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APPROCHE BAYESIENNE DE LESTIMATION DES COMPOSANTES PERIODIQUES DES
SIGNAUX EN CHRONOBIOLOGIE

Résumé

La toxicité et I'efficacité de plus de 30 agents anticancénenésentent de trés fortes variations
en fonction du temps de dosage. Par conséquent, les biglegjai étudient le rythme circadien ont
besoin d’'une méthode trés précise pour estimer le vectetordposantes périodiques (CP) de sighaux
chronobiologiques. En outre, dans les développementsiteeagon seulement la période dominante
ou le vecteur de CP présentent un intérét crucial, mais sewgs stabilités ou variabilités. Dans les
expériences effectuées en traitement du cancer, les si@raegistrés correspondant a différentes
phases de traitement sont courts, de sept jours pour le séglaesynchronisation jusqu’a deux ou
trois jours pour le segment aprés traitement. Lorsqué’adiétla stabilité de la période dominante
nous devons considérer des signaux trés court par rappart@nhaissanca priori de la période
dominante, placée dans le domaine circadien. Les apprathesiques fonées sur la transformée de
Fourier (TF) sont inefficaces (i.e. manque de précision)mentenu de la particularité des données
(i.e. la courte longueur). Une autre particularité desaignqui est prise en considération dans ces
expériences, est le niveau de bruit. Ces signaux étant teé®dy il est difficile de déterminer les
composantes périodiques associées aux phénomenes tigsgit de les distingué de celles qui sont
associées au bruit. Dans cette these, nous proposons weleonéthode pour I'estimation du vecteur
de CP des signaux biomédicaux, en utilisant les informatmalogiquesa priori et en considérant un
modele qui représente le bruit.

Les signaux enregistrés dans le cadre d’expériences ¢éade pour le traitement du cancer ont
un nombre limité de périodes. Cette informat@mriori peut étre traduite comme la parcimonie du
vecteur de CP. La méthode proposée considére I'estimatiaecteur de CP comme un probleme in-
verse en utilisant I'inférence bayésienne générale afirédaice toutes les inconnues de notre modéle,
a savoir le vecteur de CP mais aussi les hyperparamétrefefi.eariances associées). L'information
a priori de parcimonie est modélisée en utilisant unealpriori renforcent la parcimonie. Dans cette
thése, nous proposons une distribution de Student, caasi@®@mme la distribution marginale d’'une
loi bivariée - la distribution Normale - Inverse Gamma. Eih farsque I'égalité entre les paraméters de
forme et d’échelle, de la distribution Inverse Gamma n’estipnposée, la marginale de la distribution
Normale-Inverse Gamma est une généralisation de la distiibde Student. Nous construisons un mo-
dele hierarchique ou nous attribuons aussi une lpiiori pour les hyperparametres. L'expression de
la loi conjointea posterioridu vecteur de CP et des hyperparameétres est obtenue palelaedgayes
et les inconnues sont estimées soit par Maximum A PostéNtkiP) soit par I'espérance posteriori
(EAP). Pour le calcul de EAP, I'expression de ladgiosterioriest approchée par une loi séparables en
utilisant 'approximation bayésienne variationelle (ABVia la divergence de Kullback-Leibler (KL).
Deux possibilités sont envisagées : une approximation desdois partiellement séparables ou entié-
rement séparable. Ces algorithmes sont présentés enel&ailt comparées avec ceux correspondant
au modeéle gaussien. Nous examinons la convergence deghatggs et donnons des résultats de si-
mulation afin de comparer leurs performances. Enfin, nousgnoms des résultats de simulation sur
des données synthétiques et réelles dans une applicativaitdenent du cancer. Les données réelles
utilisées dans cette thése representent des modéles deaetpuité et d’expression des genes de Kl /
Kl Per2 : :luc souris luc, agées de 10 semaines, seules dansages des RT-BIO.

Mots-clefs: Estimation de composantes périodiques, Probléemes emghpproches bayésiennes, Mo-
déle hierarchique, Renforcement de parcimonie, Studgénéralisée, chrnobiologie, chronothérapie,
Geénes de I'horologe, Rythme circadien, Traitement du gance



Abstract

The toxicity and efficacy of more than 30 anticancer agergsgts very high variations, depend-
ing on the dosing time. Therefore the biologists studyirgydhlicadian rhythm require a very precise
method for estimating the Periodic Components (PC) vedtahmnobiological signals. Moreover,
in recent developments not only the dominant period or thev&or present a crucial interest, but
also their stability or variability. In cancer treatmenpeximents the recorded signals corresponding
to different phases of treatment are short, from seven daythé synchronization segment to two or
three days for the after treatment segment. When studyingtéhility of the dominant period we have
to consider very short length signals relative to the privowledge of the dominant period, placed in
the circadian domain. The classical approaches, basedwieFdransform (FT) methods are ineffi-
cient (i.e. lack of precision) considering the particules of the data (i.e. the short length). Another
particularity of the signals considered in such experiménthe level of noise: such signals are very
noisy and establishing the periodic components that aseeded with the biological phenomena and
distinguish them from the ones associated with the noisdiffiault task. In this thesis we propose
a new method for the estimation of the PC vector of biomediggthals, using the biological prior
informations and considering a model that accounts for tigen

The experiments developed in the cancer treatment comexréeording signals expressing a lim-
ited number of periods. This is a prior information that cantianslated as the sparsity of the PC
vector. The proposed method considers the PC vector egiimas$ an Inverse Problem (IP) using
the general Bayesian inference in order to infer all the omkis of our model, i.e. the PC vector
but also the hyperparameters. The sparsity prior infoonait modelled using a sparsity enforcing
prior law. In this thesis we propose a Student-t distributisiewed as the marginal distribution of
a bivariate Normal - Inverse Gamma distribution. In factewhhe equality between the shape and
scale parameters corresponding to the Inverse Gammadigtn is not imposed, the marginal of the
Normal-Inverse Gamma distribution is a generalizatiorhef$tudent-t distribution. We build a general
Infinite Gaussian Scale Mixture (IGSM) hierarchical modakne we also assign prior distributions for
the hyperparameters. The expression of the joint postitioof the unknown PC vector and the hy-
perparameters is obtained via the Bayes rule and then theumis are estimated via Joint Maximum
A Posteriori (JMAP) or Posterior Mean (PM). For the PM estionathe expression of the posterior
distribution is approximated by a separable one, via Maral Bayesian Approximation (VBA), us-
ing the Kullback-Leibler (KL) divergence. Two possibiéis are considered: an approximation with
partially separable distributions and an approximatiothifully separable one. The algorithms are
presented in detail and are compared with the ones corrdsmpto the Gaussian model. We examine
the practical convergency of the algorithms and give sitiaiaesults to compare their performances.
Finally we show simulation results on synthetic and reahdatcancer treatment applications. The
real data considered in this thesis examines the resttgigiatterns and gene expressions of KI/KI
Per2::luc mouse, aged 10 weeks, singly housed in RT-BIO.

Keywords : Periodic Components (PC) vector estimation, Sparsitprenfg, Bayesian parameter
estimation, Variational Bayesian Approximation (VBA), Maack-Leibler (KL) divergence, Infinite
Gaussian Scale Mixture (IGSM), Normal - Inverse Gamma, rswroblem, Joint Maximum A Pos-
teriori (JMAP), Posterior Mean (PM), Chronobiology, Cidéan rhythm, Cancer treatment..
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Résumeé

L A toxicité et I'efficacité de plus de 30 agents anticancéraésgntent de tres fortes vari-
ations en fonction du temps de dosage. Par conséquent,diegibies qui étudient
le rythme circadien ont besoin d’'une méthode tres précise estimer le vecteur de com-
posantes périodiques (CP) de signaux chronobiologiquesuEe, dans les développements
récents, non seulement la période dominante ou le vectgbPgeésentent un intérét crucial,
mais aussi leur stabilités ou variabilités.

Les données réelles utilisées dans cette these, montnégsadiigure (.1), representent
des modeles de repos-activité et d’expression des gének/dd Rer2::luc souris luc, agées
de 10 semaines, seules dans leur cages des RT-BIO.

Dans les expériences effectuées en traitement du cargesigteux enregistrés correspon-
dant a différentes phases de traitement sont courts, dgoseptpour le segment de synchro-
nisation jusqu’a deux ou trois jours pour le segment apegetnent, figurel.2) (modéles de
repos-activité) et figurel(3) (modeles d’expression des genes).

Lorsqué’on étudie la stabilité de la période dominante m@wens considérer des signaux
trés court par rapport a la connaissamceriori de la période dominante, placée dans le
domaine circadien. Les approches classiques basées samsformée de Fourier (TF) sont
inefficaces (i.e. manque de précision) compte tenu de lacpkatité des données (i.e. la
courte longueur). Une autre particularité des signaux gupgse en considération dans ces
expériences, est le niveau de bruit. Ces signaux étantruééd) il est difficle de determiner
les composantes périodigues associées aux phénomeénegiduiels et de les distingue de
celle qui sont associées au bruit.

Dans cette thése, nous proposons une nouvelle méthodegstumation du vecteur de CP
des signaux biomédicaux, en utilisant les informationgdgiiguesa priori et en considérant
un modele qui représente le bruit,

g=H,fi+Hyf,+e€ (1.1)

Les signaux enregistrés dans le cadre d’expériences ¢pése pour le traitement du

13
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Figure 1.1: Exemple de signaux chronobiologiques obteans des expériences de traite-
ment du cancer: le signal repos-activité (en haut) et leasikgxpression des génes (absorp-
tion de photons, en bas).
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Figure 1.2: Les données brutes pour un signal represergennddelés de repos-activité en
chronobiologie: avant le traitement (gauche, longueuruBsp pendant le traitement (centre,
longueur de 5 jours), aprés le traitement (droite, long@gours).
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Figure 1.3: Les données brutes pour un signal represefggptéssion des génes en chrono-
biologie: avant le traitement (gauche, longueur 3 jourg®ndant le traitement (centre,
longueur de 5 jours), aprés le traitement (droite, long@gours).
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cancer ont un nombre limité de périodes. Cette informadigniori peut étre traduit comme
la parcimonie du vecteur de CP. La méthode proposée cordidstimation de vecteur de
CP comme un probleme inverse en utilisant I'inférence bapég générale afin de déduire
toutes les inconnues de notre modeéle, a savoir le vecteuPaedls aussi les hyperparameétres
(i.e. les variances associées),

p(f,01,05|g) o p(glf,01) p(£102) p(61) p(0-) (1.2)
oud = (64, 0,) représente les hyperparamétres qui apparaissent dansiéemo

Linformation a priori de parcimonie est modélisée en utilisant unealpriori renforcent
la parcimonie. Dans cette thése, nous proposons une distritde Student, pour sa propriété
de longue queue, présentée dans la figiré (

I (vt N
St(frjlv) = \/é;(Z) <1+ f];] ) (1.3)

Normal vs Student—t Distribution

S (x| O, 1)
St—t (> | 1) ||

Figure 1.4: Densité de la loi Normale et densité de la loi del&nt.

La distribution de Student est considérée comme la digiabmarginale d’une loi bivarié
- la distribution Normale - Inverse Gamma,

fk_j|y~/N(fkl,-|o,ufj)zg(vf]%,g), ke{l,2}, je{l,2,....M}. (L4)

En fait, lorsque I'égalité entre les parameéters de forme'@thetlle, de la distribution
Inverse Gamma n’est pas imposée, on a

frilago, Bro ~ /N(fkj|0,'l/'f,‘) ZG(vy,lago, Bro), k€ {1,2}, je{1,2,...,M}. (1.5)

La marginale de la distribution Normale-Inverse Gamma estgénéralisation de la distribu-
tion de Student

= Sty(frilago, Bro)- (1.6)

I : 2\ —(ero+3)
p(frilevo, Bro) = (a0 +3) <1+ ks )

26f071' F(Oéfo) 26}”0

15
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La distribution bivariée Normale - Inverse Gamma, modéliségkj, vf,.) et la distribution
marginale modélisant;; sont présentés dans la figufes).
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Figure 1.5: La distribution bivarié Normale - Inverse Gammadélisant(fkj,zxfj) et la
distribution marginale modélisarit,; |c s, Bo-

Nous construisons un modele hierarchique ou nous attrébaossi une loa priori pour
les hyperparametres, Equatidn?).

p(glf1, fo,ve) = N(glH f1 + Hyf2, V)

p(ve]aeo, Beo) = T2y ZG(ve, [te,0, Beso)

p(filvs) = N(f1]0, V) (1.7)
(
(

p(falvy) = N(f2]0, V)
p(vslage, Bro) = T1IL, ZG vy, lvgo, Bro)

La forme analytique du modele hiérarchique écrite par ptapmalités est le suivant:

p(g|f1, f2,v.) x \Vc\’% exXp {—%vaé (9—H:.fi—Hyf>) ”2}

p(’U€|OzEO, ﬂgo) X Hfil IB‘E((()J:(; Uﬂ—(aeo-i-l) exp {—550?/’;1}
_1 -3

p(Filog) ox IV Fexp { =4IV * £1l12) (19
_1 -3

p(Falvg) ox IV Fexp { =41V fal1?}

B0 - -
p(vslago, Br,) o TTHL, Pfl—m) vy, (as0+1) exp {—5f0’“f‘j1}
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L'expression de la loi conjointa posterioridu vecteur de CP et des hyperparamétres est
obtenue par la regle de Bayes:

p(.fh fa,ve, Uf"g) X p(g|f1, S, ’Uc) p(’Uc\Oéeo, 560) p(fl‘v,f) p(f2|’0f) p(’Uf\Oéfo, 5f0)-
(1.9

Les inconnues sont estimées soit par Joint Maximum A PostgldMAP), soit par

I'espérancea posteriori (EAP). Lestimateur du Joint MaximurA Posteriori s’obtient en
calculant le mode de la l@ posteriori

(f1,f2 0., 07) =  argmax  p(fi, f2,0,v0lg) =  argmin  L(f1, f2,v5,0)),

(fl,fz,'Uc,'Uf) (fl,fZ,/Um’Uf)
(1.10)
ou le critéreL(f1, f2, v., v ) est défini comme suit:
‘C(fb f27 Ve, Uf) = - lnp<f17 f27 Ve, 'Uf‘g) (111)

L'algorithme JMAP est présenté en détail dans la figure)( Pour le calcul de EAP,
I'expression de la loa posteriorip(f1, f2,v.,vs|g) est approchée par une loi séparables

q(f1, f2,ve,v4|9):

p(f1, fove,v509) = q(f1, fo,ve,v409) = ai(f1) @2(f2) g3(ve) qu(vy) (1.12)

en utilisant 'approximation bayésienne variationelldB\4), via la divergence de Kullback-
Leibler (KL), défini comme suit:

KL (Q(fla anU€>Uf1|g) :p(flaf2avavf1|g)) =

— i Q(flan,’Ue,’Uﬂg) , (113)
- // . '/Q<f17f27vcuvf|g> lnp(fl,fQ,'Uc,'Uf‘g> dfl de dvc d'Uf,

ou les notations suivantes sont utilisées:
N M

N M
g3(ve) = H%i(%) ; qu(vy) = H (]4]‘(?/’]”].) ; due = H dv., ; dvy= H d'“f_,-
i=1 j=1 i=1 =1
(1.14)

La minimisation peut se faire via I'optimisation alternéésultant les proportionnalités
suivants:

qi1(f1) o< exp {<lnp(f1, f2, v, U,f‘g)>q2(f2) a(V0) q4(/vf)}

w(F2) o6 e {p(F1. £2,00 09 £y v o)

gsi(v.) o exp {(hlp(fl, F2 000119 1 oy ) aosto q4w/)} L ief{l2... N}

)}, jell2... .M},
(1.15)

qa;(vy,;) o< exp {(hlp(fl, Ja,ve, v.f“g)>q1(f1) a2(f2) a3(V2) qaj(

Vi
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_ -1
fi= {HTVE_IHl + Vf_l] H{Ve'(g—Hyf»)

——| e

(a) - mise a jour de vectof,

— —1
fo=[HIV'H,+ V7| HIVe ' (g— Haf))

(b) - mise a jour de vectof

-

— _ 5€i0+%<gi_H2ifl_H2if2)2

€

Ve = diag[ve]
()

3
agots ]

(c) - mise a jour des variances du bruit

_ Bpot3(+r3)
V = diag|vy] Ui T T apet2
) (d) - mise & jour des

variances du vector,,

Figure 1.6: Les equations de mise a jour des parametres’petimation MAP.

en utilisant les notations:

N M
q3*i</U€z') = H Q3k</U5k) ;o qa—j (Ufj) = H q4k(vfk) (116)
k=1,k=i k=1,k#j
et aussi
(@), = [ u@)(y) dy. (117)

Deux possibilités sont envisagées: une approximation dgsdois partiellement séparables
ou entierement séparable. Ces deux algorithmes sont pééseamdétail dans la figuré.({)
(approximation avec des lois partiellement séparabledqes la figureX.8) (approximation
avec des lois entiéerement séparable).
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Initialisation

. e, .
firn = <H1TVrH1 I Vf) H\"V (g — Hyfspu)

— —\—1
EIPM = <H1TV6H1 + V/)
(a) - mise a jour de vectof,

. =il .
form = (HQTVEHQ + V/) H,"V, (9 —Hifirm)

— —\ —1
EZPM = (HQTV(HQ + Vf)
(b) - mise a jour de vectof,

17? = diag{%}

1
e, = Qo + 3

ﬁei = &io + I
% [(gz — Hifipm — Héf‘zzw)Z + (H’iElPMH’iT —+ H§22PMH§T>
(c) - mise a jour des hyperparamétres de bruit

/jl _ . Otfi
Vf = dlag{ﬁfll

Qagf, = 0,0 + 1

J

Bf] = 5f]0 + % [f%j]’M + E1J‘jPM + fngM + E2ijM}
(d) - mise a jour des hyperparamétres

Figure 1.7: Les equations de mise a jour des parametres jgstimation EAP via ABYV,
séparabilité partielle.
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Initialisation

f H{'V \(g-Hf'-H.f:)
J1;PM ) — \1/2 ) —
IHT (V) Hilp+oy!
iT (x,—1 vz - !
var; = (HHJl (VE ) HJlH2 aF 'l}/]>
(a) - mise a jour de I'élément,; p5, du vecteurf,
s H'V (g-Hy f;'-H.f)
2jPM HjT ‘7?1 1/2Hj ) =
HYT (V') Hilp+o,
=N\ Y2 —\!
van, = <||HJ2 (Vg1> HY)|)? +vf71>
(b) - mise a jour de I'élément,; p); du vector f

‘7? = diag[%}

1
@ = Qe + 3

56,‘ = ﬁeio I
% [(92 — Hifipu — Héfm,M)Z 4 (HizlpMHiT + H322PMH§T>
(c) - mise a jour des hyperparametres de bruit

/jl _ B OéfZ
\% diag { By

|

agf, = Of;0 + 1

J

By, = Bro + 3 [Fipm + Suispn + fLipu + Tajipu]
(d) - mise a jour des hyperparamétres

Figure 1.8: Les equations de mise a jour des parametres jestimation EAP via ABY,
séparabilité totale.
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HIs first chapter gives a general presentation of the contexupfv@rk. From chrono-
biology and biological rhythms (in particular the circadlidythms) to cancer treatment

(chronotherapy), gene expressions (along with other diaceindicators, like temperature or
rest-activity), signal processing and the particulasité such signals. The goal of this chap-
ter is to give a short presentation of how the periodic coneptsestimation of (short) time
series arises naturally in the context of chronotherapycamder treatment. This chapter is
organized as it follows:
In Section £.1) we give a brief presentation of the biological context: we&aduce the circa-
dian rhythm, discuss its mechanism and its importanceiveltd cancer treatment.
Section R.2) presents the experimental protocol for producing chrasiogical signals: we
give details of the kind of mice used in those experimentfhetlock-genes that are studied,
discuss the protocol of the experiments and give brief Betancerning the technology that
allows recording such signals.
Finally, Section 2.3) makes the transition from chronobiology and cancer treatno sig-
nal processing: we present such signals, we discuss thaicydarities and define our goal
relative to such signals.
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CHAPTER 2. INTRODUCTION

2.1 Biological context: from chronobiology to
chronotherapy

Several biological processes in living organisms followilbstions that repeat themselves
about every 24 hours - these oscillations are catiechdian rhythms Together with other
periodic phenomena, they are the object of study of chraiogy, [HRMO0g], [SSL"11] and
[DSAL1Q. In mammals, circadian rhythms involve all organs, tissaad cells and are su-
pervised by the Circadian Timing System (CTS), a set of moégaclock genes that cross
regulate each other by positive and negative feedback J¢blisT12], [MS04] and [TH94].
More precisely, the CTS consists of a central pacemakeStipeachiasmatic Nuclei (SCN)
in the hypothalamus, which is made sensitive to light bynedtafferents, and which coor-
dinates the molecular clocks in the peripheral organs lasshg/producing diffusible and
neurophysiologic signalspD[SA1Q.

In mammals, the core of the molecular clock consists of alzoutozen specific clock
genes. The circadian oscillations in the single cells tesam transcriptional and post-
transcriptional activation and inhibition regulatory i Specifically, a positive branch, in-
cluding the proteins Clock, Npas2 and Bmall, and a negataedh, including Per (Perl and
Per2), CRY (Cryl and Cry2) are interconnected by the nuabealnan receptor Rev-etib
The heterodimer of either Bmall+Clock or Bmall+Npas2 at&éwer and Cry genes tran-
scription. These hetherodimers action is facilitated byZE@olycomb protein), CK2 (casein
kinase 2) and SIRT1. Per and Cry proteins accumulation andtgés also regulated by phos-
phorylation by protein kinases (GK «¢), by ubiquitination (of Crys), by histone methylation
and demethylation. Decl and Dec2 compete with the BmallckiNpas2 heterodimers to
bind Per and Cry genes, therefore reducing their activat\mnaccessory feedback loop sees
the nuclear orphan receptors Rors and~ as activators of Bmall circadian transcription,
whereas Rev-erband/ inhibit it.

The period of the circadian timing system, whichaisout24 hours, is therefore regularly
calibrated by the succession of day and night (light and)ddtlcan be influenced by other
environmental factors, such as socio-professional intenas and feeding timesMSO04].
The resulting circadian physiologic fluctuations are obseérin sleep-wakefulness and rest-
activity alternation, body temperature, cortisol searetby the adrenal gland, melatonin se-
cretion by the pineal gland, and they involve as well the sytingtic and the parasympathetic
systems, TH94].

Former studies have already shown how focusing on/takingnciiology into account can
improve anticancer treatments efficacy and reduce at the same their toxicity/increase at
the same time their tolerability, contrary to the previotl®e"worst the toxicity, the better
the efficacy” paradigm/ MDD "13], [IGM™11], [IGB"12] and [OTMB*13]. The molecular
clocks are involved in the regulation of important processech as cell cycle and prolif-
eration, DNA damage sensing and repair, apoptosis, anggsgge pharmacodynamics and
pharmacokinetics, therefore they can greatly influencenteéabolism, transportation and
detoxification of drugs,JOD"10].

Tolerability to anticancer treatments has been proven pewle significantly on their timing
in respect to the circadian rhythms, measuring up to 10db&hges in the tolerability to drug
administration at different circadian times for 40 antioandrugs in rodents, and up to 5-fold
in patients, [OD"10], [LS07. Notably, chemotherapeutic agents proved to be at thair be
efficacy, both administered alone and combined, when thewlao at their best tolerability
level, that is to say when they are least toxic to the healtisyes.
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Furthermore, substantial interpatient variability ottaidian rhythms have been observed and
can be due to factors such as gender, age and genetic polyisragp(amongst others), there-
fore anticancer drugs dosing and timing need to be persmuhlat least for subgroups of pa-
tients with similar chronotoxicity (chronobiological) kéeatures. Modulating drugs admin-
istration according to (the patient’s) circadian rhythm&mnown as/called "chronotherapy”,
[F.01], [MLO3]. On the other hand, administrating anticancer drugs at thest toxic time
causes the disruption of molecular clocks synchronizatidnch has been shown to acceler-
ate the cancer evolutior; KL *02],[FLO3],[IFGT09],[MWB*00],[ SSKS0Q and [FIW*05]

In order to optimize cancer treatment, once proven thattaicedrug effects are susceptible
to circadian rhythms, the best administration time mustleatified. Furthermore, in case of
interpatient variability in chronotoxicity, we want to penalize the standard chronotherapy
to best fit to the patient’s circadian specifics.

2.2 EXxperiments description

The experiments considered are focusedrimotecanandeverolimustwo of the most com-
mon drugs used at the moment in cancer treatment. Firstafdr érug is proved the correla-
tion with on the circadian rhythms in a rodent model, whick baen proved to well represent
the human circadian phisiology,D"10]. This is achieved by studying the chronotoxicity
of the drug, inferred by body weight loss and histopathadegsions, at different circadian
times (CT, or ZT, from Zeitgeber time) using mice. Their aiican clock is synchronized
by exposure to light for 12 hours, followed by 12 hours of dadpeating this cycle for one
week, and its rhythm is detected by measuring the expres$imme or more of its core genes.
The genes are Bmall, Per2, Rev<erb

Mice with a disrupted clock (clock-defective mice, obtainga the functional knock out of
one of its genes, normally Bmall, Per2 or Revegrare used to confirm the relevance of the
molecular clock for the drug toxicity.

At the same time, the main characteristics of the circadi@nession of the observed gene(s)
are studied to observe whether the administration of thg nrodifies them. Once defined the
CTs or ZTs at which the drug best and worst tolerability isawtied, we can look for the (spe-
cific tissutal) molecular mechanisms that influence it. Gen#uencing the pharmacokinetics
(absorption, distribution, metabolism and excretion)haf tirug are a good starting point, and
we can follow how their expression correlates with the highrdower drug chronotoxicity.
For instance, the transporter abcc2, involved in the callafflux of several drugs, has been
shown to influence irinotecan chronotolerance in ileumoediag to the circadian changes in
abcc2 local expressio®PAT 11].

Similarly, the experiments that we consider are studyirgy@imus toxicity in respect to the
circadian expression of intestinal Mdrla. Everolimus isaaticancer drug also used as im-
munosuppressant after transplants to prevent organigjeaihd its pharmacokinetics also
depend on Mdrla, a P-glycoprotein (P-gp) which functiona #imnsmembrane drug trans-
porter and is responsible for multidrug resistance in caoels that over-express it;[P93
and [EIM9Q].

The circadian clocks of the mice used in such experimentfratesynchronized to the same
day-night alternation, where 12 hours of light are followsd12 hours of dark (LD12:12).
After synchronization, the mice are kept in constant daskr{®D), which implies to subtract
the light as Zeitgeber, allowing the circadian clock to diettheir endogenous rhythm? and
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normally the period of the circadian rhythm becomes shoAéer the start of DD, the mice
are split in two groups: to one the drug is administered aCthef the best chronotolerance,
to the other at the CT of the worst chronotolerance. For eachpgone mouse is kept as
control, no drug is administered to it. Throughout the ekpent, gene expression and rest-
activity pattern are measured to establish how the basanpeters of their circadian rhythms
(period, acrophase, amplitude) vary in respect to the daajrnent.

Both measures are allowed by an innovative monitoring dgtiee RealTime-Biolumicorder
(RT-BIO), [SLC"13]. The locomotor activity is detected by an infrared senadrereas the
gene expression is measured at the post-translationdliterrece engineered to express the
gene of interest together with luciferase (fLUC), so thatdkne activity and is marked by bio-
luminescence measured by a photomultiplier tube. Commarsmstrains used are C57BL/6-
based [MDD *13], [OPA"11] and 129S1/SvimJ/[MB *09].

An exact estimation of the Periodic Components (PC) vectah® those chronobiological
signals is needed.

2.3 Chronobiological signals: particularities

The major interest is the study of the periodicity of suchoclmbiological time series, i.e.
the precise estimation of the PC vector and the stabilityhefdominant period, requiring
a dominant periodic components variation analysis. Theomapitation is given by their
reduced length. Figure2(1) presents the signals obtained in an experiment develaped i
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Figure 2.1: Example of chronobiological signals obtained@ancer treatment experiments:
the rest-activity signal (up) and the gene expression s{ghaton absorption, bottom)

the conditions described in Sectioh?). As mentioned, via the RT-BIO monitoring device,
[SLC*13] the gene expression and the rest-activity patterns caadmeded. The experiment
exemplified in FigureZ.1) corresponds to 22 days and both signals are sampled eveugani
(rest-activity pattern - up and gene expression - bottonie dene expression is measured
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by a photomultiplier tube, and the amplitude of the signplesents the photon absorption.
For the rest-activity pattern, the locomotor activity iget#ed by an infrared sensor. For the
PC vector estimation, four segments are of great interbstfitst part, corresponding to the
synchronization part, where 12 hours of light are followgd12 hours of dark (LD12:12)
and then the second part, in complete darkness (DD), whidivided in three segments,
corresponding to before, during and after treatment. We tat the length of those segments
vary between two or three days (the segments corresporulthg &fter treatment and to the
before treatment) and 7 days (the segment correspondihg g&ytchronization, (LD12:12)).
When studying the stability or the variability of the PC \@cteven shorter signal must be
considered. More precisely, for analysing the stabilitytfee segment corresponding to the
during treatment, at least 4 days length signals should bsidered. In this context, we note
a first particularity of the signal that are considered fa BC vector estimation. Relative to
the prior knowledgean about 24 hours periodicifywe deal with very short signals: three
or four days length signals, relative to the an about one daipg@. Another particularity
of such signals is represented by the noise. Both signanike corresponding to the gene
expression and the one corresponding to the rest-actigitgim are (very) noisy signals due
to the measurement errors.

The problem that is considered can be formulated as it falioprecise estimation of the
PC vector of noisy and very short signals relative to our kieolge for the principal period
Examples of raw data signals for which the corresponding B€ov must be inferred are
presented in Figure2(2) and Figure 2.3) One fundamental particularity of such signals is

Figure 2.2: Raw data for a rest-activity pattern signal iroclobiology: before treatment (left,
3 days length), during treatment (center, 5 days lengttgr &leatment (right, 2 days length)

" A2 Photon During - DD - cT 502 o A2 Photon Atter DD - T 502
. — i
£ H
| s g
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s p 2 s : o 7
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Figure 2.3: Raw data for a gene expression signal in chrahadpy: before treatment (left, 3
days length), during treatment (center, 5 days lengthgr &féatment (center, 2 days length)

given by the biological prior knowledge: the number of pditocomponents is small, i.e. the
PC vector is sparse. In Chapt&) (ve present the drawback of the classical methods, and
in Chapter {) we present the proposed method for the PC vector estimaitsang the prior
information.
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2.4 Summary description of the following chapters

In Chapter 2) we have established the context of our work. Briefly, thedmental goal of
our work can be summarized as it follows:

Estimate the sparse PC amplitudes vector corresponding to short duration signals relative

to the (prior) dominant period with a given precision. The number of componentsis small
(sparse PC amplitudes vector) but unknown.

First, we present some classical methods that can be coedioleorder to address the above
guestion. In ChapteB} we examine the Fourier Transform techniques, the DireGeeral-
ized Inversion (Dl), Least Squares (LS) and Regularizegt 8quares techniques and finally
we consider thd.; regularization and the LASSO method, the nearest state aiethod to
account for sparsity through, regularization term. We will show that given the particilar
ties of the context, i.e. the short duration of the signdktine to the (prior) dominant period,
the high level of noise in the signals, the above methods tigiue satisfactory results.

