
HAL Id: tel-01318118
https://theses.hal.science/tel-01318118

Submitted on 19 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint safety and security modeling for risk assessment in
cyber physical systems

Siwar Kriaa

To cite this version:
Siwar Kriaa. Joint safety and security modeling for risk assessment in cyber physical systems. Other.
Université Paris Saclay (COmUE), 2016. English. �NNT : 2016SACLC014�. �tel-01318118�

https://theses.hal.science/tel-01318118
https://hal.archives-ouvertes.fr

NNT : 2016SACLC014

THESE DE DOCTORAT
DE

L’UNIVERSITE PARIS-SACLAY

PREPAREE A

CENTRALESUPELEC

ECOLE DOCTORALE N° 573

Approches Interdisciplinaires : Fondements, Applications et Innovations

Spécialité de doctorat : Sciences et technologies industrielles

Par

Mme Siwar KRIAA

Modélisation conjointe de la sûreté et de la sécurité pour l’évaluation des risques dans

les systèmes cyber-physiques

Joint Safety and Security Modeling for Risk Assessment in Cyber Physical Systems

Thèse présentée et soutenue à Châtenay-Malabry, le 11 Mars 2016 :

Composition du Jury :

Mr, Totel, Eric Professeur, CentraleSupélec Président

Mr, Dacier, Marc Directeur de Recherche, Qatar Computing Research Institute Rapporteur

Mr, Kâaniche, Mohamed Directeur de Recherche, LAAS - CNRS Rapporteur

Mr, Blanquart, Jean-Paul Ingénieur de Recherche, Airbus Defense and Space Examinateur

Mr, Poisson, Pascal Ingénieur de Recherche, Alstom Transport Examinateur

Mr, Bouissou, Marc Professeur, CentraleSupélec & Electrité De France Directeur de thèse

Mr, Laarouchi, Youssef Ingénieur de Recherche, Electrité De France Co-directeur de thèse

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Modélisation conjointe de la sûreté et de la sécurité pour l’évaluation des risques dans les

systèmes cyber-physiques

Mots clés : Systèmes cyber physiques, sûreté, sécurité, modélisation, évaluation des risques

Résumé: Les Systèmes Cyber Physiques (CPS)

intègrent des composants programmables afin

de contrôler un processus physique. Ils sont

désormais largement répandus dans différentes

industries comme l’énergie, l’aéronautique,

l’automobile ou l’industrie chimique. Parmi les

différents CPS existants, les systèmes SCADA

(Supervisory Control And Data Acquisition)

permettent le contrôle et la supervision des

installations industrielles critiques. Leur

dysfonctionnement peut engendrer des impacts

néfastes sur l’installation et son environnement.

Les systèmes SCADA ont d’abord été isolés et

basés sur des composants standards et

propriétaires. Afin de faciliter la supervision du

processus industriel et réduire les coûts, ils

intègrent de plus en plus des technologies de

l’information et de communication (TIC). Ceci

les rend plus complexes et les expose à des

cyber-attaques qui exploitent les vulnérabilités

existantes des TIC. Ces attaques peuvent

modifier le fonctionnement du système et nuire

à sa sûreté.

Nous associons dans la suite la sûreté aux

risques de nature accidentelle provenant du

système, et la sécurité aux risques d’origine

malveillante et en particulier les cyber-attaques.

Dans ce contexte où les infrastructures

industrielles sont contrôlées par les nouveaux

systèmes SCADA, les risques et les exigences

liés à la sûreté et à la sécurité convergent et

peuvent avoir des interactions. Une analyse de

risque qui couvre à la fois la sûreté et la

sécurité est indispensable pour l’identification

de ces interactions ce qui conditionne

l’optimalité de la gestion de risque.

Dans cette thèse, nous classifions d’abord les

approches de état de l’art qui traitent la sûreté

et la sécurité des systèmes industriels et nous

soulignons leurs carences par rapport aux

quatre critères suivants que nous jugeons

nécessaires pour une bonne approche basée sur

les modèles : formelle, automatique, qualitative

et quantitative, et robuste (i.e., intègre

facilement dans le modèle des variations

d’hypothèses sur le système).

Nous proposons ensuite une nouvelle approche

orientée modèles d’analyse conjointe de la

sûreté et de la sécurité : S-cube (SCADA

Safety and Security modeling), qui satisfait les

critères ci-dessus. Elle permet une modélisation

formelle des CPS et génère l’analyse de risque

qualitative et quantitative associée. Grâce à une

modélisation graphique de l’architecture du

système, S-cube permet de prendre en compte

différentes hypothèses et de générer

automatiquement les scenarios de risque liés à

la sûreté et à la sécurité qui amènent à un

évènement indésirable donné, avec une

estimation de leurs probabilités.

L’approche S-cube est basée sur une base de

connaissance (BDC) qui décrit les composants

typiques des architectures industrielles incluant

les systèmes d’information, le contrôle et la

supervision, et l’instrumentation. Cette BDC a

été conçue sur la base d’une taxonomie

d’attaques et modes de défaillances et un

mécanisme de raisonnement hiérarchique. Elle

a été mise en œuvre à l’aide du langage de

modélisation Figaro et ses outils associés. Afin

de construire le modèle du système,

l’utilisateur saisit graphiquement l’architecture

physique et fonctionnelle (logiciels et flux de

données) du système. L’association entre la

BDC et ce modèle produit un modèle d’états

dynamiques : une chaîne de Markov à temps

continu. Pour limiter l’explosion combinatoire,

cette chaîne n’est pas construite mais peut être

explorée de deux façons : recherche de

séquences amenant à un évènement indésirable

ou simulation de Monte Carlo, ce qui génère

des résultats qualitatifs et quantitatifs.

Nous illustrons enfin l’approche S-cube sur un

cas d’étude réaliste : un système de stockage

d’énergie par pompage, et nous montrons sa

capacité à générer une analyse holistique

couvrant les risques liés à la sûreté et à la

sécurité. Les résultats sont ensuite analysés afin

d’identifier les interactions potentielles entre

sûreté et sécurité et de donner des

recommandations.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Title : Joint safety and security modeling for risk assessment in Cyber-Physical Systems

Keywords : Cyber Physical Systems, safety, security, modeling, risk assessment

Abstract: Cyber physical systems (CPS)

embed programmable components in order to

control a physical process or infrastructure.

CPS are henceforth widely used in different

industries like energy, aeronautics, automotive,

medical or chemical industry. Among the

variety of existing CPS stand SCADA

(Supervisory Control And Data Acquisition)

systems that offer the necessary means to

control and supervise critical infrastructures.

Their failure or malfunction can engender

adverse consequences on the system and its

environment.

SCADA systems used to be isolated and based

on simple components and proprietary

standards. They are nowadays increasingly

integrating information and communication

technologies (ICT) in order to facilitate

supervision and control of the industrial

process and to reduce costs. This trend induces

more complexity in SCADA systems and

exposes them to cyber-attacks that exploit

vulnerabilities already existent in the ICT

components. Such attacks can reach some

critical components within the system and alter

its functioning causing safety harms.

We associate throughout this dissertation safety

with accidental risks originating from the

system and security with malicious risks with a

focus on cyber-attacks. In this context of

industrial systems supervised by new SCADA

systems, safety and security requirements and

risks converge and can have interactions. A

joint risk analysis covering both safety and

security aspects would be necessary to identify

these interactions and optimize the risk

management.

In this thesis, we give first a comprehensive

survey of existing approaches considering both

safety and security issues for industrial

systems, and highlight their shortcomings

according to the four following criteria that we

believe essential for a good model-based

approach: formal, automatic, qualitative and

quantitative and robust (i.e. easily integrates

changes on system into the model).

Next, we propose a new model-based approach

for a safety and security joint risk analysis: S-

cube (SCADA Safety and Security modeling),

that satisfies all the above criteria. The S-cube

approach enables to formally model CPS and

yields the associated qualitative and

quantitative risk analysis. Thanks to graphical

modeling, S-cube enables to input the system

architecture and to easily consider different

hypothesis about it. It enables next to

automatically generate safety and security risk

scenarios likely to happen on this architecture

and that lead to a given undesirable event, with

an estimation of their probabilities.

The S-cube approach is based on a knowledge

base that describes the typical components of

industrial architectures encompassing

information, process control and

instrumentation levels. This knowledge base

has been built upon a taxonomy of attacks and

failure modes and a hierarchical top-down

reasoning mechanism. It has been implemented

using the Figaro modeling language and the

associated tools. In order to build the model of

a system, the user only has to describe

graphically the physical and functional (in

terms of software and data flows) architectures

of the system. The association of the

knowledge base and the system architecture

produces a dynamic state based model: a

Continuous Time Markov Chain. Because of

the combinatorial explosion of the states, this

CTMC cannot be exhaustively built, but it can

be explored in two ways: by a search of

sequences leading to an undesirable event, or

by Monte Carlo simulation. This yields both

qualitative and quantitative results.

We finally illustrate the S-cube approach on a

realistic case study: a pumped storage

hydroelectric plant, in order to show its ability

to yield a holistic analysis encompassing safety

and security risks on such a system. We

investigate the results obtained in order to

identify potential safety and security

interactions and give recommendations.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

i

To my mother…

ii

iii

Acknowledgments/ Remerciements

I would like to express my sincere appreciation to the jury members: Marc Dacier and Mohamed

Kâaniche for accepting to review this thesis and for their precious feedback on my work. I also warmly

thank the examiners: Eric Totel, Jean-Paul Blanquart and Pascal Poisson, for their interest in my work

and their insightful comments. I am pleased and honored to have presented my work in front of such a

highly qualified jury.

Cette thèse a été effectuée dans le cadre d’un contrat CIFRE (Conventions Industrielles de Formation

par la REcherche) entre EDF R&D et CentraleSupélec (anciennement, Ecole Centrale Paris).

Je souhaite, tout d’abord, exprimer ma profonde reconnaissance à mon directeur de thèse : Marc

Bouissou, et le remercier de m’avoir accompagné pendant cette thèse et avant, lors de mon stage de fin

d’études. Grâce à ses compétences industrielles et académiques, Marc m’a apporté à la fois son expertise

en tant qu’ingénieur senior en sûreté de fonctionnement à EDF R&D; mais aussi les notions théoriques

et formelles associées, en tant que professeur à l’Ecole Centrale Paris. J’ai beaucoup appris de Marc

qui était toujours disponible pour me conseiller, mais aussi pour m’encourager et me conforter pendant

les moments les plus difficiles.

Je tiens ensuite à remercier les trois encadrants industriels coté EDF, que j’ai côtoyés pendant cette

aventure : mes chaleureux remerciements s’adressent en premier à Youssef qui s’est chargé de

l’encadrement de ma thèse à partir de la fin de la deuxième année. Son aide était précieuse et efficace,

car il a pu encadrer mes travaux et m’apporter son recul dans le domaine de la recherche. Je remercie

ensuite Yoran qui m’a accompagné en début de la thèse, pour son expertise en cyber-sécurité, ses

conseils et son soutien. J’adresse enfin mes remerciements à Ludovic, qui a cru en moi dès le début car

c’est grâce à lui que cette thèse a été lancée. Ludovic m’a apporté une aide inestimable avec ses conseils,

tout au long de la thèse, et son recul sur le sujet. Youssef, Yoran et Ludovic, chacun de son coté, m’ont

apporté trois visions des choses aussi différentes qu’enrichissantes.

Les travaux de cette thèse ont été effectués au sein du groupe Infrastructures de Calcul, Communication

et Sécurité du département SINETICS à EDF Clamart. Je commence ainsi par remercier le chef du

département Stéphane Bugat de m’avoir accordé sa confiance pour mener à bien mes travaux de

recherche. Je tiens ensuite à remercier tous les membres du groupe I2D, y compris les anciens: d’abord

les deux chefs de groupe Stéphane Ploix et avant, David Bateman, pour leur confiance, leurs conseils et

leur soutien ; et ensuite tous les autres collègues pour leur accueil et la bonne ambiance de travail. A

plusieurs moments, les échanges que j’ai eus avec eux (Fredéric, Pascal, Christophe, Alia…) étaient

toujours agréables, enrichissants et constructifs. Les pauses café étaient toujours un moment agréable

(surtout quand c’est accompagné de croissants chauds) pour parler de tout, raconter des blagues et rire

ensemble.

J’aimerais également remercier tous les membres du laboratoire LGI: Bill, Bernard, Vincent, Wassila,

Delphine, Sylvie, Corinne, Carole, … et tous les doctorants : Oumaima, Manel, Imen, Elisa, Hakim …

qui ont rendu mes passages au labo, pourtant peu fréquents, tellement agréables et conviviaux.

Je tiens à exprimer toute ma gratitude à mes parents qui m’ont toujours soutenu, avec leurs

encouragements et leur amour, pour aller jusqu’au bout de mes rêves. Je leur dédie cette thèse, qui est

aussi la leur, car c’est grâce à eux que j’en suis là aujourd’hui.

J’adresse mes profonds remerciements à mon cher mari Wassim qui m’a encouragé à faire cette thèse

et qui a participé à son aboutissement. Merci d’être toujours présent à mes côtés pour me soutenir,

m’encourager, me conseiller, et m’aimer…

iv

Je remercie également mes beaux-parents pour leur soutien, ainsi que toute ma famille : mes grands-

parents, mes tantes et mes oncles, ma sœur et mon frère, et mes amis Emna et Mohamed … de m’avoir

toujours encouragé et donné de l’énergie positive.

Je dédie enfin cette thèse à mon adorable fils Yassine, mon trésor, qui est venu au monde pendant la

thèse pour l’agrémenter de bonheur et de défis.

1

Contents

Abbreviations and Acronyms .. 5

Introduction ... 9

Chapter 1 .. 13

1 Safety and Security in ICS: issues & challenges ... 13

1.1 Safety and Security definitions and interdependencies .. 13
1.1.1 Merging safety and security: a common challenge for numerous industries 13
1.1.2 Terminology .. 15
1.1.3 Similarities and differences between safety and security .. 16
1.1.4 Interdependencies between safety and security ... 17

1.2 Industrial Control Systems: specificities and requirements ... 19
1.2.1 ICS: definitions and Enterprise architecture topology ... 19
1.2.2 ICS specificities and security challenges ... 20

1.3 Safety and security standards for Industrial (Control) Systems ... 21
1.3.1 Safety standards ... 21
1.3.2 Security standards .. 22
1.3.3 Safety and Security standards initiatives ... 24

1.4 Conclusion ... 25

Chapter 2 .. 27

2 Design and operational approaches integrating safety and security: state of the art,

classification and critical analysis .. 27

2.1 Classification criteria ... 27
2.1.1 Unification vs. Integration approaches .. 28
2.1.2 Design vs. Operational approaches .. 28
2.1.3 Qualitative vs. quantitative approaches ... 28

2.2 Process-oriented approaches .. 28
2.2.1 Unification approaches .. 29
2.2.2 Integration approaches ... 30

2.3 Model based approaches .. 36
2.3.1 Graphical modeling approaches .. 36
2.3.2 Non-graphical modeling approaches ... 44

2.4 Critical Analysis ... 46
2.4.1 A canonical life-cycle integrating safety and security ... 46
2.4.2 Analysis of the different approaches identified ... 47
2.4.3 Discussion .. 50

Chapter 3 .. 53

3 Modeling safety and security with Boolean logic Driven Markov Processes 53

3.1 Previous work .. 53
3.1.1 Modeling safety with BDMP ... 53
3.1.2 Modeling security with BDMP .. 55
3.1.3 Modeling safety and security with BDMP .. 56
3.1.4 The KB3 workbench .. 56

3.2 Modeling real attacks and complex systems .. 58
3.2.1 Modeling the Stuxnet attack with BDMP .. 58

2

3.2.2 Modeling safety and security interdependencies ... 65
3.3 Comparison of BDMP with the CHASSIS method Modeling ... 72

3.3.1 Preparing the comparison .. 72
3.3.2 Comparing the model elements ... 73
3.3.3 Qualitative comparison of the sequences .. 73
3.3.4 The BDMP model .. 73
3.3.5 The CHASSIS model ... 74
3.3.6 Results of the comparison .. 77
3.3.7 Experiences with applying the two approaches ... 80
3.3.8 Conclusion ... 81

3.4 Discussion on BDMP ... 81

Chapter 4 .. 83

4 The S-cube approach: a model-based approach for SCADA Safety and Security joint

modeling .. 83

4.1 Existing safety and security domain specific languages .. 84
4.1.1 Security domain DSLs ... 84
4.1.2 Safety domain DSLs .. 85

4.2 The S-cube approach: principle and stakeholders .. 86
4.2.1 Principle of the S-cube approach ... 86
4.2.2 Stakeholders... 87

4.3 The S-cube Knowledge Base ... 90
4.3.1 Rationale .. 90
4.3.2 Metamodel ... 93
4.3.3 Taxonomy of attacks ... 95

4.4 Qualitative aspects in the S-cube KB ... 99
4.4.1 Failure modes and repair ... 99
4.4.2 Attack steps.. 99
4.4.3 Attack and failure scenarios generation ... 101

4.5 Quantitative aspects in the S-cube KB ... 103
4.5.1 Safety metrics .. 103
4.5.2 Security metrics ... 105
4.5.3 Discussion .. 111

4.6 Implementation & Tool chain .. 111
4.6.1 The Figaro language .. 111
4.6.2 Tool chain .. 114

4.7 Conclusions .. 116

Chapter 5 .. 117

5 S-cube application on case studies... 117

5.1 Modeling corporate networks .. 117
5.1.1 Description of the case study ... 117
5.1.2 Qualitative and quantitative risk analysis .. 120
5.1.3 Conclusions and enhancement ... 122

5.2 Modeling a hydroelectric ICS: variant 1 .. 122
5.2.1 Overview on the Taum Sauk upper reservoir failure ... 123
5.2.2 Description of the case study architecture ... 124
5.2.3 The graphical model .. 125
5.2.4 Pure safety risk analysis .. 127
5.2.5 Safety and security joint risk analysis ... 129

3

5.2.6 Conclusions on case study variant 1 .. 133
5.3 Modeling a hydroelectric ICS: variant 2 .. 133

5.3.1 The graphical model .. 134
5.3.2 Pure safety risk analysis .. 135
5.3.3 Joint safety and security risk analysis .. 135
5.3.4 Conclusions on variant 2 ... 138

5.4 Comparison between the two variants ... 138
5.4.1 Pure safety analysis ... 139
5.4.2 Joint safety and security analysis ... 139
5.4.3 Safety and security interdependencies ... 139

5.5 Conclusion ... 140

Chapter 6 .. 141

6 Conclusions & Perspectives ... 141

6.1 Conclusions .. 141
6.2 Perspectives .. 143

Annex 1: BDMP models of the Stuxnet attack ... 145

Annex 2: Individual description of classes .. 146

Annex 3: Assumptions on the quantitative metrics for the use case: pumped storage plant 151

References ... 153

4

5

Abbreviations and Acronyms
BBN Bayesian Belief Networks

BDMP Boolean logic Driven Markov Processes

BPM Basic Parametric Model

DBPM Dynamic Basic Parametric Model

CCF Common Cause Failure

CHASSIS Combined Harm Assessment of Safety and Security for Information

Systems

COTS Commercials Off The Shelf

CVSS Common Vulnerability Scoring System

D-MUC Diagrammatical MisUse Case

DoS Denial of Service

DSL Domain Specific Language

D-UC Diagrammatical Use Case

EBIOS Expression des Besoins et Identification des Objectifs de Sécurité

FMEA Failure Mode and Effects Analysis

FMVEA Failure Mode, Vulnerabilities and Effects Analysis

FSD Failure Sequence Diagram

HAZOP HAZard and OPerability

ICS Industrial Control Systems

ICT Information and Communication Technologies

IEC International Electrotechnical Committee

ISMS Information Security Management Systems

ISO International Organization for Standardization

IT Information Technologies

KB Knowledge Base

MTTF Mean Time To Failure

MTTS Mean Time To Success

MUC MisUse Case

MUSD MisUse Sequence Diagram

NIST National Institute of Standards and Technology

OS Operating System

PERA Perdue Enterprise Reference Architecture

PDF Probability Distribution Function

PRM Probabilistic Relational Models

SCADA Supervisory Control And Data Acquisition

S-cube SCADA Safety and Security joint modeling

SD Sequence Diagram

SIL Safety Integrity Level

SIS Safety Instrumented System

SPN Stochastic Petri Nets

SSI Safety Security Interdependencies

T-MUC Textual MisUse Case

TTC Time To Compromise

TTF Time To Failure

TTFC Time To First Compromise

TTS Time To Success

T-UC Textual Use Case

UML Unified Modeling Language

6

7

“All models are wrong, but some are useful”

George E. P. Box (1919-2013)

“Tous les modèles sont faux, certains sont utiles”

George E. P. Box (1919-2013)

8

9

Introduction

Context

Industrial systems like power plants, industrial factories, airplanes or cars address the daily and vital

needs of society. Their safety has been for a long time given a careful consideration as their failure or

malfunction can engender adverse consequences on humans and the environment. Industrial Control

Systems (ICS) offer the necessary means to control and supervise these critical systems and

infrastructures.

Traditional industrial control systems (ICS) were based solely on mechanical and electrotechnical

devices and proprietary standards which were well mastered. These systems have however become

expensive to deploy, maintain and operate, and it is becoming difficult to follow the innovation trend in

the industrial context. To address these challenges, new information and communication technologies

are being increasingly integrated into modern control systems: radio-based services from commercial

providers, commercial off-the-shelf (COTS) products (e.g., Windows operation systems), TCP/IP based

communications, etc. This migration towards standardized communication technologies and open

protocols has facilitated the deployment of highly connected systems and enabled remote control and

supervision of infrastructures. For instance, Supervisory Control and Data Acquisition (SCADA)

systems are largely deployed in various industries. Although this has increased efficiency and reduced

costs for industrial operators, the overall infrastructures have become vulnerable to external

malevolence. Indeed, with their increasing complexity and interconnection, modern industrial control

systems are exposed to new security-related threats like cyber-attacks.

We adopt in this dissertation the following definitions for safety and security (cf. section 1.1.2 for

terminology). We associate safety with accidental risks originating from the system that could result in

unacceptable consequences on the system’s environment. Security is related to malicious risks and we

are mainly interested in cyber-security.

As a matter of fact, since the Stuxnet attack [1] has targeted the Iranian nuclear enrichment facilities and

gained a lot of attention from media and press, the number of cyber-attacks targeting industrial facilities

has considerably increased. According to [2], attacks doubled on SCADA systems in 2014 compared

with 2013. Software vulnerabilities and external networks can be back doors for attacker to access

industrial control systems, reach some critical components within the system and alter its functioning

causing potential safety-related harms.

10

Problem

For a long time, much attention was focused on safety concerns related to highly critical systems with

large impacts on their environments. However, only accidental components failures or software errors

were traditionally addressed in safety analyses.

Today, in this context characterized by the migration of industrial infrastructures towards digital control

systems, system safety can also be compromised by security breaches and electronic attacks. It is

consequently no longer sufficient to address accidental threats of such systems, threats of intentional

origin need to be covered as well.

As Information and Communication Technologies (ICT) have recently been integrated into Industrial

Control Systems, security communities working on the security of industrial information systems are

also relatively recent.

Although both safety and security communities deal with risks and share the same goal of protecting

industrial infrastructures, they are still working separately. Yet, for industrial infrastructures having

safety issues and being supervised and controlled by modern ICS such as SCADA, safety and security

requirements and risks converge and can have mutual interactions [3]. Indeed, security related

requirements and risks can influence the system safety and inversely safety related requirements and

risks can influence the system security.

To address these challenges, a joint risk analysis framework considering both safety and security aspects

has become crucial. It enables to cover exhaustively risks related to safety and security and identify their

potential interdependencies. It consequently conditions a thorough and optimal risk management as well

as cost and resource optimization.

Contributions

In this thesis, we propose a new model based approach that we called S-cube, for safety and security

joint modeling for Industrial Control Systems in general and SCADA based ICS in particular. The S-

cube (for SCADA Safety and Security modeling) approach enables to model an industrial system

architecture with the associated safety and security aspects and to automatically generate the possible

risk scenarios that lead to an undesirable event with safety issues. It can be applied either in the design

phase of new safe and secure systems or in the operational phase of existing systems to optimize and

master their safety and security.

In addition to this main contribution, this thesis incorporates other contributions which we summarize

as follows:

 The classification of existing approaches combining safety and security for industrial control

systems, with a critical and comparative analysis. This classification led us to investigate first

the BDMP (Boolean logic Markov Process) approach for safety and security risk modeling;

 The application of the BDMP approach on realistic use cases and its comparison with the

CHASSIS (Combined Harm Assessment of Safety and Security for Information Systems)

method. The limits of the BDMP and CHASSIS approaches have been identified which led to

the development of the S-cube approach;

 The implementation of the S-cube approach;

 The application of the S-cube approach on realistic use cases;

This thesis will be structured as follows: the first chapter will address safety and security issues and

challenges in new industrial control systems. The second chapter gives a survey of approaches

11

integrating safety and security and highlights their main limitations. Chapter 3 investigates the Boolean

logic Driven Markov Processes formalism, its application on real case studies and compares it to another

complementary approach (CHASSIS). The S-cube approach is depicted in Chapter 4 where its principle

and implementation are described. Chapter 5 illustrates S-cube on different case studies and underlines

its different uses. Chapter 6 concludes finally this dissertation and gives perspectives.

12

13

Chapter 1

1 Safety and Security in ICS: issues & challenges

This first chapter addresses first the new security risks related to modern Control Systems in different

industries and the safety challenges they result into. It also clarifies the definitions of safety and security,

their similarities and differences and their possible interdependencies. Secondly, the Industrial Control

Systems specificities and requirements are outlined. Thirdly, we present some emergent standardization

initiatives that consider safety and security coordination for ICS.

1.1 Safety and Security definitions and interdependencies

In the recent years, there has been an increase in both the frequency and seriousness of cyber-attacks

targeting critical infrastructures (e.g. Stuxnet in 2010 and Flame in 2012). Moreover security experts

regularly demonstrate control systems vulnerabilities at conferences such as Black Hat or DefCon. For

instance, the presentations entitled “Compromising Industrial Environments from 40 Miles Away” and

“Out of Control: Demonstrating SCADA Exploitation” given during the BlackHat 2013 conference [4]

are two recent and representative examples, among numerous others. The result is increased awareness

of new security-related risks that threaten industrial infrastructures and of the growing importance of

considering safety and security jointly.

1.1.1 Merging safety and security: a common challenge for numerous industries

Numerous industrials have been affected by the modernization and digitalization of their control

systems. These industries include manufacturers that produce critical systems that directly impact their

users such as cars, airplanes, trains, medical implants, etc. We find also industrials that hold large

infrastructures such as energy power plants, oil refineries, sewerage, etc.; that have safety issues.

Although different, all these industries share today the same challenge of protecting their critical systems

from security risks that can engender safety impacts. The following paragraphs provide some domain-

specific considerations or citations.

14

The aerospace industry is the pioneer domain in which safety and security risks have been addressed

in an integrated manner [5]. A wide range of software and hardware contribute to high levels of

equipment interconnectivity in new aircraft platforms, associated with both aircraft and the operating

environment; these include highly critical items associated with controlling aircraft, non-critical items

that inform and entertain the passengers, and others that help airlines operate and maintain their fleets

[6]. Moreover, the deployment of Ethernet-based networks and COTS into aerospace systems has

increased risks of intentional misuse of aircraft information systems and made them targets of security

breaches that could have an impact on aircraft safety and lead to human losses.

In [7], Kosher et al. outlined recent dramatic changes in the automotive industry: “Modern automobiles

are no longer mere mechanical devices; they are pervasively monitored and controlled by dozens of

digital computers coordinated via internal vehicular networks. While this transformation has driven

major advancements in efficiency and safety, it has also introduced a range of new potential risks.” A

thorough review of the associated attack potential, including safety related vulnerabilities, is provided

in [8][9].

Smith et al. [10] described major evolutions in the railway industry, especially the migration to

remotely controlled trains and the trend towards radio transmissions, or communications based train

control (CBTC), which have created new safety and security challenges.

Novak et al. described new trends in the construction industry related to building automation and

control systems (BACS), such as remote access via the internet and shared use of networks for advanced

control operations such as safety, security, HVAC (heating, ventilation and air conditioning) and other

functions. “These trends break up the isolated structure of existing networks and therefore introduce

new risks and threats to working systems” [11].

In the oil and gas industry, authors of the SINTEF report [12] emphasized external vendors’ growing

need for remote access to safety instrumented systems (SISs) in order to ensure the safety of offshore

installations. However, remote access requires the use of different networks, including the Internet,

which decreases security and threatens SISs. Likewise, Johnsen [13] highlighted the need to improve

safety and security in distributed process control systems used in the oil and gas industry. This need

emerges from the increasing connection of SCADA systems to networks and their migration towards

standardized information and communication technologies which increases their exposure to security

threats.

In the electricity industry, complex systems control the generation of nuclear, thermal, and renewable

(wind, hydraulic) power. In the different electricity domains: production, transport network and

distribution, information and communication technologies (ICT) are being deployed into the control

systems that use open protocols and COTS.

For electricity production, new nuclear reactors like European Pressurized Reactor (EPR) are

modernizing their control systems and hydroelectric plants can be remotely supervised or even

controlled.

The evolution of electricity distribution networks towards more energy efficient and environmentally-

friendly solutions also has radically changed infrastructures and their associated control systems. Smart

grids have evolved in response to the development of decentralized wind and photovoltaic production,

the emergence of new uses of electricity (e.g., to power vehicles), the installation of smart meters to

ensure data collection and communication with substations, the deployment of sensors and

communication devices for better network management, etc. While smart grids have facilitated network

management and energy optimization, there has also been an alarming convergence between safety and

security stakes due to digitalization and the growing interconnections within these new infrastructures

[14]. New situations in which cyber security requirements and safety issues would affect the same

systems must be considered when deploying these systems.

15

To meet this increasing need for securing critical infrastructures against cyber-threats, some European

and international collaborations have been formed among industrial and academic partners to develop

new safety and security solutions. Security Safety Modeling (SESAMO), for instance, is a European

project completed in 2015 that involved 20 academic and industrial partners from the aerospace,

automotive, energy, rail transportation and medical domains. The SESAMO partners have addressed

safety and security convergence in embedded systems by investigating different methodologies for

mastering interdependencies between safety and security and ensuring compatibility. The ultimate goal

of this project was to develop an overall methodology and toolkit for integrating safety and security and

to apply them to cases that are representative of industrial infrastructures. Some public deliverables

[15][16] are on the project website1.

The meanings of safety and security may vary according to the context and the technical communities.

We clarify in the following section the terminology of these two terms and the definitions adopted in

the remainder of this dissertation in order to avoid ambiguities.

1.1.2 Terminology

Surprisingly, the definitions of the terms safety and security [17] vary widely in different contexts and

technical communities. In some languages, such as German and Spanish, the same word is used for both

terms: “Sicherheit” resp. “Seguridad”. However, even in languages that offer two distinct words, the

meaning of each term varies considerably from one context to another [18]; for example, security and

safety mean different things to electrical engineers than to members of the nuclear community. As a

consequence, in order to better define the scope, motivations and objective of this paper, it is of

paramount importance to clearly define exactly what is meant by safety and security in this review.

Both safety and security deal with risk. According to ISO 31004 [19] risk is defined as “the effect of

uncertainty on objectives, regardless of the domain or circumstances, therefore an event or a hazard (or

any other risk source) should not be described as a risk. Risk should be described as the combination of

the likelihood of an event (or hazard or source of risk) and its consequence.” According to this standard,

two important parameters are considered for the risk definition: the source of risk and its consequence.

The source of risk can be either accidental or deliberate, and the consequences can be of different types:

financial, environmental, human, etc.

Beyond their primary objective of controlling and supervising the industrial process, Industrial Control

Systems aim also at protecting the industrial infrastructure, its users and the environment. They are

consequently required to be highly dependable. Dependability is a more general concept associated to

critical systems. Avizienis et al. [20] defined system dependability as its ability to deliver a service that

can justifiably be trusted. The dependability attributes traditionally addressed are called the RAIMS:

Reliability, Availability, Integrity, Maintainability, and Safety.

 Reliability: continuity of the service;

 Availability: readiness to deliver the service;

 Integrity: absence of improper system alteration;

 Maintainability: ability to undergo modifications and repairs;

 Safety: absence of catastrophic consequences on the system users and the environment.

Avizienis et al. [20] present in Figure 1 dependability as an integrated concept that encompasses most

security attributes. Like dependability, security includes integrity and availability attributes, but requires

additionally confidentiality which means the absence of unauthorized disclosure of information.

1 http://sesamo-project.eu/documents

16

Figure 1: Dependability and security attributes

Availability and integrity as addressed in traditional dependability analyses have been dealing with

“accidental” alteration or absence of data that are associated to errors and failures of systems

components. Considering in addition security into dependability analyses, data alteration or absence is

associated to “unauthorized” actions related to malevolence.

We will be studying in the remainder of this thesis risks that lead to safety issues, i.e. which could result

in unacceptable consequences on the system’s environment such as human losses, heavy material loss,

and nature damage (also called undesirable events). These risks can be either of accidental or malicious

origin. In our industrial context, we associate Safety with risks having accidental origins. Security is

associated to risks originating from malicious attacks2. These attacks can be accomplished physically

(through local access to the system) or by cyber means (through local or remote access to the system).

We exclude physical attacks from the scope of this survey (unless specifically mentioned); therefore,

security in this paper refers to cyber security and protection from cyber-attacks.

We explain in the following sections the main similarities and differences between safety and security

and the rationale for studying interdependencies between them.

1.1.3 Similarities and differences between safety and security

Safety and security, although distinct, share many commonalities. Eames et al. [21] argued that both

safety and security deal with risks, result in constraints, involve protective measures, and create

requirements. These similarities indicate that some of the techniques applicable to one field could also

be applicable to the other. “Either accidents or attacks may eventually cause harm to the system assets

(in terms of people, property, environments or services)”[22].

Similarities between safety and security have also been recognized by many authors

[23][24][25][26][27]. Thus, some authors have explored the proposition that safety and security are a

duality, and that much could be gained by one adopting the knowledge, understanding, tools and

techniques of the other, and vice versa [25][26]. To highlight these similarities, Eames and Moffett [21]

give the general steps of risk analysis common for safety and security : starting by the investigation of

the system, then the qualitative and quantitative analysis and finally the definition of the appropriate

countermeasures.

Although safety and security share many similarities, it is important to emphasize that each discipline

has its own particularities. The main difference between safety and security (as we define them) is the

origin of risk: safety considers hazards (i.e., how the system may harm the environment due to system

failure or some combination of accidental conditions), while security considers threats and focuses on

how potential attacks may impact the system’s assets and its operation due to vulnerability [22].

The differences between safety and security likewise are reflected by differences in the tools, standards

and the way in which risk management is conducted in the two domains, especially during the risk

assessment phase. Assessing a security threat is radically different from assessing a safety hazard. In the

2 We do not intend to provide absolute definitions of the terms safety and security; our aim is simply to have a single word for

each central manipulated concept in the context of this report.

17

first case, the sources of the threats to be assessed are usually not well-known by the analyst, and cover

an extremely broad range of possible scenarios. In the second case, the characteristics of the hazards are

more accessible, and the number of scenarios to be taken into consideration may also be reduced to a

set that is restricted, but sufficient to be considered significant. This is immediately noticeable in

quantitative approaches when trying to quantify safety and security metrics using probabilities: safety

hazards are relatively stable over time and feedback from analysts on previous accidents is therefore

reliable, while security attributes are less predictable [28][29] and depend on many factors (e.g., attacker

profile, skills, motivation, etc.), which makes it more difficult for a security analyst to assess and

quantify possible scenarios. The use of probabilities in quantitative approaches is widely adopted in the

safety field, whereas such approaches are not always accepted in the security field [29].

A more extensive discussion on the differences and similarities between safety and security is provided

in [26]. We provide in Section 1.3 an overview of standards specific to each domain in order to show

how methods of risk analysis and treatment differ between safety and security communities.

We highlight the fact that in the context of industrial control systems, neither a pure security approach

nor a pure safety approach can mitigate risks to the physical infrastructure of the system. Security

functions3 are not meant to cope with physical hazards and failures; likewise, safety functions4 might

not detect and respond to attacks that target the digital components of the system. We infer that safety

and security are complementary and should be treated jointly to improve risk management.

1.1.4 Interdependencies between safety and security

Interdependencies between safety and security are studied by examining how requirements and

measures from one field may impact the other field.

For a long time, safety and security have been examined independently by separate and distinct

communities. However, with the increasing integration of information technologies into industrial

control systems, such communities are becoming increasingly aware of the possible dependencies

between safety and security issues and the need to treat both disciplines jointly.

Novak et al. [30] demonstrated that when safety and security measures are considered jointly, synergy

can be identified and leveraged. These authors first analyzed separately Safety goals and Security goals

and then compared security goals with the safety procedure. This comparison results into a common

procedure between both disciplines that ensures integrity verification, authentication and authorization

[11]. Dependencies between them are also outlined, as safety can only be assured by considering the

safety-critical system as a whole, meaning that software, which is subject to security threats, must be

included in the process.

Likewise, Reichenbach et al. [31] stated that concepts in the analysis and development phase are similar

and can be reused, which would eliminate overlaps and redundant work; thus, a process including both

safety and security in a harmonized toolkit could ease development. Similarly, in several papers

[3][26][32], Pietre-Cambacedes et al. illustrated the advantages of using models encompassing safety

and security when identifying and characterizing risk scenarios.

Novak et al. [33] noted drawbacks of separating safety and security when related features are developed

and integrated without regard for their dependencies. This separation may increase costs,

implementation time and complexity, and dramatically reduce performance. The authors asserted that

safety and security issues ought to be considered not only during requirement specification, but also

during design, operation, maintenance, and decommissioning (i.e., over the complete lifecycle).

3 In our context, security functions are system-level processes that protect information and resources from attacks.
4 In our context, safety functions are processes implemented and delivered by safety devices and measures put in place in

order to protect people and the system environment from physical impacts of accidental events (e.g., fire alarms)

18

In order to better understand the benefits of simultaneously considering safety and security throughout

a system’s lifecycle, it is important to closely examine the various kinds of interdependencies that can

exist between safety and security. Extending previous works [21][34][30], Pietre-Cambacedes

summarized [3] safety-security interactions into four kinds:

- Conditional dependency: Fulfillment of safety requirements conditions security or vice-versa.

- Mutual reinforcement: Fulfillment of safety requirements or safety measures contributes to

security, or vice-versa, thereby enabling resource optimization and cost reduction.

- Antagonism: When considered jointly, safety and security requirements or measures lead to

conflicting situations.

- Independency: No interaction.

These four kinds of interactions cover and extend the different relationships identified in other papers.

We discuss and illustrate each kind of interaction with an example:

- Conditional dependency: This interaction is present in the context of many, if not all digital

systems that control and monitor safety-critical industrial processes. For example, Smith et al.

[10] emphasized the security requirements of railway signaling to guarantee train safety. In this

context, malicious changes to sensor data or automated device settings may prevent safety

systems from protecting an industrial facility in case of an accident. One example of safety

conditioning security would be a crisis situation following an accident in which safety functions

would prevent efficient intrusion detection because of preemption and priorities on human-

machine interfaces and security-related alarms.

- Mutual reinforcement: In some cases, security and safety strengthen each other. Identifying such

situations can help optimize resources and even eliminate certain overlaps. Novak [34] identified

such synergy in the use of message authentication codes (MACs), a security measure used for

authentication purposes, to replace cyclic redundancy checks (CRCs), a safety measure used for

transmission error correction. MAC can replace CRC, since the security measure also ensures a

safety role by counteracting data integrity errors and uses stronger mechanisms than CRC with

respect to malicious modifications.

- Antagonism: Various authors [21][28][35][36] have used the example of an exit door in a limited-

access facility and identified a conflict between safety and security designers. The former

addresses fire hazards and infer that the door must be kept unlocked in case of fire, whereas the

latter addresses potential attacks and infers that the door must be kept locked to prevent

unauthorized persons from accessing the facility. A similar and somewhat humorous example was

reported by Sun et al. [35]: “A European luxury car manufacturer noticed that one of its models

was a disproportionately likely target for theft. The mystery was solved when an apprehended

thief revealed that this model of car easily opened even when its doors were locked. When

jumping on the roof of the car, doors would unlock. The designers of the car included a safety

feature whereby the doors of the car would unlock if the car was involved in an accident and

rolled over. To check for roll-over situations they verified if enough pressure/weight was being

applied on the roof.”

- Independence: At first glance, this type of relationship might not seem as important as the other

three; in fact, identifying cases of independence between safety and security is valuable for several

reasons. First, it can support an objective view of shortcuts that are too often taken, assuming

incorrectly that a security risk will "naturally" be detected by a safety risk assessment and resolved

as part of the corresponding measures, or vice versa. In some cases, a safety measure will not

have any effect on the system's level of security (and vice versa). For example, some approaches

to redundancy may have clear benefits for safety, but no effect on security, since vulnerabilities

may simply be duplicated.

19

1.2 Industrial Control Systems: specificities and requirements

We provide in this section an overview on Industrial Control Systems and their safety and security

requirements. We particularly underline the specificities related to industrial security compared to

security of Information Technology (IT) systems.

1.2.1 ICS: definitions and Enterprise architecture topology

We first define what we call ICS and then give an overview on the Enterprise Architecture topology

encompassing these control systems.

The term ICS covers a large variety of control systems among which we find Supervisory Control and

Data Acquisition (SCADA) systems used generally for systems with a wide geographical range.

We use in the remainder the term ICS to designate whatever control system used to control an industrial

system and the term SCADA particularly for digital systems used to supervise and control industrial

infrastructures.

The Perdue Enterprise Reference Architecture (PERA) provides a reference model for Computer

Integrated Manufacturing (CIM) [37] that divides the enterprise architecture in different layers based on

organizational hierarchy.

Inspired from PERA, IEC 62264-1 [38] provides a model for the enterprise that split the architecture

into five key levels5, based on functional hierarchy:

 Level 0: the physical process;

 Level 1: functions involved in sensing and manipulating the physical process;

 Level 2: functions involved in monitoring and controlling the physical process;

 Level 3: functions involved in managing the work flows to produce the end-products;

 Level 4: functions involved in business-related activities needed to manage the manufacturing

organization.

This functional decomposition can be mapped to the real enterprise architecture where components

ensuring these functionalities are placed in the corresponding level. Devices that are directly involved

in the industrial control process are particularly located at levels 1 and 2. Brun et al. [39] depicts in

Figure 2 the typical system components of modern control architectures (Level 0 is not presented as it

depends on the nature of the industrial system).

Given the evolution of the industrial control infrastructures and the integration of advanced technologies,

we can find intelligent sensors that ensure both the functionalities of measurement and process control;

and can therefore be considered to belong to levels 1 and 2. Particularly, in smart grids, communicating

smart sensors can be used to control the process of electricity distribution. Contrarily to the classical

hierarchical architecture, we are talking about “flat” architecture where control is distributed between

the different components.

We give in the following sections an overview on ICS specificities and underline the differences

between securing traditional IT systems and securing ICS.

5 This standardized decomposition can, however, differ between different industries and communities.

20

1.2.2 ICS specificities and security challenges

As Industrial Control Systems integrate new Information and Communication Technologies (ICT)

traditionally used in Management Information Systems, they consequently inherit of their

vulnerabilities. However ICS have their own characteristics that render their security different from

securing traditional IT systems.

We highlight in the following ICS specificities and show the security challenges derived [40], [41]:

- Time-criticality: control systems monitor generally real-time processes. This requires data freshness

(e.g., sensor measures are only valid in their designated time) and system responsiveness (e.g., an

actuator should execute in real-time the controller orders). Replay-attacks targeting industrial

processes enable typically to violate this property. This requirement is not necessary in traditional

IT systems were orders can wait for a certain time before being executed.

- Availability: control systems require high availability as they generally control industrial process

that are continuous. Unexpected ICS outages can cause unacceptable losses ranging from economic

losses and equipment damage, to human losses.

Unlike IT systems, software updates are not systematically done for ICS as they require to restart

the systems. ICS maintainability actions should be scheduled in advance in order to minimize their

impacts on the industrial process continuity.

Figure 2: Typical components of modern control architectures [39]

- Fault-tolerance: requires the control systems being capable to continue operating properly in the

presence of faults and components failures. The equivalent security property is called intrusion-

21

tolerance (also called graceful degradation) and requires to keep the attack impact local without

escalating into a full system cascading event.

These ICS characteristics that differ from traditional IT systems imply different security risks and

priorities. Security requirements for traditional IT systems, ordered with decreasing priority are

respectively Confidentiality, Integrity and Availability (CIA). This priority order is inversed when it

comes to control systems (AIC):

- Availability: control and process data should always be available to guarantee the good

execution of the industrial process;

- Integrity: control and process data (generated, transmitted, displayed and stored) should be

genuine and intact;

- Confidentiality: data confidentiality is desirable in the industrial context but not of paramount

importance. Unlike availability and integrity problems, data disclosure should not induce safety

related issues, but may impact the enterprise image.

Unlike traditional IT systems, ICS are on the first frontier facing human lives and ecological

environment. Security properties and requirements applied for IT systems are consequently not

completely adapted to control systems and need to be adjusted taking into consideration ICS

specificities.

Pietre-Cambacedes et al. [42] give a list of myths and realities about ICS. For example, here are four

myths:

- Industrial control systems are isolated, not concerned by cyber-attacks and are not

understandable by attackers

- Cyber-security incidents do not impact the industrial process

- Classical antiviruses and firewalls are sufficient to protect our systems

- System providers completely master the security of their products

Since safety and security have been for a long time treated separately, the standards related to each

discipline have also been distinct. Nevertheless, new emergent standardization initiatives are working

on safety and security coordination for control systems of different industries. The next section is

dedicated to these standards.

1.3 Safety and security standards for Industrial (Control) Systems

We first give an overview on some safety (only) and security (only) specific standards that are

commonly used in the industrial context, and that are the basis for some of the approaches identified in

Chapter 2. We next highlight the new standardization works that consider safety and security

coordination for industrial control systems.

1.3.1 Safety standards

We recall the main principles of the generic safety standard IEC 61508, from which different industries

derived their own standards (e.g., IEC 61513 for the nuclear industry, IEC 61511 for industrial

processes, and ISO 26262 for the automotive industry). It covers the complete safety lifecycle including

the analysis, realization and operation phases.

IEC 61508, a standard for the functional safety of electrical/electronic/programmable electronic safety-

related systems [43], covers important aspects that must be addressed when electrical, electronic, and

programmable devices are used in connection with safety functions. The strategy of the standard is to

derive safety requirements from a hazard and risk analysis and to design the system to meet those safety

requirements, taking all possible causes of failure into account. In essence, all activities related to safety

are managed in a planned and methodical way, with each phase having defined inputs and outputs [23].

The standard considers all phases in a safety lifecycle, accompanying the product lifecycle through

22

initial concept, design, implementation, operation and maintenance, and decommissioning. Figure 3

illustrates the overall safety process associated with this standard.

IEC 61508 specifies a set of methods, measures and procedures that must be respected for claiming a

certain safety integrity level (SIL). The standard does not directly address security requirements, but

recognizes that if a malevolent or unauthorized action is identified in hazard analysis, a security threat

analysis should be carried out. It points towards the IEC 62443 series for dealing with cybersecurity

issues (presented in the following paragraph).

