

∀k ∈ T ∗, σ̃k = C ∶ ε̃k, p̃k = ρṽk, (2.3)

written in terms of FB components.
The problem to be treated in what follows is the homogenization of Ω. Precisely,

that periodically heterogeneous medium will be replaced by a homogeneous medium
over which appropriate effective fields are defined and whose elastodynamic behavior
is determined in such a way that the most important elastodynamic features of the
initial periodic medium are captured. To achieve this objective, we shall work with
transformed fields instead of dealing directly with fields of space and time. We have
seen that FB transform and the superposition principle allow to considerably simplify
the motion equation and the way in which the fields depend on the space variables.
Furthermore, FB transform will help introduce and interpret the effective fields in
elementary terms by means of space averages. The original point of view of Willis
based on expectancies is postponed until the next section.
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2.1 Effective fields
The fields describing Ω exactly, as it is, are referred to as “microscopic” or “exact”
whereas the fields describing Ω macroscopically or “effectively” are referred to as
“effective”. We define1 the effective FB component H̃k of a microscopic FB component
h̃k(x) as being the x-independent amplitude

H̃k = 1∣T ∣
ˆ
T
h̃k(y)dy ≡ ⟨h̃k⟩ , (2.4)

for all k ∈ T ∗. We insist on the fact that only R-periodic fields can be averaged without
any ambiguity as all choices of T are equivalent. A non R-periodic field will have
different averages over different unit cells. Furthermore, given k ∈ T ∗, H̃k, being a
uniform amplitude, can be seen as both a Fourier component and a FB component.
Accordingly, we can extend the definition of the FB transform of H with zeros outside
of T ∗ and speak indifferently of Fourier or FB transforms. Of course, this does not hold
for the microscopic field h which generally has non-null Fourier components outside of
T ∗.

For the moment, we argue that the effective field definition (2.4) allows to satisfy
exactly the usual motion equation written as a conservation law. First, we recast the
central equation (2.2) into the equivalent form

∇ ⋅ σ̃k + ik ⋅ σ̃k + f̃k = iωp̃k.
Then, by the divergence theorem and the periodic boundary conditions, averaging over
T yields

ik ⋅ ⟨σ̃k⟩ + ⟨f̃k⟩ = iω ⟨p̃k⟩ .
Taking the inverse Fourier transform, the above equation becomes the effective motion
equation

∇ ⋅Σ +F = iωP . (2.5)

By the same logic, the kinematical relations are kept exact and we have

Ẽk = ik⊗sŨk, Ṽk = iωŨk,
or, back in the real domain,

E = ∇⊗sU , V = iωU . (2.6)

1The suggested form of the effective fields is different than that of Amirkhizi and Nemat-
Nasser (2008) and Willis (2011). It remains however directly inspired from the mentioned
papers. We shall present our point of view first.
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2.2 Necessary conditions for homogenization
Having the effective motion equation and the effective kinematical relations, all that
is left to do in order to have a complete macroscopic description of Ω is to see what
becomes of the constitutive behavior. However, even when said behavior is still
unknown, it is possible to draw a priori a validity domain for the present approach. In
fact, for the effective fields defined in (2.4) to act as physically meaningful macroscopic
fields, frequencies and wavenumbers have to satisfy some conditions, hereafter called
homogenizability conditions. Below, we derive three of them. The first one amounts
to a generalized version of the Hill-Mandel relation. The second one is based on the
physically sound requirement that the effective field H defined for a microscopic field h
be a slowly space-varying approximation of h. The third one comes from the demand
that H be a good approximation of h.

2.2.1 First condition: Hill-Mandel relation

It is desirable that the macroscopic and the microscopic descriptions of Ω be energetically
equivalent in the sense that the work of microscopic internal forces be equal to that of
macroscopic internal forces, namely that the equalityˆ

Ω
σ′ ∶ ε∗ − p′ ⋅ v∗ = ˆ

Ω
Σ′ ∶ E∗ −P ′ ⋅V ∗ (2.7)

holds for any combination of microscopic and macroscopic fields (h,H) and (h′,H ′)
related through (2.1), (2.2), (2.5) and (2.6). We refer to such relation as Hill-Mandel
relation. Thanks to Parseval’s identity for FB transform, the above is equivalent to

∀k ∈ T ∗, ⟨σ̃′k ∶ ε̃∗k − p̃′k ⋅ ṽ∗k⟩ = ⟨Σ̃′
k ∶ Ẽ∗

k − P̃ ′
k ⋅ Ṽ ∗

k ⟩ ,
the averaging sign on the right-hand side being unnecessary, the FB components of the
effective fields being uniform in space. Now, by the virtual work theorem, it comes that

⟨f̃ ′k ⋅ ũ∗k⟩ = ⟨σ̃′k ∶ ε̃∗k − p̃′k ⋅ ṽ∗k⟩ ,⟨F̃ ′
k ⋅ Ũ∗

k ⟩ = ⟨Σ̃′
k ∶ Ẽ∗

k − P̃ ′
k ⋅ Ṽ ∗

k ⟩ .
Hence, Hill-Mandel relation holds whenever one has

∀k ∈ T ∗, 1∣T ∣
ˆ
T
f̃ ′k ⋅ ũ∗k = F̃ ′

k ⋅ Ũ∗
k .

Such requirement is unbearable except when T reduces to a single point and T ∗ extends
to E ∗, i.e., when Ω is homogeneous. In general, the foregoing relation can only hold for
a particular set of microscopic body forces which we qualify as admissible. Under these
circumstances, it is straightforward to see that the unique maximal1 set of admissible
body forces is the one defined by

∀k ∈ T ∗, F̃k = ⟨f̃k⟩ = f̃k.
1In the sense that it cannot be enriched.
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Finally, recall that the choice of T ∗ as a basis for FB expansions is, so far, conven-
tional and that T ∗ can be substituted by any other zone isomorphic to the quotient
E ∗/R∗. What is common to all of these choices is the property

∀k ∈ E ∗, ∀ξ ∈ R∗, k ∈ E ∗/R∗ Ô⇒ k + ξ /∈ E ∗/R∗.

Our first homogenizability condition can therefore be stated as follows. The wavenum-
bers of body forces under which homogenization is carried cannot be arbitrarily rich
and must constitute a subset of some zone isomorphic to E ∗/R∗ in which case the
Hill-Mandel relation is valid and body forces are the same on both microscopic and
macroscopic scales.

Two remarks are in order.

1. Hill-Mandel relation being valid for a specific set of loadings is not new. In
statics already, Hill-Mandel lemma is proven for specific rather than arbitrary
boundary conditions.

2. Other than its energetic significance, once (2.7) is satisfied, the symmetry of
the left-hand side, resulting from the symmetry of the microscopic constitutive
behavior, is transmitted to the right-hand side implying, a priori, the symmetry
of the to-be-found effective constitutive behavior. We then know in particular
that the effective motion equation admits a variational formulation.

2.2.2 Second condition: effective vs macroscopic

Let k ∈ T ∗ and let h̃k(x) be some microscopic FB component, H̃k = ⟨h̃k⟩ being
the corresponding effective component. The microscopic wave has the wavenumbers{k + ξ}ξ∈R∗ whereas the effective one has one wavenumber, k. One can then think
of the effective wave as a filtered wave where the microscopic component is rid of all
wavenumbers, i.e., all wavelengths, but one. However, for H to be the outcome of a
long-wavelength filtering of h, the involved wavenumbers must satisfy

∀ξ ∈ R∗ − {0}, ∥k∥ < ∥k + ξ∥,
which holds automatically having k ∈ T ∗.

If FB expansions are carried over a different zone than T ∗, the effective fields can
no longer be seen as long-wavelength approximations to the microscopic ones. When
the first homogenizability condition requires that the set of body force wavenumbers
be isomorphic to E ∗/R∗, the present second homogenizability condition states that
said wavenumbers must be in the first Brillouin zone T ∗.

For a 1D medium, if ∣T ∣ is the length of the unit cell T , the second homogenizability
condition reduces simply to − π∣T ∣ < k < π∣T ∣ .
Therefore, the effective field wavelength λ = ∣2π/k∣ must be at least twice as large as T
(see figure 2.1).
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λ

T T

Figure 2.1. An illustration of the second homogenizability condition showing the
shortest allowed wavelength.

2.2.3 Third condition: on free waves

We now assess the quality of the effective description as an approximation to the
microscopic one. More precisely, we are interested in knowing which of the Fourier
components ũk+ξ of a FB free wave ũk is the dominant component in the elastic energy
sense for instance. We assume that such dominant component exists and that it has a
wavenumber k′ = k + ξ for some reciprocal lattice wavenumber ξ. By R∗-periodicity
of free waves, we know that ũ′k(x) = ũk(x)e−iξ⋅x is also a free wave. Furthermore,
dominance of ũk+ξ = ⟨ũ′k⟩ is formulated as

⟨[C ∶ (∇⊗sũ′k)] ∶ (∇⊗sũ′∗k )⟩ ≪ ⟨[C ∶ (ik′⊗sũ′k)] ∶ (ik′⊗sũ′k)∗⟩, (2.8)

where the relation ≪ means “is negligible with respect to”. As a matter of fact, the
component ũk+ξ contributes to the right-hand side exclusively1 while the sum of the
strains ik′⊗sũ′k and ∇⊗sũ′k yields the strain of ũ′k. The virtual work theorem for free
waves implies

ω2 ⟨ρũ′k ⋅ ũ′∗k ⟩ = ⟨{C ∶ [(∇ + ik′)⊗sũ′k]} ∶ [(∇ + ik′)⊗sũ′k]∗⟩ ,
so that the triangle inequality gives rise to

ω2 ⟨ρũ′k ⋅ ũ′∗k ⟩ ≤ (√⟨[C ∶ (∇⊗sũ′k)] ∶ (∇⊗sũ′k)∗⟩
+√⟨[C ∶ (ik′⊗sũ′k)] ∶ (ik′⊗sũ′k)∗⟩)

2
.

Hence, the condition (2.8) yields

ω2 ⟨ρũ′k ⋅ ũ′∗k ⟩ ≲ ⟨[C ∶ (ik′⊗sũ′k)] ∶ (ik′⊗sũ′k)∗⟩
1The component ũk+ξ is the average of ũ′k. The gradient of the latter is hence independent

of the former.
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where the relation ≲ is defined as “smaller than or almost equal to”1. Consequently,
we have

ω2 ≲ ⟨[C ∶ (ik′⊗sũ′k)] ∶ (ik′⊗sũ′k)∗⟩⟨ρũ′k ⋅ ũ′∗k ⟩ .

Next, we compare the C-norm and the ρ-norm. In this regard, we have

⟨[C ∶ (ik′⊗sũ′k)] ∶ (ik′⊗sũ′k)∗⟩ = ⟨ρ [C
ρ
∶ (ik′⊗sũ′k)] ∶ (ik′⊗sũ′k)∗⟩

≤ ⟨ρ (ik′⊗sũ′k) ∶ (ik′⊗sũ′k)∗⟩ max
x∈T

I=1...d′
(cI(x)
ρ(x) ) ≤ (k′ ⋅ k′) ⟨ρũ′k ⋅ ũ′∗k ⟩ max

x∈T
I=1...d′

(cI(x)
ρ(x) )

where d′ = d(d + 1)/2 and the (cI)I=1...d′ are the eigenvalues of the elasticity tensor C.
It can then be concluded that

ω2 ≲ max
x∈T

I=1...d′
(cI(x)
ρ(x) ) ∥k′∥2 = max

x∈T
I=1...d′

(cI(x)
ρ(x) ) ∥k + ξ∥2. (2.9)

This condition says that the higher the frequency is, the shorter the wavelength
2π/∥k + ξ∥ of the dominant component is. Elastic energy gets shifted towards short
wavelengths for high frequencies in agreement with the analysis of chapter 1 based on
Bragg’s reflexion.

The third homogenizability condition demands that the macroscopic field, for which
k′ = k ∈ T ∗, be the dominant component of the microscopic displacement and requires
necessarily

ω2(k) ≲ max
x∈T

I=1...d′
(cI(x)
ρ(x) ) ∥k∥2, (2.10)

where we have reminded that ω = ω(k) depends on k through the dispersion relation.
Let us consider two examples.

1. In the quasi-static limit ω → 0, we know by the Voigt bound that ω(k)2 ⟨ρ⟩I ≤
k ⋅ ⟨C⟩ ⋅ k in the sense of quadratic forms. It is easy then to see that these
frequencies, and the whole acoustic branches most likely, are homogenizable
according to the above third condition.

2. Let ũk be an optical eigenmode ψ̃k,n for k = 0, n ≥ d+1. Then, if the macroscopic
amplitude is a good approximation to the microscopic field ũk, we would have
0 ≠ ω2 ≲ 0. Hence, the considered eigenmode is not homogenizable. Even worse,
when ρ is uniform, the orthogonality of eigenmodes for k = 0 implies that ⟨ψ̃k,n⟩
is identically null. Therefore, when the above condition is violated, not only the
effective description is a poor approximation to the microscopic one but some
microscopic free waves may simply vanish on the macroscopic scale.

1More precisely, a ≲ b means that a ≤ (1 + ε)b with ε≪ 1. Here, ε is the ratio between the
two components of the elastic energy.
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Requiring the three homogenizability conditions yields an upper bound for the set of
homogenizable frequencies ω:

ω2 ≲ max
x∈T

I=1...d′
(cI(x)
ρ(x) )max

k∈T ∗
∥k∥2 ≡ max

x∈T
I=1...d′

(cI(x)
ρ(x) ) π2

4`2
, (2.11)

where ` is a microstructural length depending only on the geometry of R. The
homogenizable frequency domain can contain the acoustic branches of the dispersion
curve and, depending on the actual microstructure of Ω, parts of some optical branches.
This result is in agreement with and generalizes that of Srivastava and Nemat-Nasser
(2014). The cited authors proved that, for particular layered composites, the acoustic
branch was homogenizable, in another energy-based sense, and so is the first optical
branch for composites with internal resonances.

Finally, condition (2.11) can be seen as a relaxed scale separation condition in
comparison with the following classical one

∀m, ω2 ≪ min
I=1...d′

( cmI
ρm

) π2

4`2m
,

where `m means the “radius” of phase m.

2.2.4 Two remarks

The first two homogenizability conditions describe geometric conditions under which
some internal consistency of the averaging scheme can be guaranteed. They do not
make use of any of the features of Ω. In particular, they are valid whether Ω is
periodic or not. In the latter case, it is the utility of the averaging scheme in defining a
homogeneous effective behavior that will be at stake but not its discussed consistency.

The third and last homogenizability condition estimates the magnitude of the error
committed in describing Ω as an effectively homogeneous medium. If closely inspected,
it can be seen that it actually suggests that the zone over which FB expansions are
carried must be frequency dependent. The zone T ∗ of small wavenumbers is appropriate
for low frequencies and some other zones are more suitable at higher frequencies. This
is not the same as defining ω-dependent effective constitutive parameters but rather
similar to changing the kinematics of the effective medium based on the frequency
band under consideration. This is not without resemblance to how Craster et al. (2010)
proceeds.

2.3 Formal solutions and homogenization
In this subsection, the methodology developed by Willis (2011) to derive effective
constitutive laws is revisited in such a way that the main aspects for periodic media
are specified and clarified. In fact, we present a purely spatial1 counterpart of said

1This is: without referring to random descriptions or expectancies.



52 Chapter 2. Willis theory revisited

methodology. It is clear from equations (2.1), (2.2) and (2.3) that FB components can
be investigated independently. Also, we drop the explicit k dependency hereafter in
order to simplify notations.

2.3.1 Preliminary discussion

In deriving the effective constitutive relation, the displacement solution of (2.2) needs
to be expressed first in terms of the applied loadings (representation step) and then in
terms of the effective strain and velocity (localization step). Formally, in the localization
step, we write

ũ = ⟨ũ⟩ +A ∶ ⟨ε̃⟩ +B ⋅ ⟨ṽ⟩
where A and B are two localization tensor fields to be determined. However, ⟨ε̃⟩ and⟨ṽ⟩ are not algebraically independent since

iω ⟨ε̃⟩ = iω (⟨∇⊗sũ⟩ + ik⊗s⟨ũ⟩) = ik⊗s⟨ṽ⟩ ,
where ∇⊗sũ has zero average given the periodic boundary conditions. This will result
in an ambiguity in the definition of tensors A and B.

The foregoing fact that velocity and strain are dependent is unusual. Indeed, for a
local medium, the strain tensor ε(y) and the velocity vector v(y) at a given point y
are independent of each other and they are also independent of the displacement u(y)
at the same point. However, for a nonlocal medium, the variables are some fields over
the whole medium. For example, the strain and velocity fields are not independent
since the time derivative of the former is equal to the symmetric part of the space
gradient of the latter. The effective behavior of the periodic medium once homogenized
is, a priori, nonlocal and characterized by a relation between some (x, t)-dependent
effective fields over Ω. In contrast, some numerical homogenization schemes seek, at
isolated macroscopic points, for an effective behavior which links total averages of the
microscopic fields. Such schemes do not seem to have to deal with E-V dependency
because they explicitly presume locality through the use of spatial Taylor expansions
and, thus, leave no place for a nonlocal behavior (see Pham et al., 2013).

One way to solve the ambiguity in the definition of tensors A and B is to prohibit
“abusive” time integration and derivation, i.e., division and multiplication by iω. To
this end, let γ be an eigenstrain field over Ω so that the stress-strain relationship
becomes

σ = C ∶ (ε − γ).
Now, since γ do not derive from the displacement field u and is therefore independent
of v, by keeping track of (ε − γ) as a whole, no confusion between the strain and
velocity components is possible. Correspondingly, the motion equation (2.2) takes the
form (∇ + ik) ⋅ {C ∶ [(∇ + ik)⊗sũ − γ̃]} + f̃ = −ω2ρũ (2.12)

where γ̃ can be viewed as a generalized loading. The use of eigenstrain in (Willis, 2011)
was inspired by the numerical scheme of Fietz and Shvets (2010).
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We underline the fact that non-uniqueness is not due to a particular choice of
boundary conditions, even though the dependency takes a simple algebraic form in the
present periodic case. This is mentioned explicitly in the more general study (Willis,
2011). Incidentally, eigenstrain γ can be seen to play the dual role of body force f . If
f was not taken into account, stress Σ and momentum P would have been dependent
through the effective motion equation

ik ⋅ Σ̃ = iωP̃ ,
which is equivalent to restraining our attention to free wave solutions. The bottom
line is that different loadings will allow to investigate more general aspects of the
effective behavior. We also refer to the discussion presented in (Willis, 2012) for other
interesting aspects of non-uniqueness.

Here, we have adopted the choice of localizing u with respect to E − γ and V .
Other legitimate choices exist. For example, we could have renounced the use of γ and
localized u directly with respect to U (as sketched in Willis, 2009). Such choices will
lead to other forms of the constitutive equations, which are, however, compatible in
the sense that they give rise to the same motion equation in terms of U .

Note that in order to derive the effective constitutive law, we take f̃ to be uniform in
space in agreement with the first homogenizability condition guaranteeing Hill-Mandel
relation. Also, it is straightforward to check that including a uniform eigenstrain γ̃
does not perturb said relation.

