
HAL Id: tel-01318156
https://theses.hal.science/tel-01318156v1

Submitted on 19 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructing Semantically Sound Object-Logics for
UML/OCL Based Domain-Specific Languages

Frédéric Tuong

To cite this version:
Frédéric Tuong. Constructing Semantically Sound Object-Logics for UML/OCL Based Domain-
Specific Languages. Programming Languages [cs.PL]. Université Paris Saclay (COmUE), 2016. En-
glish. �NNT : 2016SACLS085�. �tel-01318156�

https://theses.hal.science/tel-01318156v1
https://hal.archives-ouvertes.fr


NNT: 2016SACLS085

THÈSE DE DOCTORAT
DE

L'UNIVERSITÉ PARIS-SACLAY

PRÉPARÉE À
L'UNIVERSITÉ PARIS-SUD

ÉCOLE DOCTORALE N° 580
Sciences et Technologies de l'Information et de la Communication

Spécialité de Doctorat : Informatique

Par

M. Frédéric TUONG

Constructing Semantically Sound Object-Logics
for UML/OCL Based Domain-Specific Languages

Thèse présentée et soutenue à Orsay, le 6 avril 2016 :

Composition du jury :

M. Stéphane MAAG Professeur, Télécom SudParis Président
Mme Catherine DUBOIS Professeur, ENSIIE Rapporteur
M. Bernhard RUMPE Professeur, RWTH Aachen University Rapporteur
M. Achim D. BRUCKER Maître de Conférences, University of Sheffield Examinateur
M. Safouan TAHA Maître de Conférences, CentraleSupélec Examinateur
M. Burkhart WOLFF Professeur, LRI Directeur de thèse



Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France



Remerciements
@ Stéphane Maag, Catherine Dubois, Bernhard Rumpe, Achim D.
Brucker, Safouan Taha, Burkhart Wolff

Je souhaiterais naturellement adresser à Burkhart Wolff, mon directeur de thèse
mes sincères remerciements. Depuis le début de ce doctorat, ses conseils et ses
encouragements m’ont permis de faire grandement évolué ces travaux de thèse,
jusqu’à terminer sereinement ce manuscrit. Je suis très fier du résultat, à mon avis,
il a réussi à me transmettre les bonnes bases pour bien continuer, en le félicitant,
j’aimerais le remercier avant tout !

Merci à l’ensemble des membres du jury ! Merci à Catherine Dubois et
Bernhard Rumpe mes deux rapporteurs de thèse qui ont attentivement examiné
les travaux de cette thèse et donné leurs avis favorables pour la soutenance, merci
pour les remarques et les corrections du manuscrit, ainsi que les échanges qu’on
a eu plus directement, que ce soit avant la soutenance et après. Merci à Stéphane
Maag, Achim D. Brucker et Safouan Taha pour m’avoir adressé par la suite
de précieux conseils en vue de l’amélioration du manuscrit, et pour nos riches
échanges ayant lieu lors des questions d’ouverture.

@ Romain Aïssat, Thibaut Balabonski, Sergio Bezzecchi, Etienne
Borde, Frédéric Boulanger, Achim D. Brucker, Marina Egea,
Abderrahmane Feliachi, Marie-Claude Gaudel, Martin Gogolla, Fateh
Guenab, Antoine Jaouën, Chantal Keller, Ali Koudri, Zheng Li,
Delphine Longuet, Yakoub Nemouchi, Huu Nghia Nguyen, Hai
Nguyen Van, Laurent Pautet, Valentin Perrelle, Smail Rahmoun, Elie
Soubiran, Safouan Taha, Benoît Valiron, Frédéric Voisin, Makarius
Wenzel, Burkhart Wolff, Laurent Wouters, Lina Ye, Fatiha Zaïdi, ...,
FSF, VALS

Merci à vous cher(e)s collègues de FSF et VALS sans exceptions, programmer et
discuter à vos côtés au quotidien était fort agréable !

J’aimerais spécialement remercier Delphine Longuet pour nos échanges passés
lors de ce doctorat, merci pour ses conseils lors de mes séances de répétitions
d’exposés, ainsi que les diverses préparations d’articles me permettant par la suite
d’éclaircir plus en détail certains points du manuscrit présent.

J’aimerais également remercier Achim D. Brucker pour la qualité technique
des infrastructures informatiques mises à disposition, aussi bien les accès SVN que
l’environnement Jenkins, et la base bibliographique LATEX associée. Merci aussi
pour son soutien et les discussions favorisant l’inspiration et le développement de
ce travail.

Merci à l’Université Paris-Sud et à l’IRT SystemX pour la création de
ce contrat doctoral, leur collaboration, ainsi qu’au programme Investissements
d’Avenir supportant ces travaux de recherche.

@∞
Encore merci à vous ! Même si ce joker me permet maintenant d’obtenir un
document de taille raisonnable, ce symbole reflète tout à fait l’étendu des
remerciements que je tiens à vous adresser. S’il y a une boucle infinie à lancer
en profondeur (en shallow-mode), c’est effectivement maintenant.

Je remercie la succession des différents événements finalement reliés dans
un certain sens à ce doctorat, notamment l’accueil de Fabrice Le Fessant à
Inria/OCamlPro, et aussi l’accueil de Frédéric Blanqui au sein du projet FORMES.
Merci globalement à mes anciens collègues respectifs de ces équipes projets, à mes
amis et aux personnes qui m’ont encouragé à poursuivre vers un doctorat, et
forcément au-delà.

Avec une pensée particulière et chaleureuse pour mon beau-frère et ma nièce,
je voudrais à présent remercier de la meilleure façon possible mes parents et mes
deux sœurs en leur dédiant ce manuscrit.





Contents

Contents 3

1 Introduction 9
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . 18

2 Background: The Isabelle Framework 19
2.1 A Gentle Introduction to Isabelle . . . . . . . . . . . . . . . . . . 19
2.2 Higher-Order Logic (HOL) . . . . . . . . . . . . . . . . . . . . . 21
2.3 How this Thesis was Generated from Isabelle/HOL Theories . . . 26

3 Background: UML/OCL 29
3.1 UML/OCL and its Semantics . . . . . . . . . . . . . . . . . . . . 29
3.2 A Running Example for UML/OCL . . . . . . . . . . . . . . . . 33

4 Semantic Layers of Featherweight OCL 37
4.1 Denotational Semantics of Types . . . . . . . . . . . . . . . . . . 38
4.2 Denotational Semantics of Constants and Operations . . . . . . . 40
4.3 Logical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Algebraic Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 States Layer and Well Formed States . . . . . . . . . . . . . . . . 45
4.6 A Denotational Space for Class Models: The Naïve Attempt . . . 46
4.7 A Comparison to Related Work . . . . . . . . . . . . . . . . . . . 47

5 The Object-Logic Theory Generator 51
5.1 Isar_HOL as First Language (if not Meta) . . . . . . . . . . . . 52
5.2 Readability and Efficiency in Package Management . . . . . . . . 56
5.3 The Apparatus of the Reproduction Process . . . . . . . . . . . . 62
5.4 Properties of the Reproduction Process . . . . . . . . . . . . . . 71

6 Meta Theorem Proving in HOL-OCL 2.0 77
6.1 Modelling in deep and Executing in shallow . . . . . . . . . . . . 77
6.2 Testing deep-Certificates Before Checking Proofs . . . . . . . . . 82
6.3 Higher-Order Meta-Commands . . . . . . . . . . . . . . . . . . . 85
6.4 Lazy Meta-Commands . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 Obfuscated Meta-Commands . . . . . . . . . . . . . . . . . . . . 94

7 Object-Oriented Datatype Theories 101
7.1 Class Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 A Denotational Space for Class Models . . . . . . . . . . . . . . . 106
7.3 Denotational Semantics of Accessors on Objects and Associations 109
7.4 Tests for Types and Casts . . . . . . . . . . . . . . . . . . . . . . 113
7.5 Tests for Kinds and Casts . . . . . . . . . . . . . . . . . . . . . . 116
7.6 Access to the Global State . . . . . . . . . . . . . . . . . . . . . . 122

3



4 CONTENTS

7.7 A Comparison to Related Work . . . . . . . . . . . . . . . . . . . 123

8 Case Study 125
8.1 Corner Cases of Path Expressions . . . . . . . . . . . . . . . . . . 125
8.2 Specification Analysis of the Flight Model . . . . . . . . . . . . . 127
8.3 Mega Theorem Proving: Kilo in Practice, Giga in View . . . . . 136

9 Conclusion 141

A The Flight Model (Modelled by Hand) 145

B The Flight Model (Generated Theory, Floor 1) 157
B.1 Enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
B.2 Class Model: The Construction of the Object Universe . . . . . . 157
B.3 Class Model: Instantiation of the Generic Strict Equality . . . . 159
B.4 Class Model: OclAsType . . . . . . . . . . . . . . . . . . . . . . . 159
B.5 Class Model: OclIsTypeOf . . . . . . . . . . . . . . . . . . . . . . 180
B.6 Class Model: OclIsKindOf . . . . . . . . . . . . . . . . . . . . . . 207
B.7 Class Model: OclAllInstances . . . . . . . . . . . . . . . . . . . . 236
B.8 Class Model: The Accessors . . . . . . . . . . . . . . . . . . . . . 242
B.9 Class Model: Towards the Object Instances . . . . . . . . . . . . 258
B.10 Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
B.11 State (Floor 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
B.12 State (Floor 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
B.13 Transition (Floor 1) . . . . . . . . . . . . . . . . . . . . . . . . . 261
B.14 Context (Floor 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
B.15 Context (Floor 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
B.16 Context (Floor 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
B.17 Context (Floor 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
B.18 Context (Floor 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
B.19 Context (Floor 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

C The Flight Model (Generated Theory, Floor 2) 263
C.1 State (Floor 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
C.2 Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
C.3 State (Floor 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
C.4 Transition (Floor 2) . . . . . . . . . . . . . . . . . . . . . . . . . 278

D HOL-OCL 2.0: The Overall Architecture 283

E HOL-OCL 2.0: Defining Meta-Models 287
E.1 OCL Meta-Model aka. AST definition of OCL (I) . . . . . . . . 287
E.2 Translation of AST . . . . . . . . . . . . . . . . . . . . . . . . . . 294
E.3 OCL Meta-Model aka. AST definition of OCL (II) . . . . . . . . 298
E.4 Regrouping Together All Existing Meta-Models . . . . . . . . . . 300

F HOL-OCL 2.0: Translating Meta-Models 305
F.1 General Environment for the Translation: Conclusion . . . . . . 305

G HOL-OCL 2.0: Parsing Meta-Models 313



CONTENTS 5

G.1 Instantiating the Parser of OCL (I) . . . . . . . . . . . . . . . . . 313
G.2 Instantiating the Parser of OCL (II) . . . . . . . . . . . . . . . . 317
G.3 Instantiating the Parser of META . . . . . . . . . . . . . . . . . 318
G.4 Finalizing the Parser . . . . . . . . . . . . . . . . . . . . . . . . . 320

H HOL-OCL 2.0: Printing Meta-Models 325
H.1 Instantiating the Printer for OCL (I) . . . . . . . . . . . . . . . . 325
H.2 Instantiating the Printer for OCL (II) . . . . . . . . . . . . . . . 326
H.3 Instantiating the Printer for META . . . . . . . . . . . . . . . . . 327
H.4 Finalizing the Printer . . . . . . . . . . . . . . . . . . . . . . . . 329
H.5 Miscellaneous: Garbage Collection of Notations . . . . . . . . . . 330

I HOL-OCL 2.0: Syntax Diagrams of Commands 331
I.1 Main Setup of Meta Commands . . . . . . . . . . . . . . . . . . . 331
I.2 All Meta Commands of UML/OCL . . . . . . . . . . . . . . . . . 333
I.3 UML/OCL: Type System . . . . . . . . . . . . . . . . . . . . . . 338
I.4 UML/OCL: Lazy Identity Combinator . . . . . . . . . . . . . . . 341

J HOL-OCL 2.0: Grammar of Featherweight OCL 343

K Defining Isar_HOL syntax “from null” 351

Bibliography 355





Abstract
Object-based and object-oriented specification languages (like UML/OCL, JML,
Spec#, or Eiffel) allow for the creation and destruction, casting and test for
dynamic types of statically typed objects. On this basis, class invariants and
operation contracts can be expressed; the latter represent the key elements of
object-oriented specifications. A formal semantics of object-oriented data struc-
tures is complex: imprecise descriptions can often imply different interpretations
in resulting tools.

In this thesis we demonstrate how to turn a modern proof environment into a
meta-tool for definition and analysis of formal semantics of object-oriented spec-
ification languages. Given a representation of a particular language embedded
in Isabelle/HOL, we build for this language an extended Isabelle environment
by using a particular method of code generation, which actually involves sev-
eral variants of code generation. The result supports the asynchronous editing,
type-checking, and formal deduction activities, all “inherited” from Isabelle.

Following this method, we obtain an object-oriented modelling tool for tex-
tual UML/OCL. We also integrate certain idioms not necessarily present in
UML/OCL— in other words, we develop support for domain-specific dialects of
UML/OCL.

As a meta construction, we define a meta-model of a part of UML/OCL in
HOL, a meta-model of a part of the Isabelle API in HOL, and a translation
function between both in HOL. The meta-tool will then exploit two kinds of
code generation to produce either fairly efficient code, or fairly readable code.
Thus, this provides two animation modes to inspect in more detail the semantics
of a language being embedded: by loading at a native speed its semantics, or
just delay at another “meta”-level the previous experimentation for another type-
checking time in Isabelle, be it for performance, testing or prototyping reasons.

Note that generating “fairly efficient code”, and “fairly readable code” include
the generation of tactic code that proves a collection of theorems forming an
object-oriented datatype theory from a denotational model: given a UML/OCL
class model, the proof of the relevant properties for casts, type-tests, constructors
and selectors are automatically processed. This functionality is similar to the
datatype theory packages in other provers of the HOL family, except that some
motivations have conducted the present work to program high-level tactics in
HOL itself.

This work takes into account the most recent developments of the UML/OCL
2.5 standard. Therefore, all UML/OCL types including the logic types distinguish
two different exception elements: invalid (exception) and null (non-existing
element). This has far-reaching consequences on both the logical and algebraic
properties of object-oriented data structures resulting from class models.

Since our construction is reduced to a sequence of conservative theory ex-
tensions, the approach can guarantee logical soundness for the entire considered
language, and provides a methodology to soundly extend domain-specific lan-
guages.



8 CONTENTS

Keywords
Object-oriented Data Structures, Path Expressions, Featherweight OCL, Null,
Invalid, Formal Semantics, Isabelle, Reflection, UML, OCL.



C
h

a
p

t
e

r

1
Introduction

Reproduction of goods and objects in assembly lines has lead to major turning
points throughout centuries in mankind history. As a well-known wonder of the
Anciant World, we only cite the Great Pyramid of Giza, still internally com-
posed of an estimated two million of smaller blocks. The total assembling took
decades of manual work. Following the first and second Industrial Revolutions,
constructions by hand, be it collaborative, have become all the more assisted by
machines to save labour and workforce. Computers are at the heart of recent
major inventions, to assist mankind when conceiving objects, to appropriately
control machines and automate other technical artifacts of our lives. With the
gigantic amount of calculations that can be routinely handled in recent calcu-
lators, this resulted a modern form of industrial revolution: the “Information
Age”, as called by science historians.

Objects we daily encounter and manipulate have certain properties and char-
acteristics that must precisely be taken into account in form of a model before
they can be treated by a computer. Indeed, objects are the basis of much larger
concepts in many intellectual domains: ranging from abstract objects to concrete
objects, biological animated objects, physical objects in experimental sciences,
or as opposed to subjects in philosophy, if not mentioning objects of desire. Be-
cause building a car does not require the same chemical components as that of
a train, models include as fundamental information the characteristic of manip-
ulated objects, called attributes, as well as the operations or set of actions that
objects are supposed to support or not.

The sub-discipline of informatics treating the design, the programming and
the analysis of computer systems interacting with objects of the real world is
called embedded systems. It is most relevant in domains where objects are embed-
ding one or more (physical) computing objects. Examples are avionics, railway
and automotive systems, medical devices like pace-makers, but can also be found
in multifunction smartphone technology.

As example, consider the excerpt Figure 1.1 drawn from a system specifi-
cation, by courtesy of Alstom, that we heavily abstracted for the purpose of
this presentation. From this quite exemplary system design document used in
industrial practice, one can draw for the corresponding model the following in-
formation: there are trains (with the orientation as attribute) containing doors
(with an index number, besides the possibility to be opened or closed).

9



10 CHAPTER 1. INTRODUCTION

                   2                 4                6                8

E1                                                                                      E2

                   1                 3                5                7

Element orientation

[...] Train doors indexing for a single unit train:
The convention for RSD indexing on a single unit train is the following: In the
single train element reference (oriented in the direction E2→ E1):

• Side A (left) has odd indexes,

• Side B (right) has even indexes,

• Index N°1 corresponds to the first doors (closest to the element front
extremity E1) on the left,

• Index N°2 corresponds to the first doors (closest to the element front
extremity E1) on the right.

Figure 1.1: Train element

Element orientation

                   2                 4                6

       E1                                               E2

                   1                 3                5

Element orientation

                   5                 3                1

             E2                                                E1

                   6                 4                2

      

      

Whole train orientation

                   2                 4                6                8                10               12

                   1                 3                5                7                 9                11

[...] Train doors indexing for a multiple unit train:
The convention for RSD indexing on a multiple unit train is the same as for
a single unit train, but for the reference which is the whole train, with the
orientation of the train performing the process.

Figure 1.2: A train in a platform



11

Later on, the system design document of Figure 1.2 continues to describe
the geometry of a train located in a platform of a railway station, and under
which condition both match (which is an operation in the sense above). Thus,
security critical operations like “open_doors” can be modelled, analysed and
implemented in the train control system.

From the above said, one can conclude two observations:

1. It would be hopeless and useless to represent all properties of objects in a
corresponding model that a computer can handle: in the railway network,
if the goal is to estimate the number of running trains, including only
locomotives and magnetic trains, then trains running on different networks
or with other characteristics have to be ignored, so the color, number of
wheels, and weight are for instance irrelevant. Thus, models are necessarily
deliberately conceived as abstractions of the physical world, implying that
in one system, one may actually have several abstractions of one physical
object a system has to deal with.

2. The notion of object as modelling entity comes with the notion of a class.
Objects belonging to a class have a number of attributes and character-
istics in common, and this allows operations to work uniformly on them,
i. e. in a type safe manner. (The notion of type and type-safeness will be
substantially refined in the subsequent chapters.) Moreover, even classes
have a number of attributes and characteristics in common: the class of
doors could be divided into several subclasses: manual doors, automatic
doors, emergency doors, etc... It is desirable that this particular relation-
ship between classes, called inheritance, is technically supported in models
which are organized in this object-oriented way.

Object-oriented modelling has seen its birth in the late sixties in the context
of programming languages for computers, i. e. specific formal languages that are
suited to be processed and executed by computers. The language Simula [DN66]
is usually seen as the ancestor of this development, which led over languages
such as Smalltalk [Kay93] to the current mainstream languages Java [AGH00]
and C++ [Str86] to recent offsprings such as Scala [Oa04] and Swift [App16].

The growing influence of these languages in informatics raised the need of lan-
guages, that are not necessarily executable on a computer. Rather, the emphasis
is again on modelling: modelling embedded systems, as well as the possibility to
analyse systems and programs before they are actually implemented. This way,
languages can be used to analyse if critical operations (like “open_doors”) can
actually be described in an unambiguous way and does not lead to undesired
consequences.

Describing critical operations in an unambiguous way is all the more easy if
the language rejects the possibility to form absurd sentences, where for example
critical operations and non-critical operations are considered in a sentence as
equivalent. This is especially fundamental for modelling languages, which are
evolving in many forms to appropriately capture the description of new phe-
nomena, and to enounce problems in a more suitable context than another. The
generalization goes to languages supporting mathematical shapes and geome-
try, languages used to assert properties on objects of the real world, and simply
speaking human communication languages, whenever they are dealing with log-
ical sentences.



12 CHAPTER 1. INTRODUCTION

To determine the truth of a logical sentence, one can exploit a particular
class of software for this task: a proving system comes with some specialized
utilities to perform logical reasoning, so to fundamentally prove theorems as in
mathematics. Their ability to state theorems depends on a small core environ-
ment, or logical framework, which is small enough to be understood by logicians.
Pragmatically, higher-order logic (HOL) is built on top of the small core, and
constitutes one of the many variations of object-logics enabling to tackle modern
problems in mathematics.

Logical frameworks are particularly suitable to be extended with new object-
logics, depending on the domain-specific problem one is encountering during the
modelling activity. Logically safe extensionality has been a key feature of in-
teractive theorem proving (ITP) systems in the HOL family, which goes back
to the influential LCF system in 1979 [GMW79]. This goal motivated key prin-
ciples like correctness by construction for primitive inferences in a fairly small
kernel, flexible programmability in userspace via ML protecting this kernel by its
type discipline, and top-level command interaction allowing for the development
of layers of commands over this kernel. The principle of extensionality is still
maintained in ITP systems like Coq [BC04] and Isabelle [NPW09], which offer an
own, more high-level command language interface such as Gallina (Coq) [Hue92]
and Isar (Isabelle) [Wen02]. Extensionality leveraged the scalability of the def-
initional principles of the LCF approach, paving the way for specific support of
specification constructs for, e. g., datatypes or recursive function definitions.

Support implementations for such constructs are called packages. (To our
knowledge, the term was first used for a datatype package described in Thomas
F. Melham’s work [Mel91].) A package takes a piece of (abstract) syntax, for ex-
ample the following datatype command defines natural numbers in Isabelle/HOL:

datatype Nat = 0 | Suc Nat

This datatype triggers the generation of a datatype theory, i. e., a collection of
definitions and logical rules, which are HOL theorems. This datatype comprises
the declaration of the type Nat, the constants 0 and the inductive closure of
naturals formed with the successor Suc, as well as the rules 0 6= Sucx (distinct-
ness), Suc y = Sucx =⇒ y = x (injectivity), induction etc., with one word: the
Peano axioms. In our system of reference Isabelle/HOL, this datatype theory is
automatically generated from the syntax above, together with a number of rules
allowing for efficient code generation or automatic proof support. These datatype
theories are in many systems like Spec# [BLS05], Dafny [KL12], ACSL [BCF+13],
or JML [LPC+13] generated as a collection of declarations and axiomatisations
of its rules; in contrast, Isabelle/HOL, following the tradition of LCF-like systems
like HOL Light [Har14] and HOL4 [NS14], derives these rules by defining the con-
structors 0 and Suc as functions on a Lisp-like S-Expression universe [McC65],
i. e., by giving the constructors a denotational semantics rich enough to serve as
a model for the datatype theories.

Writing packages is a highly complex task which is mastered only by a handful
of engineers behind the different HOL systems. In this thesis, however, we address
the issues of building packages to support, by a series of packages, an entire
formal method behind a domain specific language L (we will describe after),
beyond the necessary prerequisite of getting its semantics right. We aim at
building tools that provide a domain specific formal environment of development



13

for the embedded language, so that domain experts of L have to only acquaint a
semantically sound subset of L to use the resulting tool. Simultaneously, other
domain experts could be interested to practice automated reasoning on L by
only programming with the theorem prover where the tool is relying on. To this
end, we demonstrate what technical mechanisms and abstractions of the Isabelle
framework can be combined to the construction of such multidisciplinary tool.
The choice of the Isabelle framework is also due to its rapid evolution in the last
ten years, which might influence other systems to use similar mechanisms (for
example, the Paral-ITP Isabelle/Coq project1 [BTT15]).

In this thesis, we instantiate the resulting formal method tool, to ad-
dress in parallel a key problem of defining formal semantics for object-oriented
programming languages and specification languages semantics, namely the
representation of the underlying object-oriented datatype theory. By object-
oriented datatype theory, we mean a set of rules related with the foundation
of object-oriented languages, like class definitions as in the following Java code:
class A {

char s;
A(){

...
}

}

class C1
extends A {
int a;
C1() {

...
}

}

class C2
extends A {
boolean b;
C2() {

...
}

}

These class definitions must be semantically represented in a “background
theory” in systems like Spec#, JML, or Dafny. This formal theory reflecting
the semantics of this code will comprise the type declaration A, C1 and C2,
definitions of constructor functions must be given (representing the effect of
object creation as in C1 c = new C1();) as well as cast operations (such as
A a = (A) c) that can change the static type of an object to make it acceptable
to interfaces requiring an A object; these coercions are usually inserted by the
compiler (as in A d = c;) but have to be declared and defined for a formal
treatment in a verification environment. Moreover, there are operations that
test the dynamic type of an object, i. e., the type under which it is dynamically
created.2 In Java, this test is written d instanceof C1 which will thus yield
true, while the static type of d is of course A. Together with the accessor (or
destructor) functions to fields in objects like d.s, this results in a quite rich
theory, with logical rules like: (X instanceof C1) 6⇐⇒ (X instanceof C2) or
((C1)(A)Y ) = Y , i. e., “an object Y cast up and down again semantically equals
to itself.” Here, Y is a free variable, for which a Milner style type-inference will
infer the type C1 since the logical equality _ = _ has type α⇒ α⇒ bool. This
“upcast downcast” property is vital in object-oriented datatype theories, e. g.,
for the implementation of generics in Java. In the following code:

ArrayList <A> elements = new ArrayList < >();
elements .add(c);

1http://paral-itp.lri.fr/
2In the Java documentation, the dynamic type is called “actual type” in contrast to the

static type referred as “apparent type”.

http://paral-itp.lri.fr/


14 CHAPTER 1. INTRODUCTION

c is not only cast up to A, but to Object and casts back to A again during the
access, so elements.get(i) has the static type A. It turns out that object-
oriented datatype theories are amazingly complex for fairly small class systems.

1.1 Contributions

As a basis for this work, we demonstrate for a particular formal method how in
the Isabelle framework a formal method tool can be constructed. We developed
a machine checked semantics for a large fragment of the Object Constraint Lan-
guage OCL [Obj12] in the interactive theorem prover Isabelle/HOL [NPW09]. The
result, called HOL-OCL 2.0 (which is a successor of HOL-OCL [BW08a, BDW06c,
BW02a]), supports OCL specifications over UML class models using a textual
notation. HOL-OCL 2.0 as a tool is based on a library defining its core semantic
concepts called Featherweight OCL [BTW14], which also serves as basis for the
ongoing OCL 2.5 standardisation at the OMG. Our formalisation already helped
to find inconsistencies, e.g. in the semantics of the logical connectives, that are
fixed in the last update of the standard. The opportunity to influence the stan-
dardisation of an object-oriented language that is widely used in industry is not
the only motivation for choosing UML/OCL as basis for our work. We understand
UML/OCL as a representative of a large family of object-oriented languages and,
thus, our work provides a generic technique for formalising object-oriented lan-
guages as well as insights into properties of object-oriented systems in general.
In particular, UML/OCL provides

1. a statically typed object model, offering a fairly “conventional” object-
oriented datatype theory;

2. associations, two state interpretations of paths, and the distinction between
strict and non-strict exceptional elements;

3. a compromise between an object-oriented specification and a programming
language, that can be easily compiled to other members of the object-
oriented language family.

Our tool HOL-OCL 2.0 addresses the fragment in UML concerned with object-
oriented data modelling. HOL-OCL 2.0 comes with a number of specialized pack-
ages, for instance the Class Model Package to set up the underlying object-
oriented datatype theory, or the Invariant & Operation Package supporting a
formal contract language to define methods issued from a class model. Its design
pursues several objectives, namely:

1. providing an environment for studying the semantics of the embedded
language (e. g., UML/OCL); this formal semantics is currently part of
an initiative to provide a new “Annex A” for the semantic definition of
OCL 2.5 [BTW14],

2. providing an environment for proving properties over artefacts expressed
in this domain specific language (are invariants consistent? are method
contracts implementable?), and

3. providing an environment for animation, code- and test case generation
for models expressed in UML/OCL.



1.1. CONTRIBUTIONS 15

To this end, we propose a new method to develop packages in an ITP system:
instead of writing a package in the sole implementation language, the aforemen-
tioned objectives have suggested us to take even more advantage of the overall
capacities of the ITP system. Our implementation comprises the development
of the core packaging function in HOL, the use of a code generator to convert it
to the meta-language of the ITP system, and the use of specific binding to com-
mand level syntax. Thus, the resulting tool reuses the infrastructure of the ITP
platform, such as the asynchronous front-end Prover IDE, code and documen-
tation generation facilities, and, last but not least, automated and interactive
proof support. In more detail, we provide:

1. A model (or abstract syntax) of (a part of) the Isabelle API. This model
has been published during this thesis [TW15] and can be potentially reused
by developers of other packages.

2. A model (or abstract syntax) of (a part of) UML/OCL. A simplified version
of this model has been partly published in the same document [TW15],
together with a functional working example.

3. A “compiler” mapping UML/OCL class diagrams to Isabelle/HOL definitions
and Isabelle/Isar proofs (this part is not yet published but the present
thesis will give a more detailed overview of its content).

Thus, similar to conventional datatype packages, a component is built that de-
rives the lemmas of an “object-oriented datatype theory” from a class model.
Being the basis for more abstract proofs from the problem domain, they allow
for formal code verification, refinement and test generation techniques that UML
models usually lack.

As consequence, our work can be seen as a major case study for our technique
to develop packages. From the work done, it can be safely concluded that fairly
large and complex packages can be implemented this way, without neither a
sensible penalty with respect to efficiency nor to loss of interactivity: the Prover
IDE continuous build and continuous check workflow handles as usual (without
interruptions) all proof activities in the background.

HOL-OCL 2.0: A Formal Method Tool for UML/OCL

We introduce UML/OCL by a small example of a class model together with its
class invariants and a method contract in OCL. Figure 1.3 describes a set of
clients owning bank accounts in different banks using a textual representation
that we share with other tools such as USE [GBR07]. Each account is either a
Current account or a Savings account, and belongs to exactly one bank and
one client. Clients younger than 25 years are allowed to overdraft by 250e.
Moreover, the balance of a savings account must be between 0 and max.

First, to enable OCL users to use HOL-OCL 2.0 for analysing UML/OCL speci-
fications, details of the actual embedding need to be hidden as many as possible
behind a suitable user interface. We use the flexibility of Isabelle’s Isar lan-
guage [Wen02] as well as the extensionality of the Isabelle/jEdit Prover IDE to
achieve this goal. Figure 1.5 shows the user interface of HOL-OCL 2.0 that is
based on the Isabelle/jEdit Prover IDE. A domain expert can easily define (in
the red frame of Figure 1.5) a UML/OCL model similar as Figure 1.4 using the



16 CHAPTER 1. INTRODUCTION

Class Bank
Attributes name : String

Class Client
Attributes clientname : String

address : String
age : Integer

Class Account
Attributes id : Integer

balance : Currency

Class Savings < Account
Attributes max : Currency

Context c: Savings
Inv 0 < c.max

Inv 0 <= c. balance
and c. balance <= c.max

Association clients Between
Bank [1 .. *] Role banks
Client [1 .. *] Role clients

Association bank Between
Account [1 .. *] Role b_accounts
Bank [1] Role bank

Association owner Between
Account [1 .. *] Role c_accounts
Client [1] Role owner

Class Current < Account
Attributes overdraft : Currency

Context c: Current
Inv 25 <= c. owner .age implies

c. overdraft = 250
Inv 25 > c. owner .age implies

c. overdraft = 0

Context Bank :: create ( clientname :String , age: Integer )
Pre self.clients -> forAll (c | c. clientname <> clientname or c.age <> age)
Post self.clients -> exists (c | c. clientname = clientname and c.age = age)

Figure 1.3: A simple class model with OCL constraints capturing a bank account.

Client BankAccount

Savings Current

bank

11

owner accounts

1..*1..*

1..*clients
accounts

1..*banks

max : Real overdraft : Real

name : String
balance : Real

clientname : String
address : String
age : Integer

id : Integer

Figure 1.4: A simple class model capturing a bank account

textual notation from Figure 1.3, as well as use the standard Isar commands
for theorems and proofs over this UML/OCL specification. Even the automati-
cally UML/OCL level type information is accessible to the user by hovering over
sub-expressions. Here, not only the encoded HOL types are shown, our imple-
mentation is able to show the actual OCL types which hides the complexity of
the actual embedding from the users of HOL-OCL 2.0 . Clicking on operations
inside OCL expressions allows for the navigation into their semantic definitions
in the library.

Second, to enable a high-degree of automation as well as a user friendly
syntax for defining UML/OCL models, instances of models, or proof obligation,
we implement in HOL-OCL 2.0 the following packages:

• Class Model Package for declaring a UML data model, i. e., classes, associ-
ations, aggregations, enumerations.

• Invariant & Operation Package for declaring, in the context of an already



1.1. CONTRIBUTIONS 17

(* in deep-mode: the generated content can be inspected *)

Figure 1.5: The HOL-OCL 2.0 system (user interface)

defined class model, OCL class invariants and operation contracts.

• Instance Package for declaring class instances, i. e., objects.

• State Package for grouping objects together in a common state.

• Transition Package for transition properties over a pair of pre- and post-
state.

For example, after defining our exemplary data model using the Class Model
Package (recall Figure 1.5), we can use the Instance command provided by the
Instance Package for defining objects over this class model:3

Instance S1 :: Account = ([max = 2000] :: Savings)
and C1 :: Client = [c_accounts = S1, banks = B1]
and A1 :: Account = [id = 250, owner = C1]
and B1 :: Bank = [b_accounts = [S1,A1]]

This command generates a set of definitions using the appropriate definitions in
terms of the Featherweight OCL library:

definition S1Account = mkSavings (mk EXT Savings oid3 None None) b2000c
definition S1 = ((λ_.bbS1Accountcc) :: ·Savings).oclAsType(Account)

Since the Instance command is tightly connected with the typing engine of Is-
abelle, it becomes possible to infer most of the OCL types without explicit type
annotations. For the case of Instance, even the inference of multiplicities is fully
automatic (and respect the bidirectional sense): after the type-checking stage,

3This command is not present as such in USE, instead it manipulates objects and instances
with a special imperative language.



18 CHAPTER 1. INTRODUCTION

we does not have that “C1 .c_accounts is equal to Set{ S1 }”, instead, we have
correctly that it is equal to Set{ S1 , A1 }, since C1 appears as an “owner” of
A1.

Besides definitions, HOL-OCL 2.0 packages also prove various user-defined
properties (lemmata) over the UML/OCL model. In our example, the Class Model
Package already proved that down casting an object X from the topmost class
OclAny to Savings does yield an error if X is not a subtype of Account:

lemma assumes τ 6|= X.oclIsUndefined()
assumes τ 6|= X.oclIsKindOf(Account)
shows τ |= (X :: ·OclAny).oclAsType(Savings).oclIsInvalid()

1.2 Organization of this Thesis

(Chapter 2) After a more detailed high-level introduction into the formal frame-
work Isabelle in which this work is done,

(Chapter 3) we give an introduction on object-oriented modelling in UML/OCL
and provide an in-depth comparison of UML/OCL to other object-oriented
languages such as Eiffel or JML.

Then, we present the main contributions of our work:

(Chapter 4) we introduce our tool for UML/OCL, namely HOL-OCL 2.0, with an
emphasis on Featherweight OCL, its semantic foundation,

(Chapter 5) we reveal its technical architecture and implementation based on
the Isabelle framework,

(Chapter 6) we provide several means to practice meta theorem proving and
interactive generations in HOL-OCL 2.0,

(Chapter 7) we construct the object-oriented datatype theory inside HOL, and
instantiate the resulting formal semantics issued from the tool. We give a
method to describe sub-typing semantically and embed it into languages
with Milner-style type inference.

(Chapter 8) Finally, from an end-user perspective, we evaluate our system in
a collection of medium-sized case studies, with a discussion of corner-
cases and consequences resulting from semantic decisions, in particular
with regard to the two exception elements invalid and null, and

(Chapter 9) discuss our lessons learned from following two different implementa-
tion strategies for building a formal UML/OCL tool based on Isabelle/HOL.



C
h

a
p

t
e

r

2
Background: The Isabelle Framework

2.1 A Gentle Introduction to Isabelle

Isabelle [NPW02] is a generic theorem prover. New object-logics can be intro-
duced by specifying their syntax and natural deduction inference rules. Among
many logics, Isabelle supports First-Order Logic (FOL), Zermelo-Fraenkel set
theory, and for instance Church’s Higher-Order Logic (HOL).

The core language of Isabelle is a typed λ-calculus providing a uniform term
language T in which all logical entities are represented:1

T ::= C | V | λV. T | T T

where:

• C is the set of constant symbols like operators on pairs “fst” or “snd”.
Isabelle’s syntax engine supports mixfix notation for terms. “(_ =⇒
_) A B” or “(_ + _) A B” can be parsed and respectively printed as
“A =⇒ B” or “A+B”.

• V is the set of variable symbols like x, y, z. . . Variables standing in the scope
of a λ-operator are called bound variables, all others are free variables.

• λ V. T is called a λ-abstraction, like as example the identity function
λ x. x. A λ-abstraction forms a scope for the variable V .

• T T ′ is called an application.

These concepts are not at all Isabelle specific and can be found in many modern
programming languages ranging from Haskell [HHJW07] over Python [vR07] to
Java.

Terms are associated to types by a set of type inference rules, similar to the
Hindley-Milner type system [Hin69, Mil78, DM82]. Only terms for which a type
can be inferred are considered as legal input to the Isabelle system, such terms

1In the Isabelle implementation, there are actually two further variants, they are irrelevant
for this presentation and can be therefore omitted.

19



20 CHAPTER 2. BACKGROUND: THE ISABELLE FRAMEWORK

are typed terms. The type τ of typed terms can be inductively defined:2

τ ::= TV | TV :: Ξ | τ ⇒ τ | (τ, . . . , τ) TC

• TV is the set of type variables like ′α, ′β, . . . The syntactic categories V
and TV are disjoint, thus ′x is a possible type variable.

• Ξ is a set of type-classes [WB89] like “ord”, “order”, “linorder”. . . This
feature in the Isabelle type system is inspired by Haskell type classes. A
type class constraint such as ′α :: order expresses that the type variable
′α may range over any type that has the algebraic structure of a partial
ordering (as it is configured in the Isabelle/HOL library).

• The type τ1 ⇒ τ2 denotes the total function space from τ1 to τ2.

• TC is a set of type constructors like “(′α) list” or “(′α) tree”. Again, Is-
abelle’s syntax engine supports mixfix notation for type terms: e. g. carte-
sian products ′α × ′β are understood as (′α,′ β) prod. Also null-ary type-
constructors like “() bool”, “() nat” and “() int” are possible, although the
parentheses of nullary type constructors are usually omitted.

In the following, to designate elements in TV , we will usually omit the quote “′”
symbol in front of lowercase Greek letters.

Isabelle accepts also the notation t :: τ as type assertion in the term language,
where t :: τ means “t is required to have the type τ”. The type of typed terms
can contain free type variables, like in the types of x and y when the system
is automatically inferring this term x + y = y + x. By convention, free type
variables are implicitly universally quantified.

An environment providing Ξ, TC and a map from constant symbols C to
types (built over these Ξ and TC) is called a global context. It provides a kind of
signature or a mechanism to construct the syntactic material of a logical theory.

The most basic (built-in) global context of Isabelle provides just a language
to construct logical rules. More concretely, it provides a constant declaration
for the (built-in) meta-level implication _ =⇒ _ allowing to form constructs
like A1 =⇒ · · · =⇒ An =⇒ An+1, which are viewed as a rule of the form “from
assumptions A1 to An, infer conclusion An+1” and which is written in Isabelle
syntax as:

JA1; . . . ;AnK =⇒An+1 or also usually seen as:
A1 · · · An

An+1

Moreover, the built-in meta-level quantification Forall(λx. E x), pretty-printed
and parsed as

∧
x. E x, captures the usual side-constraints “x must not occur

free in the assumptions” for quantifier rules. Meta-quantified variables can be
considered as “fresh” free variables. Meta-level quantification leads to a gener-
alization of Horn-clauses of the form:∧
x1, . . . , xm. JA1; . . . ;AnK =⇒An+1

2Our presentation is again slightly different than the Isabelle implementation to improve
readability.



2.2. HIGHER-ORDER LOGIC (HOL) 21

Isabelle supports forward and backward reasoning on rules. For backward-
reasoning, a proof-state can be initialized in a given global context and fur-
ther transformed during the proof. For example, a proof of φ, using the Is-
abelle/Isar [Wen02] language, will look as follows in Isabelle:

lemma label : φ
apply (case_tac [. . .])
apply simp_all

done

(In this document, we will sometimes simply abbreviate Isabelle/Isar as Isar.)
This proof script instructs the Isabelle system to prove φ by case distinction
followed by a simplification of all resulting proof states (“The simplifier” is de-
scribed in section 9.3 in the manual [Wen16b]). Such a proof state is a sequence
of generalized Horn-clauses (called subgoals) φ1, . . . , φn with a goal φ. Proof
states are usually represented in mathematical textbooks as:

label : φ
1. φ1

...
n. φn

Subgoals and goals may be extracted from the proof state into theorems of the
form Jφ1; . . . ;φnK =⇒ φ at any time.

By extending global contexts with theorems, axioms and proofs, we get at
the end a theory which has been constructed step by step. Beyond the basic
mechanism of extending a global context with raw types (with type constructors,
type class, constant definitions, or axioms), Isabelle offers a number of commands
that allow for more complex extensions of theories in a logically safe way, i. e., by
directly avoiding the use of axioms. In this document, we will use the same colour
for commands as they appear in Isabelle/jEdit. Although commands appear
most of the time in blue: “lemma”, “datatype”, “theory”; certain commands are
also rendered in red like apply or done. However to simplify the presentation, in
this document, the colour of commands can merely be considered as a syntactic
indication with no particular meaning (i. e., in the source code, commands are
essentially seemingly built).3

2.2 Higher-Order Logic (HOL)

Higher-Order Logic (HOL) [Chu40, And02] is a classical logic based on a simple
type system. Isabelle/HOL is a theory extension of the basic Isabelle core lan-
guage with operators and the seven axioms of HOL. Together with large libraries,
the overall constitutes an implementation of HOL. (Thus we will sometimes sim-
ply abbreviate Isabelle/HOL by HOL in this document.) Isabelle/HOL provides
the usual logical connectives like _ ∧ _, _→_, ¬_ as well as the object logical
quantifiers ∀x. P x and ∃x. P x. In contrast to FOL, quantifiers may range over
arbitrary types, including total functions f :: τ1 ⇒ τ2. HOL is centered around

3Although the command end is normally rendered in green, to avoid potential confusions
we will depict it in black and in bold format, mostly in Chapter 5 and Chapter 6: so “end”.



22 CHAPTER 2. BACKGROUND: THE ISABELLE FRAMEWORK

extensional equality _ = _ :: α ⇒ α ⇒ bool. Extensional equality means that
two functions f and g are equal if and only if they are point-wise equal. This is
captured by the rule: (

∧
x. f x = g x) =⇒ f = g. HOL is more expressive than

FOL, since among many other things, induction schemes can be expressed inside
the logic. For example, the standard induction rule on natural numbers in HOL:

P 0 =⇒ (
∧

x. P x =⇒ P (x+ 1)) =⇒ P x

is just an ordinary rule in Isabelle which is in fact a proven theorem in the theory
of natural numbers. This example exemplifies an important design principle
of Isabelle: theorems and rules are technically the same, paving the way to
derived rules and automated decision procedures based on them. This has the
consequence that these procedures are consequently sound by construction with
respect to their logical aspects (they may be incomplete or failing, though).

On the one hand, Isabelle/HOL can be viewed as a functional programming
language like SML [Mil97] or Haskell, by reading Isabelle/HOL definitions as one
is reading any declarations in a functional programming language, i. e. by
omitting the reading of Isar proof scripts. Conversely, type definitions in a
functional programming language can be viewed as formulae part of the speci-
fication language of Isabelle/HOL. Generally in this document, we will simply
abbreviate elements belonging to the Isabelle/Isar language or the Isabelle/HOL
language as just Isabelle/Isar_HOL (or Isar_HOL).

Isabelle/HOL offers support for a particular methodology to extend given the-
ories in a logically safe way: a theory extension is conservative if the provability
of a formula in the extended theory is the same as in the original theory. Then
the consistency of an extended theory depends on the consistency of the original
one. Conservative extensions apply to different families of definitions: constant
definitions, type definitions, datatype definitions, primitive recursive definitions
and well founded recursive definitions.

Embedding a language L into an object-logic like HOL consists to assimilate
the largest possible subset of L as integral constituent of the object-logic. Con-
sequently, the aim is to maximize the support of L in an unambiguous way, as-
suming the trust one might have on the object-logic. Trust also depends on how
embeddings are performed. Deep embedding and shallow embedding are seen as
the two possible complementary method of embedding for a language [BGG+93].
Generally, using shallow embeddings for a formal specification or programming
language in HOL is by no means a new technique [JS94, ACM94, BRW03, BW09].
Over the years, a substantial body of languages and tools have been developed
along this line, which have seen substantial applications—we cite only the current
flagships of this development Isabelle/SIMPL [Sch08] and the seL4 verification
project [KAE+10].

Some Libraries and Operations of Isabelle/HOL
Isabelle/HOL provides a large collection of theories like sets, lists, orderings, and
various arithmetic theories. Theories only contain rules derived from conserva-
tive definitions. As an example of conservative extension, the library includes
the type constructor τ⊥ := ⊥|x_ :: αy that assigns to each type τ a type τ⊥
disjointly extended by the exceptional element ⊥. The function p_q :: α⊥ ⇒ α is
the inverse of x_y (it is unspecified for ⊥). Partial functions α⇀β are defined as



2.2. HIGHER-ORDER LOGIC (HOL) 23

functions α⇒ β⊥ supporting the usual concepts of domain “dom _” and range
“ran _”.

As another example, typed sets are conservatively built in the Isabelle li-
braries on top of the kernel of HOL as functions to bool. Consequently, the
constant definitions for membership is as follows:4

type_synonym α set = α⇒ bool
definition Collect :: (α⇒ bool)⇒ α set — set comprehension
where Collect S ≡ S
definition member :: α⇒ α set⇒ bool — membership test
where member s S ≡ Ss

Isabelle’s syntax engine is instructed to accept the notation {x | P} for
Collect (λx. P ) and the notation s ∈ S for member s S. As it can be inferred
from the example, constant definitions are axioms that introduce a fresh con-
stant symbol (which must not be based on a recursive expression, or having free
variables). This type of axiom is logically safe since it works like an abbreviation.
The syntactic side conditions of so-introduced axioms are mechanically checked.
Then it becomes straightforward to express the usual operations on sets as con-
servative extensions too, like for example _ ∪_, _ ∩_ :: α set⇒ α set⇒ α set.

Similarly, a set of logical rules are “compiled” from the following statements,
which introduce the types option and list:

datatype α option = None | Some α
datatype α list = Nil (“[]”) | Cons α “α list” (infixr “#” 65)

Here “[]” or “_#_” are an alternative syntax for Nil or Cons a l. Moreover,
the commands syntax and translations [Wen16b] can additionally (recursively)
define [a, b, c] as an alternative syntax for a#b#c#[]. Besides the constructors
None, Some, [] and Cons, there is the matching operation to conditionally return
a term by case analysis provided a general term x, whose type has been defined
with datatype, as example:

case x of None ⇒ F | Some a⇒G a

The datatype package automatically derives a set of properties in front of each
command datatype [BW99, BHL+14, BDP+16]. One way to understand this
command is to view it as a kind of macro (albeit its syntax is inspired by func-
tional programming languages), which generates a number of constant definitions
and theorems from the type declaration option or list. So the generated lemmas
are also implicitly proved in the background, this command constructs a model
of the constructors and derive its properties:

(case [] of []⇒ F | (a#r)⇒ G a r) = F
(case b#t of []⇒ F | (a#r)⇒ G a r) = G b t
[] 6= a#t – distinctness
(a = [] =⇒ P ) =⇒ (

∧
x t. a = x#t =⇒ P ) =⇒ P – exhaust

P [] =⇒ (
∧
a t. P t =⇒ P (a#t)) =⇒ P x – induct

4To increase readability, we use a slightly simplified presentation. The complete details
can be inspected in $ISABELLE_HOME/src/HOL/Set.thy (in Isabelle version 2016).



24 CHAPTER 2. BACKGROUND: THE ISABELLE FRAMEWORK

Besides datatype, other packages are natively present when starting Isabelle.
For example the fun command serves to define well-founded recursive func-
tions [Kra06, Kra16]. Thus, we may define the sort operation on linearly ordered
lists as follows:

fun ins ::[α :: linorder, α list]⇒ α list
where ins x [ ] = [x]

ins x (y#ys) = if x < y then x#y#ys else y#(ins x ys)
fun sort ::(α :: linorder) list⇒ α list
where sort [ ] = [ ]

sort(x#xs) = ins x (sort xs)

Similar as datatype, the fun command can again be seen as a kind of macro: a
conservative construction is implied; the derivation of the equations ins x[ ] = [x]
and ins x(y#ys) = if x < y then x#y#ys else y#(ins xys) is done automatically
involving a termination proof (most of the time automatically proved for basic
functions). This involved construction assures logical safeness: in general, just
adding axioms for recursive equations causes inconsistency for non-terminating
functions. The resulting equations can now be used in the Isabelle simplifier.

The library of Isabelle/HOL constitutes a comfortable basis for defin-
ing the OCL library or embed a specification language. In particular, Is-
abelle manages a set of executable types and operators, i. e., types and oper-
ators for which a compilation to external languages is possible, using code-
generation [Haf09, HN10, Haf16]. The supported external languages in Isabelle
for code-generation are currently Haskell, OCaml [LDF+14], Scala and SML. As
one example, arithmetic types such as int are appropriately optimized to be
executed fast depending on the chosen external language. Datatypes and recur-
sive functions are as well supported to be executed in these external languages
(assuming their definitions contain only executable operators).

Another mean to do executions in Isabelle is to use the value command
(whose functioning resembles to how code-generation works) [Wen16b]. Then,
after typing value “3 + 7” in Isabelle/jEdit [Wen12, Wen16c], we will get 10 as
result. Generally value can work with many ground expressions (with no free
variables). So most of OCL ground terms are in fact executable in Isabelle, due
to prior special setups in the Featherweight OCL library.



2.2. HIGHER-ORDER LOGIC (HOL) 25

Figure 2.1: The Isabelle/jEdit environment



26 CHAPTER 2. BACKGROUND: THE ISABELLE FRAMEWORK

Figure 2.2: The generated formal document

2.3 How this Thesis was Generated from Isabelle/HOL
Theories

Isabelle, as a framework for building formal tools [WW07, Wen09, Wen14], pro-
vides the means for generating formal documents. With formal documents (such
as the one the reader is reading) we refer to documents that are machine gen-
erated with a process ensuring certain formal guarantees. In particular, all the
textual content manipulating definitions, formulae, . . . , types are checked for
consistency during the document generation.

For writing documents, Isabelle supports the embedding of informal texts
using a LATEX based markup language within the theory files. One other alter-
native to embed informal documents is to directly write LATEX code in usual
“_.tex” files, and then link them with the formal content generated by Isabelle.
Generally, by manually inspecting the source code of Isabelle theory files, one



2.3. HOW THIS THESIS WAS GENERATED FROM ISABELLE/HOL
THEORIES 27
can have a clear estimation of the size of informal texts versus formal texts of a
given project. Many similar recommendations regarding certification practices
can be found for example in a recent LRI’s technical report [NFWP15]. In this
document, all the formal contents are respectively situated in:

• Section 8.2, Appendix A: the Appendix version is a version where proofs
are displayed.

• Appendix B, Appendix C

• Appendix D

• Appendix E, Appendix F, Appendix G, Appendix H

• Appendix I, Appendix J

Everything else was “informally” written by hand. This does not mean however
that the formal contents have also been written by hand, in particular Ap-
pendix B and Appendix C were generated. As remark, not all formal contents
have been included in the present thesis, otherwise we would obtain a document
exceeding 1000 pages (and without counting the size of generated content like
Appendix B and Appendix C).

Still, to ensure consistencies of certain informal parts, Isabelle supports the
use of antiquotations within informal texts, that refer to the formal parts and
that are checked while generating the actual document as PDF. For example, in
an informal text, the antiquotation “@{thm OclNot_not}” will instruct Isabelle
to abort the generation with an error in case no OCL theorems with the name
OclNot_not were found, otherwise the system will replace the antiquotation
with the actual theorem, i. e. “not (notX) = X” (as it is the case here). So one
can notice at this point that the size of informal content also depends on the
size of the (expanded) generated content.

We illustrate the approach: Figure 2.1 shows the jEdit-based development
environment of Isabelle. At the bottom, we have an excerpt of one of the core
theories of this thesis, mixing both informal texts and formal texts (with some
antiquotations in the informal texts), whereas at the top we have a “true” in-
formal content in LATEX. Figure 2.2 shows only two superimposed windows,
offering different views on the generated PDF document, where in particular all
corresponding antiquotations have been correctly resolved.





C
h

a
p

t
e

r

3
Background: UML/OCL

3.1 UML/OCL and its Semantics

Object-oriented, class-based constraint or generally behavioral specification lan-
guages, such as ACSL, JML, or Spec# are domain-specific logical languages used
to express properties (usually in the form of contracts, invariants of classes as
well as pre-conditions and post-conditions of methods) on the manipulated mod-
els, e. g., object-oriented data models or object graphs. These object-oriented
data models are usually defined in an object-oriented modelling or programming
language. For example, OCL [Obj12] allows to express constraints over data
models defined in UML [Obj11b] while the Java Modeling Language (JML) is
employed to specify constraints over Java programs. In the following, we will
introduce UML/OCL as an example of an object-oriented specification language
and, thereafter, will briefly compare with other specification languages, such as
ACSL, JML, or Spec#.

UML/OCL as OO Specification Languages

The Unified Modelling Language (UML) [Obj11a, Obj11b] is one of the most
widely used diagrammatic object-oriented modelling language in industry. Be-
sides a number of widely popular visualisation formats for some aspects of an
“UML Model,” it offers a normed abstract-syntax (defined by the “UML Meta-
Model”) processed by several IDE’s; the language and tool-support is particularly
suited for defining domain-specific (sub)-languages. UML is defined in an open
process by the Object Management Group (OMG), i. e., an industry consortium.
For some parts of the language formal analysis tools are available based on
an OMG standardised or tool-vendor specific formal semantics. While UML is
mostly known as diagrammatic modelling language (e. g., visualizing class mod-
els), it also comprises a textual language, called Object Constraint Language
(OCL) [Obj12]. OCL is a textual annotation language, originally conceived as a
three-valued logic, that turns substantial parts of UML into a formal language.
Unfortunately the semantics of this specification language, captured in the “An-
nex A” (originally, based on the work of Mark Richters [Ric02]) of the OCL
standard leads to different interpretations of corner cases. Many of these corner
cases had been subject to formal analysis since more than nearly fifteen years (for

29



30 CHAPTER 3. BACKGROUND: UML/OCL

example [LTW14, BLTW13, BKLW10, BW02b, CKM+02, MC99, HCH+98]).
At its origins [Ric02, Obj97], OCL was conceived as a strict semantics for

undefinedness (e. g., denoted by the element invalid1), with the exception of the
logical connectives of type Boolean that constitute a three-valued propositional
logic. At its core, OCL comprises four layers:

1. Operators (e. g., _ and _, _ + _) on built-in data structures such as
Boolean, Integer, or typed sets (Set(_)).

2. Operators on the user-defined data model (e. g., defined as part of a UML
class model) such as accessors, type casts and tests.

3. Arbitrary, user-defined, side-effect-free methods called queries,

4. Specification for invariants on states and contracts for operations to be
specified via pre- and post-conditions.

Motivated by the need for aligning OCL closer with UML, recent versions
of the OCL standard [Obj06, Obj12] added a second exception element. While
the first exception element invalid has a strict semantics, null has a non
strict semantic interpretation. Unfortunately, this extension results in several
inconsistencies and contradictions. These problems are reflected in difficulties to
define interpreters, code-generators, specification animators or theorem provers
for OCL in a uniform manner and resulting incompatibilities of various tools.

For the OCL community, the semantics of invalid and null as well as many
related issues resulted in the challenge to define a consistent version of the OCL
standard that is well aligned with the recent developments of the UML. A syn-
tactical and semantical consistent standard requires a major revision of both
the informal and formal parts of the standard. To discuss the future directions
of the standard, several OCL experts met in November 2013 in Aachen to dis-
cuss possible mid-term improvements of OCL, strategies of standardization of
OCL within the OMG, and a vision for possible long-term developments of the
language [BCC+13]. During this meeting, a Request for Proposals (RFP) for
OCL 2.5 was finalized and meanwhile proposed. In particular, this RFP requires
that the future OCL 2.5 standard document shall be generated from a machine-
checked source. This will ensure

• the absence of syntax errors,

• the consistency of the formal semantics,

• a suite of corner-cases relevant for OCL tool implementors.

As a basis of this work, we develop in this thesis HOL-OCL 2.0 in
Isabelle/HOL [NPW02]2. HOL-OCL 2.0 comes with a machine-checked library
formalizing a core language of OCL, called Featherweight OCL [BTW14]3. The

1In earlier versions of the OCL standard, this element was called OclUndefined.
2The development version of HOL-OCL 2.0 can be inspected online: https://projects.

brucker.ch/hol-testgen/log/trunk/hol-testgen/add-ons/Featherweight-OCL.
3The updated machine-checked version is maintained by the Isabelle Archive of Formal

Proofs (AFP), see also the Bitbucket repository https://bitbucket.org/isa-afp/afp-devel
and its list of maintainers https://bitbucket.org/isa-afp/profile/members.

https://projects.brucker.ch/hol-testgen/log/trunk/hol-testgen/add-ons/Featherweight-OCL
https://projects.brucker.ch/hol-testgen/log/trunk/hol-testgen/add-ons/Featherweight-OCL
https://bitbucket.org/isa-afp/afp-devel
https://bitbucket.org/isa-afp/profile/members


3.1. UML/OCL AND ITS SEMANTICS 31

semantic theory of Featherweight OCL is based on a “shallow embedding” and
focuses on a formal treatment of the key-elements of OCL (rather than a full treat-
ment of all operators and thus, a “complete” implementation). In contrast to full
OCL, it comprises just the logic captured in Boolean, the basic datatypes Void,
Integer, Real and String, the collection types Set, Pair, Sequence and Bag.
The generic construction principle of class models is also supported [TW15]4, we
will precisely demonstrate in Chapter 5 how to generate this type-safe construc-
tion, with respective instantiations in Chapter 7, Appendix B and Appendix C.
The formal semantics developed in Featherweight OCL is intended to be a pro-
posal for the standardization process of OCL 2.5, which should ultimately replace
parts of the mandatory part of the standard document [Obj12] as well as replace
completely its informative “Annex A.”

The semantic definitions are in large parts executable, namely the essence
of Set, Pair, Sequence and Bag constructions (as remark, HOL is a classical
logic where some parts could be not constructively defined). The first goal
of its construction is consistency, i. e., it should be possible to apply logical
rules and/or evaluation rules for OCL in an arbitrary manner always yielding
the same result. Moreover, except in pathological cases, this result should be
unambiguously defined, i. e., represent a value.

To motivate the need for logical consistency and also the magnitude of
the problem, we focus on one particular feature of the language as example:
Tuples. Recall that tuples (in other languages known as records) are n-ary
Cartesian products with named components, where the component names are
used also as projection functions: the special case Pair{x:First, y:Second}
stands for the usual binary pairing operator Pair{true, null} and the two
projection functions x.First() and x.Second(). For a developer of a compiler
or proof-tool (based on, say, a connection to an SMT solver designed to animate
OCL contracts) it would be natural to add the rules Pair{X, Y}.First() = X
and Pair{X, Y}.Second() = Y to give pairings the usual semantics. At
some place, the OCL Standard requires the existence of a constant sym-
bol invalid and requires all operators to be strict. To implement this,
the developer might be tempted to add a generator for corresponding strict-
ness axioms, producing among hundreds of other rules Pair{invalid, Y} =
invalid, Pair{X, invalid} = invalid, invalid.First() = invalid,
invalid.Second() = invalid, etc. Unfortunately, this “natural” axiomati-
zation of pairing and projection together with strictness is already inconsistent.
One can derive:

Pair{true, invalid}.First()= invalid.First()
= invalid

and:

Pair{true, invalid}.First()= true

which then results in the absurd logical consequence that invalid = true.
Obviously, we need to be more careful on the side-conditions of our rules. And
obviously, only a mechanized check of these definitions, following a rigorous

4Again, the updated machine-checked version is maintained by the Isabelle Archive of
Formal Proofs.



32 CHAPTER 3. BACKGROUND: UML/OCL

methodology, can establish strong guarantees for logical consistency of the OCL
language.

This leads us to our second goal of this document: it should not only be
usable by logicians, but also by developers of compilers and proof-tools. For this
end, we derive from the Isabelle framework, many definitions and logical rules
for formal interactive and automated proofs on UML/OCL specifications. These
logical rules are necessary for execution rules and test-cases to reveal potential
corner-cases related with the semantics the implementors are defining.

OCL is an annotation language for UML models, in particular class models
allowing for specifying data and operations on them. As such, it is a typed
object-oriented language. This means that it is—like Java or C++—based on
the concept of a static type, that is the type that the type-checker infers from a
UML class model and its OCL annotation, as well as a dynamic type, that is the
type at which an object is dynamically created5. Types are not only a means for
efficient compilation and a support of separation of concerns in programming,
there are of fundamental importance for our goal of logical consistency: it is
impossible to have sets that contain themselves, i. e., to state Russell’s paradox
in OCL typed set-theory. Moreover, object-oriented typing means that types can
be in sub-typing relation; technically speaking, this means that any object X can
be cast with the operator (_ :: Ci).oclAsType(Cj) from one class types Ci to
another class types Cj , and under particular conditions (to be later described),
these casts are semantically lossless:

(X :: Ci).oclAsType(Cj).oclAsType(Ci) = X

Furthermore, object-oriented means that operations and object-types can be
grouped to classes on which an inheritance relation can be established; the
latter induces a sub-type relation between the corresponding types.

Here is a feature-list of Featherweight OCL:

• it specifies key built-in types such as Boolean, Void, Integer, Real and
String as well as generic types such as Pair(T,T’), Sequence(T), Bag(T)
and Set(T).

• it defines the semantics of the operations of these types in denotational
form (to be explained in Chapter 4), and thus in an unambiguous (and in
Isabelle/HOL executable or animatable) way.

• it develops the theory of these definitions, i. e., the collection of lemmas
and theorems that can be proven from these definitions.

• all types in Featherweight OCL contain the elements null and invalid;
including in particular the Boolean type, so we obtain a four-valued logic.
Consequently, Featherweight OCL contains the derivation of the logic of
OCL.

• collection types may contain null (so Set{null} is a defined set) but not
invalid (Set{invalid} is just invalid).

5As side-effect free language, OCL has no object-constructors, but with OclIsNew(), the
effect of object creation can be expressed in a declarative way.



3.2. A RUNNING EXAMPLE FOR UML/OCL 33

• With respect to the static types, Featherweight OCL is a strongly typed
language in the Hindley-Milner tradition. So the explicit usage of casts
are needed whenever for example one attempts to apply an attribute a
to an object X :: Ci, and where a has been defined in Cj (so not in
Ci). On the other hand, one can also assume there is a pre-processing
to automatically introduce these explicit conversions (i. e., to remove the
need to write .oclAsType(_)).6

• Featherweight OCL types may be arbitrarily nested. For example, the
expression Set{Set{1,2}} = Set{Set{2,1}} is legal and true.

• All object types are represented in an object universe7. The universe con-
struction also gives semantics to type casts, dynamic type tests, as well as
functions such as allInstances(), or oclIsNew(). The object universe
construction is conceptually described and demonstrated at an example.

• As part of the OCL logic, Featherweight OCL develops the theory of equality
in UML/OCL. This includes the standard equality, which is a computable
strict equality using the object references for comparison, and the not nec-
essarily computable logical equality, which expresses the Leibniz principle
that “equals may be replaced by equals” in OCL terms.

• Technically, Featherweight OCL is a semantic embedding into a powerful
semantic meta-language and environment, namely Isabelle/HOL [NPW02].
It is a so-called shallow embedding in HOL; this means that types in OCL
are mapped one-to-one to types in Isabelle/HOL. Ill-typed OCL specifica-
tions can therefore not be represented in Featherweight OCL and a type in
Featherweight OCL contains exactly the values that are possible in OCL.

3.2 A Running Example for UML/OCL

The Unified Modelling Language (UML) [Obj11a, Obj11b] comprises a variety
of model types for describing static (e. g., class models, object models) and dy-
namic (e. g., state-machines, activity graphs) system properties. One of the more
prominent model types of the UML is the class model (visualized as class dia-
gram) for modelling the underlying data model of a system in an object-oriented
manner.

Throughout this document, we will use a small example describing a set of
flights and their passengers, being clients with reservations or staff onboard. The
journey of a client may be a sequence of flights, each one departing from the city
of arrival of the previous one. The client must have a reservation on all the
flights composing his journey. The passengers of a flight are the clients having
reservation for this flight and the staff working onboard. A flight cannot have
more clients onboard than the number of seats.

Figure 3.1 shows the UML class diagram of this particular flight example.
Figure 3.2 shows an alternative textual representation of this model (which is

6The details of such a pre-processing are present in HOL-OCL [Bru07] and can be similarly
adapted for Featherweight OCL.

7following the tradition of HOL-OCL [BW08b]



34 CHAPTER 3. BACKGROUND: UML/OCL

Person

name : String

Reservation

id : Integer

Flight

seats : Integer
from : String
to : String

Staff

address : String

Client

book (f : Flight)
cancel (r : Reservation)

passengers flights

flight

fl_res
cl_resclient

* *

1

{sequence} *
next

prev

*1 0..1

0..1

Figure 3.1: A simple class model capturing flight reservations.

Class Flight
Attributes seats : Integer

from : String
to : String End

Class Reservation
Attributes id : Integer End

Class Person
Attributes name : String End

Class Client < Person
Attributes address : String End

Class Staff < Person End

Association passengers Between
Person [*] Role passengers
Flight [*] Role flights End

Aggregation flights Between
Flight [1] Role flight
Reservation [*] Role fl_res

Sequence End
Association reservations Between

Client [1] Role client
Reservation [*] Role cl_res End

Association connection Between
Reservation [0 .. 1] Role next
Reservation [0 .. 1] Role prev End

Figure 3.2: Modelling flight reservations in HOL-OCL 2.0: data part

supported by our HOL-OCL 2.0 tool as well as the USE tool [RG02]). This exam-
ple contains the major constructs in UML class models: classes and inheritance
hierarchies, collection annotations and cardinalities on association ends, (self)
associations and (self) aggregations, along which navigations are possible.

We model persons and flights as classes Person and Flight, as we would
do in Java.8 Classes can have attributes (e. g. the number of seats) as well as
associations to other classes. Associations allow us to model relations between
objects. For example, we model the relation of being a passenger as an asso-
ciation between the classes Person and Flight. Overall, associations in UML
are very similar to relations in entity-relationship (ER) models [Che76] and as
relations in ER models, UML associations are equipped with multiplicities. The
multiplicity * of the association end flights models that each instance of the
class, i. e. each object Person can be associated to arbitrary many (including
zero) instances of the class Flight (a person can be no passenger at all or a
passenger of one or several flights). An association may be more than a simple
relation between classes when these classes participate in a whole/part relation-
ship [BHOG01]: such an association is called an aggregation and is depicted by
an unfilled diamond. In the example, a flight is associated to a sequence of reser-

8For sake of simplicity, we assume that the same flight on different dates is in fact rep-
resented by different instances of the class Flight, without explicitly modelling this by an
attribute of type Date.



3.2. A RUNNING EXAMPLE FOR UML/OCL 35

Context f: Flight
Inv B : f.fl_res ->size () <= f. seats
Inv C : f. passengers -> select (p|p. oclIsTypeOf ( Client ))

= f.fl_res -> collect (r|r. client . oclAsType ( Person ))-> asSet ()

Context r: Reservation
Inv A : r.id > 0
Inv B : r.next <> null implies r. flight .to = r.next. flight .from
Inv C : r.next <> null implies r. client = r.next. client

Context c: Client :: book (f : Flight )
Pre : f. passengers -> excludes (c. oclAsType ( Person ))

and f.fl_res ->size () < f. seats
Post: f. passengers =

f. passengers@pre -> including (c. oclAsType ( Person )) and
let r = c.cl_res -> select (r|r. flight = f)->any () in
r. oclIsNew () and r.prev = null and r.next = null

Figure 3.3: Modelling flight reservations in HOL-OCL 2.0: OCL part

vations by an aggregation, meaning that this sequence is part of the description
of a flight, as the number of seats is.

Many object-oriented programming languages, such as Java, do not sup-
port associations (or relations) as first-class citizens: associations are usually
represented as if they were aggregations, by collection type attributes for the
association ends together with additional constraints that need to ensure the
consistency of the objects taking part in the association. Besides associations,
UML supports the inheritance relation between classes (also called generaliza-
tion): in the example, the class Client is a sub-class (sub-type) of the class
Person (superclass).

Such data models (as Figure 3.2) are, usually, not precise enough: our data
model would allow flights with zero or even a negative number of seats. Object-
oriented constraint languages allow to refine such data models and, thus, to
avoid such unwanted states. We can use a simple class invariant to state that
flights need to have a positive number of seats:

Context f: Flight
Inv A: f.seats > 0

We can also use operation contracts to specify operations’ behaviour in terms of
pre- and post-conditions. For example, for a client to cancel a reservation, this
client must own the reservation (pre-condition). When the cancellation is done,
this client does not have a reservation for this flight anymore (post-condition).
The construct @pre does a referencing in the pre-state (like \old in JML and
OldValue in Spec#).
Context c: Client :: cancel (r : Reservation )

Pre : r. client = c
Post: c. cl_res -> select (res|res. flight = r. flight@pre )

-> isEmpty ()

OCL is a four-valued logic with quantifiers, supporting the non-strict excep-
tion element null and the strict exception element invalid. Moreover, OCL
supports a rich library of built-in datatypes including integers and typed sets.

In our Isabelle/HOL formalisation, HOL-OCL 2.0, we can express such invari-
ants and contracts using a slightly different syntax for the context specification.



36 CHAPTER 3. BACKGROUND: UML/OCL

Figure 3.3 additionally shows a number of OCL constraints for our flight exam-
ple. For instance, the first two constraints respectively state that the number of
reservations must not exceed the number of seats; and the passengers taking a
flight are exactly equal to those who have reserved the flight.



C
h

a
p

t
e

r

4
Semantic Layers of Featherweight OCL

The semantic theory of Featherweight OCL is organized in several semantic lay-
ers. The following three layers will provide a “minimal” core semantics of built-in
data-structures, so to support in particular the OCL type Boolean.

• The first layer, called the denotational semantics comprises a set of defi-
nitions of the operators of the language. Presented as definitional axioms
inside Isabelle/HOL, this part assures the logically consistency of the overall
construction. The denotational definitions of types, constants and opera-
tions, and OCL contracts represent the “gold standard” of the semantics.

• The second layer, called logical layer, is derived from the former and cen-
tered around the notion of validity of an OCL formula P . For a state-
transition from pre-state σ to post-state σ′, a validity statement is written
(σ, σ′) � P . Its major purpose is to logically establish facts (lemmas and
theorems) about the denotational definitions.

• The third layer, called algebraic layer, also derived from the former layers,
tries to establish algebraic laws of the form P = P ′; such laws are amenable
to equational reasoning and also help for automated reasoning and code-
generation. For an implementor of an OCL compiler, these consequences
are of most interest.

Then come the next semantic layers covering construction of UML class mod-
els, composed of:

• the state layer describing state-related operations like allInstances(),
and

• the object-oriented datatype layers giving semantics to UML class models
over this, comprising the theory of accessors, type casts and tests.

For space reasons, we will restrict ourselves in this document to a few opera-
tors and make a traversal through all five layers to give a high-level description
of our formalization. Especially, the details of the semantic construction for
sets, sequences, bags are excluded from a presentation here, but can all be found
in our associated formalization [BTW14]. Similarly, the semantics of UML/OCL
operations and invariants is further made precise in that document.

37



38 CHAPTER 4. SEMANTIC LAYERS OF FEATHERWEIGHT OCL

4.1 Denotational Semantics of Types

Definition “UML/OCL types”:
The syntactic material for type expressions, called TYPES(C,E), is inductively
defined as follows:

• C ⊆ TYPES(C,E) are object types.

• E ⊆ TYPES(C,E) are enumerate types. Enumerate types are basically
sum types: a form of Isabelle datatype without polymorphic parameters.

• Void, Boolean, Integer, Real, String are base types Tbase ⊆
TYPES(C,E).

• Sequencem(X), Setm(X), and Pair(X,Y ) are collection types in
TYPES(C,E) if X,Y ∈ TYPES(C,E).
These collection types are particular dependent types [SU06]: the mul-
tiplicity m is a list of intervals constraining the size of the correspond-
ing sequence or set. An interval [imin..imax] is composed of two lifted
naturals nat of the form (nat⊥×nat⊥) where the bottom element is con-
ventionally represented as a star “*”, this additional element means an
arbitrary allowed number. For a sequence or set to be classified as well-
typed, it must exist one interval in the list m such that imin ≤ s ≤ imax,
with s the size of the sequence or set.
Whenever m evaluates to the interval *1, the multiplicity information can
be omitted and in this case we will just write Sequence(X) and Set(X).
A syntactic sugar is provided for building arbitrary tuples: (X1, · · · ,Xn)
is a shorthand for Pair(X1, · · · Pair(Xn−2,Pair(Xn−1,Xn)) · · · ) for
n ≥ 2. Types in tuples can be preceded with additional labelling variables
(x1:X1, · · · ,xn:Xn) where x1, · · · , xn are labels for naming individuals
of the respective types X1, · · · , Xn. These labels are typically used when
defining UML/OCL contracts.

• X:Y are functional types in TYPES(C,E) if X,Y ∈ TYPES(C,E).
Like tuples, (x:X):Y is an additional syntax for describing functional
types, where x is a stamped label. Functional types mainly appear to-
gether with tuples when writing UML/OCL contracts. Depending on the
context, in positions where no ambiguities with tuples occur, functional
types can be shorten to (x1:X1, · · · ,xn:Xn) (where n ≥ 1), in this case
the absent type Y has the same semantics as Void.
As another notation, we can useX->Y to represent functional types. Thus
(X1, · · · ,Xn)->Y can be used without labelling names (as this does not
conflict with tuples).

We define TYPES0(C,E) as the smallest subset of TYPES(C,E) built without
using functional types in all recursive calls. In the following, TYPES0(C,E)
and TYPES(C,E) will be respectively shorten to TYPES0 and TYPES.

1The interval * is a shortcut for [*..*]. We will abbreviate intervals [imin..imax] by a
single imin if we have imin = imax.



4.1. DENOTATIONAL SEMANTICS OF TYPES 39

The OCL core language is composed of

1. operators on built-in data structures such as Boolean, Integer or Set(_),

2. operators of the user-defined data model such as accessors, type casts and
tests, and

3. user-defined, side-effect-free methods.

Conceptually, an OCL expression in general and Boolean expressions in particular
(i. e. formulae) depends on a pair (σ, σ′) of pre- and post-states.

Featherweight OCL as semantic theory is organised as a “shallow embed-
ding.” Besides the use of higher-order abstract syntax, this means that types
of UML/OCL are represented by types in Isabelle/HOL in an injective way, and
that the semantic representation of operators will respect this mapping. For
example, logical equality of HOL (_ = _) coincides to semantic equivalence of
OCL; the operations not or _and_ with their OCL type Boolean -> Boolean
resp. (Boolean,Boolean) -> Boolean are represented in Featherweight OCL by
not :: A Boolean ⇒ A Boolean resp. _and_ :: A Boolean ⇒ A Boolean ⇒
A Boolean, where A Boolean is a type synonym for a HOL type different from,
say, A Integer (both introduced in the next paragraph). Thus, Featherweight
OCL cannot represent ill-typed OCL expressions, having the consequence that
type-related side-conditions can be completely omitted in all derived rules of
this language, be it in the OCL library or a given datatype theory, which is vital
for their usability in proofs and symbolic executions.

The recent versions of the OMG standard require all OCL types to possess
explicit invalid and null elements, a decision that has major consequences for
its logic and data theories. To uniformly represent this phenomenon in Feather-
weight OCL, we use type classes as in Haskell supported in Isabelle. Parametric
polymorphic type variables α can be respectively constrained via type classes
α ::bot or α ::null to types containing a bottom element, called bot, and an addi-
tional other element (different than bot), called null (where classes are marked
by underlining throughout this document). Using the option type written _⊥
(the None-constructor is written ⊥ and the Some-constructor x_y) it is possible
to “double lift” types via (τ⊥)⊥ and identify ⊥ with the bot-element of the class,
and x⊥y with the null-element. Thus, any doubly lifted type is an instance of
the type class null. Since any OCL expression of type T may contain accessors
to objects living in a pre and a post state, they represent valuations depending
from these two states yielding the representation type τT in HOL. This motivates
the type synonym:

VA(τT) ≡ (A) state×(A) state⇒ τT :: null

that is used to construct the types for OCL expressions (the precise form of
“(A) state” will be discussed in Section 4.5).

By double-lifting bool and int, which are the standard types from HOL, we
declare the following abbreviations:

type_synonym Booleanbase := bool⊥⊥
type_synonym Integerbase := int⊥⊥



40 CHAPTER 4. SEMANTIC LAYERS OF FEATHERWEIGHT OCL

As a consequence of these type definitions, we have the elements ⊥, x⊥y, xxTrueyy,
xxFalseyy in the carrier-set of Booleanbase. The type A Boolean used above
is therefore an abbreviation for VA((bool⊥)⊥), the type A Integer stands for
VA((int⊥)⊥):

type_synonym BooleanA := VA(Booleanbase)
type_synonym IntegerA := VA(Integerbase)

4.2 Denotational Semantics of Constants and Operations

Recall that _ = _ :: α ⇒ α ⇒ bool is the logical equality of HOL. By using a
shallow embedding of OCL in HOL, logical equality becomes then accessible to
OCL terms as a mean to express semantic equivalence. If we want to emphasise
definitions, we will use _ ≡ _ for logical equality as alternative notation. As
a further notational convenience following common use in mathematical text-
books, we use the notation IJ_K mimicking a semantic interpretation function
separating concrete syntax of a language to be defined from other constructs
defining their semantics. Since a shallow embedding of OCL in HOL is used
(higher-order-syntax, operators defined by constant definitions, injective type
representation), IJ_K is just the identity function. In Isabelle theories, this par-
ticular presentation of definitions paves the way for an automatic check that
the underlying equation has the form of an axiomatic definition and is therefore
logically safe.

The generic constants invalid and null together with the non-strict tests
for invalid and null required by the OMG standard are now defined as follows:

IJinvalid :: VA(α :: bot)Kτ = bot ::α
IJnull :: VA(α :: null)Kτ = null ::α

where bot and null are the two elements provided when defining the type classes
bot and null. For the concrete Boolean-type, we define similarly the boolean
constants true and false as well as the fundamental tests for definedness and
validity (generically defined for all types):

IJtrue :: A BooleanKτ = xxTrue :: boolyy
IJfalse :: A BooleanKτ = xxFalse :: boolyy

IJX.oclIsUndefined()Kτ = (if IJXKτ ∈ {bot,null} then IJtrueKτ
else IJfalseKτ)

IJX.oclIsInvalid()Kτ = (if IJXKτ = bot then IJtrueKτ else IJfalseKτ)

On this basis, one can define the core logical operators not and and as follows:

IJnot XKτ = (case IJXKτ of
⊥ ⇒ ⊥
|b⊥c ⇒ b⊥c
|bbxcc ⇒ bb¬xcc)



4.3. LOGICAL LAYER 41

IJX and Y Kτ = (case IJXKτ of
⊥ ⇒ (case IJY Kτ of

⊥ ⇒ ⊥
|b⊥c ⇒ ⊥
|bbTruecc ⇒ ⊥
|bbFalsecc ⇒ bbFalsecc)

|b⊥c ⇒ (case IJY Kτ of
⊥ ⇒ ⊥
|b⊥c ⇒ b⊥c
|bbTruecc ⇒ b⊥c
|bbFalsecc ⇒ bbFalsecc)

|bbTruecc ⇒ (case IJY Kτ of
⊥ ⇒ ⊥
|b⊥c ⇒ b⊥c
|bbycc ⇒ bbycc)

|bbFalsecc ⇒ bbFalsecc)

These non-strict operations are used to define the other logical connectives in
the usual classical way:

X or Y ≡ not ((not X) and (not Y ))
X implies Y ≡ (not X) or Y

For reasons of conciseness, we will write δ X for not(X.oclIsUndefined())
and υ X for not(X.oclIsInvalid()) throughout this document.

The default semantics for an OCL library operator is strict semantics; this
means that the result of an operation f is invalid if one of its arguments is
invalid or null. The definition of the addition for integers as default variant
reads as follows:

IJX + Y Kτ = if IJδ XKτ = IJtrueKτ ∧ IJδ Y Kτ = IJtrueKτ
then bbddIJXKτee+ ddIJY Kτeecc
else ⊥

where the operator “+” on the left-hand side of the equation denotes the OCL
addition of type (Integer,Integer)->Integer while the “+” on the right-hand
side of the equation of type [int, int]⇒ int denotes the integer-addition from the
HOL library.

4.3 Logical Layer

The topmost goal of the logic for OCL is to define the validity statement:

(σ, σ′) � P

where σ is the pre-state and σ′ the post-state of the underlying system and P
is a formula, i. e., an OCL expression of type Boolean. Informally, a formula
P is valid if and only if its evaluation in (σ, σ′) (i. e., τ for short) yields true.
Formally this means:

τ |= P ≡ (IJP Kτ = IJtrueKτ)



42 CHAPTER 4. SEMANTIC LAYERS OF FEATHERWEIGHT OCL

On this basis, classical, two-valued inference rules can be established for reason-
ing over the logical connectives, the different notions of equality, definedness and
validity. The core inference rules are:

• Boolean:

τ � true ¬(τ � false) ¬(τ � invalid) ¬(τ � null)

• not:

τ � not P =⇒ ¬(τ � P )

• and:

τ � P and Q =⇒ τ � P τ � P and Q =⇒ τ � Q

• or:

τ � P =⇒ τ � P or Q τ � Q =⇒ τ � P or Q

• if . . . then . . . else . . . endif:

τ � P =⇒ IJif P then B1 else B2 endifKτ = IJB1Kτ
τ � not P =⇒ IJif P then B1 else B2 endifKτ = IJB2Kτ

or equivalently:

τ � P =⇒ (if P then B1 else B2 endif) τ = B1 τ
τ � not P =⇒ (if P then B1 else B2 endif) τ = B2 τ

• δ _ and υ _:

τ � P =⇒ τ � δ P τ � δ X =⇒ τ � υ X

By the latter two properties, it can be inferred that any valid property P
(so for example, a valid invariant) is defined, which allows to infer for terms
composed by strict operations that their arguments and finally the variables
occurring in it are valid or defined.

The mandatory part of the OCL standard refers to an equality (writtenX = Y
or X <> Y for its negation), which is intended to be a strict operation (thus:
invalid = Y evaluates to invalid) and which uses the references of objects in
a state when comparing objects, similarly to C++ or Java. In order to avoid
confusions, we will use the following notations for equality:

1. The symbol _ = _ remains to be reserved to the HOL equality, i. e., the
equality of our semantic meta-language,

2. The symbol _ , _ will be used for the strong logical equality, which follows
the general logical principle that “equals can be replaced by equals,”2 and
is at the heart of the OCL logic,

2Strong logical equality is also referred as “Leibniz”-equality.



4.3. LOGICAL LAYER 43

3. The symbol _ .= _ is used for the strict referential equality, i. e., the
equality the mandatory part of the OCL standard refers to by the “_ =
_” symbol.

The strong logical equality is a polymorphic concept which is defined using
polymorphism for all OCL types by:

IJX , Y Kτ ≡ xxIJXKτ = IJY Kτyy
It enjoys nearly the laws of a congruence:
τ � (X , X)
τ � (X , Y ) =⇒ τ � (Y , X)
τ � (X , Y ) =⇒ τ � (Y , Z) =⇒ τ � (X , Z)
cpP =⇒ τ � (X , Y ) =⇒ τ � (P X) =⇒ τ � (P Y )

where the predicate cp stands for context-passing, a property that is true in
Featherweight OCL for all pure OCL expressions (but not arbitrary mixtures of
OCL and HOL):

cpP ≡ ∃f. ∀X τ. IJP XKτ = IJf (IJXKτ)Kτ

The necessary side-calculus for establishing cp can be fully automated; the
reader interested in the details is referred to the machine-checked formaliza-
tion [BTW14].

The strong logical equality of Featherweight OCL gives rise to a number of
further rules and derived properties, that clarify the role of strong logical equality
and the Boolean constants in OCL specifications:

τ � δ X ∨ τ � X , invalid ∨ τ � X , null

(τ � A , invalid) = ( τ � not (υ A) )
(τ � A , null ) = ( τ � υ A and not (δ A))
(τ � A , true ) = ( τ � A )
(τ � A , false ) = ( τ � not A )
(τ � not (δ X) ) = (¬ τ � δ X )
(τ � not (υ X) ) = (¬ τ � υ X )

Thus with these rules, one can convert an OCL formula represented in its
four-valued world into a representation that is classically two-valued, and let
the processing with standard SMT solvers such as CVC3 [BT07] or Z3 [dMB08].
δ-closure rules for all logical connectives have the following format (for example):

τ � δ X =⇒ (τ � notX) = (¬(τ � X))
τ � δ X =⇒ τ � δ Y =⇒ (τ � X and Y ) = ((τ � X) ∧ (τ � Y ))
τ � δ X =⇒ τ � δ Y =⇒ (τ � X implies Y ) = ((τ � X)−→ (τ � Y ))

With the conjunction of these rules (comprising the above mentioned case dis-
tinction: τ � δ X ∨ τ � X , invalid ∨ τ � X , null), we can automatically
proceed to the simplification of a formula by case analysis, in order to quickly
reach a contradiction, whenever we know that a variable X is invalid or null.
For example, we can infer from an invariant τ � X

.= Y - 3 that we have



44 CHAPTER 4. SEMANTIC LAYERS OF FEATHERWEIGHT OCL

τ � X
.= Y - 3 ∧ τ � δ X ∧ τ � δ Y . We call the latter formula the δ-closure of

the former. Now, we can convert a formula like τ � X > 0 or 3 * Y > X * X into
the equivalent formula τ � X > 0 ∨ τ � 3 * Y > X * X and thus internalize the
four-valued logic of OCL, as if we have a classical (and more tool-conform) logic.

4.4 Algebraic Layer

Based on the logical layer, we build a system with simpler rules which are
amenable to automated reasoning. We restrict ourselves to pure equations on
OCL expressions.

Our denotational definitions on not and and can be re-formulated in the
following ground equations:

• υ _:

υ invalid = false υ null = true

υ true = true υ false = true

• δ _:

δ invalid = false δ null = false

δ true = true δ false = true

• not:

not invalid = invalid not null = null

not true = false not false = true

• and:

– invalid:

(invalid and true) = invalid (invalid and false) = false

(invalid and null) = invalid (invalid and invalid) = invalid

– null:

(null and true) = null (null and false) = false

(null and null) = null (null and invalid) = invalid

– true:

(true and true) = true (true and false) = false

(true and null) = null (true and invalid) = invalid

– false:

(false and true) = false (false and false) = false

(false and null) = false (false and invalid) = false



4.5. STATES LAYER AND WELL FORMED STATES 45

On this core, the structure of a conventional lattice arises:

X and X = X

X and Y = Y and X

X and (Y and Z) = X and Y and Z

false and X = false X and false = false

true and X = X X and true = X

as well as the dual equalities for _ or _ and the De Morgan rules. This wealth
of algebraic properties makes the understanding of the logic easier, and enables
automated analysis: for example, by computing the DNF of some invariant
systems (by term-rewriting techniques) which are a prerequisite for δ-closures.

The above equations explain the behaviour for the most important non-strict
operations. The clarification of the exceptional behaviours is of key importance
for a semantic definition of the standard and the major deviation point from
HOL-OCL [BW08a, BW06] to HOL-OCL 2.0 as presented here.

4.5 States Layer and Well Formed States

As detailed in Section 4.1, all OCL operations discussed so far represent special
valuations VA(_) depending from a pair of pre state and post state, both of
the form “(A) state”. As a first approximation, a state can be thought of as a
polymorphic array, where the polymorphic value A represents the place where
an object (of type A) can be dynamically stored. The index of the array is
the object identifiers: we assume an enumerable type for object identifiers “oid”
used for defining states (where the type oid is an abbreviation of the type nat
representing HOL natural numbers). Since a UML/OCL state consists of a partial
map of oids to object representations and a representation of the associations,
it is natural to model it with the command record [Wen16b]:

record (A) state = heap :: oid ⇀ A
assocs :: oid ⇀ oid list list list

Moreover, we can join an inverse operation “OidOf :: A ⇒ oid” to retrieve
the oid of an object, but the function OidOf particularly depends on A, which
explicit form will be discussed in the next section.

However, we will require well-formed states (WFF), where all oids in all
assocs are actually contained in the domain of the heap and furthermore the
oids stored in object representations are actually their references in the memory,
i. e. that there is a “one-to-one” correspondence between object representations
and oids:

definition WFF τ = ∀obj ∈ ran(heap(fst τ)). pheap(fst τ)(OidOf obj)q = obj
∧ ∀obj ∈ ran(heap(snd τ)). pheap(snd τ)(OidOf obj)q = obj

This condition is also mentioned in the OMG’s specifications [Obj12, Annex A]
and goes back to Richters [Ric02]; however, we state this condition as a constraint
on states for some logical rules rather than a global axiom. It can, therefore,
not be taken for granted that an oid makes sense both in pre- and post-states
of OCL expressions.



46 CHAPTER 4. SEMANTIC LAYERS OF FEATHERWEIGHT OCL

As a polymorphic concept, the strong logical equality _ , _ does not have
to be redefine again. This relation also applies on objects, so two objects are
equal if their denotations are semantically equal. We formally proved that within
well-formed states and for valid objects, the referential equality _ .= _ coincides
with strong logical equality [BTW14]. This justifies that the former can be used
for the latter for efficiency reasons.

4.6 A Denotational Space for Class Models: The Naïve
Attempt

We turn now to the issue of giving a more detailed semantics for a class model.
The theory of states can be developed generically once and for all; however, the
key point is that we need a common type A for the set of all possible object
representations. Object representations model “a piece of typed memory,” i. e.,
a kind of record comprising administration information and the information for
all attributes of an object; here, the primitive types as well as collections over
them are stored directly in the object representations, class types and collections
over them are represented by oid’s (respectively lifted collections over them). So
a (typed) universe of object representations which will be a concrete instance of
the type variable A has to be constructed for a concrete class model.

In a shallow embedding which must represent UML types one-to-one by HOL
types, there are two fundamentally different ways to construct such a set of
object representations, which we call an object universe A:

1. an object universe can be constructed from a given class model, leading to
closed world semantics, and

2. an object universe can be constructed for a given class model and all its ex-
tensions by new classes added into the leaves of the class hierarchy, leading
to an open world semantics.

For the sake of simplicity, the present semantics of HOL-OCL 2.0 chose the first
option, while HOL-OCL [BW08b] used an involved construction allowing the lat-
ter.

A naïve attempt to construct A would look like this: the class type Ci induced
by a class will be the type of such an object representation: Ci := (oid×Ai1×· · ·×
Aik

) where the types Ai1 , . . . , Aik
are the attribute types (including inherited

attributes) with class types substituted by oid. The function OidOf projects
the first component, the oid, out of an object representation. Then the object
universe will be constructed by the type definition:

A := C1 + · · ·+ Cn .

It is possible to define constructors, accessors, and the referential equality on this
object universe. However, the treatment of type casts and type tests cannot be
faithful with common object-oriented semantics, be it in UML or Java: casting up
along the class hierarchy can only be implemented by loosing information, such
that casting up and casting down will not give the required identity. Whenever
Ck < Ci and X is valid, we would like to obtain instead:

X.oclIsTypeOf(Ck) implies X.oclAsType(Ci).oclAsType(Ck) .= X



4.7. A COMPARISON TO RELATED WORK 47

To overcome this limitation, we need to slightly revise how class types are
fundamentally built. However, instead of providing at present the solution,
we will do it later in Chapter 7. This is because in any case both the naïve
construction presented here and our new solution can nevertheless not be done
directly in HOL: both constructions involve quantifications and iterations over
the “set of types”. Rather, a meta-level construction is needed.

Such meta-level construction is required for building the object-oriented
datatype theory. Like for a datatype package in other HOL-systems, the se-
mantics for class models can be given by a datatype theory, i. e., a conservative
theory extension consisting of a number of conservative definitions for accessor-,
cast- and type-tests, and automated tactic proofs establishing a number of rules
for these operations. Besides the usual laws on casting and dynamic typing,
these operations are designed to reflect the strictness principles with respect
to null and invalid. To provide an infra-structure for these definitions, the
generic “meta-tool” provided in Chapter 5 will not only perform the necessary
meta-level constructions required to setup the object universe A, but also gen-
erally any constructions requiring to reach a suitable meta-level of expressivity
(irrespective of languages being embedded into HOL).

Finally, equipped with this meta-tool, we will recover our semantical inves-
tigation on class types in Chapter 7, with together the resulting properties of
object navigation.

4.7 A Comparison to Related Work

There is a large variety of implementations that use a fragment of the OCL syntax
and compile it together with some extensions (temporal logic, dynamic-logic. . . )
more or less directly to some tool (Maude, ASM, KodKod, Prolog. . . ); it is
characteristic for these approaches that a direct, efficient reuse of existing tools
and the possibility to experiment with class models is a more important concern
than compliance to the OCL standard.

In this thesis, we address UML/OCL in the sense of the discussion in the
OCL group and major compiler implementations [Dre16, Pap16] which drive the
OCL standard’s evolution and to which this work contributes a formalisation
of the forthcoming OCL 2.5 proposal [BTW14]. Besides compilers, there is a
number of great animation tools, mostly based on older 3-valued versions of
the UML/OCL standard, USE, Kodkod or OCLexec [RG02, KG12, KK08] just
to cite a few. The present work, however, attempts to provide foundations for
deductive methods, be it for symbolic evaluation methods necessary for test case
generation or verification methods based on interactive or automated proof.

Restricting us to the category of more or less standard compliant, deduction
oriented methods, we see HOL-OCL [BW08b], which is also based on Isabelle/HOL
and with which consequently our work has a lot in common; however, besides
technical differences in the front-end, HOL-OCL uses three-valued logic and a
simpler data model for associations, which are compiled to aggregations. On
the other hand, the object universe construction of HOL-OCL uses an involved
construction representing “holes” in the universe by polymorphic variables, thus
leveraging a kind of modular “open-world” semantics; our approach remains
in the simpler “closed-world” interpretation of class models. Avoiding these



48 CHAPTER 4. SEMANTIC LAYERS OF FEATHERWEIGHT OCL

int seats ;
/* @ global invariant A:

0 < seats ; */

Listing 4.1: ACSL

class
FLIGHT

feature
seats : INTEGER

invariant
0 < seats

end

Listing 4.2: Eiffel

public class Flight {
int /* @spec_public@ */ seats ;
/* @invariant 0 < seats ; @*/

}

Listing 4.3: JML

public class Flight {
public int seats ;
invariant 0 < seats ;

}

Listing 4.4: Spec#

Figure 4.1: The Flight class with the invariants on seats in various languages

type variables dramatically improves the usability in practical proofs. Tools like
ESC/Java2 for JML or Boogie for Spec# also follow a closed-world approach.

The OCL2FOL+-project [DC13, ADEM14] is to our knowledge the first
deduction-based tool that uses the same logics as used in our work, but tar-
gets via a clever compilation an SMT-solver and enables automated deduction
tools for UML/OCL in the security domain; this approach provides first evidence
that tackling with a standard-conform semantics is indeed feasible and promis-
ing. The fear that the use of a multi-valued logics results in inherent efficiency
problems is at least not justifiable on theoretic grounds [H9̈4]. They generate an
axiomatisation of the object-oriented datatype theories, while we automatically
derive them from a denotational model to ensure logical consistency—thus, our
work is a semantic foundation for their approach in this respect.

In the following, we focus on deductive verification approaches for object-
oriented data theories in a wider sense.

Eiffel
Eiffel [Mey97] pioneered the idea of class invariants adapting this concept going
back to Dijkstra, Floyd, and Hoare in the 1960’s to object-oriented languages,
and popularised the idea of pre- and post-conditions to a “design-by-contract”
methodology. Eiffel is a remarkable exception to the other languages, as the
contract language was part of its design right from the beginning. The contract
specifications are part of the Eiffel language specification and are supported by
all Eiffel development tools. The Eiffel specification language is a two-valued
logic that provides an explicit definedness (non-null) test: _ /= Void. This
kind of test needs to be stated explicitly to ensure that no void references are
accessed (while OCL can handle this implicitly, see previous section). Moreover,
Eiffel requires exceptions to be handled explicitly, i. e., well-defined behaviour
in case an exception is thrown. OCL handles this implicitly, but for the only
exception invalid.

In the following, we will briefly introduce other, rather widely used, contract
or behavioural interface specification languages. Figure 4.1 introduces them



4.7. A COMPARISON TO RELATED WORK 49

with a very simple example: specifying the invariant from our example that the
number of seats is positive.

JML

The Java Modeling Language (JML) [LPC+13] is a constraint language for Java
which is, for example, supported by the ESC/Java2 tool [LNS00], which allows
for both runtime checking of assertions and static verification.

The logic of JML is two-valued. As in Eiffel, exceptions are explicitly modelled
and declared and the language provides an explicit definedness test. The actual
burden of writing definedness tests is reduced significantly by making non-null
types the default. Only types that are explicitly declared as “nullable” need to
be checked for definedness.

Spec#

Spec# [BLS05] is a constraint language for C# that, for example, is supported
by the program verification environment Boogie [BLS05].

Overall, Spec# is very similar to JML. The main difference is that non-null
types are not the default, but supported by a type inference. The logic is, again,
two-valued and exceptions need to be modelled explicitly.

ACSL and VCC

The ANSI/ISO C Specification Language (ACSL) [BCF+13] and VCC [BLW08] are
interface specification languages for C that are supported by Frama-C [BCF+13]
and Visual Studio [CDH+09]. Users can write assertions, data invariants, and
behavioural contracts over C programs.

The logics of ACSL and VCC are two-valued; via particular predicates, regions
of valid memory have to be specified explicitly in contracts to ensure that no
invalid references are accessed. As conversions to byte-level representations of
memory are possible, data invariants are particularly tricky to formulate—a
complication necessary to verify machine-level C code. As C does not support
exceptions, ACSL and VCC do not either. The less abstract memory model does
not include inheritance and subtyping. Later versions of VCC also support a
refined concept of memory ownership that allows for verifying concurrent C
programs [CDH+09], whereas OCL is strictly sequential (methods are atomic
actions).





C
h

a
p

t
e

r

5
The Object-Logic Theory Generator

Reproduction, as a terminology, has been firstly employed (to our knowledge)
by Klaus Aehlig and Felix Joachimski to characterize the idempotence property
that certain λ-terms are exhibiting: when converting them back and forth, be-
tween their initial syntactic representation to another representation qualified as
“semantic”, then back to their previous syntactic representation [AJ04]. These
particular endomorphic conversions are feasible because the semantic denotation
of programs is expressed with the help of functions, and functions naturally ap-
pear in λ-terms. The idea of exploiting this technique to compute the normal
form of λ-terms (if such normal form exists) is called normalization by evalu-
ation and has been deeply investigated both theoretically and practically over
years [ML75, BS91] (the reader interested in the details is referred to some lec-
ture notes [Dan98, DF00]).

In the present work, the term reproduction will still be related with the
notion of “some semantics to be preserved”, but we will use it slightly differently:
by thinking about a partial ordering, instead of an idempotence property for
example. For the moment, reproduction can be simply understood as copy or
duplication, the implying interplay between syntax and semantics will be made
further clear along the document. More precisely, this chapter is focusing on
the reproduction of particular λ-terms, namely editing sessions (“duplication
of editing sessions”). This concerns the ability of the Isabelle framework to
write an embedding function supporting a language L inside this framework,
and the ability of the framework to immediately provide means to edit in L
afterwards. In Isabelle, we characterize this ability as dynamic because the
overall reproduction is performed without leaving the editing session of the one
used to write the embedding. A technical cloning illusion will happen when
crossing the ML layer (being at the foundation of the Isabelle system), but the
overall approach can nevertheless be considered as part of the Isabelle framework.
As a reproductive process, one has at the end the possibility to edit in Isar_HOL
or L at the same time. So previous embedded languages can be utilized to
embed one next language L′ using the same process, with the so-augmented
capacities of the underlying editor, and inheriting from the existing theorem
proving infrastructure.