In Chapter {) we introduce the proposed solution, based on a forward htloaieaccounts the
noise, built in a similar way as the one corresponding to thérier transform but using the
elements corresponding to the considered circadian PCitasig vector (in terms of limits
and precision). The estimation of the PC amplitudes vetiarglso the other hyperparmeters
involved in the model, i.e. the variances correspondindnéoRC amplitudes vector and the
noise) corresponds to an ill posed inverse problem, dueettitige condition number of the
matrix in the forward model. The proposed inversion is basedhe general Bayesian in-
ference, based on a generalization of the Student-t disioifb used as the sparsity enforcing
prior for the PC amplitudes vector.

In Chapter §) we test the results corresponding to the proposed algomth synthetic data,
for different levels of noise.

In Chapter 6) the proposed algorithm is used for real data. Finally, iahr (V) we present
the conclusions.
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HE main objective of this chapter is to show that the classicahmds have some limi-
tations when faced with the biological signals we are camegr To show this, first we
simulate a synthetic signal(t) very near to the biological data we may have to process (short

signal, i.e. 4 days length, very noisy, i.e. 5dB) and showlithgations of many well known

methods.

3.1 Basic example and notations

For this purpose, first we consider the following forward relod

9(t) = go(t) + €(t), (3.1)

where

,Z‘Q_ﬂt.

* go(t) = X5 fie P

* p = {p1,pe,...pum} IS the known periods vector, called Periodic Components (PC

vector during the manuscript;
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o f=A{f1,[e,... fu} IS the corresponding amplitudes vector, called Periodio Qo
nents (PC) amplitudes vector;

* ¢(t) represents the errors and noise.
We are assuming that a few componeptof p have non-zero amplitudes'. In order to
analyse the effects of the noise, we will apply the methodsonty on the original signal

go(t), i.e. the signal without noise, but also on the noisy sigiigl. As we are using sampled
signalg(¢) fort =0,..., (N —1)At, with At = 1h. In the following we can writgo, = H f

P27 ¢,

andg =go t€ Whereg = {go,gl, e 7gN—1}s €= {60, (ST EN—l}’ andH,,, = e 'pm
To summarize:

» f - original Periodic Component (PC) amplitudes vector;

e f*-the non-zero elements ¢f,

* go - original signalgo = H f

* g-noisysignalg = H f + ¢;

. ﬁ) - estimatedf by any method, corresponding to the original sigpal,

« f - estimatedf by any method, corresponding to a noisy ingt,

df! - L, relative estimation erraff! = If=fi

I1f 1l

df? - L, relative estimation erraff2 = (il

ILF
g - reconstructed signal (estimated dajay H f

[VE]

8g' - L, relative estimation errafg! = 19-9l

dg? - L, relative estimation errafg? = 199

Some classical methods are presented in this chapter.o8€8tP) presents the results cor-
responding to the Fourier Transform. Secti@r3) presents the results corresponding to the
zero padding technique. In Sectidh4) we discuss the Direct Inversion (DI). Sectigh)
deals with the results corresponding to the Least SquareRegularized Least Squares tech-
nigues. In Section3(6) we consider the LASSO technique and present the corresppnd
results.

We consider a synthetic sparse PC amplitudes vector, dgtinétk circadian domain and for
the potential relevant harmonids,: 32], with non zero values corresponding to 11h, 15h and
23h. The corresponding amplitudes are 0.7, 0.5 and 1. TheripGtades vector, the forward
operator, the corresponding signal and noisy signal (SNIB¥are presented in Figur8.().

We apply the methods mentioned above both for the signabwithoise (Figure3.19) and

for the noisy signal, 5dB (Figure3(1d). For each PC amplitudes vector estimation, we
present the comparison with the theoretical PC amplitudesov, Figure §.19 and also the
comparison between the reconstructed signal and the sigtinedut noise. For certain meth-
ods (LASSO) we will also consider the variability of the and L, PC amplitudes vector error
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estimation for different noise realisation, in order tcaddish if the method is stable. We also
present results corresponding to the behaviour ofithand L, PC amplitudes vector error
estimation depending on the level of noise (SNR).

PC vector f Forward Operator H

8 9 1011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Periods

(a) Sparse PC vectgf (b) Forward operator

Original Signal go Noisy ?ignal g

Amplitude

3Lk 4
o 24 a8 72 o 24 a8 72 !
Time(h) Time(h)

(c) Original signalgg (d) Noisy signalg (05dB)

Figure 3.1: Synthetic data: sparse theoretical PC ampglgwectorf with 3 non-zero peaks
corresponding to 11h, 15h and 23h19; forward operatotH (3.10); original signalg, =
H f (3.109; noisy signalg = go + ¢ (SNR=05dB) 8.10)

3.2 Fourier Transform

The spectral analysis for time series is a well known subieliterature for a very long time.
Some of the most used methods are the Fast Fourier Transfmsadbmethods, which are
widely used for many applications in the signal processimgmunity, having obvious ad-
vantages: the FFT based methods are well known, well uratetsind fast. Nevertheless, the
particularities of the biomedical signals considered iroalobiology experiments show that
the classical methods presents certain limitations. Itiquaar, for short time series relative to
the searched (via prior knowledge) periodic componentth@rexperiment considered in this
article, a 96h recorded signal relative to a 24h periodicpament, linked with the circadian
clock) the precision given by the FFT methods is by far insigfit for determining the exact
periodic components. This is a consequence of the fact thahe FFT based methods, even
if the frequencies are linear, the periods are not equidlista particular, for a four day (96h)
recorded biomedical signal, beside the 24h correspondiniggic components, the nearest
amplitudes in the periodic components vector correspotitet82h, respectively 19h periodic
components. More general, if the prior knowledge sets tirecipal period around a value
P, it is easy to see that in order to obtain a period vector tbatains the period and also
the periodsP — 1 and P + 1, the signal must be observed f@f — 1)(P + 1) periods, i.e.
(P —1)P(P + 1). For the chronobiology applications, where the circadieriqa is around
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24h, this is translated as the need to record a signal for &y5 itk order to obtain a periodic
component vector that contains the 23, 24 and 25 periodsdehRtly, the signal should be
observed for an exponential bigger interval of time in orleobtain a periodic component
vector that contains all the periods from the circadian darsasearched.

Original Signal go Noisy $ig11a11 g

Amplitude

T

o 24 a8 72 o 24 a8 72
Time(h) Time(h)

(a) Original signalgo (b) Noisy signalg (05dB)

PC vector fo (FFT) PC vector £ (FFT)
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(c) fo via FET (d) f via FFT

Figure 3.2: Estimated PC amplitudes vectﬁs(S.Zc) and f (3.29 for the original signay
(3.29 and the noisy signajo (3.2b) corresponding to the theoretical sparse PC amplitudes
vector, ¢3.19

As an example, Figure3(2) presents the FFT PC amplitudes vecthAr)s(Figure B.29)
and f (Figure 8.20) corresponding to the original signgl, and the noisy signaj. The
signals presented in Figurd.@g and Figure 8.2b) correspond to the sparse PC vector, Fig-
ure 3.19, via the forward operator, Figuré.(Lb).

The corresponding PC amplitudes vectors obtained via FEP@sented for the interval be-
tween 8h and 32 h, the circadian domain. In the synthetic R@wé&he non-zero periods are
set for 11h, 15h and 23h (dominant peak). The FFT estimageddminant peak at 24h, due
to the fact that the time series observation period is lichtee 96h, for both cases, original
and noisy signal. In such conditions, it offers no inforroatfor the correct positions, 11h,
15h, 23h. It also offers no informations for the periods ia thterval[20 : 31], except the
estimation for 24h. A better image of the intervals with ntormation from the PC ampli-
tudes vectors estimations is presented in Figir® (where the periods of the PC amplitudes
vector are not scaled.

For similar signals, corresponding to PC vectors havingpttiecipal peak around 24h,
the FFT will estimate the principal peak at 24h. Another epkans presented in Figuré& ().
A four days length signal recorded in an experiment in chbowlogy is presented in Fig-
ure (3.49. Figure (B.4b) presents its corresponding FFT PC amplitude vector, ghstime
drawbacks presented in the synthetic example, Figdi®.( The FFT PC vector presents
peaks corresponding only to 8h, 8.72h, 9.6h, 10.66h, 12f71b3 16h, 19.2h, 24h and 32h
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Figure 3.3: Estimated PC amplitudes vecthAﬁs(S.Ba) and f (3.30). Periods are not scaled
in the plot.

inside the considered intervdl : 32]. The periods corresponding to 24h, 12h and 8h can
be associated with the presence of the circadian rhythmesged by the principal peak and
the corresponding harmonics. But the presence of the otredtspcan be more difficult to
be interpreted by the biologists. Another drawback of FFihesdifficulty of selecting the
peaks corresponding to the presence of a biological phemam@ed peaks that are explained
by error measures and uncertainties.

Figure 3.49 presents the PC amplitudes vector estimated via the pedpogthod, pre-
sented in Chapted].

3.3 Zero Padding

One possible approach to artificially increase the pregcisicthe FFT estimation is the zero
padding technique, which consists of appending zeros tgitml. In the simulations pre-
sented in this Sectior8(2), we have considered a four days length signal, and anatysed
FFT PC amplitudes vector estimation, Figuse. Between 8h and 32h, via FFT, we obtained
informations corresponding only for 10 periods. Consiagthe zero padding technique, the
number of the periods in the PC amplitudes vector can beasege

First, we consider the signal from Figuré 19 and the noisy signal from Figur&.(Ld),
both padded with zero values for four days, and the corretipgi-FT PC amplitudes vectors,

Figure 3.9):

Padding the signal with 4 additional days with zero valubs, results do not improve:
there are still no informations for certain periods inside studied domain: compared with
the FFT PC amplitudes vector estimated using just the daikgnal, with zero padding the
interval [20 : 31] has only two additional periods, corresponding to 21.3 and.2A better
image of the segments with no information for the periodsiaged in Figure§.6).However,
the sparsity rate is increased (the PC amplitudes vectesssdparse), and selecting the peaks
corresponding to the biological phenomena is difficult.

We consider the same approach, padding the signal with 12 ofayero values, Fig-
ure 3.7):

Also in this case there are still no informations for certa@miods inside the studied do-
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Real sSsignal

o =a as 7=

(a) Real signal recorded in cancer treatment experimgnts,

FFEFT PC

200 |- Farar |

150 —

Ampltude

100 - —

A N P i O R A

s 8. 72 S.6 10.66 1z 1=.71 EXS) 1o = =a =
Periods

(b) FET PC amplitude vectof

Estimated PC (WBAL1L St—1t)

|

s EEY 1a 17 EXs) =3 ER) EX)
Periods

aso

aoo

350

300

250

Ampliude

zoo

1s0

100

[0}
N

(c) PC vector corresponding to Proposed Method (PM estimatzSM model)

Figure 3.4: Real data: A 4 days length signal recorded inexamneatment experiments.¢9,
the PC amplitudes vector corresponding to FEBH) and corresponding to the proposed
method B.49.

main, Figure 8.8). Evidently, increasing the length of the zero vector, we chtain infor-
mations corresponding to the all periods from the circad@amain considered. However, the
estimation is not a sparse vector, and therefore the setecfithe periods corresponding to
the biological phenomena is very difficult.

3.4 Direct or Generalized Inversion

In this section, we consider another classical method: tinecDInversion (DI). Whery =

H f and H is a square and invertible matrix, we hafe= H'g. In fact, the case where
H is the FFT matrix,H ! is the IFFT matrix. But in our case, the forward operakdris

not necessarily a square matrix, but the pseudoinverseéaeneralized inverse) can still be
used. The relation between the original sigi@hnd the corresponding PC amplitudes vector
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Figure 3.5: Estimated PC amplitudes vectﬁss(S.SQ andf (3.50) for the zero padded origi-
nal signalg (3.59 and the zero padded noisy siggal(3.50) corresponding to the theoretical
sparse PC amplitudes vectds, 19
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Figure 3.6: Estimated PC amplitudes vect¢A5s(3.66) and f (3.6h), corresponding to zero
padded signals. Periods are not scaled in the plot.

f is given in Equationg.2).

go=HFf (3.2)
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Figure 3.8: Zero padded signal (a) and the correspondingf&E-amplitudes vector.

DefiningH™ = HT (HHT)f1 it is easy to verify thatd ™ is satisfying all of the following
four criteria:

HH'H-H (3.33)
H*HH" = H (3.3b)
(HHY) = HH* (3.3¢)
(H*H) =H'H (3.3d)

so H' is the pseudoinverse dfl. First, we apply the method considering the signal with-
out noise, Figure3.99. The estimated PC vector via DI is presented in Figur®hj.
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The comparison between the estimated PC amplitudes vei@obivand the theoretical
PC amplitudes vector is presented in FiguBe9¢). The L; PC amplitude vector estima-
tion error isé f; = 0.86 x 107% ~ 0 and theL, PC amplitude vector estimation error is
§f2 = 0.56 x 107 ~ 0. The comparison between the reconstructed signal thenatigignal

is presented in Figure(99), with the L, signal reconstruction errorég; = 0.42x 10715 ~ 0
and theL, signal reconstruction error errordg, = 0.44 x 107> ~ 0. In this case, the DI
method gives very good result.
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Figure 3.9: Direct Inversion: Signal without noise

However, for the forward operator, we note that the conditiomber of the matrix is very
high. In particular, in this case we have

cond(®) = 5.6799 x 10'°, (3.4)

where H denotes the forward operator, Figurel). Due to this high value of the condition
number of the matrix, the problem is ill-posed. We considethie following the results

corresponding to the DI, but applied on the noised signaktRive consider the case SNR

50dB, Figure 8.10).

We note that for a very small SNR, even though the signal id veebnstructed, Fig-
ure 3.109, with the L, signal reconstruction erratg; = 1.6 x 1072 and theL, signal
reconstruction error error iy, = 1.6 x 1072, the PC estimation via DI, Figur& (109 has a
huge error: thd.; PC amplitude vector estimation errordig, = 4.87 x 10° and theL, PC
amplitude vector estimation errord§’, = 3.24 x 10°. Further, we consider the SNR20dB

(Figure 3.11)) and SNR= 05dB (Figure @3.12) cases:
In both cases, the signal reconstruction is fairly accurbte 20dB, the L, signal recon-

struction errovg, = 3 x 10~2 and theL, signal reconstruction error errordig, = 4 x 1072,
Figure ¢.119 and for05dB, the L, signal reconstruction errdig; = 2.3 x 10! and theL,
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Figure 3.11: Direct Inversion: Signal with noise, 20dB

signal reconstruction error errordg, = 2.4 x 10!, Figure 8.129. In both cases, the PC
amplitude vector error estimation is huge. R0dB the L, PC amplitude vector estimation
errorisd f; = 2.5 x 10° and theL, PC amplitude vector estimation errorig, = 1.5 x 107,
Figure 8.119 and for05dB the L, PC amplitude vector estimation errorig, = 2.7 x 10'°
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Figure 3.12: Direct Inversion: Signal with noise, 05dB

and theL, PC amplitude vector estimation errordg, = 1.7 x 10'°, Figure 8.129. The
behaviour of the DIL; and L, PC amplitudes vector estimation er®f, andd f, and L,
and L, signal reconstruction err@dig, andég,, depending on the level of noise is presented

in Figure 3.13.
The PC estimation error via Direct Inversion is huge eversfoall values corresponding

to the SNR, Figure3.1339. Therefore, the Direct Inversion approach can not be used f
precise PC amplitudes vector estimation, due to the fatthieafor the real data, the level of

noise is very important.

3.5 Least Squares and regularized LS

In this section, we consider another classical method: #est.Squares and its extension,
regularized Least Squares. For the LS, the solution is diyen

f = argmin|lg — Hf3, (3.5)
f
which leads to -
f=(H"H)'H"f (3.6)
For the regularized LS, the solution is given by:
f = argmin J(f), (3.7)
f

where the criterio/( f) is defined as:
J(f) = llg — HF|l5 + Ml fIl3. (3.8)
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Figure 3.13: Direct Inversioh, andLL errors: PC estimation errors and signal reconstruction
errors

First, we consider the Least Squares, applied on the sigtiawt noise, Figure3.14).
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Figure 3.14: Least Squares: Signal without noise

We note that the reconstruction of the signal is accurati thve L., signal reconstruction
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errorég; = 5.4x10~7 ~ 0 and theL, signal reconstruction error errorig, = 5.94x1077 ~
0, Figure (3.1449.

The LS PC amplitude vector estimation, Figusel¢d has a significant error: the, PC
amplitude vector estimation error 45, = 0.69 and theL, PC amplitude vector estimation
error isd f, = 0.45. We note that different from the DI approach, presented cti&e (3.4),
for which the PC amplitude vector estimation error is hugeemkhe considered signal is
noisy, but the PC amplitude vector estimation error is venglsfor the case when the input
has no noise, for the LS approach, the PC amplitude vecion&sbn error is significant even
in this case.

We consider the cases where the signal is noised,=SNRJB, Figure §8.15, SNR=
10dB, Figure 8.16 and SNR= 05dB, Figure §8.17)
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Figure 3.15: Least Squares: Signal with noise, 15dB

The results corresponding to the LS method, consideringripet signal with SNR=
15dB noise is presented in Figurd.(5. The input signal, with SNR 15dB is presented
in Figure 3.159. The estimated PC vector via LS is presented in Fig@ré5). The com-
parison between the estimated PC amplitudes vector via dStantheoretical PC ampli-
tudes vector is presented in FigufeX59. The L; PC amplitude vector estimation error is
df1 = 4.44 x 10? and theL, PC amplitude vector estimation errordg, = 1.95 x 102.
The comparison between the reconstructed signal and thmairsignal is presented in Fig-
ure 3.159, with the L; signal reconstruction errdig; = 0.08 and theL, signal reconstruc-
tion errordg, = 0.08.

The results corresponding to the LS method, consideringripet signal with SNR=
10dB noise is presented in Figurd.(6. The input signal, with SNR 10dB is presented
in Figure 3.169. The estimated PC vector via LS is presented in Fig@rég). The com-
parison between the estimated PC amplitudes vector via dStentheoretical PC ampli-
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Figure 3.16: Least Squares: Signal with noise, 10dB

tudes vector is presented in Figufi69. The L; PC amplitude vector estimation error is
df1 = 6.31 x 10% and theL, PC amplitude vector estimation errorig, = 2.77 x 102
The comparison between the reconstructed signal and thmalrsignal is presented in Fig-
ure 3.169, with the L; signal reconstruction errdig; = 0.13 and theL, signal reconstruc-
tion errordg, = 0.12.

The results corresponding to the LS method, consideringripet signal with SNR=
05dB noise is presented in Figurd.(7). The input signal, with SNR 05dB is presented
in Figure 3.179. The estimated PC vector via LS is presented in Fig@ré7). The com-
parison between the estimated PC amplitudes vector via dStentheoretical PC ampli-
tudes vector is presented in Figufl79. The L; PC amplitude vector estimation error is
df1 = 7.16 x 10% and theL, PC amplitude vector estimation errordig, = 3.17 x 102
The comparison between the reconstructed signal and thmalrsignal is presented in Fig-
ure (3.179, with the L; signal reconstruction errdig; = 0.26 and theL, signal reconstruc-
tion errordg, = 0.25.

For all three levels of noise considered, the signal recoasbn errors are fairly accurate.
For the PC amplitudes vector estimation errors are very itapad The behaviour of the L5,
andL, PC amplitudes vector estimation ertgf; andd f, andL; andL, signal reconstruction
errorég, anddg., depending on the level of noise is presented in Figdred.

An extension of the LS approach is the regularized LS. Weidensdifferent values for
the regularization term and apply the RLS both on the signal without noise and witlseoi
SNR= 5dB. Figure 3.19 presents the simulations corresponding te 0.1, considering the
signal without noise.

The signal is well reconstructed, Figuré.199. L, and L, reconstruction errors are
0.0018 and0.002. However, for the PC amplitudes vector estimation, hbtrand L, errors
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Figure 3.18: Least Squards and L, errors: PC estimation errors and signal reconstruction
errors

are high, Figure3.199: 0.89 and0.57.

Figure 3.20 presents the simulations corresponding to the same mizatian parame-
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Figure 3.19: Regularized Least Squares; 0.1: Signal without noise

ters, but considering the noisy signal, SNRdB.
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The signal is not well reconstructed, Figuf409, L, and L, reconstruction errors are
0.20 and0.20, nor the PC amplitudes vector estimation is acurate, hgotand L, errors are
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high, Figure 8.209: 1.44 and0.64.

The behaviour of thé,; and L, PC amplitudes vector estimation errors and signal recon-
struction are presented in Figur2Z1)

S g1 and S g= Signal Estimation Error (RLS) (A=—O0.1)

s 10 1s zo 25 s0 ao so
SNR

(a) RLSo f1 andd f» PC estimation errorsX(— 0.1)

S F1 and S Fo PC Estimation FError (RLS) (A—O0.1)

s 10 1s zo 25 s0 ao s0
SNR

(b) RLSég1 anddg- signal reconstruction errora (& 0.1)

Figure 3.21: Regularized Least SquakeandL, errors: PC estimation and signal reconstruc-
tion

Figure (3.22 presents the behaviour of the L1 (Figuf2429) and L2 (Figure §.220)
signal reconstruction error depending on the level of ndisedifferent values of\ (A =
{0.01,0.1,0.5,1,10}):

Figure @3.23 presents the behaviour of the L1 (Figu439) and L2 (Figure 8.230)
PC estimation error depending on the level of noise, foreddft values ofA (A =
{0.01,0.1,0.5,1, 10}):

3.6 L, regularization and LASSO

In Section 8.5), we have considered the LS method, and also the quadrgtitarezed ver-
sion of this method. Another regularized version of LS isltkeast Absolute Shrinkage and
Selection Operator (LASSO) method which uses the constifaa the L1-norm of the PC
amplitudes vector is no greater than a given value. We nataritihe Bayesian approach, the
LASSO method is equivalent to the use of a zero-mean Laplace gistribution on the PC
amplitudes vector. The optimization problem may be solvedgiquadratic programming
or more general convex optimization methods, as well as bgiBp algorithms such as the
LASSO algorithm. The L1-regularized formulation is usefulthe context of a sparse PC
amplitudes vector, due to its tendency to prefer solutiortk & small number of non-zero
parameter values.
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Figure 3.22
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(b) RLSé f2 PC estimation error for different values »f

Figure 3.23: Regularized Least Squapgg andé f, PC estimation errors for different values

of A

For LASSO, the solution is given by:

f =argmin J(f), (3.9)
f
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where the criterio/( f) is defined as:
J(f) = llg = HF3 + Al (3.10)

Figure (3.24) presents the simulations corresponding to LASSO methmusidering the
signal without noise:

Original Signal go PC vector fo (LASSO)

L 4

Amplitude

---------------------

o 24 a8 72
Time(h)

(a) Original signalgo (b) PC via LASSO £,

Fo vs. fo (LASSO) go vs. go (LASSO)

PPPPPP

1 | [—® Theoretic

al
——=® Estimated - LASSO

L1 error = 0.031363

0.8 L2 error = 0.030227

[}
T

Amplitude
Amplitude

8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 28
Periods Time(h)

(©) fo vs. fo (d) go Vvs. go

Figure 3.24: LASSO: Signal without noise

In this case, for the signal without noise, the PC amplitiegtisnation (and, consequently,
the signal reconstruction) is very accurate. Via the LASS&hwod, the estimation is a sparse
vector, and for all the non-zero values, the estimated dut@s are very close to the real
ones, Figure.249. The L; error norm is0.031 and theL, error norm is0.030. The com-
parison between the reconstructed signal and the origigaakis presented in3(249. We
consider now the case when the input signal is noisy. Figiit&) presents the simulations
corresponding to LASSO method, but considering the nomyadj SNR= 10dB.

We note that for a SNR 10dB, via the LASSO method the estimation of the PC am-
plitudes vector is still accurate, Figuré.259. The estimation is sparse, and except the am-
plitudes corresponding to 8h and 10h, which are negligittie, periods corresponding to
non-zero amplitudes are correctly detected. Therror norm is).22 and theL, error norm
is 0.13. We consider the case when the SNRdB. Figure 8.26 presents the simulations
corresponding to LASSO method, but considering the nomyadiwith SNR= 5dB.

Figure 3.269 shows the comparison between the estimated PC amplitedésnand the
theoretical PC amplitudes vector. Theerror norm ig).17 and theL, error normi9.19. The
PC amplitudes vector is sparse and the periods correspptaliton-zero amplitudes are cor-
rectly detected, and the amplitudes are fairly accuratevater, LASSO method can provide
very inaccurate estimations. FigurZ7) presents the results corresponding to a simulation
done in the same conditions as the one from FigB8ragj: a noisy signal with SNR 5dB
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Figure 3.25: LASSO: Signal with noise, 10dB
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Figure 3.26: LASSO: Signal with noise, 5dB - Accurate estiora

used as the input using the same LASSO method, but for a elifferoise realisation. How-
ever, in this case the solution is not sparse, and the estimaitthe amplitude corresponding
to the 23h period is far from being accurate, Figue(9. In this case, thé.; error norm is
3.07 and theL, error norm isl.5.
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PC vector f (LASSO)
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Figure 3.27: LASSO: Signal with noise, 5dB - Inaccurateraation

LASSO method can provide good results for the PC amplituéesov, even for SNR
5dB. But in certain cases, for high signal to noise ratiosntie¢hod is not stable. Figurd.g9
presents the variations of the LASSQ and L, error norms corresponding to the PC ampli-
tudes vector estimation (Figuré.£83) and to the signal reconstruction (FiguBe480) using
as an input a noisy signal with SNR10dB, for 50 different noise realisations. For the sig-
nal reconstruction, the variation is not very importarg, ithe LASSO method provides an
estimation of the PC amplitudes vector that can accuraeagnstruct the signal. However,
for the estimation of the PC amplitudes vector, the vamatb the error is important, and
in certain cases, the error value is high. In this experin@stnote that for the 50th noise
realisation, via the LASSO method the PC amplitudes veator @stimation is superior to
2.5 for L, norm and superior td.5 for L, norm.

The instability of the LASSO method is more obvious when adergng the variability of
the L, and L, error norms for 50 different noise realisations with theunhe noisy signal,
with SNR= 5dB, Figure §.29 and Figure 8.30).

For the signal reconstruction, in both examples, Fig@€9h and Figure 8.300 the
variation is not very important, i.e. the LASSO method pd®g an estimation of the PC
amplitudes vector that can accurately reconstruct theakigfor the estimations of the PC
amplitudes vector, the variation of the error is importamigl in certain cases, the error value
is high. In these experiments, we note that for the 45th me@ksation in the first experiment
(Figure 3.290) and for the 9th noise realisation in the second experirtfegure 3.300),
via the LASSO method the PC amplitudes vector error estonati superior t@.5 for L,
norm for the first experiment and superioriaéor L, norm for the second experiment.

The behaviour of the LASS@, and L, error norms corresponding to the PC amplitudes
vector estimation and to the signal reconstruction is preskin Figure 8.31).
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Figure 3.28: LASSOL, and L, errors stability: PC estimation and signal reconstruction
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Figure 3.29: LASSOL, and L, errors stability: PC estimation and signal reconstruction
5dB

3.7 Conclusion and why go to Bayesian

The classical methods presented in this chapter do not ghisfactory results. The FFT ap-

pTogt hfails to give the one nour precision for the PC veetod while via the zero padding
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Figure 3.31: LASSQA.; and L, errors: PC estimation and signal reconstruction

the precision can be improved, the sparse structure of thgeer is not achieved. The
Direct and Generalized Inversion is extremely sensitivih&level of noise: the estimation
of the PC amplitudes vector is very precise in the particcdese when the considered signal
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has no noise, but fails to correctly estimate the PC ammguactor when even very small
level of noise is considered, although the reconstructicth® signal is very accurate. Also
the Least Squares and the regularized LS fails to correstignate the PC amplitudes vector
when the input is noisy. Setting the regularization paramistalso critical. Finally while the
L4 regularization can give satisfactory results, even fohhéyels of noise, this approach has
two fundamental drawbacks: the stability of the solutiod #me determination of the regu-
larization parameter. For the choice of the regularizapiarameter, there are many methods.
We can mention thé —curve and the cross validation. We used the cross-validatiethod
proposed in thd/ AT L AB program for optimal value of the regularization parameseen if
this step has high computational cost. The stability of tatson is a more important draw-
back: depending on the realization of the noise, the methegmot be able to find the right
solution, as showed in Figur8.@9 (a). Final point related to all the deterministic regutari
tion methods is that they do not give naturally the possibdf quantifying the uncertainties.

Regardless of their drawbacks in terms of precision or thbilly of the solution, the
methods presented in this chapter don't allow the estimatfdhe variances associated with
the PC amplitudes vector.

A Bayesian approach allows accounting for the prior infaiorg in our case the sparse
structure of the PC amplitude vector, by selecting a spaesitorcing prior and also allows
the estimation of the variances associated with the PC &ndpk vector, by considering the
variances in our model as unknowns.
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THIS chapter is dedicated to the detailed presentation of thegsex method and the re-
sulting algorithms. First, we present the proposed linsguéoidal) model. Other ap-
proaches for modelling this problem are mentioned and dssl Then, the general Bayesian
inference is discussed. After that, we give a detailed ptasien of the hierarchical model
that is build: the probability density functions considefer the likelihood, for the priors and
for the hyperparameter priors. The unknowns of the modegsatienated from the posterior
distribution derived from the hierarchical model, via thayBs rule, considering Joint Max-
imum A Posterior and Posterior Mean. For each estimator dnepatational methods are
presented in detail, along with their corresponding atbani
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APPROACH WITH SPARSITY ENFORCING PRIOR

4.1 Forward model and inverse problem approach

The proposed method for improving the precision in PC veestimation consists, in the first
step, in formulating the problem as a linear forward mod&isTan be done starting from the
inverse Fourier transform, which establishes a lineaticgidbetween the known signalt)
and its PC amplitudes vector. Evidently, in this case, theaP@litudes vector is the one that
is set by default by the FFT method. Considering a matrixithhutilt in the same way as the
one corresponding to the inverse Fourier transform, butgugie elements that corresponds
to the imposed PC vector, the linear relation between a diniofogical time series and the
corresponding PC vector can be described by the followington:

M M
t;

E 1(pj) sin(2mr—=) + > fa(p;) cos(27r Y, ief{l,....N}, je{l,...,M}

j=1 pj

J j=1 J
(4.1)
In Equation §.1), the following notations are used:

e t;,i € {1,2,..., N} represents the sampling points of the observed signal; riticpa
ular, both for synthetic and real data simulations, we hawesicered the observed
signal sampled every hour. During the real data simulatem$iad to consider differ-
ent lengths, depending on the segment that was studied, days length signals for
the segments corresponding to the after treatment segmvent @8), 3 days length
signals for the segments corresponding to the before tegdt@ = 72), 5 days length
signals for the segments corresponding to the during tresatty = 120). For the seg-
ments that allowed the study of the stability or variabibfythe PC amplitudes vector,
the length of the windows was 4 days. In particular, for thetlsgtic simulations, the
length of the observed signals was considered also 4 days 96).

* ¢(t;) represents the amplitudes of the observed signal, comegmpto the sampling
pointt;

* p;,7 € {1,2,..., M} represents the periods contained by the PC vector; durieg th
simulations, we consider a precision of one hour, in theadi@n domain, between 19h
and 32h. In order to analyse the behaviour of the potentiahbaics corresponding to
the periodic components inside the circadian domain, wikalgb include the periodic
components superior to 7h. So, the PC vector considereckisithulations will be
[8h,9h, ... ,32h], M = 25.

