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Depuis l'aube de la civilisation, l'homme a cherché à trouver des matériaux pour remplacer ou 

améliorer certaines fonctions du corps. Le départ avait été avec les implants médicaux 

provenant de sources naturelles. Cependant, à partir de la deuxième partie du vingtième 

siècle, la vraie révolution a eu lieu avec l'introduction d'implants médicaux synthétiques. Les 

procédures chirurgicales impliquant des dispositifs médicaux implantés sont très populaires 

ces jours-ci, avec des millions de patients subissant ce type d'opération annuelle. Ces implants 

sont utilisés dans différentes parties du corps avec des applications dans diverss domaines 

(orthopédie, endoprothèses vasculaires, administration de médicaments, etc...) visant à 

l'amélioration de la qualité de vie du patient. Différents matériaux peuvent être utilisés pour la 

synthèse des dispositifs médicaux, tels que les matériaux polymères qui remplacent 

rapidement les autres classes de matériaux comme les métaux, les alliages et les céramiques. 

Les polymères synthétiques sont principalement utilisés et peuvent être classés en fonction de 

leur réactivité chimique comme: 

- Matériaux polymères biodégradables utilisés pour des applications à court terme: ces 

matériaux possèdent l'avantage de dégradation dans le temps et donc une deuxième 

intervention de l'opération pour leur suppression est inutile. 

- Matériaux polymères non biodégradables utilisés pour des applications à long terme: aussi 

connu comme polymères biostables. Ceux-ci offrent un soutien au fil du temps et continuent à 

avoir une performance ultime durant la vie d'un patient. 

La visualisation de ces implants est une nécessité afin d'obtenir des informations concernant 

leur fixation dans le corps et le devenir post-opératoire. Par conséquent, des techniques de 

visualisation non invasives ont été développées telles que la radiographie, le scanner, 

l’échographie, l’imagerie par résonance magnétique (IRM). Parmi les différentes techniques 

d'imagerie que les cliniciens ont à leur disposition, l'IRM semble être l'outil idéal pour la 

localisation et la visualisation des implants médicaux. En effet, l'IRM est une technique non 
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invasive qui donne des images de haute résolution en relation avec la teneur en eau des tissus 

biologiques. Malheureusement, les implants médicaux polymères sont invisibles par l'IRM. 

Selon les praticiens de la santé, la visualisation est de très haute importance en raison des 

divers avantages offerts par cette technique. Avec l'aide d'autres techniques d'imagerie, l’IRM 

permet l'évaluation de la prothèse «fixation post-opération », l'intégration des tissus et le 

devenir post-opératoire. 

Un des défis est alors de fixer un agent de contraste sur l'implant médical. A notre 

connaissance, il y a peu ou pas de systèmes satisfaisants pour la visualisation des implants 

médicaux par l'IRM. La raison principale est due à la difficulté de greffage d'un agent de 

contraste sur le matériau sans affecter ses propriétés. Des résultats très prometteurs et brevetés 

développés à l'IBMM ont permis de visualiser par IRM une prothèse utilisée en gynécologie 

et obstétrique. Dans cette approche, un agent de contraste à base de gadolinium sera fixé sur 

la prothèse pour la rendre visible. L’imagerie par fluorescnce attire également de plus en plus 

d'attention. Pour cette raison une étude préliminaire sur la synthèse de fluorophores 

organiques attachés à la chaîne polymère sera signalée. La synthèse de complexes d'europium 

fluorescents macromoléculaires sera décrite. 
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Since the dawn of civilization, man-kind has sought to find materials to replace or improve 

certain body functions. The start had been with medical implants from natural sources. 

However, starting from the second part of the 20th century, the real revolution occurred with 

the introduction of synthetic medical implants. Surgical procedures involving implanted 

medical devices are very popular these days, with millions of patients undergoing this type of 

operation yearly. These implants are used in different body parts with applications in different 

fields (orthopedics, cardiovascular stents, drug delivery, etc.) all aiming at the improvement 

of the patient’s quality of life. Different materials can be utilized for the synthesis of medical 

devices as polymeric materials which are rapidly replacing other material classes as metals, 

alloys and ceramics. Synthetic polymers are mostly used and can be classified based on their 

chemical reactivity as: 

- Biodegradable polymeric materials used for short-term applications: these materials 

possess the advantage of degradation over time and thus a second operation 

intervention for their removal is unnecessary.  

- Non-biodegradable polymeric materials used for long-term applications: also known 

as biostable polymers. They offer support over time and continue to have ultimate 

performance during a patient’s lifetime.  

The visualization of these implants is a necessity in order to gain information concerning their 

fixation in the body and post-operation fate. Hence, non-invasive visualization techniques 

have been developed such as radiography, scanner, echography, magnetic resonance imaging 

(MRI). Among the different imaging techniques, clinicians have at their disposition, MRI 

seems to be the ideal tool for the localization and visualization of medical implants. In fact, 

MRI is a non-invasive technique resulting in high-resolution images related to the water 

content of biological tissues. Unfortunately, polymeric medical implants are invisible by MRI. 

According to health practitioners, such visualization is of very high importance due to the 
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various advantages offered by this technique. With the help of other imaging techniques, MRI 

allows the evaluation of prostheses’ post-operation fixation, tissue integration and post-

operation fate.  

One of the challenges is to fix a contrast agent on the medical implant. Up to our knowledge, 

there is still a little or no satisfying systems for the visualization of medical implants by MRI. 

The main reason is due to the difficulty of grafting a contrast agent on the material without 

affecting its properties. Very promising and patented results developed at the IBMM have 

made it capable to visualize by MRI a prosthesis utilized in gynecology and obstetrics. In this 

approach, a gadolinium-based contrast agent is fixed on the prosthesis to make it visible.  

Fluorescnce imaging is also attracting more attention. For these preliminary studies the 

synthesis of organic fluorophores attached to polymeric chain will be reported. The synthesis 

of fluorescent europium macromolecular complexes is also described.  
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1.1 Medical Devices Definition  
 

According to ISO 13485 issued in 2003, a medical device is a manufactured product intended 

to cope with human disease, care for human injuries, meet human anatomical needs, maintain 

human physiological functions, support human life, or control human conception [1]. The 

European Commission in its Council Directive 93/42/EEC defined medical devices as articles 

intended to be used for a medical purpose as assigned by the manufacturer [2]. Due to the 

presence of a wide variety of these devices, their classification is based on their risk with a 

higher classification indicating higher risk.  

 

1.2 Classification  
 

The classification in EU and Canada groups these devices into four different classes, whereas 

the US groups them in three different classes [3]. Figure 1 represents the classification of 

medical devices based on their risk in each of the three mentioned countries.  

 

 

  

 

For conciseness, we will focus on the European classification which has already stated, the 

European system classifies the devices into four classes, with the highest risk devices being in 

class III. There exist 18 rules for the classification of medical devices, with rules 1 to 12 

Figure 1: Risk-based classification of medical devices in Canada, EU and US [3] 
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classifying devices according to general criteria as invasiveness, duration of continuous 

contact, nature of tissue contact, and distinction between non-active and active devices. Rules 

13 to 18 are special rules [4]. According to the directive 93/42/EEC, the duration of the 

contact of the medical device with the human body can be transient (intended use <60 min), 

short term (intended use ≤30 days) or long term (intended use >30days). Table 1 presents 

examples of product risk classification [5].  

Class Description Examples  Risk  

I Non-invasive devices with no body 

interaction  

Hospital beds, bed pans, 

sterile plasters 

  Low  

IIb  Surgically invasive/active devices 

partially or totally implantable in the 

body  

May modify composition of body 

fluids  

Infusion pumps,  

Ventilators,  

Surgical lasers  

  Medium  

III Support or sustain human life 

Prevent impairment of human health  

Various implants: vascular 

and neurological, heart 

replacement valves, silicone 

gel-filled breast implants, 

and implanted cerebella 

stimulators  

     High  

 

 

 

In order to be precise, we will focus on implantable medical devices of the prosthesis type.  

 

1.3 Medical implants and prosthetics 
 

Surgical procedures involving implanted medical devices are becoming more and more 

popular, with millions of patients undergoing such procedures yearly. According to US FDA, 

medical implants are devices or tissues placed inside or on the surface of the body. These 

implants can serve one or several functions such as: medication delivery, body functions 

Table 1: Details and examples of medical devices classification [6] 
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monitoring, organ support, etc. In the case where the implants are intended to replace missing 

body parts, they belong to the prosthetic type [7].  

 

1.3.1 Prosthetic biomaterials: definition and properties  

An implanted prosthesis is fabricated from biomaterials which are defined according to the 

American National Institute of Health as any substance or combination of substances, other 

than drugs, synthetic or natural in origin, which can be used for any period of time, which 

augments or replaces partially or totally any tissue, organ or function of the body, in order to 

maintain or improve the quality of life of the individual [8]. Biomaterials should possess some 

important properties, so they can be used in the body without any rejection. The two most 

important properties which control the performance of the medical device are the 

biocompatibility and the biofunctionality. 

 

1.3.1.1  Biocompatibility 

According to Williams in 2008, biocompatibility refers to the ability of a biomaterial to 

perform its desired function with respect to a medical therapy, without eliciting any 

undesirable local or systemic effects in the recipient or beneficiary of that therapy, but 

generating the most appropriate beneficial cellular or tissue response in that specific situation 

[9]. Important components of biocompatibility are tissue response, cytotoxicity, genotoxicity, 

mutagenicity, carcinogenicity, and immunogenicity [10].  

 

1.3.1.2 Biofunctionality 

Biofunctionality refers to the material’s ability to perform the function for which it has been 

designed during its entire duration of use, thus the ability of the material to satisfy its design 
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requirements while in service [11]. Other important requirements for biomaterials to be used 

in medical implants are: mechanical properties, corrosion, sterility etc. [11]  

 

1.3.2 Types of Prosthetic Biomaterials   
 

Biomaterials used in implants can be classified into two large groups: natural and synthetic. 

Synthetic biomaterials are further classified into: metallic, ceramic, and polymeric [12]. 

 

1.3.2.1 Natural Biomaterials 

The advantages of this type of biomaterials are: biocompatibility, biodegradability, and 

remodeling. Natural biomaterials can be classified into several groups [12]:  

· Protein-based: collagen, gelatin, silk  

· Polysaccharide based: cellulose, chitin/chitosa, glucose 

· Decellularized tissue derived  

In fact, the most common type of prosthetic implants derived from natural biomaterials is the 

decellularized extracellular matrix of either animal (xenograph) or human origin (allograft) 

[13].  

However, natural biopolymers have several disadvantages as: poor immunogenic response 

(where the body realized the biomaterial as foreign and tries to destroy it), high variability, 

and complex technological processing techniques [14].  

 

1.3.2.2 Metallic Biomaterials  

This type of biomaterials is still used extensively in surgical implants due to the high strength 

and resistance of metals. They are also relatively easy to fabricate [15]. Metallic prostheses 

for the hips, knees, and shoulders are very common. The three mostly used metals and alloys 

in these prostheses are: stainless steel, CoCr alloys and Ti alloys [16].    
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One example of titanium alloys is Nitinol which has experienced explosive growth since the 

end of last century. Nitinol first discovered in 1962, is a mixture of nickel and titanium. It is 

considered as a shape memory alloy with excellent biocompatibility, elasticity, and a wide 

range of biomedical applications: orthodontic wires, orthopedic implants, stents and catheters 

[17-18].   

The major disadvantage of metallic implants is the risk of corrosion. Corrosion causes 

disintegration of the implant leading to its weakness, in addition to the harmful effects of the 

corrosion products on tissues and organs [19].   

 

1.3.2.3 Ceramic biomaterials  

The importance of this class of biomaterials is growing due to the advantages they offer 

including: high biocompatibility, resistance to corrosion, high resistance to compression, 

inertness, high fusion temperature in addition to low thermal and electrical conductivity [20]. 

Ceramics used for implants can be classified into 3 groups [21-23]: 

· Non-absorbable or relatively inert ceramics: they conserve their physical and chemical 

properties once in the body. Examples include ceramics of alumina (Al2O3) and zirconia 

(ZrO2). They are mostly used as structural-support implants such as bone plates and 

bone screws.  

· Surface active or bioactive ceramics: they form bonds with adjacent tissues. An 

example of this type of ceramics is the bioglass which is mainly used in artificial bones 

and dental implants. They are also used as prosthetics for hard tissue [24].  

· Bioresorbable or non-inert ceramics: as implied from their name, they are resorbed by 

the body and are then replaced by endogenous tissues. The time of resorption depends 

on the material used. Most of these ceramics are composed of calcium phosphate 
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derivatives. Hydroxyaptite (HAP) strongly represents the bone structure and is thus used 

in several dental and orthopedic implants.  

 

1.3.2.4 Polymeric Biomaterials  

This type of biomaterials is rapidly replacing other classes due to their flexibility, ease of 

production and low density [20]. This biomaterials enters into a wide variety of applications 

as facial prostheses, tracheal tubes, hip and knee joints, etc. [25]. Polymeric materials can be 

either of a natural source or a synthetic source. Natural polymers, as collagen, have several 

disadvantages, a poor immunogenic response, the possibility of bacterial and viral infection, 

and difficulty in reproduction, as previously described in the section of natural biomaterials. 

Synthetic polymers, on the other hand, can be easily produced and are highly versatile, which 

made them dominate different fields of medical implants [26].  

There is a wide variety of synthetic polymers used as biomaterials, thus we will enter into 

further details in synthetic polymers used in prostheses.  

 

1.4 Different classes of synthetic polymers used in prostheses  
 

Synthetic polymeric materials have a wide range of applications ranging from medical 

disposable devices to prosthetic materials, implants, dental materials, etc. Polymers are 

considered as interesting materials for the conception of prostheses due to the wide variety of 

properties they offer. In fact, even the same polymer can present different properties based on 

a number of parameters:  

§ Molecular weight: polymer molecular weight is important because it 

determines many physical properties such as transition temperatures, mechanical 

properties as stiffness, strength, viscoelasticity, toughness and viscosity [27]. 

Molecular weight also affects the crystallinity of polymer, which usually decreases 
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with an increase of the molecular weight [28]. The degree of polymerization is also 

another mean of determining the length of the polymeric chain [29].  

§ Stereoisomers: Two polymers may have the same molecular formula and same 

structural formula, yet differing in their bond spatial arrangement. This results in 

stereoisomerism. Atactic, isotactic and syndiotactic stereoisomers are present.  

o Atactic polymer: in this case the side groups are positioned randomly 

on one or the other side of the polymer backbone.  

o Isotactic polymer: the side groups have the same configuration at 

successive, regularly spaced potions along the chain.  

o Syndiotactic polymer: side groups have a regular alteration in front and 

the back of the chain plane.   

Stereoisomers have a strong impact on crystallinity. Atactic polymers are amorphous (non-

crystalline) due to the random distribution of the side groups, which gives them a soft and 

flexible form. Isotactic polymers, due to their stereoregular structure, have strong 

intermolecular forces, and thus a stronger structure. Syndiotactic polymers have properties 

more similar to isotactic polymers rather than atactic ones due to stereoregularity. Thus, 

stereoregular polymer structures (isotactic and syndiotactic) are more crystalline than atactic 

polymers, due to their strong intermolecular forces [29].  

Prosthetic implants can be either temporary or permanent depending on their application. For 

this, synthetic polymers constituting these implants can be differentiated into either biostable 

(for permanent applications) or biodegradable polymers (for temporary applications) [30]. In 

fact, the most common method for polymer degradation is the hydrolysis of the hydrolytically 

unstable backbone [31].  
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1.4.1 Synthetic Biostable Polymers 

Biostable polymers are inert, cause minimal response in the surrounding tissue, and retain 

their properties for years [32]. Some examples of biostable polymers used in medical 

applications are listed below.   

 

1.4.1.1 Polyethylene (PE) 

There are various medical applications for polyethylene depending on the molecular weight. 

Polyethylene can be classified into 3 classes: low density, high density (HDPE) and ultrahigh 

molecular weight (UHMWPE). The most attention has been given to the last two classes due 

to their chemical inertness, and biostability. An example of the use of polyethylene is in the 

anterior cruciate ligament prosthesis [33]. One of the first commercial knee ligament 

prostheses tested for approval by the FDA in the 1970s was made from UHMWPE [34].  

 

1.4.1.2 Polypropylene (PP) 

Polypropylene is a very rigid plastic that has found its way into several applications in 

prosthetics. It is one of the most biostable and biocompatible polymers widely used. PP has 

excellent stiffness and strength as compared to polyethylene [33]. Meshes made of 

polypropylene have been widely used as prosthetic material for hernia repair during the last 

twenty years due to their stability, strength, inertness and handling qualities. These meshes are 

composed of monofilament fibers having different sizes of pores. Depending on the 

manufacturer, meshes differ in the pore size, thickness, pliability, etc. [35]. 

 

1.4.1.3 Poly(tetrafluoroethylene) (PTFE) 

PTFE is composed of polymer chains of carbon saturated with fluorine. PTFE is biostable and 

has minimum interaction with blood components due to its electronegativity. PTFE is used 
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extensively in cardiovascular prosthetic implants and is known as extended 

poly(tetrafluoroethylene) or ePTFE [36].  

 

1.4.1.4 Poly(methyl methacrylate) (PMMA) 

PMMA is the most common of manufactured acrylic compounds with two unique properties: 

optical clarity and weather resistance [29]. Other advantages of PMMA include bioinertness 

and non-degradability [33]. PMMA has been the primary material used in prosthetic eyes for 

the past 60 years [37]. PMMA has also found its way into bone prosthetics [38].  

 

1.4.1.5 Poly(dimethyl siloxane) (PDMS) 

PDMS is a silicone elastomer which is biostable, non-toxic, biocompatible, blood compatible, 

elastic, transparent, durable and bio-inert. Its bio-inertness makes it very attractive to 

biomedical applications since it inhibits microbial growth [33]. It is mainly used in facial 

prostheses [39].  