The objective of this chapter is to detail the key components implementing
the reproduction process, so that one can ultimately alternate between L and

51



52 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

Language 1

Language 2

Language 3

theory Example
imports "~~/src/HOL/Multivariate_Analysis/ex/Approximations"
        Language1 Language2 Language3
begin

lemma assumes "0 ≤ a  ∧ a ≤ b  ∧ b ≤ 4"
      assumes "sin (a / 6) ≤ 1 / 2  1 / 2 ≤ sin (∧ b / 6)"
      shows   "a ≤ pi  pi ≤ ∧ b"
using assms sin_pi6_straddle
by blast

term arc_cos

definition arc_cos :: "complex  complex"⇒  where
          "arc_cos  λ≡ z. -i * Ln(z + i * csqrt(1 - z2))"

term "arc_cos 1 = 0"

find_theorems

end

2

1

3

Figure 5.1: One editing window of Isabelle/jEdit after loading a theory file

L′ at any positions inside an editing window of Isabelle, in order to better
experiment formal methods activities in L or L′.

5.1 Isar_HOL as First Language (if not Meta)

The Isabelle framework integrates an optimized environment for the development
of specifications and proofs. The environment is initially configured to be edited
by default in the Isar_HOL language, because Isar is specialized to support
the writing of tactic methods for resolving proofs, and HOL comes with a rich
library of mathematic operations. Figure 5.1 presents a window of a running
Isabelle session (e. g., in Isabelle 2015). Normally the background is completely
white, the color yellow and three sine waves have been added here just for this
presentation. User-interaction to Isabelle is document oriented, i. e. each file
belonging to a session is annotated by the prover while editing it as usual like
in any modern IDE. Annotations can consist, for example, in:

• colors (the underlying white indicates that Isabelle checked these com-
mands and executed them without error),

• types (to be explored by tool-tips via the hovering gesture),



5.1. ISAR_HOL AS FIRST LANGUAGE (IF NOT META) 53

• or values associated to computations inside these commands (displayed in
a separate “output window” when pointing to them, the output window
will have a certain role to play in Chapter 6).

Although collaborative editions are asynchronously supported [Wen14, RL14],
we have depicted the position of three red cursors just for the example. In
Isabelle/jEdit there is (by default) only one cursor with no number inside. On
the other hand, the grey color appearing around quoted terms (like “a ≤ pi∧pi ≤
b”) is automatically added by Isabelle/jEdit, its purpose is to highlight HOL
content from the environment where the user usually poses theorems and proofs
irrespective of a particular logic. Indeed, as a logical framework, Isabelle offers
a small logical core-engine that can be reused by a variety of logics [Wen16b]
such as first-order logics (FOL), constructive-type theory (CTT) and Church’s
higher-order logics (HOL), which is also the basis of this work. Consequently the
framework can be globally seen as a kind of meta-proving environment, where all
terms are specially belonging to a particular logical language. In addition, some
facilities are also provided to lighten various aspects of terms from the underlying
logic. For instance, at the position of the cursor 1, the term arc_cos is coloured
in blue meaning that it is a free variable, whereas starting from position 2, it
appears in black (like Ln and csqrt) since it has meanwhile been defined and
accepted as a definition or function (and in this context an “HOL function”).
Additionally, the variable z is in green as being bound inside the definition; on
the other hand the letter i is just a syntactic abbreviation, characterized by its
light blue color. Finally the definition of arc_cos depends on some libraries
related with multivariate analysis, again in HOL, as made precise in the header.

At the end, the last command find_theorems displays various information
about theorems, for example the number of currently proved theorems at the
precise position where this command is written. Various refinement criteria
allow furthermore to fine grain control the searching engine, for instance to
discard or explicitly filter particular patterns in the names of theorems. In
Isabelle/jEdit, the associated display where the result of these informations are
shown is usually located in a separate sub-window, the output window (not
represented in the picture), whose purpose is to inform about the state of the
current proving environment or to guide users in real time with informative
messages depending on the position of the cursor. Indeed as a read-only buffer,
refreshment of the output window is automatically triggered (by default) as
soon as the cursor is moving from one command to another one in the editing
window.1 Globally, theorems shown by find_theorems do not directly mention
themselves if they have been proved in HOL or in other object-logics. However,
a theory file can more generally be seen in Isabelle as a particular container
embedding multiple languages, and we will particularly take advantage of its
flexibility to support new (specification) languages. Hence in the example, we
are showing four languages: “Language 1”, “Language 2”, “Language 3”, and a
set of commands part of the more general language “Isar_HOL”, represented by
the white sine wave (and as side remark also comprising the yellow frame).

1One can also open several instances of output windows to keep the results of different
cursor positions actively displayed. This is performed by manually deactivating the automatic
refreshment option in each instance.



54 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

Instead of starting from null, lines of evolution have motivated us to imagine
the birth of the formal method tool presented in this thesis, as a reproductive
process, where not only has the tool been built inside the proving system Isabelle,
but also brought up as a particular extension of this system, then inheriting the
deductive capacities of the framework and its editing environment, thus the
name meta-tool. More precisely, we use the type “L ⇒ Isar_HOL” to represent
the process by which one can extend Isabelle to support a new language L. For
the moment, this function can be thought of as a shallow embedding from L
to Isar_HOL. Then, the methodology to support the programming and proving
activity in L in the framework can basically be summarized as follows:

• provided an arbitrary sentence in L,

• it suffices to compute the result of L ⇒ Isar_HOL (this function is called
translation function or embedding function),

• to obtain at the end a piece of code written in Isar_HOL to be natively
processed by Isabelle (representing the initial sentence in L).

On the one hand, one particularity of this work is that we are mainly emphasiz-
ing the notion of object-logic theory: during the embedding, any newly language
L becomes understood as an object-logic, coming with a theory, a set of defi-
nitions and proved theorems (due to the wide range of expressions that can be
represented in the output Isar_HOL). On the other hand, following the idea of
practising formal methods with many languages, we are now going to generalize
the above methodology and reason with a family of languages L1 · · · Ln. Simi-
larly as L, this family represents a set of functions acting as extensions on the Is-
abelle framework, so they are of the form L1 ⇒ Isar_HOL, . . . , Ln ⇒ Isar_HOL.
However, we also include the possibility to extend one language from another
language: Li ⇒ Lj (for any i and j, equal or not), this is particularly useful if
for example Lj ⇒ Isar_HOL has already been defined.

Figure 5.2 pictures a sequential chain of embeddings without firstly focusing
on how the reproductive processes behind the grey arrows are linking the whole
chain of embeddings. The presented file is divided into four parts, representing
the incremental evolution of the editing activity growing from the top to the
bottom. Instead of drawing rectangular cursors like in Figure 5.1, here the no-
tion of sessions is particularly emphasized this time by using three sine waves in
pink to separate the four blocks of code. Internally a session is represented by
some purely functional data-structure describing the state of the editing environ-
ment (comprising logical definitions, proofs, text documentation, etc). As a first
approximation, a session can be thought of as a list containing all encountered
Isar_HOL commands until the actual position of the cursor, with the addition
that the semantical consistency of sessions is moreover guaranteed: by checking
that all commands are well-typed before their adding to the list. Thus sessions
are heavily varying during the editing activity: if the cursor is moving up, the list
behind the session will be adjusted accordingly by removing some (well-typed)
elements, and if the cursor is moving down, previous deleted elements will be
added back. So this allows for example commands like find_theorems to return
a consistent result depending on any positions where the cursor could be, no
matter where it is called on the file. As remark, to be precise, the session S2
should normally extend S1, similarly for S3 which should extend S2 and S1,



5.1. ISAR_HOL AS FIRST LANGUAGE (IF NOT META) 55

L1

L1 + L2

L1 + L2 + L3

L2 L1

L3 L2

L1 Isar_HOL

L1

L2

L3

Isar_HOL

Isabelle session

session S3

session S4

session S2

session S1

theory
imports
keywords 
begin

end

[…]
[…]
[…]

Figure 5.2: The evolution of the reproduction process (sequential embedding)

Isabelle + L1
L2 L1

Isabelle + L1 + L2
L3 L2

Isabelle
L1 Isar_HOL Isabelle +

L1 + L2 + L3

session S1 session S2 session S3 session S4

L1 L2 L2 L1

L2 L2

L2Isar_HOL L2 Isar_HOLL1Isar_HOL

L1 L1

Figure 5.3: The evolution of the reproduction process (sequential embedding)



56 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

etc. However by abuse of language, instead of using four continuous vertical
lines starting at the same point on the left, we have four lines following each
other sequentially.

In Figure 5.2, after embedding L1 in session S1, i. e. after defining a trans-
lation process from L1 to Isar_HOL, it becomes possible starting from S2 to
program in L1. The four vertical arrows on the right mention the possibility
or not to program in a particular language, so Isar_HOL can (at least) be used
from S1 to S4, L1 is supported from S2 to S4, L2 is supported from S3 to
S4, etc. Consequently when defining the semantics of L2 in S2, this semantics
can actually be written in either L1 or Isar_HOL. Similarly, when defining the
semantics of L3 in S3, this semantics can actually be written in either L2, L1 or
Isar_HOL.

More abstractly, we use cylinders in Figure 5.3 to emphasize that sessions are
part of the dynamic editing activity which occurs in RAM memory. Moreover,
we generalize the way how a new language can be embedded to some language
parent, by considering the graph induced by the inverse relation of _ ⇒ _. At
each session Sn, the embedding of Ln in Isar_HOL can be performed by naively
checking if for all nodes m ≤ n, there is a path strongly connecting Isar_HOL
to Lm. So for instance in session S2, any combinations of the form Li ⇒ Lj

are possible as long as the strongly connecting condition is respected. That
includes all Li ⇒ Lj involving at least L2 in Li or Lj as represented in the box.
Additionally, all relations coming from S1 can also be inherited to connect any
paths in S2, such as L1 ⇒ L1 and Isar_HOL⇒ L1. Again, while not mentioned,
the relation Isar_HOL ⇒ Isar_HOL can also appear to connect any paths. In
the same spirit, the embedding of L3 can rely on any combinations of L1, L2
and Isar_HOL. Similarly for S4, the editor is ready to consider the embedding
of a possibly new language L4, or continue as usual the theorem proving activity
with all or any combinations of L1, L2, L3 and Isar_HOL.

As remark, the presented embedding has been defined sequentially, in the
sense that several grey arrows were involved one after another one. A similar
result can be obtained with another style of embedding, depicted in Figure 5.4,
which is more compact as it treats simultaneously the embedding of all L1, L2
and L3 into Isar_HOL as a particular “sum type”. In this case only one grey
arrow occurs. This is particularly relevant if the grey arrow has a certain cost
that cumulative executions would avoid. Both programming styles are never-
theless equivalent: any combinations of the form Li ⇒ Lj are possible to be
defined in both cases (as long as the above naive strongly connecting condition
is fulfilled). Otherwise said, we finally obtain at the end a similar session S4 as
in the sequential reproductive process.

The next sections are now devoted to reveal in more detail the implementa-
tion of the reproduction process behind the grey arrows and to present as well
how to define the embedding functions.

5.2 Readability and Efficiency in Package Management

As observed in Figure 5.1, the management of dependencies among theories is
completely carried out by writing the specific list of theories to import when
starting a theory document (with the keyword imports). By maximizing the list
of theories to import, one is typically tuning how parallel the Isabelle system is



5.2. READABILITY AND EFFICIENCY IN PACKAGE MANAGEMENT57

L1 + L2 + L3

L3L1 + L2 + L3 Isar_HOL

L1 +

L3
L2 +

Isar_HOL

Isabelle session

session S4

theory
imports
keywords 
begin

end

[…]
[…]
[…]

Isabelle
L1 + L2 + L3 Isar_HOL Isabelle +

L1 + L2 + L3

session S4

Figure 5.4: The evolution of the reproduction process (simultaneous embedding)

going to process the overall collection of documents. Obviously, a system with
multi-core processors are better exploited when treating several unrelated theo-
ries in parallel.2 On the other hand, separation of concerns generally contributes
to reduce the effort of building a complex system or algorithm, by dividing a
non-trivial task on smaller components easier to test and prove for example. In
the present work, we will assimilate such components to packages [Mel91].

A package comes with a sequence of commands. Since commands are all
defined in the respective Isabelle theory documents being imported3, without
loss of generality, we can approximate a package as a theory defining at least
one command. So if one user misses to import the appropriate theory, er-
rors naturally appear in front of all encountered unknown commands as usual.
For the particular case of a theorem proving system like Isabelle, (most) com-
mands in packages have all the more the property to generate a number of
theorems. For example, whereas lemma usually produces one theorem, after
writing datatype α LIST = NIL | CONS “α” “α LIST”, we obtain 94 newly
generated theorems in Isabelle 2016. However in Isabelle, commands are serving
diverse purposes, for example:

• (HOL item) besides the possibility to generate theorems,

2In Isabelle, theories are forming a directed acyclic graph. [Wen16b]
3After bootstrapping Isabelle, it is always assumed that a theory imports at least one other

theory.



58 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

• (Isar item) commands also appear used during the proof of a theorem,
since they serve to instruct how far to advance a particular proof with
specialized tactics. (In Figure 5.1, the command using advances to the
middle of the proof, then the command by concludes the proof.)

The conjunction of these two facts suggests us to observe that the development
of Isabelle packages to support a domain-specific language L can somehow be
made generic by considering the whole type Isar+HOL (where _+_ represents
the sum type similar as Figure 5.4). More precisely, we estimate the function
L ⇒ Isar_HOL enough abstract for covering at the same time:

• packaging functions of the form L ⇒ HOL for commands generating theo-
rems, and

• packaging functions of the form L ⇒ Isar for commands solving proofs.

Thus “developing an L-package” amounts to define a function of the form L ⇒
Isar_HOL. However in the present work,

• (HOL item) certain singular features of UML/OCL have motivated us to fur-
ther generalize the concept of Isabelle packages (among others, the support
of multiplicity outranging the expressivity scope of HOL, the incremental
encoding of classes, etc., Chapter 6 will give further details), and

• (Isar item) the vast range of normalizing techniques (like normalization by
evaluation) has incited us to determine how well UML/OCL formulae could
be efficiently and automatically discharged in Isar proofs, for instance with
automated theorem proving techniques like decision procedures (which are
elaborated tactics, able to recognize theorems from a decidable theory).

So in order to uniformly satisfy both constraints, we are now asking if there could
exist a “universal framework” unifying both at the same time the practices of
developing packages on the one side (where the reasoning logic can be made
arbitrarily large), and developing decision procedures on the other side.

At first sight, developing an L-package could seem to be more general than
developing a decision procedure for a particular logic, for example Presburger
arithmetic (PA). This is because in decision procedure one has to write, at least,
a function of type fm ⇒ fm for a particular type fm representing formulas
(e. g., PA). Then, provided a complex expression of type fm, the principle is to
simplify it and obtain at the end an equal expression: a certain “normal form”
easier to reason with (like in normalization by evaluation).

However, even if packages are usually presented as embedding functions of
the form A ⇒ B, nothing prevents to introduce instead a slightly general type
“(A+ B)⇒ (A+ B)” (in reality only an expression of type A will be provided
in input, and for the moment we only expect to obtain an expression in B).
For the case of HOL-OCL 2.0 packages, “A = abstract syntax of UML/OCL”, and
“B = abstract syntax of Isar_HOL” the set of Isar_HOL definitions and lemmas
automatically derived in output by the HOL-OCL 2.0 packages. The resulting
objective is then to support (UML/OCL+ Isar_HOL)⇒ (UML/OCL+ Isar_HOL).
Thus, similarly as a decision procedure, one can consider UML/OCL as a formal
logical system, and as well Isar_HOL as a kind of superlogic (where a definition
of superlogic can be found for example in the work of David A. Basin, Manuel



5.2. READABILITY AND EFFICIENCY IN PACKAGE MANAGEMENT59

τ � X.oclAsType(Ci) , X

τ � invalid .oclAsType(Ci) , invalid

τ � null .oclAsType(Ci) , null

τ � ((X :: Ci).oclAsType(Cj) .oclAsType(Ci) , X)
τ � (X :: OclAny).oclAsType(OclAny) , X

τ � δ X =⇒ τ � X.oclAsType(Cj) .oclAsType(Ci) , X

τ � X.oclIsTypeOf(Cj) =⇒ τ � δ X =⇒ τ � not(υ X.oclAsType(Ci))
τ � invalid .oclIsTypeOf(Ci) , invalid

τ � null .oclIsTypeOf(Ci) , true

τ � (X :: Ci).oclIsTypeOf(Cj) =⇒ τ � (X :: Ci).oclIsKindOf(Ci)

(τ � (X :: Cj) .= X) = (τ � if υ X then true else invalid endif)
τ � (X :: Cj) .= Y =⇒ τ � Y

.= X

τ � (X :: Cj) .= Y =⇒ τ � Y
.= Z =⇒ τ � X

.= Z

...

Figure 5.5: Some generated and proved algebraic properties (here Ci < Cj)

Clavel and José Meseguer [BCM04]), which incidentally already includes HOL.
Ultimately, the idea can be pursued further by extending the process into (PA′+
UML/OCL + Isar_HOL) ⇒ (PA′ + UML/OCL + Isar_HOL), for a logic PA′ not
already subsumed by HOL for example. By presenting packaging functions as
decision procedures, we have now the required ingredients to implement a generic
platform intending to ease both the implementation of decision procedures as
well as packages in Isabelle/HOL, so to tend towards a kind of “Object-Logic
Package Manager”.

As an example of realistic domain-specific problems supported by HOL-OCL
2.0, we refer to the set of definitions, lemmas and corresponding proofs currently
generated by our UML/OCL Class Model Package (analysed in Chapter 7, and
listed in Appendix B and Appendix C). A UML class model underlying a given
OCL invariant or operation contract produces several implicit operations which
become accessible via appropriate OCL syntax. In more details, the fragment of
UML/OCL class models contains:

• classes consisting of typed attributes and their inheritance relation,

• associations and aggregations between classes,

• class invariants (from the OCL contract language), and

• operations on classes (from the OCL contract language).

From a class model, the Class Model Package generates a set of Isar_HOL com-
mands comprising:



60 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

• type definitions for each class names C1, . . . , Cn sorted according to the
inheritance relation,

• accessors _.allInstances() returning the set of all object instances ex-
isting at some time in the state of a system,

• definitions of accessors (destructors) for each attribute of a class, derefer-
enced in the pre-state (e. g., _.age @pre),

• definitions of accessors (destructors) for each attribute of a class, derefer-
enced in the post-state (e. g., _.age),

• for each class name C, tests of the form _.oclIsTypeOf(C) testing the
dynamic type of an object, i. e., the type under which it was dynamically
created,

• for each class name C, tests of the form _.oclIsKindOf(C) testing if the
dynamic type of the given object belongs to one subtype of C,

• for each class name C, definitions of cast of the form _.oclAsType(C)
always preserving the dynamic type of its argument (irrespective of C),

• for each class name C, there is an instance of the overloaded referential
equality (written _ .= _),

• and finally all properties setting up the object-oriented datatype theory.
A non-exhaustive overview is provided in Figure 5.5, and Chapter 7 is
specially dedicated to the explanation of these properties.

These definitions refer to a typed denotational model, the object universe. In the
algebraic layer, UML/OCL has an own type discipline providing basic types such
as Boolean, Integer and String as well as collection types such as Set(X) and
Sequence(X) (i. e., lists). While a one-to-one shallow mapping of the basic and
collection types has been established in HOL (detailed in Chapter 4 [BTW14]),
the part dealing with class types (via a denotational object universe A) requires
another formalizing strategy. This is because notions like “sets of classes” make
only sense on the syntactic level in HOL, where in this setting “classes” are con-
sidered as first-class citizen elements (so constants but not types). A meta-level
construction is thus unavoidable to process class-models, for ideally obtaining an
automated treatment as smooth as a regular one-to-one shallow mapping in HOL
(hence the need of using higher expressive constructs like packages to implement
such meta-level construction).

In previous work, given a particular example of class models in input, a
formalization of the corresponding Isabelle definitions, lemmas and proofs has
been performed by hand (namely, by manually writing by hand the examples
of “Employee Analysis Model” and “Employee Design Model” in the associated
formalization [BTW14]). In the present work, we generalize one step further:
from an arbitrary class-model, definitions and above listed properties are auto-
matically derived, like the usual deriving obtained when executing packages for
datatypes, records or quotients in HOL systems.

Fortunately or unfortunately, after deriving such properties, the next step is
to execute them: what happens if at run-time the execution of a given pack-
age does not seem to terminate? Can we precisely locate which tactic is being



5.2. READABILITY AND EFFICIENCY IN PACKAGE MANAGEMENT61

performing the expensive computation? For the case of a simple lemma (which
generates one theorem), Isabelle/jEdit is particularly suitable to experiment
step by step which tactics to apply, undo some operations, as well as inter-
change the tactics being edited, since the editor has been optimized in many
ways for a smooth prototyping of proofs, and accordingly treat tactics as atomic
actions. On the other hand, the act of generating properties is different than
a simple edition. Although the datatype package already generates hundreds
of theorems (for some basic example like “LIST”), UML/OCL object-oriented se-
mantics has a surprisingly rich theory: the Flight example of Figure 3.1 leads
to more than 2000 theorems. In case an “apparent” non-terminating computa-
tion is arising, it becomes then quickly desirable to know if this non-terminating
computation comes from the incapacity of the generator to generate some code
or comes from the execution of what has been generated. This is particularly
relevant whenever the code behind the generation is implementing non-trivial
algorithms, is resembling to a realistic compiler (e. g., counting more than 10000
lines of code [Ler09], like in HOL-OCL 2.0), and whenever the generated tactics
are resolving non-trivial theorems (e. g., the proofs of cast operations or lemmas
related with _.oclIsKindOf(_) presented in Chapter 7).

Generally, in terms of readability, mathematical proofs are especially valu-
able, as soon as one becomes convinced that all assumptions and axiomatizations
employed can indeed be ethically invoked. So having the possibility to read and
study which lemmas was generated and how they are proved will permit for
example to judge the pertinence of an object-logic theory with more conviction.
Furthermore, in case a theory document is generated, erroneous introduced as-
sumptions (if any) will have the possibility to regularly occur in several related
theorems, so chances to detect such irregularities become multiple according to
the number of bloc of related theorems.

To sum up, the next sections will focus the attention on the following points:

• Efficiency: How to maximize the maintainability and portability of
(large) packaging functions of the form “L ⇒ Isar_HOL”? Can we benefit
from substantial performance improvements similar as what one may get
with decision procedures?

• Readability: How to readably inspect the contents of generated proofs
and tactics being executed by the above point, so to potentially inherit
from the readability of Isar (and HOL) [Wen99, BW01, WW02]?

• Provability: In terms of trusted computing base, how far can we mechan-
ically relate the two above points, i. e., is “the readable code that makes us
convinced” really equal to “the efficient code that will be executed”? Can we
prove the termination of the generation process (including all type-checking
stages for example) or establish properties related to the translation (like
semantic preservation)? To which extent are we able to predict that a gen-
erated Isar_HOL content is well-typed (or well-proved), without actually
the need to run the type-checker? Can we minimize its use, provided one
has a reason to believe that the well-typing of a theory document can be
incrementally preserved, like the preservation of a semantics implied by a
reproductive partial ordering?



62 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

5.3 The Apparatus of the Reproduction Process

The standard solution for increasing the expressiveness of a supported type-
system or object-logic in Isabelle (e. g. HOL, required by class-models or HOL-
based decision procedures) is to implement the needed constructions inside a
more expressive meta-layer. This is generally performed by first accessing the
layer where this object-logic is being simulated or has been defined, in our case
its source code. ML has the property to be a suitable Turing complete layer
where HOL is implemented on top (the overall architecture follows the LCF-
principle [GMW79]). As such, the framework offers the possibility to “drive”
the core engine by user programmed ML code in a logically safe way. However,
although it is unavoidable at the end to compute particular Turing complete ex-
pressions (including the parsing of arbitrary Turing complete languages), several
reasons have incited the present work to not restrict the entire construction of
the packages to the sole use of ML, but to take advantage of all sub-components
made available by the framework.

Knowledge of the internals. More than ten years ago, Amine Chaieb and
Tobias Nipkow observed that programming proof decision procedures in LCF-
style in ML was disadvantageous compared to an HOL-based approach [CN05].
Despite noticeable improvements on communication technologies between the
logical language HOL and the meta-language ML [WC07], they argued that “it
requires intimate knowledge of the internals of the underlying theorem prover
(which makes it very unportable)” and “there is no way to check at compile type
if the proofs will really compose (which easily leads to run time failure and thus
incompleteness).”

While this remark was done in the context of decision procedures and not
packages (which are perhaps an easier task), we believe that the reproduction
process to be presented in this section is applicable to both, as sketched in
Section 5.2. Programming with the ML library is different than programming
with the usual Isabelle commands one is entering in Isabelle/jEdit. For a person
only familiar with the Isabelle commands, this requires a certain effort before
being familiar with the organisation of the ML library and how it is functioning.

As shown in Figure 5.6, the Turing completeness of ML allows to simulate the
execution of arbitrary commands, like lemma (occurring on top). So, for the par-
ticular case of commands, code of commands written in ML can be equivalently
expressed in Isar_HOL (without the use of ML): this is one property coming
from the architecture of the framework based on LCF. However reciprocally,
starting from a set of Isar_HOL commands, writing an equivalent same counter-
part in the sole use of ML becomes longer to achieve. This is because Isar_HOL
already allows to concisely express what would express an expanded ML term:
in the ML source, free or bound variables are not coloured distinguishably (e. g.,
instinctively, how many times is l_apply used in the picture?), functions re-
ceive additional arguments, the theory contextual environment is made explicit,
monadic programming style [Mog91] becomes particularly involved... Addition-
ally, these constraints must be multiply taken into account when the purpose is
not only generating one lemma, but especially thousand proven ones. Moreover,
inside one lemma, various combinations of tactics must again be multiply taken



5.3. THE APPARATUS OF THE REPRODUCTION PROCESS 63

lemma n: "l_spec ⟹ concl" proof l_apply qed o_by

ML {*
in_local (fn lthy => lthy
|> Specification.theorem_cmd Thm.theoremK NONE (K I) (To_sbinding n, []) []
         (List.map (fn (n, (b, e)) =>
            Element.Assumes [( ( To_sbinding n
                      , if b then [[Token.make_string ("simp", Position.none)]] else [])
                      , [(of_semi__term e, [])])])  l_spec)
         (Element.Shows [((@{binding ""}, []),[(of_semi__term concl, [])])]) false
    |> fold semi__command_proof l_apply
    |> (case map_filter (fn META.Command_let _ => SOME []
                          | META.Command_have _ => SOME []
                          | META.Command_fix_let (_, _, _, l) => SOME l
                          | _ => NONE)  (rev l_apply) of
          [] => global_terminal_proof o_by
        | _ :: l => let val arg = (NONE, true) in fn st => st
          |> local_terminal_proof o_by
          |> fold (fn l => fold semi__command_state l o Proof.local_qed arg) l
          |> Proof.global_qed arg end))
*}

Figure 5.6: Knowledge of ML’s library required

into account, where the same training is required to precisely locate how tactics
can be implemented (as in Figure 5.6).

As remark, Isar_HOL has been designed to precisely write human-readable
proof texts and enhance the presentation of theories. This is then perhaps
one reason why the Archive of Formal Proofs (AFP)4 contains minimal ML
code compared to the code base involving only Isar_HOL (those without ML
constructs). Generally, maintaining ML code base can require a certain ef-
fort (e. g., in HOL-OCL [BW08a]), even when Isar tactics are involved (e. g.,
in the seL4 project [KAE+10]), and generally in major domain-specific proof
languages [MWM14].

Maintenance of the internals. Besides the need to acquaint some knowl-
edge with the ML library organization, maintaining ML code depending on the
library would become all the more easy if this task can be at most minimized.
By regrouping together all the code that are depending on the library in a com-
mon place behind an abstract interface, then the maintaining task will be only
restricted to the code behind this interface, and this task can in parallel be
delegated to (potentially other) persons already familiar with the ML internals.
Indeed in Isabelle, as in many actively developed interactive systems, updates
concerning the content of its source code in ML have the possibility to happen
more frequently than, for example, modifications of its own Isar_HOL grammar

4An Isabelle public repository with formalizations: http://www.isa-afp.org/

http://www.isa-afp.org/


64 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

language. This is especially relevant when such updates do not affect the overall
semantics of the language, or only a part occurring outside the subset where the
implementor of L has a current interest.

At the same time, for the simple purpose of writing a packaging function of
the form “L ⇒ Isar_HOL”, one may be only interested on concentrating on one
suitable Isar_HOL interface, without knowing in detail which internal language
is implementing this interface, as long as certain requirements concerning this
Isar_HOL interface is respected.

A Meta-Model for the Isabelle API.
Since the early inception of HOL-OCL 2.0, we have opted in this thesis to ap-
propriately exploit several technical characteristics of the Isabelle framework in
order to rule out the aforementioned issues of maintainability, portability and
compositionality of proofs.

On the one hand, having an abstract API representing as closely as possi-
ble the Isar_HOL language would ease users already familiar with Isar_HOL to
develop Isabelle packages, and to ideally incite experts of L to analyze consisten-
cies of packages related with L. On the other hand, the design of such abstract
API has to be carefully performed. This is because both the constructions of the
API and the packaging function L ⇒ Isar_HOL are fundamentally related with
the requirements mentioned at the end of Section 5.2: namely, the properties of
efficiency, readability and provability.

Fortunately, the flexibility to embed many languages in Isar_HOL is due to
a combination of major features provided by the associated framework. These
features notably comprise the editing engine and all surrounding technologies
made available by the framework to practice programming activities and prov-
ing activities in a large sense. Following the Curry-Howard isomorphism (also
called Curry-De Bruijn-Howard isomorphism) [CFC58, dB80, How80], we see
the framework as a “meta” semantic container able to connect multiple logics
with multiple languages together, as illustrated by the variety of object-logics
in Isabelle, and the range of domain specific languages already formalized and
submitted to the AFP.

In our novel approach, we are taking advantage of all sub-components of Is-
abelle (comprising Isar, HOL and ML). The approach is a particular combination
of the following steps:

• We define an abstract syntax of our DSL in input in HOL (in the parlance
of researchers in UML and Model-driven Architecture (MDA), this is a
“meta-model” of UML). We shape our UML meta-model according to our
first needs and refrain from completeness or full compatibility to existing
standards.

• We define an abstract syntax of (an aspect) of the Isabelle kernel API in
HOL [TW15]. Again, we deliberately privileged as a first modelling high-
level abstractions over completeness.

• We define a translation between the former and the latter “UML/OCL ⇒
Isar_HOL” (called “meta-translation”), still in HOL (to target provability
requirements), which comprises the generation of declarations, definitions
in terms of denotational constructions, and tactic proofs.



5.3. THE APPARATUS OF THE REPRODUCTION PROCESS 65

UML/OCL
Meta-Model Model transf.

in HOL
Isar_HOL

Meta-ModelIsabelle

in Haskell
export (in Haskell, OCaml, Scala or SML)

apply & output to static file

UML/OCL in
Isabelle.thy

in ML

reflect (into ML the compiler of Isabelle)

in HOL
Isabelle + UML/OCL
bind to Isar in ML: 

dynamic loading in editor

pretty-print the deep 
embedding of 
Isar_HOL

evaluate the shallow 
representation of 
Isar_HOL in ML

Figure 5.7: Building packages in Isabelle/HOL: targeting readability, efficiency
and provability requirements

• We provide for the above Isabelle API a common infrastructure to generate
Isabelle parsable text (targeting readability), as well as to generate Isabelle
interpretable code (targeting efficiency). The interpretable code relies on
a code-generation setup reflecting HOL terms to ML terms. Then at ML
side, we can perform the parsing in input from UML/OCL syntax, and the
binding in output to the own native Isabelle kernel in ML.

The overall schema we are following is depicted in Figure 5.7.

Source Syntax: The UML/OCL Meta-Model

We define meta-models of the compiler using the Isabelle datatype or record.
We present as example just (the entry-point of) the UML/OCL class meta model
(which may resemble to the Toy meta-model of our formalization [TW15], but
this last contains lots of simplifications)5:

datatype uml_class = Class
string (* name of the class *)

(string (* name *) ∗ uml_ty) list (* attribute *)
string (* link to superclasses *)

As an example, we take the first two class definitions shown in Figure 3.2 and
present them in this abstract syntax datatype (the term command just type-
checks it for presentation purposes):

term [Class “Flight” [(“seats”,UmlTyInteger),
(“from”,UmlTyString),
(“to”,UmlTyString) ] “OclAny”,

Class “Reservation”[(“id”,UmlTyInteger) ] “OclAny”, [. . . ] ]

Target Syntax: The Isabelle Meta-Model

Our abstract syntax of the Isabelle API supports the representation of

• types, terms (with syntax-declaration elements),

• elements for tactics and Isar high-level proof methods, and
5OclAny is added by the compiler as a super class inherited by all other classes.



66 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

• Isabelle outer commands (like datatype, lemma, locale, . . . )

Here the manipulation of the monadic editing environment (like global context
and proof context) becomes implicit: we aim to be as close as when one is editing
in Isabelle/jEdit. This slight abstraction of the “real” internal interfaces might
both enhance usability and portability. As an example of abstraction, we did
not need polymorphic datatypes for the Class Model Package, so our current
version of meta-model for datatype looks as follows:

datatype hol_datatype = Datatype
string (* name of the datatype *)

(string (* name *) ∗ hol_ty list) list (* constructor *)

All commands are finally regrouped together in a general entry-point [TW15]:

datatype hol_theory = Theory_datatype hol_datatype
| Theory_definition hol_definition
| Theory_lemma hol_lemma | [. . . ]

As remark, since these two datatypes are Isabelle datatypes, we can proceed
as above and present them together in a general term:

term [Datatype “hol_datatype” [(“Datatype”,
[ TyVar “string”
, let list = λx.TyApp “list” [x] in
list (TyPair (TyVar “string”) (list (TyVar “hol_ty”)))])],

Datatype “hol_theory” (List.map (map_pair id (λa. [TyVar a]))
[ (“Theory_datatype” , “hol_datatype” ),

(“Theory_definition” , “hol_definition” ),
[...] ]), [...]]

Two Strategies of Code Generation
After having defined one single translation in HOL of some meta-model to this
Isabelle model, we can choose at present two scenarios of exploitation. They are
complementary from a certain perspective, if not equivalent: the result of this
translation (so the generated Isar_HOL commands) can be either immediately
executed (bottom of Figure 5.7), or converted to a string in concrete Isar_HOL
syntax that can be stored in a file to be executed step by step for presentation
purposes (top of Figure 5.7). Both scenarios use two different variants of code-
generation inside Isabelle/HOL: namely, code-reflection and code-exportation.

The Reflection Scenario

The principle of compiling a formula with computational content to code, eval-
uating it, and re-introducing the result in derivations over the formula is called
reflection. In the general domain of meta-reasoning, reflection has been a well-
known concept ranging from the area of logic to programming languages, e. g.,
in 3-Lisp [Smi82, Smi84] — a pointer to a general survey can also be provided
here [Cos02]. There is meanwhile a large body of publications on this tech-
nique often applied in interactive theorem proving systems (as non-exhaustive



5.3. THE APPARATUS OF THE REPRODUCTION PROCESS 67

list, we can cite some of them [BM79, Wey80, ACHA90, Bas93, Har95, Bou97,
VGPA00, CN05]), where a universal axiomatizing approach has already been
brought [CM96].

After reflecting the initial HOL translation function, we obtain an equivalent
ML function which is automatically added in the ML environment of the running
system. Thus this function can be used as any other ML function:

1. we bind to its input a parser reading tokens from the Isabelle/jEdit editing
window. The parser is connected to the Isar_HOL syntax engine (e. g., to
support UML/OCL syntax), so that one can write usual UML/OCL command
names (Class, Association, Instance, etc.) in Isabelle/jEdit and trigger the
execution of the ML reflected function in return.

2. then we map its output (i. e. the ML reflected API model of Isar_HOL) to
the own Isabelle’s ML interface of Isar_HOL.

Finally, the combination of both forms a way to implement new packages in
Isabelle/HOL, as any other Isabelle packages, but here we are also relying on po-
tential optimisations made by the code generation (like decision procedures im-
plemented in HOL). The construction directly benefits from an implicit “shallow”
integration in Isabelle/jEdit, with many associated functionalities: for example,
syntax annotations (or “constant bindings”) become available as usual. Then
a click on an accessor in some OCL formula will let the Isabelle/jEdit interface
“jumps” to the corresponding definition inside a class model definition. Obvi-
ously, the generated code is still checked by the Isabelle kernel, then assuring
the correctness of the underlying constructions as in any other package. We call
this scenario of execution, the “shallow (reflection) mode”.

The Exportation Scenario

For readably present the generated content and debugging purposes (this partly
addresses the aforementioned issue of “intimate knowledge of the internals”), it is
convenient to observe the generated declarations by several means: e. g., having
a file containing the generated HOL definitions and Isar proofs, and execute
them on a step by step basis by hand. The exportation scenario resembles
to the above reflection scenario, except that no bindings happen between the
Isar_HOL meta-model (presented in this thesis [TW15]) and the Isabelle’s ML
interface of Isar_HOL. We write instead a pretty-printing function from this
Isar_HOL meta-model to string, so that this string can be ultimately saved to
file, called the “deep-certificate”. Besides ML, the pretty-printing process and
saving to file can actually be performed in Haskell, OCaml, or Scala since these
processes do not use the Isabelle’s ML interface of Isar_HOL. So in this scenario
of execution, called the “deep (exportation) mode”, the generated Isar_HOL
content is not evaluated, but only represented as a string.

Unifying Both Scenarios

However a little work is still needed here for the exportation scenario to be used
as smoothly as in the reflection scenario, i. e., in an interactive setting where
the language in input is the UML/OCL language one is entering in the editor.
Then Chapter 6 will pave the way for an automated treatment, by unifying



68 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

theory Scratch   imports  Main
                 keywords "Term" :: diag   begin

datatype LIST = NIL | CONS nat LIST

fun    height :: "LIST  nat"⇒
where "height NIL        = 0             "
    | "height (CONS _ t) = Suc (height t)"

declare [[ML_source_trace]]

ML{* val NIL    = @{code NIL} 
     val height = @{code height} 
     val _      = height NIL     *}

ML{* Outer_Syntax.command @{command_keyword Term} 
      " Term reads and prints an arbitrary HOL term " 
      (Parse.term >> (Isar_Cmd.print_term o pair [])) *}

Term "height a + height b = height b + height a"

find_theorems

end

Figure 5.8: Defining new commands on the fly: the new Term command

with a special command “generation_syntax” the two presented scenarios, i. e.,
allowing to choose in Isabelle/jEdit between the reflection or exportation without
changing the UML/OCL expressions provided in input.

ML Antiquotations (I): Static Embedding into System
Runtime
We close the section by detailing certain noticeable functionalities related with
ML commands, that have been used when performing reflection and the defini-
tion of new Isar_HOL commands.

As suggested in Figure 5.6, in modern Isabelle, ML code can be arbi-
trarily mixed with any other commands in the editor. Via code antiquota-
tions [WC07, Wen16a], ML extensions can be programmed comfortably, since
unlimited accesses to the own source of Isabelle are granted within Isabelle/-
jEdit (at run-time). Thus, by approximating with a certain “meta” perspective
the code generation as an identity function, one can start some programming
or proving activity in the full Isabelle framework (with any interleaving of Isar,
HOL and ML), to later refine the same activity in ML.

In order to demonstrate the relevant technical features, we present a screen-
shot in Figure 5.8 showing a session based on Isabelle/HOL that consists of the
only file Scratch.thy. As usual, we retrieve the header mentioning theory and
the “imports Main” clause (“Main” is a synonym for HOL) and then a sequence
of commands: datatype, fun,declare,ML. . . Isabelle sessions can be extended by



5.3. THE APPARATUS OF THE REPRODUCTION PROCESS 69

(* Comment 2 *)

(* Comment 5: after the end of the theory *)

(* Comment 3 *)

(* Comment 4: situated before the end *)

(* Comment 1 *)

  text    ‹                                                    ›

 theory      imports Main
             keywords  "Term"   :: diag                 begin

datatype

   ML     {*                                                  *}

  fun

declare

   ML     {* val NIL    = @{code NIL}
             val height = @{code height}
             val _      = height NIL                          *}

   ML     ‹  Outer_Syntax.command @{command_keyword  Term   }
              " Term reads and prints an arbitrary HOL term "
              (Parse.term >> (Isar_Cmd.print_term o pair []))  ›

  Term

  thm

  end

Figure 5.9: Isabelle session seen as a gigantic ML top-level

user-defined commands, a feature we use for defining on the fly (at run-time in
Isabelle/jEdit) a new command called “Term”.

By unusually inversing the color of this theory file, we can better explain the
effect of the ML command. Figure 5.9 shows a content resembling to Figure 5.8,
but tokens are here described as a list of repetitive blocks of two elements:
one blue command, immediately followed by a green area (which can optionally
be empty depending on the parsing policy of the blue command). As remark,
only comments or informative messages can be written outside a theory: e. g.
for comments, we typically use the command text, which can occur before the
command theory and after the command end (although its color is green in the
picture, end can be assimilated as a blue command).

In Figure 5.9 the largest white color in background has the meaning to spe-
cially denote ML programs. This is to accentuate that, at any positions, ML
programs has the possibility to be interleaved with syntactic blue and green
blocks. Indeed, Isabelle itself is built on top of an ML execution environment,
and in fact, Isabelle is a collection of modules implemented in ML and added into
the ML environment of execution. So blue and green blocks can be thought of as
abbreviating internal ML code, so that the global file is basically nothing but an



70 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

entire ML top-level. Thus any blue block (together with its following green part)
can be simulated with a corresponding piece of code appropriately written in ML.
For example, it is possible to replace an entire theory file Example.thy with an
equivalent one, mostly coded in ML, so that other files importing Example.thy
(with “imports”) would not know the percentage between 0 and 100% of ML
fragments contained in Example.thy without a closer inspection inside the file
Example.thy. Historically, ML itself was developed as a meta-language and an
execution environment for theorem provers similar to Isabelle [GMW79, Gor00].

In principle, the ML command just gives access to the underlying ML ex-
ecution environment: ML{∗3 + 4∗} compiles “3 + 4”, executes it, and op-
tionally displays the result in the output window. However, when so-called
code-antiquotations [WC07] such as @{code NIL} are used, the process is
more involved because ML antiquotations implicitly refer to values declared
“at Isar_HOL side”. Concretely, an additional processing step is needed to
resolve the appropriate dependencies before the ML code can be compiled.
declare[[ML_source_trace]] activates an option to inspect in detail the re-
sulting ML code in the output window. For example, the two antiquotations NIL
and height generate among other the following ML code (for clarity reasons,
certain names of variables have been slightly renamed afterwards):

structure Generated_Code =
struct

datatype nat = Zero_nat | Suc of nat ;
datatype list = NIL | CONS of nat * list ;
fun height NIL = Zero_nat

| height (CONS (x, t)) = Suc (height t) ;
end

This ML code looks close to the one we have defined at Isar_HOL side (where in-
stead we used datatype and fun). Finally during the compilation, antiquotations
are automatically replaced with their corresponding values:

val NIL = Generated_Code.NIL
val height = Generated_Code.height

This makes “height NIL” efficiently executable in the context of the compiled
code — no symbolic representation is any longer involved.

As remark, instead of using antiquotations, one can also invoke the command
code_reflect to explicitly perform the process of reflection on some particular
given constants [Haf09, HN10, Haf16].

ML Antiquotations (II): Defining New Isar_HOL Commands
The new command Term we are adding in Figure 5.8 and Figure 5.9 relies
on the command ML to interact with the own source code of Isabelle, and to
get access to Outer_Syntax.command further located in the source. The “Isar”
component of Isabelle handling the blue commands, occurring in the “outer syn-
tax” space [Wen16b, Wen16a], is in fact reconfigurable. Outer_Syntax.command
takes a keyword as argument as well as one associated code to later execute
whenever encountering the keyword. It ultimately binds both arguments so that
the keyword can immediately be used afterwards like any other command (or any



5.4. PROPERTIES OF THE REPRODUCTION PROCESS 71

function ready to be applied). The use of Term as a keyword is possible since we
have priorly declared in the header “keywords Term”. As pointed in Figure 5.9,
the space where Term can be employed as a keyword is delimited between theory
and end. Although the new command Term (with an uppercase “T”) has been
built based on the code of the existing command term (with a lowercase “t”),
generally, any command from the Isar_HOL core API is accessible inside the ML
scope. So it is as well possible to implement Term for it to have the same seman-
tics as any other chosen command: namely datatype, fun, theory, or generally
any existing Isar_HOL commands (including ML). However as a bootstrapping
issue, while Term can be implemented with the code of theory (for it to have the
same semantics as the command theory), after doing so, one will never have the
possibility to call Term. This is because all user-defined commands (like Term)
must be precisely called inside theory and end (and theory can not be called
inside itself). This remark is not restricted to theory, but generally applies for
all keywords having the possibility to occur outside theory, like text.

5.4 Properties of the Reproduction Process

Summing up, the construction presented in Figure 5.7 provides a generic prin-
ciple to extend Isabelle with packages. To enable the prover to conceive its
future object-logic, the reproduction of editing sessions basically requires three
ingredients:

1. formal meta-construction,

2. code reflection,

3. and own kernel binding.

Then to perform the translation “UML/OCL ⇒ Isar_HOL”, the implementation
has capitalized on resources of the full Isabelle framework, i. e. Isar + HOL
together, with some fragments in ML. This is to precisely benefit from a number
of advantages.

Edition versus Generation
There is a subtle difference between the API presented in this thesis [TW15],
and the native interface of ML signatures of Isar_HOL as implemented in the
original source of Isabelle. While we see them as complementary, they are serving
different objectives, and then they are differently optimized: the interface in
ML optimally targets means to obtain reactive and asynchronous editions of
Isar_HOL documents, whereas the presented API in this work optimally targets
means to obtain correct and massive generations of Isar_HOL documents.

• (editions of Isar_HOL documents) For example in Figure 5.10, the four
commands are differently instantiated: their parsers are all different, tak-
ing different arguments in input, and each command needs to call a pre-
cise piece of code, thus making all commands achieving different func-
tionalities (at least the four presented in the figure). Then, modules re-
sponsible to set up datatypes are in “~~/src/HOL/Tools/BNF” (e. g., in
Isabelle 2014), whereas for ML, functions implementing the evaluation



72 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

   ML     ‹
val _ =
  Outer_Syntax.local_theory  @{command_spec "datаtype" }
    "define inductive datatypes"
    (BNF_FP_Def_Sugar.parse_co_datatype_cmd
      BNF_Util.Least_FP BNF_LFP.construct_lfp)                    ›
   ML     ‹
val _ =
  Outer_Syntax.local_theory' @{command_spec   "fun"    }
    "define general recursive functions (short version)"
    (Function_Common.function_parser Function_Fun.fun_config
      >> (fn ((config, fixes), statements) => 
           Function_Fun.add_fun_cmd fixes statements config))     ›
   ML     ‹
val _ =
  Outer_Syntax.command       @{command_spec   "МL"     }
    "ML text within theory or local theory"
    (Parse.ML_source >> (fn source =>
      Toplevel.generic_theory
        (ML_Context.exec (fn () =>
          ML_Context.eval_source
           (ML_Compiler.verbose true ML_Compiler.flags) source) #>
         Local_Theory.propagate_ml_env)))                         ›
   ML     ‹
val _ =
  Outer_Syntax.command       @{command_spec   "end"    }
    "end context"
    (Scan.succeed
      (Toplevel.exit o Toplevel.end_local_theory o 
        Toplevel.close_target o
         Toplevel.end_proof (K Proof.end_notepad)))               ›

Figure 5.10: The genesis of commands

of ML sources are related (among other) with ML_Context.eval_source,
Local_Theory.propagate_ml_env, etc. So the real source code of Isabelle
is organised following a particular policy, containing well-structured collec-
tions of ML libraries where each module and each signature has a specific
goal to achieve.

Thus, the Isar_HOL interface in ML is modularly organized and optimized
to treat fast incoming commands from multiple incremental updates from
Isabelle/jEdit. Commands are internally represented in low-level format as
monadic combinators (i. e., with types of the form “t⇒ α⇒ t”), taking for
instance the editing context as additional parameter (i. e., proving context
or global context). So at the end, these commands or monadic combinators
will be linearly assembled like a stream data-structure, and potential errors
are appropriately optimized to happen at run-time.

• (generations of Isar_HOL documents) On the other hand, the Isar_HOL
API presented in this thesis is precisely designed to abstract the internal
functioning of commands, and provide a kind of grammar indicating at pro-
totyping time which commands can be called (or generated) after or inside
which ones. Ultimately, the aim is to minimize grammatical errors: for



5.4. PROPERTIES OF THE REPRODUCTION PROCESS 73

example datatype can not be called just after opening a proving scope like
lemma. Similarly, after typing datatype, it is not expected to immediately
type sledgehammer, or qed before beginning a proof. In the same spirit,
when generating tactics, the Isar_HOL meta-model in HOL would treat the
left parenthesis proof with the right parenthesis qed as a single construc-
tor, so that one does not have to remember the number of left parenthesis
opened until now, to be closed by one right “qed”, and the right one. In
addition, high-level constructs are modelled with recursive datatypes, e. g.
for tactics t := (t list) + |(t list)?| simp | rule |metis | auto |[. . . ].
As summary, the Isar_HOL meta-model in HOL stands as an intermediate
data-structure, designed to abstract and provide a recursively typed API,
capturing the essence of a well-typed tree document (whose structure, as
a tree, can be deeply and recursively folded).

Proving in Isabelle/HOL, in L1, . . . , in Ln
By defining the translation in HOL, and using Isabelle/HOL as “implementa-
tion language” itself, one immediately profits from a premium access to verified
libraries. As pointed by the manual describing object-logics of Isabelle [Pau16]:

“HOL is currently the best developed Isabelle object-logic, including
an extensive library of (concrete) mathematics, and various packages
for advanced definitional concepts (like (co-)inductive sets and types,
well-founded recursion etc.). The distribution also includes some
large applications.”

Possible relevant libraries for the translation are among other: the formalised
red black tree theory, infrastructures on list, pair, monad, or the one defining
transitive closures for expressing inheritance relation, plus diverse libraries on
λ-calculus from the AFP that can constitute sound foundations for both meta-
models: both have to manipulate terms and types.

Furthermore, one can profit of the possibility to prove properties over the
compiler within the native flexible Isar_HOL language, in a large sense: seman-
tic preserving HOL-based compilations, or correctness properties in HOL-based
decision procedures for instance.

Generally, the framework can serve to incrementally build constructive func-
tions, i. e., irrespective of the notion of “a particular theorem to prove”. Since
the complete compiler has to be ultimately executed, its internal component
aims to be built favouring the constructive subset of classical logic. Instead of
writing a single block of definition, that same definition we are defining can in
fact be incrementally constructed with lemma and a final intuitionistic extract.

For the case of HOL-OCL 2.0 packages, proofs are actually diversely cov-
ered ranging from the termination proofs of the compilation functions (which
we provided alongside with our construction, they are mandatorily required
when defining arbitrary Isabelle/HOL functions), or different studies concern-
ing the implementations of the object-oriented data-structures (detailed with
generation_semantics in Chapter 6).

The check of the non-emptiness of all datatypes being defined are then cov-
ered. From a syntactic point of view, defining a datatype in ML can be as
concise as defining a datatype in Isabelle/HOL. From a semantic point of view,



74 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

both approaches follow different consistencies checking [Gun92]: number of lem-
mas are automatically derived in Isabelle to assure the well-formedness of the
data-structures being defined [TPB12, BHL+14]. Thus, one can take advantage
of this additional guarantee when defining the full meta-model of UML/OCL in
Isabelle/HOL (and this meta-model has a certain size). In particular we will see
in future chapters that a meta-model for UML/OCL must be rich enough to cap-
ture the description of classes, associations, instances, transitions, invariants...
Not only are these additional lemmas proved by the datatype package of Isabelle,
but associated folding recursive definitions are automatically provided in order
to deeply fold the data-structures being defined. These folding definitions will
be used to facilitate various pretty-printing operations to string (in Chapter 6).

Parallel Related Theorem Proving

Because writing a short sequence of tactics can be more rewarding than a long
one, generating proofs solving a class of theorems can be as well more rewarding
than generating proofs for solving only one. We present for instance a tactic
function in HOL in Figure 5.11. For the moment, we can just note that this
figure is well-typed in Isabelle (and only depending on Main), more detailed
explanations about what this tactic is solving will be provided in Section 7.5.
Although this tactic function might resemble as any usual definitions of tactics,
e. g. in Coq’s Ltac [Del00] or Isabelle’s Eisbach [MWM14], here we are not
solving just one theorem but a set of “related” theorems at the same time with
this single function.6 Otherwise said, one can for example use our approach
to define an HOL function, solving a set of theorems, where each theorem is
itself solved by some tactics in Eisbach (which has been designed to write short
sequence of tactics). On the other hand, in our approach, solving a class of
theorems is not mandatory: one can also generate a set of tactics for solving
only one theorem.

Finally, even if Figure 5.11 seems to have been written in one shot (i. e.
with no interactive theorem proving facilities), the debugging of this high-level
construction by alternatively inspecting the deep-certificate turned out to be an
extremely useful technique, especially when combined with the ability to type-
check a set of related theorems at the same time in parallel, natively provided
in Isabelle [Wen09, MW10, Wen14].

Meta Theoretical Properties

The presented construction allows to generate certain properties over syntactic
and static sanity of the generated functions and models, such as: “if no context
errors in the Class Package syntax occur, it can be assured that all generated
names for accessors are distinct”. In particular, we have taken advantage of the
type system of HOL to do some extra type-checking and term rejections. For
example, the checking of free or bound variables in the new command Instance

6The set contains theorems particularly related, because this function takes the full universe
of UML/OCL classes in input and covers all situations: leaf nodes, root node...



5.4. PROPERTIES OF THE REPRODUCTION PROCESS 75

theory Scratch4
imports Main
begin

locale T
begin
datatype ('a, 'b) tactic
  = simp_only 'a
  | erule 'b
  | simpdepth_1
  | simpdepth_2
  | simpbreadth
end

fun auxdepth
and auxbreadth where
   "auxdepth ldepth = 
     (λ [] ⇒ [] 
      | (class, lbreadth) # ldepth ⇒ 
         T.simp_only class 
         # auxbreadth class [] ldepth (rev lbreadth)) 
      ldepth"
 | "auxbreadth class tactic ldepth lbreadth = 
     (λ [] ⇒ tactic 
      | (class0, class0_path_inh) # lbreadth ⇒ 
         T.erule (class, class0 # map fst lbreadth) 
         # (if lbreadth = [] then op # T.simpbreadth else id) 
           (auxbreadth 
              class 
              ( (if class0_path_inh then 
                   (if ldepth = [] then op # T.simpdepth_1 else id) 
                   (auxdepth ldepth) 
                 else [T.simpdepth_2]) 
               @ tactic) 
              ldepth 
              lbreadth)) 
      lbreadth"

end

Figure 5.11: Parameterizing which theorem to solve with a list of tactics as
complete answer



76 CHAPTER 5. THE OBJECT-LOGIC THEORY GENERATOR

can be (partly) subsumed to the generation of several definitions of the form:

definition typecheckInstance_extra_variables_on_rhs =
(λF2 F1 R21 R11 C2 C1 S1. (F1,Mon, F1, R21, F1, R11, F1, F1))

Here, whenever Mon has not been earlier defined in the code, we would auto-
matically get an error, this error being raised by the definition command itself.

As remark, since we apply the code generator of Isabelle to generate code,
which will again generate definitions and proofs (obtaining at the end some
meta-level code whose results will be checked by the logical core engine), the
general reproductive process can not be approximated in the precise sense of
the word as a simple act of (syntactic) reflection or exportation, rather a tool
construction by meta-level modelling not involving additional trust (except the
understanding one might have on Isabelle generated theories, and associated
arising trust).

Generally, the particular relation between rewriting logic [Mes92] and type
theory [ML84] has already been deeply investigated, for example by Mark-Oliver
Stehr [Ste02]. In parallel in the present work, a comparison can also be ap-
proached with Pure Type Systems (PTS) [Bar91] where inference rules (typically
abstraction and application) are reused several times but differ on the nature of
the folded (or quantified) sort (which can be a type or a kind). Similarly, having
Isabelle/HOL as a back-end of itself shows that Isabelle/HOL (seen as a pure cal-
culus system without considering potential non-terminating aspects from the ML
layer) can be reused to fold itself through one deep embedding iteration. In term
of expressivity, while one first iteration already allows to express types as first
class citizen, comparatively to dependent types, no limitation on the number of
iteration does actually occur as constraint.

While the typing of PTS crosses all sorts of hierarchy as a single entity, no
particular assumption on well-formedness is initially performed when deeply em-
bedding syntax trees (by default, additional proofs should be brought). However
meta-considering Isabelle in itself does not restrict the calculus system to inner
syntactic expressions (or object-logic expressions). Since the complete language
is covered, HOL can as well be used for generating Isar_HOL tactics (at the meta
level, the process of generating tactics is guaranteed to be terminating, whereas
their execution may not).

Slightly more challenging, our technique can in principle be adapted to prove
meta-theoretic properties such as: “if the class model is well-formed, the gener-
ated code will be well-typed with respect to HOL types”. When complemented by
a semantic model of the Isabelle/HOL API, it is even conceivable to extend our
approach by true completeness proofs assuring that the evaluation of the various
deep-certificates will not fail. However, this is a very ambitious task (not yet
implemented) that appears feasible only for simple rewrite-oriented proofs or
for the checking of simple proof-objects. We nevertheless consider the overall
construction of the reproductive process as a major step into this direction.



C
h

a
p

t
e

r

6
Meta Theorem Proving in HOL-OCL 2.0
The embedding function L ⇒ Isar_HOL, described as a packaging function in
the previous Chapter 5, becomes now interactively considered inside the editor
Isabelle/jEdit. Due to the approach consisting to sequentially embed a chain
of languages L1 · · · Ln, one could even obtain at the end an infrastructure sup-
porting the modelling of Ouroboros programs [AJGL11] (which are mutually
generating programs [Kle38, Cut80]: e. g., P1 written in L1 which produces in
output a program P2 in L2 so that the execution of P2 yields exactly P1 in
its turn1). The present work will nevertheless be regarded as an antagonist
work for several reasons. The aim of successive embeddings presented here is
to merely not form cycles, we imagine the reproduction process as a one way
process, growing in many directions as a genealogical tree. In particular, several
running modes of animation respectively illustrating Figure 5.7 will be presented
for the construction to avoid cycles at run-time depending on the running mode.
Whereas the deep exportation mode will delay the loading or load step-by-step
the semantics of a given piece of code in L, the shallow reflection mode will
execute at full speed the semantics of this piece of code.

Precisions will also be provided on the limitation of such embedding and
which symbols are needed or not to delimit the enclosing scope of the embedded
languages. This is for programmers and computers to unambiguously know if a
given piece of code has to be understood belonging to L1, L2, or somewhat else.

6.1 Modelling in deep and Executing in shallow

To animate the semantics of some piece of code written in L, we integrate in the
jEdit-based Prover IDE of Isabelle a special command, called generation_syntax,
to fine-grained select which behaviour in Figure 5.7 to execute when encounter-
ing that piece of code. Furthermore, in order to determine if a given piece of
code in Isabelle/jEdit has to be understood as a piece of code belonging to
L or Isar_HOL, we introduce the terminology of meta-commands. By meta-
commands, we precisely designate any Isabelle commands satisfying all the fol-
lowing conditions:

1https://en.wikipedia.org/w/index.php?title=Quine_(computing)

77

https://en.wikipedia.org/w/index.php?title=Quine_(computing)


78 CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0

theory
imports Generated
begin

end

[…]theory Generated
imports
begin

end

[…]

(* deep certificate *)
[…]

[…]
generation_syntax
  [ deep    ]

generation_syntax
  deep flush_all

end

generation_syntax
  [ shallow ]

end

session
in output

same Isabelle

same Isabelle session in input

L Isar_HOL

[…]theory    begin

same L in input

As remark about the two drawn Isabelle sessions in output, here the names of certain constants
might need to be prefixed with “Generated” in one case, and prefixed with nothing in the other
case. To be rigorous, the “exact” similarity only occurs when we compare the (end of the)
deep-certificate with the (end of the) file in shallow-mode. Then we must also assume that
both files have the same name and import similar ancestor theories.

Figure 6.1: Commutative diagram linking deep with shallow

1. commands manually defined with keywords in the header of a theory, e. g.,
like Term in Figure 5.8, and

2. commands C which are bound to the reflected ML translation function
of Figure 5.7, so that finally one can parameterize the semantics of C at
run-time to fluctuate between the exportation scenario or the reflection
scenario.

For instance, the previously defined command Term will not be called as a meta-
command, because it does not use the reflected translation of Figure 5.7. On
the other hand, Class, Association, or Instance are examples of meta-commands
defined in respective packages of HOL-OCL 2.0.

At any editing position, the special command generation_syntax can change
the semantics of future incoming meta-commands representing L: it takes a list



6.1. MODELLING IN deep AND EXECUTING IN shallow 79

L Isar_HOL

L

L

L

[…]

theory    begin

generation_syntax
  [ deep    ]

generation_syntax
  deep flush_all

generation_syntax
  deep flush_all

generation_syntax
  deep flush_all

end

[…]

⊆

⊆

I I I

II

I

Figure 6.2: Incremental generations in deep

of animating mode, either deep, shallow or any elaborated combinations that
can concur at the same time. In particular the fastest semantics is obtained
with an empty list: when it is set, only minimal syntactic checks are supposed
to occur afterwards. Figure 6.1 establishes as general idea or conjecture the
equality relation of sessions between deep and shallow. Starting from a language
L embedded into Isar_HOL, and a piece of code written in L, the piece of
code can exhibit two symmetric behaviours depending on if deep is given to
generation_syntax or shallow. These two behaviours reflect exactly the two
ways to export the meta-translation presented in Figure 5.7.

• In particular, deep can take additional parameters to specify which
intermediate languages to use for generating the deep-certificate
“Generated.thy” in the hard disk (among Haskell, OCaml, Scala, or
SML). Then, at any time in deep-mode, one call of generation_syntax deep
flush_all will perform as side effect the saving of the generated Isar_HOL
commands associated to the piece of code written in L, by invoking the
respective compiler of the chosen intermediate language (several interme-
diate languages can also be chosen in parallel).
Because all meta-commands are considered or possibly reconsidered again
for the generation, we can obtain at the end several well-typed generated
theories which are related by a particular relation of partial ordering. For
example, Figure 6.2 shows an increasing ordering of three well-typed gen-
erated elements. As remark, the smallest element of this relation could be
a not empty file: whenever we immediately call generation_syntax deep



80 CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0

flush_all, just after setting a file in deep-mode, the emptiness of the re-
sulting generated theories actually depends on how the embedding from L
to Isar_HOL has been defined.2

• In shallow-mode, all operations totally occur in RAM memory, including
the operation simulating the execution of some generated deep-certificate.
However in contrast with the deep-mode, no certificates are produced after
or during generation_syntax [shallow]. Both the reflection step from HOL
to ML, and the translation step from this reflected ML code to native ML
interface of Isar_HOL happen before the definition of generation_syntax.
So the execution cost of generation_syntax [shallow] is roughly O(1), and
after being correctly parsed, incoming L meta-commands have just to ap-
ply the reflected translation (that can already be more or less optimized
into some native code, depending on the compiling strategy of the ML
compiler used by Isabelle).

At the end, after loading both the deep-certificate and the file in shallow-mode
in Isabelle/jEdit, one would finally obtain two similar sessions. It is as if they
have executed similar definitions, theorems and proofs, except that:

• one needs to debug the RAM memory in shallow-mode to understand what
Isar_HOL commands have been generated,

• whereas for the deep-certificate, it comes with a certain level of readability,
but its creation costs an extra step of printing to string (normally to the
hard disk), plus the cost associated to future parsing and type-checking
(in intermediate languages, in Isar_HOL as well).

More generally, this commutative diagram can be understood as a monadic type
of the form: t ⇒ α ⇒ t × t or simply t ⇒ α ⇒ t, where t represents the state
of the Isabelle session and α the piece of code in L taken as experimentation.
In particular, interleaving of modes can occur among any chains of embedding.
For example, Figure 5.2 does not precise if the three grey arrows are similarly
all executing in shallow-mode, or all executing some extracted deep-certificate
each time (assuming we firstly forget that this figure represents a single file).

deep generally aims to complement shallow because the former can be as-
similated as a process producing at the end a formal specification which can be
visually inspected. Later, the formal specification can serve as a certificate to
justify the execution of shallow. Given a deep-certificate and a theory file in
exclusive shallow-mode, running both sessions in parallel (in separate Isabelle/-
jEdit processes) allows to inspect and potentially detect a non-terminating tactic,
that task can be harder without having at hand a deep-mode (it would mean to
only debug in shallow-mode).

Irrespective of the running mode (deep or shallow), generation_syntax takes
further arguments to influence the semantics of generated contents, this is per-
formed with the keyword generation_semantics. However this is just a slight
influence, for example concerning optimizations we might have on the choice of
data-structures used to model certain datatypes. So noticeable differences for

2Without loss of generality, we will see in Chapter 7 that class models considered in this
thesis always have at least one class (“OclAny”) automatically added by default.



6.1. MODELLING IN deep AND EXECUTING IN shallow 81

(* before Isabelle 2014 *)
ML {*
   ((snd oo Datatype.add_datatype_cmd Datatype_Aux.default_config)
      [((To_sbinding n, [], NoSyn),
       List.map (fn (n, l) => (To_sbinding n, List.map s_of_rawty l, NoSyn)) l)])
*}

(* after Isabelle 2015 *)
ML {*
   (Isabelle_BNF_FP_Def_Sugar.co_datatype_cmd
      BNF_Util.Least_FP
      BNF_LFP.construct_lfp
      (Ctr_Sugar.default_ctr_options_cmd,
       [( ( ( (([], To_sbinding n), NoSyn)
            , List.map (fn (n, l) => ( ( (To_binding "", To_sbinding n)
                                       , List.map (fn s => (To_binding "", s_of_rawty s)) l)
                                     , NoSyn)) l)
          , (To_binding "", To_binding ""))
        , [])]))
*}

Figure 6.3: The implementation of datatype has meanwhile changed

end-users would only concern the global resources of the computer, time privi-
leged over space, or vice versa. At the time of writing, design and analysis are
such possible options to explicitly state that definitions of classes should be un-
derstood and compiled as “aggregations” or “associations” (these notions will be
precisely detailed in Chapter 7).3 Other options have been studied to fine-grain
adjust the cost of operations related to accessors on objects and casts:

• one option to optimize the accessing of objects in O(1), at the cost of
performing casts in O(n),

• and vice versa, one option to optimize casts in O(1), at the cost of per-
forming the accessing of objects in O(n).

We have experimented several medium-sized samples by hand. In particular
Chapter 7 will further mention the implementation details relating both data-
structures.

Besides influencing the semantics of the embedded L with
generation_semantics, generation_syntax can produce several variations
of Isar_HOL theories, mostly to ease prototyping. For instance, we have added
the keyword SORRY to explicitly disable the generation of all proofs, irrespec-
tive of the presence of sorry [Wen16b] or not in proofs initially intended to be
generated. More conceptually, between Isabelle 2014 and Isabelle 2015, the
algorithmic implementation of datatypes has fundamentally changed: datatype
was renamed to old_datatype [BW99], whereas datatype_new renamed to
datatype [BHL+14]. Since the Isar_HOL meta-model in HOL stands as an ab-
stract interface of Isar_HOL commands (as presented in Section 5.3), changing

3As a third option, when nothing is specified, the meta-compiler will accordingly treat all
respective notions, so both “aggregations” and “associations”.



82 CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0

one supported implementation to another one is relatively transparent. Faster
for deep than shallow, because for shallow a look at the source code of Isabelle
is finally needed to find the respective Isar_HOL entry-point (located after the
parsing expressions, as in Figure 6.3). For deep, a change in Isar_HOL syntax
normally only implies a modification in the pretty-printer. To be rigorous, a
long term project would prove or evaluate more formally the consequences of
successive upgrades of Isar_HOL commands (like datatype). deep-certificates
are intended to stand as static witness irrespective of Isabelle versions, while on
the other hand modifications in deep-certificates are nevertheless necessary to
be aligned with Isabelle and well-typed.

6.2 Testing deep-Certificates Before Checking Proofs

As enhancement, we further optimize the generation of deep-certificates. Fig-
ure 6.4 participates to the designing objective of Figure 6.1, by detailing a test-
ing activity automatically performed when generating in several intermediate
languages: we have programmed the system to check at run-time that all deep-
certificates are similar (by performing syntactic comparisons). As soon as we give
Haskell, OCaml, Scala, and SML in a list to deep as argument, generation_syntax
will immediately proceed to the code exportation of the meta-translation func-
tion, without knowing yet which arguments will need to be translated. Then
the first occurrence of generation_syntax creates four versions of the meta-
translation, in four respective directories. The optimization consists to pre-
compile these generated functions to object code so that they are all ready to
be linked and applied with future incoming meta-commands. Future incom-
ing meta-commands are supposed to heavily change during experimentations,
whereas the main meta-translation function is exported once and for all. So it
will just remain to compile the “tiny” set of meta-commands associated to each
invocation of generation_syntax deep flush_all, then link the overall as last step
before the ultimate execution.

However this optimization only works on languages allowing to break the
typing inference mechanism. Indeed, the current Isabelle 2016 does not include
commands to extract code to functors (only ground modules). This leads to two
scenarios:

• For efficiency reasons, one call to unsafeCoerce in Haskell, and one
call to Obj.magic in OCaml are executed to link and apply together
“Function.hs” and “Argument.hs”, respectively “function.ml” and
“argument.ml”. Similar optimizations are not yet implemented for Scala
and are only half implemented for the SML target (which basically performs
a step of marshalling to string in Isabelle/ML, the incremental compilation
with object code is not yet implemented).

• For safety reasons, we can disable all optimizations: it suffices to extract
all the meta-compiler together with the respective arguments in front of
each incoming meta-commands every time, then the overall needs to be
newly compiled every time. This is the current implemented behaviour for
Scala. For Haskell, OCaml and SML, it was also the default behaviour in
certain previous versions of the current project, so that functionality can
be restored if needed.



6.2. TESTING deep-CERTIFICATES BEFORE CHECKING PROOFS 83

L Isar_HOL

[…]

theory    begin

generation_syntax
  [ deep    
      [ in Haskell
      , in OCaml   module_name M
      , in Scala   module_name M
      , in SML     module_name M ] ]

generation_syntax deep flush_all

generation_syntax deep flush_all

end

[…]

Main.hs

Function.hs

main.ml

function.ml

Run.thy

Function.ML

Argument.hs argument.ml
All.scala

Argument.ML

[…]

Haskell OCaml Scala SML
all different

L

L

theory
  Generated
imports
begin

end

[…]

all similar

Figure 6.4: Multiple targets of generations in deep



84 CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0

[…]
generation_syntax
  [ deep    
      [ in SML module_name M
      , in self              ] ]

Run.thy

Function.ML

Argument.ML

SML SML reflected
readability vs. efficiency

theory
  Generated
imports
begin

end

[…]

all similar

complete
execution

in the same
Isabelle
session

(no fork of
 processes)

Figure 6.5: External target versus internal target in deep

As remark, a potential restoration of previous functionalities can simultaneously
concur with the existing compiling schemes: for example we can have several
active modes of compilation for Haskell, OCaml and SML, for compiling in byte-
code and in native-code at the same time. This would all the more increase
the testing activity for the benefit of not only respective compilers, but also
code serializing function. In particular, we identified syntactic issues concerning
the code generation of Isabelle to OCaml and Scala. These issues have been
signalled, and fixed for the release of Isabelle 20164,5. However on the other
hand, Scala issues turned to be somehow useful for cleaning the meta-compiler:
ghost (unused) functions was in certain conditions not correctly extracted in
Scala (in this case, an error was explicitly raised).

In a determined attempt to combine efficiency and safety, we propose a third
optimizing scenario. The new option self, represented in Figure 6.5, can be alter-
natively used in the list of target languages given to deep, besides the SML target
for example. The target self resembles to the target SML: they ultimately per-
form the generation of the deep-certificate to the hard disk. Whereas for SML the

4http://isabelle.in.tum.de/repos/isabelle/rev/774752af4a1f
5http://isabelle.in.tum.de/repos/isabelle/rev/8e736ce4c6f4

http://isabelle.in.tum.de/repos/isabelle/rev/774752af4a1f
http://isabelle.in.tum.de/repos/isabelle/rev/8e736ce4c6f4


6.3. HIGHER-ORDER META-COMMANDS 85

meta-translation function (in “Function.ML”) and incoming meta-commands
(in “Argument.ML”) have to be extracted after generation_syntax (and have
to be repeatedly extracted for Argument.ML), for self nothing is extracted and
all operations prior to the writing of the deep-certificate fully occur in RAM.
Indeed, the environment of the Isabelle process running the implementation
of generation_syntax already contains the reflected meta-translation function,
since the reflection step occurs before the definition of generation_syntax. So
for the case of the self target, it is enough to just execute the reflected meta-
translation function from L to Isar_HOL, and pretty-print the resulting value to
string, then to a file.6 In particular, comparing with the target SML, we are sav-
ing here one fork of Isabelle process. However again, the arguments in favor or
against an efficient execution particularly apply here as when we explained Fig-
ure 6.1: one possibility to justify what has been executed in RAM is to readably
inspect the extracted function Function.ML (or Argument.ML), this is what the
sole use of self as target can not provide. The code generator of Isabelle allowing
to either export (with export_code) or reflect (with code_reflect) are neverthe-
less internally relying on a common algorithm, or same trusted computing base.

6.3 Higher-Order Meta-Commands

Besides meta-commands generating Isar_HOL commands, the collection of mul-
tiple HOL embedding presented in Figure 5.3, from one arbitrary language to
another one, has implicitly suggested the notion of considering meta-commands
as first-class citizen in HOL: so “meta-commands generating meta-commands”.
In deep-mode, this is particularly not a danger for meta-commands to generate
themselves, whereas for shallow the recursion might not terminate. Indeed, the
iterating process chaining the collection of multiple HOL embedding is defined
recursively in ML just after the reflection step. However this does not mean that
the chaining function itself, situated at ML side, can not be preliminary used
in Isabelle/HOL before the reflection step, as the declaration of arbitrary con-
stants is feasible with consts [Wen16b]7, associated with abstract instantiations
in ML with code_printing [Haf16]. As a side note, this is how we have defined
a pretty-printing process in HOL involving polymorphic cartouches [TW15].8
Moreover, as the Turing completeness of ML has mainly been profited just for
defining this chaining function (besides Isar_HOL binding and parsing from L),
we think it is the sole recursive function in the meta-compiler whose termination
looks not straightforward to prove, but the setting seems already ready for such
proof: to be potentially written in the same HOL level as the HOL level of the
meta-compiler.

Generally, for meta-commands to generate themselves, the meta-tool must
priorly support a form of automated call to generation_syntax beforehand, so

6Technically, we could have syntactically called this target “the target shallow” instead of
“the target self”. However for clarity reasons, we refrain to do so in this document.

7As remark, the type system can be weaken by mistake with “consts magic :: α⇒ β”. As
mentioned in the reference manual of Isabelle, for nearly ten years now [Wen16b, NFWP15]:
“It is at the discretion of the user to avoid malformed theory specifications!”

8In the implementation, the translation on meta-models makes use of optional portions of
ML code (and abbreviations) that can all be removed. The translation does not depend on
the printing process which happens afterwards, as shown in Figure D.3



86 CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0

Floor 2

Floor 1

Floor 3

theory
imports Generated
begin

end

[…]

L Isar_HOL

[…]

theory    begin

generation_syntax
  [ deep    ]

generation_syntax
  deep flush_all

end

[…]

theory Generated
imports
begin

generation_syntax
  shallow

end

[…]

theory
imports Generated2
begin

end

[…]theory Generated2
imports
begin

end

[…]

code 2 (Isar_HOL)

code 1 (Isar_HOL)code 1 (Isar_HOL)

session 1 

session 2
can be    ≠

typing can fail

typing must not fail

theory Generated
imports
begin

generation_syntax
  [ deep    ]

generation_syntax
  deep flush_all

end

[…]

[…]

L     + Isar_HOL L     + Isar_HOL

L

=
code 1

code 2

Figure 6.6: Multiple floors of generations in deep



6.3. HIGHER-ORDER META-COMMANDS 87

that one can know which semantics to give to the newly created meta-commands.
However this is not enough, the general compiling environment of Isabelle (be-
hind the notion of session, and comprising the history of meta-commands) are
changing throughout the interactive evaluations, so in certain situations the envi-
ronment must also be taken into account and propagated when meta-commands
are generating themselves. For example, Figure 6.6 shows an example where the
environment is propagated across many levels of meta-generations.

Figure 6.6 divides the universe, seen as a semantic tower, into a set of disjoint
partition, or semantic floor. (To our knowledge, the terminology “infinite (reflec-
tive) tower” in the domain of reflection came from the works of Brian Cantwell
Smith [Smi82, Smi84]. Moreover, some noticeable characteristics of the “ground
floor” of such towers have been presented for example by Bas R. Steunebrink and
Jürgen Schmidhuber [SS12].) In the picture, the floor 3 is empty but the process
can in principle be further continued. By reading from top to bottom, we start
with a normal file in deep-mode, such as the one presented in Figure 6.1. Then
after a step of deep-generation, the file Generated.thy finally appears in floor 1,
with particularly inside a set of meta-commands. However to respect the com-
mutative property of Figure 6.1, not only has this generated file the property to
be well-typed, but we have automatically set it to be generated in shallow-mode
(by default). Having an option in generation_syntax to force the generation
towards a deep-file would be feasible as well. In the picture, after manually
changing the mode of this file to deep, we extract a new theory Generated2.thy
in floor 2. Let’s assume this time it has inside zero meta-command.

As a design decision, and contrarily to Generated.thy, it is perfectly fine for
the theory Generated2.thy to be not well-typed, precisely if Generated.thy
contains Isar_HOL commands interleaved with L, just after generation_syntax.
This is because these generated Isar_HOL commands are intentionally not copied
(or not produced any more) when the generation occurs from Generated.thy
to Generated2.thy. As another possible choice, we could have chosen to ex-
plicitly do the copy but this assumes to transmit along particular information
for Generated.thy to know what to copy. So it means to generate a code to
dynamically modify the Isabelle environment and editing session, so that the
environment of the meta-compiler can dynamically be modified as well. Gener-
ally, this modification must occur not only when jumping from floor i to floor
i + 1, but an arbitrary floor n would generally need to know which Isar_HOL
commands were generated from floor 1 to floor n − 1, so ultimately speaking,
the knowledge of all generated Isar_HOL commands irrespective of floors. As
remark and optimization privileging space than time, instead of propagating
and remembering a set of (generated) Isar_HOL commands potentially large,
the shorter list of meta-commands generating these Isar_HOL commands can be
considered for the transmission.

• However, even if transmitting such information can have a certain cost,
this kind of propagation of the environment across floors has been im-
plemented, but not for all meta-commands. In practice in UML/OCL,
we have not encountered serious situations where the (potential) failure
of Generated2.thy would be an issue. Currently, the propagation has
been implemented for only few meta-commands, i. e. those generating
Isar_HOL commands (no meta-commands), that are particularly all situ-



88 CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0

ated before the first call to generation_syntax. For instance this includes
meta-commands related with the Class Model Package: Class, Association,
Composition, Aggregation; but this can also include meta-commands from
the Instance Package, because in certain circumstances generation_syntax
does not have to be immediately triggered after the Class Model Package.
In Figure 6.6, code 1 (respectively code 2) represents the position where
such generated code would occur. In particular code 1 is here equal to
code 2, and generally, the generation of code 1 is automatically planned to
be continued and repeated (at the beginning of generated files) following
the creation of new semantic floors.
Generally, the transmission has been implemented for at least this partic-
ular case because in Generated.thy the generated content appearing after
generation_syntax could sometimes contain zero Isar_HOL command. So
this implies in this case that Generated2.thy would always be fully well-
typed, thus we maximize situations where files are respecting Figure 6.1.

• Besides forcing the transmission for all meta-commands (particu-
larly including those generating Isar_HOL commands situated after
generation_syntax), there is another solution to overcome the limitation
of the design decision. Instead of generating Isar_HOL commands, the so-
lution would be to generate Isar_HOL’ meta-commands, where Isar_HOL’
has been bijectively mapped from all Isar_HOL command, by adding in
their name at least one arbitrary symbol somewhere, so that all Isar_HOL’
are syntactically all different from any regular Isar_HOL command. For
example, we can introduce the following meta-commands which do not
conflict with existing commands: datatype’, definition’, lemma’, ML’,
etc. . . (Section 6.5 will particularly detail how to find suitable new names)
Consequently, by using this technique, all deep-generated theories in all
floors would be well-typed. However in the last floor, it would just re-
main to explicitly perform once more an additional step of generation from
Isar_HOL’ meta-commands to retrieve their associated Isar_HOL forms (to
not say normal forms).

• As remark, while Generated2.thy could be not well-typed, it does
not mean that all Generated.thy, having Isar_HOL commands after
generation_syntax, will generate not well-typed file! In particular such
Isar_HOL commands could have been written by hand or could be com-
pletely unrelated with the success or failure of Generated2.thy. Lemmas
and proofs can most of the time be qualified as having such unrelated
profile, in case their content are mostly involving pure computation not
affecting the global context of Isabelle.

To effectively transmit our contextual information (with particularly the list
of meta-commands generating Isar_HOL commands), we have used the Isar_HOL
command setup [Wen16b], so that the global environment of Isabelle can be
modified on the fly. However in certain circumstances, the command setup must
be explicitly forced between some particular interleaving of two meta-commands
C1 and C2, especially when C1 only generates Isar_HOL commands, so zero
meta-command, and when C2 generates at least one meta-command (among
potential Isar_HOL commands). Without an explicit use of setup, after C1,



6.4. LAZY META-COMMANDS 89

the code generated by C2 would normally have no way to detect that some
Isar_HOL code has been generated or not, precisely by C1. Consequently, one
solution for C2, before generating its first meta-command, is to generate setup.
In particular, this setup will increase the knowledge of C2 by instructing it of
the existence of all Isar_HOL commands generated by C1.

Generally, generating meta-commands allows to perform various extensions
on the language L being embedded, without altering the semantics of a particular
command in L. This is the picture we had when imagining a stack of semantic
floors as a set of layers of a PTS in Section 5.3. For example, the UML/OCL meta-
command Transition usually only takes “bound variables” as parameters (not
arbitrary λ-terms), so something like “Transition σ1 σ2”. However the semantics
of Transition was extended to mimic the support of some particular terms not
restricted to variables. This extension was implemented by executing some steps
of “ζ-rewriting rules” [Coq16] operating on an upper meta-layer of semantic floor
abstracting the floor where the semantics of Transition should usually be held
accountable for. As an example of execution trace, we present a sequence of
steps rewriting until normal form:

Transition [• • •] σ2  
State σ1 = [• • •]
Transition σ1 σ2

 
InstanceX = • • •
State σ1 = [X]
Transition σ1 σ2

where “• • •” represents a complex expression, normally only understood by
Instance, and where σ1 and X are fresh invented names. The particularity
of the construction is that “• • •” becomes implicitly supported by State and
Transition as well, without having to program it, modulo some steps of meta-
commands generating meta-commands. In the same spirit, “[•••]” becomes also
supported by State.

As optimization, one can also implement a new keyword “nf” for meta-
commands to know that they are acting as normal form meta-commands, and
raise an error whenever one or several “• • •” are given as arguments. So it
means in fact to consider the following rewriting steps:9

Transition [• • •] σ2  
State σ1 = [• • •]
Transition (nf) σ1 σ2

 
InstanceX = • • •
State (nf) σ1 = [X]
Transition (nf) σ1 σ2

6.4 Lazy Meta-Commands

In Isabelle, the responsivity of the editing engine globally participates to the
interactive animation of the framework. Events occurring during the edition
are continuously happening under various forms: pop-ups, diagnostic messages
in the output window, asynchronous underlining of warning and errors. These
suggest additional ideas to further align the meta-tool with the reactivity of
Isabelle. In this part, we are going to all the more refine the animating aspect of
the commutative diagram of Figure 6.1. Instead of visualizing L as a continuous
text, we will describe the semantical effect of deep to the atomic level of meta-
commands (thus similar properties will also hold for shallow).

9In HOL-OCL 2.0, we syntactically use the option “[shallow]” instead of “(nf)”.



90 CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

theory […] begin

generation_
syntax

[ deep […]
, shallow ]

lazy b = (a,a)

lazy c = (a,b)

lazy a = ()

strict X = {a} 1
strict Y = X 2
lazy d = (a,b,c)

strict Z = {} 3
strict Z = {} 4
strict Z = {} 5

id none

id lazy

id strict 6
end

Figure 6.7: Rearranging the control flow of the prover

In Figure 6.2 we briefly saw that generation_syntax deep flush_all can be
alternated among any meta-commands when experimenting a file in deep-mode.
More precisely, for any generation_syntax deep flush_all being able to fold all
meta-commands since the beginning, we needed to globally store all encountered
meta-commands in the contextual environment of the meta-compiler. By gen-
eralizing the possibility to access this data-structure for any meta-commands
(apart for generation_syntax), we obtain a new dimensional aspect in theorem
proving, involving dynamic recomputation of meta-commands: namely “lazy
meta-commands”. Meta-commands are then getting grouped into two categories,
depending on if they should be understood as supporting laziness or not. To em-
phasize that laziness is a dimensional feature independent of the default animat-
ing mode (deep or shallow), Figure 6.7 considers the activation of both deep and
shallow at the same time. To simplify, we can restrict our presentation to only
three meta-commands: lazy representing lazy meta-commands, strict standing
as non lazy meta-commands, and id a form of exception meta-command to be
described later.

Native Isar_HOL commands resemble to the family of strict because their
side-effects are immediately visible and rendered, as soon as the asynchronous
engine of the prover has a reason to require an effective evaluation. On the other
hand, lazy meta-commands are specially skipped and their semantics are always
getting frozen, irrespective of the prover. However they are not meaningless
since lazy meta-commands impact incoming strict and id meta-commands.



6.4. LAZY META-COMMANDS 91

• For example in Figure 6.7, lines 3-5 have been randomly permuted, because
they are lazily declaring the variables a, b and c. So they are all ignored
until we reach the next non lazy meta-command, like strict.

• At the position of cursor 1, the evaluation of strictX = {a} will automat-
ically force the evaluation of previous encountered lazy meta-commands.
As remark, if we suppose line 3 removed, one could obtain either an error at
cursor 1 or no particular errors: this is a simple design decision, depending
on how the semantics of strict has been implemented during the embedding
of L into Isar_HOL. In particular, the implementor can explicitly choose
to raise an error, warning or nothing.

• Intuitively, line 7 gets evaluated as usual, since the previous meta-
command was also strict.

• After another switching to lazy mode, cursor 3 needs to reconsider the
evaluation of the entire set of meta-commands, as when we were at cur-
sor 1. However as another design decision, strict could first consider the
declarations of a, b, c and d together, before treating X and Y . Generally
for any meta-command C, any permutating scenario happening before C
can be considered, as long as the partial ordering of Figure 6.2 is respected
by the implementation at any editing position, hence always producing an
ordered increasing theories of well-typed elements.

• Because as any Isar_HOL command, ML can be generated, one can gen-
erate Isabelle/ML warnings or errors at cursors 4 and 5, since for example
Z has already been defined at cursor 3. However, while in principle such
errors can be directly raised in deep-mode, one design decision can delay
the incoming of errors in deep-mode to the next semantic floor, i. e. gen-
erating errors to be triggered only when evaluated. By comparing with
shallow, this would tend to consider the deep-mode as an experimenting
framework where errors are minimized, thus inciting to do there arbitrary
prototyping.

Besides the meta-commands lazy and strict, id is an example of meta-command
where laziness can dynamically be parameterized with options situated in green
areas, so “id lazy” stands for laziness, “id strict” as non-lazy. “id none” is an
identity function combinator, where no effects are produced irrespective of the
status of the previous command.

To better examine in deep-mode the list of Isar_HOL commands generated by
a particular meta-command, we integrate in the meta-compiler a functionality to
display in the output window the generated code associated to a meta-command,
as illustrated in Figure 6.8. What to display in the output window is dynamically
computed since for instance syntactically similar instructions, like lines 9-11, can
actually generate different Isar_HOL commands (contrarily to line 10 and 11,
line 9 has to take into account the history of all previous meta-commands, then
includes itself). So the output window varies differently depending on the move-
ment of the cursor when browsing the entire theory document. In addition, we
augment the interactivity of the overall by mimicking the proof reconstruction
tool sledgehammer [PS07, MP08, PB10, Bla16], so generated definitions and
lemmas associated to a particular meta-command can be selectively inserted



92 CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0

theory […] begin

generation_
syntax [ deep […] ]

lazy

strict

id

end

nJsL apX FpKIpx
oCpZgmHSqI  cFf

qXirvk    uzcBtKk    afq
vhgLp Au       ZqR
ZoHHBhjetW    KSy

dJ pAqhwdIMOf z
HBWT srzWd   vr Sk

theory […] begin

generation_
syntax [ deep […] ]

lazy

strict

id

end

qXirvk    uzcBtKk    afq

vhgLp Au       ZqR

ZoHHBhjetW    KSy

Figure 6.8: Inserting meta-commands from the output window

from the output window, by clicking on a chosen piece of content. The integra-
tion of this click-insert behaviour actually leads to various kind of programming
scenarios.

• Besides a simple insertion, we imagine concurrently feasible (with a par-
ticular combination of keyboard) for a click to modify and replace the
command where the cursor is situated. This would in a certain sense close
the bootstrapping reproduction process, allowing to do in place, in full
HOL, an upgrade of arbitrary code by means of meta-programming, and
serve to complement the edition in Isabelle/jEdit. For example, one can
manually type a huge λ-term and work on it by performing particular au-
tomatic editing operations. These operations are intended to be “fully”
programmed in HOL (e. g. the renaming operation on all occurrences of a
bound variable).

• Generally, in case the generated piece of content, chosen to be clicked in the
output window, is embedding a setup command, then the current running
global context of the editor would be transparently swapped (assuming
the update function given to setup disregards its argument, containing the



6.5. OBFUSCATED META-COMMANDS 93

state of the editing context). This is one way to travel across semantic
floors using a depth-first exploration strategy, compared to the breadth-
first strategy natively offered by generation_syntax deep flush_all. For
the depth-first jump from one floor to another floor to not cause hazardous
errors, we recommend to begin the experimentations with the deep-mode
alone as side-effects would start minimized.

Finally, we come to the generalization of the laziness property to higher-order
meta-commands. For example for each lazy meta-command C, we can define a
new meta-command C’, where C’ is C but with an explicit flag to set the laziness
or force the execution. So if the flag is meant to force the generation, C’ would
generate C and just after id strict; otherwise C’ would only generate C.

• On the one hand, it suffices to natively force the execution of all C’, for
the output window to completely behave as fully animated in front of all
meta-commands. So inside a theory file, the laziness property can be made
imperceptible, i. e. each meta-command of a given file can be transformed
into a non-lazy meta-command.

• On the other hand, in practice the laziness property can be implemented,
for certain higher-order meta-commands, but without the need to cross
the barrier of meta-commands generating meta-commands.

For example in UML/OCL, laziness was required for Associationclass
which aims to lazily generate what is lazily generated by both Class and
Association. In the meta-tool, the code of Associationclass has been
turned into an implicit lazy construction: a construction purely imple-
mented in one level of HOL, without involving meta-constructions. Thus
in deep-mode, the resulting effect of Associationclass (when encountering
a next strict meta-command) is not to syntactically display both Class and
Association in the output window, but the output window will show the
code generated by both Class and Association. On the other hand, the
termination is immediately guaranteed since it is a construction in pure
HOL.

Finally, we estimate our monadic construction enough abstract for it to
be generalized to any lazy meta-commands requiring to generate meta-
commands which are all non-lazy.

To conclude, laziness can be particularly useful to abstract end-users from
certain characteristics of the languages being embedded: in UML/OCL, this al-
lows us to incrementally declare classes at any editing position in the prover
(declarations of classes are lazy) [TW15]. End-users would not know if the un-
derlying logic is following an open-world or closed-world assumption, unless by
monitoring the space and time consumed by resources at run-time. This is one
drawback, the evaluation of a complete theory might have a certain cost, when
laziness frequently occurs among non lazy meta-commands. Nevertheless, in USE
all classes must normally be declared at the beginning of the file, before other
expressions.



94 CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0

syntax "_OclForallSeq" :: "[('�,'α::null) Sequence, _, _] ⇒ _"
       ("(_)->forAll'(_|_')")

syntax "_OclForallSet" :: "[('�,'α::null) Set     , _, _] ⇒ _"
       ("(_)->forAll'(_|_')")

term "X->forAll(x|P x)"   (* ERROR: X is ambiguously
                                    parsed as a set
                                    and as a sequence
                                    at the same time    *)

term "(X :: ('�,'α::null) Sequence)->forAll(x|P x)" 
                          (*        X is a sequence     *)
term "(X :: ('�,'α::null) Set     )->forAll(x|P x)" 
                          (*        X is a set          *)

Figure 6.9: Syntactic ambiguities because of similar notations

6.5 Obfuscated Meta-Commands

For supporting the rather rich concrete syntax of OCL in a flexible and standard
conform manner, the parser-combinator-based infrastructure of Isabelle prior to
version 2014 is not powerful enough. For example, one needs to write self .x
(note the space in front of the accessor) instead of self.x. Moreover, the op-
eration definitions of the library [BTW14] need to make a compromise between
readability and logical precision. For example, to facilitate type checking and
avoid spurious errors during typing, the overloaded collection type OCL opera-
tion X->forAll(x|P (x)) has to be represented more precisely by the concrete
instance X->forAllSet(x|P (x)), and usually implicit type coersions between
sub- and supertype have to be written explicitly. Similarly, notations of OCL
number and certain data-structures can happen to be slightly differently repre-
sented in HOL, depending on the range of symbols already used or available in
Isabelle/jEdit. As illustration, we show a situation where an ambiguity error is
expected to be raised in Figure 6.9, especially when the typing information is
omitted.

To enable the writing of OCL expressions with a simpler and standard conform
concrete syntax, we integrate a specific parser and type checker for OCL that was
developed as part of su4sml [BDW06a] (and which is also used by HOL-OCL).
The su4sml type inference injects type casts automatically and is implemented in
SML using standard parser generator tools (i. e., ml-lex and ml-yacc). As su4sml
is implemented in SML, it can directly be called from within the Isabelle/ML
layer. Moreover, since version 2014, Isabelle supports a mechanism for defining
dedicated parsers for domain specific languages, called cartouches [Wen16b]10,
which we can plug su4sml into. Thus, even within logical HOL formulae, standard

10https://en.wikipedia.org/w/index.php?title=Cartouche

https://en.wikipedia.org/w/index.php?title=Cartouche


6.5. OBFUSCATED META-COMMANDS 95

OCL syntax becomes possible, for example:

term "(λ one. ‹self.clients->forAll(x|x.age>25)->size()› .= one) ‹1›"

where the text between the ‹· · · ›-markers (i. e. “U+2039”11 and “U+203A”12)
is handled by the su4sml parser and type inference. More generally, besides
OCL, this mechanism can be used to nest arbitrary languages, provided the
symbols “‹” and “›” are themselves not lexically present in the language be-
ing nested (balanced blocks of “‹” and “›” symbols are nevertheless permit-
ted inside cartouches). The same remark holds for the quote symbol “"” (i. e.
“U+0022”13), which is impossible to write in certain circumstances: assuming
one has to delimit a string with this symbol, the writing becomes not possible
inside cartouches particularly if the outermost enclosing delimiters of the overall
expression are two “"” (as it is the case in the example, which is of the form
term " · · · "). To overcome this limitation, Isabelle supports an alternative writ-
ing, i. e. where the outermost expression is of the form term‹ · · · ›, so for example
term ‹(λ s. ‹ · · · › .= s) ‹"string"››. However this alternative writing is not enabled
by default in Isabelle 2016: one has to redefine the command term in order to
modify its parser to accept a cartouche as argument. In Isabelle 2014 and pre-
vious versions, such redefinitions of commands were permitted: e. g., definition
could declare datatypes and datatype could declare definitions. However start-
ing from Isabelle 2015 we obtain an error instead of a warning, so one solution
is to manually introduce a not existing name, like the fresh name term’. Using
this technique, we get the desired expression: term’ ‹(λ s. ‹ · · · › .= s) ‹"string"››.

At this point, the flexibility to nest arbitrary languages with cartouches ap-
pears enough for supporting OCL expressions, assuming one is using a recent
version of Isabelle. Still, the presented technique does not mention how to pro-
ceed whenever, beyond OCL, the enclosing language L in cartouches has already
reserved “‹” or “›” in its own syntax, or some escaping symbols which hap-
pen to be in potential conflict with Isabelle syntax (which can comprise for
instance “"” and any symbols listed in the manual [Wen16b]). In particular,
the meta-translation process of Chapter 5 explicitly manipulates the Isar_HOL
meta-model, and concurrently we estimate feasible to take advantage of car-
touches to enhance the readability of the translation and its presentation (by
syntactically embedding the manipulated Isar_HOL language itself in special
delimiting cartouches). Further investigations become then necessary to deter-
mine if conflicting symbols and delimiters of cartouches can syntactically be
substituted with other symbols inside HOL expressions, or be made temporarily
invisible whenever this is a relevant solution. To this end, we are now examining
in more detail the range of symbols natively present in Isabelle.

As pointed in the manual of reference, symbols supported in Isabelle is poten-
tially infinite [Wen16b], but their rendering are left to front-end tools (e. g., Is-
abelle/jEdit). Still, the final rendering is affected by external constraints. For ex-
ample, although Isabelle/jEdit natively supports Unicode, the rendering of Uni-
code characters does not generally depend on the editing software drawing fonts,
but on the original font specification where several characters could look identi-

11http://unicode.org/cldr/utility/character.jsp?a=2039
12http://unicode.org/cldr/utility/character.jsp?a=203A
13http://unicode.org/cldr/utility/character.jsp?a=0022

http://unicode.org/cldr/utility/character.jsp?a=2039
http://unicode.org/cldr/utility/character.jsp?a=203A
http://unicode.org/cldr/utility/character.jsp?a=0022


96 CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0

   ML     ‹
val _ =
  Outer_Syntax.local_theory  @{command_keyword "datаtype" }
    "define inductive datatypes"
    (BNF_FP_Def_Sugar.parse_co_datatype_cmd
      BNF_Util.Least_FP BNF_LFP.construct_lfp)                    ›
   ML     ‹
val _ =
  Outer_Syntax.local_theory' @{command_keyword   "fun"    }
    "define general recursive functions (short version)"
    (Function_Common.function_parser Function_Fun.fun_config
      >> (fn ((config, fixes), statements) => 
           Function_Fun.add_fun_cmd fixes statements config))     ›
   ML     ‹
val _ =
  Outer_Syntax.command       @{command_keyword   "МL"     }
    "ML text within theory or local theory"
    (Parse.ML_source >> (fn source =>
      Toplevel.generic_theory
        (ML_Context.exec (fn () =>
          ML_Context.eval_source
           (ML_Compiler.verbose true ML_Compiler.flags) source) #>
         Local_Theory.propagate_ml_env)))                         ›
   ML     ‹
val _ =
  Outer_Syntax.command       @{command_keyword   "end"    }
    "end context"
    (Scan.succeed
      (Toplevel.exit o Toplevel.end_local_theory o 
        Toplevel.close_target o
         Toplevel.end_proof (K Proof.end_notepad)))               ›

Figure 6.10: The genesis of commands as a half well-typed file

cal. As example, the Unicode characters “U+0430”14 and “a” (i. e. “U+0061”15)
are classified in the same set of confusing characters by http://unicode.org,
this is the same for the character “U+041C”16 and “M” (i. e. “U+004D”17). So
the code shown in Figure 6.10 is only half well-typed in Isabelle 2016 because
fun and end have already been defined earlier — in the real source code of Is-
abelle. On the other hand, datatype and ML have also already been defined in
the source of Isabelle, but no errors are raised here because in this example the
words datatype and ML are actually masking several symbols from the Cyrillic
alphabet instead of the Latin alphabet, and their associated glyphs look similar
as both originating from the Greek alphabet.