Figure 3: Overall safety lifecycle of IEC 61508 [39]

1.3.2 Security standards

We present in this subsection some security standards that are highly recognized for security design and

evaluation.

23

ISA 99/IEC 62443 is a series of security standards for industrial automation and control systems. In

particular, it considers the security of safety systems [31]. For example, to fortify safety instrumented

system (SIS) connectivity, Part 2-4 of the standard specifies security measures such as:

- Assuring communications integrity through hard-wiring or logical separation of safety-related

communications from the other network control communications;

- Isolating the SIS from layer 3 (network layer) connections;

- Preventing data connection between the distributed control system and the SIS; and

- Restricting allowed functions of the engineering work station (used for maintenance purposes)

and its interaction with the SIS.

IEC 62645 is entitled “Nuclear power plants – instrumentation and control systems – requirements for

security programs for computer-based systems.” It was published in 2014 and provides guidance for the

development and management of effective computer security programs at nuclear power plants for

instrumentation and control (I&C) systems. The standard defines a graded approach to cyber security

by assigning a security level to each I&C system based on the impact of an attack on safety and

performance. I&C systems are grouped into security zones [44][45].

The following security standards are related to information systems in general and do not take

consequently into account the constraints of industrial control systems. They are however used by

security engineers of industrial computing.

Common Criteria/IEC 15408 is an international standard that establishes the general concepts and

principles of IT security evaluation and specifies the general evaluation model. It is meant to be used as

the basis for evaluating the security properties of IT products. It addresses the assurance levels applied

to security management and the related criteria for evaluating and claiming such assurance levels.

ISO/IEC 27001 is an international standard for Information Security Management Systems (ISMS)

[46]. It provides a lifecycle model for establishing, implementing, operating, monitoring, reviewing,

maintaining and improving an organization’s ISMS. This lifecycle model, called “Plan-Do-Check-Act”

(PDCA) and shown in Figure 4, illustrates the main actions of the ISMS process that takes information

security requirements as inputs and produces information security outcomes that meet these

requirements.

Figure 4: PDCA model applied to ISMS processes [46]

This standard is the top-level document of a series of standards that includes ISO/IEC 27005 [47], which

specifically addresses information security risk management. It provides a structured, systematic and

24

rigorous process for everything from analyzing risks to creating the risk treatment plan. This process is

illustrated in Figure 5. Unfortunately, these standards do not mention the safety of the analyzed system.

The EBIOS methodology has been formalized and adopted by the French National Agency of

Information Systems Security (ANSSI). This methodology has been updated in order to comply with

ISO/IEC 27005 and proposes a way to assess and treat risks. It consists of identifying the assets to

protect and performing a hazard analysis on each asset by identifying possible attack scenarios,

evaluating related risks, and proposing security measures. The methodology is primarily intended to be

used to identify security related risks for information systems, but enables the identification of some

safety related risks.

Figure 5: Information security risk management process from ISO/IEC 27005 [47]

1.3.3 Safety and Security standards initiatives

In this section, we describe some emergent standardization initiatives that consider safety and security

coordination for industrial control systems.

25

ISA-99 WG7 is a working group established within the ISA-99 committee to address issues related to

the safety and security of industrial automation and control systems. The purpose of this working group

is to extend the existing safety lifecycle to consider cyber security aspects at different phases of the

industrial process lifecycle (i.e., design, implementation, commissioning, and maintenance) in order to

ensure a reliable, efficient, and safe plant.

IEC TC65 AHG1 is a recently formed ad-hoc working group of the IEC, which intends to develop a

“Framework Toward Coordinating Safety and Security”. It is attached to the same technical committee

as the one developing the IEC 61508 and IEC 62443 standards, creating a promising opportunity for the

safety and cybersecurity experts involved in their development to meet and actually develop the targeted

framework.

IEC 62859, a future standard derived from IEC 62645 (cf. Section 1.3.2), is entitled “Nuclear power

plants – instrumentation and control systems – requirements for coordinating safety and cyber security.”

It aims to establish requirements and recommendations that optimize and coordinate design and

operational efforts with respect to safety and cyber security, enhance the identification and resolution of

potential conflicts between these aspects throughout the I&C system lifecycle, and aid in the

identification and leveraging of potential synergies between safety and security [44]. Although this

standard concerns the nuclear domain, many other industrial sectors have shown concrete interest in

coordination between safety and cyber security. We mention, for instance, initiatives in the aerospace

industry through the SESAR project [6] and in air traffic control management [48].

DO-326/ED-202, first published in 2010 and revised in 2014, is a standard in the avionics domain

entitled “Airworthiness Security Process Specification”. It is intended to augment current guidelines for

aircraft certification to address information security threats to aircraft safety. Successive versions of this

document have addressed the positioning of the security assessment process with respect to the system

development phase and the safety assessment process in different ways. First, in its first published

version (2010), security activities were embedded in safety activities with a bidirectional exchange with

the system development phase; in a 2013 draft of its revision (DO-326A draft), security activities were

decoupled from safety activities, but with mutual feedback between them; in the revision finally

published in 2014 (DO-326A), security activities were further distanced from safety activities with

unique feedback from safety to security. The latter does not inform the former directly. The hesitations

about DO-326 result from difficulties associated with putting the "ideal" process that was initially

devised into practice.

1.4 Conclusion

We clarified first in this chapter the meanings of the terms safety and security as used in the context of

this work and underlined their similarities and differences. We also stressed the potential

interdependencies between safety and security, in terms of risks and requirements, which can be of a

synergetic or conflictual kind. The second part of this chapter addressed these notions in the context of

Industrial Control systems (ICS): first by highlighting the specificities and the new challenges of these

systems and secondly by identifying the new standardization initiatives that aim at coordinating safety

and security issues for critical systems.

We provide in the next chapter a classification of existing approaches that consider safety and security

issues for industrial systems. We further give a critical analysis of these approaches and identify their

limitations.

26

27

Chapter 2

2 Design and operational approaches integrating

safety and security: state of the art, classification

and critical analysis

With the growing awareness that safety and security analyses should be coordinated in risk assessment

for complex systems, some members of industry and academia have collaborated and initiated work to

bridge the gap between safety and security. As illustrated in Section 1.3.3, some industrial sectors

particularly exposed to this issue have already started standardization processes; however, there exist

numerous other initiatives, either more isolated or more exploratory which deserve interest and should

feed in efforts towards a better coordination between safety and security. We describe in this section the

different approaches that propose processes or methodologies in which safety and security concerns are

jointly considered [49]. These approaches are classified according to the criteria described in Section

2.1; Table 2 summarizes this classification. We provide next in Section 2.4 a critical and comparative

analysis of these approaches in which we discuss the advantages and drawbacks of each approach.

2.1 Classification criteria

The different approaches identified in the state of the art have been classified in two main categories:

process-oriented approaches and model-based approaches, further refined according to three criteria

detailed in paragraphs 2.1.1 to 2.1.3.

Process-oriented approaches: propose new lifecycles and methodological processes that consider

safety and security at a very macroscopic level of system design or risk evaluation. They rely on

requirements generally specified by safety and/or security standards (cf. Section 1.3) and provide

generic descriptions of lifecycles; indicating what kinds of activities should be performed in what

sequence.

28

Model-based approaches: contrarily to process-oriented approaches, model-based approaches rely on

a formal or semi-formal representation of the functional/non-functional aspects of system and are

generally supported by tools. We further classify the model-based approaches identified according to

whether they rely on graphical or non-graphical models.

2.1.1 Unification vs. Integration approaches

We adopt the following distinction made by Eames et al. [21] between unification and integration

approaches:

- Unification approaches are aimed at uniting safety and security techniques into a single

methodology. The result of these approaches is a single set of requirements describing the safety

and security functions of the system.

- Integration or harmonizing approaches are aimed at investigating the similarities and differences

of safety and security techniques in order to bring them into alignment. These approaches produce

safety and security requirements separately using standard concepts and methodologies, and then

show how they interact in order to identify conflicts.

Eames et al. [21] emphasized the disadvantages of approaches that attempt to unify safety and security

analysis techniques. According to the authors, unification techniques reduce a developer’s

understanding of the system being analyzed and prevent a thorough analysis of either property, which

leads to an incomplete analysis with subsequent safety and security risks going unobserved; global

abstraction might obscure requirements conflicts and necessary trade-offs [21]. On the other hand, they

outlined the advantages of integrating safety and security by harmonizing techniques from each domain:

“[By] applying techniques developed in each domain, conflicts could become more apparent; better

understanding of the system and its environment and recognition of risks related to each domain,

separation of properties would permit recognition of conflicts and trade-offs and allow judgment-based

decisions to be made.” The authors inferred that safety; security and their associated risk analysis

techniques are closely related and have sufficient similarity to make integration a reasonable and

achievable goal.

2.1.2 Design vs. Operational approaches

We classify the approaches identified according to the system lifecycle phase they cover: the design

stage, the operational stage, or both stages.

- Design stage approaches are aimed at designing new systems in which safety and security

constraints/functions are considered jointly;

- Operational stage approaches are aimed at studying and evaluating safety and security interactions

on existing and operational systems.

2.1.3 Qualitative vs. quantitative approaches

Qualitative approaches address the risks related to a given system and identify their causes and

consequences (e.g. via a Failure Mode and Effects Analysis (FMEA)). Quantitative approaches aim at

giving a measure of the risk (e.g., score, probability, interval) in order to assess its severity and

frequency. For instance, FMEA can be complemented by a score associated to each failure mode by the

product of scores supposed to represent its likelihood and its gravity.

2.2 Process-oriented approaches

We classify the process-oriented approaches according to the unification vs. integration distinction

provided by Eames et al. [21] as described in Section 2.1.1.

29

2.2.1 Unification approaches

Stoneburner [50] proposed a unified security-safety framework. This framework combines the risk

taxonomy for security from the U.S. National Institute of Standards and Technology (NIST) and the risk

taxonomy for safety from the Federal Aviation Administration and proposes a common taxonomy by

adopting a unified definition for the term “mishap” that includes safety hazards and security threats.

Aven [51] proposed a unified framework for risk and vulnerability analysis covering both safety and

security. The risk and vulnerability analysis process is comprised of the eight following steps:

1. Identify the relevant functions to be analyzed.

2. Define the systems to meet these functions.

3. Identify relevant sources of risk (threats, hazards).

4. Perform an uncertainty analysis of these sources.

5. Perform a consequence analysis, addressing uncertainties (using event trees, fault trees).

6. Describe risks and vulnerabilities.

7. Evaluate risks and vulnerabilities.

8. Identify possible measures, and return to 3.

Kornecki et al. [22] proposed a combined safety/security engineering process encompassing six

subsequent activities, which in turn may require modification of the preceding activity:

1. Identify the assets to protect from harm.

2. Identify harm that can come to the assets.

3. Identify and analyze accidents (safety) and attacks (security) that may cause harm.

4. Identify and analyze hazards (safety) and threats (security).

5. Discover vulnerabilities of the assets.

6. Develop safety/security requirements that ensure the asset(s) can be protected.

Derock et al. [36] identified the commonalities between the ISO/IEC 15026 safety standard6 for system

and software integrity levels and the ISO/IEC 27005 security standard; both are “based on a risk

management oriented approach.” Based on the high level of similarity between the two standards, the

authors proposed a generalized process that merges safety and security processes of the two standards.

The main phases of this process are:

1. Definition and scheduling of safety activities

2. Preliminary hazard analysis

3. Risk analysis during the specification phase

4. Risk analysis during the design phase

5. Transfer of safety requirements

6. Verification of safety requirements fulfillment on components

7. Verification of the test phases

8. Closure of the safety process

This common analysis process shows the convergence between ISO/IEC 27005 and IEC 15026 and

supports the need to merge safety and security analyses for complex systems. The authors pointed out

that only one engineer should work on both safety and security, which reduces analysis time and cost

and increases efficiency.

Woskowski [52] proposed a risk-based approach to improve the safety and security of critical medical

devices by extending the risk management required by IEC14971 beyond device boundaries; the

6 This standard introduces the concepts of software integrity levels and software integrity requirements (SIL).

30

objective is to cover interface safety, interface usage and network security aspects, as well as to define

appropriate risk mitigation techniques. The adapted IEC 14971-workflow [52] considers both safety and

security related hazardous situations in the risk estimation phase.

2.2.2 Integration approaches

Eames and Moffet [21] proposed an integration approach that consists in applying separate risk analysis

processes for safety and security for the purpose of determining requirements. Requirements in safety

documentation are then cross-referenced to the security analysis and vice versa in order to analyze and

identify interactions between safety and security requirements. The resolution of conflicts and

inconsistencies enables practitioners to identify changes and measures to be implemented and evaluate

their effects.

Johnson [53] proposed a roadmap for “CyberSafety” engineering (which refers to security for safety in

our context) aimed at increasing resilience against cyber-attacks on safety-critical systems. The first

steps of the roadmap aim at better understanding security threats to safety-critical systems and improving

security screening for infrastructure engineers and technical staff across safety-critical industries. The

potential threat of insider attacks should be taken into consideration as well as the capabilities of

engineering teams to deal with cyber threats (e.g., installing updates, security patches using unverified

media). The next steps support multi-party exercises by rehearsing large scale attacks across

infrastructures to assess their potential consequences, and sharing lessons learned from previous

incidents. This should lead to improving tools, revising security risk assessments in safety-related

applications and addressing the consequences of security measures on safety cases (e.g., safety cases

can be undermined by the detection of malware or unauthorized access; or it can be difficult to guarantee

response times given the potential impact on processor and memory resources). This roadmap is aimed

at increasing the resilience of safety-critical infrastructures to cyber-attacks that may induce physical

consequences; however, it does not propose a method for capturing safety-security interdependencies.

Kornecki et al. [54] proposed a V-shaped development model in which they added security actions to

the conventional V-model used in the development of dependable software. The resulting model

includes hazard and threat analyses, architectural mitigation, security algorithms, and security and attack

tests. The authors stated that “the development of safe and secure systems requires the developers to

adhere to a rigorous development process framework that includes analysis of the security threats from

the perspective of the industrial control system safety and elaboration of potential countermeasures and

mitigation mechanisms.”

Novak et al. [30] provided a lifecycle model for the pre-design phase of a safe and secure building

automation and control system (BACS). The authors reviewed and extended this lifecycle model in

further publications [33][34], as illustrated in Figure 6, in order to cover the development and use phases

of a system.

This safe and secure lifecycle model uses the safety lifecycle from IEC 61508 (steps 1 and 2) and

integrates the approach to deriving security requirements from the Common Criteria security project

standardized as IEC 15408 (step 3). The authors claimed that these standards provide good coverage of

functional safety and security aspects and created a system classification with four safety integrity levels

(SIL) for safety related systems, and seven evaluation assurance levels (EAL) for security related

systems. Steps 4 and 5 are additional activities that consider safety and security dependencies resulting

from the integration of safety and security.

31

Figure 6: Safety-security lifecycle model

The lifecycle model begins with the definition of the physical environment, boundaries and scope of the

system. After typical hazards and associated risks are identified, safety requirements are specified to

reduce risks to acceptable levels. After a safety investigation and the identification of assets requiring

protection, the list of threats and associated risks and the derived security objectives enable security

requirements to be specified. In steps 4 and 5, safety and security requirements are investigated in order

to identify commonalities and contradictions: “It is checked whether security requirements lead to new

hazards and risks to human health; i.e., are new safety requirements necessary due to security needs and

how do they influence security” [30]. At the conflict resolution step, interactions between safety and

security requirements are examined by cross-checking the sets of requirements and any conflicts are

resolved. The authors introduced the conflict resolution approach at the requirements and functional

levels. The conflict resolution approach at the requirements level is shown in Figure 7.

The conflict resolution policy aims at specifying which requirements are preferred in particular

situations. It consists of two rules applicable to a subsystem [11]:

1. Prefer safety requirements to security requirements if security has a negative impact on

safety;

2. Otherwise, use security requirement.

The resolution of conflicts between safety and security requirements results in a conflict-free set of

requirements (step 5).

Conflict resolution at the functional level consists in the assessment of measures that exhibit conflicts

(i.e., require different amounts of effort in terms of computational power or consumed memory).

32

Selection of the adequate measure is influenced by five factors: field of application, safety performance,

security performance, hardware environment and software environment.

Figure 7: Conflict resolution at the requirements level

The last step of the development phase is constituted by the realization of the safe-secure system,

including software and hardware. The use phase is concerned with installation, safety-security

validation, operation, maintenance and disposal of the automation system [11]. In this phase, the whole

system and the overall interactions among all components must be considered. Safety-security validation

is concerned with investigating whether risks have been mitigated properly and whether system safety

and security are always provided.

Although the approach and examples (use case of an office building) [33] relate to building automation,

the lifecycle model addresses macro level issues and can be applied to other kinds of systems.

Hunter [28], proposed an aligned approach in which safety and security are integrated into different

stages of the system’s development lifecycle: concept, requirements, qualification and maintenance.

This approach, called Lifecycle Attribute Alignment shows lifecycles related to the system’s

development, system safety management and information security management, and establishes

interactions between phases of different lifecycles (see Figure 8). These interactions ensure

compatibility between safety and security controls that are established and maintained during the system

development; for example, alignment attribute A5 ensures that security updates do not compromise

safety.

The control compatibility model proposed in [28] enables to manage any conflicts and incompatibilities

between safety and security objectives that may arise. Security objectives are divided into value

objectives (i.e., “must,” “must not,” and “do not care”) for each functional aspect. For compatibility to

be achieved no “must” control in one aspect may coexist with a “must not” in the other aspect; other

matches are compatible.

Sørby [23] provided a development process integrating both safety and security aspects for critical

systems inspired by the safety lifecycle from the IEC 61508 standard [43] and the CORAS approach to

identifying security risks [55]. This lifecycle, depicted in Figure 9, contrary to the one proposed by

Novak in Figure 6, gives more details on how safety and security requirements are integrated in the risk

management phase.

33

Figure 8: Key lifecycle alignment points

After the system description and functional requirements are developed, the preliminary hazard analysis

(PHA) identifies potential hazards of the system, their consequences, causes and countermeasures. The

risk management process consists of safety requirements specification; these requirements are used

together with existing security policies in order to specify security requirements. Next, security threats

and vulnerabilities are identified using the security-HazOp technique issued by the CORAS project. The

34

aim of the security-HazOp method [56] is to identify critical security-related deviations from intended

behavior with a focus on confidentiality, integrity, availability and authenticity (CIA attributes); it uses

a brainstorming activity based on a set of keywords and attributes that are the negative counterparts to

the CIA attributes: disclosure, manipulation, denial/delay and fabrication/masquerade.

The risk analysis process enables the identification of security threats, their effects on the safety of the

system and their associated likelihoods, which enables risk levels to be estimated. Unacceptable safety

consequences are treated by introducing safeguards, and the risk management process iterates until the

safety of the system is acceptable. This may create new security requirements. The system description

is updated by the introduction of new safeguards, which enables the final system to be designed. The

system is finally implemented and tested to ensure that all security and safety requirements are fulfilled

[23].

Figure 9: Security-safety lifecycle

This approach was applied to a critical system comprised of a cutting robot that is protected by a gate

and supervised by another robot that communicates with a PC controller, thereby proving that the model

adequately covers safety and security requirements, hazards and threats. Moreover, the overall

architecture of the system was described according to these requirements. The relationship between

security threats and safety consequences in typical attack situations was addressed.

Another approach is “an integrated process involving both safety and security allowing achievement of

Design Basis Threat (DBT) objectives while ensuring safety” [57]. This process involves collaboration

among safety and security professionals and requires a common understanding of the requirements,

35

concepts and terms on which safety and security stakeholders rely. A flowchart describes the different

steps to follow in order to deploy a new or upgraded security system while ensuring compliance with

safety requirements. It starts from defining the need for a protection measure, including system selection,

system approval, system procurement, installation and deployment.

The security system, selected among the list of alternative security systems that meet the overall

objective, must verify the complete list of minimum acceptable requirements (i.e., “musts”) and should

satisfy as many desirability criteria (i.e., “wants”) as possible. It should not only satisfy security needs,

but also consider characteristics such as operational efficiency, cost and safety. The safety and security

implications of the selected security system are discussed. Safety implications include analyzing facility

hazards and accidental or inadvertent discharges caused by human error, faulty security system design,

and internal or external hazards that may lead to hazardous material releases, fires, nuclear criticality,

leaks, or damage to safety structures, systems and components (SSCs) or process systems. The

implications of safety changes to security are also discussed, as security upgrades may impact safety,

and conversely, a new or upgraded safety system may have implications in the security domain. The

whole process should include stakeholders from the safety and security fields to study impacts of the

new or upgraded security module on the whole system and whether it creates conflicting requirements.

Finally, security and safety processes should be coordinated to ensure safe and secure operation.

Schmittner et al. [58] proposed an approach for the combined analysis of safety and security in which

the basic failure mode and effect analysis (FMEA) of cause and effect is extended to include security

related aspects. This combined risk analysis method is called Failure Mode, Vulnerabilities and Effects

Analysis (FMVEA). The safety analysis flow chart of the FMEA described in IEC 60812 is extended to

include security in the analysis. According to the FMVEA analysis flow chart, the failure and threat

modes are identified separately and their effects are assessed. The activities of the FMVEA are similar

to the activities defined by the EBIOS methodology mentioned in Section 1.3.2.

The SQUALE (Security, Safety and Quality Evaluation for Dependable Systems) project [59] aimed at

integrating safety and security concepts in a combined harmonized approach. It provided generic

Dependability Criteria that describe how to gain confidence in the correctness and effectiveness of

systems with high safety and security requirements. Those criteria had been applied to existing systems

from the railway and mobile communication sectors.

Bieber et al. [6] published the main results of the Safe and Secure Embedded Aerospace Systems

(SEISES) project, in which members of the French aerospace industry collaborated to develop a standard

for developing safe and secure embedded systems and leveraging synergies between safety and security.

The aim of the project was to integrate safety and security into the lifecycle (i.e., design, development,

evaluation, validation, and maintenance) of embedded and communicating systems. Existing aerospace

safety standards (ARP-4754, DO-178, DO-254) were used together with security standards (ISO/IEC

27005, Common Criteria). Possible synergies between safety and security also are outlined. In [6], the

global process that merges safety and security assurance is described. It defines safety and security

activities for assessment and development. Safety and security assurance activities converge at the

development level and assessment activities that share the same system description level interact (e.g.,

security threat identification and functional hazard analysis). The act of risk identification assesses the

safety impact of loss of security for each asset.

The main result of the project is the elaboration of a referential that covers safety and security assurance

requirements. SEISES assurance objectives were validated by three demonstrators from the aerospace

industry.

In the context of the SESAMO project, the Medini Analyze tool supports a methodology for extracting

safety-security cross-influences from a system model. It provides a framework for performing a joint

qualitative analysis of safety and security by integrating failure modes and effect analysis (FMEA) and

fault tree analysis (FTA) techniques with their extensions to security (Security-FMEA and Attack Tree).

The approach [60] is built on four different activities: (1) the identification of safety requirements using

36

FMEA and FTA, (2) the identification of security requirements using Attack Tree analysis and Security-

FMEA, (3) the identification of safety functions and their impact on security and vice versa (by several

iterations of FTA, FMEA, Security-FMEA, and Attack Tree), and (4) the identification of design

synergies in safety and security enhancements (by cross-referencing safety malfunction effects with

security violations, which could reveal solutions that serve both safety and security). The combined use

of these techniques enables cross-references from security analysis results to safety analysis results

which facilitates the identification of possible interdependencies and leads to potential synergies in

implementing mitigation/prevention functions and countermeasures.

The process-oriented approaches identified in this section treat safety and security at early phases of the

system engineering particularly in the concept and requirements phases. They are then more useful for

designing new safe and secure systems. These approaches still deal with safety and security at a very

high level. However for existent systems it is more relevant to treat safety and security in details in order

to identify possible interactions. We believe that model based approaches are more suitable for this

purpose.

We outline that in our work, we are interested in operational systems that have a long service life like

power plants, refineries, dams, etc. We elaborate in the following section an exhaustive survey of model-

based approaches, identified in the state-of-the-art, that consider safety and security jointly.

2.3 Model based approaches

We classify the model-based approaches identified according to whether they rely on graphical or non-

graphical models.

2.3.1 Graphical modeling approaches

The myriad of graphical approaches identified have been classified in eight categories, according to

whether they are based on: semi-formal safety/security cases, fault/attack trees, Petri nets, Bayesian

belief networks, Unified Modeling Language (UML), model-based system engineering, formal

verification; we finally identify approaches that are specific to electrical networks.

2.3.1.1 Semi-formal safety/security cases

Assurance cases include safety cases and security cases. A safety case should communicate a clear,

comprehensive and defensible argument that a system is acceptably safe to operate in a particular context

[61]. The same definition is applicable to security assurance cases.

Goal structuring notation (GSN) [62], a graphical argumentation notation, is used to represent the

individual elements of any safety/security argument (requirements, claims, evidence and context) and

the relationships that exist between these elements (i.e., how individual requirements are supported by

specific claims, how claims are supported by evidence, and the assumed context that is defined for the

argument). The Claims-Argument-Evidence (CAE) notation, developed by the consulting company

Adelard as an alternative to GSN, could also be used for security purposes, instead of their initial safety

usage.

The SafSec approach [5][63], which originated from the eponymous research project by the UK Ministry

of Defense, is a framework for certifying integrated safety and security requirements: “The first state of

the process is to identify both safety and security risks through a systematic process, and then to identify

suitable control measures. At this stage conflicts and gaps between requirements can be identified and

resolved.” The SafSec approach enables module boundary contracts7 to be identified within the

specification. Five components of the contract should be considered: the guarantee clause; the reliability

clause; the context clause; the assurance level and counter evidence.

7 A module boundary contract (MBC) specifies verified details of the module properties at a given abstraction level.

37

To support security accreditation and safety assurance, the SafSec approach uses conventional graphical

argument techniques—namely, the GSN syntax. There are three main threads to the argument: the first

addresses the security argument and the identification of system threats and vulnerabilities, as well as

mitigations to reduce the security risk; the second thread deals with the safety argument and the

identification of safety hazards and accidents; the final thread addresses requirements verification and

validation to argue that the system is fit to enter service.

Johnson [64] used assurance cases for a high level risk analysis. Relying on semi-formal argumentation

techniques (GSN in particular), he identified three ways to integrate safety and security concerns for

interactive systems:

- Integration within a single assurance argument: In order to demonstrate the top level goal, the

safety and security of a complex system, arguments should first demonstrate that the system is

acceptably safe then provide evidence that the system is acceptably secure. However, it is difficult

to show that some security evidence has implications for system safety and vice versa.

- Integration of safety concerns into security assurance cases: First, the security assurance case is

built, and then nodes are added to distinguish evidence or arguments about security concerns that

might undermine the safety of any implementation. This enables the identification of potential

safety concerns associated with every threat or vulnerability. Safety hazards that are not related

to the security assurance case, however, are not represented.

- Integration of security threats into safety cases: First, a conventional safety case is developed,

then threats and vulnerabilities are analyzed in order to identify security concerns that were not

identified during the previous step and mitigate them.

This last approach was adopted later by the author. It enables safety and security arguments to be

integrated into a single graphical structure. The same approach is used in the SESAMO project, under

the name “Security Informed Safety Cases." The main ideas were given at an early stage of the project

in deliverable D31; they have been refined thanks to experimentation on use cases. Once the standard

safety case is available, the aim is to discover how the existing claims and arguments are affected by

security considerations, and whether any new claims and arguments are necessary.

Subramanian et al. [65] introduced a similar goal-oriented approach called the non-functional

requirements (NFR) approach to evaluate security and safety in an integrated manner. The NFR

approach enables the safety and security properties of a system to be represented as goals and uses

qualitative reasoning to evaluate whether these properties have been achieved or not. A well-defined

ontology enables the system architecture and its safety and security requirements to be represented using

“Softgoal” contributions and propagation rules [66]. The graph that captures these elements is called the

Softgoal Interdependency Graph. Applying the NFR approach enables the co-evaluation of both safety

and security and results can be used to handle tradeoffs between the two to improve the system.

2.3.1.2 Fault/attack tree based approaches

Extended fault trees

The approaches presented in this subsection rely on “static” fault trees or attack trees in which

dependencies (e.g., sequences) are not taken into account.

Taking an integration approach, Fovino et al. [67] introduced extended fault trees, in which attack trees

[68] are integrated into a pre-existent fault tree in order to extend traditional risk analysis (which captures

only accidental risks) to include malicious risks. This integration is possible only if attack tree goals

exist that also are events of the target fault tree. The approach also proposes quantitative analysis by

38

assigning probabilities to leaf nodes and calculating the aggregate probabilities of higher level events.

An application of this method to a use case was described in [67].

Bezzateev [69] used fault tree analysis (FTA) to model risks introduced by the insertion of a “security

module” into the Eurobalise Transmission System, which is a sub-system used in the European Train

Control System (ETCS). The author likened “safety hazards of the security module” to accidental

failures of this module and “security hazards of the security module” to the attacks initiated on this

module. Both safety and security hazards are modeled by the same tree. The security module used in the

example is an authentication module used to counter masquerade attacks. The author showed how

integrating a new security module could increase the safety level of the whole system.

Kornecki et al. [22] also used FTA to develop safety and security requirements of a component used in

the next generation air traffic management system and proposed appropriate mitigations. This

component, called the Aviation Simulation Network Gateway (ASNG), is a system that acts as an

intermediary between two components of the aviation network (the Real Time Distributed Simulation

and the Aviation Simulation Network). It provides logic for two-way communication for the

transmission of messages and storage of the exchanged data. The authors detailed hazards and threats

that may lead to an aviation accident using a fault tree model. They placed a special focus on the ASNG

system by detailing accidents or attack scenarios related to communication as the critical aspect in

ASNG operations. After associating each basic event of the tree with its probability of occurrence, with

the help of associated tools the authors provided quantitative analyses showing probabilities of events,

availability, unreliability and other dependability attributes of the system. The fault tree model was used

later to support the development of safety and security requirements and to specify mitigations.

Steiner et al. [70] extended the component fault trees (CFTs) [71] used in safety analysis by using attack

trees (ATs) to model security events that can compromise the safety of a system. CFTs can be roughly

described as reusable parts of fault trees that enable the failure modes of one component to be modeled;

top level events of a CFT are "out-ports," while “in-ports,” are connected to events coming from other

components. According to the authors, CFTs are more suitable for modeling large systems than fault

trees.

The authors started by modeling one CFT per system component. In the next step, CFTs are extended

to include security concerns that influence system safety. Basic events that also can be caused by

malicious intervention are elaborated. Components interfacing with the system environment are the most

vulnerable to attacks. The STRIDE classification (spoofing/authentication, tampering/integrity,

repudiation/non-repudiation, information disclosure/confidentiality, denial of service/availability,

elevation of privilege/authorization) enables possible attacks on such components to be found. The

extended CFT contains both safety and security events.

This approach is supported by qualitative and quantitative analysis. Qualitative analysis provides

ordered lists of minimal cut sets (MCSs) (sets of basic events which together create the top level event

of the tree) sorted according to size (based on the number of basic events in each) and whether they

contain only safety events, only security events, or both. Smaller MCSs and those that contain only

security events are more critical. Quantitative analysis consists of assigning values to basic events:

probabilities for safety events and a simple rating (low, medium, high) for security events, considering

that assigning probabilities for security events is not appropriate. A mixed MCS will be assigned a tuple

(P, R) where P is the product of all probabilities of the included safety events and R is the minimum of

all ratings attributed to basic security events. The tuples of mixed MCSs can be ordered by probability

or by rating. The authors illustrated their approach by analyzing an example.

39

BDMP: Boolean logic Driven Markov Processes

BDMP are a graphical modeling formalism initially designed for safety and reliability assessment [72].

This formalism combines classical fault trees with Markov processes, thereby providing not only good

readability and hierarchical representation (like fault trees), but also advanced quantification

capabilities. Unlike static fault trees, the BDMP formalism enables dynamic features to be modeled with

a special type of link called "trigger." The BDMP formalism has recently been adapted to the security

field [73]. In [32], Pietre-Cambacedes shows the ability of this formalism to create models integrating

safety and security risks that may lead to the same unwanted event. The qualitative and quantitative

capabilities of BDMP enable safety and security risk combinations and interdependencies to be studied.

This approach will be further investigated in Chapter 3.

2.3.1.3 Petri net based approaches

Stochastic Petri nets (SPNs) have been used to model the behavior of cyber-physical systems and to

analyze the effect of intrusion detection and response on the reliability of a system or to assess

vulnerabilities in SCADA systems [74]. Mitchell et al. [75] provided a high level SPN model for a CPS

with intrusion detection and response. The state of the system is described by the distribution of tokens

in the SPN model. Values are then assigned to the model’s parameters and used to evaluate the reliability

indexes according to the attacker’s behavior, the detection level and intrusion response.

Flammini et al. [76] introduced a model-based methodology for quantitative estimation of the

vulnerability of physical protection systems. The proposed methodology uses generalized stochastic

Petri nets (GSPNs) to model dynamic aspects of the system. Petri net patterns are defined in order to

create vulnerability models and capture behavioral aspects of assets and actors involved in the attack

scenario. The vulnerability model is comprised of the attack model, the sensing model, the assessment

model, the intervention model and the supervisor model.

The authors argued that the use of pattern oriented modeling addresses issues associated with the

increasing complexity and heterogeneity of systems. They use the ORIS tool that enables SPN modeling

and analysis. The effectiveness of the approach was demonstrated using a case study in the mass transit

domain. The authors dealt only with physical security in their paper; however, the approach can also

model cyber security related risks.

Roth et al. [77] proposed state/event fault trees (SEFTs) as an approach to modeling and jointly

analyzing aspects of safety and security. SEFTs combine fault trees and state charts into one model,

which enables deterministic state spaces and probabilistic failure behavior to be modeled. In the SEFT

formalism, communicating components are modeled and failure propagation is facilitated with in- and

out-ports. The temporal dependencies between components are modeled with state charts: the state

changes can be triggered by exponentially distributed probabilistic events, deterministic events and

triggered events. Events are guarded by states and connected to them temporally, while causal

dependencies between components are modeled by gates as in typical fault trees, using causal

connections.

The ESSaRel modeling tool enables the trees to be modeled and converted into extended deterministic

stochastic Petri nets for quantitative analysis; which are then analyzed using the TimeNet tool and steady

state analysis or Monte Carlo simulation.

In the SEFT based model, basic vulnerabilities are modeled, such as denial of service (DoS) failures for

components and exchanged messages, spoofing, bypassing and reprogramming. The adversary is also

modeled by an attack component, subcomponents of which represent attack steps. Attack steps are

interconnected and form a logical attack queue. Each attack step can be split in a state chart where

different transitions of the attack cycle are detailed based on the quantitative parameters. The authors

illustrated their approach on a tire pressure monitoring system; they studied the effect of cyber-attacks

40

on the safety properties of the system and proved a mutual reinforcement interaction between safety and

security in the case of a spoofing attack. Finally, SEFTs yield a modeling and analysis approach that

integrates security aspects into a safety model and enables quantitative analysis of safety and security.

2.3.1.4 Bayesian belief network based approaches

A Bayesian belief network (BBN) is a graphical model that represents random variables and their

conditional dependencies. BBNs have long been used for safety assessment [78], particularly to include

uncertainties [79] or human and organizational factors [80] in risk evaluation and decision making, and

recently for security risk assessment [81] [82] [83].

Kornecki et al. [84] addressed safety and security jointly using BBNs. They studied interrelationships

between safety and security by measuring their impacts on each other and on system reliability. Based

on the case study in [65] (i.e., an oil pipeline control system), the authors used BBNs to model system

components and the safety and security requirements. The model was then used to evaluate the impact

of safety accidents on security aspects and the impact of violating some security requirements on the

safety related events.

2.3.1.5 UML based approaches

Misuse cases

Use cases are one of the behavior diagrams of the Unified Modeling Language (UML). They are used

to specify the required behavior of a system. In [23], UML use cases were used to illustrate the functional

requirements of the system in the third step of the safety-security lifecycle shown in Figure 9.

Misuse cases, first introduced by Sindre and Opdahl [85], are the inverse of use cases. They model

prohibited functions or undesirable behaviors caused by either the system or the involved stakeholders.

Misuse cases have been used to elicit safety or security requirements [86]. Sindre [87] used misuse case

diagrams combining both safety and security threats for the same system.

Chassis

The combined harm assessment of safety and security for information systems (CHASSIS) method [48]

defines a unified process for safety and security assessments based on UML notations. The CHASSIS

unified process shown in Figure 10 is comprised of three main activities: eliciting functional

requirements, eliciting safety/security requirements, and specifying safety/security requirements. These

activities rely on the use of UML-based diagrams, i.e., use cases (UCs), misuse cases (MUCs), sequence

diagrams (SDs) and misuse/failure sequence diagrams (MUSDs/FSDs); and traditional safety

techniques, i.e., HAZOP (hazard and operability) studies and FMEA (failure mode and effects analysis).

The CHASSIS process flows from left to right and top to bottom in Figure 10. The double-headed arrows

between the boxes symbolize that activities should be performed iteratively [88].

The assessment process begins with the definition of system functions and services (Steps 1-3) and

continues through the elaboration of use cases and sequence diagrams. In the second stage, MUCs are

created (Step 4) based on UC diagrams from the previous step and with the help of guide phrases

composed from a set of HAZOP guidewords. Textual MUCs (Step 5) provide more details on the MUC

diagrams. Using FSDs and MUSDs (Step 6), stakeholders refine the harm scenarios by detailing the

sequences of events between different actors, and then try to create new mitigations to improve safety

and security. Tradeoffs between conflicting safety and security mitigations are performed. Based on T-

MUC, HAZOP tables are prepared (Step 7) and safety or security requirements are defined (Step 8) [48].

41

Figure 10: CHASSIS process diagram

UMLsafe/UMLsec

UMLsec [90] extends UML to allow security relevant information to be expressed within UML

diagrams in a system specification. The extension is given in the form of a UML profile using the

standard UML extension mechanisms. Stereotypes define new types of modeling elements, thereby

extending the semantics of existing types or classes in the UML metamodel. They are used together with

tags to formulate security requirements and assumptions about the system environment; constraints

provide criteria that determine whether the requirements are met by the system design [91]. The

approach allows also modeling of potential adversary behavior (including insiders). Similarly, for safety,

UMLsafe extends UML for safety systems development [92] by enabling analysis of safety

requirements, failure scenarios, fault tolerance, etc.

The UMLsafe/sec [93] approach considers safety/security during early phases of critical system design.

It enables modeling of safety/security requirements, failure/attack scenarios, and concepts such as fault

tolerance/cryptography; and ensures the UML specification provides the desired level of safety/security.

The approach is supported by the UMLsec-Tool framework, which provides automatic verification

plugins of UML models for critical requirements. In particular, it includes automated analysis of

UMLsec models for the security requirements. This tool was re-implemented and integrated into

Eclipse. The new tool, CARiSMA, is based on the Eclipse Modeling Framework (EMF) and enables

modeling and code generation. It is also extensible for new languages and enables compliance, risk and

security analyses and checks [94].

SysML-sec

SysML-sec, introduced in [95], is a SysML-based model driven engineering environment for designing

secure and safe real-time embedded systems, but the approach can also be applied to industrial systems.

The SysML-sec methodology enables assessment of the impact of security requirements and

mechanisms on system safety based on three SysML stages: system analysis, system design and system

validation. In the analysis stage, requirement diagrams are used to model security requirements and their

mutual relationships and attack diagrams are used to model attack scenarios. The partitioning of the

system is modeled by graphs that represent communicating functions, the architecture, and the mapping

of functional elements to assets. In the design stage, security mechanisms are defined and security

requirements are refined in security properties. The validation stage provides formal evidence whether

42

security properties are verified and whether the system is safe and resilient to threats. Apvrille et al. used

the AVATAR SysML environment [96] for the formal verification of safety and security properties.

2.3.1.6 Model-based system engineering (MBSE) methods

Brunel et al. [97] proposed a model-based approach to address safety and security assessment of system

architecture. The approach models the system with three different viewpoints: a design viewpoint in

which system engineers describe the system architecture using the “Melody” tool [98], a safety/security

viewpoint in which safety and security engineers model safety and security properties using the “Safety

Architect” tool [99], and finally a viewpoint of the formal model, expressed in the “Alloy” language

[100] and used to assess safety and security properties of the system architecture. The safety and security

models contain two kinds of information: dysfunctional behavior and the properties to be validated. The

former describes how failures or attacks are propagated in the system architecture, while the latter

expresses the safety or security requirements that the system architecture must satisfy. The two models

are then combined into a single Alloy model and used as input for the Alloy Analyzer, which generates

formal validation of safety and security properties. A counter-example is generated in the case of

requirements violations. The feasibility of the approach has been tested on a geo-localization system in

a case study from the avionics domain.

2.3.1.7 AADL

Delange et al. [101] proposed an approach to modeling security and safety concerns in architecture

analysis and design language (AADL). The AADL language allows non-functional aspects of

components to be expressed, such as security, safety, and interface specifications, and how the

components are interconnected. To model a system with safety and security requirements, the authors

began by modeling the partitioned architecture then annotated the model with properties dedicated to

security and safety policies. The safety and security requirements were then verified and validated.

2.3.1.8 Formal verification methods

Formal methods use mathematical techniques for specification and verification of a system’s behavior.

Based on logical reasoning, they enable to check whether the functional and non-functional (i.e. safety

and security) properties are satisfied by the system design and implementation. Formal methods tools

fall into two categories: model checkers that enable to check the design with respect to the specified

properties encoded in a modeling language; and theorem provers, also called “proof assistants”, which

combine automated techniques with manual guidance to prove correctness. These methods are used in

industries with safety critical systems like nuclear, railway and aerospace.

Smith et al. [10] outlined the use of formal methods in the railway industry for modeling, requirements

specification, design and validation of safety critical systems. With the evolution of modern railway

infrastructures, the authors discuss some of the interrelationships between safety and security, and stress

the need for security in safety-critical systems.

Zafar and Dormey [102] used a genetic software engineering (GSE) method to design an ambulatory

infusion pump that must satisfy a number of safety and security properties. The GSE development

process consists of the following steps:

1. Specify the system’s requirements and integrate the safety and security requirements, then

translate each requirement into a behavior tree (BT).

2. Integrate the individual BTs into an IBT (integrated behavior tree) to generate an integrated view

of requirements, and resolve integration defects.

3. Systematically refine the IBT into a design behavior tree (DBT), which visually depicts the impact

of each design decision on the complete system as the changes are applied to the integrated view

of the requirements.

43

4. Translate the IBT and/or DBT into specification languages (e.g., Communication Sequential

Process, Symbolic Analysis Laboratory) for formal verification of the specifications using the

SAL-SMC tool.

5. Derive the component-based architecture and individual component behavior from the DBT,

which are typically represented in Component Interaction Network (CIN) and Component

Behavior Tree (CBT) diagrams.

By applying this method to a case study of an ambulatory infusion pump, the authors uncovered a subtle

design flaw which caused them to recognize the importance of using formal methods in design of critical

applications.

2.3.1.9 Approaches for electrical networks

Electrical systems require specific methods and tools because their behavior cannot be properly studied

without considering the laws of physics. Modeling all possible transient phenomena in an electrical

network with precision requires a lot of computing power. This is not feasible with stochastic models,

which contribute to this complexity because numerous simulations with various configurations of

system failures must be performed, typically in a Monte Carlo simulation. Therefore, in all of the articles

cited in this subsection, the physical equations are simplified in order to reduce them to a load-flow

problem. This means that after each random event (failure, attack, repair, etc.) the load-flow is

recalculated in order to obtain the voltages and intensities at every point of the network. It is then

possible to determine the amount of non-distributed energy, a major indicator for measuring the

performance of electrical networks. This simplification assumes that the transients consecutive to

random events cannot lead to divergent behavior, eventually causing the network to collapse completely.

The CRUTIAL approach [103][104][105] models and quantifies interdependencies in electrical power

systems between the electrical infrastructure (EI) and the information infrastructure (II) that implements

the EI control and monitoring system. It includes both qualitative and quantitative analysis and

evaluation methods [104] and uses stochastic modeling techniques. Beccuti et al. [104] [106] used the

CRUTIAL modeling framework [107] to model an electrical power system and study the effects of a

denial of service (DoS) attack that compromised the communication network used to control the EI

remotely. The authors used two different approaches to the modeling and quantification of dependencies

between the EI and the II. The first is a stochastic activity network (SAN) model to represent the

structure of the power grid and its physical components. The control part behavior is modeled at an

abstract level. The second is a stochastic well-formed net (SWN) that models the control system and the

behavior of the attacker, and enables stochastic assumptions about the EI behavior. The first model more

rigorously represents EI behavior, while the second one is more faithful to the attack scenario and the

control algorithms.

Both models represent interdependencies between the II and EI subsystem and the subsequent cascading

or escalation failures caused by malfunctions, either at the cyber or the electrical levels.

The interaction between the two models is outlined. The authors also evaluated the effects of a DoS

attack on the percentage of the mean power demand that is not met over the interval of time [0, t] and

the number of unavailable local control stations (LCSs). The evaluated attack effects cover the panel of

dependability attributes, which also includes safety.

Preliminary interdependency analysis (PIA) [108] is a generic methodology for finding and assessing

the impact of dependencies between telecommunication infrastructures and electrical grids. It begins

with a qualitative analysis to specify the system boundaries and scenarios, and identify the modeled

elements and their interdependencies, and is followed by a quantitative analysis based on a Monte Carlo

simulation. This simulation relies on an ad-hoc model that can take various forms. A partner in the

SESAMO project, City University, developed a simulator from scratch, written in JavaScript (and C++

for the load-flow calculations) in the node.js framework. Thanks to this simulator, it is possible to see

the effects of failures and attacks on the amount of non-distributed energy. This approach is very similar

44

to the CRUTIAL approach, except that the Petri net part of the model is replaced by stochastic state

machines.

The domain of electrical networks and their instrumentation and control systems is still largely

unexplored and it is likely that the results of different tools, if they were applied to the same use case,

would be quite different. This is because every tool has to make assumptions about the reactions of the

system when it needs to be reconfigured after failures or attacks. It will take years before the various

tools converge more or less towards the same hypothesis and become comparable, like the tools used in

safety analyses of simpler systems.

2.3.2 Non-graphical modeling approaches

2.3.2.1 Non-formal approaches

Reichenbach et al. [31] proposed a framework for assessing both safety and security for safety critical

systems within industrial automation and control systems. The proposed approach combines safety

analysis with security analysis by considering the safety integrity level (SIL) of IEC 61508 as an

extension of the threat vulnerability and risk assessment (TVRA) method of ETSI TS 102 165-1 [109].

The TVRA method evaluates and calculates factors that are associated with the risks posed by the

threats, which are time, expertise, knowledge, opportunity, equipment, asset, impact and intensity. The

likelihood is calculated based on the attack potential value, which is calculated using the factors of time,

expertise, knowledge, opportunity, and equipment. The impact is calculated from the asset impact value

and the attack intensity value. The authors extended the TVRA method to include the safety integrity

level as one of the factors affecting risks, which they consider in assessing the impact. The authors

inferred that the higher the SIL, the higher the resulting impact will be.