 

1.4.1.6 Poly(urethanes) (PU) 

Poly(urethanes) are biocompatible, blood compatible, fatigue resistant, durable and elastic 

[33]. They are the most commonly used materials for the production of artificial heart valves, 

veins and arteries [40]. 

 

1.4.1.7 Poly(sulfone) (PSU) 

This type of polymers has several properties as: high thermal stability, high toughness and 

strength, fire and stress crack resistance, and transparency [29]. One of the applications of 

polysulfones is in artificial heart components [25].  

 

 



24 

 

1.4.2 Synthetic Biodegradable Polymers  

For many applications, biodegradable polymers are favored over biostable ones due to issues 

of biocompatibility related to long-term non-degradable polymers [25, 41].Synthetic polymers 

used in medical applications can degrade by one of the following mechanisms: hydrolysis, 

oxidation, enzymatic degradation, and physical degradation [25]. Examples of some 

biodegradable polymers used in medical prostheses are listed below.  

1.4.2.1 Aliphatic Polyesters 

Due to the favorable characteristics of biocompatibility and biodegradability of polyesters, 

they are considered one of the most important classes of biodegradable polymers [42]. 

Examples of aliphatic polyesters are poly(ε-caprolactone), poly(hydroxybutyrate), polylactide. 

For example, polylactide is used in fracture fixation [43].  

 

1.4.2.2 Polyorthoesters 

Materials made of polyorthoesters are hydrophobic with hydrolytic linkages. These materials 

are sensitive to acids, but stable to bases which allows controlling their degradation rates by 

adding acid or base excipients [31].  Polyorthoesters have been used as controlled release of 

drug devices since the early 1970s [44].  

 

1.4.2.3 Polyanhydrides  

Polyanhydrides are considered to be biocompatible, and their degradation in vivo yields non-

toxic diacids which are then eliminated from the body as metabolites [45]. Their degradation 

times can be adjusted from days to weeks [31]. Polyanhydrides have been used as drug 

delivery system and in the design of the device Gliadel used for the treatment of brain cancer 

[45]. 
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1.4.2.4 Polycarbonate 

Polycarbonate is considered as a type of polymer with properties as: heat and resistance, 

clarity, stability [29]. For more than 20 years, it has been used in cardiac surgery products as 

blood oxygenators due to its glass-like clarity allowing visual evaluation of the blood flow 

[46].  

 

1.4.2.5 Polyamides  

Nylon is the generic name given to a group of polymers belonging to the class of polyamides. 

Nylon is known for its mechanical properties, mainly stress resistance. It is also known for its 

flexibility [47]. Biodegradable nylon and other polyamides have found applications in sutures, 

coatings and medical device packaging [48].  

 

1.5 Medical imaging surface modalities  
 

Imaging modality is defined as a method used to acquire data about tissues in animals or 

humans. The imaging technique can be used to detect several centimeters below the surface or 

just a few mm deep [49]. The obtained information is then transformed into images 

elucidating the anatomy of organs, size and localization or existence of certain pathologies. 

These imaging modalities allow physicians to make accurate diagnosis. In addition to the 

visualization of organs, the visualization of prosthetic implants is a necessity in order to 

obtain post-operation information (such as fixation of the implant, inflammation) and to 

follow-up the fate of absorbable implants. There are several non-invasive medical imaging 

modalities currently employed in medicine. For the sake of conciseness, only few imaging 

modalities will be discussed in details. 

1.5.1 X-ray and computed tomography (CT):  
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X-ray imaging is a low cost imaging technique that has been used for over a century for 

medical imaging following X-rays discovery by Roentgen in 1895. In the early 70’s, X-ray 

computed tomography (CT) was developed to produce cross-sectional images of the body. 

This method has proved to be a very essential technique in medical diagnosis and treatment 

techniques. Conventional X-ray, computed tomography (CT), and mammography are medical 

imaging techniques depending on X-rays. Conventional X-ray produces 2-D image as 

compared to 3-D image produced by CT. X-ray imaging depends on the absorption of X-ray 

beams. Once the beam passes through the patient, some of the rays scatter from the original 

beam while others are attenuated when absorbed by the tissues. The absorption depends on 

the organ, and this difference in absorption results in an emerging beam having different 

intensities. However, in the case where the organs have similar densities, distinction by 

radiography is difficult. In this case contrast agents as barium sulfate and iodine are used [50]. 

The main disadvantage of radiography is the presence of ionizing radiation [51].  

 

1.5.2 Ultrasound 

 

Ultrasound modality, also known as sonography, has been used to image the body for more 

than 50 years and is also one of the most widely used imaging techniques nowadays. In this 

technique, ultrasound waves are transmitted from a transducer (probe) to a body part. Upon 

the reflection of waves from this part, an ultrasound image is produced. Ultrasound images 

have several advantages mainly safety due to the absence of ionizing radiation, unlike X-rays. 

It is also inexpensive when compared to other imaging techniques [52]. Yet, the difficulty to 

produce a whole-body scan and the difficulty to examine certain organs (as lungs and brain) 

are one of the drawbacks of this technique. In addition, the resolution offered by this 

technique is lower compared to other imaging techniques, in the case where the organ is large 

or the object is far from the transducer [53].  
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1.5.3 Magnetic Resonance Imaging (MRI) 

 

MRI has become an important diagnostic tool during the last few decades with nearly 60 

million scans performed yearly worldwide [54]. The use of MRI as a diagnostic tool is 

growing rapidly in both the number of installed instruments and the number of performed 

scans [55]. The main advantages of MRI are its excellent contrast resolution and the absence 

of ionizing radiation [56,57]. This technique depends on the application of strong magnetic 

field and radiowaves to nuclei possessing a spin to obtain cross-sectional images of organs in 

the body [57]. Due to the increased popularity of this technique, its high resolution and 

absence of ionizing radiation, it will be discussed in details in the following section. However, 

before going into further details of MRI it is worth mentioning that other other imaging 

techniques are present as optical imaging and radionuclide imaging. 

 

1.6 Magnetic Resonance Imaging  

1.6.1  Brief History  

MRI is based on the physics of nuclear magnetic resonance (NMR) which was discovered by 

Bloch and Purcell and obtained the Nobel Prize in Physics in 1952 for this [58]. They 

discovered that certain nuclei once placed in a magnetic field and pulsed with proper 

radiowaves, emitted radiosignals with frequencies characteristic for each element. In the late 

1960s, Damadian discovered that NMR parameters of normal cells are different than those of 

malignant ones [56] and in the mid 1970s the first NMR image was produced by Lauterbur 

[59]. Since then, this technology has evolved rapidly. The technique was called later MRI 

rather than NMRI (nuclear magnetic resonance imaging) because the word “nuclear” was not 

publically accepted. 
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1.6.2 Principle [56, 60, 61, 62] 

Magnetic resonance depends on the interactions between an applied magnetic field and a 

nucleus with a spin. The nuclear spin or the intrinsic spin angular momentum is one of the 

properties of nuclei and is directly related to the atomic composition. This spin (I) is 

quantized to certain values depending on the atomic number and atomic weight. A nucleus 

possesses: 

-  No spin if it has even atomic number and even atomic weight 

- Half-integral values of I (1/2, 3/2…) if it has even atomic number and odd 

atomic weight 

- Integral value of I (1, 2…) if it has odd atomic number and even atomic 

weight.  

Examples of nuclei mostly examined by NMR include: 1H, 13C, 17O, 31P, 15N, 

29Si, 19F. 

However, most MRIs choose the hydrogen nuclei for probing the body for several reasons: 

I=1/2, it is the most abundant isotope of hydrogen, and has the largest response to an applied 

magnetic field (very high gyromagnetic ratio). In addition to all what is mentioned, water and 

fat are the main constituents of the body’s tissues and both contain hydrogen atoms. 

Thus, a positively charged nucleus possesses in addition to the spin a magnetic moment which 

is parallel to the axis of rotation. A tissue contains several hydrogen atoms, each having a spin 

vector with defined magnitude, yet randomly directed thus producing no net magnetization 

(sum of vectors=0) (Figure 2).  
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If this tissue is subjected to external magnetic field Bo, protons of hydrogen precess (rotate) 

either parallel (lower energy state) or antiparallel (high energy state) to the magnetic field, 

with more protons in the lower state than in the higher one thus resulting in net magnetization 

M0 as revealed in Figure 3 

 

                                                                                 M0 

 

 

 

 

In fact, this precession occurs at a frequency known as the Larmor frequency directly 

proportional to the magnetic field and the gyromagnetic ratio specific to each nucleus (γ) as 

shown in Equation 1: 

     

 

 

Once net magnetization is produced, a pulse of the specific frequency (Larmor frequency) 

will be applied. Only protons spinning at the same frequency will absorb this energy and then 

reemit the energy at the same frequency (that is, all nuclei of hydrogen will emit at the same 

frequency).  

Upon exposing the tissue to the correct ω0, the radiofrequency energy is absorbed (by the 

lower energy state protons) and M0 is flipped away from the equilibrium position.  

Figure 3: Production of the net magnetization in presence of an external magnetic field 

ω0 = γB0 (Equation 1) 

Figure 2: Random orientation of protons of hydrogen resulting in zero net magnetization 
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After excitation, the excited nuclei will return back to their lower energy state (emitting 

energy at ω0) and M0 will return to its equilibrium state along the direction of B0 by a process 

called relaxation which can be either longitudinal or transversal. These relaxation processes 

determine the shape of the MR image.  

For the process of relaxation to be understood, an x, y, z frame of rotation should be pictured 

with the Z-axis having the same direction as M0 and the X and Y axis at right angles as shown 

in Fig. 4. Thus the Z-axis is the equilibrium state.  

 

 

 

 
Ø Longitudinal Relaxation or T1 Relaxation [56,60] 

This is also called the spin lattice relaxation.  Following an excitation, M0 flips from the z-

axis. The time needed for M0 to return to 63% of its original value along the z-axis is called 

T1 relaxation as shown in figure 5.  

 

  
   
 

Equation 2 represents the return of the magnetization to its value along the Z-axis: 

  

Figure 5: Gradual increase of M0 along the Z-axis following an excitation 

Figure 4: X,Y,Z axis of rotation 

 M(z) = M0(1-e-t/T1) (Equation 2) 
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Where T1 represents the spin-lattice relaxation and M0 is the net magnetization.  

 

Ø Transverse relaxation or T2 relaxation [60,63] 
 

This is also called spin-spin relaxation. It is the time needed for the transverse component of 

M to decay to 37% of its initial value after the excitation. After the radiofrequency pulse, M0 

is rotating in the X-Y plane around the Z-axis. Spin-spin relaxation refers to the energy 

transfer from one excited proton to the nearby proton. Unlike T1 in which the energy is 

transferred to the surrounding, here the energy is transferred as spin excitation.  These 

interactions cause loss in phase coherence hence a decrease in the magnitude of transverse 

magnetization and hence loss of signal intensity. Once each xy component is balanced by an 

opposite one, the dephasing process is then complete and the magnetization vector aligns with 

the applied field again.  

 

 
 
 
 
 

T1 and T2 are two independent processes that happen simultaneously. The molecular 

structure and chemical composition of tissues influence the values of T1 and T2 with a 

general rule that T2 can never exceed T1. Depending on the tissue’s nature (solid or liquid) 

these values can change. Longer T1 values, in the order of seconds, are observed in solids due 

to interatomic bonds resulting in rigidity, thus fewer collisions. However, in the case of liquid 

(which is the case of most tissues in the body) T1 values are in the order of milliseconds, 

since molecules tend to collide frequently. T2 values, and as noted before, depend on field 

non-homogeneities. Solids exhibit shorter T2 because interactions increase the decay process 

Figure 6: Transverse relaxation T2 
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(more spin-spin interactions). Liquids on the other hand have more molecular motion thus 

increasing T2. In general various diseases increase the H2O content, thus an increase in T2 is 

observed [61]. 

Figure 7 represents the effect of water mobility on T1 and T2 [64], and Table 2 represents T1 

and T2 values in different tissues [65]. 

 

 

 
Tissue Type T1(ms) T2(ms) 

Liver 812 42 
Muscle 1412 50 
Kidney 1194 56 
Blood 1932 275 
Adipose 423 154 

 
  
 

 

Over the years much effort has been made in order to enhance the image contrast between 

some naturally low contrast organs or between a healthy and an affected part by the use of a 

contrast agent. To enhance the differentiation between tissues in MRI, contrast agents (CAs) 

are used to shorten the relaxation parameters (T1 and T2) of surrounding water molecules. 

Table 2: Relaxation times in water molecules present in different types of tissue at 3T 

Figure 7: Effect of water mobility on T1 and T2 
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Currently almost 30% of MRI exams include the use of contrast agents and the number is 

expected to increase with the production of new agents [66].  

 

1.6.3 MRI Contrast Agents 

Contrast agents are products that allow increasing the image contrast in order to differentiate 

between healthy and pathological areas [67]. Iodine and sulfate were among the first contrast 

agents used in radiography. These radiographic contrast agents attenuate more X-rays than 

soft tissues in the body, thus enhancing the contrast [68].  

However, the mechanism by which MR contrast agents enhance image contrast is different 

than that of radiographic contrast agents. MR contrast agents are indirect agents in the sense 

that they are not directly visualized in the image, but enhance the contrast by altering the 

relaxation times (T1 or T2) [60, 69]. In addition the dose of MR contrast agents needed is 

lower than that of radiographic contrast agents, thus lowering the probability of adverse 

reactions [60]. MR contrast agents can be classified as T1 or T2 agents based on their effect 

of shortening T1 or T2 relaxation times. Paramagnetic contrast agents as Mn2+ and Gd3+ are 

considered as T1 agents while superparamagnetic contrast agents (as iron oxides) are 

considered as T2 agents [70]. It is important to note that the concentration of the contrast 

agent has a direct effect on the signal intensity. Depending on the concentration, the signal 

reaches a maximum before it starts decreasing. For example, low concentrations of 

paramagnetic contrast agents enhance signal intensity by decreasing T1. However, by 

increasing the concentration, the agent will have more effect on T2 thus resulting in a 

decrease in signal intensity [60, 71]. One of the problems of T2 contrast agents is the increase 

in magnetic susceptibility leading to artifacts at high field strengths [60,72]. Iron oxides are 

rarely used with less than 10% of contrast agents. For this, most clinically used contrast 

agents are T1 contrast agents or paramagnetic contrast agents which will be discussed in 
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H2O:  

details. Note that T1 contrast agents are also called positive contrast agents, while T2 contrast 

agents are called negative contrast agents.  

 
1.6.3.1  T1 Contrast Agents or Paramagnetic Contrast Agents  

 

1.6.3.1.1  Effect of Contrast Agents on T1[60, 72] 

 

T1 relaxation depends on excited protons giving their energy to the surrounding tissue. In the 

case where a paramagnetic ion is used, the energy transfer occurs from the excited protons to 

the free unpaired electrons of the ion. The most efficient energy transfer occurs when the 

protons are in the coordination sphere of the metal complex that is the innermost layer of 

atoms surrounding the metal ion. This is called the inner sphere relaxation, one of the two 

mechanisms due to the paramagnetic ion. At this point, water molecule enters into the 

coordination sphere, exchanges its energy with the electron of the metal ion and is rapidly 

replaced by another water molecule. This is represented as the residence time of the water 

molecule in the coordination sphere τm. The process of exchange of energy is represented in 

Figure 8. The energy exchange from the protons to the electrons results in a shorter relaxation 

time T1 thus brighter image contrast.  

 
 

                                                       
 

 
The second mechanism influenced by the paramagnetic ion, also resulting in shorter T1, is the 

In fact, paramagnetic agents decrease T1 thus resulting in an increase in relaxation rate 

(R1=1/T1) hence improvement in image contrast. τm and τD are two factors related to the 

paramagnetic ions influencing relaxivity. Other factors include: 

· q: number of coordinated water molecules (upon increasing q from 1 to 2, 

relaxivity increases by 30%) 

τm 

Figure 8: Inner and outersphere paramagnetic relaxation processes 

e- 

τd 



35 

 

· r: proton metal distance  

1.6.3.1.2 Paramagnetic Ions Used in MRI  

Different forms of positive contrast agents are available, all of which are composed of 

paramagnetic ions having one or more unpaired electrons attached to a chelating complex. 

Most paramagnetic ions used are lanthanide ions, which are well known for their magnetic 

properties [73]. The most commonly used lanthanide ion in MRI contrast agents is Gd3+ 

which will be discussed in details. Mn2+ is the second mostly used lanthanide in positive 

contrast agents. Mn2+ was the first contrast agent used and was introduced by Lauterbur in 

1978. Due to the presence of 5 unpaired electrons, Mn2+ has strong paramagnetic effects 

resulting in a decrease in T1 and enhanced image contrast. In most cases, Mn2+ is chelated in 

order to decrease its toxicity with Mn-DPDP (manganese dipyridoxaldiphosphate) and FDA 

approved this contrast agent for liver imaging [70,74]. Other paramagnetic ions are rarely 

used in MRI.  

 

1.7 Gadolinium: Element of Choice for MRI  
 

Gd3+ is the most commonly used lanthanide as a positive contrast agent with a large number 

of MRIs employing Gd (III) complexes, in order to enhance image contrast. The strongest 

emphasis is placed on these complexes, although complexes of other paramagnetic ions, 

especially Mn(II) and Fe(III), have been developed and approved. Yet, complexes of the latter 

two ions become weakly chelated and dissociate spontaneously in in vivo conditions. For 

example, MnDPDP (Fig. 9) is a weak chelate which dissociates in vivo to give free 

manganese ion, which is then taken by hepatocytes [75]. 
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1.7.1 Gadolinium Characteristics 

 

Lanthanides, especially Gadolinium, have found their way into medical diagnosis during the 

last few decades. Gd is a soft silvery atom first discovered in 1880 by Jean Charles Galissard 

de Marignac and was named in honor of Johan Gadolin. Gd has no known biological role and 

is completely absent from the human body. With an atomic number of 64, Gd has the 

electronic configuration of [Xe] 4f7 5d1 6s2 with 8 unpaired electrons. It has 7 isotopes, Gd-

158 being the most abundant, and possessing an average molecular weight of 157.25 g/mol 

[76]. 