However, since equal glyphs might only be available in limited occurrences for
a particular symbol, we have to get into a more uniform solution to cover all situ-
ations where it is desirable to have an “unlimited” number of abbreviations (and
hence which are all looking close). This would permit to uniformly represent on
the one hand UML/OCL collection operations on sets, sequences and bags, and on

14http://unicode.org/cldr/utility/character.jsp?a=0430
15http://unicode.org/cldr/utility/character.jsp?a=0061
16http://unicode.org/cldr/utility/character.jsp?a=041C
17http://unicode.org/cldr/utility/character.jsp?a=004D

http://unicode.org
http://unicode.org/cldr/utility/character.jsp?a=0430
http://unicode.org/cldr/utility/character.jsp?a=0061
http://unicode.org/cldr/utility/character.jsp?a=041C
http://unicode.org/cldr/utility/character.jsp?a=004D


6.5. OBFUSCATED META-COMMANDS 97

syntax "_OclForallSeq" :: "[('�,'α::null) Sequence, _, _] ⇒ _"
       ("(_)->forAll'(_|_')")

syntax "_OclForallSet" :: "[('�,'α::null) Set     , _, _] ⇒ _"
       ("(_)->forAll'(_|_')")

term "X->forAll(x|P x)"   (*        X is a sequence     *)
term "X->forAll(x|P x)"   (*        X is a set          *)
term "[X->forAll(x|P x), 
       X->forAll(x|P x)]" (* ERROR: X can not be a set
                                    and a sequence
                                    at the same time    *)

notation StrongEq    (infixl "�=" 30) (* ≜ *)
notation StrictRefEq (infixl "��=" 30) (* ≐ *)

term "(X �= Y) = (X ≜ Y)"
term "(X ��= Y) = (X ≐ Y)"

definition "BOT = (invalid :: '� Integer)"
lemmas [simp] = BOT_def

lemma l1: "let X = BOT in X = Y ⟶ (τ ⊨ X �= Y) ≠ (τ ⊨ X ��= Y)"
 apply(simp add: StrictRefEqInteger StrongEq_def OclValid_def)
by (simp add: bot_option_def invalid_def true_def)

lemma l2: "let X = BOT in X = Y ⟶ (τ ⊨ X �= Y) = (τ ⊨ X ��= Y)"
oops (* this is like proving False, the negation of l1 above *)

notation not_equal (infixl "���=" 50) (* not_equal is defined in
                                      Isabelle in HOL.thy *)

lemma l3: "let X = BOT in X = Y ⟶ (τ ⊨ X �= Y) ���= (τ ⊨ X ��= Y)"
by (rule l1)

Figure 6.11: null is null (invisible)



98 CHAPTER 6. META THEOREM PROVING IN HOL-OCL 2.0

the other hand, regroup together arithmetic operations on integers and reals for
instance. By examining the range of Unicode characters available in Isabelle, we
have naturally retained our attention on two exception elements of the Unicode
characters: invalid and null. In the domain of fonts, whereas “the meaning”
of invalid will be detailed in Appendix K, null has generally the property to
be an invisible symbol having a length of zero. Since at least 2009, this sym-
bol can be used in Isabelle/jEdit like any whitespace at any string positions,
thus also in the name of any commands and meta-commands. Then it becomes
straightforward to add this invisible symbol to overload particular OCL opera-
tions, without having instead to search for particular representatives of equal
glyphs. As example, in Figure 6.11, the two notations “_->forAllSet(_|_)”
and “_->forAllSeq(_|_)” have been renamed, by replacing the string “Set”,
respectively “Seq”, with two different null-strings. If we have written similar
notations (or similar null-strings), errors are only expected to be raised when
ambiguities are detected, as mentioned in Figure 6.9. However we are here in a
different situation. In Figure 6.11, all abbreviations introduced with syntax (and
notation) [Wen16b] are all different because they contain all different numbers
of null symbol concatenated with itself. In particular, this is why the three in-
troduced notations for StrongEq, StrictRefEq and not_equal are all different
(besides having in common one extra symbol “=” of equality). As illustrated in
the figure, invisible symbols do not mean weakening in the typing inference: the
third term is not well typed because we are trying to consider at the same time
X as a set and as a sequence.

As summary, we point certain similarities and differences between the in-
troduction of abbreviations with Unicode characters and the use of cartouches.
On the one hand, because ML is used to set up cartouches, one can program
cartouches to parse and support Turing complete languages. This assumes nev-
ertheless to know where the entry-points of the commands being redefined are
located, as it is required for example to implement term’ (such entry-points re-
semble to Figure 5.6). On the other hand, independently of cartouches, there
are several commands in Isabelle to attach particular concrete syntax or nota-
tions to any manipulated constants or types (for the purpose of defining basic
abbreviations), namely notation, syntax, translations, and also similar counter-
part for abbreviations denoting types: type_notation, etc. Not significant lines
of ML code are required, e. g., it is quite easy to introduce null in an abbrevi-
ation, as shown in Figure 6.11. Such so-introduced notations are immediately
taking effect, so with this technique one can dynamically change the name of
any constants, types or any meta-commands. Still, the arbitrary reconfiguration
of Isar_HOL commands require some cares [NFWP15].

Warning: In this document, both symbols invalid and null have not
been used in this thesis and in the associated source code (only as example
in Figure 6.11 and in Appendix K). Furthermore, unless it is explicitly explained
in the text, all characters are understood as plain ASCII letters. This holds
for Isar_HOL commands, and more generally for the entire source code of the
project accompanying this thesis.18 Generally, the inspection of the source (in
Isabelle/jEdit) can already reveal the presence of characters outside the ASCII

18Acknowledgments: The inspection of the range of Unicode symbols performed here was
partly motivated by certain discussions arisen in the “Isabelle Club”. Isabelle Club is a group
meeting biweekly held at the LRI: https://modhel.lri.fr/IsabelleClub/.

https://modhel.lri.fr/IsabelleClub/


6.5. OBFUSCATED META-COMMANDS 99

range: when defining keywords, the use of quotes around keywords are normally
mandatory, except for particular combinations of ASCII where this is optional.
In Figure 6.10, we nevertheless chose to quote all the four keywords. So quotes
can sometimes signal the presence of non-ASCII characters.

More generally, besides the use of cartouches in the meta-translation itself
from L to Isar_HOL, one can also examine the possibility to propagate the editing
environment context when editing the meta-translation, so that for example the
colouring could be propagated inside cartouches in real-time, even if Isar_HOL
is embedded in cartouches. Although the termination of higher-order meta-
commands has to be manually brought, we would be nevertheless closer to the
practice of “multi-stage programming in Isabelle”.





C
h

a
p

t
e

r

7
Object-Oriented Datatype Theories

In the following, we will refine the concepts of a user-defined data-model im-
plied by a class-model (visualized by a class-diagram) as well as the notion of
“(A :: object) state” used in Chapter 4 to much more detail (and also detail the
concept of object). UML class models represent in a compact and visual manner
quite complex, object-oriented datatypes with a surprisingly rich theory. In this
chapter, this theory is made explicit and corner cases are pointed out.

7.1 Class Models

Our abstract syntax—called a class model following UML terminology—
represents complex, object-oriented datatypes in a compact and viewable man-
ner. Over such a class model, OCL invariants for states and OCL operation
contracts for state transitions can be defined.

HOL
Definition “Class model (user interface)”:
A class model is a four-tuple (C,<,PreAttrib,PreAssoc,mode) where:

• C is a set of class names written as {C1, . . . , Cn}. To each class name a
datatype in OCL is associated,

• “_ < _” is a non-reflexive partial inheritance relation on classes, “_ <+

_” its transitive closure, and “_ <∗ _” its reflexive transitive closure.
“_ > _”, “_ >+ _”, and “_ >∗ _” are their respective associated
symmetric relations. As additional abbreviation, we introduce “X 6<>∗
Y ” for “X 6<∗ Y and X 6>∗ Y ”.

• PreAttrib(Ci) is a set of attributes associated to class Ci. Each attribute
a ∈ PreAttrib(Ci) declares two families of accessors, denoted by X. a ::
Ci ⇒ A and X. a @pre :: Ci ⇒ A where A ∈ TYPES0,

• PreAssoc(Ci, Cj)(Si,Sj) is a set of binary relations of the form
(n, rnfrom, rnto, ty) between two classes Ci and Cj where Si, Sj ∈
{Sequencem, Setm}. The tuple consists of a (unique) association name
n, two role names rnto and rnfrom and finally a command ty ∈

101



102 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

{Association,Aggregation} that indicates if the pair (rnfrom, rnto) is ini-
tially intended by the user to be processed as an aggregation or not (in
this case as an association). However this indication is not final: the
option mode described below will also affect how the pair (rnfrom, rnto)
will be processed, i. e., in conjunction with the value of ty. Like at-
tributes a above, all role names declare two families of accessors, denoted
by X. a :: Ci ⇒ Sj(Cj) and X. a @pre :: Ci ⇒ Sj(Cj) if a = rnto. If
the multiplicity associated to a evaluates to 1, both function types are
Ci ⇒ Cj . For a = rnfrom we exchange i and j: both function types are
Cj ⇒ Si(Ci).

• mode is an option to explicitly override how certain attributes and role
names will be considered, to force them to be treated as associations or
aggregations. Three values are possible for mode: design, analysis, or a
default behaviour left to the meta-tool when nothing is provided. The
conditions where these values have their effects are now detailed in the
next definition.

Throughout the document, we will only consider finite class models with at least
one element, called OclAny, the superclass of all classes: Ci <

∗ OclAny (for all
Ci).

Internally, the meta-tool will consider another intermediate version of the
definition of class models. This version serves to further optimize the previous
one and prepare for the separate treatments of associations and aggregations. In
particular, one can represent class model in this intermediate version as a tree to
enable a convenient folding of the global data-structure of classes. This is also
where we will decide once for all how attributes and role names will be processed,
i. e., as associations or aggregations. Indeed, a key idea of defining the seman-
tics of UML and extensions like SecureUML [BDW06b] is to translate certain
diagrammatic UML features into a combination of more elementary features of
UML and OCL expressions [GR02]. For example, associations (i. e., relations on
objects) can be implemented in specifications at the design level by aggregations,
i. e., collection-valued class attributes together with OCL constraints expressing
the multiplicity; and conversely, certain forms of aggregations can be simulated
with associations.

HOL
Definition “Class model (internal representation)”:
Besides the previous definition, class models can be simplified as (C, <,
Attrib ∪ Assoc), where the contents of Attrib and Assoc will depend on mode
(described earlier). Attrib represents all attributes and role names intending to
be considered by the meta-tool as aggregation relations, and Assoc represents
all attributes and role names intending to be considered by the meta-tool as
association relations. The definition proceeds by case analysis on mode.

If mode = design, then Attrib(Ci) is defined as the union of the following
items:

• attributes a in PreAttrib(Ci)

• role names a in {(_,_, a,_)←− PreAssoc(Ci,_)(_,_)}



7.1. CLASS MODELS 103

• role names a in {(_, a,_,_)←− PreAssoc(_, Ci)(_,_)}

and Assoc(Ci) = {}.
Otherwise if mode 6= design, we introduce a subset A(Ci) ⊆ PreAttrib(Ci)

such that Attrib(Ci) is defined as the union of:

• attributes a in PreAttrib(Ci) which are not in A(Ci)

• role names a in {(_,_, a,Aggregation)←− PreAssoc(Ci,_)(_,_)}

• role names a in {(_, a,_,Aggregation)←− PreAssoc(_, Ci)(_,_)}

and Assoc(Ci) the union of:

• A(Ci)

• role names a in {(_,_, a,Association)←− PreAssoc(Ci,_)(_,_)}

• role names a in {(_, a,_,Association)←− PreAssoc(_, Ci)(_,_)}

If mode = analysis, then A(Ci) is defined as the union of:

• attributes a of the form X. a :: Ci ⇒ Cj in PreAttrib(Ci)

• attributes a of the form X. a :: Ci ⇒ Sj(Cj) in PreAttrib(Ci)

otherwise, if nothing is set for mode, we take by default A(Ci) = {}.
Finally, even if we have regrouped Attrib and Assoc together as Attrib∪Assoc,

the meta-tool will still keep the types of all attributes and role names stored next
to attributes. This is to later decide, when having to process on an arbitrary
a ∈ Attrib ∪ Assoc, if a is actually an attribute or a role name (so to know its
type, either X. a :: Ci ⇒ A or X. a :: Ci ⇒ Sj(Cj)).

The definition of a class model gives rise to a number of induced operations
which constitute the class model signature.

meta
Definition “Class model signature”:
The signature associated to a class model (C,<,_) is the following:

• for all attributes a, role names a and class name Cj ∈ C such that X. a ::
Cj ⇒ A and X. a @pre :: Cj ⇒ A are well-formed for A ∈ TYPES0, the
two families (mentioned in the definition of class models) are exactly all
expressions of the form:

1. X. a :: Ci ⇒ A

2. X. a @pre :: Ci ⇒ A

for all Ci ∈ C such that Ci <
∗ Cj ,

• each class name Ci ∈ C declares two projector functions to the set of all
objects in a state: Ci.allInstances() and Ci.allInstances@pre(),

• for each pair Ci, Cj ∈ C, there is a cast operation of type Ci ⇒ Cj that can
change the static type of an object of type Ci: (X :: Ci). oclAsType(Cj),



104 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

• for each pair Ci, Cj ∈ C, there are two dynamic type tests:

– (X :: Ci). oclIsTypeOf(Cj) testing the dynamic type and
– (X :: Ci). oclIsKindOf(Cj) testing one subtype of the dynamic type,

• for each class name Ci ∈ C there is an instance of the overloaded referential
equality (written _ .= _).

Note on n-ary associations Given the fact that there is at present no consen-
sus on the semantics of n-ary associations (for particularly n ≥ 3), the following
will mainly focus on situations where n = 2, on binary associations. A definition
of class models supporting arbitrary n-ary associations can nevertheless be given
by changing the above PreAssoc item with a more general version:

HOL
Definition “Class model (user interface, generalized form)”:
A class model is a five-tuple (C, <, PreAttrib, PreAssocn, mode) where:

• C is [. . . same line as “Class model” . . . ]

• _ < _ is [. . . same line as “Class model” . . . ]

• PreAttrib(Ci) is [. . . same line as “Class model” . . . ]

• mode is [. . . same line as “Class model” . . . ]

• For n ≥ 2, PreAssocn is a set of n-ary relations of the form (n′, lrn, ty).

The tuple consists of a (unique) association name n′, a set of role names lrn of
cardinal n and a tag ty ∈ {Association,Aggregation}.

1. Each pair of different role names (Ci, Si, rnfrom) and (Cj , Sj , rnto) in lrn
declare two families of accessors, denoted by X. a :: Ci ⇒ Sj(Cj) and
X. a @pre :: Ci ⇒ Sj(Cj) if a = rnto where Si, Sj ∈ {Sequencem, Setm},
and where the pair (rnfrom, rnto) will be processed by the meta-tool as an
aggregation depending on ty. If the multiplicity associated to a evaluates
to 1, both function types are Ci ⇒ Cj . For a = rnfrom we exchange i and
j: both function types are Cj ⇒ Si(Ci).

2. More generally, for all (proper) non-empty subsets lrnfrom ⊂ lrn and
{(Cj , Sj , rnto)} ⊆ (lrn\lrnfrom ), if lrnfrom of cardinal k has at least two ele-
ments, we declare two families of accessors of the form

(X1, · · · , Xk). a :: Si1(Ci1)⇒ · · · ⇒ Sik
(Cik

)⇒ Sj(Cj)
(X1, · · · , Xk). a @pre :: Si1(Ci1)⇒ · · · ⇒ Sik

(Cik
)⇒ Sj(Cj)

for all k-permutations [(Ci1 , Si1 , rnfrom1), · · · , (Cik
, Sik

, rnfromk
)] of lrnfrom .

For n ≥ 3, the type inference becomes no more decidable for expressions of
the form X. a :: _ ⇒ · · · ⇒ _ ⇒ Sj(Cj) (for example an ambiguity relies in
deciding if the type of an expression would be Ci1 ⇒ Sj(Cj) or Ci2 ⇒ Sj(Cj),



7.1. CLASS MODELS 105

and particularly whenever Ci1 = Ci2). One solution is to manually explicitly
indicate which role names are involved, in particular these new syntaxes are
used in HOL-OCL 2.0:

“X. a /* rnfrom1 · · · rnto*/ :: _⇒ Sj(Cj)” or
“X. a /* rnfrom2 · · · rnto*/ :: _⇒ Sj(Cj)”.

The semantical problem for n-ary associations is to determine if we should only
restrict to item “1.” (this is what is currently implemented in HOL-OCL 2.0) or
also include item “2.” in the definition.

Running Example
The class model of the flight reservation example is the following tuple (C, <,
PreAttrib, PreAssoc, mode) where:

• C = {Person, Client, Staff, Flight, Reservation, OclAny}

• < = {(Staff, Person), (Client, Person),
(Person, OclAny), (Reservation, OclAny),
(Flight, OclAny)}

• PreAttrib(Person) = {name}
PreAttrib(Flight) = {seats, from, to}
PreAttrib(Reservation) = {id}
PreAttrib(Client) = {address}
PreAttrib(Staff) = {}
PreAttrib(OclAny) = {}
In particular, we have PreAttrib(Client) 6= {name, address} and
PreAttrib(Staff) 6= {name}, because all inherited attributes (including
name) are not yet processed at this moment, they will be accordingly com-
puted later by the meta-tool.

• PreAssoc(Person, Flight)(Set,Set)
= {(i1, passengers, flights,Association)}

PreAssoc(Client, Reservation)(Set,Set)
= {(i2, client, cl_res,Association)}

PreAssoc(Flight, Reservation)(Set,Sequence)
= {(i3, flight, fl_res,Aggregation)}

PreAssoc(Reservation, Reservation)(Set,Set)
= {(i4, next, prev,Association)}

where i1, i2, i3, i4 can be arbitrarily chosen, but have to be all different
integers, e. g., respectively 0, 1, 2 and 3.

• mode can be arbitrarily chosen, e. g., we set it to be None.

For the attribute seats of Flight we have the two operations _. seats ::
Flight ⇒ Integer and _. seats @pre :: Flight ⇒ Integer. For the associa-
tion between Client and Reservation, we have the two operations _. client ::
Reservation ⇒ Client and _. cl_res :: Client ⇒ Set(Reservation) (and



106 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

  
d::D

c::C                           Dext (of c) in Cty

a'::A                                                   Cext (of a') in Aty                       Dext in Cext

b::B                          Eext (of b) in Bty

e::E

a::A                                                   Bext (of a) in Aty                              Eext in Bext

upcastdowncast

upcastdowncast upcastdowncast

upcastdowncast

Figure 7.1: Casting in Universes.

the corresponding operations in the pre-state). As remark, OclAny has not been
manually defined in Figure 3.2 because the meta-tool will implicitly include it.

As mentioned earlier, Featherweight OCL as semantic theory is organized
as a “shallow embedding,” which means that operators of the library and the
datatype theory are represented by operators in Isabelle/HOL, such type repre-
sentation of OCL types is one-to-one1.

Inheriting from Isabelle/HOL a strong static type discipline in the sense of
Hindley-Milner types, Featherweight OCL has no “syntactic subtyping.” In con-
trast, subtyping can be expressed semantically in Featherweight OCL; by adding
suitable casts which do have a formal semantics, subtyping becomes an issue of
the front-end that can make implicit type coercions explicit. Our perspective on
subtyping shifts the emphasis on the semantic properties of casting, and the nec-
essary universe of object representations (induced by a class model) that allows
to establish them.

7.2 A Denotational Space for Class Models

As a pre-requisite of a denotational semantics for operations induced by a class
model, we need an object universe A in which these operations can be defined
denotationally and from which the necessary properties can be derived.

We represent objects with a type class object, they are identified with an
object id (oid) under which it is referenced in the state, and OidOf ::(α::object)⇒
oid particularly returns the oid of any object. Objects are statically typed with
class types, and under some additional conditions it is possible to approximate
the equality on object representations by the equality of their references, i. e. by
the referential equality. This section details now the cast of objects along the
inheritance relation _ <∗ _, in particular how to cast an object X of static type
D up and down again in a semantically lossless way, whenever D <∗ C:

(X :: D).oclAsType(C).oclAsType(D) = X

Figure 7.1 presents the situation and sketches a solution: object representations
need optional object extensions which remember the necessary information for
consecutive up-down-casts to be idempotent. In addition, since object represen-
tations are designed to “live in a state”, the type oid will also be included in the
definition of class types. This gives rise to the following inductive definitions of
class types Ci and class type extensions Ciext.

1By slight abuse of language, arguments in parenthesis of the test and cast operations are
always class names not types, e. g.: ((X :: Staff).oclAsType(Person).oclAsType(Staff)) = X



7.2. A DENOTATIONAL SPACE FOR CLASS MODELS 107

meta
Definition “Class type extensions (privileging accessors over casts)”:
Let Ci be a class with a possibly empty set of immediate subclasses Cj1 , . . . , Cjm

(Cjl
< Ci). Then

• the class type extension Ciext associated to Ci is ai1⊥×· · ·×aih⊥×(Cj1ext+
· · ·+Cjmext)⊥ where aik

ranges over the local attribute types of Ci (not in-
herited ones) and Cjlext ranges over all class type extensions of immediate
subclasses Cjl

of Ci.

Here, A + B denotes the sum type for the types A and B, such that (Cj1ext +
· · ·+Cjmext)⊥ constructs the “potential alternative of one of the type extensions
Cj1ext to Cjmext.” As a consequence of the definition of class type extensions,
we can now define class types (which depend on class type extensions):

meta
Definition “Class types (privileging accessors over casts)”:
Let Ci be a class with a possibly empty set of immediate subclasses Cj1 , . . . , Cjm

(Cjl
< Ci). Then

• the class type City for Ci is oid×ai1⊥×· · ·×ain⊥×(Cj1ext+ · · ·+Cjmext)⊥
where aik

ranges over the inherited and local attribute types of Ci and
Cjlext ranges over all class type extensions of immediate subclasses Cjl

of
Ci.

Recall that this construction cannot be done in Featherweight OCL itself since
it involves quantifications and iterations over the “set of class types”. Then
one can precisely use here the meta-tool detailed in Chapter 5 to overcome this
limitation.

With respect to our semantic construction, which above all is intended to be
type-safe, this has the following consequences:

• there is a generic theory of states, which must be formulated independently
from a concrete object universe,

• there is a principle of translation (captured by the inductive scheme for
class type extensions and class types above) that converts a given class
model into a concrete object universe,

• there are fixed principles to derive the semantic theory of any concrete
object universe, called the object-oriented datatype theory.

For class type and class type extension, this means to generate A by the following
scheme of Isabelle datatype definitions:



108 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

meta
datatype Ciext’ = mkCi_Cj1

Cj1ext where Cj1 < Ci

| · · · · · · · · ·
|mkCi_Cjm

Cjmext where Cjm
< Ci

datatype Ciext = mkCi ai1⊥ · · · aih⊥ Ciext’⊥ where ai1 · · · aih

are owned
datatype City = mk’Ci

oid aih+1⊥ · · · ain⊥ Ciext where aih+1 · · · ain

are inherited
datatype A = inCk

Ckty | . . . | inCl
Clty

The presented definitions of class types extensions and class types form the
fundamental basis for some more involved operations on objects, such as accessor
operations and cast operations. However as a design decision and due to our
particular encoding, it becomes more efficient to apply attribute operations (X ::
Ci). a than cast operations (X :: Ci). oclAsType(Cj). Alternatively, we can
nevertheless provide an equivalent definitions of class types extensions and class
types so that casts become conversely privileged over accessing operations, this
is performed as follows:

meta
Definition “Class types extensions and Class types (privileging casts
over accessors)”:
Let Ci be a class with a possibly empty set of arbitrary subclasses Cj1 , . . . , Cjm

(Cjl
<+ Ci).

• Then the class type extension Ciext2 associated to Ci is oid× ai1⊥ × · · · ×
aik⊥ +Cj1ty2 + · · ·+Cjmty2 where aih

ranges over the inherited attribute
types of Ci (not local ones) and Cjlty2 ranges over all class types of arbi-
trary subclasses Cjl

of Ci.

• Then the class type City2 for Ci is Ciext2 × ai1⊥ × · · · × ail⊥ where ain

ranges over the local attributes of Ci (not inherited ones) and Ciext2 is the
class type extension associated to Ci.

These definitions of class types extensions and class types look as being mutually
recursive, however they are not actually: the meta-tool will implement these
definitions by following a particular order of generation: from leaves first to the
root as last node (which is OclAny). For example, the definition of class types
of Cjl

will be generated before the definition of class types extensions of Ci.
As implementation remark, in the meta-tool all datatype encoding of class

type extensions (i. e., Ciext and Ciext2) and class types (i. e., City and City2) have
been formalized.2 However to simplify the rest of the document, we will only take
Ciext and City as main definitions of class type extensions and class types (this
choice is arbitrary). On the other hand, the formalization will consider Ciext2 and
City2 as definitions (e. g., in the generated code shown in Appendix B, Ciext2 and

2For the moment, this comprises the generation of the respective datatype definitions,
and all conversion functions between City and City2. It remains to furthermore generate the
equivalence proof between City and City2 for all Ci.



7.3. DENOTATIONAL SEMANTICS OF ACCESSORS ON OBJECTS AND
ASSOCIATIONS 109
City2 are respectively named tyEXT Ci

and tyCi
, the generated code associated

to Ciext and City are present but not displayed in this present document).

Running Example
We show the definitions of class types and class type extensions of Client and
Person from Figure 3.2. The construction of the universe comprises the following
datatype definitions:3

HOL (generated)
datatype Clientext = mkClient string⊥
datatype Clientty = mk’Client oid string⊥ Clientext
datatype Personext’ = mkPerson_Staff Staffext

| mkPerson_Client Clientext
datatype Personext = mkPerson string⊥ Personext’⊥
datatype Personty = mk’Person oid Personext
datatype A = inFlight Flightty | inClient Clientty

| inStaff Staffty | inPerson Personty
| inReservation Reservationty | inOclAny OclAnyty

Here, oid × string⊥ × string⊥⊥ is (the only) optional extension that represents
Client objects cast to Person:

Personty = oid× Personext
= oid× string⊥ × Personext’⊥
= oid× string⊥ × Clientext⊥
= oid× string⊥ × string⊥⊥

In UML terminology (resp. in Java terminology), these are objects with dynamic
type (resp. actual type) Clientty and static type (resp. apparent type) Personty.

7.3 Denotational Semantics of Accessors on Objects and
Associations

Our choice to use a shallow embedding of OCL in HOL, thus having an injective
mapping from OCL types to HOL types, results in type-safety of Featherweight
OCL. Arguments and results of accessors are based on type-safe object represen-
tations and not oids. This implies the following scheme for an accessor:

1. The evaluation and extraction phase: the oid is extracted from the object
representation.

2. The dereferencing phase. The oid is interpreted in the pre- or post-state.

3. The selection phase. The corresponding attribute is extracted from the
object representation.

4. The re-construction phase. Converting oids or value representations con-
taining oids back to object representations and values (sets, sequences. . . )
containing object representations.

3In this chapter, the complete detail of each “Running Example” associated to the con-
struction we are generating can be fully inspected in Appendix B and Appendix C.



110 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

The evaluation and extraction phase. If the argument evaluation results
in an object representation, the oid is extracted; if not, invalid is reported.

HOL
definition eval_extractX f = (λ τ. caseX τ of ⊥ ⇒ invalid τ

propagating the exception
| x⊥y ⇒ invalid τ

dereferencing a null value
| xxobjyy⇒ f (OidOf obj) τ)

The de-referencing phase (“heap” case or Attrib(Ci) case). The oid is
interpreted in the pre- or post-state, the resulting object is converted to the ex-
pected format. The exceptional case of nonexistence in the state yields invalid.
For each class Ci, we have:

meta

definition deref_oidCi
fst_snd f oid = (λ τ. case heap (fst_snd τ) oid of

xinCi objy ⇒ f obj τ
|_ ⇒ invalid τ)

The operation yields undefined if oid is not interpretable in the state or refer-
encing an object representation not conforming to the expected type.

The de-referencing phase (“assocs” case or Assoc(Ci) case). In comple-
ment to general HOL notations, like for instance f ◦ g ≡ λx. f (g x), we first
introduce several shorthands for readability. Each association (n, rnfrom, rnto) ∈
Assoc(Ci, Cj)(Si,Sj) can refer to the association name n from a particular role
name rnfrom and rnto in input:

meta
definition n_assocrnfrom = n

definition n_assocrnto = n

As additional aliases, we define definition in_pre_state = fst (for first
component), definition in_post_state = snd (for second component) and
definition reconst_basetype = id (for identity function).

Following Section 4.5, we now encode binary associations as a set of pairs
of the form (rnfrom, rnto). Given a particular role name rn, the retrieval of the
associated rnfrom or rnto is performed symmetrically (either: first component
to second or second component to first). The following definitions describe the
accessing of such role names:

HOL
definition deref_assocs_list to_from oid S =

concat (map (in_post_state ◦ to_from)
(filter (λ p. List.member (in_pre_state (to_from p)) oid) S))



7.3. DENOTATIONAL SEMANTICS OF ACCESSORS ON OBJECTS AND
ASSOCIATIONS 111

definition deref_assocs_base pre_post to_from assoc_oid f oid =
(λ τ. case assocs (pre_post τ) assoc_oid of

xSy ⇒ f (deref_assocs_list to_from oid S) τ
|_ ⇒ invalid τ)

meta
definition deref_assocsrn fst_snd f =

(deref_assocs_base fst_snd switch2_X n_assocrn f) ◦ OidOf

We provide for every pair all possible permutation functions: switch2_01 and
switch2_10. While switch2_01 is basically the identity function; switch2_10
swaps the first component with the second one: as a consequence, if rn occurs
at an rnto position, we set as convention X = 01; otherwise X = 10.

The selection phase. The corresponding attribute is extracted from the ob-
ject representation. For each class Ci in the class model with at least one at-
tribute, and each attribute a in this class, the selection phase is of this form:

• for inherited attributes a returning a base type:

meta
definition selectCi_a f = (λmk’Ci

oid · · · ⊥ · · · _⇒ null
|mk’Ci oid · · · xay · · ·_⇒ f (λ x_. xxxyy) a)

• for owned attributes a returning a base type:

meta
definition selectCi_a f = (λmk’Ci

_ · · · (mkCi
· · · ⊥ · · · )⇒ null

|mk’Ci
_ · · · (mkCi

· · · xay · · · )⇒
f (λ x_. xxxyy) a)

• for attributes a returning a “set” of object type (for “sequence” it is simi-
lar):

meta

definition selectset
a f =
Xa ◦ foldl OclIncludingset mtset ◦ map (f (λ x _. xxxyy))

If the multiplicity of a allows to return at least two elements, Xa = id;
otherwise we optimise by picking the only element with Xa = OclANYset, which
is the Hilbert’s ε-operator. In particular, null is returned whenever the “set” is
empty.
The re-construction phase. The resulting value has to be embedded in the
adequate HOL type. If an attribute has the type of an object (not value), it
is represented by an optional (set of) oid, which must be converted via de-
referencing in one of the states to produce an object representation again. The
exceptional case of nonexistence in this state must be treated.



112 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

Let _.getB be an owned accessor of class Cj yielding a value of base type
A ∈ Tbase. Then its definition for every class Ci <

∗ Cj is of the form4:
meta
overloading _.getB :: Ci ⇒ A
begin
definition X.getB = eval_extract X (deref_oidCi

in_post_state
(selectCi_getB reconst_basetype))

end

Let _.getO be an owned accessor of class Cj yielding a value of object type Ck

(or Set(Ck) depending on the returned type of selectset
getO). Then its definition

for every class Ci <
∗ Cj is of the form:

meta
overloading _.getO :: Ci ⇒ Ck (or Set(Ck) depending on selectset

getO)
begin
definition X.getO = eval_extract X (deref_oidCi

in_post_state
(deref_assocsgetO in_post_state
(selectset

getO (deref_oidCk
in_post_state))))

end

The variant for an accessor yielding a TYPES0 is omitted here; its construction
follows by the application of the principles of the former two. The respective vari-
ants _. a @pre are produced when in_post_state is replaced by in_pre_state.
Note on Multiplicities For an accessor returning a value of object type,
situations of wrong multiplicities can statically be detected by a type-checking
process (performed once). So no further checks are required during the access
here, but only when object instances will be built (particularly with Instance in
Section 8.2). Otherwise, the classical rules to convert multiplicities to invariants
bounding the size of the collection types normally apply [BKW09].
Running Example

The de-referencing operation instantiated for the class Person is clear and will
not be given here. We focus on the select functions:
HOL (generated)
definition

selectPerson_name f = (λmk’Person _ (mkPerson ⊥ _)⇒ null
|mk’Person _ (mkPerson xsy_)⇒ f (λx_. xxxyy) s)

definition selectset
flights f = id ◦ foldl OclIncludingset mtset ◦map (f (λx_. xxxyy))

which gives the top-level definitions:
HOL (generated)
overloading _.name :: Person⇒ Integer
begin
definition X.name = eval_extractX (deref_oidPerson in_post_state

(selectPerson_name reconst_basetype))
end

4We use an ad-hoc overloading mechanism for defining a family of functions, parameterised
over Ci.



7.4. TESTS FOR TYPES AND CASTS 113

overloading _.flights :: Person⇒ Set(Flight)
begin
definition X.flights = eval_extractX (deref_oidPerson in_post_state

(deref_assocsflights in_post_state
(selectset

flights (deref_oidFlight in_post_state))))
end

7.4 Tests for Types and Casts

As a consequence of our decision to consider subtyping an issue to be solved by
a static type checker, the semantic treatment of casts and dynamic types lie in
the heart of the concept of object-orientedness of Featherweight OCL. We reduce
subtyping to castability, and type tests allow for specifying exactly the semantics
of operation calls. Although OCL has no constructors inside the language, objects
can be constructed in HOL and can be specified via OCL operation contracts.
The problem needs therefore to be solved that objects have an implicit dynamic
(“actual”) type, which is invariant under cast; whereas the returned static type
(statically inferable, “apparent”) of an object can differ from its type before cast.

First, let us consider dynamic type tests of the formX.oclIsTypeOf(Cj). To
implement a similar syntax in Featherweight OCL, we declare for each class Cj of
the class model a constantX.oclIsTypeOf(Cj) of a too large type α⇒ Boolean.
These constants will be defined by a family of concrete instances for class pairs
Ci, Cj .
meta
overloading
begin
definition (X :: Ci).oclIsTypeOf(Cj) ≡ (λ τ. caseX τ of

⊥ ⇒ invalid τ
| x⊥y ⇒ true τ
| xxmk’Ci _ · · · (mkCi _ · · · ⊥ )yy⇒ true τ if Ci = Cj

| xxmk’Ci _ · · · (mkCi _ · · ·xmkCi_Cj _y )yy⇒ true τ if Ci > Cj

| _ ⇒ X.oclAsType(Ci′).oclIsTypeOf(Cj) τ if (1)
| xx_yy ⇒ false τ ) if (*)

end

where
(1) stands for “Ci 6> Cj and Ci >

+ Cj”, in this case we are computing Ci′ such
that Ci >

+ Ci′ > Cj (like the definition of oclAsType below);

(*) stands for “Ci 6= Cj and not (1), or there exists Ch such that Ch <
+ Ci.”5

We now define a family of casts for any pairs Ci, Cj .

5Isabelle does not accept definitions where redundant clauses in the pattern matching are
written (and already covered by preceding clauses).



114 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

meta
overloading
begin
definition (X :: Ci).oclAsType(Cj) ≡ (λ τ. caseX τ of

⊥ ⇒ invalid τ
| x⊥y ⇒ null τ
| X ⇒ X if (1)
| xxmk’Ci

oid a1 · · · an Xyy
⇒ xxmk’Cj

oidAinh (mkCj
AownxmkCj_Ci

Xy)yy if (2)
| _ ⇒ X.oclAsType(Cj′).oclAsType(Cj) τ if (3)
| xxmk’Ci oidAinh(mkCi AownxmkCi_Cj Xy)yy

⇒ xxmk’Cj oid a1 · · · an Xyy if (4)
| _ ⇒ X.oclAsType(Ci′).oclAsType(Cj) τ if (5)
| xx_yy⇒ invalid τ ) if (*)

end

(1) if Ci = Cj , we are returning the same object. As optimisation, the pattern
matching is not required for behaving as an identity function.

(2) if Ci < Cj , we are up casting. Then we compute the set of attributes Aown

(owned) and Ainh (inherited) such that {a1, · · · , an} = Aown]Ainh (disjoint
union).

(3) if Ci 6< Cj and Ci <
+ Cj , we are up casting. Then we compute Cj′ such

that Ci <
+ Cj′ < Cj .

(4) if Ci > Cj , we are down casting. Then we compute the merging {a1, · · · , an}
such that Aown ]Ainh = {a1, · · · , an}.

(5) if Ci 6> Cj and Ci >
+ Cj , we are down casting. Then we compute Ci′ such

that Ci >
+ Ci′ > Cj .

(*) if Ci > Cj or Ci 6<>∗ Cj , we are raising an exception when the down
cast of (4) operates on an unexpected type, or if we have a situation of
incomparability.

While conditions from (1) to (5) are all disjoint, the last condition (*) applying
for (4) is not redundant: whenever we have Ci > Cj , several patterns always
exist for Ci. Finally as completeness, condition (*) is also needed whenever all
conditions from (1) to (5) are not satisfied. As remark, conditions (*) and (5)
are not present together at the same time but since (5) calls (4) internally, then
(5) eventually reaches (*). Although clauses (3) and (5) seem recursive, they
are not actually, we are calling other overloaded definitions. As a consequence,
when generating these definitions with the meta-tool, this implies a particular
order of generation to follow. For example, to execute (3), we must have priorly
defined both (_ :: Ci).oclAsType(Cj′) and (_ :: Cj′).oclAsType(Cj). Here
the intermediate class Cj′ is arbitrary, we could have chosen as in (5) one Cj′′

such that Ci < Cj′′ <+ Cj (as long as at least one decrementing step of _ < _
is involved and corresponding overloadings already defined).

As one key-property of the object universe construction, the preservation of
up down casting is directly implied by the definition, for all Ci <

∗ Cj :



7.4. TESTS FOR TYPES AND CASTS 115

meta
lemma ((X :: Ci).oclAsType(Cj).oclAsType(Ci)) = X

Both definitions make tests and casts strict and neutral or idempotent on
null:

meta
lemma (invalid :: Ci).oclIsTypeOf(Cj) = invalid
lemma (null :: Ci).oclAsType( Cj) = null
lemma (invalid :: Ci).oclAsType( Cj) = invalid
lemma (null :: Ci).oclIsTypeOf(Cj) = true

This is a slight deviation from the standard: null as argument should in general
yield invalid. Since null is usually considered as one unique constant appearing
in all types, we have technically one polymorphic constant null. To mimic the
desired effect, the last equation is required. Another issue is that casts yield
null for a null- argument (with the right static type). Since casts can appear
everywhere, this is to avoid non intuitive effects. Consider the case that X and
Y have a distinct class type Ci and Cj . Then the OCL term

HOL

termX
.= null and Y

.= null and X
.= Y

is either false or invalid, sinceX .= Y is translated toX.oclAsType(Cj) .= Y
or X .= Y .oclAsType(Ci) and thus to invalid if we apply, as required by the
OCL standard, the rule null.oclAsType(_) = invalid.

Besides the lemmas on strictness and null-preservation, the relative position
of Ci and Cj (in Ci.oclIsTypeOf(Cj)) reveals opposite consequences:

1. The type testing from a class Ci to a larger class Cj is always false. More
precisely, for all classes Ci <

+ Cj or Ci 6<>∗ Cj :

meta
lemma τ |= δ X =⇒ τ |=((X :: Ci).oclIsTypeOf(Cj)) , false

2. When reversing the inheritance relation between Ci and Cj , as soon as
a large class Ci does belong to the type of a small class Cj , the casting
to Cj fails for all its subclasses. For all Ci >

∗ Cj >
+ Ck (or whenever

Ci 6<>∗ Cj):

meta
lemma τ |= δ X =⇒τ |=(X :: Ci).oclIsTypeOf(Cj)

=⇒τ 6|= υ (X.oclAsType(Ck))

Altogether, these lemmas of type tests, casts, and their corner cases to defined-
ness and null constitute the key properties of the object-universe construction,
part of the object-oriented datatype theory.



116 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

Running Example
We instantiate the generic definitions for our example. For dynamic type tests,
this leads to this concrete instance of the definition:

HOL (generated)
overloading
begin
definition (X :: OclAny).oclIsTypeOf(Person) ≡ (λ τ. caseX τ of

⊥ ⇒ invalid τ
| x⊥y ⇒ true τ
| xxmk’OclAny_ (mkOclAnyxmkOclAny_Person_y)yy⇒ true τ
| xx_yy ⇒ false τ )

end

For type casting, we similarly illustrate on a down casting example:

HOL (generated)
overloading
begin
definition (X :: OclAny).oclAsType(Person) ≡ (λ τ. caseX τ of

⊥ ⇒ invalid τ
| x⊥y ⇒ null τ
| xxmk’OclAny oid (mkOclAnyxmkOclAny_PersonXy)yy⇒

xxmk’Person oidXyy
| xx_yy ⇒ invalid τ )

end

In particular, we obtain the required casting properties:

HOL (generated)
lemma τ |= δ X

=⇒ τ |=(X :: OclAny).oclIsTypeOf(OclAny)
=⇒ τ 6|= υ (X.oclAsType(Person))

lemma ((X :: Person).oclAsType(OclAny).oclAsType(Person)) = X

7.5 Tests for Kinds and Casts

While oclIsTypeOf(D) precisely checks if the dynamic type of an object is
D, the operator oclIsKindOf(D) relaxes the query by only checking if that
dynamic type belongs to one subtype ofD. Given the fact that we assume closed-
world semantics, a simple way to define the overloaded oclIsKindOf operation
is by the disjunction:

meta
overloading
begin
definition (X :: Ci).oclIsKindOf(Cj) ≡ X.oclIsTypeOf(Cj) or

X.oclIsKindOf(Ck1) or · · · orX.oclIsKindOf(Ckn
)

end



7.5. TESTS FOR KINDS AND CASTS 117

where Ck1 , . . . , Ckn
are all the immediate subclasses of Cj (Ckl

< Cj).
This leads to the usual rules of definedness and validity: for all classes Ci

and Cj ,

meta
lemma τ |= υ X=⇒ τ |= δ (X :: Ci).oclIsKindOf(Cj)
lemma τ |= δ X=⇒ τ |= δ (X :: Ci).oclIsKindOf(Cj)

1. Contrasting with the similar lemma of the previous section for
oclIsTypeOf, the kind checking from a class Ci to a larger class Cj is
always true. More precisely, for all classes Ci <

∗ Cj :

meta
lemma τ |= δ X =⇒ τ |= (X :: Ci).oclIsKindOf(Cj)

We separate the proof of this lemma in two cases, depending on if Ci = Cj

or Ci <
+ Cj because the proof of the latter will use the proof of the former

in its own proof.

meta
proof If Ci = Cj , we begin by unfolding the definition of (X ::
Ci).oclIsKindOf(Ci). Then we obtain an expression of the form
A1orA2or . . . orAn. Due to the abbreviation priority ofXorY , the expres-
sion becomes actually understood as ((A1 orA2)or . . . orAn). This has an
importance since we are going to unfold all expressions Ak, with Ak of the
form (_ :: _).oclIsKindOf(_). However the unfolding of Ak can only
be performed in front of a state τ . So we apply at the same time the rule
cp-OclOr everywhere, i. e. (Ak1 orAk2) τ = ((λ_. Ak1 τ) or (λ_. Ak2 τ))τ
in front of all expressions Ak. Since we are (arbitrarily) proceeding from
left to right, it means to generate a list of substitution of the form:

apply


subst (1 ) cp-OclOr, [. . . ],

subst (2 1 ) cp-OclOr, [. . . ],
subst (3 2 1 ) cp-OclOr, [. . . ],

...
subst (n− 1 n− 2 . . . 1 ) cp-OclOr, [. . . ]


where [. . . ] corresponds to the piece of tactics unfolding the correspond-
ing (_ :: _).oclIsKindOf(_) expression. At the end, we only obtain a
general expression of the form (((B1 orB2) or . . . ) orBm) with all Bl of
the form (_ :: _).oclIsTypeOf(_). Thus the proof terminates with

apply



auto simp: cp-OclOr[symmetric] foundation16
bot-option-def
OclIsTypeOf -Cm1 -Ci . . .

OclIsTypeOf -CmN
-Ci

split: option.split
tyext-Cm1 .split . . . ty

ext-CmN
.split

ty-Cm1 .split . . . ty-CmN
.split





118 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

where OclIsTypeOf -Cj-Ci is the definition of (_ ::
Ci).oclIsTypeOf(Cj), ty-Ci.split and tyext-Ci.split are respectively the
splitting rules of class types and class type extensions of Ci, and the
set of all CmN

represents the subtree of Ci. At the end, whenever auto
leaves some pending goals, the following simplification rule will ultimately
terminate the proof:

apply
((

simp-all add: false-def true-def
OclOr-def OclAnd-def OclNot-def

)
?
)

qed

meta
proof If Ci <

+ Cj , we begin as above, by unfolding the definition of
(X :: Ci).oclIsKindOf(Cj). So by definition, we exactly obtain

X.oclIsTypeOf(Cj) or

X.oclIsKindOf(Ck1) or · · · orX.oclIsKindOf(Ckn)

However, since we are generically generating this “meta”-proof from bot-
tom to top for an increasing set of Ci and Cj , then it means we have al-
ready proved at some time in the past that (X :: Ci).oclIsKindOf(Ckl

)
for exactly one Ckl

among Ck1 . . . Ckn
. So it suffices to retrieve the name

of this previously proved lemma. In particular, that name depends on if
Ci = Ckn

(in this case, we refer to the proof above) or not.
qed

2. When reversing the inheritance relation between Ci and Cj , we ob-
tain the following property characterising an “unfolding” definition of
oclIsKindOf. For all Ci >

+ Cj and {Ckn | Cj >
∗ Ckn}:

meta
lemma 1: τ |= δ X =⇒ τ |= (X :: Ci).oclIsKindOf(Cj)

=⇒ τ |= X.oclIsTypeOf(Ck1)∨ · · ·
∨ τ |= X.oclIsTypeOf(Ckn

)

On the other hand, as soon as a large class Ci does not belong to the kind
of a small class Cj , the casting to Cj fails for all its subclasses. For all
Ci >

+ Cj >
∗ Ck:

meta
lemma 2: τ |= δ X =⇒ τ 6|= (X :: Ci).oclIsKindOf(Cj)

=⇒ τ 6|= υ X.oclAsType(Ck)

We prove this theorem by introducing an intermediate lemma perform-
ing an exhaustive case distinction, as illustrated in Figure 7.2: for all
Ci >

+ Cj , let K = {Ckn
| Ci >

∗ Ckn
>+ Cj} such that we can construct

{Clm | (Ck ∈ K) > (Clm 6∈ (K ∪ {Cj}))}, then:



7.5. TESTS FOR KINDS AND CASTS 119

C
j

set of C
k
 nodes

(has at least 1 node)

C
i

set of C
l
 nodes

(can be empty)

Figure 7.2: Example of nodes Ci, Cj , set of Ck and set of Cl following the
hypothesis of the lemma

meta
lemma 2’: τ |= δ X =⇒ τ 6|= (X :: Ci).oclIsKindOf(Cj)

=⇒ τ |= X.oclIsTypeOf(Ck1)∨ · · ·
∨ τ |= X.oclIsTypeOf(Ckn

)
∨ τ |= X.oclIsKindOf(Cl0)∨ · · ·

∨ τ |= X.oclIsKindOf(Clm
)

meta
proof We prove lemma 1 by first unfolding the expression (X ::
Ci).oclIsKindOf(Cj): this leads to two cases depending on the number of
immediate subclasses of Cj .

If Cj does not have immediate subclasses, then the proof is immediately
finished since the unfolding gives exactly (X :: Ci).oclIsTypeOf(Cj).

Otherwise, if Cj has m ≥ 1 immediate subclasses, we refine the so-
obtained goal by m steps of elim-resolution rule because by definition of
(X :: Ci).oclIsKindOf(Cj), we have an expression of the form ((((X ::
Ci).oclIsTypeOf(Cj) or A1) or . . . ) or Am). In particular, we repetitively
apply m sequences of erule (foundation26 [. . . ]), where foundation26 represents
the rule
τ |= δ P =⇒ τ |= δ Q =⇒
τ |= P orQ =⇒ (τ |= P =⇒ R) =⇒ (τ |= Q =⇒ R) =⇒ R

and “[. . . ]” designates the expression providing the proof of τ |= δP and τ |= δQ
for foundation26 [. . . ] to be of the form

τ |= P orQ =⇒ (τ |= P =⇒ R) =⇒ (τ |= Q =⇒ R) =⇒ R

However, following the binary structure of (((. . . orA1)or . . . )orAm), the proof
expression “[. . . ]” needs to be assembled as a binary tree as well. Then, we use at



120 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

each node the operator defined-or-I : τ |= δX =⇒ τ |= δY =⇒ τ |= δ (XorY )
to chain the corresponding branches. We finally repeat this constructionm times
since we have m sequences of erule (foundation26 [. . . ]) to build:

• Step number m: we build the proof of τ |= δ P and τ |= δ Q, where
P = ((((X :: Ci).oclIsTypeOf(Cj)orA1)or . . . )orAm−1) and Q = Am.

• Step number m − 1: we build the proof of τ |= δ P and τ |= δ Q,
where P = ((((X :: Ci).oclIsTypeOf(Cj) or A1) or . . . ) or Am−2) and
Q = Am−1.

• . . .

• Step number 1: we build the proof of τ |= δ P and τ |= δ Q, where
P = (X :: Ci).oclIsTypeOf(Cj) and Q = A1.

After applying all these sequences of erule, we finally obtain m+ 1 subgoals
where the first is fast discharged since we have (X :: Ci).oclIsTypeOf(Cj) in
both the assumption and the conclusion.

The remaining m subgoals uses the fact that we are generically generating
this “meta”-proof from bottom to top for an increasing set of Ci and Cj . So we
terminate by calling m times drule with the name of the adequate meta-proof
(each drule becomes followed by a blast).
qed

Because the proof of lemma 2 uses the proof of lemma 2’, we are first showing
how to resolve this last.

meta
proof We prove lemma 2’ by generating a list of tactics to sequentially apply:
Figure 5.11 displays a recursive function auxdepth in HOL which precisely returns
this list of tactics. At the beginning of the figure, we have included a minimal
datatype modelling tactics, it has specially been simplified for this presenta-
tion. Then comes the mutually recursive functions auxdepth and auxbreadth. In
input, the function auxdepth takes a tree data-structure, like the one shown in
Figure 7.2. By convention, we assume that the tree initially given to auxdepth

is truncated, where its root will represent Ci. This is without loss of generality
since the result of type testing and kind testing only depends on nodes oc-
curring in the subtree of Ci. More precisely, the subtree given to auxdepth

is represented as an ordered list and contains all elements of K sorted ac-
cording to the relation _ < _ (where K = {Ckn

| Ci >
∗ Ckn

>+ Cj}, and
where the first element of the list is Ci). In particular, the type of auxdepth is:
(α× (β × bool) list) list⇒ (α, α× β list) T.tactic list, and each element of the
list in input is a pair where

• the first component α represents one node n of K,

• and the second component (β × bool) list contains as a list the collection
of (immediate) subtrees β of n. In addition, the special boolean bool
indicates if the root of the subtree β is in K ∪ {Cj} or not. So there is
always only one element in the list which has an associated boolean equals
to True.



7.5. TESTS FOR KINDS AND CASTS 121

As convention, we assume that this list of subtrees is sorted with the same
order we have used when declaring class type and class type extensions.
This is important since the order of tactics we will generate depends on
the structure of declarations of class type and class type extensions.

Before detailing the tactics generated by auxdepth, we begin the proof of
lemma 2’ by adding as hypothesis the rule τ |= (X :: Ci).oclIsKindOf(Ci)
which has just been proved earlier in a previous lemma, and will name this rule
Hi. This rule Hi has a central role here, as each recursive call of auxdepth is
going to unfold the definition of (_ :: _).oclIsKindOf(_). Consequently, we
will cross during the overall proof a family of rules Hclass of the form Hclass :
τ |= X.oclIsKindOf(class).

At the beginning, auxdepth first proceeds with a case distinction on the given
list (representingK). Initially, this list is not empty sinceK is initially supposed
to be not empty.

The other case in auxdepth concerns the unfolding of Hclass :
X.oclIsKindOf(class), this is precisely the purpose of T.simp_only, which
takes as argument the name class of the current class to unfold. After the
unfolding, we obtain by definition

X.oclIsTypeOf(class) or

X.oclIsKindOf(class1) or · · · orX.oclIsKindOf(classn)

where class1, · · · , classn are all the immediate subclasses of class (classl <
class). The next step of the proof suspends the treatment of auxdepth by letting
auxbreadth continue the generation of the proof. auxbreadth will particularly
recursively fold the list of immediate subtrees lbreadth of class. The new version
of ldepth (in green) is also given as argument to auxbreadth, for auxdepth to resume
the processing later. As remark, we reverse lbreadth before calling auxbreadth

since this last will generate tactics in reverse order.
In the recursive body of auxbreadth, we retrieve the generation of a repetitive

sequence of elim-resolution rule, this is similar as the proof of lemma 1 above.
In particular the arguments given to T.erule will be the information needed to
generate the appropriate sequences of erule (foundation26 [. . . ]).

After having generated the consecutive list of T.erule, the next tactic
T.simpbreadth (i. e. simp or blast) will discharge the case where (X ::
Ci).oclIsTypeOf(Cj) appears in both the assumption and the conclusion, sim-
ilarly as the same situation in lemma 1 above.

Ultimately, we have two cases depending on the situation of class0.

• If class0 is in K ∪ {Cj}, we continue to generate the list of tactics with
auxdepth whenever ldepth 6= {}. After reaching the end of ldepth, we will
have class0 equal to Cj . So it suffices to call T.simpdepth_1, which will use
the rule τ 6|= (X :: Ci).oclIsKindOf(Cj), from the initial hypothesis of
this lemma, to contradict with the rule Hj also present in the hypothesis.

• If class0 is not in K ∪ {Cj}, we call T.simpdepth_2 (i. e. simp or blast) to
explicitly use the current Hclass0 , which is present in both the assumption
and the conclusion.

qed



122 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

meta
proof To prove lemma 2, we use lemma 2’ by repeatedly eliminating all its
disjunction after inserting it.

For each new subgoal, whenever we have as assumption a rule of the form
τ |= (X :: Ci).oclIsKindOf(Clm

) (where Clm
comes from the lemma 2’), we

use drule applied with lemma 1.
At the end, we obtain as hypothesis a rule of the form A1∨A2∨ . . .∨Aj

where all Ak are of the form τ |= (X :: Ci).oclIsTypeOf(Ck), with particularly
Ck <+ Ci. So we retrieve for each Ak the corresponding solving lemma from
Section 7.4 (namely τ |= δ X =⇒ τ |=(X :: Ci).oclIsTypeOf(Ck) =⇒ τ 6|=
υ (X.oclAsType(Ck))), and terminate with “auto simp :” applied with this
list of lemmas.
qed

Running Example
For our example, we obtain the following definition:

HOL (generated)
overloading
begin
definition X.oclIsKindOf(Person) ≡ X.oclIsTypeOf(Person) or

X.oclIsKindOf(Staff) orX.oclIsKindOf(Client)
end

7.6 Access to the Global State

The operation allInstances builds the collection of all the instances of a given
class in a state. With a little trick it is possible to define the global accessor on
the state in a universal, generic (class model independent) way:

HOL
definition _.allInstances() :: VA(A :: object⇒ (Cty)⊥)⇒ Set(C)
where (H.allInstances()) τ = Abs_Setbase xxSome

‘ ( (H τ ‘ ran(heap(in_post_state τ))) − {⊥} ) yy

meta
definition CiA = (λ inCj

X ⇒ ((λ_. xxXyy) :: Cj).oclAsType(Ci))
definition Ci τ X = (case CiA X τ of xxXyy⇒ xXy |_⇒ ⊥)

In our running example, this boils down to the following definitions:

HOL (generated)
definition PersonA =

(λ inPerson X ⇒ ((λ_. xxXyy) :: Person).oclAsType(Person)
| inFlight X ⇒ ((λ_. xxXyy) :: Flight).oclAsType(Person)
| . . . X ⇒ ((λ_. xxXyy) :: . . . ).oclAsType(Person)
| inOclAny X ⇒ ((λ_. xxXyy) :: OclAny).oclAsType(Person))

definition Person τ X = (case PersonA X τ of xxXyy⇒ xXy |_⇒ ⊥)



7.7. A COMPARISON TO RELATED WORK 123

It is easy to prove on the basis of these definitions, that our global accessors
have “isKindOf”-semantics for any Ci <

∗ Cj :

meta
lemma τ |= Ci.allInstances()->forAll(X|X.oclIsKindOf(Cj))

whereas the equivalent lemma for “isTypeOf”-semantics is only verified for Ci

such that 6 ∃Ch. Ch <
+ Ci:

meta
lemma τ |= Ci.allInstances()->forAll(X|X.oclIsTypeOf(Ci))

since we also prove for the others Ci (such that ∃Ch. Ch <
+ Ci):

meta
lemma ∃τ1. τ1 6|= Ci.allInstances()->forAll(X|X.oclIsTypeOf(Ci))
lemma ∃τ2. τ2 |= Ci.allInstances()->forAll(X|X.oclIsTypeOf(Ci))

We found out that the current Annex A of the OMG standard actually defines the
latter, while the mandatory part of the standard apparently favours the former.
This inconsistency of the most recent standard (i. e., 2.4) is still to be resolved
in a future version of the standard. We strongly suggest the oclIsKind-variant
as it easily allows to use an additional type-selector construct in cases where the
exact type set is required; this is not possible the other way round.

7.7 A Comparison to Related Work

Type and Kind Tests

Our formal semantics of OCL defines null.oclIsKindOf(C) to be true for
all types C. This is on contrast to programming languages such as Java
(and thus JML) or C# (and thus Spec#) which defines this to be false.
While this decision is reasonable for a programming language as it avoids ad-
ditional null-checks in case distinctions, it complicates verification as (X ::
Set(D))->forAll(X|X.oclIsKindOf(D)) would no longer be universally
true.

Associations

Besides OCL, none of the mainstream object-oriented modelling languages sup-
ports associations (as relations) between objects and navigation over them as a
first-class concept. This paves the way to a particular modelling methodology
that is appealing to users. We consider it an advantage to have mathematical
relations as an important concept both in real world scenarios as well as in the
formal verification presented in this “user-friendly” way.



124 CHAPTER 7. OBJECT-ORIENTED DATATYPE THEORIES

Equality
ACSL is the only language that has strong equality, simply since it has explicit
pointers and no exception elements (“deep equality” has to be defined by hand).
All other languages of our comparison know some form of strict equality. Both
JML and Spec# have null = null, while null <= null interestingly yields
false in Spec#... Since JML and Spec# have explicit exception objects, they
have a more concrete, more programming-oriented treatment of exceptional be-
haviour compared to invalid in OCL; this is also reflected in its equality.

Global Access
The operation allInstances() allowing for the access to the collection of all
instances in the current state is a fairly original concept in UML/OCL reflecting
its heritage from database modelling. In principle, its effect can be modelled in
JML, Spec# in ghost-fields, which can also be used to model “sets of reachable
objects” in a recursive data structure. However, if they cannot be constructed
incrementally together with “ghost-code”, this approach comes to a limit, since
the use of recursive predicates is typically discouraged for methodological reasons
(automated verification typically breaks down, being unable to provide some
form of induction proofs).

Framing Conditions
All languages considered here have provided solutions to the problem, that the
content of the post-state must be constrained to be equal to the pre-state in
most cases; just the small portion of the memory that is updated by the func-
tion (to be specified) can be altered. A vast literature has been developed to
address this problem ranging from region-like approaches as in ACSL, ownership
approaches (one object or thread “owns” a set of other objects) as in Spec# to
separation logics. Featherweight OCL proposes a oclIsModifiedOnly() pred-
icate that states the set of objects that can change; all objects not in this set
are identical between pre-and post-state. There is currently no solution and
consensus in the community how to tackle associations.

Exceptional Behaviour
There is the possibility not to treat exceptions, let them occur as a consequence
of illegal divisions 1/0, de-referencing null (as in null.name) or illegal oids
(in pointers). Then, operations on them are underspecified. To exclude this,
invariants and pre-conditions must be strengthened to permit reasoning only on
specified behaviour (ACSL). The other extreme is specification and reasoning
over explicit exceptions (Spec#, JML). OCL is in between these two extremes,
having basically one exception invalid reflected in the logic. If we do not
mention them in a pre-condition or an invariant, this leads typically to implicitly
assume that they are excluded.



C
h

a
p

t
e

r

8
Case Study

8.1 Corner Cases of Path Expressions

In this section, we illustrate the definitions of the previous section on a con-
crete example. Figure 8.1 shows two states (two object diagrams) instantiating
Figure 3.1: before and after a reservation made by Arthur for a flight between
Miami and Ottawa. Two reservations link clients Arthur and Bertha to flight F1
from Valencia to Miami, with a staff Merlin onboard. After Arthur’s reservation
for flight F2, a new reservation links him to this flight. Moreover, his two reser-
vations are part of the same journey therefore they are linked in order. Both
states satisfy the invariants stated in Figure 3.3.

Corner Cases of Objects and Accessors

By loading Figure 8.1 in HOL-OCL 2.0, we can check arbitrary OCL path expres-
sions. For instance, we have (σ, σ′) |= C1.address .= “Saint-Malo”, since Bertha
will not be invalid nor null in “Saint-Malo” in the post-state (moreover the
type of “Saint-Malo” belongs to Tbase, so it is defined every time, independently
of states). Before her move, we also have (σ, σ′) |= C1.address @pre .= “Miami”
since Bertha was defined at “Miami” in the pre-state. Similarly for Arthur,
we have (σ, σ′) |= C2.cl_res .= Set{R21,R22} since R21 and R22 will be
all the reservations of the defined Arthur in the post-state, while (σ, σ′) |=
C2.cl_res @pre .= Set{R21} since Arthur was defined in the pre-state and he
ordered only one reservation R21 at that time.

We have a particular case with R22 which will have no following reservation
in the post-state: (σ, σ′) |= R22.next .= null. Trying to de-reference a null
association end yields an invalid value at any time, so (σ, σ′) 6|= υ R22.next.id.
As another invalid error, since R22 did not occur in the pre-state, its de-
referencing in this state necessarily fails: (σ, σ′) 6|= υ R22.id @pre, and (σ, σ′) 6|=
υ R22.flight @pre. Let us point out that any empty association end yields
null, even when the multiplicity is *. For instance F2 had no reservation in
the pre-state, therefore (σ, σ′) |= F2.fl_res @pre .= null. In the USE tool for
instance, F2.fl_res @pre is the empty set of reservations.

More complex expressions lead to other cases that are well-defined although
not always intuitive. When an expression refers to only one state, the semantics

125



126 CHAPTER 8. CASE STUDY

(a) (b)

R11: Reservation

id = 12345

R21: Reservation

id = 98765

S1: Staff

name = 'Merlin'

C1: Client

name = 'Bertha'
city = 'Miami'

C2: Client

name = 'Arthur'
city = 'Valencia'

seats = 370
from = 'Miami'
to = 'Ottawa'

F2: Flight

F1: Flight

seats = 120
from = 'Valencia'
to = 'Miami'

next

R22: Reservation

id = 19283

R11: Reservation

id = 12345

R21: Reservation

id = 98765

S1: Staff

name = 'Merlin'

C1: Client

name = 'Bertha'
city = 'Saint-Malo'

C2: Client

name = 'Arthur'
city = 'Valencia'

seats = 370
from = 'Miami'
to = 'Ottawa'

F2: Flight

F1: Flight

seats = 120
from = 'Valencia'
to = 'Miami'

pre-state σ

(a) (b)

R11: Reservation

id = 12345

R21: Reservation

id = 98765

S1: Staff

name = 'Merlin'

C1: Client

name = 'Bertha'
city = 'Miami'

C2: Client

name = 'Arthur'
city = 'Valencia'

seats = 370
from = 'Miami'
to = 'Ottawa'

F2: Flight

F1: Flight

seats = 120
from = 'Valencia'
to = 'Miami'

next

R22: Reservation

id = 19283

R11: Reservation

id = 12345

R21: Reservation

id = 98765

S1: Staff

name = 'Merlin'

C1: Client

name = 'Bertha'
city = 'Saint-Malo'

C2: Client

name = 'Arthur'
city = 'Valencia'

seats = 370
from = 'Miami'
to = 'Ottawa'

F2: Flight

F1: Flight

seats = 120
from = 'Valencia'
to = 'Miami'

post-state σ′

Figure 8.1: Two system states for the model of Figure 3.1.

remains easily comprehensible.
For instance, the following formulas are evaluated in the post-state only:
∀ σ . (σ, σ′) |= R11.client.address .= “Saint-Malo”
∀ σ . (σ, σ′) |= R21.next.flight .= F2
while those are evaluated in the pre-state only:
∀ σ′. (σ, σ′) |= R11.client @pre .address @pre .= “Miami”
∀ σ′. (σ, σ′) |= R21.flight @pre .passengers @pre .= Set{S1,C1,C2}
∀ σ′. (σ, σ′) |= R21.next @pre .= null
∀ σ′. (σ, σ′) 6|= υ R21.next @pre .flight @pre

A path expression involving both the pre and the post-state is for instance
R11.client @pre .address. The client which reserved R11 in the pre-state was
Bertha, but her address will be “Saint-Malo” in the post-state:

(σ, σ′) |= R11.client @pre .address .= “Saint-Malo”

Similarly for the path expression R22.prev.client @pre: in the post-state,
the preceding flight of R22 will be R21, but its client in the pre-state was Arthur:

(σ, σ′) |= R22.prev.client @pre .= C2

Since R22 did not exist in the pre-state, we also have that (σ, σ′) |=
R22.prev.next @pre .= null and ∀σ′. (σ, σ′) 6|= υ R22.prev @pre .next.



8.2. SPECIFICATION ANALYSIS OF THE FLIGHT MODEL 127

Corner Cases of Types, Kinds and Casts
Now we consider an arbitrary state τ , since objects in states are not consulted
for performing membership operations on type and kind, as well as (pure) casts.
We also suppose having an object P of dynamic type Person (with P defined).

As demonstrated in Section 7.4, casting an instance of Client up to Person,
then down to Client again returns the original object:
τ |= C1.oclAsType(Person).oclAsType(Client) .= C1

However, casting an instance of Person down to Client is not possible if this
instance is not a cast up of an instance of Client: τ 6|= υ P.oclAsType(Client).

We also saw in Section 7.4 that the oclIsTypeOf operator checks the dynamic
type of an object while oclIsKindOf performs a weak form of dynamic check.
This leads to the following properties (where P = Person and C = Client):
τ |= P .oclIsTypeOf(P) .= true τ |= P .oclIsKindOf(P) .= true
τ |= P .oclIsTypeOf(C) .= false τ |= P .oclIsKindOf(C) .= false
τ |= C1.oclIsTypeOf(P) .= false τ |= C1.oclIsKindOf(P) .= true
τ |= C1.oclIsTypeOf(C) .= true τ |= C1.oclIsKindOf(C) .= true

As expected, casting an instance of Client up to Person does not return an
object of dynamic type Person:
τ |= C1.oclAsType(Person).oclIsTypeOf(Person) .= false

In Section 7.6, the definition of allInstances() explicitly manipulates the
post-state in τ given as parameter. By including the object P in σ′ (the right-
hand state of Figure 8.1), we obtain the following property for class Client:
∀σ. (σ, σ′) |= Client.allInstances() .= Set{C1,C2}. For class Person,
allInstances() returns all the instances of Person and of its child classes,
while casting the latter up to Person, so that the result is a set of instances of
Person:

∀σ. (σ, σ′) |= Person.allInstances() .= Set{P,

C1.oclAsType(Person),C2.oclAsType(Person),S1.oclAsType(Person)}

8.2 Specification Analysis of the Flight Model

In this section, we implement in Isabelle and HOL-OCL 2.0 the methodology of
consistency analysis of specifications [BW09], instantiated here to the Flight
Model example. All the code presented in the following has been generated,
proofs are moreover not shown: the extended version with proofs can be in-
spected in Appendix A.

theory
Flight-Model

imports
../src/UML-OCL

begin



128 CHAPTER 8. CASE STUDY

Class Model
This part corresponds to the writing in Isabelle of the code shown in Figure 3.2.

Class Flight
Attributes
seats : Integer
from : String
to : String

End

lemma id = (λx. x)
〈proof 〉

As remark, we are checking for example that the constant id already exists,
and that one can also use this name in the following attribute: no conflict will
happen.

Class Reservation
Attributes
id : Integer
date : Week

End

Class Person
Attributes
name : String

End

Class Client < Person
Attributes
address : String

End

Class Staff < Person
End

Association passengers
Between Person [∗]

Role passengers
Flight [∗]
Role flights

End

Aggregation flights
Between Flight [1 ]

Role flight
Reservation [∗]
Role fl-res Sequence-

End



8.2. SPECIFICATION ANALYSIS OF THE FLIGHT MODEL 129

Association reservations
Between Client [1 ]

Role client
Reservation [∗]
Role cl-res

End

Association connection
Between Reservation [0 . . 1 ]

Role next
Reservation [0 . . 1 ]
Role prev

End
In complement to Figure 3.2, we define an enumeration type.
Enum Week

[ Mon, Tue, Wed, Thu, Fri, Sat, Sun ]
End!

Two State Instances of the Class Model
The creation of (typed) object instances is performed in HOL-OCL 2.0 with the
command Instance:
Instance S1 :: Staff = [ name = Merlin , flights = F1 ]

and C1 :: Client = [ name = Bertha , address = Miami , flights = F1 ,
cl-res = R11 ]

and C2 :: Client = [ name = Arthur , address = Valencia , flights = F1 ,
cl-res = R21 ]

and R11 :: Reservation = [ id = 12345 , flight = F1 , date = Mon ]
and R21 :: Reservation = [ id = 98765 , flight = F1 ]
and F1 :: Flight = [ seats = 120 , from = Valencia , to = Miami ]
and F2 :: Flight = [ seats = 370 , from = Miami , to = Ottawa ]

The notion of object instances comes before that of states. Currently, we have
only created the object instances S1, C1, C2, R11, R21, F1 and F2. They
will need to be “registered” in a state later. Instance verifies that all objects
being created are respecting the multiplicities declared above in classes (in the
bidirectional sense). For example, after the type-checking stage, we have cor-
rectly that R21 .client ∼= Set{C2}, since R21 appears as one reservation of
C2, and where “X ∼= Y ” stands as a synonym for ∀ τ . τ |= δ X −→ τ |= δ Y
−→ τ |= X , Y.1As remark, the order of attributes and objects declarations
is not important: mutually recursive constructions become de-facto supported.
As illustration, we can include here the text displayed in the output window
after evaluating the above Instance (we have manually pasted the text from the
output window in Isabelle/jEdit):

S1 .flights ∼= Set{ F1 }
C1 .flights ∼= Set{ F1 }
C1 .cl-res ∼= Set{ R11 }
C2 .flights ∼= Set{ F1 }



130 CHAPTER 8. CASE STUDY

C2 .cl-res ∼= Set{ R21 }
R11 .flight ∼= Set{ F1 }
R11 .client ∼= Set{ C1 }
R11 .prev ∼= Set{}
R11 .next ∼= Set{}
R21 .flight ∼= Set{ F1 }
R21 .client ∼= Set{ C2 }
R21 .prev ∼= Set{}
R21 .next ∼= Set{}
F1 .passengers ∼= Set{ S1 , C1 , C2 }
F1 .fl-res ∼= Set{ R11 , R21 }
F2 .passengers ∼= Set{}
F2 .fl-res ∼= Set{}

We can check that S1 indeed exists and has the expected OCL type.

term S1 ::· Staff
Once objects are constructed with Instance, it becomes possible to regroup them
together into a state. This is what the next command State is doing by creating
a state named σ1, corresponding to the pre-state of Figure 8.1.

State σ1 = [ S1 , C1 , C2 , R11 , R21 , F1 , F2 ]

This generates a number of theorems from it, e. g.:∧
σ. (σ1, σ) |= Staff .allInstances@pre() , Set{S1}∧
σ. (σ1, σ) |= Client .allInstances@pre() , Set{C1 ,C2}∧
σ. (σ1, σ) |= Reservation .allInstances@pre() , Set{R11 ,R12}∧
σ. (σ1, σ) |= Flight .allInstances@pre() , Set{F1 ,F2}

At this point, it is not yet sure that σ1 will be used in the pre-state or post-
state. In any case, the above command also generates the following symmetric
lemmas:∧
σ. (σ, σ1) |= Staff .allInstances() , Set{S1}∧
σ. (σ, σ1) |= Client .allInstances() , Set{C1 ,C2}∧
σ. (σ, σ1) |= Reservation .allInstances() , Set{R11 ,R12}∧
σ. (σ, σ1) |= Flight .allInstances() , Set{F1 ,F2}

Because all these lemmas are stated under the precondition that all object
instances are defined entities, lemmas generated by State are actually proved in
a particular locale [Bal14, Bal16] state-σ1. Thus the header of state-σ1 regroups
these (mandatory) definedness assumptions, that have to be all satisfied before
being able to use the rules defined in its body.

1 Although such rule schemata may be explicitly generated by Instance (for most OCL
expressions), they can also not be: at the time of writing, the complete type-checking process is
at least fully executed from an extracted HOL function (as one consequence, the type-checking
process terminates). This is feasible because for the moment, Instance only accepts “grounds
objects” as arguments (the reader is referred to its syntax diagram detailed in Appendix I).



8.2. SPECIFICATION ANALYSIS OF THE FLIGHT MODEL 131

The next statement illustrates Chapter 6. It shows for instance that object
instances can also be generated by State on the fly. Fresh variables are created
meanwhile if needed, like σ2-object1.

State σ2 =
[ S1
, ([ C1 with-only name = Bertha, address = Saint−Malo , flights = F1 ,

cl-res = R11 ] :: Client)
, ([ C2 with-only name = Arthur ,address = Valen-

cia,flights=[F1 ,F2 ],cl-res=[self 4 ,self 7 ]]::Client)
, R11
, ([ R21 with-only id = 98765 , flight = F1 , next = self 7 ] :: Reservation)
, F1
, F2
, ([ id = 19283 , flight = F2 ] :: Reservation) ]

Similarly as with Instance, we can paste in the following what is currently being
displayed in the output window (where “/∗8∗/” means the object having an oid
equal to 8).2

σ2-object1 .flights ∼= Set{ /∗8∗/ }
σ2-object1 .cl-res ∼= Set{ /∗6∗/ }
σ2-object2 .flights ∼= Set{ /∗8∗/ , /∗9∗/ }
σ2-object2 .cl-res ∼= Set{ σ2-object4 , σ2-object7 }
σ2-object4 .flight ∼= Set{ /∗8∗/ }
σ2-object4 .client ∼= Set{ σ2-object2 }
σ2-object4 .prev ∼= Set{}
σ2-object4 .next ∼= Set{ σ2-object7 }
σ2-object7 .flight ∼= Set{ /∗9∗/ }
σ2-object7 .client ∼= Set{ σ2-object2 }
σ2-object7 .prev ∼= Set{ σ2-object4 }
σ2-object7 .next ∼= Set{}

Note that there is a mechanism to reference objects via the (invented) key-
word self (it has no particular relation with the one used in Chapter 6), which
takes a number designating the index of a particular object instance occurring
in the list of declarations (the index starts with 0 as first position).

Similarly as for state-σ1, we obtain another locale called state-σ2, represent-
ing the post-state of Figure 8.1.

The Transition command relates the two states together.

Transition σ1 σ2

2As future work, it is plan for Instance to support the writing of arbitrary OCL expressions,
including the assignment of potentially infinite collection types (for example “a set of sequence
of bag of objects”). In particular, besides the cardinality of the manipulated collection types,
the sole information required for checking multiplicities appears to be the oid of objects.



132 CHAPTER 8. CASE STUDY

The first state is intended to be understood as the pre-state, and the second
state as the post-state. In particular, we do not obtain similar proved theorems
if we write Transition σ1 σ2 or Transition σ2 σ1 (assuming σ1 and σ2 are
different). Generally, Transition establishes for a pair of a pre- and a post state
(i.e. a state transition) that a number of crucial properties are satisfied. For
instance, the well-formedness of the two given states is proven: WFF(σ1, σ2).

Furthermore, for each object X additional lemmas are generated to situate
X as an object existing in σ1, σ2, both, or in any permutations of σ1 and σ2.
Such lemmas typically resemble as:

• (σ1, σ2) |= X .oclIsNew(), or

• (σ1, σ2) |= X .oclIsDeleted(), or

• (σ1, σ2) |= X .oclIsAbsent(), or

• (σ1, σ2) |= X .oclIsMaintained()

where the latter only means that the oid of X exists both in σ1 and σ2, in
particular the values of the attribute fields of X have also not changed.

As completeness property, we can state the following lemma covering all
disjunction case (for any X and τ) [BTW14]: τ |= δ X =⇒ τ |= X .oclIsNew()
∨ τ |= X .oclIsDeleted() ∨ τ |= X .oclIsMaintained() ∨ τ |= X .oclIsAbsent()

Finally Transition proceeds as State: it builds a new locale, called
transition-σ1-σ2, by particularly instantiating the two locales state-σ1 and
state-σ2.

The following lemma establishes that the generated object presentations (like S1
= (λ-. bbS1Staf fcc), C1 = (λ-. bbC1C lientcc), etc.) satisfy the requirements
of the locale state-σ1. In particular, it has to be shown that the chosen object
representations are defined and have distinct oids. Proving this lemma gives
access to the already defined properties in this locale.

lemma σ1: state-interpretation-σ1 τ
〈proof 〉

This instance proof goes analogously.

lemma σ2: state-interpretation-σ2 τ
〈proof 〉

The latter proof gives access to the locale transition-σ1-σ2.

lemma σ1-σ2: pp-σ1-σ2 τ
〈proof 〉

For convenience, one can introduce the empty state here

definition σ0 :: A state where σ0 = state.make Map.empty Map.empty

so that the following abbreviations can be written

definition σt1 = transition-σ1-σ2.σ1 oid3 oid4 oid5 oid6 oid7 oid8 oid9
ddS1 (σ0, σ0)ee ddC1 (σ0, σ0)ee ddC2 (σ0, σ0)ee ddR11 (σ0,

σ0)ee



8.2. SPECIFICATION ANALYSIS OF THE FLIGHT MODEL 133

ddR21 (σ0, σ0)ee ddF1 (σ0, σ0)ee ddF2 (σ0, σ0)ee

definition σt2 = transition-σ1-σ2.σ2 oid3 oid4 oid5 oid6 oid7 oid8 oid9 oid10
ddS1 (σ0, σ0)ee ddσ2-object1 (σ0, σ0)ee ddσ2-object2 (σ0, σ0)ee

ddR11 (σ0, σ0)ee
ddσ2-object4 (σ0, σ0)ee ddF1 (σ0, σ0)ee ddF2 (σ0, σ0)ee
ddσ2-object7 (σ0, σ0)ee

definition σs1 = state-σ1.σ1 oid3 oid4 oid5 oid6 oid7 oid8 oid9
ddS1 (σ0, σ0)ee ddC1 (σ0, σ0)ee ddC2 (σ0, σ0)ee ddR11 (σ0,

σ0)ee
ddR21 (σ0, σ0)ee ddF1 (σ0, σ0)ee ddF2 (σ0, σ0)ee

definition σs2 = state-σ2.σ2 oid3 oid4 oid5 oid6 oid7 oid8 oid9 oid10
ddS1 (σ0, σ0)ee ddσ2-object1 (σ0, σ0)ee ddσ2-object2 (σ0, σ0)ee

ddR11 (σ0, σ0)ee
ddσ2-object4 (σ0, σ0)ee ddF1 (σ0, σ0)ee ddF2 (σ0, σ0)ee
ddσ2-object7 (σ0, σ0)ee

Both formats are, fortunately, equivalent; this means that for these states, we
can access properties from both state and transition locales, in which the object
representations are “wired” in the same way.

lemma σt1-σs1: σt1 = σs1
〈proof 〉

lemma σt2-σs2: σt2 = σs2
〈proof 〉

The next lemma becomes a shortcut of the one generated by Transition, but
explicitly instantiated.

lemma WFF (σt1, σt2)
〈proof 〉

lemma F1-val-seatsATpre: (σs1, σ) |= F1 .seats@pre , «120»
〈proof 〉

lemma F1-val-seatsATpre ′: σs1 |=pre F1 .seats@pre , «120»
〈proof 〉

lemma F2-val-seatsATpre: (σs1, σ) |= F2 .seats@pre , «370»
〈proof 〉

lemma F2-val-seatsATpre ′: σs1 |=pre F2 .seats@pre , «370»
〈proof 〉



134 CHAPTER 8. CASE STUDY

lemma F1-val-seats: (σ, σs2) |= F1 .seats , «120»
〈proof 〉

lemma F1-val-seats ′: σs2 |=post F1 .seats , «120»
〈proof 〉

lemma F2-val-seats: (σ, σs2) |= F2 .seats , «370»
〈proof 〉

lemma F2-val-seats ′: σs2 |=post F2 .seats , «370»
〈proof 〉

lemma C1-valid: (σs1, σ
′) |= (υ C1 )

〈proof 〉

lemma R11-val-clientATpre: (σs1, σ
′) |= R11 .client@pre , C1

〈proof 〉

Annotations of the Class Model in OCL
Subsequently, we state a desired class invariant for Flight’s in the usual OCL
syntax:

Context f : Flight
Inv A : 0 <int (f .seats)
Inv B : f .fl-res −>sizeSeq() ≤int (f .seats)
Inv C : f .passengers −>selectSet(p | p .oclIsTypeOf (Client))

.= ((f .fl-res)−>collectSeq(c | c .client
.oclAsType(Person))−>asSetSeq())

Model Analysis: A satisfiability proof of the invariants
We wish to analyse our class model and show that the entire set of invariants
can be satisfied, i. e. there exist legal states that satisfy all constraints imposed
by the class invariants.

lemma Flight-consistent: ∃ τ . Flight-Aat-pre τ ∧ Flight-A τ
〈proof 〉

Context r : Reservation
Inv A : 0 <int (r .id)
Inv B : r .next <> null implies (r .flight .to .= r .next .flight .from)
Inv C : r .next <> null implies (r .client .= r .next .client)

Context Client :: book (f : Flight)
Pre : f .passengers −>excludesSet(self .oclAsType(Person))

and (f .fl-res −>sizeSeq() <int (f .seats))



8.2. SPECIFICATION ANALYSIS OF THE FLIGHT MODEL 135

Post: f .passengers .= (f .passengers@pre −>includingSet(self
.oclAsType(Person)))

and (let r = self .cl-res −>selectSet(r | r .flight
.= f )−>anySet() in

(r .oclIsNew())
and (r .prev .= null)
and (r .next .= null))

Context Client :: booknext (f : Flight, r : Reservation)
Pre : f .passengers −>excludesSet(self .oclAsType(Person))

and (f .fl-res −>sizeSeq() <int (f .seats))
and (r .client .= self )
and (f .from .= (r .flight .to))

Post: f .passengers .= (f .passengers@pre −>includingSet(self
.oclAsType(Person)))

and (let r = self .cl-res −>selectSet(r | r .flight
.= f )−>anySet() in

(r .oclIsNew())
and (r .prev .= r)
and (r .next .= null))

Context Client :: cancel (r : Reservation)
Pre : r .client .= self
Post: self .cl-res −>selectSet(res | res .flight

.= r .flight@pre)
−>isEmptySet()

Context Reservation :: connections () : Set(Integer)
Post : result , if (self .next .= null)

then (Set{}−>includingSet(self .id))
else (self .next .connections()−>includingSet(self .id))
endif

Pre : true

Proving the Implementability of Operations
An operation contract is said to be non-blocking, if and only if there exist input
and input states where the pre-condition is satisfied. Moreover, a contract is
said to be implementable, if and only if for all inputs satisfying the pre-condition
output data exists that satisfies the post-condition.

definition cancelpre :: (·Client) ⇒ (·Reservation) ⇒ ·Booleanbase

where cancelpre self r ≡ (r .client@pre) .= self

definition cancelpost :: (·Client)⇒ (·Reservation)⇒ (·Voidbase)⇒ ·Booleanbase

where cancelpost self r result ≡ self .cl-res−>selectSet(res|res .flight
.= r

.flight@pre)−>isEmptySet()

lemma cancelnonblocking : ∃ self r σ. (σ, σ ′) |= (cancelpre self r)
〈proof 〉



136 CHAPTER 8. CASE STUDY

lemma cancelnonblocking-pre : ∃ self r σ. σ |=pre (cancelpre self r)
〈proof 〉

lemma cancelimplementable :
assumes pre-satisfied: σ |=pre (cancelpre self r)
shows ∃ σ ′ result. ((σ, σ ′) |= δ self ) −→

((σ, σ ′) |= υ r) −→
((σ, σ ′) |= (cancelpost self r result))

〈proof 〉

As remark, the pre-condition σ |=pre cancelpre self r has not been used; in
the special case of the operation “cancel”, the post-condition is satisfiable for
arbitrary defined and valid input, even input that does not satisfy the pre-
condition.

end

8.3 Mega Theorem Proving: Kilo in Practice, Giga in
View

At this point, the reader is perhaps convinced that this is an impressing stunt,
but may have remaining doubts about its practical value. While there are other
projects supporting our experience that code generation in Isabelle is a maturing
technology producing reasonably efficient code for tools (e. g. [ELN+14]), the
question remains to be settled if the generated code is sufficiently controllable in
an interactive setting (“no blobs making the IDE freeze”) and scales well enough
to relevant examples.

To this end, we study the following scaling scenario: we implement a new
package called “the Tree Package”, which is internally (lazily) calling the Class
Model Package to generate a sample of class models, where each class model is
arranged as a tree, and we run an experiment over the key parameters of this
sample. In particular in all class models, every class will exactly inherit from
one class (using the _ < _ relation), except OclAny standing as the only root.

Generated and Proved Theorems
We present Figure 8.2 a table reporting the number of theorems associated to
each tested class model. Numbers of generated theorems are indicated by powers
of 1000 (so Kilo and Mega). The class models we are measuring can be uniquely
identified by pairs (X,Y ) where X is the exact number of subclasses of every
class having at least one subclass; and Y is the depth of the inheritance tree
(without OclAny).3 Only two components are needed for a unique identification,
because we are only considering perfect trees, i. e. where all leaf nodes are at
the same depth. In particular, for space reasons, the inheritance tree depicted in
Figure 8.2 is not a perfect tree but just shows what X and Y are representing.
Class-models appear sorted in the table according to the following priority:

3The Tree Package comes with the higher-order meta-command Tree, which precisely takes
X and Y as arguments.



8.3. MEGA THM. PROVING: KILO IN PRACTICE, GIGA IN VIEW 137

c depth 1 depth 2 depth 3 depth 4 depth 5 depth c
12 (c, 1) 11K (3, 2) 12K (1, c) 14K
14 (c, 1) 16K (2, 3) 17K (1, c) 20K
20 (c, 1) 39K (4, 2) 39K (1, c) 52K
30 (c, 1) 115K (5, 2) 115K (2, 4) 121K (1, c) 155K
39 (c, 1) 240K (3, 3) 240K (1, c) 330K
42 (c, 1) 294K (6, 2) 288K (1, c) 409K
56 (c, 1) 661K (7, 2) 649K (1, c) 964K
62 (c, 1) 882K (2, 5) 907K (1, c) 1.3M
72 (c, 1) 1.3M (8, 2) 1.3M (1, c) 2M
84 (c, 1) 2.1M (4, 3) 2.1M (1, c) 3.3M
90 (c, 1) 2.5M (9, 2) 2.5M (1, c) 4.2M

(x,y)x

y

inheritance
tree

Figure 8.2: Number of generated theorems, measured by a minus of two
find_theorems for c ≤ 14. Otherwise numbers are estimated from the size of
associated deep-certificates.

c depth 1 depth 2 depth 3 depth 4 depth 5 depth c
12 (c, 1) 3.5M (3, 2) 3.6M (1, c) 4.4M
14 (c, 1) 5.1M (2, 3) 5.4M (1, c) 6.5M
20 (c, 1) 13M (4, 2) 13M (1, c) 17M
30 (c, 1) 38M (5, 2) 38M (2, 4) 40M (1, c) 51M
39 (c, 1) 79M (3, 3) 79M (1, c) 109M
42 (c, 1) 97M (6, 2) 95M (1, c) 135M
56 (c, 1) 218M (7, 2) 214M (1, c) 318M
62 (c, 1) 291M (2, 5) 299M (1, c) 432M
72 (c, 1) 448M (8, 2) 438M (1, c) 683M
84 (c, 1) 700M (4, 3) 693M (1, c) 1.1G
90 (c, 1) 855M (9, 2) 834M (1, c) 1.4G

Figure 8.3: Size of generated deep-certificates as stored in the file system, all
provided by the operating system (independently of Isabelle)

1. by row using the number of classes in the class model (c = number of
classes without OclAny); then

2. by column using the depth of the inheritance tree.

For instance, class models in the row [(30, 1), (5, 2), (2, 4), (1, 30)] are sorted in
increasing order by depth, all having 31 classes (c = 30, OclAny counts for 1).



138 CHAPTER 8. CASE STUDY

With only OclAny as class, we generate 151 definitions and theorems (thm’s);
by adding another class, it reaches 335 thm’s. Since generated theorems may
occur in the Isabelle simplifier-set as hints, it becomes desirable to have at the
same time more theorems, short and quick proofs whenever applicable. As an
extreme example, we chose c = 90 where the generation of the deep-certificate
consists of nearly 4 million of thm’s (loading it in Isabelle to check it, however, is
unfeasible at the time of writing and with the computer used before this thesis
was released). Note that in these artificial class models we have 2(n2) casts, so
there is an inherent combinatorial explosion in the generation process.

As a side remark, the presented table is not trying to reach an arbitrary
maximal number of theorems, it would suffice to produce otherwise simpler lines
of the form

meta
lemma an : “xn = True =⇒ xn” by simp

for several increasing n. Instead, the presented table is mainly reporting the
number of UML/OCL generated theorems to not only compare the performance
of (X,Y ) versus (Y,X), but to also serve as a point of reference for various
future improvements. One can indirectly observe for example the number of
theorems the own packages of Isabelle are performing, since the generation also
relies on underlying Isabelle packages, like datatype. Besides, certain design de-
cisions regarding the semantics of UML/OCL could also be easily monitored: e. g.,
would the generation be affected if we implement casts in O(1) versus casts in
O(n)? By comparison, the simple fact of starting Isabelle 2016 already provides
17133 theorems in HOL, whereas for Isabelle 2015 we get 15688 theorems. On
the one hand, whenever we are modelling a class model with at least 15 classes
(where c = 14), one can expect to type-check a theory with a density compar-
atively similar (or at least similar) to what we obtain by typing all HOL for
example. On the other hand, a rich object-logic can be considered as usable, as
soon as it can be compiled at least once (or as soon as one has a strong evidence
that it can be correctly compiled, by following the principle developed in Chap-
ter 5). So the table is also reporting the minimum value of c where, after this
value, one would need to manually disable the generation of too large theorems,
depending one’s own desired targeted performance. In the table all theorems
we have implemented (until now) are set to be fully generated by default, so
15 (or c = 14) is a relative value that can be increased as well as decreased:
by manually adjusting which theorems actually need to be generated. Finally,
this adjustment also depends on the domain-specific problems one is attempting
to resolve, and the desired proving policy: e. g., automated theorem proving,
interactive theorem proving, etc.

Note that, since all theorem names are also generated, they differ only in
the names of classes involved, e. g. “down_cast_kindX_from_Y_to_Z”, with
X, Y and Z varying over class names. Thus, searching particular patterns with
find_theorems resembles to many other Isabelle packages (e. g., like datatype).

Last, Figure 8.3 is similar as Figure 8.2 except that it measures the disk usage
of Isabelle deep-certificates4: all sizes are not estimated, but really provided by

4For equity reason, all names of all classes have been chosen to have the same length. For
instance, with 4 bytes and an alphabet of 26 letters, we had enough fresh names for correctly



8.3. MEGA THM. PROVING: KILO IN PRACTICE, GIGA IN VIEW 139

the operating system. So they are indicated in a power of 1024 bytes (Kilo,
Mega, Giga). The question whether it was easy or not to generate all these files
is now discussed in the next subsection.

Time and Space to Generate deep-Certificates
Besides the constraint of a high number of theorems, time or space for the
generation is also a criteria to consider as enhancement. Below, we present the
time used for producing one deep-certificate on a computer with 4 cores5, e. g.
for the pair (2, 2), using all target intermediate languages. We also list the size of
the respective source code extracted by each target language (where for OCaml
and Isabelle/ML, the extraction of type signatures has been deactivated by hand,
with a minor patch in the source code of Isabelle):

Haskell 19 sec source = 15.6 kLOC compiled object files = 3.3M
OCaml 16 sec source = 13.6 kLOC compiled object files = 8.5M
Scala 131 sec source = 46.4 kLOC compilation in RAM
Isabelle/ML 29 sec source = 14.3 kLOC compilation in RAM
self 1 sec already reflected in RAM already reflected in RAM

Currently the incremental compilation is not yet implemented for Scala, and
half implemented for Isabelle/ML, so in the worst case, the complete source of
the meta-translation in Isabelle/HOL (counting about 10 kLOC of Isabelle/HOL)
must be extracted every-time, i. e., 10 kLOC in front of each meta-command.
So if a theory contains lots of meta-commands, all of them have to be taken
into account before reaching the final generation_syntax deep flush_all. For
example, for a theory containing 12 non-lazy meta-commands (and 9 lazy meta-
commands which are only ignored by Haskell, OCaml, Isabelle/ML, and self),
we obtain as results:

Haskell 1 min 51 sec
OCaml 1 min 39 sec
Scala 45 min 11 sec
Isabelle/ML 9 min 34 sec
self 0 min 2 sec

By comparison, the pair (2, 2) does not have lazy meta-commands in its associ-
ated deep-certificate.

Finally the resources needed to generate the deep-certificate of the pair (1, 56)
are 9G of RAM memory and 1 min; for c = 90 we used 28G and 7 min. However
these benchmarks were performed in 2014 without using the self-mode. In 2016,
we obtain almost similar performances for time, for instance (1, 30) costs 4 sec.
For space, performances have been improved, e. g., with the self-mode, the gen-
eration of (1, 56) only consumes less than 1G of RAM and 1 min, for c = 90 also
1G of RAM.

conducting our benchmark, and compare a hundred of classes.
5We assume that the meta-tool has already been reflected before measuring each listed

time. As remark, one can observe that most functions of the meta-translation of Figure D.3
are unrelated, so they can be split into several files in parallel, e. g., in the picture simultaneous
processing can normally treat up to 10 files at the same time.



140 CHAPTER 8. CASE STUDY

All results in this subsection only concern generation not typing, resources
needed for loading and typing these lemmas in Isabelle/jEdit will be detailed in
the next subsection.

Typing a deep-Certificate versus Typing in shallow-Mode
This subsection stands as a pre-requisite for the subsection detailing the numbers
of generated theorems in Figure 8.2, because an Isabelle file becomes recognized
as a set of theorems, only after being type-checked by the system. We confront
the two strategies of Figure 6.1, namely the resources needed for the type-checker
of Isabelle to reach

• the end of a deep-certificate,

• versus the end of the associated file in shallow-mode.

Semantically speaking, these two typing require the core library of Featherweight
OCL [BTW14] yet allocating 1394M.

The typing of the deep-certificate for the pair (3, 2) (where c = 12) runs in
3 min 44 sec and 436M memory. Its pre-processing in Isabelle/jEdit takes about
18% of that time, and the remaining 82% represents to complete proofs checking.

Independently, the loading of the same pair (3, 2) in shallow-mode runs in
3 min 04 sec and 485M memory, takes less than 1% of pre-processing time.
Contrasting with the deep-certificate, the shallow-mode depends on the entire
meta-tool project (of size 1066M), which is moreover reflected with a certain
cost from Isabelle/HOL to Isabelle/ML: 40s and an increase of 414M.

We notice here that the code reflection of Isabelle seems to make only use
of at most one single core. However the meta-tool needs to be reflected only
once, so this can be an advantage with a lot of class models in parallel in the
same editor when experimenting in shallow. On the contrary in deep, each cer-
tificate consumes generally a high pre-processing time no matter files in parallel.
The pre-processing is fast in shallow because of generally few meta-commands,
whereas for the deep the cost comes from the high number of Isar_HOL com-
mands already generated. We still believe it feasible to separate these Isar_HOL
commands into separate Isabelle theory files, instead of one single theory file,
because certain theorems are actually not related together. Then we could count
on the native parallelism support of Isabelle to improve the overall performance.



C
h

a
p

t
e

r

9
Conclusion

A Summary on Related Work
On the one hand, HOL-OCL 2.0 presented in this thesis shares similarities with
its predecessor HOL-OCL [BW09, BW08a, BW08b]. The latter is also based on
a shallow embedding of UML class models and OCL into Isabelle/HOL. However,
HOL-OCL is based on a “hand-coded” series of packages (instead of a generated,
reflection-based approach) implemented for an older version of Isabelle/HOL and
uses the old Proof General user interface that limits a UML/OCL specific user
experience. Moreover, HOL-OCL 2.0 complies to the latest OCL standard which,
in particular, supports a four valued logic instead of a three valued logic used in
older versions.

On the other hand, while presented ideas have similarities with the way one
can apply Isabelle to build a family of formal method tools [WW07], there had
been dramatic improvements in the last eight years of the Isabelle platform that
encouraged us to a re-implementation emphasising recent technologies. These
improvements consist most notably in:

• pervasive parallelism in the prover kernel, which enables us to profit from
the computer power of recent multi-core hardware,

• dramatic improvements on the code generation, paving the way to de-
velop tactic code for logical components (or “packages”) in the full Is-
abelle framework, with unlimited switches between HOL and the ML layer
in Isabelle/jEdit, and

• new front-end technologies like Isabelle’s Prover IDE which allow for new
paradigms in user interaction and theory exploration.

The idea to use ML for supporting datatype theories is in itself very old and
deeply linked from the very beginning with theorem proving environments such
as Edinburgh LCF, HOL4, HOL Light, Isabelle and Coq.

In relation with Coq, some similarities might exist between certain parts
of the SimSoC-Cert project1 [SMTB11, Shi13] and certain parts of the present
work. In SimSoC-Cert, there is a particular tool taking as input the reference

1https://gforge.inria.fr/projects/simsoc-cert/

141

https://gforge.inria.fr/projects/simsoc-cert/


142 CHAPTER 9. CONCLUSION

manuals of several vendor’s processors, for example the SH4 manual [Ren06],
and generating in output either a Coq certificate that is intended to be readably
inspected, or a C file that can be further compiled for an efficient execution
(compared to a native execution in Coq). Since our approach in this thesis
intends to be generic, e. g., can serve to support decision procedures, or the
construction of arbitrary packages (as soon as one can write a datatype repre-
senting some domain-specific language, and a constructive embedding function
from this datatype to Isar_HOL), we believe the methodology of SimSoC-Cert
to generate some certificates for the certification of processors’ simulators can
be as well transposed here. However, although SimSoC-Cert took advantage of
the Coq type-system (in particular dependent types) to ease the pretty-printing
process of a Coq certificate, there are in SimSoC-Cert no common platform
combining both the deep-mode and the shallow-mode at the same time, also
no meta-model of Coq in Coq that has been used as target’s certificate (e. g.,
CoqInCoq [BW97, Bar10]). Instead, the CompCert C meta-model in Coq has
been employed to provide many other advantages [Ler09], like among other a
convenient compiling infrastructure targeting assembly code, associated with a
large library of verified code. Besides, all the code in the SH4 manual are not
shown in textual OCL but with a C-like syntax, that can be made quickly accept-
able for CompCert’s input. As another difference with the present work, when
SimSoC-Cert was implemented, there was to our knowledge no easy facilities
to mix OCaml code with Coq code inside a same editing environment without
leaving the editing session, or to modify the source code of Coq in the (highest)
IDE session at run-time (i. e., something similar as the Isabelle command ML,
and the implicit code reflection mechanism integrated in the system of ML’s
antiquotations to refer to Isar_HOL values [WC07]).

The application to object-oriented datatype theories is also not new—earlier
works in this line can be cited for example [Wen97]. In contrast to HOL-
OCL [BW08c], we applied these techniques to UML under closed world assumption
for a standard-conform 4-valued logics for OCL, which is seen as the semantic
framework for DSL’s. This is particularly important and challenging since hetero-
geneous system specifications need to be combined in a seamless way, and since
semantically correct tools have to be developed for these language combinations.