* f1(p;) and f1(p;) represents the amplitudes of PC vectors, correspondirtgetperiod
pj.

Introducing the notations:

g(tz) = g;, Z € {1, ,N} ; fk(p]) = fk,ja kf € {1,2}, j - {1, ...,M}, (42)

equation ¢.1) becomes:

t; t;
Zfljsm (2r— +Zf2,cos 27Tp)—>92H1f1+H2f2 (4.3)

j=1 J j=1 J
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The potential modelling and measurement errors should beuated. This is critical in
our model, since the chronobiological signals are noisy. Wiat to be able to distinguish
between the periodic components corresponding to thedicdbphenomena and the period
components that are due to the noise and uncertainties.iffida Imodel 4.3) is completed
by introducing the error vectar, leading to the forward linear model:

g=H,fi+Hyf;+e€ (4.4)

where the following notations are used:

e g represents the observed data i.e. the chronobiologicad theries: g =

T . . .
[gl,gg .. .gN} € My« , a N-dimensional vector, where the notatigfr;) = g;
introduced in ¢.2) is used;

* H, and H, represent the sine and cosine matri¢és;];; = (SiH(Qﬂ']%))ij, [Hs)i; =
J
(cos(QWI%))ij € Mnx«u corresponding to the considered period component vector
J

{plap% s 7pM}T;

e f1 and f, represent the unknowns of the forward linear modet)( i.e. the peri-
odic components vector amplitudes, corresponding to the siatrix H, and cosine

. T T
matrix Hy: f; = [fllafl‘Zr--afl]\J} o = {f217f22,---7f2z\1} , € Murxa,
M-dimensional vectors, where the notatigh$p;) = f1; and f.(p;) = f», introduced
in (4.2) are used;

T . . .
* e represents the errorg: = [61,62, .. .,EN} € My, 1S aN-dimensional vector;

together with the two PC vectors amplitudgs, and £ the error vectok represents
the unknowns of the model (4).

The main goal is to estimate the unknowns of the linear model),(i.e. the PC
amplitude vectorsf; and f, and the error vector. In our approach, the strat-
egy used is based on general Bayesian inference: buildingerarthical model, by
assigning probability density functions for the likelihofor the priors, and in or-
der to estimate the hyperparameters that appear in thert¢heral model (hamely the
variances associated with the unknowns of the linear model,(i.e. fl fz and

¢) for the hyperparameters priors and then estimating thenawmks from the poste-
rior probability density function, obtained via Bayes rulgsing the available datg:

H,, H, g

g — | Inversion

Once an inversion method is considered and the corresppediimations are obtained, the
estimation accuracy can be verified by comparing the estisatand f» with f, and f-.
Evidently, such a comparison is possible just in the syitlwaise. From the estimatgs and

}‘\2, via the linear model4.4) the reconstructed signgl= Hlfl + HQ}‘\Z is computed and
then compared with the availabje This comparison is possible in both the synthetic simula-
tions and the real simulations case. The comparison can e domputing the Normalized
Mean Squared Error (NMSk, = 2) or Normalized Mean Absolute Error (NMAR, = 1)

via the following relations:

NIEri

lg —al}
5f_ ) = =
g (Al

3pg = L p=1,2. (4.5)
lgll>

P
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Remark on the linear model
The linear model considered in Equatiegh4) can be expressed in a different form. Introduc-
ing the notations

H=[H, H, ; f= BZI (4.6)
2
the linear model can be expressed by the following equation:
g=Hf te (4.7)

In particular, Equation4.7) is expressing an forward model that corresponds to many
other application such as signal deconvolution, imageorason, Computed Tomography
(CT) image reconstruction, Fourier Synthesis (FS) inggrsmicrowave imagingNMD94]

and [FDMDO07], ultrasound echography, seismic imaging, radio astrogn¢kirB04] fluores-
cence imaging, inverse scatterifg\ID97], [FDMDO05], [AMD10] and [GHBMD13], Eddy
current non destructive testinl[MD96] or SAR imaging PKZ06]. In all these examples,
including the PC amplitude vector estimation, the commaeertrise problem is to estimage
from the observations @f. In general, the inverse problems are ill-posedd01], since the
conditioning number of the matri¥l is very high. This means that, in practice, the data
alone is not sufficient to define an unique and satisfactdiytiso.

One particular case of the linear model, Equati®)(is when the error vector is neglected
(e = 0). For this particular case, the linear model is given by tpeagion

g=Hf. (4.8)

If the matrix H was invertible and orthogonal, i.d4” H = I (this is the case of the Fast
Fourier Transform for the particular case wheh= N), the solution is given by

f=H"g. (4.9)
If the matrix is just invertible but not orthogonal we couldite
f=H"g. (4.10)

If the matrix is not invertible we can still define generatizeverse or pseudo-inverse solu-
tions. The Minimum Norm Solution (MNS) and the Least Squantuton (LSS) are two
examples:

7 T\ 1 g7
MNS: fu = (HH") H"g, M <N (4.11)

LSS: fro=H" (HH") 'g, M >N (4.12)

However, neither solutions Equatiof. {0, Equation ¢.11) and Equation4.12) are helpful

in practice, since they don’t account for the noise. Thegerse solutions are in general too
sensitive to the errors due to the ill-conditioning of thetmxaH in Equation ¢.10, H' H

in Equation ¢.11) and H H™ in Equation ¢.12).

Among the techniques that have been successfully used fdngdEquation ¢.7) are
regularization theory and the Bayesian inversion. Quadeaid Tikhonov regularization
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is developed in[PR8Y, [Hol92], [PL9Y and [YLZF12]. Total Variation (TV) is devel-
oped in CW9g, [ZL11] and [YFZ12], different entropy based regularization are devel-
oped in Wig77], [Dee8], [Don8] and [MDD88], L, and sparsity enforcing iny[BW85]
and [WHmPwO0§, blind deconvolution and applications itNPQO0(Q, [JSM"02], [Fio04]
and MSSM11]. Cross Validation (CV) and generalized CV methods for dateing the
regularization parameter are developed\ivap(84 and [LN11], Bernouilli-Gaussian mod-
els in [GDI90] and [CGI1964], the Compress Sensing (CS) approachRiVIW12Z], document
image restoration inrfB13 and [LB13], joint restoration and segmentation iANID09].

Considering the model4(4) or equivalent 4.7) we focus on an inversion based
on General Bayesian Inference, building an hierarchicalehobased on the general-
ized Student-t prior distribution modelling the PC ampd#uvectors in order to enforce
the sparsity. Accounting for sparsity has been considemethany ways. One way is
via regularization techniques, by usidg or L; norms. This approach was developed
in [DDMO04], [Tro0g, [TGS04, [CWBO0g and [PS1(Q. One of these methods which has
become now the standard is LASSO{01]. Therefore, during the simulations chapter,
we will consider LASSO for comparisons with the proposedodatym. One other way
Is via Bayesian inference using strict sparsity or sparsitforcing priors. For the strict
sparsity requirement, very often Bernouilli distributimused. For example, Bernouilli-
GaussianGDI190], [CG196 and [GILCO8], Bernouilli-Laplace PB08] or Bernouilli-Gamma,
while for the sparsity enforcing, mainly three categoriépriors have been considered and
used very often: Generalized Gaussian (GG), Mixture modaiets heavy tailed probability
laws such as Student-t. A review of these priors is discussgdp01] and [MD12] and their
references.

Furthermore, the hierarchical model developed in this tdrapill account for the non sta-
tionarity of the noise. For this, in literature zero mean &aan model with unknown varying
variance has been considered@jHM14] and a Cauchy-Gaussian model ib{S19. Like
the prior distribution modelling the PC amplitude vectdhge Student-t distribution is used
for modelling the non-stationarity.

4.2 General Bayesian inference

In Section {.1) we have described the strategy adopted for doing the iloreis Equa-
tion (4.4) or equivalent 4.7): building an hierarchical model enforcing the sparsity tfee
PC amplitudes vectors and talking into account the nonastatity of the noise, based on
general Bayesian inference. Considering the linear isvpreblem of Equation4(7), the
Bayesian inference starts by the fundamental relatiomgyethe Bayes rule:

p(glf.0,)p(f162) ,
p<g|017 02) ’
where@ represents the hyperparameters that appear in the modetlynéhe variances as-

sociated with the unknowns of our model, i.e the PC amplgudetor and the noise vector
€.

p(flg,61,02) = = (61,0>) (4.13)

The Bayes rule can be interpreted as a proportionalityioglddetween the posterior law
and the product of the prior law (the sparsity informationdl ghe likelihood:

p(flg,01,02) < p(g|f,0:) p(f|02) (4.14)
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CHAPTER 4. LINEAR MODEL, INVERSE PROBLEM AND BAYESIAN
APPROACH WITH SPARSITY ENFORCING PRIOR

The probabilistic model that assigns particular distiimg for the prior and likelihood laws
represents the hierarchical model. An extension of Eqogtial4) is the general Bayesian
Inference, where the hyperparameters involved in the BRyés 6 = (64, 8,) are considered
unknowns and are also estimated from the posterior law:

p(f, 0., 92\9) X p(g|f, 01)p<f‘02)p(91)p(02) (4.15)

4.3 Sparsity enforcing priors

In the Bayesian framework, distributions must be assigoedhfe likelihood (derived from

the prior distribution assigned for modelling the errorgtué forward model), for the prior

(in our case one that allows enforcing the sparsity) and falsthe hyperparameters of the
model (i.e. the variances associated with the PC amplitude®r and with the errors). In
literature, [p01] and [MD12] and their references certain classes of distribution\jrea
tailed, mixture models) are well known as good sparsity kg priors. The overview is

presented in the following scheme:
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Sparsity enforcing priors

_ Student-
Elastic t SR

Net Symmeti
Gen. Weibull

Hyper-
oA Gen.

bolic \
‘ Prior Law Gaus-
sian
Dirichlet (),

Mixture
of
Gaus-
SERS

I\

‘MOGI

Hierarchical
Model

Likelihood
Law

Gaussia

Prior models that can be considered aa¢ Generalized Gaussian (GG) with Gaussian (G)
and Laplaceb) Weibull (W) with Symmetric Rayleigh (SR) or Double Exponi@h{DE) as
particular cases;) Student-t (St) with Cauchy (C) as particular cadeElastic nete) Gener-
alized Hyperbolic modef) Dirichlet and with Symmetric Dirichlet (SD) as particulase;g)
Mixture of Gaussians, witfi) Mixture of two centred Gaussians (MoG2), one with very small
and one with a large variance, with Bernoulli-Gauss (BG3datalled Spike and slab) as a
particular case(ji) Mixture of three Gaussians (MoG3), one centred with verylbwmagiance
and two symmetrically centred on positive and negative axeklarge variancegiii) Mix-
ture of one Gaussian and one or two Gammas (MoG-Gammash) &etnoulli-Multinomial
(BMult) or mixture of Dirichlet (MoD).

Mainly, the prior models are classified in three categorigeneralized Gaussian, heavy
tailed distributions and Mixture Models, which result tetarchical models.

57




4.4.1 - Generalized Student-t hierarchical prior model

4.4 Generalized Student-t hierarchical model

This section presents the assignment of the probabilitg keevresponding to the likelihood,
the prior and the prior corresponding to the hyperpararsgter. the variances associated
with the PC amplitude vectors and the error vector. The gotd build a hierarchical model
that accounts for the prior informations, i.e. the sparsitghe PC amplitude vectors and
the non-stationary noise. To account for both of these twor pnformations, we model
the noisee as a zero mean non stationary Gaussian with unknown vagamtevhich we
assign Inverse Gamma priors, and to enforce the sparsitysedhe generalized Student-
t distribution as the prior modelling the PC amplitude vestf; and f,, expressed as the
marginal of the bivariate Normal - Inverse Gamma distriiti The main advantage of the
Student-t distribution is that, thanks to its Infinite GaassScaled Mixture (IGSM) prop-
erty, it can be used in a hierarchical Gaussian - Gamma orggausinverse Gamma model.
In this way, in fact both for the non stationarity of the noa®d for sparsity enforcing we
have the same prior model structure: Gaussian with unknaaviarvwces on which we as-
sign Inverse Gamma priors. The Bayesian framework withedsffit priors both on the noise
and on the solution is a very well known approach in the Ittee and it goes back to
1950, using the Normal distributiorHf/V83] or the Poisson distribution\|SC99 for the
noise and the Normal distribution for the solution. Moreape priors and in particular the
Markovian model G84 and [[G90], non Gaussian priord&\[MD94], the hierarchical mod-
els [GLRI93] are more recent. The main difficulties in those methods lmen more on
the computational aspects. Beside the classical Gausgoxamation RMC09 and the
MCMC methods GRS94,[DDJ09,[GILCO8], we may mention the more recent ones: the
Approximate Bayesian Computation (ABCBCMRO09,[BlulQ],[BF1(,[MPRR1], Varia-
tional Bayesian Approximation (VBA)YMS'12H,[KMS* 124 and Message Passing (MP)
[Bea03,[WBJ0],[PCS1],[SR1] methods.

In general, a hierarchical model represents the set of pilifyalaws assigned for the
probabilities involved in 4.15, namely the assignment of the likelihop@| f, €,), the prior
p(f|62) and the hyperparameters prigr&?,) andp(6,). The equations corresponding to
each probability density function assigned in the modepaesented and discussed in detail
in Subsection4.4.1). The unknowns of the hierarchical prior model are estichdtem the
expression of the posterior distribution, via the Bayes,riljuation4.15) using two different
estimation techniques: Joint Maximum A Posteriori (JMARY &M (Posterior Mean), via
Variational Bayesian Approximation (VBA). The computaisocorresponding to those esti-
mations and the resulting algorithm are detailed in Subme¢t.4.2 and Subsectioni(4.3.

4.4.1 Generalized Student-t hierarchical prior model

In the first step, the error vecterof the linear model4.4) is modelled. We propose to use a
non-stationary Gaussian model for the conditional prdiighi(e;|v., ), i.e. every pointin the
error vector conditioned by the corresponding variange,, is considered as a zero mean
normal distribution with the corresponding variance:

pleilve,) = N(e]0,v.,), i € {1,2,...,N}, (4.16)
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Generalized Student-t hierarchical model

where the corresponding variancesare considered to be unknowns. For having the possi-
bility to estimate them we model them as Inverse Gamma digtdns:

p(vﬁ,-|ana 550) - Ig(vfi,-|ana 550)7 RS {17 27 ERI) N} ) (417)

where oo and g, represent the shape and scale parameters corresponding toverse
Gamma distribution associated with the correspondingamag of every point in the error
vector,v..,i € {1,2,..., N}. Doing this, the joint probability of the error vector parand
their corresponding variancés, v, ),i € {1,2,..., N} are modelled as a bivariate Normal -
Inverse Gamma distribution:

Qeo, Beo) = N (€:]0,0..)ZG (v,

p(Ei,”U(l 0460,660) ,’i c {1,2,...,]\7}, (418)

and the probability of each error vector points modelled by its marginal, i.e. a generalized
Student-t distribution:

pledac, Buo) = [ N(l0,0.)TG 0.

a607660) d/Uq 7i S {1727"'7N}7 (419)
More general, the equations introduced4nl© and ¢.17), can be used to write:

pelv.) = N(€|0, V)
{ p(veleo, Beo) = TTIL1 ZG (ve, [ veo, Beo) (4.20)

where we introduced the variance error veetoand the corresponding diagonal matyix:

v, = [UFL oo Ugpvvs 'l/'ﬂ\s'}T ’ VC = diag[vC] (421)

The likelihoodp(g|f,v.) is obtained considering the linear model, Equatiénf)(and the
assigned distribution for the error vecterconditioned by the variance,, p(e|v.), Equa-
tion (4.20. The distribution modelling the likelihood is also a mudiriate Normal distribu-
tion, having the same covariance matkix and the mear | f, + H> f>, derived from the
linear model Equatiorv(4):

p(glfi, fo,ve) = N(g|H 1 f1+ Hyf5, V) (4.22)

The likelihood and the prior distribution correspondindhe noise variance, represents the
first part of the hierarchical model:

(4.23)

p(glfi, fo,v) = N(glH  f1 + Haf2, Vo)
p(v€|a507660) = @'Jil Ig(ve,-|a5i07ﬁei0)

The proposed prior distribution is a generalized Studatistribution St,, in order to en-
force the sparsity, obtained via a Normal - Inverse Gammiailoligion. A generalization of
the Student-t distribution is obtained from the Normal -drse Gamma distribution by not
introducing any supplementary conditions for the shapesziate parameters corresponding
to the Inverse Gamma. This generalization is discussedtail die Subsection4.4.4. The
probability density function of the standard Student-traisition is given in Equation4.24):

St(z|v) = \/F_(:QFE)V) (1 n %2)”2 (4.2
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4.4.1 - Generalized Student-t hierarchical prior model

Standard Normal Distribution Student—t Distribution

G (x]0,1)

St—t(x[1)

Figure 4.1: Normal and Student-t distribution

The Student-t distribution with one degree of freedam= 1) (Cauchy distribution) and
the standard Normal distribution are presented in Figdr®.( The Student-t distribution is
a good sparsity enforcing prior due to the heavy tailed stirec the tail of the distribution
is above the tail of the Normal distribution, allowing ceént@ases of high values i.e. the
non zero values in the periodic component vector amplitudesesponding to the biolog-
ical periods expressed in the chronobiological signal. Aparison between the standard
Normal distribution and the Student-t distribution = 1) is presented in Figuret(2). A

Normal vs Student—t Distribution

S (x| O, 1)
St—t (<1 1) ||

Figure 4.2: Normal vs. Student-t distribution

direct assignment of Student-t distributions for the plaovsp( f,) andp(f-) leads to a non-
guadratic criterion when estimating, f.. The Student-t distributions corresponding to the
prior distributions modelling the PC amplitudes vectgrsand f», can be assigned via Nor-
mal - Inverse Gamma, jointly modelling the periodic compunesctors amplitudes and their
corresponding variances. For the varianceg pind f, we assume general models. Also,
the considered model will assign the same varianceg fand f», linking the two periodic
component vectors:

T .
Vp = |Ufy oo Uf;enn ’Ufj\,,} ; Vf = dlag[’l)f] (425)

Therefore, for sparsity enforcing for the PC amplitudedoes; the joint distributions corre-

sponding to the PC amplitudes vectors elements and thegsmonding variances are mod-
elled via the bivariate Normal - Inverse Gamma distributiomposing equal values for the
shape and scale parameter of the Inverse Gamma distributipr- 57y = -2

. . V¢ UV )
(fr008,) ~ N il,0r) TG(og |5 ) ke {12}, je {12, M} (4.26)
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Generalized Student-t hierarchical model

Doing so, the marginal of the joint distribution, modellitngg PC amplitudes vectors elements
is a Student-t distribution, Equation.@4):

. . Ve UV .,
p(frilvy) = /N(.fk,;‘\o#/‘fj) Ig(’“fﬁgfa gf) dvy, = St(fxslvy) (4.27)
This approach can be extended by considering a Normal -dav@amma distribution for the
joint distribution (fkj, z,vfj), without imposing the equalityt ;g = 5o = = in the expression
of the Inverse Gamma distribution. Considerimg,, 3;,0 as the parameters of the Inverse

Gamma distribution in the Normal - Inverse Gamma, the jomatbpbility of (fkj, z,vf,.) is
modelled as:

(fenvs,) ~ N(Fiil0,v7,) ZG(vr lago, Bro), k € {1,2}, j € {1,2,..., M}  (4.28)

The marginal modelling the elements of the PC amplitudetoveds:

1 -2\ ~(er0t3)
[(cso + 3) (1 L ) = Sty(fiilare Bro)  (4.29)

p(frslogo, Bro) = \/%F(Oéfo) 2810

The Normal - Inverse Gamma distribution, modelli@fkj, z,vf,.) and the marginal modelling
[1; are presented in Figuré\(1). The two parameters g, 3 introduced for defining the

IGSM distribution

Marginal IGSM distribution

is

Pl .B) — marg IGSM(f|x,.B)

16 [~ —

1a - -

1z —

—0.5 —0.a —0.3 —0.2 —o.1 o o.1 o.z2 0.3 o.a o.5

Figure 4.3: Normal - Inverse Gamma distributiénj, z,rfj) and the corresponding marginal
Trilecro, Bro

Normal - Inverse Gamma joint distribution are directly mitidg the variances;, via the In-
verse Gamma prior distributicfG (v, [ars0, B70) and also modelling’,.; via equation 4.25).
In order to enforce the sparsity, the two parameters mustbeen such that the Normal
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4.4.1 - Generalized Student-t hierarchical prior model

- Inverse Gamma marginal is a heavy tailed distribution amthghat the behaviour of the
variance is in accordance with the sparse structure of the

In fact, in such an approach, the mechanism of sparsity iscbaet only on the heavy
tailed property of the prior distribution, but also on a pafar behaviour of the vari-
ances. In such an approach a bivariate prior is set for thaawak of the model that needs
to be estimated (the PC amplitudes vectors in our case) anthéocorresponding vari-
ance. The algorithm that results is an iterative one, updadit every iteration both the
unknowns of the model (PC amplitudes vectgrs and f,) and the corresponding vari-
ance. In order to obtain a sparse solution for the unknowms,structure of the vari-
ance must be sparse itself. In particular the variancesceded with the zero or close
to zero points from the unknown of the model must be small, #redvariances associ-
ated with the non-zero elements of the sparse unknowns ahtidel must be significant.

generalized Studen’t-t

l

f1 and f,sparse —— vy Sparse

T

Inverse Gamma

D

Therefore, the shape and scale parameters of the Inversmm&drstribution must be chosen
such that the variance vectoy is sparse, i.e. the expected value of the elemeptss close

to zero, &g [/uf]} N\ 0. Furthermore, in a Bayesian approach, we may have a priavikadge
for the numerical value associated with the variance ofttierse Gamma modelling , i.e.

Varzg [vf_]} = w, Wherew is the numerical value obtained via prior knowledge. Evitede-
pending on the shape and scale parameters correspondimgltorerse Gamma distribution,
the behaviour of the marginal corresponding to the Normavelse Gamma bivariate distri-
bution, i.e. the generalized Student-t distribution, BEouma(A.25) is different. Figure 4.4)
presents a comparison between the standard Normal distritand the generalized Student-t
distribution for different values of the two parameters. Wdée that in order to select a prior
model that enforces sparsity, the two parameters and 3,0 must be chosen such that the
generalized Student-t distribution modelling the PC atagks vectors is concentrated around
zero, i.e. it's variance is very small, \@y [/ ;] \( 0.

For modelling the priors correspondingfg;, k € {1,2},j € {1,2,..., M} asin (A.25),
we assign Normal - Inverse Gamma distributions for the jpitdrs(f1;, v;,) and(f2;, vy, ).
Therefore,f;|v, and f;|v,, are modelled as zero mean Normal distributions, and the vari
ancesv;, are modelled as Inverse Gamma distributions jfar {1,2,..., M}. In this way,
the vectorf; conditioned by the variance vector is modelled by a zero mean multivari-
ate Normal distribution, with the covariance matrix defimed4.25, the variance vectos
iIs modelled as a product of Inverse Gamma distributions bhadséctorf, conditioned by
the variance vector; is modelled by a zero mean multivariate Normal distributwith the
covariance matrix defined id(25):

p(filvs) = N(f1]0,Vy)
p(folvs) = N(f2|0,Vy) (4.30)
p(vslago, Bro) = T1IL ZG vy, etpo, Bro)

62




Generalized Student-t hierarchical model

..............................

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Figure 4.4: Normal vs. Normal - Inverse Gamma marginal dhigtions

The likelihood and the error variance pridr 23 and the prior4.30 represents the IGSM Hi-
erarchical Model. The analytical form of the Hierarchicabd&l written via proportionalities
is the following:

g f1, fo,v0) o< |V “Texp {3V 7% (g — Hif1 — Haf2) [?}

p(ve‘&e(b 660) (08 HZ]\LI [Bf(izo) /Uﬁi_(aeo—’—l) €xp {—BeO’U:}

1 1

p(Filog) < [Vl H e {41V} (@.31)
1 1

p(Falog) o< V[ exp { =3IV £l

Bro®0 _
p(vslago, Br,) o< TTHL, F’(‘im) vy, (apo+1) exp {—Bfovfj1}

From the Hierarchical Model the posterior distribution t&nobtained via the proportionality
relation considered in(19:

p(f1, f2,ve,v5lg) o< p(glfi, Fa,ve) p(velac, Bo) p(Filvy) p(falvs) plvylago, 5{0) )
4.32

4.4.2 Joint MAP Estimation

This section presents the results obtained by the estimatite unknowns from the posterior
distribution, Equation4.32), via Joint Maximum A Posteriori (JMAP), a point estimatdr o
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4.4.2 - Joint MAP Estimation

the unobserved quantitigs, f-, v., v, on the basis of the available dajaJMAP estimator
is defined as:

(ﬁ)ﬁa /l/)\ea ’6}) = arg max p(flaf?aveavf|g) = argmin ‘C(f17f2’v€’vf)a

(fl,fZ,/Um/Uf) (fl,fQ,/Uc,/Uf)
(4.33)
where for the second equality the criteri6Qf, f», v, v;) is defined as:
‘C(fb f27 Ve, 'Uf) = - lnp(f17 f27 Ve, 'Uf‘g) (434)

The MAP estimator is the solution minimizing the criteridf f+, f2, ve,v;). One of the
simplest optimisation algorithm that we can use is an aderoptimization with respect to
the each unknown:

» With respect tof ;:

a‘c(flaf‘bvfavf) 0 -1 2 -1 2
— N 2 — H — H-f- 2 —
o 06 5 (IVH (9= Hif i — Hafo) P+ 1V, 7211) =0
& -—H{V. ' (g—H\fi —Hxfs)+V,; ' fi=0
= {HlTVE_1H1 + Vf_l} fi1=H{V. " (g—H,f,)

o —1
= f1= {H?Veilﬂl + fol} H{Ve ' (g—Hsf»)

» With respect tof,:

a‘c(fl7f27’v67lvf> a _1 2 -1 2
L= — (|IV."2 (g — H,f, — H,f V2 f)) =
)7 0 5 (Vg = Hufi = Haf) P+ V2 )) =0
& -—H)V. ' (g—Hfi —Hyf:)+V; ' f2=0
& [HIV ' Hy,+ V| fo= HIV. (g — Hi f)

o -1
= fo= [H?Ve_le + Vf_l} H;Ve'(g—Hify)

» With respectta,,i e {1,2,...,N}:

PR Levet) g 2 [+ ) o+
+ (@io + % (9i — Haif1 — sz'f2)2) /Ueil} =0
& (&ei(] + g) Ve, — (ﬁqo + % (9i — Hoif1 — Hzifz)Q) =0
= Be.o + % (9i — Hoif 1 — sz'fz)Q
- Qo+ 3
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Generalized Student-t hierarchical model

» Withrespecttoy, j € {1,2,..., M}:

8£(f17f27/v€7/vf) 8 1 -

& (agp +2)vy, — <5fo + % (f?j + fgj)) =0

:>UA_5fo+%( L+ )
f,i_ af0+2

The scheme of the iterative algorithm obtained via IMARestion is presented Figuré.f):

— —1
fi1= [H1TV571H1 I fol] H{Ve'(g—Hsf2)

>

(a) - update PC amplitudes vectér

2 —il
fo= [HQTVE_IHQ + Vf_l] H2TV6_1 (g—H.f1)

]

(b) - update PC amplitudes vectgr

__ Bgors(oi—Houf1—Hoyif2)" Ve = diag[oe]

€

3
a0t —

(c) - update noise variances

Bro+3(f1+13;)
Oéf0+2

V.7 = daslry]
®

Ufj =

]

(d) - update PC variances;,

Figure 4.5: Updating scheme: JMAP estimation for genezdl&tudent-t prior model

This algorithm is compared to the algorithm correspondmgasterior Mean estimation
in the simulations section.