 
The most common oxidation state of Gd is 3, with Gd3+ having 7 unpaired electrons. The 7 

unpaired electrons yield a high magnetic moment. Yet, this is not the only reason for choosing 

Gd3+ since other lanthanide ions as Dysprosium (III) and Holmium (III) possess even higher 

magnetic moment. However, Gd3+ has a symmetric ground state leading to a longer 

electronic relaxation time thus  allowing water protons to feel the effects of Gd3+ [66,77].  

Due to its paramagnetic effect (presence of 7 unpaired electrons) Gd3+ can influence both T1 

and T2. However, since T1 is much longer than T2, Gd3+ affects more dominantly T1 at 

moderate doses and yields brighter images contrast [78].  

However, Gd3+ cannot be used in its free form because free Gd3+ is toxic at the doses needed 

for MRI, this is why it is given under the form of stable complexes that keep the metal intact 

until excretion [79]. Gd3+ has an ionic radius of 0.99 Å very close to that of Ca2+ which is the 

Figure 9 : Chemical Structure of MnDPDP 
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reason of free Gd3+ toxicity: Gd3+ will thus compete (and with higher affinity, due to the 

trivalent charge) with Ca2+ in systems that need Ca2+ for proper functioning leading to 

disruption in biological systems [66,80]. For this, proper ligands should be chosen in order to 

form Gd-complexes that remain intact. The choice of stable complexes along with the dose of 

Gd3+ has gained more importance because of nephrogenic systemic fibrosis (NSF). The main 

cause of NSF is transmetallation between Gd3+ released from the chelate and endogeneous 

metals salts as Zn++ , Cu++, and Ca++. NSF mainly occurs in patients with severe renal failure. 

These patients take longer time to clear Gd-complexes, which increases the risk of 

transmetallation between Gd3+ and  endogeneous ions thus releasing free Gd3+ [81]. Free 

Gd3+ can precipitate as a salt and is deposited in target tissue especially in patients with NSF. 

There is also evidence that Gd3+can kill macrophages [82,83].Patients with NSF end up 

having stiffness in joints, muscle weakness, leg restlessness. 

For this, the complexation is necessary in order to eliminate any risks associated with free 

Gd3+ and prevent the precipitation of gadolinium salts. Thus, the rate of dissociation of Gd-

complex determines its toxicity.  Therefore, the choice of the complex is detrimental for the 

stability and biophysical properties.  

 

1.7.2 Gadolinium Complexes  

The chelation of Gd3+ in complexes is essential in order to eliminate tissue interaction with 

free Gd and decrease toxicity. The LD50 of free Gd3+ can be up to 50 times higher than 

chelated Gd [79,82]. Physicochemical properties of the Gd-complex depend on the nature of 

the chelate used, which can be cyclic or linear, ionic or non-ionic. These features determine 

the stability of the complex [84]. In general, Gd-MRI contrast agents can be classified as 

linear or macrocyclic chelates.  
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An example of an approved and clinically used ionic linear chelate for Gd3+ is 

diethylenetriamine penta-acetic acid (DTPA) forming Gd-DTPA known commercially as 

Magnevist®. An example of ionic cyclic chelate for Gd3+ is tetraazacyclododecane tetra-acetic 

acid (DOTA) forming Gd-DOTA commercially known as Dotarem® [84]. Figure10 represents 

the structures of some Gd(III) chelates developed for clinical use as MRI contrast agents.  

 

 

 
 
 

 

 

As it can be concluded, linear chelates (usually derivatives of DTPA) are open cycles where 

the DTPA chelates acts as pliers for Gd3+. On the other hand, macrocyclic chelates 

(derivatives of DOTA) offer strong rigid ring able to cage Gd3+ ion. Thus, the structure of the 

chelate affects the stability of the complex [84]. The structure of the complex (depending on 

the nature of the chelate) also affects its biodistribution, which can be in the extracellular 

fluid, intracellular fluid or liver [86]. By modifying the chemical structure of the complex (for 

Figure 10: Clinically used Gd-based MRI contrast agents [85] 
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example attaching macromolecules), the rate and path of excretion are affected [87]. The 

majority of Gd complexes utilize either DTPA or DOTA as chelates.  

 

1.8 Mechanism of Gd3+ Complexation 
 

Lanthanides tend to have high coordination numbers in an aqueous medium due to their larger 

sizes. In all clinically used Gd(III) MRI contrast agents, Gd3+ has a coordination number of 9 

with 8 binding sites with a ligand (chelate) and the ninth coordination site occupied by a water 

molecule [66]. Figure 11, represents Gd3+ complexation with DTPA and DOTA.  

 

 
 
                                                                                                                

 

The ligands used for chelation are donor atoms. For example, DTPA offers octadentate 

ligands for Gd3+ with 3 nitrogen donor atoms and 5 carboxylate oxygen donor atoms. DOTA 

also offers octadentate ligands with 4 nitrogen donor atoms and 4 carboxylate oxygen atoms. 

In both cases, the ninth coordination site is occupied by a water molecule [80]. In general, 

complexes derived from DTPA follow the same coordination as DTPA, while those derived 

from DOTA follow the same coordination as DOTA.  

The rate at which the metal-ligand complex is formed depends on many factors as pH, 

temperature, concentration of reactants, and whether the ligand is linear or cyclic. Linear Gd-

complexes are formed much faster than the corresponding macrocyclic complexes [80].  

 

Figure 11: Complexation of Gd with DTPA and DOTA 
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1.8.1 Gd Complex Stability 

Stability of Gd-complexes is of utmost importance because it is directly related to toxicity. 

The Gd-complex should remain intact in the body until its excretion in order to avoid the 

toxic effects of free Gd3+. In this sense, two stability constants should be discussed: the 

thermodynamic stability constant (Kst) and the conditional stability constant (Keff). Keff is the 

measure of the stability of the complex at physiological pH of 7.4 which is in fact more 

precise. Different complexes have different basicities, Kst is a theoretical measure of stability 

under very basic conditions (taking into account that all ligands are deprotonated). However, 

at physiological pH, some protonation must occur and hence the measure of Keff is a more 

precise measure of the stability constant [66, 80, 84]. Table 3 represents Kst, Keff, and the type 

of molecular structure of different clinically used Gd complexes.  

 

Commercial Name Scientific Name Formula LogKst Logkeff Molecular 

Structure  

Magnevist® Gadopentate 
dimeglumine 

Gd-DTPA 22.1 18.1 Linear Ionic 

Dotarem® Gadoterate 
meglumine 

Gd-DOTA 25.8 18.8 Macrocyclic 
Ionic 

ProHance® Gadoteridol Gd-HP-DO3A 23.8 17.1 Macrocyclic 
non-ionic 

Omniscan® Gadodiamide Gd-DTPA-BMA 16.9 14.9 Linear non-
ionic 

MultiHance® Gadobenate 
dimeglumine 

BOPTA 22.6 18.4 Linear ionic 

Gadovist® Gadobutrol Gd-BT-DO3A 21.8 14.7 Macrocyclic 
non-ionic 

OptiMARK® Gadoversetamide Gd-DTPA-
BMEA 

16.6 15 Linear non-
ionic 

 
                                                                              

 

1.8.2 Transmetallation 

Table 3: Stability constants and molecular structures of clinically used Gd-complexes [88] 
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This is the process in which other metal ions replace Gd3+ inside the complex with the highest 

probability being the replacement of Gd3+ by Zn2+. The transmetallation process is 

represented by the following reactionreaction [89]: 

 

 

 

Where M can be Fe3+, Ca2+, Cu2+ and Zn2+…. 

The order of affinity of complexation agents to some cations is: Fe3+>Cu2+>Zn2+ 

The highest attention is given to Zn2+ rather than the other two cations because iron in the 

serum is regulated by transferrin and Cu2+ is present in fairly low concentrations.  Free Gd3+ is 

then precipitated as gadolinium phosphate in soft tissues of the body [80]. The 

transmetallation process is represented in Fig. 12 [84]. 

 

 
 

 
 
 
 
 
 

 

 

 

 

Table 2 reveals that almost all complexes have relatively high stability constants, with 

macrocyclic complexes having the highest stability. In general, macrocyclic chelates are more 

stable than the corresponding linear ones [84], however this is not always necessarily true. In 

some cases, DTPA derivatives are more stable than the corresponding macrocyclic ones [80].  

Excreted 

Zn2+ 

   Gd 

chelate

e 

Zn 

Chelate 

Gd3+ 
Precipitated as Gd 
salts in tissues  

Figure 12: Mechanism of the transmetallation process 

GdLn + [M]x+ ↔ Gd3+ + [ML]-  
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Most utilized Gd-based contrast agents are not organ specific and are extracellular fluid 

agents. Most chelates used for gadolinium are hydrophilic, thus MRI contrast agents are 

hydrophilic, which limits their cell penetration [66, 86].  In general, most MRI contrast agents 

are administered intravenously with a terminal half-life of around 1.5 hours for extracellular 

agents [86]. 

 

1.9 Macromolecular Contrast Agents  
 

Almost all clinically accepted Gd complexes with cyclic or linear chelates are low molecular 

weight complexes. Their small size causes their rapid renal clearance. Modifying the chemical 

properties of Gd-chelates (by attaching macromolecules for example) affects their 

pharmacokinetics and clearance rate, thus extending their residency time in the body [87].  

The use of macromolecules as polymers and dendrimers causes an increase in the image 

contrast and resolution due to their larger sizes which retards the complex rotational moment, 

causing a decrease in T1 (increase in relaxivity R1=1/T1) and thus increased contrast [90,91]. 

Polymeric based macromolecular Gd contrast agents are being studied and evaluated as 

potential MRI contrast agents. In this case, biocompatible polymers are attached to Gd 

complexes. The polymers used can be either biodegradable or non-biodegradable. Depending 

on the position of the Gd-chelate in the polymeric chain, macromolecular contrast agents can 

be classified into four groups represented in Fig.13 where Gd is an abbreviation for Gd-

chelate. 

 



43 

 

 

 
 
 

In the case of block (a), in graft and dendritic macromolecular contrast agents (b and c), Gd 

with DTPA chelates is attached to polymers by the interaction of functional groups of DTPA 

chelates with functional group in polymers [91]. Graft macromolecular contrast agent is the 

structure of the contrast agent synthesized in our case and will be discussed in details in later 

sections. In the case of micellar contrast agents (d), Gd-chelates are either in the shell or in the 

core of the micellar structure. The size and structure of the micelle is designed according to 

the application. The methods used for their synthesis is mainly emulsion polymerization [91].  

 

1.9.1 Micellar MRI Contrast Agents 

 

Doiron et al. demonstrated the possibility of incorporating Gd-DTPA complex in 

microspheres of the copolymers PLA-PEG [92]. The system works on the idea of trapping a 

hydrophilic complex (Gd-DTPA) with high Gd content into a polymeric particulate system. 

However, due to the high hydrophilicity of the chelate, 90% of the complex was released after 

1 hour, and 100% after 5 hours. This is similar to results obtained by Chen et al., in which Gd-

Figure 13: Different structures of macromolecular contrast agents [91] 
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DTPA in PLA-PEG nanoparticles allowed an MRI visualization time of 4.5 hours [93]. Fig.  

14 schematizes the preparation of gadolinium conjugated with PLA-PEG nanoparticles in 

which a Gd-DTPA is chelated to the shell layer of the micellar structure. 

 
 

Thus, the incorporation of a hydrophilic complex of gadolinium in a hydrophobic polymer 

matrix only allows short-term visualization due to the rapid release of the complex. 

 

1.9.2 Graft macromolecular contrast agents  

 

In this case, the chelate is grafted on the linear polymeric chain carrier in order to avoid its 

release. The polymer used can be natural or synthetic. The molar mass and the structure of the 

polymer used determine the pharmacokinetics of the macromolecular contrast agents [91]. 

Modifications on Gd complexes have been made to conjugate polymers, to improve the 

contrast and to increase the contrast agent retention time in the body. Polymers can be either 

biodegradable or biostable depending on the needed duration of visualization. Schuhmann-

Gampierri et al. covalently linked poly(lysine) to Gd-DTPA and evaluated its 

pharmacokinetics as compared to Gd-DTPA. This polymeric contrast agent had three times 

higher relaxivity than Gd-DTPA and increased half-blood distribution [94]. Zheng-Rang et al. 

synthesized a biodegradable polysulfide GdIII contrast agent. These macromolecular contrast 

Figure 14:  Gadolinium conjugated to PLA-PEG nanoparticles [93] 
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agents degraded in the body into small and excretable Gd complexes. These agents prolonged 

contrast enhancement in blood pool with a minimal Gd(III) retention [95].  

In some cases, the chelate is modified in order to be attached to the macromolecular contrast 

agent. For example, Blanquer et al. obtained a PCL grafted with Gd-DTPA by modifying 

DTPA dianhydride to give Bn2-DTPA-PCl. This compound was further reacted with anionic 

PCL, treated and purified to yield DTPA-PCL which was then complexed with Gd3+ to yield 

the Gd-DTPA-PCL as macromolecular contrast agent [96]. Fig. 15 represents the PCL grafted 

with Gd-DTPA 

.  

Figure 15: PCL grafted with Gd-DTPA [96] 

 
 

 
Another method to graft contrast agents to macromolecules is Huisgen click chemistry 

reaction between a polymer bearing a pendant alkyne group and a Gd-DTPA complex with an 

azide group. This reaction leads to the formation of a triazole unit which is stable to metabolic 

degradation [97]. 

                       

 

 
 
1.9.3 Block MRI Contrast agents  

 

Figure 16: Triazole moiety [97] 
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In this type of macromolecular contrast agents Gd3+ chelates are inserted onto DTPA bis-

amide or DTPA diester copolymers. They are synthesized by condensation of DTPA 

dianhydride with monomers having a diol or a diamine, followed by complexation with 

gadolinium [91]. Figure 17 represents some examples of block copolymers MRI contrast 

agents. 

 

 

 
1.9.4 Dendritic MRI contrast agents 

These compounds have a precise spherical and highly branched structure. There are various 

types of dendrimers with various types, chemical structures and functional groups. Examples 

of dendrimers used for conjugation to contrast agents include poly(propyleneimine), 

poly(amidoamine), and poly(L-lysine). All these dendrimers have amino groups on their 

surface, enabling their conjugation with DTPA and DOTA chelates. However, it is important 

to take into consideration the issue of biocompatibility especially for in vivo applications [91]. 

Figure 18 represents a poly(lysine) dendrimer.  

Figure 17: Some examples of block copolymers as MRI contrast agents [91] 
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In fact, medical imaging techniques are not only used to visualize and detect pathologies and 

changes in the body. The visualization of prosthetic implants is of high importance to obtain 

informations concerning their post-operation fate, localization in the body, and to monitor any 

changes in these materials.  

 

1.10 Techniques for the visualization of prosthetic implants  
 

The following part will discuss the imaging techniques used to visualize prosthetic implants 

depending on their type. 

 

1.10.1 Visualization of Metallic Implants  

Metallic medical implants have the capacity of absorbing more X-rays than soft tissues, thus 

the follow-up of metallic implants can be performed by X-ray pictures [98]. For example, the 

follow-up of a metallic stent was performed using CT scans and X-rays [99]. Unfortunately, 

the MRI visualization of metallic implants produces distorted images due to the large 

Figure 18: Poly(L-lysine) dendrimer with aromatic core [91] 
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difference in magnetic properties between tissues and metallic implants [100]. This geometric 

distortion is called the susceptibility artifact. These artifacts decrease the usefulness of the 

MR technique in the visualization of metallic implants. In general, ferromagnetic metallic 

implants produce high magnetic field inhomogeneities in their neighborhood thus resulting in 

signal loss represented as a dark region in the area surrounding the implant [101]. However, 

implants of titanium alloys which are non-ferromagnetic produce much less severe artifacts 

than stainless steel implants which are ferromagnetic (Fig. 19) [102]. For example, nitinol 

(nickel and titanium alloy) produces smaller artifacts than stainless steel on MR images [103].  

 

 
 

 

 
1.10.2  Visualization of Ceramic Implants   

Many ceramic implants are composed of calcium phosphate due to its similar chemical and 

structural properties to the mineral portion of bones and teeth [104]. Therefore, calcium 

phosphate ceramics absorb X-rays in a coefficient similar to that of bones and thus are visible 

on radiographs since the mineral content of the bone determines its radiographic appearance 

[105]. Zirconia ceramics also absorb X-rays strongly, and are thus visible and can be localized 

on radiographs [106]. In some cases, opacifier materials such as barium and strontium are 

added in order to enhance the contrast of calcium phosphate cements on CT scans [107].  

Titanium alloy screw  

Stainless steel screw  

Figure 19: MR images of titanium alloy and stainless steel screws [102] 
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The visualization of zirconia dental implants is possible by MRI because these implants 

produce high hyposignal intensity that creates clear images without distortion and artifacts 

[108] as shown in Figure 20. 

 

 
 
        
    
 

 
1.10.3 Visualization of polymeric implants 

 

In general polymeric biomaterials are not visible by classical ways of visualization. To be 

visible by X-ray, the polymeric biomaterial has to be radio-opaque to attenuate the radiation 

and be visible on the radiograph. Most polymeric biomaterials are radiotransparent and thus 

the addition of opacifiers is a necessity in order to render them radio-opaque. For example, 

poly(methyl methacrylate) is radiotransparent, but can be visualized by X-ray through the 

addition of opacifiers such as BaSO4, ZrO2, and iodine [109,110]. Nottelet et al. bound iodine 

to PCL by anionic modification of PCL. The obtained polymer turned out to be opaque 

enough to be visualized by X-ray [111]. However, opacifiers pose some disadvantages as: the 

need for high concentrations of radio-opaque fillers and the problems of the leakage of metals 

into body fluids.  