This approach is supported by the ETSI tool, which uses the factors affecting the risks to calculate their

occurrence likelihood and impact. The authors illustrated their approach on an example from the

automation industry. They considered two attacks with the same occurrence likelihood that

compromised two different safety functions with different SILs. They inferred that a higher SIL has a

higher impact on the final risk, which shows that the SIL has an influence on the entire TVRA while

being compatible with the security threat analysis and the safety standards.

Holstein and Singer [110] described the work led by ISA 99 on safety and security coupling. Four levels

of security assurance are defined, with levels 4 and 3 being the most critical: they are assigned if failure

of the security protection mechanism could result in loss of life or total failure of the industrial

automation and control system’s operating capability. The relationship between security assurance level

(SAL) and safety integrity level (SIL) is given by a simple correlation; SIL 3 and SIL 4 systems should

be related to SAL 3 or SAL 4. To estimate the SAL, the authors use a consequence-based analysis to

establish weighting coefficients for contributing security mechanisms. They applied their approach to a

chemical truck loading control and emergency shutdown safety system: the SIS components were

grouped into separate zones, security metrics were defined and all system components with access to

the safety system were mapped to a weighting factor, thereby coupling safety and security. The security

assurance level of the system is expressed as the normalized sum of the weighted security levels of the

components.

Depoy et al. [111] described a methodology that addresses the risk of combined physical and cyber-

attacks against critical infrastructure facilities. The authors considered four types of attacks: physical-

only, cyber-enabled physical, cyber-only and physical-enabled cyber-attacks. A top-down functional

assessment methodology is used for risk assessment. It consists of the following steps:

45

1. Consequences of concern (CoCs) and the associated unacceptable system states are determined.

2. The engineering process model is used to determine the “cut sets” that cause a given CoC.

3. The vulnerability assessment process defines protective measures, threat model and probability

of success of given an attacker.

4. The conditional risk set developer evaluates the risk associated with CoCs and appropriate

mitigation measures.

Pieters et al. [112] proposed the factor analysis of information risk (FAIR) framework for the integration

of safety and security risk assessments. The proposed approach introduces an alternate way to quantify

security related metrics from the frequency-based approach used in safety. The authors outlined the key

difference between accidental and malicious threats: “Whereas accidental threats occur randomly, the

occurrence of malicious threats is based on attacker decisions.” In the attacker model, the attacker bases

his strategy on the system properties and his effort to perform an attack scenario is a function of time.

The security risk includes not only the event frequency but also vulnerability, expected damage, and

countermeasures. A theoretical risk assessment framework for accidental and malicious threats is

provided in the paper.

2.3.2.2 Formal verification approaches

Sun et al. [35] proposed a framework for detecting safety and security conflicts using the Maude

rewriting logic language [113]. The proposed framework defines a world composed of a model (classes

and objects), propositions, assumptions and requirements. The process of detecting conflicts between

safety and security consists in searching all configurations that are safe but unsecure and all

configurations that are secure but unsafe. This provides a communication mechanism between different

designers that enables them to detect impacts of their requirements on the rest of the system. This method

is illustrated by the example of the exit door that must be open is case of fire and locked to prevent

unauthorized persons from entering.

Simpson et al. [114] used the non-interference concept [115] from security to model properties of safety-

critical systems. Using the communicating sequential processes language, the authors modeled some

failure modes, particularly fail safe (the occurrence of failures does not affect the safety of the system),

fail soft (neither failures nor the associated recovery measures affect the safety of the system), and fail

operational (neither failures nor the associated recovery measures affect the functional aspects of the

system and its safety).

2.3.2.3 STPA-sec

System theoretic accident model and processes (STAMP) is an accident causality model developed by

Leveson [116] that accounts for new causal factors associated with software, human decision making,

new technology, social and organizational design, and increasing complexity. Based on the STAMP

causality model, system theoretic process analysis (STPA) is a hazard analysis technique that identifies

accident scenarios that encompass the entire accident process [117].

In STAMP, the systems are viewed as hierarchical structures in which higher levels control processes

at lower levels and the lower levels send feedback to the higher levels. STPA focuses on control actions.

It examines each control action under different possible conditions (e.g., providing a control action too

late) and identifies whether these conditions lead to hazards. The STPA methodology starts by

identifying hazardous states of the system then building its control structure with the fundamental

building blocks that involve the control actions. Next a two-steps analysis is done: in Step 1, inadequate

control actions are identified using hazardous states and the control structure, and in Step 2, the causal

factors leading to the unsafe control actions that violate the safety constraints are determined [117].

46

The STPA technique emphasizes component interactions and system dynamics. Asare et al. [118]

confirmed the adequacy of the STPA approach with large complex cyber-physical systems for which

traditional hazard analysis is not efficient.

Young et al. [119][120] introduced STPA-Sec as a new systems-theoretic approach to safety and

security. It consists of a top-down approach that focuses on security analysis as a higher level problem

of assuring the overall function of the system which “shifts away from guarding against attacks” towards

broader socio-technical vulnerabilities. STPA-Sec identifies required constraints on unsecure control

actions that place the system in unsafe states when subjected to intentional and unintentional

disturbances. In STPA-Sec, unsafe and unsecure control actions are identified based on the control

structure model that provides graphical specification of functional controls in the system. This approach

was applied to a nuclear plant example in [120].

2.4 Critical Analysis

Based on the findings in this survey, we first define in Section 2.4.1 a canonical risk analysis process

integrating both safety and security—what we call an integrated risk analysis process—that is relevant

at different stages of the system lifecycle. In Section 2.4.2, we summarize in Table 2 the classification

of approaches previously identified and discuss their pros and cons. In particular, we discuss their

capability to identify and treat interdependencies between safety and security. We finally define in

Section 2.4.3 criteria that we judge essential for a thorough risk analysis and classify again approaches

according to these criteria.

2.4.1 A canonical life-cycle integrating safety and security

We assume a system lifecycle consisting of two main phases: the development phase (including

requirements definition and design) and the operational phase. For non-existent systems, the risk

analysis process (including safety and security) is performed in the development phase in order to define

the appropriate system requirements and design. For existing systems, the risk analysis process should

be performed at the operational level and the system should be modified according to the output of this

analysis by adding detection and prevention modules. We provide in Table 1 an overview of the main

phases of a system lifecycle and the stages at which the integrated risk analysis process could be

required.

Development phase Operational phase

Concept

definition

Requirements definition Design Implementation,

validation

Operation,

maintenance

 Risk analysis

process

Functional

requirements

Non-functional

requirements

 Risk

analysis

process

Table 1: System lifecycle

As mentioned in Section 1.3.3 by the DO-326 standard for aeronautical systems, there is a tendency to

keep safety and security activities separated for critical systems when it is out of the question to sacrifice

some safety requirements for security reasons. This is also true for the nuclear standard IEC 61513, in

which the systems architectures are defined based on safety requirements while security concerns are

considered relatively late in the system development lifecycle [121].

However, we believe that in the general case, the risk analysis process should combine both safety and

security. In Figure 11, we provide a high level view of a safety and security risk analysis process inspired

from the generic approaches identified in Section 2.2. The first step of this integrated risk analysis

47

process is to perform a hazard analysis to identify the hazardous/unsafe states of the system. Considering

the definition of safety in the context of this survey, the hazardous states originate from the system and

have an impact on the system’s environment. Next, safety and a security risk analyses are realized

separately by safety and security experts: safety-related scenarios are identified based on failure mode

analysis and security-related scenarios are identified based on an analysis of threats and vulnerabilities

that lead to unsafe states. Then, the scenarios are ranked according to frequency and impact, and

appropriate safety and security requirements are defined. The two sets of safety and security

requirements are next integrated and examined together in order to identify possible interactions. The

treatment step addresses the different interactions identified (e.g., conflicting requirements). This step

requires collaboration of safety and security experts in order to find solutions that satisfy both sides.

New safety and security requirements are considered and interactions are then derived. The system

modifications resulting from this first pass may introduce new risks; this is why the process iterates until

all interactions are identified and no modifications are needed.

This risk analysis process can be applied to the development or the operational phase of the system

lifecycle (with items being requirements or design features in the development phase or actual

countermeasures in the operational phase).

Figure 11: Safety security integrated risk analysis process

2.4.2 Analysis of the different approaches identified

We classify in Table 2 the different approaches identified in this survey according to different criteria:

unification vs. integration approaches, coverage of the entire system lifecycle phase, qualitative vs.

quantitative approaches, and process-oriented vs. model-based approaches. We later discuss the

potential of each approach to identify and treat safety and security interdependencies (SSIs).

Hazard analysis

Threat and vulnerability

analysis

Safety items definition

Interdependencies

identification

Treatment

(e.g., conflict resolution)

Safety-security items

definition

Security items definition

Failure mode analysis

Merging

Separating

Safety Risk Analysis

Security Risk Analysis

48

Process-oriented approaches rely generally on standards and are used, especially in early phases of a

system’s development, for the identification and specification of requirements that the system design

must satisfy. These approaches aim at combining safety and security aspects in the risk management

phase so that requirements will ensure the system is safe and secure. These approaches result in

lifecycles or methodological processes considering safety and security together so that one cannot

compromise the other, and in some cases, synergies are identified and leveraged. We believe that these

approaches remain too macroscopic, purely qualitative in most cases, and require a lot of investment

from engineers.

Model-based approaches rely on a formal or semi-formal representation of the functional and non-

functional aspects of the system. For existing and operational systems, model-based approaches are

more practical for modeling system’s components and functionalities. With their qualitative and

quantitative capabilities, such approaches are more likely to capture safety and security

interdependencies. Actually model-based approaches require more knowledge from the analyst about

the system. Moreover, they are generally able to scale up to complex systems and represent different

aspects related to safety and security with different viewpoints and levels of detail. We stress in the

following paragraphs the advantages and limits of the main model-based approaches identified.

Fault trees have been used for a long time in safety risk analysis, while attack trees, although younger

and diverse, are gaining momentum in security modeling [122]. A combination of these modeling

approaches, extended fault trees [67], aims to combine safety and security in the risk management

process. The main limitation of the fault/attack trees-based methods resides in their static nature: these

models are not able to represent sequences and more generally any dependence between basic events.

The BDMP formalism (cf. Chapter 3) overcomes the limits of extended fault trees by enabling the

modeling of dynamic behaviors and providing rigorous quantitative capabilities thanks to Markov

processes while keeping the advantage of a hierarchical representation which allows to go through

successive refinements from an undesirable event related to the system to basic events related to the

system components or processes. BDMPs generalize patterns of attack/fault trees but allow additionally

a more accurate modeling, taking into account the dependencies, essential in the security field, but also

in safety as far as we are dealing with repairable systems with dependencies between components.

Contrarily to what happens with the attack/fault trees, in which one must explicitly include the defenses

in the form of sub-trees (the general principle is to represent the success of an action of the attacker by

an AND gate with two leaves, representing the action itself and the failure of defenses provided for the

attack), defense and response mechanisms are embedded in the BDMPs structure (see Section 3.2.2). A

comparison between extended-fault trees and BDMP is provided in [32].

Bayesian belief networks have good quantitative capabilities based on Bayesian inference and a

probabilistic framework that can include epistemic uncertainty. This technique, however, has many

limits when it comes to dynamic modeling of complex systems related to their readability and

computation time. Stochastic Petri nets and similar models such as stochastic activity networks exhibit

high potential for qualitatively and quantitatively modeling safety and security risks in complex systems

and their interdependencies. UML-based approaches provide good graphical visualization capabilities,

and are well suited to qualitative modeling, particularly in the early phases of the system lifecycle.

However, they do not provide quantitative analysis capability. We thoroughly compared in Section 3.3

BDMP with the CHASSIS method, which is UML-based.

Based on SysML, SysML-Sec provides, in addition to graphical SysML diagrams, a more formal

framework for safety and security requirements verification that covers the analysis, design and

validation phases thanks to model checking. Formal methods have potential for treating safety and

security interdependencies by enabling requirements specification and verification. However, the use of

these methods requires adequate knowledge of associated formalisms and languages, which can be

costly in terms of time at the beginning. The application of formal methods is also limited by two factors

[10]: they are not practical in the case of highly complex systems; and they cannot guarantee the validity

of requirements specification.

49

Categorization Criteria

Unification

vs.

Integration

Lifecycle

Phase

Qualitative vs.

Quantitative

Approaches

U
n

if
ic

a

ti
o

n

In
te

g
ra

ti
o

n

 D
es

ig
n

O
p

er
a

ti
o

n
a
l

Q
u

a
li

ta
ti

v
e

Q
u

a
n

ti

ta
ti

v
e

Process-

oriented

Stoneburner [50] x x x x

Aven [51] x x x x x

Derock [36] x x x x

Woskowski [52] x x x

Eames [21] x x x

Johnson [53] x x x

Kornecki [54] x x x

Novak [30], [33], [34] x x x

Hunter [28] x x x x

Sørby [23] x x x

Ostby[57] x x x x

Bieber [6] x x x

Schmittner [58] x x x x

Model-

based

Graphical Methods

GSN [5], [28], [63], [64] x x x x

NFR [65] x x x x

Extended

fault trees

Fovino [67] x x x x

Bezzateev [69] x x x x

Kornecki [22] x x x x x

Steiner [70] x x x x

BDMP [123] x x x x x x

BBN [84] x x x x x

Misuse cases [87] x x x x

CHASSIS [48] x x x x

UMLsec/UMLsafe [93] x x x

SysML-Sec [95] x x x x x

Stochastic Petri nets

[67][68][70]

x x x x x x

MBSE [97] x x x x

Formal

methods

Zafar[102]

GSE method

 x x x

AADL [101] x x x x

Approaches for electrical

networks [92][93][95]

 x x x x x

Non-graphical Methods

Informal Reichenbach

[31]

 x x x x

Holstein [110] x x x x

Depoy [98] x x x x

Pieters [112] x x x x x

Formal Sun [37] x x x x

Simpson [114] x x x

STPA-Sec [119] x x x x

Table 2: Classification of the identified approaches

50

The system-theoretic approach STPA-sec introduces a new way of performing risk analysis based on

control actions which is useful in the early phases of the system lifecycle. This purely qualitative

approach exhaustively identifies the causal factors in the hazard analysis related to the control structure

of the system and the interactions among components. The results generated are still very macroscopic

which is not very suitable to identify “the devil in the details” for safety and security interactions.

Model-based system engineering approaches are suitable for addressing increasing system complexity

and enable systems to be modeled from different viewpoints. When they are supported by formal

languages and analysis tools, they provide a solid framework for eliciting and verifying safety and

security requirements. They are probably the most promising approaches: as a consequence, large

research efforts are currently invested in their development (e.g. SESAMO and MERGE [110] projects).

2.4.3 Discussion

In the industrial context of the thesis, we are interested in operational systems that have a long service

life like power plants, refineries, dams, etc. As discussed in the previous section and inferred from the

state of the art, we believe that model-based approaches are more practical to model the systems of our

context. We consequently exclude process-oriented approaches from the scope of our exploration and

consider only model-based approaches.

The ultimate goal of the thesis is to have a risk analysis approach that encompasses both safety and

security risks in order to identify their potential interdependencies into digital control systems. In order

to obtain this goal, we believe that the desired approach should satisfy the following criteria:

- C1: safety-security modeling

The desired approach enables to model both safety and security aspects;

- C2: Formal

The desired approach is based on mathematical concepts and reasoning methods;

- C3: Qualitative and quantitative

The desired approach yields both qualitative and quantitative results; indeed such an approach

is more likely to capture safety and security interdependencies.

All model-based approaches identified in Table 2 satisfy the first criteria (C1). We evaluate in Table 3

these approaches according to criteria C2 and C3. Non-formal methods are excluded as they do not

satisfy C2.

 Criteria

 Approach

C2 C3

GSN

Extended fault trees x x

BDMP x x

BBN x x

UML-based

approaches

Misuse cases

CHASSIS

SysML-sec x

SPN x x

MBSE x

Formal verification methods (model-checking, theorem prover) x

AADL x

STPA-sec

Table 3: Classification of approaches according to C2 and C3

51

As shown in Table 3, extended fault trees, Boolean logic Driven Markov Processes, Bayesian belief

networks and Stochastic Petri nets based approaches satisfy both criteria. As previously discussed in

Section 2.4.2, fault trees approaches are limited by their static aspect that inhibits modeling the dynamics

of attacks and failures dependencies. Bayesian Belief Networks and Stochastic Petri Nets have good

qualitative and quantitative capabilities however both approaches do not graphically scale up to complex

systems. A non-trivial sized system would involve a graphical model which can be easily unreadable.

For these reasons, we have chosen to investigate BDMP as they enable dynamic behavior modeling and

provide good readability of models. As the use of BDMP in the security domain has been so far limited

to simple and scholar case studies, we propose in the next chapter to use BDMP to model sophisticated

attacks. We also illustrate its potential to model jointly safety and security risks and to capture their

interdependencies on a realistic case study. We finally outline the limitations encountered with the

application of this approach.

52

53

Chapter 3

3 Modeling safety and security with Boolean logic

Driven Markov Processes

In this chapter, we first present the previous work on safety and security modeling using the Boolean

logic Driven Markov Processes (BDMP) approach. We next investigate its potential to model complex

attacks, through modeling Stuxnet. Then, we illustrate BDMP on a realistic case study in order to

identify safety and security interdependencies. We finally compare it to the CHASSIS approach.

3.1 Previous work

This section gives an overview on the previous work that consists in using the BDMP formalism for

safety modeling, its adaption to security modeling and the introduction of its ability to joint safety and

security modeling and to their interactions identification.

3.1.1 Modeling safety with BDMP

Boolean logic Driven Markov Processes (BDMP) are a graphical modeling formalism initially created

by Bouissou [72] in 2003 for system safety and reliability analyses.

Visually similar to fault trees, BDMP model the different combinations of events (leaves of the tree)

that lead to the top event (associated to the undesirable event, e.g. system failure/damage). BDMP add

a new kind of links called “triggers” (represented by red dashed arrows) to fault trees; they enable

dynamic behavior modeling. In addition to fault trees, BDMP involve Markov processes. They have

interesting mathematical properties that enable to process the model and provide quantitative results.

BDMP allow also a dramatic reduction of combinatorial problems related to Markov processes with

very large state spaces [72].

54

We give in the following a quick overview on the BDMP basic properties and the objects used for

graphical modeling.

1) The elements of a BDMP:

A BDMP {A, r, T, P} is made of: a multi-top coherent fault tree A, a main top event r of A, a set T of

triggers and a set P of “triggered Markov processes" Pi associated to the leaves of A. The Markov

process Pi is said to be “triggered" because it switches instantaneously from one of its modes to the

other one according to the state of some externally defined Boolean variable, called “process selector".

An important feature of BDMP is the concept of “relevant event". An event is said to be non-relevant if

the propagation of its realization effects within the tree only affects the gates already realized. For

example if one leaf of an “OR" gate is realized, other leaves under this gate are no longer relevant

because the gate is realized. Non relevant failures are trimmed during the processing when exploring

the possible sequences. Trimming strongly reduces the combinatorial explosion while yielding accurate

results in our assumptions [72]. The process selectors are defined by means of triggers. A trigger,

graphically represented with a red dashed arrow, can modify the mode of the processes associated to the

leaves of the sub-tree it points at, when the event that is the origin of the trigger changes from FALSE

to TRUE (or conversely). The complete definition of the semantics of a BDMP can be found in [72].

2) Modeling objects:

 BDMP leaves: model the basic events corresponding to the system’s components failures that can

lead to the undesirable event. The basic BDMP leaves used for safety modeling are given in Table

4;

 Gates and links: the BDMP models use classical logic gates “AND”, “OR” and “k out of n”; and

more specific gates (e.g. “PAND” “Aggregate OR”) defined in [123]. In Addition to classical logic

links used to connect a gate to its sons (represented as solid black lines), BDMP models contain

other specific links described in Table 5.

Each basic event of a BDMP is associated to a Markov Process with two possible modes, corresponding

to the fact that the components or subsystems that they model are required or are in standby mode. The

mode chosen for a given leaf at a given instant depends on the realization of other leaves, which is

modeled with triggers.

Figure 12: A basic BDMP model

An example of a BDMP is depicted in Figure 12. The top event “r” above the AND gate “G3” is realized

if both G1 and G2 are TRUE. The OR gate G1 is TRUE if at least “f1” or “f2” is realized. The OR gate

G2 is TRUE if at least “f3” or “f4” is realized. The trigger of this BDMP specifies that whenever G1 is

TRUE f3 and f4 are in the required mode. Otherwise they are in the not required mode. This models a

standby redundancy.

G1

 G3

f1 f2

G2

f3 f4

 r

55

Representation Modeled behavior

 !

“ Failure in operation ”

This leaf is used to model a failure in operation,

when the modeled component is active. Failure

occurs after a time exponentially distributed

(parameter) and can also be repaired in a time

exponentially distributed (parameter).

 I !

“ Instantaneous failure ”

This leaf is used to model a failure on demand

likely to arise instantaneously when the leaf

changes mode (from not required to required),

with a probability . Failure can be repaired in a

time exponentially distributed (parameter).

Table 4: Basic BDMP leaves for safety modeling

Representation Modeled behavior

“ Trigger link ”

Defines the dynamic aspect of BDMP. The element pointed by the

trigger link is not activated until the realization of the origin gate/leaf

of the trigger. When this element becomes activated, it transmits the

activation signal it receives from its parents to the sub-tree targeted

by the trigger.

“ Before link ”

Creates a constraint in the order of realization of instantaneous events

(on-demand failure leaves), in the case where they are required

simultaneously.

Table 5: Special links used in BDMP models

3.1.2 Modeling security with BDMP

The BDMP formalism was used by Pietre-Cambacedes [73] to model security-related risks. New

security leaves were introduced to model attack steps, or in some cases, security events that are not

under the direct control of the attacker (e.g., the opening of an email containing a malicious payload by

a victim of the attacker). These attack leaves define the different types of events that we can consider in

an attack scenario, they are depicted in Table 6. Each attack leaf can be either in “Idle” or “Active”

mode. The former is used when nothing is in progress; the latter models an on-going event, generally an

attack event in progress.

With these security leaves, BDMPs enable graphical modeling of the different combinations of attack

steps that lead to an undesirable event. Detection and response mechanisms against attacks can also be

taken into account [124] thanks to the generalization of the concept of mode, allowing three modes

instead of just two. The general idea is that each attack step can be detected at various moments: when

it begins, during its progress, when it succeeds, or after completion. Whenever detection occurs, this

changes all success rates or probabilities for attack steps which are still to be completed. The only thing

the analyst has to do to take detection into account in the BDMP model is to change a global option in

the model and add in each security leaf the detection rate and the realization rate after detection. This

does not require any change in the BDMP structure which enables to represent a complex model in a

concise manner. These detection parameters are taken into account in the quantitative processing: once

the attack is detected, it makes the following actions of the attacker more difficult or even impossible

(cf. example in Section 3.2.2).

56

Representation Modeled behavior

“ AA leaf ”

The "Attacker Action" (AA) leaf models an attacker step towards the

accomplishment of his objective. The Idle mode means that the attacker

has not yet at this stage tried to do this action. The Active mode

corresponds to actual attempts for which the time needed to succeed is

exponentially distributed with a parameter λ. The Mean Time To

Success (MTTS) for this action is equal to 1/λ.

“ TSE leaf ”

The "Timed Security Event" (TSE) leaf models an event the realization

of which is necessary for the attack success but that is not under the

direct control of the attacker. The time needed for its realization is

exponentially distributed (MTTS=1/λ). If the leaf comes back to the

Idle mode, after being active for some time, the leaf state can still

become realized which would not be the case with an AA leaf).

“ ISE leaf ”

The "Instantaneous Security Event" (ISE) leaf models a security event

that can happen instantaneously with a probability γ when the leaf

switches from the Idle mode to the Active mode. In the Idle mode, the

event cannot occur and the leaf stays in the state Potential. In the Active

mode, the event is either Realized or Not Realized.

Table 6: Basic BDMP leaves for security modeling

3.1.3 Modeling safety and security with BDMP

Pitere-Cambacedes and Bouissou [32] used the BDMP formalism to create models integrating both

safety-related and security-related risks that lead to the same undesirable event. The authors

distinguished between “pure models” where purely accidental or purely malicious events are modeled,

“hybrid models” where a combination of accidental and malicious events is modeled, and finally

“integrated models” which combine pure and integrated models. They additionally underline the

potential of such models to catch safety and security interdependencies (cf. Section 1.3.3).

As presented and illustrated on the pedagogical use case given in [32], using BDMP as a unifying

formalism for joint safety and security risks modeling and interdependencies remains theoretical and

not enough proven. We have consequently chosen to explore in Section 3.2 this approach in depth and

illustrate it on real and complex systems in order to identify potential safety and security

interdependencies. We also compare in Section 3.3 the BDMP approach to the CHASSIS method (cf. §

2.3.1.5) and show how they complement each other.

We give in the next subsection an overview on the KB3 workbench used for inputting BDMP models

and processing them. The information below is necessary to understand the examples given in Sections

3.2 and 3.3.

3.1.4 The KB3 workbench

The KB3 workbench includes the KB3 software used to input graphical models, thanks to a knowledge

base, and the quantification tools used to process them.

3.1.4.1 KB3 and Knowledge Bases

KB3 v3 (hereafter named KB3) is a software, developed and used at EDF since 2000, that enables to

build probabilistic models for dependability studies. These models can describe structural type (e.g.,

fault trees) or behavioral type (e.g., dynamic Markovian and non-Markovian models, Monte Carlo

simulation models) for the studied system. These models are built from elements described in a

knowledge base (KB)[125]. Knowledge bases aim at capitalizing expert’s knowledge about a given

system or domain (cf. Section 4.1 for examples), in order to reuse it for building models. They can be

abstract (e.g., the KB used to create BDMP) or dedicated to a particular domain (i.e. comprised of

57

physical objects like pumps, valves, circuit-breakers, etc.). They are written using the Figaro modeling

language that will be detailed in Section 4.6.1

Multiple knowledge bases have been developed using the KB3 workbench among which the knowledge

bases used to build the BDMP models:

 For “Safety BDMP”, the accidental leaves and the corresponding modeled behavior described

in Table 4 are depicted in the “ Dependability KB” [72];

 For “Security BDMP”, the attack leaves and the corresponding modeled behavior described in

Table 6 are depicted in the “Security KB” [123];

 For “Safety-Security BDMP”, the “Security-Dependability KB” [126] merges the two previous

knowledge bases in order to enable building BDMP models combining both safety and security

risk events. Such models will be illustrated in Sections 3.2 & 3.3.

The KB3 tool enables to associate graphical elements with the different components defined in a given

knowledge base. These elements are used to build the graphical model (e.g., BDMP model) using the

KB3 Human Machine Interface (HMI). KB3 next transforms the model into a Figaro language

description, which can be processed thanks to the quantification tools described in the following section.

3.1.4.2 Quantification Tools: Figseq and Yams

Two quantification tools are used in the KB3 workbench (for dynamic models), Figseq and Yams, and

enable to process the models input by the user (e.g., BDMP model). We give below a quick overview

on each tool. The principle of each tool will be further explained in Section 4.6.2. Both Figseq and Yams

use as an input the Figaro model generated by KB3 from the graphical description input by the user in

KB3 and the corresponding KB.

Figseq (Figaro Sequences Generator): is relevant in case only exponential distributions are used to

model the temporal behavior of the modeled elements. It uses path-based algorithms that explore and

quantify the sequences going from the initial state of the system to a failure state. These algorithms are

able to deal with large-state space Markov processes while avoiding combinatory explosion [127].

Two different algorithms can be used by the Figseq tool: the “NS” algorithm (Normal Sequences) used

for non-repairable systems or in case the mission time is equivalent to the time spent in the first state,

and the “NRI” algorithm (No Return to Initial state) used for systems completely repairable (assuming

that mean time to repair is very low compared to mean time to failure).). Both algorithms yield a

reliability estimation and the list of the most probable sequences leading to an undesirable state. In

addition, the NRI algorithm produces an estimation of the asymptotic unavailability of the system.

Yams (Yet Another Monte Carlo Simulator): is used in case Non-exponential distributions are used to

model the temporal behavior of the modeled elements. It simulates, based on the Monte Carlo method,

a large number of realizations of the random process specified by the model, and then calculates

estimators of the variables of interest by statistics. Yams can estimate not only reliability and availability

of the system, but also the mean and standard deviation of any random variable linked to the system

model, for example its exploitation cost.

We propose in the next section to investigate the ability of Boolean logic Driven Markov Processes

firstly to model sophisticated attacks and secondly to model safety and security risks on real system

architectures in order to identify their possible interdependencies.

58

3.2 Modeling real attacks and complex systems

BDMP have not so far been used to model real and sophisticated attacks or to address jointly safety and

security issues in complex systems. We propose to deal in this section with these two aspects. We first

modeled the famous Stuxnet attack with BDMP [128]. Next, we used the approach proposed in [32] in

order to prove its ability to catch safety and security interdependencies on a realistic industrial case study

taking into account the system architecture; and gave qualitative and quantitative results obtained from

it.

3.2.1 Modeling the Stuxnet attack with BDMP

Since 2010, the Stuxnet worm has been of particular interest for the media and security experts. Not

only because of its high degree of sophistication but also because it targeted the control systems of an

industrial installation and led, for the first time, to major physical damage. It has since been a trigger to

urge industries to protect their critical infrastructures against cyber-attacks and to pay more attention to

interdependencies between the cyber and the physical parts of their systems. Many studies explored

Stuxnet with more or less details and gave technical explanations about the infiltration and the

propagation of this worm into the core network and the control system [1][129]. Yet, very few provided

a model enabling a global understanding of the attack. Modeling an attack is a paramount step in the

procedure of securing a cyber-physical system for several reasons [130]. First, it enables the

identification of the weaknesses and the different access points of the system and makes the attack

vectors more evident. Secondly, it makes the search for efficient solutions to mitigate these

vulnerabilities easier. Finally, it helps understanding the behavior of the attacker and assessing the effect

on the physical infrastructure. The only existing models of the Stuxnet attack are based on attack trees

[131] or graphs [132]. We propose in this section to model Stuxnet with BDMP applied to security (cf.

Section 3.1.2) in order to: i) better reflect the dynamics of this assault, ii) enable a coarse quantification

of the attack success probability and finally, iii) highlight the advantages of BDMP compared to existing

models.

The remainder of this section will be organized as follows: first we give a global overview of the Stuxnet

attack. Second, we describe the architecture of the industrial site targeted by this attack. Third, we detail

the dynamics of the Stuxnet attack. Fourth, we give the BDMP modeling these dynamics and fifth the

qualitative and quantitative risk analysis associated with this model. We finally outline the advantages

our model compared to existing ones.

3.2.1.1 Stuxnet attack overview

Stuxnet ultimately targeted SCADA systems running a Windows environment that hosts specific

Siemens industrial control systems (namely the WinCC, PCS7 and STEP7 platforms) and connected to

specific types of Programmable Logic Controller devices (PLCs). It reprograms PLCs in a way that

modifies the system operation leading to damage to the physical infrastructure under control. The

Stuxnet attack affected mainly Iranian nuclear enrichment facilities and resulted in slowing down the

production of centrifugal machines and finally damaging them. The sophistication of the malware and

the very specific systems it targeted led to the conclusion that such attack could not be developed by a

group of persons but rather by a nation-state.

Considering the sensitivity of the facility targeted by Stuxnet, its SCADA system was not directly

connected to the Internet (and presumably non-industrial networks of the facility). Consequently, the

best attack path for Stuxnet was to compromise an external device, typically a USB thumb drive, which

would be later connected to the control system. So, the first step of the attack was to propagate

throughout the Information System of the Enterprise corporate network to increase the probability of

reaching the industrial network. To reach this goal, Stuxnet exploits several Windows’ vulnerabilities

and at least four 0-day exploits [129][132]. Another specificity of this malware is that it injects its entire

payload into other legitimate processes and uses several rootkits to escape detection. We give more

technical details about Stuxnet dynamics and its life cycle in § 3.2.1.3.

59

3.2.1.2 Network architecture of the industrial site

Several security consulting services published detailed information about the components of the targeted

Siemens platforms and typical network architectures [132]. Based on these studies, we have defined a

simplified architecture of what could have been the targeted one. It is represented in Figure 13 and will

be the basis of our BDMP model of the Stuxnet attack in § 3.2.1.4.

External

Vendor

Fileserver

Office

Workstation
Mobile

Workstation

E
x

te
rn

a
l

N
e

tw
o

rk

Web Server

Terminal

Server

Controller

WinCC Client

WinCC Server

Application

Server

(RPC)

PCS7

Workstation

File

Server

Process

Information

System

Profibus PLC / IO

Ethernet

Controller

Historian

database

PLC / IO

Engineering

Workstation

3rd Party

Maintenance

Workstation

OS Client

OS Server

C&C

Server

B
u

s
in

e
s

s

C
o

rp
o

ra
te

N
e

tw
o

rk

S
C

A
D

A

S
y

s
te

m

WinCC

Workstation

Print Server

Intranet

Internet

Email

Server

Database

Server

Motor

Centifuge

Maintenance

Workstation

Maintenance

Workstation

Figure 13: Facility network architecture of an industrial network

The whole facility architecture is composed of two main security zones, the Business Corporate Network

and the SCADA system.

The Business Corporate Network hosts the Enterprise usual Information System. It comprises servers

and workstations that enable classical daily applications (emails, reporting, accountability...), the

Enterprise Resource Planning (ERP) system, etc. It may also host WinCC SQL Server databases that

provide high level information to end users and store STEP7 project files, as well as applications that

manage PCS7 or WinCC projects. Data can be exchanged between terminals via a local area network

that hosts local databases and process information servers. This network can exchange data with external

networks connected to the Internet through a “demilitarized zone". The communication is protected by

firewalls and other security modules.

The SCADA system includes a Process Control Network and a Control System Network. The Process

Control Network consists of WinCC and PCS7 clients and servers which are connected to PLCs and

enable communication with them. WinCC machines provide HMI client/server systems used to monitor

60

the industrial process and visualize messages and real-time data. PCS7 machines include basic data

collection functions for project data, process values, archives, alarms and messages. PCS7 servers

provide all process data and connect PLCs to the Process Control Network [132]. The control system

network includes WinCC/PCS7 servers and PLCs. It controls and supervises the physical process.

PCS7/WinCC server and client can be installed on the same hardware which is the case in our model

for simplification. PLCs send control signals via a Process Field Bus (Profibus) to speed regulators that

control the rotation of motors. This network includes as well WinCC SQL Server databases and other

engineering or maintenance workstations. We suppose that, for security reasons, the SCADA system is

isolated by an air gap so that no network connection is possible between the two security zones.

3.2.1.3 Stuxnet dynamics

In this sub-section we give more details about the malware main phases and attack steps. Text written

in Typewriter font denotes the corresponding security leaves (cf. Table 6) in the BDMP model given

in Figure 14 and Appendix 1 (not all leaves are mentioned). Basically, we can distinguish two main

phases: 1) infiltration and propagation into the corporate Enterprise network; 2) compromising SCADA
systems and industrial sabotage.

1) Infiltration and propagation into the corporate Enterprise network:

We assume in our model that the whole network is initially non-infected. It is then very likely that the

very first infiltration of the malware was introduced by infected removable media, which represent the

main attack vector, into a workstation of the business corporate network.

The user action of inserting an infected removable drive is modeled by a TSE leaf user USB key

execution as it is dependent on the user and not under the control of the attacker. Stuxnet exploits two

Windows vulnerabilities to spread to and from removable drives. One is Windows Shell LNK

vulnerability linked to the system handling of shortcuts using ".LNK" and ".PIF" files. The other is

autorun.inf file vulnerability which enables self-execution of the removable drive when inserted. The

user has just to open a compromised file folder on his USB drive to let the worm do the rest of the work.

When the first step is realized, the malware instantaneously exploits one of the two vulnerabilities

modeled by ISE leaves Win LNK vuln and autorun.inf vuln in order to infiltrate the system.

Once introduced into the system, the next attack step is self-installation. The malware loads

instantaneously the main dropper which is a dynamic link library (.dll) that contains Stuxnet functions,

files and rootkits into a trusted process generally default Windows processes or executable files of

security products installed. Then it, checks Windows config: it targets particularly 32 bits machines

running the operating systems Windows XP/2003/Vista/7 or Windows Server. Next, it checks admin

rights of the current user. If not found, the malware exploits one of two zero-days, keyboard layout

and task planner vulnerabilities, to elevate its privileges. The worm proceeds then to the execution

of its main installer. It comprises two main steps: install Win rootkit in order to escape detection

then updating the last version of the malware. To install the rootkit, Stuxnet loads a driver file

legitimately signed by Realtek certificate and used to scan the main filesystem driver objects. It then

creates a new device object and attaches it to the driver chain of the previous driver objects to be the

first to receive requests to/from these drivers. This allows the malware to filter out files with ".LNK"

and ".TMP" extensions to hide malicious files. To update the last version of the malware, Stuxnet can

either establish a P2P communication by installing an RPC server on the infected machine and wait

for connections from RPC clients or it can directly download the latest updates from Control and

Command Server (C&C server communication). Stuxnet communicates with remote servers on port

80 via HTTP. It injects itself into Internet explorer or creates another browser process to bypass firewall

security rules.

The malware tries to infect as many workstations as possible in the corporate business network to

maximize its chances to transit later to the Control Network. The three main ways of infection, self-

replication and propagation are: 1) removable media connected to compromised machines. 2) the

LAN; through network shares, Print Spooler Service exploit, Windows Server Service exploit or

connections to WinCC remote databases. In this last case, Stuxnet searches for WinCC environments.

If found, it connects to the database using default Siemens password and sends malicious code via

61

SQL queries. 3) WinCC/Step7 project files associated to WinCC SIMATIC Manager. Stuxnet searches

for and infects files with extensions ".S7P", ".MCP" or ".TMP". It waits then for the user to open the

infected file (user opens file project) to load its .dll file, decrypt data and execute infection

routines.

2) Compromising SCADA systems and industrial sabotage:

The next main step for Stuxnet is to reach and compromise the SCADA Network to attack the industrial

system. The network being isolated from the Corporate Business Network for security reasons, the

malware waits until it is somehow carried to the Process Control Network by an employee connecting

infected removable drives or by a maintenance workstation (infection of a control PC). Stuxnet

looks first for WinCC/Step7 software on the control PC used to configure the PLC. If found, it installs

a rootkit: it loads a library file (s7otbxdx.dll) used for the communication between the control PC and

the PLC, renames it (s7otbxsx.dll) and inserts malicious code into the new file. After checking

connection to PLC as well as other specific configuration (PLC model, Profibus configuration, and speed

regulators number), the malware proceeds to infecting and modifying PLC function blocks.

The code executed on PLC differs depending on its CPU type; only 6ES7-315-2 or 6ES7-417 modules

are targeted. Flag sys 300 and Flag sys 400 enable to choose one of these two options. In the

case of 300-series systems, the malware collects data for a period going from 13 days to 3 months before

sending falsified data to motors on the communication bus for around 50 minutes. For 400-series

systems, the code sequence is more complex. Coarsely, it intercepts input and output signals of PLC and

provides false data to the logic code sequence in order to falsify output returned signals (man-in-the-

middle attack). The malware operates without being detected or inducing any suspicious signals or

abnormal values to be visualized in return to operators.

Through the falsified PLC output signals, the attacker gives instructions to motors to alternate high then

low frequency rotation. This phase can last several months causing the physical materiel to wear down

slowly and consequently worsen its performance. It can even end into machines self-destruction.

3.2.1.4 Stuxnet modeling with BDMP

We model in Figure 14 the top part of the Stuxnet attack BDMP with its main phases: infiltration, self-

installation and attack of the industrial system. The BDMP of the last two phases are detailed in Annex 1

(Figure 41 and Figure 42). The sub-tree modeling the different propagation paths of the malware (Figure

41) is not required later in risk quantification because the attack can succeed from the first chance; that

is why it is not linked to the top event of the BDMP.

In this BDMP model, we can parameterize the different leaves following their formal specification by

estimating success rates and probabilities (λs and γs). Such parameterization is used later in the

quantitative analysis: it enables the computation of the attack success probability as well all possible

sequences that lead to the attack success. We list in Table 7 parameter values corresponding to attack

leaves that we have chosen in the BDMP model based on our own estimation and writings by security

consultants [133].

62

Password_found

OR

Cracking_alternatives

Password_attacksSuccessful_attack

AND

Social_Engineering_Success

AND

Autorun.inf vuln

User USB key execution

AND

Corporate Network compromised

Windows vuln exploit

Stuxnet

TSE

ISE!

Win LNK vuln

ISE!

Self installation and

infection routines

Attack industrial system

SCADA compromission

Injection via compromised

removable media

Figure 14: Top part of the Stuxnet model

Subtree Leaf label Parameter8

Infiltration user USB key exec λ=5.787e-6

(MTTS= 2 days)

Win LNK vuln

autorun.inf vuln

γ=1/2

Installation Admin rights γ=0.7

keyboard layout vuln

task planner vuln

P2P communication

CC server communication

γ=1/2

SCADA

compromising

infection of a control PC λ=7.7e-7

(MTTS= 15 days)

collect data λ=3.86e-7

(MTTS= 1 month)

user opens file project λ=1.16e-5

(MTTS= 1 day)

PLC sends false data to motors λ=3.33e-4

(MTTS= 50 min)

intercept in out PLC signals λ=8.36e-7

(MTTS= 1 month)

modify out signals λ=1.15e-5

(MTTS= 1 day)

Propagation removable media λ=5.79e-6

(MTTS= 2 days)

network shares λ=1.39e-4

(MTTS= 2 hours)

8 Unit for λ is per second

63

print servers vuln λ=9.25e-5

(MTTS= 3 hours)

service server RPC vuln λ=2.77e-4

(MTTS= 1 hour)

cascade centrifuges γ=0.1 per centrifuge

For all other ISE leaves: γ=0.99 (almost sure)

Table 7: Parameters of the Stuxnet BDMP model

3.2.1.5 Quantitative and qualitative risk analysis

BDMP enable not only attack representation but yield also quantitative and qualitative results directly

usable for risk assessment. KB3 quantification tools (cf. Section 3.1.4) enable BDMP analysis namely

the enumeration of all possible attack paths ordered by their probabilities of occurrence and

contributions to the final attack success. We summarize in Table 8 all possible attack sequences;

vertically readable.

We number steps that are not in common for all sequences and we denote in Table 9 each sequence by

the numbers of the steps that differentiate it from other sequences.

User USB key execution

1-Win LNK vuln

autorun.inf vuln (NR)

2-Win LNK vuln(NR)

autorun.inf vuln

3-Win LNK vuln

autorun.inf vuln

self injection into process

check Windows config

4-Admin rights Admin rights (NR)

5-keyboard layout vuln

task planner vuln(NR)

6-keyboard layout vuln(NR)

task planner vuln

7-keyboard layout vuln

task planner vuln

load driver legitimately signed

scanning filesystem drivers

new device object attachmen

filter out .lnk .tmp files

8-C&C server communication 9-P2P communication

infection of a control PC

check STEP7 or WinCC

Load library

rename replace library

check PLC exists

Check PLC model

check Profibus config

check speed regulators number

modify PLC function blocks

rootkit400 activated

intercept in out PLC signals

modify out signals

fail cascade centrifuges

Table 8: List of successful attack sequences (NR: Not Realized)

According to [133], Stuxnet attacked a group of cascades of centrifuges, each cascade comprises 164

centrifuges. We suppose, in our BDMP model, that the attack is successful when at least 3 centrifugal

machines fail. This hypothesis is not important (at least from a qualitative point of view): when Stuxnet

infects the PLC, it can make all the machines fail. It is just a matter of time. The succession of failures

of a set of identical components is represented by the leaf at the extreme right of the BDMP "cascade

centrifuges". The behavior of such a leaf is depicted in FIGURE 15. Each state is defined by the number

of failed components.

64

... ...

n λ (n-1) λ (n-2) λ λ

0 1 2 3 n

Figure 15: Markov chain modeling the failure process of a set of n identical components (n=164 in the

case study)

Using KB3 quantification tools (cf. Section 3.1.4), we compute the probability of each possible sequence

and its contribution to the overall probability of the attack success which is estimated to 0.6 for a 400-

series system, with the chosen parameters. The results are given in Table 9. We can for example infer

from these quantitative results that it is more probable for the malware to update itself through

communicating with the Control and Command server that enables the attacker acting remotely on the

infected system rather than waiting for RPC clients to connect for Peer-to-Peer communication. We can

also notice, but it seems more obvious, that the attack is more likely to succeed when administrator

rights are available on the system.

Sequences 1-4-8

2-4-8

3-4-8

1-4-9

2-4-9

3-4-9

1-5-8

2-5-8

3-5-8

1-6-8

2-6-8

3-6-8

1-7-8

2-7-8

3-7-8

1-5-9

2-5-9

3-5-9

1-6-9

2-6-9

3-6-9

1-7-9

2-7-9

3-7-9

Proba per seq 1.06e-1 4.54e-2 1.14e-2 4.86e-3

Contrib per seq 17.65% 7.56% 1.89% 0.8%

Sum of contrib 52.95% 22.68% 17.01% 7.2%

Table 9: Quantification results

Figure 16 plots the evolution of attack success probability according to time. We can see that success

probability increases by time and reaches an asymptote after around 6 months. This asymptote is the

global attack success probability; equal to 0.6 in the case of a 400-serie PLC. This probability never

reaches 1 because we consider all attack failure cases including targeted configuration not found and

PLCs not connected to infected configuration machines. The evolution of success probability is also

tightly linked to the realization of long-phased attack steps mainly at Attack industrial system phase.

“Stuxnet was discovered in July 2010, but is confirmed to have existed at least one year prior and likely

even before"[1]. The value of 6 months that we obtain by our quantification has the same order of

magnitude but is clearly inferior for the following reasons: (i) we chose rather high values for the

model’s parameters (ii) the malware was discovered after the intended effects had taken place.

3.2.1.6 Comparison with existing Stuxnet models

An attack tree [68] modeling Stuxnet with our hypotheses would be very close to the BDMP without its

triggers and precedence (before) links. The attack tree model found in [131] is a good illustration. It

gives no indication about the constraints on the order of attack steps. Therefore, it is useless without a

detailed textual explanation. On the contrary, once a reader has in mind the correspondence between the

necessarily short names of the leaves and the real events, he has a complete description of the attack

with the BDMP. This modeling power is what makes the risk quantification of § 3.2.1.5 possible. With

an attack tree, the only possible quantification corresponds to the assumption that all timed transitions

are enabled from the start of the attack. This gives grossly erroneous results.

This drawback of attack trees is particularly obvious in the case of Stuxnet where many attack steps are

highly dependent from one another. The attack graph found in [132] is only a visual representation with

no quantification capabilities. Moreover, its non-hierarchical and cyclic structure makes it less readable

than a tree structure. It focuses on the propagation aspects of the worm, covering only a subpart of our

model.

65

Figure 16: Attack success probability according to time

3.2.1.7 Conclusion

We modeled, in this section, the fundamental mechanisms of the Stuxnet attack in a unique and rigorous

graphical representation, and gave quantification results for each possible attack sequence. These results

reflect the potential of BDMP for modeling the steps of an attack and its global progress. Quantification

tools can process such a model to enumerate possible attack sequences with their probabilities and

contributions to the overall attack success. This model also identifies attack vectors and access points

that an attacker may exploit in order to infiltrate a system and take control over the main control

functions to be represented.