4.4.3 Posterior Mean (via VBA, partial separability)

The JMAP computes the mod of the posterior distribution. Phsterior Mean computes the
mean of the posterior distribution. One of the advantagésisestimator is that it minimizes
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4.4.3 - Posterior Mean (via VBA, partial separability)

the Mean Square Error (MSE). Computing the posterior meéasyunknown needs great
dimensional integration. For example,

E,{f1} = //// fip(fi, fo,ve,vf|g) df L df, do, doy. (4.35)

In general, these computations are not easy. One way tonolgproximate esti-
mates is to approximate(fi, f.,v.,vr|g) by a separable one(f:, fs,v., vrlg) =
a1(f1) @2(f2) a3(ve) aa(vslg), then computing

E {f1} :/f1 dfi (4.36)

If we can do this approximation intelligently, i.e. in suchvay thatE, { f,} is the same as
E,{f1} we gain great amount of computational cost. In particulartfie proposed hierar-
chical model, Equatiord(31), the posterior distribution, Equatior.32), is not a separable
distribution, making the analytical computation of PM velifficult. One way the compute
the PM in this case is to first approximate the posteriorpéy, f-, v., v|g) with a separa-

ble lawq(f1, fo, v, v¢|g):
p(f1, f2,ve,v1lg9) = q(f1, fo,ve,v4]9) = i (f1) @2(f2) as(ve) qalvy) (4.37)
by minimizing of the Kullback-Leibler divergence, definest a
KL (q(f1, f2,ve,v5,19) - p(F1s fo,ve,v7,19)) =

o Q<.f17 .f27 Ve, Uf|g) (438)
= [[.- [ a1, f2r0,04l9) I Ly df A do. do

where the following notations are used:

N M N M
q3(ve) = H q3i(ve,) Q4(’Uf) = H Q4j(”l/'fj) ; dvo = H dv., ; dvy= H d’Ufj
i—1 j=1 i=1 j=1
(4.39)
The minimization can be done via alternate optimizationltesy the following proportion-
alities:
q1(f1) < exp {<1ﬂp(f17 Ja,ve, 'Uf‘g»qQ(fQ) a3V q4(vf)}

w(F2) o e (D1, £2 00019 £y i )

q3i(ve,) X exp {(lnp(fb f2,v(,v,f\g)>ql(f1)q2(f2) - )q4(’U‘/)} , 1e{l,2...,N}

i

q‘lj(vfj) X exp {<1np(.fl7 f27 U, Uf|g)>q1(f1) q2(f2) q3(Ve) Q47j( )} ) j € {17 2... ) M} )

Ul
(4.40)
using the notations:
N M
q3—i (lUCi) = H Q3k</UCk) ;o qa—j (Ufj) = H qzlk(”fk) (441)
k=1,k#i k=1,k+#j
and also
(@), = [ ul@)v(y) dy. (4.42)
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Generalized Student-t hierarchical model

From Equation4.32), the analytical expression of the logarithm is obtained:
1 1
Inp(f1, f2, 0605, v5.09) = € = 5 Indet(V) — —IIV:% (9 — Hif1 — Hsf) |

- Z Qe0+ 1) Inw, Z Beov.,” —Indet(Vy)

=1
]_ —% 2 M M —1
- §va Fill*=> (O‘fjo + 1) vy, — Zﬁfjovfj
=1 i=1
— e
2! "/

(4.43)

e Expression ofq,(f1) and ¢z ( f2):

The proportionality relation correspondingdg f) established in equatiod @40 refers to
f1, soin the expression afi p(f1, f2, v, vs|g) all the terms free off, can be regarded as
constants:

<lnp(f1, fZ’IUG’,Uf‘g»% J2) (Vo) as(vy)
< IV~ (g - Hify — Hafo) |7

<—||vf2f1||2>
94(Uy)

a2(f2) as(Vo)

Introducing the notations:

Go=(y s w= o] 3 V.= diag[w)
o (1) I (4.44)

o7, = (v, >q4](uf,_) L Uy = 07,07, 07, 3 V= diagvy]
we can write:

1/ =1
D1 200019 oy iy = C SV (0= Ot~ HLEDIE),

1,51
—ZV,2 2
SIVAAF

Developing the nornﬂVié (g— H.f, — Hyf>)|? introducing the notation
forv = <f2>q2(f2) (4.45)
and then excluding th¢, free terms, we obtain:

<”Ve% (g—H f1 — Hyf>») H2>q2(f = —QQTiZHlfl + flTH1TVéH1f1

2) - (4.46)
+ 2ng]\JH2TVeH1f1

so the proportionality fog; (f;) can be expressed as:

Ch(f1) X exp {—% <f1T (HlTVéH1 + Vf) fi—2 (g - HQ.F‘Z)T V6H1f1>} (4.47)
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4.4.3 - Posterior Mean (via VBA, partial separability)

i.e. the probability density functiop ( f) is proportional to a exponential having a quadratic
criterion, leading to the conclusion that f ) is a multivariate Normal distributiom; (f1) =

N (filfipa, Z1pa)- Evidently, for determining the mean of the Normal disttiba it is
sufficient to minimize the quadratic criterion of the expoti@. The covariance matrix is
then obtained by identification, leading to:

firv = (HlTVcH1 + Vf) 1 H,\"V, (g—Hsyf2rm)
a(f1) =N (filfipas Zapm), - o
Yipm = (HlTVeH1 + Vf)
B (4.48)
with vV, V¢ and fop), introduced in 4.44) and @.45. For the expressiom,(f-) all the
computations are the same and following the same develdgivea conclude thak(f-) is
a multivariate Normal distribution:

_ -1 _

form = (HzTVFHQ + Vf) H,"V (g —H\fipu)

Q2(f2) =N <f2|f2PMa E2PM) ) L ]
Shopar = (HyTV Hy + V)

(4.49)
e Expression ofgs;(v.,):
Considering the terms free of as constants, we have:
1
(Inp(fi, fo2, v, 'Uf|g)>q1(f1) a2(f2) gs_i(ve,) qa(Vy) — ¢ — B) Inv., — (o + 1) Inv, (4.50)

1 1
——(|\V.2(g—H,fi — H 2 — 6”271
2 <H : <g S 2f2) ” >Q1(f1) a(f2) as-ive,) Beot €

For V;l —H,f, — Hyf5)|? we have the following develop-
meng_” ’ <g 1f1 sz) H >q1(.f1) a2(f2) as—i(ve,) 9 P

1
<HVc 2(g—H.f1— Hsyf>) ”2>q1(f1)q2(f2) i) ¢
. . 2
+ 'lz':,,:l (gz —H\fipu — HZQfQP]\J)
+o! (HiZpy HY)

+o;! (HyEopy HY')
(4.51)

so the proportionality relation correspondinggtg(v., ), Equation £.40) becomes:
- ael“l’l _
q3i(ve,) ’Uej( ) exp {—qugl} (4.52)
Sogs;(ve,) is an Inverse Gamma distribution with the following paraenst

_ 1
A, = Qe + 2

aém 6€z> ) ﬁei = 6&0 + % [(gz - Hil.flPﬂj - HngPA,[)Q —|— (453)
(H{Z1pu H + HSpy HY )|

q3i(/UCi) = Ig (UCi

e Expression ofqy;(vy,):
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Generalized Student-t hierarchical model

Considering the terms free of, as constants, we have:

(Inp(fi1, f2,ve, Uf|9)>q1(fl) o(f2) ey ajw,) ~ vy, = (ap+1)Invy,

1 < 1 1 L ., (454)
5 (IvVitne) —5{IVii£aI®) ~ Bvy,
2 ! ql(fl) Q4—j(v/j) 2 / q2(.f2) Q4—j(U‘[ )
_1 _1
For<||Vf2f1||2> and<||Vf2f2||2> we have the following rela-
ai(f1) qa—j(vy)) ae2(f2) aa-j(vy;)
tions:
<||Vf§f1||2> =C+v; (fUPM+le]PM)
nfDaster) (4.55)

_1 .
A4 ‘2f2|]2> =C+vt ([0 +S2ipu
< I qz(fg) qa j(/UfJ) f] ( 2jPM 77 )

so the proportionality relation correspondingdg(v,,) established in equationt @0 be-
comes:

—(ar. +1 _
quj(vy,) ocv f_,-( 1) exp {—ﬂ £V fjl} (4.56)

We conclude thagy; (v, ) is an Inverse Gamma distribution with the following paragnet

Ozfj = Ozfo + 1
q4j(/Ufj> =1¢ (ij |afj7 6fj) )
B, = Bro+ 3 [f e+ 2uipm + f3 ey + szij}

(4.57)
The expressions of the parameters corresponding to the tittvariate Normal distributions
¢ (f1) andgy(f,) depend on/. and V', introduced in ¢.44). Sincegs;(v.,) andqy;(vy,)
are Inverse Gamma distributions it is easy to express thertatoices with the correspondlng
Inverse Gamma parameters:
i

51‘1]

-~ ,,—1 _ 51 .
Uﬂ - <LC1 >IQ(’v(l\aei,5ei) 551 :> V dlag

(4.58)
= V = diag

o7 = (v7!
l‘fj <Uf]' >IQ('Ufj|C¥fj 75fj) ﬂf]

e Algorithm:

Equations4.49, (4.49, (4.53, (4.57), representing the distribution families of separableslaw
g and their corresponding parameters are leading to aniieragorithm estimating all the
parameters involved. The shape parameters correspording inverse Gamma distributions
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4.4.3 - Posterior Mean (via VBA, partial separability)

rest constants during the iterations. All the other paransedre updated, changing the value.

fipv = <H1Td|ag{ } H, + dlag{ D Hlelag{
Yipm = (Hlelag[ 6’] H,+ dlag[ D_

} (9—H:yfrm)

(4.59a)

form = <H2Td|ag{ EZ} H, + diag {B_fD H2Td|ag{ } (9—H:ifiru)

1
Yorm = <H2Td|ag{ ] H, + dlag[ﬁ—fD
(4.59b)

Qe (6] +
{ Bei = 650 + 5 |:( H flp\[ — H .fZP\[) + (Hl'lzlpl\/IHilT + H322P1\/1H3T):|
(4.59¢c)

af = s+ 1
{f’ 70 (4.59d)

By, = Bro + % [f%jPZ\J + Xy ipm + f%jPM + E2ijM}

Equation {.599 establish the dependency of the parameters correspotalthg Multivari-
ate Normal Distributiony; (f) and the others hyperparameters involved in the Hierarthica

O, ; efi .
BEZ} and dlag{ﬁ—fj].

Model: the meary»,; and the covariance matr¥; p,, depend on dia%

{Be} {51{,} — firar, Xipum (4.60)

Equation ¢.591 establish the dependency of the parameters correspotaithg Multivari-
ate Normal Distributiony( f2) and the others hyperparameters involved in the Hierarthica

Model: the meary,,,; and the covariance matrX,p,, depend on dla% } and dlag{ ]

B3 B} | farar, Zopu (4.61)

Equation ¢.599 leads to the following dependency scheme:

Firn, Zapw, forar, Xopu {8} (4.62)

Equation {.599 leads to the following dependency schemes:

JFirn, Bapw, forar, Yopu {5}3} (4.63)

The scheme of the iterative algorithm is presented in Figlu@:

An important part of the algorithm is represented by thaah#ation part. We have to
choose the parameters that will be used for the initialagart and assign them numerical
values. We also have to assign numerical values for the shraghescale parameters corre-
sponding to the two Inverse Gamma prior distributions imedlin the hierarchical model. In
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Generalized Student-t hierarchical model

Initialization

. —— =
firn = <H1TVEH1 + V{/') H,"V, (9 — Hsyfarum)

N = —\ —1
Siew = (HVH +V)
(a) - update PC amplitudes vectgr

. oy =il .
forn = <H2TV(H2 4F Vf) H,"V (9—H:firu)

—_ — .\ —1
Sopm = (HzTVfHQ + V,)
(b) - update PC amplitudes vectgs

vl = diag{%}

— 1
A, - Qe + 2

ﬁfi = /Beio =

[(gi —H!fipy — H%f?/u\,/)Q + (H’iElPMH’iT + HEEQPMH§T>
(c) - update noise variance hyeperparameters

1
2

v = diag {a

i

=k
= =
[E—

O(f. = afjo + 1

J

— By, = Bro+ 3 [.f ipar + Zugipm + f3pa + E2ijM}
(d) - update PC variance hyeperparameters

Figure 4.6: Updating scheme: PM estimation via VBA (parsigparability) for generalized
Student-t prior model

order to select the values correspondingv@, 3o, a0, S0 We have to account for the fact
that those hyperparameters have a crucial role in the smeat the model. The marginal

of the Normal-Inverse Gamma distribution, i.e. the geneedl Student-t modelling the two

PC amplitudes vectorg, and f, depends onx s, 370, Equation £.25). Furthermore, for

the mechanism sparsity,y, 570 must be chosen such as they impose a sparse structure for
the variance vector ; via the Inverse Gamma distributioa,,, 5, must be chosen such that
the proposed algorithm can distinguish between the peaks the PC amplitudes vectors
corresponding to the biological phenomena and the peaksspmnding to the noise.
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4.4.4 - Prior Inverse Gamma parameters setting for v,

4.4.4 Prior Inverse Gamma parameters setting for ;.

The proposed hierarchical modél.81) is modelling the variances correspondingftoand
f2, namelyv;  as Inverse Gamma distributions.

INnverse Gamma distribution
ias
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Figure 4.7: Inverse Gamma distributions for different? parameters

Figure @.7) presents the behaviour of the Inverse Gamma distributiepending on the
two parameters. The fundamental goal of the proposed blacal model was to search a
sparse solution foif; and f,. The mechanism of the sparsity enforcing is linked with the

high  number of high number of
pointsf,; andf,; are| — |pointsv; are zero of ———
zero or close to zero close to zero

(4]

f1 and f, spars v sparse

small number of small number of
points f1; and f2; | — |pointsv;; have high ——
have high values values

Figure 4.8: Sparsity mechanism: the sparsity is imposa)&ia the corresponding variance

corresponding variances; : the points of the vector with zero or almost zero values are
associated with small variances, meaning that once theigigois setting those values close
to zero then they will rest close to zero, not having highatawns. For the non-zero values,
we want to allow certain variations of the amplitude. In tbése, the variances associated
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Generalized Student-t hierarchical model

must have significant values. The link between the PC ang@#wectorsf; and f, and the
variances vectop, is presented in Figuret(8). Therefore, we search the Inverse Gamma
distributions parameters such that the expected valuese ¢b zero and the variance is close
to a certain valuev set in accordance with the data.

The expected value of an Inverse Gamma distributi@x|«, ) is defined fora > 1,

Ezg[z] = £, and the variance is defined for > 2, Varzg [z] = %. The shape
and scale parameters for the Inverse Gamma distribution lneuset such that:
B B
=e~0 ; = 4.64
a1 °© D a—12(a—2) " (4.64)

One way to assure an Inverse Gamma distribution that pieaesrhall expected values~ 0
and a certainw variation is to adopt the following model for the parameters

a=2+e ; B=vVwe(l+e) , = (4.65)

Bk

e INnverse Gamma distribution

var=1
var=o.1
= vVar=0.01 N

ar=0.001
1z —
10

Figure 4.9:x ~ ZG(z|a, B); E[x] = 0.1; Var[z] = 1, 0.1, 0.01 and 0.001

INnverse Gamma distribution
140 T T T

var=1
/ var=0.1
120 | I A var=0.01 —

| 3 var=0.001

100 | | 9 -

‘ E—0.O0OX1L
so b |\ -
co [ | -

ao | \ -

20 - | T -

Figure 4.10x ~ ZG(z|o, B); E[x] = 0.01; Var[z] = 1, 0.1, 0.01 and 0.001

Figure @.9) shows four Inverse Gamma distributions for which the mesathe same,
E[z] = 0.1, but with the variances Var] = 1, 0.1, 0.01 and 0.001, for which the param-
eters are computed using Equatian6y. The generalized Student-t distributions, i.e. the
marginals of the IGSM distributions corresponding to the parameters: and 3, imposing
the mean and variances mentioned above are presented negigul?), (4.13
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4.4.4 - Prior Inverse Gamma parameters setting for v,

14400

INnverse Gamma distribution

Var=1

vVar=o.1
1200 Var=0.01 -
Var=0.001

1000 -
E=—0O0.O0O0OL1
s00 |- -
soo |- —

aoo —

200 - —

Figure 4.11:x ~ ZG(z|a, B); E[z] = 0.001; Var[z] = 1, 0.1, 0.01 and 0.001

€ w Vars,, = Ezg | Vargg Figure
0.1 0.1 0.1 0.1 | Figures ¢.9), (4.12,(4.13
0.1 | 0.01 0.1 0.01 | Figures ¢.9),(4.12,(4.13
0.1 | 0.001 0.1 0.001| Figures ¢.9),(4.12,(4.13
0.01 ] 0.1 0.01 0.1 | Figure ¢.10,(4.14),(4.15
0.01 | 0.01 0.01 0.01 | Figure ¢.10,(4.14,(4.19
0.01 | 0.001 0.01 0.001| Figure ¢.10,(4.14,(4.195
0.001| 0.1 0.001 0.1 | Figure ¢.11),(4.16,(4.17)
0.001| 0.01 0.001 0.01 | Figure ¢.11),(4.16,(4.17)
0.001| 0.001 0.001 0.001| Figure ¢.11),(4.16,(4.17)

Table 4.1: Mean and variance {6t via e andw

Figure ¢.10 shows four Inverse Gamma distributions for which the mesatné same,
E[z] = 0.01, but with the variances Vat] = 1, 0.1, 0.01 and 0.001, for which the param-
eters are computed using Equatian6d. The generalized Student-t distributions, i.e. the
marginals of the IGSM distributions corresponding to the parameters: and 5, imposing
the mean and variances mentioned above are presented ne§i¢guls), (4.15

Figure ¢@.11) shows four Inverse Gamma distributions for which the mesathé same,
E[z] = 0.001, but with the variances Vat| = 1, 0.1, 0.01 and 0.001, for which the param-
eters are computed using Equatian6y. The generalized Student-t distributions, i.e. the
marginals of the IGSM distributions corresponding to the parameters: and 5, imposing
the mean and variances mentioned above are presented ne§igulo), (4.17)

Generalized St-t s Generalized St-t s Generalized St-t

Figure 4.12: Different Generalized Student-t distribntidor which the meansdz, = 0 and
the variances Vag, = 0.1 are the same
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Generalized St-t

s ———— L L L L L L L | ——
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Figure 4.13: Generalized Student-t: Yar= 0.1; Varzg = 0.1,0.01,0.001;

. Generalized St-t . Generalized St-t . Generalized St-t

o
ot 05

Figure 4.14: Different Generalized Student-t distribntidor which the meansdz = 0 and
the variances Vag, = 0.01 are the same

Generalized St-t
T T T

var , _=0.1
var ,_ =0.01

var,_ =0.001
5 -
/
/

o — — L L L L L - —
-0.5 -o.a -0.3 -0.2 -o.1 o o.1 o.z2 o.3 o.a o.s

Figure 4.15: Generalized Student-t: ¥gr= 0.01; Varzg = 0.1,0.01, 0.001;

Generalized St-t . Stt Generalized St-t
1

Figure 4.16: Different Generalized Student-t distribntidor which the meansdz = 0 and
the variances Vag, = 0.001 are the same

4.4.5 Prior Inverse Gamma parameters setting for,,

The variance corresponding to the noise,: € 1,2,..., N are also modelled as Inverse
Gamma distributions, for the same conjugacy reasons agioabe of/;,. However, while
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= Generalized sSt-t
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Figure 4.17: Generalized Student-t: ¥ar= 0.001; Varzg = 0.1,0.01, 0.001;

the behaviour ofv;, variances is linked with the sparsity enforcing 6f and f», so the
parameters of the prior Inverse Gamma distributi®@sv ;, |0, 30) and can be fixed such
that the mean and the variance are in accordance with thsitgpamforcing strategy, it is not
the case for the noise variance. Therefore, in order to fiptHrameters of the prior Inverse
Gamma distributions corresponding to the noise variangeth&r strategy is needed. We
propose two possible approaches.

Non-Informative Prior law for v,

As mentioned above, for fixing the parameters of Inverse Gardistributions forv,, the
prior knowledge was used. In the case of the noise variarcéirect) prior information is
available. Therefore, we can consider that the most propgritavemodel the noise variance is
a non-informative prior law. So, in this case, the Inversen@g distribution parameters must
be set such that the distribution becomes non-informatweuniform. The Inverse Gamma
distribution becomes uniform for the parameters equal to:ze

Qe = 0 ; 660 =0 (466)

Data deriving for v,

The second approach for fixing the Inverse Gamma distribygarameters corresponding to
v., such that the mean and the variance correspond to numesices/derived from data. In
a pure Bayesian inference, such approach could be crificace doing this, the available
data, namely the known chronobiological sigmalis used twice for inference: first when
deriving the numerical values corresponding to the meanvanidnce of the prior Inverse
Gamma distribution modelling the noise variance and sdgodigring the proposed algo-
rithm. However, for the application addressed in this thés¢ main limitations is the lack of
prior information. Therefore, this we consider also thipraach. The mean and the variance
of v., are expressed via the two Inverse Gamma parametgrandj,,:
E _ ﬂEiO _ 52,0
[ve,] = , forae,o>1 , Var[v.,] = 5 , for ago > 2
Qe;0 — 1 (0551-0 - 1) (aEiO - 2)
(4.67)

Both values, Euv.,] and Var{v.,] correspond to the noise variance (the mean of the noise
variance and the variance of the noise variance), an unkoedear model. The known input
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Generalized Student-t hierarchical model

g contains the error vector. This information can be exptbiteobtain numerical values for
the Inverse Gamma distribution mean and variance. Consgldre mean of the known data
Elg], the mean of the noise variancég can be defined as the squared norm of the difference
between the data and its mean, while the variance of the naignce Vafv.| can be defined

in the same manner: [E] = |lg — E[g]||I> . Var[v] = | (g —E[g]) — Elg — E[g]] |>
Equations4.67) links the parameters,, andj., with numerical values that are derived from

the known data:
Elv] Elv]

ey = Va.r[U(] +2 ; Beo = E[/UC] (m + 1) (468)

In particular, such an approach, is consistent to a nonrsigeel algorithm.

4.4.6 Posterior Mean (via VBA, full separability)

In Subsection4.4.3 the Student-t model is considered and the PM estimatordd.u$he
posterior law is approximated by a separable one, EquaticiY)( where the notations for
q3(ve) andq4(vf), introduced in Equation4(39, represent a full separability relative t@
andvf. But the prior lawp( f1, f, ve, vf|g) is not approximated by a fully separable one
since forg; (f1) andg.( f») we consider a multivariate law modelling the vecfarand f». In
this subsection we investigate the development of the m@gpmodel and same PM estimator,
but the posterior law is approximated by a fully separablerkative to all the unknowns, i.e.
also for f. The interest of such development concerns the applicatidrere the precision
required is high, making the numerical computations vesflgoln this case, the posterior law
from the Hierarchical Model( f, ve, vf|g) is approximated by a fully separable probability
density function:

p(f1, fove,v509) = q(f1, f2,ve,v409) = ai(f1) @2(f2) g3(ve) qulvy) (4.69)

where the notations fag;(v.) andg, (v ) are defined in Equatiornt(39 and :

M
Hfhg fi} 7 g2 f2 HQ2J fz; ; df = H dfl; ; dfy = H dej
j=1

(4.70)
and

M M
Q1fj<flj> = H Q1k(f1k> ; Qij<f2j): H Q2k(f2k> (4.71)
k=1,k#j k=1,k#j
Like in Subsection 4.4.3, the law q(fl,fQ,ve,vf\g) is obtained by minimizing the

Kullback-Leibler divergence, Equatiod.39, via alternate optimization, obtaining an iter-
ative algorithm. The scheme of the iterative algorithm mssanted in Figure4(19):
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Initialization

f H{V_ (g-HP f7-H.f)
J1;PM e 1/2 R =
VH{ (V) " Hijpo,
iT (x,—1 vz - !
van; = | H (Vg) H{Hz—l—'l}]]
a) - update element,;p), from PC amplitudes vectof,
J
s HI'V (g-H; f,’-H.f)
2jPM oy 1/2 i =
HYT (V') Hilp+o,
=N\ —\!
var,, = <||Hf2 (v;) H%|2+vf71>
- update elementy;p,s from amplitudes vectof,
b date el €2 pas f PC litud tf(

‘7? = diag[%}

1
@ = Qe + 3

56,‘ = ﬁeio I
% [(92 —Hifipu — H§f2,,1\1)2 4 (Hiz:lPMHiT + H322PMH§T>
(c) - update noise variance hyeperparameters

/jl _ B OéfZ
Vf = dlag{ﬁff}

agf, = Of;0 + 1

J
By = Bro + & [fhipm + Suipm + Zipas + Sajipu]
(d) - update PC variance hyeperparameters

Figure 4.18: Updating scheme: PM estimation via VBA (fulpaebility) for generalized
Student-t prior model
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5.1.1 - Synthetic data 05dB
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5.5 Student-tPMvia VBAvs. LASSO10dB. . . ... .. ... ... .... 114

HIS chapter is dedicated to the simulations results correspgrd the synthetic data,
for the iterative algorithms presented in Chapté. (First, we present in detail the
results for three levels of noise, 05dB, Sectiénl), 10dB, Section%.2) and 15dB, Sec-
tion (5.3), for comparing the Gaussian model (i.e the Gaussian pwit) the proposed
Student-t model. For each prior, we compare the algorithaneesponding to the JMAP
and PM estimation. For all three sections, we present casgpa between the theoreti-
cal PC amplitude vectof and the estimated PC amplitude vecgar We show the con-
vergency of the PC vectors during the iterations and shovwetoéutions of the estimation
errors for different realisation of the noise. Then, in &ett5.4) and Section §.5 and
we present the comparison between the Proposed Method aB88&QAnethod, showing in
detail the results corresponding to SNRdB and SNR+0dB and finally showing the be-
haviour of theL; and L, error norms corresponding to the Proposed Method and LASEO f
SNR={50dB,40dB,30dB,25dB,20dB,15dB,10dB,05dB

For Sectionsq.1), (5.2) and 6.3, five algorithms corresponding the Bayesian approach
are compared: Joint MAP with Gaussian prior, Posterior Meih Gaussian prior, Joint
MAP with Student-t prior, Posterior Mean (via VBA) with Steiak-t prior (partial separability)
and Posterior Mean (via VBA) with Student-t prior (full seghility).

For each iterative algorithm, we present a comparison katilee algorithm’s estimation
and the synthetic data, i.e. a comparison betwggn,,., and f, betweerg, ..., andg and
betweery,,..... andg, theoretical signald without noise). For every algorithm considered,
we present the convergency analysis of the parameters graifgarameters involved. Then,
we present a comparison between the estimations of promdgedthms and the classical
FFT method. Finally, the proposed algorithms are tested 10stiover the same data, but
different noise realisation, in order to obtain the error vector (the normalized difference
between data and estimated data, considered fgrand theoretical signaj,) and compare
the performances of each algorithm. The comparisons betewer vectors corresponding
to each algorithm are presented at the end of the subsections

We consider the following protocol: we consider a theoedtleC vectorf and the cor-
responding theoretical sign&f f; we consider the corresponding sigmak= H f + €, by
adding noise over the theoretical signal. The consideigubsrepresents a four day signal,
sampled every hour. The matrE{ considered in this set of simulations is a cosine plus sine
matrix.

5.1 Simulations 05dB

This section presents the simulations corresponding teyththetic case, for 05dB.

5.1.1 Synthetic data 05dB

For testing we have considered a four days signal, correlpgto a sparse PC vector, having
non-zero values for 11h, 15h, and 23h. We consider thisqueati structure for the following
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Simulations 05dB

reasons: we want to verify if the proposed method can prigaiBstinguish the peaks inside
the circadian domain. As we have mentioned, for such signasthe FFT we obtain an
important peak corresponding to 24h and the correspondingdnics, but this method offers
no information for certain values in the circadian domaine Méve showed in Chaptes)(
Figure (3.2) that a dominant period, corresponding to 23h is wronglyrested at 24h via FFT
method and offers no other informations for the interval- 8.

5.1.2 Data 05dB

The PC vectorf, theoretical signay, and the signaf are presented in the Figuré.{):
Figure 6.19 shows the theoretical PC, having the non-zero periodespanding to 11h,

T heoretical PC

Ampliude

=3 EE 1a ENd =20 23 26 ) =2
Periods

(a) PC vectorf

Ampliude

o 2a as 72
Time)

(b) Theoretical Signay

Real sSignal

Ampltude
G M B o0 B N B A @

7=

2a as
Time)

(c) Signalg
Figure 5.1:f PC vector, theoretical signhg) and input signay = g, + € of the model (5dB)
15h and 23h. All the other values in the PC vector are zeraurEip.10 presents the signal

corresponding to the linear model considered in Equatiof),(neglecting the errorgy, =
H f. We note that the conditioning number of the matkkis cond(H) = 56798792591.
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5.1.3 - IMAP IGSM 05dB

All the simulations are done using as the input the noisyaigrcorresponding to the linear
model, Equation4.4), presented in Figures(19. We compare the estimated PC vector with
the theoretical one, Figuré (L9 and the corresponding reconstructed signal witflandg.
The comparison with the theoretical sigralis important in order to verify if the propose
algorithm can distinguish the peaks corresponding to giokd phenomena from the ones
corresponding to the noise.

5.1.3 JMAP IGSM 05dB

A comparison between the synthetic data and the JMAP estimatorresponding to the
IGSM prior hierarchical model is presented in Figuse?]. We compare the theoretical PC
vector f and the JMAP estimatiofi smap- We also present the comparison between the es-
timatedg ;,, 4 andg and the comparison between the estimajeg 4 and the theoretical
signal (without noiseg,: The proposed method is searching for a sparse solutioasmmrnd-
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Figure 5.2: JMAP IGSM Estimation (5dB)
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ing to the linear model, Equatiod @). The comparison between the theoretical sigiand

9 map, Figure 6.20) shows that the proposed algorithm is converging to a soiutiat leads

to a fairly accurate reconstruction, having thenorm errorég, = %73%”3”5 = 0.0524.
2

For the PC vector, the reconstruction errop j§ = ”‘f*{%f’”% = 0.0726. For the IMAP
estimation, the condition imposed for the searched scﬂuiie. the sparsity is not respected,
Figure 6.29. In fact, the alternate optimization algorithm considei@ searching the IMAP
solution is converging to a local minimum and the estimagorors corresponding to the

JMAP estimation might be far from the example presentedur€igs.39 presents the vari-
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Figure 5.3: IMAP IGSM., error measured for 10 different noise realisations (5dB)

ation of L, PC vector error reconstruction for 10 different noise szlon. As mentioned,
the JMAP solution given by the alternate optimization ailipon is converging to a local min-
imum and the estimation may be very inaccurate. We note hledfigure presents a variation
of L, PC vector error reconstruction froir)524 to 4.2841. Important variations correspond-
ing to the L, error reconstruction for the theoretical siggal and signal, are presented in
Figure 6.3 and Figure $.30.
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5.1.4 - PM (via VBA, partial separability) IGSM 05dB

5.1.4 PM (via VBA, partial separability) IGSM 05dB

A comparison between the synthetic data and the PM (via VB#tig separability) IGSM
estimation is presented in Figurg.{). We compare the theoretical PC vectbmwith the
PM (via VBA, partial separability) IGSM estimatiorfi ,,,, Figure 6.4 and the corre-
sponding reconstructed sign@}.,, both with the theoretical signaj,, Figure £.4bH and
the input signalg, Figure 6.49. In the case of the Posterior Mean estimation via VBA,

Theoretical & Estimated PC (WBALlL St-t)
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Figure 5.4: PM (via VBA, partial separability) IGSM Estinat (5dB)

both the PC estimation and theoretical sigpglreconstruction are very accurate, Figure
(5.49 and Figure %.4b. For the reconstruction of the theoretical sigaal the L, er-

ror norm isédg, = ”g(h_g%ﬁ;””% = 0.0275. For the PC vector, the reconstruction error is
R 2
of = IS puli 0.0283. The algorithm is converging to a sparse solution wherehall t

ILF13
non zero pef'alks are detected. The residual error computegdry and the reconstructed

signal is consistent with the error considered in the mosi#B, Figure .49 . During the
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algorithm both Inverse Gammas shape parameters are cgristaration ¢.599 and Equa-
tion (4.599. We present the convergence of the scale paramétewnsd 5, Figure £.5d) and
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Figure 5.5: PM (via VBA, partial separability) IGSM hyperpaeters ang’ convergency

Figure 6£.50), the convergence A&t covariance matrix diagonal, Figurg.f9 and the conver-
gence of algorithm’s solutioyi. For a better visualisation of the PC convergeyids plotted

as a vector, Figures(59. The colour scale corresponding to each figure represeatsera-
tions, showing a very fast convergence both for the paramated hyperparameters involved
in the model. All the estimations of the parameters and tpgrameters are superposed after
the first ten iterations. In the previous paragraph we hawe/et that the JIMAP estimation
for the proposed model is presenting high variations in seofrthe error estimation and re-
construction. We show that for the PM estimation, the eraoration is very small. Figure
(5.69 presents the variation df, PC vector error reconstruction for 10 different noise szali
tion. The figure presents a very small variation.g@fPC vector error reconstruction, between
0.02215 and0.0621. Very small variations corresponding to tlhg error reconstruction for
the theoretical signa},, and signaly, are presented in Figuré.gGh and Figure $.69.

5.1.5 PM (via VBA, full separability) IGSM 05dB

The estimations for the full separability case are also mteu Numerically, for the recon-
struction of the theoretical signgl, the L, error norm iség, = W = 0.0247. For
2

the PC vector, the reconstruction errovig = wiﬂgﬂf'@ = 0.0234. Figure 6.89 presents
2

the variation ofL, PC vector error reconstruction for 10 different noise sadlon. The figure
presents a very small variation 6§ PC vector error reconstruction, betweed2 and0.067.
Very small variations corresponding to tlig error reconstruction for the theoretical signal
go, and signal, are presented in Figuré.8b and Figure $.80.
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Figure 5.6: PM (via VBA, partial separability) IGSKA, error measured for 10 different noise
realisations (5dB)

5.1.6 Methods comparison 05dB

A comparison between the estimations corresponding to@sM proposed model is pre-
sented in Figure5.99 (JMAP estimator), Figure5(9d (PM via VBA, partial separability
estimator) and Figures(99 (PM via VBA, full separability estimator). As mentioned $ec-
tion (4.1), during this article we adopted a Bayesian approach. Hewether approaches
are possible, via regularization. For this reason we irelag¢omparison with the Gaussian
case (i.e. Gaussian prior), via the two estimators disclygsgure 6.99 (Gaussian Model,
JMAP estimator) and Figuré&(9b) (PM via VBA estimator). A comparison with the FFT
is presented in Figure&(9f). The L, estimation error for the PC vector is very high for the
two Gaussian models. Also, the estimations are not spacseéh& IGSM models, the IMAP
estimator is providing a good estimation, but it is unstali via VBA estimation, both
partial and fully separable provides very accurate stadtienations.
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Figure 5.7: PM (via VBA, full separability) IGSM EstimatiqbdB)

5.1.7 Error comparison 05dB

The L, error measurement corresponding to the PC estimationtdtieal signal estimation
and the signal estimation, for 10 different noise real@ais presented in the following figure:
The L2 error corresponding to the PM via VBA IGSM Model correspamgdio the PC vector
estimation, Figureq.109 shows the performances of the proposed algorithm comparthe
Gaussian Model and the JMAP estimation for IGSM Model.
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Figure 5.8: PM (via VBA, full separability) IGSM., error measured for 10 different noise
realisations (5dB)
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Figure 5.10:L, Errors estimation (5dB)
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Synthetic data 10dB

5.2 Synthetic data 10dB

In this subsection we present the synthetic data case pormdsg to the 10 dB SNR.