As a summary of Section 4.7, we would like to emphasise the following points:

• There are several compilers attempting a standard-conform semantics for
UML/OCL, but few verification tools addressing the problems arising from a
four-valued logics with two exceptional elements in all types with different
strictness behaviour;

• The closest related work in this category are HOL-OCL [BW08b] (interactive
proof) and OCL2FOL+ [DC13, ADEM14] (automated proof); our work uses
either a different semantic model reflecting the recent standard or goes for
a less axiomatic approach;

• While object-oriented specification languages supporting null are quite
common [BCF+13, Mey97, LPC+13, BLS05], none of them provides a
strict exception element for modelling exceptions as first-class citizen. The
implicit handling of strict and non-strict exceptional elements in OCL al-



143

lows for a particular concise specification style avoiding explicit tests for
memory;

• Notably, both JML and Spec# limit null elements to class types and provide
a type system supporting non-null types. In the case of JML, the non-null
types are even chosen as the default types [CR05]. While non-null types
can partly be simulated by non-null cardinalities, full support of non-null
types clearly simplify specifications drastically, as many cases resulting in
potential invalid states (e. g., de-referencing a null) are already ruled out
by the type system.

Conclusion and Future Work

We presented HOL-OCL 2.0, based on a core library Featherweight OCL, a formal,
machine checked semantics for UML/OCL in Isabelle/HOL. HOL-OCL 2.0 com-
prises a meta-tool to construct semantic based tools for textual domain specific
languages. The meta-tool fundamentally relies on the code generator of Isabelle,
and Isabelle theories, to define a model-transformation in Isabelle/Isar_HOL
from a UML meta-model (class-models, plus OCL invariants and contracts) to
an Isar_HOL meta-model. Compared to conventional implementations of code-
generators for OCL, the resulting meta-tool is clearly not competitive in terms
of compilation size of models, on the other hand, we argue that this comparison
is unfair since these tools do not bother to construct the underlying semantic
theory of UML and OCL in HOL in order to allow formal proofs over it. Our tool
is unique that it actually provides two ways to load the number of theorems re-
sulting from class-models: natively at run-time, with a straight interaction with
the kernel of Isabelle (in shallow-mode); or as an Isabelle certificate to be loaded
afterwards like an object-logic (in deep-mode).

Based on a library with operations for basic and collection types that contain
the exception elements invalid and null, HOL-OCL 2.0 allows for the specifica-
tions of programs based on object-oriented data structures. Our work makes this
notion precise and allows for a comparison to other object-oriented specification
languages such as Eiffel, Spec# or JML. A particular feature of our approach
is that the datatype theories are constructed from axiomatic definitions over
a constructed typed object universe, which allows for the automatic deriva-
tion of the entire set of rules guaranteeing logical consistency.2 Since the HOL-
OCL 2.0 environment dynamically instantiates and discharges such rules during
the object-oriented modelling activity (for instance typically those presented in
Chapter 7), our approach is, as we believe, relevant for other object-oriented ver-
ification methods which axiomatize their underlying theory and therefore raise
the question of trust in their foundations.

Due to parallelization techniques inherited from Isabelle, HOL-OCL 2.0—for
which we still see a large potential for optimisations— remains fairly usable in
an interactive setting for medium-sized class-models. Automatic generation with
proofs of the datatype theory is, as our implementation shows, still feasible in an
interactive use: for the running Flight example 2301 definitions and lemmas are

2Our two examples Appendix B and Appendix C sketch how this construction can be
captured by an automated process.



144 CHAPTER 9. CONCLUSION

generated in 1 second in deep-mode, while their proofs asynchronously termi-
nate in shallow-mode 2 minutes later (in a background thread). Still, unrelated
lemmas can be selectively activated or deactivated: by default all are proved.

It is our ultimate goal to complement HOL-OCL 2.0 by the most common
behavioural model types of the UML, namely textually presented state machines
and sequence diagrams. The resulting environment could serve as a demonstra-
tor for formal techniques for UML and a bridge to industrial partners active in
the embedded systems domain.

Our work on HOL-OCL 2.0 stands in the context of a standardisation initia-
tive using formal methods for UML/OCL. In particular, a formal semantics for
a core-language based on denotational semantic definitions has been developed
in this thesis. The body of rules for interactive and automated proof techniques
has been derived by means of interactive theorem proving, pushing at the same
time the frontiers of meta theorem proving and mega theorem proving. Since the
approach can guarantee logical consistency, not only for thousands of generated
rules, but precisely the foundational core-library of Featherweight OCL in itself,
our experience can be re-used for other standardisation efforts of “real” pro-
gramming languages, or at least provide further evidence that this kind of work
is nowadays absolutely feasible and worth the effort. A large number of “issues”
have been detected, both inconsistencies or formal gaps, and our proposals to
resolve them consistently finally found their way in the standardisation process.
Ultimately, we aim at providing a machine-checked formal semantics that can
be included in the OCL standard, i. e., replacing the current Annex A. This effort
may stimulate tool-development, as a clarified semantics helps to develop, for
example, optimised schemes of compilation of four-valued OCL logics to recent
SMT solvers.



A
p

p
e

n
d

ix

A
The Flight Model (Modelled by Hand)

This chapter is exactly similar as Section 8.2, except that proofs are displayed.

theory
Flight-Model

imports
../src/UML-OCL

begin

Class Model
This part corresponds to the writing in Isabelle of the code shown in Figure 3.2.

Class Flight
Attributes
seats : Integer
from : String
to : String

End

lemma id = (λx. x)
by (rule id-def )

As remark, we are checking for example that the constant id already exists, and that one can also use this
name in the following attribute: no conflict will happen.

Class Reservation
Attributes
id : Integer
date : Week

End

Class Person
Attributes
name : String

End

Class Client < Person
Attributes
address : String

End

Class Staff < Person

145



146 APPENDIX A. THE FLIGHT MODEL (MODELLED BY HAND)

End

Association passengers
Between Person [∗]

Role passengers
Flight [∗]
Role flights

End

Aggregation flights
Between Flight [1 ]

Role flight
Reservation [∗]
Role fl-res Sequence-

End

Association reservations
Between Client [1 ]

Role client
Reservation [∗]
Role cl-res

End

Association connection
Between Reservation [0 . . 1 ]

Role next
Reservation [0 . . 1 ]
Role prev

End
In complement to Figure 3.2, we define an enumeration type.

Enum Week
[ Mon, Tue, Wed, Thu, Fri, Sat, Sun ]

End!

Two State Instances of the Class Model
The creation of (typed) object instances is performed in HOL-OCL 2.0 with the command Instance:

Instance S1 :: Staff = [ name = Merlin , flights = F1 ]
and C1 :: Client = [ name = Bertha , address = Miami , flights = F1 , cl-res = R11 ]
and C2 :: Client = [ name = Arthur , address = Valencia , flights = F1 , cl-res = R21 ]
and R11 :: Reservation = [ id = 12345 , flight = F1 , date = Mon ]
and R21 :: Reservation = [ id = 98765 , flight = F1 ]
and F1 :: Flight = [ seats = 120 , from = Valencia , to = Miami ]
and F2 :: Flight = [ seats = 370 , from = Miami , to = Ottawa ]

The notion of object instances comes before that of states. Currently, we have only created the object instances
S1, C1, C2, R11, R21, F1 and F2. They will need to be “registered” in a state later. Instance verifies that
all objects being created are respecting the multiplicities declared above in classes (in the bidirectional sense).
For example, after the type-checking stage, we have correctly that R21 .client ∼= Set{C2}, since R21 appears
as one reservation of C2, and where “X ∼= Y ” stands as a synonym for ∀ τ . τ |= δ X −→ τ |= δ Y −→ τ
|= X , Y.1As remark, the order of attributes and objects declarations is not important: mutually recursive
constructions become de-facto supported. As illustration, we can include here the text displayed in the output
window after evaluating the above Instance (we have manually pasted the text from the output window in
Isabelle/jEdit):

S1 .flights ∼= Set{ F1 }
C1 .flights ∼= Set{ F1 }
C1 .cl-res ∼= Set{ R11 }



147

C2 .flights ∼= Set{ F1 }
C2 .cl-res ∼= Set{ R21 }
R11 .flight ∼= Set{ F1 }
R11 .client ∼= Set{ C1 }
R11 .prev ∼= Set{}
R11 .next ∼= Set{}
R21 .flight ∼= Set{ F1 }
R21 .client ∼= Set{ C2 }
R21 .prev ∼= Set{}
R21 .next ∼= Set{}
F1 .passengers ∼= Set{ S1 , C1 , C2 }
F1 .fl-res ∼= Set{ R11 , R21 }
F2 .passengers ∼= Set{}
F2 .fl-res ∼= Set{}

We can check that S1 indeed exists and has the expected OCL type.

term S1 ::· Staff

Once objects are constructed with Instance, it becomes possible to regroup them together into a state. This
is what the next command State is doing by creating a state named σ1, corresponding to the pre-state of
Figure 8.1.

State σ1 = [ S1 , C1 , C2 , R11 , R21 , F1 , F2 ]

This generates a number of theorems from it, e. g.:∧
σ. (σ1, σ) |= Staff .allInstances@pre() , Set{S1}∧
σ. (σ1, σ) |= Client .allInstances@pre() , Set{C1 ,C2}∧
σ. (σ1, σ) |= Reservation .allInstances@pre() , Set{R11 ,R12}∧
σ. (σ1, σ) |= Flight .allInstances@pre() , Set{F1 ,F2}

At this point, it is not yet sure that σ1 will be used in the pre-state or post-state. In any case, the above
command also generates the following symmetric lemmas:∧
σ. (σ, σ1) |= Staff .allInstances() , Set{S1}∧
σ. (σ, σ1) |= Client .allInstances() , Set{C1 ,C2}∧
σ. (σ, σ1) |= Reservation .allInstances() , Set{R11 ,R12}∧
σ. (σ, σ1) |= Flight .allInstances() , Set{F1 ,F2}

Because all these lemmas are stated under the precondition that all object instances are defined entities,
lemmas generated by State are actually proved in a particular locale [Bal14, Bal16] state-σ1. Thus the header
of state-σ1 regroups these (mandatory) definedness assumptions, that have to be all satisfied before being able
to use the rules defined in its body.

The next statement illustrates Chapter 6. It shows for instance that object instances can also be generated by
State on the fly. Fresh variables are created meanwhile if needed, like σ2-object1.

State σ2 =
[ S1
, ([ C1 with-only name = Bertha, address = Saint−Malo , flights = F1 , cl-res = R11 ] :: Client)
, ([ C2 with-only name = Arthur ,address = Valencia,flights=[F1 ,F2 ],cl-res=[self 4 ,self 7 ]]::Client)
, R11
, ([ R21 with-only id = 98765 , flight = F1 , next = self 7 ] :: Reservation)
, F1
, F2

1 Although such rule schemata may be explicitly generated by Instance (for most OCL expressions), they can also not be:
at the time of writing, the complete type-checking process is at least fully executed from an extracted HOL function (as one
consequence, the type-checking process terminates). This is feasible because for the moment, Instance only accepts “grounds
objects” as arguments (the reader is referred to its syntax diagram detailed in Appendix I).



148 APPENDIX A. THE FLIGHT MODEL (MODELLED BY HAND)

, ([ id = 19283 , flight = F2 ] :: Reservation) ]

Similarly as with Instance, we can paste in the following what is currently being displayed in the output window
(where “/∗8∗/” means the object having an oid equal to 8).2

σ2-object1 .flights ∼= Set{ /∗8∗/ }
σ2-object1 .cl-res ∼= Set{ /∗6∗/ }
σ2-object2 .flights ∼= Set{ /∗8∗/ , /∗9∗/ }
σ2-object2 .cl-res ∼= Set{ σ2-object4 , σ2-object7 }
σ2-object4 .flight ∼= Set{ /∗8∗/ }
σ2-object4 .client ∼= Set{ σ2-object2 }
σ2-object4 .prev ∼= Set{}
σ2-object4 .next ∼= Set{ σ2-object7 }
σ2-object7 .flight ∼= Set{ /∗9∗/ }
σ2-object7 .client ∼= Set{ σ2-object2 }
σ2-object7 .prev ∼= Set{ σ2-object4 }
σ2-object7 .next ∼= Set{}

Note that there is a mechanism to reference objects via the (invented) keyword self (it has no particular
relation with the one used in Chapter 6), which takes a number designating the index of a particular object
instance occurring in the list of declarations (the index starts with 0 as first position).

Similarly as for state-σ1, we obtain another locale called state-σ2, representing the post-state of Figure 8.1.

The Transition command relates the two states together.

Transition σ1 σ2

The first state is intended to be understood as the pre-state, and the second state as the post-state. In particular,
we do not obtain similar proved theorems if we write Transition σ1 σ2 or Transition σ2 σ1 (assuming σ1 and
σ2 are different). Generally, Transition establishes for a pair of a pre- and a post state (i.e. a state transition)
that a number of crucial properties are satisfied. For instance, the well-formedness of the two given states is
proven: WFF(σ1, σ2).

Furthermore, for each object X additional lemmas are generated to situate X as an object existing in σ1,
σ2, both, or in any permutations of σ1 and σ2. Such lemmas typically resemble as:

• (σ1, σ2) |= X .oclIsNew(), or

• (σ1, σ2) |= X .oclIsDeleted(), or

• (σ1, σ2) |= X .oclIsAbsent(), or

• (σ1, σ2) |= X .oclIsMaintained()

where the latter only means that the oid of X exists both in σ1 and σ2, in particular the values of the
attribute fields of X have also not changed.

As completeness property, we can state the following lemma covering all disjunction case (for any X and
τ) [BTW14]: τ |= δ X =⇒ τ |= X .oclIsNew() ∨ τ |= X .oclIsDeleted() ∨ τ |= X .oclIsMaintained() ∨ τ |=
X .oclIsAbsent()

Finally Transition proceeds as State: it builds a new locale, called transition-σ1-σ2, by particularly instan-
tiating the two locales state-σ1 and state-σ2.

The following lemma establishes that the generated object presentations (like S1 = (λ-. bbS1Staf fcc), C1 =
(λ-. bbC1C lientcc), etc.) satisfy the requirements of the locale state-σ1. In particular, it has to be shown that
the chosen object representations are defined and have distinct oids. Proving this lemma gives access to the
already defined properties in this locale.

lemma σ1: state-interpretation-σ1 τ
by(simp add: state-interpretation-σ1-def ,

default, simp add: pp-oid-σ1-σ2,

2As future work, it is plan for Instance to support the writing of arbitrary OCL expressions, including the assignment of
potentially infinite collection types (for example “a set of sequence of bag of objects”). In particular, besides the cardinality of the
manipulated collection types, the sole information required for checking multiplicities appears to be the oid of objects.



149

(simp add: pp-object-σ1-σ2)+)

This instance proof goes analogously.

lemma σ2: state-interpretation-σ2 τ
by(simp add: state-interpretation-σ2-def ,

default, simp add: pp-oid-σ1-σ2,
(simp add: pp-object-σ1-σ2)+)

The latter proof gives access to the locale transition-σ1-σ2.

lemma σ1-σ2: pp-σ1-σ2 τ
by(simp add: pp-σ1-σ2-def ,

default, simp add: pp-oid-σ1-σ2,
(simp add: pp-object-σ1-σ2)+,
(simp add: pp-oid-σ1-σ2)+)

For convenience, one can introduce the empty state here

definition σ0 :: A state where σ0 = state.make Map.empty Map.empty

so that the following abbreviations can be written

definition σt1 = transition-σ1-σ2.σ1 oid3 oid4 oid5 oid6 oid7 oid8 oid9
ddS1 (σ0, σ0)ee ddC1 (σ0, σ0)ee ddC2 (σ0, σ0)ee ddR11 (σ0, σ0)ee
ddR21 (σ0, σ0)ee ddF1 (σ0, σ0)ee ddF2 (σ0, σ0)ee

definition σt2 = transition-σ1-σ2.σ2 oid3 oid4 oid5 oid6 oid7 oid8 oid9 oid10
ddS1 (σ0, σ0)ee ddσ2-object1 (σ0, σ0)ee ddσ2-object2 (σ0, σ0)ee ddR11 (σ0, σ0)ee
ddσ2-object4 (σ0, σ0)ee ddF1 (σ0, σ0)ee ddF2 (σ0, σ0)ee
ddσ2-object7 (σ0, σ0)ee

definition σs1 = state-σ1.σ1 oid3 oid4 oid5 oid6 oid7 oid8 oid9
ddS1 (σ0, σ0)ee ddC1 (σ0, σ0)ee ddC2 (σ0, σ0)ee ddR11 (σ0, σ0)ee
ddR21 (σ0, σ0)ee ddF1 (σ0, σ0)ee ddF2 (σ0, σ0)ee

definition σs2 = state-σ2.σ2 oid3 oid4 oid5 oid6 oid7 oid8 oid9 oid10
ddS1 (σ0, σ0)ee ddσ2-object1 (σ0, σ0)ee ddσ2-object2 (σ0, σ0)ee ddR11 (σ0, σ0)ee
ddσ2-object4 (σ0, σ0)ee ddF1 (σ0, σ0)ee ddF2 (σ0, σ0)ee
ddσ2-object7 (σ0, σ0)ee

Both formats are, fortunately, equivalent; this means that for these states, we can access properties from both
state and transition locales, in which the object representations are “wired” in the same way.

lemma σt1-σs1: σt1 = σs1
unfolding σt1-def σs1-def
apply(subst transition-σ1-σ2.σ1-def )
by(rule σ1-σ2[simplified pp-σ1-σ2-def ], simp)

lemma σt2-σs2: σt2 = σs2
unfolding σt2-def σs2-def
apply(subst transition-σ1-σ2.σ2-def )
by(rule σ1-σ2[simplified pp-σ1-σ2-def ], simp)

The next lemma becomes a shortcut of the one generated by Transition, but explicitly instantiated.

lemma WFF (σt1, σt2)
unfolding σt1-σs1 σt2-σs2 σs1-def σs2-def
apply(rule transition-σ1-σ2.basic-σ1-σ2-wff )
apply(rule σ1-σ2[simplified pp-σ1-σ2-def ])
by(simp-all add: pp-oid-σ1-σ2 pp-object-σ1-σ2

oid-of-A-def oid-of-tyStaf f -def oid-of-tyC lient-def oid-of-tyReservation-def oid-of-tyF light-def



150 APPENDIX A. THE FLIGHT MODEL (MODELLED BY HAND)

S1Staf f -def C1C lient-def C2C lient-def R11Reservation-def R21Reservation-def F1F light-def F2F light-def
σ2-object1C lient-def σ2-object2C lient-def σ2-object4Reservation-def σ2-object7Reservation-def )

lemma F1-val-seatsATpre: (σs1, σ) |= F1 .seats@pre , «120»
proof(simp add: UML-Logic.foundation22 k-def )

show F1 .seats@pre (σs1, σ) = bb120 cc
proof − note S1 = σ1[simplified state-interpretation-σ1-def , of (σ0, σ0)]
show ?thesis

apply(simp add: dotF light--seatsat-pre F1-def deref-oidF light-def in-pre-state-def
F1F light-def oid-of-tyF light-def oid8-def )

apply(subst (8 ) σs1-def , simp add: state-σ1.σ1-def [OF S1 ], simp add: pp-oid-σ1-σ2)
apply(simp add: selectF light--seats-def F1-def F1F light-def )
by(simp add: reconst-basetype-def )

qed
qed

lemma F1-val-seatsATpre ′: σs1 |=pre F1 .seats@pre , «120»
by(simp add: OclValid-at-pre-def F1-val-seatsATpre)

lemma F2-val-seatsATpre: (σs1, σ) |= F2 .seats@pre , «370»
proof(simp add: UML-Logic.foundation22 k-def )

show F2 .seats@pre (σs1, σ) = bb370 cc
proof − note S1 = σ1[simplified state-interpretation-σ1-def , of (σ0, σ0)]
show ?thesis

apply(simp add: dotF light--seatsat-pre F2-def deref-oidF light-def in-pre-state-def
F2F light-def oid-of-tyF light-def oid9-def )

apply(subst (8 ) σs1-def , simp add: state-σ1.σ1-def [OF S1 ], simp add: pp-oid-σ1-σ2)
apply(simp add: selectF light--seats-def F2-def F2F light-def )
by(simp add: reconst-basetype-def )

qed
qed

lemma F2-val-seatsATpre ′: σs1 |=pre F2 .seats@pre , «370»
by(simp add: OclValid-at-pre-def F2-val-seatsATpre)

lemma F1-val-seats: (σ, σs2) |= F1 .seats , «120»
proof(simp add: UML-Logic.foundation22 k-def )

show F1 .seats (σ, σs2) = bb120 cc
proof − note S2 = σ2[simplified state-interpretation-σ2-def , of (σ0, σ0)]

show ?thesis
apply(simp add: dotF light--seats F1-def deref-oidF light-def in-post-state-def F1F light-def

oid-of-tyF light-def oid8-def )
apply(subst (8 ) σs2-def , simp add: state-σ2.σ2-def [OF S2 ], simp add: pp-oid-σ1-σ2)
apply(simp add: selectF light--seats-def F1-def F1F light-def )
by(simp add: reconst-basetype-def )

qed
qed

lemma F1-val-seats ′: σs2 |=post F1 .seats , «120»
by(simp add: OclValid-at-post-def F1-val-seats)

lemma F2-val-seats: (σ, σs2) |= F2 .seats , «370»
proof(simp add: UML-Logic.foundation22 k-def )

show F2 .seats (σ, σs2) = bb370 cc



151

proof − note S2 = σ2[simplified state-interpretation-σ2-def , of (σ0, σ0)]
show ?thesis
apply(simp add: dotF light--seats F2-def deref-oidF light-def in-post-state-def F2F light-def

oid-of-tyF light-def oid9-def )
apply(subst (8 ) σs2-def , simp add: state-σ2.σ2-def [OF S2 ], simp add: pp-oid-σ1-σ2)
apply(simp add: selectF light--seats-def F2-def F2F light-def )
by(simp add: reconst-basetype-def )

qed
qed

lemma F2-val-seats ′: σs2 |=post F2 .seats , «370»
by(simp add: OclValid-at-post-def F2-val-seats)

lemma C1-valid: (σs1, σ
′) |= (υ C1 )

by(simp add: OclValid-def C1-def )

lemma R11-val-clientATpre: (σs1, σ
′) |= R11 .client@pre , C1

proof(simp add: foundation22 )

have C1-deref-val: (σs1, σ
′) |= deref-oidC lient fst reconst-basetype 4 , C1

proof(simp add: foundation22 )
show deref-oidC lient fst reconst-basetype 4 (σs1, σ

′) = C1 (σs1, σ
′)

proof − note S1 = σ1[simplified state-interpretation-σ1-def , of (σ0, σ0)]
show ?thesis

apply(simp add: deref-oidC lient-def )
apply(subst (8 ) σs1-def , simp add: state-σ1.σ1-def [OF S1 ], simp add: pp-oid-σ1-σ2)
by(simp add: reconst-basetype-def C1-def )

qed
qed

show R11 .client@pre (σs1, σ
′) = C1 (σs1, σ

′)
proof − note S1 = σ1[simplified state-interpretation-σ1-def , of (σ0, σ0)]
show ?thesis
apply(simp add: dotReservation-1---clientat-pre R11-def deref-oidReservation-def in-pre-state-def

R11Reservation-def oid-of-tyReservation-def oid6-def )
apply(subst (8 ) σs1-def , simp add: state-σ1.σ1-def [OF S1 ], simp add: pp-oid-σ1-σ2)
apply(simp add: deref-assocsReservation-1---client-def deref-assocs-def oidReservation-1---client-def )
apply(subst (3 ) σs1-def , simp add: state-σ1.σ1-def [OF S1 ] map-of-list-def

oidC lient-0---flights-def oidStaf f -0---flights-def oidC lient-0---cl-res-def )
apply(simp add: switch2-01-def switch2-10-def choose-0-def choose-1-def deref-assocs-list-def

pp-oid-σ1-σ2 R11-def R11Reservation-def oid-of-tyReservation-def List.member-def )
apply(simp add: selectReservation--client-def select-object-anySet-def select-objectSet-def )
apply(subgoal-tac (let s = Set{deref-oidC lient fst reconst-basetype 4} in

if s−>sizeSet() , 1 then s−>anySet() else ⊥ endif ) (σs1, σ
′) = C1 (σs1, σ

′))
apply(subgoal-tac Set{deref-oidC lient fst reconst-basetype 4} =

select-object Set{} UML-Set.OclIncluding id (deref-oidC lient fst reconst-basetype) [4 ])
apply(simp only: Let-def )
apply(simp add: select-object-def )
apply(simp only: Let-def )
apply(subst cp-OclIf , subst OclSize-singleton[simplified OclValid-def ])
apply(subst cp-valid)
using C1-deref-val[simplified OclValid-def StrongEq-def true-def ]
apply(simp, subst cp-valid[symmetric], simp add: C1-valid[simplified OclValid-def ])
using C1-deref-val[simplified OclValid-def StrongEq-def true-def ]
by(subst cp-OclIf [symmetric], simp)

qed
qed



152 APPENDIX A. THE FLIGHT MODEL (MODELLED BY HAND)

Annotations of the Class Model in OCL
Subsequently, we state a desired class invariant for Flight’s in the usual OCL syntax:

Context f : Flight
Inv A : 0 <int (f .seats)
Inv B : f .fl-res −>sizeSeq() ≤int (f .seats)
Inv C : f .passengers −>selectSet(p | p .oclIsTypeOf (Client))

.= ((f .fl-res)−>collectSeq(c | c .client .oclAsType(Person))−>asSetSeq())

Model Analysis: A satisfiability proof of the invariants
We wish to analyse our class model and show that the entire set of invariants can be satisfied, i. e. there exist
legal states that satisfy all constraints imposed by the class invariants.

lemma Flight-consistent: ∃ τ . Flight-Aat-pre τ ∧ Flight-A τ
proof (rule-tac x=(σt1, σt2) in exI , rule conjI )

The following auxiliary fact establishes that τ |= δ S =⇒ τ |= S−>forAllSet(X |P) , (S , Set{} or P) from
the library is applicable since OclAsTypeF light-A .allInstances@pre() is indeed defined.

have forall-trivial:
∧
τ P. let S = OclAsTypeF light-A .allInstances@pre() in

(τ |= (S−>forAllSet(X |P) , (S , Set{} or P)))
unfolding Let-def by(rule OclForall-body-trivial, rule OclAllInstances-at-pre-defined)

show Flight-Aat-pre (σt1, σt2)
proof −

have ∗: (σt1, σt2) |= (0 <int (F1 .seats@pre))
apply(subst UML-Logic.StrongEq-L-subst3-rev[OF F1-val-seatsATpre,

simplified σt1-σs1[symmetric]],simp)
by(simp add: OclInt0 ′)

have ∗∗: (σt1, σt2) |= (0 <int (F2 .seats@pre))
apply(subst UML-Logic.StrongEq-L-subst3-rev[OF F2-val-seatsATpre,

simplified σt1-σs1[symmetric]],simp)
by(simp add: OclInt0 ′)

Now we calculate:

have ((σt1, σt2) |= Flight .allInstances@pre()−>forAllSet(self |
Flight .allInstances@pre()−>forAllSet(f |0 <int f .seats@pre))) =

((σt1, σt2) |= Flight .allInstances@pre() , Set{} or
Flight .allInstances@pre()−>forAllSet(f | 0 <int f .seats@pre))

by(simp add: StrongEq-L-subst3 [OF - forall-trivial[simplified Let-def ],
where P = λx. x])

also
have ... = ((σt1, σt2) |= ((Set{F1 , F2} , Set{}) or

(Set{F1 , F2}−>forAllSet(f | 0 <int f .seats@pre))))
unfolding Flight-def
apply(subst StrongEq-L-subst3 [where x=OclAsTypeF light-A .allInstances@pre()],

simp, simp add: σt1-def σt1-σs1[simplified σt1-def σs1-def ])
apply(rule StrictRefEqSet.StrictRefEq-vs-StrongEq ′

[THEN iffD1 , OF - - state-σ1.σ1-OclAllInstances-at-pre-exec-Flight
[OF σ1[simplified state-interpretation-σ1-def ],

simplified Flight-def ]])
apply(rule OclAllInstances-at-pre-valid)
apply(simp add: F1-def F2-def )
by(simp add: OclAsTypeF light-A-def )+

also
have ... = ((σt1, σt2) |= Set{F1 , F2} , Set{} or

(0 <int (F2 .seats@pre)) and (0 <int (F1 .seats@pre)))
apply(simp, simp add: OclValid-def , subst (1 2 ) cp-OclOr ,

subst cp-OclIf , subst (1 2 3 ) cp-OclAnd, subst cp-OclIf )
by(simp add: F1-def F2-def OclIf-def )



153

also
have ... = True

by(simp,rule foundation25 ′, simp add: foundation10 ′ ∗ ∗∗ )
finally show ?thesis

unfolding Flight-Aat-pre-def by simp
qed

next

Analogously for the first part, the following auxiliary fact establishes that τ |= δ S =⇒ τ |= S−>forAllSet(X |P)
, (S , Set{} or P) from the library is applicable since OclAsTypeF light-A .allInstances() is indeed defined.

have forall-trivial:
∧
τ P. let S = OclAsTypeF light-A .allInstances() in

(τ |= (S−>forAllSet(X |P) , (S , Set{} or P)))
by(simp add: Let-def , rule OclForall-body-trivial, rule OclAllInstances-at-post-defined)

show Flight-A (σt1, σt2)
proof −

have ∗: (σt1, σt2) |= 0 <int F1 .seats
apply(subst UML-Logic.StrongEq-L-subst3-rev[OF F1-val-seats,

simplified σt2-σs2[symmetric]],simp)
by(simp add: OclInt0 ′)

have∗∗: (σt1, σt2) |= 0 <int F2 .seats
apply(subst UML-Logic.StrongEq-L-subst3-rev[OF F2-val-seats,

simplified σt2-σs2[symmetric]],simp)
by(simp add: OclInt0 ′)

have ((σt1, σt2) |= Flight .allInstances()−>forAllSet(self |
Flight .allInstances()−>forAllSet(f |0 <int f .seats))) =

((σt1, σt2) |= Flight .allInstances() , Set{} or
Flight .allInstances()−>forAllSet(f | 0 <int f .seats))

by(simp add: StrongEq-L-subst3 [OF - forall-trivial[simplified Let-def ],
where P = λx. x])

also
have ... = ((σt1, σt2) |= Set{F1 ,F2} , Set{} or

Set{F1 ,F2}−>forAllSet(f | 0 <int f .seats))
unfolding Flight-def
apply(subst StrongEq-L-subst3 [where x = OclAsTypeF light-A .allInstances()],

simp, simp add: σt2-def σt2-σs2[simplified σt2-def σs2-def ])
apply(rule StrictRefEqSet.StrictRefEq-vs-StrongEq ′

[THEN iffD1 , OF - - state-σ2.σ2-OclAllInstances-at-post-exec-Flight
[OF σ2[simplified state-interpretation-σ2-def ],

simplified Flight-def ]])
apply(rule OclAllInstances-at-post-valid)
apply(simp add: F1-def F2-def )
by(simp add: OclAsTypeF light-A-def )+

also
have ... = ((σt1, σt2) |= Set{F1 , F2} , Set{} or

(0 <int (F2 .seats)) and (0 <int (F1 .seats)))
apply(simp, simp add: OclValid-def , subst (1 2 ) cp-OclOr ,

subst cp-OclIf , subst (1 2 3 ) cp-OclAnd, subst cp-OclIf )
by(simp add: F1-def F2-def OclIf-def )

also
have ... = True

by(simp,rule foundation25 ′, simp add: foundation10 ′ ∗ ∗∗ )
finally show ?thesis

unfolding Flight-A-def by simp
qed

qed



154 APPENDIX A. THE FLIGHT MODEL (MODELLED BY HAND)

Context r : Reservation
Inv A : 0 <int (r .id)
Inv B : r .next <> null implies (r .flight .to .= r .next .flight .from)
Inv C : r .next <> null implies (r .client .= r .next .client)

Context Client :: book (f : Flight)
Pre : f .passengers −>excludesSet(self .oclAsType(Person))

and (f .fl-res −>sizeSeq() <int (f .seats))
Post: f .passengers .= (f .passengers@pre −>includingSet(self .oclAsType(Person)))

and (let r = self .cl-res −>selectSet(r | r .flight
.= f )−>anySet() in

(r .oclIsNew())
and (r .prev .= null)
and (r .next .= null))

Context Client :: booknext (f : Flight, r : Reservation)
Pre : f .passengers −>excludesSet(self .oclAsType(Person))

and (f .fl-res −>sizeSeq() <int (f .seats))
and (r .client .= self )
and (f .from .= (r .flight .to))

Post: f .passengers .= (f .passengers@pre −>includingSet(self .oclAsType(Person)))
and (let r = self .cl-res −>selectSet(r | r .flight

.= f )−>anySet() in
(r .oclIsNew())
and (r .prev .= r)
and (r .next .= null))

Context Client :: cancel (r : Reservation)
Pre : r .client .= self
Post: self .cl-res −>selectSet(res | res .flight

.= r .flight@pre)
−>isEmptySet()

Context Reservation :: connections () : Set(Integer)
Post : result , if (self .next .= null)

then (Set{}−>includingSet(self .id))
else (self .next .connections()−>includingSet(self .id))
endif

Pre : true

Proving the Implementability of Operations
An operation contract is said to be non-blocking, if and only if there exist input and input states where the
pre-condition is satisfied. Moreover, a contract is said to be implementable, if and only if for all inputs satisfying
the pre-condition output data exists that satisfies the post-condition.

definition cancelpre :: (·Client) ⇒ (·Reservation) ⇒ ·Booleanbase

where cancelpre self r ≡ (r .client@pre) .= self

definition cancelpost :: (·Client) ⇒ (·Reservation) ⇒ (·Voidbase) ⇒ ·Booleanbase

where cancelpost self r result ≡ self .cl-res−>selectSet(res|res .flight
.= r .flight@pre)−>isEmptySet()

lemma cancelnonblocking : ∃ self r σ. (σ, σ ′) |= (cancelpre self r)
apply(rule exI [where x = C1 ], rule exI [where x = R11 ], rule exI [where x = σt1])
using R11-val-clientATpre[simplified OclValid-def StrongEq-def true-def σt1-σs1[symmetric], of σ ′]
apply(simp add: cancelpre-def StrictRefEqObject-Reservation StrictRefEqObject-def OclValid-def )
by(subst cp-valid, simp, subst cp-valid[symmetric],

simp add: C1-valid[simplified OclValid-def σt1-σs1[symmetric]])



155

lemma cancelnonblocking-pre : ∃ self r σ. σ |=pre (cancelpre self r)
apply(rule exI [where x = C1 ], rule exI [where x = R11 ], rule exI [where x = σt1])
apply(simp add: OclValid-at-pre-def , intro allI )
proof − fix σ ′ show (σt1, σ

′) |= cancelpre C1 R11
using R11-val-clientATpre[simplified OclValid-def StrongEq-def true-def σt1-σs1[symmetric], of σ ′]

apply(simp add: cancelpre-def StrictRefEqObject-Reservation StrictRefEqObject-def OclValid-at-pre-def
OclValid-def )
by(subst cp-valid, simp, subst cp-valid[symmetric],

simp add: C1-valid[simplified OclValid-def σt1-σs1[symmetric]])
qed

lemma cancelimplementable :
assumes pre-satisfied: σ |=pre (cancelpre self r)
shows ∃ σ ′ result. ((σ, σ ′) |= δ self ) −→

((σ, σ ′) |= υ r) −→
((σ, σ ′) |= (cancelpost self r result))

proof −
def σ ′′ ≡ (| heap = K binC lient (mkC lient (mkEXT C lient 0 None) None)c

, assocs = Map.empty (oidC lient-0---cl-res 7→ []) |)

have self-definition:
∧
τ . τ |= δ self =⇒ ∃ ta xa x. self τ = bbmkC lient (mkEXT C lient ta xa) xcc

apply(simp add:OclValid-def defined-def true-def false-def split: split-if-asm)
proof − fix τ show self τ 6= ⊥ τ ∧ self τ 6= null τ =⇒

∃ ta xa x. self τ = bbmkC lient (mkEXT C lient ta xa) xcc
apply(case-tac self τ , simp add: bot-option-def bot-fun-def , simp)
proof − fix a show bac 6= ⊥ τ ∧ bac 6= null τ =⇒

self τ = bac =⇒ ∃ ta xa x. a = bmkC lient (mkEXT C lient ta xa) xc
apply(case-tac a, simp add: null-fun-def null-option-def bot-option-def , simp)
proof − fix aa show bbaacc 6= ⊥ τ ∧ bbaacc 6= null τ =⇒

self τ = bbaacc =⇒
a = baac =⇒ ∃ ta xa x. aa = mkC lient (mkEXT C lient ta xa) x

apply(case-tac aa, simp)
proof − fix x1 x2 show self τ = bbmkC lient x1 x2 cc =⇒ ∃ ta xa. x1 = mkEXT C lient ta xa
by(case-tac x1 , simp)
qed qed qed qed

have self-empty: (σ, σ ′′) |= δ self =⇒ (σ, σ ′′) |= (self .cl-res , Set{})
apply(drule self-definition, elim exE)
apply(simp add: OclValid-def StrongEq-def dotC lient-0---cl-res)
apply(simp add: deref-oidC lient-def in-post-state-def , subst (8 ) σ ′′-def )
apply(simp add: Let-def K-def oid-of-option-def deref-assocsC lient-0---cl-res-def deref-assocs-def )
apply(subst (3 ) σ ′′-def , simp add: selectC lient--cl-res-def )
by(simp add: oid-of-tyC lient-def deref-assocs-list-def switch2-01-def select-objectSet-def select-object-def )

show ?thesis
apply(rule exI [where x = σ ′′], rule exI [where x = null], intro impI )
apply(simp add: cancelpost-def )
apply(subst StrongEq-L-subst3 [OF - self-empty])
apply(rule UML-Set.cp-intro ′′Set(2 ))
apply(simp only: cp-def )
apply(rule exI [where x = λX τ . (λ-. X)−>selectSet(res|StrictRefEqObject res .flight r .flight@pre) τ ],

subst cp-OclSelect, simp)
by(simp+)
qed

As remark, the pre-condition σ |=pre cancelpre self r has not been used; in the special case of the operation
“cancel”, the post-condition is satisfiable for arbitrary defined and valid input, even input that does not satisfy
the pre-condition.



156 APPENDIX A. THE FLIGHT MODEL (MODELLED BY HAND)

end



A
p

p
e

n
d

ix

B
The Flight Model (Generated Theory, Floor 1)

This chapter has been generated from Appendix A (by discarding all the Isar_HOL commands of Appendix A
and only keeping its meta-commands).
theory Flight-Model-generated imports ../src/UML-Main ../src/compiler/Static ../src/compiler/Generator-dynamic begin

B.1 Enum
datatype ty-enumW eek = constrM on

| constrT ue

| constrW ed

| constrT hu

| constrF ri

| constrSat

| constrSun

type-synonym Weekbase = 〈〈ty-enumW eek〉⊥〉⊥
type-synonym ′A Weekgeneric = ( ′A, Weekbase) val
overloading StrictRefEq ≡ (StrictRefEq:: ′A Weekgeneric ⇒ -)
begin
definition StrictRefEqW eek : (x:: ′A Weekgeneric) .= y ≡ (λτ. if (((υ (x))) (τ)) = (true (τ)) ∧ (((υ (y))) (τ)) = (true (τ))

then ((x , y) (τ)) else (invalid (τ)))
end
definition Mon = (λ-. bb(constrM on::ty-enumW eek)cc)
definition Tue = (λ-. bb(constrT ue::ty-enumW eek)cc)
definition Wed = (λ-. bb(constrW ed::ty-enumW eek)cc)
definition Thu = (λ-. bb(constrT hu::ty-enumW eek)cc)
definition Fri = (λ-. bb(constrF ri::ty-enumW eek)cc)
definition Sat = (λ-. bb(constrSat::ty-enumW eek)cc)
definition Sun = (λ-. bb(constrSun::ty-enumW eek)cc)

B.2 Class Model: The Construction of the Object Universe
datatype tyEXT F light = mkEXT F light oid
datatype tyF light = mkF light tyEXT F light int option string option string option oid list option
datatype tyEXT C lient = mkEXT C lient oid string option
datatype tyC lient = mkC lient tyEXT C lient string option
datatype tyEXT Staf f = mkEXT Staf f oid string option
datatype tyStaf f = mkStaf f tyEXT Staf f

datatype tyEXT P erson = mkEXT P erson-Staf f tyStaf f

| mkEXT P erson-C lient tyC lient

| mkEXT P erson oid
datatype tyP erson = mkP erson tyEXT P erson string option
datatype tyEXT Reservation = mkEXT Reservation oid
datatype tyReservation = mkReservation tyEXT Reservation int option ty-enumW eek option oid option
datatype tyEXT OclAny = mkEXT OclAny-Reservation tyReservation

| mkEXT OclAny-P erson tyP erson

| mkEXT OclAny-Staf f tyStaf f

| mkEXT OclAny-C lient tyC lient

| mkEXT OclAny-F light tyF light

| mkEXT OclAny oid
datatype tyOclAny = mkOclAny tyEXT OclAny

157



158 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

datatype A = inF light tyF light

| inC lient tyC lient

| inStaf f tyStaf f

| inP erson tyP erson

| inReservation tyReservation

| inOclAny tyOclAny

type-synonym Void = A Void
type-synonym Boolean = A Boolean
type-synonym Integer = A Integer
type-synonym Real = A Real
type-synonym String = A String
type-synonym ′α val ′ = (A, ′α) val
type-notation val ′ (·(-))

type-synonym Flight = 〈〈tyF light〉⊥〉⊥
type-synonym Client = 〈〈tyC lient〉⊥〉⊥
type-synonym Staff = 〈〈tyStaf f 〉⊥〉⊥
type-synonym Person = 〈〈tyP erson〉⊥〉⊥
type-synonym Reservation = 〈〈tyReservation〉⊥〉⊥
type-synonym OclAny = 〈〈tyOclAny〉⊥〉⊥

type-synonym Sequence-Person = (A, tyP erson option option Sequencebase) val
type-synonym Set-Person = (A, tyP erson option option Setbase) val
type-synonym Sequence-Flight = (A, tyF light option option Sequencebase) val
type-synonym Set-Flight = (A, tyF light option option Setbase) val
type-synonym Sequence-Client = (A, tyC lient option option Sequencebase) val
type-synonym Set-Client = (A, tyC lient option option Setbase) val
type-synonym Sequence-Reservation = (A, tyReservation option option Sequencebase) val
type-synonym Set-Reservation = (A, tyReservation option option Setbase) val

type-synonym Week = A Weekgeneric

instantiation tyF light :: object
begin
definition oid-of-tyF light-def : oid-of = (λ mkF light t - - - - ⇒ (case t of (mkEXT F light (t)) ⇒ t))
instance ..

end
instantiation tyC lient :: object
begin
definition oid-of-tyC lient-def : oid-of = (λ mkC lient t - ⇒ (case t of (mkEXT C lient (t) (-)) ⇒ t))
instance ..

end
instantiation tyStaf f :: object
begin
definition oid-of-tyStaf f -def : oid-of = (λ mkStaf f t ⇒ (case t of (mkEXT Staf f (t) (-)) ⇒ t))
instance ..

end
instantiation tyP erson :: object
begin
definition oid-of-tyP erson-def : oid-of = (λ mkP erson t - ⇒ (case t of (mkEXT P erson (t)) ⇒ t
| (mkEXT P erson-C lient (t)) ⇒ (oid-of (t))
| (mkEXT P erson-Staf f (t)) ⇒ (oid-of (t))))

instance ..
end
instantiation tyReservation :: object
begin
definition oid-of-tyReservation-def : oid-of = (λ mkReservation t - - - ⇒ (case t of (mkEXT Reservation (t)) ⇒ t))
instance ..

end
instantiation tyOclAny :: object
begin
definition oid-of-tyOclAny-def : oid-of = (λ mkOclAny t ⇒ (case t of (mkEXT OclAny (t)) ⇒ t
| (mkEXT OclAny-F light (t)) ⇒ (oid-of (t))
| (mkEXT OclAny-C lient (t)) ⇒ (oid-of (t))
| (mkEXT OclAny-Staf f (t)) ⇒ (oid-of (t))
| (mkEXT OclAny-P erson (t)) ⇒ (oid-of (t))
| (mkEXT OclAny-Reservation (t)) ⇒ (oid-of (t))))



B.3. CLASS MODEL: INSTANTIATION OF THE GENERIC STRICT EQUALITY 159

instance ..
end

instantiation A :: object
begin
definition oid-of-A-def : oid-of = (λ inF light Flight ⇒ oid-of Flight
| inC lient Client ⇒ oid-of Client
| inStaf f Staff ⇒ oid-of Staff
| inP erson Person ⇒ oid-of Person
| inReservation Reservation ⇒ oid-of Reservation
| inOclAny OclAny ⇒ oid-of OclAny)

instance ..
end

B.3 Class Model: Instantiation of the Generic Strict Equality
overloading StrictRefEq ≡ (StrictRefEq::(·Flight) ⇒ - ⇒ -)
begin
definition StrictRefEqObj ect-F light : (x::·Flight) .= y ≡ StrictRefEqObj ect x y

end
overloading StrictRefEq ≡ (StrictRefEq::(·Client) ⇒ - ⇒ -)
begin
definition StrictRefEqObj ect-C lient : (x::·Client) .= y ≡ StrictRefEqObj ect x y

end
overloading StrictRefEq ≡ (StrictRefEq::(·Staff ) ⇒ - ⇒ -)
begin
definition StrictRefEqObj ect-Staf f : (x::·Staff ) .= y ≡ StrictRefEqObj ect x y

end
overloading StrictRefEq ≡ (StrictRefEq::(·Person) ⇒ - ⇒ -)
begin
definition StrictRefEqObj ect-P erson : (x::·Person) .= y ≡ StrictRefEqObj ect x y

end
overloading StrictRefEq ≡ (StrictRefEq::(·Reservation) ⇒ - ⇒ -)
begin
definition StrictRefEqObj ect-Reservation : (x::·Reservation) .= y ≡ StrictRefEqObj ect x y

end
overloading StrictRefEq ≡ (StrictRefEq::(·OclAny) ⇒ - ⇒ -)
begin
definition StrictRefEqObj ect-OclAny : (x::·OclAny) .= y ≡ StrictRefEqObj ect x y

end

lemmas[simp,code-unfold] = StrictRefEqObj ect-F light

StrictRefEqObj ect-C lient

StrictRefEqObj ect-Staf f

StrictRefEqObj ect-P erson

StrictRefEqObj ect-Reservation

StrictRefEqObj ect-OclAny

B.4 Class Model: OclAsType

Definition
consts OclAsTypeF light :: ′α ⇒ ·Flight ((-) .oclAsType ′(Flight ′))
consts OclAsTypeC lient :: ′α ⇒ ·Client ((-) .oclAsType ′(Client ′))
consts OclAsTypeStaf f :: ′α ⇒ ·Staff ((-) .oclAsType ′(Staff ′))
consts OclAsTypeP erson :: ′α ⇒ ·Person ((-) .oclAsType ′(Person ′))
consts OclAsTypeReservation :: ′α ⇒ ·Reservation ((-) .oclAsType ′(Reservation ′))
consts OclAsTypeOclAny :: ′α ⇒ ·OclAny ((-) .oclAsType ′(OclAny ′))

overloading OclAsTypeF light ≡ (OclAsTypeF light::(·Flight) ⇒ -)
begin
definition OclAsTypeF light-Flight : (x::·Flight) .oclAsType(Flight) ≡ x

end
overloading OclAsTypeF light ≡ (OclAsTypeF light::(·OclAny) ⇒ -)
begin
definition OclAsTypeF light-OclAny : (x::·OclAny) .oclAsType(Flight) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bb(mkOclAny ((mkEXT OclAny-F light (Flight))))cc ⇒ bbFlightcc



160 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

| - ⇒ (invalid (τ))))
end
overloading OclAsTypeF light ≡ (OclAsTypeF light::(·Staff ) ⇒ -)
begin
definition OclAsTypeF light-Staff : (x::·Staff ) .oclAsType(Flight) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeF light ≡ (OclAsTypeF light::(·Person) ⇒ -)
begin
definition OclAsTypeF light-Person : (x::·Person) .oclAsType(Flight) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeF light ≡ (OclAsTypeF light::(·Client) ⇒ -)
begin
definition OclAsTypeF light-Client : (x::·Client) .oclAsType(Flight) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeF light ≡ (OclAsTypeF light::(·Reservation) ⇒ -)
begin
definition OclAsTypeF light-Reservation : (x::·Reservation) .oclAsType(Flight) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeC lient ≡ (OclAsTypeC lient::(·Client) ⇒ -)
begin
definition OclAsTypeC lient-Client : (x::·Client) .oclAsType(Client) ≡ x

end
overloading OclAsTypeC lient ≡ (OclAsTypeC lient::(·Person) ⇒ -)
begin
definition OclAsTypeC lient-Person : (x::·Person) .oclAsType(Client) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bb(mkP erson ((mkEXT P erson-C lient (Client))) (-))cc ⇒ bbClientcc
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeC lient ≡ (OclAsTypeC lient::(·OclAny) ⇒ -)
begin
definition OclAsTypeC lient-OclAny : (x::·OclAny) .oclAsType(Client) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bb(mkOclAny ((mkEXT OclAny-C lient (Client))))cc ⇒ bbClientcc
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeC lient ≡ (OclAsTypeC lient::(·Staff ) ⇒ -)
begin
definition OclAsTypeC lient-Staff : (x::·Staff ) .oclAsType(Client) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeC lient ≡ (OclAsTypeC lient::(·Reservation) ⇒ -)
begin
definition OclAsTypeC lient-Reservation : (x::·Reservation) .oclAsType(Client) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeC lient ≡ (OclAsTypeC lient::(·Flight) ⇒ -)
begin
definition OclAsTypeC lient-Flight : (x::·Flight) .oclAsType(Client) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeStaf f ≡ (OclAsTypeStaf f ::(·Staff ) ⇒ -)
begin
definition OclAsTypeStaf f -Staff : (x::·Staff ) .oclAsType(Staff ) ≡ x

end
overloading OclAsTypeStaf f ≡ (OclAsTypeStaf f ::(·Person) ⇒ -)
begin
definition OclAsTypeStaf f -Person : (x::·Person) .oclAsType(Staff ) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bb(mkP erson ((mkEXT P erson-Staf f (Staff ))) (-))cc ⇒ bbStaff cc
| - ⇒ (invalid (τ))))

end



B.4. CLASS MODEL: OCLASTYPE 161

overloading OclAsTypeStaf f ≡ (OclAsTypeStaf f ::(·OclAny) ⇒ -)
begin
definition OclAsTypeStaf f -OclAny : (x::·OclAny) .oclAsType(Staff ) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bb(mkOclAny ((mkEXT OclAny-Staf f (Staff ))))cc ⇒ bbStaff cc
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeStaf f ≡ (OclAsTypeStaf f ::(·Client) ⇒ -)
begin
definition OclAsTypeStaf f -Client : (x::·Client) .oclAsType(Staff ) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeStaf f ≡ (OclAsTypeStaf f ::(·Reservation) ⇒ -)
begin
definition OclAsTypeStaf f -Reservation : (x::·Reservation) .oclAsType(Staff ) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeStaf f ≡ (OclAsTypeStaf f ::(·Flight) ⇒ -)
begin
definition OclAsTypeStaf f -Flight : (x::·Flight) .oclAsType(Staff ) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeP erson ≡ (OclAsTypeP erson::(·Person) ⇒ -)
begin
definition OclAsTypeP erson-Person : (x::·Person) .oclAsType(Person) ≡ x

end
overloading OclAsTypeP erson ≡ (OclAsTypeP erson::(·OclAny) ⇒ -)
begin
definition OclAsTypeP erson-OclAny : (x::·OclAny) .oclAsType(Person) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bb(mkOclAny ((mkEXT OclAny-P erson (Person))))cc ⇒ bbPersoncc
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeP erson ≡ (OclAsTypeP erson::(·Client) ⇒ -)
begin
definition OclAsTypeP erson-Client : (x::·Client) .oclAsType(Person) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bbClientcc ⇒ bb(mkP erson ((mkEXT P erson-C lient (Client))) (None))cc))

end
overloading OclAsTypeP erson ≡ (OclAsTypeP erson::(·Staff ) ⇒ -)
begin
definition OclAsTypeP erson-Staff : (x::·Staff ) .oclAsType(Person) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bbStaff cc ⇒ bb(mkP erson ((mkEXT P erson-Staf f (Staff ))) (None))cc))

end
overloading OclAsTypeP erson ≡ (OclAsTypeP erson::(·Reservation) ⇒ -)
begin
definition OclAsTypeP erson-Reservation : (x::·Reservation) .oclAsType(Person) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeP erson ≡ (OclAsTypeP erson::(·Flight) ⇒ -)
begin
definition OclAsTypeP erson-Flight : (x::·Flight) .oclAsType(Person) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeReservation ≡ (OclAsTypeReservation::(·Reservation) ⇒ -)
begin
definition OclAsTypeReservation-Reservation : (x::·Reservation) .oclAsType(Reservation) ≡ x

end
overloading OclAsTypeReservation ≡ (OclAsTypeReservation::(·OclAny) ⇒ -)
begin
definition OclAsTypeReservation-OclAny : (x::·OclAny) .oclAsType(Reservation) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bb(mkOclAny ((mkEXT OclAny-Reservation (Reservation))))cc ⇒ bbReservationcc
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeReservation ≡ (OclAsTypeReservation::(·Staff ) ⇒ -)
begin



162 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

definition OclAsTypeReservation-Staff : (x::·Staff ) .oclAsType(Reservation) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeReservation ≡ (OclAsTypeReservation::(·Person) ⇒ -)
begin
definition OclAsTypeReservation-Person : (x::·Person) .oclAsType(Reservation) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeReservation ≡ (OclAsTypeReservation::(·Client) ⇒ -)
begin
definition OclAsTypeReservation-Client : (x::·Client) .oclAsType(Reservation) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeReservation ≡ (OclAsTypeReservation::(·Flight) ⇒ -)
begin
definition OclAsTypeReservation-Flight : (x::·Flight) .oclAsType(Reservation) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| - ⇒ (invalid (τ))))

end
overloading OclAsTypeOclAny ≡ (OclAsTypeOclAny ::(·OclAny) ⇒ -)
begin
definition OclAsTypeOclAny-OclAny : (x::·OclAny) .oclAsType(OclAny) ≡ x

end
overloading OclAsTypeOclAny ≡ (OclAsTypeOclAny ::(·Flight) ⇒ -)
begin
definition OclAsTypeOclAny-Flight : (x::·Flight) .oclAsType(OclAny) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bbFlightcc ⇒ bb(mkOclAny ((mkEXT OclAny-F light (Flight))))cc))

end
overloading OclAsTypeOclAny ≡ (OclAsTypeOclAny ::(·Client) ⇒ -)
begin
definition OclAsTypeOclAny-Client : (x::·Client) .oclAsType(OclAny) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bbClientcc ⇒ bb(mkOclAny ((mkEXT OclAny-C lient (Client))))cc))

end
overloading OclAsTypeOclAny ≡ (OclAsTypeOclAny ::(·Staff ) ⇒ -)
begin
definition OclAsTypeOclAny-Staff : (x::·Staff ) .oclAsType(OclAny) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bbStaff cc ⇒ bb(mkOclAny ((mkEXT OclAny-Staf f (Staff ))))cc))

end
overloading OclAsTypeOclAny ≡ (OclAsTypeOclAny ::(·Person) ⇒ -)
begin
definition OclAsTypeOclAny-Person : (x::·Person) .oclAsType(OclAny) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bbPersoncc ⇒ bb(mkOclAny ((mkEXT OclAny-P erson (Person))))cc))

end
overloading OclAsTypeOclAny ≡ (OclAsTypeOclAny ::(·Reservation) ⇒ -)
begin
definition OclAsTypeOclAny-Reservation : (x::·Reservation) .oclAsType(OclAny) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (null (τ))
| bbReservationcc ⇒ bb(mkOclAny ((mkEXT OclAny-Reservation (Reservation))))cc))

end

definition OclAsTypeF light-A = (λ (inF light (Flight)) ⇒ bFlightc
| (inOclAny ((mkOclAny ((mkEXT OclAny-F light (Flight)))))) ⇒ bFlightc
| - ⇒ None)

definition OclAsTypeC lient-A = (λ (inC lient (Client)) ⇒ bClientc
| (inP erson ((mkP erson ((mkEXT P erson-C lient (Client))) (-)))) ⇒ bClientc
| (inOclAny ((mkOclAny ((mkEXT OclAny-C lient (Client)))))) ⇒ bClientc
| - ⇒ None)

definition OclAsTypeStaf f -A = (λ (inStaf f (Staff )) ⇒ bStaff c
| (inP erson ((mkP erson ((mkEXT P erson-Staf f (Staff ))) (-)))) ⇒ bStaff c
| (inOclAny ((mkOclAny ((mkEXT OclAny-Staf f (Staff )))))) ⇒ bStaff c
| - ⇒ None)

definition OclAsTypeP erson-A = (λ (inP erson (Person)) ⇒ bPersonc
| (inOclAny ((mkOclAny ((mkEXT OclAny-P erson (Person)))))) ⇒ bPersonc
| (inC lient (Client)) ⇒ b(mkP erson ((mkEXT P erson-C lient (Client))) (None))c
| (inStaf f (Staff )) ⇒ b(mkP erson ((mkEXT P erson-Staf f (Staff ))) (None))c



B.4. CLASS MODEL: OCLASTYPE 163

| - ⇒ None)
definition OclAsTypeReservation-A = (λ (inReservation (Reservation)) ⇒ bReservationc
| (inOclAny ((mkOclAny ((mkEXT OclAny-Reservation (Reservation)))))) ⇒ bReservationc
| - ⇒ None)

definition OclAsTypeOclAny-A = Some o (λ (inOclAny (OclAny)) ⇒ OclAny
| (inF light (Flight)) ⇒ (mkOclAny ((mkEXT OclAny-F light (Flight))))
| (inC lient (Client)) ⇒ (mkOclAny ((mkEXT OclAny-C lient (Client))))
| (inStaf f (Staff )) ⇒ (mkOclAny ((mkEXT OclAny-Staf f (Staff ))))
| (inP erson (Person)) ⇒ (mkOclAny ((mkEXT OclAny-P erson (Person))))
| (inReservation (Reservation)) ⇒ (mkOclAny ((mkEXT OclAny-Reservation (Reservation)))))

lemmas[simp,code-unfold] = OclAsTypeF light-Flight
OclAsTypeC lient-Client
OclAsTypeStaf f -Staff
OclAsTypeP erson-Person
OclAsTypeReservation-Reservation
OclAsTypeOclAny-OclAny

Context Passing
lemma cp-OclAsTypeC lient-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclAsType(Client)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeC lient-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client) .oclAsType(Client)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeC lient-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclAsType(Client)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeC lient-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclAsType(Client)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeC lient-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclAsType(Client)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeC lient-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclAsType(Client)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeC lient-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Reservation)
lemma cp-OclAsTypeC lient-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Reservation)
lemma cp-OclAsTypeC lient-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Reservation)
lemma cp-OclAsTypeC lient-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Reservation)
lemma cp-OclAsTypeC lient-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Reservation)
lemma cp-OclAsTypeC lient-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Reservation)
lemma cp-OclAsTypeC lient-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-OclAny)
lemma cp-OclAsTypeC lient-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-OclAny)
lemma cp-OclAsTypeC lient-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-OclAny)
lemma cp-OclAsTypeC lient-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-OclAny)
lemma cp-OclAsTypeC lient-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-OclAny)
lemma cp-OclAsTypeC lient-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-OclAny)
lemma cp-OclAsTypeC lient-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Person)
lemma cp-OclAsTypeC lient-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Person)
lemma cp-OclAsTypeC lient-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Person)
lemma cp-OclAsTypeC lient-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Person)
lemma cp-OclAsTypeC lient-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Person)
lemma cp-OclAsTypeC lient-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Person)
lemma cp-OclAsTypeC lient-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclAsType(Client)))))



164 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(rule cpI1 , simp add: OclAsTypeC lient-Staff )
lemma cp-OclAsTypeC lient-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff ) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Staff )
lemma cp-OclAsTypeC lient-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Staff )
lemma cp-OclAsTypeC lient-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Staff )
lemma cp-OclAsTypeC lient-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Staff )
lemma cp-OclAsTypeC lient-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Staff )
lemma cp-OclAsTypeC lient-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Flight)
lemma cp-OclAsTypeC lient-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Flight)
lemma cp-OclAsTypeC lient-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Flight)
lemma cp-OclAsTypeC lient-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Flight)
lemma cp-OclAsTypeC lient-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Flight)
lemma cp-OclAsTypeC lient-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclAsType(Client)))))
by(rule cpI1 , simp add: OclAsTypeC lient-Flight)
lemma cp-OclAsTypeReservation-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Client)
lemma cp-OclAsTypeReservation-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Client)
lemma cp-OclAsTypeReservation-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Client)
lemma cp-OclAsTypeReservation-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Client)
lemma cp-OclAsTypeReservation-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Client)
lemma cp-OclAsTypeReservation-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Client)
lemma cp-OclAsTypeReservation-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclAsType(Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeReservation-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclAsType(Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeReservation-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclAsType(Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeReservation-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclAsType(Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeReservation-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation)
.oclAsType(Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeReservation-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclAsType(Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeReservation-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-OclAny)
lemma cp-OclAsTypeReservation-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-OclAny)
lemma cp-OclAsTypeReservation-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-OclAny)
lemma cp-OclAsTypeReservation-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-OclAny)
lemma cp-OclAsTypeReservation-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-OclAny)
lemma cp-OclAsTypeReservation-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-OclAny)



B.4. CLASS MODEL: OCLASTYPE 165

lemma cp-OclAsTypeReservation-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Person)
lemma cp-OclAsTypeReservation-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Person)
lemma cp-OclAsTypeReservation-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Person)
lemma cp-OclAsTypeReservation-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Person)
lemma cp-OclAsTypeReservation-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Person)
lemma cp-OclAsTypeReservation-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Person)
lemma cp-OclAsTypeReservation-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Staff )
lemma cp-OclAsTypeReservation-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff )
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Staff )
lemma cp-OclAsTypeReservation-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Staff )
lemma cp-OclAsTypeReservation-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Staff )
lemma cp-OclAsTypeReservation-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Staff )
lemma cp-OclAsTypeReservation-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Staff )
lemma cp-OclAsTypeReservation-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Flight)
lemma cp-OclAsTypeReservation-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Flight)
lemma cp-OclAsTypeReservation-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight)
.oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Flight)
lemma cp-OclAsTypeReservation-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Flight)
lemma cp-OclAsTypeReservation-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Flight)
lemma cp-OclAsTypeReservation-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclAsType(Reservation)))))
by(rule cpI1 , simp add: OclAsTypeReservation-Flight)
lemma cp-OclAsTypeOclAny-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Client)
lemma cp-OclAsTypeOclAny-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Client)
lemma cp-OclAsTypeOclAny-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Client)
lemma cp-OclAsTypeOclAny-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Client)
lemma cp-OclAsTypeOclAny-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Client)
lemma cp-OclAsTypeOclAny-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Client)
lemma cp-OclAsTypeOclAny-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Reservation)
lemma cp-OclAsTypeOclAny-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Reservation)
lemma cp-OclAsTypeOclAny-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Reservation)
lemma cp-OclAsTypeOclAny-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Reservation)
lemma cp-OclAsTypeOclAny-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Reservation)
lemma cp-OclAsTypeOclAny-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Reservation)
lemma cp-OclAsTypeOclAny-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclAsType(OclAny)))))



166 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(rule cpI1 , simp)
lemma cp-OclAsTypeOclAny-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclAsType(OclAny)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeOclAny-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclAsType(OclAny)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeOclAny-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclAsType(OclAny)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeOclAny-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclAsType(OclAny)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeOclAny-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclAsType(OclAny)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeOclAny-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Person)
lemma cp-OclAsTypeOclAny-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Person)
lemma cp-OclAsTypeOclAny-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Person)
lemma cp-OclAsTypeOclAny-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Person)
lemma cp-OclAsTypeOclAny-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Person)
lemma cp-OclAsTypeOclAny-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Person)
lemma cp-OclAsTypeOclAny-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Staff )
lemma cp-OclAsTypeOclAny-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff ) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Staff )
lemma cp-OclAsTypeOclAny-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Staff )
lemma cp-OclAsTypeOclAny-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Staff )
lemma cp-OclAsTypeOclAny-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Staff )
lemma cp-OclAsTypeOclAny-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Staff )
lemma cp-OclAsTypeOclAny-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Flight)
lemma cp-OclAsTypeOclAny-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Flight)
lemma cp-OclAsTypeOclAny-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Flight)
lemma cp-OclAsTypeOclAny-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Flight)
lemma cp-OclAsTypeOclAny-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Flight)
lemma cp-OclAsTypeOclAny-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclAsType(OclAny)))))
by(rule cpI1 , simp add: OclAsTypeOclAny-Flight)
lemma cp-OclAsTypeP erson-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Client)
lemma cp-OclAsTypeP erson-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Client)
lemma cp-OclAsTypeP erson-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Client)
lemma cp-OclAsTypeP erson-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Client)
lemma cp-OclAsTypeP erson-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Client)
lemma cp-OclAsTypeP erson-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Client)
lemma cp-OclAsTypeP erson-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Reservation)
lemma cp-OclAsTypeP erson-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Reservation)
lemma cp-OclAsTypeP erson-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Reservation)
lemma cp-OclAsTypeP erson-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Reservation)
lemma cp-OclAsTypeP erson-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation) .oclAsType(Person)))))



B.4. CLASS MODEL: OCLASTYPE 167

by(rule cpI1 , simp add: OclAsTypeP erson-Reservation)
lemma cp-OclAsTypeP erson-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Reservation)
lemma cp-OclAsTypeP erson-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-OclAny)
lemma cp-OclAsTypeP erson-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-OclAny)
lemma cp-OclAsTypeP erson-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-OclAny)
lemma cp-OclAsTypeP erson-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-OclAny)
lemma cp-OclAsTypeP erson-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-OclAny)
lemma cp-OclAsTypeP erson-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-OclAny)
lemma cp-OclAsTypeP erson-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclAsType(Person)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeP erson-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclAsType(Person)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeP erson-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclAsType(Person)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeP erson-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclAsType(Person)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeP erson-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclAsType(Person)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeP erson-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclAsType(Person)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeP erson-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Staff )
lemma cp-OclAsTypeP erson-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff ) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Staff )
lemma cp-OclAsTypeP erson-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Staff )
lemma cp-OclAsTypeP erson-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Staff )
lemma cp-OclAsTypeP erson-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Staff )
lemma cp-OclAsTypeP erson-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Staff )
lemma cp-OclAsTypeP erson-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Flight)
lemma cp-OclAsTypeP erson-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Flight)
lemma cp-OclAsTypeP erson-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Flight)
lemma cp-OclAsTypeP erson-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Flight)
lemma cp-OclAsTypeP erson-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Flight)
lemma cp-OclAsTypeP erson-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclAsType(Person)))))
by(rule cpI1 , simp add: OclAsTypeP erson-Flight)
lemma cp-OclAsTypeStaf f -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Client)
lemma cp-OclAsTypeStaf f -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Client)
lemma cp-OclAsTypeStaf f -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Client)
lemma cp-OclAsTypeStaf f -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Client)
lemma cp-OclAsTypeStaf f -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Client)
lemma cp-OclAsTypeStaf f -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Client)
lemma cp-OclAsTypeStaf f -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Reservation)
lemma cp-OclAsTypeStaf f -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Reservation)
lemma cp-OclAsTypeStaf f -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Reservation)
lemma cp-OclAsTypeStaf f -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation) .oclAsType(Staff )))))



168 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(rule cpI1 , simp add: OclAsTypeStaf f -Reservation)
lemma cp-OclAsTypeStaf f -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Reservation)
lemma cp-OclAsTypeStaf f -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Reservation)
lemma cp-OclAsTypeStaf f -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -OclAny)
lemma cp-OclAsTypeStaf f -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -OclAny)
lemma cp-OclAsTypeStaf f -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -OclAny)
lemma cp-OclAsTypeStaf f -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -OclAny)
lemma cp-OclAsTypeStaf f -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -OclAny)
lemma cp-OclAsTypeStaf f -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -OclAny)
lemma cp-OclAsTypeStaf f -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Person)
lemma cp-OclAsTypeStaf f -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Person)
lemma cp-OclAsTypeStaf f -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Person)
lemma cp-OclAsTypeStaf f -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Person)
lemma cp-OclAsTypeStaf f -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Person)
lemma cp-OclAsTypeStaf f -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Person)
lemma cp-OclAsTypeStaf f -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclAsType(Staff )))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeStaf f -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff ) .oclAsType(Staff )))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeStaf f -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclAsType(Staff )))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeStaf f -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclAsType(Staff )))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeStaf f -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclAsType(Staff )))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeStaf f -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclAsType(Staff )))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeStaf f -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Flight)
lemma cp-OclAsTypeStaf f -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Flight)
lemma cp-OclAsTypeStaf f -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Flight)
lemma cp-OclAsTypeStaf f -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Flight)
lemma cp-OclAsTypeStaf f -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Flight)
lemma cp-OclAsTypeStaf f -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclAsType(Staff )))))
by(rule cpI1 , simp add: OclAsTypeStaf f -Flight)
lemma cp-OclAsTypeF light-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Client)
lemma cp-OclAsTypeF light-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Client)
lemma cp-OclAsTypeF light-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Client)
lemma cp-OclAsTypeF light-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Client)
lemma cp-OclAsTypeF light-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Client)
lemma cp-OclAsTypeF light-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Client)
lemma cp-OclAsTypeF light-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Reservation)
lemma cp-OclAsTypeF light-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Reservation)
lemma cp-OclAsTypeF light-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Reservation)



B.4. CLASS MODEL: OCLASTYPE 169

lemma cp-OclAsTypeF light-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Reservation)
lemma cp-OclAsTypeF light-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Reservation)
lemma cp-OclAsTypeF light-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Reservation)
lemma cp-OclAsTypeF light-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-OclAny)
lemma cp-OclAsTypeF light-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-OclAny)
lemma cp-OclAsTypeF light-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-OclAny)
lemma cp-OclAsTypeF light-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-OclAny)
lemma cp-OclAsTypeF light-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-OclAny)
lemma cp-OclAsTypeF light-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-OclAny)
lemma cp-OclAsTypeF light-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Person)
lemma cp-OclAsTypeF light-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Person)
lemma cp-OclAsTypeF light-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Person)
lemma cp-OclAsTypeF light-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Person)
lemma cp-OclAsTypeF light-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Person)
lemma cp-OclAsTypeF light-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Person)
lemma cp-OclAsTypeF light-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Staff )
lemma cp-OclAsTypeF light-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff ) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Staff )
lemma cp-OclAsTypeF light-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Staff )
lemma cp-OclAsTypeF light-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Staff )
lemma cp-OclAsTypeF light-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Staff )
lemma cp-OclAsTypeF light-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclAsType(Flight)))))
by(rule cpI1 , simp add: OclAsTypeF light-Staff )
lemma cp-OclAsTypeF light-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclAsType(Flight)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeF light-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight) .oclAsType(Flight)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeF light-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclAsType(Flight)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeF light-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclAsType(Flight)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeF light-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclAsType(Flight)))))
by(rule cpI1 , simp)
lemma cp-OclAsTypeF light-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclAsType(Flight)))))
by(rule cpI1 , simp)

lemmas[simp,code-unfold] = cp-OclAsTypeC lient-Client-Client
cp-OclAsTypeC lient-Reservation-Client
cp-OclAsTypeC lient-OclAny-Client
cp-OclAsTypeC lient-Person-Client
cp-OclAsTypeC lient-Staff-Client
cp-OclAsTypeC lient-Flight-Client
cp-OclAsTypeC lient-Client-Reservation
cp-OclAsTypeC lient-Reservation-Reservation
cp-OclAsTypeC lient-OclAny-Reservation
cp-OclAsTypeC lient-Person-Reservation
cp-OclAsTypeC lient-Staff-Reservation
cp-OclAsTypeC lient-Flight-Reservation
cp-OclAsTypeC lient-Client-OclAny
cp-OclAsTypeC lient-Reservation-OclAny
cp-OclAsTypeC lient-OclAny-OclAny
cp-OclAsTypeC lient-Person-OclAny



170 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

cp-OclAsTypeC lient-Staff-OclAny
cp-OclAsTypeC lient-Flight-OclAny
cp-OclAsTypeC lient-Client-Person
cp-OclAsTypeC lient-Reservation-Person
cp-OclAsTypeC lient-OclAny-Person
cp-OclAsTypeC lient-Person-Person
cp-OclAsTypeC lient-Staff-Person
cp-OclAsTypeC lient-Flight-Person
cp-OclAsTypeC lient-Client-Staff
cp-OclAsTypeC lient-Reservation-Staff
cp-OclAsTypeC lient-OclAny-Staff
cp-OclAsTypeC lient-Person-Staff
cp-OclAsTypeC lient-Staff-Staff
cp-OclAsTypeC lient-Flight-Staff
cp-OclAsTypeC lient-Client-Flight
cp-OclAsTypeC lient-Reservation-Flight
cp-OclAsTypeC lient-OclAny-Flight
cp-OclAsTypeC lient-Person-Flight
cp-OclAsTypeC lient-Staff-Flight
cp-OclAsTypeC lient-Flight-Flight
cp-OclAsTypeReservation-Client-Client
cp-OclAsTypeReservation-Reservation-Client
cp-OclAsTypeReservation-OclAny-Client
cp-OclAsTypeReservation-Person-Client
cp-OclAsTypeReservation-Staff-Client
cp-OclAsTypeReservation-Flight-Client
cp-OclAsTypeReservation-Client-Reservation
cp-OclAsTypeReservation-Reservation-Reservation
cp-OclAsTypeReservation-OclAny-Reservation
cp-OclAsTypeReservation-Person-Reservation
cp-OclAsTypeReservation-Staff-Reservation
cp-OclAsTypeReservation-Flight-Reservation
cp-OclAsTypeReservation-Client-OclAny
cp-OclAsTypeReservation-Reservation-OclAny
cp-OclAsTypeReservation-OclAny-OclAny
cp-OclAsTypeReservation-Person-OclAny
cp-OclAsTypeReservation-Staff-OclAny
cp-OclAsTypeReservation-Flight-OclAny
cp-OclAsTypeReservation-Client-Person
cp-OclAsTypeReservation-Reservation-Person
cp-OclAsTypeReservation-OclAny-Person
cp-OclAsTypeReservation-Person-Person
cp-OclAsTypeReservation-Staff-Person
cp-OclAsTypeReservation-Flight-Person
cp-OclAsTypeReservation-Client-Staff
cp-OclAsTypeReservation-Reservation-Staff
cp-OclAsTypeReservation-OclAny-Staff
cp-OclAsTypeReservation-Person-Staff
cp-OclAsTypeReservation-Staff-Staff
cp-OclAsTypeReservation-Flight-Staff
cp-OclAsTypeReservation-Client-Flight
cp-OclAsTypeReservation-Reservation-Flight
cp-OclAsTypeReservation-OclAny-Flight
cp-OclAsTypeReservation-Person-Flight
cp-OclAsTypeReservation-Staff-Flight
cp-OclAsTypeReservation-Flight-Flight
cp-OclAsTypeOclAny-Client-Client
cp-OclAsTypeOclAny-Reservation-Client
cp-OclAsTypeOclAny-OclAny-Client
cp-OclAsTypeOclAny-Person-Client
cp-OclAsTypeOclAny-Staff-Client
cp-OclAsTypeOclAny-Flight-Client
cp-OclAsTypeOclAny-Client-Reservation
cp-OclAsTypeOclAny-Reservation-Reservation
cp-OclAsTypeOclAny-OclAny-Reservation
cp-OclAsTypeOclAny-Person-Reservation
cp-OclAsTypeOclAny-Staff-Reservation
cp-OclAsTypeOclAny-Flight-Reservation
cp-OclAsTypeOclAny-Client-OclAny
cp-OclAsTypeOclAny-Reservation-OclAny
cp-OclAsTypeOclAny-OclAny-OclAny
cp-OclAsTypeOclAny-Person-OclAny
cp-OclAsTypeOclAny-Staff-OclAny



B.4. CLASS MODEL: OCLASTYPE 171

cp-OclAsTypeOclAny-Flight-OclAny
cp-OclAsTypeOclAny-Client-Person
cp-OclAsTypeOclAny-Reservation-Person
cp-OclAsTypeOclAny-OclAny-Person
cp-OclAsTypeOclAny-Person-Person
cp-OclAsTypeOclAny-Staff-Person
cp-OclAsTypeOclAny-Flight-Person
cp-OclAsTypeOclAny-Client-Staff
cp-OclAsTypeOclAny-Reservation-Staff
cp-OclAsTypeOclAny-OclAny-Staff
cp-OclAsTypeOclAny-Person-Staff
cp-OclAsTypeOclAny-Staff-Staff
cp-OclAsTypeOclAny-Flight-Staff
cp-OclAsTypeOclAny-Client-Flight
cp-OclAsTypeOclAny-Reservation-Flight
cp-OclAsTypeOclAny-OclAny-Flight
cp-OclAsTypeOclAny-Person-Flight
cp-OclAsTypeOclAny-Staff-Flight
cp-OclAsTypeOclAny-Flight-Flight
cp-OclAsTypeP erson-Client-Client
cp-OclAsTypeP erson-Reservation-Client
cp-OclAsTypeP erson-OclAny-Client
cp-OclAsTypeP erson-Person-Client
cp-OclAsTypeP erson-Staff-Client
cp-OclAsTypeP erson-Flight-Client
cp-OclAsTypeP erson-Client-Reservation
cp-OclAsTypeP erson-Reservation-Reservation
cp-OclAsTypeP erson-OclAny-Reservation
cp-OclAsTypeP erson-Person-Reservation
cp-OclAsTypeP erson-Staff-Reservation
cp-OclAsTypeP erson-Flight-Reservation
cp-OclAsTypeP erson-Client-OclAny
cp-OclAsTypeP erson-Reservation-OclAny
cp-OclAsTypeP erson-OclAny-OclAny
cp-OclAsTypeP erson-Person-OclAny
cp-OclAsTypeP erson-Staff-OclAny
cp-OclAsTypeP erson-Flight-OclAny
cp-OclAsTypeP erson-Client-Person
cp-OclAsTypeP erson-Reservation-Person
cp-OclAsTypeP erson-OclAny-Person
cp-OclAsTypeP erson-Person-Person
cp-OclAsTypeP erson-Staff-Person
cp-OclAsTypeP erson-Flight-Person
cp-OclAsTypeP erson-Client-Staff
cp-OclAsTypeP erson-Reservation-Staff
cp-OclAsTypeP erson-OclAny-Staff
cp-OclAsTypeP erson-Person-Staff
cp-OclAsTypeP erson-Staff-Staff
cp-OclAsTypeP erson-Flight-Staff
cp-OclAsTypeP erson-Client-Flight
cp-OclAsTypeP erson-Reservation-Flight
cp-OclAsTypeP erson-OclAny-Flight
cp-OclAsTypeP erson-Person-Flight
cp-OclAsTypeP erson-Staff-Flight
cp-OclAsTypeP erson-Flight-Flight
cp-OclAsTypeStaf f -Client-Client
cp-OclAsTypeStaf f -Reservation-Client
cp-OclAsTypeStaf f -OclAny-Client
cp-OclAsTypeStaf f -Person-Client
cp-OclAsTypeStaf f -Staff-Client
cp-OclAsTypeStaf f -Flight-Client
cp-OclAsTypeStaf f -Client-Reservation
cp-OclAsTypeStaf f -Reservation-Reservation
cp-OclAsTypeStaf f -OclAny-Reservation
cp-OclAsTypeStaf f -Person-Reservation
cp-OclAsTypeStaf f -Staff-Reservation
cp-OclAsTypeStaf f -Flight-Reservation
cp-OclAsTypeStaf f -Client-OclAny
cp-OclAsTypeStaf f -Reservation-OclAny
cp-OclAsTypeStaf f -OclAny-OclAny
cp-OclAsTypeStaf f -Person-OclAny
cp-OclAsTypeStaf f -Staff-OclAny
cp-OclAsTypeStaf f -Flight-OclAny



172 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

cp-OclAsTypeStaf f -Client-Person
cp-OclAsTypeStaf f -Reservation-Person
cp-OclAsTypeStaf f -OclAny-Person
cp-OclAsTypeStaf f -Person-Person
cp-OclAsTypeStaf f -Staff-Person
cp-OclAsTypeStaf f -Flight-Person
cp-OclAsTypeStaf f -Client-Staff
cp-OclAsTypeStaf f -Reservation-Staff
cp-OclAsTypeStaf f -OclAny-Staff
cp-OclAsTypeStaf f -Person-Staff
cp-OclAsTypeStaf f -Staff-Staff
cp-OclAsTypeStaf f -Flight-Staff
cp-OclAsTypeStaf f -Client-Flight
cp-OclAsTypeStaf f -Reservation-Flight
cp-OclAsTypeStaf f -OclAny-Flight
cp-OclAsTypeStaf f -Person-Flight
cp-OclAsTypeStaf f -Staff-Flight
cp-OclAsTypeStaf f -Flight-Flight
cp-OclAsTypeF light-Client-Client
cp-OclAsTypeF light-Reservation-Client
cp-OclAsTypeF light-OclAny-Client
cp-OclAsTypeF light-Person-Client
cp-OclAsTypeF light-Staff-Client
cp-OclAsTypeF light-Flight-Client
cp-OclAsTypeF light-Client-Reservation
cp-OclAsTypeF light-Reservation-Reservation
cp-OclAsTypeF light-OclAny-Reservation
cp-OclAsTypeF light-Person-Reservation
cp-OclAsTypeF light-Staff-Reservation
cp-OclAsTypeF light-Flight-Reservation
cp-OclAsTypeF light-Client-OclAny
cp-OclAsTypeF light-Reservation-OclAny
cp-OclAsTypeF light-OclAny-OclAny
cp-OclAsTypeF light-Person-OclAny
cp-OclAsTypeF light-Staff-OclAny
cp-OclAsTypeF light-Flight-OclAny
cp-OclAsTypeF light-Client-Person
cp-OclAsTypeF light-Reservation-Person
cp-OclAsTypeF light-OclAny-Person
cp-OclAsTypeF light-Person-Person
cp-OclAsTypeF light-Staff-Person
cp-OclAsTypeF light-Flight-Person
cp-OclAsTypeF light-Client-Staff
cp-OclAsTypeF light-Reservation-Staff
cp-OclAsTypeF light-OclAny-Staff
cp-OclAsTypeF light-Person-Staff
cp-OclAsTypeF light-Staff-Staff
cp-OclAsTypeF light-Flight-Staff
cp-OclAsTypeF light-Client-Flight
cp-OclAsTypeF light-Reservation-Flight
cp-OclAsTypeF light-OclAny-Flight
cp-OclAsTypeF light-Person-Flight
cp-OclAsTypeF light-Staff-Flight
cp-OclAsTypeF light-Flight-Flight

Execution with Invalid or Null as Argument
lemma OclAsTypeC lient-Client-invalid : ((invalid::·Client) .oclAsType(Client)) = invalid
by(simp)
lemma OclAsTypeC lient-Reservation-invalid : ((invalid::·Reservation) .oclAsType(Client)) = invalid
by(rule ext, simp add: OclAsTypeC lient-Reservation bot-option-def invalid-def )
lemma OclAsTypeC lient-OclAny-invalid : ((invalid::·OclAny) .oclAsType(Client)) = invalid
by(rule ext, simp add: OclAsTypeC lient-OclAny bot-option-def invalid-def )
lemma OclAsTypeC lient-Person-invalid : ((invalid::·Person) .oclAsType(Client)) = invalid
by(rule ext, simp add: OclAsTypeC lient-Person bot-option-def invalid-def )
lemma OclAsTypeC lient-Staff-invalid : ((invalid::·Staff ) .oclAsType(Client)) = invalid
by(rule ext, simp add: OclAsTypeC lient-Staff bot-option-def invalid-def )
lemma OclAsTypeC lient-Flight-invalid : ((invalid::·Flight) .oclAsType(Client)) = invalid
by(rule ext, simp add: OclAsTypeC lient-Flight bot-option-def invalid-def )
lemma OclAsTypeC lient-Client-null : ((null::·Client) .oclAsType(Client)) = null
by(simp)
lemma OclAsTypeC lient-Reservation-null : ((null::·Reservation) .oclAsType(Client)) = null
by(rule ext, simp add: OclAsTypeC lient-Reservation bot-option-def null-fun-def null-option-def )



B.4. CLASS MODEL: OCLASTYPE 173

lemma OclAsTypeC lient-OclAny-null : ((null::·OclAny) .oclAsType(Client)) = null
by(rule ext, simp add: OclAsTypeC lient-OclAny bot-option-def null-fun-def null-option-def )
lemma OclAsTypeC lient-Person-null : ((null::·Person) .oclAsType(Client)) = null
by(rule ext, simp add: OclAsTypeC lient-Person bot-option-def null-fun-def null-option-def )
lemma OclAsTypeC lient-Staff-null : ((null::·Staff ) .oclAsType(Client)) = null
by(rule ext, simp add: OclAsTypeC lient-Staff bot-option-def null-fun-def null-option-def )
lemma OclAsTypeC lient-Flight-null : ((null::·Flight) .oclAsType(Client)) = null
by(rule ext, simp add: OclAsTypeC lient-Flight bot-option-def null-fun-def null-option-def )
lemma OclAsTypeReservation-Client-invalid : ((invalid::·Client) .oclAsType(Reservation)) = invalid
by(rule ext, simp add: OclAsTypeReservation-Client bot-option-def invalid-def )
lemma OclAsTypeReservation-Reservation-invalid : ((invalid::·Reservation) .oclAsType(Reservation)) = invalid
by(simp)
lemma OclAsTypeReservation-OclAny-invalid : ((invalid::·OclAny) .oclAsType(Reservation)) = invalid
by(rule ext, simp add: OclAsTypeReservation-OclAny bot-option-def invalid-def )
lemma OclAsTypeReservation-Person-invalid : ((invalid::·Person) .oclAsType(Reservation)) = invalid
by(rule ext, simp add: OclAsTypeReservation-Person bot-option-def invalid-def )
lemma OclAsTypeReservation-Staff-invalid : ((invalid::·Staff ) .oclAsType(Reservation)) = invalid
by(rule ext, simp add: OclAsTypeReservation-Staff bot-option-def invalid-def )
lemma OclAsTypeReservation-Flight-invalid : ((invalid::·Flight) .oclAsType(Reservation)) = invalid
by(rule ext, simp add: OclAsTypeReservation-Flight bot-option-def invalid-def )
lemma OclAsTypeReservation-Client-null : ((null::·Client) .oclAsType(Reservation)) = null
by(rule ext, simp add: OclAsTypeReservation-Client bot-option-def null-fun-def null-option-def )
lemma OclAsTypeReservation-Reservation-null : ((null::·Reservation) .oclAsType(Reservation)) = null
by(simp)
lemma OclAsTypeReservation-OclAny-null : ((null::·OclAny) .oclAsType(Reservation)) = null
by(rule ext, simp add: OclAsTypeReservation-OclAny bot-option-def null-fun-def null-option-def )
lemma OclAsTypeReservation-Person-null : ((null::·Person) .oclAsType(Reservation)) = null
by(rule ext, simp add: OclAsTypeReservation-Person bot-option-def null-fun-def null-option-def )
lemma OclAsTypeReservation-Staff-null : ((null::·Staff ) .oclAsType(Reservation)) = null
by(rule ext, simp add: OclAsTypeReservation-Staff bot-option-def null-fun-def null-option-def )
lemma OclAsTypeReservation-Flight-null : ((null::·Flight) .oclAsType(Reservation)) = null
by(rule ext, simp add: OclAsTypeReservation-Flight bot-option-def null-fun-def null-option-def )
lemma OclAsTypeOclAny-Client-invalid : ((invalid::·Client) .oclAsType(OclAny)) = invalid
by(rule ext, simp add: OclAsTypeOclAny-Client bot-option-def invalid-def )
lemma OclAsTypeOclAny-Reservation-invalid : ((invalid::·Reservation) .oclAsType(OclAny)) = invalid
by(rule ext, simp add: OclAsTypeOclAny-Reservation bot-option-def invalid-def )
lemma OclAsTypeOclAny-OclAny-invalid : ((invalid::·OclAny) .oclAsType(OclAny)) = invalid
by(simp)
lemma OclAsTypeOclAny-Person-invalid : ((invalid::·Person) .oclAsType(OclAny)) = invalid
by(rule ext, simp add: OclAsTypeOclAny-Person bot-option-def invalid-def )
lemma OclAsTypeOclAny-Staff-invalid : ((invalid::·Staff ) .oclAsType(OclAny)) = invalid
by(rule ext, simp add: OclAsTypeOclAny-Staff bot-option-def invalid-def )
lemma OclAsTypeOclAny-Flight-invalid : ((invalid::·Flight) .oclAsType(OclAny)) = invalid
by(rule ext, simp add: OclAsTypeOclAny-Flight bot-option-def invalid-def )
lemma OclAsTypeOclAny-Client-null : ((null::·Client) .oclAsType(OclAny)) = null
by(rule ext, simp add: OclAsTypeOclAny-Client bot-option-def null-fun-def null-option-def )
lemma OclAsTypeOclAny-Reservation-null : ((null::·Reservation) .oclAsType(OclAny)) = null
by(rule ext, simp add: OclAsTypeOclAny-Reservation bot-option-def null-fun-def null-option-def )
lemma OclAsTypeOclAny-OclAny-null : ((null::·OclAny) .oclAsType(OclAny)) = null
by(simp)
lemma OclAsTypeOclAny-Person-null : ((null::·Person) .oclAsType(OclAny)) = null
by(rule ext, simp add: OclAsTypeOclAny-Person bot-option-def null-fun-def null-option-def )
lemma OclAsTypeOclAny-Staff-null : ((null::·Staff ) .oclAsType(OclAny)) = null
by(rule ext, simp add: OclAsTypeOclAny-Staff bot-option-def null-fun-def null-option-def )
lemma OclAsTypeOclAny-Flight-null : ((null::·Flight) .oclAsType(OclAny)) = null
by(rule ext, simp add: OclAsTypeOclAny-Flight bot-option-def null-fun-def null-option-def )
lemma OclAsTypeP erson-Client-invalid : ((invalid::·Client) .oclAsType(Person)) = invalid
by(rule ext, simp add: OclAsTypeP erson-Client bot-option-def invalid-def )
lemma OclAsTypeP erson-Reservation-invalid : ((invalid::·Reservation) .oclAsType(Person)) = invalid
by(rule ext, simp add: OclAsTypeP erson-Reservation bot-option-def invalid-def )
lemma OclAsTypeP erson-OclAny-invalid : ((invalid::·OclAny) .oclAsType(Person)) = invalid
by(rule ext, simp add: OclAsTypeP erson-OclAny bot-option-def invalid-def )
lemma OclAsTypeP erson-Person-invalid : ((invalid::·Person) .oclAsType(Person)) = invalid
by(simp)
lemma OclAsTypeP erson-Staff-invalid : ((invalid::·Staff ) .oclAsType(Person)) = invalid
by(rule ext, simp add: OclAsTypeP erson-Staff bot-option-def invalid-def )
lemma OclAsTypeP erson-Flight-invalid : ((invalid::·Flight) .oclAsType(Person)) = invalid
by(rule ext, simp add: OclAsTypeP erson-Flight bot-option-def invalid-def )
lemma OclAsTypeP erson-Client-null : ((null::·Client) .oclAsType(Person)) = null
by(rule ext, simp add: OclAsTypeP erson-Client bot-option-def null-fun-def null-option-def )
lemma OclAsTypeP erson-Reservation-null : ((null::·Reservation) .oclAsType(Person)) = null
by(rule ext, simp add: OclAsTypeP erson-Reservation bot-option-def null-fun-def null-option-def )
lemma OclAsTypeP erson-OclAny-null : ((null::·OclAny) .oclAsType(Person)) = null



174 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(rule ext, simp add: OclAsTypeP erson-OclAny bot-option-def null-fun-def null-option-def )
lemma OclAsTypeP erson-Person-null : ((null::·Person) .oclAsType(Person)) = null
by(simp)
lemma OclAsTypeP erson-Staff-null : ((null::·Staff ) .oclAsType(Person)) = null
by(rule ext, simp add: OclAsTypeP erson-Staff bot-option-def null-fun-def null-option-def )
lemma OclAsTypeP erson-Flight-null : ((null::·Flight) .oclAsType(Person)) = null
by(rule ext, simp add: OclAsTypeP erson-Flight bot-option-def null-fun-def null-option-def )
lemma OclAsTypeStaf f -Client-invalid : ((invalid::·Client) .oclAsType(Staff )) = invalid
by(rule ext, simp add: OclAsTypeStaf f -Client bot-option-def invalid-def )
lemma OclAsTypeStaf f -Reservation-invalid : ((invalid::·Reservation) .oclAsType(Staff )) = invalid
by(rule ext, simp add: OclAsTypeStaf f -Reservation bot-option-def invalid-def )
lemma OclAsTypeStaf f -OclAny-invalid : ((invalid::·OclAny) .oclAsType(Staff )) = invalid
by(rule ext, simp add: OclAsTypeStaf f -OclAny bot-option-def invalid-def )
lemma OclAsTypeStaf f -Person-invalid : ((invalid::·Person) .oclAsType(Staff )) = invalid
by(rule ext, simp add: OclAsTypeStaf f -Person bot-option-def invalid-def )
lemma OclAsTypeStaf f -Staff-invalid : ((invalid::·Staff ) .oclAsType(Staff )) = invalid
by(simp)
lemma OclAsTypeStaf f -Flight-invalid : ((invalid::·Flight) .oclAsType(Staff )) = invalid
by(rule ext, simp add: OclAsTypeStaf f -Flight bot-option-def invalid-def )
lemma OclAsTypeStaf f -Client-null : ((null::·Client) .oclAsType(Staff )) = null
by(rule ext, simp add: OclAsTypeStaf f -Client bot-option-def null-fun-def null-option-def )
lemma OclAsTypeStaf f -Reservation-null : ((null::·Reservation) .oclAsType(Staff )) = null
by(rule ext, simp add: OclAsTypeStaf f -Reservation bot-option-def null-fun-def null-option-def )
lemma OclAsTypeStaf f -OclAny-null : ((null::·OclAny) .oclAsType(Staff )) = null
by(rule ext, simp add: OclAsTypeStaf f -OclAny bot-option-def null-fun-def null-option-def )
lemma OclAsTypeStaf f -Person-null : ((null::·Person) .oclAsType(Staff )) = null
by(rule ext, simp add: OclAsTypeStaf f -Person bot-option-def null-fun-def null-option-def )
lemma OclAsTypeStaf f -Staff-null : ((null::·Staff ) .oclAsType(Staff )) = null
by(simp)
lemma OclAsTypeStaf f -Flight-null : ((null::·Flight) .oclAsType(Staff )) = null
by(rule ext, simp add: OclAsTypeStaf f -Flight bot-option-def null-fun-def null-option-def )
lemma OclAsTypeF light-Client-invalid : ((invalid::·Client) .oclAsType(Flight)) = invalid
by(rule ext, simp add: OclAsTypeF light-Client bot-option-def invalid-def )
lemma OclAsTypeF light-Reservation-invalid : ((invalid::·Reservation) .oclAsType(Flight)) = invalid
by(rule ext, simp add: OclAsTypeF light-Reservation bot-option-def invalid-def )
lemma OclAsTypeF light-OclAny-invalid : ((invalid::·OclAny) .oclAsType(Flight)) = invalid
by(rule ext, simp add: OclAsTypeF light-OclAny bot-option-def invalid-def )
lemma OclAsTypeF light-Person-invalid : ((invalid::·Person) .oclAsType(Flight)) = invalid
by(rule ext, simp add: OclAsTypeF light-Person bot-option-def invalid-def )
lemma OclAsTypeF light-Staff-invalid : ((invalid::·Staff ) .oclAsType(Flight)) = invalid
by(rule ext, simp add: OclAsTypeF light-Staff bot-option-def invalid-def )
lemma OclAsTypeF light-Flight-invalid : ((invalid::·Flight) .oclAsType(Flight)) = invalid
by(simp)
lemma OclAsTypeF light-Client-null : ((null::·Client) .oclAsType(Flight)) = null
by(rule ext, simp add: OclAsTypeF light-Client bot-option-def null-fun-def null-option-def )
lemma OclAsTypeF light-Reservation-null : ((null::·Reservation) .oclAsType(Flight)) = null
by(rule ext, simp add: OclAsTypeF light-Reservation bot-option-def null-fun-def null-option-def )
lemma OclAsTypeF light-OclAny-null : ((null::·OclAny) .oclAsType(Flight)) = null
by(rule ext, simp add: OclAsTypeF light-OclAny bot-option-def null-fun-def null-option-def )
lemma OclAsTypeF light-Person-null : ((null::·Person) .oclAsType(Flight)) = null
by(rule ext, simp add: OclAsTypeF light-Person bot-option-def null-fun-def null-option-def )
lemma OclAsTypeF light-Staff-null : ((null::·Staff ) .oclAsType(Flight)) = null
by(rule ext, simp add: OclAsTypeF light-Staff bot-option-def null-fun-def null-option-def )
lemma OclAsTypeF light-Flight-null : ((null::·Flight) .oclAsType(Flight)) = null
by(simp)

lemmas[simp,code-unfold] = OclAsTypeC lient-Client-invalid
OclAsTypeC lient-Reservation-invalid
OclAsTypeC lient-OclAny-invalid
OclAsTypeC lient-Person-invalid
OclAsTypeC lient-Staff-invalid
OclAsTypeC lient-Flight-invalid
OclAsTypeC lient-Client-null
OclAsTypeC lient-Reservation-null
OclAsTypeC lient-OclAny-null
OclAsTypeC lient-Person-null
OclAsTypeC lient-Staff-null
OclAsTypeC lient-Flight-null
OclAsTypeReservation-Client-invalid
OclAsTypeReservation-Reservation-invalid
OclAsTypeReservation-OclAny-invalid
OclAsTypeReservation-Person-invalid



B.4. CLASS MODEL: OCLASTYPE 175

OclAsTypeReservation-Staff-invalid
OclAsTypeReservation-Flight-invalid
OclAsTypeReservation-Client-null
OclAsTypeReservation-Reservation-null
OclAsTypeReservation-OclAny-null
OclAsTypeReservation-Person-null
OclAsTypeReservation-Staff-null
OclAsTypeReservation-Flight-null
OclAsTypeOclAny-Client-invalid
OclAsTypeOclAny-Reservation-invalid
OclAsTypeOclAny-OclAny-invalid
OclAsTypeOclAny-Person-invalid
OclAsTypeOclAny-Staff-invalid
OclAsTypeOclAny-Flight-invalid
OclAsTypeOclAny-Client-null
OclAsTypeOclAny-Reservation-null
OclAsTypeOclAny-OclAny-null
OclAsTypeOclAny-Person-null
OclAsTypeOclAny-Staff-null
OclAsTypeOclAny-Flight-null
OclAsTypeP erson-Client-invalid
OclAsTypeP erson-Reservation-invalid
OclAsTypeP erson-OclAny-invalid
OclAsTypeP erson-Person-invalid
OclAsTypeP erson-Staff-invalid
OclAsTypeP erson-Flight-invalid
OclAsTypeP erson-Client-null
OclAsTypeP erson-Reservation-null
OclAsTypeP erson-OclAny-null
OclAsTypeP erson-Person-null
OclAsTypeP erson-Staff-null
OclAsTypeP erson-Flight-null
OclAsTypeStaf f -Client-invalid
OclAsTypeStaf f -Reservation-invalid
OclAsTypeStaf f -OclAny-invalid
OclAsTypeStaf f -Person-invalid
OclAsTypeStaf f -Staff-invalid
OclAsTypeStaf f -Flight-invalid
OclAsTypeStaf f -Client-null
OclAsTypeStaf f -Reservation-null
OclAsTypeStaf f -OclAny-null
OclAsTypeStaf f -Person-null
OclAsTypeStaf f -Staff-null
OclAsTypeStaf f -Flight-null
OclAsTypeF light-Client-invalid
OclAsTypeF light-Reservation-invalid
OclAsTypeF light-OclAny-invalid
OclAsTypeF light-Person-invalid
OclAsTypeF light-Staff-invalid
OclAsTypeF light-Flight-invalid
OclAsTypeF light-Client-null
OclAsTypeF light-Reservation-null
OclAsTypeF light-OclAny-null
OclAsTypeF light-Person-null
OclAsTypeF light-Staff-null
OclAsTypeF light-Flight-null