Unfortunately, polymeric meshes which are extensively used in hernia repair and vaginal 

prolapses are invisible by MRI because their structure is very thin and the T2 relaxation time 

of the polymer is very short [112]. Thus these meshes remain invisible by MRI after their 

implantation. Their visualization by MRI is a necessity in order to follow-up any 

complications associated to the mesh as: seromas, bacterial infections, chronic pain, 

Figure20: MRI visualization of zirconia implant [108] 
 

Zirconia implant  
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adhesions, and mesh shrinkage [113]. The visualization of these implants by MRI rather than 

by other imaging techniques, is due to MRI’s non-invasiveness and the high-resolution 

images produced, which is related to the water content of biological tissues. 

The radiological visibility of the meshes is determined by several properties such as: density, 

structure and thickness of the material [114]. ePTFE meshes are clearly visible by MRI, 

allowing accurate assessment of the mesh and its fixation. This can be explained by the 

microporous and hydrophobic structure of ePTFE which inhibits collagen tissue infiltration 

[115]. ePTFE visibility increases with an increase of the thickness of the mesh.  On the other 

hand PP and polyester meshes, unlike ePTFE, have a density similar to that of adjacent 

muscles, thus resulting in poor or even total invisibility by MRI [114,116]. 

PP meshes have been widely used in hernia repair during the last twenty years due to their 

stability, strength and inertness [35,117]. Despite their popularity, the visualization of PP 

meshes by MRI is of high necessity as stated above, in order to follow-up the fate of the mesh 

and any post-operation complications. One of the advantages of MRI vs CT is the absence of 

ionizing radiation. This gives rise to the question of how to render this polymeric mesh visible 

by MRI. 

Several attempts have been done in order to render these meshes visible and thus to improve 

patient’s safety. This is done by the incorporation of contrast agents on the meshes. One 

method involves the incorporation of ferro particles on the surface of the mesh. Kraemer et al. 

showed that loading superparamagnetic iron oxide particles on surgical meshes resulted in 

rendering these meshes visible by MRI. These meshes appeared as a hypointense signal (dark) 

as compared to the bright contrast of the surrounding abdominal tissues [112,113,118]. 
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In order to obtain a positive contrast in MRI, gadolinium contrast agents are used. In the 

literature one can find some publications for rendering PP meshes visible by MRI using 

polymeric contrast agents. Guillaume et al. [119] reported a method of binding Gd-DTPA to 

poly(methyl acrylate). Coating PP mesh with this contrast agent resulted in an MRI 

visualization at 7T and a stability of at least 6 months. Blanquer et al. reported the synthesis 

of PCL-GdDTPA by grafting Gd-DTPA to biodegradable PCL. By coating this contrast agent 

on a mesh, MRI visualization of at least one year was possible [96]. EL Habnouni et al. 

described the synthesis of a macromolecular contrast agent using the principle of azide-alkyne 

Huisgen 1,3-dipolar cycloaddtion between an azide containing contrast agent and 

propargylated PCLs. In this case, the propargyl ratio on PCL has been controlled, thus 

allowing the control of Gd3+ grafted onto the contrast agent. These macromolecular contrast 

agents were stable for more than 90 days and were found to be biocompatible. Films of these 

PCL macromolecular contrast agents are MRI visible [120]. Porsio et al. synthesized MRI 

visible nanoparticles from the macromolecular contrast agent synthesized by El Habnouni 

also using the principle of Huisgen cycloaddition. These nanoprticles allowed MRI 

visualization with amounts of Gd3+ as low as 0.1% by weight [121].  

Huisgen 1,3-dipolar cycloaddition is one of the most popular forms of click reaction 

combining together an alkyne function with an azide group. The concept of click chemistry 

Figure 21: Coronal view of surgical mesh loaded with superparamagnetic iron oxide particles 

[113] 
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has been gaining much attention recently with various medical applications, such as the 

synthesis of macromolecular contrast agents for MRI as discussed earlier.  

 

1.11 Why click reaction? 
 

The term “click chemistry” was first described by Sharpless et al. as an approach to develop 

modular and selective blocks that can be applied on small scales as well as on large scales. 

This reaction is: modular, wide in scope, high yields generation, readily available starting 

materials, simple reaction conditions, and removal of by-products by non-chromatographic 

techniques [122]. The most typical “click reaction” is the Huisgen 1,3-dipolar cycloaddition 

reaction, also termed the [3+2] azide-alkyne cycloaddition yielding a triazole, a five-member 

heterocycle ring. The reaction was first discovered in 1963 by Huisgen without gaining 

attention because it needed high temperatures and pressures and yielded 1,4 and 1,5 triazoles 

which is unfavorable for biomedical applications [97,123]. In 2001, Tornøe and Meldal 

introduced the use of Cu(I) catalyst allowing the reaction to take place at mild conditions and 

also allowed the regioselective synthesis of 1,3 triazoles [124]. The idea of the introduction of 

Cu as a catalyst had been realized independently by the Sharpless and the Meldal laboratories.  

This CuAAC is the abbreviation that will be used for copper catalyzed Huisgen 1,3-dipolar 

cycloaddition and the general mechanism is represented in Fig. 22.    

     

 

 

                                                    

Figure 22: General mechanism for CuAAc reaction [125] 
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The mild reaction conditions needed and the high yield obtained from this reaction had made 

it gain popularity in the biomedical field. In addition, the triazole moiety formed during this 

reaction is stable to metabolic degradation [97].  

The objective of this work is to synthesize a stable MRI macromolecular contrast agent 

intended for long-term visualization. For this, a high molecular weight polymer bearing an 

alkyne group will be synthesized. Thus poly(methyl methacrylate-co-propargyl methacrylate), 

PMMA-co-PPMA, will be prepared by free radical polymerization of methyl methacrylate 

and propargyl methacrylate. A monofunctional Gd-DTPA ligand bearing an azide group will 

be grafted on the polymeric backbone in order to obtain the stable azide moiety by CuAAC as 

shown in Scheme 1. This also allows the control of the amount of Gd3+ incorporated in the 

contrast agent.  

 

 

The novelty of this work resides in the synthesis of monofunctional azido functionalized Gd-

DTPA ligand, the MRI contrast agent, which will be grafted on the polymeric backbone. This 

azido functionalized DTPA ligand can either contain amide functional group or an ester one 

depending on whether the reaction of DTPA bisanhydride is reacted with an azido-amine or 

Scheme 1: Grafting of azido-functionalized Gd-DTPA on polymeric backbone by 
CuAAC 
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an azido-alcohol. In the literature most of the obtained ligands are bifunctional (bearing either 

two amide or two ester groups). Many publications describe the synthesis of DTPA bis-

amides which is relatively easy and does not require tedious purification steps [126-128]. 

However, when one comes to monoamide DTPA ligands, there are no references. Despite the 

difficulty of the synthesis of monoamide DTPA ligands, they are ligands of choice for several 

reasons. Monoamide-DTPA micelles have been found to show higher relaxivities than the 

corresponding bis-amide ones [129] and the chelating potency of DTPA monoamides is better 

than the one of corresponding bis-amides [130].  

The main efforts reside in the synthesis of monoamide Gd-DTPA ligands. However, the 

synthesis of mono-ester Gd-DTPA ligands will be also reported although it is known that the 

stability of the ester group is less than that of the amide group. 

Once, the polymeric monoamide Gd-DTPA contrast agent is obtained, it will be assessed for 

its ability to render a polypropylene mesh MRI visible. The obtained polymeric contrast agent 

will be placed on a commercial PP mesh using the airbrushing technique, and the 

visualization of the coated mesh will be assessed on a 7T MRI instrument. The airbrushing 

technique is a versatile method allowing the preparation of homogenous and regular film 

without altering the mesh shape and mesh mechanical properties [119].  

Since the polymeric contrast agent is intended for use in long-term visualization and is 

intended to be used in biomedical applications, cytocompatibility and stability tests will be 

performed  

 

1.12 Fluorescence 
 

Although MRI is a highly sensitive and non-invasive imaging technique, fluorescence 

spectroscopy is another promising diagnostic technique with fast and rapid diagnostic ability. 

The central part of fluorescence spectroscopy is attributed to fluorophores. A fluorophore 
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absorbs energy at specific wavelength and re-emit energy at a different but specific 

wavelength [131]. CuAAC being a versatile and regioselective reaction that only requires 

mild reaction conditions will be employed in order to synthesize different types of 

fluorophores. Clickable fluorodyes will be synthesized using the reaction between an azide-

bearing fluorophore and the alkyne group of PMMA-co-PMA. The select fluorophores are 

anthracene, rhodamine B isothiocyanate (RITC), fluorescein isothiocyanate, and Europium. 

All fluorophores will be modified to contain an azide group which will eventually undergo 

fluorogenic click reactions. 

The main characteristics of the fluorophores are the following:  

- Anthracene: Anthracene is used to determine fluorescence in quantum yield. 1-amino 

anthacene has been identified as a fluorescent general anesthetic [132]. However, once an 

azide group is introduced next to the anthryl group, an electron is tranferred to the excited 

anthracene through a photoinduced electron transfer (PET) and this quenches the fluorescnce 

of the anthracene. However, the formation of a triazole moiety through CuAAC reaction 

decreases the electron donating effect of nitrogen which ends the PET effect and restores the 

fluorescence of anthracene. This is called a fluorogenic CuAAC reaction, which is a reaction 

between non-fluorescent alkyne and non-fluorescent azide to yield a highly fluorescent 

triazole complex (Fig. 23) [133] 

 

Figure 23: Fluorogenic CuAAC [133] 
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For this reason, azido anthracene will undergo CuAAC reaction with PMMA-co-PMA to 

obtain the triazole unit and quench the PET effect. 

- Rhodamine B isothiocyanate (RITC): Rhodamine dyes are widely used as fluorescent dyes 

due to their high photostability and high fluorescent quantum yields. Also, for biological 

applications fluorescent dyes absorbing in the near infra red region are preferred because that 

region is mostly noninvasive with a minimal unwanted background signal [134]. RITC will be 

modified to contain an azide group, and then clicked to PMMA-co-PMA to form the stable 

triazole moiety. The obtained fluorescent polymer will be tested for fluorescence. 

- Fluorescein isothiocyanate (FITC):  FITC is a chemical dye widely used in 

immunochemistry and for labeling proteins [135].  

- Europium salts: Europium complexes are gaining attention as fluorescent markers because 

they have large Stocke shift and long life emission. The ligand absorbs the radiation and 

transfers it to Eu through internal energy emission process, resulting in Europium emission 

[136]. In our case, europium will be chelated in azido DTPA mono-amide in the same way as 

Gd3+, and the obtained complex will be clicked to PMMA-co-PMA. The obtained product 

will be tested for fluorescence. 

The fluorescence part is in fact a perspective for this thesis. It is a building block for further 

work to be carried out inclusing stability of the fluorophores in the formed complexes. The 

europium complex reveals that the synthesized complex can serve as an MRI contrast agent 

when Gd is used and as a fluorophore when europium is used.  

1.13 Conclusion  
 

The use of polymers in prosthetic implants is increasing, especially in the field of 

reinforcement medical implants as meshes. At the same time, the follow-up of these implants 

is a necessity with MRI being the most favored one in localizing and visualizing prothetic 
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implants. Long-term visualization of these implants is highly favored because it allows 

clinicians to localize the implanted prosthesis throughout its lifetime in the body.  

For this, the grafting of the contrast agent will be done on a non-biodegradable polymer, 

PMMA. For this the contrast agent will be grafted on the backbone of PMMA using CuAAC, 

in which a stable triazole moiety will be formed. 

This work involves three chapters: 

The first chapter describes the synthesis of azido functionalized DTPA ligands and the 

synthesis of the non-biodegradable propargylated PMMA. 

The second chapter describes the MRI visualization of polypropylene meshes after being 

coated with the synthesized polymeric contrast agent. Since the polymeric contrast agent is 

intended to be used in biomedical application, stability and cytotoxicity results are also 

presented in this chapter.  

The third chapter describes the synthesis of polymeric fluorophores. Preliminary fluorescent 

results are presented.  
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This chapter details all chemical strategies used throughout the thesis in order to obtain 

poly(methyl methacrylate) (PMMA) based contrast agent in order to render a polypropylene 

(PP) mesh visible by MRI. Thus the ultimate aim is to synthesize a polymeric contrast agent 

able to induce a sufficient hyper signal in MRI to visualize the mesh. For this the contrast 

agent will be grafted through a triazole moiety on a PMMA backbone to obtain a stable 

polymeric contrast agent for long-term visualization by MRI of a polypropylene mesh.  

As a first step, two types of azido functionalized diethylene triamine pentaacetic acid (DTPA) 

ligands will be synthesized (one with an amide group and the second with an ester group). 

The synthesized ligands will then be complexed with gadolinium (Gd3+). PMMA bearing 

pendant propragyl units will be also prepared via free radical polymerization and microwave 

assisted polymerization. Taking advantage from the alkyne group of the polymer and the 

azide group of the Gd-DTPA complex, copper (I)-catalyzed azide alkyne cycloaddition 

(CuAAC) will be employed to obtain PMMA MRI contrast agent.  

Due to the higher stability of the amide bond, azido functionalized monoamide DTPA ligand 

clicked on PMMA will be tested for its suitability to render a polypropylene mesh visible by 

MRI. For this, a commercial polypropylene mesh will be coated with this contrast agent and 

assessed for MRI visualization at 7T field strength. The contrast agent will be also tested for 

cytocompatibility and stability in order to study the feasibility of its application in the 

biomedical field. The effect of the amount of Gd3+ present in the polymeric contrast agent on 

the visibility of the mesh will be monitored. Also, the link between the increase of the amount 

of grafted Gd3+ on the stability and cytocompatibility of the contrast agent will be followed. 

Scheme 2 shows the synthesis of MRI visible PMMA from azido-functionalized monoamide 

DTPA ligand. 



74 

 

H2N N3

O

N

+

O

O
N

O

N

OH

O

O

O

DMF, 50°C

5 hours N3 N
H

O

N

N

N

OH

O

OH

OH

O

O HO

O

GdCl3

pyridine

N3 N
H

N

N

N COO-

COO- COO-

COO-

Gd3+

O

O

H H

+

m n

OO O
O

CuBr, PMDETA

DMF 

40°C

N
H

N

N

N COO-

COO- COO-

COO-

Gd3+

O

O

H H

N N

N

m n

OO O
O

 

 

2.1 Synthesis of azido functionalized DTPA ligands  
 

The synthesis of azido functionalized ligands is done through the reaction between DTPA bis-

anhydride and an organic azide. Depending on whether the azide contains an amine or an 

alcohol, an azido functionalized amide based or ester based DTPA ligand will be obtained 

respectively. Most azides are explosive substances, which under the slightest input of external 

energy (heat, pressure) decompose and release nitrogen. For example, heavy metal azides are 

used in the explosives technology [1]. 

There are various ways to synthesize organic azides. In our case, the synthesis of organic 

azido molecules (3-azido propanol and 3-azido propylamine) is done by nucleophilic 

substitution reaction between sodium azide and a halogenated precursor (3-chloro propanol or 

Scheme 2: Synthesis of MRI-visible PMMA 
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3-chloropropylamine). The following rule should be applied [2] to obtain non-explosive 

organic azides, NC, NO and NN standing for the numbers of Carbon, oxygen and nitrogen 

atoms in the molecule:  

 

 

 

 By looking at the structure of 3-azido propanol (Fig. 24) and 3-azido propylamine (Fig. 25), 

both azides are potentially explosive and extreme care must be taken during their synthesis 

and use. 

 

HO N3                                          H2N N3 

 

 

  

 

 

2.1.1 Synthesis of azido functionalized monoester DTPA ligand  

Macromolecular contrast agents containing ester groups can be found in literature. One 

example is GdDTPA cysteine diethyl ester copolymer (GdCEP) which is a biodegradable 

polydisulfide Gd(III) complex. The synthesis of this agent is done through copolymerization 

of DTPA bisanhydride with diethyl ester followed by complexation with GdCl3 to obtain 

GdCEP in a yield of 11%. This contrast agent resulted in strong contrast enhancement in 

tumor cells [3]. 

Quay et al. describe in their US patent the modification of DTPA bis-anhydride through the 

reaction of DTPA bis-anhydride with alcohol [4] to obtain ester groups. The synthesis of Gd-

DTPA bis(benzyl ester) and Gd-DTPA bis(methyl ester) is reported in literature by the 

(NC+NO)/NN≥3 

Figure 24: Structure of  3-azido 

propanol 

Figure 25: Structure of 3-azido 

propylamine 
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reaction of the appropriate alcohol and DTPA bis anhydride [5,6]. The general structure of 

DTPA bis-ester is represented in Fig. 26.  

 

 

 

 
Figure 26: General structure of DTPA bis-ester 

 

The formation of DTPA ligands containing several ester groups can be found in literature. 

However, no mono-ester Gd-DTPA ligand is described. Our aim is not only to synthesize a 

mono-ester DTPA ligand, but also an azido functionalized one. The formation of this group is 

done through the reaction between the anhydride group of DTPA bis-anhydride and the 

alcohol group of 3-azido propanol. Since only one ester group is desired, the 3-azido propanol 

should be used either in equimolar or less than equimolar quantaties as that of DTPA bis-

anhydride. 

As a first step, 3-azido propanol (1) was synthesized by the reaction of 3-chloropropanol with 

sodium azide (Fig. 27). 

 

 

 

 

1H NMR in CDCl3 (Fig. 28) revealed the purity of compound 1. 

Cl OH N3 OH

H2O

24 hours

+ NaN3

b
d

a
c

Figure 27: Synthesis of 3-azido propanol 



77 

 

 

 

The esterification reaction between equimolar ratios of DTPA bis-anhydride and (1) in DMF 

yielded a mixture of azido functionalized mono-ester DTPA ligands (2) and azido 

functionalized bis-ester DTPA ligand (3) (Scheme 3). 
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Figure 28: 1H NMR of 3-azido propanol 

Scheme 3: Synthesis of ester based DTPA ligands 
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Therefore, a preparative HPLC step was needed to separate the two compounds. The 

purification step yielded 750mg of compound (2) starting from 2g of the mixture of (2) and 

(3). Hence, azido functionalized mono-ester DTPA ligand was obtained with a yield of 38%. 