2.3.2 Representation equation

Given the periodic Green’s tensor g of the inhomogeneous medium Ω, we can write
the microscopic displacement solution as a sum of two contributions from body force
and eigenstrain:

∣T ∣ ũ(y) = ˆ
T
g(y,x) ⋅ f̃ dx + ˆ

T
[g(y,x)⊗s(∇x − ik)] ∶ [C(x) ∶ γ̃]dx, (2.13)

where ∇x is the usual differential operator applied to the x variable. The operator ∇y
will be similarly understood. In addition, use will be made of the volume average
operators ⟨⋅⟩x, ⟨⋅⟩y and ⟨⟨⋅⟩⟩ with respect to x, y and both x and y, respectively.
However, no distinction is indicated when confusion is impossible, i.e., for fields of
one variable. Unless otherwise specified, the symbol g stands for g(y,x) hereafter. A
last notation convention is that all fields written on the right of the operator g are
x-dependent while all those on the left of g are y-dependent. Finally, equation (2.13)
can be written in the compact form1

ũ = ⟨g⟩x ⋅ f̃ + ⟨[g⊗s(∇x − ik)] ∶ C⟩x ∶ γ̃ (2.14)

1This is an equality between vector fields of the variable y. The operator g is to be seen as
a second order tensor.
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where f̃ and γ̃ are uniform in space.
For later purposes, we recall that g satisfies the equation

(∇ + ik) ⋅ {C ∶ [(∇ + ik)⊗sg(⋅,y)]} + ∣T ∣ δyI = −ω2ρg(⋅,y)
whose volume average over T , by transposition, can be put in the form

⟨[g(y,x)⊗s(∇x − ik)] ∶ C(x)⟩x ⋅ ik = I + ω2 ⟨g(y,x)ρ(x)⟩x . (2.15)

2.3.3 Localization

Aiming to localize ũ with respect to ⟨ṽ⟩ and to ⟨ε̃ − γ̃⟩, we can re-write γ̃ as −⟨ε̃ − γ̃⟩ + ⟨ε̃⟩
in equation (2.14) which becomes

ũ = ⟨g⟩x ⋅ f̃ − ⟨[g⊗s(∇x − ik)] ∶ C⟩x ∶ ⟨ε̃ − γ̃⟩ + ⟨[g⊗s(∇x − ik)] ∶ C⟩x ∶ ⟨ε̃⟩ . (2.16)

The third term in the right-side member of this equation can be further written as

⟨[g⊗s(∇x − ik)] ∶ C⟩x ∶ ⟨ε̃⟩ = ⟨[g⊗s(∇x − ik)] ∶ C⟩x ∶ (ik⊗s⟨ũ⟩)= {⟨[g⊗s(∇x − ik)] ∶ C⟩x ⋅ ik} ⋅ ⟨ũ⟩= ⟨ũ⟩ + ω2 ⟨gρ⟩x ⋅ ⟨ũ⟩ ,
(2.17)

where the last equality stems from (2.15).
Combining (2.16) and (2.17) delivers

ũ − ⟨ũ⟩ = ⟨g⟩x ⋅ f̃ − ⟨[g⊗s(∇x − ik)] ∶ C⟩x ∶ ⟨ε̃ − γ̃⟩ + ω2 ⟨gρ⟩x ⋅ ⟨ũ⟩ . (2.18)

The volume average of this equation with respect to y results in an algebraic equation

0 = ⟨⟨g⟩⟩ ⋅ f̃ − ⟨⟨[g⊗s(∇x − ik)] ∶ C⟩⟩ ∶ ⟨ε̃ − γ̃⟩ + ω2 ⟨⟨gρ⟩⟩ ⋅ ⟨ũ⟩
whose solution for f̃ is given by

f̃ = ⟨⟨g⟩⟩−1 ⋅ ⟨⟨[g⊗s(∇x − ik)] ∶ C⟩⟩ ∶ ⟨ε̃ − γ̃⟩ − ω2⟨⟨g⟩⟩−1 ⋅ ⟨⟨gρ⟩⟩ ⋅ ⟨ũ⟩ (2.19)

provided det ⟨⟨g⟩⟩ ≠ 0.
Introducing (2.19) into (2.18), we finally obtain

ũ(y) − ⟨ũ⟩ =A(y) ∶ ⟨ε̃ − γ̃⟩ +B(y) ⋅ ⟨ṽ⟩ ,
with

A = ⟨g⟩x ⋅ ⟨⟨g⟩⟩−1 ⋅ ⟨⟨[g⊗s(∇x − ik)] ∶ C⟩⟩ − ⟨[g⊗s(∇x − ik)] ∶ C⟩x ,
B = iω ⟨g⟩x ⋅ ⟨⟨g⟩⟩−1 ⋅ ⟨⟨gρ⟩⟩ − iω ⟨gρ⟩x . (2.20)

Then, it is immediate that

σ̃ = {C +C ∶ [(∇y + ik)⊗sA]} ∶ ⟨ε̃ − γ̃⟩ + {C ∶ [(∇y + ik)⊗sB]} ⋅ ⟨ṽ⟩ ,
p̃ = iωρA ∶ ⟨ε̃ − γ̃⟩ + (ρI + iωρB) ⋅ ⟨ṽ⟩ . (2.21)
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2.3.4 Homogenization step

With the expressions for σ̃ and p̃, from equation (2.21), the homogenization step can
be accomplished easily by volume averaging. Indeed, using the definition (2.4) for Σ̃
and P̃ , the effective constitutive law of a periodic medium is specified by

[Σ̃
P̃

] = [Ce S1

S2 ρe
]
k,ω

[Ẽ − γ̃
Ṽ

] (2.22)

where the fourth-order effective stiffness tensor Ce, the second-order effective mass
tensor ρe and the third-order coupling tensors S1 and S2 depend on (k, ω) and have
the expressions

Ce = ⟨C⟩ + ⟨C ∶ [(∇y + ik)⊗sA]⟩ ,
ρe = ⟨ρ⟩I + iω ⟨ρB⟩ ,
S1 = ⟨C ∶ [(∇y + ik)⊗sB]⟩ ,
S2 = iω ⟨ρA⟩ .

(2.23)

Accounting for the formulae (2.20) for A and B, the constitutive tensors can further
be specified as follows (an equivalent form of equation (3.19) of Willis, 2011):

Ce = ⟨C⟩ + ⟨⟨C ∶ [(∇y + ik)⊗sg]⟩⟩ ⋅ ⟨⟨g⟩⟩−1 ⋅ ⟨⟨[g⊗s(∇x − ik)] ∶ C⟩⟩− ⟨⟨C ∶ [(∇y + ik)⊗sg⊗s(∇x − ik)] ∶ C⟩⟩ ,
ρe = ⟨ρ⟩I − ω2 ⟨⟨ρg⟩⟩ ⋅ ⟨⟨g⟩⟩−1 ⋅ ⟨⟨gρ⟩⟩ + ω2 ⟨⟨ρgρ⟩⟩ ,
S1 = iω ⟨⟨C ∶ [(∇y + ik)⊗sg]⟩⟩ ⋅ ⟨⟨g⟩⟩−1 ⋅ ⟨⟨gρ⟩⟩ − iω ⟨⟨C ∶ [(∇y + ik)⊗sg]ρ⟩⟩ ,
S2 = iω ⟨⟨ρg⟩⟩ ⋅ ⟨⟨g⟩⟩−1 ⋅ ⟨⟨[g⊗s(∇x − ik)] ∶ C⟩⟩ − iω ⟨⟨ρ [g⊗s(∇x − ik)] ∶ C⟩⟩ .

(2.24)

2.4 Comments on the effective behavior
Non-locality. All the effective parameters involved in (2.22) depend on the wavenum-
ber and the frequency of the effective fields. When the effective constitutive law (2.22)
is written back in the real domain, by means of inverse Fourier transform, it gives rise
to a law which is nonlocal in both space and time, namely

Σ(x, t) = 1(2π)d+1

ˆ
Ω×R

[Ce(x −x′, t − t′) ∶ (E(x′, t′) − γ(x′, t′))
+S1(x −x′, t − t′) ⋅V (x′, t′)] dx′ dt′,

P (x, t) = 1(2π)d+1

ˆ
Ω×R

[S2(x −x′, t − t′) ∶ (E(x′, t′) − γ(x′, t′))
+ρe(x −x′, t − t′) ⋅V (x′, t′)] dx′ dt′,

(2.25)

where γ is a field of inelastic strain. Hence, strains and velocities from all positions x′
and all instants of time t′ contribute to the stress and momentum density at a given
position x at a given instant t. Once more, strains and velocities being derived from
the same displacement field, contributions of E and V can be mixed up. The inelastic
strain γ helps segregate said contributions.
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Homogeneity. It is unclear why the outcome of an averaging scheme of any kind
would be a homogeneous rather than an inhomogeneous effective behavior. From
equations (2.1), (2.2) and (2.3), it appears that the FB components are uncoupled.
The averaging procedure (2.4) then transforms these FB components into uncoupled
Fourier components. Finally, the uncoupling of Fourier components is, for infinite
media at least, equivalent to homogeneity. Homogeneity can also be directly checked
from (2.25) where translating strains and velocities amounts to translating stresses and
momenta.

Linearity. It is legitimate to wonder whether the effort we have made, following
Willis (2011), in order to obtain explicit expressions for the effective parameters in
terms of the Green’s tensor was necessary and in any way useful. Indeed, linearity
directly implies the existence of the effective constitutive law (2.22). The calculation
allows simply to check in an elementary fashion at least three facts about the effective
behavior: Galilean invariance1, self-adjointness and the need for coupling. These are
investigated subsequently.

Invariance. By Galilean invariance, uniform velocities should not produce any
stresses. The Galilean invariance on the effective scale is naturally inherited from
that on the microscopic scale. In explicit terms, S1 vanishes when ω vanishes (see
equation (2.24)). It is then more fitting to recast (2.22) into

[Σ̃
P̃

] = [Ce 0
0 ρe

]
k,ω

[Ẽ − γ̃
Ṽ

] + [ 0 Ŝ1

Ŝ2 0
]
k,ω

[iω(Ẽ − γ̃)
iωṼ

] ,
with S1,2

k,ω = iωŜ1,2
k,ω, and to say that stresses are coupled with accelerations, not velocities,

and momenta with strain rates, and not strains.

Adjointness. The Hill-Mandel relation and the self-adjointness of the microscopic
constitutive behavior bestow a self-adjointness property on the effective constitutive
behavior. It reads

Ce⊺
k,ω = Ce∗

k,ω,

ρe⊺k,ω = ρe∗k,ω,
S1⊺
k,ω = −S2∗

k,ω,

S2⊺
k,ω = −S1∗

k,ω.

Note that this is different from Hermitian symmetry2,3. The above is also evident
if (2.24) is considered. Furthermore and independently, the real-valuedness of the

1We mean that a Galilean transformation does not generate any stresses.
2Not unless the coupling vanishes.
3The minus sign appearing between S1 and S2 is basically the minus of the difference

T −K in the expression of the Lagrangian.
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effective parameters translates into

Ce
−k,−ω = Ce∗

k,ω,

ρe−k,−ω = ρe∗k,ω,
S1
−k,−ω = S1∗

k,ω,

S2
−k,−ω = S2∗

k,ω.

Finally, the microscopic motion equation only depends on ω through ω2 so that we
have

Ce
k,−ω = Ce

k,ω,

ρek,−ω = ρek,ω,
S1
k,−ω = −S1

k,ω,

S2
k,−ω = −S2

k,ω.

Coupling. On the microscopic scale, an acceleration can generate stresses through
the microscopic motion equation. Similarly, strains generate momenta. The coupling
terms S1 and S2 capture partially this mechanism through the macroscopic constitutive
behavior. Such couplings appear naturally in (2.23) and will later be proven inevitable
using a simple example. When either C or ρ are uniform, or when ω = 0, coupling
vanishes.

Symmetry. The material symmetry of the microstructure, if any, implies the
existence of some relations between the components of the effective parameters. What
should be noted is that, due to nonlocality, material symmetries must transform
wavenumbers as well as microstrucutre. Precisely, if R is a material symmetry, then1

[Ce
k,ω]pqrs = [Ce

k′,ω]abcdRapRbqRcrRds,[ρek,ω]pq = [ρek′,ω]abRapRbq,[S1
k,ω]pqr = [S1

k′,ω]abcRapRbqRcr,[S2
k,ω]pqr = [S2

k′,ω]abcRapRbqRcr,
with k′ = R⊺ ⋅ k. We would like simply to underline the fact that, given a material
symmetry, the shape of the effective parameters for a nonlocal behavior is different
than that for a local one. In particular, the odd order coupling tensors S1 and S2 do
not generally vanish for centrosymmetric microstructures.

1To my poorly educated self, the expression of this transformation is counterintuitive.
When a unit cell is rotated in one direction, k seems to go in the opposite direction.
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Elastostatics. Homogenization under quasi-static loadings can be obtained as a
particular case of the present theory by specifying ω = 0. Coupling vanishes as noted
earlier, the effective mass density ρe becomes the isotropic average mass density ⟨ρ⟩I
and time nonlocality naturally disappears. The effective behavior remains nonlocal in
space however. When the long-wavelength limit is considered, the effective behavior
becomes local in space and we recover the standard quasi-static effective behavior.
More details are given in chapter 3.

2.5 The effective motion equation
When all strains are elastic, i.e., γ = 0, using the effective constitutive parameters, the
effective motion equation (2.5) becomes

ik ⋅ (Ce
k ∶ Ẽk +S1

k ⋅ Ṽk) + f̃k = iω(S2
k ∶ Ẽk + ρek ⋅ Ṽk)

or, in terms of the macroscopic displacement,

Zk ⋅ Ũk ≡ [k ⋅Ce
k ⋅ k + ω (k ⋅S1

k −S2
k ⋅ k) − ω2ρek] ⋅ Ũk = f̃k.

Note that as dictated by the first homogenizability condition, macroscopic body forces
are the same as on the microscopic scale. The operator Z is referred to as the effective
impedance. It depends on both k and ω. For a homogeneous Cauchy medium, Z is
a second order differential operator, i.e., a second order polynomial in k and ω. For
the effective medium obtained by homogenization, it is a general integro-differential
operator. The knowledge of Z is enough to characterize displacement solutions but
is not sufficient to describe stresses and momenta. Regardless of this shortcoming, in
later chapters, we will mostly focus our attention on Z rather than on the effective
constitutive parameters for reasons of simplicity and coherence, especially when speaking
of asymptotic approximations.

In terms of the Green’s function, Z admits a simple expression. Indeed, from (2.14),
given a zero eigenstrain, it is immediate to see that

Ũk = ⟨ũk⟩ = ⟨⟨gk⟩⟩ ⋅ f̃k ≡Gk ⋅ f̃k,
where G is the effective Green’s tensor of the effective medium. Consequently, we have

Zk =G−1
k = ⟨⟨gk⟩⟩−1.

It is in fact insightful to write a series representation of the effective Green’s tensor.
From the results of chapter 1, the microscopic Green’s tensor admits the form

gk(y,x) = ∑
n≥1

ψ̃k,n(y)⊗ψ̃∗
k,n(x)

ω2
n(k) − ω2 ,

so that the macroscopic one can be written as

Gk = ∑
n≥1

⟨ψ̃k,n⟩⊗⟨ψ̃k,n⟩∗
ω2
n(k) − ω2 .
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All that Willis theory reduces to is to substitute an eigenmode by its volume average.
The theory is then appropriate for describing eigenmodes that have dominant averages.
Such was the subject of the third homogenizability condition.

We have seen that the macroscopic fields automatically satisfy a macroscopic motion
equation. As a matter of fact, Willis theory transforms a microscopic solution into
a macroscopic one. In particular, it transforms a free wave into a free wave of the
same frequency and of the same wavenumber. This last statement is obvious from the
above representation of the effective Green’s tensor where the eigenfrequencies are not
affected by the scale transition. Only the associated polarizations are modified. Hence,
a microscopic eigenfrequency is also a macroscopic one except when ⟨ψ̃k,n⟩ happens to
be null:

C e = ⋃
n≥1

{(k, ωn(k)) ∈ T ∗ ×R+, ⟨ψ̃⟩
k,n

≠ 0} ⊂ C ,

where C e is the macroscopic dispersion curve and C is the microscopic one. Note that
when the subtracted set of zero average eigenmodes is of empty interior, C can be
recovered from C e by continuous extrapolation. We shall then speak indifferently of C
and C e henceforth.

3 Willis theory à la Willis
In what follows, we present the Willis homogenization theory as introduced by Willis
(1997, 2011). This point of view based on a random description of the microstructure
and on ensemble averages, i.e., expectancies, rather than on volume averages is discussed
and commented in the light of the previously presented homogenizability conditions.

3.1 Random and randomized microstructures
The microstructure of Ω characterized by the stiffnesses C and inertia ρ is now assumed
to be random and not necessarily periodic1. In other words, in addition to their spatial
dependence, C and ρ now depend on some random variableX of probability distribution
µ(X) and they are denoted, respectively, by CX and ρX . Given a deterministic body
force field f , the motion equation reads

∇ ⋅ [CX ∶ (∇⊗suX)] + f = −ω2ρXuX ,

where uX is the displacement field in the realization X. The effective fields are then
defined at each position x as the expected value with respect to X at that same position,
namely

H(x) = ˆ hX(x)dµ(X).
1Periodic media will shortly be seen as particular random media.
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The above average is the so-called “ensemble average”. In order to compute H, one
has to carry the same experiment, defined by f , for different realizations X and then
average the hX outcomes at each position.

In order to apply the foregoing definition to periodic media, one needs to describe
a periodic microstructure in terms of a random one. This is done as follows. Let C
and ρ be some deterministic R-periodic fields of elastic stiffness and mass density.
Let X ∈ E be a random translation and define the random fields CX ≡ C(⋅ +X) and
ρX ≡ ρ(⋅ +X). Therefore, the only random feature of the microstructure described
by CX and ρX is the absolute position of said microstructure in space. In other
words, the interior of a unit cell of the considered composite is deterministically known,
however, its absolute position in space, say in the lab frame of reference, is subject to
uncertainties. This uncertainty takes its full meaning when absolute sure body forces
are taken into account. The motion equation, in terms of FB components, reads

(∇ + ik) ⋅ {C(x +X) ∶ [(∇ + ik)⊗sũX(x)]} + f̃ = −ω2ρ(x +X)ũX(x).
Translating the above equation by −X, it comes that

(∇ + ik) ⋅ {C(x) ∶ [(∇ + ik)⊗sũX(x −X)]} + f̃ = −ω2ρ(x)ũX(x −X).
Therefore ũX(x −X), whatever the realization X is, is a solution to the equation

(∇ + ik) ⋅ {C(x) ∶ [(∇ + ik)⊗sũ(x)]} + f̃ = −ω2ρ(x)ũ(x)
governing the motion at X = 0. Hence, assuming the uniqueness of the solution,

ũX(x) = ũ(x +X).
The last ingredient that needs to be specified before defining Ũ is the probability
distribution µ. Said distribution is taken to be uniform over one unit cell T , i.e., all
positions are equiprobable. Correspondingly, the effective FB components of H are
given by

H̃(x) = ˆ h̃(x +X)dµ(X) = 1∣T ∣
ˆ
T
h̃(x +X)dX = ⟨h̃⟩ (2.26)

and turn out to be independent of x and the same as the ones previously introduced
in equation (2.4), up to one detail that is discussed next.

3.2 Domain of definition
In (2.4), the FB components of the effective fields are given in terms of the FB compo-
nents of the microscopic one, for all k ∈ T ∗. Then, we have assumed that microscopic
and macroscopic body forces are the same in agreement with the requirement of the
Hill-Mandel relation. Finally, for each k ∈ T ∗, we have calculated expressions for some
effective parameters. Consequently, the effective constitutive behavior is only defined
for k ∈ T ∗ and has no meaning so far outside of T ∗.
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Nonetheless, the above methodology can be “naively” followed whatever k ∈ E ∗ is.
First, let k be an arbitrary wavenumber and f̃k be a uniform body force amplitude.
Second, solve the motion equation for ũk. Finally, define Ũk = ⟨ũk⟩ and obtain Zk
as the mapping between f̃k and Ũk. Similarly, the effective constitutive parameters
can be extrapolated to the whole space E ∗. In doing so, the effective field U is no
longer defined one FB component at a time as in (2.4), but one response to a plane
wave body force at a time as in (2.26). Furthermore, note that we were able to speak
of (2.4) independently of any motion equation whereas (2.26) was the consequence of
some forced motion equation. The point of view of Willis summarized in (2.26) has
two shortcomings which motivated the alternative formulation (2.4).