5.2.1 Data 10dB

The periodic component vectgt, theoretical signad, and the signay are presented in the
following figure: Figure $.119 shows the theoretical PC, set for 11h, 15h and 23h. All

Theoretical PC
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Figure 5.11: f PC vector, theoretical signgl, and input signaly = g, + e of the model
(10dB)

the other values in the PC vector are zero. FigbréX presents the signal corresponding
to the linear model considered in Equation (3), neglectmgdrrors,g, = H f. All the
simulations are done using as the input the noisy signél.119 corresponding to the linear
model,Equation (3).
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5.2.2 JMAP IGSM 10dB

A comparison between the synthetic data and the JMAP IGSivhason is presented in the
Figure 6.12). The theoretical periodic component vecjoand the JIMAP IGSM estimation

fJMAP are compared in Figuré(129. The reconstruction error isf = ”f{f%”'% =

115

0.0259. The comparison between the estimafed, ,» and the theoretical signal (without

noise)g is presented in in Figuré(12. The reconstruction error gy = ”gojgi(’)ﬁgf”’”% =
2

0.0225. The comparison between the estimafed, ,» and the signay is presented in in
Figure 6.129. Figure £.139 presents the variation df, PC vector error reconstruction for
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Figure 5.12: JMAP IGSM Estimation (10dB)

10 different noise realisation, showing high variatiomspbrtant variations corresponding to
the L, error reconstruction for the theoretical siggal and signal, are presented in Figure
(5.130 and Figure %.139.
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Figure 5.13: JMAP IGSM., error measured for 10 different noise realisations (10dB)

5.2.3 PM (via VBA, partial separability) IGSM 10dB

For the Posterior Mean estimation via VBA, both the PC edimnaand theoretical signajf,
reconstruction are very accurate, Figubel¢g and Figure §.140. For the reconstruction

of the theoretical signay,, the L, error norm iség, = %%M”% = 0.011. For the PC
2

vector, the reconstruction errordg = IS puli _ 0.0144. The algorithm is converging

I1F 12

to a sparse solution where all the non zero clocks are deteTtee residual error computed
betweeng and the reconstructed signal is consistent with the errosidered in the model,
10dB, Figure §.149. The convergency aE covariance matrix diagonal, Figurg.{59 and
the convergency of algorithm’s solutigh Figure 6.150 is showing a very fast convergency.
All the estimates are superposed after the first ten iteratid/e show that for the PM estima-
tion, the error variation is very small. Figurg.(69 presents the variation df, PC vector
error reconstruction for 10 different noise realisatiomeTigure presents a very small vari-
ation of L, PC vector error reconstruction, betwe@n08 and0.02. Very small variations
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Figure 5.14: PM (via VBA, partial separability) IGSM Estitian (10dB)
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Figure 5.15: PM (via VBA, partial separability) IGSM hypamnameters angt convergency

corresponding to thé., error reconstruction for the theoretical sigmal and signalg, are
presented in Figures(160 and Figure %.169.
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Figure 5.16: PM (via VBA, partial separability) IGSNI, error measured for 10 different
noise realisations (10dB)

5.2.4 PM (via VBA, full separability) IGSM 10dB

The estimations for the full separability case are also l@&teu For the reconstruction of the

theoretical signaf,, the L, error norm isdg, = ”gﬂ%ﬁ%”% = 0.0095. For the PC vector,
2

the reconstruction error isf = I = pulls 0.0103. Figure £.189 presents the variation

I1f 12

of L, PC vector error reconstruction for 10 different noise selon. The figure presents a
very small variation ofl., PC vector error reconstruction, betwe®n046 and0.0168. Very
small variations corresponding to tlig error reconstruction for the theoretical sigga) and
signalg, are presented in Figuré.(L8) and Figure %.189.
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Figure 5.17: PM (via VBA, full separability) IGSM Estimatiq10dB)

5.2.5 Methods comparison 10dB

The comparison between the estimations correspondin@tortposed IGSM models is pre-
sented in FigureH.199 (JMAP estimator), Figure5(199 (PM via VBA, partial separability
estimator) and Figurés(19¢ (PM via VBA, full separability estimator). The comparisaetth
the Gaussian case (i.e. Gaussian prior), via the two esirdiscussed, is presented in Fig-
ure 6.199 (Gaussian Model, IMAP estimator) and Figusel@h (PM via VBA estimator).
A comparison with the FFT is presented in FiguselQy).

The L, estimation error for the PC vector is very high for the two &aan models. Also,

the estimations are not sparse. For the IGSM models, the J&®iRmator is providing a
good estimation, but it is unstable. VBA estimator, bothtiipaseparable and fully separable

provides very accurate stable estimations.
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Figure 5.18: PM (via VBA, full separability) IGSM., error measured for 10 different noise
realisations (10dB)

5.2.6 Error comparison 10dB

The L, error measurement corresponding to the PC estimationretieal signal estimation
and the signal estimation, for 10 different noise realsats presented in the following figure:
The L2 error corresponding to the PM via VBA IGSM Model shows thefmenances of
proposed via algorithm compared to the Gaussian Model andNtAP estimation for IGSM
Model.
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Figure 5.20:L, Errors estimation (10dB)
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5.3.1 - Data 15dB

5.3 Synthetic data 15dB

In this subsection we present the synthetic data case pomdig to the 15 dB SNR.

5.3.1 Data 15dB

The periodic component vectgt, theoretical signad, and the signag are presented in the
following figure: Figure $.219 shows the theoretical PC, set for 11h, 15h and 23h. All
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Figure 5.21: f PC vector, theoretical signgl, and input signaly = g, + € of the model
(15dB)

the other values in the PC vector are zero. FigbréXl) presents the signal corresponding
to the linear model considered in Equation (3), neglectmgdrrors,go = H f. All the
simulations are done using as the input the noisy signé.219 corresponding to the linear

model,Equation (3).
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Synthetic data 15dB

5.3.2 JMAP IGSM 15dB

A comparison between the synthetic data and the JMAP IGSivhason is presented in the
Figure 6.22). The theoretical periodic component vecjoand the IMAP IGSM estimation

fJMAP are compared in Figuré(229. The reconstruction error isf = ”f{f%”'% =

0.0069. The comparison between the estimafed, ., and the theoretical signal (without

_ ||90’gJMAP||§

noise)g is presented in in Figuré&(22h. The reconstruction error gy = g =
2

0.00692. The comparison between the estimaded, , » and the signag is presented in in
Figure 6.229. Figure £.239 presents the variation df, PC vector error reconstruction for

T heoretical & Estimated PC (JMAP St-t)

Ampliude
Il

=3 EE 1a ENd =20 23 26 ) =2
Periods

(a) Theoretical and Estimated PC

T heoretical & Reconstructed Signal (OMAP St-t)

Ampliude

o 2a 72
Time)

(b) Theoretical and Estimated Signal

Real & Reconstructed Signal (OMAPRP St-t)

Ampliude

_a n n s
o 2a as 72
Time)

(c) Real and Estimated Signal

Figure 5.22: IMAP IGSM Estimation (15dB)

10 different noise realisation, showing high variatiomapbrtant variations corresponding to
the L, error reconstruction for the theoretical sigpal and signaly, are presented in Figure
(5.230 and Figure %.239.
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5.3.3 - PM (via VBA, partial separability) IGSM 15dB
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Figure 5.23: JMAP IGSM., error measured for 10 different noise realisations (15dB)

5.3.3 PM (via VBA, partial separability) IGSM 15dB

For the Posterior Mean estimation via VBA, both the PC edionaand theoretical signagjf,
reconstruction are very accurate, Figuse2¢}g and Figure %.240. For the reconstruction

of the theoretical signaj,, the L, error norm isdg, = ”g["%ﬁy”% = 0.00513. For the PC
o2

vector, the reconstruction errordg = ”frfifg“”g = 0.00437. The algorithm is converging
to a sparse solution where all the non zero clocks are deteTtes residual error computed
betweeng and the reconstructed signal is consistent with the errosidered in the model,
15dB, Figure $.249. The convergency aE covariance matrix diagonal, Figurg.259 and
the convergency of algorithm’s solutigh Figure £.251 is showing a very fast convergency.
All the estimates are superposed after the first ten iteratid/e show that for the PM estima-
tion, the error variation is very small. Figurg.269 presents the variation adf, PC vector
error reconstruction for 10 different noise realisatiomeTigure presents a very small vari-

ation of L, PC vector error reconstruction, betwe@n03 and0.01. Very small variations
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Synthetic data 15dB
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Figure 5.24: PM (via VBA, partial separability) IGSM Estitian (15dB)
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Figure 5.25: PM (via VBA, partial separability) IGSM hypamnameters angt convergency
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corresponding to thé., error reconstruction for the theoretical sig@al and signalg, are
presented in Figures(260 and Figure %.269.
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5.3.4 - PM (via VBA, full separability) IGSM 15dB
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Figure 5.26: PM (via VBA, partial separability) IGSM, error measured for 10 different
noise realisations (15dB)

5.3.4 PM (via VBA, full separability) IGSM 15dB

The estimations for the full separability case are also i@&teu For the reconstruction of the

theoretical signag,, the L, error norm isdg, = ”gﬂ%ﬁ}f”% = 0.00398. For the PC vector,
the reconstruction error isf = W%f”% = 0.00374. Figure 6.289 presents the variation
of L, PC vector error reconstruction for 10 different noise mlon. The figure presents a
very small variation ofL, PC vector error reconstruction, betwe@n037 and0.027. Very
small variations corresponding to tlig error reconstruction for the theoretical sigga) and
signalg, are presented in Figur&.¢80 and Figure %.289.
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Synthetic data 15dB
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Figure 5.27: PM (via VBA, full separability) IGSM Estimatiq15dB)

5.3.5 Methods comparison 15dB

The comparison between the estimations correspondingtortposed IGSM models is pre-
sented in FigureH.299 (JMAP estimator), Figure5(299 (PM via VBA, partial separability
estimator) and Figuré(299 (PM via VBA, full separability estimator). The compariseith

the Gaussian case (i.e. Gaussian prior), via the two esimndiscussed, is presented in Fig-
ure 6.299 (Gaussian Model, JIMAP estimator) and Figuse2@h (PM via VBA estimator).

A comparison with the FFT is presented in Figuse2Q1). The L, estimation error for the PC
vector is very high for the two Gaussian models. Also, theregttons are not sparse. For the
IGSM models, the JMAP estimator is providing a good estiomgtbut it is unstable. VBA
estimator, both partial separable and fully separableigeswery accurate stable estimations.
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Figure 5.28: PM (via VBA, full separability) IGSM., error measured for 10 different noise
realisations (15dB)

5.3.6 Error comparison 15dB

The L, error measurement corresponding to the PC estimationretieal signal estimation
and the signal estimation, for 10 different noise real@ais presented in the following figure:
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Synthetic data 15dB
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Figure 5.29: Methods Comparison (15dB)
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Figure 5.30:L, Errors estimation (15dB)
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Student-t PM via VBA vs. LASSO 05dB

5.4 Student-t PM via VBA vs. LASSO 05dB

In this section we compare the performances of the Proposeithdd and LASSO, for
SNR=05dB. We consider the theoretical PC amplitude vectfrs f, and f, defined as
= vV f1?2 + f2?, the corresponding theoretical (original) sigmgl = H.f, + H>f, and
the corresponding (noisy) signal = g, + €, by adding noise over the theoretical signal.
The considered signal represents a four day signal, sanepkxy hour. The matri¥d ; is

a sine matrix and the matrik¥l, is a sine matrix. The data is presented in Figure31):

Theoretical PC 1 Theoretical PC 2

3t [ 4 1 3 L 4
f f
] 25 |

N
N
N 0

"
ol
T

Amplitude
s
Amplitude

Ie)
o @ M
>
b
b
»
b
— ¢
b
]
b
>
b
b
>
| |
o
o »
— ¢

8 11 14 17 20 23 26 29 32 8 11 14 17 20 23 26 29 32
Periods Periods

(a) PC amplitude vector (sinj; (b) PC amplitude vector (cog)-
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N
& & A b o N »d O @
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©) f=VvFi*+f2? (d) Original signalgo = H1f1 + Ha f>
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Amplitude
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o 24 48 72 o 24 48 72
Time(h) Time(h)

(e) Noisy signalg = go + € (05dB) (f) Added noise:

Figure 5.31: Synthetic simulation data (05dB): sine PC #@nmies vectorf, (5.319, cosine
PC amplitudes vectof,, (5.310, PC amplitudes vectof, (5.319; corresponding original
signalgo = H,f1 + H>f>, (5.3109, noisy signalg, (5.319 and the added noise (05dB)
(5.319

the PC amplitude vectaf,, corresponding to sine, is presented in Figlr€{g and the PC
amplitude vectorf,, corresponding to cosine, is presented in Figéra1. We have consid-
ered sparse vectors, with three periods with non-zero sporeding amplitudes: 11 hours, 15
hours and 23 hours. We have considered for both PC ampliwetgsrsf, and f, the same
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periods with non-zero corresponding amplitudes, but ghffievalues for the amplitudes. The
PC amplitude vectoy is presented in Figuré (319, the corresponding original signgy in
Figure 6.319 and the corresponding noisy signain Figure 6£.319. The added noise,
corresponding to SNR¥5dB, is presented in Figuré (317). The estimation corresponding
to the Student-t model, with PM estimation, is presentediguie 6.32). The comparison
between the estimatﬂ and f, is presented in Figuré (329 and the comparison between
the estlmategfz andf is presented in Figuré(320. Both estimated PC amplitudes vectors
f1 and f, are sparse and the non-zero amplitudes are correctly éstimahel; and L,
estimation error norms correspondingfo aredf,; = 0.34 andd f,, = 0.05; the L; and
L, estimation error norms corresponding fe ared fo; = 0.16 andd f., = 0.004. The
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Figure 5.32: Synthetic simulation (05dB): comparison lestwthe Proposed Method estima-
tions and the synthetic data

comparison betweeyi and f is presented in Figurés(329: the L; estimation error norm is
0f1 = 0.247 and theL, estimation error norm ig f, = 0.015. The comparison between
the reconstructed signglandg is presented in Figure5(329: the reconstruction is fairly
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Student-t PM via VBA vs. LASSO 05dB

accurate: thd.; reconstruction error norm i&g; = 0.159 and theL, reconstruction error
norm iség, = 0.024. The estimation corresponding to LASSO is presented inrgi¢u33).
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Figure 5.33: Synthetic simulation (05dB): comparison lestwthe LASSO estimations and
the synthetic data

The comparison between thegstimaqudandfl is presented in Figuré(339 and the com-
parison between the estimatg¢d and f- is presented in Figurés(330). Both estimations
have amissing valudi.e. the non-zero amplitude corresponding to 23h hourstisvated as
zero) and both estimations have one ore false detectionsfor f;, LASSO is associating
a non-zero amplitude corresponding to 22 hours andffoiwo non-zero amplitudes corre-
sponding to 24 and 25 hours. Tlige and L, estimation error norms corresponding fo
aredf1; = 0.87 anddf,, = 0.82 and theL; and L, estimation error norms corresponding
to f, aredfi; = 0.49 anddfi, = 0.99. The comparison betweefi and f is presented
in Figure 6.339: the L, estimation error norm i8 f, = 0.65 and theL, estimation error
norm isd f; = 1.05. The comparison between the reconstructed sigraaldg is presented
in Figure 6£.330: the reconstruction is fairly accurate: tlig reconstruction error norm is
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0g; = 0.2 and theL, reconstruction error norm i&g, = 0.04. To analyse the stability of

L1 Error Teh Sig VBA vs. LASSO L2 Error Teh Sig VBA vs. LASSO

—©— VBA
0.2 I | —@—LASSO

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28
Number Of Realisations Number Of Realisations

(a) dg1: Proposed Method vs. LASSO (b) 6go: Proposed Method vs. LASSO

Figure 5.34: Stability: L1 and L2 reconstruction errorsdBY% 6g, and dg,: Proposed
Method vs. LASSO

the Proposed Method and LASSO, we computelthand L, estimation and reconstruction
errors corresponding to the Proposed Method and LASSO,Gardsse realisations, in the
same conditions as in Figuré.B1). Figure £.34) presents the behaviour of thg and L,
reconstruction errors corresponding to the original digna Figure £.349 compares the
behaviour ofL; reconstruction error corresponding to the original sighal, correspond-
ing to the Proposed Method and LASSO and Figir&4h compares the behaviour af,
reconstruction error corresponding to the original sigfigd, corresponding to the Proposed
Method and LASSO. Both methods provide small reconstractisors, and both methods
are stable. Figure5(35 presents the behaviour of thg and L, estimation errors forf;,

f2 and f: Figure 6.359 compares the behaviour éf, estimation error forf,, J f1;, cor-
responding to the Proposed Method and LASSO and FiguBs[) compares the behaviour
of L, estimation error forf,, ¢ f 12, corresponding to the Proposed Method and LASSO. The
comparison corresponding i is presented in Figures(359 (L,) and Figure $.359 (L-)
and corresponding té is presented in Figuré(35¢ (L) and Figure $.351) (L»).

The Proposed Method has better performances compared t8QASterms of.; and L,
estimation errors for the PC amplitudes vector: the assatiarrors are always smaller than
the ones corresponding to LASSO. Also, in this case, for SINEB the LASSO is unstable.
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Figure 5.35: Stability: L1 and L2 estimation errors (05d8j); andd f5: Proposed Method
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5.5 Student-t PM via VBA vs. LASSO 10dB

In this section we compare the performances of the Proposeithdd and LASSO, for
SNR=10dB. We consider the theoretical PC amplitude vectfrs f, and f, defined as
= Vf1? + f-2, the corresponding theoretical (original) sigmgl = H,f, + H,f, and
the corresponding (noisy) signal = g, + €, by adding noise over the theoretical signal.
The considered signal represents a four day signal, sanepkxy hour. The matrid¥d; is

a sine matrix and the matrikl, is a sine matrix. The data is presented in Figure3§):

Theoretical PC 1 Theoretical PC 2

Amplitude
Amplitude

20 20
PPPPP d Period:

(a) PC amplitude vector (sinf) (b) PC amplitude vector (cog),

Theoretical PC Theoretical Signal

Amplitude
"
Amplitude

a8
PPPPPPP Time(h)

©) fF=/F2+ 12 (d) Original signalgn = H+f1 + Ho>f»

Real Signal Noise

Amplitude
Amplitude

a8 a8
Time(h) Time(h)

(e) Noisy signalg = gg + € (01dB) (f) Added noise:

Figure 5.36: Synthetic simulation data (10dB): sine PC @omigs vectorf, (5.369, cosine
PC amplitudes vectof,, (5.360, PC amplitudes vectof, (5.369; corresponding original
signalgo = H,f, + H>f>, (5.369, noisy signalg, (5.369 and the added noise (05dB)
(5.361)

the PC amplitude vectaf,, corresponding to sine, is presented in Figir&§g and the PC
amplitude vectorf,, corresponding to cosine, is presented in Figaragl). We have consid-
ered sparse vectors, with three periods with non-zero sporeding amplitudes: 11 hours, 15
hours and 23 hours. We have considered for both PC amplinetgsrsf, and f, the same
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periods with non-zero corresponding amplitudes, but gifievalues for the amplitudes. The
PC amplitude vectoy is presented in Figuré (369, the corresponding original signgd in
Figure 6.369 and the corresponding noisy signrain Figure £.369. The added noise,
corresponding to SNR#AB, is presented in Figuré (36f). The estimation corresponding
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o
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Figure 5.37: Synthetic simulation (10dB): comparison lesiwthe Proposed Method estima-
tions and the synthetic data

to the Student-t model, with PM estimation, is presentedigufe G.37). The comparison
between the estimateﬂ and f is presented in Figuré(37g9 and the comparison between
the estlmateq-’2 and f, is presented in Figuré&(376. Both estimated PC amplitudes vectors
f, and f, are sparse and the non-zero amplitudes are correctly estimahel; and L,
estimation error norms correspondingfiparedf,; = 0.15 andd f, = 0.008; the L; and

Lo, estimation error norms correspondingjftoared fo; = 0.16 andé f», = 0.017.

The comparison betweefiand f is presented in Figurés(379: the L, estimation error
norm iséf; = 0.158 and theL, estimation error norm i f, = 0.012. The comparison
between the reconstructed siggaandg is presented in Figuré&(3749: the reconstruction is
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fairly accurate: thd.; reconstruction error norm igy; = 0.102 and theL, reconstruction er-
ror normisigs = 0.01. The estimation corresponding to LASSO is presented inrEi¢u39).

Theoretical & Estimated PC sin (Lasso) Theoretical & Estimated PC cos (Lasso)

Amplitude
o

Amplitude
A

23 26 20 32 8 11 14 17 20
Periods Periods

(a) LASSOT. vs. fi (b) LASSO ¥, vs. f

Theoretical & Estimated PC (Lasso)
T T T T

T
— Theoretical
— Estimated [ 4

I---:-I b = o o o = :

L L L L L L
s 11 14 17 20 23 26 ) 32
Periods

(c) LASSOF vs. f

tical & Reconstructed Signal (Lasso) Noise & Estimated Noise (Lasso)

Amplitude

Amplitude
<—
‘
=
—

a8 a8
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(d) LASSOg vs. g (e) LASSOe vs. ¢

Figure 5.38: Synthetic simulation (10dB): comparison lestwthe LASSO estimations and
the synthetic data

The comparison between thegstimafqdandfl is presented in Figuré&(389 and the com-
parison between the estimatg¢d and f, is presented in Figures(380). Both estimations
have amissing valudi.e. the non-zero amplitude corresponding to 23h hourstisnated as
zero) and both estimations have one ore false detectionsfor f,, LASSO is associating
a non-zero amplitude corresponding to 22 hours andffoiwo non-zero amplitudes corre-
sponding to 24 and 25 hours. THe and L, estimation error norms corresponding fo
ared f1; = 0.649 andd 1, = 0.26 and theL, and L, estimation error norms corresponding
to f, aredfi; = 0.78 anddfi» = 0.48. The comparison betweefi and f is presented
in Figure ©.389: the L, estimation error norm isf, = 0.305 and theL; estimation error
norm isé f; = 0.749. The comparison between the reconstructed sigrzaldg is presented
in Figure £.389: the reconstruction is fairly accurate: tlig reconstruction error norm is
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0g; = 0.012 and theL, reconstruction error norm i&g, = 0.11. To analyse the stability

L1 Error Teh Sig VBA vs. LASSO L2 Error Teh Sig VBA vs. LASSO

(a) 6g1: Proposed Method vs. LASSO (b) 6g-: Proposed Method vs. LASSO

Figure 5.39: Stability: L1 and L2 reconstruction errorsdB® 6g; and dg,: Proposed
Method vs. LASSO

of the Proposed Method and LASSO, we computelih@and L, estimation and reconstruc-
tion errors corresponding to the Proposed Method and LAS&CB0 noise realisations, in
the same conditions as in Figure 6. Figure £.39 presents the behaviour of tHg and
L4 reconstruction errors corresponding to the original diggaFigure 6.399 compares the
behaviour of; reconstruction error corresponding to the original sighal, correspond-
ing to the Proposed Method and LASSO and Figir&%h compares the behaviour af,
reconstruction error corresponding to the original sigfi@d, corresponding to the Proposed
Method and LASSO. Both methods provide small reconstranctisors, and both methods
are stable. Figure5(40 presents the behaviour of thHg and L, estimation errors forf,,

f2 and f: Figure 6.409 compares the behaviour @éf estimation error forf,, 6 f1, cor-
responding to the Proposed Method and LASSO and Figuf®[) compares the behaviour
of L, estimation error forf,, d f1,, corresponding to the Proposed Method and LASSO. The
comparison corresponding 6 is presented in Figure&s(409 (L,) and Figure $.409 (L-)
and corresponding t@ is presented in Figuré(40¢ (L;) and Figure $.401) (L)

The Proposed Method has better performances compared t8 QA terms of,; and
Lo estimation errors for the PC amplitudes vector: the aststiarrors are always smaller
than the ones corresponding to LASSO.

Finally, we present a comparison between the Proposed Metimu LASSO for
different values for the SNR. Figure.¢i19 presents the comparison between the
reconstruction norm forg, corresponding to the Proposed Method and LASSO for
SNR={5dB, 10dB, 15dB, 20dB, 25dB, 30dB, 40dB, 50dB}. The comparison between ttig
reconstruction norm fog, for the two methods is presented in Figube(Lh. Figure 6.419
and Figure $.410 present the comparison between fheand L, reconstruction norm fog
for the two methods.

Figure 6.429 presents the comparison between fheestimation norm forf; corre-
sponding to the Proposed Method and LASSO for
SNR={5dB, 10dB, 15dB, 20dB, 25dB, 30dB, 40dB, 50dB}. The comparison between tlig
reconstruction norm fof’; for the two methods is presented in Figuse4@h). Figure 6.429
and Figure %.429 present the comparison between fheand L, estimation error norm for
f» for the two methods and Figurg.¢:2¢ and Figure %.421) present the comparison between
the L, and L, estimation error norm fof for the two methods.
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Figure 5.41: L1 and L2 estimation errorgy; anddg,: Proposed Method vs. LASSO
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5.3.6 - Error comparison 15dB
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Figure 5.42: L1 and L2 estimation erroisf; andJ f,: Proposed Method vs. LASSO
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Simulations: Real data
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CHAPTER 6. SIMULATIONS: REAL DATA

6.6.3 Conclusions: Dominant Period evolution. . . . . .. ... ... 177

I N this chapter we present the simulations correspondingeadhl data. The considered

signals are obtained in an experiment performed in 6 mallér2::luc mice, aged 10
weeks. Mice were singly housed in RT-BIO and synchronizeti WD12:12 for 10 days of
adaptation. D-luciferin ([1.5 mg/mL] was loaded in drinkter Animals were then kept in
DD for 3 days. Vehicle or everolimus (5 mg/kg/d) was daily adistered at ZT1 or ZT13
(Zeitgeber time) for 6 days, and then animals were kept in DDahother 4 days. Liver
bioluminescence and mouse rest-activity were monitoredawinute during LD12:12 and/or
DD with the RT-BIO photomultiplier tube and infrared sensespectively. For each mouse,
CT 502 Al presented in Sectiof.(), CT 502 A2 presented in Sectiof.p), CT 502 A3
presented in Sectior6(3), CT 502 B1 presented in Sectiofi.{), CT 502 B2 presented in
Section 6.5), CT 502 B3 presented in Sectiof.€), every segment of interest, i.e. the LD
segment and the three segments corresponding to the DDebdfaing and after treatment,
the PC amplitude vector is obtained using the proposed rdethd compared with the FFT
estimation, the standard method used today in chronobjolog

6.1 CT 502 Al: Photon Absorption and Activity

In the following we present the results of the proposed nettwmpared with the standard
method used today for analysing the chronobiological $gyrtae FFT method, on real data,
obtained in experiments performed in male KI/KI Per2::lucenaged 10 weeks. This section
is dedicated to the complete study, i.e the study of the phygy, corresponding to the seg-
ment LD (light-dark, 12h-12h), where the mouse was syndhaeshand DD (total darkness),
the segment corresponding to thefore treatment and the study of the behaviduring and
after treatment. For the study, two signals were recordedAtttavity Signal measuring the
activity (movement) of the mouse and tRhoton Absorption Signal measuring the number
of photons absorbed.

40

Ampltude
Ampltude

Number of days Number of days

Figure 6.1:CT 502, A1 Mouse Activity (a) and Photon Absorption (b) raw data

Figure ©.1) presents the raw data corresponding to the Activity signdlPhoton Absorp-
tion signal. The signals were recorded for 22 days, samplegyeninute. For each signal,
we consider 4 segment&D Period, corresponding to the synchronization part, then three
parts corresponding to tHeD period: before, during and after treatment. We are interested
in the periodic component (PC) vector corresponding to eaptnal and in the corresponding
acrophase. The stability of the period is verified using tloimg window strategy, where the
available data allows.
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CT 502 Al: Photon Absorption and Activity

6.1.1 Dominant Period evolution: Activity

We start the analysis with the signal corresponding to thivity. We consider zero-mean
signals, normalized between [-10:10] and sampled every. hou

Figure 6.2: Activity raw data (a) and the corresponding$én),(c),(d),normalized and one-
hour sampled

For the LD part, 7 days are available. We compute the PC quorelng to the signal
using the Proposed Method and also using the FFT: Via the F&thad, the principal period

02 Al Activity WinComp Signal ____________ CT502Al Activi ity WinComp VBA CT 502 Al Activity WinComp FFT

2 3 o 6 9 13011 12 13 14 15 15 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 nz 12 me w52 s e 2 2 = me @
Num Periods Periods

ber of days

Figure 6.3: Considered signal (a) and the correspondingi®@¥BA (b) and FFT (c)

Is estimated at 24 hours. Evidently, beside the incertingd®ciated with the FFT estimated
PC, the existence of other rhythms can’t be establisheagbdifficult to interpret all the
picks present in the estimated PC. Via the Proposed Methedrincipal period is estimated
at 23 hours.The amplitude corresponding to the 23h periatha Proposed Method is much
higher.

We consider now 4-days length signals (windows) from thelabke signal, with a shift
of one day and compute the PC via FFT and the Proposed metimthé/froposed Method,
three windows present a 23 hours periodicity and for one awwndh 24 hours periodicity
is detected. Via FFT method the principal period seems ataviery window presenting a
dominant period of 24 hours. This result is consistent whih PC estimation via Proposed
method, when all the signal was considered.

The stability or variability of the PC amplitudes vector fie LD part of the Activity
signal is presented in Figuré.p):
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6.1.1 - Dominant Period evolution: Activity
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Figure 6.4: PC Stability: PC estimation via FFT and VBA foddys length signals
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Figure 6.5: PC Stability: Proposed Method (a) vs. FFT (b)
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CT 502 Al: Photon Absorption and Activity

An image of dominant period stability or variability, regéss the numerical value of the
amplitude associated with the dominant period is presantéee Figure 6.6):

CT 502 A1 Activity WinComp VBA Variation Norm

Figure 6.6: PC Stability: Proposed Method (a) vs. FFT (bjmradized results

We consider now the DD period. First, we consider bleéore treatment segment. Only
3 days are available for this segment. We compute the PCiyeting FFT and Proposed
Method, 6.7): Via the FFT, the highest pick is set at 24 hours and the reetet highest

T 502 A1 Activity DDBef VBA CT 502 A1 Activity DDBef FFT

TT]ITTTI

Number of days Periods

Figure 6.7: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

picks are set at 8, 36 and 6 hours. Of course, given the shagtHeof the signal, 3 days,
and the limitations of the FFT method all the values insidrittterval (18,36) except 24 are
not present in the estimated vector, so the result presergsydmportant uncertainty. This
means that for this particular case, even the classificafitre rhythm (circadian or infradian)
is uncertain via FFT. Via the Proposed method the dominambghés set at 22 hours and the
other pick present in the PC vector correspond to 8 hours.