The Stuxnet attack study proves that industrial infrastructures are vulnerable to cyber-attacks. Despite

the partitioning (air gap) between the Business Corporate Network and the SCADA system, the malware

managed to reach the industrial control and modify the process operation leading to safety issues. We

propose in the next section to point out more closely safety and security interdependencies on a realistic

case study through BDMP modeling.

3.2.2 Modeling safety and security interdependencies

We propose in this section to model jointly safety and security risks with BDMP in order to identify

their possible interdependencies. We have studied in [126] a simple example where safety and security

requirements are contradictory. Using BDMP modeling, we have been able to characterize quantitatively

the conflict between safety and security measures, and decide what measures should be privileged in

order to minimize the global risk.

We consider in the remainder of this section, a detailed case study inspired from the industrial domain.

After describing the system architecture, we give a common BDMP model for safety and security risks.

We next generate the associated results and demonstrate synergy between safety and security measures.

3.2.2.1 System architecture description

The system considered is a cyber-physical system used for transporting a polluting substance. The

architecture of this case study, given in Figure 17, is hypothetical but can be transposed to other

industrial systems.

It is composed of a pipeline equipped with pumps used to force the stream and valves used to allow or

block the stream. Throughout the pipeline sensors measure the pressure and flow inside each section of

66

the pipeline. Each equipment (pump or valve) is controlled by a Remote Telemetry Unit (RTU) that

communicates with a remote Control Center (CC). RTU tasks are to:

 Collect data from sensors used to measure the pressure and the flow at the neighboring of each

pump and valve;

 Control pumps’ operation and speed and valves’ opening/closing;

 Send data and alarm signals to the CC and receive instructions from it;

 Exchange with neighboring RTUs pressure measures and shutdown signals.

Safety requires RTUs to verify the pressure in the pipeline does not exceed a maximum value Pmax. Each

RTU also calculates the difference of pressure between the one it gets from its own sensors and the one

it receives from the neighboring RTU: ΔP = |Pn-Pn-1|. If ΔP exceeds a threshold ΔPmax, the RTU sends

an alarm signal to the CC, which sends back an order to all RTUs to stop pumps and close valves. The

pressure threshold is reached generally when the pipeline is broken; this implies that the pressure

measured before the break is very high compared to the pressure measured after the break, which makes

the difference of pressure very high. A safety requirement enables each RTU to stop the pump or close

the valve it controls when ΔPmax is reached or when it receives a shutdown order from other RTU without

waiting for CC instructions. In addition the RTU sends a shutdown signal to its neighboring RTUs. This

action is called later “Reflex Action” and provides redundancy with CC instructions, with a higher

priority.

pp pp pp p

FF F F

RTURTU

Master CC

HMI

p
F

RTU

Unidirectional Wired Link

Unidirectional Wireless Link

Bidirectional Wireless Link

pump Shut-off valve

Possible access of attacker

Figure 17: Architecture of the case study

We assume RTUs are locally installed onto pumps and valves and communicate with them via a wired

link. Sensors which are relatively distant and scattered all along the pipeline use a wireless link to

communicate with RTUs. Supposing that the pipeline goes along hundreds of kilometers and that it is a

hundred kilometers distant from the CC, we assume that communication is carried out by a GSM

network. The industrial protocols used are Modbus/TCP for RTU-CC communication, Modbus/RTU

for inter-RTUs communication and WirelessHART for sensor-RTU communication. These assumptions

will be used later to estimate security events parameters.

3.2.2.2 System modeling with BDMP

The BDMP corresponding to this system is given in Figure 18. It models the different scenarios that

lead to pollution of the environment (the top event). There are three types of possible scenarios: attack

scenarios, accidental scenarios or hybrid scenarios. The first type of scenarios is a successful attack

initiated by a malicious person, the second type is based on mere failures of the system’s components

67

and the third type is a combination of attacks and components failures. This latter type best characterizes

the possible interactions between safety and security events.

Based on hierarchical reasoning, BDMP cover all the possible scenarios. The top event: pollution can

be realized if and only if the pipeline breaks and the protection system fails to react. The protection

system refers to the detection of the pipeline break by RTUs and the system shutdown either thanks to

the reflex action or by orders sent by the CC. The protection system can fail to react for two different

reasons: either it was deactivated before the break by an attacker, or it accidentally does not work.

This reasoning corresponds to the top level of the BDMP. The gate named

attack_protection_syst_then_pipeline_break is a "PAND" gate, which becomes true only if its left input

is true when the right input becomes true. If an attack is perpetrated after a pipe break, this will not

worsen the situation. In this model, no defense mechanism against attacks is supposed to exist, but

accidental failures can be repaired.

The attack scenario: We suppose that attacks for such an industrial infrastructure follow a Poisson

process with an occurrence rate of once every 3 years. The attack scenario starts by deactivating the

protection system before provoking the pipeline breach by using the water-hammer phenomenon. In the

attack preparation phase the attacker starts by getting access to the SCADA system: either by taking

control over the CC (physically or remotely) or accessing physically to the RTU or creeping into the

network via the communication link (between the RTU and the CC or between the sensors and the RTU).

Secondly, the attacker must understand the system operation in order to be able to deactivate the

protection system. Depending on what the attacker has gained access to, he will act differently in order

to deactivate the protection. The attack steps in this phase will be quasi instantaneous as the attacker has

previously understood the system operation and is able to manipulate it. In order to deactivate the reflex

action of RTUs the attacker can simply jam the communication between the RTUs so that the pipeline

breach cannot be detected. The house event No_reflex_action models the existence or the non-existence

of the reflex action as a safety measure implemented locally in the system; this leaf is set either to true

or to false prior to any quantification. After preparing for his attack, the attacker is ready to break the

pipeline with a water-hammer by provoking a high pumping pressure in the pipeline and closing

suddenly the valve downstream which causes a shock leading to a breach at the weakest point in the

pipeline.

The accidental scenario: In this case pollution is caused if the pipeline breaks accidentally then the

protection system fails to react. The protection failure is realized in two cases: no instructions given by

the RTU or the on-demand failure of the equipment (valves and pumps) to react properly. The first case

is realized if the RTU fails or if it doesn’t react which implies that it receives no instruction from CC

and it does not activate its reflex action. Safety leaves detail the accidental events leading to such

scenarios.

The hybrid scenario: This scenario is built up from both accidental and malicious events. We can

imagine that the attacker can remotely deactivate the protection system then give up the attack because

he does not succeed in creating the water hammer. Then he can just wait until the pipeline breaks

accidentally instead of trying another attack. This scenario has a very low probability and supposes that

the protection system deactivation is not detected until the pipeline breaks.

68

 Figure 18: BDMP model of the pipeline and its control system

7 days

0.5

0.8

3 days

0.5

0.5

6 months

0.5

1 day

0.7

0.7

0.8
0.8

10 years

1.38e-4

7e-4

2.3e-4

4.6e-4

1.14e-4

2.3e-4

1e-5

5e-5

0.8

3 years

2 days

Triggers from this OR gate

to its sons are "inverted" in

order to ensure mutual

exclusion between these

sons.

access_to_CCaccess_to_CC

access_to_RTUaccess_to_RTU

I S E

jamming_com_between_RTUsjamming_com_between_RTUs

access_com_link_between_RTU_CCaccess_com_link_between_RTU_CC

I S E

falsify_CC_instructionsfalsify_CC_instructions

No_reflex_actionNo_reflex_action

OR

desactivate_reflex_actiondesactivate_reflex_action

AND

falsify_RTU_outputfalsify_RTU_output

I S E

falsify_data_sent_to_CCfalsify_data_sent_to_CC

I S E

falsify_data_sent_to_other_RTUsfalsify_data_sent_to_other_RTUs
I S E

falsify_instructions_sent_to_equipmentsfalsify_instructions_sent_to_equipments

understand_syst_operationunderstand_syst_operation

AND

attack_preparation1attack_preparation1

AND

attack_preparation2attack_preparation2

I S E

report_false_data_to_CCreport_false_data_to_CC

I S E

send_false_instructions_to_RTUssend_false_instructions_to_RTUs

access_com_link_sensors_RTUaccess_com_link_sensors_RTU

I S E

falsify_sensors_measuresfalsify_sensors_measures

AND

attack_preparation3attack_preparation3

PollutionPollution

OR

pipeline_breakpipeline_break

!

pipe_break_accidentallypipe_break_accidentally

AND

pipeline_break_and_protection_failurepipeline_break_and_protection_failureattack_protection_syst_then_pipeline_breakattack_protection_syst_then_pipeline_break

OR

possible_scenariospossible_scenarios

AND

Waterhammer_attackWaterhammer_attack

I S E

high_pumping_pressure_activationhigh_pumping_pressure_activation

I S E

closing_valveclosing_valve

I !

pumps_on_demand_failure_to_stoppumps_on_demand_failure_to_stop

AND

No_RTU_reactionNo_RTU_reaction

OR

protection_failureprotection_failure

I !

valves_on_demand_failure_to_closevalves_on_demand_failure_to_close

OR

No_instruction_from_CCNo_instruction_from_CC

OR

No_reflex_action_activated_by_RTUNo_reflex_action_activated_by_RTU I !

faulty_operatorfaulty_operator

I !

Control_CenterControl_Center

I !

CC_RTU_communication_lostCC_RTU_communication_lost

I !

faulty_sensor_measurefaulty_sensor_measure

I !

RTURTU

OR

on_demand_failureon_demand_failure

OR

No_instruction_from_RTUNo_instruction_from_RTU

I !

inter_RTU_communication_lostinter_RTU_communication_lost

No_reflex_action_activated_by_RTU

Page_Principale

No_reflex_action

Page_Principale

!

attack_occurenceattack_occurence

OR

access_SCADA_systemaccess_SCADA_system

AND

attack_preparationattack_preparation

OR

protection_desactivationprotection_desactivation

69

3.2.2.3 Qualitative and quantitative risk analysis

To make the quantification, we associate the model leaves with parameters based on the estimation of

the MTTS for security events, the MTTF for safety events and the probability for instantaneous events

(see Table 4 and Table 6). Security parameters are estimated based on the assumptions we made on the

protocols and the network (see § 3.2.2.1). We also suppose that the attacker has a minimum knowledge

of SCADA systems and protocols without necessarily being an insider. These parameters are marked

on the model in Figure 18 with comment boxes.

The results given below were obtained with Figseq, as it is explained in section 3.2.1. Based on the

given parameters the pollution probability is estimated to 6.18e-2 for a mission time of one year. We

can see that attack scenarios are situated at the top of the list of scenarios. The most probable scenario

given in Table 10 is the one in which the attacker gets access to the RTU and takes control over the

equipment and sends false data to the CC and to the neighboring RTUs.

Table 10: The most probable attack scenario from the BDMP model

We plot in Figure 19 the probability of the most probable sequences according to the type of access. We

infer that the RTU is the most critical and vulnerable component in our case study. Being lost in the

nature on the pipeline it is easy to attack. These results are of course based on the estimations we give

to parameters, for instance we supposed that sensors communicate with RTUs using the WirelessHART

protocol which is a secured protocol using authentication, encryption and key checking. The attacker

must first find a vulnerability before gaining access to the communication link. On the other hand, the

modbus/TCP protocol used for RTUs and CC communication is not secured and data can be clearly read

once the attacker accesses the GSM network.

Figure 19: Probability of the most probable sequences according to the type of access

The first hybrid scenario given in Table 11 has a probability of 7.27e-4, in which the attacker deactivates

the protection system then gives up the attack before the pipeline breaks accidentally.

0,00E+00

1,00E-02

2,00E-02

3,00E-02

4,00E-02

5,00E-02

RTU CL(RTU_CC) CC CL(sensors_RTU)

Pr(Pollution)

Transitions

Proba.

Contrib. Name Rate

failF(attack_occurrence) 3.8e-5

4.53e-2

0.733

aa_success(access_to_RTU) 0.04

aa_success(understand_syst_operation) 0.02

ise_nd_real(falsify_data_sent_to_CC)

ise_nd_real(falsify_data_sent_to_other_RTUs)

ise_nd_real(falsify_instructions_sent_to_equipments)

0.7

0.7

0.8

ise_nd_real(high_pumping_pressure_activation) 0.8

ise_nd_real(closing_valve) 0.8

70

Transitions Proba. Contrib.

Name Rate

failF(attack_occurrence) 3.805e-5 7.27e-4 0.117

aa_success(access_to_RTU) 0.0416

aa_success(understand_syst_operation) 0.0208

ise_nd_real(falsify_data_sent_to_CC)

ise_nd_real(falsify_data_sent_to_other_RTUs)

ise_nd_real(falsify_instructions_sent_to_equipments)

0.7

0.7

0.8

no_realization(high_pumping_pressure_activation) 0.2

failF(pipe_break_accidentally) 1.14e-5

Table 11: The most probable hybrid scenario

The first accidental scenario given in Table 12 appears with a probability of 1.86e-5 and consists of

accidental break of the pipeline and failure of the sensors to communicate correct measures to RTUs.

This is typically what happened in the case of the Taum Sauk storage tank (cf. Section 5.2). Redundancy

among sensors could be considered to prevent such accidental scenarios.

Transitions Proba. Contrib.

Name Rate

failF(pipe_break_accidentally) 1.14e-5 1.86e-5 3.01e-4

good(CC_RTU_communication_lost)

good(Control_Center)

good(RTU)

good(faulty_operator)

failI(faulty_sensor_measure)

good(inter_RTU_communication_lost)

0.99954

0.999886

0.999862

0.99977

0.00023

0.9993

Table 12: The most probable accidental scenario

The results demonstrate that the hybrid scenario is more probable than the accidental scenario. Security

events accelerate very much the realization of the undesired event (pollution).

3.2.2.4 Safety and security interdependencies

We propose in this section to highlight the possible interdependencies between safety and security in

the use case modeled above.

Mutual reinforcement: The reflex action is a safety module implemented locally at each RTU in order

to act in case of accidental pipeline break. In order to assess its influence on the system we calculate the

pollution probability with and without reflex action (No_reflex_action leaf activated/ deactivated). The

results obtained are given in Figure 20.

The pollution probability is higher when no reflex action is implemented at the RTUs. The reflex action

represents an additional barrier for the attacker to overcome. If the attacker causes the pipeline breach

without deactivating the reflex action this latter would react to prevent pollution as the breach would be

detected by RTUs. We can infer consequently that this safety measure reinforces the system security.

71

Figure 20: Pollution probability with and without reflex action

Conditional dependency: This kind of interdependency is the most common and implies that the

safety level follows the security level. This is more straightforward as attackers' goal is generally to

cause safety accidents through compromising the system security. This interaction is illustrated in the

two following situations:

- As modeled in Figure 18 the attacker can access the system via the wireless communication link

between sensors and RTUs, as no authentication nor encryption is applied. In this case the attacker

can manipulate data sent by the sensors to RTUs in order to deactivate the reflex action. The attacker

can even exploit the normal functioning of the reflex action to cause the pipeline breach; typically

send low pressure measures to the RTU controlling the pump to activate high pumping speed and

then when high pressure is reached the attacker can send false low pressure measures to the RTU

controlling the valve downstream. This RTU will calculate a high ΔP (high Pn-1 received from the

previous RTU and low Pn given by the attacker) and close the valve leading to a water-hammer. We

remind that the reflex action is considered to have a higher priority as a safety module over CC

instructions as this latter might detect some inconsistencies in the RTUs measures.

- Enhancing the system security by adding detection and response measures enhances the system

safety as it contributes to the reduction of pollution probability. It is possible to include detection

aspects in the BDMP. The general idea is that each attack step can be detected at various moments:

when it begins, during its progress, when it succeeds, or after completion. Whenever detection occurs,

this changes all success rates or probabilities for attack steps which are still to be completed. The only

thing the analyst has to do to take detection into account is to change a global option in the model and

add in each leaf the detection rate and the realization rate after detection. This does not require any

change in the BDMP structure. These detection parameters are taken into account in the quantitative

processing. This increases considerably the number of sequences to explore, because each scenario

of the model without detection can lead to many variants with detection occurring at various stages.

An example of the effect of detection is given in [126], the paper summarized in this Section 3.2.2.

In this example we have been able to put into evidence synergetic interactions between safety and

security by modeling safety and security events in an industrial architecture. The qualitative and

quantitative analyses enable to rank the scenarios leading to the undesirable event and to identify the

most probable scenarios. It is consequently possible to point out the most vulnerable items in the

system and take preventive measures accordingly.

3.2.2.5 Conclusion

We illustrated in this section the importance of considering jointly security and safety aspects in the risk

evaluation process. Using the BDMP formalism we modeled a realistic industrial case study and put

into evidence a synergetic interdependency between safety and security.

Having explored the different possibilities of BDMP, which are representative of formal models widely

used in industry, we proposed to explore a radically different approach: the CHASSIS method (cf. §

0,06

0,06

0,06

0,06

0,07

with reflex action without reflex action

Probability over 1 year

72

2.3.1.5), which is based on UML diagrams, in order to better identify the characteristics required for a

good modeling approach. We set up a collaboration with the research team that has developed this

method, working for the Institute for Energy Technology in Norway. This collaboration was articulated

around the comparison of BDMP with CHASSIS in order to see whether an attempt to combine them

would be viable and would bring added value. This comparison [134] will be depicted in the next section.

3.3 Comparison of BDMP with the CHASSIS method Modeling

The two methods - Combined Harm Assessment of Safety and Security for Information Systems

(CHASSIS) [48] and Boolean logic Driven Markov Processes (BDMP) - are based on extensions of two

different approaches, UML and fault/attack trees respectively. While the former method stems from the

requirements engineering area and security domain, the latter method is based on risk assessment

techniques leveraging quantitative analysis. Still, both approaches are concerned with the combination

of safety and security modeling.

We propose in this section to compare BDMP and CHASSIS in order to investigate the two approaches

for similarities and differences and to situate them to each other. In particular, we want to investigate

whether it is possible to use them together, and whether combining them would be beneficial for

addressing safety and security aspects in a more complete and correct manner.

We illustrate in the following the CHASSIS method on the same use case described in § 3.2.2.1 and

compare the results obtained from CHASSIS with the results obtained from BDMP given in

Section 3.2.2.

3.3.1 Preparing the comparison

We define in this section the preliminary steps preceding the comparison.

3.3.1.1 Pre-study of the approaches

In order to compare the two approaches we initially described them in terms of:

 Background – where is each approach rooted, e.g., other techniques?

 Phase – in which development and risk assessment phases do the approaches apply?

 Input – what inputs are required by the approaches?

 Advantages – what are the advantages of the approaches?

 Limitations – what are the limitations of the approaches?

 Model features and elements – what building blocks are in each model and what features exist to

support the modeling?

From this pre-study we can see that the approaches have different backgrounds, but some of the phases

and input aspects overlap. The advantages and disadvantages are mainly different, but the model

elements and features showed that there could be possibilities for the two approaches to complement

each other. With the preliminary results we decided to focus the comparison mainly on the model

features and elements.

3.3.1.2 Conducting a case study for the comparison

The cyber-physical system described in § 3.2.2.1 (pipeline and its control system) was used as a case

study for the comparison, as it provided a realistic example and gave us the opportunity to collect

experiences about similarities and differences of BDMP and CHASSIS. The system had already been

modeled with BDMP (cf. § 3.2.2.1), and in order to compare it to an equivalent CHASSIS model, we

decided to create a system model of the case study with the CHASSIS method and use the two models

as a basis for the comparison.

73

The system was modeled in several iterations. First, we created an initial model with CHASSIS

regarding the architectural description only, not the existing BDMP model. The second iteration

included improving some aspects of the CHASSIS model and using the method together with a system

expert, taking into consideration also the BDMP model. In the third iteration, the BDMP model was

modified in view to the CHASSIS model, thereby harmonizing the two models.

3.3.2 Comparing the model elements

We compared the model elements of the protection system in two ways; taking the BDMP model as

starting point and going systematically through all CHASSIS models and vice versa. The model

elements, an excerpt of which is given in Table 16, and their relationships were characterized along four

possible kinds:

 No – different meaning and naming;

 Indirect – different naming, but implicit meaning;

 Direct – close or different naming, but same meaning;

 One-to-one – the same meaning and naming.

3.3.3 Qualitative comparison of the sequences

After the second iteration of modeling the system (cf. § 3.3.1.2), the sequences created by both models

were analyzed. They were identified as important features by both approaches with some resemblance,

e.g., outlining the steps in an attack or for accidental system failure. However, there were also

differences, e.g., the quantification of sequences generated and the identification of hybrid scenarios

mixing attack steps and components failures by the BDMP approach.

In order to undertake a deeper qualitative analysis of the sequences we decided to leverage one of the

key features of the BDMP approach: the capability to generate exhaustively the list of sequences leading

to the undesired event. The simulation of the BDMP model was done with an observation time of one

year as explained in § 3.2.2.3. We compare attack and accidental scenarios generated by the BDMP

quantification with the corresponding sequences from the CHASSIS models. For the sequences in Table

17 we investigated the steps involved in the scenarios and their order.

3.3.4 The BDMP model

The BDMP approach was presented in Section 3.1 and illustrated on the use case under study in § 3.2.2.

We describe in the following paragraph the BDMP approach according to the terms given in § 3.3.1.1.

BDMP fit in the process of risk evaluation and response for a given system. This process consists in the

following steps:

1. Context definition: this step consists in defining: the nature of the risk study, its boundary,

objectives and expected results;

2. System description addressing risks: this part aims at providing the reader with the

description of the system’s architecture, proper functioning and malfunctioning;

3. Risk estimation. This phase includes the following steps:

a. Analyzing data (statistical data, expert judgments on incident frequencies);

b. Representing and modeling system related risks;

c. Exploiting the model (qualitative and quantitative analysis);

4. Choice of prevention and mitigation measures.

BDMP are one possible tool used in the third step of the risk evaluation process for representing and

modeling system related risks. Results of the quantitative and qualitative analysis of the BDMP model

are directly exploitable in the fourth step.

74

We select from the quantification results the following attack (Table 13) and accidental (Table 14)

scenarios for the comparison previously described in § 3.3.3.

Transitions

Prob.

Contrib. Steps Name Rate

1 failF(attack occurrence) 2.28e-5

2.89e-2 1.025e-1

2 aa_success(access comm link between RTU CC) 0.04

3 aa_success(understand syst operation) 0.08

4 ise nd real (send false instructions to RTUs) 0.1

5 ise nd real (report false data to CC) 0.125

6 ise nd real (reflex action desactivated) 0.067

7 ise nd real (high pumping pressure activation) 0.7

8 ise nd real(closing valve) 0.7

Table 13: Attack scenario from the BDMP model

Transitions

Prob.

Contrib. Steps Name Rate

1 failF(pipe break accidentally) 1.14e-5

1.858e-4 6.576e-4

2 good(Control Center)

good(RTU)

failI(CC RTU communication lost)

good(faulty operator)

good(faulty sensor measure)

0.999145

0.99943

0.0023

0.999743

0.9989

Table 14: Accidental scenario from the BDMP model

The next section will address the application of CHASSIS on the use case.

3.3.5 The CHASSIS model

A short presentation of CHASSIS is given in § 2.3.1.5. We give in the following the different models

obtained from the application of this method on the use case.

3.3.5.1 Misuse cases

In Figure 21 two D-MUCs for the SCADA system are shown; the safety D-MUC is shown to the left

and the security D-MUC to the right. While safety D-MUC represent the misuse cases – threatening the

use cases – by grey ovals, security D-MUC show the misuse cases by black ovals.

White ovals show use cases, which are the same for both D-MUCs since based on the same

Diagrammatical Use Case (D-UC). However, for security we have added the following mitigating use

cases: Cryptomech. communication for mitigating Eavesdropping, and Intrusion detection and

prevention for mitigating Falsify data. Actors (in white) and “mis-actors”9 (in grey/black) are

surrounding the SCADA system, and what distinguishes humans and external entities are round headed

and square headed pin men respectively.

9 A « mis-actor » is defined as an actor creating adverse effects.

75

Figure 21: Safety and security D-MUC of SCADA system

Table 15 represents a partial T-MUC10 describing an attack scenario that builds on the security D-MUC

in Figure 21. In the T-MUC more details are added as it is filled, e.g., the basic path describes how the

attacker gains access to the SCADA system before he proceeds with misuse such as eavesdropping,

injecting control signals at different stages of the attack scenario and removing alarms. The T-MUC is

further used to create the MUSD.

Name Water-hammer attack

Summary Attacker gains access, manipulates the system to cause the water hammer attack

Basic path bp1. Attacker gains access to protection system

bp2. Attacker eavesdrops communication to understand functioning of system

bp3. Attacker injects control signals to increase pressure in pipeline (pump

speed)

bp4. Attacker removes alarm signals

bp5. Attacker falsifies data for supervising system

bp6. Attacker intercepts communication data to know when pressure is very high

bp7. Attacker injects control signal to close suddenly valve to provoke water

hammer attack

Alternative

paths

ap1. In bp3, the attacker could falsify pressure data sent to supervising system, to

make operator increase pumping speed.

ap2. In bp7, attacker allows alarm signal to go through to supervising system,

which automatically shuts valves and causes the water-hammer attack.

Mitigation

points

mp1. Crypto mechanisms of communication will mitigate bp2 – bp7

mp2. Intrusion detection and prevention system will mitigate bp1, bp3-bp5, bp7

Assumptions as1. Attacker has minimum knowledge of how system is functioning

as2. There is no authentication required within the system

as3. The data sent within the system and its network is not encrypted

Table 15: Partial security T-MUC for a water hammer attack

10 We have only included a few of many fields from the T-MUC due to space reasons. A complete T-MUC is presented in

[86].

76

3.3.5.2 Misuse sequence diagrams

The MUSD shown in Figure 22 corresponds to the security T-MUC in Table 15, as it models the SCADA

system and how the attacker proceeds to misuse vulnerabilities of components and their interactions

(shown as red/dashed notation) in order to achieve a water hammer attack.

3.3.5.3 Failure sequence diagrams

As seen in the previous subsection the MUSD corresponded to the security T-MUC. However, MUSD

and FSD can be used iteratively with T-MUC by adding more details as they emerge while modeling.

They can also be used for providing an overview as shown in Figure 23. The component SCADA Ref

SCADA DC in Figure 23 refers to the decomposed version of this subsystem in Figure 24 11.

Figure 22: Misuse sequence diagram for a water hammer attack

11 Note that due to space reason we have not included the complete decomposed FSD in Fig. 24, which excludes the failures

1 and 2, and hazard 1 from Fig. 23. Furthermore, we have not included mitigations in the MUSD and FSD.

77

Figure 23: FSD providing the overview of failures in the SCADA system

Figure 24: A decomposed FSD providing the details of failures in the SCADA system

Figure 24 provides the details of the SCADA component by decomposing it into subcomponents, and

shows where and how the failures occur at the system sub levels.

In the following section, we summarize the main results obtained from the comparison of BDMP and

CHASSIS model.

3.3.6 Results of the comparison

For comparing CHASSIS and BDMP models we looked at the coverage of the model elements for each

model. As explained earlier, BDMP and CHASSIS are based on different approaches; attack/fault trees

and UML diagrams respectively. This makes the two models look quite different at first sight. However,

having the same objective of addressing safety and security in a combined manner, the models have a

certain degree of resemblance.

Opt Reflex Action

SCADA DC

RTU1 Comm.Link CCSensor&acutors

SensorPreasure(P1)

ReportPressure(P1)

Alarm(A2)

[P>Pmax]

Alarm(A2)

RTU2

CalculatePressure(P1, P2)

RaiseAlarm

ReportPressure(P1)
ReportPressure(P1)

Calculation of
P=P2-P1.

Sensor&acutors

ReflexAction

AlarmSignal(stop_pump)

AlarmSignal(stop_pump)

Consist of sensor
and acutor
connected to a
valve.

Consist of sensor
and acutor
connected to a
pump.

Failure3.1:
SCADA CC does
not alarm
operator due to
frozen screen.
Failure3.2:
SCADA CC does
not alarm
operator due to
blue screen.

Alarm(pipeline_break)

X

Failure4&5:
SCADA Comm.
Link failure does
not send alarm
signal to stop
pump, which
again does not
trigger the
closing of valves.

X

Valve(close)
X

Pump(stop)
X

Failure5: Valve
is not closed.

Failure4: Pump
is not stopped.

78

3.3.6.1 Comparing the modeling elements

We compared the model elements following the methodology described in Section 3.3.2; the results are

given in Table 16.

Comparing BDMP to CHASSIS Comparing CHASSIS to BDMP

BDMP model Security D-MUC:
 No relation for root node unwanted event

 For some attacker actions there are indirect

and one-to-one relations

 For one of the AND and one of the OR gates

there are indirect relations

Security D-MUC BDMP model:
 For actors and misuser there are indirect

relations

 For use cases/functions there are mostly no

relation (includes mitigations)

 For misuse cases/threats there are mostly

relation, both direct and indirect

BDMP model Safety D-MUC:
 No relation for root node unwanted event

 Only one direct relation for (CC_failure)

Safety D-MUC BDMP model:
 For actors there are indirect relations and for

misuser there are direct relations

 For use cases/functions there are mostly no

relation (includes mitigations)

 For misuse cases/threats there are no or

indirect relations

BDMP model MUSD:
 For the root node unwanted event there is an

indirect relation

 For AND and OR gates there are mostly

indirect or direct relations, with a few

exceptions where there is no relation

 For attacker actions there are mostly direct

relations, with a few exception where there

is no relation

MUSD BDMP model:
 For all objects there are indirect relations,

except the attacker object that has direct

relation

 For the messages the relations are:

 No or indirect for internal messages and

operator

 Mostly indirect for system messages

 Mostly direct for attack messages

 Direct or one-to-one for notes about attack

(vulnerability descriptions)

BDMP model FSD:

 Only indirect relations exist

The BDMP implicitly defines a large number of

sequences or scenarios, which can be automatically

made explicit thanks to a tool like FigSeq. An FSD

is the explicit description of a single scenario.

FSD BDMP model:
 For all objects there are mostly indirect

relations, except the failed CC object that

has a one-to-one relation

 For the messages the relations are:

 No or indirect for internal messages and

operator

 Mostly indirect for system messages

 Mostly indirect for failure messages

 Direct or one-to-one for notes about failures

(descriptions)

Table 16: Extraction of two way comparison of BDMP and CHASSIS model elements

The comparison of model elements summarized in Table 16 shows that there are more direct and one-

to-one relations for the FSD and MUSD, than for D-MUCs, when compared to the BDMP model. This

is due to the nature and process of creating D-MUCs, which we will discuss further in subsection 3.3.7.

Although BDMP do not in particular aim at integrating system modeling elements with failure and attack

modeling elements, as is the case for CHASSIS, we observe that BDMP are often related indirectly to

such modeling elements from the CHASSIS model. In particular, this is the case for messages and

79

objects in MUSD and FSD. The CHASSIS model could support the BDMP model in making this

integration more explicit and detailed by using FSD and MUSD, both prior to the BDMP analysis, as an

input, but also by summarizing the results from the BDMP model toward system model elements. This

applies in particular for integrating the system architecture with attack steps and components failures.

On the other hand, BDMP quantification results can guide and focus the FSD and MUSD towards the

relevant failure and attack scenarios, leading to the unwanted event. Furthermore, BDMP allows for

modeling (implicitly) many alternatives and thereby different scenarios. Although FSD and MUSD from

CHASSIS allow modeling of alternatives through the "Alt operator" (shown in Figure 23), in explicitly

defined sequences, this does not reach the modeling power offered by BDMP. We will discuss this

further in the next subsection when analyzing the sequences generated by BDMP and CHASSIS.

We did not compare the T-MUCs and HAZOP tables to the BDMP model, as our focus was on graphical

modeling. T-MUC and HAZOP table provide a structured textual description, supporting both D-MUC

and MUSD/FSD. Comparing D-MUCs with BDMP shows that their model elements can be related to

each other, i.e., elements like actors, misusers and misuse cases from the D-MUCs relates to the leaves

in the BDMP. Furthermore, there is a greater relation between the MUSD and FSD, and the BDMP

model, although the system interaction modeled by the CHASSIS model cannot be found, or only

indirectly found, in the BDMP model. T-MUC enriches the D-MUC, FSD and MUSD with more details

through textual descriptions, and this would also be the case for the BDMP model, wherever there are

relations between the CHASSIS and BDMP models.

3.3.6.2 Qualitative comparison of sequences

We discuss and compare in this section the scenarios modeled by CHASSIS and BDMP. Table 17 gives

a comparison between a scenario given by the BDMP quantification and the scenario modeled by the

MUSD in Figure 22.

Step BDMP MUSD

1 failF(attack occurrence) NA

2 aa_success(access comm link between RTU CC) V1/TuneInCommLink

3 aa_success(understand syst operation) V1

4 ise nd real (send false instructions to RTUs) InjectControlSignal/V2

5 ise nd real (report false data to CC) ReportPressure(FalsifiedP1)

6 ise nd real (reflex_action_desactivated) ReportPressure(FalsifiedP1)

7 ise nd real (high pumping pressure activation) TurnPump(increase_speed)

8 ise nd real(closing valve) TurnValve(off)

Table 17: The most likely scenario from BDMP compared to corresponding CHASSIS

scenario

In the MUSD we recognize the attacker steps of the scenario given by the BDMP model. The order of

the attack steps is respected in the first steps but not for the rest of the scenario: the attacker starts by

gaining access to the communication link and eavesdropping. Next, he impersonates the CC and sends

false instructions to RTU then impersonates the RTU and sends false sensor measures. In the BDMP

scenario, the attacker deactivates the reflex action before launching the water hammer attack while in

the MUSD he breaks the pipeline then prevents the reflex action from reacting. To deactivate the reflex

action the attacker falsifies sensor measures sent between RTUs and removes alarms that may be raised.

The water hammer attack is caused by a high pumping pressure then a sudden close of the downstream

valve. In the MUSD, the attacker sends the order of increasing pumps speed from the start of the

scenario, which is not the case for the BDMP scenario where the attacker starts by deactivating the

protection system before launching the water hammer attack. This difference reflects a slightly diverging

80

view of how an attack would be conducted by the BDMP team and the CHASSIS team. It is by no means

an effect of the difference between the approaches themselves.

While BDMP model the different attack steps of this malicious scenario, MUSD provides more details

on this scenario by showing the different components involved and the interaction between them. The

interactions include the attacker actions and vulnerabilities he exploits (in red/dashed), as well as normal

interactions (in black/solid) between the system components.

The scenario modeled by the MUSD is only one possible scenario among all other scenarios modeled

by the BDMP model. It is of course unrealistic to represent all the scenarios (3184 scenarios) given by

the BDMP with MUSD. Yet MUSD can be used posterior to BDMP to provide more details on the

most probable scenarios given by the quantitative analysis of the BDMP.

Concerning accidental scenarios, we note that the scenario given by BDMP is different from the scenario

represented by the FSD of Figure 23 and Figure 24. In the BDMP model, details on how pipeline breaks

accidentally are not shown for space and readability reasons. In the FSD the pipeline break is the

consequence of a water-hammer caused by either a faulty operator or a SCADA system failure. The

protection system failure is caused in the BDMP model by absence of instruction from the CC and RTUs

due to communication link failure, while in FSD (Figure 23) it is caused by a frozen/blue screen (Failure

3) and communication link failure (Failure 4&5). According to quantification results from BDMP, the

FSD scenario has a probability of about 1.6 e-7, while the most probable accidental scenario has a

probability of 1.14 e-5.

Finally, the BDMP model yields hybrid scenarios, whereas this is not the intention of CHASSIS, because

of the separation of the security and safety parts of the model. CHASSIS does however combine safety

and security mitigations during the later trade-off analysis, but we have not included this analysis in our

current comparison. In the present case study, the hybrid scenarios were negligible, but it is hard to say

that this is always true.

3.3.7 Experiences with applying the two approaches

After having modeled the same system with both approaches and exchanging experiences, we see that

CHASSIS and BDMP have many similarities and differences. While CHASSIS applies a methodical

process that starts by requirements elicitation facilitated through graphical representation of threats and

hazards related to the system, BDMP fits in the risk estimation step of the risk evaluation process. BDMP

constitute a very concise graphical representation of all scenarios leading to the unwanted event, and

enable an automatic qualitative and quantitative analysis of these scenarios.

3.3.7.1 BDMP and CHASSIS in a risk evaluation process

In Section 3.3.4 a four-step risk evaluation and management process was outlined. BDMP cover the risk

estimation (third step) in this process, by representing and modeling system related risks and exploiting

the model thanks to advanced quantification capabilities. CHASSIS is on the other hand defined to cover

parts of the requirements engineering process, as shown in Figure 10, mainly covering the elicitation

activities of functional, safety and security requirements, but also analysis of trade-offs between these

requirements and specifications. The first step of the risk evaluation process is associated with

requirements elicitation, which is within the scope of the CHASSIS method. Furthermore, CHASSIS

provides parts of system descriptions, i.e., functional and architectural by UC and SD, and addresses

risk towards these descriptions by integrating safety and security aspects into one common model.

Thereby, CHASSIS satisfies the second step in the process, by identifying many attack actions and

failures based on system descriptions, and combining those into different scenarios. Its strength is

however not in combining all possible sequences of attack actions and failures. CHASSIS does not

81

provide risk estimation for safety and security aspects. BDMP has risk estimation features that enable

qualitative and quantitative analysis of the model, which covers the third step. The fourth and final step

of the risk evaluation process corresponds to the trade-off analysis in the CHASSIS process. Both

techniques are concerned with the right choice of mitigation and prevention measures for malicious and

accidental scenarios. BDMP can by the risk estimation determine which failure or attack sequences

should be considered, while CHASSIS can support the identification and trade-off analysis between

mitigation/prevention measures.

3.3.7.2 Combining BDMP and CHASSIS

The different comparison iterations explained in Section 3.3.1 between the two modeling techniques

made us infer that at different steps of the modeling, both techniques can be beneficial to each other.

The combination of both techniques can result in the following process:

1) In a first step, UC and TUC exhibit more knowledge about the system proper functioning;

2) In a second step, MUC provide a large scope on different hazards and threats that can harm the

system. All these elements can provide input for the BDMP model that can be conceived in a

third step to give a macroscopic representation of the combination of all events that can lead to

a given unwanted event;

3) In a fourth step, the BDMP model is quantified and results state the list of different scenarios

leading to the unwanted event ordered by their probabilities and contribution;

4) In a fifth step, the most likely scenarios given by the BDMP quantification are represented with

more details using MUSD and FSD out of CHASSIS process.

3.3.8 Conclusion

We compared in this section CHASSIS and BDMP, two approaches that consider both security and

safety aspects in the risk evaluation process for cyber-physical systems. Our comparison clarified

similarities and differences between the two approaches; CHASSIS is a methodical process used for

integrating system description with safety and security risks at early stages. It provides good graphical

visualization capabilities as it is based on UML. On the other hand, BDMP have powerful quantification

capabilities and a potential for exhaustiveness that enable risk estimation regarding an unwanted event

related to the system. BDMP also offer good readability and scalability thanks to their hierarchical

structure that shows different levels of abstraction of the modeled risk. Nevertheless, the two approaches

can provide input to each other and models obtained are complementary by providing different

knowledge to the stakeholders.

Results of the comparison have shown that both approaches can mutually strengthen each other:

CHASSIS can provide more detailed description of the system and related hazards as an input to BDMP

for more thorough and quantitative analysis.

3.4 Discussion on BDMP

We investigated in this section the potential of the BDMP approach to model jointly safety and security

for complex and realistic systems and to identify their potential interdependencies. By applying it to a

realistic case study of a pipeline, we have proven the ability of this formalism to model, with a compact

and fairly readable graphical model, the different risk scenarios associated to both safety and security.

The quantification capability of BDMP is a strong side of this formalism as it enables to generate from

the BDMP model the risks scenarios ordered by their decreasing probability.

82

The main limitations encountered with BDMP usage are the following:

1. The BDMP model is manually built by the analyst given the system architecture and an

undesirable event. This implies that:

a. The risk model obtained depends on the analyst’s understanding of the system and its

related risks. This results in subjective models; i.e. two different analysts modeling the

same undesirable event for the same system architecture are likely produce different

models;

b. The analyst has to rebuild manually the BDMP model each time he wants to model a

different risk event or each time the system architecture changes, which is time and

effort consuming.

2. It is difficult to figure out the system architecture from the BDMP model as this latter does not

directly reveal the functional aspects of the system and the relationship between its different

components. BDMP models are consequently difficult to understand for readers if they are not

provided in advance with a detailed description of the system.

Having these limitations in mind, we believe that an automated approach is required for complex

industrial control systems. This approach must be based on safety and security experts’ knowledge

gathered in a knowledge base, in order to facilitate the model construction, ensure objective modeling

and hence the reproducibility of results.

Therefore, in addition to C1, C2 and C3 discussed in Section 2.4.3, the required approach should satisfy

the following criteria:

 C4: automatic generation of risk models thanks to a knowledge base; which makes the approach

easy to use by engineers and even non-experts. Besides, the models generated, based on the KB and

the system description, are the same independently from the analyst and their objectivity is ensured;

 C5: robustness, in the sense that one can bring changes (to model for example different assumptions

about the system) without need to revamp the whole model.

We present in the next chapter the S-cube approach that overcomes the limitations of existing

approaches and fulfills all the required criteria.

83

Chapter 4

4 The S-cube approach: a model-based approach

for SCADA Safety and Security joint modeling

Considering the limitations of existing approaches previously mentioned, we propose in this section a

new model based approach for SCADA Safety and Security joint modeling.

The S-cube approach satisfies all the criteria required and discussed in Sections 2.4.3 and 3.4:

 C1: it enables a joint safety and security risk analysis for systems having safety challenges and

integrating new information technologies and particularly SCADA-based ICS;

 C2: it enables formal modeling of the system architecture, and the related attack and failure

modes;

 C3: it yields both a qualitative and quantitative analysis;

 C4: it generates automatically attack and failure scenarios that lead to a given undesirable event,

from a description of the system architecture;

 C5: it enables to easily consider different hypotheses about the same system architecture and

regenerate the new risk related scenarios.

The S-cube approach relies on a knowledge base (KB) that gathers safety and security expertise on

SCADA systems and the associated information systems. In this chapter, we present first some of the

already existent “safety only” or “security only” domain specific languages and explain how they

inspired the S-cube approach. We detail, next, the S-cube approach principle and knowledge base. Then

we address the qualitative and quantitative analysis provided by S-cube. We explain, finally, how this

approach has been implemented.

84

4.1 Existing safety and security domain specific languages

DSL (Domain Specific Languages) aim at capitalizing knowledge on a specific domain. As safety and

security have been for a long time treated separately within distinct communities, there are already

existing DSLs for modeling either safety or security.

4.1.1 Security domain DSLs

Our exploration has been focused on two main approaches that are based on security DSLs and enable

to automatically process system models: CySeMoL [135] and MulVAL[136]. We also had a look at

DSLs designed for the formal definition and verification of protocols such as Proverif [137] but we

could quickly discard them because they are only limited to the specification and verification of security

properties related to cryptographic protocols. Modeling higher level and abstract aspects of the system

is not possible with such highly specific languages.

4.1.1.1 The Cyber Security Modeling Language (CySeMoL)

CySeMoL [135] is an attack graph tool that can be used to assess the cyber security of enterprise

architectures. It allows users to create models of their architectures and make calculations on the

likelihood of different cyber-attacks being successful.

CySeMoL is based on a metamodel that consists of 23 assets, 59 attack steps, 58 defenses and 51

relationships between assets [138]. The attack steps and defenses likelihoods are estimated using

Bayesian inference and based on the following assumptions: the attacker profile is a professional

penetration tester and he has one week available for the attack.

The CySeMoL approach enables to model only IT components and the security-related risks (criteria

C1 not satisfied, cf. Section 2.4.3). The possibility of extending CySeMoL in order to cover both safety

and security had been considered but discarded for the following reasons:

 the CySeMoL metamodel is too comprehensive and enriching it with new elements requires to

rethink all the dependencies and relationships between the metamodel’s elements;

 the quantification process is a Monte Carlo based calculation of a Bayesian network. It does not

consequently allow to model dynamic aspects of the attack and particularly its evolution over

time (mean time until success). Instead, all parts of the metamodel assume that the attacker has

one week to perform the attack;

 the calculation engine is not open source.

We indicate however that some notions modeled in the S-cube KB were inspired from the CySeMoL

metamodel and templates.

4.1.1.2 Multihost, multistage Vulnerability AnaLysis (MulVAL)

Another attack graph tool used for security-related vulnerabilities assessment is the MulVAL tool [136].

It exhibits an engine that enables to automatically generate attack graphs given the network

configuration and security advisories given by a network scanner that identifies vulnerabilities on each

host. This engine uses a set of reasoning rules that specify exploit rules, compromise propagation and

multi-hop network access. MulVAL is essentially qualitative: its main output is a logical attack graph,

i.e. a logical structure that can be enriched by metrics providing an assessment of the difficulty of various

attack steps. Hence one can see that “logical attack graph”, as used by Ou et al. in [136], is just another

name of attack tree.

Like CySeMoL, MulVAL does not consider safety issues (C1 not satisfied). The possibility of extending

MulVAL for safety and security joint modeling seems difficult to us for the following reasons:

85

 MulVAL adopts the Datalog language that is a non-typed language; it is consequently difficult

to track the different modeling elements especially for complex systems and to associate them

with their characteristics. We believe that an object-oriented language is more appropriate to

this purpose;

 MulVAL uses non-user-friendly tools. All inputs have to be in textual form, and the “graphical”

output is hardly usable for complex systems;

 The quantification of MulVAL models is too simplistic and could not be extended to safety

related parts of a model.

The exploration of MulVAL was however beneficial and inspiring for the S-cube KB.

4.1.2 Safety domain DSLs

In the safety domain, the situation is more complicated than in security, because there are two “levels”

of domain specific languages: generic languages that enable to build knowledge bases as libraries of

classes and those libraries themselves that enable to build system models.

For generic languages, we present concisely the three languages: Figaro, AltaRica and O3prm, which

have been designed for modeling systems and facilitating the safety analysis associated to them.

Figaro will be presented in Section 4.6.1. The BDMP formalism (cf. Section 3.1) and the S-cube KB

(cf. Section 4.6.1) are examples of libraries implemented using this language.

Similar to Figaro, AltaRica [139] is a high-level language that enables to create models of systems. A

model describes the hierarchy of nodes; each component can embed several sub-nodes. The dynamic

behaviors of the system components are represented using a state machine. The state of a component is

represented by state variables and their values. The changes of states are possible when an event occurs;

which updates the variables values. A complete description of this language and the associated tools is

depicted in [140].

In [141], Bouissou et al. compare the Figaro and AltaRica languages with an illustration on an electrical

case study. The main difference between the two languages resides in the fact that Figaro enables to

conceive generic modeling libraries that can be used by engineers through graphical user interfaces,

without the need to manipulate the language itself; while AltaRica enables to reuse some elements

specified in knowledge bases but requires additionally from the system analyst to add AltaRica code.

Figaro is hence more end-user-friendly.

Open Object Oriented Probabilistic Relational Models (O3prm) [142] is a language, created by LIP6

and EDF R&D on the basis of a language developed in the context of the SKOOB ANR project (2008-

2011), in order to represent probabilistic relational models (PRM). PRM are a powerful extension of

Bayesian belief networks. Inspired by relational languages and improved by object oriented paradigms,

they allow consequently the definition of classes of objects and the relations among them. PRM

overcome the limitations of the BBN formalism related to the modeling of complex systems as it quickly

loses its expressivity due to the large number of the needed variables. In O3prm, variables are gathered

into clusters called classes. Classes are generic entities and can be reused in the description of several

systems, thereby making this description much easier and faster. On the other hand, PRM inherit from

BBN their ability to represent uncertainties related to hazards and make rigorous probabilistic

calculations for risk assessment.