Validity and Definedness Properties
lemma OclAsTypeP erson-Client-defined :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclAsType(Person)))
using isdef

by(auto simp: OclAsTypeP erson-Client foundation16 null-option-def bot-option-def )
lemma OclAsTypeP erson-Staff-defined :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclAsType(Person)))
using isdef

by(auto simp: OclAsTypeP erson-Staff foundation16 null-option-def bot-option-def )
lemma OclAsTypeOclAny-Flight-defined :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclAsType(OclAny)))
using isdef



176 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(auto simp: OclAsTypeOclAny-Flight foundation16 null-option-def bot-option-def )
lemma OclAsTypeOclAny-Client-defined :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclAsType(OclAny)))
using isdef

by(auto simp: OclAsTypeOclAny-Client foundation16 null-option-def bot-option-def )
lemma OclAsTypeOclAny-Staff-defined :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclAsType(OclAny)))
using isdef

by(auto simp: OclAsTypeOclAny-Staff foundation16 null-option-def bot-option-def )
lemma OclAsTypeOclAny-Person-defined :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclAsType(OclAny)))
using isdef

by(auto simp: OclAsTypeOclAny-Person foundation16 null-option-def bot-option-def )
lemma OclAsTypeOclAny-Reservation-defined :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclAsType(OclAny)))
using isdef

by(auto simp: OclAsTypeOclAny-Reservation foundation16 null-option-def bot-option-def )

Up Down Casting
lemma upOclAny-downF light-cast0 :
assumes isdef : τ |= (δ (X))
shows τ |= (((X ::·Flight) .oclAsType(OclAny)) .oclAsType(Flight)) , X
using isdef

by(auto simp: OclAsTypeOclAny-Flight OclAsTypeF light-OclAny foundation22 foundation16 null-option-def bot-option-def split:
tyEXT F light.split tyF light.split)
lemma upP erson-downC lient-cast0 :
assumes isdef : τ |= (δ (X))
shows τ |= (((X ::·Client) .oclAsType(Person)) .oclAsType(Client)) , X
using isdef

by(auto simp: OclAsTypeP erson-Client OclAsTypeC lient-Person foundation22 foundation16 null-option-def bot-option-def split:
tyEXT C lient.split tyC lient.split)
lemma upOclAny-downC lient-cast0 :
assumes isdef : τ |= (δ (X))
shows τ |= (((X ::·Client) .oclAsType(OclAny)) .oclAsType(Client)) , X
using isdef

by(auto simp: OclAsTypeOclAny-Client OclAsTypeC lient-OclAny foundation22 foundation16 null-option-def bot-option-def split:
tyEXT C lient.split tyC lient.split)
lemma upP erson-downStaf f -cast0 :
assumes isdef : τ |= (δ (X))
shows τ |= (((X ::·Staff ) .oclAsType(Person)) .oclAsType(Staff )) , X
using isdef

by(auto simp: OclAsTypeP erson-Staff OclAsTypeStaf f -Person foundation22 foundation16 null-option-def bot-option-def split:
tyEXT Staf f .split tyStaf f .split)
lemma upOclAny-downStaf f -cast0 :
assumes isdef : τ |= (δ (X))
shows τ |= (((X ::·Staff ) .oclAsType(OclAny)) .oclAsType(Staff )) , X
using isdef

by(auto simp: OclAsTypeOclAny-Staff OclAsTypeStaf f -OclAny foundation22 foundation16 null-option-def bot-option-def split:
tyEXT Staf f .split tyStaf f .split)
lemma upOclAny-downP erson-cast0 :
assumes isdef : τ |= (δ (X))
shows τ |= (((X ::·Person) .oclAsType(OclAny)) .oclAsType(Person)) , X
using isdef

by(auto simp: OclAsTypeOclAny-Person OclAsTypeP erson-OclAny foundation22 foundation16 null-option-def bot-option-def
split: tyEXT P erson.split tyP erson.split)
lemma upOclAny-downReservation-cast0 :
assumes isdef : τ |= (δ (X))
shows τ |= (((X ::·Reservation) .oclAsType(OclAny)) .oclAsType(Reservation)) , X
using isdef

by(auto simp: OclAsTypeOclAny-Reservation OclAsTypeReservation-OclAny foundation22 foundation16 null-option-def
bot-option-def split: tyEXT Reservation.split tyReservation.split)

lemma upOclAny-downF light-cast :
shows (((X ::·Flight) .oclAsType(OclAny)) .oclAsType(Flight)) = X
apply(rule ext, rename-tac τ)
apply(rule foundation22 [THEN iffD1 ])
apply(case-tac τ |= (δ (X)), simp add: upOclAny-downF light-cast0 )



B.4. CLASS MODEL: OCLASTYPE 177

apply(simp add: defined-split, elim disjE)
apply((erule StrongEq-L-subst2-rev, simp, simp)+)

done
lemma upP erson-downC lient-cast :
shows (((X ::·Client) .oclAsType(Person)) .oclAsType(Client)) = X
apply(rule ext, rename-tac τ)
apply(rule foundation22 [THEN iffD1 ])
apply(case-tac τ |= (δ (X)), simp add: upP erson-downC lient-cast0 )
apply(simp add: defined-split, elim disjE)
apply((erule StrongEq-L-subst2-rev, simp, simp)+)

done
lemma upOclAny-downC lient-cast :
shows (((X ::·Client) .oclAsType(OclAny)) .oclAsType(Client)) = X
apply(rule ext, rename-tac τ)
apply(rule foundation22 [THEN iffD1 ])
apply(case-tac τ |= (δ (X)), simp add: upOclAny-downC lient-cast0 )
apply(simp add: defined-split, elim disjE)
apply((erule StrongEq-L-subst2-rev, simp, simp)+)

done
lemma upP erson-downStaf f -cast :
shows (((X ::·Staff ) .oclAsType(Person)) .oclAsType(Staff )) = X
apply(rule ext, rename-tac τ)
apply(rule foundation22 [THEN iffD1 ])
apply(case-tac τ |= (δ (X)), simp add: upP erson-downStaf f -cast0 )
apply(simp add: defined-split, elim disjE)
apply((erule StrongEq-L-subst2-rev, simp, simp)+)

done
lemma upOclAny-downStaf f -cast :
shows (((X ::·Staff ) .oclAsType(OclAny)) .oclAsType(Staff )) = X
apply(rule ext, rename-tac τ)
apply(rule foundation22 [THEN iffD1 ])
apply(case-tac τ |= (δ (X)), simp add: upOclAny-downStaf f -cast0 )
apply(simp add: defined-split, elim disjE)
apply((erule StrongEq-L-subst2-rev, simp, simp)+)

done
lemma upOclAny-downP erson-cast :
shows (((X ::·Person) .oclAsType(OclAny)) .oclAsType(Person)) = X
apply(rule ext, rename-tac τ)
apply(rule foundation22 [THEN iffD1 ])
apply(case-tac τ |= (δ (X)), simp add: upOclAny-downP erson-cast0 )
apply(simp add: defined-split, elim disjE)
apply((erule StrongEq-L-subst2-rev, simp, simp)+)

done
lemma upOclAny-downReservation-cast :
shows (((X ::·Reservation) .oclAsType(OclAny)) .oclAsType(Reservation)) = X
apply(rule ext, rename-tac τ)
apply(rule foundation22 [THEN iffD1 ])
apply(case-tac τ |= (δ (X)), simp add: upOclAny-downReservation-cast0 )
apply(simp add: defined-split, elim disjE)
apply((erule StrongEq-L-subst2-rev, simp, simp)+)

done

lemma downF light-upOclAny-cast :
assumes def-X : X = ((Y ::·Flight) .oclAsType(OclAny))
shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Flight)) .oclAsType(OclAny)) .= X))
apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp)

by(rule foundation25 ′, simp add: def-X upOclAny-downF light-cast StrictRefEqObj ect-sym)
lemma downC lient-upP erson-cast :
assumes def-X : X = ((Y ::·Client) .oclAsType(Person))
shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Client)) .oclAsType(Person)) .= X))
apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp)

by(rule foundation25 ′, simp add: def-X upP erson-downC lient-cast StrictRefEqObj ect-sym)
lemma downC lient-upOclAny-cast :
assumes def-X : X = ((Y ::·Client) .oclAsType(OclAny))
shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Client)) .oclAsType(OclAny)) .= X))
apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp)

by(rule foundation25 ′, simp add: def-X upOclAny-downC lient-cast StrictRefEqObj ect-sym)
lemma downStaf f -upP erson-cast :
assumes def-X : X = ((Y ::·Staff ) .oclAsType(Person))
shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Staff )) .oclAsType(Person)) .= X))
apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp)

by(rule foundation25 ′, simp add: def-X upP erson-downStaf f -cast StrictRefEqObj ect-sym)



178 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

lemma downStaf f -upOclAny-cast :
assumes def-X : X = ((Y ::·Staff ) .oclAsType(OclAny))
shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Staff )) .oclAsType(OclAny)) .= X))
apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp)

by(rule foundation25 ′, simp add: def-X upOclAny-downStaf f -cast StrictRefEqObj ect-sym)
lemma downP erson-upOclAny-cast :
assumes def-X : X = ((Y ::·Person) .oclAsType(OclAny))
shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Person)) .oclAsType(OclAny)) .= X))
apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp)

by(rule foundation25 ′, simp add: def-X upOclAny-downP erson-cast StrictRefEqObj ect-sym)
lemma downReservation-upOclAny-cast :
assumes def-X : X = ((Y ::·Reservation) .oclAsType(OclAny))
shows (τ |= ((not ((υ (X)))) or ((X .oclAsType(Reservation)) .oclAsType(OclAny)) .= X))
apply(case-tac (τ |= ((not ((υ (X)))))), rule foundation25 , simp)

by(rule foundation25 ′, simp add: def-X upOclAny-downReservation-cast StrictRefEqObj ect-sym)

Const
lemma OclAsTypeC lient-Client-const : (const ((X ::·Client))) =⇒ (const (X .oclAsType(Client)))
by(simp add: const-def , (metis (no-types) OclAsTypeC lient-Client prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeC lient-Reservation-const : (const ((X ::·Reservation))) =⇒ (const (X .oclAsType(Client)))
by(simp add: const-def , (metis (no-types) OclAsTypeC lient-Reservation prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeC lient-OclAny-const : (const ((X ::·OclAny))) =⇒ (const (X .oclAsType(Client)))
by(simp add: const-def , (metis (no-types) OclAsTypeC lient-OclAny prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeC lient-Person-const : (const ((X ::·Person))) =⇒ (const (X .oclAsType(Client)))
by(simp add: const-def , (metis (no-types) OclAsTypeC lient-Person prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeC lient-Staff-const : (const ((X ::·Staff ))) =⇒ (const (X .oclAsType(Client)))
by(simp add: const-def , (metis (no-types) OclAsTypeC lient-Staff prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeC lient-Flight-const : (const ((X ::·Flight))) =⇒ (const (X .oclAsType(Client)))
by(simp add: const-def , (metis (no-types) OclAsTypeC lient-Flight prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeReservation-Client-const : (const ((X ::·Client))) =⇒ (const (X .oclAsType(Reservation)))
by(simp add: const-def , (metis (no-types) OclAsTypeReservation-Client prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeReservation-Reservation-const : (const ((X ::·Reservation))) =⇒ (const (X .oclAsType(Reservation)))
by(simp add: const-def , (metis (no-types) OclAsTypeReservation-Reservation prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeReservation-OclAny-const : (const ((X ::·OclAny))) =⇒ (const (X .oclAsType(Reservation)))
by(simp add: const-def , (metis (no-types) OclAsTypeReservation-OclAny prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeReservation-Person-const : (const ((X ::·Person))) =⇒ (const (X .oclAsType(Reservation)))
by(simp add: const-def , (metis (no-types) OclAsTypeReservation-Person prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeReservation-Staff-const : (const ((X ::·Staff ))) =⇒ (const (X .oclAsType(Reservation)))
by(simp add: const-def , (metis (no-types) OclAsTypeReservation-Staff prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeReservation-Flight-const : (const ((X ::·Flight))) =⇒ (const (X .oclAsType(Reservation)))
by(simp add: const-def , (metis (no-types) OclAsTypeReservation-Flight prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeOclAny-Client-const : (const ((X ::·Client))) =⇒ (const (X .oclAsType(OclAny)))
by(simp add: const-def , (metis (no-types) OclAsTypeOclAny-Client prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeOclAny-Reservation-const : (const ((X ::·Reservation))) =⇒ (const (X .oclAsType(OclAny)))
by(simp add: const-def , (metis (no-types) OclAsTypeOclAny-Reservation prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeOclAny-OclAny-const : (const ((X ::·OclAny))) =⇒ (const (X .oclAsType(OclAny)))
by(simp add: const-def , (metis (no-types) OclAsTypeOclAny-OclAny prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeOclAny-Person-const : (const ((X ::·Person))) =⇒ (const (X .oclAsType(OclAny)))
by(simp add: const-def , (metis (no-types) OclAsTypeOclAny-Person prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeOclAny-Staff-const : (const ((X ::·Staff ))) =⇒ (const (X .oclAsType(OclAny)))
by(simp add: const-def , (metis (no-types) OclAsTypeOclAny-Staff prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeOclAny-Flight-const : (const ((X ::·Flight))) =⇒ (const (X .oclAsType(OclAny)))
by(simp add: const-def , (metis (no-types) OclAsTypeOclAny-Flight prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeP erson-Client-const : (const ((X ::·Client))) =⇒ (const (X .oclAsType(Person)))



B.4. CLASS MODEL: OCLASTYPE 179

by(simp add: const-def , (metis (no-types) OclAsTypeP erson-Client prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeP erson-Reservation-const : (const ((X ::·Reservation))) =⇒ (const (X .oclAsType(Person)))
by(simp add: const-def , (metis (no-types) OclAsTypeP erson-Reservation prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeP erson-OclAny-const : (const ((X ::·OclAny))) =⇒ (const (X .oclAsType(Person)))
by(simp add: const-def , (metis (no-types) OclAsTypeP erson-OclAny prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeP erson-Person-const : (const ((X ::·Person))) =⇒ (const (X .oclAsType(Person)))
by(simp add: const-def , (metis (no-types) OclAsTypeP erson-Person prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeP erson-Staff-const : (const ((X ::·Staff ))) =⇒ (const (X .oclAsType(Person)))
by(simp add: const-def , (metis (no-types) OclAsTypeP erson-Staff prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeP erson-Flight-const : (const ((X ::·Flight))) =⇒ (const (X .oclAsType(Person)))
by(simp add: const-def , (metis (no-types) OclAsTypeP erson-Flight prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeStaf f -Client-const : (const ((X ::·Client))) =⇒ (const (X .oclAsType(Staff )))
by(simp add: const-def , (metis (no-types) OclAsTypeStaf f -Client prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeStaf f -Reservation-const : (const ((X ::·Reservation))) =⇒ (const (X .oclAsType(Staff )))
by(simp add: const-def , (metis (no-types) OclAsTypeStaf f -Reservation prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeStaf f -OclAny-const : (const ((X ::·OclAny))) =⇒ (const (X .oclAsType(Staff )))
by(simp add: const-def , (metis (no-types) OclAsTypeStaf f -OclAny prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeStaf f -Person-const : (const ((X ::·Person))) =⇒ (const (X .oclAsType(Staff )))
by(simp add: const-def , (metis (no-types) OclAsTypeStaf f -Person prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeStaf f -Staff-const : (const ((X ::·Staff ))) =⇒ (const (X .oclAsType(Staff )))
by(simp add: const-def , (metis (no-types) OclAsTypeStaf f -Staff prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeStaf f -Flight-const : (const ((X ::·Flight))) =⇒ (const (X .oclAsType(Staff )))
by(simp add: const-def , (metis (no-types) OclAsTypeStaf f -Flight prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeF light-Client-const : (const ((X ::·Client))) =⇒ (const (X .oclAsType(Flight)))
by(simp add: const-def , (metis (no-types) OclAsTypeF light-Client prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeF light-Reservation-const : (const ((X ::·Reservation))) =⇒ (const (X .oclAsType(Flight)))
by(simp add: const-def , (metis (no-types) OclAsTypeF light-Reservation prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeF light-OclAny-const : (const ((X ::·OclAny))) =⇒ (const (X .oclAsType(Flight)))
by(simp add: const-def , (metis (no-types) OclAsTypeF light-OclAny prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeF light-Person-const : (const ((X ::·Person))) =⇒ (const (X .oclAsType(Flight)))
by(simp add: const-def , (metis (no-types) OclAsTypeF light-Person prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeF light-Staff-const : (const ((X ::·Staff ))) =⇒ (const (X .oclAsType(Flight)))
by(simp add: const-def , (metis (no-types) OclAsTypeF light-Staff prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)
lemma OclAsTypeF light-Flight-const : (const ((X ::·Flight))) =⇒ (const (X .oclAsType(Flight)))
by(simp add: const-def , (metis (no-types) OclAsTypeF light-Flight prod.collapse bot-option-def invalid-def null-fun-def
null-option-def )?)

lemmas[simp,code-unfold] = OclAsTypeC lient-Client-const
OclAsTypeC lient-Reservation-const
OclAsTypeC lient-OclAny-const
OclAsTypeC lient-Person-const
OclAsTypeC lient-Staff-const
OclAsTypeC lient-Flight-const
OclAsTypeReservation-Client-const
OclAsTypeReservation-Reservation-const
OclAsTypeReservation-OclAny-const
OclAsTypeReservation-Person-const
OclAsTypeReservation-Staff-const
OclAsTypeReservation-Flight-const
OclAsTypeOclAny-Client-const
OclAsTypeOclAny-Reservation-const
OclAsTypeOclAny-OclAny-const
OclAsTypeOclAny-Person-const
OclAsTypeOclAny-Staff-const
OclAsTypeOclAny-Flight-const



180 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

OclAsTypeP erson-Client-const
OclAsTypeP erson-Reservation-const
OclAsTypeP erson-OclAny-const
OclAsTypeP erson-Person-const
OclAsTypeP erson-Staff-const
OclAsTypeP erson-Flight-const
OclAsTypeStaf f -Client-const
OclAsTypeStaf f -Reservation-const
OclAsTypeStaf f -OclAny-const
OclAsTypeStaf f -Person-const
OclAsTypeStaf f -Staff-const
OclAsTypeStaf f -Flight-const
OclAsTypeF light-Client-const
OclAsTypeF light-Reservation-const
OclAsTypeF light-OclAny-const
OclAsTypeF light-Person-const
OclAsTypeF light-Staff-const
OclAsTypeF light-Flight-const

B.5 Class Model: OclIsTypeOf

Definition
consts OclIsTypeOfF light :: ′α ⇒ Boolean ((-) .oclIsTypeOf ′(Flight ′))
consts OclIsTypeOfC lient :: ′α ⇒ Boolean ((-) .oclIsTypeOf ′(Client ′))
consts OclIsTypeOf Staf f :: ′α ⇒ Boolean ((-) .oclIsTypeOf ′(Staff ′))
consts OclIsTypeOfP erson :: ′α ⇒ Boolean ((-) .oclIsTypeOf ′(Person ′))
consts OclIsTypeOfReservation :: ′α ⇒ Boolean ((-) .oclIsTypeOf ′(Reservation ′))
consts OclIsTypeOfOclAny :: ′α ⇒ Boolean ((-) .oclIsTypeOf ′(OclAny ′))

overloading OclIsTypeOfF light ≡ (OclIsTypeOfF light::(·Flight) ⇒ -)
begin
definition OclIsTypeOfF light-Flight : (x::·Flight) .oclIsTypeOf (Flight) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| bb(mkF light ((mkEXT F light (-))) (-) (-) (-) (-))cc ⇒ (true (τ))))

end
overloading OclIsTypeOfF light ≡ (OclIsTypeOfF light::(·OclAny) ⇒ -)
begin
definition OclIsTypeOfF light-OclAny : (x::·OclAny) .oclIsTypeOf (Flight) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| bb(mkOclAny ((mkEXT OclAny-F light (-))))cc ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfF light ≡ (OclIsTypeOfF light::(·Staff ) ⇒ -)
begin
definition OclIsTypeOfF light-Staff : (x::·Staff ) .oclIsTypeOf (Flight) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfF light ≡ (OclIsTypeOfF light::(·Person) ⇒ -)
begin
definition OclIsTypeOfF light-Person : (x::·Person) .oclIsTypeOf (Flight) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfF light ≡ (OclIsTypeOfF light::(·Client) ⇒ -)
begin
definition OclIsTypeOfF light-Client : (x::·Client) .oclIsTypeOf (Flight) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfF light ≡ (OclIsTypeOfF light::(·Reservation) ⇒ -)
begin
definition OclIsTypeOfF light-Reservation : (x::·Reservation) .oclIsTypeOf (Flight) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfC lient ≡ (OclIsTypeOfC lient::(·Client) ⇒ -)
begin
definition OclIsTypeOfC lient-Client : (x::·Client) .oclIsTypeOf (Client) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))



B.5. CLASS MODEL: OCLISTYPEOF 181

| bb(mkC lient ((mkEXT C lient (-) (-))) (-))cc ⇒ (true (τ))))
end
overloading OclIsTypeOfC lient ≡ (OclIsTypeOfC lient::(·Person) ⇒ -)
begin
definition OclIsTypeOfC lient-Person : (x::·Person) .oclIsTypeOf (Client) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| bb(mkP erson ((mkEXT P erson-C lient (-))) (-))cc ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfC lient ≡ (OclIsTypeOfC lient::(·OclAny) ⇒ -)
begin
definition OclIsTypeOfC lient-OclAny : (x::·OclAny) .oclIsTypeOf (Client) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| bb(mkOclAny ((mkEXT OclAny-C lient (-))))cc ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfC lient ≡ (OclIsTypeOfC lient::(·Staff ) ⇒ -)
begin
definition OclIsTypeOfC lient-Staff : (x::·Staff ) .oclIsTypeOf (Client) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfC lient ≡ (OclIsTypeOfC lient::(·Reservation) ⇒ -)
begin
definition OclIsTypeOfC lient-Reservation : (x::·Reservation) .oclIsTypeOf (Client) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfC lient ≡ (OclIsTypeOfC lient::(·Flight) ⇒ -)
begin
definition OclIsTypeOfC lient-Flight : (x::·Flight) .oclIsTypeOf (Client) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOf Staf f ≡ (OclIsTypeOf Staf f ::(·Staff ) ⇒ -)
begin
definition OclIsTypeOf Staf f -Staff : (x::·Staff ) .oclIsTypeOf (Staff ) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| bb(mkStaf f ((mkEXT Staf f (-) (-))))cc ⇒ (true (τ))))

end
overloading OclIsTypeOf Staf f ≡ (OclIsTypeOf Staf f ::(·Person) ⇒ -)
begin
definition OclIsTypeOf Staf f -Person : (x::·Person) .oclIsTypeOf (Staff ) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| bb(mkP erson ((mkEXT P erson-Staf f (-))) (-))cc ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOf Staf f ≡ (OclIsTypeOf Staf f ::(·OclAny) ⇒ -)
begin
definition OclIsTypeOf Staf f -OclAny : (x::·OclAny) .oclIsTypeOf (Staff ) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| bb(mkOclAny ((mkEXT OclAny-Staf f (-))))cc ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOf Staf f ≡ (OclIsTypeOf Staf f ::(·Client) ⇒ -)
begin
definition OclIsTypeOf Staf f -Client : (x::·Client) .oclIsTypeOf (Staff ) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOf Staf f ≡ (OclIsTypeOf Staf f ::(·Reservation) ⇒ -)
begin
definition OclIsTypeOf Staf f -Reservation : (x::·Reservation) .oclIsTypeOf (Staff ) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOf Staf f ≡ (OclIsTypeOf Staf f ::(·Flight) ⇒ -)
begin
definition OclIsTypeOf Staf f -Flight : (x::·Flight) .oclIsTypeOf (Staff ) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfP erson ≡ (OclIsTypeOfP erson::(·Person) ⇒ -)



182 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

begin
definition OclIsTypeOfP erson-Person : (x::·Person) .oclIsTypeOf (Person) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| bb(mkP erson ((mkEXT P erson (-))) (-))cc ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfP erson ≡ (OclIsTypeOfP erson::(·OclAny) ⇒ -)
begin
definition OclIsTypeOfP erson-OclAny : (x::·OclAny) .oclIsTypeOf (Person) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| bb(mkOclAny ((mkEXT OclAny-P erson (-))))cc ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfP erson ≡ (OclIsTypeOfP erson::(·Client) ⇒ -)
begin
definition OclIsTypeOfP erson-Client : (x::·Client) .oclIsTypeOf (Person) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfP erson ≡ (OclIsTypeOfP erson::(·Staff ) ⇒ -)
begin
definition OclIsTypeOfP erson-Staff : (x::·Staff ) .oclIsTypeOf (Person) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfP erson ≡ (OclIsTypeOfP erson::(·Reservation) ⇒ -)
begin
definition OclIsTypeOfP erson-Reservation : (x::·Reservation) .oclIsTypeOf (Person) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfP erson ≡ (OclIsTypeOfP erson::(·Flight) ⇒ -)
begin
definition OclIsTypeOfP erson-Flight : (x::·Flight) .oclIsTypeOf (Person) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfReservation ≡ (OclIsTypeOfReservation::(·Reservation) ⇒ -)
begin
definition OclIsTypeOfReservation-Reservation : (x::·Reservation) .oclIsTypeOf (Reservation) ≡ (λτ. (case (x (τ)) of ⊥ ⇒

(invalid (τ))
| b⊥c ⇒ (true (τ))
| bb(mkReservation ((mkEXT Reservation (-))) (-) (-) (-))cc ⇒ (true (τ))))

end
overloading OclIsTypeOfReservation ≡ (OclIsTypeOfReservation::(·OclAny) ⇒ -)
begin
definition OclIsTypeOfReservation-OclAny : (x::·OclAny) .oclIsTypeOf (Reservation) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid

(τ))
| b⊥c ⇒ (true (τ))
| bb(mkOclAny ((mkEXT OclAny-Reservation (-))))cc ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfReservation ≡ (OclIsTypeOfReservation::(·Staff ) ⇒ -)
begin
definition OclIsTypeOfReservation-Staff : (x::·Staff ) .oclIsTypeOf (Reservation) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfReservation ≡ (OclIsTypeOfReservation::(·Person) ⇒ -)
begin
definition OclIsTypeOfReservation-Person : (x::·Person) .oclIsTypeOf (Reservation) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfReservation ≡ (OclIsTypeOfReservation::(·Client) ⇒ -)
begin
definition OclIsTypeOfReservation-Client : (x::·Client) .oclIsTypeOf (Reservation) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfReservation ≡ (OclIsTypeOfReservation::(·Flight) ⇒ -)
begin
definition OclIsTypeOfReservation-Flight : (x::·Flight) .oclIsTypeOf (Reservation) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))



B.5. CLASS MODEL: OCLISTYPEOF 183

| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfOclAny ≡ (OclIsTypeOfOclAny ::(·OclAny) ⇒ -)
begin
definition OclIsTypeOfOclAny-OclAny : (x::·OclAny) .oclIsTypeOf (OclAny) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| bb(mkOclAny ((mkEXT OclAny (-))))cc ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfOclAny ≡ (OclIsTypeOfOclAny ::(·Flight) ⇒ -)
begin
definition OclIsTypeOfOclAny-Flight : (x::·Flight) .oclIsTypeOf (OclAny) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfOclAny ≡ (OclIsTypeOfOclAny ::(·Client) ⇒ -)
begin
definition OclIsTypeOfOclAny-Client : (x::·Client) .oclIsTypeOf (OclAny) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfOclAny ≡ (OclIsTypeOfOclAny ::(·Staff ) ⇒ -)
begin
definition OclIsTypeOfOclAny-Staff : (x::·Staff ) .oclIsTypeOf (OclAny) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfOclAny ≡ (OclIsTypeOfOclAny ::(·Person) ⇒ -)
begin
definition OclIsTypeOfOclAny-Person : (x::·Person) .oclIsTypeOf (OclAny) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid (τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end
overloading OclIsTypeOfOclAny ≡ (OclIsTypeOfOclAny ::(·Reservation) ⇒ -)
begin
definition OclIsTypeOfOclAny-Reservation : (x::·Reservation) .oclIsTypeOf (OclAny) ≡ (λτ. (case (x (τ)) of ⊥ ⇒ (invalid

(τ))
| b⊥c ⇒ (true (τ))
| - ⇒ (false (τ))))

end

definition OclIsTypeOfF light-A = (λ (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsTypeOf (Flight))
| (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsTypeOf (Flight))
| (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsTypeOf (Flight))
| (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsTypeOf (Flight))
| (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsTypeOf (Flight))
| (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation) .oclIsTypeOf (Flight)))

definition OclIsTypeOfC lient-A = (λ (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsTypeOf (Client))
| (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsTypeOf (Client))
| (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsTypeOf (Client))
| (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsTypeOf (Client))
| (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation) .oclIsTypeOf (Client))
| (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsTypeOf (Client)))

definition OclIsTypeOf Staf f -A = (λ (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsTypeOf (Staff ))
| (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsTypeOf (Staff ))
| (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsTypeOf (Staff ))
| (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsTypeOf (Staff ))
| (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation) .oclIsTypeOf (Staff ))
| (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsTypeOf (Staff )))

definition OclIsTypeOfP erson-A = (λ (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsTypeOf (Person))
| (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsTypeOf (Person))
| (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsTypeOf (Person))
| (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsTypeOf (Person))
| (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation) .oclIsTypeOf (Person))
| (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsTypeOf (Person)))

definition OclIsTypeOfReservation-A = (λ (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation)
.oclIsTypeOf (Reservation))
| (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsTypeOf (Reservation))
| (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsTypeOf (Reservation))
| (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsTypeOf (Reservation))
| (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsTypeOf (Reservation))



184 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

| (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsTypeOf (Reservation)))
definition OclIsTypeOfOclAny-A = (λ (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsTypeOf (OclAny))
| (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsTypeOf (OclAny))
| (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsTypeOf (OclAny))
| (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsTypeOf (OclAny))
| (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsTypeOf (OclAny))
| (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation) .oclIsTypeOf (OclAny)))

lemmas[simp,code-unfold] = OclIsTypeOfF light-Flight
OclIsTypeOfC lient-Client
OclIsTypeOf Staf f -Staff
OclIsTypeOfP erson-Person
OclIsTypeOfReservation-Reservation
OclIsTypeOfOclAny-OclAny

Context Passing
lemma cp-OclIsTypeOfC lient-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfC lient-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsTypeOf (Client)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfC lient-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfC lient-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfC lient-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfC lient-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfC lient-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Reservation)
lemma cp-OclIsTypeOfC lient-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Reservation)
lemma cp-OclIsTypeOfC lient-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Reservation)
lemma cp-OclIsTypeOfC lient-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Reservation)
lemma cp-OclIsTypeOfC lient-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Reservation)
lemma cp-OclIsTypeOfC lient-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Reservation)
lemma cp-OclIsTypeOfC lient-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-OclAny)
lemma cp-OclIsTypeOfC lient-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-OclAny)
lemma cp-OclIsTypeOfC lient-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-OclAny)
lemma cp-OclIsTypeOfC lient-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-OclAny)
lemma cp-OclIsTypeOfC lient-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-OclAny)
lemma cp-OclIsTypeOfC lient-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-OclAny)
lemma cp-OclIsTypeOfC lient-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Person)
lemma cp-OclIsTypeOfC lient-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Person)
lemma cp-OclIsTypeOfC lient-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Person)
lemma cp-OclIsTypeOfC lient-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Person)
lemma cp-OclIsTypeOfC lient-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Person)
lemma cp-OclIsTypeOfC lient-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclIsTypeOf (Client)))))



B.5. CLASS MODEL: OCLISTYPEOF 185

by(rule cpI1 , simp add: OclIsTypeOfC lient-Person)
lemma cp-OclIsTypeOfC lient-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Staff )
lemma cp-OclIsTypeOfC lient-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff ) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Staff )
lemma cp-OclIsTypeOfC lient-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Staff )
lemma cp-OclIsTypeOfC lient-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Staff )
lemma cp-OclIsTypeOfC lient-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Staff )
lemma cp-OclIsTypeOfC lient-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Staff )
lemma cp-OclIsTypeOfC lient-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Flight)
lemma cp-OclIsTypeOfC lient-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Flight)
lemma cp-OclIsTypeOfC lient-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Flight)
lemma cp-OclIsTypeOfC lient-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Flight)
lemma cp-OclIsTypeOfC lient-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Flight)
lemma cp-OclIsTypeOfC lient-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclIsTypeOf (Client)))))
by(rule cpI1 , simp add: OclIsTypeOfC lient-Flight)
lemma cp-OclIsTypeOfReservation-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Client)
lemma cp-OclIsTypeOfReservation-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Client)
lemma cp-OclIsTypeOfReservation-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Client)
lemma cp-OclIsTypeOfReservation-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Client)
lemma cp-OclIsTypeOfReservation-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Client)
lemma cp-OclIsTypeOfReservation-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Client)
lemma cp-OclIsTypeOfReservation-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfReservation-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfReservation-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfReservation-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfReservation-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfReservation-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfReservation-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-OclAny)
lemma cp-OclIsTypeOfReservation-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-OclAny)
lemma cp-OclIsTypeOfReservation-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-OclAny)
lemma cp-OclIsTypeOfReservation-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-OclAny)



186 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

lemma cp-OclIsTypeOfReservation-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-OclAny)
lemma cp-OclIsTypeOfReservation-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-OclAny)
lemma cp-OclIsTypeOfReservation-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Person)
lemma cp-OclIsTypeOfReservation-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Person)
lemma cp-OclIsTypeOfReservation-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Person)
lemma cp-OclIsTypeOfReservation-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Person)
lemma cp-OclIsTypeOfReservation-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Person)
lemma cp-OclIsTypeOfReservation-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Person)
lemma cp-OclIsTypeOfReservation-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Staff )
lemma cp-OclIsTypeOfReservation-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff )
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Staff )
lemma cp-OclIsTypeOfReservation-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff )
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Staff )
lemma cp-OclIsTypeOfReservation-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff )
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Staff )
lemma cp-OclIsTypeOfReservation-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Staff )
lemma cp-OclIsTypeOfReservation-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Staff )
lemma cp-OclIsTypeOfReservation-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Flight)
lemma cp-OclIsTypeOfReservation-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Flight)
lemma cp-OclIsTypeOfReservation-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Flight)
lemma cp-OclIsTypeOfReservation-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Flight)
lemma cp-OclIsTypeOfReservation-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Flight)
lemma cp-OclIsTypeOfReservation-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight)
.oclIsTypeOf (Reservation)))))
by(rule cpI1 , simp add: OclIsTypeOfReservation-Flight)
lemma cp-OclIsTypeOfOclAny-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Client)
lemma cp-OclIsTypeOfOclAny-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Client)
lemma cp-OclIsTypeOfOclAny-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Client)
lemma cp-OclIsTypeOfOclAny-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Client)
lemma cp-OclIsTypeOfOclAny-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Client)
lemma cp-OclIsTypeOfOclAny-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Client)
lemma cp-OclIsTypeOfOclAny-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Reservation)
lemma cp-OclIsTypeOfOclAny-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)



B.5. CLASS MODEL: OCLISTYPEOF 187

.oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Reservation)
lemma cp-OclIsTypeOfOclAny-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Reservation)
lemma cp-OclIsTypeOfOclAny-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Reservation)
lemma cp-OclIsTypeOfOclAny-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation)
.oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Reservation)
lemma cp-OclIsTypeOfOclAny-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Reservation)
lemma cp-OclIsTypeOfOclAny-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfOclAny-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfOclAny-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfOclAny-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfOclAny-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfOclAny-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfOclAny-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Person)
lemma cp-OclIsTypeOfOclAny-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Person)
lemma cp-OclIsTypeOfOclAny-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Person)
lemma cp-OclIsTypeOfOclAny-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Person)
lemma cp-OclIsTypeOfOclAny-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Person)
lemma cp-OclIsTypeOfOclAny-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Person)
lemma cp-OclIsTypeOfOclAny-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Staff )
lemma cp-OclIsTypeOfOclAny-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff )
.oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Staff )
lemma cp-OclIsTypeOfOclAny-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Staff )
lemma cp-OclIsTypeOfOclAny-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Staff )
lemma cp-OclIsTypeOfOclAny-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Staff )
lemma cp-OclIsTypeOfOclAny-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Staff )
lemma cp-OclIsTypeOfOclAny-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Flight)
lemma cp-OclIsTypeOfOclAny-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Flight)
lemma cp-OclIsTypeOfOclAny-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Flight)
lemma cp-OclIsTypeOfOclAny-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Flight)
lemma cp-OclIsTypeOfOclAny-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Flight)
lemma cp-OclIsTypeOfOclAny-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclIsTypeOf (OclAny)))))
by(rule cpI1 , simp add: OclIsTypeOfOclAny-Flight)
lemma cp-OclIsTypeOfP erson-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Client)
lemma cp-OclIsTypeOfP erson-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Client)
lemma cp-OclIsTypeOfP erson-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Client)



188 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

lemma cp-OclIsTypeOfP erson-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Client)
lemma cp-OclIsTypeOfP erson-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Client)
lemma cp-OclIsTypeOfP erson-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Client)
lemma cp-OclIsTypeOfP erson-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Reservation)
lemma cp-OclIsTypeOfP erson-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Reservation)
lemma cp-OclIsTypeOfP erson-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Reservation)
lemma cp-OclIsTypeOfP erson-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Reservation)
lemma cp-OclIsTypeOfP erson-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation)
.oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Reservation)
lemma cp-OclIsTypeOfP erson-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Reservation)
lemma cp-OclIsTypeOfP erson-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-OclAny)
lemma cp-OclIsTypeOfP erson-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-OclAny)
lemma cp-OclIsTypeOfP erson-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-OclAny)
lemma cp-OclIsTypeOfP erson-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-OclAny)
lemma cp-OclIsTypeOfP erson-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-OclAny)
lemma cp-OclIsTypeOfP erson-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-OclAny)
lemma cp-OclIsTypeOfP erson-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfP erson-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsTypeOf (Person)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfP erson-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfP erson-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfP erson-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfP erson-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfP erson-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Staff )
lemma cp-OclIsTypeOfP erson-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff )
.oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Staff )
lemma cp-OclIsTypeOfP erson-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Staff )
lemma cp-OclIsTypeOfP erson-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Staff )
lemma cp-OclIsTypeOfP erson-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Staff )
lemma cp-OclIsTypeOfP erson-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Staff )
lemma cp-OclIsTypeOfP erson-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Flight)
lemma cp-OclIsTypeOfP erson-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Flight)
lemma cp-OclIsTypeOfP erson-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Flight)
lemma cp-OclIsTypeOfP erson-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Flight)
lemma cp-OclIsTypeOfP erson-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsTypeOf (Person)))))



B.5. CLASS MODEL: OCLISTYPEOF 189

by(rule cpI1 , simp add: OclIsTypeOfP erson-Flight)
lemma cp-OclIsTypeOfP erson-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclIsTypeOf (Person)))))
by(rule cpI1 , simp add: OclIsTypeOfP erson-Flight)
lemma cp-OclIsTypeOf Staf f -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Client)
lemma cp-OclIsTypeOf Staf f -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Client)
lemma cp-OclIsTypeOf Staf f -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Client)
lemma cp-OclIsTypeOf Staf f -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Client)
lemma cp-OclIsTypeOf Staf f -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Client)
lemma cp-OclIsTypeOf Staf f -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Client)
lemma cp-OclIsTypeOf Staf f -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Reservation)
lemma cp-OclIsTypeOf Staf f -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Reservation)
lemma cp-OclIsTypeOf Staf f -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Reservation)
lemma cp-OclIsTypeOf Staf f -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Reservation)
lemma cp-OclIsTypeOf Staf f -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Reservation)
lemma cp-OclIsTypeOf Staf f -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Reservation)
lemma cp-OclIsTypeOf Staf f -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -OclAny)
lemma cp-OclIsTypeOf Staf f -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -OclAny)
lemma cp-OclIsTypeOf Staf f -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -OclAny)
lemma cp-OclIsTypeOf Staf f -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -OclAny)
lemma cp-OclIsTypeOf Staf f -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -OclAny)
lemma cp-OclIsTypeOf Staf f -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -OclAny)
lemma cp-OclIsTypeOf Staf f -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Person)
lemma cp-OclIsTypeOf Staf f -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Person)
lemma cp-OclIsTypeOf Staf f -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Person)
lemma cp-OclIsTypeOf Staf f -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Person)
lemma cp-OclIsTypeOf Staf f -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Person)
lemma cp-OclIsTypeOf Staf f -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Person)
lemma cp-OclIsTypeOf Staf f -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOf Staf f -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff ) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOf Staf f -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOf Staf f -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOf Staf f -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOf Staf f -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOf Staf f -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Flight)
lemma cp-OclIsTypeOf Staf f -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight) .oclIsTypeOf (Staff )))))



190 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(rule cpI1 , simp add: OclIsTypeOf Staf f -Flight)
lemma cp-OclIsTypeOf Staf f -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Flight)
lemma cp-OclIsTypeOf Staf f -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Flight)
lemma cp-OclIsTypeOf Staf f -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Flight)
lemma cp-OclIsTypeOf Staf f -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclIsTypeOf (Staff )))))
by(rule cpI1 , simp add: OclIsTypeOf Staf f -Flight)
lemma cp-OclIsTypeOfF light-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Client)
lemma cp-OclIsTypeOfF light-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Client)
lemma cp-OclIsTypeOfF light-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Client)
lemma cp-OclIsTypeOfF light-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Client)
lemma cp-OclIsTypeOfF light-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Client)
lemma cp-OclIsTypeOfF light-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Client)
lemma cp-OclIsTypeOfF light-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Reservation)
lemma cp-OclIsTypeOfF light-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Reservation)
lemma cp-OclIsTypeOfF light-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Reservation)
lemma cp-OclIsTypeOfF light-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Reservation)
lemma cp-OclIsTypeOfF light-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Reservation)
lemma cp-OclIsTypeOfF light-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Reservation)
lemma cp-OclIsTypeOfF light-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-OclAny)
lemma cp-OclIsTypeOfF light-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-OclAny)
lemma cp-OclIsTypeOfF light-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-OclAny)
lemma cp-OclIsTypeOfF light-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-OclAny)
lemma cp-OclIsTypeOfF light-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-OclAny)
lemma cp-OclIsTypeOfF light-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-OclAny)
lemma cp-OclIsTypeOfF light-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Person)
lemma cp-OclIsTypeOfF light-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Person)
lemma cp-OclIsTypeOfF light-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Person)
lemma cp-OclIsTypeOfF light-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Person)
lemma cp-OclIsTypeOfF light-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Person)
lemma cp-OclIsTypeOfF light-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Person)
lemma cp-OclIsTypeOfF light-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Staff )
lemma cp-OclIsTypeOfF light-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff ) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Staff )
lemma cp-OclIsTypeOfF light-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Staff )
lemma cp-OclIsTypeOfF light-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Staff )



B.5. CLASS MODEL: OCLISTYPEOF 191

lemma cp-OclIsTypeOfF light-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Staff )
lemma cp-OclIsTypeOfF light-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp add: OclIsTypeOfF light-Staff )
lemma cp-OclIsTypeOfF light-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfF light-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclIsTypeOf (Flight)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfF light-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfF light-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfF light-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp)
lemma cp-OclIsTypeOfF light-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclIsTypeOf (Flight)))))
by(rule cpI1 , simp)

lemmas[simp,code-unfold] = cp-OclIsTypeOfC lient-Client-Client
cp-OclIsTypeOfC lient-Reservation-Client
cp-OclIsTypeOfC lient-OclAny-Client
cp-OclIsTypeOfC lient-Person-Client
cp-OclIsTypeOfC lient-Staff-Client
cp-OclIsTypeOfC lient-Flight-Client
cp-OclIsTypeOfC lient-Client-Reservation
cp-OclIsTypeOfC lient-Reservation-Reservation
cp-OclIsTypeOfC lient-OclAny-Reservation
cp-OclIsTypeOfC lient-Person-Reservation
cp-OclIsTypeOfC lient-Staff-Reservation
cp-OclIsTypeOfC lient-Flight-Reservation
cp-OclIsTypeOfC lient-Client-OclAny
cp-OclIsTypeOfC lient-Reservation-OclAny
cp-OclIsTypeOfC lient-OclAny-OclAny
cp-OclIsTypeOfC lient-Person-OclAny
cp-OclIsTypeOfC lient-Staff-OclAny
cp-OclIsTypeOfC lient-Flight-OclAny
cp-OclIsTypeOfC lient-Client-Person
cp-OclIsTypeOfC lient-Reservation-Person
cp-OclIsTypeOfC lient-OclAny-Person
cp-OclIsTypeOfC lient-Person-Person
cp-OclIsTypeOfC lient-Staff-Person
cp-OclIsTypeOfC lient-Flight-Person
cp-OclIsTypeOfC lient-Client-Staff
cp-OclIsTypeOfC lient-Reservation-Staff
cp-OclIsTypeOfC lient-OclAny-Staff
cp-OclIsTypeOfC lient-Person-Staff
cp-OclIsTypeOfC lient-Staff-Staff
cp-OclIsTypeOfC lient-Flight-Staff
cp-OclIsTypeOfC lient-Client-Flight
cp-OclIsTypeOfC lient-Reservation-Flight
cp-OclIsTypeOfC lient-OclAny-Flight
cp-OclIsTypeOfC lient-Person-Flight
cp-OclIsTypeOfC lient-Staff-Flight
cp-OclIsTypeOfC lient-Flight-Flight
cp-OclIsTypeOfReservation-Client-Client
cp-OclIsTypeOfReservation-Reservation-Client
cp-OclIsTypeOfReservation-OclAny-Client
cp-OclIsTypeOfReservation-Person-Client
cp-OclIsTypeOfReservation-Staff-Client
cp-OclIsTypeOfReservation-Flight-Client
cp-OclIsTypeOfReservation-Client-Reservation
cp-OclIsTypeOfReservation-Reservation-Reservation
cp-OclIsTypeOfReservation-OclAny-Reservation
cp-OclIsTypeOfReservation-Person-Reservation
cp-OclIsTypeOfReservation-Staff-Reservation
cp-OclIsTypeOfReservation-Flight-Reservation
cp-OclIsTypeOfReservation-Client-OclAny
cp-OclIsTypeOfReservation-Reservation-OclAny
cp-OclIsTypeOfReservation-OclAny-OclAny
cp-OclIsTypeOfReservation-Person-OclAny
cp-OclIsTypeOfReservation-Staff-OclAny
cp-OclIsTypeOfReservation-Flight-OclAny



192 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

cp-OclIsTypeOfReservation-Client-Person
cp-OclIsTypeOfReservation-Reservation-Person
cp-OclIsTypeOfReservation-OclAny-Person
cp-OclIsTypeOfReservation-Person-Person
cp-OclIsTypeOfReservation-Staff-Person
cp-OclIsTypeOfReservation-Flight-Person
cp-OclIsTypeOfReservation-Client-Staff
cp-OclIsTypeOfReservation-Reservation-Staff
cp-OclIsTypeOfReservation-OclAny-Staff
cp-OclIsTypeOfReservation-Person-Staff
cp-OclIsTypeOfReservation-Staff-Staff
cp-OclIsTypeOfReservation-Flight-Staff
cp-OclIsTypeOfReservation-Client-Flight
cp-OclIsTypeOfReservation-Reservation-Flight
cp-OclIsTypeOfReservation-OclAny-Flight
cp-OclIsTypeOfReservation-Person-Flight
cp-OclIsTypeOfReservation-Staff-Flight
cp-OclIsTypeOfReservation-Flight-Flight
cp-OclIsTypeOfOclAny-Client-Client
cp-OclIsTypeOfOclAny-Reservation-Client
cp-OclIsTypeOfOclAny-OclAny-Client
cp-OclIsTypeOfOclAny-Person-Client
cp-OclIsTypeOfOclAny-Staff-Client
cp-OclIsTypeOfOclAny-Flight-Client
cp-OclIsTypeOfOclAny-Client-Reservation
cp-OclIsTypeOfOclAny-Reservation-Reservation
cp-OclIsTypeOfOclAny-OclAny-Reservation
cp-OclIsTypeOfOclAny-Person-Reservation
cp-OclIsTypeOfOclAny-Staff-Reservation
cp-OclIsTypeOfOclAny-Flight-Reservation
cp-OclIsTypeOfOclAny-Client-OclAny
cp-OclIsTypeOfOclAny-Reservation-OclAny
cp-OclIsTypeOfOclAny-OclAny-OclAny
cp-OclIsTypeOfOclAny-Person-OclAny
cp-OclIsTypeOfOclAny-Staff-OclAny
cp-OclIsTypeOfOclAny-Flight-OclAny
cp-OclIsTypeOfOclAny-Client-Person
cp-OclIsTypeOfOclAny-Reservation-Person
cp-OclIsTypeOfOclAny-OclAny-Person
cp-OclIsTypeOfOclAny-Person-Person
cp-OclIsTypeOfOclAny-Staff-Person
cp-OclIsTypeOfOclAny-Flight-Person
cp-OclIsTypeOfOclAny-Client-Staff
cp-OclIsTypeOfOclAny-Reservation-Staff
cp-OclIsTypeOfOclAny-OclAny-Staff
cp-OclIsTypeOfOclAny-Person-Staff
cp-OclIsTypeOfOclAny-Staff-Staff
cp-OclIsTypeOfOclAny-Flight-Staff
cp-OclIsTypeOfOclAny-Client-Flight
cp-OclIsTypeOfOclAny-Reservation-Flight
cp-OclIsTypeOfOclAny-OclAny-Flight
cp-OclIsTypeOfOclAny-Person-Flight
cp-OclIsTypeOfOclAny-Staff-Flight
cp-OclIsTypeOfOclAny-Flight-Flight
cp-OclIsTypeOfP erson-Client-Client
cp-OclIsTypeOfP erson-Reservation-Client
cp-OclIsTypeOfP erson-OclAny-Client
cp-OclIsTypeOfP erson-Person-Client
cp-OclIsTypeOfP erson-Staff-Client
cp-OclIsTypeOfP erson-Flight-Client
cp-OclIsTypeOfP erson-Client-Reservation
cp-OclIsTypeOfP erson-Reservation-Reservation
cp-OclIsTypeOfP erson-OclAny-Reservation
cp-OclIsTypeOfP erson-Person-Reservation
cp-OclIsTypeOfP erson-Staff-Reservation
cp-OclIsTypeOfP erson-Flight-Reservation
cp-OclIsTypeOfP erson-Client-OclAny
cp-OclIsTypeOfP erson-Reservation-OclAny
cp-OclIsTypeOfP erson-OclAny-OclAny
cp-OclIsTypeOfP erson-Person-OclAny
cp-OclIsTypeOfP erson-Staff-OclAny
cp-OclIsTypeOfP erson-Flight-OclAny
cp-OclIsTypeOfP erson-Client-Person



B.5. CLASS MODEL: OCLISTYPEOF 193

cp-OclIsTypeOfP erson-Reservation-Person
cp-OclIsTypeOfP erson-OclAny-Person
cp-OclIsTypeOfP erson-Person-Person
cp-OclIsTypeOfP erson-Staff-Person
cp-OclIsTypeOfP erson-Flight-Person
cp-OclIsTypeOfP erson-Client-Staff
cp-OclIsTypeOfP erson-Reservation-Staff
cp-OclIsTypeOfP erson-OclAny-Staff
cp-OclIsTypeOfP erson-Person-Staff
cp-OclIsTypeOfP erson-Staff-Staff
cp-OclIsTypeOfP erson-Flight-Staff
cp-OclIsTypeOfP erson-Client-Flight
cp-OclIsTypeOfP erson-Reservation-Flight
cp-OclIsTypeOfP erson-OclAny-Flight
cp-OclIsTypeOfP erson-Person-Flight
cp-OclIsTypeOfP erson-Staff-Flight
cp-OclIsTypeOfP erson-Flight-Flight
cp-OclIsTypeOf Staf f -Client-Client
cp-OclIsTypeOf Staf f -Reservation-Client
cp-OclIsTypeOf Staf f -OclAny-Client
cp-OclIsTypeOf Staf f -Person-Client
cp-OclIsTypeOf Staf f -Staff-Client
cp-OclIsTypeOf Staf f -Flight-Client
cp-OclIsTypeOf Staf f -Client-Reservation
cp-OclIsTypeOf Staf f -Reservation-Reservation
cp-OclIsTypeOf Staf f -OclAny-Reservation
cp-OclIsTypeOf Staf f -Person-Reservation
cp-OclIsTypeOf Staf f -Staff-Reservation
cp-OclIsTypeOf Staf f -Flight-Reservation
cp-OclIsTypeOf Staf f -Client-OclAny
cp-OclIsTypeOf Staf f -Reservation-OclAny
cp-OclIsTypeOf Staf f -OclAny-OclAny
cp-OclIsTypeOf Staf f -Person-OclAny
cp-OclIsTypeOf Staf f -Staff-OclAny
cp-OclIsTypeOf Staf f -Flight-OclAny
cp-OclIsTypeOf Staf f -Client-Person
cp-OclIsTypeOf Staf f -Reservation-Person
cp-OclIsTypeOf Staf f -OclAny-Person
cp-OclIsTypeOf Staf f -Person-Person
cp-OclIsTypeOf Staf f -Staff-Person
cp-OclIsTypeOf Staf f -Flight-Person
cp-OclIsTypeOf Staf f -Client-Staff
cp-OclIsTypeOf Staf f -Reservation-Staff
cp-OclIsTypeOf Staf f -OclAny-Staff
cp-OclIsTypeOf Staf f -Person-Staff
cp-OclIsTypeOf Staf f -Staff-Staff
cp-OclIsTypeOf Staf f -Flight-Staff
cp-OclIsTypeOf Staf f -Client-Flight
cp-OclIsTypeOf Staf f -Reservation-Flight
cp-OclIsTypeOf Staf f -OclAny-Flight
cp-OclIsTypeOf Staf f -Person-Flight
cp-OclIsTypeOf Staf f -Staff-Flight
cp-OclIsTypeOf Staf f -Flight-Flight
cp-OclIsTypeOfF light-Client-Client
cp-OclIsTypeOfF light-Reservation-Client
cp-OclIsTypeOfF light-OclAny-Client
cp-OclIsTypeOfF light-Person-Client
cp-OclIsTypeOfF light-Staff-Client
cp-OclIsTypeOfF light-Flight-Client
cp-OclIsTypeOfF light-Client-Reservation
cp-OclIsTypeOfF light-Reservation-Reservation
cp-OclIsTypeOfF light-OclAny-Reservation
cp-OclIsTypeOfF light-Person-Reservation
cp-OclIsTypeOfF light-Staff-Reservation
cp-OclIsTypeOfF light-Flight-Reservation
cp-OclIsTypeOfF light-Client-OclAny
cp-OclIsTypeOfF light-Reservation-OclAny
cp-OclIsTypeOfF light-OclAny-OclAny
cp-OclIsTypeOfF light-Person-OclAny
cp-OclIsTypeOfF light-Staff-OclAny
cp-OclIsTypeOfF light-Flight-OclAny
cp-OclIsTypeOfF light-Client-Person
cp-OclIsTypeOfF light-Reservation-Person



194 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

cp-OclIsTypeOfF light-OclAny-Person
cp-OclIsTypeOfF light-Person-Person
cp-OclIsTypeOfF light-Staff-Person
cp-OclIsTypeOfF light-Flight-Person
cp-OclIsTypeOfF light-Client-Staff
cp-OclIsTypeOfF light-Reservation-Staff
cp-OclIsTypeOfF light-OclAny-Staff
cp-OclIsTypeOfF light-Person-Staff
cp-OclIsTypeOfF light-Staff-Staff
cp-OclIsTypeOfF light-Flight-Staff
cp-OclIsTypeOfF light-Client-Flight
cp-OclIsTypeOfF light-Reservation-Flight
cp-OclIsTypeOfF light-OclAny-Flight
cp-OclIsTypeOfF light-Person-Flight
cp-OclIsTypeOfF light-Staff-Flight
cp-OclIsTypeOfF light-Flight-Flight

Execution with Invalid or Null as Argument
lemma OclIsTypeOfC lient-Client-invalid : ((invalid::·Client) .oclIsTypeOf (Client)) = invalid
by(rule ext, simp add: bot-option-def invalid-def )
lemma OclIsTypeOfC lient-Reservation-invalid : ((invalid::·Reservation) .oclIsTypeOf (Client)) = invalid
by(rule ext, simp add: OclIsTypeOfC lient-Reservation bot-option-def invalid-def )
lemma OclIsTypeOfC lient-OclAny-invalid : ((invalid::·OclAny) .oclIsTypeOf (Client)) = invalid
by(rule ext, simp add: OclIsTypeOfC lient-OclAny bot-option-def invalid-def )
lemma OclIsTypeOfC lient-Person-invalid : ((invalid::·Person) .oclIsTypeOf (Client)) = invalid
by(rule ext, simp add: OclIsTypeOfC lient-Person bot-option-def invalid-def )
lemma OclIsTypeOfC lient-Staff-invalid : ((invalid::·Staff ) .oclIsTypeOf (Client)) = invalid
by(rule ext, simp add: OclIsTypeOfC lient-Staff bot-option-def invalid-def )
lemma OclIsTypeOfC lient-Flight-invalid : ((invalid::·Flight) .oclIsTypeOf (Client)) = invalid
by(rule ext, simp add: OclIsTypeOfC lient-Flight bot-option-def invalid-def )
lemma OclIsTypeOfC lient-Client-null : ((null::·Client) .oclIsTypeOf (Client)) = true
by(rule ext, simp add: bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfC lient-Reservation-null : ((null::·Reservation) .oclIsTypeOf (Client)) = true
by(rule ext, simp add: OclIsTypeOfC lient-Reservation bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfC lient-OclAny-null : ((null::·OclAny) .oclIsTypeOf (Client)) = true
by(rule ext, simp add: OclIsTypeOfC lient-OclAny bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfC lient-Person-null : ((null::·Person) .oclIsTypeOf (Client)) = true
by(rule ext, simp add: OclIsTypeOfC lient-Person bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfC lient-Staff-null : ((null::·Staff ) .oclIsTypeOf (Client)) = true
by(rule ext, simp add: OclIsTypeOfC lient-Staff bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfC lient-Flight-null : ((null::·Flight) .oclIsTypeOf (Client)) = true
by(rule ext, simp add: OclIsTypeOfC lient-Flight bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfReservation-Client-invalid : ((invalid::·Client) .oclIsTypeOf (Reservation)) = invalid
by(rule ext, simp add: OclIsTypeOfReservation-Client bot-option-def invalid-def )
lemma OclIsTypeOfReservation-Reservation-invalid : ((invalid::·Reservation) .oclIsTypeOf (Reservation)) = invalid
by(rule ext, simp add: bot-option-def invalid-def )
lemma OclIsTypeOfReservation-OclAny-invalid : ((invalid::·OclAny) .oclIsTypeOf (Reservation)) = invalid
by(rule ext, simp add: OclIsTypeOfReservation-OclAny bot-option-def invalid-def )
lemma OclIsTypeOfReservation-Person-invalid : ((invalid::·Person) .oclIsTypeOf (Reservation)) = invalid
by(rule ext, simp add: OclIsTypeOfReservation-Person bot-option-def invalid-def )
lemma OclIsTypeOfReservation-Staff-invalid : ((invalid::·Staff ) .oclIsTypeOf (Reservation)) = invalid
by(rule ext, simp add: OclIsTypeOfReservation-Staff bot-option-def invalid-def )
lemma OclIsTypeOfReservation-Flight-invalid : ((invalid::·Flight) .oclIsTypeOf (Reservation)) = invalid
by(rule ext, simp add: OclIsTypeOfReservation-Flight bot-option-def invalid-def )
lemma OclIsTypeOfReservation-Client-null : ((null::·Client) .oclIsTypeOf (Reservation)) = true
by(rule ext, simp add: OclIsTypeOfReservation-Client bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfReservation-Reservation-null : ((null::·Reservation) .oclIsTypeOf (Reservation)) = true
by(rule ext, simp add: bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfReservation-OclAny-null : ((null::·OclAny) .oclIsTypeOf (Reservation)) = true
by(rule ext, simp add: OclIsTypeOfReservation-OclAny bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfReservation-Person-null : ((null::·Person) .oclIsTypeOf (Reservation)) = true
by(rule ext, simp add: OclIsTypeOfReservation-Person bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfReservation-Staff-null : ((null::·Staff ) .oclIsTypeOf (Reservation)) = true
by(rule ext, simp add: OclIsTypeOfReservation-Staff bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfReservation-Flight-null : ((null::·Flight) .oclIsTypeOf (Reservation)) = true
by(rule ext, simp add: OclIsTypeOfReservation-Flight bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfOclAny-Client-invalid : ((invalid::·Client) .oclIsTypeOf (OclAny)) = invalid
by(rule ext, simp add: OclIsTypeOfOclAny-Client bot-option-def invalid-def )
lemma OclIsTypeOfOclAny-Reservation-invalid : ((invalid::·Reservation) .oclIsTypeOf (OclAny)) = invalid
by(rule ext, simp add: OclIsTypeOfOclAny-Reservation bot-option-def invalid-def )
lemma OclIsTypeOfOclAny-OclAny-invalid : ((invalid::·OclAny) .oclIsTypeOf (OclAny)) = invalid
by(rule ext, simp add: bot-option-def invalid-def )



B.5. CLASS MODEL: OCLISTYPEOF 195

lemma OclIsTypeOfOclAny-Person-invalid : ((invalid::·Person) .oclIsTypeOf (OclAny)) = invalid
by(rule ext, simp add: OclIsTypeOfOclAny-Person bot-option-def invalid-def )
lemma OclIsTypeOfOclAny-Staff-invalid : ((invalid::·Staff ) .oclIsTypeOf (OclAny)) = invalid
by(rule ext, simp add: OclIsTypeOfOclAny-Staff bot-option-def invalid-def )
lemma OclIsTypeOfOclAny-Flight-invalid : ((invalid::·Flight) .oclIsTypeOf (OclAny)) = invalid
by(rule ext, simp add: OclIsTypeOfOclAny-Flight bot-option-def invalid-def )
lemma OclIsTypeOfOclAny-Client-null : ((null::·Client) .oclIsTypeOf (OclAny)) = true
by(rule ext, simp add: OclIsTypeOfOclAny-Client bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfOclAny-Reservation-null : ((null::·Reservation) .oclIsTypeOf (OclAny)) = true
by(rule ext, simp add: OclIsTypeOfOclAny-Reservation bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfOclAny-OclAny-null : ((null::·OclAny) .oclIsTypeOf (OclAny)) = true
by(rule ext, simp add: bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfOclAny-Person-null : ((null::·Person) .oclIsTypeOf (OclAny)) = true
by(rule ext, simp add: OclIsTypeOfOclAny-Person bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfOclAny-Staff-null : ((null::·Staff ) .oclIsTypeOf (OclAny)) = true
by(rule ext, simp add: OclIsTypeOfOclAny-Staff bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfOclAny-Flight-null : ((null::·Flight) .oclIsTypeOf (OclAny)) = true
by(rule ext, simp add: OclIsTypeOfOclAny-Flight bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfP erson-Client-invalid : ((invalid::·Client) .oclIsTypeOf (Person)) = invalid
by(rule ext, simp add: OclIsTypeOfP erson-Client bot-option-def invalid-def )
lemma OclIsTypeOfP erson-Reservation-invalid : ((invalid::·Reservation) .oclIsTypeOf (Person)) = invalid
by(rule ext, simp add: OclIsTypeOfP erson-Reservation bot-option-def invalid-def )
lemma OclIsTypeOfP erson-OclAny-invalid : ((invalid::·OclAny) .oclIsTypeOf (Person)) = invalid
by(rule ext, simp add: OclIsTypeOfP erson-OclAny bot-option-def invalid-def )
lemma OclIsTypeOfP erson-Person-invalid : ((invalid::·Person) .oclIsTypeOf (Person)) = invalid
by(rule ext, simp add: bot-option-def invalid-def )
lemma OclIsTypeOfP erson-Staff-invalid : ((invalid::·Staff ) .oclIsTypeOf (Person)) = invalid
by(rule ext, simp add: OclIsTypeOfP erson-Staff bot-option-def invalid-def )
lemma OclIsTypeOfP erson-Flight-invalid : ((invalid::·Flight) .oclIsTypeOf (Person)) = invalid
by(rule ext, simp add: OclIsTypeOfP erson-Flight bot-option-def invalid-def )
lemma OclIsTypeOfP erson-Client-null : ((null::·Client) .oclIsTypeOf (Person)) = true
by(rule ext, simp add: OclIsTypeOfP erson-Client bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfP erson-Reservation-null : ((null::·Reservation) .oclIsTypeOf (Person)) = true
by(rule ext, simp add: OclIsTypeOfP erson-Reservation bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfP erson-OclAny-null : ((null::·OclAny) .oclIsTypeOf (Person)) = true
by(rule ext, simp add: OclIsTypeOfP erson-OclAny bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfP erson-Person-null : ((null::·Person) .oclIsTypeOf (Person)) = true
by(rule ext, simp add: bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfP erson-Staff-null : ((null::·Staff ) .oclIsTypeOf (Person)) = true
by(rule ext, simp add: OclIsTypeOfP erson-Staff bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfP erson-Flight-null : ((null::·Flight) .oclIsTypeOf (Person)) = true
by(rule ext, simp add: OclIsTypeOfP erson-Flight bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOf Staf f -Client-invalid : ((invalid::·Client) .oclIsTypeOf (Staff )) = invalid
by(rule ext, simp add: OclIsTypeOf Staf f -Client bot-option-def invalid-def )
lemma OclIsTypeOf Staf f -Reservation-invalid : ((invalid::·Reservation) .oclIsTypeOf (Staff )) = invalid
by(rule ext, simp add: OclIsTypeOf Staf f -Reservation bot-option-def invalid-def )
lemma OclIsTypeOf Staf f -OclAny-invalid : ((invalid::·OclAny) .oclIsTypeOf (Staff )) = invalid
by(rule ext, simp add: OclIsTypeOf Staf f -OclAny bot-option-def invalid-def )
lemma OclIsTypeOf Staf f -Person-invalid : ((invalid::·Person) .oclIsTypeOf (Staff )) = invalid
by(rule ext, simp add: OclIsTypeOf Staf f -Person bot-option-def invalid-def )
lemma OclIsTypeOf Staf f -Staff-invalid : ((invalid::·Staff ) .oclIsTypeOf (Staff )) = invalid
by(rule ext, simp add: bot-option-def invalid-def )
lemma OclIsTypeOf Staf f -Flight-invalid : ((invalid::·Flight) .oclIsTypeOf (Staff )) = invalid
by(rule ext, simp add: OclIsTypeOf Staf f -Flight bot-option-def invalid-def )
lemma OclIsTypeOf Staf f -Client-null : ((null::·Client) .oclIsTypeOf (Staff )) = true
by(rule ext, simp add: OclIsTypeOf Staf f -Client bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOf Staf f -Reservation-null : ((null::·Reservation) .oclIsTypeOf (Staff )) = true
by(rule ext, simp add: OclIsTypeOf Staf f -Reservation bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOf Staf f -OclAny-null : ((null::·OclAny) .oclIsTypeOf (Staff )) = true
by(rule ext, simp add: OclIsTypeOf Staf f -OclAny bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOf Staf f -Person-null : ((null::·Person) .oclIsTypeOf (Staff )) = true
by(rule ext, simp add: OclIsTypeOf Staf f -Person bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOf Staf f -Staff-null : ((null::·Staff ) .oclIsTypeOf (Staff )) = true
by(rule ext, simp add: bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOf Staf f -Flight-null : ((null::·Flight) .oclIsTypeOf (Staff )) = true
by(rule ext, simp add: OclIsTypeOf Staf f -Flight bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfF light-Client-invalid : ((invalid::·Client) .oclIsTypeOf (Flight)) = invalid
by(rule ext, simp add: OclIsTypeOfF light-Client bot-option-def invalid-def )
lemma OclIsTypeOfF light-Reservation-invalid : ((invalid::·Reservation) .oclIsTypeOf (Flight)) = invalid
by(rule ext, simp add: OclIsTypeOfF light-Reservation bot-option-def invalid-def )
lemma OclIsTypeOfF light-OclAny-invalid : ((invalid::·OclAny) .oclIsTypeOf (Flight)) = invalid
by(rule ext, simp add: OclIsTypeOfF light-OclAny bot-option-def invalid-def )
lemma OclIsTypeOfF light-Person-invalid : ((invalid::·Person) .oclIsTypeOf (Flight)) = invalid



196 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(rule ext, simp add: OclIsTypeOfF light-Person bot-option-def invalid-def )
lemma OclIsTypeOfF light-Staff-invalid : ((invalid::·Staff ) .oclIsTypeOf (Flight)) = invalid
by(rule ext, simp add: OclIsTypeOfF light-Staff bot-option-def invalid-def )
lemma OclIsTypeOfF light-Flight-invalid : ((invalid::·Flight) .oclIsTypeOf (Flight)) = invalid
by(rule ext, simp add: bot-option-def invalid-def )
lemma OclIsTypeOfF light-Client-null : ((null::·Client) .oclIsTypeOf (Flight)) = true
by(rule ext, simp add: OclIsTypeOfF light-Client bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfF light-Reservation-null : ((null::·Reservation) .oclIsTypeOf (Flight)) = true
by(rule ext, simp add: OclIsTypeOfF light-Reservation bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfF light-OclAny-null : ((null::·OclAny) .oclIsTypeOf (Flight)) = true
by(rule ext, simp add: OclIsTypeOfF light-OclAny bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfF light-Person-null : ((null::·Person) .oclIsTypeOf (Flight)) = true
by(rule ext, simp add: OclIsTypeOfF light-Person bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfF light-Staff-null : ((null::·Staff ) .oclIsTypeOf (Flight)) = true
by(rule ext, simp add: OclIsTypeOfF light-Staff bot-option-def null-fun-def null-option-def )
lemma OclIsTypeOfF light-Flight-null : ((null::·Flight) .oclIsTypeOf (Flight)) = true
by(rule ext, simp add: bot-option-def null-fun-def null-option-def )

lemmas[simp,code-unfold] = OclIsTypeOfC lient-Client-invalid
OclIsTypeOfC lient-Reservation-invalid
OclIsTypeOfC lient-OclAny-invalid
OclIsTypeOfC lient-Person-invalid
OclIsTypeOfC lient-Staff-invalid
OclIsTypeOfC lient-Flight-invalid
OclIsTypeOfC lient-Client-null
OclIsTypeOfC lient-Reservation-null
OclIsTypeOfC lient-OclAny-null
OclIsTypeOfC lient-Person-null
OclIsTypeOfC lient-Staff-null
OclIsTypeOfC lient-Flight-null
OclIsTypeOfReservation-Client-invalid
OclIsTypeOfReservation-Reservation-invalid
OclIsTypeOfReservation-OclAny-invalid
OclIsTypeOfReservation-Person-invalid
OclIsTypeOfReservation-Staff-invalid
OclIsTypeOfReservation-Flight-invalid
OclIsTypeOfReservation-Client-null
OclIsTypeOfReservation-Reservation-null
OclIsTypeOfReservation-OclAny-null
OclIsTypeOfReservation-Person-null
OclIsTypeOfReservation-Staff-null
OclIsTypeOfReservation-Flight-null
OclIsTypeOfOclAny-Client-invalid
OclIsTypeOfOclAny-Reservation-invalid
OclIsTypeOfOclAny-OclAny-invalid
OclIsTypeOfOclAny-Person-invalid
OclIsTypeOfOclAny-Staff-invalid
OclIsTypeOfOclAny-Flight-invalid
OclIsTypeOfOclAny-Client-null
OclIsTypeOfOclAny-Reservation-null
OclIsTypeOfOclAny-OclAny-null
OclIsTypeOfOclAny-Person-null
OclIsTypeOfOclAny-Staff-null
OclIsTypeOfOclAny-Flight-null
OclIsTypeOfP erson-Client-invalid
OclIsTypeOfP erson-Reservation-invalid
OclIsTypeOfP erson-OclAny-invalid
OclIsTypeOfP erson-Person-invalid
OclIsTypeOfP erson-Staff-invalid
OclIsTypeOfP erson-Flight-invalid
OclIsTypeOfP erson-Client-null
OclIsTypeOfP erson-Reservation-null
OclIsTypeOfP erson-OclAny-null
OclIsTypeOfP erson-Person-null
OclIsTypeOfP erson-Staff-null
OclIsTypeOfP erson-Flight-null
OclIsTypeOf Staf f -Client-invalid
OclIsTypeOf Staf f -Reservation-invalid
OclIsTypeOf Staf f -OclAny-invalid
OclIsTypeOf Staf f -Person-invalid
OclIsTypeOf Staf f -Staff-invalid
OclIsTypeOf Staf f -Flight-invalid



B.5. CLASS MODEL: OCLISTYPEOF 197

OclIsTypeOf Staf f -Client-null
OclIsTypeOf Staf f -Reservation-null
OclIsTypeOf Staf f -OclAny-null
OclIsTypeOf Staf f -Person-null
OclIsTypeOf Staf f -Staff-null
OclIsTypeOf Staf f -Flight-null
OclIsTypeOfF light-Client-invalid
OclIsTypeOfF light-Reservation-invalid
OclIsTypeOfF light-OclAny-invalid
OclIsTypeOfF light-Person-invalid
OclIsTypeOfF light-Staff-invalid
OclIsTypeOfF light-Flight-invalid
OclIsTypeOfF light-Client-null
OclIsTypeOfF light-Reservation-null
OclIsTypeOfF light-OclAny-null
OclIsTypeOfF light-Person-null
OclIsTypeOfF light-Staff-null
OclIsTypeOfF light-Flight-null

Validity and Definedness Properties
lemma OclIsTypeOfF light-Flight-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (Flight)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfF light-Flight split: option.split tyEXT F light.split tyF light.split)

lemma OclIsTypeOfF light-OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (Flight)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfF light-OclAny split: option.split tyEXT OclAny .split
tyOclAny .split)
lemma OclIsTypeOfF light-Staff-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (Flight)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfF light-Staff split: option.split tyEXT Staf f .split tyStaf f .split)
lemma OclIsTypeOfF light-Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (Flight)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfF light-Person split: option.split tyEXT P erson.split
tyP erson.split)
lemma OclIsTypeOfF light-Client-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (Flight)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfF light-Client split: option.split tyEXT C lient.split
tyC lient.split)
lemma OclIsTypeOfF light-Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (Flight)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfF light-Reservation split: option.split tyEXT Reservation.split
tyReservation.split)
lemma OclIsTypeOfC lient-Client-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (Client)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfC lient-Client split: option.split tyEXT C lient.split
tyC lient.split)
lemma OclIsTypeOfC lient-Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (Client)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfC lient-Person split: option.split tyEXT P erson.split
tyP erson.split)
lemma OclIsTypeOfC lient-OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (Client)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)



198 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfC lient-OclAny split: option.split tyEXT OclAny .split
tyOclAny .split)
lemma OclIsTypeOfC lient-Staff-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (Client)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfC lient-Staff split: option.split tyEXT Staf f .split tyStaf f .split)
lemma OclIsTypeOfC lient-Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (Client)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfC lient-Reservation split: option.split tyEXT Reservation.split
tyReservation.split)
lemma OclIsTypeOfC lient-Flight-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (Client)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfC lient-Flight split: option.split tyEXT F light.split tyF light.split)

lemma OclIsTypeOf Staf f -Staff-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (Staff )))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOf Staf f -Staff split: option.split tyEXT Staf f .split tyStaf f .split)
lemma OclIsTypeOf Staf f -Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (Staff )))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOf Staf f -Person split: option.split tyEXT P erson.split
tyP erson.split)
lemma OclIsTypeOf Staf f -OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (Staff )))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOf Staf f -OclAny split: option.split tyEXT OclAny .split
tyOclAny .split)
lemma OclIsTypeOf Staf f -Client-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (Staff )))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOf Staf f -Client split: option.split tyEXT C lient.split tyC lient.split)

lemma OclIsTypeOf Staf f -Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (Staff )))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOf Staf f -Reservation split: option.split tyEXT Reservation.split
tyReservation.split)
lemma OclIsTypeOf Staf f -Flight-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (Staff )))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOf Staf f -Flight split: option.split tyEXT F light.split tyF light.split)

lemma OclIsTypeOfP erson-Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (Person)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfP erson-Person split: option.split tyEXT P erson.split
tyP erson.split)
lemma OclIsTypeOfP erson-OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (Person)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfP erson-OclAny split: option.split tyEXT OclAny .split
tyOclAny .split)
lemma OclIsTypeOfP erson-Client-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (Person)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfP erson-Client split: option.split tyEXT C lient.split
tyC lient.split)
lemma OclIsTypeOfP erson-Staff-defined :



B.5. CLASS MODEL: OCLISTYPEOF 199

assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (Person)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfP erson-Staff split: option.split tyEXT Staf f .split tyStaf f .split)

lemma OclIsTypeOfP erson-Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (Person)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfP erson-Reservation split: option.split tyEXT Reservation.split
tyReservation.split)
lemma OclIsTypeOfP erson-Flight-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (Person)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfP erson-Flight split: option.split tyEXT F light.split
tyF light.split)
lemma OclIsTypeOfReservation-Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (Reservation)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfReservation-Reservation split: option.split
tyEXT Reservation.split tyReservation.split)
lemma OclIsTypeOfReservation-OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (Reservation)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfReservation-OclAny split: option.split tyEXT OclAny .split
tyOclAny .split)
lemma OclIsTypeOfReservation-Staff-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (Reservation)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfReservation-Staff split: option.split tyEXT Staf f .split
tyStaf f .split)
lemma OclIsTypeOfReservation-Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (Reservation)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfReservation-Person split: option.split tyEXT P erson.split
tyP erson.split)
lemma OclIsTypeOfReservation-Client-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (Reservation)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfReservation-Client split: option.split tyEXT C lient.split
tyC lient.split)
lemma OclIsTypeOfReservation-Flight-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (Reservation)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfReservation-Flight split: option.split tyEXT F light.split
tyF light.split)
lemma OclIsTypeOfOclAny-OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (OclAny)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfOclAny-OclAny split: option.split tyEXT OclAny .split
tyOclAny .split)
lemma OclIsTypeOfOclAny-Flight-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (OclAny)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfOclAny-Flight split: option.split tyEXT F light.split
tyF light.split)
lemma OclIsTypeOfOclAny-Client-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (OclAny)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfOclAny-Client split: option.split tyEXT C lient.split
tyC lient.split)
lemma OclIsTypeOfOclAny-Staff-defined :
assumes isdef : τ |= (υ (X))



200 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (OclAny)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfOclAny-Staff split: option.split tyEXT Staf f .split tyStaf f .split)

lemma OclIsTypeOfOclAny-Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (OclAny)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfOclAny-Person split: option.split tyEXT P erson.split
tyP erson.split)
lemma OclIsTypeOfOclAny-Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (OclAny)))
apply(insert isdef [simplified foundation18 ′], simp only: OclValid-def , subst cp-defined)

by(auto simp: cp-defined[symmetric ] bot-option-def OclIsTypeOfOclAny-Reservation split: option.split tyEXT Reservation.split
tyReservation.split)

lemma OclIsTypeOfF light-Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (Flight)))
by(rule OclIsTypeOfF light-Flight-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfF light-OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (Flight)))
by(rule OclIsTypeOfF light-OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfF light-Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (Flight)))
by(rule OclIsTypeOfF light-Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfF light-Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (Flight)))
by(rule OclIsTypeOfF light-Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfF light-Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (Flight)))
by(rule OclIsTypeOfF light-Client-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfF light-Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (Flight)))
by(rule OclIsTypeOfF light-Reservation-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfC lient-Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (Client)))
by(rule OclIsTypeOfC lient-Client-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfC lient-Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (Client)))
by(rule OclIsTypeOfC lient-Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfC lient-OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (Client)))
by(rule OclIsTypeOfC lient-OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfC lient-Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (Client)))
by(rule OclIsTypeOfC lient-Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfC lient-Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (Client)))
by(rule OclIsTypeOfC lient-Reservation-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfC lient-Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (Client)))
by(rule OclIsTypeOfC lient-Flight-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOf Staf f -Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (Staff )))
by(rule OclIsTypeOf Staf f -Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOf Staf f -Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (Staff )))



B.5. CLASS MODEL: OCLISTYPEOF 201

by(rule OclIsTypeOf Staf f -Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOf Staf f -OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (Staff )))
by(rule OclIsTypeOf Staf f -OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOf Staf f -Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (Staff )))
by(rule OclIsTypeOf Staf f -Client-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOf Staf f -Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (Staff )))
by(rule OclIsTypeOf Staf f -Reservation-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOf Staf f -Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (Staff )))
by(rule OclIsTypeOf Staf f -Flight-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfP erson-Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (Person)))
by(rule OclIsTypeOfP erson-Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfP erson-OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (Person)))
by(rule OclIsTypeOfP erson-OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfP erson-Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (Person)))
by(rule OclIsTypeOfP erson-Client-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfP erson-Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (Person)))
by(rule OclIsTypeOfP erson-Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfP erson-Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (Person)))
by(rule OclIsTypeOfP erson-Reservation-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfP erson-Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (Person)))
by(rule OclIsTypeOfP erson-Flight-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfReservation-Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (Reservation)))
by(rule OclIsTypeOfReservation-Reservation-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfReservation-OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (Reservation)))
by(rule OclIsTypeOfReservation-OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfReservation-Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (Reservation)))
by(rule OclIsTypeOfReservation-Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfReservation-Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (Reservation)))
by(rule OclIsTypeOfReservation-Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfReservation-Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (Reservation)))
by(rule OclIsTypeOfReservation-Client-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfReservation-Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (Reservation)))
by(rule OclIsTypeOfReservation-Flight-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfOclAny-OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsTypeOf (OclAny)))
by(rule OclIsTypeOfOclAny-OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfOclAny-Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsTypeOf (OclAny)))
by(rule OclIsTypeOfOclAny-Flight-defined[OF isdef [THEN foundation20 ]])



202 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

lemma OclIsTypeOfOclAny-Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsTypeOf (OclAny)))
by(rule OclIsTypeOfOclAny-Client-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfOclAny-Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsTypeOf (OclAny)))
by(rule OclIsTypeOfOclAny-Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfOclAny-Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsTypeOf (OclAny)))
by(rule OclIsTypeOfOclAny-Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsTypeOfOclAny-Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsTypeOf (OclAny)))
by(rule OclIsTypeOfOclAny-Reservation-defined[OF isdef [THEN foundation20 ]])

Up Down Casting
lemma actualTypeF light-larger-staticTypeOclAny :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Flight) .oclIsTypeOf (OclAny)) , false
using isdef

by(auto simp: OclIsTypeOfOclAny-Flight foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeF light-larger-staticTypeStaf f :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Flight) .oclIsTypeOf (Staff )) , false
using isdef

by(auto simp: OclIsTypeOf Staf f -Flight foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeF light-larger-staticTypeP erson :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Flight) .oclIsTypeOf (Person)) , false
using isdef

by(auto simp: OclIsTypeOfP erson-Flight foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeF light-larger-staticTypeC lient :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Flight) .oclIsTypeOf (Client)) , false
using isdef

by(auto simp: OclIsTypeOfC lient-Flight foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeF light-larger-staticTypeReservation :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Flight) .oclIsTypeOf (Reservation)) , false
using isdef

by(auto simp: OclIsTypeOfReservation-Flight foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeC lient-larger-staticTypeP erson :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Client) .oclIsTypeOf (Person)) , false
using isdef

by(auto simp: OclIsTypeOfP erson-Client foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeC lient-larger-staticTypeOclAny :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Client) .oclIsTypeOf (OclAny)) , false
using isdef

by(auto simp: OclIsTypeOfOclAny-Client foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeC lient-larger-staticTypeStaf f :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Client) .oclIsTypeOf (Staff )) , false
using isdef

by(auto simp: OclIsTypeOf Staf f -Client foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeC lient-larger-staticTypeReservation :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Client) .oclIsTypeOf (Reservation)) , false
using isdef

by(auto simp: OclIsTypeOfReservation-Client foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeC lient-larger-staticTypeF light :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Client) .oclIsTypeOf (Flight)) , false
using isdef

by(auto simp: OclIsTypeOfF light-Client foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeStaf f -larger-staticTypeP erson :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Staff ) .oclIsTypeOf (Person)) , false
using isdef



B.5. CLASS MODEL: OCLISTYPEOF 203

by(auto simp: OclIsTypeOfP erson-Staff foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeStaf f -larger-staticTypeOclAny :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Staff ) .oclIsTypeOf (OclAny)) , false
using isdef

by(auto simp: OclIsTypeOfOclAny-Staff foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeStaf f -larger-staticTypeC lient :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Staff ) .oclIsTypeOf (Client)) , false
using isdef

by(auto simp: OclIsTypeOfC lient-Staff foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeStaf f -larger-staticTypeReservation :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Staff ) .oclIsTypeOf (Reservation)) , false
using isdef

by(auto simp: OclIsTypeOfReservation-Staff foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeStaf f -larger-staticTypeF light :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Staff ) .oclIsTypeOf (Flight)) , false
using isdef

by(auto simp: OclIsTypeOfF light-Staff foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeP erson-larger-staticTypeOclAny :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Person) .oclIsTypeOf (OclAny)) , false
using isdef

by(auto simp: OclIsTypeOfOclAny-Person foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeP erson-larger-staticTypeReservation :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Person) .oclIsTypeOf (Reservation)) , false
using isdef

by(auto simp: OclIsTypeOfReservation-Person foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeP erson-larger-staticTypeF light :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Person) .oclIsTypeOf (Flight)) , false
using isdef

by(auto simp: OclIsTypeOfF light-Person foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeReservation-larger-staticTypeOclAny :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Reservation) .oclIsTypeOf (OclAny)) , false
using isdef

by(auto simp: OclIsTypeOfOclAny-Reservation foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeReservation-larger-staticTypeStaf f :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Reservation) .oclIsTypeOf (Staff )) , false
using isdef

by(auto simp: OclIsTypeOf Staf f -Reservation foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeReservation-larger-staticTypeP erson :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Reservation) .oclIsTypeOf (Person)) , false
using isdef

by(auto simp: OclIsTypeOfP erson-Reservation foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeReservation-larger-staticTypeC lient :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Reservation) .oclIsTypeOf (Client)) , false
using isdef

by(auto simp: OclIsTypeOfC lient-Reservation foundation22 foundation16 null-option-def bot-option-def )
lemma actualTypeReservation-larger-staticTypeF light :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Reservation) .oclIsTypeOf (Flight)) , false
using isdef

by(auto simp: OclIsTypeOfF light-Reservation foundation22 foundation16 null-option-def bot-option-def )

lemma down-cast-typeOclAny-from-OclAny-to-Flight :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (OclAny))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Flight)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeF light-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclValid-def false-def true-def )
lemma down-cast-typeStaf f -from-OclAny-to-Flight :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Staff ))



204 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Flight)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeF light-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOf Staf f -OclAny OclValid-def false-def true-def )
lemma down-cast-typeP erson-from-OclAny-to-Flight :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Person))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Flight)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeF light-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfP erson-OclAny OclValid-def false-def true-def )
lemma down-cast-typeC lient-from-OclAny-to-Flight :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Client))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Flight)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeF light-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfC lient-OclAny OclValid-def false-def true-def )
lemma down-cast-typeReservation-from-OclAny-to-Flight :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Reservation))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Flight)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeF light-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfReservation-OclAny OclValid-def false-def true-def )
lemma down-cast-typeP erson-from-Person-to-Client :
assumes istyp: τ |= ((X ::·Person) .oclIsTypeOf (Person))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Client)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeC lient-Person foundation22 foundation16 null-option-def bot-option-def split: tyEXT P erson.split

tyP erson.split)
by(simp add: OclValid-def false-def true-def )
lemma down-cast-typeOclAny-from-OclAny-to-Client :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (OclAny))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Client)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeC lient-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclValid-def false-def true-def )
lemma down-cast-typeP erson-from-OclAny-to-Client :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Person))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Client)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeC lient-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfP erson-OclAny OclValid-def false-def true-def )
lemma down-cast-typeStaf f -from-Person-to-Client :
assumes istyp: τ |= ((X ::·Person) .oclIsTypeOf (Staff ))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Client)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeC lient-Person foundation22 foundation16 null-option-def bot-option-def split: tyEXT P erson.split

tyP erson.split)
by(simp add: OclIsTypeOf Staf f -Person OclValid-def false-def true-def )
lemma down-cast-typeReservation-from-Person-to-Client :
assumes istyp: τ |= ((X ::·Person) .oclIsTypeOf (Reservation))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Client)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeC lient-Person foundation22 foundation16 null-option-def bot-option-def split: tyEXT P erson.split

tyP erson.split)
by(simp add: OclIsTypeOfReservation-Person OclValid-def false-def true-def )
lemma down-cast-typeF light-from-Person-to-Client :
assumes istyp: τ |= ((X ::·Person) .oclIsTypeOf (Flight))
assumes isdef : τ |= (δ (X))



B.5. CLASS MODEL: OCLISTYPEOF 205

shows τ |= (X .oclAsType(Client)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeC lient-Person foundation22 foundation16 null-option-def bot-option-def split: tyEXT P erson.split

tyP erson.split)
by(simp add: OclIsTypeOfF light-Person OclValid-def false-def true-def )
lemma down-cast-typeStaf f -from-OclAny-to-Client :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Staff ))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Client)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeC lient-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOf Staf f -OclAny OclValid-def false-def true-def )
lemma down-cast-typeReservation-from-OclAny-to-Client :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Reservation))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Client)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeC lient-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfReservation-OclAny OclValid-def false-def true-def )
lemma down-cast-typeF light-from-OclAny-to-Client :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Flight))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Client)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeC lient-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfF light-OclAny OclValid-def false-def true-def )
lemma down-cast-typeP erson-from-Person-to-Staff :
assumes istyp: τ |= ((X ::·Person) .oclIsTypeOf (Person))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid
using istyp isdef
apply(auto simp: OclAsTypeStaf f -Person foundation22 foundation16 null-option-def bot-option-def split: tyEXT P erson.split

tyP erson.split)
by(simp add: OclValid-def false-def true-def )
lemma down-cast-typeOclAny-from-OclAny-to-Staff :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (OclAny))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid
using istyp isdef
apply(auto simp: OclAsTypeStaf f -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclValid-def false-def true-def )
lemma down-cast-typeP erson-from-OclAny-to-Staff :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Person))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid
using istyp isdef
apply(auto simp: OclAsTypeStaf f -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfP erson-OclAny OclValid-def false-def true-def )
lemma down-cast-typeC lient-from-Person-to-Staff :
assumes istyp: τ |= ((X ::·Person) .oclIsTypeOf (Client))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid
using istyp isdef
apply(auto simp: OclAsTypeStaf f -Person foundation22 foundation16 null-option-def bot-option-def split: tyEXT P erson.split

tyP erson.split)
by(simp add: OclIsTypeOfC lient-Person OclValid-def false-def true-def )
lemma down-cast-typeReservation-from-Person-to-Staff :
assumes istyp: τ |= ((X ::·Person) .oclIsTypeOf (Reservation))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid
using istyp isdef
apply(auto simp: OclAsTypeStaf f -Person foundation22 foundation16 null-option-def bot-option-def split: tyEXT P erson.split

tyP erson.split)
by(simp add: OclIsTypeOfReservation-Person OclValid-def false-def true-def )
lemma down-cast-typeF light-from-Person-to-Staff :
assumes istyp: τ |= ((X ::·Person) .oclIsTypeOf (Flight))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid



206 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

using istyp isdef
apply(auto simp: OclAsTypeStaf f -Person foundation22 foundation16 null-option-def bot-option-def split: tyEXT P erson.split

tyP erson.split)
by(simp add: OclIsTypeOfF light-Person OclValid-def false-def true-def )
lemma down-cast-typeC lient-from-OclAny-to-Staff :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Client))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid
using istyp isdef
apply(auto simp: OclAsTypeStaf f -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfC lient-OclAny OclValid-def false-def true-def )
lemma down-cast-typeReservation-from-OclAny-to-Staff :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Reservation))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid
using istyp isdef
apply(auto simp: OclAsTypeStaf f -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfReservation-OclAny OclValid-def false-def true-def )
lemma down-cast-typeF light-from-OclAny-to-Staff :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Flight))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid
using istyp isdef
apply(auto simp: OclAsTypeStaf f -OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfF light-OclAny OclValid-def false-def true-def )
lemma down-cast-typeOclAny-from-OclAny-to-Person :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (OclAny))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Person)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeP erson-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclValid-def false-def true-def )
lemma down-cast-typeReservation-from-OclAny-to-Person :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Reservation))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Person)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeP erson-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfReservation-OclAny OclValid-def false-def true-def )
lemma down-cast-typeF light-from-OclAny-to-Person :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Flight))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Person)) , invalid
using istyp isdef
apply(auto simp: OclAsTypeP erson-OclAny foundation22 foundation16 null-option-def bot-option-def split: tyEXT OclAny .split

tyOclAny .split)
by(simp add: OclIsTypeOfF light-OclAny OclValid-def false-def true-def )
lemma down-cast-typeOclAny-from-OclAny-to-Reservation :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (OclAny))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Reservation)) , invalid
using istyp isdef

apply(auto simp: OclAsTypeReservation-OclAny foundation22 foundation16 null-option-def bot-option-def split:
tyEXT OclAny .split tyOclAny .split)
by(simp add: OclValid-def false-def true-def )
lemma down-cast-typeStaf f -from-OclAny-to-Reservation :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Staff ))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Reservation)) , invalid
using istyp isdef

apply(auto simp: OclAsTypeReservation-OclAny foundation22 foundation16 null-option-def bot-option-def split:
tyEXT OclAny .split tyOclAny .split)
by(simp add: OclIsTypeOf Staf f -OclAny OclValid-def false-def true-def )
lemma down-cast-typeP erson-from-OclAny-to-Reservation :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Person))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Reservation)) , invalid
using istyp isdef



B.6. CLASS MODEL: OCLISKINDOF 207

apply(auto simp: OclAsTypeReservation-OclAny foundation22 foundation16 null-option-def bot-option-def split:
tyEXT OclAny .split tyOclAny .split)
by(simp add: OclIsTypeOfP erson-OclAny OclValid-def false-def true-def )
lemma down-cast-typeC lient-from-OclAny-to-Reservation :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Client))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Reservation)) , invalid
using istyp isdef

apply(auto simp: OclAsTypeReservation-OclAny foundation22 foundation16 null-option-def bot-option-def split:
tyEXT OclAny .split tyOclAny .split)
by(simp add: OclIsTypeOfC lient-OclAny OclValid-def false-def true-def )
lemma down-cast-typeF light-from-OclAny-to-Reservation :
assumes istyp: τ |= ((X ::·OclAny) .oclIsTypeOf (Flight))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Reservation)) , invalid
using istyp isdef

apply(auto simp: OclAsTypeReservation-OclAny foundation22 foundation16 null-option-def bot-option-def split:
tyEXT OclAny .split tyOclAny .split)
by(simp add: OclIsTypeOfF light-OclAny OclValid-def false-def true-def )

Const

B.6 Class Model: OclIsKindOf

Definition
consts OclIsKindOfF light :: ′α ⇒ Boolean ((-) .oclIsKindOf ′(Flight ′))
consts OclIsKindOfC lient :: ′α ⇒ Boolean ((-) .oclIsKindOf ′(Client ′))
consts OclIsKindOf Staf f :: ′α ⇒ Boolean ((-) .oclIsKindOf ′(Staff ′))
consts OclIsKindOfP erson :: ′α ⇒ Boolean ((-) .oclIsKindOf ′(Person ′))
consts OclIsKindOfReservation :: ′α ⇒ Boolean ((-) .oclIsKindOf ′(Reservation ′))
consts OclIsKindOfOclAny :: ′α ⇒ Boolean ((-) .oclIsKindOf ′(OclAny ′))

overloading OclIsKindOfF light ≡ (OclIsKindOfF light::(·Flight) ⇒ -)
begin
definition OclIsKindOfF light-Flight : (x::·Flight) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight))

end
overloading OclIsKindOfF light ≡ (OclIsKindOfF light::(·OclAny) ⇒ -)
begin
definition OclIsKindOfF light-OclAny : (x::·OclAny) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight))

end
overloading OclIsKindOfF light ≡ (OclIsKindOfF light::(·Staff ) ⇒ -)
begin
definition OclIsKindOfF light-Staff : (x::·Staff ) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight))

end
overloading OclIsKindOfF light ≡ (OclIsKindOfF light::(·Person) ⇒ -)
begin
definition OclIsKindOfF light-Person : (x::·Person) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight))

end
overloading OclIsKindOfF light ≡ (OclIsKindOfF light::(·Client) ⇒ -)
begin
definition OclIsKindOfF light-Client : (x::·Client) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight))

end
overloading OclIsKindOfF light ≡ (OclIsKindOfF light::(·Reservation) ⇒ -)
begin
definition OclIsKindOfF light-Reservation : (x::·Reservation) .oclIsKindOf (Flight) ≡ (x .oclIsTypeOf (Flight))

end
overloading OclIsKindOfC lient ≡ (OclIsKindOfC lient::(·Client) ⇒ -)
begin
definition OclIsKindOfC lient-Client : (x::·Client) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client))

end
overloading OclIsKindOfC lient ≡ (OclIsKindOfC lient::(·Person) ⇒ -)
begin
definition OclIsKindOfC lient-Person : (x::·Person) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client))

end
overloading OclIsKindOfC lient ≡ (OclIsKindOfC lient::(·OclAny) ⇒ -)
begin
definition OclIsKindOfC lient-OclAny : (x::·OclAny) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client))

end
overloading OclIsKindOfC lient ≡ (OclIsKindOfC lient::(·Staff ) ⇒ -)
begin



208 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

definition OclIsKindOfC lient-Staff : (x::·Staff ) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client))
end
overloading OclIsKindOfC lient ≡ (OclIsKindOfC lient::(·Reservation) ⇒ -)
begin
definition OclIsKindOfC lient-Reservation : (x::·Reservation) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client))

end
overloading OclIsKindOfC lient ≡ (OclIsKindOfC lient::(·Flight) ⇒ -)
begin
definition OclIsKindOfC lient-Flight : (x::·Flight) .oclIsKindOf (Client) ≡ (x .oclIsTypeOf (Client))

end
overloading OclIsKindOf Staf f ≡ (OclIsKindOf Staf f ::(·Staff ) ⇒ -)
begin
definition OclIsKindOf Staf f -Staff : (x::·Staff ) .oclIsKindOf (Staff ) ≡ (x .oclIsTypeOf (Staff ))

end
overloading OclIsKindOf Staf f ≡ (OclIsKindOf Staf f ::(·Person) ⇒ -)
begin
definition OclIsKindOf Staf f -Person : (x::·Person) .oclIsKindOf (Staff ) ≡ (x .oclIsTypeOf (Staff ))

end
overloading OclIsKindOf Staf f ≡ (OclIsKindOf Staf f ::(·OclAny) ⇒ -)
begin
definition OclIsKindOf Staf f -OclAny : (x::·OclAny) .oclIsKindOf (Staff ) ≡ (x .oclIsTypeOf (Staff ))

end
overloading OclIsKindOf Staf f ≡ (OclIsKindOf Staf f ::(·Client) ⇒ -)
begin
definition OclIsKindOf Staf f -Client : (x::·Client) .oclIsKindOf (Staff ) ≡ (x .oclIsTypeOf (Staff ))

end
overloading OclIsKindOf Staf f ≡ (OclIsKindOf Staf f ::(·Reservation) ⇒ -)
begin
definition OclIsKindOf Staf f -Reservation : (x::·Reservation) .oclIsKindOf (Staff ) ≡ (x .oclIsTypeOf (Staff ))

end
overloading OclIsKindOf Staf f ≡ (OclIsKindOf Staf f ::(·Flight) ⇒ -)
begin
definition OclIsKindOf Staf f -Flight : (x::·Flight) .oclIsKindOf (Staff ) ≡ (x .oclIsTypeOf (Staff ))

end
overloading OclIsKindOfP erson ≡ (OclIsKindOfP erson::(·Person) ⇒ -)
begin

definition OclIsKindOfP erson-Person : (x::·Person) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x
.oclIsKindOf (Staff )) or (x .oclIsKindOf (Client))
end
overloading OclIsKindOfP erson ≡ (OclIsKindOfP erson::(·OclAny) ⇒ -)
begin

definition OclIsKindOfP erson-OclAny : (x::·OclAny) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x
.oclIsKindOf (Staff )) or (x .oclIsKindOf (Client))
end
overloading OclIsKindOfP erson ≡ (OclIsKindOfP erson::(·Client) ⇒ -)
begin

definition OclIsKindOfP erson-Client : (x::·Client) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x
.oclIsKindOf (Staff )) or (x .oclIsKindOf (Client))
end
overloading OclIsKindOfP erson ≡ (OclIsKindOfP erson::(·Staff ) ⇒ -)
begin
definition OclIsKindOfP erson-Staff : (x::·Staff ) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x .oclIsKindOf (Staff ))

or (x .oclIsKindOf (Client))
end
overloading OclIsKindOfP erson ≡ (OclIsKindOfP erson::(·Reservation) ⇒ -)
begin

definition OclIsKindOfP erson-Reservation : (x::·Reservation) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x
.oclIsKindOf (Staff )) or (x .oclIsKindOf (Client))
end
overloading OclIsKindOfP erson ≡ (OclIsKindOfP erson::(·Flight) ⇒ -)
begin
definition OclIsKindOfP erson-Flight : (x::·Flight) .oclIsKindOf (Person) ≡ (x .oclIsTypeOf (Person)) or (x .oclIsKindOf (Staff ))

or (x .oclIsKindOf (Client))
end
overloading OclIsKindOfReservation ≡ (OclIsKindOfReservation::(·Reservation) ⇒ -)
begin
definition OclIsKindOfReservation-Reservation : (x::·Reservation) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation))
end
overloading OclIsKindOfReservation ≡ (OclIsKindOfReservation::(·OclAny) ⇒ -)
begin
definition OclIsKindOfReservation-OclAny : (x::·OclAny) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation))

end
overloading OclIsKindOfReservation ≡ (OclIsKindOfReservation::(·Staff ) ⇒ -)