The 1H NMR spectrum of compound 2 in D2O is shown in Fig. 29.  

 

 

Figure 29: 1H NMR of azido functionalized mono-ester DTPA 
 

The purity of the compound was further assessed by 1H,1H COSY NMR (Fig .30).  
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Figure 30: 1H,1H COSY NMR of azido functionalized mono-ester DTPA 
 

LC-MS analysis of the compound was also performed. The theoretical molar mass of 

compound (2) is 476.44 g/mol while that of compound (3) is 559.24 g/mol. LC-MS spectrum 

(Fig. 31) of the pure product (2) obtained after HPLC revealed a single peak at 477.2 g/mol 

corresponding to [M+H]+ experimental as compared to 477.44 theoretical.  

 

 

Figure 31: LC-MS of azido functionalized mono-ester DTPA 
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2.1.2 Synthesis of azido functionalized monoamide DTPA ligand  

Many publications are describing the synthesis of DTPA ligands containing an amide moiety. 

The synthesis of bis-amide DTPA ligands is relatively easy and only requires the use of an 

excess amine as compared to that of DTPA bis-anhydride, without the need for tedious 

purification steps. Several publications describe the synthesis of bis-amide DTPA ligands, in 

which the synthesis is ensured only by the use of an excess of amine [7, 8]. The synthesis of 

alkyne functionalized DTPA bis-amide in a quantitative yield is also reported [9]. Moreover, 

azido functionalized bis(amide) DTPA ligands have also been synthesized [10]. Both of these 

ligands have been grafted on macromolecular architectures via CuAAC.  

Concerning the synthesis of mono-amide DTPA ligands, only few publications are available. 

The main reason resides in the fact that these compounds are obtained in low yields with 

multi-step reactions. For example, a mono-maleimide of DTPA has been synthesized via 

multi-step reactions with a final low yield [11]. The reaction of DTPA bis-anhydride with 

equimolar or less proportion of amine results in the formation of a mixture of DTPA mono-

amide and DTPA bis-amide [12, 13, 14]. Yet, despite the challenging synthesis, the formation 

of mono-amide DTPA ligands is interesting. The chelating power of DTPA in DTPA mono-

amide is higher than in the corresponding bis-amide [12]. Another study revealed that 

micelles containing gadolinium mono-amide DTPA complexes showed higher relaxivity than 

micelles with bis-amide DTPA complexes, due to a more efficient exchange of coordinated 

water molecule [15]. In addition, the dissociation rate of linear bis-amide Gd-DTPA chelates 

is higher than the one of other chelates due to insufficient thermodynamic and kinetic 

stabilities [16].The aim was to find a simple and versatile method for the synthesis of an azido 

functionalized mono-amide DTPA ligand under mild reaction conditions. As a first step, 3-

azido propylamine (4) was synthesized by the reaction between 3-chloropropylamine and 

NaN3 (figure 32). 
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Figure 32: Synthesis of 3-azido propylamine 

 

After distillation, a pure compound (4) was obtained and 1H NMR spectrum (Fig. 33) in 

CDCl3 is represented.  

 

 

    

 

 

 

 

The reaction of DTPA bis-anhydride with 3-azido propylamine yielded a mixture of azido 

functionalized mono-amide DTPA ligand (5) and bis-amide DTPA ligand (6) (Scheme 4).  
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Scheme 4: Synthesis of amide based DTPA ligands 
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Figure 33: 1H NMR of 3-azido propylamine 
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Several experimental conditions were tested in order to obtain compound (5). The reaction 

between DTPA bis-anhydride and 3-azidopropylamine always yielded a mixture of 

compounds (5) and (6), with compound (5) always in very low yields. The reaction of 1 

equivalent of DTPA bis-anhydride with 0.5 equivalent of 3-azido propylamine in DMF 

followed by hydrolysis, yielded a mixture of compounds (5) and (6). By HPLC, compound (5) 

was achieved with only a 7 % yield. To obtain a higher selectivity towards the formation of 

compound (5), according to a modified protocol [17], equimolar amounts of DTPA bis-

anhydride and 3-azidopropylamine were used. However, in this case a solubilizer, imidazole, 

was used. Imidazole is used for its good promotion ability to homogenize the reaction mixture 

in dry media, due to the low melting point of imidazolium salt [18]. By preparative HPLC 

separation, pure compound (5) was achieved as a white solid with a 30% yield.  

1H NMR (in D2O) (Fig. 34) and 1H,1H COSY NMR (Fig. 35) of pure compound (5) are 

presented hereby. 

 

 

 

Figure 34: 1H NMR of azido functionalized mono-amide DTPA 
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Figure 35: 1H,1H COSY NMR of azido functionalized mono-amide DTPA 
 

After HPLC separation, the LC-MS spectrum (Fig. 36) revealed the presence of pure 

compound (5) with  a unique peak at 476.2 g/mol corresponding to [M+H+]+ as compared to 

476.45 theoretical.   

 

 

Figure 36: LC-MS of azido functionalized mono-amide DTPA 



84 

 

2.2 Synthesis of gadolinium complexes 
 

In order to obtain the gadolinium complexes, compounds (2) and (5) were reacted with GdCl3 

in pyridine to obtain azido functionalized monoester Gd-DTPA (7) and azido functionalized 

mono-amide Gd-DTPA respectively (8) as represented in Scheme 5 and 6 respectively. 

 

 

 

 

Scheme 5: Synthesis of azido functionalized mono-ester Gd-DTPA 
 

 

 

Scheme 6: Synthesis of azido functionalized mono-amide Gd-DTPA 

 

 
 

Due to the toxicity of free Gd3+, extreme care must be taken to ensure the complete 

incoroporation of Gd3+ in compounds (7) and (8). To ensure the absence of free uncomplexed 

Gd3+, a methyl thymol blue (MTB) test was performed [19].  
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2.2.1  MTB test 

MTB is a colored indicator used to measure the amount of metal salts. In our case MTB acts 

as an indicator for the presence of Gd3+ according to the following reaction [20]:  

MTB (yellow) + Gd3+                       MTB-Gd complex (blue) 

 

Free MTB exhibits a maximum absorbance wavelength λmax=425 nm. In the presence of free 

Gd3+, MTB complexes exhibit λmax=605 nm (Fig. 337) [20]. These wavelengths can be used to 

monitor the presence of free Gd3+. 

 

 

Figure 37: Absorbance spectra of MTB and MTB-Gd complex [20] 

 

This enables the quantification of free Gd3+ using UV/visible spectroscopy. By preparing 

different samples containing various amounts of Gd3+ in MTB, a calibration curve 

representing the absorbance as a function of the amount of Gd3+ can be drawn. GdCl3 

standards in the range of 0-50μM were prepared to obtain the calibration curve of figure 38. 
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Figure 38: Variation of absorbance as a function of [Gd3+] 
 

 

Hence, by measuring the absorbance of an unknown sample, the amount of Gd3+ can be 

calculated and hence quantified. 

A negative test (absence of blue color) ensures the complete complexation of Gd3+, and thus 

the absence of free Gd3+ [19]. It is important to note that ICP-MS analysis is very sensitive 

and also allows the quantification of the amount of Gd3+. However, it does not give any 

information concerning the form of Gd3+ (free or complexed). Therefore, only after obtaining 

a negative MTB test and ensuring that all Gd3+ is complexed, the amount of complexed Gd3+ 

was measured by ICP-MS.  

After complexation, compounds (7) and (8) were subjected to MTB test to ensure the absence 

of free Gd3+. Sometimes, after the reaction, MTB test revealed a blue color, indicating the 

presence of free Gd3+. Complexes had to be further treated to get rid of free Gd3+. This was 

done using a Chelex-100 resin. Chelex-100 is a resin containing paired imin-iodoacetate ions. 

These ions act as chelators for polyvalent metal ions. Chelex-100 is known for its high 

selectivity to metal ions and its strong binding affinity. Thus, compounds (7) and (8) were 

stirred in Chelex-100, until MTB test gave a negative result (yellow color) indicating the 

absence of free Gd3+. At this point, ICP-MS analysis was performed to determine the amount 
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of Gd3+ incorporated in each of compounds (7) and (8). This also allowed the calculation of 

the complexation reaction’s efficiency. 

 

2.2.2 Complexation Efficiency 

Each of compounds (7) and (8) was treated with nitric acid (HNO3) and then analyzed by 

ICP-MS as to calculate the amount of Gd3+ incorporated in the complex. 

Compound (7) has the general molecular formula C17H26O11N6Gd which has a total molar 

mass of 647.672 g/moL and the molar mass of Gd is 157.25 g/mol. Thus: 

 

   (Equation 3) 

 

By applying the equation 3, compound (7) should theoretically contain 24.2% Gd3+ (w/w). 

ICP-MS analysis of compound (7) revealed the presence of 109.73 µg Gd3+ per milligram of 

compound (7) →100mg of compound (7) contain 10.97mg of Gd3+. Hence, compound (7) 

turned out to contain 11% by mass Gd3+ experimentally. 

This allowed the calculation of the reaction efficiency: 

 

   (Equation 4) 

 

By applying equation 4, the complexation reaction efficiency for compound (7) is 45%. 

Similarly, compound (8) has the general molecular formula N7C17H27O10Gd and a total molar 

mass of 646.687 g, which means that it contains theoretically 24.3% by mass Gd3+. ICP-MS 

revealed the presence of 10% by mass Gd3+ in compound (8) and hence the complexation 

efficiency turned out to be 42%.  
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Further experiments have been performed to improve the complexation efficiency. 

Unfortunately, the amount of Gd3+ complex did not increase. High temperature and long 

reaction times are needed to increase the complexation efficiency. This could not be applied 

in this case due to the thermo-labile azide group. Moreover, it is well-known that commercial 

DTPA CAs, like Magnevist®, contains non-complexed ligands. Finally, it is interesting to 

have an excess of ligand to reduce the probability of uncomplexed toxic free gadolinium. 

At the same time, MALDI-TOF analysis was performed for compounds (7) and (8). 

 

2.2.3 MALDI-TOF Analysis  

MALDI-TOF analysis with dithranol as matrix was performed on compounds (7) and (8).  

MALDI-TOF analysis of compound (7) (Fig. 39) revealed a peak at 685.9. Theoretically, 

[M+K]+ for compound (7) is 686.77 g/mol. Hence, from the MALDI spectrum, the peak 

representing the molar mass of 685.9 can be attributed to the potassium adduct of compound 

(7). 

 

Figure 39: MALDI-TOF spectrum of azido functionalized mono-ester Gd-DTPA 
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For compound (8), [M+K]+ has a molar mass of 685.78 g/mol. A peak appeared on the 

MALDI spectrum with a molar mass of 685.8 relevant to this adduct (Fig. 40).  

 

 
Figure 40: MALDI-TOF spectrum of azido functionalized mono-amide Gd-DTPA 

 

Finally, two complexes (7) and (8) bearing an azide group without free Gd3+ were prepared. 

 

2.3 Synthesis of poly(methyl methacrylate-co-propargyl 
methacrylate) 
 

PMMA is the polymeric chain of choice which was propargylated and on which the azide 

based contrast agents (7) and (8) were then fixed by CuAAC to obtain macromolecular 

contrast agents for long-term MRI visualization. PMMA was chosen because it is non-toxic 

and has a good safety record in biomedical applications [21]. The polymer is also known for 

its bio-inertness [22, 23], non-biodegradibility, and good biocompatibility with human tissues 

[24]. In the literature, few publications are found concerning the use of PMMA in MRI 

contrast agent. Ratanajanchai et al. synthesized PMMA/PEI (polyethylene amine) 

nanoparticles possessing DTPA chelating high amounts of Gd3+. Although these nanoparticles 

enhanced MRI intensity more than commercially available hepatic contrast agent, however 
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Gd3+ release occurred after 1 day of incubation, due to the partial chelation of Gd3+ by the 

amine groups of PEI [25]. Martirosyan et al. used PMMA with carbon nanotubes as 

encapsulation materials for Co-based and Gd-based contrast agents for prostate brachytherapy 

MRI contrast agents. These authors chose PMMA for its MRI transparency [26]. Guillaume et 

al. described the grafting of Gd-DTPA on poly(methyl acrylate). Although the obtained 

contrast agent rendered a PP mesh visible, yet the amount of Gd3+ incorporated could not be 

controlled [27].  

In this work, PMMA containing well defined proportion of propargyl units was synthesized. 

This allowed a control of the amount of Gd3+ in the contrast agent, because the amount of 

Gd3+ incorporated in the macromolecular contrast agent (after click reaction) should be 

theoretically equal to the amount of propargyl unit.  

In the first step, poly(methyl methacrylate-co-propargyl methacrylate) (PMMA-co-PMA) (11) 

with a low molar ratio of propargyl methacrylate monomer unit (F< 10 %) was prepared by 

free or controlled radical copolymerization of methyl methacrylate (9) with propargyl 

methacrylate (10) (Scheme 7).  
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Scheme 7: Synthesis of PMMA-co-PMA 
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The resulting copolymer should contain more than 95% of methyl methacrylate units and less 

than 5% propargyl methacrylate monomer units. Low proportions of propargyl units were 

favored to avoid any cross-linking in the acetylenic group, since the propargyl methacrylate 

was used without any protection of the acetylenic group. The low proportion of acetylenic 

groups results in a dilution effect thus minimizing side reactions [28].  Schubert et al. describe 

the synthesis of homopolymers of trimethylsilyl propargyl methacrylate in addition to 

copolymers with MMA by controlled radical polymerization, in which trimethylsilyl 

propargyl methacrylate had been synthesized using TMS-propargyl alcohol. After 

polymerization, several steps were needed to remove the protective group [29]. In our case, 

propargyl methacrylate (10) was synthesized without the protection of the acetylenic group 

starting from propargyl alcohol and methacryloyl chloride according to the following reaction 

(Scheme 8).  

 

 

Scheme 8: Synthesis of unprotected propargyl methacrylate 
 

1H NMR of the propargyl methacrylate in CDCl3 is presented in Fig. 41. 
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Figure 41: 1H NMR spectrum of propargyl methacrylate 
 

PMMA-co-PMA copolymers with high molar masses were targeted for several reasons. High 

molar mass results in macromacromolecular contrast agents which have an increased retention 

time in the body. In addition, a desired property of the macromolecular contrast agent is to be 

filmogenic on the surface of the commercial polypropylene mesh. The mechanical properties 

of this coating material strongly depend on the molar mass of the polymer, a higher molar 

mass resulting in better performance [30]. Therefore, free radical polymerization using AIBN 

as initiator was used. Free radical polymerization of TMS protected PMA using AIBN as an 

initiator is reported by Scarpaci et al [31].   

 

2.3.1 Synthesis of PMMA-co-PMA by free radical polymerization   

Various experimental conditions were tried in order to obtain the desired copolymer PMMA-

co-PMA. Using toluene as a solvent and a reaction temperature of 70°C, various amounts of 

AIBN and different reaction times were studied. The results are presented in Table 4. 
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Entry AIBN 
%wt 

Time 
hours 

Conva 
% 

FPMA,exp
a Mn,SEC

b 

g.mol-1 
Ðb 

1 0.5 2 30 1.8 45000 1.6 

2 0.5 4 50 1.6 54000 2 

3 1 2 40 2.3 40000 1.8 

4 1 4 52 2.0 33000 2 

5 2 4 74 2 24000 2.2 

a Determined by 1H NMR. bDetermined by size exclusion chromatography in THF 

 

Conversion Calculation:  

After quenching the polymerization reaction in liquid nitrogen a few drops of the reaction 

mixture is tested by 1H NMR for conversion. The calculation is done as follows (Equation 5): 

 

 

  (Equation 5) 

 

Where Ipol is the integration peak of the methoxy peak of the polymer and Imon is the 

integration of methoxy peak of the monomer from 1H NMR.  

 

% Propargyl methacrylate:  

 

Pure PMMA-co-PMA is obtained by precipitation in methanol and heptane.  1H NMR in 

CDCl3 of the copolymer shown in Fig. 42. 

 

Table 4: Experimental conditions for the synthesis of PMMA-co-PMA by 

free radical polymerization 
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Figure 42: 1H NMR spectrum of PMMA-co-PMA 
 

Therefore, the % propargyl methacrylate can be calculated from the NMR according to the 

following equation:  

(Equation 6) 

 

Where Ib is the integration of the CH2 peak in propargyl methacrylate and I a is the 

integration peak of the methoxy group in PMMA.  

Increasing the amount of initiator resulted in an increase in conversion, but a drop in the 

molar mass. In entry 3, corresponding to 1% by weight AIBN and a reaction time of 2 hours, 

PMMA-co-PMA with a molar mass of 40000 g/mol, a conversion of 40% and a PDI of 1.8 

was obtained. In addition, the PMA ratio calculated from 1H NMR is 2.3% mol/mol as 

compared to 2.5% theoretical. Since high molar mass rather than high conversion was wished, 

conditions in Entry 3 were the conditions used for the synthesis of PMMA-co-PMA. 

 

2.3.2 Microwave initiated polymerization 
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This part had been wholly carried in Lebanon. The synthesis of PMMA-co-PMA has been 

realized by microwave radiation. ATRP polymerization and free radical polymerization using 

benzoyl peroxide (BPO) as initiator have been assessed.  

Microwave ATRP polymerization was done with MMA and 1% PMA (mol/mol) in DMF 

using ethyl 2-bromobutyrate (EBB), copper chloride (CuCl) with N, N, N’, N’’N’’ 

pentamethyldiethylenetriamine pentaacetic acid  at 70°C. The reaction was performed during 

various durations with the highest molar mass achieved being 21000 g/mol for a duration of 

150 minutes. In all cases, experimental Mn (Mnexp) was close to theoretical Mn (Mntheo). 

Mntheo was calculated according Equation 7. 