We consider theluring treatment part of the data, for which five days are availdfitg,
ure 6.9). Via the proposed method, the estimated PC vector is aespacsor, in accordance

2 A1 Activity DDDur Signal CT 502 A1 Activity DDDur VBA CT 502 A1 Activity DDDur FFT

R IR IR S

3 D 8 © 10 11 12 13 14 15 15 17 18 19 20 21
ber of days Periods

Figure 6.8: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

with the model and the dominant period is estimated at 25hduwr the FFT estimated PC
vector, the dominant period is estimated at 24 hours, buéstienation is not sparse. In this
case, the next two important picks correspond to 8 and 12shbdarmonics of 24 hours. We
consider now 4-days length signals (windows) from the atéd signal, with a shift of one
day and compute the PC via FFT and the Proposed method. lcetses analysing theuring
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6.1.1 - Dominant Period evolution: Activity

T 502 A1 Activity DDDUrWIN2 vBA

Figure 6.9: PC Stability: PC estimation via FFT and VBA foddys length signals, Activity
DD, during

segment using the moving window we note that via the Propbkstiod a variability of the
dominant period is detected, while via FFT the dominantqieseems stable. This can be
viewed in Figure §.10. An image of dominant period stability or variability, @glless the

Figure 6.10: PC Stability: Proposed Method (a) vs. FFT (b)

numerical value of the amplitude associated with the dontipariod forduring segment is
presented in Figures(11):

A1 Activity DDDurWin2 VBA Va A1 Activity DDDurWin2 FFT Variation Norm

Il B

Figure 6.11: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results

For theafter treatment part of the data 2 days are available. Via the FEihaton, the
dominant period is 24 hours, while via the proposed methedittminant period is 25 hours.

The evolution of the dominant period, estimated via the Bseg Method and FFT, during
the complete Activity signal, for each segment of interest or four-days length signals for
the segments that allowed this analysis is presented ire Tal).
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CT 502 Al: Photon Absorption and Activity

T 502 A1 Activity DDAft VBA

Number of days B periods 77 perieds

Figure 6.12: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

CT 502-A1 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 23 24
LD win 1 23 24
LD win 2 23 24
LD win 3 24 24
LD win 4 23 24
DD before 22 24
DD during 25 24
DD during win 1 25 24
DD during win 2 24 24
DD after 25 24

Table 6.1: CT 502 Al: Activity Dominant Period Stability:dprosed Method vs. FFT

6.1.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to tleégohabsorption, i.e. the gene
expression. Like before, we consider mean-zero signalsnalzed between [-10:10] and
sampled every hour. In this case, the analysis correspgridithe LD part has no biological
interest, since the RT-BIO photomultiplier will not recaiftie mouse liver bioluminescence
but the light inside cage corresponding to the 12 hours btlig

The complete Photon absorption signal and the four segroémniterest are presented in
Figure 6.13.

For the LD part, 7 days are available. We compute the PC quresng to the signal
using the Proposed Method and also using the FFT: Via the Féthad, the principal period
is estimated at 24 hours. In particular, in this case, the Fiethod estimates a sparse PC
amplitudes vector, and along with the 24 hours, a non-zea& medetected corresponding to
8 hours. Very similar results are obtained in this case eaRtoposed Method: the principal
period is also estimated at 24 hours, together with the hiaicraf 8 hours. However, the
amplitude corresponding to the Proposed Method is muchehnigh

We consider now 4-days length signals (windows) from thelavie signal, with a shift
of one day and compute the PC via FFT and the Proposed metitqpnaeR6.15. For all
the windows, a 24 hours periodicity is confirmed, via the twetimods, with a harmonic
corresponding to 8 hours, Figuré.{6. Once again, for this segment, there is no biological
interpretation.
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6.1.2 - Dominant Period evolution: Photon

o o
Number of points Number o points Number of points

Figure 6.13: Photon raw data (a) and the corresponding,{@i{s),(d),normalized and one-
hour sampled
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Figure 6.15: PC Stability: PC estimation via FFT and VBA feddys length signals
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CT 502 Al: Photon Absorption and Activity

1l Il

Figure 6.16: PC Stability: Proposed Method (a) vs. FFT (b)

2
a

CT 502 A1 Photon WinComp VBA Variat

An image of dominant period stability or variability, regéss the numerical value of the
amplitude associated with the dominant period is presantBayure ¢.17):

A1 Photon WinComp VBA Variation Norm

Figure 6.17: PC Stability: Proposed Method (a) vs. FFT (bjrmalized results

We consider now the DD period. First, we consider lileéore treatment segment. How-
ever, in this case the signal is corrupted, Figuré®:
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Figure 6.18: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

We consider theluring treatment part of the data. Five days are available, Figufie)
Via FFT method, the dominant period is estimated at 24 hauth, important peaks corre-
sponding to 17, 10 and 30 hours. Via the Proposed Method,@henfplitudes vector detects

three peaks: the dominant period is set at 26 hours and rrorpeaks are also detected for
17 and 23 hours.

The analysis of theduring segment using the moving window is presented in Fig-
ure 6.20.

The visual representation of the variability of the PC amoplé vector via the two methods
is presented in Figures(21).

An image of dominant period stability or variability, regéss the numerical value of the
amplitude associated with the dominant period is presentEgjure 6.22).

We consider thafter treatment part of the data, two days length signal, Figargy. In
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6.1.2 - Dominant Period evolution: Photon
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Figure 6.20: PC Stability: PC estimation via FFT and VBA feddys length signals, Photon
DD, during

02 A1 Photon DDDurWin2 VBA Var 2 A1 Photon DDDurWin2 FF
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Figure 6.21: PC Stability: Proposed Method (a) vs. FFT (b)

CT 502 A1 Photon DDDurWin2 VBA Variation Nos A1 Photon DDDurWin.

B i

Figure 6.22: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results

CT 502 A1 Photon DDAft VBA CT 502 Al Photon DDAt FFT
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Figure 6.23: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)
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CT 502 Al: Photon Absorption and Activity

CT 502 - A1 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 24 24
LD win 1 24 24
LD win 2 24 24
LD win 3 24 24
LDwin4 24 24
DD before - -
DD during - -
DD during win 1 - -
DD during win 2 24 24
DD after 24 24

Table 6.2: CT 502 Al: Photon Absorption Dominant Period BitgbProposed Method vs.
FFT

this case, the dominant period is estimated at 24 hours l#RT and the Proposed Method.

The evolution of the dominant period, estimated via the Bsed Method and FFT, during
the complete Photon absorption signal, for each segmentereist and for four-days length
signals for the segments that allowed this analysis is ptedan Table §.2).

6.1.3 Conclusions: Dominant Period evolution

We have compared the FFT and Proposed Method PC amplitutia exolution during the
four segments of interest for mouse CT 503 Al, considerirggéne expression (Photon
Absorption signal) and the rest-activity patters (Actngignal), Figure §.1). For both data,
we have considered four segments of interest, i.e. the LDgbdéine signal, corresponding to
the synchronization and the DD part of the signal, corredpanto the complete darkness,
for which we have considered the segments correspondirfietoetfore, during and after
treatment phase, Figuré.@) (rest-activity patterns) and Figuré.(3.

In particular, for the first segment of interest, i.e. the Lartpof data and for theur-
ing treatment part, we have considered four days length sigoadsalyse the stability or
variability of the dominant period for the considered seghitself.

For the gene expression (photon absorption signal), we pi@gented the results corre-
sponding to each segment, but we haven't considered théd&@re andduring treatment
parts of the data, since the corresponding signals areptexdu The dominant period evolu-
tion, corresponding to the Proposed Method and FFT, is pteden Table §.2). In this case,
via both methods, the dominant period is 24 hours and isestdniing the signal. We note
that while the FFT approach do not give a sufficient precisibe results are in accordance,
in the sense that generally, the peaks that appear in the PGtiae vector estimated via
the Proposed Method, have corresponding important peakeiRFT PC amplitude vector.
For the gene expression data, for the LD part, we note thatribethods detect the dominant
period at 24 hours and the 8 hours harmonic.

The dominant period evolution, corresponding to the Pregddethod and FFT for the
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6.2.1 - Dominant Period evolution: Activity

rest-activity patterns (Activity) signal is presented aible €.1). In this case, via FFT method
the dominant period is 24 hours for each segment and the tewolof the dominant period
seems to be stable. However, via the Proposed Method, théndontperiod has certain
variation around 24 hours.

In particular, via the Proposed Method, for the rest-attigatterns, the dominant period
for the LD segment was estimated at 23 hours, Figoir® (for three windows corresponding
to LD part of the signal, the dominant period is estimated3ah@urs and for one window
is estimated at 24 hours, Figuré.§)). Furthermore, for the first three days of complete
darkness, corresponding to thefore treatment part of the signal, via the Proposed Method
the circadian rhythm seems to be perturbed: the dominarddger estimated at 22 hours,
Figure ©.7) and then, for theduring and after treatment parts of the data, the dominant
period becomes 25 hours, Figufed) and Figure §.12).

6.2 CT 502 A2: Photon Absorption and Activity

This section presents the comparison between the Propostttband the FFT method, for
another experiment, performed in the same conditions asrte@resented in Sectiof. ().

For the study, two signals are recorded: fativity signal measuring the rest-patterns
(movement) of the mouse and tRéoton absorptionsignal, measuring the number of pho-
tons absorbed, i.e. the gene expression. Fig@r@4) presents the raw data corresponding

A2 Photon All -

Ampltude
Ampltude

Number of days

Figure 6.24.CT 502, A2 Mouse Activity (a) and Photon Absorption (b) raw data

to the Activity signal and Photon Absorption signal. Thensily were recorded for 22 days,
sampled every minute. Like in Sectiof.{), for each signal, we consider the same 4 seg-
ments:LD Period, corresponding to the synchronization part, then threts garresponding

to theDD period: before, during and after treatment. We are interestedarpériodic com-
ponent (PC) vector corresponding to each signal. The #tabflthe period is verified using
the moving window strategy, where the available data allows

6.2.1 Dominant Period evolution: Activity

We present the analysis with the signal corresponding tAttigity. We will consider mean-
zero signals, normalized between [-10:10] and sampled/éwaur, Figure §.25).

For the LD part, 7 days are available. We compute the PC quneing to the signal
using the Proposed Method and also using the FFT, Figug&)( Via the FFT method, two
principal periods are detected: 24 and 21 hours. Via thed¥egpmethod, the two principal
periods detected are 23 and 21 hours.
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CT 502 A2: Photon Absorption and Activity
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Figure 6.25: Activity raw data (a) and the correspondindgé),(c),(d),normalized and one-
hour sampled

Figure 6.26: Considered signal (a) and the corresponding®¥BA (b) and FFT (c)

We consider four days length signals (windows) from the lalséé LD signal, with a
shift of one day and compute the PC via FFT and the Proposeloahefigure §.27). Via
FFT method, the dominant period is 24 hours for all windoweré¢fore stable. Via the
Proposed Method, the dominant period is different for eactdow: 21, 22, 23 and 25 hours,
Figure 6.29. An image of dominant period stability or variability, i@glless the numerical
value of the amplitude associated with the dominant pesquésented in Figuré (29: For
the DD period, we consider first tHeefore treatment segment. Only 3 days are available
for this segment. We compute the PC vector, using FFT andoBempMethod, Figures(30):
The estimation corresponding to the FFT method, the dompeak corresponds to 24 hours,
and the next important peak corresponds to 14 hours. Fosthmeation corresponding to the
Proposed Method, the PC amplitude vector is sparse, witmtwezero peaks, corresponding
to 24 and 14 hours.

For theduring treatment part of the data, five days are available. The cosgrebetween
the Proposed Method and FFT is presented in Figar&ll. The estimation corresponding
to the FFT method sets the dominant period at 12 hours, wiplortant peaks corresponding
to 30, 24 and 12 hours. Via the Proposed Method, the domirencis set at 32 hours,
and the other non-zero amplitudes in the PC amplitudes vectwesponds to 25 and 12
hours. We note that in this case, a certain consistency et two results is shown: both
methods detect an important peak at 12 hours, an importaktgr®und 24 hours (25 hours
for the Proposed Method) and the dominant period in the didradomain (i.e. superior to
30 hours).

The analysis of theduring segment using the moving window is presented in Fig-
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Figure 6.27: PC Stability: PC estimation via FFT and VBA feddys length signals
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Figure 6.28: PC Stability: Proposed Method (a) vs. FFT (b)
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Figure 6.29: PC Stability: Proposed Method (a) vs. FFT (bjnmalized results

CT 502 A2 Activity DDBef VBA CT 502 A2 Activity DDBef FFT
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Figure 6.30: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)
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CT 502 A2: Photon Absorption and Activity

2
Number of days.

Figure 6.31: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

ure (6.32). For the first window, via the two methods, the dominantqekis 32 hours, placing

Figure 6.32: PC Stability: PC estimation via FFT and VBA feddys length signals, Activity
DD, during

the rhythm in the ultradian domain. For the second windowh lmoethods are placing the
rhythm in the circadian domain: via the FFT, the domaintqeis detected at 24 hours, and

via the Proposed Method at 23 hours, Figuie38.

Figure 6.33: PC Stability: Proposed Method (a) vs. FFT (b)

CT 502 A2 Activity DDDurWin2 F!
72 0.8

1066 12 [EXTITY

An image of dominant period stability or variability, regéss the numerical value of the
amplitude associated with the dominant period is presantBayure ©.34):

We consider thafter treatment part of the data, for which two days are availabig;
ure 6.39.

Via the Proposed Method, the dominant period is estimat2d hours, while via the FFT,
the dominant period is estimated at 24 hours.

The evolution of the dominant period, estimated via the Bsed Method and FFT, during
the complete Activity signal, for each segment of interest or four-days length signals for
the segments that allowed this analysis is presented ire Tald).
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CT 502 A2 Activity DDDurWin2 FFT Variation Norm

Figure 6.34: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results
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Figure 6.35: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

CT 502 -A2 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 23 21
LD win 1 21 24
LD win 2 22 24
LD win 3 23 24
LD win 4 25 24
DD before 24 24
DD during 32 12
DD during win 1 32 32
DD during win 2 23 24
DD after 23 24

Table 6.3: CT 502 A2: Activity Dominant Period Stability:dfrosed Method vs. FFT
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CT 502 A2: Photon Absorption and Activity

6.2.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to tlmtgohabsorption, i.e. the gene
expression. Like before, we consider mean-zero signalsnalzed between [-10:10] and
sampled every hour. In this case, the analysis correspgrtdithe LD part has no biological
interest, since the RT-BIO photomultiplier will not recdah® mouse liver bioluminescence but
the light inside cage corresponding to the 12 hours of lighe complete Photon absorption
signal and the four segments of interest are presented urd-{g.36).
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Figure 6.36: Photon raw data (a) and the corresponding,(i3t{s),(d),normalized and one-
hour sampled

For the LD part, 8 days are available. We compute the PC quorelng to the signal
using the Proposed Method and also using the FFT, FiguB2)( Via the FFT method, the

ooooooooooooooooooo CT 502 A2 Photon WinComp FFT

Figure 6.37: Considered signal (a) and the correspondingi®¥BA (b) and FFT (c)

principal period is estimated at 24 hours. Via the Proposethbl, the principal period is
also estimated at 24 hours, together with the harmonic oflBshoHowever, the amplitude
corresponding to the Proposed Method is much higher.

We consider now 4-days length signals (windows) from thelabke signal, with a shift
of one day and compute the PC via FFT and the Proposed metigode £5.39).

For all the windows, a 24 hours periodicity is confirmed, J& two methods, Fig-
ure 6.39.

An image of dominant period stability or variability, regégss the numerical value of the
amplitude associated with the dominant period is presentedjure ©.40):
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6.2.2 - Dominant Period evolution: Photon
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Figure 6.38: PC Stability: PC estimation via FFT and VBA feddys length signals

Figure 6.39: PC Stability: Proposed Method (a) vs. FFT (b)
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Figure 6.40: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results
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CT 502 A2: Photon Absorption and Activity

For the DD period, first we consider thmefore treatment segment. Only 3 days are
available for this segment. We compute the PC vector, uskf &d Proposed Method,
Figure ©6.41):

ooooooooooooooooooooo

I I
Figure 6.41: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

Via the FFT, the highest pick is set at 24. Of course, giverstiget length of the signal, 3
days, and the limitations of the FFT method all the valueslanthe interval (18,36) except 24
are not present in the estimated vector, so the values asgtairc Via the Proposed method
the dominant period is set at 25 hours.

We now consider theluring treatment part of the data, a 5-days length signal, Fig-
ure 6.42.

ooooooooooooooooooooo

CT 502 A2 Photon DDDur Signal CT 502 A2 Photon DDDur FFT
ol , £,
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Figure 6.42: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

Both methods are confirming the 24 hours periodicity. We agf@n the difference be-
tween the amplitudes corresponding to the two methods ansitirse PC vector returned by
the Proposed Method.

DuWing Signat ©T 502 A2 Photon DDDurWiNL VEA T 502 A2 Photon DDDUNWINI FET

Figure 6.43: PC Stability: PC estimation via FFT and VBA feddys length signals, Photon
DD, during

Analysing theduring segment using the moving window, the 24 hour periodicity is
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6.2.3 - Conclusions: Dominant Period evolution

confirmed by both methods, and also the stability of thisquicity for this segment, Fig-
ure 6.44).

CT 502 A2 Photon DDDurWin2 FFT Variation 2 A2 Photon DDDurWin2 FF

Bl i

Figure 6.44: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regéess the numerical value of the
amplitude associated with the dominant period is presantEdyure ©.45:

A2 Photon DDDurWin2 VBA Variation Norm T 502 A2 Photon DDDurWin2 FFT Variation Norm

HE i

Figure 6.45: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results

For theafter treatment part of the data, a 2-days length signal is aveil&bthis case, the

DDA Signal CT 502 A2 Photon DDAft VBA CT 502 A2 Photon DDAft FFT

—— o7 502 A2 Provan DDA Signar

1
Number of days

Figure 6.46: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

dominant period is estimated at 24 hours via FFT. This vauencertain, for this particular

case (a 2-days length signal) the interval (16:48) haviig one value that is appearing the
FFT PC vector, i.e. 24 hours. Via the Proposed Method, theirkm period is set at 23

hours.

The evolution of the dominant period, estimated via the Bsed Method and FFT, during
the complete Photon absorption signal, for each segmenterkist and for four-days length
signals for the segments that allowed this analysis is ptedan Table §.4).

6.2.3 Conclusions: Dominant Period evolution

We compared the FFT and Proposed Method PC amplitude veatution during the four
segments of interest for mouse CT 503 A2, considering the ggpression (Photon Absorp-
tion signal) and the rest-activity patters (Activity sigpndrigure 6.24). For both data, we
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CT 502 A2: Photon Absorption and Activity

CT 502 - A2 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 24 24
LD win 1 24 24
LD win 2 24 24
LD win 3 24 24
LDwin4 24 24
DD before 25 24
DD during 24 24
DD during win 1 24 24
DD during win 2 24 24
DD after 23 24

Table 6.4: CT 502 A2: Photon Absorption Dominant Period BitgbProposed Method vs.
FFT

have considered four segments of interest, i.e. the LD datteosignal, corresponding to
the synchronization and the DD part of the signal, corredpanto the complete darkness,
for which we have considered the segments correspondirfietoetfore, during andafter
treatment phase, Figuré.g5 (rest-activity patterns) and Figuré.g6).

In particular, for the first segment of interest, i.e. the Lartpof data and for theur-
ing treatment part, we have considered four days length sigoadsalyse the stability or
variability of the dominant period for the considered seghitself.

The dominant period evolution, corresponding to the Pregddethod and FFT for the
gene expression data (photon absorption signal), is preé@m Table 6.4). For this experi-
ment, via FFT, the dominant period is 24 hours for each segrmaed seems stable. Via the
Proposed Method, slight variations are detected duringxiperiment: a 23 hour periodicity
corresponding to theefore treatment part of data and a 25 hour periodicity correspuntti
theafter treatment part of data.

The dominant period evolution, corresponding to the Pregddethod and FFT for the
rest-activity patterns (Activity) signal is presented @mble ©.3). In this case, the drawbacks
of the FFT method are very clear. For the LD segment of thevRgtsignal, seven days
were available. The dominant period of this segment is 2Xsheia FFT, the FFT PC ampli-
tude vector estimating two important peaks, corresponttirgil and 24 hours, both of them
having almost equal amplitudes, with the amplitude cowagdmg to the 21 hours slightly
higher, Figure §.26. However, for the evolution of the dominant period for teegment,
Figure ©6.27), the dominant period is estimated at 24 hours for each wisdtherefore sta-
ble. Via the Proposed Method, for the entire LD segment, tlstimportant two peaks
corresponds to 23 and 21 hours, and the evolution of the dorhimeriod during this seg-
ment is 21 hours for the first window, 22 hours for the seconatiaw, 23 hours for the third
window and 25 hours for the fourth window.

Also, for theduring treatment segment, the FFT PC amplitude vector has impgqréaks
corresponding to 12 hours, 30 hours and 24 hours. Consglrexdominant period, which
is 12 hours, via FFT estimation, the rhythm for th&ing treatment is placed in the ultradian
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6.3.1 - Dominant Period evolution: Activity

domain, Figure §.31). However, studying the evolution of the PC amplitude ve&bo this
segment, via FFT, the dominant period corresponding to tisewiindow is 32 hours, so
infradian rhythm, and corresponding to the second winda@4ikours, so circadian rhythm.

Via the Proposed Method, for tlteiring treatment segment, very similar peaks are esti-
mated in the PC amplitude vector: 32 hours, 24 hours and 1&hbut the dominant period
is 32 hours, therefore the rhythm is infradian.

6.3 CT 502 A3: Photon Absorption and Activity

In the following we consider the experimedT 502, Mouse A3 This section is dedicated to
the complete study, i.e the study of the physiology, cowadmg to the segment LD (light-
dark, 12h-12h), where the mouse was synchronized and DBI @arkness), the segment
corresponding to thbefore treatment and the study of the behaviduring andafter treat-
ment. For the study, two signals were recorded: Akgvity Signal measuring the activity
(movement) of the mouse and tRboton Absorption Signal measuring the number of pho-
tons absorbed, Figuré @7).

Amplitude
Ampltude

Number of days

Figure 6.47:.CT 502, A3 Mouse Activity (a) and Photon Absorption (b) raw data

Figure ©.47) presents the raw data corresponding to the Activity signal Photon Ab-
sorption signal. The signals were recorded for 22 days, kaimgvery minute. For each
signal, we consider 4 segmentd Period, corresponding to the synchronization part, then
three parts corresponding to tB® period: before, during and after treatment. We are in-
terested in the periodic component (PC) vector correspgntdi each signal and in the corre-
sponding acrophase. The stability of the period is verifi@dgithe moving window strategy,
where the available data allows.

6.3.1 Dominant Period evolution: Activity

We start the analysis with the signal corresponding to thievz We will consider mean-
zero signals, normalized between [-10:10] and sampledydvaur. The Activity signal and
the four segments of interest are presented in Fighre3).

For the LD part, we have 8 days available. We compute the P€@gmonding to the signal
using the Proposed Method and also using the FFT, Figufé)( Via the FFT method, the
principal period is estimated at 24 hours. The next highe#t in the PC vector is corre-
sponding to 21 hours. Via the Proposed Method, the pringipabd is estimated at 22 hours,
and the next highest pick in the PC vector corresponds to 86sho
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Figure 6.48: Activity raw data (a) and the correspondindgé),(c),(d),normalized and one-
hour sampled

1] { SRS SEREREaNaE
Figure 6.49: Considered signal (a) and the corresponding®¥BA (b) and FFT (c)

We consider now 4-days length signals (windows) from thelabke signal, with a shift
of one day and compute the PC via FFT and the Proposed metigode £5.50).

Via FFT, the dominant period seems stable, for each windeadtiminant period being
estimated at 24 hours. Via the Proposed Method, the dompeaidd shifts from 22 hours,
for the first window to 23 hours for the second window to 24 Isdor the last two windows,
Figure ©6.51).

An image of dominant period stability or variability, regéess the numerical value of the
amplitude associated with the dominant period is presdfitpae ©.52).:

We consider now the DD period. First, we consider lteéore treatment segment. Only
3 days are available for this segment. We compute the PCyeting FFT and Proposed
Method,Figure§.53. Via the FFT, the highest pick is set at 24 hours and the mexhighest
picks are set at 7.2 and 8 hours. Of course, given the shajtiesf the signal, 3 days, and
the limitations of the FFT method all the values inside thtenval (18,36) except 24 are not
present in the estimated vector, so the values are unce¥athe Proposed method, the PC
amplitude vector is sparse, with only one non-zero ampdifedrresponding to 24 hours.

For theduring treatment part of the data, 5 days are available. We competdC
corresponding to thduring treatment part of the data using the Proposed Method and also
using the FFT, Figures(54). Via the Proposed Method, the estimated PC amplitude vexto
sparse vector and the dominant period is estimated at 24 hdle other non-zero amplitudes
in the PC amplitudes vector corresponds to 8, 25 and 12 hdarthe FFT estimation, the
dominant period corresponds to 24 hours, and the next tweekigeaks in the PC amplitude
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Figure 6.50: PC Stability: PC estimation via FFT and VBA feddys length signals
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Figure 6.51: PC Stability: Proposed Method (a) vs. FFT (b)
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Figure 6.52: PC Stability: Proposed Method (a) vs. FFT (bjnmalized results

CT 502 A3 Activity DDBef Signal CT 502 A3 Activity DDBef VBA CT 502 A3 Activity DDBef FFT
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Figure 6.53: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)
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Figure 6.54: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

vector estimation corresponds to 8 and 12 hours.

We consider now 4-days length signals (windows) from thelabke signal, with a shift
of one day and compute the PC via FFT and the Proposed metigode 6.55).

50U Signal CT 502 A3 Activity DDDUIWIN1 VBA ©T 502 A3 Activity DDDUrWIN1 FFT

Figure 6.55: PC Stability: PC estimation via FFT and VBA feddys length signals, Activity
DD, during

We note that via the FFT, both windows are estimated with aidam period of 24 hours,
with harmonics corresponding to 8 and 12 hours. Via the Psegdviethod, we find the
dominant period corresponding to the first window at 25 hdarsl important picks for 8
and 12 hours) and the dominant period corresponding to ttengenvindow at 25 hours (and
important picks for 8 and 12 hours), Figuig9).

CT 502 A3 Activity DDDurWin2 VBA Variatiol

Figure 6.56: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regéess the numerical value of the
amplitude associated with the dominant period is presanttdtk following figure:

We now consider thafter treatment part of the data. Two days are available. For tiie FF
the dominant period corresponds to 24 hours. Via the Prapdisthod, the dominant period
is estimated at 27 hours.
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CT 502 A3 Activity DDDurWin2 VBA Variation Norm CT 502 A3 Activity DDDurWin2 FFT Variation Norm

Figure 6.57: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results
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Figure 6.58: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

The evolution of the dominant period, estimated via the Bsed Method and FFT, during
the complete Activity signal, for each segment of interest r four-days length signals for
the segments that allowed this analysis is presented ire Tal3).

6.3.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to tlegohabsorption, i.e. the gene
expression. Like before, we consider mean-zero signalsnalized between [-10:10] and
sampled every hour. In this case, the analysis correspgrndithe LD part has no biological
interest, since the RT-BIO photomultiplier will not recahe mouse liver bioluminescence but
the light inside cage corresponding to the 12 hours of liglhe complete Photon absorption
signal and the four segments of interest are presented umd={g.59

Lo Perioda

i
T T T T T T T T}

Number o days Nemberotpons  Numberofpoins Numbe of ponts

Figure 6.59: Photon raw data (a) and the corresponding,@i{s),(d),normalized and one-
hour sampled
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CT 502 - A3 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 22 24
LD win 1 22 24
LD win 2 23 24
LD win 3 24 24
LDwin4 24 24
DD before 24 24
DD during 24 24
DD during win 1 25 24
DD during win 2 24 24
DD after 27 24

Table 6.5: CT 502 A3: Activity Dominant Period Stability:dprosed Method vs. FFT

For the LD part, 8 days are available. We compute the PC quneing to the signal
using the Proposed Method and also using the FFT, Figu)( Via the FFT method, the

A3 Photon WinComp Signal ___________ CT502A3 Photon WinComp VBA CT 502 A3 Photon WinComp FFT

Figure 6.60: Considered signal (a) and the corresponding®¥BA (b) and FFT (c)

principal period is estimated at 24 hours and the only otbarzero peak in the PC amplitude
vector corresponds to 8 hours. The dominant period of 24¢enul the corresponding 8 hours
harmonic are also the only non-zero amplitudes in the PCiadplvector corresponding to

the Proposed Method.

We consider now 4-days length signals (windows) from thelawi signal, with a shift
of one day and compute the PC via FFT and the Proposed metigode f5.61).

For all the windows, a 24 hours periodicity is confirmed, J& two methods, Fig-
ure (6.62.

An image of dominant period stability or variability, regéess the numerical value of the
amplitude associated with the dominant period is presantBayure ¢.63):

We consider now the DD period. First, we consider lteéore treatment segment. Only
3 days are available for this segment. We compute the PCiyeting FFT and Proposed
Method, Figure §.64): Via the FFT, the highest pick is set at 24. Of course, givenghort
length of the signal, 3 days, and the limitations of the FFThoe all the values inside the
interval (18,36) except 24 are not present in the estimagetby, so the values are uncertain.
Via the Proposed method the dominant period is set at 23 hours

For theduring treatment part of the data, five days are available. We cosninat PC
corresponding to the signal using the Proposed Method aaduaing the FFT, Figuré (65:
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Figure 6.61: PC Stability: PC estimation via FFT and VBA feddys length signals
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Figure 6.62: PC Stability: Proposed Method (a) vs. FFT (b)
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Figure 6.63: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results
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Figure 6.64: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)
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Via FFT, we obtain a 24 hours periodicity, while via the Pregd Method, the dominant peak

CT 502 A3 Photon DDDur VBA CT 502 A3 Photon DDDur FFT

.TTII'TIT

3 D 5 o 10 11 12 13 14 15 1
Numberofdays . Periods

Figure 6.65: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

corresponds to 25. The only other non-zero amplitude in @amplitude vector, corresponds
to 18 hour, which is consistent with the next highest peak@&RFT estimation, 17.14 hours.
We note again the difference between the amplitudes canespg to the two methods and
the sparse PC vector returned by the Proposed Method.

We consider now 4-days length signals (windows) from thelavie during treatment
part of the data, with a shift of one day and compute the PCKadnd the Proposed method,

Figure 6.66).

Figure 6.66: PC Stability: PC estimation via FFT and VBA feddys length signals, Photon
DD, during

Analysing theduring segment using the moving window, a 24 hour periodicity isnfibu
for both windows, via FFT. However, via the Proposed Mettibd periodicity, also stable, is
estimated at 25 hours, Figuré.¢7)
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Figure 6.67: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regéess the numerical value of the
amplitude associated with the dominant period is presentEgjyure ©.67):
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Figure 6.68: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results
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Figure 6.69: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

We now consider thafter treatment part of the data. We have a 2-days length signal. In

this case, the dominant period is estimated at 24 hours via Hfis value is very uncertain,
for this particular case (a 2-days length signal) all thenvel (16:48) having only one value
that is appearing the FFT PC vector, i.e. 24 hours. Via thed%ed Method, the dominant
period is set at 23 hours, with also an important periodi@ty24 hours.

The evolution of the dominant period, estimated via the Bsed Method and FFT, during
the complete Photon signal, for each segment of interestarfdur-days length signals for
the segments that allowed this analysis is presented ire Tala).