B.6. CLASS MODEL: OCLISKINDOF 209

begin
definition OclIsKindOfReservation-Staff : (x::·Staff ) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation))

end
overloading OclIsKindOfReservation ≡ (OclIsKindOfReservation::(·Person) ⇒ -)
begin
definition OclIsKindOfReservation-Person : (x::·Person) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation))

end
overloading OclIsKindOfReservation ≡ (OclIsKindOfReservation::(·Client) ⇒ -)
begin
definition OclIsKindOfReservation-Client : (x::·Client) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation))

end
overloading OclIsKindOfReservation ≡ (OclIsKindOfReservation::(·Flight) ⇒ -)
begin
definition OclIsKindOfReservation-Flight : (x::·Flight) .oclIsKindOf (Reservation) ≡ (x .oclIsTypeOf (Reservation))

end
overloading OclIsKindOfOclAny ≡ (OclIsKindOfOclAny ::(·OclAny) ⇒ -)
begin

definition OclIsKindOfOclAny-OclAny : (x::·OclAny) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x
.oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight))
end
overloading OclIsKindOfOclAny ≡ (OclIsKindOfOclAny ::(·Flight) ⇒ -)
begin

definition OclIsKindOfOclAny-Flight : (x::·Flight) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x
.oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight))
end
overloading OclIsKindOfOclAny ≡ (OclIsKindOfOclAny ::(·Client) ⇒ -)
begin

definition OclIsKindOfOclAny-Client : (x::·Client) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x
.oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight))
end
overloading OclIsKindOfOclAny ≡ (OclIsKindOfOclAny ::(·Staff ) ⇒ -)
begin

definition OclIsKindOfOclAny-Staff : (x::·Staff ) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x
.oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight))
end
overloading OclIsKindOfOclAny ≡ (OclIsKindOfOclAny ::(·Person) ⇒ -)
begin

definition OclIsKindOfOclAny-Person : (x::·Person) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x
.oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight))
end
overloading OclIsKindOfOclAny ≡ (OclIsKindOfOclAny ::(·Reservation) ⇒ -)
begin

definition OclIsKindOfOclAny-Reservation : (x::·Reservation) .oclIsKindOf (OclAny) ≡ (x .oclIsTypeOf (OclAny)) or (x
.oclIsKindOf (Reservation)) or (x .oclIsKindOf (Person)) or (x .oclIsKindOf (Flight))
end

definition OclIsKindOfF light-A = (λ (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsKindOf (Flight))
| (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsKindOf (Flight))
| (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsKindOf (Flight))
| (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsKindOf (Flight))
| (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsKindOf (Flight))
| (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation) .oclIsKindOf (Flight)))

definition OclIsKindOfC lient-A = (λ (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsKindOf (Client))
| (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsKindOf (Client))
| (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsKindOf (Client))
| (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsKindOf (Client))
| (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation) .oclIsKindOf (Client))
| (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsKindOf (Client)))

definition OclIsKindOf Staf f -A = (λ (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsKindOf (Staff ))
| (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsKindOf (Staff ))
| (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsKindOf (Staff ))
| (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsKindOf (Staff ))
| (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation) .oclIsKindOf (Staff ))
| (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsKindOf (Staff )))

definition OclIsKindOfP erson-A = (λ (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsKindOf (Person))
| (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsKindOf (Person))
| (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsKindOf (Person))
| (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsKindOf (Person))
| (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation) .oclIsKindOf (Person))
| (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsKindOf (Person)))

definition OclIsKindOfReservation-A = (λ (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation)
.oclIsKindOf (Reservation))



210 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

| (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsKindOf (Reservation))
| (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsKindOf (Reservation))
| (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsKindOf (Reservation))
| (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsKindOf (Reservation))
| (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsKindOf (Reservation)))

definition OclIsKindOfOclAny-A = (λ (inOclAny (OclAny)) ⇒ (((((λx -. bbxcc)) (OclAny))::·OclAny) .oclIsKindOf (OclAny))
| (inF light (Flight)) ⇒ (((((λx -. bbxcc)) (Flight))::·Flight) .oclIsKindOf (OclAny))
| (inC lient (Client)) ⇒ (((((λx -. bbxcc)) (Client))::·Client) .oclIsKindOf (OclAny))
| (inStaf f (Staff )) ⇒ (((((λx -. bbxcc)) (Staff ))::·Staff ) .oclIsKindOf (OclAny))
| (inP erson (Person)) ⇒ (((((λx -. bbxcc)) (Person))::·Person) .oclIsKindOf (OclAny))
| (inReservation (Reservation)) ⇒ (((((λx -. bbxcc)) (Reservation))::·Reservation) .oclIsKindOf (OclAny)))

lemmas[simp,code-unfold] = OclIsKindOfF light-Flight
OclIsKindOfC lient-Client
OclIsKindOf Staf f -Staff
OclIsKindOfP erson-Person
OclIsKindOfReservation-Reservation
OclIsKindOfOclAny-OclAny

Context Passing
lemma cp-OclIsKindOfF light-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Flight, simp only: cp-OclIsTypeOfF light-Flight-Flight)
lemma cp-OclIsKindOfF light-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Flight, simp only: cp-OclIsTypeOfF light-OclAny-Flight)
lemma cp-OclIsKindOfF light-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Flight, simp only: cp-OclIsTypeOfF light-Staff-Flight)
lemma cp-OclIsKindOfF light-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Flight, simp only: cp-OclIsTypeOfF light-Person-Flight)
lemma cp-OclIsKindOfF light-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Flight, simp only: cp-OclIsTypeOfF light-Client-Flight)
lemma cp-OclIsKindOfF light-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Flight, simp only: cp-OclIsTypeOfF light-Reservation-Flight)
lemma cp-OclIsKindOfF light-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-OclAny, simp only: cp-OclIsTypeOfF light-Flight-OclAny)
lemma cp-OclIsKindOfF light-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-OclAny, simp only: cp-OclIsTypeOfF light-OclAny-OclAny)
lemma cp-OclIsKindOfF light-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-OclAny, simp only: cp-OclIsTypeOfF light-Staff-OclAny)
lemma cp-OclIsKindOfF light-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-OclAny, simp only: cp-OclIsTypeOfF light-Person-OclAny)
lemma cp-OclIsKindOfF light-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-OclAny, simp only: cp-OclIsTypeOfF light-Client-OclAny)
lemma cp-OclIsKindOfF light-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-OclAny, simp only: cp-OclIsTypeOfF light-Reservation-OclAny)
lemma cp-OclIsKindOfF light-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Staff , simp only: cp-OclIsTypeOfF light-Flight-Staff )
lemma cp-OclIsKindOfF light-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Staff , simp only: cp-OclIsTypeOfF light-OclAny-Staff )
lemma cp-OclIsKindOfF light-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Staff , simp only: cp-OclIsTypeOfF light-Staff-Staff )
lemma cp-OclIsKindOfF light-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Staff , simp only: cp-OclIsTypeOfF light-Person-Staff )
lemma cp-OclIsKindOfF light-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Staff , simp only: cp-OclIsTypeOfF light-Client-Staff )
lemma cp-OclIsKindOfF light-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff ) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Staff , simp only: cp-OclIsTypeOfF light-Reservation-Staff )
lemma cp-OclIsKindOfF light-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Person, simp only: cp-OclIsTypeOfF light-Flight-Person)
lemma cp-OclIsKindOfF light-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Person, simp only: cp-OclIsTypeOfF light-OclAny-Person)
lemma cp-OclIsKindOfF light-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Person, simp only: cp-OclIsTypeOfF light-Staff-Person)
lemma cp-OclIsKindOfF light-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Person, simp only: cp-OclIsTypeOfF light-Person-Person)
lemma cp-OclIsKindOfF light-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Person, simp only: cp-OclIsTypeOfF light-Client-Person)
lemma cp-OclIsKindOfF light-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Person, simp only: cp-OclIsTypeOfF light-Reservation-Person)



B.6. CLASS MODEL: OCLISKINDOF 211

lemma cp-OclIsKindOfF light-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Client, simp only: cp-OclIsTypeOfF light-Flight-Client)
lemma cp-OclIsKindOfF light-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Client, simp only: cp-OclIsTypeOfF light-OclAny-Client)
lemma cp-OclIsKindOfF light-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Client, simp only: cp-OclIsTypeOfF light-Staff-Client)
lemma cp-OclIsKindOfF light-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Client, simp only: cp-OclIsTypeOfF light-Person-Client)
lemma cp-OclIsKindOfF light-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Client, simp only: cp-OclIsTypeOfF light-Client-Client)
lemma cp-OclIsKindOfF light-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Client, simp only: cp-OclIsTypeOfF light-Reservation-Client)
lemma cp-OclIsKindOfF light-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Reservation, simp only: cp-OclIsTypeOfF light-Flight-Reservation)
lemma cp-OclIsKindOfF light-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Reservation, simp only: cp-OclIsTypeOfF light-OclAny-Reservation)
lemma cp-OclIsKindOfF light-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation) .oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Reservation, simp only: cp-OclIsTypeOfF light-Staff-Reservation)
lemma cp-OclIsKindOfF light-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Reservation, simp only: cp-OclIsTypeOfF light-Person-Reservation)
lemma cp-OclIsKindOfF light-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Reservation, simp only: cp-OclIsTypeOfF light-Client-Reservation)
lemma cp-OclIsKindOfF light-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclIsKindOf (Flight)))))
by(simp only: OclIsKindOfF light-Reservation, simp only: cp-OclIsTypeOfF light-Reservation-Reservation)
lemma cp-OclIsKindOfC lient-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Client, simp only: cp-OclIsTypeOfC lient-Client-Client)
lemma cp-OclIsKindOfC lient-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Client, simp only: cp-OclIsTypeOfC lient-Person-Client)
lemma cp-OclIsKindOfC lient-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Client, simp only: cp-OclIsTypeOfC lient-OclAny-Client)
lemma cp-OclIsKindOfC lient-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Client, simp only: cp-OclIsTypeOfC lient-Staff-Client)
lemma cp-OclIsKindOfC lient-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Client, simp only: cp-OclIsTypeOfC lient-Reservation-Client)
lemma cp-OclIsKindOfC lient-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Client, simp only: cp-OclIsTypeOfC lient-Flight-Client)
lemma cp-OclIsKindOfC lient-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Person, simp only: cp-OclIsTypeOfC lient-Client-Person)
lemma cp-OclIsKindOfC lient-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Person, simp only: cp-OclIsTypeOfC lient-Person-Person)
lemma cp-OclIsKindOfC lient-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Person, simp only: cp-OclIsTypeOfC lient-OclAny-Person)
lemma cp-OclIsKindOfC lient-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Person, simp only: cp-OclIsTypeOfC lient-Staff-Person)
lemma cp-OclIsKindOfC lient-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Person, simp only: cp-OclIsTypeOfC lient-Reservation-Person)
lemma cp-OclIsKindOfC lient-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Person, simp only: cp-OclIsTypeOfC lient-Flight-Person)
lemma cp-OclIsKindOfC lient-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-OclAny, simp only: cp-OclIsTypeOfC lient-Client-OclAny)
lemma cp-OclIsKindOfC lient-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-OclAny, simp only: cp-OclIsTypeOfC lient-Person-OclAny)
lemma cp-OclIsKindOfC lient-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-OclAny, simp only: cp-OclIsTypeOfC lient-OclAny-OclAny)
lemma cp-OclIsKindOfC lient-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-OclAny, simp only: cp-OclIsTypeOfC lient-Staff-OclAny)
lemma cp-OclIsKindOfC lient-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-OclAny, simp only: cp-OclIsTypeOfC lient-Reservation-OclAny)
lemma cp-OclIsKindOfC lient-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-OclAny, simp only: cp-OclIsTypeOfC lient-Flight-OclAny)
lemma cp-OclIsKindOfC lient-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Staff , simp only: cp-OclIsTypeOfC lient-Client-Staff )
lemma cp-OclIsKindOfC lient-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Staff , simp only: cp-OclIsTypeOfC lient-Person-Staff )



212 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

lemma cp-OclIsKindOfC lient-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Staff , simp only: cp-OclIsTypeOfC lient-OclAny-Staff )
lemma cp-OclIsKindOfC lient-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Staff , simp only: cp-OclIsTypeOfC lient-Staff-Staff )
lemma cp-OclIsKindOfC lient-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff ) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Staff , simp only: cp-OclIsTypeOfC lient-Reservation-Staff )
lemma cp-OclIsKindOfC lient-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Staff , simp only: cp-OclIsTypeOfC lient-Flight-Staff )
lemma cp-OclIsKindOfC lient-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Reservation, simp only: cp-OclIsTypeOfC lient-Client-Reservation)
lemma cp-OclIsKindOfC lient-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Reservation, simp only: cp-OclIsTypeOfC lient-Person-Reservation)
lemma cp-OclIsKindOfC lient-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Reservation, simp only: cp-OclIsTypeOfC lient-OclAny-Reservation)
lemma cp-OclIsKindOfC lient-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Reservation, simp only: cp-OclIsTypeOfC lient-Staff-Reservation)
lemma cp-OclIsKindOfC lient-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Reservation, simp only: cp-OclIsTypeOfC lient-Reservation-Reservation)
lemma cp-OclIsKindOfC lient-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Reservation, simp only: cp-OclIsTypeOfC lient-Flight-Reservation)
lemma cp-OclIsKindOfC lient-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Flight, simp only: cp-OclIsTypeOfC lient-Client-Flight)
lemma cp-OclIsKindOfC lient-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Flight, simp only: cp-OclIsTypeOfC lient-Person-Flight)
lemma cp-OclIsKindOfC lient-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Flight, simp only: cp-OclIsTypeOfC lient-OclAny-Flight)
lemma cp-OclIsKindOfC lient-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Flight, simp only: cp-OclIsTypeOfC lient-Staff-Flight)
lemma cp-OclIsKindOfC lient-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Flight, simp only: cp-OclIsTypeOfC lient-Reservation-Flight)
lemma cp-OclIsKindOfC lient-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclIsKindOf (Client)))))
by(simp only: OclIsKindOfC lient-Flight, simp only: cp-OclIsTypeOfC lient-Flight-Flight)
lemma cp-OclIsKindOf Staf f -Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Staff , simp only: cp-OclIsTypeOf Staf f -Staff-Staff )
lemma cp-OclIsKindOf Staf f -Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Staff , simp only: cp-OclIsTypeOf Staf f -Person-Staff )
lemma cp-OclIsKindOf Staf f -OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Staff , simp only: cp-OclIsTypeOf Staf f -OclAny-Staff )
lemma cp-OclIsKindOf Staf f -Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Staff , simp only: cp-OclIsTypeOf Staf f -Client-Staff )
lemma cp-OclIsKindOf Staf f -Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff ) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Staff , simp only: cp-OclIsTypeOf Staf f -Reservation-Staff )
lemma cp-OclIsKindOf Staf f -Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Staff , simp only: cp-OclIsTypeOf Staf f -Flight-Staff )
lemma cp-OclIsKindOf Staf f -Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Person, simp only: cp-OclIsTypeOf Staf f -Staff-Person)
lemma cp-OclIsKindOf Staf f -Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Person, simp only: cp-OclIsTypeOf Staf f -Person-Person)
lemma cp-OclIsKindOf Staf f -OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Person, simp only: cp-OclIsTypeOf Staf f -OclAny-Person)
lemma cp-OclIsKindOf Staf f -Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Person, simp only: cp-OclIsTypeOf Staf f -Client-Person)
lemma cp-OclIsKindOf Staf f -Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Person, simp only: cp-OclIsTypeOf Staf f -Reservation-Person)
lemma cp-OclIsKindOf Staf f -Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Person, simp only: cp-OclIsTypeOf Staf f -Flight-Person)
lemma cp-OclIsKindOf Staf f -Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -OclAny, simp only: cp-OclIsTypeOf Staf f -Staff-OclAny)
lemma cp-OclIsKindOf Staf f -Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -OclAny, simp only: cp-OclIsTypeOf Staf f -Person-OclAny)
lemma cp-OclIsKindOf Staf f -OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -OclAny, simp only: cp-OclIsTypeOf Staf f -OclAny-OclAny)
lemma cp-OclIsKindOf Staf f -Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -OclAny, simp only: cp-OclIsTypeOf Staf f -Client-OclAny)
lemma cp-OclIsKindOf Staf f -Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsKindOf (Staff )))))



B.6. CLASS MODEL: OCLISKINDOF 213

by(simp only: OclIsKindOf Staf f -OclAny, simp only: cp-OclIsTypeOf Staf f -Reservation-OclAny)
lemma cp-OclIsKindOf Staf f -Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -OclAny, simp only: cp-OclIsTypeOf Staf f -Flight-OclAny)
lemma cp-OclIsKindOf Staf f -Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Client, simp only: cp-OclIsTypeOf Staf f -Staff-Client)
lemma cp-OclIsKindOf Staf f -Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Client, simp only: cp-OclIsTypeOf Staf f -Person-Client)
lemma cp-OclIsKindOf Staf f -OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Client, simp only: cp-OclIsTypeOf Staf f -OclAny-Client)
lemma cp-OclIsKindOf Staf f -Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Client, simp only: cp-OclIsTypeOf Staf f -Client-Client)
lemma cp-OclIsKindOf Staf f -Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Client, simp only: cp-OclIsTypeOf Staf f -Reservation-Client)
lemma cp-OclIsKindOf Staf f -Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Client, simp only: cp-OclIsTypeOf Staf f -Flight-Client)
lemma cp-OclIsKindOf Staf f -Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Reservation, simp only: cp-OclIsTypeOf Staf f -Staff-Reservation)
lemma cp-OclIsKindOf Staf f -Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Reservation, simp only: cp-OclIsTypeOf Staf f -Person-Reservation)
lemma cp-OclIsKindOf Staf f -OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Reservation, simp only: cp-OclIsTypeOf Staf f -OclAny-Reservation)
lemma cp-OclIsKindOf Staf f -Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Reservation, simp only: cp-OclIsTypeOf Staf f -Client-Reservation)
lemma cp-OclIsKindOf Staf f -Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Reservation, simp only: cp-OclIsTypeOf Staf f -Reservation-Reservation)
lemma cp-OclIsKindOf Staf f -Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Reservation, simp only: cp-OclIsTypeOf Staf f -Flight-Reservation)
lemma cp-OclIsKindOf Staf f -Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Flight, simp only: cp-OclIsTypeOf Staf f -Staff-Flight)
lemma cp-OclIsKindOf Staf f -Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Flight, simp only: cp-OclIsTypeOf Staf f -Person-Flight)
lemma cp-OclIsKindOf Staf f -OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Flight, simp only: cp-OclIsTypeOf Staf f -OclAny-Flight)
lemma cp-OclIsKindOf Staf f -Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Flight, simp only: cp-OclIsTypeOf Staf f -Client-Flight)
lemma cp-OclIsKindOf Staf f -Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Flight, simp only: cp-OclIsTypeOf Staf f -Reservation-Flight)
lemma cp-OclIsKindOf Staf f -Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclIsKindOf (Staff )))))
by(simp only: OclIsKindOf Staf f -Flight, simp only: cp-OclIsTypeOf Staf f -Flight-Flight)
lemma cp-OclIsKindOfP erson-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Person-Person)

by(simp only: cp-OclIsKindOf Staf f -Person-Person, simp only: cp-OclIsKindOfC lient-Person-Person)
lemma cp-OclIsKindOfP erson-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-OclAny-Person)

by(simp only: cp-OclIsKindOf Staf f -OclAny-Person, simp only: cp-OclIsKindOfC lient-OclAny-Person)
lemma cp-OclIsKindOfP erson-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Client-Person)

by(simp only: cp-OclIsKindOf Staf f -Client-Person, simp only: cp-OclIsKindOfC lient-Client-Person)
lemma cp-OclIsKindOfP erson-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Staff-Person)

by(simp only: cp-OclIsKindOf Staf f -Staff-Person, simp only: cp-OclIsKindOfC lient-Staff-Person)
lemma cp-OclIsKindOfP erson-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Reservation-Person)

by(simp only: cp-OclIsKindOf Staf f -Reservation-Person, simp only: cp-OclIsKindOfC lient-Reservation-Person)
lemma cp-OclIsKindOfP erson-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclIsKindOf (Person)))))



214 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

apply(simp only: OclIsKindOfP erson-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Flight-Person)

by(simp only: cp-OclIsKindOf Staf f -Flight-Person, simp only: cp-OclIsKindOfC lient-Flight-Person)
lemma cp-OclIsKindOfP erson-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Person-OclAny)

by(simp only: cp-OclIsKindOf Staf f -Person-OclAny, simp only: cp-OclIsKindOfC lient-Person-OclAny)
lemma cp-OclIsKindOfP erson-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-OclAny-OclAny)

by(simp only: cp-OclIsKindOf Staf f -OclAny-OclAny, simp only: cp-OclIsKindOfC lient-OclAny-OclAny)
lemma cp-OclIsKindOfP erson-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Client-OclAny)

by(simp only: cp-OclIsKindOf Staf f -Client-OclAny, simp only: cp-OclIsKindOfC lient-Client-OclAny)
lemma cp-OclIsKindOfP erson-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Staff-OclAny)

by(simp only: cp-OclIsKindOf Staf f -Staff-OclAny, simp only: cp-OclIsKindOfC lient-Staff-OclAny)
lemma cp-OclIsKindOfP erson-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Reservation-OclAny)

by(simp only: cp-OclIsKindOf Staf f -Reservation-OclAny, simp only: cp-OclIsKindOfC lient-Reservation-OclAny)
lemma cp-OclIsKindOfP erson-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Flight-OclAny)

by(simp only: cp-OclIsKindOf Staf f -Flight-OclAny, simp only: cp-OclIsKindOfC lient-Flight-OclAny)
lemma cp-OclIsKindOfP erson-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Person-Client)

by(simp only: cp-OclIsKindOf Staf f -Person-Client, simp only: cp-OclIsKindOfC lient-Person-Client)
lemma cp-OclIsKindOfP erson-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-OclAny-Client)

by(simp only: cp-OclIsKindOf Staf f -OclAny-Client, simp only: cp-OclIsKindOfC lient-OclAny-Client)
lemma cp-OclIsKindOfP erson-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Client-Client)

by(simp only: cp-OclIsKindOf Staf f -Client-Client, simp only: cp-OclIsKindOfC lient-Client-Client)
lemma cp-OclIsKindOfP erson-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Staff-Client)

by(simp only: cp-OclIsKindOf Staf f -Staff-Client, simp only: cp-OclIsKindOfC lient-Staff-Client)
lemma cp-OclIsKindOfP erson-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Reservation-Client)

by(simp only: cp-OclIsKindOf Staf f -Reservation-Client, simp only: cp-OclIsKindOfC lient-Reservation-Client)
lemma cp-OclIsKindOfP erson-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Flight-Client)

by(simp only: cp-OclIsKindOf Staf f -Flight-Client, simp only: cp-OclIsKindOfC lient-Flight-Client)
lemma cp-OclIsKindOfP erson-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Staff )
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Person-Staff )

by(simp only: cp-OclIsKindOf Staf f -Person-Staff , simp only: cp-OclIsKindOfC lient-Person-Staff )
lemma cp-OclIsKindOfP erson-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Staff )



B.6. CLASS MODEL: OCLISKINDOF 215

apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-OclAny-Staff )

by(simp only: cp-OclIsKindOf Staf f -OclAny-Staff , simp only: cp-OclIsKindOfC lient-OclAny-Staff )
lemma cp-OclIsKindOfP erson-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Staff )
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Client-Staff )

by(simp only: cp-OclIsKindOf Staf f -Client-Staff , simp only: cp-OclIsKindOfC lient-Client-Staff )
lemma cp-OclIsKindOfP erson-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Staff )
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Staff-Staff )

by(simp only: cp-OclIsKindOf Staf f -Staff-Staff , simp only: cp-OclIsKindOfC lient-Staff-Staff )
lemma cp-OclIsKindOfP erson-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff )
.oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Staff )
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Reservation-Staff )

by(simp only: cp-OclIsKindOf Staf f -Reservation-Staff , simp only: cp-OclIsKindOfC lient-Reservation-Staff )
lemma cp-OclIsKindOfP erson-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Staff )
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Flight-Staff )

by(simp only: cp-OclIsKindOf Staf f -Flight-Staff , simp only: cp-OclIsKindOfC lient-Flight-Staff )
lemma cp-OclIsKindOfP erson-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Person-Reservation)

by(simp only: cp-OclIsKindOf Staf f -Person-Reservation, simp only: cp-OclIsKindOfC lient-Person-Reservation)
lemma cp-OclIsKindOfP erson-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-OclAny-Reservation)

by(simp only: cp-OclIsKindOf Staf f -OclAny-Reservation, simp only: cp-OclIsKindOfC lient-OclAny-Reservation)
lemma cp-OclIsKindOfP erson-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Client-Reservation)

by(simp only: cp-OclIsKindOf Staf f -Client-Reservation, simp only: cp-OclIsKindOfC lient-Client-Reservation)
lemma cp-OclIsKindOfP erson-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation)
.oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Staff-Reservation)

by(simp only: cp-OclIsKindOf Staf f -Staff-Reservation, simp only: cp-OclIsKindOfC lient-Staff-Reservation)
lemma cp-OclIsKindOfP erson-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Reservation-Reservation)

by(simp only: cp-OclIsKindOf Staf f -Reservation-Reservation, simp only: cp-OclIsKindOfC lient-Reservation-Reservation)
lemma cp-OclIsKindOfP erson-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Flight-Reservation)

by(simp only: cp-OclIsKindOf Staf f -Flight-Reservation, simp only: cp-OclIsKindOfC lient-Flight-Reservation)
lemma cp-OclIsKindOfP erson-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Person-Flight)

by(simp only: cp-OclIsKindOf Staf f -Person-Flight, simp only: cp-OclIsKindOfC lient-Person-Flight)
lemma cp-OclIsKindOfP erson-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-OclAny-Flight)

by(simp only: cp-OclIsKindOf Staf f -OclAny-Flight, simp only: cp-OclIsKindOfC lient-OclAny-Flight)
lemma cp-OclIsKindOfP erson-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)



216 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

apply(simp only: cp-OclIsTypeOfP erson-Client-Flight)
by(simp only: cp-OclIsKindOf Staf f -Client-Flight, simp only: cp-OclIsKindOfC lient-Client-Flight)
lemma cp-OclIsKindOfP erson-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Staff-Flight)

by(simp only: cp-OclIsKindOf Staf f -Staff-Flight, simp only: cp-OclIsKindOfC lient-Staff-Flight)
lemma cp-OclIsKindOfP erson-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Reservation-Flight)

by(simp only: cp-OclIsKindOf Staf f -Reservation-Flight, simp only: cp-OclIsKindOfC lient-Reservation-Flight)
lemma cp-OclIsKindOfP erson-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclIsKindOf (Person)))))
apply(simp only: OclIsKindOfP erson-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfP erson-Flight-Flight)

by(simp only: cp-OclIsKindOf Staf f -Flight-Flight, simp only: cp-OclIsKindOfC lient-Flight-Flight)
lemma cp-OclIsKindOfReservation-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Reservation, simp only: cp-OclIsTypeOfReservation-Reservation-Reservation)
lemma cp-OclIsKindOfReservation-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Reservation, simp only: cp-OclIsTypeOfReservation-OclAny-Reservation)
lemma cp-OclIsKindOfReservation-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Reservation, simp only: cp-OclIsTypeOfReservation-Staff-Reservation)
lemma cp-OclIsKindOfReservation-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Reservation, simp only: cp-OclIsTypeOfReservation-Person-Reservation)
lemma cp-OclIsKindOfReservation-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Reservation, simp only: cp-OclIsTypeOfReservation-Client-Reservation)
lemma cp-OclIsKindOfReservation-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Reservation, simp only: cp-OclIsTypeOfReservation-Flight-Reservation)
lemma cp-OclIsKindOfReservation-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-OclAny, simp only: cp-OclIsTypeOfReservation-Reservation-OclAny)
lemma cp-OclIsKindOfReservation-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-OclAny, simp only: cp-OclIsTypeOfReservation-OclAny-OclAny)
lemma cp-OclIsKindOfReservation-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-OclAny, simp only: cp-OclIsTypeOfReservation-Staff-OclAny)
lemma cp-OclIsKindOfReservation-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-OclAny, simp only: cp-OclIsTypeOfReservation-Person-OclAny)
lemma cp-OclIsKindOfReservation-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-OclAny, simp only: cp-OclIsTypeOfReservation-Client-OclAny)
lemma cp-OclIsKindOfReservation-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-OclAny, simp only: cp-OclIsTypeOfReservation-Flight-OclAny)
lemma cp-OclIsKindOfReservation-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff )
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Staff , simp only: cp-OclIsTypeOfReservation-Reservation-Staff )
lemma cp-OclIsKindOfReservation-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff )
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Staff , simp only: cp-OclIsTypeOfReservation-OclAny-Staff )
lemma cp-OclIsKindOfReservation-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Staff , simp only: cp-OclIsTypeOfReservation-Staff-Staff )
lemma cp-OclIsKindOfReservation-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff )
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Staff , simp only: cp-OclIsTypeOfReservation-Person-Staff )
lemma cp-OclIsKindOfReservation-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff )
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Staff , simp only: cp-OclIsTypeOfReservation-Client-Staff )
lemma cp-OclIsKindOfReservation-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Staff , simp only: cp-OclIsTypeOfReservation-Flight-Staff )
lemma cp-OclIsKindOfReservation-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Person, simp only: cp-OclIsTypeOfReservation-Reservation-Person)



B.6. CLASS MODEL: OCLISKINDOF 217

lemma cp-OclIsKindOfReservation-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Person, simp only: cp-OclIsTypeOfReservation-OclAny-Person)
lemma cp-OclIsKindOfReservation-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Person, simp only: cp-OclIsTypeOfReservation-Staff-Person)
lemma cp-OclIsKindOfReservation-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Person, simp only: cp-OclIsTypeOfReservation-Person-Person)
lemma cp-OclIsKindOfReservation-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Person, simp only: cp-OclIsTypeOfReservation-Client-Person)
lemma cp-OclIsKindOfReservation-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Person, simp only: cp-OclIsTypeOfReservation-Flight-Person)
lemma cp-OclIsKindOfReservation-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Client, simp only: cp-OclIsTypeOfReservation-Reservation-Client)
lemma cp-OclIsKindOfReservation-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Client, simp only: cp-OclIsTypeOfReservation-OclAny-Client)
lemma cp-OclIsKindOfReservation-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Client, simp only: cp-OclIsTypeOfReservation-Staff-Client)
lemma cp-OclIsKindOfReservation-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Client, simp only: cp-OclIsTypeOfReservation-Person-Client)
lemma cp-OclIsKindOfReservation-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Client, simp only: cp-OclIsTypeOfReservation-Client-Client)
lemma cp-OclIsKindOfReservation-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Client, simp only: cp-OclIsTypeOfReservation-Flight-Client)
lemma cp-OclIsKindOfReservation-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Flight, simp only: cp-OclIsTypeOfReservation-Reservation-Flight)
lemma cp-OclIsKindOfReservation-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Flight, simp only: cp-OclIsTypeOfReservation-OclAny-Flight)
lemma cp-OclIsKindOfReservation-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Flight, simp only: cp-OclIsTypeOfReservation-Staff-Flight)
lemma cp-OclIsKindOfReservation-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Flight, simp only: cp-OclIsTypeOfReservation-Person-Flight)
lemma cp-OclIsKindOfReservation-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Flight, simp only: cp-OclIsTypeOfReservation-Client-Flight)
lemma cp-OclIsKindOfReservation-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight)
.oclIsKindOf (Reservation)))))
by(simp only: OclIsKindOfReservation-Flight, simp only: cp-OclIsTypeOfReservation-Flight-Flight)
lemma cp-OclIsKindOfOclAny-OclAny-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·OclAny) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-OclAny-OclAny)

by(simp only: cp-OclIsKindOfReservation-OclAny-OclAny, simp only: cp-OclIsKindOfP erson-OclAny-OclAny, simp only:
cp-OclIsKindOfF light-OclAny-OclAny)
lemma cp-OclIsKindOfOclAny-Flight-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·OclAny) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Flight-OclAny)

by(simp only: cp-OclIsKindOfReservation-Flight-OclAny, simp only: cp-OclIsKindOfP erson-Flight-OclAny, simp only:
cp-OclIsKindOfF light-Flight-OclAny)
lemma cp-OclIsKindOfOclAny-Client-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·OclAny) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Client-OclAny)

by(simp only: cp-OclIsKindOfReservation-Client-OclAny, simp only: cp-OclIsKindOfP erson-Client-OclAny, simp only:
cp-OclIsKindOfF light-Client-OclAny)
lemma cp-OclIsKindOfOclAny-Staff-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·OclAny) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Staff-OclAny)

by(simp only: cp-OclIsKindOfReservation-Staff-OclAny, simp only: cp-OclIsKindOfP erson-Staff-OclAny, simp only:
cp-OclIsKindOfF light-Staff-OclAny)



218 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

lemma cp-OclIsKindOfOclAny-Person-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·OclAny) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Person-OclAny)

by(simp only: cp-OclIsKindOfReservation-Person-OclAny, simp only: cp-OclIsKindOfP erson-Person-OclAny, simp only:
cp-OclIsKindOfF light-Person-OclAny)
lemma cp-OclIsKindOfOclAny-Reservation-OclAny : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·OclAny)
.oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-OclAny)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Reservation-OclAny)

by(simp only: cp-OclIsKindOfReservation-Reservation-OclAny, simp only: cp-OclIsKindOfP erson-Reservation-OclAny, simp
only: cp-OclIsKindOfF light-Reservation-OclAny)
lemma cp-OclIsKindOfOclAny-OclAny-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Flight) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-OclAny-Flight)

by(simp only: cp-OclIsKindOfReservation-OclAny-Flight, simp only: cp-OclIsKindOfP erson-OclAny-Flight, simp only:
cp-OclIsKindOfF light-OclAny-Flight)
lemma cp-OclIsKindOfOclAny-Flight-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Flight) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Flight-Flight)

by(simp only: cp-OclIsKindOfReservation-Flight-Flight, simp only: cp-OclIsKindOfP erson-Flight-Flight, simp only:
cp-OclIsKindOfF light-Flight-Flight)
lemma cp-OclIsKindOfOclAny-Client-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Flight) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Client-Flight)

by(simp only: cp-OclIsKindOfReservation-Client-Flight, simp only: cp-OclIsKindOfP erson-Client-Flight, simp only:
cp-OclIsKindOfF light-Client-Flight)
lemma cp-OclIsKindOfOclAny-Staff-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Flight) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Staff-Flight)

by(simp only: cp-OclIsKindOfReservation-Staff-Flight, simp only: cp-OclIsKindOfP erson-Staff-Flight, simp only:
cp-OclIsKindOfF light-Staff-Flight)
lemma cp-OclIsKindOfOclAny-Person-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Flight) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Person-Flight)

by(simp only: cp-OclIsKindOfReservation-Person-Flight, simp only: cp-OclIsKindOfP erson-Person-Flight, simp only:
cp-OclIsKindOfF light-Person-Flight)
lemma cp-OclIsKindOfOclAny-Reservation-Flight : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Flight)
.oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Flight)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Reservation-Flight)

by(simp only: cp-OclIsKindOfReservation-Reservation-Flight, simp only: cp-OclIsKindOfP erson-Reservation-Flight, simp only:
cp-OclIsKindOfF light-Reservation-Flight)
lemma cp-OclIsKindOfOclAny-OclAny-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Client) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-OclAny-Client)

by(simp only: cp-OclIsKindOfReservation-OclAny-Client, simp only: cp-OclIsKindOfP erson-OclAny-Client, simp only:
cp-OclIsKindOfF light-OclAny-Client)
lemma cp-OclIsKindOfOclAny-Flight-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Client) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Flight-Client)

by(simp only: cp-OclIsKindOfReservation-Flight-Client, simp only: cp-OclIsKindOfP erson-Flight-Client, simp only:
cp-OclIsKindOfF light-Flight-Client)
lemma cp-OclIsKindOfOclAny-Client-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Client) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Client-Client)

by(simp only: cp-OclIsKindOfReservation-Client-Client, simp only: cp-OclIsKindOfP erson-Client-Client, simp only:
cp-OclIsKindOfF light-Client-Client)
lemma cp-OclIsKindOfOclAny-Staff-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Client) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Staff-Client)

by(simp only: cp-OclIsKindOfReservation-Staff-Client, simp only: cp-OclIsKindOfP erson-Staff-Client, simp only:



B.6. CLASS MODEL: OCLISKINDOF 219

cp-OclIsKindOfF light-Staff-Client)
lemma cp-OclIsKindOfOclAny-Person-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Client) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Person-Client)

by(simp only: cp-OclIsKindOfReservation-Person-Client, simp only: cp-OclIsKindOfP erson-Person-Client, simp only:
cp-OclIsKindOfF light-Person-Client)
lemma cp-OclIsKindOfOclAny-Reservation-Client : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Client)
.oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Client)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Reservation-Client)

by(simp only: cp-OclIsKindOfReservation-Reservation-Client, simp only: cp-OclIsKindOfP erson-Reservation-Client, simp only:
cp-OclIsKindOfF light-Reservation-Client)
lemma cp-OclIsKindOfOclAny-OclAny-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Staff ) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Staff )
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-OclAny-Staff )

by(simp only: cp-OclIsKindOfReservation-OclAny-Staff , simp only: cp-OclIsKindOfP erson-OclAny-Staff , simp only:
cp-OclIsKindOfF light-OclAny-Staff )
lemma cp-OclIsKindOfOclAny-Flight-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Staff ) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Staff )
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Flight-Staff )

by(simp only: cp-OclIsKindOfReservation-Flight-Staff , simp only: cp-OclIsKindOfP erson-Flight-Staff , simp only:
cp-OclIsKindOfF light-Flight-Staff )
lemma cp-OclIsKindOfOclAny-Client-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Staff ) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Staff )
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Client-Staff )

by(simp only: cp-OclIsKindOfReservation-Client-Staff , simp only: cp-OclIsKindOfP erson-Client-Staff , simp only:
cp-OclIsKindOfF light-Client-Staff )
lemma cp-OclIsKindOfOclAny-Staff-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Staff ) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Staff )
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Staff-Staff )

by(simp only: cp-OclIsKindOfReservation-Staff-Staff , simp only: cp-OclIsKindOfP erson-Staff-Staff , simp only:
cp-OclIsKindOfF light-Staff-Staff )
lemma cp-OclIsKindOfOclAny-Person-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Staff ) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Staff )
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Person-Staff )

by(simp only: cp-OclIsKindOfReservation-Person-Staff , simp only: cp-OclIsKindOfP erson-Person-Staff , simp only:
cp-OclIsKindOfF light-Person-Staff )
lemma cp-OclIsKindOfOclAny-Reservation-Staff : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Staff )
.oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Staff )
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Reservation-Staff )

by(simp only: cp-OclIsKindOfReservation-Reservation-Staff , simp only: cp-OclIsKindOfP erson-Reservation-Staff , simp only:
cp-OclIsKindOfF light-Reservation-Staff )
lemma cp-OclIsKindOfOclAny-OclAny-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Person) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-OclAny-Person)

by(simp only: cp-OclIsKindOfReservation-OclAny-Person, simp only: cp-OclIsKindOfP erson-OclAny-Person, simp only:
cp-OclIsKindOfF light-OclAny-Person)
lemma cp-OclIsKindOfOclAny-Flight-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Person) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Flight-Person)

by(simp only: cp-OclIsKindOfReservation-Flight-Person, simp only: cp-OclIsKindOfP erson-Flight-Person, simp only:
cp-OclIsKindOfF light-Flight-Person)
lemma cp-OclIsKindOfOclAny-Client-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Person) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Client-Person)

by(simp only: cp-OclIsKindOfReservation-Client-Person, simp only: cp-OclIsKindOfP erson-Client-Person, simp only:
cp-OclIsKindOfF light-Client-Person)
lemma cp-OclIsKindOfOclAny-Staff-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Person) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Staff-Person)



220 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(simp only: cp-OclIsKindOfReservation-Staff-Person, simp only: cp-OclIsKindOfP erson-Staff-Person, simp only:
cp-OclIsKindOfF light-Staff-Person)
lemma cp-OclIsKindOfOclAny-Person-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Person) .oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Person-Person)

by(simp only: cp-OclIsKindOfReservation-Person-Person, simp only: cp-OclIsKindOfP erson-Person-Person, simp only:
cp-OclIsKindOfF light-Person-Person)
lemma cp-OclIsKindOfOclAny-Reservation-Person : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Person)
.oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Person)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Reservation-Person)

by(simp only: cp-OclIsKindOfReservation-Reservation-Person, simp only: cp-OclIsKindOfP erson-Reservation-Person, simp
only: cp-OclIsKindOfF light-Reservation-Person)
lemma cp-OclIsKindOfOclAny-OclAny-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·OclAny)))::·Reservation)
.oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-OclAny-Reservation)

by(simp only: cp-OclIsKindOfReservation-OclAny-Reservation, simp only: cp-OclIsKindOfP erson-OclAny-Reservation, simp
only: cp-OclIsKindOfF light-OclAny-Reservation)
lemma cp-OclIsKindOfOclAny-Flight-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Flight)))::·Reservation)
.oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Flight-Reservation)

by(simp only: cp-OclIsKindOfReservation-Flight-Reservation, simp only: cp-OclIsKindOfP erson-Flight-Reservation, simp only:
cp-OclIsKindOfF light-Flight-Reservation)
lemma cp-OclIsKindOfOclAny-Client-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Client)))::·Reservation)
.oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Client-Reservation)

by(simp only: cp-OclIsKindOfReservation-Client-Reservation, simp only: cp-OclIsKindOfP erson-Client-Reservation, simp only:
cp-OclIsKindOfF light-Client-Reservation)
lemma cp-OclIsKindOfOclAny-Staff-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Staff )))::·Reservation)
.oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Staff-Reservation)

by(simp only: cp-OclIsKindOfReservation-Staff-Reservation, simp only: cp-OclIsKindOfP erson-Staff-Reservation, simp only:
cp-OclIsKindOfF light-Staff-Reservation)
lemma cp-OclIsKindOfOclAny-Person-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Person)))::·Reservation)
.oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Person-Reservation)

by(simp only: cp-OclIsKindOfReservation-Person-Reservation, simp only: cp-OclIsKindOfP erson-Person-Reservation, simp
only: cp-OclIsKindOfF light-Person-Reservation)
lemma cp-OclIsKindOfOclAny-Reservation-Reservation : (cp (p)) =⇒ (cp ((λx. (((p ((x::·Reservation)))::·Reservation)
.oclIsKindOf (OclAny)))))
apply(simp only: OclIsKindOfOclAny-Reservation)
apply((rule cpI2 [where f = op or ], (rule allI )+, rule cp-OclOr)+)
apply(simp only: cp-OclIsTypeOfOclAny-Reservation-Reservation)

by(simp only: cp-OclIsKindOfReservation-Reservation-Reservation, simp only: cp-OclIsKindOfP erson-Reservation-Reservation,
simp only: cp-OclIsKindOfF light-Reservation-Reservation)

lemmas[simp,code-unfold] = cp-OclIsKindOfC lient-Client-Client
cp-OclIsKindOfC lient-Reservation-Client
cp-OclIsKindOfC lient-OclAny-Client
cp-OclIsKindOfC lient-Person-Client
cp-OclIsKindOfC lient-Staff-Client
cp-OclIsKindOfC lient-Flight-Client
cp-OclIsKindOfC lient-Client-Reservation
cp-OclIsKindOfC lient-Reservation-Reservation
cp-OclIsKindOfC lient-OclAny-Reservation
cp-OclIsKindOfC lient-Person-Reservation
cp-OclIsKindOfC lient-Staff-Reservation
cp-OclIsKindOfC lient-Flight-Reservation
cp-OclIsKindOfC lient-Client-OclAny
cp-OclIsKindOfC lient-Reservation-OclAny



B.6. CLASS MODEL: OCLISKINDOF 221

cp-OclIsKindOfC lient-OclAny-OclAny
cp-OclIsKindOfC lient-Person-OclAny
cp-OclIsKindOfC lient-Staff-OclAny
cp-OclIsKindOfC lient-Flight-OclAny
cp-OclIsKindOfC lient-Client-Person
cp-OclIsKindOfC lient-Reservation-Person
cp-OclIsKindOfC lient-OclAny-Person
cp-OclIsKindOfC lient-Person-Person
cp-OclIsKindOfC lient-Staff-Person
cp-OclIsKindOfC lient-Flight-Person
cp-OclIsKindOfC lient-Client-Staff
cp-OclIsKindOfC lient-Reservation-Staff
cp-OclIsKindOfC lient-OclAny-Staff
cp-OclIsKindOfC lient-Person-Staff
cp-OclIsKindOfC lient-Staff-Staff
cp-OclIsKindOfC lient-Flight-Staff
cp-OclIsKindOfC lient-Client-Flight
cp-OclIsKindOfC lient-Reservation-Flight
cp-OclIsKindOfC lient-OclAny-Flight
cp-OclIsKindOfC lient-Person-Flight
cp-OclIsKindOfC lient-Staff-Flight
cp-OclIsKindOfC lient-Flight-Flight
cp-OclIsKindOfReservation-Client-Client
cp-OclIsKindOfReservation-Reservation-Client
cp-OclIsKindOfReservation-OclAny-Client
cp-OclIsKindOfReservation-Person-Client
cp-OclIsKindOfReservation-Staff-Client
cp-OclIsKindOfReservation-Flight-Client
cp-OclIsKindOfReservation-Client-Reservation
cp-OclIsKindOfReservation-Reservation-Reservation
cp-OclIsKindOfReservation-OclAny-Reservation
cp-OclIsKindOfReservation-Person-Reservation
cp-OclIsKindOfReservation-Staff-Reservation
cp-OclIsKindOfReservation-Flight-Reservation
cp-OclIsKindOfReservation-Client-OclAny
cp-OclIsKindOfReservation-Reservation-OclAny
cp-OclIsKindOfReservation-OclAny-OclAny
cp-OclIsKindOfReservation-Person-OclAny
cp-OclIsKindOfReservation-Staff-OclAny
cp-OclIsKindOfReservation-Flight-OclAny
cp-OclIsKindOfReservation-Client-Person
cp-OclIsKindOfReservation-Reservation-Person
cp-OclIsKindOfReservation-OclAny-Person
cp-OclIsKindOfReservation-Person-Person
cp-OclIsKindOfReservation-Staff-Person
cp-OclIsKindOfReservation-Flight-Person
cp-OclIsKindOfReservation-Client-Staff
cp-OclIsKindOfReservation-Reservation-Staff
cp-OclIsKindOfReservation-OclAny-Staff
cp-OclIsKindOfReservation-Person-Staff
cp-OclIsKindOfReservation-Staff-Staff
cp-OclIsKindOfReservation-Flight-Staff
cp-OclIsKindOfReservation-Client-Flight
cp-OclIsKindOfReservation-Reservation-Flight
cp-OclIsKindOfReservation-OclAny-Flight
cp-OclIsKindOfReservation-Person-Flight
cp-OclIsKindOfReservation-Staff-Flight
cp-OclIsKindOfReservation-Flight-Flight
cp-OclIsKindOfOclAny-Client-Client
cp-OclIsKindOfOclAny-Reservation-Client
cp-OclIsKindOfOclAny-OclAny-Client
cp-OclIsKindOfOclAny-Person-Client
cp-OclIsKindOfOclAny-Staff-Client
cp-OclIsKindOfOclAny-Flight-Client
cp-OclIsKindOfOclAny-Client-Reservation
cp-OclIsKindOfOclAny-Reservation-Reservation
cp-OclIsKindOfOclAny-OclAny-Reservation
cp-OclIsKindOfOclAny-Person-Reservation
cp-OclIsKindOfOclAny-Staff-Reservation
cp-OclIsKindOfOclAny-Flight-Reservation
cp-OclIsKindOfOclAny-Client-OclAny
cp-OclIsKindOfOclAny-Reservation-OclAny
cp-OclIsKindOfOclAny-OclAny-OclAny



222 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

cp-OclIsKindOfOclAny-Person-OclAny
cp-OclIsKindOfOclAny-Staff-OclAny
cp-OclIsKindOfOclAny-Flight-OclAny
cp-OclIsKindOfOclAny-Client-Person
cp-OclIsKindOfOclAny-Reservation-Person
cp-OclIsKindOfOclAny-OclAny-Person
cp-OclIsKindOfOclAny-Person-Person
cp-OclIsKindOfOclAny-Staff-Person
cp-OclIsKindOfOclAny-Flight-Person
cp-OclIsKindOfOclAny-Client-Staff
cp-OclIsKindOfOclAny-Reservation-Staff
cp-OclIsKindOfOclAny-OclAny-Staff
cp-OclIsKindOfOclAny-Person-Staff
cp-OclIsKindOfOclAny-Staff-Staff
cp-OclIsKindOfOclAny-Flight-Staff
cp-OclIsKindOfOclAny-Client-Flight
cp-OclIsKindOfOclAny-Reservation-Flight
cp-OclIsKindOfOclAny-OclAny-Flight
cp-OclIsKindOfOclAny-Person-Flight
cp-OclIsKindOfOclAny-Staff-Flight
cp-OclIsKindOfOclAny-Flight-Flight
cp-OclIsKindOfP erson-Client-Client
cp-OclIsKindOfP erson-Reservation-Client
cp-OclIsKindOfP erson-OclAny-Client
cp-OclIsKindOfP erson-Person-Client
cp-OclIsKindOfP erson-Staff-Client
cp-OclIsKindOfP erson-Flight-Client
cp-OclIsKindOfP erson-Client-Reservation
cp-OclIsKindOfP erson-Reservation-Reservation
cp-OclIsKindOfP erson-OclAny-Reservation
cp-OclIsKindOfP erson-Person-Reservation
cp-OclIsKindOfP erson-Staff-Reservation
cp-OclIsKindOfP erson-Flight-Reservation
cp-OclIsKindOfP erson-Client-OclAny
cp-OclIsKindOfP erson-Reservation-OclAny
cp-OclIsKindOfP erson-OclAny-OclAny
cp-OclIsKindOfP erson-Person-OclAny
cp-OclIsKindOfP erson-Staff-OclAny
cp-OclIsKindOfP erson-Flight-OclAny
cp-OclIsKindOfP erson-Client-Person
cp-OclIsKindOfP erson-Reservation-Person
cp-OclIsKindOfP erson-OclAny-Person
cp-OclIsKindOfP erson-Person-Person
cp-OclIsKindOfP erson-Staff-Person
cp-OclIsKindOfP erson-Flight-Person
cp-OclIsKindOfP erson-Client-Staff
cp-OclIsKindOfP erson-Reservation-Staff
cp-OclIsKindOfP erson-OclAny-Staff
cp-OclIsKindOfP erson-Person-Staff
cp-OclIsKindOfP erson-Staff-Staff
cp-OclIsKindOfP erson-Flight-Staff
cp-OclIsKindOfP erson-Client-Flight
cp-OclIsKindOfP erson-Reservation-Flight
cp-OclIsKindOfP erson-OclAny-Flight
cp-OclIsKindOfP erson-Person-Flight
cp-OclIsKindOfP erson-Staff-Flight
cp-OclIsKindOfP erson-Flight-Flight
cp-OclIsKindOf Staf f -Client-Client
cp-OclIsKindOf Staf f -Reservation-Client
cp-OclIsKindOf Staf f -OclAny-Client
cp-OclIsKindOf Staf f -Person-Client
cp-OclIsKindOf Staf f -Staff-Client
cp-OclIsKindOf Staf f -Flight-Client
cp-OclIsKindOf Staf f -Client-Reservation
cp-OclIsKindOf Staf f -Reservation-Reservation
cp-OclIsKindOf Staf f -OclAny-Reservation
cp-OclIsKindOf Staf f -Person-Reservation
cp-OclIsKindOf Staf f -Staff-Reservation
cp-OclIsKindOf Staf f -Flight-Reservation
cp-OclIsKindOf Staf f -Client-OclAny
cp-OclIsKindOf Staf f -Reservation-OclAny
cp-OclIsKindOf Staf f -OclAny-OclAny
cp-OclIsKindOf Staf f -Person-OclAny



B.6. CLASS MODEL: OCLISKINDOF 223

cp-OclIsKindOf Staf f -Staff-OclAny
cp-OclIsKindOf Staf f -Flight-OclAny
cp-OclIsKindOf Staf f -Client-Person
cp-OclIsKindOf Staf f -Reservation-Person
cp-OclIsKindOf Staf f -OclAny-Person
cp-OclIsKindOf Staf f -Person-Person
cp-OclIsKindOf Staf f -Staff-Person
cp-OclIsKindOf Staf f -Flight-Person
cp-OclIsKindOf Staf f -Client-Staff
cp-OclIsKindOf Staf f -Reservation-Staff
cp-OclIsKindOf Staf f -OclAny-Staff
cp-OclIsKindOf Staf f -Person-Staff
cp-OclIsKindOf Staf f -Staff-Staff
cp-OclIsKindOf Staf f -Flight-Staff
cp-OclIsKindOf Staf f -Client-Flight
cp-OclIsKindOf Staf f -Reservation-Flight
cp-OclIsKindOf Staf f -OclAny-Flight
cp-OclIsKindOf Staf f -Person-Flight
cp-OclIsKindOf Staf f -Staff-Flight
cp-OclIsKindOf Staf f -Flight-Flight
cp-OclIsKindOfF light-Client-Client
cp-OclIsKindOfF light-Reservation-Client
cp-OclIsKindOfF light-OclAny-Client
cp-OclIsKindOfF light-Person-Client
cp-OclIsKindOfF light-Staff-Client
cp-OclIsKindOfF light-Flight-Client
cp-OclIsKindOfF light-Client-Reservation
cp-OclIsKindOfF light-Reservation-Reservation
cp-OclIsKindOfF light-OclAny-Reservation
cp-OclIsKindOfF light-Person-Reservation
cp-OclIsKindOfF light-Staff-Reservation
cp-OclIsKindOfF light-Flight-Reservation
cp-OclIsKindOfF light-Client-OclAny
cp-OclIsKindOfF light-Reservation-OclAny
cp-OclIsKindOfF light-OclAny-OclAny
cp-OclIsKindOfF light-Person-OclAny
cp-OclIsKindOfF light-Staff-OclAny
cp-OclIsKindOfF light-Flight-OclAny
cp-OclIsKindOfF light-Client-Person
cp-OclIsKindOfF light-Reservation-Person
cp-OclIsKindOfF light-OclAny-Person
cp-OclIsKindOfF light-Person-Person
cp-OclIsKindOfF light-Staff-Person
cp-OclIsKindOfF light-Flight-Person
cp-OclIsKindOfF light-Client-Staff
cp-OclIsKindOfF light-Reservation-Staff
cp-OclIsKindOfF light-OclAny-Staff
cp-OclIsKindOfF light-Person-Staff
cp-OclIsKindOfF light-Staff-Staff
cp-OclIsKindOfF light-Flight-Staff
cp-OclIsKindOfF light-Client-Flight
cp-OclIsKindOfF light-Reservation-Flight
cp-OclIsKindOfF light-OclAny-Flight
cp-OclIsKindOfF light-Person-Flight
cp-OclIsKindOfF light-Staff-Flight
cp-OclIsKindOfF light-Flight-Flight

Execution with Invalid or Null as Argument
lemma OclIsKindOfF light-Flight-invalid : ((invalid::·Flight) .oclIsKindOf (Flight)) = invalid
by(simp only: OclIsKindOfF light-Flight OclIsTypeOfF light-Flight-invalid)
lemma OclIsKindOfF light-Flight-null : ((null::·Flight) .oclIsKindOf (Flight)) = true
by(simp only: OclIsKindOfF light-Flight OclIsTypeOfF light-Flight-null)
lemma OclIsKindOfF light-OclAny-invalid : ((invalid::·OclAny) .oclIsKindOf (Flight)) = invalid
by(simp only: OclIsKindOfF light-OclAny OclIsTypeOfF light-OclAny-invalid)
lemma OclIsKindOfF light-OclAny-null : ((null::·OclAny) .oclIsKindOf (Flight)) = true
by(simp only: OclIsKindOfF light-OclAny OclIsTypeOfF light-OclAny-null)
lemma OclIsKindOfF light-Staff-invalid : ((invalid::·Staff ) .oclIsKindOf (Flight)) = invalid
by(simp only: OclIsKindOfF light-Staff OclIsTypeOfF light-Staff-invalid)
lemma OclIsKindOfF light-Staff-null : ((null::·Staff ) .oclIsKindOf (Flight)) = true
by(simp only: OclIsKindOfF light-Staff OclIsTypeOfF light-Staff-null)
lemma OclIsKindOfF light-Person-invalid : ((invalid::·Person) .oclIsKindOf (Flight)) = invalid
by(simp only: OclIsKindOfF light-Person OclIsTypeOfF light-Person-invalid)



224 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

lemma OclIsKindOfF light-Person-null : ((null::·Person) .oclIsKindOf (Flight)) = true
by(simp only: OclIsKindOfF light-Person OclIsTypeOfF light-Person-null)
lemma OclIsKindOfF light-Client-invalid : ((invalid::·Client) .oclIsKindOf (Flight)) = invalid
by(simp only: OclIsKindOfF light-Client OclIsTypeOfF light-Client-invalid)
lemma OclIsKindOfF light-Client-null : ((null::·Client) .oclIsKindOf (Flight)) = true
by(simp only: OclIsKindOfF light-Client OclIsTypeOfF light-Client-null)
lemma OclIsKindOfF light-Reservation-invalid : ((invalid::·Reservation) .oclIsKindOf (Flight)) = invalid
by(simp only: OclIsKindOfF light-Reservation OclIsTypeOfF light-Reservation-invalid)
lemma OclIsKindOfF light-Reservation-null : ((null::·Reservation) .oclIsKindOf (Flight)) = true
by(simp only: OclIsKindOfF light-Reservation OclIsTypeOfF light-Reservation-null)
lemma OclIsKindOfC lient-Client-invalid : ((invalid::·Client) .oclIsKindOf (Client)) = invalid
by(simp only: OclIsKindOfC lient-Client OclIsTypeOfC lient-Client-invalid)
lemma OclIsKindOfC lient-Client-null : ((null::·Client) .oclIsKindOf (Client)) = true
by(simp only: OclIsKindOfC lient-Client OclIsTypeOfC lient-Client-null)
lemma OclIsKindOfC lient-Person-invalid : ((invalid::·Person) .oclIsKindOf (Client)) = invalid
by(simp only: OclIsKindOfC lient-Person OclIsTypeOfC lient-Person-invalid)
lemma OclIsKindOfC lient-Person-null : ((null::·Person) .oclIsKindOf (Client)) = true
by(simp only: OclIsKindOfC lient-Person OclIsTypeOfC lient-Person-null)
lemma OclIsKindOfC lient-OclAny-invalid : ((invalid::·OclAny) .oclIsKindOf (Client)) = invalid
by(simp only: OclIsKindOfC lient-OclAny OclIsTypeOfC lient-OclAny-invalid)
lemma OclIsKindOfC lient-OclAny-null : ((null::·OclAny) .oclIsKindOf (Client)) = true
by(simp only: OclIsKindOfC lient-OclAny OclIsTypeOfC lient-OclAny-null)
lemma OclIsKindOfC lient-Staff-invalid : ((invalid::·Staff ) .oclIsKindOf (Client)) = invalid
by(simp only: OclIsKindOfC lient-Staff OclIsTypeOfC lient-Staff-invalid)
lemma OclIsKindOfC lient-Staff-null : ((null::·Staff ) .oclIsKindOf (Client)) = true
by(simp only: OclIsKindOfC lient-Staff OclIsTypeOfC lient-Staff-null)
lemma OclIsKindOfC lient-Reservation-invalid : ((invalid::·Reservation) .oclIsKindOf (Client)) = invalid
by(simp only: OclIsKindOfC lient-Reservation OclIsTypeOfC lient-Reservation-invalid)
lemma OclIsKindOfC lient-Reservation-null : ((null::·Reservation) .oclIsKindOf (Client)) = true
by(simp only: OclIsKindOfC lient-Reservation OclIsTypeOfC lient-Reservation-null)
lemma OclIsKindOfC lient-Flight-invalid : ((invalid::·Flight) .oclIsKindOf (Client)) = invalid
by(simp only: OclIsKindOfC lient-Flight OclIsTypeOfC lient-Flight-invalid)
lemma OclIsKindOfC lient-Flight-null : ((null::·Flight) .oclIsKindOf (Client)) = true
by(simp only: OclIsKindOfC lient-Flight OclIsTypeOfC lient-Flight-null)
lemma OclIsKindOf Staf f -Staff-invalid : ((invalid::·Staff ) .oclIsKindOf (Staff )) = invalid
by(simp only: OclIsKindOf Staf f -Staff OclIsTypeOf Staf f -Staff-invalid)
lemma OclIsKindOf Staf f -Staff-null : ((null::·Staff ) .oclIsKindOf (Staff )) = true
by(simp only: OclIsKindOf Staf f -Staff OclIsTypeOf Staf f -Staff-null)
lemma OclIsKindOf Staf f -Person-invalid : ((invalid::·Person) .oclIsKindOf (Staff )) = invalid
by(simp only: OclIsKindOf Staf f -Person OclIsTypeOf Staf f -Person-invalid)
lemma OclIsKindOf Staf f -Person-null : ((null::·Person) .oclIsKindOf (Staff )) = true
by(simp only: OclIsKindOf Staf f -Person OclIsTypeOf Staf f -Person-null)
lemma OclIsKindOf Staf f -OclAny-invalid : ((invalid::·OclAny) .oclIsKindOf (Staff )) = invalid
by(simp only: OclIsKindOf Staf f -OclAny OclIsTypeOf Staf f -OclAny-invalid)
lemma OclIsKindOf Staf f -OclAny-null : ((null::·OclAny) .oclIsKindOf (Staff )) = true
by(simp only: OclIsKindOf Staf f -OclAny OclIsTypeOf Staf f -OclAny-null)
lemma OclIsKindOf Staf f -Client-invalid : ((invalid::·Client) .oclIsKindOf (Staff )) = invalid
by(simp only: OclIsKindOf Staf f -Client OclIsTypeOf Staf f -Client-invalid)
lemma OclIsKindOf Staf f -Client-null : ((null::·Client) .oclIsKindOf (Staff )) = true
by(simp only: OclIsKindOf Staf f -Client OclIsTypeOf Staf f -Client-null)
lemma OclIsKindOf Staf f -Reservation-invalid : ((invalid::·Reservation) .oclIsKindOf (Staff )) = invalid
by(simp only: OclIsKindOf Staf f -Reservation OclIsTypeOf Staf f -Reservation-invalid)
lemma OclIsKindOf Staf f -Reservation-null : ((null::·Reservation) .oclIsKindOf (Staff )) = true
by(simp only: OclIsKindOf Staf f -Reservation OclIsTypeOf Staf f -Reservation-null)
lemma OclIsKindOf Staf f -Flight-invalid : ((invalid::·Flight) .oclIsKindOf (Staff )) = invalid
by(simp only: OclIsKindOf Staf f -Flight OclIsTypeOf Staf f -Flight-invalid)
lemma OclIsKindOf Staf f -Flight-null : ((null::·Flight) .oclIsKindOf (Staff )) = true
by(simp only: OclIsKindOf Staf f -Flight OclIsTypeOf Staf f -Flight-null)
lemma OclIsKindOfP erson-Person-invalid : ((invalid::·Person) .oclIsKindOf (Person)) = invalid
by(simp only: OclIsKindOfP erson-Person OclIsTypeOfP erson-Person-invalid OclIsKindOf Staf f -Person-invalid
OclIsKindOfC lient-Person-invalid, simp)
lemma OclIsKindOfP erson-Person-null : ((null::·Person) .oclIsKindOf (Person)) = true
by(simp only: OclIsKindOfP erson-Person OclIsTypeOfP erson-Person-null OclIsKindOf Staf f -Person-null
OclIsKindOfC lient-Person-null, simp)
lemma OclIsKindOfP erson-OclAny-invalid : ((invalid::·OclAny) .oclIsKindOf (Person)) = invalid
by(simp only: OclIsKindOfP erson-OclAny OclIsTypeOfP erson-OclAny-invalid OclIsKindOf Staf f -OclAny-invalid
OclIsKindOfC lient-OclAny-invalid, simp)
lemma OclIsKindOfP erson-OclAny-null : ((null::·OclAny) .oclIsKindOf (Person)) = true
by(simp only: OclIsKindOfP erson-OclAny OclIsTypeOfP erson-OclAny-null OclIsKindOfStaf f -OclAny-null
OclIsKindOfC lient-OclAny-null, simp)
lemma OclIsKindOfP erson-Client-invalid : ((invalid::·Client) .oclIsKindOf (Person)) = invalid
by(simp only: OclIsKindOfP erson-Client OclIsTypeOfP erson-Client-invalid OclIsKindOfStaf f -Client-invalid
OclIsKindOfC lient-Client-invalid, simp)



B.6. CLASS MODEL: OCLISKINDOF 225

lemma OclIsKindOfP erson-Client-null : ((null::·Client) .oclIsKindOf (Person)) = true
by(simp only: OclIsKindOfP erson-Client OclIsTypeOfP erson-Client-null OclIsKindOf Staf f -Client-null
OclIsKindOfC lient-Client-null, simp)
lemma OclIsKindOfP erson-Staff-invalid : ((invalid::·Staff ) .oclIsKindOf (Person)) = invalid
by(simp only: OclIsKindOfP erson-Staff OclIsTypeOfP erson-Staff-invalid OclIsKindOf Staf f -Staff-invalid
OclIsKindOfC lient-Staff-invalid, simp)
lemma OclIsKindOfP erson-Staff-null : ((null::·Staff ) .oclIsKindOf (Person)) = true
by(simp only: OclIsKindOfP erson-Staff OclIsTypeOfP erson-Staff-null OclIsKindOf Staf f -Staff-null
OclIsKindOfC lient-Staff-null, simp)
lemma OclIsKindOfP erson-Reservation-invalid : ((invalid::·Reservation) .oclIsKindOf (Person)) = invalid
by(simp only: OclIsKindOfP erson-Reservation OclIsTypeOfP erson-Reservation-invalid OclIsKindOf Staf f -Reservation-invalid
OclIsKindOfC lient-Reservation-invalid, simp)
lemma OclIsKindOfP erson-Reservation-null : ((null::·Reservation) .oclIsKindOf (Person)) = true
by(simp only: OclIsKindOfP erson-Reservation OclIsTypeOfP erson-Reservation-null OclIsKindOfStaf f -Reservation-null
OclIsKindOfC lient-Reservation-null, simp)
lemma OclIsKindOfP erson-Flight-invalid : ((invalid::·Flight) .oclIsKindOf (Person)) = invalid
by(simp only: OclIsKindOfP erson-Flight OclIsTypeOfP erson-Flight-invalid OclIsKindOf Staf f -Flight-invalid
OclIsKindOfC lient-Flight-invalid, simp)
lemma OclIsKindOfP erson-Flight-null : ((null::·Flight) .oclIsKindOf (Person)) = true
by(simp only: OclIsKindOfP erson-Flight OclIsTypeOfP erson-Flight-null OclIsKindOfStaf f -Flight-null
OclIsKindOfC lient-Flight-null, simp)
lemma OclIsKindOfReservation-Reservation-invalid : ((invalid::·Reservation) .oclIsKindOf (Reservation)) = invalid
by(simp only: OclIsKindOfReservation-Reservation OclIsTypeOfReservation-Reservation-invalid)
lemma OclIsKindOfReservation-Reservation-null : ((null::·Reservation) .oclIsKindOf (Reservation)) = true
by(simp only: OclIsKindOfReservation-Reservation OclIsTypeOfReservation-Reservation-null)
lemma OclIsKindOfReservation-OclAny-invalid : ((invalid::·OclAny) .oclIsKindOf (Reservation)) = invalid
by(simp only: OclIsKindOfReservation-OclAny OclIsTypeOfReservation-OclAny-invalid)
lemma OclIsKindOfReservation-OclAny-null : ((null::·OclAny) .oclIsKindOf (Reservation)) = true
by(simp only: OclIsKindOfReservation-OclAny OclIsTypeOfReservation-OclAny-null)
lemma OclIsKindOfReservation-Staff-invalid : ((invalid::·Staff ) .oclIsKindOf (Reservation)) = invalid
by(simp only: OclIsKindOfReservation-Staff OclIsTypeOfReservation-Staff-invalid)
lemma OclIsKindOfReservation-Staff-null : ((null::·Staff ) .oclIsKindOf (Reservation)) = true
by(simp only: OclIsKindOfReservation-Staff OclIsTypeOfReservation-Staff-null)
lemma OclIsKindOfReservation-Person-invalid : ((invalid::·Person) .oclIsKindOf (Reservation)) = invalid
by(simp only: OclIsKindOfReservation-Person OclIsTypeOfReservation-Person-invalid)
lemma OclIsKindOfReservation-Person-null : ((null::·Person) .oclIsKindOf (Reservation)) = true
by(simp only: OclIsKindOfReservation-Person OclIsTypeOfReservation-Person-null)
lemma OclIsKindOfReservation-Client-invalid : ((invalid::·Client) .oclIsKindOf (Reservation)) = invalid
by(simp only: OclIsKindOfReservation-Client OclIsTypeOfReservation-Client-invalid)
lemma OclIsKindOfReservation-Client-null : ((null::·Client) .oclIsKindOf (Reservation)) = true
by(simp only: OclIsKindOfReservation-Client OclIsTypeOfReservation-Client-null)
lemma OclIsKindOfReservation-Flight-invalid : ((invalid::·Flight) .oclIsKindOf (Reservation)) = invalid
by(simp only: OclIsKindOfReservation-Flight OclIsTypeOfReservation-Flight-invalid)
lemma OclIsKindOfReservation-Flight-null : ((null::·Flight) .oclIsKindOf (Reservation)) = true
by(simp only: OclIsKindOfReservation-Flight OclIsTypeOfReservation-Flight-null)
lemma OclIsKindOfOclAny-OclAny-invalid : ((invalid::·OclAny) .oclIsKindOf (OclAny)) = invalid
by(simp only: OclIsKindOfOclAny-OclAny OclIsTypeOfOclAny-OclAny-invalid OclIsKindOfReservation-OclAny-invalid
OclIsKindOfP erson-OclAny-invalid OclIsKindOfF light-OclAny-invalid, simp)
lemma OclIsKindOfOclAny-OclAny-null : ((null::·OclAny) .oclIsKindOf (OclAny)) = true
by(simp only: OclIsKindOfOclAny-OclAny OclIsTypeOfOclAny-OclAny-null OclIsKindOfReservation-OclAny-null
OclIsKindOfP erson-OclAny-null OclIsKindOfF light-OclAny-null, simp)
lemma OclIsKindOfOclAny-Flight-invalid : ((invalid::·Flight) .oclIsKindOf (OclAny)) = invalid
by(simp only: OclIsKindOfOclAny-Flight OclIsTypeOfOclAny-Flight-invalid OclIsKindOfReservation-Flight-invalid
OclIsKindOfP erson-Flight-invalid OclIsKindOfF light-Flight-invalid, simp)
lemma OclIsKindOfOclAny-Flight-null : ((null::·Flight) .oclIsKindOf (OclAny)) = true
by(simp only: OclIsKindOfOclAny-Flight OclIsTypeOfOclAny-Flight-null OclIsKindOfReservation-Flight-null
OclIsKindOfP erson-Flight-null OclIsKindOfF light-Flight-null, simp)
lemma OclIsKindOfOclAny-Client-invalid : ((invalid::·Client) .oclIsKindOf (OclAny)) = invalid
by(simp only: OclIsKindOfOclAny-Client OclIsTypeOfOclAny-Client-invalid OclIsKindOfReservation-Client-invalid
OclIsKindOfP erson-Client-invalid OclIsKindOfF light-Client-invalid, simp)
lemma OclIsKindOfOclAny-Client-null : ((null::·Client) .oclIsKindOf (OclAny)) = true
by(simp only: OclIsKindOfOclAny-Client OclIsTypeOfOclAny-Client-null OclIsKindOfReservation-Client-null
OclIsKindOfP erson-Client-null OclIsKindOfF light-Client-null, simp)
lemma OclIsKindOfOclAny-Staff-invalid : ((invalid::·Staff ) .oclIsKindOf (OclAny)) = invalid
by(simp only: OclIsKindOfOclAny-Staff OclIsTypeOfOclAny-Staff-invalid OclIsKindOfReservation-Staff-invalid
OclIsKindOfP erson-Staff-invalid OclIsKindOfF light-Staff-invalid, simp)
lemma OclIsKindOfOclAny-Staff-null : ((null::·Staff ) .oclIsKindOf (OclAny)) = true
by(simp only: OclIsKindOfOclAny-Staff OclIsTypeOfOclAny-Staff-null OclIsKindOfReservation-Staff-null
OclIsKindOfP erson-Staff-null OclIsKindOfF light-Staff-null, simp)
lemma OclIsKindOfOclAny-Person-invalid : ((invalid::·Person) .oclIsKindOf (OclAny)) = invalid
by(simp only: OclIsKindOfOclAny-Person OclIsTypeOfOclAny-Person-invalid OclIsKindOfReservation-Person-invalid
OclIsKindOfP erson-Person-invalid OclIsKindOfF light-Person-invalid, simp)
lemma OclIsKindOfOclAny-Person-null : ((null::·Person) .oclIsKindOf (OclAny)) = true



226 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(simp only: OclIsKindOfOclAny-Person OclIsTypeOfOclAny-Person-null OclIsKindOfReservation-Person-null
OclIsKindOfP erson-Person-null OclIsKindOfF light-Person-null, simp)
lemma OclIsKindOfOclAny-Reservation-invalid : ((invalid::·Reservation) .oclIsKindOf (OclAny)) = invalid
by(simp only: OclIsKindOfOclAny-Reservation OclIsTypeOfOclAny-Reservation-invalid OclIsKindOfReservation-Reservation-invalid
OclIsKindOfP erson-Reservation-invalid OclIsKindOfF light-Reservation-invalid, simp)
lemma OclIsKindOfOclAny-Reservation-null : ((null::·Reservation) .oclIsKindOf (OclAny)) = true
by(simp only: OclIsKindOfOclAny-Reservation OclIsTypeOfOclAny-Reservation-null OclIsKindOfReservation-Reservation-null
OclIsKindOfP erson-Reservation-null OclIsKindOfF light-Reservation-null, simp)

lemmas[simp,code-unfold] = OclIsKindOfC lient-Client-invalid
OclIsKindOfC lient-Reservation-invalid
OclIsKindOfC lient-OclAny-invalid
OclIsKindOfC lient-Person-invalid
OclIsKindOfC lient-Staff-invalid
OclIsKindOfC lient-Flight-invalid
OclIsKindOfC lient-Client-null
OclIsKindOfC lient-Reservation-null
OclIsKindOfC lient-OclAny-null
OclIsKindOfC lient-Person-null
OclIsKindOfC lient-Staff-null
OclIsKindOfC lient-Flight-null
OclIsKindOfReservation-Client-invalid
OclIsKindOfReservation-Reservation-invalid
OclIsKindOfReservation-OclAny-invalid
OclIsKindOfReservation-Person-invalid
OclIsKindOfReservation-Staff-invalid
OclIsKindOfReservation-Flight-invalid
OclIsKindOfReservation-Client-null
OclIsKindOfReservation-Reservation-null
OclIsKindOfReservation-OclAny-null
OclIsKindOfReservation-Person-null
OclIsKindOfReservation-Staff-null
OclIsKindOfReservation-Flight-null
OclIsKindOfOclAny-Client-invalid
OclIsKindOfOclAny-Reservation-invalid
OclIsKindOfOclAny-OclAny-invalid
OclIsKindOfOclAny-Person-invalid
OclIsKindOfOclAny-Staff-invalid
OclIsKindOfOclAny-Flight-invalid
OclIsKindOfOclAny-Client-null
OclIsKindOfOclAny-Reservation-null
OclIsKindOfOclAny-OclAny-null
OclIsKindOfOclAny-Person-null
OclIsKindOfOclAny-Staff-null
OclIsKindOfOclAny-Flight-null
OclIsKindOfP erson-Client-invalid
OclIsKindOfP erson-Reservation-invalid
OclIsKindOfP erson-OclAny-invalid
OclIsKindOfP erson-Person-invalid
OclIsKindOfP erson-Staff-invalid
OclIsKindOfP erson-Flight-invalid
OclIsKindOfP erson-Client-null
OclIsKindOfP erson-Reservation-null
OclIsKindOfP erson-OclAny-null
OclIsKindOfP erson-Person-null
OclIsKindOfP erson-Staff-null
OclIsKindOfP erson-Flight-null
OclIsKindOf Staf f -Client-invalid
OclIsKindOf Staf f -Reservation-invalid
OclIsKindOf Staf f -OclAny-invalid
OclIsKindOf Staf f -Person-invalid
OclIsKindOf Staf f -Staff-invalid
OclIsKindOf Staf f -Flight-invalid
OclIsKindOf Staf f -Client-null
OclIsKindOf Staf f -Reservation-null
OclIsKindOf Staf f -OclAny-null
OclIsKindOf Staf f -Person-null
OclIsKindOf Staf f -Staff-null
OclIsKindOf Staf f -Flight-null
OclIsKindOfF light-Client-invalid
OclIsKindOfF light-Reservation-invalid
OclIsKindOfF light-OclAny-invalid



B.6. CLASS MODEL: OCLISKINDOF 227

OclIsKindOfF light-Person-invalid
OclIsKindOfF light-Staff-invalid
OclIsKindOfF light-Flight-invalid
OclIsKindOfF light-Client-null
OclIsKindOfF light-Reservation-null
OclIsKindOfF light-OclAny-null
OclIsKindOfF light-Person-null
OclIsKindOfF light-Staff-null
OclIsKindOfF light-Flight-null

Validity and Definedness Properties
lemma OclIsKindOfF light-Flight-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Flight) .oclIsKindOf (Flight)))
by(simp only: OclIsKindOfF light-Flight, rule OclIsTypeOfF light-Flight-defined[OF isdef ])
lemma OclIsKindOfF light-OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (Flight)))
by(simp only: OclIsKindOfF light-OclAny, rule OclIsTypeOfF light-OclAny-defined[OF isdef ])
lemma OclIsKindOfF light-Staff-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (Flight)))
by(simp only: OclIsKindOfF light-Staff , rule OclIsTypeOfF light-Staff-defined[OF isdef ])
lemma OclIsKindOfF light-Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (Flight)))
by(simp only: OclIsKindOfF light-Person, rule OclIsTypeOfF light-Person-defined[OF isdef ])
lemma OclIsKindOfF light-Client-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (Flight)))
by(simp only: OclIsKindOfF light-Client, rule OclIsTypeOfF light-Client-defined[OF isdef ])
lemma OclIsKindOfF light-Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (Flight)))
by(simp only: OclIsKindOfF light-Reservation, rule OclIsTypeOfF light-Reservation-defined[OF isdef ])
lemma OclIsKindOfC lient-Client-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (Client)))
by(simp only: OclIsKindOfC lient-Client, rule OclIsTypeOfC lient-Client-defined[OF isdef ])
lemma OclIsKindOfC lient-Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (Client)))
by(simp only: OclIsKindOfC lient-Person, rule OclIsTypeOfC lient-Person-defined[OF isdef ])
lemma OclIsKindOfC lient-OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (Client)))
by(simp only: OclIsKindOfC lient-OclAny, rule OclIsTypeOfC lient-OclAny-defined[OF isdef ])
lemma OclIsKindOfC lient-Staff-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (Client)))
by(simp only: OclIsKindOfC lient-Staff , rule OclIsTypeOfC lient-Staff-defined[OF isdef ])
lemma OclIsKindOfC lient-Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (Client)))
by(simp only: OclIsKindOfC lient-Reservation, rule OclIsTypeOfC lient-Reservation-defined[OF isdef ])
lemma OclIsKindOfC lient-Flight-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Flight) .oclIsKindOf (Client)))
by(simp only: OclIsKindOfC lient-Flight, rule OclIsTypeOfC lient-Flight-defined[OF isdef ])
lemma OclIsKindOf Staf f -Staff-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (Staff )))
by(simp only: OclIsKindOf Staf f -Staff , rule OclIsTypeOf Staf f -Staff-defined[OF isdef ])
lemma OclIsKindOf Staf f -Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (Staff )))
by(simp only: OclIsKindOf Staf f -Person, rule OclIsTypeOf Staf f -Person-defined[OF isdef ])
lemma OclIsKindOf Staf f -OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (Staff )))
by(simp only: OclIsKindOf Staf f -OclAny, rule OclIsTypeOf Staf f -OclAny-defined[OF isdef ])
lemma OclIsKindOf Staf f -Client-defined :



228 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (Staff )))
by(simp only: OclIsKindOf Staf f -Client, rule OclIsTypeOf Staf f -Client-defined[OF isdef ])
lemma OclIsKindOf Staf f -Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (Staff )))
by(simp only: OclIsKindOf Staf f -Reservation, rule OclIsTypeOf Staf f -Reservation-defined[OF isdef ])
lemma OclIsKindOf Staf f -Flight-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Flight) .oclIsKindOf (Staff )))
by(simp only: OclIsKindOf Staf f -Flight, rule OclIsTypeOf Staf f -Flight-defined[OF isdef ])
lemma OclIsKindOfP erson-Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (Person)))
by(simp only: OclIsKindOfP erson-Person, rule defined-or-I [OF defined-or-I [OF OclIsTypeOfP erson-Person-defined[OF isdef ],
OF OclIsKindOf Staf f -Person-defined[OF isdef ]], OF OclIsKindOfC lient-Person-defined[OF isdef ]])
lemma OclIsKindOfP erson-OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (Person)))
by(simp only: OclIsKindOfP erson-OclAny, rule defined-or-I [OF defined-or-I [OF OclIsTypeOfP erson-OclAny-defined[OF isdef ],
OF OclIsKindOf Staf f -OclAny-defined[OF isdef ]], OF OclIsKindOfC lient-OclAny-defined[OF isdef ]])
lemma OclIsKindOfP erson-Client-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (Person)))
by(simp only: OclIsKindOfP erson-Client, rule defined-or-I [OF defined-or-I [OF OclIsTypeOfP erson-Client-defined[OF isdef ],
OF OclIsKindOf Staf f -Client-defined[OF isdef ]], OF OclIsKindOfC lient-Client-defined[OF isdef ]])
lemma OclIsKindOfP erson-Staff-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (Person)))
by(simp only: OclIsKindOfP erson-Staff , rule defined-or-I [OF defined-or-I [OF OclIsTypeOfP erson-Staff-defined[OF isdef ], OF
OclIsKindOf Staf f -Staff-defined[OF isdef ]], OF OclIsKindOfC lient-Staff-defined[OF isdef ]])
lemma OclIsKindOfP erson-Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (Person)))
by(simp only: OclIsKindOfP erson-Reservation, rule defined-or-I [OF defined-or-I [OF OclIsTypeOfP erson-Reservation-defined[OF
isdef ], OF OclIsKindOf Staf f -Reservation-defined[OF isdef ]], OF OclIsKindOfC lient-Reservation-defined[OF isdef ]])
lemma OclIsKindOfP erson-Flight-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Flight) .oclIsKindOf (Person)))
by(simp only: OclIsKindOfP erson-Flight, rule defined-or-I [OF defined-or-I [OF OclIsTypeOfP erson-Flight-defined[OF isdef ], OF
OclIsKindOf Staf f -Flight-defined[OF isdef ]], OF OclIsKindOfC lient-Flight-defined[OF isdef ]])
lemma OclIsKindOfReservation-Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (Reservation)))
by(simp only: OclIsKindOfReservation-Reservation, rule OclIsTypeOfReservation-Reservation-defined[OF isdef ])
lemma OclIsKindOfReservation-OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (Reservation)))
by(simp only: OclIsKindOfReservation-OclAny, rule OclIsTypeOfReservation-OclAny-defined[OF isdef ])
lemma OclIsKindOfReservation-Staff-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (Reservation)))
by(simp only: OclIsKindOfReservation-Staff , rule OclIsTypeOfReservation-Staff-defined[OF isdef ])
lemma OclIsKindOfReservation-Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (Reservation)))
by(simp only: OclIsKindOfReservation-Person, rule OclIsTypeOfReservation-Person-defined[OF isdef ])
lemma OclIsKindOfReservation-Client-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (Reservation)))
by(simp only: OclIsKindOfReservation-Client, rule OclIsTypeOfReservation-Client-defined[OF isdef ])
lemma OclIsKindOfReservation-Flight-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Flight) .oclIsKindOf (Reservation)))
by(simp only: OclIsKindOfReservation-Flight, rule OclIsTypeOfReservation-Flight-defined[OF isdef ])
lemma OclIsKindOfOclAny-OclAny-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (OclAny)))
by(simp only: OclIsKindOfOclAny-OclAny, rule defined-or-I [OF defined-or-I [OF defined-or-I [OF
OclIsTypeOfOclAny-OclAny-defined[OF isdef ], OF OclIsKindOfReservation-OclAny-defined[OF isdef ]], OF
OclIsKindOfP erson-OclAny-defined[OF isdef ]], OF OclIsKindOfF light-OclAny-defined[OF isdef ]])
lemma OclIsKindOfOclAny-Flight-defined :
assumes isdef : τ |= (υ (X))



B.6. CLASS MODEL: OCLISKINDOF 229

shows τ |= (δ ((X ::·Flight) .oclIsKindOf (OclAny)))
by(simp only: OclIsKindOfOclAny-Flight, rule defined-or-I [OF defined-or-I [OF defined-or-I [OF
OclIsTypeOfOclAny-Flight-defined[OF isdef ], OF OclIsKindOfReservation-Flight-defined[OF isdef ]], OF
OclIsKindOfP erson-Flight-defined[OF isdef ]], OF OclIsKindOfF light-Flight-defined[OF isdef ]])
lemma OclIsKindOfOclAny-Client-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (OclAny)))
by(simp only: OclIsKindOfOclAny-Client, rule defined-or-I [OF defined-or-I [OF defined-or-I [OF
OclIsTypeOfOclAny-Client-defined[OF isdef ], OF OclIsKindOfReservation-Client-defined[OF isdef ]], OF
OclIsKindOfP erson-Client-defined[OF isdef ]], OF OclIsKindOfF light-Client-defined[OF isdef ]])
lemma OclIsKindOfOclAny-Staff-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (OclAny)))
by(simp only: OclIsKindOfOclAny-Staff , rule defined-or-I [OF defined-or-I [OF defined-or-I [OF
OclIsTypeOfOclAny-Staff-defined[OF isdef ], OF OclIsKindOfReservation-Staff-defined[OF isdef ]], OF
OclIsKindOfP erson-Staff-defined[OF isdef ]], OF OclIsKindOfF light-Staff-defined[OF isdef ]])
lemma OclIsKindOfOclAny-Person-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (OclAny)))
by(simp only: OclIsKindOfOclAny-Person, rule defined-or-I [OF defined-or-I [OF defined-or-I [OF
OclIsTypeOfOclAny-Person-defined[OF isdef ], OF OclIsKindOfReservation-Person-defined[OF isdef ]], OF
OclIsKindOfP erson-Person-defined[OF isdef ]], OF OclIsKindOfF light-Person-defined[OF isdef ]])
lemma OclIsKindOfOclAny-Reservation-defined :
assumes isdef : τ |= (υ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (OclAny)))
by(simp only: OclIsKindOfOclAny-Reservation, rule defined-or-I [OF defined-or-I [OF defined-or-I [OF
OclIsTypeOfOclAny-Reservation-defined[OF isdef ], OF OclIsKindOfReservation-Reservation-defined[OF isdef ]], OF
OclIsKindOfP erson-Reservation-defined[OF isdef ]], OF OclIsKindOfF light-Reservation-defined[OF isdef ]])

lemma OclIsKindOfF light-Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsKindOf (Flight)))
by(rule OclIsKindOfF light-Flight-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfF light-OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (Flight)))
by(rule OclIsKindOfF light-OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfF light-Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (Flight)))
by(rule OclIsKindOfF light-Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfF light-Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (Flight)))
by(rule OclIsKindOfF light-Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfF light-Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (Flight)))
by(rule OclIsKindOfF light-Client-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfF light-Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (Flight)))
by(rule OclIsKindOfF light-Reservation-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfC lient-Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (Client)))
by(rule OclIsKindOfC lient-Client-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfC lient-Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (Client)))
by(rule OclIsKindOfC lient-Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfC lient-OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (Client)))
by(rule OclIsKindOfC lient-OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfC lient-Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (Client)))
by(rule OclIsKindOfC lient-Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfC lient-Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (Client)))



230 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(rule OclIsKindOfC lient-Reservation-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfC lient-Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsKindOf (Client)))
by(rule OclIsKindOfC lient-Flight-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOf Staf f -Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (Staff )))
by(rule OclIsKindOf Staf f -Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOf Staf f -Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (Staff )))
by(rule OclIsKindOf Staf f -Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOf Staf f -OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (Staff )))
by(rule OclIsKindOf Staf f -OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOf Staf f -Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (Staff )))
by(rule OclIsKindOf Staf f -Client-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOf Staf f -Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (Staff )))
by(rule OclIsKindOf Staf f -Reservation-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOf Staf f -Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsKindOf (Staff )))
by(rule OclIsKindOf Staf f -Flight-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfP erson-Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (Person)))
by(rule OclIsKindOfP erson-Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfP erson-OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (Person)))
by(rule OclIsKindOfP erson-OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfP erson-Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (Person)))
by(rule OclIsKindOfP erson-Client-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfP erson-Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (Person)))
by(rule OclIsKindOfP erson-Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfP erson-Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (Person)))
by(rule OclIsKindOfP erson-Reservation-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfP erson-Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsKindOf (Person)))
by(rule OclIsKindOfP erson-Flight-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfReservation-Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (Reservation)))
by(rule OclIsKindOfReservation-Reservation-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfReservation-OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (Reservation)))
by(rule OclIsKindOfReservation-OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfReservation-Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (Reservation)))
by(rule OclIsKindOfReservation-Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfReservation-Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (Reservation)))
by(rule OclIsKindOfReservation-Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfReservation-Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (Reservation)))
by(rule OclIsKindOfReservation-Client-defined[OF isdef [THEN foundation20 ]])



B.6. CLASS MODEL: OCLISKINDOF 231

lemma OclIsKindOfReservation-Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsKindOf (Reservation)))
by(rule OclIsKindOfReservation-Flight-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfOclAny-OclAny-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·OclAny) .oclIsKindOf (OclAny)))
by(rule OclIsKindOfOclAny-OclAny-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfOclAny-Flight-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Flight) .oclIsKindOf (OclAny)))
by(rule OclIsKindOfOclAny-Flight-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfOclAny-Client-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Client) .oclIsKindOf (OclAny)))
by(rule OclIsKindOfOclAny-Client-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfOclAny-Staff-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Staff ) .oclIsKindOf (OclAny)))
by(rule OclIsKindOfOclAny-Staff-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfOclAny-Person-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Person) .oclIsKindOf (OclAny)))
by(rule OclIsKindOfOclAny-Person-defined[OF isdef [THEN foundation20 ]])
lemma OclIsKindOfOclAny-Reservation-defined ′ :
assumes isdef : τ |= (δ (X))
shows τ |= (δ ((X ::·Reservation) .oclIsKindOf (OclAny)))
by(rule OclIsKindOfOclAny-Reservation-defined[OF isdef [THEN foundation20 ]])

Up Down Casting
lemma actual-eq-staticF light :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Flight) .oclIsKindOf (Flight))
apply(simp only: OclValid-def , insert isdef )
apply(simp only: OclIsKindOfF light-Flight)
apply(auto simp: foundation16 bot-option-def split: option.split tyEXT F light.split tyF light.split)

by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def )?)
lemma actual-eq-staticC lient :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Client) .oclIsKindOf (Client))
apply(simp only: OclValid-def , insert isdef )
apply(simp only: OclIsKindOfC lient-Client)
apply(auto simp: foundation16 bot-option-def split: option.split tyEXT C lient.split tyC lient.split)

by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def )?)
lemma actual-eq-staticStaf f :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Staff ) .oclIsKindOf (Staff ))
apply(simp only: OclValid-def , insert isdef )
apply(simp only: OclIsKindOf Staf f -Staff )
apply(auto simp: foundation16 bot-option-def split: option.split tyEXT Staf f .split tyStaf f .split)

by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def )?)
lemma actual-eq-staticP erson :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Person) .oclIsKindOf (Person))
apply(simp only: OclValid-def , insert isdef )
apply(simp only: OclIsKindOfP erson-Person, subst (1 ) cp-OclOr , subst (2 1 ) cp-OclOr , simp only: OclIsKindOf Staf f -Person,

simp only: OclIsKindOfC lient-Person)
apply(auto simp: cp-OclOr [symmetric ] foundation16 bot-option-def OclIsTypeOfC lient-Person OclIsTypeOf Staf f -Person split:

option.split tyEXT P erson.split tyP erson.split tyEXT C lient.split tyC lient.split tyEXT Staf f .split tyStaf f .split)
by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def )?)
lemma actual-eq-staticReservation :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Reservation) .oclIsKindOf (Reservation))
apply(simp only: OclValid-def , insert isdef )
apply(simp only: OclIsKindOfReservation-Reservation)
apply(auto simp: foundation16 bot-option-def split: option.split tyEXT Reservation.split tyReservation.split)

by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def )?)
lemma actual-eq-staticOclAny :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·OclAny) .oclIsKindOf (OclAny))
apply(simp only: OclValid-def , insert isdef )
apply(simp only: OclIsKindOfOclAny-OclAny, subst (1 ) cp-OclOr , subst (2 1 ) cp-OclOr , subst (3 2 1 ) cp-OclOr , simp only:



232 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

OclIsKindOfReservation-OclAny, simp only: OclIsKindOfP erson-OclAny, subst (4 3 2 1 ) cp-OclOr , subst (5 4 3 2 1 ) cp-OclOr ,
simp only: OclIsKindOf Staf f -OclAny, simp only: OclIsKindOfC lient-OclAny, simp only: OclIsKindOfF light-OclAny)
apply(auto simp: cp-OclOr [symmetric ] foundation16 bot-option-def OclIsTypeOfF light-OclAny OclIsTypeOfC lient-OclAny

OclIsTypeOf Staf f -OclAny OclIsTypeOfP erson-OclAny OclIsTypeOfReservation-OclAny split: option.split tyEXT OclAny .split
tyOclAny .split tyEXT F light.split tyF light.split tyEXT C lient.split tyC lient.split tyEXT Staf f .split tyStaf f .split
tyEXT P erson.split tyP erson.split tyEXT Reservation.split tyReservation.split)
by((simp-all add: false-def true-def OclOr-def OclAnd-def OclNot-def )?)

lemma actualKindF light-larger-staticKindOclAny :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Flight) .oclIsKindOf (OclAny))
apply(simp only: OclIsKindOfOclAny-Flight)

by(rule foundation25 ′, rule actual-eq-staticF light[OF isdef ])
lemma actualKindC lient-larger-staticKindP erson :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Client) .oclIsKindOf (Person))
apply(simp only: OclIsKindOfP erson-Client)

by(rule foundation25 ′, rule actual-eq-staticC lient[OF isdef ])
lemma actualKindC lient-larger-staticKindOclAny :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Client) .oclIsKindOf (OclAny))
apply(simp only: OclIsKindOfOclAny-Client)

by(rule foundation25 , rule foundation25 ′, rule actualKindC lient-larger-staticKindP erson[OF isdef ])
lemma actualKindStaf f -larger-staticKindP erson :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Staff ) .oclIsKindOf (Person))
apply(simp only: OclIsKindOfP erson-Staff )

by(rule foundation25 , rule foundation25 ′, rule actual-eq-staticStaf f [OF isdef ])
lemma actualKindStaf f -larger-staticKindOclAny :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Staff ) .oclIsKindOf (OclAny))
apply(simp only: OclIsKindOfOclAny-Staff )

by(rule foundation25 , rule foundation25 ′, rule actualKindStaf f -larger-staticKindP erson[OF isdef ])
lemma actualKindP erson-larger-staticKindOclAny :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Person) .oclIsKindOf (OclAny))
apply(simp only: OclIsKindOfOclAny-Person)

by(rule foundation25 , rule foundation25 ′, rule actual-eq-staticP erson[OF isdef ])
lemma actualKindReservation-larger-staticKindOclAny :
assumes isdef : τ |= (δ (X))
shows τ |= ((X ::·Reservation) .oclIsKindOf (OclAny))
apply(simp only: OclIsKindOfOclAny-Reservation)

by(rule foundation25 , rule foundation25 , rule foundation25 ′, rule actual-eq-staticReservation[OF isdef ])

lemma not-OclIsKindOfF light-then-OclAny-OclIsTypeOf-others-unfold :
assumes isdef : (τ |= (δ (X)))
assumes iskin: (τ |= ((X ::·OclAny) .oclIsKindOf (Flight)))
shows (τ |= ((X ::·OclAny) .oclIsTypeOf (Flight)))
using iskin
apply(simp only: OclIsKindOfF light-OclAny)

done
lemma not-OclIsKindOfC lient-then-Person-OclIsTypeOf-others-unfold :
assumes isdef : (τ |= (δ (X)))
assumes iskin: (τ |= ((X ::·Person) .oclIsKindOf (Client)))
shows (τ |= ((X ::·Person) .oclIsTypeOf (Client)))
using iskin
apply(simp only: OclIsKindOfC lient-Person)

done
lemma not-OclIsKindOfC lient-then-OclAny-OclIsTypeOf-others-unfold :
assumes isdef : (τ |= (δ (X)))
assumes iskin: (τ |= ((X ::·OclAny) .oclIsKindOf (Client)))
shows (τ |= ((X ::·OclAny) .oclIsTypeOf (Client)))
using iskin
apply(simp only: OclIsKindOfC lient-OclAny)

done
lemma not-OclIsKindOf Staf f -then-Person-OclIsTypeOf-others-unfold :
assumes isdef : (τ |= (δ (X)))
assumes iskin: (τ |= ((X ::·Person) .oclIsKindOf (Staff )))
shows (τ |= ((X ::·Person) .oclIsTypeOf (Staff )))
using iskin
apply(simp only: OclIsKindOf Staf f -Person)