To summarize, the three modeling languages Figaro, AltaRica, O3prm are generic DSLs, helping the

definition of more specific DSLs in the form of libraries. We note that there are few examples of libraries

written in O3prm for safety. On the contrary, there are several examples of Figaro libraries that have

86

been in use at EDF for many years, to carry out safety studies of systems from the thermo-hydraulic and

electrical domains.

Our ultimate goal is to have a DSL that enables modeling SCADA systems regardless of the kind of the

physical system they control. Such a DSL can be later coupled with other knowledge bases modeling

the real behavior of domain specific system components, and the associated types of failures. In addition,

in order to be suitable for modern industrial systems and their rapid evolution, this DSL should also be

scalable and reusable if different hypothesis were to be taken into account.

For these reasons, we have chosen to build a new knowledge base (or DSL) that gathers expertise on

industrial information and control systems and the associated safety and security aspects. This KB is the

core of the S-cube approach: our main scientific contribution in this thesis. It incorporates some notions

inspired from the existing DSLs previously mentioned but tries to overcome at the same time some of

their limitations. The S-cube approach aims at providing a common framework for dealing with the

convergence of safety and security risks in modern control systems in order to capture their mutual

interactions.

We provide in the remainder of this chapter the main principles of the S-cube approach and the different

stakeholders involved in the process using it. We detail next the main notions modeled in the S-cube

knowledge base. We explain finally how this approach has been implemented.

4.2 The S-cube approach: principle and stakeholders

We first present in this section the principle of the S-cube approach [143], then outline the different

stakeholders involved in the overall process.

4.2.1 Principle of the S-cube approach

Seen as a black box, the S-cube approach, depicted in Figure 25, takes as input the system architecture

and gives as output the attack and failure scenarios that are likely to happen on it and that may lead to a

given undesirable event. Undesirable events associated to a given system can be identified in advance

by some safety systematic techniques such as FMEA or HAZOP. These events represent risks with

intolerable consequences that can happen to the system and lead to safety issues (human losses,

environmental and ecological impact, or high economic losses).

System architecture
Attack and failure

scenarios

S-cube KB

System components

 Failure modes

 Attack steps

 Failure/attack

propagation

Processing

tools

Textual model

S-CUBE

Figure 25: The S-cube approach principle

The S-cube approach relies on a knowledge base, called later S-cube KB (cf. Section 4.3), that gathers

expertise on ICS and particularly SCADA systems and their associated safety and security aspects. The

S-cube KB can be seen as a Domain Specific Language or a library that enables describing the typical

components of digital industrial infrastructures, including corporate enterprise network, industrial

control network, field and instrumentation networks; and the related security mechanisms

(authentication, access control, etc.) and safety mechanisms (redundancy, voters, etc.). Each component

87

is associated with the attacks and failure modes that can happen on it (cf. Section 4.4). The effects of

these failures and attack steps are described and propagated within the overall system architecture.

The generic models of the S-cube KB are instantiated on the input system architecture. This instantiation

results into a textual model which can be processed by calculation engines that generate automatically

attack and failure scenarios, with an estimation of their probabilities.

4.2.2 Stakeholders

In order to explain the use cases derived from the S-cube approach and the stakeholders involved in the

different steps, we establish a sort of “use cases-flow” diagram, depicted in Figure 26.

We have built during the thesis the S-cube KB, labeled Phase 0 (Ph. 0) in Figure 26. The rationale behind

this knowledge base and the different notions modeled will be detailed in the following sections of this

chapter. The S-cube KB describes generically the different components present in industrial information

and control architectures; this task has been supported by system designers and experts in the industrial

domain. Each system component is next associated with its failure modes (cf. Section 4.4.1) and the

corresponding safety metrics (cf. Section 4.5.1); this task has been supported by a safety expert. In the

same way, each system component is associated with the attacks (cf. Section 4.4.2) likely to target it

and the corresponding security metrics (cf. Section 4.5.2); this task has been supported by security

experts. The propagation of the failure and attack effects into the whole architecture is also included in

the KB; this task was supported by safety resp. security experts.

 In order to build the KB, we have been frequently seeking expertise on industrial architectures from

system designers and from safety and security engineers of the industrial domain. The knowledge base

transcripts consequently the knowledge we gathered from these different stakeholders.

The S-cube KB aims at providing patterns that can be reused in order to model industrial architectures

and assess the safety and security risks they are subject to. The task of building the KB (Ph.0) can be

seen as the preliminary but fundamental phase of the S-cube approach. The system models and the

results obtained are the transcription of what has been modeled in this KB.

The S-cube KB facilitates consequently the risk analysis of industrial architectures and enables

automating the other phases of the process (in particular Ph.1 and Ph.2 in Figure 26), as explained below:

Phase 1 (labeled Ph.1 in Figure 26) consists in the system description, which will be input in S-cube.

This phase consists in the following steps:

 Step (1.i): First, the system designer/expert, builds the system functional architecture using the

modeling elements, that correspond to the classes defined in the S-cube KB (cf. Section 4.3.2).

The system functional architecture describes the different network zones of the information

system, the machines connected to each zone, the software running on each machine, and the

data flows between the different software components. These elements will be detailed in

Section 4.3.1.

Once the functional architecture is defined, dysfunctional aspects can be included following the

steps (1.ii) and (1.iii) in Figure 26. The order of these steps is not important.

 Step (1.ii): a safety expert defines the safety aspects related to the architecture: for instance, the

common cause failure groups (cf. Section 4.4.1). He/she also parameterizes the model with the

corresponding safety metrics (cf. Section 4.5.1), for instance the mean time to failure of the

physical components (e.g., PLCs, sensors);

88

Specifies functional

architecture

Include safety aspects

Includes security

aspects

System

Architecture

Sys. Designer/

expert

Safety expert

Security expert

S-cube KB:

 System components

 Failure modes + safety metrics

 Attack steps + security metrics

 Failure/attack propagation

Textual

model

 Probability of

undesirable event

 Attack and failure

scenarios

 Scenarios sorting

Enhance system

safety Analyze results

Enhance system

security

Modify system

architecture

Safety expertSecurity expert

Sys. Designer/

expert

Sys. Designer/

expert
Safety expert Security expert

Processing

S-cube

Step (1.i)

Step (1.ii)

Step (1.iii)

Ph.1 Ph.2

Step (2.i)
Step (2.ii)

Step (2.iii)

Step (2.iv)

Improve KB with

Feedback of Experience

Ph.3

Id
e

n
ti
fy

 S
S

I

a
 p

ri
o

ri

Identify SSI

a posteriori

Ph.0

Figure 26: Different steps and stakeholders involved by S-Cube

89

 Step (1.iii): a security expert defines the security aspects related to the architecture: the

vulnerabilities present on the software components, firewalls, authentication mechanisms, etc.

He/she also parameterizes the model with the corresponding security metrics (cf. Section 4.5.2).

The three steps of Ph.1 yield finally the system architecture with its functional and dysfunctional (safety

and security) aspects. We believe that communication is essential, but unfortunately not always present,

between the different stakeholders (Sys. Designer/expert, safety expert, security expert) in order to check

the consistency of the architecture. This latter can be input in S-cube, as explained in the previous

Section 4.2.1, which outputs the results in Phase 2 (labeled Ph.2 in Figure 26): attack and failure

scenarios leading to a given undesirable event, sorted by decreasing probabilities, and the probability of

the undesirable event. The steps of this phase are described below:

 Step (2.i): safety and security experts analyze the results yielded by processing the system

architecture with S-cube. The most probable scenarios are prioritized. We can see, for instance,

whether these scenarios are accidental or malicious, the failure modes/attack steps they are made

of and the probability of each scenario;

 Step (2.ii): according to the results obtained, and particularly the accidental scenarios, safety

experts decide on the appropriate safety measures to deploy in order to enhance the system

safety, which are likely to decrease the probability of the undesirable event;

 Step (2.iii): according to the results obtained, and particularly the attack scenarios, security

experts decide on the appropriate security measures to deploy in order to enhance the system

security, which are likely to decrease the probability of the undesirable event;

In steps (2.ii) and (2.iii), safety and security experts should make back-and-forth exchanges in

order to identify potential Safety-Security Interactions (labeled SSI in Figure 26). The goal is to

examine, a priori, whether safety and security measures are synergetic or conflicting (cf.

Section 3.2.2 for examples on SSI).

 Step (2.iv): in this step, the initial system architecture is modified according to the measures

defined by safety and security experts in steps (2.ii) and (2.iii);

 The new system architecture can be again processed with S-cube in order to evaluate the impact of

the modifications and the new results of risk assessment in Ph.2.

SSI can be identified, a posteriori, while analyzing results in step (2.i) thanks to the qualitative and

quantitative risk analysis produced in Ph.2 (cf. examples in Sections 5.1.2, 5.2.4 and 5.3.2).

The third phase labeled Ph.3 in Figure 26, consists in different stakeholders feeding the S-cube KB with

new inputs. The system designers/experts can add new components or refine the detail of the modeling

if required for a given system. These changes are likely to occur for new systems that change often their

architectures (e.g. cars, airplanes). The safety and security experts can refine the qualitative data (e.g.

new attacks) and quantitative data using data available from feedback of experience. Ph.3 can also be

powered by the results analysis in step (2.i).

 The third phase supports the evolutions of the S-cube KB. This knowledge base can be extended with

new data, improved and updated with feedback of experience.

We address in the next sections the process of building the S-cube KB and the different notions modeled.

90

4.3 The S-cube Knowledge Base

We explain in this section the rationale used in building the S-cube KB, Ph.0 in Figure 26, and the main

notions modeled.

4.3.1 Rationale

We have chosen to model in the S-cube KB the following aspects related to industrial architectures:

 Enterprise levels: we consider the different levels of the enterprise architecture (cf. § 4.3.1.1);

 Network zones: in each level, we model the existing network zones (cf. § 4.3.1.2);

 Hardware/software: in each network zone, we model the connected components with the

distinction between hardware and software (cf. § 4.3.1.3);

 Data flows: we model the data flows exchanged between the different software (cf. § 4.3.1.4).

We detail in the following how each aspect has been addressed in the S-cube approach.

4.3.1.1 Modeling the different enterprise levels

We addressed in a first instance the different levels of the enterprise architecture in the S-cube KB. This

latter was initially conceived according to the PERA decomposition given in Section 1.2.1. The five

enterprise architecture levels were reviewed and remodeled in a way that guarantees the generic aspect

of the knowledge base, and the specificities of each level have been taken into consideration.

The S-cube KB does not model the physical process per se (level 0 in the PERA decomposition cf.

Section 1.2.1) (e.g., power flow, heat propagation) but aims at modeling risks having impacts on the

physical process (safety issues). As mentioned in Section 4.1.2, it can be coupled with other knowledge

bases describing a specific industrial domain, for a better visibility on the physical impacts of attack and

failure scenarios.

S-cube models the four other enterprise levels:

 The field level: (corresponds to the level 1 in the PERA decomposition) comprises devices that are

close to the industrial process. These devices can be either sensors or actuators. Sensors are devices

used to measure physical quantities like pressure, speed, temperature, etc. Actuators are devices that

act directly on the physical process e.g., valves, pumps, breakers;

Level 2 in the PERA methodology is split into the process and the supervision levels:

 The process level: comprises automation devices that enable to monitor and control the industrial

process. In this level, we find typically Programmable Logic Controllers (PLC) and Remote

Telemetry Units (RTU);

 The supervision level: comprises SCADA servers and remote supervision devices that enable to

have a global view and control the process level;

 The IT level: comprises machines integrating information technologies. For traditional industrial

architectures, the IT level is associated to the levels 3 and 4 of the PERA decomposition. For modern

control systems, information technologies are also integrated in control devices. In the S-cube KB,

at first we considered that SCADA servers inherit the characteristics of the IT level, e.g., SCADA

servers are installed on classical machines using advanced information technologies. Later, we

extended the IT level to process controllers, as modern automata include also information

technologies.

91

This decomposition is based on the functional specificities of each level with respect to control. Each

level can consist of one or many networks.

4.3.1.2 Modeling the network zones

We chose to model, in a second instance, the different network zones at each level of the system

architecture. A network zone, in S-cube KB, models a set of machines that are allowed to exchange

information between one another using either a wired or a wireless communication technology.

Examples of network zones could be the field network that connects sensors and actuators to process

controllers and carries their data exchange.

4.3.1.3 Modeling the hardware/software system components

The functional architecture, described in § 4.3.1.1, does not necessarily map the physical architecture of

the system. For this purpose we have chosen to differentiate in the S-cube KB between software and

hardware components. Hardware (called later physical) components correspond to the physical

architecture of the system while software components explicit a functional viewpoint of the system.

We model, with the S-cube KB, the different physical machines (hardware) connected to each network

zone. We associate next the physical machines with the services (software) running on them. This

distinction between software and hardware allows to have an appropriate level of detail for which

failures and local attacks like physical access are associated with the physical machines and remote

cyber-attacks exploiting vulnerabilities are associated to the software component which houses a

specific vulnerability.

We detail in the next section how the S-cube KB includes modeling data flows and especially those used

for control, and give details on the specificities of SCADA based control systems.

4.3.1.4 Modeling control data flows

Finally, we included in the S-cube KB, the modeling of data flows between the software components in

the system architecture. Acquisition, control and supervision being the fundamental functionalities of a

SCADA system, we address more specifically control data flows.

After defining the different levels of the system architecture in § 4.3.1.1 we started modeling the typical

components of each level and their contribution to the control dataflow. Figure 27 summarizes the main

control components and data flows. This figure was inspired from the control loop used by Leveson

[116] in the Step 2 of the STPA method presented in § 2.3.2.3.

Figure 27 illustrates the typical components of each system level:

 At the field level, sensors measure physical quantities of the industrial process and send

measures to the process controller. Actuators receive instructions from this latter and act

accordingly on the industrial process;

 At the process level, the process controller (e.g., PLC, RTU) receives measures from the sensors,

processes data and sends instructions to actuators, if necessary. On the other hand, it sends

feedback on the process status to the supervision station and potentially receives instructions

from it. In some architectures, process controllers can exchange orders/feedback between one

another;

 At the supervision level, the operator station receives feedback from different process

controllers, providing a centralized view of the physical process, and sends back instructions;

 The IT level models initially systems that enable the optimization and management of the

business process. Such systems are not supposed to have a direct impact on the control process.

Yet, as modern controllers and SCADA servers integrate information and communication

92

technologies (e.g., ftp servers, TCP/IP based communications), we make both the supervision

and process levels inherit the IT characteristics.

SensorActuator

Controller

Operator/supervisor

Industrial Process

Send measures

Send instructions Receive measures

Receive instructions

Send feedback

Send instructions

Receive instructions

Receive feedback

Act measure

F
ie

ld
 le

v
e

l
P

ro
c
e

s
s
 le

v
e

l

IT
 le

v
e

l

S
u

p
e

rv
is

io
n

 le
v
e

l

Figure 27: Control components and data flows

As illustrated in Figure 27, we distinguish between two types of control data12:

 Instructions: this data is sent by system components having a control functionality (such as

process controller, supervisor, etc.) to field devices in order to execute an order;

 Feedback: this data is sent by field devices to acquisition, control and supervision components

in order to report a status of the system, it can be either a measure or an alarm.

In addition to this level of detail, the S-cube KB models the data flow direction with respect to a given

component; whether it is an input flow (data received) or an output flow (data sent). We summarize in

Table 18 the main control data flows, modeled in the S-cube KB, associated to each component of the

field, process and supervision levels.

We discussed in Section 1.2.2 the specificities and challenges of ICS in terms of time criticality and

stressed the importance of data availability and integrity of control data flows. Indeed, control data flows

should be available and unaltered in order to ensure the normal operation of the industrial process.

12 This distinction was added in the KB for more accuracy on attacks impacting data flows in the process and field levels.

93

Otherwise, data alteration or unavailability can result into safety-related issues. In the S-cube KB, we

study and propagate the effects of attacks and failures on the data flows integrity and availability. For

example, a jamming attack on a wireless network would lead to unavailability of all data flows carried

by this network.

System

level

Component Control data flow

In/Out Type Description

Field level Sensor in _ _

out Feedback sends measures to process controller

Actuator in Instruction receives instructions from process

controller

out _ _

Process

level

Process

controller

in Feedback receives feedback from sensors/other

process controllers

Instruction Receives instructions from

operator/supervisor

out Feedback Sends feedback to operator/supervisor

or to other process controllers

Instruction Sends instructions to actuators/other

process controllers

Supervision

level

SCADA

server/master

in Feedback Receives feedback from process

controllers

Instruction Receives instructions from another

SCADA server

out Feedback Sends feedback to another SCADA

server

Instruction Sends instructions to process controllers

Table 18: The control data flows modeled in the S-cube KB

We show in the next section how the different aspects described above have been aggregated into the S-

cube KB by explaining the metamodel used to build this KB.

4.3.2 Metamodel

The S-cube metamodel, depicted in Figure 28, gives an overview on the hierarchy of classes modeled

in the S-cube KB. It models the typical components of digital industrial architectures. Each class is

represented with a “box” and models a system element template. The S-cube KB adopts the Figaro

modeling language (cf. Section 4.6.1). Being object oriented, Figaro allows with the inheritance

mechanism to structure knowledge and build progressively the metamodel. This latter can equally be

extended in order to refine details about the system.

Each class of the metamodel is associated with its attributes as well as the attacks and failure modes

likely to happen on it. Attributes are represented in Figure 28 by small horizontal rectangles. The type

94

of these attributes is put into brackets or braces for enumerated types. The attributes for which the type

is not mentioned are Boolean (can have either the value True or False). The gear wheels icons model

the dynamic behavior of the attack steps and failure modes associated with each class. The individual

description of each class and the details on the metamodel implementation will be addressed in Annex 2.

We explain in the following paragraphs the main steps followed for building the knowledge base. We

stress the key modeling elements of the S-cube metamodel and the assumptions made in order to have

the appropriate level of detail. The classes modeled in the knowledge base and the associated attributes

are put in Italic font.

We first model, with the generic class component, a system component which can fail accidentally or

be compromised by an attacker. Accidental failures can be repaired by maintenance actions (cf.

Section 4.4.1). The classes network zone and physical component inherit the characteristics of the

mother class component, and model respectively a network zone (cf. § 4.3.1.2) and a physical component

(cf. § 4.3.1.3). The physical component models a machine (hardware) connected to a network zone and

that hosts one or many software components. Identical physical components that can fail simultaneously

due to a common cause are associated with the same CCF_group (cf. § 4.4.1.2).

Following the system decomposition presented in § 4.3.1.1, we make the distinction in the S-cube KB

between field system components, process system components, supervision system components and

finally IT system components. They model generically the physical machines of each system level (cf.

§ 4.3.1.1). Actuators and Sensors are field system components, while process controller (e.g.,

Programmable Logical Controller) stands among process system components. An IT system component

models a physical machine integrating advanced ICT typically running an Operating System and hosting

software components from the IT domain. The process controller inherits from the IT system component

class as modern controllers can also run operating systems and services imported from the IT domain.

 Furthermore, we model the following software components:

 a sensor software component models the software capturing and reporting the physical

measures;

 an actuator software component models the software receiving and executing the process

controller instructions;

 a process controller software component models the software receiving and processing sensors

measures, and sending orders to actuators;

 a scada server software component models the software supervising the process controllers,

through receiving feedback and sending instructions;

 an IT software component models a software from the IT domain and not directly used for

control purposes (e.g., ftp client, http server).

Software components exchange data flows (cf. § 4.3.1.4). With S-cube, the user models graphically only

the legitimate data flows allowed by firewalls. The firewalling functionality is enabled or disabled by

the gateway binding two or many networks (cf. CLASS Gateway in Annex 2 for more details).

An IT software component can host one or many vulnerabilities. Each vulnerability has one or many

consequences among the following: privilege escalation, confidentiality loss, integrity loss or denial of

service.

A vulnerability can be associated to a software component or to a physical machine. In the last case, the

vulnerability models a bad machine configuration (e.g., system files not write-protected) which is

assumed to allow privilege escalation when exploited by an attacker.

95

We assume, in the S-cube KB, that an IT machine is said to be compromised if an attacker manages to

have root privileges on it. If it is the case, he can compromise all software components running on this

machine. This assumption is quite credible as compromising one software on a machine does not allow

the attacker to compromise all other services unless he/she succeeds in obtaining root privileges.

For IT level networks such as the corporate network, we are interested in the attack propagation

(multistage multi-hop) between different IT level machines until reaching some component having a

control action on the process. When reaching the control network, we are rather interested in data

integrity/availability as the modification or unavailability is generally the main reason leading to

undesirable events.

Access Control is modeled by associating an authentication mechanism to a machine (e.g., a

login/password is required in order to log into the OS), to a network (e.g., WEP/WPA2 authentication)

or to an application (e.g., ftp server needs to authenticate with the ftp server in order to read/write files).

We give in the following section the taxonomy of the different attack vectors embodied in the S-cube

KB.

4.3.3 Taxonomy of attacks

Rather than following never-ending vulnerabilities and trying to patch each of them, security experts

ought to deal with security at a higher level which would cover all vulnerabilities already known and

unrevealed ones. The S-cube KB has been built upon a taxonomy of attack vectors that allows to reason

about attacks at a higher level rather than a simple list of vulnerabilities, which guarantees the coverage

of all types of attacks. The hierarchical thinking methodology was adopted in building the knowledge

base; it consists in starting at first from a high level of abstraction and refining progressively the detail

levels. The fundamental mechanism of abstraction allows dealing with the complexity of systems and

the myriad of vulnerabilities they are subject to.

Our experience with BDMP applied on the industrial use cases [144] like the example of pipeline (cf.

Section 3.2.2) revealed some patterns of the typical attacks on the control and field levels. The attack

taxonomy in the S-cube KB was inspired from these patterns, but also from other existing DSLs like

CySeMoL, MulVAL (cf. Section 4.1.1) and the Ethical Hacking and countermeasures Courseware

(CEH) [145].

The CEH courseware [145] states the five following steps required for a successful attack:

1. Foot-printing and reconnaissance;

2. Scanning;

3. Gaining access;

4. Maintaining access;

5. Clearing track.

We map these steps with what has been modeled in the S-cube KB. The foot-printing and reconnaissance

phase can be modeled in two ways: either by the attack step “preparing for the attack” associated with

the attacker template, or by the attack step “access” associated with a physical component in the system.

For this second case, the rate of this attack step combines together the frequency of attack occurrence

and the time needed for the attacker to collect information about the target network. The scanning step

(Step 2) is included in the different paths used by the attacker to access the system. The different ways

for the attacker to gain access to the system (Step 3) are depicted in Figure 29. Steps 4 & 5 are not

relevant in our context, as we are interested in successful attacks leading to safety issues; these steps are

consequently not modeled by S-cube KB.

96

Figure 28: The S-cube metamodel

97

The taxonomy of attack vectors given in Figure 29 has been used in the S-cube KB. It addresses the

different entry points used by the attacker in order to access the system. We believe that this latter should

have initially some sort of physical access, whether local or remote, to a machine or a network zone

related to the system architecture in order to try some attack scenario. We considered the following entry

points (EP) from which an attacker can gain access to the system:

- EP1: physical access to the network. If the network is wired (e.g., Ethernet-based), and the attacker

has physical access, he can plug into the network and manage to connect to the switch/hub via the

wired link (e.g., Ethernet cable). If the network is wireless, the attacker should be able to capture

the network traffic; which may require that he physically moves next to the access point. If the

network employs an authentication mechanism, the attacker has to additionally bypass

authentication in order to reach other machines connected to the same network. The network is said

to be compromised;

- EP2: physical access to a machine connected to the network. If the attacker has physical access to a

machine connected to the network and he manages to bypass authentication, if it is employed (by

the machine OS and/or by the network), the machine is said to be compromised. If a network hosts

a compromised machine it is also said to be compromised, which means that the attacker can reach

(i.e. send packets to) any other machine connected to the same network;

- EP3: the network is remotely reachable via another compromised network. If the network is

connected to a gateway which does not enable firewalling and which is connected to another

compromised network, the attacker can then scan the network in order to identify live systems and

open ports (e.g., ICMP scanning). He can then either:

o EP 3.1: access via a vulnerable service. If there is vulnerable software which is reachable

via compromised software communicating with it or which is located on a compromised

machine or a compromised network zone, then the attacker can exploit this vulnerability in

order to penetrate the system;

o EP 3.2: access via a vulnerable machine. If a machine is not correctly configured or is

running a vulnerable OS and it is reachable by the attacker (it is located on a compromised

network or running a compromised software or the attacker can physically access the

machine) then the attacker can exploit this vulnerability in order to gain root privileges.

The network is said to be compromised if the attacker can reach any machine connected to the

network zone. We assume that if the attacker can access the network (through the vectors above

listed), then he can reach any machine connected to the same network.

We gave in this section the different entry points that can be used by the attacker to access the system.

The attack step “access” associated to a physical component of the system (which can be a machine of

a network zone) is the initiating vector in attack scenarios generated by the quantitative analysis. The

remaining steps describe how the attack propagates given the system configuration.

We detail in the next two sections the qualitative and quantitative aspects included in the S-cube KB.

98

Physical access to the

network?
Physical access to a machine

connected to the network?

Wireless

network?

Authentication?

No

Yes

Yes
No

Yes

No

Bypass

authentication?

Access to network => compromised network

Yes

No

No

Open ports?

Scan network

Vulnerable service?

No

No

Yes

Yes

Vulnerable machine

configuration?

No Yes

Try another Entry Point (EP)

EP 3.2
EP 3.1

EP 2 EP 1

Remotely reachable

Yes

No EP 3

Figure 29: Taxonomy of attack vectors

99

4.4 Qualitative aspects in the S-cube KB

The S-cube approach has advantages both for building system models and processing them. First the

system architecture is modeled using the templates corresponding to classes defined in the S-cube KB

(cf. metamodel in § 4.3.2). This model can be either graphical or textual. Next the KB is instantiated on

the system model and the resulting instantiation is processed with quantification tools which yields a

qualitative and quantitative analysis.

The qualitative part of the analysis consists in generating the attack and failure scenarios likely to happen

on the system model and that can lead to an undesirable event initially set by the user. The quantitative

part, depicted in Section 4.5, allows sorting these scenarios according to their decreasing probabilities

and gives an estimation of the undesirable event probability.

We give in the remainder of this section the types of failures and attack steps modeled in the S-cube KB.

The risk scenarios output by S-cube are built from these generic failure modes and attack steps.

4.4.1 Failure modes and repair

We address in the S-cube KB accidental failures which can be either independent or dependent.

4.4.1.1 Failure in operation (independent events)

The S-cube KB models, for each system component, the accidental failure in operation which may occur

randomly and independently from other components failures. This failure is associated with network

zones and different physical machines (i.e. hardware failures). We assume in the current version of the

knowledge base that software always functions in a deterministic and dependable way if not altered by

third-parties (which excludes software bugs and crashes from our scope).

4.4.1.2 Common cause failures (dependent events)

A Common Cause Failure (CCF) is the failure of multiple components that result from a single cause,

like for example a fire, a flood, an earthquake, etc. This cause is shared by a given set of components

and can be related for instance to the design, the software, the environment, etc.

In safety-critical systems, redundancy is often introduced to enhance reliability. However, the intended

effect may be reduced when components are subject to common cause failures. According to expert

judgment, CCFs account for 1 to 10% of a component’s failure rate [146]. It is consequently important

to consider this kind of failures in the safety analysis in order not to underestimate the system reliability.

We model in the S-cube KB CCFs which we associate with physical components, and which represent

dependent failures that may occur at the same time or within a short time interval, due to a shared cause.

4.4.1.3 Repair actions

The S-cube KB includes the modeling of maintenance actions aiming at repairing the accidental failures

of the physical components. Once repaired, these latter resume their normal operation.

We present in the next sub-section the attack steps modeled in the S-cube KB. An attack scenario

generated by S-cube will consist of one or several attack steps among the following.

4.4.2 Attack steps

In addition to failure modes previously described, we summarize in Table 19 the attack steps associated

to each class as described in the metamodel in Figure 28. Classes describing physical components are

in blue and classes corresponding to software components are in green.

100

Class Attack steps / Failure modes

Component (generic

class)

Accidental failure: models an accidental failure, in operation, of a given

system component;

Failure repair: models the repair of the accidental failure of the system

component;

Access: models physical access of the attacker to the component.

Network zone

Accidental failure: models an accidental failure of the network (e.g., failure of

the switch); which results into its inability to ensure data transmission;

Access network: models attacker’s physical access to the network (cf. Section

4.3.3);

Jamming attack: models a jamming attack on a wireless network;

Scan network: models attacker scanning the network in order to identify live

systems and open ports;

Establish connection: models attacker establishing illegitimate connection

with an open port;

Bypass authentication: models attacker bypassing authentication to the

network. We distinguish between weak and strong authentication.

Physical component

(Generic)

Accidental failure: models an accidental failure in operation of a physical

component (cf. § 4.4.1.1);

Common Cause Failure: models the failure of the physical component due to

a common cause (cf. § 4.4.1.2);

Access component: models attacker accessing to a physical machine (cf.

Section 4.3.3);

Compromise communication link (Man In The Middle attack): models an

attacker compromising the communication link between two machines;

Bypass authentication: models attacker bypassing authentication to the OS of

a physical machine; which can be either weak or strong.

IT system

component

Accidental failure: models an accidental failure of a machine from the IT level;

Access (physical): models the attacker’s physical access to a machine from the

IT level;

Privilege escalation: models the attacker exploiting a bad configuration or a

vulnerability related to OS of the machine for privilege escalation.

Process Controller

Accidental failure: models accidental failure of the process controller;

Access (physical): models attacker’s physical access to the process controller.

Sensor

Accidental failure: models accidental failure of a sensor;

Access (physical): models attacker’s physical access to a sensor.

Actuator

Accidental failure: models accidental failure of an actuator;

Access (physical): models the attacker’s physical access to an actuator.

101

Software component

(Generic)

IT software

component

Bypass authentication: models attacker bypassing authentication required by

an IT software component (e.g., ftp server). We distinguish between weak and

strong authentication;

Exploit vuln priv escalation: models attacker exploiting a vulnerability that

results in privilege escalation;

Exploit vuln integrity loss: models attacker exploiting a vulnerability that

results in integrity loss;

Exploit vuln denial of service: models attacker exploiting a vulnerability that

results in denial of service;

Exploit vuln confidentiality loss: models attacker exploiting a vulnerability

that results in confidentiality loss.

SCADA server

software component

Send false instructions: attacker falsifies instructions sent from SCADA server

software;

Send no instructions: attacker removes instructions sent from SCADA server

software;

Send false feedback: attacker falsifies feedback sent from SCADA server

software;

Send no feedback: attacker removes feedback sent from SCADA server

software.

Process controller

software component

Send false instructions: attacker falsifies instructions sent from process

controller software;

Send no instructions: attacker removes instructions sent from process

controller software;

Send false feedback: attacker falsifies feedback sent from process controller;

Send no feedback: attacker removes feedback sent from process controller

software.

Sensor software

component

Send false measures: attacker falsifies measures sent from sensor;

Send no measures: attacker removes measures sent from sensor.

Table 19: Failure modes and attack steps modeled in the S-cube KB

The attack steps modeled, so far, in the S-cube KB have been discussed with our security engineers.

They are consistent with the level of detail at which we have decided to stop. This list is not, in fact,

exhaustive; the knowledge base can be further extended with other “categories” of attacks and existing

attack steps can be decomposed into more detailed attack steps.

We explain in the next section how accidental and malicious scenarios are generated (Ph.2 in Figure 26)

from the system architecture and the S-cube KB.

4.4.3 Attack and failure scenarios generation

After the system architecture is described (Ph.1 in Figure 26), the S-cube KB is instantiated on it. This

instantiation generates a textual model, which constitutes a virtual definition of the state space of the

102

system (all the states in which the system can be). This state space is defined locally, by the list of

possible transitions from any state and the states they lead to.

The textual model can be explored in two ways:

- Using a path-based exploration algorithm, the state space is explored step by step. Starting from the

initial state, we explore the tree of all possible paths in a depth left first manner. The exploration of

one path is terminated if one of the following cases is reached: the targeted state, an absorbing state

or one of the truncating criteria13. The principle of this algorithm is illustrated in Figure 30. If the

explored state graph is in fact a Continuous Time Markov Chain (CTMC) then probabilities

calculated analytically can be associated to sequences; this gives on one hand relevant criteria to

eliminate most sequences, which makes the exploration tractable, and on the other hand an

estimation of the probability of reaching a target state before a given time.

Figure 30: Sequence exploration principle

- Using the Monte Carlo method, which allows processing any problem having a probabilistic

interpretation. Based on the law of large numbers, this method simulates many histories of the

system using repeated random sampling. These histories yield independent and identically

distributed realizations of a numerical variable of interest. By calculating the average of these

realizations, one obtains an estimator of the mean of this variable’s distribution. If the variable is

Boolean, its mean value is equal to the probability that the variable takes the value 1. This is how

the probability of the system being in a target state can be estimated.

The qualitative analysis, yielded in Ph.2 in Figure 26, generates exhaustively all the scenarios leading

to the undesirable event specified. The number of scenarios can easily be huge and unmanageable

especially for large systems. In order to be exploitable, the qualitative results should be associated with

some quantitative parameters that enable sorting and prioritizing the most probable scenarios. We

explain in the next section the quantitative aspects associated with the S-cube approach.

13 The user can set truncation criteria which can be for example the minimum probability or the maximum number of transitions

of the generated scenarios.

103

We give in the next section the hypotheses taken for the safety and security metrics associated to failure

modes resp. attacks modeled in the S-cube KB and that are the basis of the quantitative results obtained

in Ph.2 in Figure 26.

4.5 Quantitative aspects in the S-cube KB

We have already shown in Section 3.2.2 the advantages of building a common probabilistic model for

safety and security. In a similar vein, S-cube offers a quantitative framework, based on probabilities, for

assessing accidental and malicious risks. Each attack step and failure mode defined in the S-cube KB is

associated with a security respectively safety metric as detailed later in this section.

4.5.1 Safety metrics

We explain the safety metrics associated to the failure modes described previously in Section 4.4.1.

4.5.1.1 Independent accidental failures

In dependability analysis, the system (or component) reliability corresponds to its “ability to perform a

required function, under given environmental and operational conditions and for a stated period of time”.

The reliability expression as a function of time (t) is given by the following expression (1):

𝑅(𝑡) = Pr(𝑇 > 𝑡) = 1 − Pr(𝑇 ≤ 𝑡) = 1 − 𝐹(𝑡); (1)

where T is a random variable corresponding to the Time To Failure (TTF) and F(t) is the cumulative

distribution function of T.

The failure rate is given by the expression (2):

(𝑡) = Lim
𝑑𝑡→0

Pr(𝑇<𝑡+𝑑𝑡/𝑇>𝑡)

𝑑𝑡
; (2)

Intuitively, (t)dt represents the probability that the system or component fails between t and t+dt,

knowing that it survived until t.

The exponential distribution is commonly used and validated in traditional reliability analyses for the

probability distribution of the TTF. In this case, the failure rate of the system (or component) is

constant and equal to the parameter of the exponential distribution. This assumption (constant failure

rate) is valid in the useful part of the system lifetime which excludes the beginning period (premature

failure) and the ending period (aging phenomenon). The Mean Time To Failure MTTF =

𝐸{𝑇}=∫ 𝑅(𝑡)𝑑𝑡
∞

0
) of a system or component is equal, in this instance, to the inverse of the failure rate

().

In the S-cube KB, we adopt the exponential approximation for the time to failure of a system component

in operation. The quantitative metrics used in this case correspond to failure rates of components.

Data related to the failure rates can be obtained from the experience feedback on the system components

failures or from the manufacturer’s documentation. Experimental data may take a lot of time before

being available (the range of MTTF generally is from years to decades), especially for systems with a

long service life.

4.5.1.2 Common Cause Failures

The Common Cause Failures (CCFs) have been addressed in the probabilistic risk analysis with different

models, for instance the Atwood model [147] and the factor model [148]. These models use feedback

of experience data in order to quantify the probabilities of events causing the failure of a specific group

of identical of components. The transition between these models and the CCF model used in static (i.e.

essentially made with fault trees) analyses and called the Basic Parametric Model (BPM) [149] is then

104

possible. This latter is used to evaluate the probability of the different combinations of components

failures within the same CCF group.

In the S-cube KB, we adopted the dynamic generalization of the BPM (DBPM) described in [104]. This

latter uses the -factor model to exploit the feedback of experience failure data. The parameters of this

model, called -factors, are next transformed according to formulae (3) into k/m factors used by the

DBPM to evaluate the occurrence rates k/m of an event leading to the failure of k components included

in a group of m components.

𝛽𝑘/𝑚 =
𝑚

(𝑚𝑘)

𝛼𝑘/𝑚

∑ 𝑘𝛼𝑘/𝑚
𝑚
𝑘=1

 (3)

A CCF group is a set of components that can be subject to simultaneous failures due to a common cause

(cf. § 4.4.1.2). The number of combinations of components common cause failures (CCF of k among m

components, k ranging from 1 to m), can be quickly significant with large groups of components. For

simplification reasons, we have chosen to model in the S-cube KB only groups of two or three

components. Inspired from Donat et al. [150] where the CCFs are integrated into the BDMP formalism,

the modeling of CCF in S-cube is depicted in Figure 31.

Figure 31: Common cause failures metamodel

CCF_group_2 models a set of two identical physical components that can be subject to one of the

following failures due to a common cause:

 Failure of one component (1 or 2) out of two (which corresponds in Figure 31 to failures:

ccf_comp_1 and ccf_comp_2);

 Simultaneous failure of the two components 1 and 2 (which corresponds in Figure 31 to the

failure: ccf_comp_12).

Similarly, CCF_group_3 models a set of three identical physical components that can be subject to one

of the following failures due to a common cause:

 Failure of one component (1 or 2 or 3) out of three (which corresponds in Figure 31 to failures:

ccf_comp_1, ccf_comp_2 and ccf_comp_3);

 Simultaneous failure of two components (12 or 13 or 23) out of three (which corresponds in

Figure 31 to failures: ccf_comp_12, ccf_comp_13 and ccf_comp_23);

 Simultaneous failure of the three components 1, 2 and 3 (which corresponds in Figure 31 to the

failure: ccf_comp_123).

105

ccf_param_alpha_2 and ccf_param_beta_2 in Figure 31 define the parameters 𝛼𝑘/𝑚 resp. 𝛽𝑘/𝑚 of the

-factor model resp. the DBPM related to CCF_group_2. The same thing is done with CCF_group_3

and the associated parameters ccf_param_alpha_3 and ccf_param_beta_3 in Figure 31.

The user has to specify the value of the parameter alpha_2 in the case of a group of two components

and two parameters alpha_2 and alpha_3 in the case of a group of three components. The parameters

values are deduced from the parameters that can be obtained from failure feedback of experience data.

4.5.1.3 Assumptions for the S-cube KB

In the S-cube KB, the quantitative safety metrics were assigned based on estimations of our safety

experts or based on existing studies from the literature. We summarize in Table 20 the default values,

in the S-cube KB, assigned to the safety metrics and the references used for these estimations. These

values can be overridden and customized by the user with the appropriate values associated with the

system under study.

 System element Failure mode Quantitative data

source

1/MTTF or failure

rate

Network zone Accidental failure Experts estimation 1e-5/h

Physical component Accidental failure Experts estimation 1e-5/h

CCF_group_2 Common cause failure [150][146] Alpha_2 = 0.05

CCF_group_3 Common cause failure Alpha_2 = 0.1

Alpha_3 = 0.05

Table 20: Quantitative safety metrics for S-Cube

We address in the next section the quantitative aspects related to security modeling in the S-cube KB.

4.5.2 Security metrics

We make the assumption that Times To Success (TTS) are, also, exponentially distributed. Hence,

security metrics used in the S-cube KB are the success rates (mathematically defined by the same

formula as for failure rates) of the attack steps described in Table 19. However, it is easier for experts

to reason in terms of Mean Time To Success (MTTS) that are simply the inverse of success rates. In

order to support the assumptions we have made for MTTS in S-cube, we give in the following a quick

overview on existing work on quantitative evaluation of this security parameter then explain the way

we parameterized our attack steps.

4.5.2.1 Related work

Unlike for failures, feedback on attacks is not easy to obtain. Industrials often refuse to communicate

about their experience with attacks as this can infringe their image. Quantitative security data are

consequently less available and can be subject to large uncertainties. Security metrics are, in addition,

intimately linked to the attacker’s profile and behavior which is hardly predictable.

Several works have been trying to quantify security metrics and estimate the likelihood of software

vulnerabilities and exploits [151][152]. Based on empirical data collected from intrusion experiments,

Jonsson et al. [153] inferred that during the standard attack phase, the intrusion process could be

described by an exponential distribution using the variable attacker working time.

Holm [154] carried out a large-scale study of the time required to compromise a computer system. The

author studied the Time To First Compromise (TTFC), which is the time measured from the deployment

106

until the first malware alarm, and found that the Pareto distribution is best fit. Results also show that the

exponential is reasonably good at modeling intrusions that require less than 600 days; while 90% of all

detected intrusions require 400 days or less.

The results of the study in [154] show that the log-normal and Pareto distributions provide the best fit

for Time To Compromise (TTC) while the exponential, gamma and Weibull distribution are reasonably

good at modeling intrusions which require less than 100 days. This study was done on a large enterprise

that specializes in IT and has business in various locations all over the world, and consequently many

computers; the results might only be valid for an enterprise with the same characteristics. There is no

empirical evidence to justify that the Pareto and log-normal distributions might fit also for targeted

attacks, the kind of attacks that happen in the industrial domain.

Holm [155] proposed a Bayesian network model that can be used to estimate the likelihood that a

professional penetration tester is able to obtain knowledge on critical software vulnerabilities and

exploits for these vulnerabilities under different conditions. This model requires input data from the user

which are as both uncertain and subjective. Besides, the model yields Probability Distribution Functions

(PDF) which are not parametric and cannot be fitted to some known PDF.

Dacier et al. [156] [157] propose a method of quantitative security evaluation in which the authors

suggest the use of a Markovian model to represent an attack process.

McQueen et al. [158] proposes also a Markovian model for estimating the time to compromise (TTC) a

computer system through exploiting a given vulnerability. The authors model the TTC, which they

define as the measure of the effort expended by an attacker for a successful attack. They also assume

that effort is expended uniformly, as a random process composed of three attacker sub-processes:

 Process 1: is when at least one vulnerability is known and the attacker has at least one exploit

readily available. The probability that the attacker is in process 1 is given by equation (4):

𝑃1 = 1 −𝑒−𝑣𝑚/𝑘 (4)

Where v is the number of vulnerabilities on the component of interest, m is the number of exploits

readily available to the attacker, and k is the total number of vulnerabilities.

Assuming that the attacker is familiar with at least one of the available vulnerabilities and has

experience with at least one exploit associated with the known vulnerabilities, the authors estimate

the time required for Process 1 with t1=8 hours.

 Process 2: is when at least one vulnerability is known but the attacker does not have an exploit

readily available. Since Process 1 and Process 2 are mutually exclusive, the probability that the

attacker is in process 2 is given by equation (5):

𝑃2 = 1 − 𝑃1 = 𝑒−𝑣𝑚/𝑘 (5)

The mean time needed to complete Process 2 is modeled as the expected value of the number

of tries (ET) times 5.8 days: 𝑡2 = 5.8 ∗ 𝐸𝑇; where 𝐸𝑇 is the expected number of tries;

 Process 3: is when the attacker identifies new vulnerabilities and exploits (zero-days). The time

estimated for this process is given by equation (6):

𝑡3 = (
𝑉

𝐴𝑀
− 0.5) . 30,42 + 5,8 (6)

Where AM is the average number of the vulnerabilities for which an exploit can be found or

created by the attacker;

107

Assuming that the three processes are mutually exclusive (Process 3 only applies if Processes 1 and 2

do not apply or are unsuccessful), the overall TTC is given by equation (7):

𝑇 = 𝑡1. 𝑃1 +𝑡2. (1 − 𝑃1)(1 − 𝑢) +𝑡3𝑢(1 − 𝑃1) (7)

Where = (1 − (
𝐴𝑀

𝑉
))𝑣 : the probability that Process 2 is unsuccessful (u=1 if V=0).

We explain in § 4.5.2.3, how we used McQueen et al.’s [158] model in order to assess the MTTS for

exploiting a vulnerability in a software system component.

4.5.2.2 The Common Vulnerability Scoring System

The NIST [159] introduced the Common Vulnerability Scoring System (CVSS) an open framework for

scoring IT vulnerabilities based on three metric groups: base, temporal, and environmental. Base metrics

represents the intrinsic and fundamental characteristics of a vulnerability that are constant over time and

user environments. Temporal metrics represent the characteristics of a vulnerability that change with

time but not among user environments. Environmental metrics represent the characteristics of a

vulnerability that are relevant and unique to a particular user’s environment.

The CVSS score is first calculated according to an equation as a function of the base metrics. It can be

next refined based on the temporal and environmental metrics. We only consider the base metrics below.

The CVSS score ranges from 0 to 10; the higher it is, the more critical the vulnerability.

Base metrics are:

 Access Vector (AV): reflects how the vulnerability is exploited: locally, with adjacent network

access or remotely. The more remote an attacker can be to the target of the attack, the greater

the vulnerability score;

 Access Complexity (AC): measures the complexity of the attack required to exploit the

vulnerability once an attacker has gained access to the target system. The access complexity can

be high, medium or low. The lower the required complexity, the higher the vulnerability score;

 Authentication (Au): measures the numbers of times an attacker must authenticate to access a

target in order to exploit a vulnerability. This metric can take the following values: multiple,

single or none. The fewer authentication instances are required, the higher the vulnerability

score.

 Confidentiality Impact (C): measures the impact on confidentiality of a successfully exploited

vulnerability. It can be complete, partial or none;

 Integrity Impact (I): measures the impact to integrity of a successfully exploited vulnerability.

It can be complete, partial or none;

 Availability Impact (A): measures the impact to availability of a successfully exploited

vulnerability. It can be complete, partial or none;

We explain in the next subsection how the CVSS base metrics and some studies from previous work

have been exploited to assess the security metrics related to the attack steps modeled in the S-cube KB.

4.5.2.3 Assumptions for the S-cube KB

The S-cube KB includes modeling the CVSS base metrics as described below:

 (AV): the different access vectors are modeled as described in Figure 29;

 (AC): the access complexity is included in the MTTS assessment;

108

 (Au): authentication is modeled by associating an authentication mechanism to a service, a

network or a host. We also model whether the authentication is weak or strong. The mean time

to success of the attack step “bypassing authentication” is higher in case a strong authentication

is in place;

 (C, I, A): the impact on confidentiality, integrity or availability is associated with each

vulnerability, by security experts in step (1.iii) of the system description phase (Ph.1) in Figure

26. As explained in Section 1.2.2, confidentiality is not too important in the industrial context

and could not lead to safety issues. Vulnerabilities having as consequences: “privilege

escalation”, “integrity loss” or “denial of service” are the most relevant when it comes to safety-

related risks and their impact on data flows integrity and availability are propagated throughout

the system model.