 

Mnth= ([monomer]/[EBB]) * M(monomer)  (Equation 7) 

Results are presented in Table 5.  

 

aDetermined by 1H NMR. bDetermined by size exclusion chromatography in THF 

 

Free radical polymerization using microwave radiation and BPO as initiator is also studied. 

This polymerization is done between MMA and 1% PMA mol/mol using BPO as initiator in 

DMF at 69°C. The reaction is performed with different amounts of BPO during 15 minutes. 

Even with this short duration, PMMA-co-PMA with molar masses of 32000 have been 

obtained. The results are presented in Table 6. 

[EBB]:[CuCl]

:[PMDETA] 

Time 

minutes 

Conva 

% 

FPMA,exp
a Mnexp,SEC

b 

g/mol 

 

Mntheo,SEC
b 

g/mol 

 

Ð 

 

1:1:2 30  38 0.7 12500 15000 1.4 

1:1:2 90  40 0.6 15000 16500 1.6 

1:1:2 150 50 0.95 20000 21000 1.4 

Table 5: Experimental conditions for the synthesis of PMMA-co-PMA by microwave ATRP 
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%BPO  

By weight  

Time 

minutes 

Conva 

% 

FPMA,exp
a Mn,SEC

b 

g.mol-1 

 

Ð  

 

0.9 15   81 0.7 5000 2.2 

0.7 15  70 0.5 7000 2.1 

0.5 15 48 0.9 11000 1.7 

0.2 15 21 0.3 20000 1.9 

0.1 15 10 0.5 32000 2 

a Determined by 1H NMR. bDetermined by size exclusion chromatography in THF 

Table 6: Experimental conditions for the synthesis of PMMA-co-PMA by microwave free 

radical polymerization 

 

2.4 Click reaction 
 

Having two types of azido functionalized DTPA ligands, in addition to high molar mass 

PMMA bearing a known proportion of propargyl group, CuAAC reaction can be applied. 

CuAAC being a simple and versatile technique is gaining popularity. The triazole moiety 

formed is also stable to metabolic degradation. Thus compounds (7) and (8) were grafted on 

PMMA-co-PMA chain by CuAAC reaction.  

For CuAAC reaction, azido functionalized Gd-DTPA (complex 7 or 8) was reacted with 

PMMA-co-PMA in THF using CuBr and PMDETA for 48 hours. After that, the product was 

purified by dialysis against acetone. CuAAC reaction of the two complexes is presented. 

Reactions of compounds (7) (Scheme 9) and (8) (Scheme 10) are presented. 

 



97 

 

 

Scheme 9: CuAAC reaction of azido functionalized mon-ester Gd-DTPA 

 

 

Scheme 10: CuAAC reaction of azido functionalized mon-amide Gd-DTPA 
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The amount of Gd3+ incorporated in compounds (12) and (13) was then calculated by ICP-

MS. The amount of copper was also measured. Theoretically, and since the polymer contains 

2.5% by mol of propargyl units, it should contain 2.5% by mol Gd3+ relevant to 2.25% by 

weight Gd3+.  

 

Ester Based Polymeric Contrast Agent  

The amount of Gd3+ by weight in compound (12), as calculated by ICP-MS, was 0.4% when 

CuAAC was performed at room temperature and 1.4% when performed at 40°C. This resulted 

in an increase in the reaction efficiency from 18 to 62%.  

 

Amide Based Polymeric Contrast Agent  

The amount of Gd3+ by weight in compound (13), as calculated by ICP-MS, turned out to be 

0.5% when CuAAC was performed at room temperature and 1.34% when performed at 40°C. 

This resulted in an increase in CuAAC efficiency from from 23 to 60%.  

The difference between calculated and experimental values is due to the low efficiency of the 

click reaction, i.e. 60 %. However, it is well-know that the efficiency of Huisgen click 

reaction is not quantitative in macromolecular chemistry, due to the steric hindrance, the poor 

solubility of the reactant, etc. Nevertheless, the amount of Gd3+ into the macromolecular 

contrast agent was high enough for the next step, the coating of polypropylene mesh. The 

absence of copper had been checked in both compounds by ICP-MS. 

 

2.5 Conclusion 

This chapter described the synthesis of two types of azido-functionalized DTPA ligands: one 

bearing an ester group and one bearing an amide group. The complexation of these two 

copounds with gadolinium was also described and MTB test was performed to ensure the 
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absence of free gadolinium. The synthesis of high molar mass propargylated PMMA by 

different polymerization techniques was also reported. As a final step, the obtained azido 

functionalized Gd-DTPAs were grafted on the high molar PMMA with known propargyl 

proportions by CuAAC. The next chapter will detail the MRI visualization, cytocompatibility 

and cytotoxicity tests. Tests will be performed on the polymeric contrast agent containing 

mono-amide Gd-DTPA (compound 13).  
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Using the combination of free radical polymerization and click chemistry, an azido-

functionalized mono-amide Gd-DTPA contrast agent has been grafted on a propargylated 

PMMA chain. For simplicity, the compound will be referred to as PMMA CA. The obtained 

macromolecular contrast agent contains 1.34% by weight Gd3+ as detected by ICP-MS. The 

aim of the synthesis of this polymeric contrast agent was to test its capability to render a PP 

mesh visible by MRI. The effect of the variation of the amount of Gd3+ present in PMMA CA 

on the MRI visualization of the PP mesh was assessed. In addition, and since this contrast 

agent is intended to be used for long periods of time and in biomedical applications, it was 

assessed for its stability and cytocompatibility.    

 

3.1 MRI Visualization  
 

A solution of PMMA CA was sprayed on a commercial PP mesh, in order to assess the 

agent’s ability on rendering the PP mesh MRI visible. MRI visualization was performed on a 

Bruker Biospec 70/20 operating at 7T magnetic field. In order to study the effect of the 

amount of Gd3+ present in the contrast agent on the MRI visualization, meshes were sprayed 

with MRI contrast agent having different % by weight of Gd3+. They were prepared by 

dilution of PMMA CA in commercial PMMA to obtain 0.14, 0.23 and 0.79% w/w of Gd3+ in 

the mixture. Each polymeric contrast agent was then sprayed on the PP mesh using the 

airbrushing technique. The airbrushing technique was chosen to deposit the PMMA contrast 

agent on the PP mesh for the following reasons.  

 

3.1.1 Airbrushing technique  

The aim was to coat the PP mesh with a film of the PMMA based contrast agent. The process 

of coating in the pharmaceutical industry goes back in date to the mid 1800s with the 
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introduction of sugar coated tablets [1]. In general, a method for the formation of a polymeric 

film coating is the dissolution of a polymer in an appropriate solution and then spraying it as a 

fine mist. Droplets of the solution containing the polymer strike the surface of the substrate 

(in this case the PP mesh), spread on it, and upon the evaporation of the solvent a film is 

formed (Fig. 43). The choice of the solvent is essential because if the solvent evaporates 

rapidly the solvent-containing polymer may dry before striking the surface, and if the solvent 

dries too slowly the polymeric solution may dry before striking or spreading on the mesh [2]. 

In addition to that, high molar mass polymer is needed because reducing molecular weight 

affects critically the film strength [3].  

 

 

 Figure 43: Mechanism of the formation of the polymeric film by the spraying technique 
 

 

The spraying technique allows the indirect deposition of the PMMA contrast agent (high 

molar mass, 40 000 g) on the PP mesh.  

For this, the polymeric solution was prepared by dissolving PMMA contrast agents 

(containing different % by weight Gd3+) in dichloromethane. Each contrast agent was then 

spread on a commercial PP mesh using the airbrushing technique with an “Infinity Airbrush 

System” supplied by Harder & Steenbeck (Osteinbeck, Germany) under 3 bars argon pressure 

at a distance of 5 cm (Fig. 44). We prepared three meshes that were dried overnight under 

vacuum until a constant weight is obtained. 
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PP 
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The airbrushing technique is a versatile method that allows the preparation of regular and 

homogeneous films without altering the mesh’s shape and mechanical properties [4]. It allows 

the direct deposition of the polymeric solution on the PP mesh [5].  

 

 

Figure 44: Spraying of PMMA CA on PP mesh by airbrushing technique 
  

3.1.2  MRI Results  

The effect of the proportion of Gd3+ in the polymer on MRI visualization is shown in Fig. 45 . 

Polypropylene meshes covered with PMMA CA were visualized using 7T MRI. In the 

absence of CA, the polypropylene mesh was not visible (Fig. 45). 

 

 

Figure 45: 7T MR image of PP mesh without PMMA CA 

 

 Polypropylene meshes were coated with MRI-visible PMMAs at differentGd3+ 

concentrations of 0.14, 0.24 and 0.79 % by weight (Fig. 46). The amounts of Gd3+ present on 

each mesh were respectively 1.4, 2.3 and 8 μg per mg of polymeric contrast agent sprayed on 
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a mesh having a mass of around 10 mg. Results revealed that regardless the amount of Gd3+, 

the meshes turned out to be MRI visible even with concentrations of Gd3+ as low as 1.4 μg per 

mg (0.14% w: w) of polymeric contrast agent. Thus the presence of only 0.14% by weight of 

Gd3+ in the PMMA CA was sufficient to make the PP mesh visible by MRI.  

 

 

Figure 46:7T MR images of PP meshes coated with PMMA CA containing (A) 0.14% (B) 

0.23%, and (C) 0.79% by weight Gd3+ 

 

 
3.2 Stability Studies in PBS 
  

The ability of the PMMA contrast agent to render the PP mesh visible is not enough for 

medical applications, stability is another feature this CA should possess. In other words, Gd3+ 

should remain incorporated in the PMMA CA and should not be released over time. The 

stability of Gd-complexes is gaining more attention because of nephrogenic systemic fibrosis 

(NSF) occurring in patients with severe renal failure. NSF is a disorder that mainly affects the 

skin (but other tissues can be targeted) resulting in disability or, in severe cases, death. The 

primary cause leading to NSF is the transmetallation between Gd3+ released from the Gd-

chelate, and endogenous metals (zinc, copper, and calcium) thus releasing free Gd3+. This is 

mainly observed in patients with severe renal problems [6]. Hence, transmetallation is directly 
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related to the chelate’s thermodynamic stability. For this, stable contrast agents are a necessity 

to eliminate any risks associated with free Gd3+ and to prevent the precipitation of gadolinium 

salts. 

Our PMMA contrast agent will be assessed for stability in PBS buffer solution at 37°C to 

detect the release of free Gd3+ over time and to assess its suitability for application as long-

term MRI contrast agent. PMMA CA films containing 0.1 and 0.43% Gd3+ by weight were 

prepared and placed in PBS solution. The release was monitored over a 30 days period. 

 

3.2.1 PMMA contrast agent film preparation  

Films containing different % by weight of Gd3+ were prepared by diluting the PMMA contrast 

agent (containing 1.34% by weight Gd3+) with commercial PMMA and dissolving it in 

dichloromethane. 1 mL of the solution was placed in a circular mold. After solvent 

evaporation, films containing 0.10% and 0.43% by weight of Gd3+ were obtained (Fig. 47). 

 

 

Figure 47: PMMA CA films for stability and cytocompatibility studies 
 

3.2.2 Stability Test Results  

Each film (0.1 and 0.43% of Gd3+) was placed separately in a PBS solution at 37˚C under 

stirring at 130 rpm. At scheduled time points (1, 7, 30 and 90 days) 1 mL of PBS buffer was 

withdrawn (then replaced by 1 mL fresh buffer) and analyzed by ICP-MS for Gd3+ release 

study. 



110 

 

Films containing 0.1% Gd3+ w/w showed no detectable release of Gd3+ in PBS over a period 

of 90 days. Films containing 0.43% Gd3+ w/w (79 μg of Gd3+) showed a release of 0.4% Gd3+ 

(corresponding to 0.231 μg Gd3+) throughout the 90 days (Fig. 48). In both cases this 

represents a very low release of Gd3+ showing the stability of the CA during this period of 

time. 

 

 

 

 

Moreover, it is important to note that only a few mgrams of gadolinium were released, while 

the gram scale is used for the amount of Gd3+ administered in conventional MR scans. The 

FDA’s recommended dose of Magnevist in the US is 0.2 mL/kg corresponding to 0.1 mmol 

Gd/kg of body weight. Hence, for a 60 kg person, 6 mmol of Gd are administered, 

corresponding to around 1g of Gd3+. In some other countries, up to 0.6 mL/kg Magnevist can 

be injected corresponding to 0.6 mmol Gd3+/kg of body weight, corresponding to 6g of Gd3+  

[7]. 
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3.3 Cytocompatibility Test 
 

The obtained PMMA contrast agent should also be cytocompatible, hence a cytocompatibility 

test is essential to evaluate its effect on cells. For this, films containing various amounts of 

Gd3+ were prepared from PMMA CA as described in the section above. Cytocompatibility 

tests were performed on films containing 0.23, 0.5, and 1.34% Gd3+ by weight. These films 

were placed in direct contact with murine fibroblast cells.  

 

3.3.1 Cytotoxicity Test  

Cytocompatibility tests were performed on L-929 murine fibroblast cells (as recommended by 

the International and European standards ISO 10993-5:2009).  

 

3.3.2 Cytotoxicity Results  

Fig. 49 shows that PMMA CA with 0.23 and 0.5% Gd3+ were cytocompatible and did not 

have any effect on cell growth after 24 hours, whereas those containing 1.34% Gd3+ were 

detrimental for the cells. The LDH direct contact cytotoxicity test used to assess 

cytocompatibility works as follows: LDH or lactate dehydrogenase is an enzyme liberated in 

culture media once cells are dead. The presence of LDH reduces tetrazolium salt in LDH 

mixture to formazan dye having a red colour and a maximum absorbance at 490 nm. Thus, the 

presence of dead cells is indicated by both a red colour and high UV absorbance at this 

wavelength. This is the case with the TCPS negative control which contained the cells lysis, 

and in the case of the direct contact of PMMA MRI films containing 1.34% Gd3+ as revealed 

in Figure 48. The graph also shows that MRI PMMA films containing 0.23 and 0.5% 

Gd3+(w/w) had almost no UV absorbance, and thus no cytotoxicity was observed. The result 

is not surprising because a study performed by Porsio et al. [8] revealed that MRI visible PCL 
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nanoparticles with 1% Gd3+(w/w) caused a lower cell proliferation as compared to the same 

nanoparticles with lower Gd3+ amounts. Hence, polymeric contrast agents with the lowest 

amounts of Gd3+ are recommended in order to assure cytocompatibility by keeping a good 

MRI visibility.  

 

 

Figure 49: Cytocompatibility results of 0.23 and 0.5% Gd containing films 
 

 

3.4  Conclusion 

The coating of the polypropylene mesh with the PMMA CA rendered it visble by MRI. Even 

if the CA agent contained only 0.1% by weight gadolinium, it was still able to render the PP 

mesh visible at 7T. PMMA CA with up to 0.5% Gd, turned out to be stable and 

cytocompatible.The next chapter will describe the synthesis of polymeric fluorophores. Three 

of these fluorophores are organic and the last fluorophore involves the complexation of 

europium in the azido-functionalized mono-amide DTPA ligand. 
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The previous part of the thesis described the synthesis of a PMMA derivative for long-term 

MRI visualization. During the last decade, fluorescence imaging was gaining attention. A 

sensitive camera is now used in vivo to detect the fluorescence of fluorophores [1]. The 

fluorophore allows the molecule to absorb energy at a specific wavelength and emit energy at 

a different but specific wavelength [2]. For this, the alkyne functionalized PMMA will be 

attached by click chemistry to four different fluorophores: anthracene, fluorescein, rhodamine, 

and europium complex.  

 
4.1 Poly(methyl methacrylate) derivative functionalized with 
anthracene  
 

Numerous publications describe the synthesis of anthracenic fluorophore derivatives [3,4]. 

Although organic fluorophores, as anthracene, have desirable UV absorption and visible 

emission, yet different types of interactions may occur between the fluorophores themselves 

resulting in aggregates which can decrease the emission intensity. In order to reduce the 

interactions between the fluorophores, polymers can be used as separators between organic 

fluorophores thus reducing their interactions. For this, Su et al. describe the chemical linking 

of the anthracenic fluorophore to PMMA which inhibited the associations between central 

anthracene rings. This phenomenon increased the quantum yield, which is the number of 

emitted photons per absorbed photons [5]. In fact, the presence of the azide on the anthracene 

group also quenches the fluorescence due to a photo-induced electron transfer effect. The 

formation of triazole compounds via CuAAC reduced the electron donating effect of nitrogen, 

thus reducing this effect and restoring the fluorescence [6]. This fluorogenic CuAAC reaction 

has broad applications in the medical field due to its high efficiency, mild reaction conditions 

and distinct fluorescence properties of the product. A very strong fluorescent signal is 

obtained from weakly or even non-fluorescent starting materials [6,7]. 
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In our case, to form the triazole moiety and to obtain a fluorescent compound, propargylated 

PMMA was reacted with azido anthracene under mild CuAAC conditions (Scheme 11).  

 

 

Scheme 11: Synthesis of anthracene functionalized PMMA 
 

In a first step, 9-azido methyl anthracene was synthesized.  

 

4.1.1 Synthesis of 9-azido methyl anthracene  

9-azido methyl anthracene was synthesized by reaction of 9-chloro methyl anthracene on 

sodium azide in acetonitrile (Scheme 12). The pure product was obtained by recrystallization 

in ethanol followed by passing it on a chromatography column.  

 

N3

Cl

+ NaN3

 

Scheme 12: Synthesis of 9-azido methyl anthracene 
 

 

The purity of the compound was verified by 1H NMR and the presence of the azide peak 

appeared at 2100 cm-1 in FT-IR (Fig. 50).   

m n

OO O

O

N3

+

m n

OO O

O

N N

N

THF, 48 hrs

40°C



117 

 

 

Figure 50: 1H NMR and FT-IR of 9-azido methyl anthracene 

 

4.1.2 Synthesis of anthracene-functionalized poly(methyl methacrylate) by 
click chemistry  

 

In order to obtain the fluorescence of the anthracene which was quenched due to the presence 

of the azide group, the formation of the triazole moiety was a necessity. CuAAC reaction took 

place between PMMA containing propargyl groups (2.5% mol/mol) and 9-azido methyl 

anthracene in THF for 48 hours at 40°C. The mixture was then precipitated in ethanol to get 

rid of free azido-anthracene [8]. 