B.6. CLASS MODEL: OCLISKINDOF 233

done
lemma not-OclIsKindOf Staf f -then-OclAny-OclIsTypeOf-others-unfold :
assumes isdef : (τ |= (δ (X)))
assumes iskin: (τ |= ((X ::·OclAny) .oclIsKindOf (Staff )))
shows (τ |= ((X ::·OclAny) .oclIsTypeOf (Staff )))
using iskin
apply(simp only: OclIsKindOf Staf f -OclAny)

done
lemma not-OclIsKindOfP erson-then-OclAny-OclIsTypeOf-others-unfold :
assumes isdef : (τ |= (δ (X)))
assumes iskin: (τ |= ((X ::·OclAny) .oclIsKindOf (Person)))
shows ((τ |= ((X ::·OclAny) .oclIsTypeOf (Person))) ∨ ((τ |= ((X ::·OclAny) .oclIsTypeOf (Client))) ∨ (τ |= ((X ::·OclAny)
.oclIsTypeOf (Staff )))))
using iskin
apply(simp only: OclIsKindOfP erson-OclAny)

apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOfP erson-OclAny-defined ′[OF isdef ], OF
OclIsKindOf Staf f -OclAny-defined ′[OF isdef ]], OF OclIsKindOfC lient-OclAny-defined ′[OF isdef ]])
apply(erule foundation26 [OF OclIsTypeOfP erson-OclAny-defined ′[OF isdef ], OF OclIsKindOf Staf f -OclAny-defined ′[OF is-

def ]])
apply(simp)
apply(drule not-OclIsKindOf Staf f -then-OclAny-OclIsTypeOf-others-unfold[OF isdef ], blast)
apply(drule not-OclIsKindOfC lient-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ], blast)

done
lemma not-OclIsKindOfReservation-then-OclAny-OclIsTypeOf-others-unfold :
assumes isdef : (τ |= (δ (X)))
assumes iskin: (τ |= ((X ::·OclAny) .oclIsKindOf (Reservation)))
shows (τ |= ((X ::·OclAny) .oclIsTypeOf (Reservation)))
using iskin
apply(simp only: OclIsKindOfReservation-OclAny)

done

lemma not-OclIsKindOfF light-then-OclAny-OclIsTypeOf-others :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Flight))
assumes isdef : τ |= (δ (X))
shows (τ |= ((X ::·OclAny) .oclIsTypeOf (OclAny)) ∨ (τ |= ((X ::·OclAny) .oclIsKindOf (Person)) ∨ τ |= ((X ::·OclAny)
.oclIsKindOf (Reservation))))
using actual-eq-staticOclAny [OF isdef ]
apply(simp only: OclIsKindOfOclAny-OclAny)

apply(erule foundation26 [OF defined-or-I [OF defined-or-I [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ],
OF OclIsKindOfReservation-OclAny-defined ′[OF isdef ]], OF OclIsKindOfP erson-OclAny-defined ′[OF isdef ]], OF
OclIsKindOfF light-OclAny-defined ′[OF isdef ]])

apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ], OF
OclIsKindOfReservation-OclAny-defined ′[OF isdef ]], OF OclIsKindOfP erson-OclAny-defined ′[OF isdef ]])
apply(erule foundation26 [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ], OF OclIsKindOfReservation-OclAny-defined ′[OF
isdef ]])
apply(simp)
apply(simp)
apply(simp)
apply(simp add: iskin)

done
lemma not-OclIsKindOfC lient-then-Person-OclIsTypeOf-others :
assumes iskin: ¬ τ |= ((X ::·Person) .oclIsKindOf (Client))
assumes isdef : τ |= (δ (X))
shows (τ |= ((X ::·Person) .oclIsTypeOf (Person)) ∨ τ |= ((X ::·Person) .oclIsKindOf (Staff )))
using actual-eq-staticP erson[OF isdef ]
apply(simp only: OclIsKindOfP erson-Person)

apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOfP erson-Person-defined ′[OF isdef ], OF
OclIsKindOf Staf f -Person-defined ′[OF isdef ]], OF OclIsKindOfC lient-Person-defined ′[OF isdef ]])

apply(erule foundation26 [OF OclIsTypeOfP erson-Person-defined ′[OF isdef ], OF OclIsKindOfStaf f -Person-defined ′[OF is-
def ]])
apply(simp)
apply(simp)
apply(simp add: iskin)

done
lemma not-OclIsKindOfC lient-then-OclAny-OclIsTypeOf-others :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Client))
assumes isdef : τ |= (δ (X))
shows (τ |= ((X ::·OclAny) .oclIsTypeOf (OclAny)) ∨ (τ |= ((X ::·OclAny) .oclIsTypeOf (Person)) ∨ (τ |= ((X ::·OclAny)
.oclIsKindOf (Reservation)) ∨ (τ |= ((X ::·OclAny) .oclIsKindOf (Flight)) ∨ τ |= ((X ::·OclAny) .oclIsKindOf (Staff ))))))
using actual-eq-staticOclAny [OF isdef ]
apply(simp only: OclIsKindOfOclAny-OclAny)

apply(erule foundation26 [OF defined-or-I [OF defined-or-I [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ],



234 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

OF OclIsKindOfReservation-OclAny-defined ′[OF isdef ]], OF OclIsKindOfP erson-OclAny-defined ′[OF isdef ]], OF
OclIsKindOfF light-OclAny-defined ′[OF isdef ]])

apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ], OF
OclIsKindOfReservation-OclAny-defined ′[OF isdef ]], OF OclIsKindOfP erson-OclAny-defined ′[OF isdef ]])
apply(erule foundation26 [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ], OF OclIsKindOfReservation-OclAny-defined ′[OF

isdef ]])
apply(simp)
apply(simp)
apply(simp only: OclIsKindOfP erson-OclAny)

apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOfP erson-OclAny-defined ′[OF isdef ], OF
OclIsKindOf Staf f -OclAny-defined ′[OF isdef ]], OF OclIsKindOfC lient-OclAny-defined ′[OF isdef ]])
apply(erule foundation26 [OF OclIsTypeOfP erson-OclAny-defined ′[OF isdef ], OF OclIsKindOf Staf f -OclAny-defined ′[OF is-

def ]])
apply(simp)
apply(simp)
apply(simp add: iskin)
apply(simp)

done
lemma not-OclIsKindOf Staf f -then-Person-OclIsTypeOf-others :
assumes iskin: ¬ τ |= ((X ::·Person) .oclIsKindOf (Staff ))
assumes isdef : τ |= (δ (X))
shows (τ |= ((X ::·Person) .oclIsTypeOf (Person)) ∨ τ |= ((X ::·Person) .oclIsKindOf (Client)))
using actual-eq-staticP erson[OF isdef ]
apply(simp only: OclIsKindOfP erson-Person)

apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOfP erson-Person-defined ′[OF isdef ], OF
OclIsKindOf Staf f -Person-defined ′[OF isdef ]], OF OclIsKindOfC lient-Person-defined ′[OF isdef ]])

apply(erule foundation26 [OF OclIsTypeOfP erson-Person-defined ′[OF isdef ], OF OclIsKindOfStaf f -Person-defined ′[OF is-
def ]])
apply(simp)
apply(simp add: iskin)
apply(simp)

done
lemma not-OclIsKindOf Staf f -then-OclAny-OclIsTypeOf-others :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Staff ))
assumes isdef : τ |= (δ (X))
shows (τ |= ((X ::·OclAny) .oclIsTypeOf (OclAny)) ∨ (τ |= ((X ::·OclAny) .oclIsTypeOf (Person)) ∨ (τ |= ((X ::·OclAny)
.oclIsKindOf (Reservation)) ∨ (τ |= ((X ::·OclAny) .oclIsKindOf (Flight)) ∨ τ |= ((X ::·OclAny) .oclIsKindOf (Client))))))
using actual-eq-staticOclAny [OF isdef ]
apply(simp only: OclIsKindOfOclAny-OclAny)

apply(erule foundation26 [OF defined-or-I [OF defined-or-I [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ],
OF OclIsKindOfReservation-OclAny-defined ′[OF isdef ]], OF OclIsKindOfP erson-OclAny-defined ′[OF isdef ]], OF
OclIsKindOfF light-OclAny-defined ′[OF isdef ]])

apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ], OF
OclIsKindOfReservation-OclAny-defined ′[OF isdef ]], OF OclIsKindOfP erson-OclAny-defined ′[OF isdef ]])
apply(erule foundation26 [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ], OF OclIsKindOfReservation-OclAny-defined ′[OF
isdef ]])
apply(simp)
apply(simp)
apply(simp only: OclIsKindOfP erson-OclAny)

apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOfP erson-OclAny-defined ′[OF isdef ], OF
OclIsKindOf Staf f -OclAny-defined ′[OF isdef ]], OF OclIsKindOfC lient-OclAny-defined ′[OF isdef ]])
apply(erule foundation26 [OF OclIsTypeOfP erson-OclAny-defined ′[OF isdef ], OF OclIsKindOf Staf f -OclAny-defined ′[OF is-

def ]])
apply(simp)
apply(simp add: iskin)
apply(simp)
apply(simp)

done
lemma not-OclIsKindOfP erson-then-OclAny-OclIsTypeOf-others :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Person))
assumes isdef : τ |= (δ (X))
shows (τ |= ((X ::·OclAny) .oclIsTypeOf (OclAny)) ∨ (τ |= ((X ::·OclAny) .oclIsKindOf (Reservation)) ∨ τ |= ((X ::·OclAny)
.oclIsKindOf (Flight))))
using actual-eq-staticOclAny [OF isdef ]
apply(simp only: OclIsKindOfOclAny-OclAny)

apply(erule foundation26 [OF defined-or-I [OF defined-or-I [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ],
OF OclIsKindOfReservation-OclAny-defined ′[OF isdef ]], OF OclIsKindOfP erson-OclAny-defined ′[OF isdef ]], OF
OclIsKindOfF light-OclAny-defined ′[OF isdef ]])

apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ], OF
OclIsKindOfReservation-OclAny-defined ′[OF isdef ]], OF OclIsKindOfP erson-OclAny-defined ′[OF isdef ]])
apply(erule foundation26 [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ], OF OclIsKindOfReservation-OclAny-defined ′[OF

isdef ]])
apply(simp)



B.6. CLASS MODEL: OCLISKINDOF 235

apply(simp)
apply(simp add: iskin)
apply(simp)

done
lemma not-OclIsKindOfReservation-then-OclAny-OclIsTypeOf-others :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Reservation))
assumes isdef : τ |= (δ (X))
shows (τ |= ((X ::·OclAny) .oclIsTypeOf (OclAny)) ∨ (τ |= ((X ::·OclAny) .oclIsKindOf (Person)) ∨ τ |= ((X ::·OclAny)
.oclIsKindOf (Flight))))
using actual-eq-staticOclAny [OF isdef ]
apply(simp only: OclIsKindOfOclAny-OclAny)

apply(erule foundation26 [OF defined-or-I [OF defined-or-I [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ],
OF OclIsKindOfReservation-OclAny-defined ′[OF isdef ]], OF OclIsKindOfP erson-OclAny-defined ′[OF isdef ]], OF
OclIsKindOfF light-OclAny-defined ′[OF isdef ]])

apply(erule foundation26 [OF defined-or-I [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ], OF
OclIsKindOfReservation-OclAny-defined ′[OF isdef ]], OF OclIsKindOfP erson-OclAny-defined ′[OF isdef ]])
apply(erule foundation26 [OF OclIsTypeOfOclAny-OclAny-defined ′[OF isdef ], OF OclIsKindOfReservation-OclAny-defined ′[OF

isdef ]])
apply(simp)
apply(simp add: iskin)
apply(simp)
apply(simp)

done

lemma down-cast-kindF light-from-OclAny-to-Flight :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Flight))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Flight)) , invalid
apply(insert not-OclIsKindOfF light-then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef ], elim disjE)
apply(rule down-cast-typeOclAny-from-OclAny-to-Flight, simp only: , simp only: isdef )
apply(drule not-OclIsKindOfP erson-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])

apply(auto simp: isdef down-cast-typeStaf f -from-OclAny-to-Flight down-cast-typeP erson-from-OclAny-to-Flight
down-cast-typeC lient-from-OclAny-to-Flight)
apply(drule not-OclIsKindOfReservation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeReservation-from-OclAny-to-Flight, simp only: , simp only: isdef )

done
lemma down-cast-kindC lient-from-Person-to-Client :
assumes iskin: ¬ τ |= ((X ::·Person) .oclIsKindOf (Client))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Client)) , invalid
apply(insert not-OclIsKindOfC lient-then-Person-OclIsTypeOf-others[OF iskin, OF isdef ], elim disjE)
apply(rule down-cast-typeP erson-from-Person-to-Client, simp only: , simp only: isdef )
apply(drule not-OclIsKindOf Staf f -then-Person-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeStaf f -from-Person-to-Client, simp only: , simp only: isdef )

done
lemma down-cast-kindC lient-from-OclAny-to-Client :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Client))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Client)) , invalid
apply(insert not-OclIsKindOfC lient-then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef ], elim disjE)
apply(rule down-cast-typeOclAny-from-OclAny-to-Client, simp only: , simp only: isdef )
apply(rule down-cast-typeP erson-from-OclAny-to-Client, simp only: , simp only: isdef )
apply(drule not-OclIsKindOfReservation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeReservation-from-OclAny-to-Client, simp only: , simp only: isdef )
apply(drule not-OclIsKindOfF light-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeF light-from-OclAny-to-Client, simp only: , simp only: isdef )
apply(drule not-OclIsKindOf Staf f -then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeStaf f -from-OclAny-to-Client, simp only: , simp only: isdef )

done
lemma down-cast-kindStaf f -from-Person-to-Staff :
assumes iskin: ¬ τ |= ((X ::·Person) .oclIsKindOf (Staff ))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid
apply(insert not-OclIsKindOf Staf f -then-Person-OclIsTypeOf-others[OF iskin, OF isdef ], elim disjE)
apply(rule down-cast-typeP erson-from-Person-to-Staff , simp only: , simp only: isdef )
apply(drule not-OclIsKindOfC lient-then-Person-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeC lient-from-Person-to-Staff , simp only: , simp only: isdef )

done
lemma down-cast-kindStaf f -from-OclAny-to-Staff :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Staff ))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid



236 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

apply(insert not-OclIsKindOf Staf f -then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef ], elim disjE)
apply(rule down-cast-typeOclAny-from-OclAny-to-Staff , simp only: , simp only: isdef )
apply(rule down-cast-typeP erson-from-OclAny-to-Staff , simp only: , simp only: isdef )
apply(drule not-OclIsKindOfReservation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeReservation-from-OclAny-to-Staff , simp only: , simp only: isdef )
apply(drule not-OclIsKindOfF light-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeF light-from-OclAny-to-Staff , simp only: , simp only: isdef )
apply(drule not-OclIsKindOfC lient-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeC lient-from-OclAny-to-Staff , simp only: , simp only: isdef )

done
lemma down-cast-kindP erson-from-OclAny-to-Person :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Person))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Person)) , invalid
apply(insert not-OclIsKindOfP erson-then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef ], elim disjE)
apply(rule down-cast-typeOclAny-from-OclAny-to-Person, simp only: , simp only: isdef )
apply(drule not-OclIsKindOfReservation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeReservation-from-OclAny-to-Person, simp only: , simp only: isdef )
apply(drule not-OclIsKindOfF light-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeF light-from-OclAny-to-Person, simp only: , simp only: isdef )

done
lemma down-cast-kindP erson-from-OclAny-to-Client :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Person))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Client)) , invalid
apply(insert not-OclIsKindOfP erson-then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef ], elim disjE)
apply(rule down-cast-typeOclAny-from-OclAny-to-Client, simp only: , simp only: isdef )
apply(drule not-OclIsKindOfReservation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeReservation-from-OclAny-to-Client, simp only: , simp only: isdef )
apply(drule not-OclIsKindOfF light-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeF light-from-OclAny-to-Client, simp only: , simp only: isdef )

done
lemma down-cast-kindP erson-from-OclAny-to-Staff :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Person))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Staff )) , invalid
apply(insert not-OclIsKindOfP erson-then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef ], elim disjE)
apply(rule down-cast-typeOclAny-from-OclAny-to-Staff , simp only: , simp only: isdef )
apply(drule not-OclIsKindOfReservation-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeReservation-from-OclAny-to-Staff , simp only: , simp only: isdef )
apply(drule not-OclIsKindOfF light-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeF light-from-OclAny-to-Staff , simp only: , simp only: isdef )

done
lemma down-cast-kindReservation-from-OclAny-to-Reservation :
assumes iskin: ¬ τ |= ((X ::·OclAny) .oclIsKindOf (Reservation))
assumes isdef : τ |= (δ (X))
shows τ |= (X .oclAsType(Reservation)) , invalid
apply(insert not-OclIsKindOfReservation-then-OclAny-OclIsTypeOf-others[OF iskin, OF isdef ], elim disjE)
apply(rule down-cast-typeOclAny-from-OclAny-to-Reservation, simp only: , simp only: isdef )
apply(drule not-OclIsKindOfP erson-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(auto simp: isdef down-cast-typeStaf f -from-OclAny-to-Reservation down-cast-typeP erson-from-OclAny-to-Reservation

down-cast-typeC lient-from-OclAny-to-Reservation)
apply(drule not-OclIsKindOfF light-then-OclAny-OclIsTypeOf-others-unfold[OF isdef ])
apply(rule down-cast-typeF light-from-OclAny-to-Reservation, simp only: , simp only: isdef )

done

Const

B.7 Class Model: OclAllInstances
definition Flight = OclAsTypeF light-A
definition Client = OclAsTypeC lient-A
definition Staff = OclAsTypeStaf f -A
definition Person = OclAsTypeP erson-A
definition Reservation = OclAsTypeReservation-A
definition OclAny = OclAsTypeOclAny-A

lemmas[simp,code-unfold] = Flight-def
Client-def
Staff-def
Person-def



B.7. CLASS MODEL: OCLALLINSTANCES 237

Reservation-def
OclAny-def

lemma OclAsTypeOclAny-A-some : (OclAsTypeOclAny-A (x)) 6= None
by(simp add: OclAsTypeOclAny-A-def )

lemma OclAllInstances-genericOclAny-exec :
shows (OclAllInstances-generic (pre-post) (OclAny)) = (λτ. (Abs-Setbase (bbSome ‘ OclAny ‘ (ran ((heap ((pre-post (τ))))))cc)))
proof − let ?S1 = (λτ. OclAny ‘ (ran ((heap ((pre-post (τ))))))) show ?thesis
proof − let ?S2 = (λτ. ((?S1 ) (τ)) − {None}) show ?thesis
proof − have B: (

∧
τ . ((?S2 ) (τ)) ⊆ ((?S1 ) (τ))) by(auto) show ?thesis

proof − have C : (
∧
τ . ((?S1 ) (τ)) ⊆ ((?S2 ) (τ))) by(auto simp: OclAsTypeOclAny-A-some) show ?thesis

apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfOclAny-OclAny)
by(insert equalityI [OF B, OF C ], simp) qed qed qed qed
lemma OclAllInstances-at-postOclAny-exec :
shows (OclAllInstances-at-post (OclAny)) = (λτ. (Abs-Setbase (bbSome ‘ OclAny ‘ (ran ((heap ((snd (τ))))))cc)))
unfolding OclAllInstances-at-post-def

by(rule OclAllInstances-genericOclAny-exec)
lemma OclAllInstances-at-preOclAny-exec :
shows (OclAllInstances-at-pre (OclAny)) = (λτ. (Abs-Setbase (bbSome ‘ OclAny ‘ (ran ((heap ((fst (τ))))))cc)))
unfolding OclAllInstances-at-pre-def

by(rule OclAllInstances-genericOclAny-exec)

OclIsTypeOf
lemma ex-ssubst : (∀ x ∈ B. (s (x)) = (t (x))) =⇒ (∃ x ∈ B. (P ((s (x))))) = (∃ x ∈ B. (P ((t (x)))))
by(simp)
lemma ex-def : x ∈ ddbbSome ‘ (X − {None})ccee =⇒ (∃ y. x = bbycc)
by(auto)

lemma Flight-OclAllInstances-generic-OclIsTypeOfF light : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Flight))) (OclIsTypeOfF light))
apply(simp add: OclValid-def del: OclAllInstances-generic-def )
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsTypeOf (Flight)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actual-eq-staticF light[simplified OclValid-def , simplified OclIsKindOfF light-Flight])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Flight-OclAllInstances-at-post-OclIsTypeOfF light :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Flight))) (OclIsTypeOfF light))
unfolding OclAllInstances-at-post-def

by(rule Flight-OclAllInstances-generic-OclIsTypeOfF light)
lemma Flight-OclAllInstances-at-pre-OclIsTypeOfF light :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Flight))) (OclIsTypeOfF light))
unfolding OclAllInstances-at-pre-def

by(rule Flight-OclAllInstances-generic-OclIsTypeOfF light)
lemma Client-OclAllInstances-generic-OclIsTypeOfC lient : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Client))) (OclIsTypeOfC lient))
apply(simp add: OclValid-def del: OclAllInstances-generic-def )
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsTypeOf (Client)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actual-eq-staticC lient[simplified OclValid-def , simplified OclIsKindOfC lient-Client])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Client-OclAllInstances-at-post-OclIsTypeOfC lient :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Client))) (OclIsTypeOfC lient))
unfolding OclAllInstances-at-post-def

by(rule Client-OclAllInstances-generic-OclIsTypeOfC lient)
lemma Client-OclAllInstances-at-pre-OclIsTypeOfC lient :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Client))) (OclIsTypeOfC lient))
unfolding OclAllInstances-at-pre-def

by(rule Client-OclAllInstances-generic-OclIsTypeOfC lient)
lemma Staff-OclAllInstances-generic-OclIsTypeOfStaf f : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Staff )))
(OclIsTypeOf Staf f ))
apply(simp add: OclValid-def del: OclAllInstances-generic-def )
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])



238 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsTypeOf (Staff )) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actual-eq-staticStaf f [simplified OclValid-def , simplified OclIsKindOf Staf f -Staff ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Staff-OclAllInstances-at-post-OclIsTypeOfStaf f :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Staff ))) (OclIsTypeOf Staf f ))
unfolding OclAllInstances-at-post-def

by(rule Staff-OclAllInstances-generic-OclIsTypeOf Staf f )
lemma Staff-OclAllInstances-at-pre-OclIsTypeOfStaf f :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Staff ))) (OclIsTypeOf Staf f ))
unfolding OclAllInstances-at-pre-def

by(rule Staff-OclAllInstances-generic-OclIsTypeOf Staf f )
lemma Person-OclAllInstances-generic-OclIsTypeOfP erson1 :
assumes [simp]: (

∧
x. (pre-post ((x , x))) = x)

shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Person))) (OclIsTypeOfP erson)))
apply(rule exI [where x = τ0], simp add: τ0-def OclValid-def del: OclAllInstances-generic-def )
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )

by(simp)
lemma Person-OclAllInstances-at-post-OclIsTypeOfP erson1 :
shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Person))) (OclIsTypeOfP erson)))
unfolding OclAllInstances-at-post-def

by(rule Person-OclAllInstances-generic-OclIsTypeOfP erson1 , simp)
lemma Person-OclAllInstances-at-pre-OclIsTypeOfP erson1 :
shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Person))) (OclIsTypeOfP erson)))
unfolding OclAllInstances-at-pre-def

by(rule Person-OclAllInstances-generic-OclIsTypeOfP erson1 , simp)
lemma Person-OclAllInstances-generic-OclIsTypeOfP erson2 :
assumes [simp]: (

∧
x. (pre-post ((x , x))) = x)

shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Person))) (OclIsTypeOfP erson)))))
proof − fix oid a show ?thesis
proof − let ?t0 = (state.make ((Map.empty (oid 7→ (inP erson ((mkP erson ((mkEXT P erson-Staf f (a))) (None)))))))

(Map.empty)) show ?thesis
apply(rule exI [where x = (?t0 , ?t0 )], simp add: OclValid-def del: OclAllInstances-generic-def )
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def OclAsTypeP erson-A-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )

by(simp add: state.make-def OclNot-def ) qed qed
lemma Person-OclAllInstances-at-post-OclIsTypeOfP erson2 :
shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-at-post (Person))) (OclIsTypeOfP erson)))))
unfolding OclAllInstances-at-post-def

by(rule Person-OclAllInstances-generic-OclIsTypeOfP erson2 , simp)
lemma Person-OclAllInstances-at-pre-OclIsTypeOfP erson2 :
shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-at-pre (Person))) (OclIsTypeOfP erson)))))
unfolding OclAllInstances-at-pre-def

by(rule Person-OclAllInstances-generic-OclIsTypeOfP erson2 , simp)
lemma Reservation-OclAllInstances-generic-OclIsTypeOfReservation : τ |= (UML-Set.OclForall ((OclAllInstances-generic
(pre-post) (Reservation))) (OclIsTypeOfReservation))
apply(simp add: OclValid-def del: OclAllInstances-generic-def )
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsTypeOf (Reservation)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actual-eq-staticReservation[simplified OclValid-def , simplified OclIsKindOfReservation-Reservation])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Reservation-OclAllInstances-at-post-OclIsTypeOfReservation :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Reservation))) (OclIsTypeOfReservation))
unfolding OclAllInstances-at-post-def

by(rule Reservation-OclAllInstances-generic-OclIsTypeOfReservation)
lemma Reservation-OclAllInstances-at-pre-OclIsTypeOfReservation :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Reservation))) (OclIsTypeOfReservation))
unfolding OclAllInstances-at-pre-def

by(rule Reservation-OclAllInstances-generic-OclIsTypeOfReservation)
lemma OclAny-OclAllInstances-generic-OclIsTypeOfOclAny1 :
assumes [simp]: (

∧
x. (pre-post ((x , x))) = x)

shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (OclAny))) (OclIsTypeOfOclAny)))
apply(rule exI [where x = τ0], simp add: τ0-def OclValid-def del: OclAllInstances-generic-def )
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )



B.7. CLASS MODEL: OCLALLINSTANCES 239

apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
by(simp)
lemma OclAny-OclAllInstances-at-post-OclIsTypeOfOclAny1 :
shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-at-post (OclAny))) (OclIsTypeOfOclAny)))
unfolding OclAllInstances-at-post-def

by(rule OclAny-OclAllInstances-generic-OclIsTypeOfOclAny1 , simp)
lemma OclAny-OclAllInstances-at-pre-OclIsTypeOfOclAny1 :
shows (∃ τ . τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (OclAny))) (OclIsTypeOfOclAny)))
unfolding OclAllInstances-at-pre-def

by(rule OclAny-OclAllInstances-generic-OclIsTypeOfOclAny1 , simp)
lemma OclAny-OclAllInstances-generic-OclIsTypeOfOclAny2 :
assumes [simp]: (

∧
x. (pre-post ((x , x))) = x)

shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-generic (pre-post) (OclAny))) (OclIsTypeOfOclAny)))))
proof − fix oid a show ?thesis
proof − let ?t0 = (state.make ((Map.empty (oid 7→ (inOclAny ((mkOclAny ((mkEXT OclAny-Reservation (a)))))))))

(Map.empty)) show ?thesis
apply(rule exI [where x = (?t0 , ?t0 )], simp add: OclValid-def del: OclAllInstances-generic-def )
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def OclAsTypeOclAny-A-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )

by(simp add: state.make-def OclNot-def ) qed qed
lemma OclAny-OclAllInstances-at-post-OclIsTypeOfOclAny2 :
shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-at-post (OclAny))) (OclIsTypeOfOclAny)))))
unfolding OclAllInstances-at-post-def

by(rule OclAny-OclAllInstances-generic-OclIsTypeOfOclAny2 , simp)
lemma OclAny-OclAllInstances-at-pre-OclIsTypeOfOclAny2 :
shows (∃ τ . τ |= (not ((UML-Set.OclForall ((OclAllInstances-at-pre (OclAny))) (OclIsTypeOfOclAny)))))
unfolding OclAllInstances-at-pre-def

by(rule OclAny-OclAllInstances-generic-OclIsTypeOfOclAny2 , simp)

OclIsKindOf
lemma Flight-OclAllInstances-generic-OclIsKindOfF light : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Flight))) (OclIsKindOfF light))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfF light-Flight)
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Flight)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actual-eq-staticF light[simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Flight-OclAllInstances-at-post-OclIsKindOfF light :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Flight))) (OclIsKindOfF light))
unfolding OclAllInstances-at-post-def

by(rule Flight-OclAllInstances-generic-OclIsKindOfF light)
lemma Flight-OclAllInstances-at-pre-OclIsKindOfF light :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Flight))) (OclIsKindOfF light))
unfolding OclAllInstances-at-pre-def

by(rule Flight-OclAllInstances-generic-OclIsKindOfF light)
lemma Client-OclAllInstances-generic-OclIsKindOfC lient : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Client))) (OclIsKindOfC lient))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfC lient-Client)
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Client)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actual-eq-staticC lient[simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Client-OclAllInstances-at-post-OclIsKindOfC lient :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Client))) (OclIsKindOfC lient))
unfolding OclAllInstances-at-post-def

by(rule Client-OclAllInstances-generic-OclIsKindOfC lient)
lemma Client-OclAllInstances-at-pre-OclIsKindOfC lient :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Client))) (OclIsKindOfC lient))
unfolding OclAllInstances-at-pre-def

by(rule Client-OclAllInstances-generic-OclIsKindOfC lient)
lemma Staff-OclAllInstances-generic-OclIsKindOf Staf f : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post) (Staff )))
(OclIsKindOf Staf f ))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOf Staf f -Staff )
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )



240 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Staff )) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actual-eq-staticStaf f [simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Staff-OclAllInstances-at-post-OclIsKindOf Staf f :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Staff ))) (OclIsKindOf Staf f ))
unfolding OclAllInstances-at-post-def

by(rule Staff-OclAllInstances-generic-OclIsKindOf Staf f )
lemma Staff-OclAllInstances-at-pre-OclIsKindOf Staf f :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Staff ))) (OclIsKindOf Staf f ))
unfolding OclAllInstances-at-pre-def

by(rule Staff-OclAllInstances-generic-OclIsKindOf Staf f )
lemma Person-OclAllInstances-generic-OclIsKindOfP erson : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Person))) (OclIsKindOfP erson))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfP erson-Person)
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Person)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actual-eq-staticP erson[simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Person-OclAllInstances-at-post-OclIsKindOfP erson :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Person))) (OclIsKindOfP erson))
unfolding OclAllInstances-at-post-def

by(rule Person-OclAllInstances-generic-OclIsKindOfP erson)
lemma Person-OclAllInstances-at-pre-OclIsKindOfP erson :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Person))) (OclIsKindOfP erson))
unfolding OclAllInstances-at-pre-def

by(rule Person-OclAllInstances-generic-OclIsKindOfP erson)
lemma Reservation-OclAllInstances-generic-OclIsKindOfReservation : τ |= (UML-Set.OclForall ((OclAllInstances-generic
(pre-post) (Reservation))) (OclIsKindOfReservation))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfReservation-Reservation)
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Reservation)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actual-eq-staticReservation[simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Reservation-OclAllInstances-at-post-OclIsKindOfReservation :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Reservation))) (OclIsKindOfReservation))
unfolding OclAllInstances-at-post-def

by(rule Reservation-OclAllInstances-generic-OclIsKindOfReservation)
lemma Reservation-OclAllInstances-at-pre-OclIsKindOfReservation :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Reservation))) (OclIsKindOfReservation))
unfolding OclAllInstances-at-pre-def

by(rule Reservation-OclAllInstances-generic-OclIsKindOfReservation)
lemma OclAny-OclAllInstances-generic-OclIsKindOfOclAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(OclAny))) (OclIsKindOfOclAny))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfOclAny-OclAny)
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actual-eq-staticOclAny [simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma OclAny-OclAllInstances-at-post-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (OclAny))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-post-def

by(rule OclAny-OclAllInstances-generic-OclIsKindOfOclAny)
lemma OclAny-OclAllInstances-at-pre-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (OclAny))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-pre-def

by(rule OclAny-OclAllInstances-generic-OclIsKindOfOclAny)

lemma Flight-OclAllInstances-generic-OclIsKindOfOclAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Flight))) (OclIsKindOfOclAny))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfOclAny-Flight)
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])



B.7. CLASS MODEL: OCLALLINSTANCES 241

apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actualKindF light-larger-staticKindOclAny [simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Flight-OclAllInstances-at-post-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Flight))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-post-def

by(rule Flight-OclAllInstances-generic-OclIsKindOfOclAny)
lemma Flight-OclAllInstances-at-pre-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Flight))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-pre-def

by(rule Flight-OclAllInstances-generic-OclIsKindOfOclAny)
lemma Client-OclAllInstances-generic-OclIsKindOfP erson : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Client))) (OclIsKindOfP erson))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfP erson-Client)
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Person)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actualKindC lient-larger-staticKindP erson[simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Client-OclAllInstances-at-post-OclIsKindOfP erson :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Client))) (OclIsKindOfP erson))
unfolding OclAllInstances-at-post-def

by(rule Client-OclAllInstances-generic-OclIsKindOfP erson)
lemma Client-OclAllInstances-at-pre-OclIsKindOfP erson :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Client))) (OclIsKindOfP erson))
unfolding OclAllInstances-at-pre-def

by(rule Client-OclAllInstances-generic-OclIsKindOfP erson)
lemma Client-OclAllInstances-generic-OclIsKindOfOclAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Client))) (OclIsKindOfOclAny))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfOclAny-Client)
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actualKindC lient-larger-staticKindOclAny [simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Client-OclAllInstances-at-post-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Client))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-post-def

by(rule Client-OclAllInstances-generic-OclIsKindOfOclAny)
lemma Client-OclAllInstances-at-pre-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Client))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-pre-def

by(rule Client-OclAllInstances-generic-OclIsKindOfOclAny)
lemma Staff-OclAllInstances-generic-OclIsKindOfP erson : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Staff ))) (OclIsKindOfP erson))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfP erson-Staff )
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (Person)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actualKindStaf f -larger-staticKindP erson[simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Staff-OclAllInstances-at-post-OclIsKindOfP erson :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Staff ))) (OclIsKindOfP erson))
unfolding OclAllInstances-at-post-def

by(rule Staff-OclAllInstances-generic-OclIsKindOfP erson)
lemma Staff-OclAllInstances-at-pre-OclIsKindOfP erson :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Staff ))) (OclIsKindOfP erson))
unfolding OclAllInstances-at-pre-def

by(rule Staff-OclAllInstances-generic-OclIsKindOfP erson)
lemma Staff-OclAllInstances-generic-OclIsKindOfOclAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Staff ))) (OclIsKindOfOclAny))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfOclAny-Staff )
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )



242 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actualKindStaf f -larger-staticKindOclAny [simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Staff-OclAllInstances-at-post-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Staff ))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-post-def

by(rule Staff-OclAllInstances-generic-OclIsKindOfOclAny)
lemma Staff-OclAllInstances-at-pre-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Staff ))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-pre-def

by(rule Staff-OclAllInstances-generic-OclIsKindOfOclAny)
lemma Person-OclAllInstances-generic-OclIsKindOfOclAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Person))) (OclIsKindOfOclAny))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfOclAny-Person)
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actualKindP erson-larger-staticKindOclAny [simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Person-OclAllInstances-at-post-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Person))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-post-def

by(rule Person-OclAllInstances-generic-OclIsKindOfOclAny)
lemma Person-OclAllInstances-at-pre-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Person))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-pre-def

by(rule Person-OclAllInstances-generic-OclIsKindOfOclAny)
lemma Reservation-OclAllInstances-generic-OclIsKindOfOclAny : τ |= (UML-Set.OclForall ((OclAllInstances-generic (pre-post)
(Reservation))) (OclIsKindOfOclAny))
apply(simp add: OclValid-def del: OclAllInstances-generic-def OclIsKindOfOclAny-Reservation)
apply(simp only: UML-Set.OclForall-def refl if-True OclAllInstances-generic-defined[simplified OclValid-def ])
apply(simp only: OclAllInstances-generic-def )
apply(subst (1 2 3 ) Abs-Setbase-inverse, simp add: bot-option-def )
apply(subst (1 2 3 ) ex-ssubst[where s = (λx. (((λ-. x) .oclIsKindOf (OclAny)) (τ))) and t = (λ-. (true (τ)))])
apply(intro ballI actualKindReservation-larger-staticKindOclAny [simplified OclValid-def ])
apply(drule ex-def , erule exE, simp)

by(simp)
lemma Reservation-OclAllInstances-at-post-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-post (Reservation))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-post-def

by(rule Reservation-OclAllInstances-generic-OclIsKindOfOclAny)
lemma Reservation-OclAllInstances-at-pre-OclIsKindOfOclAny :
shows τ |= (UML-Set.OclForall ((OclAllInstances-at-pre (Reservation))) (OclIsKindOfOclAny))
unfolding OclAllInstances-at-pre-def

by(rule Reservation-OclAllInstances-generic-OclIsKindOfOclAny)

B.8 Class Model: The Accessors

Definition
ML 〈val oidFlight-1-passengers = 2 〉

ML 〈val oidClient-0-cl-res = 1 〉

ML 〈val oidClient-0-flights = 2 〉

ML 〈val oidStaff-0-flights = 2 〉

ML 〈val oidPerson-0-flights = 2 〉

ML 〈val oidReservation-0-prev = 0 〉

ML 〈val oidReservation-1-next = 0 〉

ML 〈val oidReservation-1-client = 1 〉

definition oidF light-1---passengers = 2
definition oidC lient-0---cl-res = 1
definition oidC lient-0---flights = 2
definition oidStaf f -0---flights = 2
definition oidP erson-0---flights = 2
definition oidReservation-0---prev = 0
definition oidReservation-1---next = 0
definition oidReservation-1---client = 1



B.8. CLASS MODEL: THE ACCESSORS 243

definition eval-extract x f = (λτ. (case x τ of bbobjcc ⇒ (f ((oid-of (obj))) (τ))
| - ⇒ invalid τ))

definition in-pre-state = fst
definition in-post-state = snd
definition reconst-basetype = (λx -. bbxcc)
definition reconst-basetypeV oid x = Abs-Voidbase o (reconst-basetype (x))

ML 〈val switch2-01 = (fn [x0 , x1 ] => (x0 , x1 ))〉

ML 〈val switch2-10 = (fn [x0 , x1 ] => (x1 , x0 ))〉

definition switch2-01 = (λ [x0 , x1 ] ⇒ (x0 , x1 ))
definition switch2-10 = (λ [x0 , x1 ] ⇒ (x1 , x0 ))
definition deref-assocs pre-post to-from assoc-oid f oid = (λτ. (case (assocs ((pre-post (τ))) (assoc-oid)) of bSc ⇒ (f
((deref-assocs-list (to-from) (oid) (S))) (τ))
| - ⇒ (invalid (τ))))

definition deref-oidF light fst-snd f oid = (λτ. (case (heap (fst-snd τ) (oid)) of binF light objc ⇒ f obj τ
| - ⇒ invalid τ))

definition deref-oidC lient fst-snd f oid = (λτ. (case (heap (fst-snd τ) (oid)) of binC lient objc ⇒ f obj τ
| - ⇒ invalid τ))

definition deref-oidStaf f fst-snd f oid = (λτ. (case (heap (fst-snd τ) (oid)) of binStaf f objc ⇒ f obj τ
| - ⇒ invalid τ))

definition deref-oidP erson fst-snd f oid = (λτ. (case (heap (fst-snd τ) (oid)) of binP erson objc ⇒ f obj τ
| - ⇒ invalid τ))

definition deref-oidReservation fst-snd f oid = (λτ. (case (heap (fst-snd τ) (oid)) of binReservation objc ⇒ f obj τ
| - ⇒ invalid τ))

definition deref-oidOclAny fst-snd f oid = (λτ. (case (heap (fst-snd τ) (oid)) of binOclAny objc ⇒ f obj τ
| - ⇒ invalid τ))

definition deref-assocsF light-1---passengers fst-snd f = (deref-assocs (fst-snd) (switch2-10 ) (oidF light-1---passengers) (f )) ◦
oid-of
definition deref-assocsC lient-0---cl-res fst-snd f = (deref-assocs (fst-snd) (switch2-01 ) (oidC lient-0---cl-res) (f )) ◦ oid-of
definition deref-assocsC lient-0---flights fst-snd f = (deref-assocs (fst-snd) (switch2-01 ) (oidC lient-0---flights) (f )) ◦ oid-of
definition deref-assocsStaf f -0---flights fst-snd f = (deref-assocs (fst-snd) (switch2-01 ) (oidStaf f -0---flights) (f )) ◦ oid-of
definition deref-assocsP erson-0---flights fst-snd f = (deref-assocs (fst-snd) (switch2-01 ) (oidP erson-0---flights) (f )) ◦ oid-of
definition deref-assocsReservation-0---prev fst-snd f = (deref-assocs (fst-snd) (switch2-01 ) (oidReservation-0---prev) (f )) ◦
oid-of
definition deref-assocsReservation-1---next fst-snd f = (deref-assocs (fst-snd) (switch2-10 ) (oidReservation-1---next) (f )) ◦
oid-of
definition deref-assocsReservation-1---client fst-snd f = (deref-assocs (fst-snd) (switch2-10 ) (oidReservation-1---client) (f )) ◦
oid-of

definition selectF light--seats f = (λ (mkF light (-) (⊥) (-) (-) (-)) ⇒ null
| (mkF light (-) (bx---seatsc) (-) (-) (-)) ⇒ (f (x---seats)))

definition selectF light--from f = (λ (mkF light (-) (-) (⊥) (-) (-)) ⇒ null
| (mkF light (-) (-) (bx---fromc) (-) (-)) ⇒ (f (x---from)))

definition selectF light--to f = (λ (mkF light (-) (-) (-) (⊥) (-)) ⇒ null
| (mkF light (-) (-) (-) (bx---toc) (-)) ⇒ (f (x---to)))

definition selectF light--fl-res f = (λ (mkF light (-) (-) (-) (-) (⊥)) ⇒ null
| (mkF light (-) (-) (-) (-) (bx---fl-resc)) ⇒ (f (x---fl-res)))

definition selectC lient--address f = (λ (mkC lient (-) (⊥)) ⇒ null
| (mkC lient (-) (bx---addressc)) ⇒ (f (x---address)))

definition selectP erson--name f = (λ (mkP erson (-) (⊥)) ⇒ null
| (mkP erson (-) (bx---namec)) ⇒ (f (x---name)))

definition selectReservation--id f = (λ (mkReservation (-) (⊥) (-) (-)) ⇒ null
| (mkReservation (-) (bx---idc) (-) (-)) ⇒ (f (x---id)))

definition selectReservation--date f = (λ (mkReservation (-) (-) (⊥) (-)) ⇒ null
| (mkReservation (-) (-) (bx---datec) (-)) ⇒ (f (x---date)))

definition selectReservation--flight f = (λ (mkReservation (-) (-) (-) (⊥)) ⇒ null
| (mkReservation (-) (-) (-) (bx---flightc)) ⇒ (f (x---flight)))

definition selectC lient--name f = (λ (mkC lient ((mkEXT C lient (-) (⊥))) (-)) ⇒ null
| (mkC lient ((mkEXT C lient (-) (bx---namec))) (-)) ⇒ (f (x---name)))

definition selectStaf f --name f = (λ (mkStaf f ((mkEXT Staf f (-) (⊥)))) ⇒ null
| (mkStaf f ((mkEXT Staf f (-) (bx---namec)))) ⇒ (f (x---name)))



244 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

definition selectF light--passengers = select-objectSet

definition selectC lient--cl-res = select-objectSet

definition selectC lient--flights = select-objectSet

definition selectStaf f --flights = select-objectSet

definition selectP erson--flights = select-objectSet

definition selectReservation--prev = select-object-anySet

definition selectReservation--next = select-object-anySet

definition selectReservation--client = select-object-anySet

consts dot-1---passengers :: (A, ′α) val ⇒ Set-Person ((-) .passengers)
consts dot-1---passengersat-pre :: (A, ′α) val ⇒ Set-Person ((-) .passengers@pre)
consts dot--seats :: (A, ′α) val ⇒ Integer ((-) .seats)
consts dot--seatsat-pre :: (A, ′α) val ⇒ Integer ((-) .seats@pre)
consts dot--from :: (A, ′α) val ⇒ String ((-) .from)
consts dot--fromat-pre :: (A, ′α) val ⇒ String ((-) .from@pre)
consts dot--to :: (A, ′α) val ⇒ String ((-) .to)
consts dot--toat-pre :: (A, ′α) val ⇒ String ((-) .to@pre)
consts dot--fl-res :: (A, ′α) val ⇒ Sequence-Reservation ((-) .fl ′-res)
consts dot--fl-resat-pre :: (A, ′α) val ⇒ Sequence-Reservation ((-) .fl ′-res@pre)
consts dot-0---cl-res :: (A, ′α) val ⇒ Set-Reservation ((-) .cl ′-res)
consts dot-0---cl-resat-pre :: (A, ′α) val ⇒ Set-Reservation ((-) .cl ′-res@pre)
consts dot--address :: (A, ′α) val ⇒ String ((-) .address)
consts dot--addressat-pre :: (A, ′α) val ⇒ String ((-) .address@pre)
consts dot-0---flights :: (A, ′α) val ⇒ Set-Flight ((-) .flights)
consts dot-0---flightsat-pre :: (A, ′α) val ⇒ Set-Flight ((-) .flights@pre)
consts dot--name :: (A, ′α) val ⇒ String ((-) .name)
consts dot--nameat-pre :: (A, ′α) val ⇒ String ((-) .name@pre)
consts dot-0---prev :: (A, ′α) val ⇒ ·Reservation ((-) .prev)
consts dot-0---prevat-pre :: (A, ′α) val ⇒ ·Reservation ((-) .prev@pre)
consts dot-1---next :: (A, ′α) val ⇒ ·Reservation ((-) .next)
consts dot-1---nextat-pre :: (A, ′α) val ⇒ ·Reservation ((-) .next@pre)
consts dot-1---client :: (A, ′α) val ⇒ ·Client ((-) .client)
consts dot-1---clientat-pre :: (A, ′α) val ⇒ ·Client ((-) .client@pre)
consts dot--id :: (A, ′α) val ⇒ Integer ((-) .id)
consts dot--idat-pre :: (A, ′α) val ⇒ Integer ((-) .id@pre)
consts dot--date :: (A, ′α) val ⇒ Week ((-) .date)
consts dot--dateat-pre :: (A, ′α) val ⇒ Week ((-) .date@pre)
consts dot--flight :: (A, ′α) val ⇒ ·Flight ((-) .flight)
consts dot--flightat-pre :: (A, ′α) val ⇒ ·Flight ((-) .flight@pre)

overloading dot-1---passengers ≡ (dot-1---passengers::(·Flight) ⇒ -)
begin

definition dotF light-1---passengers : (x::·Flight) .passengers ≡ (eval-extract (x) ((deref-oidF light (in-post-state)
((deref-assocsF light-1---passengers (in-post-state) ((selectF light--passengers ((deref-oidP erson (in-post-state)
(reconst-basetype))))))))))
end
overloading dot--seats ≡ (dot--seats::(·Flight) ⇒ -)
begin

definition dotF light--seats : (x::·Flight) .seats ≡ (eval-extract (x) ((deref-oidF light (in-post-state) ((selectF light--seats
(reconst-basetype))))))
end
overloading dot--from ≡ (dot--from::(·Flight) ⇒ -)
begin

definition dotF light--from : (x::·Flight) .from ≡ (eval-extract (x) ((deref-oidF light (in-post-state) ((selectF light--from
(reconst-basetype))))))
end
overloading dot--to ≡ (dot--to::(·Flight) ⇒ -)
begin

definition dotF light--to : (x::·Flight) .to ≡ (eval-extract (x) ((deref-oidF light (in-post-state) ((selectF light--to
(reconst-basetype))))))
end
overloading dot--fl-res ≡ (dot--fl-res::(·Flight) ⇒ -)
begin
definition dotF light--fl-res : (x::·Flight) .fl-res ≡ (eval-extract (x) ((deref-oidF light (in-post-state) ((selectF light--fl-res

((select-objectSeq ((deref-oidReservation (in-post-state) (reconst-basetype))))))))))
end
overloading dot-1---passengersat-pre ≡ (dot-1---passengersat-pre::(·Flight) ⇒ -)
begin

definition dotF light-1---passengersat-pre : (x::·Flight) .passengers@pre ≡ (eval-extract (x) ((deref-oidF light

(in-pre-state) ((deref-assocsF light-1---passengers (in-pre-state) ((selectF light--passengers ((deref-oidP erson (in-pre-state)
(reconst-basetype))))))))))



B.8. CLASS MODEL: THE ACCESSORS 245

end
overloading dot--seatsat-pre ≡ (dot--seatsat-pre::(·Flight) ⇒ -)
begin

definition dotF light--seatsat-pre : (x::·Flight) .seats@pre ≡ (eval-extract (x) ((deref-oidF light (in-pre-state)
((selectF light--seats (reconst-basetype))))))
end
overloading dot--fromat-pre ≡ (dot--fromat-pre::(·Flight) ⇒ -)
begin

definition dotF light--fromat-pre : (x::·Flight) .from@pre ≡ (eval-extract (x) ((deref-oidF light (in-pre-state)
((selectF light--from (reconst-basetype))))))
end
overloading dot--toat-pre ≡ (dot--toat-pre::(·Flight) ⇒ -)
begin
definition dotF light--toat-pre : (x::·Flight) .to@pre ≡ (eval-extract (x) ((deref-oidF light (in-pre-state) ((selectF light--to

(reconst-basetype))))))
end
overloading dot--fl-resat-pre ≡ (dot--fl-resat-pre::(·Flight) ⇒ -)
begin

definition dotF light--fl-resat-pre : (x::·Flight) .fl-res@pre ≡ (eval-extract (x) ((deref-oidF light (in-pre-state)
((selectF light--fl-res ((select-objectSeq ((deref-oidReservation (in-pre-state) (reconst-basetype))))))))))
end
overloading dot-0---cl-res ≡ (dot-0---cl-res::(·Client) ⇒ -)
begin

definition dotC lient-0---cl-res : (x::·Client) .cl-res ≡ (eval-extract (x) ((deref-oidC lient (in-post-state)
((deref-assocsC lient-0---cl-res (in-post-state) ((selectC lient--cl-res ((deref-oidReservation (in-post-state)
(reconst-basetype))))))))))
end
overloading dot--address ≡ (dot--address::(·Client) ⇒ -)
begin
definition dotC lient--address : (x::·Client) .address ≡ (eval-extract (x) ((deref-oidC lient (in-post-state) ((selectC lient--address

(reconst-basetype))))))
end
overloading dot-0---cl-resat-pre ≡ (dot-0---cl-resat-pre::(·Client) ⇒ -)
begin

definition dotC lient-0---cl-resat-pre : (x::·Client) .cl-res@pre ≡ (eval-extract (x) ((deref-oidC lient (in-pre-state)
((deref-assocsC lient-0---cl-res (in-pre-state) ((selectC lient--cl-res ((deref-oidReservation (in-pre-state) (reconst-basetype))))))))))
end
overloading dot--addressat-pre ≡ (dot--addressat-pre::(·Client) ⇒ -)
begin

definition dotC lient--addressat-pre : (x::·Client) .address@pre ≡ (eval-extract (x) ((deref-oidC lient (in-pre-state)
((selectC lient--address (reconst-basetype))))))
end
overloading dot-0---flights ≡ (dot-0---flights::(·Person) ⇒ -)
begin

definition dotP erson-0---flights : (x::·Person) .flights ≡ (eval-extract (x) ((deref-oidP erson (in-post-state)
((deref-assocsP erson-0---flights (in-post-state) ((selectP erson--flights ((deref-oidF light (in-post-state) (reconst-basetype))))))))))
end
overloading dot--name ≡ (dot--name::(·Person) ⇒ -)
begin
definition dotP erson--name : (x::·Person) .name ≡ (eval-extract (x) ((deref-oidP erson (in-post-state) ((selectP erson--name

(reconst-basetype))))))
end
overloading dot-0---flightsat-pre ≡ (dot-0---flightsat-pre::(·Person) ⇒ -)
begin

definition dotP erson-0---flightsat-pre : (x::·Person) .flights@pre ≡ (eval-extract (x) ((deref-oidP erson (in-pre-state)
((deref-assocsP erson-0---flights (in-pre-state) ((selectP erson--flights ((deref-oidF light (in-pre-state) (reconst-basetype))))))))))
end
overloading dot--nameat-pre ≡ (dot--nameat-pre::(·Person) ⇒ -)
begin

definition dotP erson--nameat-pre : (x::·Person) .name@pre ≡ (eval-extract (x) ((deref-oidP erson (in-pre-state)
((selectP erson--name (reconst-basetype))))))
end
overloading dot-0---prev ≡ (dot-0---prev::(·Reservation) ⇒ -)
begin

definition dotReservation-0---prev : (x::·Reservation) .prev ≡ (eval-extract (x) ((deref-oidReservation (in-post-state)
((deref-assocsReservation-0---prev (in-post-state) ((selectReservation--prev ((deref-oidReservation (in-post-state)
(reconst-basetype))))))))))
end
overloading dot-1---next ≡ (dot-1---next::(·Reservation) ⇒ -)
begin

definition dotReservation-1---next : (x::·Reservation) .next ≡ (eval-extract (x) ((deref-oidReservation (in-post-state)
((deref-assocsReservation-1---next (in-post-state) ((selectReservation--next ((deref-oidReservation (in-post-state)
(reconst-basetype))))))))))



246 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

end
overloading dot-1---client ≡ (dot-1---client::(·Reservation) ⇒ -)
begin

definition dotReservation-1---client : (x::·Reservation) .client ≡ (eval-extract (x) ((deref-oidReservation

(in-post-state) ((deref-assocsReservation-1---client (in-post-state) ((selectReservation--client ((deref-oidC lient (in-post-state)
(reconst-basetype))))))))))
end
overloading dot--id ≡ (dot--id::(·Reservation) ⇒ -)
begin

definition dotReservation--id : (x::·Reservation) .id ≡ (eval-extract (x) ((deref-oidReservation (in-post-state)
((selectReservation--id (reconst-basetype))))))
end
overloading dot--date ≡ (dot--date::(·Reservation) ⇒ -)
begin

definition dotReservation--date : (x::·Reservation) .date ≡ (eval-extract (x) ((deref-oidReservation (in-post-state)
((selectReservation--date (reconst-basetype))))))
end
overloading dot--flight ≡ (dot--flight::(·Reservation) ⇒ -)
begin

definition dotReservation--flight : (x::·Reservation) .flight ≡ (eval-extract (x) ((deref-oidReservation (in-post-state)
((selectReservation--flight ((deref-oidF light (in-post-state) (reconst-basetype))))))))
end
overloading dot-0---prevat-pre ≡ (dot-0---prevat-pre::(·Reservation) ⇒ -)
begin

definition dotReservation-0---prevat-pre : (x::·Reservation) .prev@pre ≡ (eval-extract (x) ((deref-oidReservation

(in-pre-state) ((deref-assocsReservation-0---prev (in-pre-state) ((selectReservation--prev ((deref-oidReservation (in-pre-state)
(reconst-basetype))))))))))
end
overloading dot-1---nextat-pre ≡ (dot-1---nextat-pre::(·Reservation) ⇒ -)
begin

definition dotReservation-1---nextat-pre : (x::·Reservation) .next@pre ≡ (eval-extract (x) ((deref-oidReservation

(in-pre-state) ((deref-assocsReservation-1---next (in-pre-state) ((selectReservation--next ((deref-oidReservation (in-pre-state)
(reconst-basetype))))))))))
end
overloading dot-1---clientat-pre ≡ (dot-1---clientat-pre::(·Reservation) ⇒ -)
begin

definition dotReservation-1---clientat-pre : (x::·Reservation) .client@pre ≡ (eval-extract (x) ((deref-oidReservation

(in-pre-state) ((deref-assocsReservation-1---client (in-pre-state) ((selectReservation--client ((deref-oidC lient (in-pre-state)
(reconst-basetype))))))))))
end
overloading dot--idat-pre ≡ (dot--idat-pre::(·Reservation) ⇒ -)
begin
definition dotReservation--idat-pre : (x::·Reservation) .id@pre ≡ (eval-extract (x) ((deref-oidReservation (in-pre-state)

((selectReservation--id (reconst-basetype))))))
end
overloading dot--dateat-pre ≡ (dot--dateat-pre::(·Reservation) ⇒ -)
begin
definition dotReservation--dateat-pre : (x::·Reservation) .date@pre ≡ (eval-extract (x) ((deref-oidReservation (in-pre-state)

((selectReservation--date (reconst-basetype))))))
end
overloading dot--flightat-pre ≡ (dot--flightat-pre::(·Reservation) ⇒ -)
begin
definition dotReservation--flightat-pre : (x::·Reservation) .flight@pre ≡ (eval-extract (x) ((deref-oidReservation (in-pre-state)

((selectReservation--flight ((deref-oidF light (in-pre-state) (reconst-basetype))))))))
end
overloading dot-0---flights ≡ (dot-0---flights::(·Client) ⇒ -)
begin

definition dotC lient-0---flights : (x::·Client) .flights ≡ (eval-extract (x) ((deref-oidC lient (in-post-state)
((deref-assocsC lient-0---flights (in-post-state) ((selectC lient--flights ((deref-oidF light (in-post-state) (reconst-basetype))))))))))
end
overloading dot--name ≡ (dot--name::(·Client) ⇒ -)
begin
definition dotC lient--name : (x::·Client) .name ≡ (eval-extract (x) ((deref-oidC lient (in-post-state) ((selectC lient--name

(reconst-basetype))))))
end
overloading dot-0---flightsat-pre ≡ (dot-0---flightsat-pre::(·Client) ⇒ -)
begin

definition dotC lient-0---flightsat-pre : (x::·Client) .flights@pre ≡ (eval-extract (x) ((deref-oidC lient (in-pre-state)
((deref-assocsC lient-0---flights (in-pre-state) ((selectC lient--flights ((deref-oidF light (in-pre-state) (reconst-basetype))))))))))
end
overloading dot--nameat-pre ≡ (dot--nameat-pre::(·Client) ⇒ -)
begin

definition dotC lient--nameat-pre : (x::·Client) .name@pre ≡ (eval-extract (x) ((deref-oidC lient (in-pre-state)



B.8. CLASS MODEL: THE ACCESSORS 247

((selectC lient--name (reconst-basetype))))))
end
overloading dot-0---flights ≡ (dot-0---flights::(·Staff ) ⇒ -)
begin

definition dotStaf f -0---flights : (x::·Staff ) .flights ≡ (eval-extract (x) ((deref-oidStaf f (in-post-state)
((deref-assocsStaf f -0---flights (in-post-state) ((selectStaf f --flights ((deref-oidF light (in-post-state) (reconst-basetype))))))))))
end
overloading dot--name ≡ (dot--name::(·Staff ) ⇒ -)
begin

definition dotStaf f --name : (x::·Staff ) .name ≡ (eval-extract (x) ((deref-oidStaf f (in-post-state) ((selectStaf f --name
(reconst-basetype))))))
end
overloading dot-0---flightsat-pre ≡ (dot-0---flightsat-pre::(·Staff ) ⇒ -)
begin

definition dotStaf f -0---flightsat-pre : (x::·Staff ) .flights@pre ≡ (eval-extract (x) ((deref-oidStaf f (in-pre-state)
((deref-assocsStaf f -0---flights (in-pre-state) ((selectStaf f --flights ((deref-oidF light (in-pre-state) (reconst-basetype))))))))))
end
overloading dot--nameat-pre ≡ (dot--nameat-pre::(·Staff ) ⇒ -)
begin

definition dotStaf f --nameat-pre : (x::·Staff ) .name@pre ≡ (eval-extract (x) ((deref-oidStaf f (in-pre-state)
((selectStaf f --name (reconst-basetype))))))
end

lemmas dot-accessor = dotF light-1---passengers
dotF light--seats
dotF light--from
dotF light--to
dotF light--fl-res
dotF light-1---passengersat-pre
dotF light--seatsat-pre
dotF light--fromat-pre
dotF light--toat-pre
dotF light--fl-resat-pre
dotC lient-0---cl-res
dotC lient--address
dotC lient-0---cl-resat-pre
dotC lient--addressat-pre
dotP erson-0---flights
dotP erson--name
dotP erson-0---flightsat-pre
dotP erson--nameat-pre
dotReservation-0---prev
dotReservation-1---next
dotReservation-1---client
dotReservation--id
dotReservation--date
dotReservation--flight
dotReservation-0---prevat-pre
dotReservation-1---nextat-pre
dotReservation-1---clientat-pre
dotReservation--idat-pre
dotReservation--dateat-pre
dotReservation--flightat-pre
dotC lient-0---flights
dotC lient--name
dotC lient-0---flightsat-pre
dotC lient--nameat-pre
dotStaf f -0---flights
dotStaf f --name
dotStaf f -0---flightsat-pre
dotStaf f --nameat-pre

Context Passing
lemmas[simp,code-unfold] = eval-extract-def

lemma cp-dotF light-1---passengers : (cp ((λX . (X ::·Flight) .passengers)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotF light--seats : (cp ((λX . (X ::·Flight) .seats)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotF light--from : (cp ((λX . (X ::·Flight) .from)))



248 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(auto simp: dot-accessor cp-def )
lemma cp-dotF light--to : (cp ((λX . (X ::·Flight) .to)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotF light--fl-res : (cp ((λX . (X ::·Flight) .fl-res)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotF light-1---passengersat-pre : (cp ((λX . (X ::·Flight) .passengers@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotF light--seatsat-pre : (cp ((λX . (X ::·Flight) .seats@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotF light--fromat-pre : (cp ((λX . (X ::·Flight) .from@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotF light--toat-pre : (cp ((λX . (X ::·Flight) .to@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotF light--fl-resat-pre : (cp ((λX . (X ::·Flight) .fl-res@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotC lient-0---cl-res : (cp ((λX . (X ::·Client) .cl-res)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotC lient--address : (cp ((λX . (X ::·Client) .address)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotC lient-0---cl-resat-pre : (cp ((λX . (X ::·Client) .cl-res@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotC lient--addressat-pre : (cp ((λX . (X ::·Client) .address@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotP erson-0---flights : (cp ((λX . (X ::·Person) .flights)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotP erson--name : (cp ((λX . (X ::·Person) .name)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotP erson-0---flightsat-pre : (cp ((λX . (X ::·Person) .flights@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotP erson--nameat-pre : (cp ((λX . (X ::·Person) .name@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation-0---prev : (cp ((λX . (X ::·Reservation) .prev)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation-1---next : (cp ((λX . (X ::·Reservation) .next)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation-1---client : (cp ((λX . (X ::·Reservation) .client)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation--id : (cp ((λX . (X ::·Reservation) .id)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation--date : (cp ((λX . (X ::·Reservation) .date)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation--flight : (cp ((λX . (X ::·Reservation) .flight)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation-0---prevat-pre : (cp ((λX . (X ::·Reservation) .prev@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation-1---nextat-pre : (cp ((λX . (X ::·Reservation) .next@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation-1---clientat-pre : (cp ((λX . (X ::·Reservation) .client@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation--idat-pre : (cp ((λX . (X ::·Reservation) .id@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation--dateat-pre : (cp ((λX . (X ::·Reservation) .date@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotReservation--flightat-pre : (cp ((λX . (X ::·Reservation) .flight@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotC lient-0---flights : (cp ((λX . (X ::·Client) .flights)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotC lient--name : (cp ((λX . (X ::·Client) .name)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotC lient-0---flightsat-pre : (cp ((λX . (X ::·Client) .flights@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotC lient--nameat-pre : (cp ((λX . (X ::·Client) .name@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotStaf f -0---flights : (cp ((λX . (X ::·Staff ) .flights)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotStaf f --name : (cp ((λX . (X ::·Staff ) .name)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotStaf f -0---flightsat-pre : (cp ((λX . (X ::·Staff ) .flights@pre)))
by(auto simp: dot-accessor cp-def )
lemma cp-dotStaf f --nameat-pre : (cp ((λX . (X ::·Staff ) .name@pre)))
by(auto simp: dot-accessor cp-def )



B.8. CLASS MODEL: THE ACCESSORS 249

lemmas[simp,code-unfold] = cp-dotF light-1---passengers
cp-dotF light--seats
cp-dotF light--from
cp-dotF light--to
cp-dotF light--fl-res
cp-dotF light-1---passengersat-pre
cp-dotF light--seatsat-pre
cp-dotF light--fromat-pre
cp-dotF light--toat-pre
cp-dotF light--fl-resat-pre
cp-dotC lient-0---cl-res
cp-dotC lient--address
cp-dotC lient-0---cl-resat-pre
cp-dotC lient--addressat-pre
cp-dotP erson-0---flights
cp-dotP erson--name
cp-dotP erson-0---flightsat-pre
cp-dotP erson--nameat-pre
cp-dotReservation-0---prev
cp-dotReservation-1---next
cp-dotReservation-1---client
cp-dotReservation--id
cp-dotReservation--date
cp-dotReservation--flight
cp-dotReservation-0---prevat-pre
cp-dotReservation-1---nextat-pre
cp-dotReservation-1---clientat-pre
cp-dotReservation--idat-pre
cp-dotReservation--dateat-pre
cp-dotReservation--flightat-pre
cp-dotC lient-0---flights
cp-dotC lient--name
cp-dotC lient-0---flightsat-pre
cp-dotC lient--nameat-pre
cp-dotStaf f -0---flights
cp-dotStaf f --name
cp-dotStaf f -0---flightsat-pre
cp-dotStaf f --nameat-pre

Execution with Invalid or Null as Argument
lemma dotF light-1---passengers-invalid : (invalid::·Flight) .passengers = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotF light-1---passengers-null : (null::·Flight) .passengers = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotF light--seats-invalid : (invalid::·Flight) .seats = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotF light--seats-null : (null::·Flight) .seats = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotF light--from-invalid : (invalid::·Flight) .from = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotF light--from-null : (null::·Flight) .from = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotF light--to-invalid : (invalid::·Flight) .to = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotF light--to-null : (null::·Flight) .to = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotF light--fl-res-invalid : (invalid::·Flight) .fl-res = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotF light--fl-res-null : (null::·Flight) .fl-res = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotF light-1---passengersat-pre-invalid : (invalid::·Flight) .passengers@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotF light-1---passengersat-pre-null : (null::·Flight) .passengers@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotF light--seatsat-pre-invalid : (invalid::·Flight) .seats@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotF light--seatsat-pre-null : (null::·Flight) .seats@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotF light--fromat-pre-invalid : (invalid::·Flight) .from@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotF light--fromat-pre-null : (null::·Flight) .from@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )



250 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

lemma dotF light--toat-pre-invalid : (invalid::·Flight) .to@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotF light--toat-pre-null : (null::·Flight) .to@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotF light--fl-resat-pre-invalid : (invalid::·Flight) .fl-res@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotF light--fl-resat-pre-null : (null::·Flight) .fl-res@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotC lient-0---cl-res-invalid : (invalid::·Client) .cl-res = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotC lient-0---cl-res-null : (null::·Client) .cl-res = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotC lient--address-invalid : (invalid::·Client) .address = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotC lient--address-null : (null::·Client) .address = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotC lient-0---cl-resat-pre-invalid : (invalid::·Client) .cl-res@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotC lient-0---cl-resat-pre-null : (null::·Client) .cl-res@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotC lient--addressat-pre-invalid : (invalid::·Client) .address@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotC lient--addressat-pre-null : (null::·Client) .address@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotP erson-0---flights-invalid : (invalid::·Person) .flights = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotP erson-0---flights-null : (null::·Person) .flights = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotP erson--name-invalid : (invalid::·Person) .name = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotP erson--name-null : (null::·Person) .name = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotP erson-0---flightsat-pre-invalid : (invalid::·Person) .flights@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotP erson-0---flightsat-pre-null : (null::·Person) .flights@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotP erson--nameat-pre-invalid : (invalid::·Person) .name@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotP erson--nameat-pre-null : (null::·Person) .name@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation-0---prev-invalid : (invalid::·Reservation) .prev = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation-0---prev-null : (null::·Reservation) .prev = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation-1---next-invalid : (invalid::·Reservation) .next = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation-1---next-null : (null::·Reservation) .next = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation-1---client-invalid : (invalid::·Reservation) .client = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation-1---client-null : (null::·Reservation) .client = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation--id-invalid : (invalid::·Reservation) .id = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation--id-null : (null::·Reservation) .id = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation--date-invalid : (invalid::·Reservation) .date = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation--date-null : (null::·Reservation) .date = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation--flight-invalid : (invalid::·Reservation) .flight = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation--flight-null : (null::·Reservation) .flight = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation-0---prevat-pre-invalid : (invalid::·Reservation) .prev@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation-0---prevat-pre-null : (null::·Reservation) .prev@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation-1---nextat-pre-invalid : (invalid::·Reservation) .next@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation-1---nextat-pre-null : (null::·Reservation) .next@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation-1---clientat-pre-invalid : (invalid::·Reservation) .client@pre = invalid



B.8. CLASS MODEL: THE ACCESSORS 251

by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation-1---clientat-pre-null : (null::·Reservation) .client@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation--idat-pre-invalid : (invalid::·Reservation) .id@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation--idat-pre-null : (null::·Reservation) .id@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation--dateat-pre-invalid : (invalid::·Reservation) .date@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation--dateat-pre-null : (null::·Reservation) .date@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotReservation--flightat-pre-invalid : (invalid::·Reservation) .flight@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotReservation--flightat-pre-null : (null::·Reservation) .flight@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotC lient-0---flights-invalid : (invalid::·Client) .flights = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotC lient-0---flights-null : (null::·Client) .flights = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotC lient--name-invalid : (invalid::·Client) .name = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotC lient--name-null : (null::·Client) .name = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotC lient-0---flightsat-pre-invalid : (invalid::·Client) .flights@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotC lient-0---flightsat-pre-null : (null::·Client) .flights@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotC lient--nameat-pre-invalid : (invalid::·Client) .name@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotC lient--nameat-pre-null : (null::·Client) .name@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotStaf f -0---flights-invalid : (invalid::·Staff ) .flights = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotStaf f -0---flights-null : (null::·Staff ) .flights = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotStaf f --name-invalid : (invalid::·Staff ) .name = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotStaf f --name-null : (null::·Staff ) .name = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotStaf f -0---flightsat-pre-invalid : (invalid::·Staff ) .flights@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotStaf f -0---flightsat-pre-null : (null::·Staff ) .flights@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )
lemma dotStaf f --nameat-pre-invalid : (invalid::·Staff ) .name@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def invalid-def )
lemma dotStaf f --nameat-pre-null : (null::·Staff ) .name@pre = invalid
by(rule ext, simp add: dot-accessor bot-option-def null-fun-def null-option-def )

Representation in States
lemma defined-mono-dotF light-1---passengers : τ |= (δ ((X ::·Flight) .passengers)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .passengers))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotF light-1---passengers-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .passengers))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotF light-1---passengers-null)
by(simp add: defined-split)
lemma defined-mono-dotF light--seats : τ |= (δ ((X ::·Flight) .seats)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .seats))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotF light--seats-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .seats))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotF light--seats-null)
by(simp add: defined-split)
lemma defined-mono-dotF light--from : τ |= (δ ((X ::·Flight) .from)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .from))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotF light--from-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .from))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotF light--from-null)
by(simp add: defined-split)
lemma defined-mono-dotF light--to : τ |= (δ ((X ::·Flight) .to)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .to))) and τ = τ and x = X and y = invalid],

simp add: foundation16 ′ dotF light--to-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .to))) and τ = τ and x = X and y = null], simp



252 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

add: foundation16 ′ dotF light--to-null)
by(simp add: defined-split)
lemma defined-mono-dotF light--fl-res : τ |= (δ ((X ::·Flight) .fl-res)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .fl-res))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotF light--fl-res-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .fl-res))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotF light--fl-res-null)
by(simp add: defined-split)
lemma defined-mono-dotF light-1---passengersat-pre : τ |= (δ ((X ::·Flight) .passengers@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .passengers@pre))) and τ = τ and x = X

and y = invalid], simp add: foundation16 ′ dotF light-1---passengersat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .passengers@pre))) and τ = τ and x = X and

y = null], simp add: foundation16 ′ dotF light-1---passengersat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotF light--seatsat-pre : τ |= (δ ((X ::·Flight) .seats@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .seats@pre))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotF light--seatsat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .seats@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotF light--seatsat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotF light--fromat-pre : τ |= (δ ((X ::·Flight) .from@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .from@pre))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotF light--fromat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .from@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotF light--fromat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotF light--toat-pre : τ |= (δ ((X ::·Flight) .to@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .to@pre))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotF light--toat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .to@pre))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotF light--toat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotF light--fl-resat-pre : τ |= (δ ((X ::·Flight) .fl-res@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .fl-res@pre))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotF light--fl-resat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .fl-res@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotF light--fl-resat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotC lient-0---cl-res : τ |= (δ ((X ::·Client) .cl-res)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .cl-res))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotC lient-0---cl-res-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .cl-res))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotC lient-0---cl-res-null)
by(simp add: defined-split)
lemma defined-mono-dotC lient--address : τ |= (δ ((X ::·Client) .address)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .address))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotC lient--address-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .address))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotC lient--address-null)
by(simp add: defined-split)
lemma defined-mono-dotC lient-0---cl-resat-pre : τ |= (δ ((X ::·Client) .cl-res@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .cl-res@pre))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotC lient-0---cl-resat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .cl-res@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotC lient-0---cl-resat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotC lient--addressat-pre : τ |= (δ ((X ::·Client) .address@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .address@pre))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotC lient--addressat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .address@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotC lient--addressat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotP erson-0---flights : τ |= (δ ((X ::·Person) .flights)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotP erson-0---flights-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotP erson-0---flights-null)
by(simp add: defined-split)
lemma defined-mono-dotP erson--name : τ |= (δ ((X ::·Person) .name)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotP erson--name-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name))) and τ = τ and x = X and y = null],



B.8. CLASS MODEL: THE ACCESSORS 253

simp add: foundation16 ′ dotP erson--name-null)
by(simp add: defined-split)
lemma defined-mono-dotP erson-0---flightsat-pre : τ |= (δ ((X ::·Person) .flights@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotP erson-0---flightsat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotP erson-0---flightsat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotP erson--nameat-pre : τ |= (δ ((X ::·Person) .name@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotP erson--nameat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotP erson--nameat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotReservation-0---prev : τ |= (δ ((X ::·Reservation) .prev)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .prev))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotReservation-0---prev-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .prev))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotReservation-0---prev-null)
by(simp add: defined-split)
lemma defined-mono-dotReservation-1---next : τ |= (δ ((X ::·Reservation) .next)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .next))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotReservation-1---next-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .next))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotReservation-1---next-null)
by(simp add: defined-split)
lemma defined-mono-dotReservation-1---client : τ |= (δ ((X ::·Reservation) .client)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .client))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotReservation-1---client-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .client))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotReservation-1---client-null)
by(simp add: defined-split)
lemma defined-mono-dotReservation--id : τ |= (δ ((X ::·Reservation) .id)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .id))) and τ = τ and x = X and y = invalid],

simp add: foundation16 ′ dotReservation--id-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .id))) and τ = τ and x = X and y = null], simp

add: foundation16 ′ dotReservation--id-null)
by(simp add: defined-split)
lemma defined-mono-dotReservation--date : τ |= (δ ((X ::·Reservation) .date)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .date))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotReservation--date-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .date))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotReservation--date-null)
by(simp add: defined-split)
lemma defined-mono-dotReservation--flight : τ |= (δ ((X ::·Reservation) .flight)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flight))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotReservation--flight-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flight))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotReservation--flight-null)
by(simp add: defined-split)
lemma defined-mono-dotReservation-0---prevat-pre : τ |= (δ ((X ::·Reservation) .prev@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .prev@pre))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotReservation-0---prevat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .prev@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotReservation-0---prevat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotReservation-1---nextat-pre : τ |= (δ ((X ::·Reservation) .next@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .next@pre))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotReservation-1---nextat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .next@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotReservation-1---nextat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotReservation-1---clientat-pre : τ |= (δ ((X ::·Reservation) .client@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .client@pre))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotReservation-1---clientat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .client@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotReservation-1---clientat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotReservation--idat-pre : τ |= (δ ((X ::·Reservation) .id@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .id@pre))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotReservation--idat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .id@pre))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotReservation--idat-pre-null)



254 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

by(simp add: defined-split)
lemma defined-mono-dotReservation--dateat-pre : τ |= (δ ((X ::·Reservation) .date@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .date@pre))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotReservation--dateat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .date@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotReservation--dateat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotReservation--flightat-pre : τ |= (δ ((X ::·Reservation) .flight@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flight@pre))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotReservation--flightat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flight@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotReservation--flightat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotC lient-0---flights : τ |= (δ ((X ::·Client) .flights)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotC lient-0---flights-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotC lient-0---flights-null)
by(simp add: defined-split)
lemma defined-mono-dotC lient--name : τ |= (δ ((X ::·Client) .name)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotC lient--name-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotC lient--name-null)
by(simp add: defined-split)
lemma defined-mono-dotC lient-0---flightsat-pre : τ |= (δ ((X ::·Client) .flights@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotC lient-0---flightsat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotC lient-0---flightsat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotC lient--nameat-pre : τ |= (δ ((X ::·Client) .name@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotC lient--nameat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotC lient--nameat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotStaf f -0---flights : τ |= (δ ((X ::·Staff ) .flights)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotStaf f -0---flights-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotStaf f -0---flights-null)
by(simp add: defined-split)
lemma defined-mono-dotStaf f --name : τ |= (δ ((X ::·Staff ) .name)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name))) and τ = τ and x = X and y =

invalid], simp add: foundation16 ′ dotStaf f --name-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name))) and τ = τ and x = X and y = null],

simp add: foundation16 ′ dotStaf f --name-null)
by(simp add: defined-split)
lemma defined-mono-dotStaf f -0---flightsat-pre : τ |= (δ ((X ::·Staff ) .flights@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotStaf f -0---flightsat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .flights@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotStaf f -0---flightsat-pre-null)
by(simp add: defined-split)
lemma defined-mono-dotStaf f --nameat-pre : τ |= (δ ((X ::·Staff ) .name@pre)) =⇒ τ |= (δ (X))
apply(case-tac τ |= (X , invalid), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y

= invalid], simp add: foundation16 ′ dotStaf f --nameat-pre-invalid)
apply(case-tac τ |= (X , null), insert StrongEq-L-subst2 [where P = (λx. (δ (x .name@pre))) and τ = τ and x = X and y =

null], simp add: foundation16 ′ dotStaf f --nameat-pre-null)
by(simp add: defined-split)

lemma is-repr-dotReservation-0---prev :
assumes def-dot: τ |= (δ ((X ::·Reservation) .prev))
shows (is-represented-in-state (in-post-state) (X .prev) (Reservation) (τ))
apply(insert defined-mono-dotReservation-0---prev[OF def-dot, simplified foundation16 ])
apply(case-tac (X (τ)), simp add: bot-option-def )
proof − fix a0 show (X (τ)) = (Some (a0 )) =⇒ ?thesis when (X (τ)) 6= null
apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)
proof − fix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis
apply(case-tac (heap ((in-post-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def )



B.8. CLASS MODEL: THE ACCESSORS 255

apply(insert def-dot, simp add: dotReservation-0---prev is-represented-in-state-def selectReservation--prev-def
deref-oidReservation-def in-post-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm)
proof − fix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-post-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesis

apply(insert def-dot[simplified foundation16 ], auto simp: dotReservation-0---prev is-represented-in-state-def
deref-oidReservation-def bot-option-def null-option-def )
apply(case-tac b, simp-all add: invalid-def bot-option-def )
apply(simp add: deref-assocsReservation-0---prev-def deref-assocs-def )
apply(case-tac (assocs ((in-post-state (τ))) (oidReservation-0---prev)), simp add: invalid-def bot-option-def , simp add: se-

lectReservation--prev-def )
proof − fix r typeoid let ?t = (Some ((Some (r)))) ∈ (Some o OclAsTypeReservation-A) ‘ (ran ((heap ((in-post-state

(τ))))))
let ?sel-any = (select-object-anySet ((deref-oidReservation (in-post-state) (reconst-basetype)))) show ((?sel-any) (typeoid)

(τ)) = (Some ((Some (r)))) =⇒ ?t
proof − fix aa show ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) =⇒ ?t when τ |= (δ (((?sel-any) (aa))))
apply(insert that, drule select-object-any-execSet[simplified foundation22 ], erule exE)
proof − fix e show ?t when ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) ((?sel-any) (aa) (τ)) = (deref-oidReservation

(in-post-state) (reconst-basetype) (e) (τ))
apply(insert that, simp add: deref-oidReservation-def )
apply(case-tac (heap ((in-post-state (τ))) (e)), simp add: invalid-def bot-option-def , simp)
proof − fix aaa show (case aaa of (inReservation (obj)) ⇒ (reconst-basetype (obj) (τ))
| - ⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-post-state (τ))) (e)) = (Some (aaa)) =⇒ ?t

apply(case-tac aaa, auto simp: invalid-def bot-option-def image-def ran-def )
apply(rule exI [where x = (inReservation (r))], simp add: OclAsTypeReservation-A-def Let-def reconst-basetype-def split:

split-if-asm)
by(rule) qed
apply-end((blast)+)
qed
apply-end(simp add: foundation16 bot-option-def null-option-def )
qed qed qed qed
apply-end(simp-all)
qed
lemma is-repr-dotReservation-1---next :
assumes def-dot: τ |= (δ ((X ::·Reservation) .next))
shows (is-represented-in-state (in-post-state) (X .next) (Reservation) (τ))
apply(insert defined-mono-dotReservation-1---next[OF def-dot, simplified foundation16 ])
apply(case-tac (X (τ)), simp add: bot-option-def )
proof − fix a0 show (X (τ)) = (Some (a0 )) =⇒ ?thesis when (X (τ)) 6= null
apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)
proof − fix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis
apply(case-tac (heap ((in-post-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def )

apply(insert def-dot, simp add: dotReservation-1---next is-represented-in-state-def selectReservation--next-def
deref-oidReservation-def in-post-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm)
proof − fix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-post-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesis

apply(insert def-dot[simplified foundation16 ], auto simp: dotReservation-1---next is-represented-in-state-def
deref-oidReservation-def bot-option-def null-option-def )
apply(case-tac b, simp-all add: invalid-def bot-option-def )
apply(simp add: deref-assocsReservation-1---next-def deref-assocs-def )
apply(case-tac (assocs ((in-post-state (τ))) (oidReservation-1---next)), simp add: invalid-def bot-option-def , simp add: se-

lectReservation--next-def )
proof − fix r typeoid let ?t = (Some ((Some (r)))) ∈ (Some o OclAsTypeReservation-A) ‘ (ran ((heap ((in-post-state

(τ))))))
let ?sel-any = (select-object-anySet ((deref-oidReservation (in-post-state) (reconst-basetype)))) show ((?sel-any) (typeoid)

(τ)) = (Some ((Some (r)))) =⇒ ?t
proof − fix aa show ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) =⇒ ?t when τ |= (δ (((?sel-any) (aa))))
apply(insert that, drule select-object-any-execSet[simplified foundation22 ], erule exE)
proof − fix e show ?t when ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) ((?sel-any) (aa) (τ)) = (deref-oidReservation

(in-post-state) (reconst-basetype) (e) (τ))
apply(insert that, simp add: deref-oidReservation-def )
apply(case-tac (heap ((in-post-state (τ))) (e)), simp add: invalid-def bot-option-def , simp)
proof − fix aaa show (case aaa of (inReservation (obj)) ⇒ (reconst-basetype (obj) (τ))
| - ⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-post-state (τ))) (e)) = (Some (aaa)) =⇒ ?t

apply(case-tac aaa, auto simp: invalid-def bot-option-def image-def ran-def )
apply(rule exI [where x = (inReservation (r))], simp add: OclAsTypeReservation-A-def Let-def reconst-basetype-def split:

split-if-asm)
by(rule) qed
apply-end((blast)+)
qed
apply-end(simp add: foundation16 bot-option-def null-option-def )
qed qed qed qed
apply-end(simp-all)
qed
lemma is-repr-dotReservation-1---client :
assumes def-dot: τ |= (δ ((X ::·Reservation) .client))



256 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

shows (is-represented-in-state (in-post-state) (X .client) (Client) (τ))
apply(insert defined-mono-dotReservation-1---client[OF def-dot, simplified foundation16 ])
apply(case-tac (X (τ)), simp add: bot-option-def )
proof − fix a0 show (X (τ)) = (Some (a0 )) =⇒ ?thesis when (X (τ)) 6= null
apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)
proof − fix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis
apply(case-tac (heap ((in-post-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def )

apply(insert def-dot, simp add: dotReservation-1---client is-represented-in-state-def selectReservation--client-def
deref-oidReservation-def in-post-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm)
proof − fix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-post-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesis

apply(insert def-dot[simplified foundation16 ], auto simp: dotReservation-1---client is-represented-in-state-def
deref-oidReservation-def bot-option-def null-option-def )
apply(case-tac b, simp-all add: invalid-def bot-option-def )
apply(simp add: deref-assocsReservation-1---client-def deref-assocs-def )
apply(case-tac (assocs ((in-post-state (τ))) (oidReservation-1---client)), simp add: invalid-def bot-option-def , simp add: se-

lectReservation--client-def )
proof − fix r typeoid let ?t = (Some ((Some (r)))) ∈ (Some o OclAsTypeC lient-A) ‘ (ran ((heap ((in-post-state (τ))))))

let ?sel-any = (select-object-anySet ((deref-oidC lient (in-post-state) (reconst-basetype)))) show ((?sel-any) (typeoid) (τ))
= (Some ((Some (r)))) =⇒ ?t
proof − fix aa show ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) =⇒ ?t when τ |= (δ (((?sel-any) (aa))))
apply(insert that, drule select-object-any-execSet[simplified foundation22 ], erule exE)
proof − fix e show ?t when ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) ((?sel-any) (aa) (τ)) = (deref-oidC lient (in-post-state)

(reconst-basetype) (e) (τ))
apply(insert that, simp add: deref-oidC lient-def )
apply(case-tac (heap ((in-post-state (τ))) (e)), simp add: invalid-def bot-option-def , simp)
proof − fix aaa show (case aaa of (inC lient (obj)) ⇒ (reconst-basetype (obj) (τ))
| - ⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-post-state (τ))) (e)) = (Some (aaa)) =⇒ ?t

apply(case-tac aaa, auto simp: invalid-def bot-option-def image-def ran-def )
apply(rule exI [where x = (inC lient (r))], simp add: OclAsTypeC lient-A-def Let-def reconst-basetype-def split: split-if-asm)

by(rule) qed
apply-end((blast)+)
qed
apply-end(simp add: foundation16 bot-option-def null-option-def )
qed qed qed qed
apply-end(simp-all)
qed
lemma is-repr-dotReservation-0---prevat-pre :
assumes def-dot: τ |= (δ ((X ::·Reservation) .prev@pre))
shows (is-represented-in-state (in-pre-state) (X .prev@pre) (Reservation) (τ))
apply(insert defined-mono-dotReservation-0---prevat-pre[OF def-dot, simplified foundation16 ])
apply(case-tac (X (τ)), simp add: bot-option-def )
proof − fix a0 show (X (τ)) = (Some (a0 )) =⇒ ?thesis when (X (τ)) 6= null
apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)
proof − fix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis
apply(case-tac (heap ((in-pre-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def )

apply(insert def-dot, simp add: dotReservation-0---prevat-pre is-represented-in-state-def selectReservation--prev-def
deref-oidReservation-def in-pre-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm)
proof − fix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-pre-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesis

apply(insert def-dot[simplified foundation16 ], auto simp: dotReservation-0---prevat-pre is-represented-in-state-def
deref-oidReservation-def bot-option-def null-option-def )
apply(case-tac b, simp-all add: invalid-def bot-option-def )
apply(simp add: deref-assocsReservation-0---prev-def deref-assocs-def )
apply(case-tac (assocs ((in-pre-state (τ))) (oidReservation-0---prev)), simp add: invalid-def bot-option-def , simp add: se-

lectReservation--prev-def )
proof − fix r typeoid let ?t = (Some ((Some (r)))) ∈ (Some o OclAsTypeReservation-A) ‘ (ran ((heap ((in-pre-state

(τ))))))
let ?sel-any = (select-object-anySet ((deref-oidReservation (in-pre-state) (reconst-basetype)))) show ((?sel-any) (typeoid)

(τ)) = (Some ((Some (r)))) =⇒ ?t
proof − fix aa show ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) =⇒ ?t when τ |= (δ (((?sel-any) (aa))))
apply(insert that, drule select-object-any-execSet[simplified foundation22 ], erule exE)
proof − fix e show ?t when ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) ((?sel-any) (aa) (τ)) = (deref-oidReservation

(in-pre-state) (reconst-basetype) (e) (τ))
apply(insert that, simp add: deref-oidReservation-def )
apply(case-tac (heap ((in-pre-state (τ))) (e)), simp add: invalid-def bot-option-def , simp)
proof − fix aaa show (case aaa of (inReservation (obj)) ⇒ (reconst-basetype (obj) (τ))
| - ⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-pre-state (τ))) (e)) = (Some (aaa)) =⇒ ?t

apply(case-tac aaa, auto simp: invalid-def bot-option-def image-def ran-def )
apply(rule exI [where x = (inReservation (r))], simp add: OclAsTypeReservation-A-def Let-def reconst-basetype-def split:

split-if-asm)
by(rule) qed
apply-end((blast)+)
qed
apply-end(simp add: foundation16 bot-option-def null-option-def )



B.8. CLASS MODEL: THE ACCESSORS 257

qed qed qed qed
apply-end(simp-all)
qed
lemma is-repr-dotReservation-1---nextat-pre :
assumes def-dot: τ |= (δ ((X ::·Reservation) .next@pre))
shows (is-represented-in-state (in-pre-state) (X .next@pre) (Reservation) (τ))
apply(insert defined-mono-dotReservation-1---nextat-pre[OF def-dot, simplified foundation16 ])
apply(case-tac (X (τ)), simp add: bot-option-def )
proof − fix a0 show (X (τ)) = (Some (a0 )) =⇒ ?thesis when (X (τ)) 6= null
apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)
proof − fix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis
apply(case-tac (heap ((in-pre-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def )

apply(insert def-dot, simp add: dotReservation-1---nextat-pre is-represented-in-state-def selectReservation--next-def
deref-oidReservation-def in-pre-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm)
proof − fix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-pre-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesis

apply(insert def-dot[simplified foundation16 ], auto simp: dotReservation-1---nextat-pre is-represented-in-state-def
deref-oidReservation-def bot-option-def null-option-def )
apply(case-tac b, simp-all add: invalid-def bot-option-def )
apply(simp add: deref-assocsReservation-1---next-def deref-assocs-def )
apply(case-tac (assocs ((in-pre-state (τ))) (oidReservation-1---next)), simp add: invalid-def bot-option-def , simp add: se-

lectReservation--next-def )
proof − fix r typeoid let ?t = (Some ((Some (r)))) ∈ (Some o OclAsTypeReservation-A) ‘ (ran ((heap ((in-pre-state

(τ))))))
let ?sel-any = (select-object-anySet ((deref-oidReservation (in-pre-state) (reconst-basetype)))) show ((?sel-any) (typeoid)

(τ)) = (Some ((Some (r)))) =⇒ ?t
proof − fix aa show ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) =⇒ ?t when τ |= (δ (((?sel-any) (aa))))
apply(insert that, drule select-object-any-execSet[simplified foundation22 ], erule exE)
proof − fix e show ?t when ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) ((?sel-any) (aa) (τ)) = (deref-oidReservation

(in-pre-state) (reconst-basetype) (e) (τ))
apply(insert that, simp add: deref-oidReservation-def )
apply(case-tac (heap ((in-pre-state (τ))) (e)), simp add: invalid-def bot-option-def , simp)
proof − fix aaa show (case aaa of (inReservation (obj)) ⇒ (reconst-basetype (obj) (τ))
| - ⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-pre-state (τ))) (e)) = (Some (aaa)) =⇒ ?t

apply(case-tac aaa, auto simp: invalid-def bot-option-def image-def ran-def )
apply(rule exI [where x = (inReservation (r))], simp add: OclAsTypeReservation-A-def Let-def reconst-basetype-def split:

split-if-asm)
by(rule) qed
apply-end((blast)+)
qed
apply-end(simp add: foundation16 bot-option-def null-option-def )
qed qed qed qed
apply-end(simp-all)
qed
lemma is-repr-dotReservation-1---clientat-pre :
assumes def-dot: τ |= (δ ((X ::·Reservation) .client@pre))
shows (is-represented-in-state (in-pre-state) (X .client@pre) (Client) (τ))
apply(insert defined-mono-dotReservation-1---clientat-pre[OF def-dot, simplified foundation16 ])
apply(case-tac (X (τ)), simp add: bot-option-def )
proof − fix a0 show (X (τ)) = (Some (a0 )) =⇒ ?thesis when (X (τ)) 6= null
apply(insert that, case-tac a0 , simp add: null-option-def bot-option-def , clarify)
proof − fix a show (X (τ)) = (Some ((Some (a)))) =⇒ ?thesis
apply(case-tac (heap ((in-pre-state (τ))) ((oid-of (a)))), simp add: invalid-def bot-option-def )
apply(insert def-dot, simp add: dotReservation-1---clientat-pre is-represented-in-state-def selectReservation--client-def

deref-oidReservation-def in-pre-state-def defined-def OclValid-def false-def true-def invalid-def bot-fun-def split: split-if-asm)
proof − fix b show (X (τ)) = (Some ((Some (a)))) =⇒ (heap ((in-pre-state (τ))) ((oid-of (a)))) = (Some (b)) =⇒ ?thesis

apply(insert def-dot[simplified foundation16 ], auto simp: dotReservation-1---clientat-pre is-represented-in-state-def
deref-oidReservation-def bot-option-def null-option-def )
apply(case-tac b, simp-all add: invalid-def bot-option-def )
apply(simp add: deref-assocsReservation-1---client-def deref-assocs-def )
apply(case-tac (assocs ((in-pre-state (τ))) (oidReservation-1---client)), simp add: invalid-def bot-option-def , simp add: se-

lectReservation--client-def )
proof − fix r typeoid let ?t = (Some ((Some (r)))) ∈ (Some o OclAsTypeC lient-A) ‘ (ran ((heap ((in-pre-state (τ))))))

let ?sel-any = (select-object-anySet ((deref-oidC lient (in-pre-state) (reconst-basetype)))) show ((?sel-any) (typeoid) (τ))
= (Some ((Some (r)))) =⇒ ?t
proof − fix aa show ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) =⇒ ?t when τ |= (δ (((?sel-any) (aa))))
apply(insert that, drule select-object-any-execSet[simplified foundation22 ], erule exE)
proof − fix e show ?t when ((?sel-any) (aa) (τ)) = (Some ((Some (r)))) ((?sel-any) (aa) (τ)) = (deref-oidC lient (in-pre-state)

(reconst-basetype) (e) (τ))
apply(insert that, simp add: deref-oidC lient-def )
apply(case-tac (heap ((in-pre-state (τ))) (e)), simp add: invalid-def bot-option-def , simp)
proof − fix aaa show (case aaa of (inC lient (obj)) ⇒ (reconst-basetype (obj) (τ))
| - ⇒ (invalid (τ))) = (Some ((Some (r)))) =⇒ (heap ((in-pre-state (τ))) (e)) = (Some (aaa)) =⇒ ?t

apply(case-tac aaa, auto simp: invalid-def bot-option-def image-def ran-def )



258 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

apply(rule exI [where x = (inC lient (r))], simp add: OclAsTypeC lient-A-def Let-def reconst-basetype-def split: split-if-asm)
by(rule) qed
apply-end((blast)+)
qed
apply-end(simp add: foundation16 bot-option-def null-option-def )
qed qed qed qed
apply-end(simp-all)
qed

B.9 Class Model: Towards the Object Instances
lemmas [simp,code-unfold] = state.defs

const-ss

lemmas[simp,code-unfold] = OclAsTypeF light-OclAny
OclAsTypeF light-Staff
OclAsTypeF light-Person
OclAsTypeF light-Client
OclAsTypeF light-Reservation
OclAsTypeC lient-Person
OclAsTypeC lient-OclAny
OclAsTypeC lient-Staff
OclAsTypeC lient-Reservation
OclAsTypeC lient-Flight
OclAsTypeStaf f -Person
OclAsTypeStaf f -OclAny
OclAsTypeStaf f -Client
OclAsTypeStaf f -Reservation
OclAsTypeStaf f -Flight
OclAsTypeP erson-OclAny
OclAsTypeP erson-Client
OclAsTypeP erson-Staff
OclAsTypeP erson-Reservation
OclAsTypeP erson-Flight
OclAsTypeReservation-OclAny
OclAsTypeReservation-Staff
OclAsTypeReservation-Person
OclAsTypeReservation-Client
OclAsTypeReservation-Flight
OclAsTypeOclAny-Flight
OclAsTypeOclAny-Client
OclAsTypeOclAny-Staff
OclAsTypeOclAny-Person
OclAsTypeOclAny-Reservation

B.10 Instance
definition (typecheck-instance-bad-head-on-lhs-F2-F1-R21-R11-C2-C1-S1 (F2 ) (F1 ) (R21 ) (R11 ) (C2 ) (C1 ) (S1 )) = ()
definition typecheck-instance-extra-variables-on-rhs-F2-F1-R21-R11-C2-C1-S1 = (λF2 F1 R21 R11 C2 C1 S1 . (F1 , Mon , F1
, R21 , F1 , R11 , F1 , F1 ))

definition oid3 = 3
definition oid4 = 4
definition oid5 = 5
definition oid6 = 6
definition oid7 = 7
definition oid8 = 8
definition oid9 = 9

definition S1Staf f = (mkStaf f ((mkEXT Staf f (oid3 ) (b ′′Merlin ′′c))))
definition (S1 ::·Staff ) = ((λ-. bbS1Staf f cc))
definition C1C lient = (mkC lient ((mkEXT C lient (oid4 ) (b ′′Bertha ′′c))) (b ′′Miami ′′c))
definition (C1 ::·Client) = ((λ-. bbC1C lientcc))
definition C2C lient = (mkC lient ((mkEXT C lient (oid5 ) (b ′′Arthur ′′c))) (b ′′Valencia ′′c))
definition (C2 ::·Client) = ((λ-. bbC2C lientcc))
definition R11Reservation = (mkReservation ((mkEXT Reservation (oid6 ))) (b12345c) (bconstrM onc) (boid8c))
definition (R11 ::·Reservation) = ((λ-. bbR11Reservationcc))
definition R21Reservation = (mkReservation ((mkEXT Reservation (oid7 ))) (b98765c) (None) (boid8c))



B.11. STATE (FLOOR 1) 259

definition (R21 ::·Reservation) = ((λ-. bbR21Reservationcc))
definition F1F light = (mkF light ((mkEXT F light (oid8 ))) (b120c) (b ′′Valencia ′′c) (b ′′Miami ′′c) (None))
definition (F1 ::·Flight) = ((λ-. bbF1F lightcc))
definition F2F light = (mkF light ((mkEXT F light (oid9 ))) (b370c) (b ′′Miami ′′c) (b ′′Ottawa ′′c) (None))
definition (F2 ::·Flight) = ((λ-. bbF2F lightcc))

ML 〈(Ty ′.check ([(META.Writeln , S1 .flights ∼= Set{ F1 }) , (META.Writeln , C1 .flights ∼= Set{ F1 }) , (META.Writeln , C1
.cl-res ∼= Set{ R11 }) , (META.Writeln , C2 .flights ∼= Set{ F1 }) , (META.Writeln , C2 .cl-res ∼= Set{ R21 }) , (META.Writeln
, R11 .flight ∼= Set{ F1 }) , (META.Writeln , R11 .client ∼= Set{ C1 }) , (META.Writeln , R11 .prev ∼= Set{}) , (META.Writeln
, R11 .next ∼= Set{}) , (META.Writeln , R21 .flight ∼= Set{ F1 }) , (META.Writeln , R21 .client ∼= Set{ C2 }) , (META.Writeln
, R21 .prev ∼= Set{}) , (META.Writeln , R21 .next ∼= Set{}) , (META.Writeln , F1 .passengers ∼= Set{ S1 , C1 , C2 }) ,
(META.Writeln , F1 .fl-res ∼= Set{ R11 , R21 }) , (META.Writeln , F2 .passengers ∼= Set{}) , (META.Writeln , F2 .fl-res ∼=
Set{})]) ( error(s)))〉