6.3.3 Conclusions: Dominant Period evolution

In this subsection we compared the FFT and Proposed MethaaripGtude vector evolution
during the four segments of interest for mouse CT 503 A3, idens1g the gene expression
(Photon Absorption signal) and the rest-activity patté&tifity signal), Figure 6.47). Like
before, for both signals, four segments of interest werasiclemed, i.e. the LD part of the sig-
nal, corresponding to the synchronization and the DD patti@tignal, corresponding to the
complete darkness, for which we have considered the segroemesponding to thigefore,
during andafter treatment phase, Figuré.¢9 (rest-activity patterns) and Figuré.(9.

Like before, for the first segment of interest, i.e. the LDtpdrdata and for thelur-
ing treatment part, we have considered four days length sigoadsalyse the stability or
variability of the dominant period for the considered seghitself.

The dominant period evolution, corresponding to the Pregddethod and FFT, for the
gene expression data, is presented in Tablé).( For this experiment, via FFT, the domi-
nant period is 24 hours for each segment and seems stabléhe/Rroposed Method, small
variations are detected during the experiment: a 23 hounglieity corresponding to thbe-
fore andafter treatment part of data and a 25 hour periodicity correspantb theduring
treatment part of data.
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CT 502 - A3 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 24 24
LD win 1 24 24
LD win 2 24 24
LD win 3 24 24
LD win 4 24 24
DD before 23 24
DD during 25 24
DD during win 1 25 24
DD during win 2 25 24
DD after 23 24

Table 6.6: CT 502 A3: Photon Dominant Period Stability: Fregd Method vs. FFT

The dominant period evolution, corresponding to the Pregddethod and FFT for the
rest-activity patterns (Activity) signal is presented iable ©.5). In this case, the result are
similar, in the sense that both methods detect a circadighmh but via the Proposed Method,
variations of the dominant period can be detected, whil&fa the evolution of the dominant
period seems stable.

6.4 CT 502 B1: Photon Absorption and Activity

In the following we consider the experimedT 502, Mouse B1 This section is dedicated to
the complete study, i.e the study of the physiology, cowadmg to the segment LD (light-
dark, 12h-12h), where the mouse was synchronized and DBl @arkness), the segment
corresponding to thbefore treatment and the study of the behaviduring andafter treat-
ment. For the study, two signals were recorded: Albgvity Signal measuring the activity
(movement) of the mouse and tRboton Absorption Signal measuring the number of pho-
tons absorbed, Figuré (70).

AAAAAAAAAAAAAAAAAAA
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Figure 6.70:CT 502, B1 Mouse Activity (a) and Photon Absorption (b) raw data

Figure ©.70 presents the raw data corresponding to the Activity signal Photon Ab-
sorption signal. The signals were recorded for 22 days, kimgvery minute. For each
signal, we consider 4 segmentd Period, corresponding to the synchronization part, then
three parts corresponding to tB® period: before, during and after treatment. We are in-
terested in the periodic component (PC) vector correspgidi each signal and in the corre-
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sponding acrophase. The stability of the period is verifi@dgithe moving window strategy,
where the available data allows.

6.4.1 Dominant Period evolution: Activity

We start the analysis with the signal corresponding to thievi. We consider zero-mean
signals, normalized between [-10:10] and sampled every. hou

Ea_Activity Al T sSo=

Number o days Number o days Number o days

Figure 6.71: Activity raw data (a) and the correspondindgé),(c),(d),normalized and one-
hour sampled

For the LD part, 7 days are available. We compute the PC quneing to the signal
using the Proposed Method and also using the FFT: Via the F&thad, the principal period

02 B1 Activity WinComp VBA CT 502 B1 Activity WinComp FFT

>AA 6

Figure 6.72: Considered signal (a) and the correspondingi®¥BA (b) and FFT (c)

is estimated at 24 hours. Evidently, beside the incertingd®ciated with the FFT estimated
PC, the existence of other rhythms can’t be establishedagbdifficult to interpret all the
picks present in the estimated PC. Via the Proposed Methedrincipal period is estimated
at 24 hours.The amplitude corresponding to the 24h periathd Proposed Method is much
higher.

We consider now 4-days length signals (windows) from thelabie signal, with a shift
of one day and compute the PC via FFT and the Proposed methothe/froposed Method,
the first windows presents a 25 hours dominant period, thensewindows presents a 24
hours dominant period and for the last two windows, the damirperiod is estimated at
23 hours. Via FFT method the principal period seems stalieryewindow presenting a
dominant period of 24 hours.
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Figure 6.73: PC Stability: PC estimation via FFT and VBA feddys length signals

The stability or variability of the PC amplitudes vector fie LD part of the Activity
signal is presented in Figuré.(4):

CT 502 B1 Activity WinComp VBA Variation CT 502 B1 Activity WinComp FFT Variation

i ERi

Figure 6.74: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regéss the numerical value of the
amplitude associated with the dominant period is presentdte Figure 6.75):

We consider now the DD period. First, we consider bleéore treatment segment. Only
3 days are available for this segment. We compute the PCiyeting FFT and Proposed
Method, 6.79: Via the FFT, the highest pick is set at 24 hours and the riexet highest
picks are set at 8, 6 and 36 hours. Of course, given the shagtheof the signal, 3 days,
and the limitations of the FFT method all the values insideititerval (18,36) except 24 are
not present in the estimated vector, so the result presergsyamportant uncertainty. This
means that for this particular case, even the classificafitre rhythm (circadian or infradian)
is uncertain via FFT. Via the Proposed method the dominamgés set at 23 hours.

We consider theluring treatment part of the data, for which five days are availdfitg,
ure (6.77). Viathe proposed method, the estimated PC vector is aespacsor, in accordance
with the model and the dominant period is estimated at 25shdtor the FFT estimated PC
vector, the dominant period is estimated at 24 hours, buéstienation is not sparse. In this
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Figure 6.75: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results
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Figure 6.76: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)
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Figure 6.77: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

154




CT 502 B1: Photon Absorption and Activity

case, the next important pick corresponds to 12 hours, haownof 24 hours, and this values
is also found in the estimation obtained by the Proposed dkth

We consider 4-days length signals (windows) from liedore treatment segment, with
a shift of one day and compute the PC via FFT and the Proposédbthe In this case,

ODurwing Signat T 502 B1 Activity DDDUIWIN1 VBA ©T 502 B1 Activity DDDUrWIN1 FET

Figure 6.78: PC Stability: PC estimation via FFT and VBA feddys length signals, Activity
DD, during

analysing theluring segment using the moving window we note that via the Propilketdod

a variability of the dominant period is detected, 25 hoursthe first window and 26 hours
for the second. Via FFT the dominant period seems stablep@rshbut for the first window,
the dominant period is 12 hours. This can be viewed in Figoua). An image of dominant

ity DDDurWin:

ctivity DDDurWin2 VBA Variatio: 2 FF

Figure 6.79: PC Stability: Proposed Method (a) vs. FFT (b)

period stability or variability, regardless the numericalue of the amplitude associated with
the dominant period foduring segment is presented in Figu@g0):

CT 502 B1 Activity DDDurWin2 FFT Variation Norm

02 B1 Activity DDDurWin2 VBA Variation Norm )

Figure 6.80: PC Stability: Proposed Method (a) vs. FFT (bjrralized results

For theafter treatment part of the data 2 days are available. Via the FEmhaton, the
dominant period is 24 hours, while via the Proposed Methedittminant period is 26 hours.

The evolution of the dominant period, estimated via the Bsed Method and FFT, during
the complete Activity signal, for each segment of interest #or four-days length signals for
the segments that allowed this analysis is presented ire Tab).
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6.4.2 - Dominant Period evolution: Photon

Figure 6.81: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

CT502-B1 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 24 24
LD win 1 25 24
LD win 2 24 24
LD win 3 23 24
LD win 4 23 24
DD before 23 24
DD during 25 24
DD during win 1 25 12
DD during win 2 26 24
DD after 26 24

Table 6.7: CT 502 B1: Activity Dominant Period Stability:dposed Method vs. FFT

6.4.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to tlegohabsorption, i.e. the gene
expression. Like before, we consider mean-zero signalsnalzed between [-10:10] and
sampled every hour. In this case, the analysis correspgrndithe LD part has no biological
interest, since the RT-BIO photomultiplier will not recaifte mouse liver bioluminescence
but the light inside cage corresponding to the 12 hours btlig

The complete Photon absorption signal and the four segroémiterest are presented in
Figure ©.82.

For the LD part, 7 days are available. We compute the PC qurebng to the signal
using the Proposed Method and also using the FFT: Via the Fétihad, the principal period
is estimated at 24 hours. In particular, in this case, the Fiethod estimates a sparse PC
amplitudes vector, and along with the 24 hours, a non-zea& [sedetected corresponding to
8 hours. Very similar results are obtained in this case eaRtoposed Method: the principal
period is also estimated at 24 hours, together with the haicraf 8 hours. However, the
amplitude corresponding to the Proposed Method is muchehigh

We consider now 4-days length signals (windows) from thelavie signal, with a shift
of one day and compute the PC via FFT and the Proposed metiqpnadeR6.84). For all
the windows, a 24 hours periodicity is confirmed, via the twetimods, with a harmonic
corresponding to 8 hours, Figuré.§5. Once again, for this segment, there is no biological
interpretation.
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CT 502 B1: Photon Absorption and Activity

Figure 6.82: Photon raw data (a) and the corresponding,{@{s),(d),normalized and one-
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Figure 6.84: PC Stability:

PC estimation via FFT and VBA feddys length signals
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6.4.2 - Dominant Period evolution: Photon

Figure 6.85: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regéess the numerical value of the
amplitude associated with the dominant period is presentEgyure ©.86):

A2 Photon WinComp FFT Variatios

Figure 6.86: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results

We consider now the DD period. First, we consider bledore treatment segment, Fig-
ure (6.87): The dominant period corresponding to the FFT, is 24 haand,via the Proposed

Bef VBA CT 502 B1 Photon DDBef FFT

Figure 6.87: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

Method the estimated periodicity is 25 hours.

We consider theluring treatment part of the data. Five days are available, Figugs)
Via FFT method, the dominant period is estimated at 24 houth, important peaks corre-
sponding to 20, 8 and 30 hours. Via the Proposed Method, themRdlitudes vector detects
three peaks: the dominant period is set at 25 hours and rrorpeeks are also detected for
19 and 20 hours.

The analysis of theduring segment using the moving window is presented in Fig-
ure 6.89. For the FFT method, the dominant period correspondindpedfitst window is
estimated at 24 hours, and for the second one is estimatedlzahaurs. However in both
cases, both peaks are almost equal. Via the Proposed Mdtiedpminant period corre-
sponding to the first window is 25 hours and correspondingestcond window is 26 hours.
For both windows, an important peak is estimated at 19 ha@orssistent with the FFT esti-
mation.
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Figure 6.88: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

Figure 6.89: PC Stability: PC estimation via FFT and VBA feddys length signals, Photon
DD, during

The visual representation of the variability of the PC amople vector via the two methods
is presented in Figures(90).

Figure 6.90: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regéss the numerical value of the
amplitude associated with the dominant period is presantBayure ¢.91).

We consider thafter treatment part of the data, two days length signal and coenat
PC corresponding to thefter treatment part of the data using the Proposed Method and also
using the FFT, Figureg(92). In this case, the dominant period is estimated at 24 hootts b
via FFT and 23 hours corresponding to the Proposed Method.

The evolution of the dominant period, estimated via the Bsed Method and FFT, during
the complete Photon absorption signal, for each segmentaxest and for four-days length
signals for the segments that allowed this analysis is ptedan Table §.8).
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CT 502 B1 Photon DDDurWin2 VBA Variation Nos B1 Photon DDDurWin2 FFT Variation Norm
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Figure 6.91: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results

aaaaaaa

Figure 6.92: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

CT502-B1 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 24 24
LD win 1 24 24
LD win 2 24 24
LD win 3 24 24
LD win 4 24 24
DD before 25 24
DD during 25 24
DD during win 1 25 24
DD during win 2 26 19
DD after 23 24

Table 6.8: CT 502 B1: Photon Absorption Dominant Period BtabProposed Method vs.
FFT
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CT 502 B1: Photon Absorption and Activity

6.4.3 Conclusions: Dominant Period evolution

We compared the FFT and Proposed Method PC amplitude veaitutien during the four
segments of interest for mouse CT 503 B1, considering the gepression (Photon Absorp-
tion signal) and the rest-activity patters (Activity sigpdrigure 6.70. For both data, we
have considered four segments of interest, i.e. the LD gdatieosignal, corresponding to
the synchronization and the DD part of the signal, corredpanto the complete darkness,
for which we have considered the segments correspondirfietoetfore, during and after
treatment phase, Figur6.(J) (rest-activity patterns) and Figuré.g2).

For the first segment of interest, i.e. the LD part of data amwdtie during treatment
part, we have considered four days length signals to anéhgsstability or variability of the
dominant period for the considered segment itself.

The dominant period evolution, corresponding to the Pregddethod and FFT for the
gene expression data (photon absorption signal), is piexs@m Table €.8). For this experi-
ment, via FFT, the dominant period is 24 hours for all segsyentcept the second window of
theduring treatment segment and seems stable. Via the Proposed Mstigid variations
are detected during the experiment: a 25 hour periodicityesponding to théefore and
during treatment part of data and a 23 hour periodicity correspantb theafter treatment
part of data.

In the study of the stability of the dominant period for ttiering treatment segment,
Figure ©.79, for both windows, via both methods, important peaks atienesed for 19 and
24 hours (25 for the second one, via Proposed Method). Via féiFthe second window, the
dominant period corresponds to 19 hours. Via Proposed Mefbothe second window, the
dominant period corresponds to 25 hours.

The dominant period evolution, corresponding to the Pregddethod and FFT for the
rest-activity patterns (Activity) signal is presented iable ©.7). Via FFT, the dominant
period is 24 hours for all segments, except the first windothefluring treatment segment
and seems stable. Via the Proposed Method, slight varafaoound 24 hours are detected
during the experiment: a 23 hour periodicity correspondmghe before treatment part of
data, a 25 hour periodicity corresponding to theing treatment part of data and a 26 hour
periodicity corresponding to thedfter treatment part of data.

In the study of the stability of the dominant period for tthering treatment segment,
Figure 6.89, for both windows, via FFT, important peaks are estimated 2 and 24 hours.
For the first window, the dominant period corresponds to IiZfioHowever, in this case, a
circadian rhythm can be associated.

6.5 CT 502 B2: Photon Absorption and Activity

This section presents the comparison between the Propostb¥and the FFT method, for
another experiment, performed in the same conditions asriteg@resented in Sectiof. ().

For the study, two signals are recorded: Awativity Signal measuring the activity (move-
ment) of the mouse and thifehoton Absorption Signal measuring the number of photon
absorbed. Figure6(93 presents the raw data corresponding to the Activity signal Pho-
ton Absorption signal. The signals were recorded for 22 gegspled every minute. Like in
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Figure 6.93:CT 502, B2 Mouse Activity (a) and Photon Absorption (b) raw data
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Section 6.1), for each signal, we consider the same 4 segméidsPeriod, corresponding
to the synchronization part, then three parts correspgnaintheDD period: before, during
and after treatment. We are interested in the periodic compio(PC) vector corresponding
to each signal. The stability of the period is verified usimg moving window strategy, where
the available data allows.

6.5.1 Dominant Period evolution: Activity

We present the analysis with the signal corresponding tAttigity. We will consider mean-
zero signals, normalized between [-10:10] and sampled/éwaur, Figure §.94).

B Activity Al T SOo=

Es scauns a - ev=a= |

r vy Suling P

Number o days Nmberotdays o nmeotdys  numberoldays

Figure 6.94: Activity raw data (a) and the correspondindgé),(c),(d),normalized and one-
hour sampled

For the LD part, 7 days are available. We compute the PC qurebng to the signal
using the Proposed Method and also using the FFT, Figug®)( Via the FFT method, the
principal period is estimated at 24 hours and the next highesk in the PC amplitude vector
corresponds to 12 hours. Via the Proposed Method, the pahpieriod is estimated at 25
hours, together with the harmonic of 12 hours. However, thpldaude corresponding to the
Proposed Method is much higher.

We consider four days length signals (windows) from thelabée LD signal, with a shift
of one day and compute the PC via FFT and the Proposed metigoae R6.96).

Via FFT method, the dominant period is 24 hours for all windptherefore stable. Via
the Proposed Method, the dominant period is not stablegsponding to 25 hours for the first
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Figure 6.95: Considered signal (a) and the correspondingi®¥BA (b) and FFT (c)
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Figure 6.96: PC Stability: PC estimation via FFT and VBA feddys length signals
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window, 24 hours for the next two windows and 25 hours for #st Window, Figure®.97).

I

Figure 6.97: PC Stability: Proposed Method (a) vs. FFT (b)

CT 502 B2 Activity WinComp VBA Variation

2 2
a i 3
as a5
4 4

An image of dominant period stability or variability, regéess the numerical value of the
amplitude associated with the dominant period is presentEgyure ©.99:

Figure 6.98: PC Stability: Proposed Method (a) vs. FFT (bjmmalized results

For the DD period, we consider first thefore treatment segment. Only 3 days are avail-
able for this segment. We compute the PC vector, using FFTPaodosed Method, Fig-
ure 6.99: The estimation corresponding to the FFT method, the dantipeak corresponds

2 B2 Activity DDBef Signal CT 502 B2 Activity DDBef VBA CT 502 B2 Activity DDBef FFT

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 32 B G54 72z 8 o 3 =
Number of days Perods 7 periods

Figure 6.99: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

to 24 hours. For the estimation corresponding to the Prapbdsethod, the PC amplitude
vector is sparse, with only one non-zero peak, correspgrdi4.

The evolution of the dominant period, estimated via the Bsed Method and FFT, during
the complete Activity signal, for each segment of interest r four-days length signals for
the segments that allowed this analysis is presented ire Tals).

6.5.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to tlegohabsorption, i.e. the gene
expression. Like before, we consider mean-zero signalsnalized between [-10:10] and
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CT502-B2 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 23 24
LD win 1 21 24
LD win 2 22 24
LD win 3 23 24
LDwin4 25 24
DD before 24 24
DD during - -
DD during win 1 - -
DD during win 2 - -
DD after - -

Table 6.9: CT 502 B2: Activity Dominant Period Stability:dposed Method vs. FFT

sampled every hour. In this case, the analysis correspgrdithe LD part has no biological
interest, since the RT-BIO photomultiplier will not recdleg mouse liver bioluminescence but
the light inside cage corresponding to the 12 hours of liglhe complete Photon absorption
signal and the four segments of interest are presented urd={g.100.

P B e hoton Al - T Sso=

b
I

i

Figure 6.100: Photon raw data (a) and the corresponding,fi@x(c),(d),normalized and one-
hour sampled

For the LD part, 8 days are available. We compute the PC quneing to the signal
using the Proposed Method and also using the FFT, Figui®{): Via the FFT method, the
principal period is estimated at 24 hours and the next highessk in the PC amplitude vector
corresponds to 12 hours. Via the Proposed Method, the pahpieriod is estimated at 25
hours, together with the harmonic of 12 hours. However, thpléude corresponding to the
Proposed Method is much higher.

We consider now 4-days length signals (windows) from thelavie signal, with a shift
of one day and compute the PC via FFT and the Proposed metigode £5.102).

For all the windows, a 24 hours periodicity is confirmed, W& two methods, Fig-
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Figure 6.101: Considered signal (a) and the correspondihgi®VBA (b) and FFT (c)
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Figure 6.102: PC Stability: PC estimation via FFT and VBA4edays length signals
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ure 6.103.
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Figure 6.103: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regéess the numerical value of the
amplitude associated with the dominant period is presentEgyure ©.104:

Figure 6.104: PC Stability: Proposed Method (a) vs. FFTr{bjmalized results

For the DD period, first we consider theefore treatment segment. Only 3 days are
available for this segment. We compute the PC vector, usif &d Proposed Method,
Figure 6.109:

trlrr ]

Figure 6.105: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

Via the FFT, the highest pick is set at 24. Of course, giverstiat length of the signal, 3
days, and the limitations of the FFT method all the valueslanghe interval (18,36) except 24
are not present in the estimated vector, so the values asgtairc Via the Proposed method
the dominant period is set at 25 hours.

The evolution of the dominant period, estimated via the Bsed Method and FFT, during
the complete Photon absorption signal, for each segmentaest and for four-days length
signals for the segments that allowed this analysis is ptedan Table §.10).
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CT502-B2 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 24 24
LD win 1 24 24
LD win 2 24 24
LD win 3 24 24
LD win 4 24 24
DD before 25 24
DD during 24 24
DD during win 1 24 24
DD during win 2 24 24
DD after 23 24

Table 6.10: CT 502 B2: Photon Absorption Dominant PeriodiBtg: Proposed Method vs.
FFT

6.6 CT 502 B3: Photon Absorption and Activity

In the following we consider the experime@T 502, Mouse B3 This section is dedicated to
the complete study, i.e the study of the physiology, cowadmg to the segment LD (light-
dark, 12h-12h), where the mouse was synchronized and DBI @arkness), the segment
corresponding to thbefore treatment and the study of the behaviduring andafter treat-
ment. For the study, two signals were recorded: Akgvity Signal measuring the activity
(movement) of the mouse and tRboton Absorption Signal measuring the number of pho-
ton absorbed, Figure(109.

Light - Dark

Ampitude

Amplitude

Number of days Number of days

Figure 6.106CT 502, B3 Mouse Activity (a) and Photon Absorption (b) raw data

Figure ©.109 presents the raw data corresponding to the Activity sigmal Photon
Absorption signal. The signals were recorded for 22 dayspsed every minute. For each
signal, we consider 4 segmentd Period, corresponding to the synchronization part, then
three parts corresponding to tid period: before, during and after treatment. We are
interested in the periodic component (PC) vector corregppgnto each signal and in the
corresponding acrophase. The stability of the period iffigdrusing the moving window
strategy, where the available data allows.
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6.6.1 Dominant Period evolution: Activity

We start the analysis with the signal corresponding to thievge We will consider mean-
zero signals, normalized between [-10:10] and sampled/dvaur. The Activity signal and
the four segments of interest are presented in Figfe().

L EB= activity Al - T SO=

EBEoefore S>>

i

1
Number of days

Figure 6.107: Activity raw data (a) and the correspondingsb),(c),(d),normalized and
one-hour sampled

For the LD part, we have 8 days available. We compute the P@gmonding to the sig-
nal using the Proposed Method and also using the FFT, Figut@d. Via the FFT method,

02 B3 Activity WinComp Signal ______________ CT502 B3 Activi ity WinComp VBA 2 B3 Activity WinComp FFT
25F

o
I | S ) I T T T I
Feriods

ber of days

Figure 6.108: Considered signal (a) and the correspondihgi®VBA (b) and FFT (c)

the principal period is estimated at 24 hours. The next lagpek in the PC vector is cor-
responding to 12 hours. Via the Proposed Method, the prhgpriod is estimated at 25

hours.

We consider now 4-days length signals (windows) from thelabke signal, with a shift
of one day and compute the PC via FFT and the Proposed metigode f5.109.

Via FFT, the dominant period seems stable, for each windeadtiminant period being
estimated at 24 hours. Via the Proposed Method, the dompeidd shifts from 25 hours,
for the first window to 24 hours for the second window and tlwrddow to 25 hours for the

last window, Figure®.110.

An image of dominant period stability or variability, regéss the numerical value of the
amplitude associated with the dominant period is presdfitpae ¢.117).:

We consider now the DD period. First, we consider bleéore treatment segment. Only
3 days are available for this segment. We compute the PCiyeting FFT and Proposed

169




6.6.1 - Dominant Period evolution: Activity

&1 502 B3 Activity Win1 Signat CT 502 B3 Activity Win1 VBA T 502 B3 Activity Win1 FET

pi
—
ol
A
H
—
Lo
—o
—
—

ESF—
T [ I T I 1

L3 i i ‘
I . 1

o soz

gt
Angit
Lo
s
e
I S
7
e
it
o
—

Figure 6.109: PC Stability: PC estimation via FFT and VBA4edays length signals
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Figure 6.110: PC Stability: Proposed Method (a) vs. FFT (b)
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Figure 6.111: PC Stability: Proposed Method (a) vs. FFTrfbymalized results
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Method,Figure §.112. Via the FFT, the highest pick is set at 24 hours and the nigkigst

02 B3 Activity DDBef VBA CT 502 B3 Activity DDBef FFT

0 o

‘ : ‘ ERSY ‘

Periods

Figure 6.112: Dlbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

pick is set at 8 hours. Via the Proposed method, the PC ardplitactor is sparse, with only
one non-zero amplitude, corresponding to 24 hours.

For theduring treatment part of the data, 5 days are available. We compeate® corre-
sponding to theluring treatment part of the data using the Proposed Method andiaisg
the FFT, Figure§.113. Via the Proposed Method, the estimated PC amplitude véesi®

Figure 6.113: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

sparse vector and the dominant period is estimated at 24 hole other non-zero amplitudes
in the PC amplitudes vector corresponds to 8, 12 and 15 hoarthe FFT estimation, the
dominant period corresponds to 24 hours, and the next tweekigpeaks in the PC amplitude
vector estimation corresponds to 8 and 12 hours.

We consider now 4-days length signals (windows) from thelavie signal, with a shift
of one day and compute the PC via FFT and the Proposed metigodef6.114).

Durwint signar T 502 B3 Activity DDDUNWINL VBA ©T 502 B3 Activity DODUIWIN FET

o0z o Acumy bobuwins Soner

Figure 6.114: PC Stability: PC estimation via FFT and VBA4edays length signals, Activ-
ity DD, during

We note that via the FFT, both windows are estimated with aidam period of 24 hours,
with harmonics corresponding to 8 and 12 hours. Via the PsepdMethod, we find the
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dominant period corresponding to the first window at 24 hdarsl important picks for 8
and 13 hours) and the dominant period corresponding to tensgevindow at 23 hours (and
important picks for 8 and 13 hours), Figu@115.

B3 Activity DDDurWin2 VBA Variati

Figure 6.115: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regéss the numerical value of the
amplitude associated with the dominant period is presantde following figure:

|

CT 502 B3 Activity DDDurWin2 VBA Variati

CT 502 B3 Activity DDDurWin2 FFT Variation Norm

Figure 6.116: PC Stability: Proposed Method (a) vs. FFTr{bymalized results

We now consider thafter treatment part of the data. Two days are available. For tfie FF

B3 Activity DDA Signal CT 502 B3 Activity DDAft VBA CT 502 B3 Activity DDAft FFT

Number of days

Figure 6.117: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

the dominant period corresponds to 12 hours. Via the Prapéisthod, the dominant period
is also estimated at 12 hours.

The evolution of the dominant period, estimated via the Bseg Method and FFT, during
the complete Activity signal, for each segment of interest r four-days length signals for
the segments that allowed this analysis is presented ire Talll).

6.6.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to tlegohabsorption, i.e. the gene
expression. Like before, we consider mean-zero signalsnalized between [-10:10] and
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CT 502 -B3 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 25 24
LD win 1 25 24
LD win 2 24 24
LD win 3 24 24
LDwin4 25 24
DD before 24 24
DD during 24 24
DD during win 1 24 24
DD during win 2 23 24
DD after 12 12

Table 6.11: CT 502 B3: Activity Dominant Period Stabilityxdposed Method vs. FFT

sampled every hour. In this case, the analysis correspgrdithe LD part has no biological
interest, since the RT-BIO photomultiplier will not recdleé mouse liver bioluminescence but
the light inside cage corresponding to the 12 hours of liglhe complete Photon absorption
signal and the four segments of interest are presented und-{@.119

1)

N

A

L
I IR I B

Figure 6.118: Photon raw data (a) and the corresponding,fi@x(c),(d),normalized and one-
hour sampled

For the LD part, 7 days are available. We compute the PC quyneing to the signal
using the Proposed Method and also using the FFT, Figuid §: Via the FFT method, the
principal period is estimated at 24 hours and the only otbarzero peak in the PC amplitude
vector corresponds to 8 hours. The dominant period of 24gemul the corresponding 8 hours
harmonic are also the only non-zero amplitudes in the PCiadplvector corresponding to
the Proposed Method.

We consider now 4-days length signals (windows) from thelavie signal, with a shift
of one day and compute the PC via FFT and the Proposed metigode £5.120).

For all the windows, a 24 hours periodicity is confirmed, W& two methods, Fig-
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6.6.2 - Dominant Period evolution: Photon

CT 502 B3 Photon WinComp Signal CT 502 B3 Photon WinComp VBA CT 502 B3 Photon WinComp FFT
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Figure 6.119: Considered signal (a) and the correspondihgi®VBA (b) and FFT (c)
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Figure 6.120: PC Stability: PC estimation via FFT and VBA4edays length signals

174




CT 502 B3: Photon Absorption and Activity

ure 6.121).

502 B3 Photon WinComp VBA Variati CT 502 B3 Photon WinComp FFT Variation

. cT ion
B © 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 0 872 96 1066 12 1371 16 w2 24 32

Figure 6.121: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regéss the numerical value of the
amplitude associated with the dominant period is presantBayure ¢.122):

CT 502 B3 Photon WinComp VBA Variation Norm

Figure 6.122: PC Stability: Proposed Method (a) vs. FFTr{bjmalized results

We consider now the DD period. First, we consider lteéore treatment segment. Only
3 days are available for this segment. We compute the PCiyeting FFT and Proposed
Method, Figure §.123: Via the FFT, the highest pick is set at 24. Other importazdks

DDBef VBA

& 9 10 11 12 13 14 15 16 17 18 19 20 21 651 7z 8 o w02 12 144 18 2
Number of days Periods Periods.

Figure 6.123: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

correspond to 18, 36 and 12 hours. Of course, given the siogth of the signal, 3 days,

and the limitations of the FFT method all the values insidrittterval (18,36) except 24 are
not present in the estimated vector, so the values are anteXia the Proposed method the
dominant period is set at 23 hours and the other non-zero ipetlde PC amplitude vector

corresponds to 22 hours.

For theduring treatment part of the data, five days are available. We cosninat PC
corresponding to the signal using the Proposed Method andiaing the FFT, Figuré&(124:
Via FFT, we obtain a 24 hours periodicity, while via the Pregd Method, the dominant peak
corresponds to 23. The only other non-zero amplitude in @amplitude vector, corresponds
to 30 hour, which is consistent with the next highest peak@RFT estimation, also 30 hours.
We note again the difference between the amplitudes canekpg to the two methods and
the sparse PC vector returned by the Proposed Method.
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6.6.2 - Dominant Period evolution: Photon

DDDuUIWin1 VBA CT 502 B3 Photon DDDur FFT

2
Number of days.

Figure 6.124: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

We consider now 4-days length signals (windows) from thelavie during treatment
part of the data, with a shift of one day and compute the PCKiaand the Proposed method,
Figure 6.125.

Figure 6.125: PC Stability: PC estimation via FFT and VBA4edays length signals, Photon
DD, during

Analysing theduring segment using the moving window, a 24 hour periodicity isnfibu
for both windows, via FFT. However, via the Proposed Mettibd periodicity, also stable, is
estimated at 23 hours, Figuré.{29

Figure 6.126: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regéess the numerical value of the
amplitude associated with the dominant period is presentEdyure 6.126:

We now consider thafter treatment part of the data. We have a 2-days length signal. In
this case, the dominant period is estimated at 24 hours via Hiis value is very uncertain,
for this particular case (a 2-days length signal) all thernvel (16:48) having only one value
that is appearing the FFT PC vector, i.e. 24 hours. Via thed¥ed Method, the dominant
period is set at 22 hours.
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CT 502 B3: Photon Absorption and Activity

Figure 6.127: PC Stability: Proposed Method (a) vs. FFTr{bjmalized results

Periods

Figure 6.128: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

The evolution of the dominant period, estimated via the Bseg Method and FFT, during
the complete Photon signal, for each segment of interestarfdur-days length signals for
the segments that allowed this analysis is presented ire Tall?).