The GPC trace using UV detector revealed the absence of UV absorbance of the polymer 

(Fig. 51) and a molar mass of around 20000 g/mol. 
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After CuAAC, and using 290nm wavelength, GPC revealed a UV signal at the same retention 

volume as the one of the polymer, revealing the presence of a fluorescent polymer without 

any free 3-azido anthracene (Figure 52).  

 

 

Figure 52: GPC-UV of anthracene fluorecent PMMA 
 

Theoretically, the anthracene functionalized PMMA should contain 4.2% by weight 

anthracene (relevant to the 2.5% by mol propargyl units the PMMA contains). The amount of 

anthracene in the anthracene fluorescent PMMA was determined by UV-visible spectroscopy. 

Working at a wavelength of 358 nm, a calibration curve of anthracene was drawn (Figure 53).  
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The calibration curve was obtained with a statistically acceptable fit of 0.9954. Using this 

calibration curve, the amount of anthracene in the anthracene fluorescent PMMA turned out 

to be 1.8% by weight as compared to theoretically 4.2% by weight. This is due to the low 

efficiency of the CuAAC reaction which maybe improved by increasing the temperature. 

However, the temperature in our case is a limitation due to the presence of the azide group.  

 

4.2 PMMA derivative functionalized with Fluorescein 
Isothiocyanate (FITC) 

 
The use of FITC as a fluorophore in bioassays is well known. Pinheiro et al. described the 

synthesis of Fe3O4 functionalized nanoparticles with FITC, mediated by polyethyleneimine 

(PEI) and these particles were preliminary evaluated as fluorescent [9]. This fluorophore is 

extensively used in cell biological studies [10]. In our case, FITC was modified with 3-azido 

propylamine so that it contained an azide group and the azido modified FITC was then 

conjugated to propargylated PMMA. The obtained PMMA-FITC was then sprayed on a PP 

mesh and evaluated by fluorescence microscopy for the emission of green color characteristic 

of FITC.  

 

As a first step, azido modified fluorescein was obtained by the reaction between FITC and 3-

azido propylamine in DMF in the presence of triethylamine. The reaction mixture was stirred 

for 2 hours at room temperature (Scheme 13) [11].  
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 Scheme 13: Synthesis of azido modified fluorescein 
 

 

The presence of the azide was verified by FT-IR by the appearance of the peak at 2100 cm-1. 

The azido functionalized FITC was further attached to the propargylated PMMA by CuAAC 

using CuBr and PMDETA. The reaction took place in DMSO for 48 hours at 40°C. The 

PMMA-FITC was obtained by precipitation in ethanol (Scheme 14).  

 

 

Scheme 14: Synthesis of PMMA-FITC 
 

GPC trace using UV detector-UV in DMF at 450 nm revealed the absence of free FITC. GPC 

was performed in DMF because the product was not soluble in THF. Fig. 54 and 55 represent 

the GPC-UV traces of FITC and PMMA-FITC.  
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Figure 54 : GPC-UV of FITC 
 

 

Figure 55: GPC-UV of PMMA-FITC 
 

In order to depose PMMA-FITC on the PP mesh, the airbrushing technique was used. 

PMMA-FITC was solubilized in DCM and the solution was sprayed on the PP mesh. The 

mesh was then observed by fluorescent microscopy.  In the presence of white light, the mesh 

revealed the presence of only a small amount of PMMA-FITC due to the low solubility of the 

compound in DCM (Fig.56).  

 

 

Figure 56: White light visualization of PMMA-FITC on PP mesh 
 

Very small amount of 
PMMA-FITC is 
deposited on mesh  
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By placing a green light filter, only green light can pass and excite the PMMA-FITC on the 

mesh. FITC has an excitation wavelength of around 495 nm (green light) and an emission of 

around 518 nm also corresponding to green light. Hence, the excitation of PMMA-FITC at the 

correct wavelength should reveal a green color. However, in this case no green fluorescence 

was observed probably due to the insufficient amount of PMMA-FITC present on the mesh 

(Fig. 57).  

 

Figure 57: no green light visualization of PMMA-FITC on PP mesh 
 

 

NB: Under a red light filter, only red light can pass and excite PMMA-FITC. The wavelength 

of red light does not allow the excitation of PMMA-FITC, and that is why no emission 

occurred and no fluorescence was observed.  

 

4.3 PMMA derivative functionalized with rhodamine B 
isothiocyanate (RITC) 

 
Rhodamine B is one of the rhodamines known for its red fluorescence and photostability [12]. 

Rhodamine dyes are widely used as fluorescent probes due to their broad fluorescence in the 

visible region of the electromagnetic spectrum. In many cases, rhodamine dye is modified and 

linked to biomolecules [13]. In this work, rhodamine B isothiocyanate was modified to give a 

RITC azide. Rhodamine B isothiocyanate was then reacted with 3-azido propylamine for 2 

hours in DMF with triethyl amine (Scheme 15). After solvent evaporation, the pure product 

was obtained. The FT-IR spectrum shows a peak at 2100 cm-1 corresponding to the azide 

peak. 
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Scheme 15: Synthesis of azido functionalized rhodamine B isothiocyanate 
 

RITC-azide was further attached to the propargylated PMMA by CuAAC using CuBr and 

PMDETA. The reaction took place in DMSO for 48 hours at 40°C (Scheme 16). The PMMA-

RITC was obtained by precipitation in ethanol.  

 

 

 

Scheme 16: Synthesis of PMMA RITC 
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The GPC trace in DMF using an UV detector revealed the absence of free RITC and the 

conjugation of RITC to the PMMA.PMMA-RITC was then dissolved in DCM and sprayed on 

PP mesh by the air-brushing technique. Visualization of the mesh by white light revealed the 

presence of PMMA-RITC on the mesh (Fig. 58).  

 

 

Figure 58: White light visualization of PMMA-RITC on PP mesh 
 

By placing a green filter and upon excitation of this mesh by green light, a light fluorescence 

could be observed (Fig.59). 

 

Figure 59: Green light visualization of PMMA-RITC on PP mesh 
 

Excitation with red light of the PP mesh with PMMA-RITC gave a highly fluorescent red 

color due to the emission wavelength of RITC (@ 650nm). 
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Figure 60: Red light visualization of PMMA-RITC on PP mesh 
 

As preliminary studies, these results indicate that the obtained PMMA-RITC can generate red 

light if excited at the correct wavelength, which can be useful in vivo fluorescence after 

further studies. 

 

4.4 PMMA derivative with europium complex 
 

Lanthanides, especially Terbium and Europium, are gaining attention for replacement of 

organic fluorophores. [14]. Complexes of europium are especially gaining much interest for 

several reasons [15]:  

- They have large Stokes shifts (i.e. the difference in wavelength between excitation’s 

maximum and emission’s maximum)  

- They have a Long-lived fluorescence  

Europium has to be complexed because the ligand absorbs the excitation radiation and 

transfers it to the europium which then emits the light thus acting as an antenna. For example, 

the creation of the triazole group acts as an antenna for the lanthanide energy transfer process 

[16]. In this case, azido-functionalized DTPA monoamide was reacted with Eu(III) triflate in 

pyridine at 70°C for 3 hours (Scheme 17). After solvent evaporation, the product was refluxed 

in ethanol for 1 hour, centrifuged and filtrated to obtain the pure product. 
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Scheme 17: Synthesis of azido functionalized mono-amide Eu DTPA 
 

 

The product has a molar mass of 624.39 g/mol. MALDI-TOF revealed the presence of a peak 

at 1249.2 (2M+) as compared to 1248.78 theoretical. The spectrum also showed the presence 

of free europium triflate, which unlike gadolinium is not toxic (Fig. 61).  

 

 

Figure 61: MALDI-TOF spectrum of Eu-DTPA complex 
 

The Eu-DTPA complex bearing an azido group was then attached to propargylated PMMA by 

CuAAC reaction in DMF at 40°C for 48 hours. The Eu-PMMA was obtained by precipitation 

in ethanol (Scheme 18). 
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Scheme 18 : Synthesis of PMMA-Eu 
 

Eu-PMMA was then dissolved in DCM and sprayed on a PP mesh. Red emission of Eu3+ is at 

630 nm [14]. Under a red light, the PP mesh revealed a red fluorescence (Fig. 62) indicating 

the ability of the triazole to act as antenna.  

 

 

Figure 62: Red fluorescence of PMMA-Eu on PP mesh 
 

4.5 Conclusion  

The synthesis of polymeric fluorophores was reported. PMMA-FITC needs furher 

improvement in solubility. PMMA-RITC and PMMA with Eu-DTPA gave red fluorescence 

when excited at the right wavelength, thus showing possibility to be used in the medical 

fluorescence field upon further studies. 
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Progress realized in medical imaging modalities, in particular in magnetic resonance imaging, 

has given clinicians a very efficient method for diagnosis and post-operation follow-up. At the 

same time, the majority of prosthetic implants (especially those intended to be used for 

moderate or long durations) are invisible by MRI, fluorescence or radiography and their 

visualization is a necessity to obtain informations concerning their fixation and their fate in 

the body after implantation. Contrast agents can be employed to enhance signals.  

The main aim of this thesis was to synthesize a MRI-visible polymer by grafting a contrast 

agent, i.e. a gadolinium complex, on the polymeric chain. This MRI-visible polymer should 

then be coated on a polypropylene mesh to make the device visible by MRI. The polymer 

should be non-degradable to allow a long-time visualization of the implanted medical device. 

Among the different contrast agents available, we chose azido-functionalized Gd-DTPA 

ligands which were grafted by click chemistry on a preformed propargylated PMMA.  

To obtain a long term visualization of implanted meshes we synthesized a new monoazido 

functionalized DTPA ligand, using a simple pathway. Complexation of this DTPA ligand 

with Gd3+ led to a Gd-DTPA contrast agent. Macromolecular contrast agents based on 

PMMA were then prepared by click chemistry of azido-functionalized Gd-DTPA ligand onto 

propargylated PMMA. This new MRI-visible polymer was characterized by ICP-MS analysis 

in order to determine the amount of gadolinium. Results revealed that an important increase in 

the amount of grafted Gd3+ did not improve visualization of the mesh. Thus amounts of Gd3+ 

as low as 0.1% by weight rendered polypropylene meshes visible on a 7T MRI apparatus. 

These low amounts of Gd3+ made the MRI-visible polymer also cytocompatible and stable 

during a few months. This should allow a long-term use in the body for biomedical 

applications after further in vivo stability studies.  

Besides MRI, fluorescence imaging is gaining a lot of attention. For this, we reported the 

synthesis of fluorescent PMMAs. PMMA was linked to three different fluorophores based on 
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azido anthracene, fluorescein, and rhodamine. The synthesis of fluorescent PMMA based on 

europium was also reported in which the triazole moiety acted as the antenna. Preliminary 

results for the four fluorophores are interesting, especially in the case of europium derivatives. 

However, advanced fluorescent microscopy should be applied, in addition to stability studies 

of the europium complex.  

This work holds several future perspectives. The synthesized PMMA CA has to be tested for 

stability for longer periods of time, followed by total degradation in nitric acid, as to measure 

the amount of Gd3+ by ICP-MS. The ability of this CA to render PP mesh visible should be 

tested on 1.5T MRI. As a further stage, this CA should be tested in vivo in mice for 

cytotoxicity studies.  

The synthesized fluorophores, mainly the europium based fluorophore should be tested using 

in vivo-fluorescence, to test its ability to render PP mesh visible by fluorescence.  

The synthesis of the mono-amide DTPA ligand bearing both Gd and Eu is also gaining 

interest. This allows the synthesis of a dual function DTPA ligand: an MRI contrast agent 

when needed, and a red fluorophore when excited at the right wavelength. 
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 1. Materials 

Dimethylfornamide (DMF, Aldrich) and toluene (Aldrich) were dried over calcium hydride 

overnight and distilled under reduced pressure. Pyridine (Aldrich) was dried over KOH and 

distilled. Tetrahydrofuran (THF, Aldrich) was dried by refluxing over a benzophenone-

sodium mixture until a deep blue colour appeared and distilled. Methyl methacrylate (MMA, 

Aldrich) was purified through a basic aluminum oxide column in order to remove the 

inhibitor. AIBN was recrystallized in ethanol. All other materials were obtained from Aldrich 

and were used without any further purification. 

2. Characterization  

NMR Spectroscopy: AMX300 Bruker spectrophotometer operating at 300MHz was used to 

record the NMR spectra. AMX400 Bruker spectrophotometer was used to obtain the 1H 

spectra. Deuterated chloroform and water were used as solvent, and chemical shifts were 

expressed in ppm with respect to tetramethylsilane (TMS).  

FT-IR: FT-IR spectra were obtained on a Perkin Elmer spectrum 100 FT-IR 

spectrophotometer with an attenuated total reflectance (ATR) method. 

LC-MS and MALDI analyses: A Q-TOF (Waters) spectrometer with an electrospray interface 

was used to obtain LC-MS spectra. An Ultra-FlexIII spectrometer (Bruker) was used to obtain 

MALDI-TOF spectra. All solvents were HPLC grade. 

Preparative HPLC: HPLC separation was performed at SYNBIO3, Montpellier, on HPLC 

(Waters) with HD-C18 column using HPLC acetonitrile with 0.1% trifluoroacetic acid as 

eluent.  

Size Exclusion Chromatography: Size exclusion chromatography (SEC) was performed at 

room temperature using a Viscotek GPCmax system equipped with a Viscotek guard column 

(10×4.6 mm) and two Viscotek columns LT 5000L mixed medium (300×7.8 mm), a Viscotek 

VE 3580 refractometric detector and a Viscotek VE 3210 UV/Vis detector. Calibration was 
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established with polystyrene standards from Polymer Laboratories. THF was used as solvent 

with a flow rate of 1 mL.min-1.  

ICP-MS Analyses: Quantification of Gd3+ and Cu+ was performed on an Element XR sector 

field ICP-MS (inductively coupled plasma) with an indium enriched ultrapure solution as an 

internal standard. The analyses were performed in the GeoSciences laboratory at the 

University of Montpellier. 

MR imaging experiments: these were performed on a Bruker Biospec 70/20 system operating 

at a magnetic field of 7T (Bruker, Wissembourg, France). The resonant circuit of the NMR 

probe was a 35-mm diameter birdcage resonator. Meshes (around 1 cm2) were embedded in 

degassed 1% by weight agar gel prior to imaging. Gadolinium-free samples corresponded to a 

polypropylene mesh without Gd contrast agent. To test signal enhancement, T1 weighting 

was introduced into the MR images using an inversion pulse in rapid three-dimensional (3-D) 

acquisition with relaxation enhancement (RARE) sequence (TR = 3000 ms; mean echo time 

(TEm) = 8 ms; RARE factor = 8; FOV = 3 × 3 × 1.5 cm; matrix 128 × 128 × 64). Inversion 

time was set at 1100 ms, sufficient to allow canceling of the embedding gel.  

Fluorescence microscopy: Nikon 150231 microscope was used. 

3. Synthesis of azido-functionalized mono-ester DTPA ligand  

 

Synthesis of 3-azido propanol 

3-chloropropanol (5.1mL, 5.77g, 61mmol) with sodium azide (7.94g, 122mmol) and 

tetrabutyl ammonium hydrogen sulfate (40mg) were dissolved in 5 mL water and heated at 

80˚C for 24 hours, then left under stirring for 12 hours at room temperature. The obtained 

product was extracted with diethyl ether (3´50ml). The organic phase was then dried over 

MgSO4 and evaporated by rotary evaporation. 4.7g of the pure colorless liquid were obtained 

by distillation under reduced pressure (yield 75 %).  
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Characterization by 1H NMR (300MHz, CDCl3): δ(ppm)= 3.69 (t,2H,CH2O); 3.40 (t,2H, 

CH2N3), 1.78 (m,2H, CH2CH2CH2) 

Synthesis of azido-functionalized mono-ester DTPA ligand  

3-azido propanol (0.28g, 2.8 mmol) and DTPA bis-anhydride (1g, 2.8 mmol) were dissolved 

in 20mL dry DMF. The reaction mixture was stirred under argon for 24 hours. After removal 

of DMF under vacuum, the product was dissolved in water and subjected to freeze drying. 

The LC-MS spectrum revealed the presence of two products: azido-functionalized bis-ester 

DTPA ligand (M=559.24 g/mol) and azido-functionalized mono-ester DTPA ligand 

(M=476.44 g/mol). Starting from 2g of this mixture, preparative HPLC separation gave 0.75g 

of the mono-ester ligand as a white powder (yield=38%).  

Characterization by 1H NMR (400MHz, D2O): δ(ppm)= 1.9(m, 2H, CH2CH2N3), 3.4(t, 10H, 

NCH2 and CH2N3), 3.7(s, 2H, NCH2CO2H), 4(s, 3H, NCH2CO2H), 4.3 (s, 1H, OCH2).  

LC-MS (ES+, m/z):477.2 g/mol [M+H]+.  

FT-IR(ATR, cm-1) 2100 (N3). 

4.  Synthesis of azido-functionalized mono-amide DTPA ligand 

 Synthesis of 3-azido propylamine  

3-azido-1-propylamine was synthesized according to a known procedure. 3-

chloropropylamine hydrochloride (4 g, 30.8 mmol), sodium azide (6 g, 92.3 mmol), and water 

(30 mL) were added in a round bottom flask. The solution was heated overnight at 80˚C. 