1. Willis defines the effective fields driven by a sure body force. When body forces
vanish, the effective fields are ill-defined. One might argue that one only needs to
define the effective fields in order to calculate the effective constitutive parameters.
Once said parameters are known in forced regimes, they can be extrapolated to
unforced regimes, which brings us to the second issue.

2. Let us assume that the effective behavior is given a meaning over the whole space
E ∗ and let k and k+ξ, for some ξ ∈ R∗, be two different wavenumbers. If ωn(k)
is an eigenfrequency then so is ωn(k + ξ) by R∗-periodicity of the dispersion
curve. On the microscopic scale, the free waves associated with ωn(k) and with
ωn(k + ξ) are the same. However, on the macroscopic scale, these two free waves
become distinct plane waves of wavenumbers k and k + ξ respectively. Hence,
each microscopic free wave gets split into an infinity, one for each ξ ∈ R∗, of
macroscopic free waves the majority of which are non-physical solutions and
merely artefacts of the Willis averaging scheme.

In fact, the Willis scheme transforms some components coupled on the microscale into
some uncoupled components on the macroscale. Forcing said uncoupling entails the
mentioned inconsistencies. These issues disappear once the effective description is
restricted to T ∗ (or to any other region isomorphic to E ∗/R∗) as suggested by the
first homogenizability condition. As a consequence, the effective medium has reduced
kinematics (Ũk is uniform, for all k ∈ T ∗) in comparison to the original medium (ũk is
R-periodic, for all k ∈ T ∗).

Incidentally, Willis (1997) presented a Hill-Mandel relation valid whatever the
sure body forces are. However, his version is only concerned with the expectancies of
microscopic and macroscopic works.

4 An application: 1D discrete systems
Hereafter, we reconsider Born’s model for sodium chloride which was thoroughly
investigated in chapter 1. This model is studied here as an example to illustrate and
to gain insight into the general elastodynamic homogenization theory presented in the
foregoing section for periodic media.
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4.1 Some closed form expressions
If h̃n is a (2-periodic) microscopic FB component, definition (2.4) is interpreted as

H̃ = h̃1 + h̃2
2

.

Given the above and the results of chapter 1, it is straightforward to obtain1

[Σ
P
] = [Ce S1

S2 ρe
]
k,ω

[E
V
]

where

Cek,ω = 4 cos2 (k2) − ω2 ⟨ ⟨m⟩

c ⟩
4 cos2 (k2) − ω2 ⟨m⟩

⟨c⟩

⟨1
c
⟩−1,

ρek,ω = 4 cos2 (k2) − ω2⟨ ⟨c⟩
m ⟩−1

4 cos2 (k2) − ω2 ⟨m⟩

⟨c⟩

⟨m⟩ ,
S1
k,ω = iω∆m∆c cos (k2)

4 cos2 (k2) − ω2 ⟨m⟩

⟨c⟩

eik/2

2 ⟨c⟩ ,
S2
k,ω = iω∆m∆c cos (k2)

4 cos2 (k2) − ω2 ⟨m⟩

⟨c⟩

e−ik/2

2 ⟨c⟩ ,
with ∆m =m1 −m2 and ∆c = c1 − c2.

As ω goes toward zero, the effective stiffness Ce approaches its static limit 1/⟨1/c⟩
and the effective mass approaches the static effective mass ⟨m⟩. At the same time, the
coupling terms S1 and S2 vanish for ω = 0 as expected. This also guarantees that no
stress is generated from a change of the Galilean frame of reference. It is therefore
more correct to say that stresses are coupled with accelerations and not velocities. In
the same manner, momenta are coupled with strain rates and not strains. Furthermore,
if the masses m or the stiffnesses c were uniform, the coupling terms would vanish
as well. If both masses and stiffnesses are uniform, the initial classical constitutive
relation is recovered.

It is remarkable that the effective medium, of our mass-spring lattice, is also
discrete2. In fact, the effective motion equation is

Σn −Σn−1 + fn = iωPn.
1We underline the fact that here, unlike the general continuous case, Σ is homogeneous to

a force, P to a momentum and not to a momentum density, E to a length and V to a velocity.
The dimensions of the effective parameters change therefore accordingly.

2Homogenization is not continualization.
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In addition, the effective constitutive parameters are 2π-periodic functions in the
wavenumber k. The corresponding convolution kernels are inverse Fourier transforms
with respect to k and have therefore a discrete support of step 1 (i.e., the set of integers
Z).

4.2 Effective impedance, nonlocality and coupling
The determination of the effective displacement response U to a solicitation f does not
entail knowing the whole effective properties. Indeed, a direct relation between Ũ and
f̃ can be found and is characterized by the effective impedance

Zk,ω = ∣eik − 1∣2Ce + iω(e−ik − 1)S1 + iω(eik − 1)S2 − ω2ρe

which can be further specified as

Zk,ω = 2m1m2ω
4 − 2(h1 + h2)(m1 +m2)ω2 + 8h1h2 sin2(k)
4(h1 + h2) cos2 (k2) − (m1 +m2)ω2

.

Note that the condition Zk,ω = 0 yields the exact dispersion curve up to the singularities
that Zk,ω may have due to its poles. These poles corresponds to the zero average
eigenmodes previously discussed.

It is known and easy to see that, at low frequencies, the effective mass is the
arithmetic mean of masses since point masses are oscillating in phase. Let us then
investigate, through direct analysis, the high frequency behavior of the effective mass
through two examples ω = ω2(0), i.e, the cut-off frequency, and ω →∞.

1. The microscopic solution for the eigenmode (k = 0, ω = ω2(0)) is un = ũn. Since
ũ is 2-periodic, the eigenmode (0, ω2(0)) decouples the medium into two rigid
subsystems, even indexed masses and odd indexed masses, connected by two
springs and oscillating in two opposite directions, so as not to violate Newton’s
first law (see figure 2.2). It is easy then to see that E = 0 since k = 0, that P = 0
since u1/u2 = −m2/m1 and that V ≠ 0 for m1 ≠m2. Therefore, ρek=0,ω=ω2(0) = 0.

2. For even higher frequencies ω →∞, no free waves can propagate meaning that,
given a force field f̃ , masses will oscillate as if independent of each other. We then
have −ω2m1ũ1 = −ω2m2ũ2 = f̃ so that iω ⟨ũ⟩ = ⟨1/m⟩ f̃/iω and ρek,ω→∞ = 1/ ⟨1/m⟩.

These two examples, along with the quasi-static case, show that the nonlocality in
time which is caused by the ω-dependency of the effective mass, among others, can be
interpreted as the effect, over effective mass, of changing modes of oscillation (in/out
of phase for example) of internal degrees of freedom.

The need for coupling terms can as well be demonstrated even in this very simple
context. Again, let k be null so that the macroscopic strain is null and let ω be the
cut-off frequency ω2(0) as in the example treated above. Then, the macroscopic stress
is

Σ̃ = c1(ũ2 − ũ1) + c2(ũ1 − ũ2)
2

= (c1 − c2)(ũ1 − ũ2)
2
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c1 c2 c1
m1 m2 m1 m2

m1 m2

c1

c2

Figure 2.2. The mode (k = 0, ω = ω2(0)) (top) and the two-body problem that it
reduces to (bottom). The arrows illustrate the direction of the velocity at a given time.

and is non-null as long as c1 ≠ c2 and m1 ≠m2, since otherwise ũ1 = ũ2. The effective
stresses are then inevitably coupled with something other than strains.

4.3 Homogenizability conditions illustrated
For the 1D discrete medium under consideration, the second homogenizability condi-
tion (k ∈ T ∗) is simply

−π
2
< k < π

2
.

As the gradient operator is replaced by its discrete version, the third homogenizability
condition becomes

ω2(k) ≲ 4 max ( c
m

) sin2(k
2
) .

Solving the dispersion relation for ω = ω(k), it is seen that the acoustic branch is always
entirely homogenizable whereas most of the optical branch violates the above condition.
Borrowing Brillouin’s interpretation, the combined homogenizability conditions state
that consecutive masses should not oscillate in an obvious out-of-phase fashion.

Figure 2.3 shows an example of an exact high-frequency free wave solution where a
macroscopic description appears to be out of context. Therein, the effective wavelength
satisfies the second homogenizability condition. The large difference between the am-
plitudes of the effective and microscopic waves indicates that the dominant component
is the short-wavelength one. This is due to the chosen high frequency that violates
the third homogenizability condition. In figure 2.4 is given an example of an exact
low-frequency free wave solution where the macroscopic behavior is rather obvious.
The dominant component is clearly the effective long-wavelength one due to the low
frequency setting in agreement with the third homogenizability condition. For these
examples, details (masses, stiffnesses, time, . . . ) which are not important from the
physical standpoint are not specified.
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x

u

Figure 2.3. In small circles, an exact high-frequency free wave solution: the (real)
displacement of 100 consecutive masses. The continuous line draws the corresponding
effective plane wave.

x

u

Figure 2.4. In small circles, an exact low-frequency free wave solution: the (real)
displacement of 100 consecutive masses. The continuous line draws the corresponding
effective plane wave.

5 Concluding remarks
The elastodynamic homogenization theory of composites, initiated by J.R. Willis more
than thirty years ago, escaping due attention during a long period, and developed
recently by him and other researchers, has been carefully and systematically revisited
in the present work for periodic media. The theory of Willis is general and exact,
leading to an effective elastodynamic constitutive law which is nonlocal in time and
space and takes a form quite different from and much more complicated than the
usual constitutive laws in classical elastodynamics. Now, in spite of its mathematical
generality and exactness, the corresponding physical validity (or suitableness) domain
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remains far from being clarified. Aiming mainly at giving an answer to this important
question, the present work has established three necessary conditions for the application
of that theory to be physically sound. The first condition guaranteed the existence of
a Hill-Mandel relation at the cost of reducing the kinematics of the effective medium.
Then, the third condition imposed upper bounds on the frequencies for which the
effective behavior is a good approximation to the microscopic one. In later chapters,
we explore two directions.

1. The Willis constitutive behavior is highly complicated. In addition, it is likely
that it is mostly valid for relatively low frequencies. It is of interest then to
investigate the asymptotics of said behavior as ω approaches 0. More generally,
connections between Willis theory and asymptotic homogenization methods need
to be clarified.

2. In order to extend the frequency validity domain, the kinematics of the effective
medium need to be enriched. Enriching said kinematics while keeping valid a
Hill-Mandel relation will receive our attention later on.
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Chapter 3

On some asymptotic
elastodynamic homogenization
approaches

Il serait aisé d’aller plus loin, mais ce serait un vain jeu de l’esprit ; on
n’imaginerait que des symboles sans application possible, et personne
ne s’en avisera. Le continu du troisième ordre auquel conduit la consid-
ération des divers ordres d’infiniment petits est lui-même trop peu utile
pour avoir conquis droit de cité, et les géomètres ne le regardent que
comme une simple curiosité. L’esprit n’use de sa faculté créatrice que
quand l’expérience lui en impose la nécessité.
[. . . ]
Enfin M. Veronese et M. Hilbert ont imaginé de nouvelles géométries plus
étranges encore, qu’ils appellent non-archimédiennes. Ils les construisent
en rejetant l’axiome d’Archimède en vertu duquel toute longueur don-
née, multipliée par un entier suffisamment grand, finira par surpasser
toute autre longueur donnée si grande qu’elle soit. Sur une droite non
archimédienne, les points de notre géométrie ordinaire existent tous,
mais il y en a une infinité d’autres qui viennent s’intercaler entre eux, de
telle sorte qu’entre deux segments, que les géomètres de la vieille école
auraient regardés comme contigus, on puisse caser une infinité de points
nouveaux. En un mot, l’espace non archimédien n’est plus un continu
du second ordre, pour employer le langage du chapitre précédent, mais
un continu du troisième ordre.

Henri Poincaré, La Science et l’Hypothèse

Two long-wavelength and low-frequency asymptotic approximations to Willis theory
are carefully analyzed and compared in connection with higher-order strain-gradient
media. In particular, these approaches are proven to be unable to capture, at least in the
one-dimensional setting, the optical branches of the dispersion curve. As an example, a
two-phase string is thoroughly studied. Finally, a fairly large family of average-based
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asymptotic homogenization methods is shown to be derivable from Willis theory under
appropriate approximation assumptions about, for example, frequencies, wavelengths
and phase contrast.

1 Willis theory summarized
In the context of periodic media, the elastodynamic homogenization theory of Willis can
be completely established through a purely spatial formulation in which the Floquet-
Bloch (FB) transform plays a key role. Such a spatial formulation is adopted in what
follows.

Consider a periodic medium Ω and let be given a pair of wavenumber k and
frequency ω denoted as (k, ω). We prescribe over Ω a harmonic plane wave body force

f(x, t) = f̃ei(k⋅x+ωt) (3.1)

where f̃ is a constant force vector amplitude. Then, the resulting displacement field u
in Ω takes the form of a FB wave

u(x, t) = ũ(x)ei(k⋅x+ωt) (3.2)

where ũ(x) is a time-independent and spatially R-periodic displacement amplitude
with R representing the periodicity lattice associated to Ω.

In what follows, the time dependence will be dropped when there is no risk of
confusion. In terms of (u,f), the harmonic motion equation over Ω can be written as

∇ ⋅ [C(x) ∶ (∇⊗su(x))] + f(x) = −ω2ρ(x)u(x). (3.3)

In this equation, the fourth-order elastic stiffness tensor C and the scalar mass density ρ
are periodic functions of the material point position vector x. Accounting for (3.1)
and (3.2) in (3.3), we obtain the reduced but equivalent motion equation in terms of ũ
and f̃ : (∇ + ik) ⋅ {C(x) ∶ [(∇ + ik)⊗sũ(x)]} + f̃ = −ω2ρ(x)ũ(x) (3.4)

which holds over any unit cell T of the periodic medium in question and is supple-
mented with the appropriate boundary conditions implied by R-periodicity and by
the continuity of displacements and tractions. Below, the solution to equation (3.3) is
noted as uk,ω while the one to equation (3.4) is denoted by ũk,ω. We pass from the
latter to the former by adding the phase exponential factor eik⋅x.

The effective displacement field corresponds to the plane wave obtained through
averaging the periodic FB amplitude of the microscopic field:

Uk,ω(x) ≡ Ũk,ωeik⋅x ≡ 1∣T ∣ (
ˆ
T
ũk,ω(x′)dx′) eik⋅x ≡ ⟨ũk,ω⟩ eik⋅x. (3.5)

It has been shown in chapter 2 that the effective motion equation takes the form

Zk,ω ⋅ Ũk,ω = f̃ (3.6)
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where Zk,ω is the second order effective impedance tensor. It has the following
expression (Willis, 1997, equation (3.28)):

Zk,ω = iωρek,ωiω + iωSk,ω ⋅ ik − ik ⋅Ce
k,ω ⋅ ik, (3.7)

where ρe is the effective mass density tensor of order 2, S is a tensor of order 3
combining1 the stress-velocity and momentum-strain coupling terms and Ce is the
effective elastic stiffness tensor of order 4. Except in simple cases, these tensors are
found numerically.

The dependence of the impedance tensor Zk,ω on k and ω is in general non-
polynomial and far from being trivial. The determination of Zk,ω necessitates solving
equation (3.4) for each pair (k, ω) and for d independent loadings f̃ in a d-dimensional
space. It goes without saying that such task is hard and costly. Most importantly, the
knowledge of Zk,ω at distinct points (k, ω) does not reveal the nature of the effective
behavior and is rather unsatisfying. An approach which is less accurate but more
uniform over (regions of) the (k, ω)-space is preferable.

The main purpose of the present chapter is to discuss different asymptotic expan-
sions, Long-Wavelength (LW) Low-Frequency (LF) asymptotics in particular, of the
effective impedance Zk,ω. The exact effective behavior described by Zk,ω will then
be replaced by a simpler approximate asymptotic one Zε truncated at some order of
accuracy R.

2 LW-LF asymptotics
As noted above, effective impedances Z, whether exact or approximate, depend on
the Fourier variables k and ω. Therefore, back in the real space-time domain, Z
corresponds to an integro-differential operator which acts on the effective displacement
field U(x, t) and yields f(x, t). The nature of this operator is determined by the way in
which Z depends on k and ω. LW-LF asymptotics give birth to an approximate effective
impedance which is a polynomial in k and ω. Accordingly, the LW-LF approximate
effective behavior is local in both space and time and corresponds, to the lowest order,
to the usual wave equation as will be seen. Other asymptotic schemes yield other
types of approximate effective behaviors, the nature of which, whether local or not for
instance, depends strongly on the underlying microstructure and the hypotheses made
regarding wavelengths, frequencies and phase contrast. In this section, we will restrict
our attention to selected topics in LW-LF asymptotics.

2.1 Scaled motion equation
Our purpose is to define and calculate the terms of a Taylor expansion of Zk,ω as
k → 0 and ω → 0, say at the same rate. We then introduce a “small” parameter ε in

1Namely, S = S2 −S1⊺.
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the expression of Zk,ω and consider the “scaled” effective impedance

Zε = 1
ε2
Zεk,εω = iωρeεk,εωiω + iωSεk,εω ⋅ ik − ik ⋅Ce

εk,εω ⋅ ik. (3.8)

As ε → 0, ∥k∥ and ω decay toward 0 at the same speed as needed. The parameter ε
hence allows to summarize the hypotheses we made on k and on ω on one hand, and
to carry one-variable Taylor expansions in what follows on the other hand. The scaled
effective impedance describes a scaled effective motion equation which reads

Zε ⋅ Ũ ε = 1
ε2
Zεk,εω ⋅ Ũ ε = f̃ ,

or
Zεk,εω ⋅ Ũ ε = ε2f̃ ,

which is, by the definition of the effective impedance, the counterpart of the microscopic
motion equation

(∇ + iεk) ⋅ {C ∶ [(∇ + iεk)⊗sũε]} + ε2f̃ = −(εω)2ρũε, (3.9)

with Ũ ε being the volume average of ũε.
Injecting the Taylor expansion

ũε = ∑
r

εrũr

into equation (3.9) and solving for ũr at each order in ε, we obtain the terms of the
expansions

Ũ ε = ∑
r

εrŨ r, Zε = ∑
r

εrZr.

2.2 Hierarchical motion equations
We start by writing the first three motion equations of orders ε−2, ε−1 and ε0 = 1. The
lowest order motion equation is

∇ ⋅ [C ∶ (∇⊗sũ0
k,ω)] = 0,

which yields
ũ0
k,ω(x) = Ũ0

k,ω.

The first order one takes the form

∇ ⋅ [C ∶ (∇⊗sũ1
k,ω + ik⊗sŨ0

k,ω)] = 0,

and leads to
ũ1
k,ω(x) = Ũ1

k,ω +A(x) ∶ (ik⊗sŨ0
k,ω),
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where A is a microstructure dependent, (k, ω)-independent, zero-average localization
operator. Finally, the second order motion equation, averaged with respect to x ∈ T ,
gives the classical quasi-static homogenized motion equation

ik ⋅ [⟨C +C ∶ ∇A⟩ ∶ (ik⊗sŨ0
k,ω)] + f̃ = −ω2 ⟨ρ⟩ Ũ0

k,ω.

Such a procedure is more or less a standard one and was described in great detail,
although in the absence of body forces, by Boutin and Auriault (1993).

In any case, the lowest order term Z0
k,ω in the LW-LF Taylor expansion of Z is

equal to
Z0
k,ω = k ⋅ ⟨C +C ∶ (∇⊗sA)⟩ ⋅ k − ω2 ⟨ρ⟩I. (3.10)

Writing and solving higher-order motion equations allow to calculate all other terms Zr.
Next, we present two methods of defining the approximate effective impedance of a
given order R denoted by Z(R) for the first method and by Z[R] for the second one.