Other metrics that impact the MTTS are the attacker’s profile (expert, intermediate, and beginner) and

the resources (money) he/she is ready to invest into the attack. In order to meet safety requirements, we

make, in the S-cube KB, the pessimistic assumption that the attacker is an expert and holds unlimited

resources to achieve the attack.

 In S-cube KB, we considered the two different random variables corresponding to TTS:

 TTS associated with the attack step access (TTS_access); which corresponds to the time until

the system is accessed by an attacker. As discussed in Section 4.3.3, the attacker needs first to

have some sort of access to the system in order to try some attack scenario (cf. Figure 29 on

entry points). MTTS_access is the mean time required for an attacker to access the system;

 TTS associated with other attack steps given in Table 19; which corresponds to the time required

for the attacker to achieve a given attack step;

We have chosen to use, in the S-cube KB, the exponential distribution to model the TTS for all the attack

steps. We argue below this choice.

For the time after which the system is accessed by an attacker (TTS_access), the empirical results

obtained by Holm in [154] (cf. § 4.5.2.1) show that the exponential distribution is relevant if

TTS_access<600 days. Furthermore, the Grigelionis theorem given in [160] proves the relevance of the

exponential distribution if we make the following assumptions:

- Each attack scenario can be approximated by a point renewal process 𝑇𝑛,𝑖 = (𝑇𝑘
𝑛,𝑖)𝑘≥0(1 ≤ 𝑖 ≤ 𝑛); with

an initial delay time 𝑇0
𝑛,𝑖

;

- All delay times 𝑇0
𝑛,𝑖are independent from one another; which means that attacks that may target

the system are independent from one another;

- On the time scale, these attacks can superpose and each of the n processes (n is large because it

corresponds to the number of potential attackers) has a small contribution;

Given these assumptions, the theorem stipulates that the superposition of the n independent renewal

processes converge towards a Poisson point process. We can consequently infer that the random variable

corresponding to the minimum of the delay times𝑇0
𝑛,𝑖

, corresponding in our context to the TTS_access,

follows an exponential distribution.

For the other attack steps, the use of the exponential distribution is not always approved for security

assessment. However, we have chosen this assumption because it makes it possible to use Figseq for the

qualitative analysis (Figeseq works only with markovian models).

As previously mentioned, the McQueen et al.’s [158] model (cf. § 4.5.2.1) has been used in order to

estimate the MTTS associated to attack steps modeling the attacker exploiting a vulnerability of a

109

software component in the S-cube KB. In order to use the formula (7) of this model, we extracted

statistical data14 on vulnerabilities from the Common Vulnerabilities and Exposures (CVE) dictionary

[161]. The k parameter in McQueen et al.’s model corresponds to the total number of vulnerabilities and

the m parameter corresponds to the number of exploits publicly available.

As previously discussed, vulnerabilities are categorized in the S-cube KB, into three main categories,

according to their consequences and impact on confidentiality (C), integrity (I) and availability (A) (cf.

base metrics in § 4.5.2.2):

 Vulnerabilities resulting into privilege escalation (have an impact on C, I and A);

 Vulnerabilities resulting into integrity loss (have an impact on I);

 Vulnerabilities resulting into denial of service (have an impact on A).

We give, in Table 21, the data obtained from the CVE dictionary15 [161] corresponding to k and m

parameters for each type of vulnerability. We explain below how we proceeded to get this data.

Vulnerability type Number of total

vulnerabilities (k)

Number of total exploits

publicly available (m)

Privilege escalation 3388 184

Integrity loss 2222 60

Denial of service 14791 654

Table 21: Statistical data on vulnerabilities sorted by type

For vulnerabilities resulting in privilege escalation (cf. first line of Table 21), data extracted correspond

to the type “Gain privilege” in [161].

For vulnerabilities resulting in integrity loss (the second line of Table 21), we consider from [161] data

of type “Gain information” and having a complete or partial impact on integrity. We consider

particularly vulnerabilities having a CVSS score >5; given that for vulnerabilities with a CVSS <5 the

impact on integrity is “None”.

For vulnerabilities resulting in denial of service (the third line of Table 21), we took the data

corresponding to “DoS” in [161].

We also made the assumptions given in Table 22 when using the McQueen et al.’s [158] model.

Assumption Rationale

V = 1 In each attack step “exploit vulnerability”, the attacker exploits just one

vulnerability

AM/V = 1 We assume the attacker’s skill level is “expert”

t1= 1 The time needed for an expert to exploit a known vulnerability with an exploit

readily available is one working day

14 We took this data on the CVE dictionary in August 2015
15 Data has been collected since 1999

110

ET=1 The expected number of tries is equal to one; i.e. the attacker tries to exploit

a vulnerability just once and abandons in case of unsuccessful attempt

Table 22: Assumptions taken for MTTS evaluation using McQueen's model

Given these assumptions, the MTTS obtained using the equation (7) and data in Table 21 is

approximately five days for all types of vulnerabilities (1/MTTS ~ 0.01 h-1).

For other kinds of attack steps modeled in the KB, the MTTS was estimated by our security experts.

Table 23 gathers the sources used to estimate the quantitative data associated with the attack steps

described in the S-cube KB.

System

element

Attack step Quantitative data source MTTS

Physical

component

Physical access Depends on whether we

model the frequency of the

attack or the time needed to

access the system

-

Network

zone

Physical access Same as for physical

component

-

Jamming attack

Security experts eval.

Jamming is almost

instantaneous, however the

attack requires special

equipment, highly expensive,

which reduces its frequency

DoS attack 1 hour

Scan network 1hour for IT networks

1 - 2 days for industrial

networks

Establish connection 1 day

IT system

component

Exploit bad config.

vulnerability

2 - 3 days

IT software

component

Exploit priv. escal.

vulnerability

Mc Queen et al. [158] +

CVSS DB [161]

1 day if exploit available

5 days else

Exploit integrity loss

vulnerability

Mc Queen et al. [158] +

CVSS DB [161]

1 day if exploit available

5 days else

Exploit DoS

vulnerability

Mc Queen et al. [158] +

CVSS DB [161]

1 day if exploit available

5 days else

Exploit

confidentiality loss

vulnerability

Mc Queen et al. [158] +

CVSS DB [161]

1 day if exploit available

5 days else

Physical

component

Network

zone

IT Soft cpt

Bypass

authentication

(MTTS depends on

whether

authentication is

weak or strong)

Security experts eval. 1 day if weak password

30 days if strong password

2 years if strong

cryptography (e.g., SSL)

Table 23: Sources used for the estimation of MTTS for attack steps

111

The feasibility of jamming attacks on wireless networks has been discussed in [162], [163] but the

quantitative results could not be used to estimate the MTTS of such an attack. The same holds for DoS

and brute force attacks addressed by Sommestad et al. in [164].

We discuss in the next section the uncertainties related to this quantitative data associated with the attack

steps and failure modes described in the S-cube KB.

4.5.3 Discussion

The results obtained in Ph.2 of Figure 26 are based on the qualitative and quantitative aspects in the S-

cube KB previously described. These results are called also later, qualitative and quantitative analysis.

The MTTS associated with the initiating “access” attack step (MTTS_access) can be parameterized in

two different ways for the two following purposes, which can be complementary:

1) To assess, from scratch, a given architecture in order to pinpoint the different access paths

privileged by the attacker and identify the most vulnerable components. In this case,

MTTS_access is set with the inverse of the frequency of the attacks that target the specific kind

of system architecture under study (such an information can be obtained in-house from security

feedback e.g., log-files). With this kind of study, the qualitative results are the most interesting

to analyze.

2) To quantify more precisely the probability of a successful attack scenario given that the attacker

has started at t=0 to target the system. In this case, MTTS_access is set with the mean time

needed for the attacker to have some physical or remote access to the system, assuming that the

reconnaissance phase was already done. With this kind of study, more focus is given to the

quantitative analysis. The qualitative and quantitative results provide the attack scenarios with

a more accurate estimation of the time needed to complete each scenario.

In the second kind of study, using a joint model for assessing safety and security risks leads to results

that promote generally attack scenarios. Indeed, the MTTFs used for failure modes are very large

compared to security metrics. On the contrary, in the first kind of study, it is possible to have the

same order of magnitude for both kinds of risk, thanks to the fact that the frequency of targeting a

given industrial architecture is indeed low (fortunately); unfortunately, this metric is even more

difficult to predict than other security metrics and highly subjective as it is related to human

intention.

The quantitative results are aimed at providing operators of the control systems with a measure of the

risk associated with potential attacks in order to effectively manage their resources. The results obtained

should not be considered as definitive and accurate values. They are based on the assumptions taken for

the different attacks modeled in the S-cube KB and related to the level of detail modeled.

We explain in the next section how the main notions of the S-cube KB above described have been

implemented.

4.6 Implementation & Tool chain

We first show how the S-cube KB has been developed using the Figaro language. We present next the

tool chain used by S-cube at different phases given in Figure 26.

4.6.1 The Figaro language

Figaro [165] is a general modeling language initially developed for reliability analysis. A quick

comparison between Figaro and other safety DSLs was given in Section 4.1.2. We underline below the

main specificities of Figaro language and how they have been used to implement the S-cube KB.

112

Figaro is an object oriented language and implements additionally some artificial intelligence notions.

Although specific to safety, Figaro is general enough to be adaptable for other domains related to

dependability and especially for security.

Figaro provides an appropriate formalism for developing knowledge bases with generic descriptions of

components. It enables thanks to the inheritance mechanism to structure the knowledge and avoid

information redundancy. Each system generic component is described with a class. A class can be

compared to a mold which, when filled, gives an object having the shape of the mold and all its

characteristics.

A class consists of two parts [166]:

 A purely static and declarative part: where one finds the name of the class, the class from which

it inherits characteristics, the other classes with which it interacts, the constant characteristics

and the state variables with their domains and initial values;

 A dynamic part: where the behavior of the class is described thanks to two kinds of rules: the

occurrence rules and the interaction rules.

o The occurrence rules: describe elementary events with the conditions governing how

they are triggered and the associated probability distributions. If the conditions of the

occurrence rule are satisfied, the event can occur:

 Instantaneously: this is used in order to describe the choice between different

instantaneous transitions; each transition is associated with a probability, and

the sum of transitions probabilities appearing in a given rule must be equal to 1;

 After a time that follows a given probability distribution: in this case the type

of the distribution and its parameters are associated with the transition;

o The interaction rules: aim to propagate the effects that are the immediate and certain

consequences of an event (i.e., the firing of a transition of an occurrence rule) in the

system.

The Figaro language is quite legible and can be easily associated with graphical representations. The

Figaro language can be used either to define physical components (e.g., pumps, valves, heat-exchangers

in a knowledge base dedicated to thermo-hydraulic systems), or to define abstract objects like the places

and transitions of a Petri net.

We give below an excerpt of the Figaro description of the class that models a network zone, and show

some of the keywords used:

CLASS network_zone KIND_OF component; (* declaration of a class modeling a network zone *)

 CONSTANT (* declaration of the constants related to the class *)

 wireless (* this Boolean is set to true in an object modeling a wireless network zone *)

 DOMAIN BOOLEAN

 DEFAULT FALSE;

 ATTRIBUTE (* declaration of the attributes related to the class *)

 lambda_auth (* rate of the attack “bypass authentication” *)

 DOMAIN REAL

 DEFAULT 0.01;

 EFFECT (* declaration of the effects related to the class *)

 network_access

 LABEL "attacker has access on network %OBJECT";

 INTERFACE (* declaration of the interfaces related to the class *)

113

 connectedElements (* this name will be used in the rules to designate a set of physical_cpt *)

 KIND physical_cpt

 CARDINAL 1 TO INFINITY

 LABEL "sys_components connected to the network_zone";

 authentication (* the network_zone uses or not an authentication mechanism *)

 KIND authentication_mechanism

 CARDINAL 0 TO 1

 LABEL "authentication to the network_zone";

 FAILURE (* declaration of the failure modes and attack steps related to the class *)

 jamming_attack

 LABEL "network jamming attack";

 OCCURRENCE (* description of the dynamic behavior of the failure modes and attack steps *)

 wireless_network_jamming_attack (* name of the rule – used only for traceability in debug tools *)

 IF (wireless)

 MAY_OCCUR

 FAULT jamming_attack

 DIST EXP(0.000001);

 INTERACTION (* propagation of the instantaneous effects of the failure modes and attack steps *)

 network_unavailable (* propagation of the unavailability of data in case of jamming attack*)

 IF failure OR jamming_attack OR denial_of_service_attack

 THEN FOR_ALL x A connectedElements

 DO (

 FOR_ALL y A hosted_software(x) DO (

 FOR_ALL z A out_data(y) DO unavailable(z)));

In Table 24, we detail the meaning of some keywords used in the Figaro language. A complete

documentation on the language and its syntax is provided in [167][168].

Keyword Signification

CLASS Declares a new Class

KIND_OF Inheritance relationship with other classes

CONSTANT Declares the constants related to the class

ATTRIBUTE Declares the attributes related to the class. Contrarily to constants,

attributes can change value by the execution of the occurrence/interaction

rules

EFFECT Declares the effects related to the class. An effect is a Boolean that is used

to propagate the effects of the attack steps and failure modes. The value of

this Boolean is reset to FALSE, then updated each time the interaction

rules are executed

INTERFACE Declares the interfaces related to the class. An interface describes a

relationship between the class and other classes

FAILURE Declares the failure modes and attack steps related to the class

OCCURRENCE Describes the dynamic behavior of the failure modes and attack steps

through associating them with the appropriate probability distribution and

the associated rate

114

INTERACTION Propagates the instantaneous effects among which the ones resulting from

the realization of the attack steps and failure modes

Table 24: Meaning of some keywords of the Figaro language

There are two levels of the Figaro language: order 0 and order 1. The order 1 Figaro, so far represented,

is used to write knowledge bases (Ph.0 in Figure 26). Using a variety of keywords including quantifiers

(e.g., IT_EXISTS, FOR_ALL), it is a highly expressive and natural language. The order 0 Figaro is the

language in which is generated the textual model resulting from the instantiation of the KB on the

graphical model. This language includes few keywords which makes it simple and efficiently executable

by machines for further processing.

The choice of the Figaro modeling language led us to use the KB3 workbench, described in Section

3.1.4, that enables to build Figaro-based models and process them. We give in the following section

details about the tool chain used for the S-cube approach implementation.

4.6.2 Tool chain

In order to explain how the principles of the S-cube approach have been implemented, we reproduce the

Figure 25: The S-cube approach principle

 given in Section 4.2, to which we add how each aspect has been implemented in blue italic text. The

result is depicted in Figure 32.

System architecture

KB3 HMI

Attack and failure

scenarios

S-cube KB
Figaro language

System components

 Failure modes

 Attack steps

 Failure/attack

 propagation

Processing

tools

Figseq

Yams

Textual model

Figaro

S-CUBE

Figaro Classes

Occurrence rules

Interaction rules

Figure 32: The S-cube tool chain

During the S-cube KB development (Ph.0 in Figure 26), the Figaro classes have been used to describe

the generic components comprised in industrial information architectures and their main characteristics

as already introduced in Section 4.3.2. For each class, occurrence rules are used to model security

(attacks) and safety (failures) events that may happen to each system component (cf. Section 4.4). These

rules contain also the probability distribution of the time after which the event will happen (cf. Section

4.5). For each class, the interaction rules model the propagation of the instantaneous effects within the

whole system architecture, for instance how the compromising or the failure of one component impacts

other system elements (e.g., data no more available). The graphical elements, corresponding to instances

of classes defined in the S-cube KB, are specified using the KB3 tool (cf. § 3.1.4.1).

First, the system architecture is input using the KB3 HMI (Ph.1 in Figure 26) where the graphical

elements previously defined are loaded into a palette. Automatic verification of the graphical model is

done and the correctness and coherence of the model input is checked. For instance, if some graphical

element cannot accept a certain type of link the user is notified with an error message. The system model

can also be described textually but this requires a basic knowledge of the Figaro language and the S-

cube KB.

The formal definition of the Figaro language is given in [169] and allows to detect inconsistencies or

ensure the consistency of knowledge bases as they are built. The S-cube KB, respects a set of rules given

in [169] that ensure the consistency of this KB. This implies that all the models built with the S-cube

115

KB, are coherent from their very construction, and can embed no inconsistencies or undesirable

properties. In particular for any model built using the S-cube KB, the following properties are satisfied:

- The space of states is finite as all the variables defined have a finite domain;

- The model is not totally repairable, as detection and reaction measures have not so far been modeled.

This implies that the space of states includes some states from which the initial state can no longer

be reached;

- Monotonous inference: the EFFECTs are only set to true in the interaction rules. Given that all

effects are initialized to false each time the interaction rules are executed, this guarantees that

whatever the execution order of the interaction rules, the inference converges towards the same

state.

The S-cube KB is instantiated on the graphical model of the system architecture, which generates a

textual model in order 0 Figaro. This model implicitly defines a Continuous Time Markov Chain

(CTMC), since all timed transitions of the model are associated to exponential distributions. Because of

the combinatorial explosion of the states, this CTMC cannot be exhaustively built, but it can be explored

by the quantification tools, in order to yield qualitative and quantitative results. Initially the state of the

system is given by the values of the attributes and constants associated to each class (cf. Section 4.6.1).

The interaction rules are first executed in order to initialize the values of EFFECTs, before the

occurrence rules are executed. If the conditions of an occurrence rule are fulfilled, the risk event

(FAILURE) can occur (instantaneously or in a time exponentially distributed). After the simulation of

an event, which changes locally few attributes of a given object, the interaction rules are executed again

in order to refresh the effects in the entire model.

In order to yield qualitative and quantitative results, the order 0 Figaro model can be processed using

the Figseq or Yams tools. We give below an overview on the principle of each one of those tools (already

introduced in § 3.1.4.2):

- The FigSeq tool: explores, step by step (cf. § 4.4.3), the sequences leading to the undesirable event.

Given the time mission time and truncation criteria, FigSeq computes an estimated value of the

undesirable event probability taking into account the contribution of the explored sequences that led

to the undesirable event, and gives also a pessimistic value taking additionally into account the

truncated sequences. The truncation criteria are specified in the Figseq tool and can be for instance

the minimum probability of the sequence or the maximum number of the sequence branches.

FigSeq can be used only in case of a purely Markovian model. The use of exponential distributions

only in the S-cube KB allows to take benefits from the mathematical properties of the tool, and in

particular the qualitative analysis yielding the attack and failure scenarios and the use of the Harrison

[170] technique to compute their probabilities;

- The Yams tool: uses the “analog”16 Monte Carlo simulation [171] on the system model to compute

an estimated value of the undesirable event probability. Any kind of probability distribution can be

associated to transitions with this tool. Yams is also able to output a selection of simulated scenarios,

but the obtained results are much more “noisy” than those obtained with Figseq; in particular, there

is no warranty that all scenarios with a probability greater than a given threshold can be obtained.

Before processing the Figaro textual model with quantification tools, the user defines an undesirable

event (target state). The model processing generates attack and failure scenarios leading to the

undesirable event defined, with an estimation of their probabilities (Ph.2 in Figure 26).

16 Analog means here: without an acceleration technique. The use of such techniques is not easy in the general case where

various kinds of probability distributions are used [171].

116

The attack and failure scenarios are listed into a table (cf. Table 28 for example) and sorted by decreasing

contribution to the undesirable event, whose probability is also calculated. These scenarios are

composed of the attack steps and failure modes associated to each system component (cf. Section 4.4)

described in the S-cube KB.

We presented in this section the tool chain used in different phases of the S-cube approach (cf. Figure

26). More details on the S-cube KB implementation are given in Annex 2 where each class is

individually described.

4.7 Conclusions

We presented in this chapter the main principles of the S-cube approach, related to modeling notions

and the associated qualitative and quantitative aspects, and how they have been implemented.

S-cube provides a risk analysis framework (tool-based approach) to assess information and control

architecture of industrial systems. Thanks to a taxonomy and hierarchical reasoning, we identified the

attacks and failure modes these systems are subject to and associated them with quantitative metrics.

The S-cube approach has been implemented thanks to the Figaro modeling language and its associated

tools. The system architecture is first modeled graphically by the user, and then processed with the

quantification tools. The qualitative analysis provides the scenarios composed of attack steps and

failures that lead to a given undesirable event. We can distinguish three kinds of possible scenarios:

- Purely accidental scenarios: which consist of only accidental components failures;

- Purely malicious scenarios: which consist of only attack steps;

- Hybrid scenarios: which consist of a mix of accidental failures and attack steps.

The quantitative analysis allows to sort these scenarios by their probabilities, which makes it easier to

exploit the results, and gives an estimation of the undesirable event probability.

We note that S-cube bas been subject to a European patent filing referenced “B2581-S-CUBE EPO

FILING”: Method for assessing safety and security risks of an industrial process.

We illustrate in the next chapter the S-cube approach on realistic and complex case studies in order to

show its applicability and its ability to generate joint safety and security risk analysis.

117

Chapter 5

5 S-cube application on case studies

We illustrate in this chapter the S-cube approach on different use cases in order to show its ability to

model real complex systems and assess the related safety and security risks. The S-cube approach can

be used for risk assessment at different levels of the system architecture: the corporate level or the

industrial control level, and at different phases of the system lifecycle: the design phase or the

operational phase.

In order to show the various purposes for which S-cube can be used, we deal in this chapter with two

case studies: the first one addresses the use of S-cube on the corporate level in the operation phase; the

second one uses S-cube in the design phase of an industrial control architecture.

5.1 Modeling corporate networks

We give in this section the example of an industrial system with the associated control and corporate

architecture, where new information and communication technologies are used. We first describe the

architecture of the case study then we give the associated risk analysis using the S-cube approach. In

this case study, we particularly show how the S-cube approach can be used during the operational phase

in order to assess the emergent risks and vulnerabilities.

5.1.1 Description of the case study

We consider the system architecture, depicted in Figure 33, which consists of four network zones: the

corporate network, a demilitarized zone (DMZ), the process control network and the field network. The

corporate network, the DMZ and the process control network are separated by firewalls. The field

network comprises the sensors and actuators used to sense and manipulate the industrial process, as well

as the Process Controller. This latter communicates with an Acquisition Server via the process control

network. The Acquisition Server is used for both collecting the process data and supervising the

industrial process. The process data are stored in an ftp server (http_ftp_server in Figure 33) placed in

118

the demilitarized zone. An operator workstation, connected to the corporate network, hosts an http client

application which uses the data stored in the http_ftp_server for statistical and optimization purposes.

This system can be considered as a simple example containing all levels of the PERA (cf. Figure 2).

Acquisition_server

Process_control_network

Operator

workstation

http_ftp_server

Corporate

network

DMZ

Process_Controller

Field_network

sensor1 sensor2 actuator

Figure 33: The system architecture under study

We describe the system architecture (Ph.1 in Figure 26), as illustrated in Figure 34 using the modeling

elements provided by the S-cube KB. The words in italic font refer to classes used in the S-cube KB (cf.

metamodel in 4.3.2 and detailed description of classes in Annex 2) or to the modeling elements used in

Figure 34.

As previously discussed in § 4.3.1.3, S-cube models both the functional and logical architectures. The

functional architecture is described by the different machines, the networks they are connected to, and

the software components they are hosting (modeled with circles). The logical architecture is addressed

by modeling the data flows between the different software components.

The connection of a physical machine to a network zone is modeled with a dotted black link

(link_machine_network). The association between the physical components and the software running

on them is modeled with dashed black arrows links (link_machine_soft). The solid blue arrows model

the allowed data flows between the different software components. The firewall models the filtering

policy between the two network zones it separates which implies that only the modeled data flows can

be exchanged and no other undefined data flow can be initiated.

119

The field network comprises sensors: sensor1 and sensor2 and the actuator. The sensors measures are

sent from the sensors software components (sensor1_soft and sensor2_soft), to a voter (k/n gate), which

sends the measure to the process_controller_soft (the process control software running on the

Process_Controller). This latter sends back instructions to the actuator_soft which executes the action

on the process. The field network uses a wireless communication to exchange data between the process

controller, sensors and actuators.

Figure 34: The graphical model as input by S-Cube

The process_controller_soft communicates feedback about the process to the SCADA server software

(scada_server_soft), running on the acquisition server, and receives back instructions from the operator.

The acquisition server also hosts an ftp_client that communicates with the ftp_server running on the

http_ftp_server placed in the demilitarized zone. The http_client application running on the operator

workstation communicates with the http_server hosted by the http_ftp_server.

We make the following assumptions regarding the architecture under study:

- physical access to the operator workstation is possible;

- the http_ftp_server is running with user privileges;

- the acquisition server is running with user privileges;

k/n

voter_k_o_nvoter_k_o_n

sensor_1sensor_1 sensor_2sensor_2

field_networkfield_network
sensor1_softsensor1_soft sensor2_softsensor2_soft

process_controllerprocess_controller process_controller_softprocess_controller_soft

actuatoractuator

actuator_softactuator_soft

scada_server_softscada_server_soft

acquisition_serveracquisition_server
process_control_networkprocess_control_network

ftp_clientftp_client

ftp_serverftp_serverhttp_ftp_serverhttp_ftp_server

http_serverhttp_server

operator_workstationoperator_workstation

http_clienthttp_client

Corporate_netwokCorporate_netwok

priv_escal_vulnpriv_escal_vuln

integrity_vlunintegrity_vlun

gateway_1gateway_1

gateway_2gateway_2

dmzdmz

120

We assume that the following vulnerabilities exist on the architecture and have not been patched:

- a vulnerability exists on the http_server and results into privilege escalation;

- a vulnerability exists on the ftp_client and results into integrity loss;

- a configuration vulnerability exists on the acquisition server and results into root privileges

acquisition.

In order to analyze this architecture with the S-cube approach, we first input the graphical model using

KB3. The graphical elements corresponding to the different classes defined in the S-cube KB are given

in a palette, as described in § 3.1.4.1, and are used to reproduce the system architecture, depicted in

Figure 34.

We propose in the next section process this system architecture with S-cube and analyze the results

generated (ph.2 in Figure 26).

5.1.2 Qualitative and quantitative risk analysis

We evaluate the described architecture, with the S-cube KB as described in Figure 32, in order to assess

the risk related to the undesirable event “actuator_does_not_act_properly”. For instance we can imagine

that this architecture is used to control and supervise a chemical plant and that the process controller

sends an instruction to stop heating but the heater does not respond which can lead to exceeding

temperature limits and result in safety consequences (explosion, human injuries).

We focus in this example on the qualitative behavior described in the various components of the S-cube

KB and take simple hypotheses for the occurrence rates of the events that can affect the security or safety

of the system. The quantitative analysis produces the following results: after one year of functioning

without maintenance (the components are supposed non-repairable in this example) and without

considering detection and prevention measures, the probability of the actuator not acting properly

reaches 0,48. Of course, this seems very high, but we made the pessimistic assumption that the

undesirable event occurs whenever one actuator in the field network receives wrong or no instruction

from the process controller. The malfunction of the heater may not be sufficient to create a safety-related

risk and must be combined with malfunctions of other components such as hard-shutdown mechanisms.

The attack and failure scenarios that can lead to this undesirable event are automatically generated using

the FigSeq quantification tool (ph.2 in Figure 26). They are generated based on the rules in the

knowledge base describing attacks (cf. Section 4.4) failures and the rates (inverse of mean time to

compromise resp. mean time to failure) of the exponential distribution associated to each rule (cf.

Section 4.5). These scenarios are sorted in a table according to their deceasing occurrence probabilities

and hence their contributions to the undesirable event.

Attack scenarios: We extract in Table 25 the first three scenarios; which are purely malicious as they

are composed of only attack steps.

121

Seq. n° Transition name Rate

(per hour)

Pr.

1 access(operator_workstation) 1e-4 1.12e-1

exploit_server_vuln_priv_escal

(http_server)

1e-3

exploit_server_vuln_integrity_loss

(ftp_client)

1e-3

privilege_escal.(acquisition_server) 1e-3

send_false_instruct_to_process_controller(scada_server_soft) 0.1

2 access(operator_workstation) 1e-4 1.12e-1

exploit_server_vuln_priv_escal

(http_server)

1e-3

exploit_server_vuln_integrity_loss

(ftp_client)

1e-3

privilege_escal.(acquisition_server) 1e-3

send_no_instruct_to_process_controller(scada_server_soft) 0.1

3 jamming_attack(field_network) 1e-5 3.85-2

Table 25: The most probable attack scenarios

We can see for example that the first scenario (Seq. n°1 in Table 25) consists of five attack steps: in the

first step the attacker succeeds in having access to the operator workstation (here because the attribute

physical access of this machine was set to true but the attacker can also have remote access). In the

second step, the attacker exploits remotely the existing vulnerability in the http server which results into

privilege escalation. The http server is consequently compromised and the attacker has root privileges

on the http ftp server machine which enables him to compromise also the ftp server running on it. As

the ftp server communicates with an ftp client running on the acquisition server (cf. Figure 33), the

attacker tries in the third step to remotely exploit the vulnerability in the ftp client. The ftp client is then

compromised. Given that the vulnerability leads only to integrity loss the attacker will also need to make

a privilege escalation attack, in the fourth step, exploiting the configuration vulnerability related to the

acquisition server in order to be able to compromise the scada server software. If the attacker succeeds

in compromising this latter then he can, finally, send false instructions to the process controller which

will itself send false instructions to the actuator. This latter will consequently not act properly when

required which leads finally to a safety related consequences.

The second attack scenario (Seq. n°2) is the same as the first one except for the last step. For this latter,

instead of falsifying data, the attacker will deny service so that no instructions will be sent to the process

controller which will itself send no instructions to the actuator when needed.

The third attack scenario (Seq. n°3) is a jamming attack at the wireless field network. This attack is less

probable as it requires the attacker to be next to the process controller or the actuator to jam the

communication which is not that easy.

Accidental scenarios: The next three risk scenarios, given in Table 26, are purely accidental as they are

composed of only component failures. These scenarios are with just one failure event (called single

point of failure): the failure of the acquisition server, the field network or the process controller will

cause instructions not to be sent to the actuator when needed.

122

Seq. n° Transition name Rate (per hour) Pr.

4 accidental_fail(acquisition_server) 1e-6 3.85e-3

5 accidental_fail(field_network) 1e-6 3.85e-3

6 accidental_fail(process_controller) 1e-6 3.85e-3

Table 26: The most probable accidental scenarios

Hybrid scenarios: The structure of this system is too simple to give birth to hybrid scenarios, where the

combination of accidental failures and attacks leads to the undesirable event. This is due to the absence

of redundancy for the PLC or acquisition server. If there were such redundancies, we could see scenarios

where one of these components is lost accidentally and the other one because of an attack.

We conclude from the results obtained that for the case study architecture given in Figure 33, the

acquisition server and the process controller are the most critical components and their failure or

compromise can lead to safety related consequences. Mitigation measures in this context would be to

deploy redundant components with different technologies in order to provide the main functionalities to

control the process in case of unavailability. This would also make attack scenarios more difficult to

achieve as the attacker would need to find other vulnerabilities and succeed in exploiting them in order

to falsify instructions sent to actuators.

5.1.3 Conclusions and enhancement

We have modeled in this example attacks that target the corporate networks and that try next, by multi-

stage multi-hopping, to reach the industrial network in order to interfere with the normal operation of

the industrial process.

Security enhancement measures recommended by our security experts (step (2.iii) in Figure 26) would

be to inhibit any incoming dataflow towards the process control network. This can be achieved by the

introduction of data diodes that allow data to travel only in one direction. Classical firewalls can decide

about who initiates the connection; but once the communication channel is established, the data can be

exchanged in both directions.

We modified the system architecture in Figure 34 by removing the data flow from the ftp_server to the

ftp_client (unidirectional communication from the ftp_client to the ftp_server). By processing again the

modified architecture with S-cube, no attack scenarios leading to the undesirable event were generated.

We have demonstrated in this case study how the S-cube approach can be used to assess the risks related

to operational system architectures. In particular, the impact of the new vulnerabilities to which the

system may be subject during its exploitation phase can be assessed.

We show in the next section how S-cube can also be used in the design phase to compare the safety and

security of industrial architectures controlled by modern ICS. We study two variants of a hydroelectric

ICS. For each variant, we model the system architecture (Ph.1 in Figure 26) and analyze (step 2.i) the

qualitative and quantitative analysis generated (Ph.2 in Figure 26) by S-cube.

5.2 Modeling a hydroelectric ICS: variant 1

Using S-cube, we study in the remainder of this chapter a realistic case study: a pumped storage

hydroelectric plant in order to show the ability of this approach to model real and complex systems and

to yield the associated risk analysis.

This case study is inspired from the Taum Sauk pumped storage plant. In 2005, a famous accident

happened at this installation; it resulted in the destruction of a section of the upper reservoir and the

123

sudden release of a large volume of water down the slopes. We give first a quick overview on the Taum

Sauk accident and then we describe the system architecture of our case study that was built from the

incident reports and analyses following this accident.

We focus hereafter on modeling the industrial control architecture and show how S-cube can be used in

the design phase in order to easily model different hypotheses on the same architecture and generate the

attack and failure scenarios for each configuration. We consider in particular two variants of the case

study. By comparing the risk analysis generated for each variant, we demonstrate consequently how S-

cube helps choosing the best configuration for both the safety and the security of the system.

The remainder of this section will be organized as follows. First, we give an overview on the Taum Sauk

dam failure. Second, we describe the system architecture, common for the two variants of the case study.

We address next in the remaining sections the first variant (variant 1), while the second variant (variant

2) will be depicted in Section 5.3. For each variant we give the S-cube graphical model (Ph.1 in Figure

26). This latter is next processed with S-cube which generates risk analysis; we make first a pure safety

risk analysis, and then a joint safety and security risk analysis. We give finally our conclusions on each

case study. The comparison between the two variants is given in Section 5.4.

5.2.1 Overview on the Taum Sauk upper reservoir failure

The Taum Sauk hydroelectric Power Plant is a pumped storage hydroelectric power station; an example

of such an installation is given in Figure 35. It consists of two water reservoirs: an upper reservoir and

a lower reservoir separated by a penstock. In high electricity demand hours, water is released from the

upper reservoir to the lower reservoir in order to generate electricity. In low electricity demand hours,

water is pumped back from the lower reservoir to the upper reservoir for energy storage. The reversible

pumps are situated in the station.

Figure 35: A pumped storage hydroelectric power station [172]

On December 2005, the Upper Reservoir of the Taum Sauk Pumped Storage Project was overtopped

when water continued to be pumped from the lower reservoir to the upper reservoir. This led to the

failure of a section of the upper reservoir embankment and the sudden and complete evacuation of water.

This breach of the upper reservoir had catastrophic consequences: flooding of the surrounding areas

including Highways, campgrounds and adjacent properties.

124

The Taum Sauk upper reservoir breach was caused by a purely accidental failure of the instrumentation

used for monitoring the reservoir level. In addition, incident reports have shown that the real system

architecture, when the breach occurred, did not respect the initial design, which decreased the system

resilience and accelerated the upper reservoir failure. In [173], S-cube was used to model both the

designed and the implemented architectures and to compare the risk scenarios related to each

architecture. This study showed how the catastrophic failure of the Taum Sauk Upper Reservoir could

as well be the result of a cyber-attack.

5.2.2 Description of the case study architecture

The system architecture of our case study is depicted in Figure 36. It was inspired and built from

information collected on the instrumentation and control system of the Taum Sauk Upper Reservoir

[174][175][176].

Pump/

Turbine

PLC pump

Common_PLC UR_PLC

Operator Control Center

Operator control network

Dispatch control network

Dispatch control center

LO

LO-LO

HI-HI

HI

Upper Reservoir

Lower Reservoir

P
re

s
s
u

re
 t
ra

n
s
d

u
c
e

rs

Figure 36: The system architecture under study

The instrumentation system is composed of two sets of sensors:

- Three primary Pressure sensors, placed at a given elevation, convert the pressure into water level.

These measures are used to monitor the reservoir level and hence trigger the shutting down of the

pumps/generators units;

- Four conductivity sensors placed in pairs above and below the highest and the lowest water level.

These sensors are activated if the water reaches the level at which they are placed. The sensors HI

and HI-HI determine whether the water level in the upper reservoir is too high, in which case the

125

generating mode is activated. The sensors LO and LO-LO determine whether the water level is too

low, in which case the pumping mode is activated.

The control system relies on two main Programmable Logic Controllers (PLC): the Common PLC and

the Upper Reservoir (UR) PLC. The Taum Sauk installation was remotely controlled through a

microwave system from the Osage Plant, under the direction of the load dispatching in St. Louis [175].

The dispatching control center provides generating Megawatt instructions (with pump start/stop mode)

to the Operator control center at the Osage plant; from there, the operator remotely controls the Taum

Sauk units (two reversible pumps) at the Lower Reservoir.

The primary pressure sensors send the water level measures to both the Common and the UR PLCs.

These measures are transmitted to the Operator and dispatching control center. The HI and the HI-HI

sensors are placed at two different elevations and used for emergency shutdown should extremely high

water levels occur.

In its normal operation, the plant is controlled by pressure sensors. The average value of the three

readings is considered by the controllers. In the pumping mode, the pumps are activated in order to stock

the water in the upper reservoir. If for some reasons the pressure sensors did not operate correctly, the

HI sensor would be reached which should activate the automatic shutdown of the pumps. If for some

reasons, the pumping mode was not terminated, the HI-HI sensor would be encountered which activates

a hard emergency stop of the pumps.

The two process controllers and the conductivity sensors HI and HI_HI constitute a Safety Instrumented

System (SIS), designed to bring the process to a safe state in case of dysfunction of the pressure sensors.

We consider in the following the system architecture used to control the water level in the Upper

Reservoir. We study in the remainder of this section the first variant of this architecture (called later

case study variant 1), which we model graphically with S-cube, then analyze in order to get the

associated risk analysis. We consider first only safety risks, and second both safety and security risks

that lead to the undesirable event: the Upper Reservoir failure. We give finally conclusions based on

the results obtained.

5.2.3 The graphical model

We make the following assumptions for variant 1 of the system architecture used to control the water

level in the Upper Reservoir as described in Section 5.2.2 (cf. Figure 36):

- The two primary PLCs: Common PLC and UR PLC are identical (same hardware), use the same

technologies (same automation software and same communication protocol) and are subject to the

same environmental constraints;

- The HI and the HI-HI sensors are connected, with separate conduits, to both PLCs. This means that

both the Common PLC and the UR PLC can receive feedback from the sensors when activated.

The graphical model input with the KB3 HMI and modeling the case study variant 1 architecture is

depicted in Figure 37. As done for the case study in Section 5.1, we model the physical machines

connected to each network zone, the software components running on them, and the data flows between

the different software components. Text in italic font refers to the modeling objects used in Figure 37.

The primary pressure sensors are modeled with the physical components “pressure1”, “pressure2” and

“pressure3”. The software components associated to each sensor, and that enable to capture and send

the measures, are named P1, P2 and P3. Concerning the conductivity sensors, we model only the high

level sensors S_HI_HI and S_HI and the associated software, named HI_HI resp. HI.

The three water pressure sensors are identical and are subject to the same environmental constraints.

They are consequently associated with the same common cause failure group (CCF_group3_sensors).

126

Figure 37: The system architecture of case study variant 1

The three of them send their readings to the k_n_gate_measure, which is a 2 out of 3 voter. If two

readings out of the three are consistent, the measure will be sent to both process controller software

components Common_water_level and UR_water_level of the Common_PLC resp. the UR_PLC that

control, in normal operation of the plant, whether the water level is within the operational limits. As a

safety mechanism, the HI sensor is activated in case water level reaches the elevation at which this

sensor is placed. In this case, an alarm is sent from the S_HI sensor software component to both

Common_HI and UR_HI_HI software running on Common_PLC resp. UR_PLC which send an

instruction to PLC_pump; used to control the pumping_unit; to shut down the pump. If for some reason,

the pump is not shut down, the water would reach the S_HI_HI sensor level and an alarm would be sent,

like with the HI sensor to both PLCs which would send an instruction to PLC_pump_soft for emergency

shutdown of the pump. The OR_gate_feedback before the Common_HI software models the fact that if

this latter receives an alarm from the HI or the HI_HI sensors, it would send emergency shutdown

Common_PLCCommon_PLC

UR_PLCUR_PLC

UR_HI_HIUR_HI_HI

S_HIS_HI

S_HI_HIS_HI_HI

HIHI

HI_HIHI_HI

pumping_unitpumping_unit

stop_pumpstop_pump

pressure1pressure1P1P1

P2P2

P3P3

k
/n

k_n_gate_measurek_n_gate_measure

Operator_control_centerOperator_control_center
operator_softoperator_soft

operator_control_netoperator_control_net

dispatch_control_centerdispatch_control_center

dispatch_control_softdispatch_control_soft

Common_HICommon_HI

Common_water_levelCommon_water_level

UR_water_levelUR_water_level

OR

OR_gate_instructOR_gate_instruct

OR

OR_gate_feedbackOR_gate_feedback

pressure2pressure2

pressure3pressure3

dispatch_control_netdispatch_control_net

PLC_pump_softPLC_pump_soft

PLC_pumpPLC_pump

CCF

alpha

2-FR

CCF_group2_PLCCCF_group2_PLC

CCF

alpha

3-FR

CCF_group_3_sensorsCCF_group_3_sensors

vuln_priv_escalvuln_priv_escal

OR

OR_gate_commonOR_gate_common

OR

Or_gate_urOr_gate_ur

127

instruction to the PLC_pump in order to stop the pumps. The same goes for the UR_HI_HI software on

the UR_PLC.

The green links model data flows carried by electrical wires, which is the case for the data flows sent by

the sensors. These latter are connected to the process controllers by electrical wires. Data flows modeled

with blue arrows are carried by a network.

Given the assumption we made on identical PLCs, we associated the Common_PLC and the UR_PLC

with the same CCF_group2_PLC. The software components Common_water_level and UR_water_level

have consequently the same software type; this latter has a vulnerability which results into privilege

escalation if exploited by an attacker.

All feedback from the UR_PLC and the Common_PLC is reported to the operator_control_center used

for the acquisition and supervision of the process. The operator_soft receives feedback from the

OR_gate that receives four input data flows. If one of the four feedbacks indicated high water level

values, the operator would send an instruction to PLC_pump to shut down the pumping_unit. The

PLC_pump_soft receives the shutdown instruction from the OR_gate_instruct, which receives it either

from the operator in normal operation or directly from one of the controllers (UR_PLC or Common_PLC

software) in emergency regime.

The operator control center sends feedback on process status to the SCADA software

(dispatch_control_soft) running on the remote dispatch control center, and receives back instructions on

the Megawatts to generate.

We assume that the operator control network that connects the PLCs and the operator control center

uses a wireless communication technology and that it uses no authentication and encryption

mechanisms.

The system architecture modeling, input using the KB3 HMI as described in Figure 37, corresponds to

the first phase (Ph.1) of the S-cube process described in Figure 26. All the assumptions made on the

functional architecture (step 1.i) and the related safety and security aspects (steps (1.ii) resp. (1.iiii)) are

considered in the graphical model by double clicking on the system components and filling in the

appropriate interfaces and attributes.

We propose in the next section to assess the risks related to the case study variant 1. We consider the

following undesirable event: the loss of the protection function that shuts down the pumps when the

water level reaches the maximum permitted level. It means that the undesirable event happens when the

pumps do not stop when required. This undesirable event can lead, in the worst case, to the upper

reservoir breach as happened for the Taum Sauk dam (cf. § 5.2.1) and consequently to safety issues.

We process the graphical model in Figure 37, using the S-cube KB and the quantification tools (cf.

§ 4.6.2), and generate automatically the accidental and malicious scenarios leading to the undesirable

event, with an estimation of their probabilities (Ph.2 in Figure 26). We give in Annex 3 the quantitative

parameters assigned for this case study and associated with the failure rates of the system components

and the mean time to success for the attack steps.

We propose at first to make a traditional safety analysis that considers only accidental failures. We take

at a second time additionally malicious risks into consideration in order to assess their impact on the

probability of the undesirable event.

5.2.4 Pure safety risk analysis

Using the global object, we set the Boolean inhibit_attacks to true (cf. Annex 2). We generate

automatically the accidental scenarios likely to happen on this case study and that result into the upper

reservoir breach. We also model for this case study maintenance actions that consist in physical

components repair in case of accidental failure.

128

The scenarios generated are given in a table and sorted by decreasing contribution to the overall

undesirable event probability (cf. Table 27 for example). Each scenario is composed of one or many

transitions, whose rates are also indicated in the table.

Based on the hypothesis taken for types of failures and the corresponding failure rates given in Annex 3,

the quantitative analysis yields the following results: after one year of operation, with maintenance in

case of accidental failures, the unreliability of the function of shutting down the pumps is estimated to

1.06e-2. This may seem unacceptable, but one must not forget that the inability to shut down the pumps

can lead to a dam failure only if it happens in a situation where the water level is very high and the

pumps are running.

The scenarios generated are reorganized into minimal cut sets sorted by decreasing contributions to the

undesirable event. We give in Table 27 the four most probable scenarios likely to happen for the first

case study and resulting into the undesirable event.

Num Transitions

Contrib.(%) Seq. Name Rate17 Class Proba.

1

ccf_12(CCF_group2_PLC) 9.52e-7 EXP

7.3e-3 68 accidental_failure(Common_PLC) 1
INS

accidental_failure(UR_PLC) 1

2 accidental_failure(operator_control_net) 1e-7 EXP 7.61e-4 7

3 accidental_failure(PLC_pump) 1e-7 EXP 7.61e-4 7

 4
accidental_failure(Common_PLC) 1e-5 EXP

5.3e-5 0.5
accidental_failure(UR_PLC) 1e-5 EXP

Table 27: The first accidental scenarios likely to happen on case study variant 1

- Scenario 1 with 68% of contribution to the undesirable event: a common cause results into the

instantaneous and simultaneous failure of the primary PLCs: Common_PLC and UR_PLC,

belonging to the same CCF_group2_PLC;

- Scenario 2: consists of the accidental failure of the operator control network (e.g., unavailability of

the switch) which results in the unavailability of all the data flows carried by this network and in

particular the instructions for shutting down the pumps that would not be sent when required;

- Scenario 3: consists of the accidental failure of the PLC_pump used to control the operation of

pumps;

- Scenario 4: the accidental failure of the Common_PLC followed by the accidental failure of the

UR_PLC; the two failures are independent from each other. This scenario assumes that the

accidental failure of the second controller would occur before the failure of the first controller would

be repaired. This scenario could be mitigated by increasing the rapidity of maintenance actions.

The redundancy between the primary process controllers reinforces the system resilience in case of the

accidental failure of one controller. However, as the two controllers have been implemented with the

same technology for cost reduction purposes, they can hence be subject to a common cause failure. With

a contribution of 68%, common cause failures increase considerably the overall probability of the

undesirable event which is relatively high.

17 Per hour for exponential distributions rates

129

Single failure points, which are in our case the failure of the operator control network and the failure of

the pumps controller, should also be minimized with the use of a more reliable hardware and maybe

redundant components.

5.2.5 Safety and security joint risk analysis

The control system architecture of this case study (cf. Figure 36) uses information and communication

technologies (remote control and supervision software, wireless networks, etc.). It can be consequently

subject to cyber malevolence. We propose here to process the system architecture while taking into

account both accidental and malicious risks (both Booleans inhibit_attacks and inhibit_failures are set

to False) and calculate the unreliability of the pumps shutdown function.