After cooling in an ice bath, KOH (4 g) and diethyl ether (50 mL) were added. After 

separation of the organic phase, the aqueous phase was further extracted with diethyl ether 

(3´50 mL). The organic phase was then dried over magnesium sulfate and evaporated under 

reduced pressure. Purification of the crude product by distillation yielded 2.46 g of the pure 

product as coloress oil with a yield of 80 %.  
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Characterization: 1H NMR (300MHz, CDCl3): δ(ppm)= 3.3 (t,2H,CH2N3); 2.8 (t,2H, 

CH2NH2), 1.6 (m,2H, CH2CH2CH2), 1.4 (s, NH2). FT-IR (ATR, cm-1): 2100(N3) 

 Synthesis of azido-functionalized mono-amide DTPA ligand  

DTPA bis-anhydride (1.9 g, 5.3 mmol, 1 equiv.) and imidazole (3.04 g, 44.2 mmol) were 

solubilized in DMF at 80 ˚C. The solution was then cooled to 50 ˚C, and a mixture of 

azidopropylamine (0.53g, 5.3mmol, 1equiv.) and pyridine (0.22 mL) was added dropwise. 

The mixture was left at 50 ˚C for 5 hours, then precipitated in acetone, filtered and freeze-

dried. The LC-MS spectrum revealed the presence of bis-amide (M=557.75 g/mol) and mono-

amide DTPA ligands (M=475.45 g/mol).The monofunctional DTPA was purified by 

preparative HPLC separation (0.555 g, yield 30 %). 

 Characterization: 1H NMR (400MHz, D2O) δ ppm: 1.8 (2H, m, CH2CH2N3), 3.4 (12H, t, 

N(CH2)2N and CH2N3), 3.7(2H, s, NCH2CO2H), 4 (8H, s, NCH2CO2H).  

FT-IR (ATR, cm-1): 2100 (N3).  

LC-MS (ES+, m/z): 476.2 Da [M+H+] 

5. Synthesis of Gadolinium Complexes  

MTB protocol  

2.6 ml of glacial acetic acid were added to 800 mL ultra-pure water. The pH was then 

adjusted to 5.8 by addition of 1M NaOH solution. This buffer was then used to prepare 50μM 

of MTB solution. GdCl3 standards in the range of 0-50μM were prepared in the buffered 

MTB to obtain the calibration curve.   

Gadolinium Complexation with azido-functionalized mono-ester DTPA  

Pyridine (2.1 mmol, 0.16 mL) was added to azido-functionalized mono-ester DTPA (100 mg, 

0.21 mmol) dissolved in a minimum of H2O and stirred for 10 minutes at room temperature. 

GdCl3.6H2O (0.15g, 0.42 mmol) was then added, and the mixture was left at 40 ˚C for 24 

hours. Solvents were removed under vacuum, and an aqueous solution of the complex was 
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stirred in Chelex 100 resin overnight to remove free Gd3+. The product was then filtered, 

freeze-dried to give 70 mg of white solid (yield=52%). 7mg of the prepared complex were 

dissolved in 3mL MTB solution and analyzed by UV spectroscopy. A yellow color was 

observed indicating the absence of free gadolinium. 

 Characterization: ICP-MS revealed the presence of 11% by weight of Gd3+ in the complex. 

MALDI-TOF (dithranol, m/z): [M+K+]=685.9 Da versus 686.77 calculated.  

FT-IR (ATR, cm-1): 2100 (N3). 

Gadolinium Complexation with azido-functionalized mono-amide DTPA  

Pyridine (2 mmol, 0.16 mL) was added to azido-functionalized DTPA 1 (100 mg, 0.2 mmol) 

dissolved in few mL of H2O and stirred for 10 minutes at room temperature. GdCl3.6H2O 

(0.15g, 0.4 mmol) was then added, and the mixture was left at 40 ˚C for 24 hours. Solvents 

were removed under vacuum, and an aqueous solution of the complex was stirred overnight in 

Chelex 100 resin to remove free Gd3+. The product was then filtered, freeze-dried to give 

64mg of white solid (yield=50%). The absence of free gadolinium was verified by methyl 

thymol blue (MTB) colorimetric test.  

Characterization: The amount of complexed Gd3+was calculated by ICP-MS, revealing 10% 

Gd by weight.  

MALDI-TOF (dithranol, m/z): [M+K+]=685.8 Da versus 685.78 calculated.  

FT-IR (ATR, cm-1): 2100 (N3). 

6. Synthesis of Poly(methyl methacrylate-co-propargyl methacrylate) 

Synthesis of propargyl methacrylate  

Methacryloyl chloride (13.95 g, 133 mmol) in 50 mL dichloromethane was added dropwise at 

0 ˚C during 30 minutes to propargyl alcohol (5 g, 89 mmol) and triethyl amine (13.51 g, 133 

mmol) in 50 mL dichloromethane. The reaction was then left overnight at room temperature. 

After removal of ammonium salts by filtration over celite, the product was washed with 
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3´50mL of saturated NaHCO3 and 3´50mL H2O. The product was dried over MgSO4 and 

solvents were removed under reduced pressure. The final product was obtained as colorless 

oil by vacuum distillation. (4g, yield=36%)  

Characterization: 1H NMR (300 MHz, CDCl3) δ (ppm): 1.97 (3H, s, CH3-C=CH2), 2.48(1H, 

s, C≡CH), 4.76(2H, s, OCH2), 5.63(1H, s, C=CHH), 6.18(1H,s,C=CHH).  

Synthesis of (PMMA-co-PMA) by free radical polymerization initiated by AIBN   

Polymerization was carried out in toluene solution using a standard Schlenk technique under 

inert atmosphere of argon. Typically, methyl methacrylate (5 g, 49.9 mmol, 97.5 equiv.), 

propargyl methacrylate (0.158 g, 1.279 mmol, 2.5 equiv.), AIBN (0.05 g, 0.3 mmol, 1% w/w), 

and toluene (20 mL) were placed in an oven-dried Schlenk tube. The tube was fitted with a 

rubber septum. The solution was further degassed by three freeze-thaw-pump cycles. The 

resulting mixture was placed in a thermostatically controlled oil bath at 70˚C for 2 hours. The 

reaction was stopped with liquid nitrogen. The polymer was precipitated in cold methanol 

then in cold heptane, and finally collected by filtration and dried under vacum. 

Characterization: 1H NMR (300MHz, CDCl3) δ(ppm): 3.5(s,3H, OCH3) and 4.2 (s,2H,CH2- 

C≡CH ).  

Mn,SEC = 40000 g.mol-1, Ð=1.8 

Synthesis of (PMMA-co-PMA) by microwave initiated ATRP 

Polymerization was carried out in DMF using a microwave vessel in an ETHOS 1 microwave 

apparatus. Typically, methyl methacrylate (5 g, 49.9 mmol, 97.5 equiv.) and propargyl 

methacrylate (0.063 g, 0.51 mmol, 1 equiv.), EBB (0.024 g, 0.12 mmol), CuCl (0.012g, 0.09 

mmol), PMDETA (0.038g, 0.22 mmol), and DMF (10 mL) were placed in an oven-dried 

microwave tube which was then fitted in a closed microwave vessel. The mixture was placed 

in a microwave oven at 70˚C at different time intervals (30 min, 90 min, and 150 min). The 

reaction was stopped with liquid nitrogen. The polymer was precipitated in 7/3 
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methanol/water mixture with 0.1% hydrochloric acid. The product was collected by filtration 

and dried in vacum.  

Characterization: 1H NMR (300MHz, CDCl3) δ(ppm): 3.5(s,3H, OCH3) and 4.2 (s,2H,CH2- 

C≡CH ).  

Mn,SEC  and  Ð varied according to time intervals. 

 Synthesis of (PMMA-co-PMA) by microwave initiated free radical polymerization 

Polymerization was carried out in a DMF solution using a microwave vessel in an ETHOS 1 

microwave apparatus. Methyl methacrylate (5 g, 49.9 mmol, 97.5 equiv.) and propargyl 

methacrylate (0.063 g, 0.51 mmol, 1 equiv.) were initiated by various amounts of BPO (0.1, 

0.2, 0.5, 0.7 and 0.9% by weight) in DMF (10 mL). The different mixtures were placed in 

separate oven-dried microwave tubes which were then fitted in a closed microwave vessel. 

The mixtures were placed in a microwave oven at 70˚C for 15 minutes. The reaction was 

stopped with liquid nitrogen. The polymer was precipitated in 7/3 methanol/water mixture 

with 0.1% hydrochloric acid. The product was collected by filtration and dried in vacum. 

Characterization: 1H NMR (300MHz, CDCl3) δ(ppm): 3.5(s,3H, OCH3) and 4.2 (s,2H,CH2- 

C≡CH ).  

Mn,SEC  and  Ð varied according to amounts of BPO used. 

7.  CuAAC Experimental Conditions  

Synthesis of Ester Based Polymeric Contrast Agent  

In a Schlenk tube were placed poly(methyl methacrylate-co-propargyl methacrylate) (100 mg, 

2.5% mol propargyl unit), Gd-DTPA mono-ester complex (13.54 mg, 22 mmol, 1.2 equiv.), 

CuBr (3 mg, 22 mmol, 1.2 equiv.), and the least amount of DMF to solubilize the components. 

The tube was fitted with a rubber septum. The solution was further degassed by three freeze-

pump-thaw cycles, stirred under argon, and PMDETA (7.44 mg, 43 mmol, 2.4 equiv.) was 

added. The reaction was left at 40 ˚C for 48 hours. The crude material was purified by dialysis 
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(6000-8000 MWCO) against acetone which was renewed regularly. After 3 days, acetone was 

evaporated to yield pure gadolinated PMMA  (40 mg, yield 80%) with 1.4% by weight Gd3+ 

as measured by ICP-MS. 

Synthesis of Amide Based Polymeric Contrast Agent  

In a Schlenk tube were placed poly(methyl methacrylate-co-propargyl methacrylate) (50 mg, 

2.5% mol propargyl unit), Gd-DTPA mono-amide complex (7 mg, 10 mmol, 1.2 equiv.), CuBr 

(1.5 mg, 10 mmol, 1.2 equiv.), and the minimum amount of DMF to solubilize the 

components. The tube was fitted with a rubber septum. The solution was further degassed by 

three freeze-pump-thaw cycles, stirred under argon, and PMDETA (3.7 mg, 22 mmol, 2.4 

equiv.) was added. The reaction was left at 40 ˚C for 48 hours. The crude material was 

purified by dialysis (6000-8000 MWCO) against acetone which was renewed regularly. After 

3 days, acetone was evaporated to yield pure gadolinated PMMA (40 mg, yield 80%) with 

1.34% by weight Gd3+ as obtained by ICP-MS. 

8. Meshes Preparation for MRI Visualization 

Meshes were sprayed with PMMA MRI contrast agent having different Gd3+ percentages 

prepared as follows: the synthesized polymeric contrast agent has been diluted by commercial 

PMMA and dissolved in DCM to obtain 0.14, 0.23 and 0.79% w/w of Gd3+. Each polymeric 

solution was sprayed on commercial polypropylene mesh (3´3cm2) using Infinity Airbrush 

system supplied by Harder & Steenbeck (Osteinbeck, Germany) under a pressure of argon of 

3 bars and at a distance of 5 cm. Meshes were dried overnight under vacuum until a constant 

weight was obtained.  

9. Film formation  

Films containing various % of Gd3+ have been prepared by diluting the MRI-visible polymer 

with commercial PMMA and dissolution in DCM. After solvent evaporation, films containing 

various amounts of Gd3+ were then obtained. 
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10. Stability  

Films containing 0.10% and 0.43% by weight of Gd3+ were placed in PBS solution at 37˚C 

under stirring at 130 rpm. At scheduled time points (1, 7, 30 and 90 days) 1 mL of PBS buffer 

was withdrawn (then replaced by 1 mL fresh buffer) and analyzed by ICP-MS for Gd3+ 

release study. 

11. Cytocompatibility  

 

Cells were cultured in MEM culture media by adding horse serum (10% v/v), penicillin, 

streptomycin and 1% GLUTAMAX. Cells were grown in a 5% CO2 incubator at 37 ˚C for 

around 24 hours till a confluence of around 80%, in which cells had covered the totality of the 

wells as observed by an electron microscope. At this point, the culture medium was sucked 

out and thrown. The different films were then gently placed on these cells. Films of 

gadolinium-free poly(methyl methacrylate-co-propargyl methacrylate) were also placed in 

addition to blank samples, negative control (the cells with cell lysis) and positive control (the 

cells). To each of the wells 1000 μL of LDH reaction mixture was added and samples were 

incubated for 24 hours. Each sample was repeated 3 times. After 24 hours, 10 μL of each 

sample were transferred to UV wells to which 100 μL of LDH were added. Sample was tested 

for UV absorbance at 490 nm by Victor V3 Perkin Elmer UV spectrophotometer.  

12. Synthesis of fluorescent markers 

Synthesis of 9-azido methyl anthracene  

9-chloro methyl anthracene (1g, 4.4 mmol) and sodium azide (0.43 g, 6.6 mmol) were heated 

in 30 mL acetonitrile at 50°C for 5 hours. The mixture was recrystallized in 

methanol/dichloromethane and the product was further purified by passing it over a silica 

column using 4:1 heptane:ethyl acetate as eluent. A yellow product was obtained (0.93g, 

yield=90%).  
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Characterization: 1H NMR (400 MHz, CDCl3) δ (ppm): 5.32 (2H, s, CH2), 7.24-7.60 (4H, 

m, anthracene), 8.02 (2H, m, anthracene), 8.26 (2H,m,anthracene), 8.5 (1H, S, anthracene). 

FT-IR (ATR, cm-1): 2100(N3) 

Synthesis of anthracene-functionalized poly(methyl methacrylate) 

In a Schlenk tube were placed poly(methyl methacrylate-co-propargyl methacrylate) (300 mg, 

2.5% mol propargyl unit), 9-azido methylanthracene (21 mg, 90 mmol, 1.2 equiv.), CuBr (13 

mg, 90 mmol, 1.2 equiv.), and the minimum amount of THF to solubilize the components. The 

tube was fitted with a rubber septum. The solution was further degassed by three freeze-

pump-thaw cycles. The mixture was stirred under argon, and PMDETA (31 mg, 180 mmol, 

2.4 equiv.) was added. The reaction was left at 40 ˚C for 48 hours. The crude material was 

purified by precipitation in ethanol 

Synthesis of azido-functionalized fluorescein  

Fluorescein isothiocyanate (48.5 mg, 0.124 mmol) was dissolved in dry DMF. 400µL triethyl 

amine and 3-azido propylamine (11.8 mg, 0.118 mmol) in 200µL DMF were added. The 

reaction was stirred at room temperature for two hours. The product was obtained after DMF 

evaporation under vacuum (37mg, yield=65%).  

Characterization: FT-IR(ATR, cm-1) 2100 (N3). 

Synthesis of PMMA functionalized with FITC  

In a Schlenk tube were placed poly(methyl methacrylate-co-propargyl methacrylate) (150 mg, 

2.5% mol propargyl unit), azido functionalized fluorescein (21.7 mg, 44.4 mmol, 1.2 equiv.), 

CuBr (6.4 mg, 44.4 mmol, 1.2 equiv.), and the minimum amount of DMSO to solubilize the 

components. The tube was fitted with a rubber septum. The solution was further degassed by 

three freeze-pump-thaw cycles. The mixture was stirred under argon, and PMDETA (15 mg, 

88 mmol, 2.4 equiv.) was added. The reaction was left at 40 ˚C for 48 hours. The crude 

material was purified by precipitation in ethanol.  
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Synthesis of azido-functionalized Rhodamine  

Rhodamine B isothiocyanate (49.8mg, 0.093 mmol) was dissolved in dry DMF. 400µL 

triethyl amine and 3-azido propylamine (9.77 mg, 0.097 mmol) in 200µL DMF were added. 

The reaction was stirred at room temperature for two hours. The product was obtained after 

DMF evaporation under vacuum (40.1mg, yield=65%).  

Characterization: FT-IR(ATR, cm-1) 2100 (N3). 

Synthesis of PMMA functionalized with Rhodamine 

In a Schlenk tube were placed poly(methyl methacrylate-co-propargyl methacrylate) (150 mg, 

2.5% mol propargyl unit), azido functionalized rhodamine (28.5 mg, 44.7 mmol, 1.2 equiv.), 

CuBr (6.4 mg, 44.4 mmol, 1.2 equiv.), and the minimum amount of DMSO to solubilize the 

components. The tube was fitted with a rubber septum. The solution was further degassed by 

three freeze-pump-thaw cycles. The mixture was stirred under argon, and PMDETA (15 mg, 

88 mmol, 2.4 equiv.) was added. The reaction was left at 40 ˚C for 48 hours. The crude 

material was purified precipitation in ethanol 

Synthesis of azido functionalized mono-amide Eu DTPA 

Azido-functionalized mono-amide DTPA ligand (100mg, 0.21 mmol) was dissolved in a few 

mL pyridine. Europium triflate (0.138g, 0.231 mmol) in 1mL water was added. The reaction 

was heated at 70°C for 3 hours. After solvent evaporation, the product was refluxed in ethanol 

for one hour, centrifuged, and filtrated to obtain the pure complex (62mg, yield=50%). 

Characterization: MALDI-TOF (2,5 dihydroxybenzoic acid as matrix): 1249.2 [2M+] 

experimental as compared to 1248.78 theoretical. 

Synthesis of Eu-PMMA 

In a Schlenk tube were placed poly(methyl methacrylate-co-propargyl methacrylate) (100 mg, 

2.5% mol propargyl unit), azido functionalized Eu-DTPA ligand (18.58 mg, 29.7 mmol, 1.2 

equiv.), CuBr (4.27 mg, 29.7 mmol, 1.2 equiv.), and the minimum amount of DMF to 
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solubilize the components. The tube was fitted with a rubber septum. The solution was further 

degassed by three freeze-pump-thaw cycles. The mixture was stirred under argon, and 

PMDETA (10.3 mg, 59.5 mmol, 2.4 equiv.) was added. The reaction was left at 40 ˚C for 48 

hours. The crude material was purified precipitation in ethanol.  

 