2.3 Approximate effective behavior: first approach
This first approach is an elastodynamic extension of the method used by Boutin (1996)
to describe microstructural effects in elastostatics.

Having calculated the expansion of Zε up to order R, the approximate effective
behavior can be defined through the approximate effective impedance

Z
(R)

k,ω = ∑
r≤R

Zr
k,ω.

Therein, ε was substituted by 1 so as to recover an approximation of the original,
unscaled, effective impedance. The approximate effective motion equation accordingly
reads

Z
(R)

k,ω ⋅ Ũk,ω = f̃ . (3.11)

The lowest order approximate effective behavior corresponds therefore to Z(0) = Z0

given in equation (3.10).
Going in the other direction, i.e., assuming given the Willis effective constitutive

parameters, a general formula for the expansion of Zε is

Zε = ∑
r

εr ∑
α+β=r

(iω)β
α!β!

∂r

∂(ik′)α∂(iω′)β [iωρek′,ω′iω
+ iωSk′,ω′ ⋅ ik − ik ⋅Ce

k′,ω′ ⋅ ik]∣k′=0,ω′=0 ⊙α [⊗αik] (3.12)

where ⊙α stands for contraction over α indices and ⊗αik represents the αth tensor
power of ik. Thus, we have

Z
(R)

k,ω = ∑
α+β≤R

(iω)β
α!β!

∂α+β

∂(ik′)α∂(iω′)β [iωρek′,ω′iω
+ iωSk′,ω′ ⋅ ik − ik ⋅Ce

k′,ω′ ⋅ ik]∣k′=0,ω′=0 ⊙α [⊗αik] . (3.13)
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In the above expansions, we can restrict the summation to even powers of ω since all
motion equations depend on ω uniquely through ω2 (this would not be the case for
a linear visco-elastic behavior for example). In particular, for R = 0, the above sum
reduces to the sole term

Z
(0)
k,ω = Z0

k,ω = iωρe0,0iω + iωS0,0 ⋅ ik − ik ⋅Ce
0,0 ⋅ ik,

meaning that the Willis effective constitutive parameters, to the lowest order, thanks
to equation (3.10), are given by:

ρe0,0 = ⟨ρ⟩I,
S0,0 = 0,
Ce

0,0 = ⟨C +C ∶ ∇⊗sA⟩ .
The expression of Z(R) for R ≥ 1 requires pushing further in the hierarchical

motion equations as noted earlier and will allow to characterize1 the higher order
terms in the expansion of the Willis effective constitutive parameters. Finally, to
obtain the corresponding approximate effective motion equation in the real space-time
domain, we simply use the mappings iω ↦ ∂/∂t and ik ↦ ∇ in the expression of Z(R).
For R = 2, the approximate effective behavior is that of a strain-gradient medium with
micro-inertia, i.e., new terms with time derivatives, whose motion equation involves
the following derivatives of U :

∂α+2β

∂xα∂t2β
U for α + 2β ≤ 4. (3.14)

An explicit example of such approximate effective motion equation is given in section 3.

2.4 Approximate effective behavior: second approach
This second approach is based on two ingredients: a localization operator and a
variational formulation. This approach, introduced by Smyshlyaev and Cherednichenko
(2000) for elastostatics, is generalized here to elastodynamics.

As for the localization operator, one can summarize the results of the first two
motion equations of the above hierarchy by writing

ũε(x) = ũ0
k,ω(x) + εũ1

k,ω(x) +O(ε2)
= Ũ0

k,ω + εŨ1
k,ω + εA(x) ∶ ik⊗sŨ0

k,ω +O(ε2)
= Ũ ε + εA(x) ∶ ik⊗sŨ ε +O(ε2),

(3.15)

where A appears as the first order term of some localization operator Lε defined by

ũε(x) = Lε(x) ⋅ Ũ ε. (3.16)
1Non-uniquely however.
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As for the variational formulation, starting from (3.9), it can be seen that ũε is the
stationary point of the action defined by

1
2
⟨[(1

ε
∇ + ik)⊗sũε]∗⊺ ∶ C ∶ [(1

ε
∇ + ik)⊗sũε] − ω2ρũε∗⊺ ⋅ ũε⟩ −R (⟨ũε∗ ⋅ f̃⟩)

=1
2
⟨[(1

ε
∇ + ik)⊗sũε]∗⊺ ∶ C ∶ [(1

ε
∇ + ik)⊗sũε] − ω2ρũε∗⊺ ⋅ ũε⟩ −R (Ũ ε∗ ⋅ f̃) ,

over the set of R-periodic fields, where R symbolizes the real part of a complex number.
However, we know that such stationary point can be written as in equation (3.16).
Upon the corresponding change of unknown field, the action becomes

1
2
Ũ ε∗ ⋅ ⟨[(1

ε
∇ + ik)⊗sLε]∗⊺ ∶ C ∶ [(1

ε
∇ + ik)⊗sLε] − ω2ρLε∗⊺ ⋅Lε⟩ ⋅ Ũ ε

−R (Ũ ε∗ ⋅ f̃) = 1
2
Ũ ε∗ ⋅Zε ⋅ Ũ ε −R (Ũ ε∗ ⋅ f̃) . (3.17)

Finally, instead of truncating the expansion of Zε, it is the expansion of Lε that is
truncated at order R so as to yield an approximate localization operator L(R) which is
then injected into (3.17). To sum up, we define the approximate effective impedance by

Z
[2R]

k,ω = ⟨[(∇ + ik)⊗sL(R)

k,ω ]∗⊺ ∶ C ∶ [(∇ + ik)⊗sL(R)

k,ω ] − ω2ρL
(R)∗⊺

k,ω ⋅L(R)

k,ω ⟩ . (3.18)

The approximate effective motion equation is accordingly

Z
[2R]

k,ω ⋅ Ũk,ω = f̃ .
Impedance Z[2R] is not a partial sum of any Taylor series and is different from Z(2R).
In particular, Z[0] is different from the first term in the expansion: Z0. In fact,
since L(0) = I as can be seen from equation (3.15), we have:

Z
[0]
k,ω = k ⋅ ⟨C⟩ ⋅ k − ω2 ⟨ρ⟩I.

Using again equation (3.15), we see that for R = 1, the approximate effective behavior
corresponds to a strain-gradient medium with micro-inertia whose motion equation
involves the same derivatives as in (3.14) except for ∂4U/∂t4. An explicit example of
such approximate effective motion equation is given in section 3.

2.5 Discussion
It is of interest to discuss some of the differences distinguishing the above two approaches.
Comparing, in particular, Z(2) and Z[2] will be enough.

First, both approximate impedances yield a medium of order 4 in the sense that
the highest order derivative of U appearing in the motion equation is of order 4.
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However, Z(2) involves a 4th-order time derivative while Z[2] does not and is hence
formally identical to the impedance of the strain-gradient medium derived by Mindlin
(1964).

Second, the most important advantage of the second approach is that Z[2] guar-
antees a positive definite elastic energy. As a matter of fact, truncating Lε according
to (3.15) amounts to changing the set of admissible fields of the action (3.17) and
not the action itself. Since C is positive definite, so is the elastic energy defined
by Z[2]. The first approach on the other hand does not necessarily yield a positive
definite elastic energy. However, if one were to interpret the motion equation (3.11)
asymptotically and solve for the Ũ r instead of Ũ , then equation (3.11) will be replaced
by the following hierarchy:

Z0
k,ω ⋅ Ũ0

k,ω = f̃ ,
Z0
k,ω ⋅ Ũ1

k,ω +Z1
k,ω ⋅ Ũ0

k,ω = 0 . . .

The elastic energy at each stage remains therefore positive definite since Z0 defines a
positive definite effective elastic stiffness tensor as is well-known.

Third, only the first approach defines a “good” limit process in the sense that Z(0)

is equal to the correct homogenization limit while Z[0] is some kind of a low-contrast
approximation of said limit. At the second order, the expression of the classical quasi-
static effective stiffness tensor is recovered by Z[2]. Generally speaking, for R ≥ 1, Z(2R)

and Z[2R] agree over all terms of order lower than R − 1 (these are the coefficients of
all derivatives in the approximate effective motion equation up to order R + 1).

Fourth, in order to define the effective 4th order medium, the first approach uses
more information since it requires to solve for ũr up to r = 3 whereas to define Z[2]

only the solutions of order r = 0 and r = 1 are needed. It is indeed surprising that a 4th

order behavior can be defined with only a first order approximation of the microscopic
solution. Smyshlyaev and Cherednichenko (2000) assessed however the quality of the
approximation in a variational sense. What should be stressed is that said variational
sense is different from the usual asymptotic one. We refer to the cited paper for details.

Finally, there are other approaches in the literature seeking to define a strain-
gradient behavior from microstructures and crystal structures in particular. We
mention the works of DiVincenzo (1986) and Maranganti and Sharma (2007). They
identified the coefficients of an enriched Lagrangian thanks to a computation of the
dispersion curve. Their method has however one important shortcoming since it is
completely based on free waves propagation. The implications are that the effective
mass density is postulated to be the mass per unit volume and that micro-inertia terms
can never appear. In fact, their approach is fundamentally different and cannot be
obtained through the present formalism since they have not clearly defined what the
effective displacement field must be.
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2.6 The dispersion relation: a theorem
It has been argued in chapter 2 that the microscopic dispersion curve can be recovered
from that of the Willis effective medium. A LW-LF approximation to the latter is
hence also an approximation of the former.

2.6.1 On dispersion

The approximate dispersion relation is naturally defined through

{(k, ω) ∈ E ∗ ×R+, detZ(R)

k,ω = 0}. (3.19)

The lowest order approximation of the dispersion relation is based on Z0 from (3.10)
and given by

det (−ω2 ⟨ρ⟩I + k ⋅Ce
0,0 ⋅ k) = 0.

Such curve has d branches ω = ω(0)
n (k) with n ∈ {1, . . . d}, and all are acoustic. We recall

the fact that the ω(0)
n are positively homogeneous functions of degree 1. This implies

that all waves of branch number n propagating in direction k/∥k∥ have the same speed
regardless of their wavelengths. In other words, the approximate effective behavior
described by Z0 is non-dispersive, as is well known. The classical homogenization limit
has therefore two limitations: no dispersive effects and no optical branches can be
captured. Dispersive effects can be however modeled by taking into account higher order
approximations: Z(R), R > 0, which yield non-homogeneous functions ω = ω(R)

n (k), n ∈{1, . . . d}, and, correspondingly, a weakly nonlocal behavior. Nonetheless, LW-LF
asymptotics of order R would still be unable to approximate the optical branches
whatever R is. This intrinsic limitation of LW-LF asymptotics to acoustic branches is
proven by the following theorem.

2.6.2 On the loss of the optical branches

Generally speaking, if the LW-LF assumption is not strictly satisfied, the approximate
effective behavior will not have the expected accuracy. To improve accuracy, we
can increase the truncation order R or make better suited assumptions. Increasing
the order R augments the accuracy of the approximate effective behavior over some
neighborhood, or convergence domain, of the (k, ω)-space. However, increasing R does
not change this domain. Here, we prove a theorem, for arbitrary 1D media, stating
that the convergence domain of any Taylor expansions in k and ω are limited to a
neighborhood of one branch, at most, of the dispersion curve. Further, we demonstrate
that LW-LF asymptotics systematically miss all optical branches1. The keystone is,
unsurprisingly, Cauchy’s theorem.

1One can argue that it is obvious that strain-gradient media are unable to capture optical
branches as they do not describe the corresponding kinematical “degrees of freedom”. To that I
respond by saying that the Willis medium has only one displacement field and produces the
microscopic dispersion curve in its entirety. To which one may retaliate by noting that the
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Let k be a given wavenumber. From the results of chapter 2, we have a series
representation of the effective Green’s function G:

Gk,ω ≡ Z−1
k,ω = ∑

n≥1

⟨ψ̃k,n⟩⊗⟨ψ̃k,n⟩∗
ω2
n(k) − ω2 . (3.20)

Note that therein, all ψ̃k,n and ωn(k) are k-dependent and ω-independent. A corre-
sponding expression for Zk,ω can be derived using Cramer’s rule for instance. This is
not done here since we shall consider d = 1 next.

For 1D media, the effective impedance and Green’s tensors become scalars. In
particular, we have

Gk,ω = ∑
n≥1

∣⟨ψ̃n(k)⟩∣2
ω2
n − ω2 . (3.21)

Therein and hereafter, ψ̃n(k) ≡ ψ̃k,n. We now assume that the eigenvalues ωn are
simple, for clarity purposes. Consider the limits of Gk,ω as ω → ω+n and ω → ω−n+1 for
two consecutive eigenfrequencies ωn and ωn+1 with ωn < ωn+1. It can be seen that

Gk,ω+n = −∞ and Gk,ω−n+1
= +∞, (3.22)

given ∣⟨ψ̃n(k)⟩∣2 ≠ 0 and ∣⟨ψ̃n+1(k)⟩∣2 ≠ 0.
In the LW-LF setting, one needs to consider the Taylor expansion of Zεk,εω. More

generally, let ε↦ pε = (kε, ωε) be a “path” connecting one point from the nth branch,
denoted by (kεn , ωn(kεn)) and attained for ε = εn > 0, to another from branch n + 1,
called (kεn+1 , ωn+1(kεn+1)) and reached for ε = εn+1 > εn. Without loss of generality, we
assume that pε remains between the two branches n and n + 1. Recalling that Zk,ω =
1/Gk,ω, the question is whether a Taylor expansion of Zε = Zkε,ωε can converge at, and
recover, both eigenmodes (kεn , ωn(kεn)) and (kεn+1 , ωn+1(kεn+1)).

First of all, if either ∣⟨ψ̃n(k = kεn)⟩∣2 or ∣⟨ψ̃n+1(k = kεn+1)⟩∣2 is null then the answer
is negative since Zk,ω is, already itself, unable to recover the corresponding eigenmode.
We can assume henceforth that both ∣⟨ψ̃n(k = kεn)⟩∣2 and ∣⟨ψ̃n+1(k = kεn+1)⟩∣2 are non-
null. Then, thanks to (3.22), Gε = Gkε,ωε changes sign when ε passes from εn to εn+1
and attains, by continuity, zero for some value of ε in ]εn, εn+1[. The existence of a
zero value for Gε implies that Zε “explodes” at some point on the path pε between εn
and εn+1. This singularity of Zε, by Cauchy’s theorem, forbids convergence of Taylor
expansions of Zε near ε = 0 ≤ εn at ε = εn+1.

2.6.3 A few remarks

In conclusion, and in particular, LW-LF Taylor asymptotics can converge only near the
acoustic branch. Optical branches are systematically lost. LW finite-frequency Taylor
asymptotics converge near one optical branch at one time.

Willis medium is strongly nonlocal. I then ask: is a nonlocal medium somehow kinematically
enriched?
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For higher dimensions, singularities seem also to limit the convergence domain
although not in the nice one-branch-at-a-time manner and a (much) weaker version of
the above theorem holds but is not presented here.

In order to have a Taylor expansion valid for multiple branches, one needs a
path p = pε which avoids the singularities of Z. Needless to say that such a path
will have to get out of the (k,ω)-space and surf other dimensions. High-contrast
asymptotics provide, sometimes, depending on the underlying microstructure, such
paths. A LW-LF-high-contrast scaling can hence extend the convergence domain to
englobing multiple acoustic and optical branches. We refer to papers by Auriault and
Bonnet (1985) and by Auriault and Boutin (2012) for examples of such approximations.

Here, it is the definition of the approximate effective impedance in the first approach
that is adopted: Z(R). Similar results for Z[R] are thought to hold. However, a rigorous
proof has not been found yet.

Last, the loss of optical branches means that there could exist solutions to the
approximate dispersion equation with complex ω. Such solutions are unstable and
non-physical. A “tuning” technique, due to Pichugin et al. (2008), introduces artificial
optical branches so that the approximate motion equation becomes stable. However,
the optical modes thus introduced still have no physical meaning. In addition, note that
a tuned motion equation is an implicit motion equation in the sense that derivatives
of f appear when writing the tuned motion equation in forced regime. This explains
how tuned approximate motion equations are not unique while the partial sums Z(R),
and accordingly equation (3.11), are unique by the uniqueness of Taylor expansions.

3 Example: a 1D string
Next, the exact effective impedance Z of a two-phase 1D string is calculated, scaled
and expanded in order to exemplify what has been presented in the previous section.

c1,ρ1 c2,ρ2

x=−a x=0 x=+a

Figure 3.1. A unit cell of a 1D 2-phase string.

3.1 Setup and Willis effective behavior
The periodic 1D string to be studied has two phases of stiffness cj and mass density ρj
with j ∈ {1,2}. A unit cell of length 2a is illustrated by figure 3.1. The waves
propagating along the string are either transverse or longitudinal waves but not both,
the example being genuinely 1D.

The motion equation (3.3) reduces, over each phase, to

cju
′′ + f̃ eikx = −ω2ρju,
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where the superscript (′) stands for d/dx and f̃ is the amplitude of body forces and is
constant. The displacement u and traction Cu′ are required to be continuous across
phases and to satisfy the boundary conditions given by the periodicity of u(x)e−ikx =
ũ(x) and of [Cu′](x)e−ikx = C(x)(ũ′(x) + ikũ(x)).

Once u is calculated, the effective impedance Z can be defined as Z = f̃/⟨ũ⟩ and is a
function, exclusively, of the period half-length a, stiffnesses c1 and c2, mass densities ρ1
and ρ2, frequency ω and wavenumber k. The general form of the solution u for phase j
is known to be

u(x) = B+
j exp (iω√ρj/cjx) +B−

j exp (−iω√ρj/cjx) + f̃

cjk2 − ρjω2 exp (ikx) ,
where the B+,−

j are constants to be identified by the continuity and boundary conditions.
Note that the above equation is valid as long as pairs (k,ω) satisfying cjk2 − ρjω2 ≠ 0
are excluded.

The identification of the constants presents no particular interest for our purpose
and is skipped here. We directly give a closed form analytical expression for Z as

Z = P /Q, (3.23)

where

P = a(c1k
2 − ρ1ω

2)2(c2k
2 − ρ2ω

2)2 {4√c1ρ1c2ρ2 cos(2ka)
+ (√c1ρ1 −√

c2ρ2)2 cos [ω(√ρ1/c1 −√
ρ2/c2)a]

−(√c1ρ1 +√
c2ρ2)2 cos [ω(√ρ1/c1 +√

ρ2/c2)a]} ,
and where Q is specified in 3.2.5. Note that Z can be continuously extrapolated over
the previously excluded values of k and ω. The dependence of Z on k and ω is complex
and cannot be easily interpreted. What is certain is that Z describes a nonlocal effective
behavior in both space and time since it is neither a polynomial in k nor in ω.

The dispersion relation, as can be found in (Andrianov et al., 2008) and references
therein, is given by

cos(2ka) =(√c1ρ1 +√
c2ρ2)2

4√c1ρ1c2ρ2
cos [ω(√ρ1/c1 +√

ρ2/c2)a]
−(√c1ρ1 −√

c2ρ2)2

4√c1ρ1c2ρ2
cos [ω(√ρ1/c1 −√

ρ2/c2)a] .
(3.24)

This is the same as P = 0 up to the (cjk2 − ρjω2)2 factors. In fact, the dispersion
relation can be obtained from Z = det(Z) = 0 and not P = 0 since zeros of P can get
“canceled” by zeros of Q. In particular, whenever (cjk2 − ρjω2)2 is null, Q is null. This
is not obvious and can be checked through calculations. Note that the dispersion curve
is even, periodic1 in k and of period π/a.