For this joint safety and security analysis, we make two studies: the first one simulates the system during

a short mission time (four days) after the start of an attack and the second one considers a long mission

time (one year), but without attack in initial state.

5.2.5.1 Short mission time with an attack at t=0

We assume for this study that at the beginning of the simulation (t=0) the attacker has intended to attack

the system and has already collected some information concerning his/her target. We model maintenance

actions for accidental failures but we do not take into account detection and reaction measures for the

attacks.

Using the quantification tools Yams and FigSeq (cf. Section 4.6.2), we simulate the system over a short

mission time of 100 hours (~ four days) to evaluate the probability of the undesirable event (loss of the

protection function).

We process the model first using Yams, the Monte Carlo simulator. After 100 hours of operation the

probability of the breach is estimated to 9.22e-3. Second, using the FigSeq tool, we generate

automatically the attack and failure scenarios leading to the undesirable event and having a minimum

probability18 of 1e-5. These scenarios are reorganized into four minimal cut sets given in Table 28 and

sorted by decreasing probabilities.

N°

Seq.

Transitions

Proba.

Contrib.

(%)
Name

Rate

(per hour)
Class

1 Access (operator_control_net) 0.06 EXP 2.88e-3 31

exploit_vuln_priv_escalation

(Common_water_level)

0.01 EXP

send_no_feedback (Common_water_level) 0.8 EXP

exploit_vuln_priv_escalation

(UR_water_level)

0.8 EXP

send_no_feedback (UR_water_level) 0.8 EXP

send_no_feedback (Common_HI) 0.7 EXP

send_no_instructions_to_actuator

(Common_HI)

0.8 EXP

send_no_feedback (UR_HI_HI) 0.8 EXP

send_no_instructions_to_actuator

(UR_HI_HI)

0.8 EXP

18 This truncation criteria reduces the number of sequences generated by the tool which can quickly explode, but consequently

the probability of the undesirable event is not accurate enough because all sequences are not taken into account; that’s why we

use the Monte Carlo Simulator YAMS to assess the overall undesirable event probability and FigSeq in a second time for

assessing the probability of the most probable scenarios.

130

2 Access (operator_control_net) 0.06 EXP 1.29e-3 14

exploit_vuln_priv_escalation

(Common_water_level)

0.01 EXP

Send_false_feedback

(Common_water_level)

0.7 EXP

exploit_vuln_priv_escalation

(UR_water_level)

0.7 EXP

send_false_feedback (UR_water_level) 0.7 EXP

send_false_feedback (Common_HI) 0.7 EXP

send_false_instructions_to_actuator

(Common_HI)

0.7 EXP

send_false_feedback (UR_HI_HI) 0.7 EXP

send_false_instructions_to_actuator

(UR_HI_HI)

0.7 EXP

3 jamming_attack(operator_control_net) 1e-6 EXP 8.85e-5 0.96

4 ccf_12(CCF_group2_PLC) 9.52e-7 EXP 8.43e-5

0.46

accidental_failure(Common_PLC) 1 INS

accidental_failure(UR_PLC) 1 INS

Table 28: Attack and failure scenarios for the variant 1 after 100 hours of operation

First/second scenario: the most probable scenarios likely to happen on this system architecture are

attack scenarios. The first two scenarios have the same attack strategy and consist of nine attack steps:

- 1st step: accessing the operator control network; given that this latter uses a wireless technology and

no authentication is required to access it, an expert attacker can intercept the data flows transiting

through this network and read them (data encryption is generally not employed in industrial

networks). For this first study, we assume that the average time needed to carry out this attack step

is one week (MTTS_access = 168h).

- 2nd step: exploiting the vulnerability in the Common_PLC resulting into privilege escalation. Having

access to the operator control network, the attacker can reach any machine connected to this

network. He will particularly try to remotely exploit the existing vulnerability on the Common_PLC

software in order to have complete privileges; this would take him an average of 4 days (cf.

§ 4.5.2.3);

- 3rd step: Denying/falsifying the feedback on the water level reported by the Common_PLC to the

operator; this is possible as the attacker has full privileges on this controller. This attack step results

into the operator not being informed about the real water level: the attacker can for example send

false values or freeze the process state on the operator HMI. The MTTS for this attack step is about

1 hour;

- 4th step: exploiting the vulnerability in the UR_PLC resulting in privilege escalation. Since both

controllers are in active redundancy, the attacker will have also to compromise the UR_PLC. Seeing

that the attacker has already exploited the same vulnerability of the same software type with the first

controller, he will spend much less time to succeed into exploiting it again; the MTTS for this attack

step is about 1h (= 0.8 instead of 0.01 in case the software type has not already been hacked by

the attacker).

- 5th step: Denying/falsifying the feedback on the water level reported by the UR_PLC to the operator.

The attacker needs also to falsify the feedback reported by the second controller that receives also

the water level from the pressure sensors;

- 6th step: Denying/falsifying the feedback reported by the HI sensor when water encounters the HI

elevation, and sent from the Common_PLC to the operator;

- 7th step: Denying/falsifying the instruction sent by the Common_PLC to shut down the pumps;

- 8th step: Denying/falsifying the feedback reported by the HI_HI sensor, when water encounters the

HI_HI elevation, and sent from the UR_PLC to the operator;

131

- 9th step: Denying/falsifying the instruction sent by the UR_PLC to shut down the pumps.

Once the attacker has succeeded in accessing the operator control network and exploiting the first

vulnerability, the following attack steps (3th to 9th steps) can be done more quickly (just over 1h for the

MTTS) as the attacker gets acquainted with the process and data flows. The redundancy between the

two controllers will incite the attacker to do the same attack steps twice in order to succeed into

provoking the undesirable event. This is why, in the S-cube KB, a Boolean “already_hacked” is set to

TRUE for all software applications of a given kind when one of them has been hacked. This strongly

diminishes the MTTS for the future attack steps concerning the other applications of the same kind. .

We supposed that denying data flows is slightly easier to do (with a success rate of 0.8) compared to

falsifying data flows (with a success rate of 0.7). However, the falsifying would be more strategic for

the attacker in order not to be easily detected.

For simplification reasons, we refer to the first attack scenario with “denying attack scenario” and to the

second attack scenario with “falsifying attack scenario”.

Third scenario: this scenario models a jamming attack on the operator control network. This attack is

specific to wireless networks and aims at interfering with the other legitimate communications (e.g., by

continuously emitting a radio signal, sending regular packets, etc.) in order to deny their access to the

medium. This results in the unavailability of all data exchanged via the network and particularly

instructions to stop the pumping unit; which would lead to the undesirable event. This attack remains

however with a low probability of occurrence (8.85e-5) as it requires for the attacker to have special and

very expensive equipment because of the large geographical distribution of the system, and to be at the

vicinity of the network access point.

Fourth scenario: this is the accidental scenario that consists in the common cause failure of the two

primary controllers (cf. pure safety analysis in Section 5.2.4).

5.2.5.2 Long mission time without attack at t=0

We simulate in this study the system architecture in Figure 37 over a long mission time of one year. The

MTTS set for the access attack step models in this study the frequency of attacks that target such an

installation; we assume for this study that the frequency of such an attack is once a year (MTTS_access

= 1 year).

The probability of the breach is estimated to 6.57e-2. The minimal cut sets generated are given in Table

29.

Num

Seq.

Transitions
Proba. Contrib. (%)

Name Rate19 Class

1 jamming_attack(operator_control_net) 1e-6 EXP 5.2e-3 7.9

2 ccf_12(CCF_group2_PLC) 9.52e-7 EXP 4.98e-3 7.5

accidental_failure(Common_PLC) 1 INS

accidental_failure(UR_PLC) 1 INS

3 Access (operator_control_net) 1e-4 EXP 4.16e-3 6.3

exploit_vuln_priv_escalation

(Common_water_level)

0.01 EXP

send_no_feedback (Common_water_level) 0.8 EXP

exploit_vuln_priv_escalation (UR_water_level) 0.8 EXP

send_no_feedback (UR_water_level) 0.8 EXP

19 Per hour for exponential distribution rates

132

send_no_feedback (Common_HI) 0.7 EXP

send_no_instructions_to_actuator

(Common_HI)

0.8 EXP

send_no_feedback (UR_HI_HI) 0.8 EXP

send_no_instructions_to_actuator (UR_HI_HI) 0.8 EXP

4 Access (operator_control_net) 1e-4 EXP 1.87e-3 2.8

exploit_vuln_priv_escalation

(Common_water_level)

0.01 EXP

Send_false_feedback (Common_water_level) 0.7 EXP

exploit_vuln_priv_escalation (UR_water_level) 0.7 EXP

send_false_feedback (UR_water_level) 0.7 EXP

send_false_feedback (Common_HI) 0.7 EXP

send_false_instructions_to_actuator

(Common_HI)

0.7 EXP

send_false_feedback (UR_HI_HI) 0.7 EXP

send_false_instructions_to_actuator

(UR_HI_HI)

0.7 EXP

5
accidental_failure(PLC_pump) 1e-7 EXP 5e-4 0.7

6
accidental_failure(operator_control_net) 1e-7 EXP 5e-4 0.7

Table 29: Attack and failure scenarios for variant 1 over 1 year of operation time

With a frequency of attack equal to once a year, the probability of attack scenarios has become close to

the probability of accidental scenarios (cf. Section 4.5.3). We can see that within a mission time of one

year, the scenario of the common cause failure of the two controllers is more likely to occur than the

“denying/falsifying” attack scenarios.

The results20 yield also hybrid scenarios with probabilities around 1e-6. We give in Table 30 an example

of a hybrid scenario that consists of two parts: first the accidental failure of the UR_PLC and second an

attack on the Common_PLC. This implies that the failed controller had not been repaired before the

second controller would be targeted by an attacker.

 Num

Seq.

Transitions

Pr
Contrib. (%)

 Name
Rate

(/hour)
Class

10 accidental_failure(UR_PLC) 1e-6 EXP 1.8e-6

2.7e-3

Access (operator_control_net) 1e-4 EXP

exploit_vuln_priv_escalation

(Common_water_level)

0.01 EXP

send_no_feedback (Common_water_level) 0.8 EXP

send_no_feedback (Common_HI) 0.8 EXP

send_no_instructions_to_actuator

(Common_HI)

0.8 EXP

Table 30: Example of a hybrid scenario

This scenario remains with very low probability as both controllers are operating in active redundancy

and the failure of one controller would be detected by the operator station. However in case of standby

20 These results were obtained for the system architecture of variant 1 without considering repair actions. For a repairable

system, the hybrid scenarios are with very low probability and don’t appear among the scenarios due to the minimum

probability set as a truncation criteria.

133

redundancy, it would be more probable to have hybrid scenarios where the attacker starts compromising

the first controller then occurs the failure on demand of the second controller.

5.2.6 Conclusions on case study variant 1

We can infer from the results that the probability of the undesirable event over one year of operation

increases by 519% when security risks are considered in addition to safety risks. Without considering

malicious actions and particularly cyber-attacks, the probability of the breach is under-estimated and the

risk analysis is incomplete.

Within a short mission time (100 hours), the first joint safety and security study estimates the probability

of the attack success given that the attacker intends to attack the system at t=0. Results show that attack

scenarios are the most likely to happen. This is due to the fact that failure rates are generally very low

compared to the rates associated with attack steps (cf. 2) in Section 4.5.3). Indeed, once determined in

making his attack, the attacker spends hours/days on trying to achieve an attack step. On the other hand

components failures take several years before happening.

With a mission time of one year, the second joint safety and security study aims at comparing the

probabilities of the accidental and the attack scenarios. In this case, the MTTS for the access step

(MTTS_access) initiating the attack is set to the inverse of the frequency of attacks that target specifically

this kind of systems (cf. 1) in Section 4.5.3). The probabilities of attack and accidental scenarios are, in

this case, of the same order of magnitude. However, attack scenarios increase considerably the

probability of the undesirable event. We summarize in Figure 38, approximately, the distribution of

scenarios according to their type (malicious, accidental or hybrid) for variant 1 over one year of mission

time.

Figure 38: Repartition of scenarios according to their type for variant 1 over 1 year

Common cause failures have a large contribution to the undesirable event for this case study architecture.

We propose in the next section to modify the system architecture taking into account these conclusions

and re-assess the risk.

5.3 Modeling a hydroelectric ICS: variant 2

We consider in this section a second variant of the system architecture described in the Figure 36; for

which we make the following assumptions:

- The primary controller (Common_PLC and UR_PLC) use different technologies (hardware and

software), which implies that they cannot be subject to a common cause failure;

- The HI and the HI-HI sensors are connected, with separate conduits, each one to a different PLC:

the HI sensor is connected to the Common PLC while the HI_HI sensor is connected to the UR_PLC.

Note that while the first change increases the cost of the system, the second one decreases it thanks to a

simplification of the architecture.

76%

19%

5%

malicious accidental hybrid

134

5.3.1 The graphical model

Given the assumptions taken for this case study we make the following modifications in the graphical

model already built in Figure 37. Thanks to the robustness of the S-cube approach, these changes can

be done incrementally to the first model without the need to revamp the whole model. The resulting

system architecture is given in Figure 39.

Figure 39: The system architecture of case study variant 2

Common_PLCCommon_PLC

UR_PLCUR_PLC

UR_HI_HIUR_HI_HI

S_HIS_HI

S_HI_HIS_HI_HI

HIHI

HI_HIHI_HI

pumping_unitpumping_unit

stop_pumpstop_pump

pressure1pressure1P1P1

P2P2

P3P3

k
/n

k_n_gate_measurek_n_gate_measure

Operator_control_centerOperator_control_center
operator_softoperator_soft

operator_control_netoperator_control_net

dispatch_control_centerdispatch_control_center

dispatch_control_softdispatch_control_soft

Common_HICommon_HI

Common_water_levelCommon_water_level

UR_water_levelUR_water_level

OR

OR_gate_instructOR_gate_instruct

OR

OR_gate_feedbackOR_gate_feedback

pressure2pressure2

pressure3pressure3

dispatch_control_netdispatch_control_net

PLC_pump_softPLC_pump_soft

PLC_pumpPLC_pump

CCF

alpha

3-FR

CCF_group_3_sensorsCCF_group_3_sensors

vuln_priv_escalvuln_priv_escal

135

- We remove the OR_gates before the process controller software components: Common_HI and the

UR_HI_HI. The HI sensor sends feedback exclusively to the Common_PLC while the HI_HI sensor

reports alarms to the UR_PLC;

- The Common_PLC and the UR_PLC are no longer associated to a CCF_group and the automation

software associated with each PLC is different. The Common_water_level and the UR_water_level

are consequently associated with two different software types. Each software type has a distinct

vulnerability that can result into privilege escalation if exploited by an attacker.

The other modeling elements and hypotheses are the same as in variant 1.

We carry out exactly the same studies as for variant 1 in order to assess the impact of the architecture

modifications on the qualitative and quantitative risk analysis. The same failure and attack rates given

in Annex 3 are adopted also for this case study.

5.3.2 Pure safety risk analysis

We process the new graphical model in Figure 39 with S-cube, as previously done for variant 1, in order

to assess the impact of the system architecture modifications on the probability of the Upper Reservoir

breach and the scenarios leading to this undesirable event.

We first evaluate the system architecture of variant 2 taking into consideration only the accidental

failures of the system components. After one year of operation, with repair actions in case of accidental

failures, the probability of the upper reservoir breach is evaluated to 1.66e-3. The accidental scenarios

generated are reorganized into minimal cut sets given in Table 31.

We have three accidental scenarios with a minimum probability of 1e-5: two single point failures (the

accidental failure of the PLC_pump, the accidental failure of the operator control network) and the

independent failures of the two primary controllers.

The common cause failure of the two primary PLCs is no longer conceivable on this system architecture.

Using different software and hardware technologies, the Common_PLC and the UR_PLC are no more

likely to fail simultaneously due to the same cause, contrarily to what was formerly the case in variant 1.

Num Transitions MT
Contrib.(%)

Seq. Name Rate Class Proba

1 accidental_failure(PLC_pump) 1e-07 EXP 7.8e-4 47

2
accidental_failure

(operator_control_net)
1e-07 EXP 7.8e-4 47

3
accidental_failure(Common_PLC) 1e-05 EXP

5.68e-5 3.4
accidental_failure(UR_PLC) 1e-05 EXP

Table 31: Minimal cut sets of accidental scenarios for variant 2

5.3.3 Joint safety and security risk analysis

We process now the new system architecture taking into consideration both accidental and malicious

risks, making the same studies as done for variant 1 in Section 5.2.5.

5.3.3.1 Short mission time with an attack at t=0

Over a short mission time of 100 hours, the probability of the undesirable event is estimated to 2.96e-3.

The minimal cut sets obtained are given in Table 32.

136

Results show that, as for variant 1, attack scenarios are dominating with a contribution exceeding 88%

of the overall breach probability. The first attack scenario likely to happen is the “Denying attack

scenario”, the second one is the “Falsifying attack scenario” and the third one is the “jamming attack”

with a significantly lower probability.

We can see that the probability of the first attacks considerably decreased by about 68% for this case

study compared to their probability obtained for the same study on the previous architecture (variant 1).

This decrease is due to the fact that the two controllers use different technologies and automation

software. This is modeled with S-cube (as explained in Annex 2) by associating two different software

types with the automation software used for each controller. The vulnerabilities associated with each

software are consequently different and it requires as much time and effort from the attacker to find an

exploit for the first vulnerability as it requires for the second one. This makes it more difficult for the

attacker to compromise both controllers in order to lead to the undesirable event.

Num

Seq.

Transitions MT

Seq.
Contrib.(%)

Name Rate Class

1 Access (operator_control_net) 0.06 EXP 1.8e-3 60

exploit_vuln_priv_escalation

(Common_water_level)

0.01 EXP

send_no_feedback (Common_water_level) 0.8 EXP

exploit_vuln_priv_escalation (UR_water_level) 0.01 EXP

send_no_feedback (UR_water_level) 0.8 EXP

send_no_feedback (Common_HI) 0.7 EXP

send_no_instructions_to_actuator

(Common_HI)

0.8 EXP

send_no_feedback (UR_HI_HI) 0.8 EXP

send_no_instructions_to_actuator (UR_HI_HI) 0.8 EXP

2 Access (operator_control_net) 0.06 EXP 8.3e-4 28

exploit_vuln_priv_escalation

(Common_water_level)

0.01 EXP

Send_false_feedback (Common_water_level) 0.7 EXP

exploit_vuln_priv_escalation (UR_water_level) 0.01 EXP

send_false_feedback (UR_water_level) 0.7 EXP

send_false_feedback (Common_HI) 0.7 EXP

send_false_instructions_to_actuator

(Common_HI)

0.7 EXP

send_false_feedback (UR_HI_HI) 0.7 EXP

send_false_instructions_to_actuator

(UR_HI_HI)

0.7 EXP

3 jamming_attack(operator_control_net) 1e-6 EXP 8.86e-5 0.3

Table 32: Malicious and accidental scenarios for variant 2 over 100 hours of operation

5.3.3.2 Long mission time without attack at t=0

The simulation of variant 2 over one year of mission time yields an estimation of the probability of the

breach of 5.38e-2. We give in Table 33 the first minimal cut sets generated for this study.

During one year of the system operation, we find that the attack scenarios are again the most probable

for this system architecture with a probability greater than 1e-3. Accidental scenarios are ten times less

probable than attack scenarios; we find first the single points failures and next the accidental failure of

the two controllers.

137

N°

Seq.

Transitions
Pr

Contrib.

(%) Name Rate Class

1 Access (operator_control_net) 1e-4 EXP 9e-3 16

exploit_vuln_priv_escalation

(Common_water_level)

0.01 EXP

send_no_feedback (Common_water_level) 0.8 EXP

exploit_vuln_priv_escalation (UR_water_level) 0.8 EXP

send_no_feedback (UR_water_level) 0.8 EXP

send_no_feedback (Common_HI) 0.7 EXP

send_no_instructions_to_actuator

(Common_HI)

0.8 EXP

send_no_feedback (UR_HI_HI) 0.8 EXP

send_no_instructions_to_actuator (UR_HI_HI) 0.8 EXP

2 jamming_attack(operator_control_net) 1e-6 EXP 5.3e-3 10

3 Access (operator_control_net) 1e-4 EXP 4e-3 7

exploit_vuln_priv_escalation

(Common_water_level)

0.01 EXP

Send_false_feedback (Common_water_level) 0.7 EXP

exploit_vuln_priv_escalation (UR_water_level) 0.7 EXP

send_false_feedback (UR_water_level) 0.7 EXP

send_false_feedback (Common_HI) 0.7 EXP

send_false_instructions_to_actuator

(Common_HI)

0.7 EXP

send_false_feedback (UR_HI_HI) 0.7 EXP

send_false_instructions_to_actuator

(UR_HI_HI)

0.7 EXP

4 accidental_failure(PLC_pump) 1e-7 EXP 5e-4 0.9

5
accidental_failure(operator_control_net) 1e-7 EXP 5e-4 0.9

6 accidental_failure(Common_PLC) 1e-5 EXP 4e-5 0.07

accidental_failure(UR_PLC) 1e-5 EXP

Table 33: The minimal cut sets on variant 2

Hybrid scenarios composed of accidental and malicious events appear late in the list of the scenarios

with a probability around 1e-5. We extract in Table 34 an example of a hybrid scenario obtained for

variant 2 (without considering repairs).

This scenario is composed of an accidental part: the accidental failure of the HI_HI sensor, and a

malicious part. In the malicious part, the attacker interrupts the feedback from the HI sensor by a DoS.

Added to this, the failure of the HI_HI sensor would not trigger the emergency shutdown sent by the

UR_HI_HI software component on the UR_PLC. This scenario can lead to safety issues only if it occurs

in the case of water reaching maximum allowed levels; which imply that its probability estimation is

pessimistic.

138

Num

Seq.

Transitions
Proba Contrib.

Name Rate Class

15

accidental_failure(S_HI_HI) 1e-5 EXP

2.7e-5 4.06e-4

access(operator_control_net) 0.0001 EXP

exploit_vuln_priv_escalation(Commo

n_water_level)
0.01 EXP

send_no_instructions_to_actuator(Co

mmon_HI)
0.8 EXP

send_no_feedback(Common_HI) 0.8 EXP

send_no_feedback(Common_water_le

vel)
0.8 EXP

exploit_vuln_priv_escalation(UR_wat

er_level)
0.01 EXP

send_no_feedback(UR_water_level) 0.8 EXP

Table 34: A hybrid scenario on variant 2

5.3.4 Conclusions on variant 2

Again, results for this case study show that security related risks are predominant over accidental risks.

Over a short mission time, and considering that at t=0s an attacker intends to target the system in study,

we can see that an attack scenario is the most likely to lead to the system breach, compared to accidental

scenarios.

 After one year of operation, with maintenance in case of accidental failures, attack scenarios remain at

the top of the most probable scenarios likely to result into the system breach. We give in Figure 40,

approximately, the repartition of scenarios according to their type (malicious, accidental or hybrid) for

variant 2 over one year of operation.

Figure 40: Repartition of scenarios according to their type for variant 2 over 1 year

Again, this demonstrates the vulnerability of industrial architectures to cyber-attacks that can result into

safety issues and the importance of a risk analysis encompassing both safety and security issues.

5.4 Comparison between the two variants

We compare in this section the results obtained for the two variants of the case study for the different

studies realized. Doing so, we act as if we had to design the system, and were looking for the best

solution.

94%

5% 1%

malicious accidental hybrid

139

5.4.1 Pure safety analysis

In variant 1, the two primary controllers are identical and use the same hardware and software

components. This solution is generally adopted for cost reduction purposes. However, it exposes the

identical components to common cause failures. Results generated for variant 1 show that accidental

scenarios resulting from common cause failures contribute the most to the undesirable event.

In variant 2, we considered two different types of controllers which eliminated such scenarios of

common cause failures (however there are still common cause failures that can affect sensors). The

overall breach probability decreased by 84% in this architecture compared to the previous one. This

result is sufficiently good to justify the additional costs due to a diversification of the controllers.

5.4.2 Joint safety and security analysis

Over a short simulation time, assuming that at t=0 the attacker intends to target the system, attack

scenarios are the most probable scenarios for both variants. The most probable attacks consist of

accessing the wireless operator control network, compromising the controllers by exploiting

vulnerabilities resulting into privilege escalation and then denying or falsifying the feedback and

instructions exchanged between the controllers and the instrumentation (“denying attack” and falsifying

attack”).

Results show that the probability of attack scenarios for variant 1 are higher (by 37% for the “denying

attack” and 35% for the falsifying attack”) than for variant 2. This is due again to the fact that for the

first architecture the controllers are identical. After succeeding in exploiting the vulnerability on the first

software controller, the attacker can easily and quickly exploit the same vulnerability on the second

software controller. However, for the second architecture and with two different controllers, the

automation software is different and the attacker must find two different exploits, which decreases his

chances to achieve a successful attack in a limited time.

Over one year of simulation time, and with a frequency of attack of 1e-4/h (approximately one attack

per year), a joint analysis generates attack and failure scenarios with close orders of magnitude for safety

and security risks. For the first system architecture, the common cause failure scenario resulting into the

loss of both primary controllers is more probable than the denying/falsifying attacks. In the second

system configuration, cyber-attacks are the most probable scenarios. The global probability of the

undesirable event is 18% lower than in variant 1 given that predominant common cause failures

scenarios are discarded and attack scenarios are more difficult thanks to the diversity of the controllers.

5.4.3 Safety and security interdependencies

The redundancy built in the design of the SIS, between the PLCs and the HI and HI_HI sensors, forms

a safety mechanism that aims at enhancing the system reliability in case of accidental failure of one

controller or one of the conductivity sensors.

When it comes to attack scenarios, and in order to provoke the loss of the protection function (which

can result in the dam breach), the attacker must falsify/deny both instructions sent by Common_HI and

the UR_HI_HI software components, in addition to instructions sent by the operator control, for the

purpose of compromising the instruction sent to PLC_pump to disable the shutdown of the pumping

unit. This takes additional effort from the attacker and reduces his chances of success in a given time.

We infer that the redundancy between the HI and the HI-HI sensors, which consists in a dependability

mechanism initially designed to reinforce the system safety, enables also to reinforce the system security

and its resilience against malicious attacks and cyber malevolence.

140

5.5 Conclusion

We illustrated in this chapter the S-cube approach on different case studies: first on a “canonical”

implementation of the PERA and next on a real industrial installation and its associated information and

control architecture. For each case study, the system architecture has been graphically modeled and then

processed which yields a qualitative and quantitative risk analysis. Thanks to the robustness of the S-

cube approach, the different hypothesis and modifications in the system architecture have been

incrementally taken into consideration in the graphical model. S-cube automatically generates the attack

and failure scenarios related to each system configuration.

The qualitative and quantitative results are obtained based on the different hypothesis taken for types of

failures and attacks and the level of detail modeled in the S-cube KB. The quantitative analysis is aimed

at providing operators of the control systems with a ranking of various risks associated with failures and

attacks in order to help them effectively manage their resources. The probabilities obtained should not

be considered as definitive and accurate values.

On the case of the corporate network, we demonstrated how S-cube can be used in the exploitation phase

in order to assess the incoming risks related to new vulnerabilities released or discovered.

On the case of the Dam, we showed how S-cube can be used in the design phase of the system in order

to evaluate different configurations and decide on the safest and most secure one. We have also

demonstrated how mechanisms designed for safety purposes can also enhance the system’s security and

its resilience against cyber-attacks, which are less predictable than the accidental failures but more likely

to result into disastrous consequences.

Of course, S-cube can also be used in the design phase of corporate networks or in the operational phase

of industrial control networks for ameliorating existing and operational industrial installations. On this

last case, it would be useful for giving recommendations on the best safety and security practices and

measures in order to counter or at less decrease the probability of successful attacks. S-cube can in

general have the three following uses: evaluating a system architecture from scratch, evaluating the

impact of changing something on the architecture (e.g. using an Ethernet based communication instead

of a wireless communication for the operator control network) or the impact of adding (or removing)

something in the architecture (e.g. adding an authentication mechanism to the operator control network,

adding a firewall between the dispatch control network and the operator control network).

141

Chapter 6

6 Conclusions & Perspectives

6.1 Conclusions

We have been dealing in this dissertation, with approaches that consider together safety and security

risks and requirements in the risk analysis of industrial systems. The research in the frame of this thesis

has been undertaken in four main steps, each one bringing an original contribution:

1. The elaboration of a comprehensive survey of existing approaches, developed by both academic and

industrial communities, that combine safety and security issues for the design and the evaluation of

cyber-physical systems in general and industrial systems with a digital control in particular. A

critical analysis has been led in order to classify these approaches and identify their shortcomings

according to whether they enable formal modeling of the system and the associated safety and

security requirements and whether they provide qualitative and quantitative risk analysis;

2. The investigation of the Boolean logic Driven Markov Processes formalism that satisfies both of the

above criteria. The theoretical framework of BDMP for studying jointly safety and security had been

already proposed in previous work but its application was limited to some simple didactic examples.

We worked on illustrating the safety-security BDMPs on a realistic case study of a pipeline in order

to show their ability to model safety and security risks in a common risk model and identify their

potential interactions thanks to qualitative and quantitative results. The use of BDMP requires the

detailed knowledge of the system architecture; this implies that BDMP are more relevant for

assessing existing and operational systems. We compared BDMP with the CHASSIS method, which

is used in early phases of designing systems, in order to investigate the complementarity of these

two approaches.

Our work with BDMP revealed three main limitations of this approach: first, the risk models are

manually built by the analyst and subject to his/her point of view. Second these models are

understood by other readers only if they know well the system architecture; third and finally,

considering a different hypothesis about the system or a different undesirable event to study leads

142

to rebuild each time a new risk model with the same time and effort, which is tedious and error

prone. More interest has been consequently given to an automatic and robust approach.

3. The development of the S-cube approach, overriding the limitations of existing approaches

including BDMP. S-cube satisfies all the required criteria: formal modeling, qualitative and

quantitative analysis, automatic generation of risk models, and robustness. Based on a knowledge

base, S-cube allows modeling graphically the industrial architecture and the associated information

and control system. This architecture is next processed, which automatically generates the attack

and failures scenarios likely to happen on it.

The S-cube knowledge base gathers knowledge on industrial control systems and includes a

taxonomy of the attacks and failure modes likely to happen on these systems. These risk events are

associated with probability distributions in order to dynamically model their evolution over time.

The S-cube knowledge base has been implemented with the Figaro modeling language and the

associated GUI and quantification tools.

4. The illustration of the S-cube approach on case studies. The S-cube approach has been validated on

different case studies. First on a corporate network to model a multi-hop multi-stage attack starting

by compromising the high level information system and reaching the industrial process. Second on

a real case study of a pumped storage hydroelectric plant. For this second case, we have modeled

graphically the system architecture. The robustness of S-cube allows to easily consider different

configurations related to this architecture. Automating the generation of risk scenarios,

encompassing safety-related risks and security-related risks, S-cube facilitates the production of risk

analysis associated to each configuration. Attack and failure scenarios are sorted by decreasing

contribution to the undesirable event they lead to. By comparing the qualitative and quantitative

results associated with each system configuration, we can make conclusions on the safest and most

secure one. The results enable also to identify the potential safety and security interactions.

The S-cube approach provides a robust risk analysis framework for modeling industrial information and

control architectures and assessing the related safety and security risks. By applying it on a real case

study of a hydroelectric plant, we demonstrated its ability to yield a holistic analysis encompassing

safety and security risks on such a system and to assess the system resilience against accidental and

malicious risks. Thanks to quantitative results, we have been also able to capture safety and security

interdependencies.

S-cube aims at identifying the system weaknesses and vulnerabilities in order to support risk

management and decision making. It can be used by safety and security engineers in different phases of

the system lifecycle:

- Design phase to help designing new safe and secure systems with the appropriate safety and security

requirements. S-cube helps the designer to assess and compare different configurations and

safety/security mechanisms before converging towards an architecture where safety and security

requirements are coordinated;

- Operation phase to assess the risk on existent systems, to help defining new safety and security

mechanisms and to support crisis management. Indeed, S-cube helps risk analysts identify vulnerable

components in the system architecture, predict undesirable events and avoid paths leading to them by

choosing the appropriate patch and defense strategy.

We have been able to demonstrate in this thesis the advantages of S-cube and its applicability on large

and complex systems. This approach can however be enhanced with different possible extensions.

143

6.2 Perspectives

The following extensions of S-cube can be envisaged for future work:

1. The S-cube KB models generically the control and information architectures of industrial systems.

It can be coupled with existing knowledge bases that are specific to a given category of industrial

systems and that enable to model, with more details, the physical process. There are existent libraries

already developed in EDF in order to model hydraulic, ventilation and electrical systems. Coupling

S-cube with such libraries would better reveal the impact of attacks on the physical process (e.g.

power flow, water level). The possible safety and security interactions would also be better

identified.

2. Including detection and reaction measures. The attack steps modeled in the S-cube KB can be

associated with the appropriate detection and reaction measures that would prevent the attack step

from being successful or just decrease its probability of success. This would be closer to reality, as

security mechanisms can be deployed in the architecture in order to counter the possible attacks.

This extension would model a completely repairable system, given that repair has already been

modeled for accidental failure modes in the KB.

3. The quantitative analysis related to security can be improved in two ways:

a. By working on the probability distributions associated with each attack step. By a

statistical analysis of feedback of experience data, one can identify the probability

distribution of the time needed to achieve each attack step (e.g. brute force, DoS, etc.).

Exploiting this kind of data would imply the use of Yams instead of FigSeq for

processing the model. The qualitative results would be the same as those obtained with

the exponential approximation, while the quantitative results would be more accurate;

b. By including uncertainties related to the quantitative metrics especially those related to

security. Using an approach based on possibility theory enables to take into account

uncertainties related to quantitative data. Two types of uncertainties are considered:

aleatory uncertainty related to randomness of data and epistemic uncertainty related to

lack of information. Instead of associating risk with a probability, these approaches

consider an interval in which the risk probability is framed. This uncertainty is

propagated to the output of the system model, which yields conservative results. Such

an approach has already been applied in safety analyses [79][177]. Extended to security,

where uncertainties are very present, it enables to associate each attack step with the

interval of time required for the attacker to achieve the attack step [min_time_required,

max_time required]. More details on the attacker profile could be also taken into

consideration into security metrics.

4. Automating the filling of the data associated with the system architecture for more ease of use and

a better exhaustiveness. These data can be extracted by a network analyzer that scans the network

in order to identify the different machines connected and the services running on each host.

Associated with a vulnerability data base (e.g. NVD, CVE), the scanner can identify the vulnerable

software on the different machines. An add-on module can be developed in order to feed the data

output by the scanner into the graphical model of the system architecture.

Finally, this work leverages a close collaboration between safety and security experts and will help them

mutualize their efforts to reduce industrial risks and build safe and secure systems. It offers a first

building block in the development of new industrial tools for risk management at EDF.

144

145

Annex 1: BDMP models of the Stuxnet attack

OR

Cracking_alternatives

ORAND

AND

Main module execution

ORAND

Admin rights

Check admin rights

TSESelf injection

into process

ISE!

Check Windows

config

ISE!

ISE!

OR

Keyboard layout

vuln

ISE!

Task planner

vuln

ISE!

ISE!
ISE!

ISE!Load driver

legitimately

signed

Scanning filesystem

drivers

New device

object

attachment Filter out .lnk

.tmp files

P2P

communication

ISE!

C&C server

communication

Removable

media

OR

Propagation

Network

 shares

Print server

vuln

Service server

RPC vuln

AND

ISE!ISE!

AND

Search WinCC

Connection BD

via Siemens pwd

Send malicious

code via SQL

query

User opens file

project

Load .dll
Decrypt data

Load Exec

malware

Corporate network

compromised

Injection via

compromised

removable media

updates

Self installation and

infection routines

Escalation of

privileges

WinCC Step7

project files

WinCC remote

DB connections

LAN

Install Win

rootkit

Figure 41: BDMP of the "self-installation and infection routines"

Run modified code on PLC

Non_technical_alt

ANDCheck step7

or WinCC

SCADA system

compromised

ISE!

ISE!
ISE!

ISE!Flag sys 300

Rootkit 300

activated
Collect data

PLC sends false

data to motors

AND

Rootkit 400

activated
Intercept in out

signals

Modify out signals

Successul attack

Corporate network

compromised

AND

TSE

Infection of a

control PC

AND

AND

ISE!

Rename replace

lib

ISE! Sys 300

OR

Flag sys 400

Sys 400

AND

Check Profibus

config

Check speed

regulators number

Check config

Modify PLC

function blocks

ISE!

Check PLC

exists

ISE!

AND

Exec

Payload

Load library

Check PLC

model

Cascade centrifuges

Attack industrial

system

Control PC

rootkit

Figure 42: BDMP of the "attack industrial system phase"

146

Annex 2: Individual description of classes

We describe first the generic system components that can be found in classical information architectures.

We focus next on the system components that are specific to SCADA and industrial architectures. The

inheritance between the different classes and the other components with which they are interacting are

depicted in the metamodel in Figure 28.

1. Generic classes

We model different machines (physical_cpt) connected to a network (network_zone) and hosting

different services (software_cpt). Software components exchange different data flows (data_flow) and

can host some vulnerabilities (vulnerability) that can be exploited by an attacker. In the following

paragraphs, the key words extracted from the Figaro language are written in uppercase and the words in

italic font are used in the S-cube KB.

CLASS component: the super class Component models a generic system component; which can fail

accidentally or be compromised by an attacker. The component class has two types of risk events,

expressed in the Figaro language using the key word FAILURE (cf. § 4.6.1). The first is the failure

mode accidental failure which models an accidental failure of a component that can occur randomly

with the rate lambda_fail (cf. Section 4.5.1 for quantitative aspects). The event failure_repair models

the repair of the component’s accidental failure which can occur with the rate lambda_repair.

The second risk event is the attack step access. A Boolean called physical_access is initially set by the

user to TRUE or FALSE according to whether it is possible or not to physically access the component.

If physical_access is set to TRUE, the access attack step can occur with the rate lambda_access and the

component is compromised. The two Booleans failure and compromised_host (associated with

EFFECTs in Figaro) model respectively the facts that the component is failed and compromised by an

attacker. For instance, the Boolean failure is set to true when the risk event accidental failure occurs

and is reset to false when failure_repair occurs.

The classes inheriting the characteristics this class are network_zone, physical_cpt and gateway.

CLASS network_zone: the network_zone class models a set of machines connected to one another

using either wired or wireless communication technologies. It can be connected to one or many gateways

and use an authentication mechanism. The accidental failure of the network zone can be due for example

to the switch/hub failure. The network_zone class overrides the access attack step to condition it on

whether the network is wired and can be accessed physically by the attacker or is wireless and no

authentication mechanism is required. Other possible attacks defined for this specific class are:

- The jamming attack: can occur randomly for wireless networks. The effects of this attack step

realization are propagated by the interaction rules; where all data sent from components connected

to the network zone are unavailable;

- Bypassing authentication: in case an authentication is required to be connected to the network, the

attacker can try to bypass this authentication in order to try to compromise some machines connected

to the network.

- Scan network: if the network zone is connected to another network zone by a gateway and no

firewalling is enabled between both network, an attacker located at the first network can launch a

scan on the other network in order to identify living hosts and open ports;

- Establish connection: if the attacker identifies vulnerable machines and services further to a network

scan, he/she can try to establish connection to the network. If he/she succeed this attack step, the

network is compromised.

147

We make the assumption that if there is a compromised host connected to the network, this latter is also

said to be compromised. A compromised network models the fact that the attacker can reach any other

machine located at this network.

CLASS Gateway: models a gateway linking two or many network zones. The attribute

firewall_enabled is set to true if the firewalling functionality is enabled. If a network_zone is connected

to another compromised network_zone through the gateway and no firewalling is enabled, then the

attacker can scan the network, in order to identify living hosts and open ports.

In the S-cube KB, open ports are modeled by server applications, in listening mode, receiving no data

flows (cf. CLASS data_flow). If no firewalling is enabled the attacker can try to establish a connection

with an open port. If he succeeds in doing so, the network is then compromised.

CLASS physical_cpt: we make the distinction in the S-cube KB between the physical components

(physical_cpt) that represent the network machines and the software components (software_cpt) running

on these machines. The link_machine_soft is used to associate the machine with the different software

components running on it.

 A physical component belongs to a network zone, hosts one or many software components and can use

an authentication mechanism, required to access its operating system (OS). Being KIND_OF

component, the physical component inherits the accidental failure, which once realized results into

unavailability for all data flows sent from software components hosted on the failed machine.

Attack steps associated with this particular class are: access, bypassing authentication, and

compromising the communication link. This latter models a MITM attack where the attacker interferes

with the communication between two machines, in order to falsify or deny the data exchange between

them.

We assume that when a physical_cpt is compromised then all the software components running on it are

also compromised.

CLASS CCF_group: models a set of identical physical components, subject to the same environmental

constraints, that be prone to failures which can occur simultaneously or close in time, due to a common

cause (cf. § 4.5.1.2 and Figure 31).

CLASS software_cpt: this class models a software component running on a given host, which can be

for instance a server or client application. A software_cpt can send and receive data from other software

components. Two interfaces out_data and in_data model respectively input and output data flows of a

given software_cpt.

We assume in our KB that software cannot fail. It can however be altered by an attacker; in this case,

the Boolean compromised_software switches to TRUE.

CLASS data_flow: this class models the authorized data flows between software components (e.g.,

client and server applications). A source and a destination is associated with each data flow.

Particularly for control data flows (data having a direct impact on the physical process, cf. § 4.3.1.4),

we distinguish in the S-cube KB between two types: “instructions” and “feedback”. For other data flows,

the data_type is “other”.

The Boolean “carried_by_electrical_wire” is set to true when an electrical wire (e.g., twisted pair) is

used to carry a specific data flow, between two components. Indeed, in classical control architectures,

each sensor/actuator is linked directly to the process controller via this kind of link. With such a

configuration, the attacker has to access physically and individually each link in order to modify/deny

the data passing on it.

148

We propagate the two effects related to data flows: unavailability and alteration, as result of attacks and

failures, across the whole system architecture.

In the S-cube KB, the data-flows represented in the graphical system model represent the authorized

data flows between software components (client and server applications). Open ports are modeled by

server applications without receiving any data flows (in listening mode). If no firewalling is enabled

the attacker can try to establish a connection with an open port. If he succeeds in doing so, the network

is then compromised.

CLASS IT_sys_cpt: models a machine integrating ICT and providing advanced functionalities; it runs

a given Operating System that can be either Windows or Linux in our KB. Used traditionally in high

levels of the system information architecture, such kind of machines are being also used in control and

process levels in modern architectures. The attribute privilege models the default privilege that the

legitimate user has on this machine. Vuln_configuration models a vulnerability associated with a bad

configuration of the machine. An attacker can exploit such vulnerability, if it exists, to gain root

privileges on the machine (privilege_escalation_attack).

CLASS vulnerability: models a vulnerability related to an IT software; which can have one or many

consequences among the following: privilege escalation, confidentiality loss, integrity loss or service

denial.

CLASS IT_soft_cpt: models a software component running on an IT_sys_cpt. IT software component

can use an authentication mechanism and can have many or no vulnerabilities. In order to compromise

this software, the attacker should first bypass authentication, if it exists. The four other generic attack

steps associated with this class model exploiting vulnerabilities with the four possible consequences of

a vulnerability. Interaction rules propagate the effect of data being altered in case of privilege escalation

or integrity loss and the effect of data being unavailable in case of service denial.

CLASS soft_type: models a category of software type (e.g., http server, ftp client) associated with an

IT_soft_cpt. If a software component of type soft_type is compromised the Boolean already_hacked of

this class is set to true. The probability of exploiting vulnerability on another software component

belonging to the same soft_type decreases considerably. This models the fact that an attacker that have

already succeeded in exploiting a vulnerability associated to a given software will spend much less time

to succeed into exploiting it again with another software of the same type.

CLASS attacker: models an attacker which is initially located on a physical machine. This latter is

consequently a compromised host.

CLASS authentication_mechanism: models an authentication mechanism used by a system

component which can be a machine, a network zone or an IT service. The attribute type indicates whether

the authentication mechanism is weak or strong. The MTTS the attack step “bypassing authentication”

is calculated according to the authentication type (higher probability of success in the case of weak

authentication).

2. SCADA-specific classes

We describe in this section the components that are specific to SCADA-based systems, cf. Section 4.3.1

for more details on the industrial architecture specificities.

Sensors: CLASS sensor KIND_OF field_sys_cpt and CLASS sensor_soft_cpt KIND_OF

software_cpt

The class sensor models the physical part of the sensor which is placed close to the industrial process.

We recall that the main functionality of a sensor is to measure physical quantities and communicate

them to the controller. If the attacker physically access the sensor, then the sensor is compromised.

149

The class sensor_soft_cpt models the embedded software in a sensor that enables to capture a physical

quantity and transfer it to the upper levels of the control process. If the sensor enables to capture more

than one physical quantity (e.g., temperature and pressure) then each physical quantity is modeled by a

separated sensor_soft_cpt.

The attack steps modeled for this class are “sending false measures” or “sending no measures”. This

attack step can occur if the sensor_soft_cpt is compromised (e.g., physical access to the sensor) or in

case of the communication link on which measures are sent is compromised (e.g., MITM attack on the

network or physical access to the electrical wire carrying the measure). If the attacker succeeds in

achieving the attack step “send false measure” the interaction rules propagate the effects, where all data

flows of type “feedback” are “wrong”.

Actuators: CLASS actuator KIND_OF field_sys_cpt and CLASS actuator_soft_cpt KIND_OF

software_cpt:

The class actuator models the physical part of an actuator. It can for example model a valve or a pump.

We recall that an actuator is a system component that executes a direct action on the process after

receiving a control instruction.

The actuator_soft_cpt class models the software embedded in the actuator that receives the instruction.

The interaction rules in this class model the fact that if the actuator does not act properly it can be

because either it receives wrong or no instruction from the controller.

CLASS process_controller: models the physical machine that is used for controlling the process. It can

be for example a programmable logical controller (PLC) or a remote telemetry unit (RTU).

The process_controller_soft_cpt class inherits the characteristics of an IT software component and

models the software embedded in a process_sys_cpt. It enables to collect sensor measures, send

instructions to actuators or receives instructions from higher control levels (each functionality can be

modeled by a single process_controller_soft_cpt). The attack steps modeled for this class are: “sending

false instructions to actuator”, “sending no instructions to actuator”, “sending false feedback” and

“sending no feedback”, which can occur either if the process_controller_soft_cpt is compromised or the

communication link on which the instructions/feedback are sent is compromised. The interaction rules

model the fact that the process_controller_soft_cpt can either receive wrong resp. no measures from

sensors or receive wrong resp. no instructions from the Scada server. The output data is then wrong resp.

unavailable.

CLASS scada_server_soft_cpt inherits the characteristics of an IT software component and models

the software used to remotely supervise the overall process. IT receives the information from the process

controller, processes it and sends back instructions (each functionality can be modeled by a single

scada_server_soft_cpt). The attack steps modeled for this class are: “sending false instructions”,

“sending no instructions”, “sending false feedback” and “sending no feedback”; which may occur if the

scada server software is compromised or the communication link on which instructions/feedback are

sent is compromised.

3. Representation of voters

We describe in this section classes graphically represented as logical gates that can be used to represent

voters present in the system. Since the inputs and outputs of these gates are not simple Boolean values,

but instead data flows containing the two effects wrong and unavailable, the behavior of the voters is a

bit more complicated than just logical functions.