6.6.3 Conclusions: Dominant Period evolution

We compared the FFT and Proposed Method PC amplitude veaitrtien during the four
segments of interest for mouse CT 503 B3, considering the gepression (Photon Absorp-
tion signal) and the rest-activity patters (Activity sigindrigure 6.106. For both data, we
have considered four segments of interest, i.e. the LD datteosignal, corresponding to
the synchronization and the DD part of the signal, corredpanto the complete darkness,
for which we have considered the segments correspondirftetoetfore, during and after
treatment phase, Figuré.(07) (rest-activity patterns) and Figuré.(1§.

In particular, for the first segment of interest, i.e. the Lartpof data and for theur-
ing treatment part, we have considered four days length sigoadsalyse the stability or
variability of the dominant period for the considered segmitself.

The dominant period evolution, corresponding to the Pregddethod and FFT for the
rest-activity patterns (Activity) signal is presented iable ¢.11). Via FFT, the dominant
period seems stable, at 24 hours, during the experimergpéiteeafter treatment part of the
data, for which the dominant period is estimated at 12 hovis the Proposed Method, the
period corresponding to tredter treatment part is also estimated at 12 hours, in accordance
with the FFT result. For the other part of the data, the dontiperiod is also estimated
around 24 hours, but with small variations between 23 ando2fh

The dominant period evolution, corresponding to the Pregddethod and FFT for the
gene expression data (photon absorption signal), is pred@mn Table 6.12). For this exper-
iment, via FFT, the dominant period is 24 hours for each segnaad seems stable. Via the
Proposed Method, slight variations are detected duringetiperiment: a 23 hour periodic-
ity corresponding to theefore andduring treatment part of data and a 22 hour periodicity
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6.6.3 - Conclusions: Dominant Period evolution

CT 502 -B3 | Dominant Period - Proposed Methodominant Period - FFT
LD complete 24 24
LD win 1 24 24
LD win 2 24 24
LD win 3 24 24
LD win 4 24 24
DD before 23 24
DD during 23 24
DD during win 1 23 24
DD during win 2 23 24
DD after 22 24

Table 6.12: CT 502 B3: Photon Dominant Period Stability:g&ised Method vs. FFT

corresponding to thafter treatment part of data.
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7.1 Conclusions

THE fundamental objective of this thesis was the study of théoder components (PC)
amplitudes vector corresponding to chronobiological aign The context of our work
was chronobiological signal recorded in cancer treatmgpemments, and the domain of
interest was the circadian domain. A very important priéoimation offered by the biologists
concerns the PC amplitudes vector: the number of periodstatig the recorded signals
is small. Also, the experiments impose two fundamentalthtions: the short duration of
the signals (relative to the prior dominant period) and tigg tevel of noise. Moreover, for
studying the stability or variability of the PC amplitudesctor, even shorter signals have to
be considered.

In this context, the objective was to develop a method thataféer a good PC ampli-
tudes vector estimation with a certain precision. During thesis, one hour precision was

considered.

Translating the biological prior information of the smallimbers of non zero elements in
PC amplitudes vector as sparsity, the problem consideréudrthesis has been formulated

as it follows:
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CHAPTER 7. CONCLUSIONS AND PERSPECTIVES

Estimate the sparse PC amplitudes vector correspondingry short duration signals rela-
tive to the (prior) dominant period with a given precisiorhelnumber of components is small
(sparse PC amplitudes vector) but unknown.

First, we have examined the classical methods and identifeid drawbacks in the con-
text of our subject. The Fourier Transform methods are ssfaly used if the duration of
the considered signals are long enough. In our case, due &htirt duration of the signals,
the precision is far from being satisfactory. In Chap®&yr $ection 8.2), we have showed that
for a four days length signal, in the interval of interes, ithe circadian domaih : 32/,
we obtain informations corresponding only to 10 periodstoZeadding technique was con-
sidered in Section3(3), but in this case, the estimation is not sparse, and setgptriods
is difficult. Direct and generalized Inversion was consadem Section §.4), and we have
showed that except the case where the considered signdlnsisy, the method fails to offer
a good estimation of the PC amplitudes vector, even thoughettonstruction of the signal is
accurate for all levels of noise. In Sectidh%) we have considered the Least Squares and the
regularized Least Squares, showing that both approactés ¢arrectly estimate the PC am-
plitude vector. In Section3(6) we considered thé, regularization and the LASSO method.
This method is the nearest state of art method to accounp&siy throughl,; regularization
term. However, we showed that even if very often the resuétgaod, it happens also that for
different noise realizations the algorithm does not gives&ectory results.

In the approach proposed in the this thesis, we have comsideforward model, built
in the same way as the one corresponding to the Fourier tnamsbut using the elements
that correspond to the considered circadian PC vector, tiouét.4) and Equation4.7).
Estimating the PC amplitudes vector from the linear modelsponds to an ill-posed inverse
problem. More precisely, in the context of this forward mipdiee duration of the observed
signal (96h in synthetic simulations) the limits and thecgsi®n of the periods to explore
[8h : 32h], the matrix of the forward model has a huge condition numWé&r.have proposed
an inversion based on general Bayesian Inference, builinigierarchical model based on
the generalized Student-t prior distribution modelling BC amplitudes vector.

The Student-t distribution was considered as a sparsityreiny prior due to its IGSM
property, i.e. the standard Student-t distributiétiz|) can be expressed as the marginal
of a bivariate Normal-Inverse Gamma distribution, whenstdaring equal parameters of the
Inverse Gamma distribution = 3 = . In this thesis, we have used a generalized form
of the Student-t distribution, introduced via the IGSM pedy but not imposing the equality
between the shape and scale parameters correspondindrieehse Gamma distribution. The
advantage was given by the fact that for the generalizedeStttddistribution, the variance
can take any positive value, (different from the standarai&nt-t distribution for which the
variance is greater than 1). Some details about this geredabtudent-t distribution and its
properties are presented in Appendi¥ @nd in a paper submitted to IEEE Signal Processing
Letters.

The Bayesian approach allowed us to estimate also the vasassociated with the PC
amplitude vector. The model that was developed in this shesnsidered a non-stationary
Gaussian model for the errors (noise).

In Chapter §) we have presented the results corresponding to the proposdel, show-
ing that the PM estimation corresponding to the proposedesitit hierarchical model gives
accurate results which are stable.
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In Chapter ¢) the developed algorithm was applied on real data issueadl d@ncer treat-
ment experiments. In this chapter, the results correspgrtdithe proposed method are com-
pared to the FFT results, which is the standard method for $i@ation in chronobiology
today. We have showed that the proposed method is able totdeigances that are not de-
tected by the FFT method. Some details of this approach amgbfilication on simulated and
real data are published in the following papers:

e Mircea Dumitru, AliMohammad-Djafari, Simona Baghai S&915).Precise periodic
components estimation for chronobiological signals tlgloBayesian Inference with
sparsity enforcing prior. EURASIP Journal on Bioinformatics and Systems Biology,
special issue on Bayesian Methods for Computational Syskinlogy, 2015

» Ali Mohammad-Djafari, Mircea Dumitru (2015)Bayesian sparse solutions to linear
inverse problems with non-stationary noise with Studeqidrs, Digital Signal Pro-
cessing, 2015, doi:10.1016/j.dsp.2015.08.005

7.2 Perspectives

In this subsection we discuss some possible perspectivas @iork.

7.2.1 Multicomponent case: PC amplitudes vectors for mulple inputs

We discussed during this thesis, in Chaptgr the fact the two equivalent direct models can
be considered: the one expressed in Equatiof) @nd the one expressed in Equatidn’j,
equivalent with Equation4(4) via (4.6). The same hierarchical model, with a generalized
Student-t distribution as a sparsity enforcing prior foe 8C amplitude vector and a non-
stationary Gaussian model for the errors can be applieddibrforward models. However, in
the case of the linear model Equatigh4), the link between the two PC amplitudes vectors
(i.e. f1 and f,, corresponding to the sine and cosine) is done by imposmgdime variance
vs. This idea can be applied when the developed algorithm id neefor the case of one
signal recorded in the experiment, but for two or more signdtor the same experiment,
the gene expression signal and the activity signal areaail For the same experiment
other signal associated with the circadian clock can berdech (like temperature). The
developed algorithm can be extended to the multicomporesg.cGiven a set of available
signals, recorded for the same experiment, the algorithinestimate the PC amplitudes
vectors containing the most common periodic componentgesponding to the set of signals.
This can be done via the same technique used in the case ofaitebée signal, imposing
the same variance for every PC amplitude vector correspgrtdithe available signals.

In the following, for the sake of simplicity we will consides a reference, the linear
model expressed in Equatiof.{). However, the same development can be done using Equa-
tion (4.4). If the number of available signals fs, and for each available signal we use the
notationgy, k € {1,2,...K}, for the corresponding PC amplitudes vector we use theinatat
fr, k€ {1,2,...K} and for the corresponding error vectqr, k € {1,2,...K} the developed
method can be used in order to estimate efghfor &k € {1,2,...K}, considering as the
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7.2.2 - Sparsity Rate: initialisation and week dependencies

direct modelg, = H f + €, for k € {1, 2, ... K’} and the corresponding hierarchical model.
However, doing this, the advantage of multiple signalslatse is not exploited, since for
estimationf, it is used only the corresponding sigmgal

In order to use all the available data, we can link all the P@laodes vectors estimations
fr, fork € {1,2,...K} by imposing the same variance:

Vg, = ’Uf,V/{Z c {1,2, K}7 (71)

The advantage of such an approach is given directly by thesispanechanism, explained
in Section {.1): during the iterations the algorithm will impose zero \alamplitudes for
the periods in the PC amplitude vector corresponding tolsraghnces. Therefore, the final
estimation for each PC amplitudes vector will contain nemsz/alues only for the periods that
correspond to the most signals and will exclude the onegspanding to a small number of
signals from the available data.

Formally, this can be done using as the forward model:

or
G=HF+ " (7.3)

whereG = [917927 . 7gK]’ F = [f17f27 ey .fK] andv = [61,62, .. .,GK].

7.2.2 Sparsity Rate: initialisation and week dependencies

Another perspective of the our work related with the genmsedl Student-t distribution. The
St, distribution was used as the prior distribution in our hienécal model in order to enforce
sparsity. The distribution is presented in detail in Appgees ().

Briefly, we have noted that for the standard Student-t distion St(x|v) its variance is
defined as;*; for v > 2 andoo for 1 < v < 2, so the variance of the standard Student-t
distribution is always superior to 1. We have also noted tbathe generalized Student-

t distribution St (z|c, §), presented in EquationA\(25), its variance is defined a§f—1 for

a > landoco for 1/2 < a < 1, (and in particular has the same expression as the mean
of the Inverse Gamma distribution corresponding to the Ndvimverse Gamma distribution
that is marginalized for obtaining the generalized Studehstribution) so once the shape
parameters: is set greater than 1, the varianceSef (z|«, 5) can be set at any wanted positive
value. In particular, in the context of a distribution thaitised as a sparsity enforcing prior
this is of great interest.

For the developed algorithm, a crucial interest is repregskby the initialization part,
where the prior parameters are set. Via the generalized@Btudlistribution one way to con-
sider the initialization is to set the two parameters viarttean and the variance of the Inverse
Gamma. Noting that the mean of the Inverse Gamma distribin&s the same expression as
the variance of the Student-t distribution:

Ezg[v] = il = Varg,, [r] = ¢,fora > 1 (7.4)
and the expression of the Inverse Gamma variance is
62
= = w, for 2 7.5
Va'TIg [U] (a _ 1)2(0( — 2) w, a >z, ( )
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the choice of the prior parameters can be done in accordaitticelata, initializing the algo-
rithm via the associateflt, variance of the unknown vector, i.e. the PC amplitudes vetto
and theZg variance of the corresponding varianee,

In our work, the two prior parameters corresponding to theegalized Student-t distri-
bution are set via, which denotes the Student-t variance andwvhich denotes the Inverse
Gamma variance. We have used Equatib®9), in such way thatr > 2, so that both the
variances are well defined and the Student-t variance id gimalrder to assure the sparsity,
Figure (A.3), AppendicesA)). One possible extension is to use Equati® ) with variance
valuese andw statistically derived from data.

Expressing the two parameters of the distribution usingriean and the variance of the
corresponding Inverse Gamma distribution, we have shoha&tthe Sparsity Rate (SR) de-
pends org, the mean of the Inverse Gamma and the variance of the gemeer&tudent-t dis-
tribution (Figure A.3), AppendicesA)). But Figure A.3) shows another interesting result,
a weak dependence of the SR with respeet tthe variance of the Inverse Gamma distribu-
tion. This result should be deepened, formalized and analijt explained by considering
the expression SR p(|z| > ).
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HIS Appendix is dedicated to the generalized Student-t digtioh. During this thesis,
we have used the notatidit, (z|«, ) for the generalized Student-t, which was obtained

from the bivariate Normal-Inverse Gamma distribution. Timerest for this generalization
is the possibility to set any positive value for the varigrstherefore imposing the wanted
sparsity rate. In this Appendix, first we discuss the contexére this distribution can be
used, then we discuss the origins of the Student-t distabuthen we present the computa-
tions for obtaining the analytical expression of the gelwesd Student-t distribution and the
computations corresponding to the expressions of the mehwmaiance.

A.1 Context

During this thesis we have noted that beside the regulaizégchniques, the other approach
that has been successfully tested to account for spardifbeiBayesian one. We have also
mentioned that for Bayesian inference generally two Sgregeare used(a) the strict spar-
sity requirement, via Bernouilli distribution: Bernouitbaussian D190, CG196, GILCO0§],
Bernouilli-Laplace PB0§g], Bernouilli-Gamma andb) the sparsity enforcing, where mainly
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APPENDIX A. GENERALIZED STUDENT-T

three categories of priors have been considered and usegr&ieed Gaussian (GG), Mix-
ture models and heavy tailed probability laws such as Studexreview of those priors can
be found in [Nip01, MD12].

The context of the generalized Student-t is placed relatwlis second strategy, where
the searched solution is not strictly sparse, but sparshearsénse that the a high number
of elements are sufficiently small. We note that in this case the threshold is particular
important, in order to control the interval of small valubsit are associated with the zero
values.

Also, depending on the application considered, the inputay have different sparsity
rates, depending on the application, therefore the pri@rmmation concerning the Sparsity
Rate (SR) have to be accounted.

In this Appendices, we present the generalization of thdeitst distribution that allows
accounting for the SR. The standard Student-t pdf is givethbyexpression:

St(z|v) = L%)V (1 + x—Q)T , v>0, (A.1)
VIET(5)

wherev is the number of degrees of freedom dht the Gamma function. It is generalized
by introducing a location parametegrand a scale parameter

_ F(VTH) 1 (x— 2\ 2
Stalv. ) = hs (1 (52)°) A2)
v>0,0>0,u€R

The Student-t distribution can also be expressed via thIGS

&mm:/mquhgmiimz (A3)
0 z 2°2

whereN (z|m,v) = (27v) "2 exp{—(z —m)?} is the Normal distribution and(z|a, ) =
%xo‘*l exp{—pz} is the Gamma distribution. The IGSM name comes from the faat t
when a bivariate pdf composed of the product of a zero meamladistribution\' (|0, 1)
with variancev = % and a Gamma pdf for the inverse of the variance (precisios) %

having equal scale and shape parameters =
1
pla.2ly) = N(l0,2) 615, 5). (A4)

Now, marginalizing: orv = % results to Student-t pdf as is given in Equatiéng).

There are many works on the origins, properties and many o#hations and generaliza-
tions of this
distribution. Some of them can be seen ispg,[Li57],[Zel7q,[Fer99,[KBJOQ,[AHOE].
Those works can mainly be classified in three categoriedbibty and information theory,
Classical statistics and Bayesian inference. In prolagiihieory Student-t pdf is defined as
the pdf of the ratio of two variables:with a Normal pdf and with a chi-squared pdf. In clas-
sical statistics, its origins goes back to the Maximum Likebd (ML) estimate of the mean
and variance of a Normal distribution. In Bayesian infeeeframework, the origin goes back
to the same context of ML parameter estimation but with ardgdfprior. In this paper, we
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Student-t: Origins

focus on the Bayesian inference of the mean and the varidrecBormal distribution when a
Normal-Inverse Gamma prior is assigned to them. By doing thie obtain an expression for
the marginal posterior pdf of the mean which extends thesabkdefinition of the Student-t.
In this way, we obtain a two parameters Student-t that weedajeneralized StudentSt,.
The rest of Appendices\( is organized as follows: in SectioA ), we give a brief presen-
tation of the origins of the distribution considered. ThierSection £.3) we present the new
generalized Student-t and some of its properties, in pdatithe computation of the expected
value and the variance. We will show that the variance cae #aly positive values. We
also present the link between the variance corresponditigetSt, and the expected value
corresponding to théG, modeling the prior variance. Sectiof.{) presents how using this
property of the variance can be linked with the SR and prestat relation between those
two values. The conclusions are presented in Sectids) (

A.2 Student-t: Origins

Student-t distribution was first derived as a Bayesian piosteistribution in 1876 by Helmert
[Hel75, Hel76h Hel764 and Luroth.[.76]. It takes its name from William Sealy Gosset’s
1908 paper in Biometrika under the pseudonym "StudeBatisPg Mor08]. In Probability
theory, Student’s t-distribution with degrees of freedom is defined as the distribution of a
random variableX defined as the ratio of two independent random variables:

X - \/% _ z\/g, (A.5)

whereZ has a standard normal distribution with expected valaad variancd; V has a
chi-squared distribution witlr degrees of freedon5R94. Student’s t-distribution has also
been defined as the Maximum Entropy probability distributior a variableX for which
E{In(v + X?)} is fixed [Haz01, VR02, GCSR03 WMMYO02]. Also, it has been shown that
the T-distribution pdf is a solution to the following diffemtial equation{iMCO02]:

{<u+x> (@) + (v + af(x) = 0,

f) = Lo (A9)

In this paper, we consider two main origins of this distribat the classical Maximum Like-
lihood (ML) parameter estimation of a Normal distributiardehe Bayesian approach of this
problem via the Jeffreys prior. We introduce these two apghnes briefly.

A.2.1 ML parameter estimation

If 21, ...,z are i.i.d samples from a Normal distribution with unknownamg and variance
v,

x; ~ N (x|, v), 1€ {1,2,...,N}, (A7)

the maximum likelihood estimate ofi, v) is defined as

(1, 0)u = arg max {p(z|pl,vI)} = arg min {L(p,v)} (A.8)
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A.2.2 - Bayesian parameter estimation

whereL(p,v) = —Inp(x|ul,vI) = — XN In(p(z;|u,v)). Itis easy to show that the ex-
pression ofZ(u, v) depends only on the two following sufficient statistics:

1 N
(; — 1) (A.9)

T

I
=
=
&
©
S
a
VA
(V)
|

and are given by:
n==x
{ g , (A.10)
It can also be easily shown that

T~ N(Z|p, %)
{ §2 X2(52|]\jfv— 1), (A.11)

where y? represents the Chi-squared distribution which is a pdeicease of the Gamma
distribution, and that the random variable defined’by: *—%-, called pivot variable, follows

s/?/ﬁ
a Student-t distribution witlv — 1 degrees of freedom:

:/\_/% ~ St(t|N — 1). (A.12)

A.2.2 Bayesian parameter estimation

The Bayesian way to estimate, v) needs the expression of the likelihood as before:
N
plalu,v) = TN (@i, v) = N (x|l o), (A.13)
=1

but also assigning a prior tQ:,v). When choosing the Jeffreys priopéu, v) % which
is a particular case of a Normal-Inverse Gamma pdfi, v) = N (u|po, v)ZG(v|cx, 3) with
1o = o = 3 = 0, corresponding to a zero mean Normal distribution and artkrgée case of
the Inverse Gamma distribution, i.e.

p(plv) = N (1|0, v)
{ p(v) = ZG(v|0,0) (A.14)

we obtain the expression of the posterior law:

N_ 1 &
p(p, vle) o v 1eXp{—% > (x; —u)g} (A.15)
=1
from which we can deduce: B
p(u|w,v) :N(/,L‘SC,%) (A.16)

Now, looking for the marginal:
o] (o) 1
plule) = [ plnvle) dvoc [T N(ald,el) do A1)
= St(u|z,VNs?, N).
The standard Student-t appears via the pivot variahle,

T— % ~ SHHN = 1). (A.18)
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Generalization from the Bayesian point of view

A.3 Generalization from the Bayesian point of view

In the previews Bayesian estimation, a more general infavmarior for (1, v) in the form

p(p, v) = p(plv)p(v) (A19)
with
p(plv) = N (p|0,v)
{ p(vle, B) = IG(v|a, B) (A.20)

leads to the joint posterior distribution:

p(p, vle) izl_llf\/'(%'maU)N(N|O>U)Ig(v|o"6) (A.21)

o< N (uli, 9)ZG(v|a, B)

with
~ N = ~ N
fi=xygr Ja=aty A 22
{@aﬁv ’{6=6+%(—NN—i1f2+z£V1xf) (A22)

From this joint posterior distribution the expression & ttonditional posterigs( x|z, v) and
posterion(v|x, «, ) are easily derived:
p(plz, v) = N (pl|, ?)
L~ 7 A.23
{p<v|m,a,5> — 76(vla. B) (A29)
The marginal posterior distributigr(v|z, o, 3) is an Inverse Gamma distribution and is de-

scribed by the two parametetisand 5 of Equation £A.22). For obtaining the marginal poste-
rior distribution corresponding te, we need to compute:

plule) = [Nl 0)ZG (0], B) do (A.24)

This is how a generalization of the Student-t appears nituia the following we consider
Equation £.24) for which we show the analytical expression and some ofrip@rties. For
the sake of simplicity we develop the case corresponding+o0 corresponding to the zero
mean Normal distribution.

Theorem: For two random variables following a bivariate Normal#nse Gamma distri-
bution, (X, V) ~ N (z]0,v) ZG(v|«, ), the marginal distribution corresponding ¥ is a
Student-t like distribution, generalizing the classicahf, denotedt,, depending on the two
parametersy and $ corresponding to the Inverse-Gamma distribution havirgftiiowing
pdf:

St,(xla, 8) = /OOON(J:\O,U)IQ(UM,B) dv

C T(a+d) 22\ ~(o+3)

(A.25)
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Proof: The expression of the distribution is obtained directly:

Sty(z|a, B) =
B ©© 1 _i Ba —(a+1) x _é
_/0 \/27rvexp{ 221:62} F(a)v e p{ v} dv
o 1 0o (A.26)

_ BT (o + ) (Ml)/ gne <v|a+%,ﬁ+%2) dv

Varl(a) (B+5)" 7
_ Dlatd) (@)
~ V287 (o) ( +%> |

Remark 1. Fora = 3 = g, we obtain the standard cas®t,(z|5, 5) = St(z|v).

Remark 2: The expected value of th&#,(z|a, ) is zero fora > + and is undefined other-
wise: )

_ 0 for a > 3,
E{ (el 5)} = { undefined for0 < o < 1.

Proof: The proof follows the same steps as the one corresponditigetstandard case, also
using the fact thasSt,(x|«, 5) is an even function. One difference appears for the interval
of the a parameter for which the mean is defined. In this case, dunegbmputations the

-\« L . . . . _
integral [ x (1 + %) (o+4) dz is considered. The integral is finite only far> %
Remark 3: The variance of the&t,(z|a, 8) is -2 fora > 1,iscofor i < a < 1 and is
undefined otherwise:

(A.27)

Var{(z|a, B)} = 00 for 3 <a <1, (A.28)

L for a>1,
undefined for0 < o < 3.

Proof: The proof follows the same steps as the one corresponditing tstandard case and is
using the Euler integral of the first kind.

Remark 4: We note that fore > 1, the mean of th&g distribution appearing in the ex-
pression of the bivariate Normal-Inverse Gamma distrdyuis well defined and has the same
value as the variance 6ft,:

Vars;, {(z]a, )} = Ero{(v]a, )} = —— (A.29)
This property is particularly interesting in the sparsiontext. It is showing how the sparsity
mechanism is strongly related with the associated pridgamaes of the model. The bivariate
Normal-Inverse Gamma distribution and the correspondimggmal, i.e. the generalized
Student-t distribution are presented in Figuiel).

A.4 Sparsity Rate and Generalized Student-t

The Student-t distribution represents a good prior distrdm for enforcing the sparsity,
thanks to its heavy tailed form. Among many other distribngi having a heavy tailed form,
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Sparsity Rate and Generalized Student-t

0.2
a) Normal-Inverse Gamma modelliig, v)
18
16 - —
14a —
12 - —
10 B
s L ]
o L ]
a b ]
> L ]
—00_2 -O.1 o O.1 o.2

b) St, modellingz: Vars, {(z|a, 8)} = e = 0.1

Figure A.1: Normal-Inverse Gamma distribution (a) and tbe@sponding marginait, (b).
lllustrated fore = 0.1 andk = 1, Eq. (A.308) and Eq. A.30b)

such as Double Exponential (DE) or Generalized Gaussiar),(tB& Student-t distribution is
particularly interesting thanks to its IGSM expression #relconjugacy property of the Nor-
mal and Gamma (or Inverse Gamma) distributions. Therefon@any Bayesian approaches
searching for sparse solutions, this distribution is ofgieterest. However, the mechanism
of the Bayesian algorithms where a sparse solution is sediishusing at one hand the heavy-
tailed form of the prior distribution and at the other hane $imall value of the variance. The
use of the standard Student-t distribution imposes a ltroitathe variance is always greater
than 1. In this context, considering the generalizatiomef$tudent-t distribution and notably
the relation from Equation’(28), we see the importance of this generalization for which the
variance may be set at any required value. Furthermore tiogua.29) sets the link between
the sparsity of a quantity and the associated varianeed-or St, variance: andZ§ variance

k, we have:

Vars;, {(z]a, 8)} = Ezg{(v]a, 8)} = % e (A.30a)
Varzg{(v|a, 5)} = = 1)62(04 —5) = k; (A.30b)

A solution for setting the scale and shape parameteasad 5 depending on the variance of
the generalized Student-t distributieand the variance of the Inverse Gamma distribution
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is given in EquationA.31).

= 2 4 2
{ “ K ‘ (A.31)

B=vVEol+e&) T VK

We note that via Equatiom\(31), o > 2 andg > 0: for both theSt, andZg distributions,
the corresponding expected values and variances are viglede The Sparsity Rate (SR) is
defined in EquationX.32).

__ ##nhon-zero points
N #points

To show the link between the SR and the variance of the gepedabtudent-t distribution;,
we consider the sparse structurand the corresponding variancas it follows: (i) we con-
sider 10000 samples for the variangg, distributed, FigureA.2) (a); (ii) we consider 10000
samples for x)\V distributed, with zero mean and the variance selected fejni{gure £.2)
(b); (iii) we set a threshold for x,|£| < 0.1), obtaining a sparse structure, Figure3) (c);
We consider different sparse structurgscorresponding to different valuesand k£, Equa-
tion (A.31), and compute the associated SR value, Equatio??y. Figure (A.3) presents the
behaviour of the SR depending on t&¢, variance, for different values considered for the
variance of theZg, k. We note that regardless the considered valyeke SR is decreasing
with e.

SR

(A.32)

A.5 Conclusion

Based on Bayesian inference of the meaof a Gaussian pdW (x|u, v) with unknown vari-
ancev on which an a priori Inverse Gamma pa§ (v|«, 3) is assigned, we considered the
generalized Student-t pd¥, (x|, 5) which becomes the standard Student t-distribution when
a = [ = v/2. We showed that the variance of this distribution can takepmsitive values,
and how it is linked with the SR. We showed how the two pararsedé the generalized
Student-t can be set such that the value of the variance isseth Depending on applica-
tions, the SR can have different values, and the proposéibdison is offering a solution for
selecting a prior which is in accordance with data in termSmef
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c) Sparse signal obtained by thresholdjnapg< 0.1

Figure A.2: Sparse signal, distributed following the gatfieed Student-t distribution after
thresholding
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Résumé : La toxicité et I’efficacité de plus de
30 agents anticancéreux présentent de trés fortes
variations en fonction du temps de dosage. Par
conséquent, les biologistes qui étudient le
rythme circadien ont besoin d’une méthode tres
précise pour estimer le vecteur de composantes
périodiques (CP) de signaux chronobiologiques.
En outre, dans les développements récents, non
seulement la période dominante ou le vecteur de
CP présentent un intérét crucial, mais aussi leurs
stabilités ou variabilités. Dans les expériences
effectuées en traitement du cancer, les signaux
enregistrés correspondant a différentes phases
de traitement sont courts, de sept jours pour le
segment de synchronisation jusqu’a deux ou
trois jours pour le segment aprés traitement.
Lorsqué’on étudie la stabilité de la période
dominante nous devons considérer des signaux
trés court par rapport a la connaissance a priori
de la période dominante, placée dans le

domaine circadien. Les approches classiques
fonées sur la transformée de Fourier (TF) sont
inefficaces (i.e. manque de précision) compte
tenu de la particularité des données (i.e. la
courte longueur). Dans cette thése, nous
proposons une nouvelle méthode pour
Pestimation du vecteur de CP des signaux
biomédicaux, en utilisant les informations
biologiques a priori et en considérant un modéle
qui représente le bruit. Les signaux enregistrés
dans le cadre d’expériences développées pour le
traitement du cancer ont un nombre limité de
périodes. Cette information a priori peut étre
traduite comme la parcimonie du vecteur de CP.
La méthode proposée considére 1’estimation de
vecteur de CP comme un probléme inverse en
utilisant I’inférence bayésienne générale afin de
déduire toutes les inconnues de notre modeéle, a
savoir le vecteur de CP mais aussi les
hyperparameétres (i.e. les variances associées).

Title : A Bayesian approach for periodic components estimation for chronobiological signals

Keywords : Periodic Components vector estimation, Inverse problem, Bayesian approach,
Hierarchical model, Sparsity enforcing, Chronobiology

Abstract : The toxicity and efficacy of more
than 30 anticancer agents presents very high
variations, depending on the dosing time.
Therefore the biologists studying the circadian
rhythm require a very precise method for
estimating the Periodic Components (PC)
vector of chronobiological signals. Moreover,
in recent developments not only the dominant
period or the PC vector present a crucial
interest, but also their stability or variability. In
cancer treatment experiments the recorded
signals corresponding to different phases of
treatment are short, from seven days for the
synchronization segment to two or three days
for the after treatment segment. When studying
the stability of the dominant period we have to
consider very short length signals relative to
the prior knowledge of the dominant period,
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placed in the circadian domain. The classical
approaches, based on Fourier Transform (FT)
methods are inefficient (i.e. lack of precision)
considering the particularities of the data (i.e.
the short length). In this thesis we propose a
new method for the estimation of the PC vector
of biomedical signals, using the biological prior
informations and considering a model that
accounts for the noise. The experiments
developed in the cancer treatment context are
recording signals expressing a lim ited number
of periods. This is a prior information that can
be translated as the sparsity of the PC vector.
The proposed method considers the PC vector
estimation as an Inverse Problem (IP) using the
general Bayesian inference in order to infer all
the unknowns of our model, i.e. the PC vector
but also the hyperparameters.
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