1Incidentally, the dispersion curve is also periodic in the frequency ω if and only if the
expression

√
ρ1/c1−√ρ2/c2√
ρ1/c1+√ρ2/c2

is a rational number.
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A typical dispersion curve is plotted in figure 3.2. It shows the first three branches
of the dispersion curve Z = 0: ωn(k) with n ∈ {1,2,3}; the first two branches of the
curve 1/Z = 0 are also displayed: $n(k) with n ∈ {1,2}. We can see, as implied by
our theorem, that ω1 ≤ $1 ≤ ω2 ≤ $2 ≤ ω3 and so on. In the plot, wavenumbers have
been normalized by a factor of 1/a and frequencies ω by a factor ωo = π

2a
√

⟨1/C⟩⟨ρ⟩
. The

ka π/2

ω/ωo

1

(ω1)

(ω2)

(ω3)

(̟1)

(̟2)

Figure 3.2. A typical dispersion curve. The first three branches, (ω1), (ω2) and (ω3),
are plotted against the first two branches of singularities of the effective impedance Z,$1
and $2. The dashed line marks off the first Brillouin zone boundary.

numerical values used in the plots are:

c1 = 1010N, c2 = 4.1012N, ρ1 = 4900kg/m, ρ2 = 900kg/m, a = 5.10−3m.

3.2 LW-LF asymptotics
We next explore second order expansions of the Willis impedance Z according to
the two approaches discussed earlier and make a brief comparison with Mindlin’s 1D
second-order strain-gradient medium.
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3.2.1 First approach

Define

Zε = 1
ε2
Zεk,εω.

The lowest order approximation to Z is therefore

Z(0) = Z0 = lim
ε→0

Zε = 2 c1c2
c1 + c2

k2 − ρ1 + ρ2
2

ω2,

as expected. An approximation of order 2 has the form

Z(2) = 2 c1c2
c1 + c2

k2 − ρ1 + ρ2
2

ω2

− a2

24
(c1 − c2)[2(ρ1c1 − ρ2c2) + (c1 + c2)(ρ1 − ρ2)](c1 + c2)2 ω2k2

− a2

96
(ρ1 − ρ2)2 (c1 + c2)

c1c2
ω4.

The corresponding approximate effective motion equation, in the real space-time
domain, has the expression

− 2 c1c2
c1 + c2

u′′(x, t) + ρ1 + ρ2
2

ü(x, t)
− a2

24
(c1 − c2)[2(ρ1c1 − ρ2c2) + (c1 + c2)(ρ1 − ρ2)](c1 + c2)2 ü′′(x, t)

− a2

96
(ρ1 − ρ2)2 (c1 + c2)

c1c2
¨̈u(x, t) = f(x, t),

where the superscripted dot stands for d/dt. Note that there is no term in u′′′′. This
means that there are no purely spatial higher order strain-gradient effects. In 1D,
this is not a particular feature of the approximation order. In fact, for all similar 1D
systems, we have in statics:

Zω=0 = 2 c1c2
c1 + c2

k2. (3.25)

Higher order strain gradient effects, and general strong nonlocal effects, caused by
heterogeneities appear only under dynamic loadings or when homogenizing in higher
dimensions (2D and 3D layered composites for instance), at least according to Willis
theory. Strain gradient effects do appear in LW asymptotics when continualizing discrete
1D lattices (see for example Pichugin et al., 2008). At this stage, continualization of
discrete lattices and homogenization of already continuous media need to be clearly
distinguished.
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3.2.2 Second approach

It is easy to see that the first order localization tensor is given by

A(y) = ( 1
C(y) − ⟨ 1

C
⟩) y⟨1/C⟩ − a2 c1 − c2

c1 + c2
.

When this expression is injected into (3.18), we get

Z[2] = 2 c1c2
c1 + c2

k2 − ρ1 + ρ2
2

ω2 − a2

24
(c1 − c2)2(ρ1 + ρ2)(c1 + c2)2 ω2k2 + a2

24
(c1 − c2)2

c1 + c2
k4.

As expected, no ω4 terms appear. However, the k4 coefficient is non-null contrarily to
what happens in the first approach. Therefore, for higher order approximations, we
expect the coefficient of k4 to be corrected and eventually to be set to zero (the same
goes for all kn with n > 2, according to (3.25)).

3.2.3 Signature

In order to compare both approximate effective models with Mindlin’s theory, it is
convenient to define a signature which is the series of signs of the coefficients appearing
in the expression of the effective impedance. The results are as follows:

k2 ω2 k2ω2 k4 ω4

Mindlin (1964) + − − + 0
first approach + − + or − 0 −

second approach + − − + 0

It is seen that the second approach yields the same signature as in Mindlin’s theory
(for 1D media) whereas the first approach has generally a different signature.

3.2.4 Approximate dispersion curve

The approximate dispersion curves, ω(0)
1 (k) and ω

(2)
1 (k), are calculated, according

to (3.19) and have the equations

Z(0) = 0 and Z(2) = 0.

They are plotted in figure 3.3 and are almost indistinguishable. Note that these
approximations have only acoustic branches as expected. As can be seen, they yield a
good approximation for low frequencies (near the acoustic branch) and for almost all
low wavelengths up to, and except near, the frontier of the first Brillouin zone.

The same goes for the second approach which defines an approximation to the
dispersion curve, ω[2](k), of equation:

Z[2] = 0.
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Curve ω[2](k) is a poor approximation except in the quasi-static range near ω = 0, k = 0
(see figure 3.3). As said earlier, the second approach defines an approximate effective
impedance in a variational sense and is based on the asymptotics of the localization
operator. The first approach on the other hand relies on the Taylor series of Z directly.
Having Z = det(Z) in 1D, it is understandable that the first approach yields a better
approximation of the dispersion curve. In higher dimensions, similar observations
are expected to hold even though a truncated Taylor series of Z does not produce
a truncated Taylor series of det(Z). This is because the error committed therein is
expected to remain smaller than the one committed by approximating det(Z) based
on a truncated series of the localization operator.

ka π/2

ω/ωo

1

(ω1)

(ω2)(̟1)

(ω(0)1 ),(ω(2)1 )

(ω[2]1 )

Figure 3.3. LW-LF approximations to the dispersion curve.
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3.2.5 The expression of Q

On the off chance that it is of interest, the denominator Q of Z from equation (3.23) is
given by

Q = Q1 +Q2 +Q3 +Q4 +Q5 +Q6,

with

Q1 = 2a√c1ρ1c2ρ2 ×(c2k
2 − ρ2ω

2)(c1k
2 − ρ1ω

2) [(c1 + c2)k2 − (ρ1 + ρ2)ω2] cos(2ka)
− 4√c1ρ1c2ρ2(c1ρ2 − c2ρ1) [(c1 − c2)k2 − (ρ1 − ρ2)ω2]kω2 sin(2ka),

Q2 = √
ρ2c2 [√ρ1(c1 − c2)k −√

c1(ρ1 − ρ2)ω]2
ω

{(√c1k +√
ρ1ω)2 sin [a(k +√

ρ1/c1ω)]
−(√c1k −√

ρ1ω)2 sin [a(k −√
ρ1/c1ω)]} ,

Q3 = √
c1ρ1 [√ρ2(c1 − c2)k −√

c2(ρ1 − ρ2)ω]2
ω

{(√c2k +√
ρ2ω)2 sin [a(k +√

ρ2/c2ω)]
−(√c2k −√

ρ2ω)2 sin [a(k −√
ρ2/c2ω)]} ,

Q4 = a2(c1k
2 − ρ1ω

2)(c2k
2 − ρ2ω

2) [(c1 + c2)k2 − (ρ1 + ρ2)ω2]
{(√c1ρ1 −√

c2ρ2)2 cos [ωa(√ρ2/c2 −√
ρ1/c1)]

−(√c1ρ1 +√
c2ρ2)2 cos [ωa(√ρ2/c2 +√

ρ1/c1)]} ,

Q5 = −√c1ρ1c2ρ2 [(c1 − c2)k2 − (ρ1 − ρ2)ω2]2
ω

{(√c1ρ1 +√
c2ρ2) sin [ωa(√ρ2/c2 +√

ρ1/c1)]
−(√c1ρ1 −√

c2ρ2) sin [ωa(√ρ2/c2 −√
ρ1/c1)]} ,

and at last

Q6 = −(c1ρ2 − c2ρ1)2ω3k2

{(√c1ρ1 +√
c2ρ2) sin [ωa(√ρ2/c2 +√

ρ1/c1)]
+(√c1ρ1 −√

c2ρ2) sin [ωa(√ρ2/c2 −√
ρ1/c1)]} .
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4 A panel of asymptotic approaches
Next, we briefly comment on a number of asymptotic homogenization approaches and
establish a few connections with Willis theory. In particular, we show that many of
said homogenization approaches make use of the same notion of effective behavior
while scaling and approximating it over different neighborhoods, i.e., under different
assumptions on orders of magnitude.

Asymptotic homogenization methods proceed systematically in two steps: two-scale
representations and imbeddings.

4.1 Two scales
The microscopic displacement field u(x) depends on x due to two sources of “inho-
mogeneities”. The first one is microstructure as modeled by C(x) and ρ(x). The
second one is loading and stems from f(x). For the sake of argument, we assume
that we have a closed-form expression of u(x) where x appears multiple times. In
principle, to each appearance, we can assign one of the two mentioned inhomogeneity
sources and we replace x by an auxiliary variable, x′, each time the appearance is
microstructure-related. The obtained expression, which depends on both x and x′,
corresponds to a two-scale representation of the displacement field, u(x,x′), where
loading and microstructure influences have been segregated.

The variable x′ is generally understood to be a “fast” variable whereas x is seen as
a “slow” variable. Whether it is really the case or not is governed by the assumptions
we will make next on the orders of magnitude of wavenumbers. For now however, the
field u(x) being a priori unknown, its two-scale representation is implicitly defined as
the solution to the two-scale motion equation

(∇x +∇x′) ⋅ {C(x′) ∶ [(∇x +∇x′)⊗su(x,x′)]} + f(x) = −ω2ρ(x′)u(x,x′),
where we have applied the above procedure. Therein, the gradient operators ∇x and ∇x′
act with respect to x and x′ respectively. Note that all fields are R-periodic in x′ and
that putting x′ = x yields back the original fields and motion equation.

Let us prescribe a plane wave body force f(x) = f̃eik⋅x. The above equation having
coefficients homogeneous in x, its solution uk,ω(x,x′) can be looked for in the form

uk,ω(x,x′) = ũk,ω(x′)eik⋅x. (3.26)

The two-scale motion equation becomes

(∇x′ + ik) ⋅ {C(x′) ∶ [(∇x′ + ik)⊗sũk,ω(x′)]} + f̃ = −ω2ρ(x′)ũk,ω(x′)
and needs to be solved under R-periodic boundary conditions and homogeneous
body force amplitude f̃ . The foregoing equation is identical to equation (3.4) of the
summarized Willis theory and have therefore the same displacement solution uk,ω.

Consequently, the two-scale representation of the FB waves used in Willis theory
is given by (3.26). FB waves appear then to naturally separate the fast and the
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slow variables. The latter can be seen as k ⋅ x whereas the former is x (mod R) by
R-periodicity. By the same logic, all methods based on an “averaging-over-x′” scheme
are equivalent to one another and are equivalent to Willis theory in the sense that they
all make use of the same notion of effective displacement

⟨ũk,ω(x′)⟩x′ eik⋅x = ⟨ũk,ω⟩ eik⋅x
and, accordingly, of the same notion of effective behavior incarnated byZk,ω. Differences
rise next as different asymptotic approximations are derived for the same quantity
Zk,ω.

4.2 Imbeddings
In order to approximate the microscopic displacement solution, assumptions are made
on the order of magnitude of several of the parameters of the elastodynamic problem at
hand. Such parameters include the loading frequency ω or wavenumber k, the size of
an inclusion in a matrix-inclusion composite, the size of a unit-cell, the mean stiffness,
the mean mass density and any phase contrast parameter, for instance.

The basic idea is to make Taylor expansions with respect to one or several of the
above parameters. The assumptions concerning these parameters are summarized by
the introduction of a “small” scaling variable ε such that said assumptions can be
recovered from the limit ε→ 0. Taylor expansions are then carried with respect to ε
in the vicinity of ε = 0. Once calculations of the unknown fields are done, ε can be
substituted by 1 so as to recover the original, unscaled, fields.

Borrowing the words of Bensoussan et al. (1978), introducing ε amounts to “imbed-
ding” the motion equation (3.4) into “a family of problems (parametrized by ε)”:

(∇ + ikε) ⋅ {Cε(x) ∶ [(∇ + ikε)⊗sũε(x)]} + f̃ = −(ωε)2ρε(x)ũε(x). (3.27)

While the scaling of C, ρ, k and ω can be chosen arbitrarily according to our as-
sumptions, the scaling, or the expansion, of the solution ũ is to be deduced so as to
fulfill the above equation. Body force scaling is of no importance since f̃ and ũ are
in a linear relationship. Examples of what these scalings might be are given, with
non-exhaustive references, in table 3.1. Finally, it is assumed that all the fields hε have
Taylor expansions with respect to ε of the form

hε = ∑
r

εrhr.

Thus, from (3.27), a hierarchy of motion equations, one for each order r of ε, is recovered
and solved up to some desired degree of accuracy. A corresponding approximation for
the effective impedance is obtained in a similar manner to the LW-LF setting detailed
above.
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Label Scaling Assumptions
LW-LF
(Boutin and Auriault, 1993)

kε = εk,
ωε = εω

∥k∥ ≪ 2π/`,
ω ≪ ωo

LW-FF
(Craster et al., 2010)

kε = εk,
ωε = ω0

+ εω1
+ . . .

∥k∥ ≪ 2π/`,
ω ≈ ω0

≠ 0

High-contrast (LW-LF)
(Auriault and Bonnet, 1985)

kε = εk,
ωε = εω,
Cε

=C2 + χ1(ε2C1 −C2)

∥k∥ ≪ 2π/`,
ω ≪ ωo,
∥C1∥ ≪ ∥C2∥

Low-contrast
(Willis, 1985, 1997)

Cε
= ⟨C⟩ + εC ′,

ρε = ⟨ρ⟩ + ερ′
∥C ′
∥ ≪ ∥⟨C⟩∥,

ρ′ ≪ ⟨ρ⟩

Table 3.1. Examples of expansions from the literature. Symbol ≈ means “of the same
order of magnitude”, symbol ≪ means “very small with respect to”, ` and ωo are,
respectively, a characteristic length and frequency of the microstructure, C1 and C2 are
the stiffness tensors of a two-phase composite, χ1 is the indicator function of phase 1
in that composite, C′ = C − ⟨C⟩, ρ′ = ρ − ⟨ρ⟩ and ∥C∥ is the norm of C.

4.3 Concluding remarks on the suitability of averaging
In chapter 2, we have seen that averaging the FB amplitude, i.e., averaging over the fast
variable, is only well justified under a homogenizability condition bounding frequencies
to relatively low ones. In high-frequency regimes, averaging was shown to yield some
negligible components of the displacement field.

For asymptotic methods, to the lowest order, it appears that the displacement field
u0(x,x′) usually admits the scale-separated form

u0(x,x′) = φ(x′)D0(x).
The inconvenience of Willis theory is that it describes

U0(x) = ⟨φ⟩D0(x),
where ⟨φ⟩ can be small making U0 irrelevant to the undergoing physics. It is in fact
better to consider D0 as being the relevant macroscopic displacement field as it gives
the correct asymptotics of the microscopic field to the lowest order given a set of
assumptions. Now U0 and D0 will be governed by the same kind of motion equations
and will yield the same approximation to the dispersion curve, however, the associated
oscillation modes will be better captured by D0. One can refer to the high-contrast
setting investigated by Auriault and Bonnet (1985), by Smyshlyaev (2009), by Auriault
and Boutin (2012) and by others, and to the finite frequency one studied by Craster
et al. (2010), Nolde et al. (2011), Antonakakis et al. (2014), Colquitt et al. (2014) and
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Boutin et al. (2014). These approaches also have some limited validity domain in the
same manner Willis theory does. They have the compared merit of being simpler.

It is worth mentioning that a weighted form of Willis theory first introduced by
Milton and Willis (2007) defines U0 as a weighted average of u0:

U0(x) = ⟨wφ⟩D0(x),
where w is some weight. By choosing w adequately, i.e., w = φ/ ⟨φ2⟩, Willis theory
succeeds in recovering U0 = D0. The bottom line is that Willis theory, in its most
general form, appears to be the non-asymptotic counterpart of a fairly large family of
asymptotic homogenization methods, each of which is valid under some assumptions
over the orders of magnitude of some physical parameters.

The purpose of the next chapter is to present a theory where we try to extend
the validity domain of these approaches by enriching the kinematics of the effective
medium.
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Chapter 4

A generalized elastodynamic
homogenization theory

Mais en Physique, il n’en est pas de même : si les phénomènes physiques
sont dus à des mouvements, c’est aux mouvements de molécules que
nous ne voyons pas. Si alors l’accélération d’un des corps que nous
voyons nous parait dépendre d’autre chose que des positions ou des
vitesses des autres corps visibles ou des molécules invisibles dont nous
avons été amenés antérieurement à admettre l’existence, rien ne nous
empêchera de supposer que cette autre chose est la position ou la
vitesse d’autres molécules dont nous n’avions pas jusque-là soupçonné
la présence. La loi se trouvera sauvegardée.
Qu’on me permette d’employer un instant le langage mathématique
pour exprimer la même pensée sous une autre forme. Je suppose
que nous observions n molécules et que nous constations que leurs 3n
coordonnées satisfont à un système de 3n équations différentielles du
quatrième ordre (et non du deuxième ordre, comme l’exigerait la loi
d’inertie). Nous savons qu’en introduisant 3n variables auxiliaires, un
système de 3n équations du quatrième ordre peut être ramené à un
système de 6n équations de deuxième ordre. Si alors nous supposons que
ces 3n variables auxiliaires représentent les coordonnées de n molécules
invisibles, le résultat est de nouveau conforme à la loi d’inertie.

Henri Poincaré, La Science et l’Hypothèse

For periodically inhomogeneous media, a generalized theory of elastodynamic ho-
mogenization is proposed so that even the long-wavelength and low-frequency asymptotic
expansions of the resulting effective (or macroscopic) motion equation can, approxi-
mately but simultaneously, capture all the acoustic and some of the optical branches of
the microscopic dispersion curve. This is in sharp contrast with the presently available
elastodynamic homogenization theories. The key to constructing the generalized theory
resides in incorporating rapidly oscillating body forces as microscopic and macroscopic
loadings and in postulating an energy equivalency principle. By this principle, an
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effective displacement field is naturally defined as the projection of a microscopic one
onto the dual to the space of body forces. By varying the space of body forces, the gener-
alized theory leads to a family of elastodynamic homogenization schemes with effective
kinematic and dynamic quantities of different degrees of complexity. To illustrate these
results, a two-phase string is studied in detail.

1 Introduction
The elastodynamic homogenization approaches reported up to now in the literature
are observed to run into difficulties when being used to model dynamical effects over a
wide frequency range.

1. The first-order Long-Wavelength (LW) Low-Frequency (LF) homogenization
approaches as described by Bensoussan et al. (1978) and Sanchez-Palencia (1980)
yield a homogeneous substitution Cauchy medium which misses all dispersive
effects and all internal resonances, i.e., all optical oscillation modes.

2. The higher-order LW-LF asymptotic homogenization approaches (Boutin and Au-
riault, 1993; Andrianov et al., 2008) lead to effective strain-gradient media which
can model well dispersive behaviors and size effects but are valid only near the
acoustic branches independently of the order of the asymptotic approximations
used.

3. The high-frequency asymptotic approaches (Craster et al., 2010; Nolde et al.,
2011; Antonakakis et al., 2014; Colquitt et al., 2014; Boutin et al., 2014) are
successful in capturing high-frequency optical modes but still valid only in the
vicinity of some finite frequency.

4. The high-contrast asymptotic approaches of Auriault and Bonnet (1985), Smyshlyaev
(2009) and Auriault and Boutin (2012), among others, have a wide frequency
validity domain englobing an infinite number of optical branches. However, the
corresponding effective behavior is complex and nonlocal in time.