150

CLASS AND gate: makes an AND operation between two or many data flows. The output data flows

are correct if all the input data flows are the same. If it exists an input data flow which is

wrong/unavailable then the output data flows are wrong/unavailable.

CLASS OR gate: makes an OR operation between two or many data flows. The output data flows are

correct if it exists a correct input data flow. If all the input data flows are wrong/unavailable then the

output data flows are wrong/unavailable.

CLASS k_n_gate: this gate receives n data flows and outputs a correct data flow if k over the n input

data flows are the same. This class inherits from the software component class and models a safety

mechanism that makes a vote out of many inputs received.

For instance, the k_n_gate receives measures from sensors and if at least k measures out of n data are

identical it sends the measure to the controller. This voter can also input different instructions from

controllers and make a decision on what instruction to send to an actuator. We focus especially, in the

S-cube KB, on describing the behavior of the 2/3 and 2/4 voters.

4. Other classes

These classes do not model system components and are not visible in the graphical model but are used

by other classes that are used to model the system.

CLASS global: this class is implemented in any model by a single global object that has two Booleans:

- Inhibit_attacks: when set to true by the user, this Boolean inhibits taking into consideration attacks

into the risk scenarios;

- Inhibit_failures: when set to true by the user, this Boolean inhibits taking into consideration

accidental failures into the risk scenarios;

Consequently, this class allows the user to choose whether to consider in the risk analysis only accidental

failures (i.e. pure safety analysis), only malicious actions (i.e. pure security analysis) or both of them

(i.e. joint safety and security risk analysis).

151

Annex 3: Assumptions on the quantitative metrics for the use case:

pumped storage plant

Type Object Family Characteristic Value

CCF_group_2 CCF_group2_PLC Constant alpha_2 0.05 (for variant 1)

CCF_group_3 CCF_group_3_sensors Constant alpha_2 0.1 (for variant 1)

CCF_group_3 CCF_group_3_sensors Constant alpha_3 0.05 (for variant 1)

k_n_gate k_n_gate_measure Constant k, n 2, 3

network_zone operator_control_net Constant lambda_access

0.06 (for short mission

time study)

0.0001 (for long

mission time study)

process_controller Common_PLC Constant lambda_fail 1e -05

process_controller PLC_pump Constant lambda_fail 1e-07

process_controller UR_PLC Constant lambda_fail 1e-05

IT_sys_cpt Operator_control_center Constant lambda_fail 1e-05

IT_sys_cpt dispatch_control_center Constant lambda_fail 1e-05

sensor S_HI Constant lambda_fail 1e-05

sensor S_HI_HI Constant lambda_fail 1e-05

sensor pressure1 Constant lambda_fail 1e-05

sensor pressure2 Constant lambda_fail 1e-05

sensor pressure3 Constant lambda_fail 1e-05

network_zone dispatch_control_net Constant lambda_fail 1e-05

network_zone operator_control_net Constant lambda_fail 1e-05

actuator pumping_unit Constant lambda_fail 1e-10

process_controller_sof

t_cpt
Common_water_level Attribute

lambda_priv_

escal

0.01 (if not already

hacked)

0.7 (if already hacked)

process_controller_sof

t_cpt
UR_water_level Attribute

lambda_priv_

escal

0.01 (if not already

hacked)

0.7 (if already hacked)

152

153

References

[1] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier (v1.4).” Symantec report,

Feb-2011.

[2] “Dell Security Annual Threat Report,” 2015.

[3] L. Piètre-Cambacédès, “Des relations entre sûreté et sécurité,” Télécom ParisTech, 2010.

[4] “BlackHat USA 2013.” [Online]. Available: http://www.blackhat.com/us-

13/briefings.html#Forner.

[5] T. J. Cockram and S. R. Lautieri, “Combining Security and Safety Principles in Practice,”

in 2007 2nd Institution of Engineering and Technology International Conference on System

Safety, 2007, pp. 159–164.

[6] P. Bieber, J.-P. Blanquart, G. Descargues, M. Dulucq, Y. Fourastier, E. Hazane, M. Julien,

L. Léonardon, and G. Sarouille, “Security and Safety Assurance for Aerospace Embedded

Systems,” in Proceedings of the 6th International Conference on Embedded Real Time

Software and Systems (ERTS2 2012), Toulouse, France, 2012, pp. 1–3.

[7] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B.

Kantor, D. Anderson, H. Shacham, and S. Savage, “Experimental Security Analysis of a

Modern Automobile,” in 2010 IEEE Symposium on Security and Privacy (SP), 2010, pp.

447–462.

[8] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,

A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive Experimental Analyses of

Automotive Attack Surfaces.,” in USENIX Security Symposium, 2011.

[9] I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaaniche, and Y. Laarouchi, “Survey

on security threats and protection mechanisms in embedded automotive networks,” in 2013

43rd Annual IEEE/IFIP Conference on Dependable Systems and Networks Workshop

(DSN-W), 2013, pp. 1–12.

[10] J. Smith, S. Russell, and M. Looi, “Security as a safety issue in rail communications,”

in Proceedings of the 8th Australian workshop on Safety critical systems and software -

Volume 33, Darlinghurst, Australia, Australia, 2003, pp. 79–88.

[11] T. Novak, A. Treytl, and A. Gerstinger, “Embedded security in safety critical

automation systems,” in Proceedings of the 26th International System Safety Conference

(ISSC 2008), Vancouver, Canada, 2008, pp. p. S.1–11,.

[12] The SeSa Method for Assessing Secure Remote Access to Safety Instrumented Systems.

Trondheim: SINTEF, Technology and Society, Safety and Reliability, 2006.

[13] S. O. Johnsen, “Resilience at interfaces: Improvement of safety and security in

distributed control systems by web of influence,” Inf. Manag. Comput. Secur., vol. 20, no.

2, pp. 71–87, Jun. 2012.

[14] A. Lee and T. Brewer, “Smart grid cyber security strategy and requirements,” Draft

Interag. Rep. NISTIR, vol. 7628, 2009.

[15] “Security and Safety Modelling - D2.1 Specification of Safety and Security

Mechanisms,” v01, 29 May 2013 Final.

[16] “Security and Safety Modelling - D3.1 Specification of Safety and Security Analysis

and Assessment Techniques,” v01, 29 May 2013 Final.

[17] A. Burns, J. McDermid, and J. Dobson, “On the Meaning of Safety and Security,”

Comput. J., vol. 35, no. 1, pp. 3–15, Feb. 1992.

[18] L. Piètre-Cambacédès and C. Chaudet, “The SEMA referential framework: Avoiding

ambiguities in the terms ‘security’ and ‘safety,’” Int. J. Crit. Infrastruct. Prot., vol. 3, no.

2, pp. 55–66, Jul. 2010.

154

[19] “ISO/TR 31004: 2013: Risk management — Guidance for the implementation of ISO

31000,” Oct. 2013.

[20] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy

of dependable and secure computing,” IEEE Trans. Dependable Secure Comput., vol. 1,

no. 1, pp. 11–33, 2004.

[21] D. P. Eames and J. D. Moffett, “The Integration of Safety and Security Requirements,”

in Proceedings of the 18th International Conference on Computer Computer Safety,

Reliability and Security, London, UK, UK, 1999, pp. 468–480.

[22] A. Kornecki and M. Liu, “Fault Tree Analysis for Safety/Security Verification in

Aviation Software,” Electronics, vol. 2, no. 1, pp. 41–56, Jan. 2013.

[23] K. Sørby, “Relationship between security and safety in a security-safety critical system:

Safety consequences of security threats,” NTNU, Trondheim, Norway, MSc thesis, 2003.

[24] N. G. Leveson, Safeware: system safety and computers. New York, NY, USA: ACM,

1995.

[25] D. Brewer, F. Redmill, and T. Anderson, “Applying Security Techniques to Achieving

Safety,” in Directions in Safety-Critical Systems, Springer London, 1993, pp. 246–256.

[26] L. Piètre-Cambacédès and M. Bouissou, “Cross-fertilization between safety and

security engineering,” Reliab. Eng. Syst. Saf., vol. 110, pp. 110–126, Feb. 2013.

[27] D. G. Firesmith, “Common Concepts Underlying Safety Security and Survivability

Engineering,” Dec. 2003.

[28] B. Hunter, “Integrating Safety And Security Into The System Lifecycle,” in Improving

Systems and Software Engineering Conference (ISSEC), Canberr, Australia, 2009, p. 147.

[29] T. Aven, “Identification of safety and security critical systems and activities,” Reliab.

Eng. Syst. Saf., vol. 94, no. 2, pp. 404–411, Feb. 2009.

[30] T. Novak, A. Treytl, and P. Palensky, “Common approach to functional safety and

system security in building automation and control systems,” in IEEE Conference on

Emerging Technologies and Factory Automation, 2007. ETFA, 2007, pp. 1141–1148.

[31] F. Reichenbach, J. Endresen, M. M. R. Chowdhury, and J. Rossebo, “A Pragmatic

Approach on Combined Safety and Security Risk Analysis,” in 2012 IEEE 23rd

International Symposium on Software Reliability Engineering Workshops (ISSREW), 2012,

pp. 239–244.

[32] L. Piètre-Cambacédès and M. Bouissou, “Modeling safety and security

interdependencies with BDMP (Boolean logic Driven Markov Processes),” in 2010 IEEE

International Conference on Systems Man and Cybernetics (SMC), 2010, pp. 2852–2861.

[33] T. Novak and A. Gerstinger, “Safety- and Security-Critical Services in Building

Automation and Control Systems,” IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3614–

3621, 2010.

[34] T. Novak and A. Treytl, “Functional safety and system security in automation systems

- a life cycle model,” in IEEE International Conference on Emerging Technologies and

Factory Automation, 2008. ETFA 2008, 2008, pp. 311–318.

[35] M. Sun, S. Mohan, L. Sha, and C. Gunter, “Addressing Safety and Security

Contradictions in Cyber-Physical Systems,” in 1st Workshop on Future Directions in

Cyber-Physical Systems Security (CPSSW’09), Newark, United states, 2009.

[36] A. Derock, “Convergence of the latest standards adressing safety and security for

information technology,” in in On-line proceedings of Embedded Real Time Software and

Systems (ERTS2 2010), Toulouse, France, 2010.

[37] J. T. Williams, “A Reference Model For Computer Integrated Manufacturing (CIM) A

Description from the Viewpoint of Industrial Automation,” 1989.

155

[38] International Electrotechnical Commission, Enterprise-control system integration. Part

1, Part 1,. 2013.

[39] J.-M. Brun, L. Platel, and F. Tea, “Cyber Security of Industrial Control System Why

ICS specificity lead to Cyber Security Challenge?,” in C&ESAR, 2013.

[40] B. Zhu, A. Joseph, and S. Sastry, “A Taxonomy of Cyber Attacks on SCADA Systems,”

in Internet of Things (iThings/CPSCom), 2011 International Conference on and 4th

International Conference on Cyber, Physical and Social Computing, 2011, pp. 380–388.

[41] K. Stoufer, J. Falco, and K. Scarfone, “Guide to Industrial Control Systems (ICS)

Security Supervisory Control and Data Acquisition (SCADA) systems, Distributed Control

Systems (DCS), and other control system configurations such as Programmable Logic

Controllers (PLC),” NIST SP 800-82, Jun. 2011.

[42] L. Pietre-Cambacedes, Y. Fourastier, and F. Téa, Cybersécurité des installations

industrielles, Cépaduès. 2015.

[43] “IEC 61508-1:2010: Functional safety of electrical/electronic/programmable electronic

safety-related systems - Part 1 : general requirements.” 01-Apr-2010.

[44] P.-C. Ludovic, “Cyber Security of Nuclear Instrumentation & Control Systems:

Overview of the IEC Standardization Activities,” 2013, pp. 2156–2160.

[45] “IEC 62645 - DRAFT - Draft Document - Nuclear power plants - Instrumentation and

control systems - Requirements for security programmes for computer-based systems (IEC

45A/890/CDV:2012).”

[46] “ISO/IEC 27001:2013, Information technology — Security techniques — Information

security management systems — Requirements.” .

[47] “ISO/IEC 27005:2011 - Information technology -- Security techniques -- Information

security risk management.” .

[48] C. Raspotnig, P. Karpati, and V. Katta, “A Combined Process for Elicitation and

Analysis of Safety and Security Requirements,” in Enterprise, Business-Process and

Information Systems Modeling, Springer, 2012, pp. 347–361.

[49] S. Kriaa, L. Pietre-Cambacedes, M. Bouissou, and Y. Halgand, “A survey of approaches

combining safety and security for industrial control systems,” Reliab. Eng. Syst. Saf., vol.

139, pp. 156–178, Jul. 2015.

[50] G. Stoneburner, “Toward a Unified Security-Safety Model,” Computer, vol. 39, no. 8,

pp. 96–97, 2006.

[51] T. Aven, “A unified framework for risk and vulnerability analysis covering both safety

and security,” Reliab. Eng. Syst. Saf., vol. 92, no. 6, pp. 745–754, Jun. 2007.

[52] C. Woskowski, “A Pragmatic Approach towards Safe and Secure Medical Device

Integration,” in Computer Safety, Reliability, and Security, vol. 8666, A. Bondavalli and F.

Di Giandomenico, Eds. Cham: Springer International Publishing, 2014, pp. 342–353.

[53] C. W. Johnson, “CyberSafety: On the Interactions Between CyberSecurity and the

Software Engineering of Safety-Critical Systems,” in In C. Dale and T. Anderson (eds.),

Achieving System Safety, 2012, pp. 85–96.

[54] A. J. Kornecki and J. Zalewski, “Safety and security in industrial control,” in

Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence

Research, New York, NY, USA, 2010, pp. 77:1–77:4.

[55] K. Stølen, F. den Braber, T. Dimitrakos, R. Fredriksen, B. A. Gran, S.-H. Houmb, Y. C.

Stamatiou, and J. Ø. Aagedal, “Model-Based Risk Assessment in a Component-Based

Software Engineering Process,” in Business Component-Based Software Engineering, F.

Barbier, Ed. Springer US, 2003, pp. 189–207.

156

[56] R. Winther, O.-A. Johnsen, and B. A. Gran, “Security Assessments of Safety Critical

Systems Using HAZOPs,” in Computer Safety, Reliability and Security, U. Voges, Ed.

Springer Berlin Heidelberg, 2001, pp. 14–24.

[57] P. A. Ostby and M. S. Strauch, “Topical Report on Security and Safety Integration,”

Safety and Security Interface Technology Initiative, Sep. 2006.

[58] C. Schmittner, T. Gruber, P. Puschner, and E. Schoitsch, “Security Application of

Failure Mode and Effect Analysis (FMEA),” in Computer Safety, Reliability, and Security,

vol. 8666, A. Bondavalli and F. Di Giandomenico, Eds. Cham: Springer International

Publishing, 2014, pp. 310–325.

[59] Y. Deswarte, M. Kaâniche, P. Corneillie, and J. Goodson, “SQUALE Dependability

Assessment Criteria,” in Computer Safety, Reliability and Security, M. Felici and K.

Kanoun, Eds. Springer Berlin Heidelberg, 1999, pp. 27–38.

[60] “Medini Functional Safety Tool.” [Online]. Available:

http://www.kpit.com/engineering/products/medini-functional-safety-tool.

[61] T. Kelly and R. Weaver, “The goal structuring notation–a safety argument notation,” in

Proceedings of the dependable systems and networks 2004 workshop on assurance cases,

2004.

[62] K. Attwood and P. Chinneck, “GSN Community Standard Version 1.” Nov-2011.

[63] S. Lautieri, D. Cooper et D. Jackson, “SafSec : Commonalities between safety and

security assurance,” in Proceedings of the 13th Safety Critical Systems Symposium

(SSS’05), Southampton, Royaume-Uni, 2005, pp. p. 65–75.

[64] C. Johnson, “Using Assurance Cases and Boolean Logic Driven Markov Processes to

Formalise Cyber Security Concerns for Safety-Critical Interaction with Global Navigation

Satellite Systems,” Electron. Commun. EASST, vol. 45, no. 0, Dec. 2011.

[65] N. Subramanian and J. Zalewski, “Assessment of safety and security of system

architectures for cyberphysical systems,” in Systems Conference (SysCon), 2013 IEEE

International, 2013, pp. 634–641.

[66] L. Chung and J. C. S. do P. Leite, “On Non-Functional Requirements in Software

Engineering,” in Conceptual Modeling: Foundations and Applications, A. T. Borgida, V.

K. Chaudhri, P. Giorgini, and E. S. Yu, Eds. Springer Berlin Heidelberg, 2009, pp. 363–

379.

[67] I. Nai Fovino, M. Masera, and A. De Cian, “Integrating cyber attacks within fault trees,”

Reliab. Eng. Syst. Saf., vol. 94, no. 9, pp. 1394–1402, Sep. 2009.

[68] B. Schneier, “Attack trees : Modeling security threats,” Dr.Dobb’s Journal, pp. 21–29,

1999.

[69] S. Bezzateev, N. Voloshina, and P. Sankin, “Joint Safety and Security Analysis for

Complex Systems,” in PROCEEDING OF THE 13TH CONFERENCE OF FRUCT

ASSOCIATION, 2013.

[70] M. Steiner and P. Liggesmeyer, “Combination of Safety and Security Analysis-Finding

Security Problems That Threaten The Safety of a System,” in Proceedings of Workshop

DECS (ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical Systems)

of the 32nd International Conference on Computer Safety, Reliability and Security, 2013.

[71] B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A new component concept for fault trees,”

in Proceedings of the 8th Australian workshop on Safety critical systems and software -

Volume 33, Darlinghurst, Australia, Australia, 2003, pp. 37–46.

[72] M. Bouissou and J.-L. Bon, “A new formalism that combines advantages of fault-trees

and Markov models: Boolean logic driven Markov processes,” Reliab. Eng. Syst. Saf., vol.

82, no. 2, pp. 149–163, Nov. 2003.

157

[73] L. Piètre-Cambacédès and M. Bouissou, “Beyond Attack Trees: Dynamic Security

Modeling with Boolean Logic Driven Markov Processes (BDMP),” in Dependable

Computing Conference (EDCC), 2010 European, 2010, pp. 199–208.

[74] C.-W. Ten, C.-C. Liu, and G. Manimaran, “Vulnerability Assessment of Cybersecurity

for SCADA Systems,” IEEE Trans. Power Syst., vol. 23, no. 4, pp. 1836–1846, 2008.

[75] R. Mitchell and I. Chen, “Effect of Intrusion Detection and Response on Reliability of

Cyber Physical Systems,” IEEE Trans. Reliab., vol. 62, no. 1, pp. 199–210, 2013.

[76] F. Flammini, U. Gentile, S. Marrone, R. Nardone, and V. Vittorini, “A Petri Net Pattern-

Oriented Approach for the Design of Physical Protection Systems,” in Computer Safety,

Reliability, and Security, A. Bondavalli and F. D. Giandomenico, Eds. Springer

International Publishing, 2014, pp. 230–245.

[77] M. Roth and P. Liggesmeyer, “Modeling and Analysis of Safety-Critical Cyber Physical

Systems using State/Event Fault Trees,” in Proceedings of Workshop DECS

(ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical Systems) of the

32nd International Conference on Computer Safety, Reliability and Security, Toulouse,

France, 2013, p. NA.

[78] D. R. Duran, E. Robinson, A. J. Kornecki, and J. Zalewski, “Safety analysis of

Autonomous Ground Vehicle optical systems: Bayesian belief networks approach,” in 2013

Federated Conference on Computer Science and Information Systems (FedCSIS), 2013, pp.

1419–1425.

[79] C. Simon, P. Weber, and E. Levrat, “Bayesian Networks and Evidence Theory to Model

Complex Systems Reliability,” Journal of Computer, VOL. 2, pp. 33–43, Feb-2007.

[80] P. Trucco, E. Cagno, F. Ruggeri, and O. Grande, “A Bayesian Belief Network modelling

of organisational factors in risk analysis: A case study in maritime transportation,” Reliab.

Eng. Syst. Saf., vol. 93, no. 6, pp. 845–856, Jun. 2008.

[81] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic Security Risk Management Using

Bayesian Attack Graphs,” IEEE Trans. Dependable Secure Comput., vol. 9, no. 1, pp. 61–

74, Jan. 2012.

[82] P. Xie, J. H. Li, X. Ou, P. Liu, and R. Levy, “Using Bayesian networks for cyber security

analysis,” in 2010 IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), 2010, pp. 211–220.

[83] M. Frigault, L. Wang, A. Singhal, and S. Jajodia, “Measuring Network Security Using

Dynamic Bayesian Network,” in Proceedings of the 4th ACM Workshop on Quality of

Protection, New York, NY, USA, 2008, pp. 23–30.

[84] A. J. Kornecki, N. Subramanian, and J. Zalewski, “Studying interrelationships of safety

and security for software assurance in cyber-physical systems: Approach based on bayesian

belief networks,” in 2013 Federated Conference on Computer Science and Information

Systems (FedCSIS), 2013, pp. 1393–1399.

[85] G. Sindre and A. L. Opdahl, “Capturing security requirements through misuse cases,”

in In: Proceedings of the 14th Norwegian informatics conference (NIK), 2001.

[86] G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse cases,”

Requir. Eng., vol. 10, no. 1, pp. 34–44, Jun. 2004.

[87] G. Sindre, “A look at misuse cases for safety concerns,” in Situational Method

Engineering: Fundamentals and Experiences, Springer, 2007, pp. 252–266.

[88] C. Raspotnig, “Guideline for applying CHASSIS.” 2012.

[89] “Guideline_for_applying_CHASSIS_draft_BORA.pdf.” .

[90] J. Jürjens, “UMLsec Extending UML for secure Systems Development.” The Unified

Modeling Language (2002), 1-9.

158

[91] J. Jürjens and S. H. Houmb, “Risk-driven development of security-critical systems using

UMLsec,” in Information Technology, Springer, 2004, pp. 21–53.

[92] J. Jürjens and J. Grünbauer, “Critical systems development with UML: overview with

automotive case-study,” in 4th International Conference on Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2003), pp.

512–517.

[93] J. Jürjens, “Developing safety-and security-critical systems with UML,” in DARP

workshop, Loughborough, 2003.

[94] S. Wenzel, “CARiSMA - a tool for analyzing compliance-, risk- and security properties

on software models.” [Online]. Available: https://www-secse.cs.tu-dortmund.de/carisma/.

[95] L. Apvrille and Y. Roudier, “Towards the Model-Driven Engineering of Secure yet Safe

Embedded Systems,” in Pre-proceedings of The International Workshop on Graphical

Models for Security 2014, 2014.

[96] G. Pedroza, L. Apvrille, and D. Knorreck, “Avatar: A sysml environment for the formal

verification of safety and security properties,” in New Technologies of Distributed Systems

(NOTERE), 2011 11th Annual International Conference on, 2011, pp. 1–10.

[97] J. Brunel, D. Chemouil, L. Rioux, M. Bakkali, and F. Vallée, “A Viewpoint-Based

Approach for Formal Safety & Security Assessment of System Architectures,” in

Proceedings of MoDeVVa 2014, 2014.

[98] “MelodyTM - SysML plugin for IBM Rational Rhapsody,” Intercax. .

[99] “Safety Architect | Model-Based Safety Analysis.” [Online]. Available:

http://www.all4tec.net/Model-Based-Safety-Analysis/safety-architect.html.

[100] “Alloy: a language & tool for relational models.” [Online]. Available:

http://alloy.mit.edu/alloy/.

[101] J. Delange, L. Pautet, and P. Feiler, “Validating Safety and Security Requirements for

Partitioned Architectures,” in Reliable Software Technologies – Ada-Europe 2009, F.

Kordon and Y. Kermarrec, Eds. Springer Berlin Heidelberg, 2009, pp. 30–43.

[102] S. Zafar and R. G. Dromey, “Integrating safety and security requirements into design of

an embedded system,” in Software Engineering Conference, 2005. APSEC ’05. 12th Asia-

Pacific, 2005, p. 8 pp.–.

[103] J.-C. Laprie, K. Kanoun, and M. Kaâniche, “Modelling Interdependencies Between the

Electricity and Information Infrastructures,” in Computer Safety, Reliability, and Security,

F. Saglietti and N. Oster, Eds. Springer Berlin Heidelberg, 2007, pp. 54–67.

[104] M. Beccuti, G. Franceschinis, S. Donatelli, S. Chiaradonna, F. Di Giandomenico, P.

Lollini, G. Dondossola, and F. Garrone, “Quantification of dependencies in electrical and

information infrastructures: The CRUTIAL approach,” in Fourth International Conference

on Critical Infrastructures, 2009. CRIS 2009, 2009, pp. 1–8.

[105] S. Chiaradonna, F. D. Giandomenico, and P. Lollini, “Case Study on Critical

Infrastructures: Assessment of Electric Power Systems,” in Resilience Assessment and

Evaluation of Computing Systems, K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel,

Eds. Springer Berlin Heidelberg, 2012, pp. 365–390.

[106] M. Beccuti, G. Franceschinis, M. Kaâniche, and K. Kanoun, “Multi-level Dependability

Modeling of Interdependencies between the Electricity and Information Infrastructures,” in

Critical Information Infrastructure Security, R. Setola and S. Geretshuber, Eds. Springer

Berlin Heidelberg, 2008, pp. 48–59.

[107] “CRUTIAL - CRitical UTility InfrastructurAL resilience.” [Online]. Available:

http://crutial.rse-web.it/.

159

[108] R. Winther, O.-A. Johnsen, and B. A. Gran, “Security Assessments of Safety Critical

Systems Using HAZOPs,” in Computer Safety, Reliability and Security, vol. 2187, U.

Voges, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 14–24.

[109] J. E. Y. Rossebo, S. Cadzow, and P. Sijben, “eTVRA, a Threat, Vulnerability and Risk

Assessment Method and Tool for eEurope,” in The Second International Conference on

Availability, Reliability and Security, 2007. ARES 2007, 2007, pp. 925–933.

[110] D. K. Holstein and B. Singer, “Quantitative Security Measures for Cyber and Safety

Security,” in ISA Safety & Security Symposium, 2010.

[111] J. Depoy, J. Phelan, P. Sholander, B. Smith, G. B. Varnado, and G. Wyss, “Risk

assessment for physical and cyber attacks on critical infrastructures,” in IEEE Military

Communications Conference, 2005. MILCOM 2005, 2005, pp. 1961–1969 Vol. 3.

[112] W. Pieters, Z. Lukszo, D. Hadziosmanovic, and J. van den Berg, “Reconciling

Malicious and Accidental Risk in Cyber Security,” J. Internet Serv. Inf. Secur. JISIS, vol.

4, no. 2, pp. 4–26, 2014.

[113] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott,

“The Maude 2.0 System,” in Rewriting Techniques and Applications, vol. 2706, R.

Nieuwenhuis, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 76–87.

[114] A. Simpson, J. Woodcock, and J. Davies, “Safety through Security,” in Proceedings of

the 9th international workshop on Software specification and design, Washington, DC,

USA, 1998, p. 18–.

[115] J. Goguen and J. Meseguer, “Security policies and security models,” in Proceedings of

the IEEE Symposium on Security and Privacy (S&P’82), Oakland, United-states, 1982, pp.

p. 11–20.

[116] N. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety

(Engineering Systems). The MIT Press, 2012.

[117] D.-A. Lee, J.-S. Lee, S.-W. Cheon, and J. Yoo, “Application of System-Theoretic

Process Analysis to Engineered Safety Features-Component Control System,” in Proc. of

the 37th Enlarged Halden Programme Group (EHPG) meeting, Gol, Norway, 2013.

[118] P. Asare, J. Lach, and J. A. Stankovic, “FSTPA-I: A Formal Approach to Hazard

Identification via System Theoretic Process Analysis,” 2013.

[119] W. Young and N. G. Leveson, “An integrated approach to safety and security based on

systems theory,” Commun. ACM, vol. 57, no. 2, pp. 31–35, Feb. 2014.

[120] W. Young and N. G. Leveson, “Systems Thinking for Safety and Security,” in Annual

Computer Security Applications Conference, New Orleans, LA, 9-13 December.

[121] C. Poirier, S. Kriaa, F. Pebay-Peyroula, C. Mraidha, and V. Zille, “A tool for I&C

system architecture design: the French Connexion cluster,” in International Symposium on

Future I&C for Nuclear Power Plants / International Symposium on Symbiotic Nuclear

Power Systems 2014, Republic of Korea, 2014.

[122] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer, “DAG-based attack and defense

modeling: Don’t miss the forest for the attack trees,” Comput. Sci. Rev.

[123] L. Pietre-Cambacedes, Y. Deflesselle, and M. Bouissou, “Security Modeling with

BDMP: From Theory to Implementation,” in 2011 Conference on Network and Information

Systems Security (SAR-SSI), 2011, pp. 1–8.

[124] L. Piètre-Cambacédès and M. Bouissou, “Attack and Defense Modeling with BDMP,”

in Computer Network Security, I. Kotenko and V. Skormin, Eds. Springer Berlin

Heidelberg, 2010, pp. 86–101.

[125] M. Bouissou, “KB3 tool: feedback on knowledge bases,” in Proceedings of the Annual

European Safety and Reliability Conference, 2002.

160

[126] S. Kriaa, M. Bouissou, F. Colin, Y. Halgand, and L. Pietre-Cambacedes, “Safety and

Security Interactions Modeling Using the BDMP Formalism: Case Study of a Pipeline,” in

Computer Safety, Reliability, and Security, vol. 8666, A. Bondavalli and F. Di

Giandomenico, Eds. Cham: Springer International Publishing, 2014, pp. 326–341.

[127] M. Bouissou and Y. Lefebvre, “A path-based algorithm to evaluate asymptotic

unavailability for large Markov models,” in Reliability and Maintainability Symposium,

2002. Proceedings. Annual, 2002, pp. 32–39.

[128] S. Kriaa, M. Bouissou, and L. Pietre-Cambacedes, “Modeling the Stuxnet attack with

BDMP: Towards more formal risk assessments,” in 2012 7th International Conference on

Risk and Security of Internet and Systems (CRiSIS), 2012, pp. 1–8.

[129] A. Matrosov, E. Rodionov, D. Herley, and J. Malcho, “Stuxnet under the microscope

(v1.0),” presented at the EST, 2011, pp. 1–85.

[130] M. Ekstedt, G. Dondossola, L. Pietre-Cambacedes, J. McDonald, and Å. Torkilseng,

“Modelling of cyber attacks for assessing smart grid security,” presented at the Cigre Study

Committee D2 Colloquium. Buenos Aires, Argentina. 19th - 20th October 2011, 2011.

[131] J. R. Nielsen, “Evaluating Information Assurance Control Effectiveness on an Air Force

Supervisory Control and Data Acquisition (SCADA) System,” Mar. 2011.

[132] E. Byres, A. Ginter, and J. Langill, “How Stuxnet spreads, a study of infection paths in

best parctice systems (v1.0).” Tofino Security, Feb-2011.

[133] D. Helan, “Stuxnet. analysis, myths, realities,” Actu Secu, Feb-2011.

[134] S. Kriaa, C. Raspotnig, M. Bouissou, L. Piètre-Cambacédès, P. Karpati, Y. Halgand,

and V. Katta, “Comparing Two Approaches to Safety and Security Modelling BDMP

Technique and CHASSIS Method,” in Proc. of the 37th Enlarged Halden Programme

Group (EHPG) meeting, Gol, Norway, 2013.

[135] H. Holm, T. Sommestad, M. Ekstedt, and L. Nordstörm, “CySeMoL: A tool for cyber

security analysis of enterprises,” in Electricity Distribution (CIRED 2013), 22nd

International Conference and Exhibition on, 2013, pp. 1–4.

[136] X. Ou, S. Govindavajhala, and A. W. Appel, “MulVAL: A Logic-based Network

Security Analyzer.,” in USENIX security, 2005.

[137] B. Blanchet, “Automatic Verification of Correspondences for Security Protocols,” J. Od

Comput. Secur., vol. 17, no. 4, pp. 363–434, 2009.

[138] H. Holm, M. Ekstedt, T. Sommestad, and M. Korman, “A manual for the Cyber Security

Modeling Language.” 28-May-2014.

[139] “AltaRica Project | MEthods and Tools for AltaRica Language.” .

[140] T. Prosvirnova, “AltaRica 3.0: a Model-Based approach for Safety Analyses,”

phdthesis, Ecole Polytechnique, 2014.

[141] M. Bouissou and C. Seguin, “Comparison of the modeling languages AltaRica and

Figaro,” in In proceedings of the 14th congress on reliability and maintenability (IMDR),

Lille, France, 2006.

[142] “O3PRM: Open Object Oriented Probabilistic Relational Models.” [Online]. Available:

http://o3prm.lip6.fr/.

[143] S. Kriaa, M. Bouissou, and Y. Laarouchi, “A Model Based Approach for SCADA Safety

and Security joint Modeling: S-cube,” in IET System Safety and Cyber Security, Bristol,

2015.

[144] S. Kriaa, M. Bouissou, F. Colin, Y. Halgand, and L. Pietre-Cambacedes, “Safety and

Security Interactions Modeling Using the BDMP Formalism: Case Study of a Pipeline,” in

Computer Safety, Reliability, and Security, vol. 8666, A. Bondavalli and F. Di

Giandomenico, Eds. Cham: Springer International Publishing, 2014, pp. 326–341.

[145] Ethical Hacking and Countermeasures (CEH v7.1), EC-Council. .

161

[146] S. Hauge, P. Hokstad, S. Håbrekke, and M. A. Lundteigen, “Common cause failures in

safety-instrumented systems: Using field experience from the petroleum industry,” Reliab.

Eng. Syst. Saf., vol. 151, pp. 34–45, Jul. 2016.

[147] C. L. Atwood, “The Binomial Failure Rate Common Cause Model,” Technometrics,

vol. 28, no. 2, pp. 139–148, May 1986.

[148] G. Apostolakis and P. Moieni, “The foundations of models of dependence in

probabilistic safety assessment,” Reliab. Eng., vol. 18, no. 3, pp. 177–195, 1987.

[149] A. Mosleh, K. N. Fleming, G. W. Parry, H. M. Paula, D. H. Worledge, and D. M.

Rasmuson, “Procedures for Treating Common Cause Failures in Safety and Reliability

Studies: Volume 2, Analytic Background and Techniques: Final Report,” Electric Power

Research Inst., Palo Alto, CA (USA); Pickard, Lowe and Garrick, Inc., Newport Beach,

CA (USA), EPRI-NP-5613-Vol.2, Dec. 1988.

[150] R. Donat and M. Bouissou, “Common Cause Failures in Discrete Dynamic Models:

Theory and Applications in the Figaro Modelling Language,” in In proceedings of the 25th

European Safety and Reliability Conference (ESREL), Zürich, 2015.

[151] R. Ortalo, Y. Deswarte, and M. Kaaniche, “Experimenting with quantitative evaluation

tools for monitoring operational security,” IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 633–

650, Sep. 1999.

[152] G. V. Marconato, M. Kaâniche, and V. Nicomette, “A Vulnerability Life Cycle-Based

Security Modeling and Evaluation Approach,” Comput. J., p. bxs112, Sep. 2012.

[153] E. Jonsson and T. Olovsson, “A quantitative model of the security intrusion process

based on attacker behavior,” Softw. Eng. IEEE Trans. On, vol. 23, no. 4, pp. 235–245, 1997.

[154] H. Holm, “A Large-Scale Study of the Time Required to Compromise a Computer

System,” IEEE Trans. Dependable Secure Comput., vol. 11, no. 1, pp. 2–15, Jan. 2014.

[155] H. Holm, M. Korman, and M. Ekstedt, “A Bayesian network model for likelihood

estimations of acquirement of critical software vulnerabilities and exploits,” Inf. Softw.

Technol., vol. 58, pp. 304–318, Feb. 2015.

[156] M. Dacier, Y. Deswarte, and M. Kaâniche, “Models and tools for quantitative

assessment of operational security,” in Information Systems Security, S. K. Katsikas and D.

Gritzalis, Eds. Springer US, 1996, pp. 177–186.

[157] M. Dacier, Y. Deswarte, and M. Kaaniche, “Quantitive assessment of operational

security models and tools,” Technical Report Research Report 96493, May 1996.

[158] M. A. McQueen, W. F. Boyer, M. A. Flynn, and G. A. Beitel, “Time-to-compromise

model for cyber risk reduction estimation,” in Quality of Protection, Springer, 2006, pp.

49–64.

[159] P. Mell, K. Scarfone, and S. Romanosky, “A complete guide to the common

vulnerability scoring system version 2.0,” in Published by FIRST-Forum of Incident

Response and Security Teams, 2007, pp. 1–23.

[160] C. Cocozza-Thivent, Processus stochastiques et fiabilité des systèmes. Springer Science

& Business Media, 1997.

[161] “CVE details (The ultimate security vulnerability datasource).” [Online]. Available:

www.cvedetails.com.

[162] Y. W. Law, P. Hartel, J. den Hartog, and P. Havinga, “Link-layer jamming attacks on

S-MAC,” in Proceeedings of the Second European Workshop on Wireless Sensor

Networks, 2005, 2005, pp. 217–225.

[163] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and detecting

jamming attacks in wireless networks,” in Proceedings of the 6th ACM international

symposium on Mobile ad hoc networking and computing, 2005, pp. 46–57.

162

[164] T. Sommestad, H. Holm, and M. Ekstedt, “Estimates of success rates of Denial-of-

Service attacks,” in Proceedings of the 10th International Conference on Trust, Security

and Privacy in Computing and Communications (TrustCom 2011), 2011, pp. 21–28.

[165] M. Bouissou, H. Bouhadana, M. Bannelier, and N. Vilatte, “Knowledge modeling and

reliability processing: presentation of the FIGARO language and of associated tools,” in

proceedings of SAFECOMP 91, Trondheim, Norway, 1991.

[166] M. Bouissou, “Automated dependability analysis of complex systems with the KB3

workbench: the experience of EDF R&D,” in Proceedings of the International Conference

on ENERGY and ENVIRONMENT, CIEM 2005, 2005.

[167] M. Bouissou, S. Humbert, and J.-C. Houdebine, “Reference handbook of the Figaro

modeling language.” EDF.

[168] M. Bouissou, L. Buffoni, and J.-C. Houdebine, “Syntax of the Figaro modeling

language.” EDF.

[169] M. Bouissou and J.-C. Houdebine, “Inconsistency detection in KB3 tools,” in ESREL

2002.

[170] P. G. Harrison, “Laplace Transform Inversion and Passage-Time Distributions in

Markov Processes,” J. Appl. Probab., vol. 27, no. 1, pp. 74–87, 1990.

[171] M. Bouissou, “A simple yet efficient acceleration technique for Monte Carlo

simulation,” in The 22nd annual European Safety and Reliability Conference ESREL,

Amsterdam, 2013.

[172] “Pumped storage hydroelectric power station.” [Online]. Available:

http://www.bbc.co.uk/bitesize/standard/physics/energy_matters/generation_of_electricity/

revision/3/.

[173] S. Kriaa, M. Bouissou, and Y. Laarouchi, “SCADA Safety and Security joint modeling

(S-cube): case study of a dam,” in Proceedings of the 22th Computer & Electronics Security

Applications Rendez-vous (C&ESAR’2015), Rennes, France, 2015, pp. 55–69.

[174] Rogers and Watkins, “Overview of the Taum Sauk Pumped Storage Power Plant Upper

Reservoir Failure,” 6th Int. Conf. on Case Histories in Geotechnical engineering,

Arlington, VA, 11-Aug-2008.

[175] Before the public service commission, state of Missouri, “Staff’s initial incident

report.,” Case No. ES-2007-0474, Oct. 2007.

[176] FERC Taum Sauk Investigation Team, “Report of Findings on the Overtopping and

Embankment Breach of the Upper Dam - Taum Sauk Pumped Storage Project,” FERC No.

2277, Apr. 2006.

[177] N. Pedroni, E. Zio, E. Ferrario, A. Pasanisi, and M. Couplet, “Hierarchical propagation

of probabilistic and non-probabilistic uncertainty in the parameters of a risk model,”

Comput. Struct., vol. 126, pp. 199–213, Sep. 2013.

	Abbreviations and Acronyms
	Introduction
	Chapter 1
	1 Safety and Security in ICS: issues & challenges
	1.1 Safety and Security definitions and interdependencies
	1.1.1 Merging safety and security: a common challenge for numerous industries
	1.1.2 Terminology
	1.1.3 Similarities and differences between safety and security
	1.1.4 Interdependencies between safety and security

	1.2 Industrial Control Systems: specificities and requirements
	1.2.1 ICS: definitions and Enterprise architecture topology
	1.2.2 ICS specificities and security challenges

	1.3 Safety and security standards for Industrial (Control) Systems
	1.3.1 Safety standards
	1.3.2 Security standards
	1.3.3 Safety and Security standards initiatives

	1.4 Conclusion

	Chapter 2
	2 Design and operational approaches integrating safety and security: state of the art, classification and critical analysis
	2.1 Classification criteria
	2.1.1 Unification vs. Integration approaches
	2.1.2 Design vs. Operational approaches
	2.1.3 Qualitative vs. quantitative approaches

	2.2 Process-oriented approaches
	2.2.1 Unification approaches
	2.2.2 Integration approaches

	2.3 Model based approaches
	2.3.1 Graphical modeling approaches
	2.3.1.1 Semi-formal safety/security cases
	2.3.1.2 Fault/attack tree based approaches
	2.3.1.3 Petri net based approaches
	2.3.1.4 Bayesian belief network based approaches
	2.3.1.5 UML based approaches
	2.3.1.6 Model-based system engineering (MBSE) methods
	2.3.1.7 AADL
	2.3.1.8 Formal verification methods
	2.3.1.9 Approaches for electrical networks

	2.3.2 Non-graphical modeling approaches
	2.3.2.1 Non-formal approaches
	2.3.2.2 Formal verification approaches
	2.3.2.3 STPA-sec

	2.4 Critical Analysis
	2.4.1 A canonical life-cycle integrating safety and security
	2.4.2 Analysis of the different approaches identified
	2.4.3 Discussion

	Chapter 3
	3 Modeling safety and security with Boolean logic Driven Markov Processes
	3.1 Previous work
	3.1.1 Modeling safety with BDMP
	3.1.2 Modeling security with BDMP
	3.1.3 Modeling safety and security with BDMP
	3.1.4 The KB3 workbench
	3.1.4.1 KB3 and Knowledge Bases
	3.1.4.2 Quantification Tools: Figseq and Yams

	3.2 Modeling real attacks and complex systems
	3.2.1 Modeling the Stuxnet attack with BDMP
	3.2.1.1 Stuxnet attack overview
	3.2.1.2 Network architecture of the industrial site
	3.2.1.3 Stuxnet dynamics
	3.2.1.4 Stuxnet modeling with BDMP
	3.2.1.5 Quantitative and qualitative risk analysis
	3.2.1.6 Comparison with existing Stuxnet models
	3.2.1.7 Conclusion

	3.2.2 Modeling safety and security interdependencies
	3.2.2.1 System architecture description
	3.2.2.2 System modeling with BDMP
	3.2.2.3 Qualitative and quantitative risk analysis
	3.2.2.4 Safety and security interdependencies
	3.2.2.5 Conclusion

	3.3 Comparison of BDMP with the CHASSIS method Modeling
	3.3.1 Preparing the comparison
	3.3.1.1 Pre-study of the approaches
	3.3.1.2 Conducting a case study for the comparison

	3.3.2 Comparing the model elements
	3.3.3 Qualitative comparison of the sequences
	3.3.4 The BDMP model
	3.3.5 The CHASSIS model
	3.3.5.1 Misuse cases
	3.3.5.2 Misuse sequence diagrams
	3.3.5.3 Failure sequence diagrams

	3.3.6 Results of the comparison
	3.3.6.1 Comparing the modeling elements
	3.3.6.2 Qualitative comparison of sequences

	3.3.7 Experiences with applying the two approaches
	3.3.7.1 BDMP and CHASSIS in a risk evaluation process
	3.3.7.2 Combining BDMP and CHASSIS

	3.3.8 Conclusion

	3.4 Discussion on BDMP

	Chapter 4
	4 The S-cube approach: a model-based approach for SCADA Safety and Security joint modeling
	4.1 Existing safety and security domain specific languages
	4.1.1 Security domain DSLs
	4.1.1.1 The Cyber Security Modeling Language (CySeMoL)
	4.1.1.2 Multihost, multistage Vulnerability AnaLysis (MulVAL)

	4.1.2 Safety domain DSLs

	4.2 The S-cube approach: principle and stakeholders
	4.2.1 Principle of the S-cube approach
	4.2.2 Stakeholders

	4.3 The S-cube Knowledge Base
	4.3.1 Rationale
	4.3.1.1 Modeling the different enterprise levels
	4.3.1.2 Modeling the network zones
	4.3.1.3 Modeling the hardware/software system components
	4.3.1.4 Modeling control data flows

	4.3.2 Metamodel
	4.3.3 Taxonomy of attacks

	4.4 Qualitative aspects in the S-cube KB
	4.4.1 Failure modes and repair
	4.4.1.1 Failure in operation (independent events)
	4.4.1.2 Common cause failures (dependent events)
	4.4.1.3 Repair actions

	4.4.2 Attack steps
	4.4.3 Attack and failure scenarios generation

	4.5 Quantitative aspects in the S-cube KB
	4.5.1 Safety metrics
	4.5.1.1 Independent accidental failures
	4.5.1.2 Common Cause Failures
	4.5.1.3 Assumptions for the S-cube KB

	4.5.2 Security metrics
	4.5.2.1 Related work
	4.5.2.2 The Common Vulnerability Scoring System
	4.5.2.3 Assumptions for the S-cube KB

	4.5.3 Discussion

	4.6 Implementation & Tool chain
	4.6.1 The Figaro language
	4.6.2 Tool chain

	4.7 Conclusions

	Chapter 5
	5 S-cube application on case studies
	5.1 Modeling corporate networks
	5.1.1 Description of the case study
	5.1.2 Qualitative and quantitative risk analysis
	5.1.3 Conclusions and enhancement

	5.2 Modeling a hydroelectric ICS: variant 1
	5.2.1 Overview on the Taum Sauk upper reservoir failure
	5.2.2 Description of the case study architecture
	5.2.3 The graphical model
	5.2.4 Pure safety risk analysis
	5.2.5 Safety and security joint risk analysis
	5.2.5.1 Short mission time with an attack at t=0
	5.2.5.2 Long mission time without attack at t=0

	5.2.6 Conclusions on case study variant 1

	5.3 Modeling a hydroelectric ICS: variant 2
	5.3.1 The graphical model
	5.3.2 Pure safety risk analysis
	5.3.3 Joint safety and security risk analysis
	5.3.3.1 Short mission time with an attack at t=0
	5.3.3.2 Long mission time without attack at t=0

	5.3.4 Conclusions on variant 2

	5.4 Comparison between the two variants
	5.4.1 Pure safety analysis
	5.4.2 Joint safety and security analysis
	5.4.3 Safety and security interdependencies

	5.5 Conclusion

	Chapter 6
	6 Conclusions & Perspectives
	6.1 Conclusions
	6.2 Perspectives

	Annex 1: BDMP models of the Stuxnet attack
	Annex 2: Individual description of classes
	Annex 3: Assumptions on the quantitative metrics for the use case: pumped storage plant
	References