5. The non-asymptotic theory of Willis (1997, 2011) yields exactly the whole
dispersion curve. Nonetheless, the described effective fields are only relevant for
low frequencies, not to mention the inextricability of the effective behavior.

The main purpose of the present chapter is to construct a generalized theory
of elastodynamic homogenization for periodic media which improves the quality of
the Willis effective behavior as an approximation to the microscopic behavior in a
way that LW-LF asymptotic expansions become able to capture, approximately but
simultaneously, all the acoustic and some of the optical branches of the microscopic
dispersion curve. To achieve this purpose, a balance between the microscopic and
macroscopic works, hereafter called Energy Equivalency Principle (EEP), is postulated.
Once a set of expected body force loadings is specified, the EEP dictates what the
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effective, or macroscopic, displacement field for a given microscopic displacement field
should be. Then, by incorporating various rapidly oscillating body forces on the
microscale and on the macroscale, the error committed during the upscaling process is
reduced. With respect to Willis theory, we underline two major differences. First, the
expected loadings are much richer than those employed by Willis (1997, 2011). This has
the consequence of providing an extended frequency validity domain. Second, the EEP
concerns works and not their expectancies. From the physical standpoint, this leads to
a clear distinction between the macroscale and the microscale in terms of wavelengths.
Nevertheless, it should be pointed out that the generalized theory presented here is
by construction limited to periodically inhomogeneous media while Willis theory is
formally valid both for periodically and randomly inhomogeneous media.

The chapter is organized as follows. In section 2, the EEP is first postulated; the
space of admissible body forces is then defined as the set of macroscopically applied
loadings; the effective displacement field associated to a microscopic displacement is
obtained by the EEP; the effective motion equation is finally derived in a formal way. In
section 3, the generalized kinematics of microdilatation-, Cosserat-, microstretch- and
micromorphic-like media are discussed as examples of the generalized theory of section 2.
As an application, in section 4, we study the LW-LF asymptotic expansions of the
effective motion equation so as to obtain the simplest generalized effective substitution
medium. An analytical expression is provided for the approximate effective motion
equation of a 1D two-phase string. Exact and approximate dispersion curves are plotted
and compared to show how the resulting asymptotic model can simultaneously capture
acoustic and optical branches while conserving a low-order local motion equation.
Finally, for arbitrary d-dimensional media, we prove that the present theory is able to
produce simultaneously, in the LW-LF limit, hints of any combination of dispersion
branches.

2 A general theory
Let Ω be the infinite periodically inhomogeneous medium of chapter 1. The homog-
enization of Ω amounts to finding the motion equation, hereafter called “effective
motion equation”, of a homogeneous medium substituting the initial inhomogeneous
one, under an energy equivalency constraint to be specified. Said constraint is based
on an equality between two external work quantities and is referred to hereafter as
the Energy Equivalency Principle (EEP). Next, the EEP is postulated, given a simple
form and exploited to define the effective displacement field which is subsequently
thoroughly investigated and interpreted. A formal derivation of the effective motion
equation is then presented. The effective constitutive behavior is nonlocal in both
space and time which raises questions about its uniqueness (Fietz and Shvets, 2010;
Willis, 2011). In order to avoid this difficulty, we will be interested only in the effective
motion equation which is unique. Nonetheless, we will derive expressions for the
generalized stress, momentum, velocity and strain measures which are, in particular,
needed for determining an effective constitutive law. Finally, in terms of these measures,
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a generalized Hill-Mandel relation is proven to hold.

2.1 Energy equivalency1

In classical static or quasi-static homogenization, an energy equivalency relation,
known as Hill-Mandel lemma, is proven for a family of boundary conditions prescribed
on a representative volume element as macroscopic loadings. Once the boundary
conditions have been specified, Hill-Mandel lemma can be used to define, by duality,
the macroscopic stress in a strain-based approach or the macroscopic strain in a stress-
based approach. In the present formulation, admissible body forces applied globally to
Ω instead of locally prescribed boundary conditions are taken to be the macroscopic
loading. Then, an EEP is postulated so as to dualize body forces and displacements.
This duality will allow us to define the macroscopic displacement field, called D, in
terms of the microscopic one u, once admissible body forces have been imposed.

Let F be the space of FB amplitudes f̃k of admissible body forces f . In other
words, having the FB expansion

f(x) = ˆ
T ∗
f̃k(x)eik⋅x,

the loading f is admissible if and only if f̃k belongs to F for all the wavenumbers
k of T ∗. The elements of F are seen as external loadings likely to be applied to Ω.
Note that they will remain the same after the scale transition. The space F acts as a
parameter of the approach to be elaborated and needs to be chosen adequately.

Next, let F ∗, the space dual to F , be the space of FB amplitudes D̃k of admissible
effective displacement fields2 D. For a given microscopic displacement field u, the
corresponding effective (or macroscopic) displacement field is defined as the unique
admissible displacement such thatˆ

Ω
f ⋅D∗ = ˆ

Ω
f ⋅u∗ (4.1)

for all admissible virtual body forces f . Physically, the EEP (4.1) can be interpreted as
requiring that the effective displacement field D associated to a given microscopic field
u be such that the work done by every admissible virtual body force f in the course
of D is equal to the one done by f in the course of u. Geometrically, the EEP (4.1)
simply means that D is the projection of u onto the space of admissible displacements
(figure 4.1). On the basis of the EEP (4.1), a generalized Hill-Mandel lemma will be
proven in subsection 2.4.

Using FB transform, combined with Parseval’s identity, the EEP (4.1) can be
equivalently written in terms of FB amplitudes as

∀k ∈ T ∗, ∀f̃k ∈ F , ⟨f̃k ⋅ D̃∗
k⟩ = ⟨f̃k ⋅ ũ∗k⟩ . (4.2)

1It was pointed out to me that the formalism used hereafter bears resemblance to the one
developed by Nayroles (2011). Duality experts are kindly invited to comment.

2Identifying F ∗ to a set of displacements is not straightforward and is discussed later on.



2. A general theory 95

f̃k

ũk

D̃k

F ↔F ∗

Figure 4.1. The effective displacement field D associated to a given microscopic
one u is geometrically interpreted as the projection of the latter onto the space of
admissible displacements. Spaces F and F ∗ are isomorphic and, here, are taken to be
equal up to a change in units.

2.2 Effective displacement field
Bearing in mind the EEP (4.1), choosing the space F of admissible body forces becomes
a key step toward elaborating a generalized theory. The choice of F depends ultimately
on the degree of accuracy with which D is required to approximate u. The bigger
F is, the closer D is to u. When all body forces are considered as admissible, the
relation (4.1) implies D = u and the effective medium is trivially the original one. In
what follows, we study the rather general case of practical importance where F is
finite-dimensional and show how D derives from (4.1) correspondingly.

2.2.1 Admissible body forces

Given N linearly independent, k- and ω-independent, R-periodic vector fields φα with
α = 1 . . .N , a body force field f is admissible if and only if it has (R-periodic) FB
amplitudes f̃k of the form

f̃k(x) = N∑
α=1

f̃αkφα(x), (4.3)

where the f̃αk are constants. The space F is therefore of dimension N .
With no loss of generality, let the subset (φα)α=1...d, where d is the dimension of Ω,

be formed of constant vectors and constitute a basis for E . We call F̃k the constant
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component of f̃k and write

f̃k(x) = d∑
α=1

f̃αkφα + N∑
α=d+1

f̃αkφα(x) ≡ F̃k + f̃αkφα(x). (4.4)

Above and from now on, the repeated Greek letters are understood to be summed over
from d + 1 to N . Integrating with respect to k over T ∗, we obtain the generic form of
admissible body forces:

f(x) = F (x) + fα(x)φα(x).
Of most importance is the fact that fields F and fα have their supports contained
in T ∗. As such, they have wavelengths at least twice as large as the characteristic
length of a unit cell. Consequently, the DOFs F and fα of admissible body forces are
said to be “macroscopic”. These DOFs are carried by R-periodic shape functions, the
φα, describing the ways in which f can vary on the microscale. For example, taking
N = d, we have f(x) = F (x) implying that body forces are not allowed to vary on the
microscale. As another example, setting N = d + 1 and φd+1(x) = ρ(x)e, where e is a
vertically oriented vector, we have f(x) = F (x) + fd+1(x)ρ(x)e so that the admissible
variations of body forces on the microscale are gravitational.

2.2.2 Effective displacement field by the EEP

From now on, we assume that the φα form an orthonormal1 basis of F so that

∀α,β ∈ {1, . . .N}, ⟨φα ⋅φ∗β⟩ = δαβ,
where δαβ is the Kronecker delta. For β ∈ {1, . . . d}, φβ being constant entails

∀α ∈ {d + 1, . . .N}, ⟨φα⟩ = 0,

meaning that being orthogonal to a constant is equivalent to having a zero average.
Injecting (4.4) in the expression of the virtual work, we obtain

⟨f̃k ⋅ ũ∗k⟩ = ⟨F̃k ⋅ ũ∗k⟩ + ⟨f̃αkφα ⋅ ũ∗k⟩ (by orthogonality)
= F̃k ⋅ ⟨ũk⟩∗ + f̃αk ⟨φ∗α ⋅ ũk⟩∗ (by constancy)
= F̃k ⋅ Ũ∗

k + f̃αk ũα∗k (by definition (4.5))

= ⟨F̃k ⋅ Ũ∗
k ⟩ + ⟨f̃αkφα ⋅ (ũβkφβ)∗⟩ (by orthogonality)

= ⟨f̃k ⋅ (Ũk + ũβkφβ)∗⟩ , (by orthogonality)

with
Ũk ≡ ⟨ũk⟩ ; ∀β ∈ {d + 1, . . .N}, ũβk ≡ ⟨φ∗β ⋅ ũk⟩ . (4.5)

1Just like the identification of F ∗, orthonormality needs to be clarified.
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Then, it follows from (4.2) that

D̃k(x) = Ũk + ũβkφβ(x).
Finally, summing over T ∗, it comes that

D(x) = U(x) + uβ(x)φβ(x).
The above expression of the effective displacement field results from the EEP combined
with a particular choice of admissible body forces. It contains the classical translational
displacement vector U and additional generalized “displacements” uβ carried by the
shape functions φβ . Once more, the shape functions define the way in which D varies
on the microscale whereas the slowly varying DOFs U and uβ describe how D varies
on the macroscale.

Willis (2011) proposed a homogenization theory in which shape functions are taken
to be φα(x) = w(x)eα, for α ∈ {1, ...d}, where w(x) is a fixed R-periodic function
and the eα form a basis for E . Taking w ≡ 1 yields the unweighted theory of Willis
(1997) and amounts to taking f = F and D = U . Here, we combine both the weighted
and unweighted Willis theories and use even more general shape functions. As a
consequence, D is a better approximation of u than U as will be seen in more detail.

2.2.3 Effective displacement field through error minimization

First of all, rewriting (4.2) in the equivalent form

∀f̃k ∈ F , ⟨f̃k ⋅ (ũk − D̃k)∗⟩ = 0,

it is clear that ũk − D̃k is orthogonal to F and D̃k acts as the orthogonal projection
of ũk onto F ∗ (figure 4.1). Using the Pythagorean theorem, it is easy to see that for
any R-periodic field h ∈ F ∗,

⟨(ũk −h) ⋅ (ũk −h)∗⟩ = ⟨(ũk − D̃k) ⋅ (ũk − D̃k)∗⟩ + ⟨(D̃k −h) ⋅ (D̃k −h)∗⟩≥ ⟨(ũk − D̃k) ⋅ (ũk − D̃k)∗⟩ .
Thus,

D̃k = arg min
h∈F∗

⟨(ũk −h) ⋅ (ũk −h)∗⟩ . (4.6)

This shows that the effective displacement FB amplitude is the best admissible ap-
proximation to the microscopic one. Consequently, the effective displacement field D,
associated to a microscopic displacement field u, can be seen as the best admissible
approximation to u. Note that this global optimal argument definition is different from
the local one introduced by Forest and Sab (1998) and Forest (2006) in elastostatics
(see subsection 3.2.5), despite an apparent resemblance.

The preceding definition of the effective displacement field concretizes the intuition
that the richer the DOFs of the generalized substitution medium are, the closer D is
to u:

if F1 ⊂ F2 then min
h∈F∗

2

⟨(ũk −h) ⋅ (ũk −h)∗⟩ ≤ min
h∈F∗

1

⟨(ũk −h) ⋅ (ũk −h)∗⟩ .
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In this sense, the generalized substitution medium to be obtained by our theory is
more realistic than the Willis substitution medium in the above minimal error sense,
at the cost of an additional kinematical complexity.

A remark is now in order. We have used a scalar product on the space of body
forces twice up till now: once to identify F and F ∗ and once to orthonormalize the
set of shape functions. This scalar product is not unique and can be modified by
adding a weighting function for example. Note that such choice has influence neither
on the definition of the DOFs uα, nor on the effective motion equation to be found.
It simply changes the above quadratic error function and determines the mapping(uα)α=1...N ↦D. In other words, the DOFs (uα)α=1...N are intrinsic whereas the field
D is conventional and only optimal with respect to some error function. For instance,
when dealing with eigenmodes, as in subsection 4.6, the natural choice appears to be
indeed a scalar product weighted with mass density.

2.2.4 Effective displacement field under infinite scale separation

It is of interest to examine what D becomes under the hypothesis of infinite scale
separation, namely, when k → 0 and ω → 0. It is known that in this case, to the lowest
order, the displacement field depends only on the “slow variable”. In terms of FB
amplitudes, this means that ũk is constant. Consequently,

Ũk = ⟨ũk⟩ = ũk,∀α ∈ {d, . . .N − 1}, ũαk = ⟨φ∗α ⋅ ũk⟩ = ⟨φ∗α⟩ ⋅ ũk = 0.

Therefore, the translational DOF U is the only non-null component of D, to the lowest
order. The use of a generalized kinematics is hence justified only under weak scale
separation when microscopic deformation modes become significant. Otherwise, it
is enough to keep track of U exclusively as in the unweighted Willis theory. As a
matter of fact, it has been observed that a periodic medium was “homogenizable” in
the Willis sense over the acoustic and the first optical branches only (Srivastava and
Nemat-Nasser, 2014; Nassar et al., 2015). For higher frequencies, one needs to use
non-uniform shape functions.

Finally, the classical macroscopic displacement field U , as defined by (4.5), is the
combination of all long-wavelength (k ∈ T ∗) components of u, which is not a moving
average of u. It is important to remark that a moving average does not correspond to
a projection and, hence, does not define any acceptable effective displacement in the
above EEP sense, except asymptotically, to the first order when k → 0.

2.3 Effective motion equation
Having specified body forces, the central motion equation reads

(∇ + ik) ⋅ {C(x) ∶ [(∇ + ik)⊗sũk(x)]} + F̃k + fα(x)φα(x) = −ω2ρ(x)ũk(x), (4.7)
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which needs to be solved over Ω. Since ũk is R-periodic, it is enough to solve the
above equation over a unit cell T under periodic boundary conditions. Let gk be the
corresponding periodic second order Green’s operator. Then,

ũk(y) = 1
T

ˆ
T
gk(y,x) ⋅ f̃k(x)dx

= ( 1
T

ˆ
T
gk(y,x)dx) ⋅ F̃k + ( 1

T

ˆ
T
gk(y,x) ⋅ φ̃α dx) f̃αk

(4.8)

which, combined with (4.5), delivers the following expressions for the components of
the macroscopic displacement field:

Ũk = ⟨⟨gk(y,x)⟩⟩ ⋅ F̃k + ⟨⟨gk(y,x) ⋅φα(x)⟩⟩ f̃αk ,
ũβk = ⟨⟨φ∗β(y) ⋅ gk(y,x)⟩⟩ ⋅ F̃k + ⟨⟨φ∗β(y) ⋅ gk(y,x) ⋅φα(x)⟩⟩ f̃αk , (4.9)

where ⟨⟨⟩⟩ means averaging with respect to both x and y.
The Green’s operator of the effective medium Gk is given by the last two equalities

which can be written concisely as

∀β ∈ {1, . . .N}, ũβk = N∑
α=1

Gβαk f̃αk ,

where no distinction is made between the classical and generalized DOFs (recall that
Ũk = ∑dβ=1 ũ

β
kφβ). Inverting the preceding equation delivers the effective motion

equation in Fourier domain:

∀α ∈ {1, . . .N}, N∑
β=1

Zαβk ũβk = f̃αk , (4.10)

where Zk, the inverse of Gk, is called the effective impedance. It depends implicitly on
the frequency ω. By summing over k ∈ T ∗ and over ω, we obtain the effective motion
equation in x and t as

∀α ∈ {1, . . .N}, N∑
β=1

Zαβ(x, t) ∗ uβ(x, t) = fα(x, t),
where Z(x, t) is an integro-differential operator and ∗ denotes convolution product
with respect to space and time. The effective motion equation is hence nonlocal in
both space and time and involves long wavelengths (k ∈ T ∗) only. This generalizes
equation (3.28) of (Willis, 1997) for periodic media.

2.4 Internal work
As mentioned earlier, it is not essential for achieving the main purpose of the present
work to derive an explicit expression for the underlying effective constitutive law which
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is not unique as in the theory of Willis (2011). However, it is of interest to specify
the macroscopic stress, momentum, strain and velocity measures that an effective
constitutive law involves. In addition, these generalized macroscopic measures will be
shown to be related to their microscopic counterparts through an extended Hill-Mandel
relation.

2.4.1 Generalized stress and momentum measures

Said measures are taken to be the ones involved in the effective motion equation written
as a conservation law equivalent to (4.10). Starting with the microscopic motion
equation (∇ + ik) ⋅ σ̃k + F̃k + f̃αkφα = iωp̃k, (4.11)

where σ̃k and p̃k are the FB amplitudes of stress and momentum, we take its volume
average over a unit cell to obtain, with the help of the divergence theorem,

ik ⋅ Σ̃k + F̃k = iωP̃k. (4.12)

This is the first effective motion equation involving the classical macroscopic stress and
momentum measures:

Σ̃k ≡ ⟨σ̃k⟩ , P̃k ≡ ⟨p̃k⟩ .
Further, projecting equation (4.11) onto the space spanned by the other shape functions
φβ gives rise to

∀β ∈ {d + 1, . . .N}, ik ⋅ ⟨φβ∗ ⋅ σ̃k⟩ − ⟨(∇⊗sφβ∗) ∶ σ̃k⟩ + f̃βk = iω ⟨φβ∗ ⋅ p̃k⟩ ,
where, for simplicity, we have assumed the continuity of φβ so that the boundary term
vanishes. The generalized stress and momentum measures can be identified as

∀β ∈ {d + 1, . . .N}, σ̃βk ≡ ⟨φβ∗ ⋅ σ̃k⟩ , s̃βk ≡ − ⟨(∇⊗sφβ∗) ∶ σ̃k⟩ , p̃βk ≡ ⟨φβ∗ ⋅ p̃k⟩ .
The additional motion equation becomes then simply

∀β ∈ {d + 1, . . .N}, s̃βk + ik ⋅ σ̃βk + f̃βk = iωp̃βk. (4.13)

Note that equations (4.12) and (4.13) on one hand, and (4.10) on the other, are related
to one another through a non-unique effective constitutive law whose characterization
is beyond the purpose of the present work (see the discussion by Willis, 2011, 2012).

In summary, the motion equations in the space domain are given by

∇ ⋅Σ +F = iωP ,
∀β ∈ {d + 1, . . .N}, sβ +∇ ⋅σβ + fβ = iωpβ. (4.14)

These equations are the “dynamic version” of the “equations of equilibrium” phe-
nomenologically derived by Germain (1973, equation (45)). There are however some
differences; see subsection 3.2.5 for details.
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2.4.2 Generalized strain and velocity measures

Said measures are obtained by duality. The virtual work theorem combined with the
EEP yields ⟨σ̃k ∶ ε̃∗k − p̃k ⋅ ṽ∗k⟩ = ⟨f̃k ⋅ ũ∗k⟩ = F̃k ⋅ Ũ∗

k + f̃αk ũα∗k ,

where ε̃k and ṽk are the FB amplitudes of the strain and velocity fields, respectively,
given by

ε̃k = (∇ + ik)⊗sũk, ṽk = iωũk.
Substituting body forces by the corresponding stress and momentum measures according
to (4.13) delivers

⟨σ̃k ∶ ε̃∗k − p̃k ⋅ ṽ∗k⟩ = Σ̃k ∶ (ik⊗sŨk)∗ − P̃k ⋅ (iωŨk)∗+ σ̃αk ⋅ (ikũαk)∗ − p̃αk(iωũαk)∗ − s̃αk ũα∗k .

Summing over k, and using Parseval’s identity, we obtain a generalized version of the
Hill-Mandel lemma:
ˆ

Ω
σ ∶ ε∗ − p ⋅ v∗

= ˆ
Ω

Σ ∶ (∇⊗sU)∗ −P ⋅ (iωU)∗ +σα ⋅ (∇uα)∗ − pα(iωuα)∗ − sαuα∗. (4.15)

This result is valid for all virtual couples (σ,p) equilibrated by an admissible body
force field and for all couples (ε,v) derived from an arbitrary displacement field u.
The classical macroscopic measures of strain and velocity are ∇⊗sU and iωU while
the generalized ones are ∇uα, uα and iωuα. It is clear that all of the above measures
can be specified once particular shape functions have been chosen. This will be done
in the next section.

3 A hierarchy of standard generalized substitu-
tion media

In the present section, we choose particular admissible body forces so as to produce
generalized kinematics having clear geometric interpretations.

3.1 Local coordinates
Given a unit cell T of center xo, the position vector x of a point of Ω can be uniquely
decomposed as x = xo + r + x̃, with r ∈ R and x̃ ∈ T − xo (see figure 4.2). The
local coordinates of this point refer to the components of x̃. In particular, for x ∈ T ,
x̃ = x−xo. Note that the local coordinates are R-periodic and depend on the shape of
T and on its center xo modulo R. The choice of T will influence the set of admissible
body forces and, consequently, the effective properties of the substitution medium, and
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Figure 4.2. An illustration of the decomposition x = xo + r + x̃ in 2D.

should be made with regard to the actual microstructure of Ω. Last, the previous local
coordinates have zero average and the important property that ⟨x̃⊗x̃⟩ is a symmetric
positive definite, and therefore invertible, tensor.

3.2 Four shades
In what follows, by choosing appropriate sets of admissible body forces, we obtain the
generalized kinematics for a hierarchy of generalized substitution media. In particular,
interest will be in the interpretation of admissible body forces and the corresponding
generalized DOFs. Derivation of the effective motion equation remains unchanged with
respect to the general theory presented above.

Retracing the history of generalized continuum mechanics is out of the scope of the
present chapter, and one can refer, for example, to the texts by Maugin (2010) and by
Askes and Aifantis (2011) for exhaustive reviews. We would like simply to point out the
fact that enriching the kinematics of standard continua has a well established potential
in producing dispersive effects and internal oscillation modes. For instance, Mindlin
(1964) derived the equations of a generalized “micromorphic” medium and described
its possible oscillation modes, both acoustic and optical. Though he provided a careful
geometrical interpretation of the additional DOFs, he did not describe how these
DOFs can or should be obtained from the standard kinematics of a hidden underlying
microstructure. Germain (1973) made a clearer, yet only qualitative, connection
between the DOFs of the generalized continuum and the microscopic displacement field.
According to him, at the microscopic level, a particleM appears as a continuum of small
extent P (M) and the DOFs at M define an approximation to the displacement field
over P (M). Our purpose here is to concretize this intuition and write the generalized
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DOFs explicitly in terms of the microscopic displacement field as in equation (4.5).
It is worth noting that the kinematics obtained next are not rigorously the same as
their phenomenological counterparts. Similarities and differences in comparison to the
approach of Germain, and to that of Forest and Sab (1998) and Forest (2006), are
commented at the end of the present subsection.

3.2.1 Cauchy kinematics and strain-gradient media

Taking slowly varying body forces as the only admissible body forces requires no more
than the usual Cauchy kinematics:

f = F , D = U ,
whose support is T ∗. Shape functions are constants and D is the long-wavelength part
of u given by ∀k ∈ T ∗, D̃k = ⟨ũk⟩ .
A macroscopic particle can translate and deform as much as allowed by the long-
wavelength restriction (k ∈ T ∗). This medium corresponds to Willis’ substitution
medium and has a nonlocal behavior in both space and time. Taking an asymptotic
expansion of the effective motion equation in the vicinity of (k → 0, ω → 0) yields a
strain-gradient-media-type motion equation with micro-inertia. We refer to the papers
by Boutin (1996) and by Smyshlyaev and Cherednichenko (2000) and to chapter 3 for
details.

3.2.2 Microdilatation-like media

Admissible body forces can be enriched according to

f(x) = F (x) + q(x)x̃
where x̃ plays the role of a shape function and q is an additional slowly varying scalar
function carried by the rapidly oscillating local coordinates. It models a hydrostatic
pressure on a cellular level. Body forces F can also produce such effects but on a
wholly different scale, that of Ω. The key to this distinction is again the restriction to
T ∗ of the supports of F and q. Same goes for the effective displacement which admits
a similar form

D(x) = U(x) + χ(x)x̃
where χ is dual to q and reflects the “microdilatational” effects.

With respect to the microscopic displacement, the new DOF can be obtained
according to either (4.5) or (4.6). For diversity, we adopt the latter. DOFs U and χ
span two orthogonal spaces so that it is possible to proceed with the minimization
in two independent steps over U and χ. The first step entails the already known
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expression of Ũk. The second amounts to minimizing

⟨(ũk − χ̃kx̃) ⋅ (ũk − χ̃kx̃)∗⟩ = ⟨ũk ⋅ ũ∗k⟩ − χ̃k ⟨x̃ ⋅ ũ∗k⟩ − χ̃∗k ⟨x̃ ⋅ ũk⟩ + χ̃kχ̃∗k ⟨x̃ ⋅ x̃⟩
= ⟨ũk ⋅ ũ∗k⟩ + ⟨x̃ ⋅ x̃⟩ ∣χ̃k − ⟨x̃ ⋅ ũk⟩⟨x̃ ⋅ x̃⟩ ∣2 − ⟨x̃ ⋅ ũk⟩ ⟨x̃ ⋅ ũk⟩∗⟨x̃ ⋅ x̃⟩ ,

where ∣∣ represents the modulus of a complex number and has zero minimum. Therefore,

∀k ∈ T ∗, χ̃k = ⟨x̃ ⋅ ũk⟩⟨x̃ ⋅ x̃⟩ .
3.2.3 Microstretch-like media

For d ≥ 2, admissible body forces can be enriched according to

f(x) = F (x) + q(x)x̃ +M(x) ⋅ x̃,
where M is an additional second-order antisymmetric tensor. The term M(x) ⋅ x̃
characterizes force couples at the microscopic scale. In order to produce couples,
body forces need to oscillate rapidly at the microscale. This is prohibited by classical
homogenization schemes. Here, couples are modeled with the additional admissible
body forces. However, couples themselves are restricted to having slow variations.

The effective displacement field takes the dual form

D(x) = U(x) + χ(x)x̃ +R(x) ⋅ x̃,
where R is an additional kinematical second-order antisymmetric tensor dual to M . It
is interpreted as an infinitesimal rotation at the microscale different from the macroscale
infinitesimal rotation of the antisymmetric gradient of U . Note that R corresponds to
a “quasi-rigid” transformation since it varies slowly within a unit cell.

The spaces spanned by U , χ and R are orthogonal to each other, so that the
previous expressions of U and χ hold and that the expression of R results from the
EEP. Precisely, for all antisymmetric tensors M̃k,

M̃k ∶ ⟨ũ∗k⊗x̃⟩ = M̃k ∶ (R̃∗
k ⋅ ⟨x̃⊗x̃⟩) .

Hence, the tensor ⟨ũ∗k⊗x̃⟩ − R̃∗
k ⋅ ⟨x̃⊗x̃⟩

needs to be symmetric. Consequently, R̃k is the unique antisymmetric solution to the
equation

2 ⟨ũk∧x̃⟩ = R̃k ⋅ ⟨x̃⊗x̃⟩ + ⟨x̃⊗x̃⟩ ⋅ R̃k,
where ∧ stands for antisymmetric tensor product. When T is a cube of edge 2a, the
rotation admits the expression

∀k ∈ T ∗, R̃k = 6
a2 ⟨ũk ∧ x̃⟩ .
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In general, we have the formula1

∀k ∈ T ∗, R̃k = 2
ˆ +∞

0
e−η⟨x̃⊗x̃⟩ ⋅ ⟨ũk ∧ x̃⟩ ⋅ e−η⟨x̃⊗x̃⟩ dη.

Cosserat-like media can be obtained by simply eliminating q and χ.

3.2.4 Micromorphic-like media

Admissible body forces can also be enriched so that they englobe all affine transforma-
tions of the local coordinates:

f(x) = F (x) +Ψ(x) ⋅ x̃,
where Ψ is an arbitrary second-order tensor. The effective displacement field admits
the similar representation

D(x) = U(x) +χ(x) ⋅ x̃.
The new tensorial DOF χ describes a general linear transformation at the microscale
similar to the one described by the gradient of U at the macroscale. In addition, χ
derives from the microscopic displacement according to

∀k ∈ T ∗, χ̃k = ⟨ũk⊗x̃⟩ ⋅ ⟨x̃⊗x̃⟩−1 .

We underline the fact that the symmetric and antisymmetric parts of χ span non-
orthogonal spaces in the sense of virtual work so that the rotation of a microstretch
medium is not the antisymmetric part of χ. For a cubical T , however, R is indeed the
antisymmetric part of χ.

The generalized stress measures are obtained as discussed in the general case
(subsection 2.4). Here, we have three generalized stress tensor measures of second,
third and second orders, respectively, defined by

∀k ∈ T ∗, Σ̃k = ⟨σ̃k⟩ ,
σ̃χk = ⟨σ̃k⊗x̃⟩ ⋅ ⟨x̃⊗x̃⟩−1 ,

s̃χk = ( 1∣T ∣
ˆ
∂T
n ⋅ σ̃k⊗x̃dS(x) − Σ̃k) ⋅ ⟨x̃⊗x̃⟩−1 ,

where n is the unitary outward vector normal to the boundary ∂T of T and dS is a
surface measure. Note that sχ quantifies the difference between the volume average of
σ and its average surface flux on the boundary of a unit cell. Finally, these measures
relate to the momentum measures given by:

∀k ∈ T ∗, P̃k = ⟨p̃k⟩ , p̃χk = ⟨p̃k⊗x̃⟩ ⋅ ⟨x̃⊗x̃⟩−1 ,

1This solution was encountered during my last “colle”, almost 6 years ago. Professor
Pascal Guelfi from the lycée Henri Poincaré is to be thanked. Sadly, I was unable to find a
corresponding geometrical interpretation.
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through the motion equations

∇ ⋅Σ +F = P ,
sχ +∇ ⋅σχ +Ψ = pχ.

3.2.5 Remarks

The equations of motion of the above medium resemble the ones derived by Germain
(1973) for his first order micromorphic medium. They are not identical however. For
instance, a difference can be spotted by closely checking the stress measure Σ appearing
in the first equation: it is symmetric here but not in the work of Germain. Symmetry,
or lack thereof, of stress measures is dictated by the choice of a set of “distributors”, i.e.,
rigid body motions, which must yield zero internal work. The expressions of rigid body
motions, postulated by Germain (1973), affect both the classical and the generalized
DOFs. His choice turns out not to require any particular symmetry on behalf of
Σ (therein called τ ). In the present micromechanical approach, rigid body motions
are not postulated but deduced by answering the question: what are the expressions
of U and χ when u is a rigid body motion? As a rigid body motion u has only
infinitely-long-wavelength components, we have U = u and χ = 0. The superposition of
a rigid body motion hence only affects U which is consistent with Σ being symmetric.

Forest and Sab (1998) and Forest (2006) have defined generalized kinematics by
minimizing a quadratic error similar to (4.6). Their minimization procedure is local:
it defines the best admissible approximation to the microscopic displacement field
over a representative volume element. In doing so, they obtain similar kinematics to
those of Germain, at least regarding rigid body motions. The corresponding effective
displacement field, combination of the generalized DOFs carried by shape functions,
has a meaning only in the vicinity of each material point. In contrast, our approach is
global: it defines the best admissible approximation to the microscopic displacement
field over Ω. We can summarize the difference by saying that Germain’s kinematics is
based on a couple of global-local position variables while our’s is based on a couple of
slow-fast position variables. Let us underline then the fact that the term “two-scale” is
ambiguous. Our approach is a two-scale approach in the sense of two-scale asymptotics
for instance but not in the sense of Forest and Sab (1998) or Germain. The major
advantage of the present approach resides in the fact that a microscopic displacement
field solution is transformed into the best effective displacement field solution of the
same FB wavenumber and of the same frequency. Particularized to free waves, this
entails that the dispersion curve is unharmed by the scale transition.

On a different note, due to their definitions, the macroscopic DOFs are expected to
be continuous functions of x. However, the shape functions used here, i.e., the local
coordinates, are discontinuous and consequently D is expected to be discontinuous
as well. Discontinuity means that gaps and/or overlappings, however small, may
occur when Ω undergoes the macroscopic transformation prescribed by D. One can
be tolerant toward discontinuities and say that D is only an approximation to the
real microscopic transformation of Ω. One can also avoid discontinuities altogether
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by regularizing the local coordinates across unit cell boundaries. The latter attitude
is much more interesting as it would correspond to a situation where a unit cell is
composed of a hard core, “the brick”, and a soft boundary, “the mortar”. When the
hard cores undergo different rigid-like transformations for instance, the soft phase will
regularize the differences across unit cells. A regularization of x̃ can be simply obtained
by truncating its Fourier series expansion. In the example treated in subsection 4.5,
we replace x̃ by its first Fourier series component.

4 LW-LF asymptotics
At this point, we have generalized Willis theory by using enriched kinematics to improve
the quality of approximation of a microscopic displacement u by a macroscopic one
D. The cost is however the increasing complexity of the resulting effective motion
equation. A numerical procedure dedicated to the implementation of Willis’ theory or
our previous one is quite heavy, the effective behavior being nonlocal in both space
and time with infinite radii of influence in general.

Taylor asymptotic expansions provide an efficient way to approximate the nonlocal
behavior with a local one under appropriate assumptions on k and ω. LW-LF expansions
have the main advantage of only requiring the solution of static problems but present
the disadvantage of being limited to the LF behavior as was proven in chapter 3.
The purpose of this section is to show how the simplest enriched kinematics makes it
possible to extend the validity domain of LW-LF expansions to high-frequency behavior.
In particular, the microdilation-like generalized substitution medium will be proven
able to capture, even in the LF limit, approximately but simultaneously, all of the
acoustic branches and selected optical ones.

4.1 Setup
In the spirit of microdilatation media, let admissible body forces FB amplitudes be of
the form

f̃k(x) = F̃k + q̃kφ(x),
where φ is a fixed R-periodic shape function, F̃k and q̃k are constants. Orthonormality
requires ⟨φ⟩ = 0 and ⟨φ ⋅φ∗⟩ = 1 which are assumed subsequently. It is then known
that the effective displacement field has the expression

D̃k(x) = Ũk + χ̃kφ(x),
where Ũk and χ̃k are the DOFs of the generalized substitution medium. They derive
from the microscopic displacement according to (4.5):

Ũk = ⟨ũk⟩ , χ̃k = ⟨φ∗ ⋅ ũk⟩ .
In order to find the effective motion equation, the microscopic one (4.7) which reads

(∇ + ik) ⋅ {C(x) ∶ [(∇ + ik)⊗sũk(x)]} + F̃k + q̃kφ(x) = −ω2ρ(x)ũk(x), (4.16)
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when applied to the case under consideration, needs to be solved.

4.2 Expansions
As discussed earlier, we will be only interested in an LW-LF asymptotic expansion
of the effective motion equation and the corresponding asymptotic expansion of the
effective impedance Z from (4.10). This requires the asymptotic expansion of the
solution to (4.16). Le us then start by imbedding the foregoing equation into the family
of equations

(1
ε
∇ + ik) ⋅ {C(x) ∶ [(1

ε
∇ + ik)⊗sũεk(x)]} + F̃ ε

k + q̃εkφ(x) = −ω2ρũεk(x) (4.17)

scaled with the “small parameter” ε. Putting ε = 1 generates back the original
microscopic motion equation. However, before doing so, expansions will be carried in
the vicinity of ε = 0, the limit ε→ 0 corresponding to vanishing k and ω and infinite scale
separation. Displacements and body forces are expanded into Taylor series according
to

ũεk = ∑
n∈N

εnũnk, F̃ ε
k = ∑

n∈N
εnF̃ n

k , q̃εk = ∑
n≥−1

εnq̃nk . (4.18)

Body forces of all orders are introduced for ease of tractability. Otherwise, scaling of
body forces is of no importance as it does not influence the expansion of Z.

4.3 Hierarchical microscopic motion equations
Injecting (4.18) into (4.17) yields a hierarchy of microscopic motion equations, one for
each order in ε.

4.3.1 Orders -2 and -1

At the lowest order ε−2 we have

∇ ⋅ [C ∶ (∇⊗sũ0
k)] = 0.

Therefore
ũ0
k = Ũ0

k , χ̃0
k = 0.

As expected the classical homogenization limit produces no DOFs other than Ũ0. This
does not hold at higher orders.

At the order ε−1, we have

∇ ⋅ [C ∶ (∇⊗sũ1
k + ik⊗sŨ0

k)] + q̃−1
k φ = 0.

Note that the presence of q̃−1
k does not obstruct solution existence since ⟨φ⟩ = 0. The

solution can be written as

ũ1
k(x) = Ũ1

k +R1,0(x) ∶ (ik⊗sŨ0
k) +P (x)q̃−1

k ,
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where R1,0 and P are two zero-average (k, ω)-independent localization tensors. There-
fore, the new DOF, to first order, is given by

χ̃1
k(x) = ⟨φ∗ ⋅R1,0⟩ ∶ (ik⊗sŨ0

k) + ⟨φ∗ ⋅P ⟩ q̃−1
k ,

or equivalently by

⟨φ∗ ⋅P ⟩−1χ̃1
k(x) = ⟨φ∗ ⋅P ⟩−1 ⟨φ∗ ⋅R1,0⟩ ∶ (ik⊗sŨ0

k) + q̃−1
k . (4.19)

Accordingly, the first order solution can be localized with respect to the macroscopic
DOFs by

ũ1
k(x) = Ũ1

k +X1,0(x) ∶ (ik⊗sŨ0
k) +Y 0,0(x)χ̃1

k

with
X1,0(x) =R1,0 − ⟨φ∗ ⋅P ⟩−1P (x)⊗⟨φ∗ ⋅R1,0⟩ ,
Y 0,0(x) = ⟨φ∗ ⋅P ⟩−1P (x).

4.3.2 Order 0 and higher orders

At the order ε0 = 1, we have

∇⋅[C ∶ (∇⊗sũ2
k + ik⊗sũ1

k)]+ik⋅[C ∶ (∇⊗sũ1
k + ik⊗sŨ0

k)]+F̃ 0
k+q̃0

kφ = −ω2ρŨ0
k , (4.20)

whose volume average is no longer trivially satisfied and yields, thanks to the periodic
boundary conditions,

ik ⋅ ⟨C +C ∶ ∇⊗sX1,0⟩ ∶ (ik⊗sŨ0
k) + ik ⋅ ⟨C ∶ ∇⊗sY 0,0⟩ χ̃1

k + F̃ 0
k = −ω2 ⟨ρ⟩ Ũ0

k . (4.21)

Compared to the classical homogenization limit, the lowest order effective motion equa-
tion here involves an additional DOF and needs to be completed with equation (4.19).

Subtracting (4.21) from (4.20) and solving for ũ2, we similarly get

ũ2
k = Ũ2

k +R1,0 ∶ (ik⊗sŨ1
k) +R2,0 ∴ [ik⊗(ik⊗sŨ0

k)]+R0,1 ⋅ ω2U0
k +S1,0 ⋅ (ikχ̃1

k) +P q̃0
k,

where R, S and P are zero-average (k, ω)-independent localization tensors and the
symbol ∴ stands for triple contraction. In order to localize the microscopic displacements
with respect to the effective DOFs, we average the above equation weighted with φ∗.
We then arrive at

ũ2
k = Ũ2

k +X1,0 ∶ (ik⊗sŨ1
k) +X2,0 ∴ [ik⊗(ik⊗sŨ0

k)]+X0,1 ⋅ ω2U0
k +Y 1,0 ⋅ (ikχ̃1

k) + Y 0,0χ̃2
k,

with
X2,0 =R2,0 − ⟨φ∗ ⋅P ⟩−1P⊗⟨φ∗ ⋅R2,0⟩ ,
X0,1 =R0,1 − ⟨φ∗ ⋅P ⟩−1P⊗⟨φ∗ ⋅R0,1⟩ ,
Y 1,0 = S1,0 − ⟨φ∗ ⋅P ⟩−1P⊗⟨φ∗ ⋅S1,0⟩ .
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Finally, following the above methodology, we obtain a series of localization operators
Xm,n and Y m,n yielding the field ur, for all orders r ≥ 0, with respect to the macroscopic
DOFs. As for notations, X is associated with Ũ , Y with χ̃, m with tensorial powers
of ik and n with powers of ω2.

4.4 Approximate effective motion equation
We have formally obtained a localization operator (LUk ,Lχk) satisfying

ũk = LUk ⋅ Ũk +Lχkχ̃k. (4.22)

Its expression, to the second order, requires solving the above hierarchy up to order 1
and is given by

ũk = Ũk +Y 0,0χ̃k +X1,0 ∶ (ik⊗sŨk) +Y 1,0 ⋅ (ikχ̃k)+X2,0 ∴ [ik⊗(ik⊗sŨk)] +Y 2,0 ∶ (ik⊗ikχ̃k) + ω2X0,1 ⋅ Ũk + ω2Y 0,1χ̃k + . . . (4.23)

Orders of magnitude can be traced thanks to k and ω upon mapping ε to 1 so as to
recover the unscaled microscopic displacement field.

The action describing the microscopic motion is known to be

A = 1
2
⟨ε̃∗k ∶ C ∶ ε̃k − ρṽ∗k ⋅ ṽk⟩ −R ⟨ũ∗k ⋅ f̃k⟩ ,

where R gives the real part of a complex number. Its stationarity condition over
arbitrary R-periodic fields ũk yields the microscopic motion equation (4.7) whereas
its stationarity condition over fields of the form (4.22) gives rise to the macroscopic
motion equation (4.10). Finally, its stationarity condition over fields of the form (4.23),
truncated at order 2 in k and ω, results in the second order approximate effective
motion equation

ZUU
k ⋅ Ũk +ZUχ

k χ̃k = F̃k,
ZχU
k ⋅ Ũk +Zχχk χ̃k = q̃k, (4.24)

where the second order tensor ZUU
k , the first order tensors ZUχ

k and ZχU
k and the

scalar Zχχk are second degree polynomials in k and ω. Their expressions are specified
next for a 1D example.

4.5 Example: one string, two phases
4.5.1 Setting

Consider the periodically inhomogeneous string whose unit cell is depicted in figure 4.3,
and define

φ(x) = √
2 sin (πx/a) .
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The form of φ is inspired by a low-contrast analysis carried out in the context of solid
state physics by Quéré (1988). The resulting 1D generalized substitution medium can
be seen as a microstretch medium whose local coordinate x̃ has been replaced by its
first Fourier component.

c1,ρ1 c2,ρ2

x=−a x=0 x=+a

Figure 4.3. Unit cell.

4.5.2 Expression of the approximate effective motion equation

It is straightforward to solve the family of motion equations of subsection 4.3 up to
order 1 and to get the corresponding localization operators. Calling ci and ρi the
stiffness and mass density of phase i for i ∈ {1,2}, and a the half-length of a unit cell,
the approximate effective impedance Z is given by

ZUU = 2 c1c2
c1 + c2

k2 − ρ1 + ρ2
2

ω2,

ZχU = ZUχ = 4
√

2
π

c1c2(c1 − c2)(c1 + c2)2 k2 + √
2
π

(ρ1 − ρ2)ω2,

Zχχ = 2π2

a2
c1c2
c1 + c2

− 2
π2

[(π2 − 6)ρ2 + 2ρ1]c2
1 + 4(ρ1 + ρ2)c1c2 + [(π2 − 6)ρ1 + 2ρ2]c2

2(c1 + c2)2 ω2

− 2
π2
c1c2[(3π2 − 8)c2

1 + 2(3π2 + 8)c1c2 + (3π2 − 8)c2
2](c1 + c2)3 k2.

Recall that this impedance is obtained through LW-LF asymptotics and that neither
the approximate impedance nor the exact one have meaning outside T ∗ =] − π/2a, π/2a[.
The approximate effective motion equation takes the form

− 2 c1c2
c1 + c2

U ′′ + ρ1 + ρ2
2

Ü − 4
√

2
π

c1c2(c1 − c2)(c1 + c2)2 χ′′ − √
2
π

(ρ1 − ρ2)χ̈ = F,
− 4

√
2

π

c1c2(c1 − c2)(c1 + c2)2 U ′′ − √
2
π

(ρ1 − ρ2)Ü + 2π2

a2
c1c2
c1 + c2

χ

+ 2
π2

[(π2 − 6)ρ2 + 2ρ1]c2
1 + 4(ρ1 + ρ2)c1c2 + [(π2 − 6)ρ1 + 2ρ2]c2

2(c1 + c2)2 χ̈

+ 2
π2
c1c2[(3π2 − 8)c2

1 + 2(3π2 + 8)c1c2 + (3π2 − 8)c2
2](c1 + c2)3 χ′′ = fw,
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where a superscripted dot denotes ∂/∂t and the prime symbol means ∂/∂x.
4.5.3 Dispersion curves: exact vs approximate

The expression of the exact dispersion curve is known and was derived elsewhere
(chapter 3). It reads:

cos(2ka) =(√c1ρ1 +√
c2ρ2)2

4√c1ρ1c2ρ2
cos [ω(√ρ1/c1 +√

ρ2/c2)a]
−(√c1ρ1 −√

c2ρ2)2

4√c1ρ1c2ρ2
cos [ω(√ρ1/c1 −√

ρ2/c2)a] .
(4.25)

The approximate dispersion curve is derived from the approximate effective impedance
according to

ZUUZχχ −ZχUZUχ = 0.
The first branches of the exact and approximate dispersion curves are drawn in figure 4.4
for the following numerical values of the string parameters

c1 = 1010N, c2 = 1012N, ρ1 = 100kg/m, ρ2 = 200kg/m, a = 5.10−3m.

On figure 4.4, with respect to the classical quasi-static approximation (Q), enriching
the kinematics not only allows capturing the first optical branch but also improves
the approximation of the acoustical one over the entire first Brillouin zone. Why
is it possible that low-frequency Taylor expansions lead to a correct estimate of
some optical modes? Physically speaking, for high frequencies, inertial forces become
important and shift the energy carried by displacements toward shorter wavelengths.
Correspondingly, including rapidly oscillating body forces have two benefits. First, they
simulate the effects of inertial forces. Second, and most importantly, they oblige the
macroscopic displacement field to include some short-wavelength components, necessary
for approximating the high-frequency behavior. Mathematically speaking, a proof of
the accuracy of the above asymptotics is yet to be found.

Craster et al. (2010) utilized high-frequency asymptotics to calculate optical modes.
They had to numerically solve the unit cell problem at the lowest order and to use two
initialization points for each optical branch. In comparison, the present formulation is
capable of capturing not only the acoustic mode but also, simultaneously, the entire
first optical branch thanks to the enriched kinematics while maintaining a simple
motion equation of order 2. Note that we only had to solve static cell problems. This
being said, based on the results of Craster et al. (2010), and on the next theorem, we
are inclined to conjecture that the best shape functions to be supplied to the present
theory are actual periodic and anti-periodic microscopic solutions.

4.6 A theorem: on the recovery of optical branches
Inspired by the approach of Craster et al. (2010), we now choose the shape functions
φ to be actual R-periodic optical eigenmodes associated to the null wavenumber.
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2ka
π

ω

(m3)

(m2)

(m1)

(M2)

(M1)

(Q)

Figure 4.4. Exact dispersion curve (three branches (m1,2,3)) compared to its classical
quasi-static approximation (one branch (Q)) and to its approximation by the present
theory (two branches (M1,2)).
Precisely1,

f̃k = ρ⟨ρ⟩ F̃k + f̃αkφα = ρF̃k + f̃αk ρψ̃0,α.

Note that the above shape functions do not satisfy the orthonormality2 condition but
that this shall not interfere hereafter. Also, note that F̃k has now the weight ρ/ ⟨ρ⟩.

Our purpose here is to prove that the substitution medium corresponding to the
above choice yields, in the LF limit, exactly and simultaneously, the values of the optical
eigenfrequencies ωα(0), for α = d + 1, . . .N , and of the acoustic ones ω1(0) = ... =
ωd(0) = 0.

Since we are only interested here in the behavior at k = 0, instead of solving the
hierarchy of motion equations, it is easier to consider the macroscopic Green’s function.
Let us then first derive a series representation for the macroscopic Green’s tensor for

1The ψ̃ have been introduced in chapter 1.
2Of course, one can always orthonormalize the set of shape functions while keeping invariant

the spanned space. A better attitude would be to change the scalar product. See the remark
at the end of 2.2.3.
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general shape functions. Starting with the now known representation

gk(y,x) = ∑
n≥1

ψ̃k,n(y)⊗ψ̃∗
k,n(x)

ω2
n(k) − ω2 ,

and using (4.9), we obtain

Ũk = ∑
n≥1

1⟨ρ⟩2
⟨ρψ̃k,n⟩⊗⟨ψ̃∗

k,nρ⟩
ω2
n(k) − ω2 ⋅ F̃k + 1⟨ρ⟩

⟨ρψ̃k,n⟩ ⟨ψ̃∗
k,n ⋅φα⟩

ω2
n(k) − ω2 f̃αk ,

ũβk = ∑
n≥1

1⟨ρ⟩
⟨φ∗β ⋅ ψ̃k,n⟩ ⟨ψ̃∗

k,nρ⟩
ω2
n(k) − ω2 ⋅ F̃k + ⟨φ∗β ⋅ ψ̃k,n⟩ ⟨ψ̃∗

k,n ⋅φα⟩
ω2
n(k) − ω2 f̃αk .

For k = 0, the above expressions become

Ũ0 = − 1⟨ρ⟩ω2 F̃0 − 1⟨ρ⟩ω2 ⟨φα⟩ f̃α0 ,
ũβ0 = − 1⟨ρ⟩ω2 ⟨φ∗β⟩ ⋅ F̃0 + ∑

n≥1

⟨φ∗β ⋅ ψ̃0,n⟩ ⟨ψ̃∗
0,n ⋅φα⟩

ω2
n(0) − ω2 f̃α0 .

Therein, we have used the orthonormality of eigenmodes:

∀n, r ≥ 1, ⟨ρψ̃∗
k,n ⋅ ψ̃k,r⟩ = δnr,

and, in particular, ∀n ≥ d + 1, ⟨ρψ̃∗
0,n⟩ = 0,

since the acoustic eigenmodes, r = 1, . . . d, are uniform in space being rigid body
translations. For our particular choice of shape functions, the foregoing expression of
the macroscopic Green’s function is even further simplified into

Ũ0 = − 1⟨ρ⟩ω2 F̃0,

ũβ0 = ∑
n≥1

δβnδnα

ω2
n(0) − ω2 f̃

α
0 = 1

ω2
β(0) − ω2 f̃

β
0 .

Therefore, for k = 0, the effective motion equation is

−⟨ρ⟩ω2Ũ0 = F̃0,

(ω2
β(0) − ω2)ũβ0 = f̃β0 ,

with β = d + 1, . . .N . This effective motion equation is already of the second order so
that LF asymptotics will leave it as it is. Its dispersion relation reads

(− ⟨ρ⟩ω2)d N∏
β=d+1

(ω2
β(0) − ω2) = 0



5. Concluding remarks 115

which ends the proof of the stated theorem.
In conclusion, an appropriate choice of shape functions is capable of producing the

“exact germs”, i.e., at k = 0, of any combination of opto-acoustical branches even in the
LF limit. What happens for small but non-null k requires more involved calculations.
This result demonstrates the potential of the presented theory. However, it is not
directly useful unless the concerned eigenmodes at k = 0 were known, or calculable,
beforehand. Otherwise, one will have to guess alternative appropriate shape functions
as was done for the example of the 1D string.

5 Concluding remarks
The present chapter has proposed an elastodynamic homogenization theory general-
izing the one of Willis in the case of periodic media. The effective motion equation
resulting from the generalized theory was then used as the basis for deriving asymptotic
elastodynamic homogenization models of different degrees of complexity according to
the richness of body forces involved. In particular, it has been shown that the LW-LF
asymptotic expansion of the effective motion equation of the generalized theory is
capable of simultaneously capturing all the acoustic and some of the optical branches
of the microscopic dispersion curve.

Two problems remain open and need solving. The first concerns the effective
elastodynamic constitutive law produced by the generalized theory proposed. Here,
to avoid the difficulty related to its non-uniqueness, the effective motion equation
has been directly treated and exploited. However, in numerous situations, it is useful
and important to explicitly know the effective elastodynamic constitutive law. The
second problem regards the optimal choice of shape functions for body forces acting
as microscopic and macroscopic loading. For the LW-LF behavior, constant shape
functions have extensively been employed in the literature on asymptotic elastodynamic
homogenization methods. For more involved shape functions, it seems possible to
distinguish two types. The first one is based on actual particular solutions of the
motion equation such as some periodic oscillation modes proposed by Craster et al.
(2010) and Boutin et al. (2014). The other one relies on the geometry and contrast
of the microstructure, resulting in a hierarchy of standard generalized media such as
the one from microdilatation-like to micromorphic-like media. In any case, criteria for
guiding the optimal choice of shape functions are still lacking.
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Conclusion and openings

You and I have unfinished business.

The Bride, Kill Bill: Volume 2

Improving the predictions of the standard quasi-static homogenization theory is
essential to the macroscopic modeling of the elastodynamic behavior of composites,
in general, and metamaterials, in particular. These improvements should permit to
capture dispersion effects, optical oscillation modes and band gaps. Accordingly, the
strict hypotheses made on frequencies and wavelengths must be loosened or, in any
case, modified. Willis theory is a radical attempt to overlook all such scale separation
assumptions and while it succeeds in upscaling correctly all the information related to
the dispersion curve, it fails to reproduce faithfully the associated free waves beyond
the homogenizability limit of weak scattering where the coherent wave is dominant.

Higher-order strain-gradient theories offer simple and efficient approximations valid
exclusively at acoustical frequencies. These theories model well the dispersive effects
but miss all optical modes due to some inevitable localization singularities. Then,
seeking for a theory valid over an extended, however finite, frequency band englobing
simultaneously acoustic and optical modes, we have seen that a family of generalized
media is up for the task.

Hereafter, in order to conclude, we freely comment on, criticize and discuss exten-
sions and applications of the foregoing ideas.

1 On the use of body forces
We argue that body forces must be taken into account by any homogenization scheme
for, at least, two reasons.

1. Even if the effective parameters do not depend on body forces, it is indispensable
to know how body forces should be incorporated in the effective motion equation.
For instance, gravitational forces are irrelevant to the results of compression tests
carried on concrete samples. Nonetheless, the fact that the microscopic forces
ρge3 become ⟨ρ⟩ ge3 on the macroscale is not trivial a priori and needs to be
justified.
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2. When enriching the degrees of freedom of the effective homogeneous substitution
medium at finite frequencies, i.e., beyond the quasi-static limit, the effective
parameters become dependent on the space of admissible body forces. Being
aware of this dependency, including body forces allows to preserve energetic
consistency in the sense of Hill-Mandel relation.

2 On averaging and contrast
What is striking1 in the present work is the abundance of definitions. All these
definitions involve some kind of averaging which, as intuitive as one might think it is,
is poorly justified and is mainly a simple way to force the smoothing of microscopic
fields where smoothing should be a natural outcome of the governing physics. Another
bizarre feature of said definitions is the absence of the role of microstructure. All the
suggested homogenization approaches seem to be indifferently applicable to all kinds of
periodic microstructures and can yield strain-gradient, Cosserat-like or micromorphic-
like effective media. It is desirable however that the rise of dispersive effects or that of
new degrees of freedom be also a natural outcome of the governing physics and of the
underlying microstructure.

The nature of the effective medium, be it a strain-gradient, a non-local and/or a
generalized one, can be justified by three means;

1. ideally, through a convergence theorem,

2. or, otherwise, by some formal asymptotic expansion,

3. or, as a last resort, by some homogenizability conditions which should help
control the error committed by the averaging scheme.

Paradoxically, the most known convergence theorem of homogenization theory
is also microstructure-independent implying that the effective medium is a Cauchy
medium and that dispersion and enriched kinematics are only relevant as first order
corrections. However, in some physical situations where contrasts are high enough
and phases are connected in a particular fashion, said first order corrections become
dominant. A natural question then comes to mind: under what conditions on contrast
and connectedness can a strain-gradient medium, a Cosserat-like medium or even
a Willis medium be obtained as homogenization limits rather than by an averaging
scheme?

Effective media with a nonlocal behavior in time have been obtained as homog-
enization limits of a two-phase high-contrast stiff-matrix soft-inclusion composite. I
speculate that Cosserat-like media, i.e., with additional rotational degrees of freedom,
can be obtained by inverting the contrast in the aforementioned composite. As for
Willis media, the question remains largely open to my knowledge.

1In a negative sense.
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3 Back to cloaking
The realization of some elastic cloaks requires a material whose effective behavior
couples stresses and velocities as well as momenta and strains as in the one defined by
Willis theory. A project aiming to conceive such cloaks would encounter two difficulties.

1. For the metamaterials used in the cloak to behave macroscopically as dictated by
Willis theory, said theory must be valid which invokes the same above questions
on homogenizability and convergence.

2. Assuming the validity of Willis theory, the effective behavior is nonlocal in space
whereas the behavior of the cloak is local. An appropriate local long-wavelength
asymptotic approximation of Willis theory preserving the coupling terms needs
then to be found.

4 Other behaviors and media
The (formal) extension of the presented approaches to other microscopic linear behaviors
seems straightforward. The physical implications on the characteristics of the effective
behavior can be however important. For instance, including linearly viscoelastic
components would localize time nonlocality in some recent past as small as viscous
effects are important. This can be analytically checked on the simple discrete 1D
example treated in chapter 2. As a matter of fact, the therein derived formulae remain
valid if any spring is replaced by any combination of springs and linear dashpots.

It seems to me that the methods presented here are profoundly linear as they are
based on different kinds of expansions such as Floquet-Bloch and Fourier expansions.
Non-linear behaviors are much more challenging.

Other problems of theoretical and practical importance arize when dealing with finite
media as boundaries, interfaces and associated reflexion, refraction and transmission
phenomena come into play. Non-periodic media, such as quasi-crystals, perturbed
periodic media or plain random media, are also undoubtedly worthy of attention.
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