B.11 State (Floor 1)

definition (typecheck-state-bad-head-on-lhs-σ1 (σ1)) = ()
definition typecheck-state-extra-variables-on-rhs-σ1 = (F2 , F1 , R21 , R11 , C2 , C1 , S1 )

generation-syntax [ shallow ]
setup 〈(Generation-mode.update-compiler-config ((K (let open META in Compiler-env-config-ext (true, NONE, Oids
((Code-Numeral.Nat 0 ), (Code-Numeral.Nat 3 ), (Code-Numeral.Nat 10 )), I ((Code-Numeral.Nat 0 ), (Code-Numeral.Nat 0 )),
Gen-default, SOME (OclClass ((META.SS-base (META.ST OclAny)), nil, uncurry cons (OclClass ((META.SS-base (META.ST
Reservation)), uncurry cons (I ((META.SS-base (META.ST prev)), OclTy-object (OclTyObj (OclTyCore (Ocl-ty-class-ext
((META.SS-base (META.ST oid)), (Code-Numeral.Nat 2 ), (Code-Numeral.Nat 2 ), Ocl-ty-class-node-ext ((Code-Numeral.Nat
0 ), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 0 )), SOME (Mult-nat ((Code-Numeral.Nat 1 )))),
nil), SOME ((META.SS-base (META.ST next))), nil, ()), (META.SS-base (META.ST Reservation)), ()), Ocl-ty-class-node-ext
((Code-Numeral.Nat 1 ), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 0 )), SOME (Mult-nat
((Code-Numeral.Nat 1 )))), nil), SOME ((META.SS-base (META.ST prev))), nil, ()), (META.SS-base (META.ST Reserva-
tion)), ()), ())), nil))), uncurry cons (I ((META.SS-base (META.ST next)), OclTy-object (OclTyObj (OclTyCore (Ocl-ty-class-ext
((META.SS-base (META.ST oid)), (Code-Numeral.Nat 2 ), (Code-Numeral.Nat 2 ), Ocl-ty-class-node-ext ((Code-Numeral.Nat
1 ), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 0 )), SOME (Mult-nat ((Code-Numeral.Nat 1 )))),
nil), SOME ((META.SS-base (META.ST prev))), nil, ()), (META.SS-base (META.ST Reservation)), ()), Ocl-ty-class-node-ext
((Code-Numeral.Nat 0 ), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 0 )), SOME (Mult-nat
((Code-Numeral.Nat 1 )))), nil), SOME ((META.SS-base (META.ST next))), nil, ()), (META.SS-base (META.ST Reser-
vation)), ()), ())), nil))), uncurry cons (I ((META.SS-base (META.ST client)), OclTy-object (OclTyObj (OclTyCore
(Ocl-ty-class-ext ((META.SS-base (META.ST oid)), (Code-Numeral.Nat 1 ), (Code-Numeral.Nat 2 ), Ocl-ty-class-node-ext
((Code-Numeral.Nat 1 ), Ocl-multiplicity-ext (uncurry cons (I (Mult-star , NONE), nil), SOME ((META.SS-base (META.ST
cl-res))), nil, ()), (META.SS-base (META.ST Reservation)), ()), Ocl-ty-class-node-ext ((Code-Numeral.Nat 0 ), Ocl-multiplicity-ext
(uncurry cons (I (Mult-nat ((Code-Numeral.Nat 1 )), NONE), nil), SOME ((META.SS-base (META.ST client))), nil, ()),
(META.SS-base (META.ST Client)), ()), ())), nil))), uncurry cons (I ((META.SS-base (META.ST id)), OclTy-base-integer),
uncurry cons (I ((META.SS-base (META.ST date)), OclTy-enum ((META.SS-base (META.ST Week)))), uncurry cons (I
((META.SS-base (META.ST flight)), OclTy-object (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Flight))), nil))),
nil)))))), nil), uncurry cons (OclClass ((META.SS-base (META.ST Person)), uncurry cons (I ((META.SS-base (META.ST
flights)), OclTy-object (OclTyObj (OclTyCore (Ocl-ty-class-ext ((META.SS-base (META.ST oid)), (Code-Numeral.Nat 0 ),
(Code-Numeral.Nat 2 ), Ocl-ty-class-node-ext ((Code-Numeral.Nat 0 ), Ocl-multiplicity-ext (uncurry cons (I (Mult-star , NONE),
nil), SOME ((META.SS-base (META.ST passengers))), nil, ()), (META.SS-base (META.ST Person)), ()), Ocl-ty-class-node-ext
((Code-Numeral.Nat 1 ), Ocl-multiplicity-ext (uncurry cons (I (Mult-star , NONE), nil), SOME ((META.SS-base (META.ST
flights))), nil, ()), (META.SS-base (META.ST Flight)), ()), ())), nil))), uncurry cons (I ((META.SS-base (META.ST
name)), OclTy-base-string), nil)), uncurry cons (OclClass ((META.SS-base (META.ST Staff )), nil, nil), uncurry cons
(OclClass ((META.SS-base (META.ST Client)), uncurry cons (I ((META.SS-base (META.ST cl-res)), OclTy-object
(OclTyObj (OclTyCore (Ocl-ty-class-ext ((META.SS-base (META.ST oid)), (Code-Numeral.Nat 1 ), (Code-Numeral.Nat 2 ),
Ocl-ty-class-node-ext ((Code-Numeral.Nat 0 ), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 1 )), NONE),
nil), SOME ((META.SS-base (META.ST client))), nil, ()), (META.SS-base (META.ST Client)), ()), Ocl-ty-class-node-ext
((Code-Numeral.Nat 1 ), Ocl-multiplicity-ext (uncurry cons (I (Mult-star , NONE), nil), SOME ((META.SS-base (META.ST
cl-res))), nil, ()), (META.SS-base (META.ST Reservation)), ()), ())), nil))), uncurry cons (I ((META.SS-base (META.ST ad-
dress)), OclTy-base-string), nil)), nil), nil))), uncurry cons (OclClass ((META.SS-base (META.ST Flight)), uncurry cons (I
((META.SS-base (META.ST passengers)), OclTy-object (OclTyObj (OclTyCore (Ocl-ty-class-ext ((META.SS-base (META.ST
oid)), (Code-Numeral.Nat 0 ), (Code-Numeral.Nat 2 ), Ocl-ty-class-node-ext ((Code-Numeral.Nat 1 ), Ocl-multiplicity-ext (uncurry
cons (I (Mult-star , NONE), nil), SOME ((META.SS-base (META.ST flights))), nil, ()), (META.SS-base (META.ST
Flight)), ()), Ocl-ty-class-node-ext ((Code-Numeral.Nat 0 ), Ocl-multiplicity-ext (uncurry cons (I (Mult-star , NONE), nil),
SOME ((META.SS-base (META.ST passengers))), nil, ()), (META.SS-base (META.ST Person)), ()), ())), nil))), uncurry
cons (I ((META.SS-base (META.ST seats)), OclTy-base-integer), uncurry cons (I ((META.SS-base (META.ST from)),
OclTy-base-string), uncurry cons (I ((META.SS-base (META.ST to)), OclTy-base-string), uncurry cons (I ((META.SS-base
(META.ST fl-res)), OclTy-collection (Ocl-multiplicity-ext (uncurry cons (I (Mult-star , NONE), nil), SOME ((META.SS-base
(META.ST fl-res))), uncurry cons (Sequence, nil), ()), OclTy-object (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST
Reservation))), nil)))), nil))))), nil), nil))))), uncurry cons (META-instance (OclInstance (uncurry cons (Ocl-instance-single-ext
(SOME ((META.SS-base (META.ST S1 ))), SOME ((META.SS-base (META.ST Staff ))), NONE, OclAttrNoCast (uncurry
cons (I (NONE, I ((META.SS-base (META.ST name)), ShallB-term (OclDefString ((META.SS-base (META.ST Merlin)))))),
uncurry cons (I (NONE, I ((META.SS-base (META.ST flights)), ShallB-str ((META.SS-base (META.ST F1 ))))), nil))),



260 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

()), uncurry cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST C1 ))), SOME ((META.SS-base (META.ST
Client))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST name)), ShallB-term (OclDefString
((META.SS-base (META.ST Bertha)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST address)), ShallB-term
(OclDefString ((META.SS-base (META.ST Miami)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flights)),
ShallB-str ((META.SS-base (META.ST F1 ))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST cl-res)), ShallB-str
((META.SS-base (META.ST R11 ))))), nil))))), ()), uncurry cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST
C2 ))), SOME ((META.SS-base (META.ST Client))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base
(META.ST name)), ShallB-term (OclDefString ((META.SS-base (META.ST Arthur)))))), uncurry cons (I (NONE, I
((META.SS-base (META.ST address)), ShallB-term (OclDefString ((META.SS-base (META.ST Valencia)))))), uncurry cons
(I (NONE, I ((META.SS-base (META.ST flights)), ShallB-str ((META.SS-base (META.ST F1 ))))), uncurry cons (I
(NONE, I ((META.SS-base (META.ST cl-res)), ShallB-str ((META.SS-base (META.ST R21 ))))), nil))))), ()), uncurry
cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST R11 ))), SOME ((META.SS-base (META.ST Reserva-
tion))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST id)), ShallB-term (OclDefInteger
((META.SS-base (META.ST 12345 )))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flight)), ShallB-str
((META.SS-base (META.ST F1 ))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST date)), ShallB-str ((META.SS-base
(META.ST Mon))))), nil)))), ()), uncurry cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST R21 ))), SOME
((META.SS-base (META.ST Reservation))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST
id)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 98765 )))))), uncurry cons (I (NONE, I ((META.SS-base
(META.ST flight)), ShallB-str ((META.SS-base (META.ST F1 ))))), nil))), ()), uncurry cons (Ocl-instance-single-ext (SOME
((META.SS-base (META.ST F1 ))), SOME ((META.SS-base (META.ST Flight))), NONE, OclAttrNoCast (uncurry cons (I
(NONE, I ((META.SS-base (META.ST seats)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 120 )))))), uncurry
cons (I (NONE, I ((META.SS-base (META.ST from)), ShallB-term (OclDefString ((META.SS-base (META.ST Valencia)))))),
uncurry cons (I (NONE, I ((META.SS-base (META.ST to)), ShallB-term (OclDefString ((META.SS-base (META.ST Mi-
ami)))))), nil)))), ()), uncurry cons (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST F2 ))), SOME ((META.SS-base
(META.ST Flight))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST seats)), ShallB-term
(OclDefInteger ((META.SS-base (META.ST 370 )))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST from)),
ShallB-term (OclDefString ((META.SS-base (META.ST Miami)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST
to)), ShallB-term (OclDefString ((META.SS-base (META.ST Ottawa)))))), nil)))), ()), nil))))))))), uncurry cons (META-enum
(OclEnum ((META.SS-base (META.ST Week)), uncurry cons ((META.SS-base (META.ST Mon)), uncurry cons ((META.SS-base
(META.ST Tue)), uncurry cons ((META.SS-base (META.ST Wed)), uncurry cons ((META.SS-base (META.ST Thu)), un-
curry cons ((META.SS-base (META.ST Fri)), uncurry cons ((META.SS-base (META.ST Sat)), uncurry cons ((META.SS-base
(META.ST Sun)), nil))))))))), uncurry cons (META-association (Ocl-association-ext (OclAssTy-association, OclAssRel (uncurry
cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Reservation))), nil), Ocl-multiplicity-ext (uncurry cons (I
(Mult-nat ((Code-Numeral.Nat 0 )), SOME (Mult-nat ((Code-Numeral.Nat 1 )))), nil), SOME ((META.SS-base (META.ST
next))), nil, ())), uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Reservation))), nil), Ocl-multiplicity-ext
(uncurry cons (I (Mult-nat ((Code-Numeral.Nat 0 )), SOME (Mult-nat ((Code-Numeral.Nat 1 )))), nil), SOME ((META.SS-base
(META.ST prev))), nil, ())), nil))), ())), uncurry cons (META-association (Ocl-association-ext (OclAssTy-association, OclAss-
Rel (uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Client))), nil), Ocl-multiplicity-ext (uncurry
cons (I (Mult-nat ((Code-Numeral.Nat 1 )), NONE), nil), SOME ((META.SS-base (META.ST client))), nil, ())), uncurry
cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Reservation))), nil), Ocl-multiplicity-ext (uncurry cons (I
(Mult-star , NONE), nil), SOME ((META.SS-base (META.ST cl-res))), nil, ())), nil))), ())), uncurry cons (META-association
(Ocl-association-ext (OclAssTy-aggregation, OclAssRel (uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST
Flight))), nil), Ocl-multiplicity-ext (uncurry cons (I (Mult-nat ((Code-Numeral.Nat 1 )), NONE), nil), SOME ((META.SS-base
(META.ST flight))), nil, ())), uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Reservation))),
nil), Ocl-multiplicity-ext (uncurry cons (I (Mult-star , NONE), nil), SOME ((META.SS-base (META.ST fl-res))), un-
curry cons (Sequence, nil), ())), nil))), ())), uncurry cons (META-association (Ocl-association-ext (OclAssTy-association,
OclAssRel (uncurry cons (I (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Person))), nil), Ocl-multiplicity-ext
(uncurry cons (I (Mult-star , NONE), nil), SOME ((META.SS-base (META.ST passengers))), nil, ())), uncurry cons (I
(OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Flight))), nil), Ocl-multiplicity-ext (uncurry cons (I (Mult-star ,
NONE), nil), SOME ((META.SS-base (META.ST flights))), nil, ())), nil))), ())), uncurry cons (META-class-raw (Floor1 ,
Ocl-class-raw-ext (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Staff ))), uncurry cons (uncurry cons (OclTyCore-pre
((META.SS-base (META.ST Person))), nil), nil)), nil, nil, false, ())), uncurry cons (META-class-raw (Floor1 , Ocl-class-raw-ext
(OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Client))), uncurry cons (uncurry cons (OclTyCore-pre ((META.SS-base
(META.ST Person))), nil), nil)), uncurry cons (I ((META.SS-base (META.ST address)), OclTy-base-string), nil), nil,
false, ())), uncurry cons (META-class-raw (Floor1 , Ocl-class-raw-ext (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST
Person))), nil), uncurry cons (I ((META.SS-base (META.ST name)), OclTy-base-string), nil), nil, false, ())), uncurry
cons (META-class-raw (Floor1 , Ocl-class-raw-ext (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Reservation))),
nil), uncurry cons (I ((META.SS-base (META.ST id)), OclTy-base-integer), uncurry cons (I ((META.SS-base (META.ST
date)), OclTy-object (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Week))), nil))), nil)), nil, false, ())), uncurry
cons (META-class-raw (Floor1 , Ocl-class-raw-ext (OclTyObj (OclTyCore-pre ((META.SS-base (META.ST Flight))), nil),
uncurry cons (I ((META.SS-base (META.ST seats)), OclTy-base-integer), uncurry cons (I ((META.SS-base (META.ST
from)), OclTy-base-string), uncurry cons (I ((META.SS-base (META.ST to)), OclTy-base-string), nil))), nil, false, ())),
nil))))))))))), uncurry cons (I ((META.ST F2 ), I (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST F2 ))), SOME
((META.SS-base (META.ST Flight))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST seats)),
ShallB-term (OclDefInteger ((META.SS-base (META.ST 370 )))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST
from)), ShallB-term (OclDefString ((META.SS-base (META.ST Miami)))))), uncurry cons (I (NONE, I ((META.SS-base
(META.ST to)), ShallB-term (OclDefString ((META.SS-base (META.ST Ottawa)))))), nil)))), ()), Oids ((Code-Numeral.Nat
0 ), (Code-Numeral.Nat 3 ), (Code-Numeral.Nat 9 )))), uncurry cons (I ((META.ST F1 ), I (Ocl-instance-single-ext (SOME
((META.SS-base (META.ST F1 ))), SOME ((META.SS-base (META.ST Flight))), NONE, OclAttrNoCast (uncurry cons (I
(NONE, I ((META.SS-base (META.ST seats)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 120 )))))), uncurry cons
(I (NONE, I ((META.SS-base (META.ST from)), ShallB-term (OclDefString ((META.SS-base (META.ST Valencia)))))), un-
curry cons (I (NONE, I ((META.SS-base (META.ST to)), ShallB-term (OclDefString ((META.SS-base (META.ST Miami)))))),
nil)))), ()), Oids ((Code-Numeral.Nat 0 ), (Code-Numeral.Nat 3 ), (Code-Numeral.Nat 8 )))), uncurry cons (I ((META.ST



B.12. STATE (FLOOR 1) 261

R21 ), I (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST R21 ))), SOME ((META.SS-base (META.ST Reserva-
tion))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST id)), ShallB-term (OclDefInteger
((META.SS-base (META.ST 98765 )))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flight)), ShallB-str
((META.SS-base (META.ST F1 ))))), nil))), ()), Oids ((Code-Numeral.Nat 0 ), (Code-Numeral.Nat 3 ), (Code-Numeral.Nat
7 )))), uncurry cons (I ((META.ST R11 ), I (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST R11 ))), SOME
((META.SS-base (META.ST Reservation))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST
id)), ShallB-term (OclDefInteger ((META.SS-base (META.ST 12345 )))))), uncurry cons (I (NONE, I ((META.SS-base
(META.ST flight)), ShallB-str ((META.SS-base (META.ST F1 ))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST
date)), ShallB-str ((META.SS-base (META.ST Mon))))), nil)))), ()), Oids ((Code-Numeral.Nat 0 ), (Code-Numeral.Nat 3 ),
(Code-Numeral.Nat 6 )))), uncurry cons (I ((META.ST C2 ), I (Ocl-instance-single-ext (SOME ((META.SS-base (META.ST
C2 ))), SOME ((META.SS-base (META.ST Client))), NONE, OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base
(META.ST name)), ShallB-term (OclDefString ((META.SS-base (META.ST Arthur)))))), uncurry cons (I (NONE, I
((META.SS-base (META.ST address)), ShallB-term (OclDefString ((META.SS-base (META.ST Valencia)))))), uncurry cons (I
(NONE, I ((META.SS-base (META.ST flights)), ShallB-str ((META.SS-base (META.ST F1 ))))), uncurry cons (I (NONE, I
((META.SS-base (META.ST cl-res)), ShallB-str ((META.SS-base (META.ST R21 ))))), nil))))), ()), Oids ((Code-Numeral.Nat
0 ), (Code-Numeral.Nat 3 ), (Code-Numeral.Nat 5 )))), uncurry cons (I ((META.ST C1 ), I (Ocl-instance-single-ext (SOME
((META.SS-base (META.ST C1 ))), SOME ((META.SS-base (META.ST Client))), NONE, OclAttrNoCast (uncurry cons (I
(NONE, I ((META.SS-base (META.ST name)), ShallB-term (OclDefString ((META.SS-base (META.ST Bertha)))))), un-
curry cons (I (NONE, I ((META.SS-base (META.ST address)), ShallB-term (OclDefString ((META.SS-base (META.ST Mi-
ami)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flights)), ShallB-str ((META.SS-base (META.ST F1 ))))),
uncurry cons (I (NONE, I ((META.SS-base (META.ST cl-res)), ShallB-str ((META.SS-base (META.ST R11 ))))), nil))))),
()), Oids ((Code-Numeral.Nat 0 ), (Code-Numeral.Nat 3 ), (Code-Numeral.Nat 4 )))), uncurry cons (I ((META.ST S1 ), I
(Ocl-instance-single-ext (SOME ((META.SS-base (META.ST S1 ))), SOME ((META.SS-base (META.ST Staff ))), NONE,
OclAttrNoCast (uncurry cons (I (NONE, I ((META.SS-base (META.ST name)), ShallB-term (OclDefString ((META.SS-base
(META.ST Merlin)))))), uncurry cons (I (NONE, I ((META.SS-base (META.ST flights)), ShallB-str ((META.SS-base
(META.ST F1 ))))), nil))), ()), Oids ((Code-Numeral.Nat 0 ), (Code-Numeral.Nat 3 ), (Code-Numeral.Nat 3 )))), nil))))))), nil,
true, false, I (uncurry cons ((META.ST dot--flightat-pre), uncurry cons ((META.ST dot--dateat-pre), uncurry cons ((META.ST
dot--idat-pre), uncurry cons ((META.ST dot-1---clientat-pre), uncurry cons ((META.ST dot-1---nextat-pre), uncurry cons
((META.ST dot-0---prevat-pre), uncurry cons ((META.ST dot--nameat-pre), uncurry cons ((META.ST dot-0---flightsat-pre),
uncurry cons ((META.ST dot--addressat-pre), uncurry cons ((META.ST dot-0---cl-resat-pre), uncurry cons ((META.ST
dot--fl-resat-pre), uncurry cons ((META.ST dot--toat-pre), uncurry cons ((META.ST dot--fromat-pre), uncurry cons ((META.ST
dot--seatsat-pre), uncurry cons ((META.ST dot-1---passengersat-pre), nil))))))))))))))), uncurry cons ((META.ST dot--flight),
uncurry cons ((META.ST dot--date), uncurry cons ((META.ST dot--id), uncurry cons ((META.ST dot-1---client), uncurry
cons ((META.ST dot-1---next), uncurry cons ((META.ST dot-0---prev), uncurry cons ((META.ST dot--name), uncurry cons
((META.ST dot-0---flights), uncurry cons ((META.ST dot--address), uncurry cons ((META.ST dot-0---cl-res), uncurry cons
((META.ST dot--fl-res), uncurry cons ((META.ST dot--to), uncurry cons ((META.ST dot--from), uncurry cons ((META.ST
dot--seats), uncurry cons ((META.ST dot-1---passengers), nil)))))))))))))))), uncurry cons ((META.ST Sequence-Person), un-
curry cons ((META.ST Set-Person), uncurry cons ((META.ST Sequence-Flight), uncurry cons ((META.ST Set-Flight), uncurry
cons ((META.ST Sequence-Client), uncurry cons ((META.ST Set-Client), uncurry cons ((META.ST Sequence-Reservation), un-
curry cons ((META.ST Set-Reservation), nil)))))))), I (NONE, false), ()) end))))〉

State[shallow] σ1 = [ S1 , C1 , C2 , R11 , R21 , F1 , F2 ]

B.12 State (Floor 1)

definition (typecheck-state-bad-head-on-lhs-σ2 (σ2)) = ()
definition typecheck-state-extra-variables-on-rhs-σ2 = (F2 , F2 , F1 , R21 , F1 , R11 , C2 , F2 , F1 , C1 , R11 , F1 , S1 )

Instance σ2-object1 :: Client = [ C1 with-only name = Bertha, address = Saint−Malo, flights = F1 , cl-res = R11 ]
and σ2-object2 :: Client = [ C2 with-only name = Arthur , address = Valencia, flights = [ F1 , F2 ], cl-res = [ self 2 , self 3

] ]
and σ2-object4 :: Reservation = [ R21 with-only id = 98765 , flight = F1 , next = self 3 ]
and σ2-object7 :: Reservation = [ id = 19283 , flight = F2 ]

State[shallow] σ2 = [ S1 , σ2-object1 , σ2-object2 , R11 , σ2-object4 , F1 , F2 , σ2-object7 ]

B.13 Transition (Floor 1)

Transition[shallow] σ1 σ2

B.14 Context (Floor 1)

Context[shallow] f : Flight Inv A : (λ self f . (0 <int (f .seats)))
Inv B : (λ self f . (f .fl-res −>sizeSeq() ≤int (f .seats)))
Inv C : (λ self f . (f .passengers −>selectSet(p | p .oclIsTypeOf (Client))

.= ((f .fl-res)−>collectSeq(c | c .client .oclAsType(Person))−>asSetSeq())))

B.15 Context (Floor 1)

Context[shallow] r : Reservation Inv A : (λ self r . (0 <int (r .id)))



262 APPENDIX B. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 1)

Inv B : (λ self r . (r .next <> null implies (r .flight .to .= r .next .flight .from)))
Inv C : (λ self r . (r .next <> null implies (r .client .= r .next .client)))

B.16 Context (Floor 1)
consts dot--book :: (A, ′α) val ⇒ (·Flight) ⇒ (Void) ((-) .book ′((-) ′))
consts dot--bookat-pre :: (A, ′α) val ⇒ (·Flight) ⇒ (Void) ((-) .book@pre ′((-) ′))
Context[shallow] Client :: book (f : Flight)
Pre : (λ f self . (f .passengers −>excludesSet(self .oclAsType(Person))

and (f .fl-res −>sizeSeq() <int (f .seats))))
Post : (λ result f self . (f .passengers .= (f .passengers@pre −>includingSet(self .oclAsType(Person)))

and (let r = self .cl-res −>selectSet(r | r .flight .= f )−>anySet() in
(r .oclIsNew())
and (r .prev .= null)
and (r .next .= null))))

B.17 Context (Floor 1)
consts dot--booknext :: (A, ′α) val ⇒ (·Flight) ⇒ (·Reservation) ⇒ (Void) ((-) .booknext ′((-),(-) ′))
consts dot--booknextat-pre :: (A, ′α) val ⇒ (·Flight) ⇒ (·Reservation) ⇒ (Void) ((-) .booknext@pre ′((-),(-) ′))
Context[shallow] Client :: booknext (f : Flight, r : Reservation)
Pre : (λ r f self . (f .passengers −>excludesSet(self .oclAsType(Person))

and (f .fl-res −>sizeSeq() <int (f .seats))
and (r .client .= self )
and (f .from .= (r .flight .to))))

Post : (λ result r f self . (f .passengers .= (f .passengers@pre −>includingSet(self .oclAsType(Person)))
and (let r = self .cl-res −>selectSet(r | r .flight .= f )−>anySet() in

(r .oclIsNew())
and (r .prev .= r)
and (r .next .= null))))

B.18 Context (Floor 1)
consts dot--cancel :: (A, ′α) val ⇒ (·Reservation) ⇒ (Void) ((-) .cancel ′((-) ′))
consts dot--cancelat-pre :: (A, ′α) val ⇒ (·Reservation) ⇒ (Void) ((-) .cancel@pre ′((-) ′))
Context[shallow] Client :: cancel (r : Reservation)
Pre : (λ r self . (r .client .= self ))
Post : (λ result r self . (self .cl-res −>selectSet(res | res .flight .= r .flight@pre)

−>isEmptySet()))

B.19 Context (Floor 1)
type-synonym Set-Integer = (A, Integerbase Setbase) val
consts dot--connections :: (A, ′α) val ⇒ (Set-Integer) ((-) .connections ′( ′))
consts dot--connectionsat-pre :: (A, ′α) val ⇒ (Set-Integer) ((-) .connections@pre ′( ′))
Context[shallow] Reservation :: connections () : Set(Integer)
Post : (λ result self . (result , if (self .next .= null)

then (Set{}−>includingSet(self .id))
else (self .next .connections()−>includingSet(self .id))
endif ))

Pre : (λ self . (true))

end



A
p

p
e

n
d

ix

C
The Flight Model (Generated Theory, Floor 2)

This chapter has been generated from Appendix B. For space reasons, all the code occurring at the beginning
similar as Appendix B has implicitly been skipped, i. e., we have explicitly removed by hand the piece of code
which is propagated across floors in Figure 6.6. However this code actually existed and was correctly evaluated
for the Isabelle system being able to generate this PDF document without errors. In addition, we also do not
display the generated code associated to each command Context situated at the end of Appendix B, because
the end of Appendix B is mixing Isar_HOL commands with meta-commands (we would otherwise obtain a not
well-typed file as explained in Figure 6.6).
theory Flight-Model-generated-generated imports ../src/UML-Main ../src/compiler/Static ../src/compiler/Generator-dynamic
begin

C.1 State (Floor 2)

locale state-σ1 =
fixes oid3 :: nat
fixes oid4 :: nat
fixes oid5 :: nat
fixes oid6 :: nat
fixes oid7 :: nat
fixes oid8 :: nat
fixes oid9 :: nat
assumes distinct-oid: (distinct ([oid3 , oid4 , oid5 , oid6 , oid7 , oid8 , oid9 ]))
fixes S1Staf f :: tyStaf f

fixes S1 :: ·Staff
assumes S1-def : S1 = (λ-. bbS1Staf f cc)
fixes C1C lient :: tyC lient

fixes C1 :: ·Client
assumes C1-def : C1 = (λ-. bbC1C lientcc)
fixes C2C lient :: tyC lient

fixes C2 :: ·Client
assumes C2-def : C2 = (λ-. bbC2C lientcc)
fixes R11Reservation :: tyReservation

fixes R11 :: ·Reservation
assumes R11-def : R11 = (λ-. bbR11Reservationcc)
fixes R21Reservation :: tyReservation

fixes R21 :: ·Reservation
assumes R21-def : R21 = (λ-. bbR21Reservationcc)
fixes F1F light :: tyF light

fixes F1 :: ·Flight
assumes F1-def : F1 = (λ-. bbF1F lightcc)
fixes F2F light :: tyF light

fixes F2 :: ·Flight
assumes F2-def : F2 = (λ-. bbF2F lightcc)
begin
definition σ1 = (state.make ((Map.empty (oid3 7→ (inStaf f (S1Staf f ))) (oid4 7→ (inC lient (C1C lient))) (oid5 7→ (inC lient

(C2C lient))) (oid6 7→ (inReservation (R11Reservation))) (oid7 7→ (inReservation (R21Reservation))) (oid8 7→ (inF light

(F1F light))) (oid9 7→ (inF light (F2F light))))) ((map-of-list ([(oidStaf f -0---flights , (List.map ((λ(x , y). [x , y]) o switch2-01 )
([[[oid3 ] , [oid8 ]]]))) , (oidC lient-0---flights , (List.map ((λ(x , y). [x , y]) o switch2-01 ) ([[[oid4 ] , [oid8 ]] , [[oid5 ] , [oid8 ]]]))) ,
(oidC lient-0---cl-res , (List.map ((λ(x , y). [x , y]) o switch2-01 ) ([[[oid4 ] , [oid6 ]] , [[oid5 ] , [oid7 ]]])))]))))

lemma dom-σ1 : (dom ((heap (σ1)))) = {oid3 , oid4 , oid5 , oid6 , oid7 , oid8 , oid9}
by(auto simp: σ1-def )

263



264 APPENDIX C. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 2)

lemmas[simp,code-unfold] = dom-σ1

lemma perm-σ1 : σ1 = (state.make ((Map.empty (oid9 7→ (inF light (F2F light))) (oid8 7→ (inF light (F1F light))) (oid7 7→
(inReservation (R21Reservation))) (oid6 7→ (inReservation (R11Reservation))) (oid5 7→ (inC lient (C2C lient))) (oid4 7→
(inC lient (C1C lient))) (oid3 7→ (inStaf f (S1Staf f ))))) ((assocs (σ1))))
apply(simp add: σ1-def )
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (2 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (3 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (2 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (4 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (3 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (2 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (5 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (4 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (3 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (2 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (6 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (5 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (4 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (3 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (2 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)

by(simp)

lemma σ1-OclAllInstances-generic-exec-Flight :
assumes [simp]: (Flight ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Flight ((inC lient (C1C lient)))) = None
assumes [simp]: (Flight ((inC lient (C2C lient)))) = None
assumes [simp]: (Flight ((inReservation (R11Reservation)))) = None
assumes [simp]: (Flight ((inReservation (R21Reservation)))) = None
assumes [simp]: (Flight ((inF light (F1F light)))) 6= None
assumes [simp]: (Flight ((inF light (F2F light)))) 6= None
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ1)) |= (OclAllInstances-generic (pre-post) (Flight)) .= Set{F1 , F2}
apply(subst perm-σ1)
apply(simp only: state.make-def F1-def F2-def )
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeF light-A-def )?)

lemma σ1-OclAllInstances-at-post-exec-Flight :
assumes [simp]: (Flight ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Flight ((inC lient (C1C lient)))) = None
assumes [simp]: (Flight ((inC lient (C2C lient)))) = None
assumes [simp]: (Flight ((inReservation (R11Reservation)))) = None
assumes [simp]: (Flight ((inReservation (R21Reservation)))) = None
assumes [simp]: (Flight ((inF light (F1F light)))) 6= None
assumes [simp]: (Flight ((inF light (F2F light)))) 6= None
shows (st , σ1) |= (OclAllInstances-at-post (Flight)) .= Set{F1 , F2}
unfolding OclAllInstances-at-post-def



C.1. STATE (FLOOR 2) 265

by(rule σ1-OclAllInstances-generic-exec-Flight, simp-all only: assms, simp-all)

lemma σ1-OclAllInstances-at-pre-exec-Flight :
assumes [simp]: (Flight ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Flight ((inC lient (C1C lient)))) = None
assumes [simp]: (Flight ((inC lient (C2C lient)))) = None
assumes [simp]: (Flight ((inReservation (R11Reservation)))) = None
assumes [simp]: (Flight ((inReservation (R21Reservation)))) = None
assumes [simp]: (Flight ((inF light (F1F light)))) 6= None
assumes [simp]: (Flight ((inF light (F2F light)))) 6= None
shows (σ1 , st) |= (OclAllInstances-at-pre (Flight)) .= Set{F1 , F2}
unfolding OclAllInstances-at-pre-def

by(rule σ1-OclAllInstances-generic-exec-Flight, simp-all only: assms, simp-all)

lemma σ1-OclAllInstances-generic-exec-Client :
assumes [simp]: (Client ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Client ((inC lient (C1C lient)))) 6= None
assumes [simp]: (Client ((inC lient (C2C lient)))) 6= None
assumes [simp]: (Client ((inReservation (R11Reservation)))) = None
assumes [simp]: (Client ((inReservation (R21Reservation)))) = None
assumes [simp]: (Client ((inF light (F1F light)))) = None
assumes [simp]: (Client ((inF light (F2F light)))) = None
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ1)) |= (OclAllInstances-generic (pre-post) (Client)) .= Set{C1 , C2}
apply(subst perm-σ1)
apply(simp only: state.make-def C1-def C2-def )
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeC lient-A-def )?)

lemma σ1-OclAllInstances-at-post-exec-Client :
assumes [simp]: (Client ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Client ((inC lient (C1C lient)))) 6= None
assumes [simp]: (Client ((inC lient (C2C lient)))) 6= None
assumes [simp]: (Client ((inReservation (R11Reservation)))) = None
assumes [simp]: (Client ((inReservation (R21Reservation)))) = None
assumes [simp]: (Client ((inF light (F1F light)))) = None
assumes [simp]: (Client ((inF light (F2F light)))) = None
shows (st , σ1) |= (OclAllInstances-at-post (Client)) .= Set{C1 , C2}
unfolding OclAllInstances-at-post-def

by(rule σ1-OclAllInstances-generic-exec-Client, simp-all only: assms, simp-all)

lemma σ1-OclAllInstances-at-pre-exec-Client :
assumes [simp]: (Client ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Client ((inC lient (C1C lient)))) 6= None
assumes [simp]: (Client ((inC lient (C2C lient)))) 6= None
assumes [simp]: (Client ((inReservation (R11Reservation)))) = None
assumes [simp]: (Client ((inReservation (R21Reservation)))) = None
assumes [simp]: (Client ((inF light (F1F light)))) = None
assumes [simp]: (Client ((inF light (F2F light)))) = None
shows (σ1 , st) |= (OclAllInstances-at-pre (Client)) .= Set{C1 , C2}
unfolding OclAllInstances-at-pre-def

by(rule σ1-OclAllInstances-generic-exec-Client, simp-all only: assms, simp-all)

lemma σ1-OclAllInstances-generic-exec-Staff :
assumes [simp]: (Staff ((inStaf f (S1Staf f )))) 6= None



266 APPENDIX C. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 2)

assumes [simp]: (Staff ((inC lient (C1C lient)))) = None
assumes [simp]: (Staff ((inC lient (C2C lient)))) = None
assumes [simp]: (Staff ((inReservation (R11Reservation)))) = None
assumes [simp]: (Staff ((inReservation (R21Reservation)))) = None
assumes [simp]: (Staff ((inF light (F1F light)))) = None
assumes [simp]: (Staff ((inF light (F2F light)))) = None
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ1)) |= (OclAllInstances-generic (pre-post) (Staff )) .= Set{S1}
apply(subst perm-σ1)
apply(simp only: state.make-def S1-def )
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeStaf f -A-def )?)

lemma σ1-OclAllInstances-at-post-exec-Staff :
assumes [simp]: (Staff ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (Staff ((inC lient (C1C lient)))) = None
assumes [simp]: (Staff ((inC lient (C2C lient)))) = None
assumes [simp]: (Staff ((inReservation (R11Reservation)))) = None
assumes [simp]: (Staff ((inReservation (R21Reservation)))) = None
assumes [simp]: (Staff ((inF light (F1F light)))) = None
assumes [simp]: (Staff ((inF light (F2F light)))) = None
shows (st , σ1) |= (OclAllInstances-at-post (Staff )) .= Set{S1}
unfolding OclAllInstances-at-post-def

by(rule σ1-OclAllInstances-generic-exec-Staff , simp-all only: assms, simp-all)

lemma σ1-OclAllInstances-at-pre-exec-Staff :
assumes [simp]: (Staff ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (Staff ((inC lient (C1C lient)))) = None
assumes [simp]: (Staff ((inC lient (C2C lient)))) = None
assumes [simp]: (Staff ((inReservation (R11Reservation)))) = None
assumes [simp]: (Staff ((inReservation (R21Reservation)))) = None
assumes [simp]: (Staff ((inF light (F1F light)))) = None
assumes [simp]: (Staff ((inF light (F2F light)))) = None
shows (σ1 , st) |= (OclAllInstances-at-pre (Staff )) .= Set{S1}
unfolding OclAllInstances-at-pre-def

by(rule σ1-OclAllInstances-generic-exec-Staff , simp-all only: assms, simp-all)

lemma σ1-OclAllInstances-generic-exec-Person :
assumes [simp]: (Person ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (Person ((inC lient (C1C lient)))) 6= None
assumes [simp]: (Person ((inC lient (C2C lient)))) 6= None
assumes [simp]: (Person ((inReservation (R11Reservation)))) = None
assumes [simp]: (Person ((inReservation (R21Reservation)))) = None
assumes [simp]: (Person ((inF light (F1F light)))) = None
assumes [simp]: (Person ((inF light (F2F light)))) = None
assumes [simp]: (λ-. b(Person ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (C1C lient))))c) = ((((λ-. bbC1C lientcc)::·Client)) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (C2C lient))))c) = ((((λ-. bbC2C lientcc)::·Client)) .oclAsType(Person))
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ1)) |= (OclAllInstances-generic (pre-post) (Person)) .= Set{S1 .oclAsType(Person) , C1 .oclAsType(Person) , C2
.oclAsType(Person)}
apply(subst perm-σ1)
apply(simp only: state.make-def S1-def C1-def C2-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client
OclAsTypeP erson-Client, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client OclAsTypeP erson-Client, simp, rule
OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:



C.1. STATE (FLOOR 2) 267

assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp

only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client
OclAsTypeP erson-Client, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client OclAsTypeP erson-Client, simp, rule
OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:
assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client
OclAsTypeP erson-Client, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client OclAsTypeP erson-Client, simp, rule
OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:
assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeP erson-A-def )?)

lemma σ1-OclAllInstances-at-post-exec-Person :
assumes [simp]: (Person ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (Person ((inC lient (C1C lient)))) 6= None
assumes [simp]: (Person ((inC lient (C2C lient)))) 6= None
assumes [simp]: (Person ((inReservation (R11Reservation)))) = None
assumes [simp]: (Person ((inReservation (R21Reservation)))) = None
assumes [simp]: (Person ((inF light (F1F light)))) = None
assumes [simp]: (Person ((inF light (F2F light)))) = None
assumes [simp]: (λ-. b(Person ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (C1C lient))))c) = ((((λ-. bbC1C lientcc)::·Client)) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (C2C lient))))c) = ((((λ-. bbC2C lientcc)::·Client)) .oclAsType(Person))
shows (st , σ1) |= (OclAllInstances-at-post (Person)) .= Set{S1 .oclAsType(Person) , C1 .oclAsType(Person) , C2
.oclAsType(Person)}
unfolding OclAllInstances-at-post-def

by(rule σ1-OclAllInstances-generic-exec-Person, simp-all only: assms, simp-all)

lemma σ1-OclAllInstances-at-pre-exec-Person :
assumes [simp]: (Person ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (Person ((inC lient (C1C lient)))) 6= None
assumes [simp]: (Person ((inC lient (C2C lient)))) 6= None
assumes [simp]: (Person ((inReservation (R11Reservation)))) = None
assumes [simp]: (Person ((inReservation (R21Reservation)))) = None
assumes [simp]: (Person ((inF light (F1F light)))) = None
assumes [simp]: (Person ((inF light (F2F light)))) = None
assumes [simp]: (λ-. b(Person ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (C1C lient))))c) = ((((λ-. bbC1C lientcc)::·Client)) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (C2C lient))))c) = ((((λ-. bbC2C lientcc)::·Client)) .oclAsType(Person))
shows (σ1 , st) |= (OclAllInstances-at-pre (Person)) .= Set{S1 .oclAsType(Person) , C1 .oclAsType(Person) , C2
.oclAsType(Person)}
unfolding OclAllInstances-at-pre-def

by(rule σ1-OclAllInstances-generic-exec-Person, simp-all only: assms, simp-all)

lemma σ1-OclAllInstances-generic-exec-Reservation :
assumes [simp]: (Reservation ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Reservation ((inC lient (C1C lient)))) = None
assumes [simp]: (Reservation ((inC lient (C2C lient)))) = None
assumes [simp]: (Reservation ((inReservation (R11Reservation)))) 6= None
assumes [simp]: (Reservation ((inReservation (R21Reservation)))) 6= None
assumes [simp]: (Reservation ((inF light (F1F light)))) = None
assumes [simp]: (Reservation ((inF light (F2F light)))) = None
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ1)) |= (OclAllInstances-generic (pre-post) (Reservation)) .= Set{R11 , R21}
apply(subst perm-σ1)
apply(simp only: state.make-def R11-def R21-def )
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,



268 APPENDIX C. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 2)

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeReservation-A-def )?)

lemma σ1-OclAllInstances-at-post-exec-Reservation :
assumes [simp]: (Reservation ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Reservation ((inC lient (C1C lient)))) = None
assumes [simp]: (Reservation ((inC lient (C2C lient)))) = None
assumes [simp]: (Reservation ((inReservation (R11Reservation)))) 6= None
assumes [simp]: (Reservation ((inReservation (R21Reservation)))) 6= None
assumes [simp]: (Reservation ((inF light (F1F light)))) = None
assumes [simp]: (Reservation ((inF light (F2F light)))) = None
shows (st , σ1) |= (OclAllInstances-at-post (Reservation)) .= Set{R11 , R21}
unfolding OclAllInstances-at-post-def

by(rule σ1-OclAllInstances-generic-exec-Reservation, simp-all only: assms, simp-all)

lemma σ1-OclAllInstances-at-pre-exec-Reservation :
assumes [simp]: (Reservation ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Reservation ((inC lient (C1C lient)))) = None
assumes [simp]: (Reservation ((inC lient (C2C lient)))) = None
assumes [simp]: (Reservation ((inReservation (R11Reservation)))) 6= None
assumes [simp]: (Reservation ((inReservation (R21Reservation)))) 6= None
assumes [simp]: (Reservation ((inF light (F1F light)))) = None
assumes [simp]: (Reservation ((inF light (F2F light)))) = None
shows (σ1 , st) |= (OclAllInstances-at-pre (Reservation)) .= Set{R11 , R21}
unfolding OclAllInstances-at-pre-def

by(rule σ1-OclAllInstances-generic-exec-Reservation, simp-all only: assms, simp-all)

lemma σ1-OclAllInstances-generic-exec-OclAny :
assumes [simp]: (OclAny ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (OclAny ((inC lient (C1C lient)))) 6= None
assumes [simp]: (OclAny ((inC lient (C2C lient)))) 6= None
assumes [simp]: (OclAny ((inReservation (R11Reservation)))) 6= None
assumes [simp]: (OclAny ((inReservation (R21Reservation)))) 6= None
assumes [simp]: (OclAny ((inF light (F1F light)))) 6= None
assumes [simp]: (OclAny ((inF light (F2F light)))) 6= None
assumes [simp]: (λ-. b(OclAny ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (C1C lient))))c) = ((((λ-. bbC1C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (C2C lient))))c) = ((((λ-. bbC2C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (R11Reservation))))c) = ((((λ-. bbR11Reservationcc)::·Reservation))
.oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (R21Reservation))))c) = ((((λ-. bbR21Reservationcc)::·Reservation))
.oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F1F light))))c) = ((((λ-. bbF1F lightcc)::·Flight)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F2F light))))c) = ((((λ-. bbF2F lightcc)::·Flight)) .oclAsType(OclAny))
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ1)) |= (OclAllInstances-generic (pre-post) (OclAny)) .= Set{S1 .oclAsType(OclAny) , C1 .oclAsType(OclAny) , C2
.oclAsType(OclAny) , R11 .oclAsType(OclAny) , R21 .oclAsType(OclAny) , F1 .oclAsType(OclAny) , F2 .oclAsType(OclAny)}
apply(subst perm-σ1)
apply(simp only: state.make-def S1-def C1-def C2-def R11-def R21-def F1-def F2-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client OclAsTypeOclAny-Client
OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight OclAsTypeOclAny-Flight, simp,
rule OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:
assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client OclAsTypeOclAny-Client
OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight OclAsTypeOclAny-Flight, simp,
rule OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:



C.1. STATE (FLOOR 2) 269

assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp

only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client OclAsTypeOclAny-Client
OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight OclAsTypeOclAny-Flight, simp,
rule OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:
assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client OclAsTypeOclAny-Client
OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight OclAsTypeOclAny-Flight, simp,
rule OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:
assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client OclAsTypeOclAny-Client
OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight OclAsTypeOclAny-Flight, simp,
rule OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:
assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client OclAsTypeOclAny-Client
OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight OclAsTypeOclAny-Flight, simp,
rule OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:
assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client OclAsTypeOclAny-Client
OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight OclAsTypeOclAny-Flight, simp,
rule OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:
assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeOclAny-A-def )?)

lemma σ1-OclAllInstances-at-post-exec-OclAny :
assumes [simp]: (OclAny ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (OclAny ((inC lient (C1C lient)))) 6= None
assumes [simp]: (OclAny ((inC lient (C2C lient)))) 6= None
assumes [simp]: (OclAny ((inReservation (R11Reservation)))) 6= None
assumes [simp]: (OclAny ((inReservation (R21Reservation)))) 6= None
assumes [simp]: (OclAny ((inF light (F1F light)))) 6= None
assumes [simp]: (OclAny ((inF light (F2F light)))) 6= None
assumes [simp]: (λ-. b(OclAny ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (C1C lient))))c) = ((((λ-. bbC1C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (C2C lient))))c) = ((((λ-. bbC2C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (R11Reservation))))c) = ((((λ-. bbR11Reservationcc)::·Reservation))
.oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (R21Reservation))))c) = ((((λ-. bbR21Reservationcc)::·Reservation))
.oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F1F light))))c) = ((((λ-. bbF1F lightcc)::·Flight)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F2F light))))c) = ((((λ-. bbF2F lightcc)::·Flight)) .oclAsType(OclAny))
shows (st , σ1) |= (OclAllInstances-at-post (OclAny)) .= Set{S1 .oclAsType(OclAny) , C1 .oclAsType(OclAny) , C2
.oclAsType(OclAny) , R11 .oclAsType(OclAny) , R21 .oclAsType(OclAny) , F1 .oclAsType(OclAny) , F2 .oclAsType(OclAny)}
unfolding OclAllInstances-at-post-def

by(rule σ1-OclAllInstances-generic-exec-OclAny, simp-all only: assms, simp-all)

lemma σ1-OclAllInstances-at-pre-exec-OclAny :
assumes [simp]: (OclAny ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (OclAny ((inC lient (C1C lient)))) 6= None
assumes [simp]: (OclAny ((inC lient (C2C lient)))) 6= None
assumes [simp]: (OclAny ((inReservation (R11Reservation)))) 6= None
assumes [simp]: (OclAny ((inReservation (R21Reservation)))) 6= None
assumes [simp]: (OclAny ((inF light (F1F light)))) 6= None
assumes [simp]: (OclAny ((inF light (F2F light)))) 6= None
assumes [simp]: (λ-. b(OclAny ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (C1C lient))))c) = ((((λ-. bbC1C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (C2C lient))))c) = ((((λ-. bbC2C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (R11Reservation))))c) = ((((λ-. bbR11Reservationcc)::·Reservation))



270 APPENDIX C. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 2)

.oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (R21Reservation))))c) = ((((λ-. bbR21Reservationcc)::·Reservation))
.oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F1F light))))c) = ((((λ-. bbF1F lightcc)::·Flight)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F2F light))))c) = ((((λ-. bbF2F lightcc)::·Flight)) .oclAsType(OclAny))
shows (σ1 , st) |= (OclAllInstances-at-pre (OclAny)) .= Set{S1 .oclAsType(OclAny) , C1 .oclAsType(OclAny) , C2
.oclAsType(OclAny) , R11 .oclAsType(OclAny) , R21 .oclAsType(OclAny) , F1 .oclAsType(OclAny) , F2 .oclAsType(OclAny)}
unfolding OclAllInstances-at-pre-def

by(rule σ1-OclAllInstances-generic-exec-OclAny, simp-all only: assms, simp-all)

ML 〈(Ty ′.check ([]) ( error(s)))〉

end

definition (state-interpretation-σ1 (τ)) = (state-σ1 (oid3 ) (oid4 ) (oid5 ) (oid6 ) (oid7 ) (oid8 ) (oid9 ) (dd(S1 (τ))ee) (S1 ) (dd(C1
(τ))ee) (C1 ) (dd(C2 (τ))ee) (C2 ) (dd(R11 (τ))ee) (R11 ) (dd(R21 (τ))ee) (R21 ) (dd(F1 (τ))ee) (F1 ) (dd(F2 (τ))ee) (F2 ))

C.2 Instance
definition (typecheck-instance-bad-head-on-lhs-σ2-object7-σ2-object4-σ2-object2-σ2-object1 (σ2-object7 ) (σ2-object4 )
(σ2-object2 ) (σ2-object1 )) = ()
definition typecheck-instance-extra-variables-on-rhs-σ2-object7-σ2-object4-σ2-object2-σ2-object1 = (λσ2-object7 σ2-object4
σ2-object2 σ2-object1 . (F2 , R21 , F1 , C2 , F2 , F1 , C1 , R11 , F1 ))

definition oid10 = 10

definition σ2-object1C lient = (mkC lient ((mkEXT C lient (oid4 ) (b ′′Bertha ′′c))) (b(let c = char-of-nat in CHR ′′S ′′ # CHR
′′a ′′ # CHR ′′i ′′ # CHR ′′n ′′ # CHR ′′t ′′ # c 045 # CHR ′′M ′′ # CHR ′′a ′′ # CHR ′′l ′′ # CHR ′′o ′′ # [])c))
definition (σ2-object1 ::·Client) = ((λ-. bbσ2-object1C lientcc))
definition σ2-object2C lient = (mkC lient ((mkEXT C lient (oid5 ) (b ′′Arthur ′′c))) (b ′′Valencia ′′c))
definition (σ2-object2 ::·Client) = ((λ-. bbσ2-object2C lientcc))
definition σ2-object4Reservation = (mkReservation ((mkEXT Reservation (oid7 ))) (b98765c) (None) (boid8c))
definition (σ2-object4 ::·Reservation) = ((λ-. bbσ2-object4Reservationcc))
definition σ2-object7Reservation = (mkReservation ((mkEXT Reservation (oid10 ))) (b19283c) (None) (boid9c))
definition (σ2-object7 ::·Reservation) = ((λ-. bbσ2-object7Reservationcc))

ML 〈(Ty ′.check ([(META.Writeln , σ2-object1 .flights ∼= Set{ /∗8∗/ }) , (META.Writeln , σ2-object1 .cl-res ∼= Set{ /∗6∗/
}) , (META.Writeln , σ2-object2 .flights ∼= Set{ /∗8∗/ , /∗9∗/ }) , (META.Writeln , σ2-object2 .cl-res ∼= Set{ σ2-object4 ,
σ2-object7 }) , (META.Writeln , σ2-object4 .flight ∼= Set{ /∗8∗/ }) , (META.Writeln , σ2-object4 .client ∼= Set{ σ2-object2
}) , (META.Writeln , σ2-object4 .prev ∼= Set{}) , (META.Writeln , σ2-object4 .next ∼= Set{ σ2-object7 }) , (META.Writeln ,
σ2-object7 .flight ∼= Set{ /∗9∗/ }) , (META.Writeln , σ2-object7 .client ∼= Set{ σ2-object2 }) , (META.Writeln , σ2-object7 .prev
∼= Set{ σ2-object4 }) , (META.Writeln , σ2-object7 .next ∼= Set{})]) ( error(s)))〉

C.3 State (Floor 2)

locale state-σ2 =
fixes oid3 :: nat
fixes oid4 :: nat
fixes oid5 :: nat
fixes oid6 :: nat
fixes oid7 :: nat
fixes oid8 :: nat
fixes oid9 :: nat
fixes oid10 :: nat
assumes distinct-oid: (distinct ([oid3 , oid4 , oid5 , oid6 , oid7 , oid8 , oid9 , oid10 ]))
fixes S1Staf f :: tyStaf f

fixes S1 :: ·Staff
assumes S1-def : S1 = (λ-. bbS1Staf f cc)
fixes σ2-object1C lient :: tyC lient

fixes σ2-object1 :: ·Client
assumes σ2-object1-def : σ2-object1 = (λ-. bbσ2-object1C lientcc)
fixes σ2-object2C lient :: tyC lient

fixes σ2-object2 :: ·Client
assumes σ2-object2-def : σ2-object2 = (λ-. bbσ2-object2C lientcc)
fixes R11Reservation :: tyReservation

fixes R11 :: ·Reservation
assumes R11-def : R11 = (λ-. bbR11Reservationcc)
fixes σ2-object4Reservation :: tyReservation



C.3. STATE (FLOOR 2) 271

fixes σ2-object4 :: ·Reservation
assumes σ2-object4-def : σ2-object4 = (λ-. bbσ2-object4Reservationcc)
fixes F1F light :: tyF light

fixes F1 :: ·Flight
assumes F1-def : F1 = (λ-. bbF1F lightcc)
fixes F2F light :: tyF light

fixes F2 :: ·Flight
assumes F2-def : F2 = (λ-. bbF2F lightcc)
fixes σ2-object7Reservation :: tyReservation

fixes σ2-object7 :: ·Reservation
assumes σ2-object7-def : σ2-object7 = (λ-. bbσ2-object7Reservationcc)
begin
definition σ2 = (state.make ((Map.empty (oid3 7→ (inStaf f (S1Staf f ))) (oid4 7→ (inC lient (σ2-object1C lient))) (oid5 7→
(inC lient (σ2-object2C lient))) (oid6 7→ (inReservation (R11Reservation))) (oid7 7→ (inReservation (σ2-object4Reservation)))
(oid8 7→ (inF light (F1F light))) (oid9 7→ (inF light (F2F light))) (oid10 7→ (inReservation (σ2-object7Reservation)))))
((map-of-list ([(oidStaf f -0---flights , (List.map ((λ(x , y). [x , y]) o switch2-01 ) ([[[oid3 ] , [oid8 ]]]))) , (oidReservation-1---next ,
(List.map ((λ(x , y). [x , y]) o switch2-10 ) ([[[oid7 ] , [oid10 ]]]))) , (oidC lient-0---flights , (List.map ((λ(x , y). [x , y]) o switch2-01 )
([[[oid4 ] , [oid8 ]] , [[oid5 ] , [oid8 , oid9 ]]]))) , (oidC lient-0---cl-res , (List.map ((λ(x , y). [x , y]) o switch2-01 ) ([[[oid4 ] , [oid6 ]]
, [[oid5 ] , [oid7 , oid10 ]]])))]))))

lemma dom-σ2 : (dom ((heap (σ2)))) = {oid3 , oid4 , oid5 , oid6 , oid7 , oid8 , oid9 , oid10}
by(auto simp: σ2-def )

lemmas[simp,code-unfold] = dom-σ2

lemma perm-σ2 : σ2 = (state.make ((Map.empty (oid10 7→ (inReservation (σ2-object7Reservation))) (oid9 7→ (inF light

(F2F light))) (oid8 7→ (inF light (F1F light))) (oid7 7→ (inReservation (σ2-object4Reservation))) (oid6 7→ (inReservation

(R11Reservation))) (oid5 7→ (inC lient (σ2-object2C lient))) (oid4 7→ (inC lient (σ2-object1C lient))) (oid3 7→ (inStaf f

(S1Staf f ))))) ((assocs (σ2))))
apply(simp add: σ2-def )
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (2 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (3 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (2 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (4 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (3 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (2 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (5 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (4 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (3 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (2 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (6 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (5 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (4 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (3 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (2 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (7 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (6 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (5 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (4 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (3 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (2 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)
apply(subst (1 ) fun-upd-twist, metis distinct-oid distinct-length-2-or-more)

by(simp)

lemma σ2-OclAllInstances-generic-exec-Flight :
assumes [simp]: (Flight ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Flight ((inC lient (σ2-object1C lient)))) = None
assumes [simp]: (Flight ((inC lient (σ2-object2C lient)))) = None
assumes [simp]: (Flight ((inReservation (R11Reservation)))) = None
assumes [simp]: (Flight ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Flight ((inF light (F1F light)))) 6= None
assumes [simp]: (Flight ((inF light (F2F light)))) 6= None
assumes [simp]: (Flight ((inReservation (σ2-object7Reservation)))) = None
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ2)) |= (OclAllInstances-generic (pre-post) (Flight)) .= Set{F1 , F2}
apply(subst perm-σ2)
apply(simp only: state.make-def F1-def F2-def )



272 APPENDIX C. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 2)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeF light-A-def )?)

lemma σ2-OclAllInstances-at-post-exec-Flight :
assumes [simp]: (Flight ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Flight ((inC lient (σ2-object1C lient)))) = None
assumes [simp]: (Flight ((inC lient (σ2-object2C lient)))) = None
assumes [simp]: (Flight ((inReservation (R11Reservation)))) = None
assumes [simp]: (Flight ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Flight ((inF light (F1F light)))) 6= None
assumes [simp]: (Flight ((inF light (F2F light)))) 6= None
assumes [simp]: (Flight ((inReservation (σ2-object7Reservation)))) = None
shows (st , σ2) |= (OclAllInstances-at-post (Flight)) .= Set{F1 , F2}
unfolding OclAllInstances-at-post-def

by(rule σ2-OclAllInstances-generic-exec-Flight, simp-all only: assms, simp-all)

lemma σ2-OclAllInstances-at-pre-exec-Flight :
assumes [simp]: (Flight ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Flight ((inC lient (σ2-object1C lient)))) = None
assumes [simp]: (Flight ((inC lient (σ2-object2C lient)))) = None
assumes [simp]: (Flight ((inReservation (R11Reservation)))) = None
assumes [simp]: (Flight ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Flight ((inF light (F1F light)))) 6= None
assumes [simp]: (Flight ((inF light (F2F light)))) 6= None
assumes [simp]: (Flight ((inReservation (σ2-object7Reservation)))) = None
shows (σ2 , st) |= (OclAllInstances-at-pre (Flight)) .= Set{F1 , F2}
unfolding OclAllInstances-at-pre-def

by(rule σ2-OclAllInstances-generic-exec-Flight, simp-all only: assms, simp-all)

lemma σ2-OclAllInstances-generic-exec-Client :
assumes [simp]: (Client ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Client ((inC lient (σ2-object1C lient)))) 6= None
assumes [simp]: (Client ((inC lient (σ2-object2C lient)))) 6= None
assumes [simp]: (Client ((inReservation (R11Reservation)))) = None
assumes [simp]: (Client ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Client ((inF light (F1F light)))) = None
assumes [simp]: (Client ((inF light (F2F light)))) = None
assumes [simp]: (Client ((inReservation (σ2-object7Reservation)))) = None
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ2)) |= (OclAllInstances-generic (pre-post) (Client)) .= Set{σ2-object1 , σ2-object2}
apply(subst perm-σ2)
apply(simp only: state.make-def σ2-object1-def σ2-object2-def )
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:



C.3. STATE (FLOOR 2) 273

assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeC lient-A-def )?)

lemma σ2-OclAllInstances-at-post-exec-Client :
assumes [simp]: (Client ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Client ((inC lient (σ2-object1C lient)))) 6= None
assumes [simp]: (Client ((inC lient (σ2-object2C lient)))) 6= None
assumes [simp]: (Client ((inReservation (R11Reservation)))) = None
assumes [simp]: (Client ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Client ((inF light (F1F light)))) = None
assumes [simp]: (Client ((inF light (F2F light)))) = None
assumes [simp]: (Client ((inReservation (σ2-object7Reservation)))) = None
shows (st , σ2) |= (OclAllInstances-at-post (Client)) .= Set{σ2-object1 , σ2-object2}
unfolding OclAllInstances-at-post-def

by(rule σ2-OclAllInstances-generic-exec-Client, simp-all only: assms, simp-all)

lemma σ2-OclAllInstances-at-pre-exec-Client :
assumes [simp]: (Client ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Client ((inC lient (σ2-object1C lient)))) 6= None
assumes [simp]: (Client ((inC lient (σ2-object2C lient)))) 6= None
assumes [simp]: (Client ((inReservation (R11Reservation)))) = None
assumes [simp]: (Client ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Client ((inF light (F1F light)))) = None
assumes [simp]: (Client ((inF light (F2F light)))) = None
assumes [simp]: (Client ((inReservation (σ2-object7Reservation)))) = None
shows (σ2 , st) |= (OclAllInstances-at-pre (Client)) .= Set{σ2-object1 , σ2-object2}
unfolding OclAllInstances-at-pre-def

by(rule σ2-OclAllInstances-generic-exec-Client, simp-all only: assms, simp-all)

lemma σ2-OclAllInstances-generic-exec-Staff :
assumes [simp]: (Staff ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (Staff ((inC lient (σ2-object1C lient)))) = None
assumes [simp]: (Staff ((inC lient (σ2-object2C lient)))) = None
assumes [simp]: (Staff ((inReservation (R11Reservation)))) = None
assumes [simp]: (Staff ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Staff ((inF light (F1F light)))) = None
assumes [simp]: (Staff ((inF light (F2F light)))) = None
assumes [simp]: (Staff ((inReservation (σ2-object7Reservation)))) = None
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ2)) |= (OclAllInstances-generic (pre-post) (Staff )) .= Set{S1}
apply(subst perm-σ2)
apply(simp only: state.make-def S1-def )
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeStaf f -A-def )?)

lemma σ2-OclAllInstances-at-post-exec-Staff :



274 APPENDIX C. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 2)

assumes [simp]: (Staff ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (Staff ((inC lient (σ2-object1C lient)))) = None
assumes [simp]: (Staff ((inC lient (σ2-object2C lient)))) = None
assumes [simp]: (Staff ((inReservation (R11Reservation)))) = None
assumes [simp]: (Staff ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Staff ((inF light (F1F light)))) = None
assumes [simp]: (Staff ((inF light (F2F light)))) = None
assumes [simp]: (Staff ((inReservation (σ2-object7Reservation)))) = None
shows (st , σ2) |= (OclAllInstances-at-post (Staff )) .= Set{S1}
unfolding OclAllInstances-at-post-def

by(rule σ2-OclAllInstances-generic-exec-Staff , simp-all only: assms, simp-all)

lemma σ2-OclAllInstances-at-pre-exec-Staff :
assumes [simp]: (Staff ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (Staff ((inC lient (σ2-object1C lient)))) = None
assumes [simp]: (Staff ((inC lient (σ2-object2C lient)))) = None
assumes [simp]: (Staff ((inReservation (R11Reservation)))) = None
assumes [simp]: (Staff ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Staff ((inF light (F1F light)))) = None
assumes [simp]: (Staff ((inF light (F2F light)))) = None
assumes [simp]: (Staff ((inReservation (σ2-object7Reservation)))) = None
shows (σ2 , st) |= (OclAllInstances-at-pre (Staff )) .= Set{S1}
unfolding OclAllInstances-at-pre-def

by(rule σ2-OclAllInstances-generic-exec-Staff , simp-all only: assms, simp-all)

lemma σ2-OclAllInstances-generic-exec-Person :
assumes [simp]: (Person ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (Person ((inC lient (σ2-object1C lient)))) 6= None
assumes [simp]: (Person ((inC lient (σ2-object2C lient)))) 6= None
assumes [simp]: (Person ((inReservation (R11Reservation)))) = None
assumes [simp]: (Person ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Person ((inF light (F1F light)))) = None
assumes [simp]: (Person ((inF light (F2F light)))) = None
assumes [simp]: (Person ((inReservation (σ2-object7Reservation)))) = None
assumes [simp]: (λ-. b(Person ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (σ2-object1C lient))))c) = ((((λ-. bbσ2-object1C lientcc)::·Client)) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (σ2-object2C lient))))c) = ((((λ-. bbσ2-object2C lientcc)::·Client)) .oclAsType(Person))
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ2)) |= (OclAllInstances-generic (pre-post) (Person)) .= Set{S1 .oclAsType(Person) , σ2-object1 .oclAsType(Person)
, σ2-object2 .oclAsType(Person)}
apply(subst perm-σ2)
apply(simp only: state.make-def S1-def σ2-object1-def σ2-object2-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client
OclAsTypeP erson-Client, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client OclAsTypeP erson-Client, simp, rule
OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:
assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client
OclAsTypeP erson-Client, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client OclAsTypeP erson-Client, simp, rule
OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:
assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client
OclAsTypeP erson-Client, simp del: OclAsTypeP erson-Staff OclAsTypeP erson-Client OclAsTypeP erson-Client, simp, rule
OclIncluding-cong, (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only:
assms[symmetric ])?, simp add: valid-def OclValid-def bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-empty, simp)
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeP erson-A-def )?)

lemma σ2-OclAllInstances-at-post-exec-Person :
assumes [simp]: (Person ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (Person ((inC lient (σ2-object1C lient)))) 6= None



C.3. STATE (FLOOR 2) 275

assumes [simp]: (Person ((inC lient (σ2-object2C lient)))) 6= None
assumes [simp]: (Person ((inReservation (R11Reservation)))) = None
assumes [simp]: (Person ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Person ((inF light (F1F light)))) = None
assumes [simp]: (Person ((inF light (F2F light)))) = None
assumes [simp]: (Person ((inReservation (σ2-object7Reservation)))) = None
assumes [simp]: (λ-. b(Person ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (σ2-object1C lient))))c) = ((((λ-. bbσ2-object1C lientcc)::·Client)) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (σ2-object2C lient))))c) = ((((λ-. bbσ2-object2C lientcc)::·Client)) .oclAsType(Person))
shows (st , σ2) |= (OclAllInstances-at-post (Person)) .= Set{S1 .oclAsType(Person) , σ2-object1 .oclAsType(Person) , σ2-object2
.oclAsType(Person)}
unfolding OclAllInstances-at-post-def

by(rule σ2-OclAllInstances-generic-exec-Person, simp-all only: assms, simp-all)

lemma σ2-OclAllInstances-at-pre-exec-Person :
assumes [simp]: (Person ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (Person ((inC lient (σ2-object1C lient)))) 6= None
assumes [simp]: (Person ((inC lient (σ2-object2C lient)))) 6= None
assumes [simp]: (Person ((inReservation (R11Reservation)))) = None
assumes [simp]: (Person ((inReservation (σ2-object4Reservation)))) = None
assumes [simp]: (Person ((inF light (F1F light)))) = None
assumes [simp]: (Person ((inF light (F2F light)))) = None
assumes [simp]: (Person ((inReservation (σ2-object7Reservation)))) = None
assumes [simp]: (λ-. b(Person ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (σ2-object1C lient))))c) = ((((λ-. bbσ2-object1C lientcc)::·Client)) .oclAsType(Person))
assumes [simp]: (λ-. b(Person ((inC lient (σ2-object2C lient))))c) = ((((λ-. bbσ2-object2C lientcc)::·Client)) .oclAsType(Person))
shows (σ2 , st) |= (OclAllInstances-at-pre (Person)) .= Set{S1 .oclAsType(Person) , σ2-object1 .oclAsType(Person) , σ2-object2
.oclAsType(Person)}
unfolding OclAllInstances-at-pre-def

by(rule σ2-OclAllInstances-generic-exec-Person, simp-all only: assms, simp-all)

lemma σ2-OclAllInstances-generic-exec-Reservation :
assumes [simp]: (Reservation ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Reservation ((inC lient (σ2-object1C lient)))) = None
assumes [simp]: (Reservation ((inC lient (σ2-object2C lient)))) = None
assumes [simp]: (Reservation ((inReservation (R11Reservation)))) 6= None
assumes [simp]: (Reservation ((inReservation (σ2-object4Reservation)))) 6= None
assumes [simp]: (Reservation ((inF light (F1F light)))) = None
assumes [simp]: (Reservation ((inF light (F2F light)))) = None
assumes [simp]: (Reservation ((inReservation (σ2-object7Reservation)))) 6= None
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ2)) |= (OclAllInstances-generic (pre-post) (Reservation)) .= Set{R11 , σ2-object4 , σ2-object7}
apply(subst perm-σ2)
apply(simp only: state.make-def R11-def σ2-object4-def σ2-object7-def )
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:

assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)

apply(subst state-update-vs-allInstances-generic-ntc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only:
assms, simp, rule const-StrictRefEqSet-including, simp, simp, simp)
apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp only: assms,

blast, simp, rule const-StrictRefEqSet-including, simp, simp, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeReservation-A-def )?)

lemma σ2-OclAllInstances-at-post-exec-Reservation :
assumes [simp]: (Reservation ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Reservation ((inC lient (σ2-object1C lient)))) = None
assumes [simp]: (Reservation ((inC lient (σ2-object2C lient)))) = None



276 APPENDIX C. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 2)

assumes [simp]: (Reservation ((inReservation (R11Reservation)))) 6= None
assumes [simp]: (Reservation ((inReservation (σ2-object4Reservation)))) 6= None
assumes [simp]: (Reservation ((inF light (F1F light)))) = None
assumes [simp]: (Reservation ((inF light (F2F light)))) = None
assumes [simp]: (Reservation ((inReservation (σ2-object7Reservation)))) 6= None
shows (st , σ2) |= (OclAllInstances-at-post (Reservation)) .= Set{R11 , σ2-object4 , σ2-object7}
unfolding OclAllInstances-at-post-def

by(rule σ2-OclAllInstances-generic-exec-Reservation, simp-all only: assms, simp-all)

lemma σ2-OclAllInstances-at-pre-exec-Reservation :
assumes [simp]: (Reservation ((inStaf f (S1Staf f )))) = None
assumes [simp]: (Reservation ((inC lient (σ2-object1C lient)))) = None
assumes [simp]: (Reservation ((inC lient (σ2-object2C lient)))) = None
assumes [simp]: (Reservation ((inReservation (R11Reservation)))) 6= None
assumes [simp]: (Reservation ((inReservation (σ2-object4Reservation)))) 6= None
assumes [simp]: (Reservation ((inF light (F1F light)))) = None
assumes [simp]: (Reservation ((inF light (F2F light)))) = None
assumes [simp]: (Reservation ((inReservation (σ2-object7Reservation)))) 6= None
shows (σ2 , st) |= (OclAllInstances-at-pre (Reservation)) .= Set{R11 , σ2-object4 , σ2-object7}
unfolding OclAllInstances-at-pre-def

by(rule σ2-OclAllInstances-generic-exec-Reservation, simp-all only: assms, simp-all)

lemma σ2-OclAllInstances-generic-exec-OclAny :
assumes [simp]: (OclAny ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (OclAny ((inC lient (σ2-object1C lient)))) 6= None
assumes [simp]: (OclAny ((inC lient (σ2-object2C lient)))) 6= None
assumes [simp]: (OclAny ((inReservation (R11Reservation)))) 6= None
assumes [simp]: (OclAny ((inReservation (σ2-object4Reservation)))) 6= None
assumes [simp]: (OclAny ((inF light (F1F light)))) 6= None
assumes [simp]: (OclAny ((inF light (F2F light)))) 6= None
assumes [simp]: (OclAny ((inReservation (σ2-object7Reservation)))) 6= None
assumes [simp]: (λ-. b(OclAny ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (σ2-object1C lient))))c) = ((((λ-. bbσ2-object1C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (σ2-object2C lient))))c) = ((((λ-. bbσ2-object2C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (R11Reservation))))c) = ((((λ-. bbR11Reservationcc)::·Reservation))
.oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (σ2-object4Reservation))))c) = ((((λ-.
bbσ2-object4Reservationcc)::·Reservation)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F1F light))))c) = ((((λ-. bbF1F lightcc)::·Flight)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F2F light))))c) = ((((λ-. bbF2F lightcc)::·Flight)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (σ2-object7Reservation))))c) = ((((λ-.
bbσ2-object7Reservationcc)::·Reservation)) .oclAsType(OclAny))
assumes [simp]: (

∧
a. (pre-post ((mk (a)))) = a)

shows (mk (σ2)) |= (OclAllInstances-generic (pre-post) (OclAny)) .= Set{S1 .oclAsType(OclAny) , σ2-object1 .oclAsType(OclAny)
, σ2-object2 .oclAsType(OclAny) , R11 .oclAsType(OclAny) , σ2-object4 .oclAsType(OclAny) , F1 .oclAsType(OclAny) , F2
.oclAsType(OclAny) , σ2-object7 .oclAsType(OclAny)}
apply(subst perm-σ2)
apply(simp only: state.make-def S1-def σ2-object1-def σ2-object2-def R11-def σ2-object4-def F1-def F2-def σ2-object7-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp



C.3. STATE (FLOOR 2) 277

only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )

apply(subst state-update-vs-allInstances-generic-tc, simp, simp, (metis distinct-oid distinct-length-2-or-more)?, simp
only: assms, blast, simp, rule const-StrictRefEqSet-including, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp del: OclAsTypeOclAny-Staff OclAsTypeOclAny-Client
OclAsTypeOclAny-Client OclAsTypeOclAny-Reservation OclAsTypeOclAny-Reservation OclAsTypeOclAny-Flight
OclAsTypeOclAny-Flight OclAsTypeOclAny-Reservation, simp, rule OclIncluding-cong, (simp only: assms[symmetric ])?,
simp add: valid-def OclValid-def bot-fun-def bot-option-def , (simp only: assms[symmetric ])?, simp add: valid-def OclValid-def
bot-fun-def bot-option-def )
apply(rule state-update-vs-allInstances-generic-empty)

by(simp-all only: assms, (simp-all add: OclAsTypeOclAny-A-def )?)

lemma σ2-OclAllInstances-at-post-exec-OclAny :
assumes [simp]: (OclAny ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (OclAny ((inC lient (σ2-object1C lient)))) 6= None
assumes [simp]: (OclAny ((inC lient (σ2-object2C lient)))) 6= None
assumes [simp]: (OclAny ((inReservation (R11Reservation)))) 6= None
assumes [simp]: (OclAny ((inReservation (σ2-object4Reservation)))) 6= None
assumes [simp]: (OclAny ((inF light (F1F light)))) 6= None
assumes [simp]: (OclAny ((inF light (F2F light)))) 6= None
assumes [simp]: (OclAny ((inReservation (σ2-object7Reservation)))) 6= None
assumes [simp]: (λ-. b(OclAny ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (σ2-object1C lient))))c) = ((((λ-. bbσ2-object1C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (σ2-object2C lient))))c) = ((((λ-. bbσ2-object2C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (R11Reservation))))c) = ((((λ-. bbR11Reservationcc)::·Reservation))
.oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (σ2-object4Reservation))))c) = ((((λ-.
bbσ2-object4Reservationcc)::·Reservation)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F1F light))))c) = ((((λ-. bbF1F lightcc)::·Flight)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F2F light))))c) = ((((λ-. bbF2F lightcc)::·Flight)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (σ2-object7Reservation))))c) = ((((λ-.
bbσ2-object7Reservationcc)::·Reservation)) .oclAsType(OclAny))
shows (st , σ2) |= (OclAllInstances-at-post (OclAny)) .= Set{S1 .oclAsType(OclAny) , σ2-object1 .oclAsType(OclAny) ,
σ2-object2 .oclAsType(OclAny) , R11 .oclAsType(OclAny) , σ2-object4 .oclAsType(OclAny) , F1 .oclAsType(OclAny) , F2
.oclAsType(OclAny) , σ2-object7 .oclAsType(OclAny)}
unfolding OclAllInstances-at-post-def

by(rule σ2-OclAllInstances-generic-exec-OclAny, simp-all only: assms, simp-all)

lemma σ2-OclAllInstances-at-pre-exec-OclAny :
assumes [simp]: (OclAny ((inStaf f (S1Staf f )))) 6= None
assumes [simp]: (OclAny ((inC lient (σ2-object1C lient)))) 6= None
assumes [simp]: (OclAny ((inC lient (σ2-object2C lient)))) 6= None
assumes [simp]: (OclAny ((inReservation (R11Reservation)))) 6= None



278 APPENDIX C. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 2)

assumes [simp]: (OclAny ((inReservation (σ2-object4Reservation)))) 6= None
assumes [simp]: (OclAny ((inF light (F1F light)))) 6= None
assumes [simp]: (OclAny ((inF light (F2F light)))) 6= None
assumes [simp]: (OclAny ((inReservation (σ2-object7Reservation)))) 6= None
assumes [simp]: (λ-. b(OclAny ((inStaf f (S1Staf f ))))c) = ((((λ-. bbS1Staf f cc)::·Staff )) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (σ2-object1C lient))))c) = ((((λ-. bbσ2-object1C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inC lient (σ2-object2C lient))))c) = ((((λ-. bbσ2-object2C lientcc)::·Client)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (R11Reservation))))c) = ((((λ-. bbR11Reservationcc)::·Reservation))
.oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (σ2-object4Reservation))))c) = ((((λ-.
bbσ2-object4Reservationcc)::·Reservation)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F1F light))))c) = ((((λ-. bbF1F lightcc)::·Flight)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inF light (F2F light))))c) = ((((λ-. bbF2F lightcc)::·Flight)) .oclAsType(OclAny))
assumes [simp]: (λ-. b(OclAny ((inReservation (σ2-object7Reservation))))c) = ((((λ-.
bbσ2-object7Reservationcc)::·Reservation)) .oclAsType(OclAny))
shows (σ2 , st) |= (OclAllInstances-at-pre (OclAny)) .= Set{S1 .oclAsType(OclAny) , σ2-object1 .oclAsType(OclAny) ,
σ2-object2 .oclAsType(OclAny) , R11 .oclAsType(OclAny) , σ2-object4 .oclAsType(OclAny) , F1 .oclAsType(OclAny) , F2
.oclAsType(OclAny) , σ2-object7 .oclAsType(OclAny)}
unfolding OclAllInstances-at-pre-def

by(rule σ2-OclAllInstances-generic-exec-OclAny, simp-all only: assms, simp-all)

ML 〈(Ty ′.check ([]) ( error(s)))〉

end

definition (state-interpretation-σ2 (τ)) = (state-σ2 (oid3 ) (oid4 ) (oid5 ) (oid6 ) (oid7 ) (oid8 ) (oid9 ) (oid10 ) (dd(S1 (τ))ee) (S1 )
(dd(σ2-object1 (τ))ee) (σ2-object1 ) (dd(σ2-object2 (τ))ee) (σ2-object2 ) (dd(R11 (τ))ee) (R11 ) (dd(σ2-object4 (τ))ee) (σ2-object4 )
(dd(F1 (τ))ee) (F1 ) (dd(F2 (τ))ee) (F2 ) (dd(σ2-object7 (τ))ee) (σ2-object7 ))

C.4 Transition (Floor 2)

locale transition-σ1-σ2 =
fixes oid3 :: nat
fixes oid4 :: nat
fixes oid5 :: nat
fixes oid6 :: nat
fixes oid7 :: nat
fixes oid8 :: nat
fixes oid9 :: nat
fixes oid10 :: nat
assumes distinct-oid: (distinct ([oid3 , oid4 , oid5 , oid6 , oid7 , oid8 , oid9 , oid10 ]))
fixes S1Staf f :: tyStaf f

fixes S1 :: ·Staff
assumes S1-def : S1 = (λ-. bbS1Staf f cc)
fixes σ2-object1C lient :: tyC lient

fixes σ2-object1 :: ·Client
assumes σ2-object1-def : σ2-object1 = (λ-. bbσ2-object1C lientcc)
fixes C1C lient :: tyC lient

fixes C1 :: ·Client
assumes C1-def : C1 = (λ-. bbC1C lientcc)
fixes σ2-object2C lient :: tyC lient

fixes σ2-object2 :: ·Client
assumes σ2-object2-def : σ2-object2 = (λ-. bbσ2-object2C lientcc)
fixes C2C lient :: tyC lient

fixes C2 :: ·Client
assumes C2-def : C2 = (λ-. bbC2C lientcc)
fixes R11Reservation :: tyReservation

fixes R11 :: ·Reservation
assumes R11-def : R11 = (λ-. bbR11Reservationcc)
fixes σ2-object4Reservation :: tyReservation

fixes σ2-object4 :: ·Reservation
assumes σ2-object4-def : σ2-object4 = (λ-. bbσ2-object4Reservationcc)
fixes R21Reservation :: tyReservation

fixes R21 :: ·Reservation
assumes R21-def : R21 = (λ-. bbR21Reservationcc)
fixes F1F light :: tyF light

fixes F1 :: ·Flight
assumes F1-def : F1 = (λ-. bbF1F lightcc)
fixes F2F light :: tyF light

fixes F2 :: ·Flight
assumes F2-def : F2 = (λ-. bbF2F lightcc)
fixes σ2-object7Reservation :: tyReservation



C.4. TRANSITION (FLOOR 2) 279

fixes σ2-object7 :: ·Reservation
assumes σ2-object7-def : σ2-object7 = (λ-. bbσ2-object7Reservationcc)

assumes σ1: (state-σ1 (oid3 ) (oid4 ) (oid5 ) (oid6 ) (oid7 ) (oid8 ) (oid9 ) (S1Staf f ) (S1 ) (C1C lient) (C1 ) (C2C lient) (C2 )
(R11Reservation) (R11 ) (R21Reservation) (R21 ) (F1F light) (F1 ) (F2F light) (F2 ))

assumes σ2: (state-σ2 (oid3 ) (oid4 ) (oid5 ) (oid6 ) (oid7 ) (oid8 ) (oid9 ) (oid10 ) (S1Staf f ) (S1 ) (σ2-object1C lient) (σ2-object1 )
(σ2-object2C lient) (σ2-object2 ) (R11Reservation) (R11 ) (σ2-object4Reservation) (σ2-object4 ) (F1F light) (F1 ) (F2F light)
(F2 ) (σ2-object7Reservation) (σ2-object7 ))
begin
interpretation state-σ1: state-σ1 oid3 oid4 oid5 oid6 oid7 oid8 oid9 S1Staf f S1 C1C lient C1 C2C lient C2 R11Reservation

R11 R21Reservation R21 F1F light F1 F2F light F2
by(rule σ1)

interpretation state-σ2: state-σ2 oid3 oid4 oid5 oid6 oid7 oid8 oid9 oid10 S1Staf f S1 σ2-object1C lient σ2-object1
σ2-object2C lient σ2-object2 R11Reservation R11 σ2-object4Reservation σ2-object4 F1F light F1 F2F light F2
σ2-object7Reservation σ2-object7
by(rule σ2)

definition σ1 = state-σ1.σ1

definition σ2 = state-σ2.σ2

lemma basic-σ1-σ2-wff :
assumes [simp]: (oid-of ((inStaf f (S1Staf f )))) = oid3
assumes [simp]: (oid-of ((inC lient (σ2-object1C lient)))) = oid4
assumes [simp]: (oid-of ((inC lient (C1C lient)))) = oid4
assumes [simp]: (oid-of ((inC lient (σ2-object2C lient)))) = oid5
assumes [simp]: (oid-of ((inC lient (C2C lient)))) = oid5
assumes [simp]: (oid-of ((inReservation (R11Reservation)))) = oid6
assumes [simp]: (oid-of ((inReservation (σ2-object4Reservation)))) = oid7
assumes [simp]: (oid-of ((inReservation (R21Reservation)))) = oid7
assumes [simp]: (oid-of ((inF light (F1F light)))) = oid8
assumes [simp]: (oid-of ((inF light (F2F light)))) = oid9
assumes [simp]: (oid-of ((inReservation (σ2-object7Reservation)))) = oid10
shows (WFF ((state-σ1.σ1 , state-σ2.σ2)))
proof − have [simp]: oid3 6= oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid3 6= oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid3 6= oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid3 6= oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid3 6= oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid3 6= oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid3 6= oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid4 6= oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid4 6= oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid4 6= oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid4 6= oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid4 6= oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid4 6= oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid4 6= oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid5 6= oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid5 6= oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid5 6= oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid5 6= oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid5 6= oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid5 6= oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid5 6= oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid6 6= oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid6 6= oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid6 6= oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid6 6= oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid6 6= oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid6 6= oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid6 6= oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid7 6= oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid7 6= oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid7 6= oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid7 6= oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid7 6= oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid7 6= oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid7 6= oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid8 6= oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid8 6= oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis



280 APPENDIX C. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 2)

proof − have [simp]: oid8 6= oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid8 6= oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid8 6= oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid8 6= oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid8 6= oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid9 6= oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid9 6= oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid9 6= oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid9 6= oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid9 6= oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid9 6= oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid9 6= oid10 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid10 6= oid3 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid10 6= oid4 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid10 6= oid5 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid10 6= oid6 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid10 6= oid7 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid10 6= oid8 by(metis distinct-oid distinct-length-2-or-more) show ?thesis
proof − have [simp]: oid10 6= oid9 by(metis distinct-oid distinct-length-2-or-more) show ?thesis

by(auto simp: WFF-def state-σ1.σ1-def state-σ2.σ2-def ) qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed
qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed
qed qed qed qed qed qed qed qed qed qed qed qed qed qed qed

lemma oid3σ1σ2-σ1-OclIsMaintained :
assumes [simp]: (oid-of (S1Staf f )) = oid3
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (S1 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def S1-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid3σ1σ2-σ2-OclIsMaintained :
assumes [simp]: (oid-of (S1Staf f )) = oid3
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (S1 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def S1-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid4σ1σ2-σ1-OclIsMaintained :
assumes [simp]: (oid-of (C1C lient)) = oid4
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (C1 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def C1-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid4σ1σ2-σ2-OclIsMaintained :
assumes [simp]: (oid-of (σ2-object1C lient)) = oid4
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (σ2-object1 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def σ2-object1-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid5σ1σ2-σ1-OclIsMaintained :
assumes [simp]: (oid-of (C2C lient)) = oid5
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (C2 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def C2-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid5σ1σ2-σ2-OclIsMaintained :
assumes [simp]: (oid-of (σ2-object2C lient)) = oid5
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (σ2-object2 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def σ2-object2-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid6σ1σ2-σ1-OclIsMaintained :
assumes [simp]: (oid-of (R11Reservation)) = oid6
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (R11 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def R11-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid6σ1σ2-σ2-OclIsMaintained :
assumes [simp]: (oid-of (R11Reservation)) = oid6
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (R11 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def R11-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid7σ1σ2-σ1-OclIsMaintained :
assumes [simp]: (oid-of (R21Reservation)) = oid7



C.4. TRANSITION (FLOOR 2) 281

shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (R21 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def R21-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid7σ1σ2-σ2-OclIsMaintained :
assumes [simp]: (oid-of (σ2-object4Reservation)) = oid7
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (σ2-object4 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def σ2-object4-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid8σ1σ2-σ1-OclIsMaintained :
assumes [simp]: (oid-of (F1F light)) = oid8
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (F1 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def F1-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid8σ1σ2-σ2-OclIsMaintained :
assumes [simp]: (oid-of (F1F light)) = oid8
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (F1 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def F1-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid9σ1σ2-σ1-OclIsMaintained :
assumes [simp]: (oid-of (F2F light)) = oid9
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (F2 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def F2-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid9σ1σ2-σ2-OclIsMaintained :
assumes [simp]: (oid-of (F2F light)) = oid9
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsMaintained (F2 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def F2-def OclIsMaintained-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)

lemma oid10σ1σ2-σ2-OclIsNew :
assumes [simp]: (oid-of (σ2-object7Reservation)) = oid10
shows (state-σ1.σ1 , state-σ2.σ2) |= (OclIsNew (σ2-object7 ))
apply(simp add: state-σ1.σ1-def state-σ2.σ2-def σ2-object7-def OclIsNew-def OclValid-def oid-of-option-def )

by((metis distinct-oid distinct-length-2-or-more)?)
end

definition (pp-σ1-σ2 (τ)) = (transition-σ1-σ2 (oid3 ) (oid4 ) (oid5 ) (oid6 ) (oid7 ) (oid8 ) (oid9 ) (oid10 ) (dd(S1 (τ))ee) (S1 )
(dd(σ2-object1 (τ))ee) (σ2-object1 ) (dd(C1 (τ))ee) (C1 ) (dd(σ2-object2 (τ))ee) (σ2-object2 ) (dd(C2 (τ))ee) (C2 ) (dd(R11 (τ))ee)
(R11 ) (dd(σ2-object4 (τ))ee) (σ2-object4 ) (dd(R21 (τ))ee) (R21 ) (dd(F1 (τ))ee) (F1 ) (dd(F2 (τ))ee) (F2 ) (dd(σ2-object7 (τ))ee)
(σ2-object7 ))

lemmas pp-oid-σ1-σ2 = oid3-def
oid4-def
oid5-def
oid6-def
oid7-def
oid8-def
oid9-def
oid10-def

lemmas pp-object-σ1-σ2 = S1-def
σ2-object1-def
C1-def
σ2-object2-def
C2-def
R11-def
σ2-object4-def
R21-def
F1-def
F2-def
σ2-object7-def

lemmas pp-object-ty-σ1-σ2 = S1Staf f -def
σ2-object1C lient-def
C1C lient-def
σ2-object2C lient-def
C2C lient-def
R11Reservation-def



282 APPENDIX C. THE FLIGHT MODEL (GENERATED THEORY, FLOOR 2)

σ2-object4Reservation-def
R21Reservation-def
F1F light-def
F2F light-def
σ2-object7Reservation-def

end



A
p

p
e

n
d

ix

D
HOL-OCL 2.0: The Overall Architecture

All figures of this chapter have been generated from the respective graphs internally generated by the command
thy_deps [Wen16b].

Figure D.1 is producing at the end one generated file, but two green boxes are depicted because the overall
theories imported by this generated file depends on if it is expected for this file to generate another file or not.
So we basically have two situations:

• “model generated (1)” represents the case where the file we are generating does not contain meta-
commands (so no dependencies are set to the main entry-point of the meta-tool),

• whereas “model generated (2)” depends on all components of the meta-tool for itself to be able to generate
another model, or just call particular type-checking functions defined in the library of the meta-tool.

283



284 APPENDIX D. HOL-OCL 2.0: THE OVERALL ARCHITECTURE

Isabelle/HOL

Featherweight OCL
(library)

Meta-Tool

Main

static

Transcendental

UML logic
Main

model
(at least one

shallow-mode)

model
generated (1)

model
generated (2)

model
(all in

deep-mode)

UML
OCL

generator
dynamic

Figure D.1: An overall view of HOL-OCL 2.0



285

Transcendental

UML logic
Types

base type
Void

collection
Set

collection
Bag

UML logic
Logic

UML logic
Tools

UML logic
Main

base type
String

UML logic
State

UML logic
Contracts

UML logic
Library

collection
Sequence

base type
Real

UML logic
PropertyPro�les

collection
Pair

base type
Integer

base type
Boolean

Figure D.2: The library of Featherweight OCL



286 APPENDIX D. HOL-OCL 2.0: THE OVERALL ARCHITECTURE

Main

RBT_Impl

Product_Lexorderstatic

List_lexord

isabelle
MainChar_ord

RBT

init_rbt

core_init

printer
init

printer
SML

printer
Pure

printer
UML_extended

printer
META

printer
UML

printer
Isabelle

printer

generator
static

generator
dynamic

parser
init

parser
UML_extended

parser
Pure

parser
META

parser
UML

meta
UML_extended

meta
META

meta
UML

meta
SML

meta
Isabelle

meta
Pure

init

�oor2
examp

core

�oor2
ctxt

�oor1
istypeof

�oor1
iskindof

�oor1
infra

�oor1
examp

�oor1
enum

�oor1
ctxt

�oor1
astype

�oor1
allinst

�oor1
access

Code_Char

Figure D.3: The meta-tool



A
p

p
e

n
d

ix

E
HOL-OCL 2.0: Defining Meta-Models

This chapter complements the chapter “Defining Meta-Models” of the document “A Meta-Model for the Isabelle
API” [TW15].

E.1 OCL Meta-Model aka. AST definition of OCL (I)

theory Meta-UML
imports ../../compiler-generic/meta-isabelle/Meta-Pure

../Init-rbt
begin

Type Definition
datatype ocl-collection = Set

| Sequence
| Ordered0
| Subsets0
| Union0
| Redefines0
| Derived0
| Qualifier0
| Nonunique0

datatype ocl-multiplicity-single = Mult-nat nat
| Mult-star
| Mult-infinity

record ocl-multiplicity = TyMult :: (ocl-multiplicity-single × ocl-multiplicity-single option) list
TyRole :: string option
TyCollect :: ocl-collection list

record ocl-ty-class-node = TyObjN-ass-switch :: nat
TyObjN-role-multip :: ocl-multiplicity
TyObjN-role-ty :: string

record ocl-ty-class = TyObj-name :: string
TyObj-ass-id :: nat
TyObj-ass-arity :: nat
TyObj-from :: ocl-ty-class-node
TyObj-to :: ocl-ty-class-node

datatype ocl-ty-obj-core = OclTyCore-pre string
| OclTyCore ocl-ty-class

datatype ocl-ty-obj = OclTyObj ocl-ty-obj-core
ocl-ty-obj-core list (∗ the ′and ′ semantics ∗)

list (∗ ′x # ... ′ means ′x < ... ′ ∗)
datatype ocl-ty = OclTy-base-void

| OclTy-base-boolean
| OclTy-base-integer
| OclTy-base-unlimitednatural
| OclTy-base-real
| OclTy-base-string
| OclTy-object ocl-ty-obj
| OclTy-collection ocl-multiplicity ocl-ty
| OclTy-pair ocl-ty ocl-ty

287



288 APPENDIX E. HOL-OCL 2.0: DEFINING META-MODELS

| OclTy-binding string option (∗ name ∗) × ocl-ty
| OclTy-arrow ocl-ty ocl-ty
| OclTy-class-syn string
| OclTy-enum string
| OclTy-raw string

datatype ocl-association-type = OclAssTy-native-attribute
| OclAssTy-association
| OclAssTy-composition
| OclAssTy-aggregation

datatype ocl-association-relation = OclAssRel (ocl-ty-obj × ocl-multiplicity) list
record ocl-association = OclAss-type :: ocl-association-type

OclAss-relation :: ocl-association-relation

datatype ocl-ctxt-prefix = OclCtxtPre | OclCtxtPost

datatype ocl-ctxt-term = T-pure term
string option

| T-to-be-parsed string
string

| T-lambda string ocl-ctxt-term
datatype ocl-prop = OclProp-ctxt string option ocl-ctxt-term

datatype ocl-ctxt-term-inv = T-inv bool ocl-prop
datatype ocl-ctxt-term-pp = T-pp ocl-ctxt-prefix ocl-prop

| T-invariant ocl-ctxt-term-inv

record ocl-ctxt-pre-post = Ctxt-fun-name :: string
Ctxt-fun-ty :: ocl-ty
Ctxt-expr :: ocl-ctxt-term-pp list

datatype ocl-ctxt-clause = Ctxt-pp ocl-ctxt-pre-post
| Ctxt-inv ocl-ctxt-term-inv

record ocl-ctxt = Ctxt-param :: string list
Ctxt-ty :: ocl-ty-obj
Ctxt-clause :: ocl-ctxt-clause list

datatype ocl-class = OclClass
string
(string (∗ name ∗) × ocl-ty) list
ocl-class list

record ocl-class-raw = ClassRaw-name :: ocl-ty-obj
ClassRaw-own :: (string (∗ name ∗) × ocl-ty) list
ClassRaw-clause :: ocl-ctxt-clause list
ClassRaw-abstract :: bool

datatype ocl-ass-class = OclAssClass ocl-association
ocl-class-raw

datatype ocl-class-synonym = OclClassSynonym string ocl-ty

datatype ocl-enum = OclEnum string string (∗ constructor name ∗) list

Extending the Meta-Model
definition T-lambdas = List.fold T-lambda
definition TyObjN-role-name = TyRole o TyObjN-role-multip
definition OclTy-class c = OclTy-object (OclTyObj (OclTyCore c) [])
definition OclTy-class-pre c = OclTy-object (OclTyObj (OclTyCore-pre c) [])
definition OclAss-relation ′ l = (case OclAss-relation l of OclAssRel l ⇒ l)

fun fold-pair-var where
fold-pair-var f t accu = (case t of
OclTy-pair t1 t2 ⇒ Option.bind (fold-pair-var f t1 accu) (fold-pair-var f t2 )
| OclTy-binding (Some v, t) ⇒ fold-pair-var f t (f (v, t) accu)
| OclTy-binding (None, t) ⇒ fold-pair-var f t accu
| OclTy-collection - t ⇒ fold-pair-var f t accu
| OclTy-arrow - - ⇒ None
| - ⇒ Some accu)

definition Ctxt-fun-ty-arg ctxt =



E.1. OCL META-MODEL AKA. AST DEFINITION OF OCL (I) 289

(case
fold-pair-var
Cons
(case Ctxt-fun-ty ctxt of OclTy-arrow t - ⇒ t

| t ⇒ t)
[]

of Some l ⇒ rev l)

definition Ctxt-fun-ty-out ctxt =
(case Ctxt-fun-ty ctxt of OclTy-arrow - t ⇒ Some t

| - ⇒ None)

definition map-pre-post f =
Ctxt-clause-update

(L.map
(λ Ctxt-pp ctxt ⇒

Ctxt-pp (Ctxt-expr-update
(L.map

(λ T-pp pref (OclProp-ctxt n e) ⇒
T-pp pref (OclProp-ctxt n (f pref ctxt e))
| x ⇒ x))

ctxt)
| x ⇒ x))

definition fold-pre-post f ctxt =
List.fold

(λ Ctxt-pp ctxt ⇒
f (rev (List.fold

(λ T-pp pref (OclProp-ctxt n e) ⇒ Cons (pref , n, e)
| - ⇒ id)

(Ctxt-expr ctxt) [])) ctxt
| - ⇒ id)

(Ctxt-clause ctxt)

definition map-invariant f-inv =
Ctxt-clause-update

(L.map
(λ Ctxt-pp ctxt ⇒

Ctxt-pp (Ctxt-expr-update
(L.map

(λ T-invariant ctxt ⇒ T-invariant (f-inv ctxt)
| x ⇒ x))

ctxt)
| Ctxt-inv ctxt ⇒ Ctxt-inv (f-inv ctxt)))

definition fold-invariant f-inv ctxt =
List.fold

(λ Ctxt-pp ctxt ⇒
List.fold

(λ T-invariant ctxt ⇒ f-inv ctxt
| - ⇒ id)

(Ctxt-expr ctxt)
| Ctxt-inv ctxt ⇒ f-inv ctxt)

(Ctxt-clause ctxt)

definition fold-invariant ′ inva =
rev (fst (fold-invariant (λ(T-inv - (OclProp-ctxt tit inva)) ⇒ λ (accu, n).

( (let tit = case tit of None ⇒ String.of-nat n
| Some tit ⇒ tit in

(tit, inva))
# accu

, Suc n))
inva
([], 0 )))

fun remove-binding where
remove-binding e = (λ OclTy-collection m ty ⇒ OclTy-collection m (remove-binding ty)

| OclTy-pair ty1 ty2 ⇒ OclTy-pair (remove-binding ty1 ) (remove-binding ty2 )
| OclTy-binding (-, ty) ⇒ remove-binding ty
| OclTy-arrow ty1 ty2 ⇒ OclTy-arrow (remove-binding ty1 ) (remove-binding ty2 )
| x ⇒ x) e



290 APPENDIX E. HOL-OCL 2.0: DEFINING META-MODELS

Class Translation Preliminaries
definition const-oid = 〈oid〉

definition var-ty-list = 〈list〉

definition var-ty-prod = 〈prod〉

definition const-oclany = 〈OclAny〉

definition single-multip =
List.list-all (λ (-, Some (Mult-nat n)) ⇒ n ≤ 1

| (Mult-nat n, None) ⇒ n ≤ 1
| - ⇒ False) o TyMult

fun fold-max-aux where
fold-max-aux f l l-acc accu = (case l of

[] ⇒ accu
| x # xs ⇒ fold-max-aux f xs (x # l-acc) (f x (L.flatten [rev l-acc, xs]) accu))

definition fold-max f l = fold-max-aux f (L.mapi Pair l) []

locale RBTS
begin
definition lookup m k = RBT .lookup m (String.to-list k)
definition insert where insert k = RBT .insert (String.to-list k)
definition map-entry k = RBT .map-entry (String.to-list k)
definition modify-def v k = RBT .modify-def v (String.to-list k)
definition keys m = L.map (λs. �s�) (RBT .keys m)
definition lookup2 m = (λ(k1 , k2 ). RBT .lookup2 m (String.to-list k1 , String.to-list k2 ))
definition insert2 = (λ(k1 , k2 ). RBT .insert2 (String.to-list k1 , String.to-list k2 ))
definition fold where fold f = RBT .fold (λc. f �c�)
definition entries m = L.map (map-prod (λc. �c�) id) (RBT .entries m)
end
lemmas [code] =

RBTS .lookup-def
RBTS .insert-def
RBTS .map-entry-def
RBTS .modify-def-def
RBTS .keys-def
RBTS .lookup2-def
RBTS .insert2-def
RBTS .fold-def
RBTS .entries-def

syntax -rbt-lookup :: - ⇒ - (lookup) translations lookup 
 CONST RBTS .lookup
syntax -rbt-insert :: - ⇒ - (insert) translations insert 
 CONST RBTS .insert
syntax -rbt-map-entry :: - ⇒ - (map ′-entry) translations map-entry 
 CONST RBTS .map-entry
syntax -rbt-modify-def :: - ⇒ - (modify ′-def ) translations modify-def 
 CONST RBTS .modify-def
syntax -rbt-keys :: - ⇒ - (keys) translations keys 
 CONST RBTS .keys
syntax -rbt-lookup2 :: - ⇒ - (lookup2 ) translations lookup2 
 CONST RBTS .lookup2
syntax -rbt-insert2 :: - ⇒ - (insert2 ) translations insert2 
 CONST RBTS .insert2
syntax -rbt-fold :: - ⇒ - (fold) translations fold 
 CONST RBTS .fold
syntax -rbt-entries :: - ⇒ - (entries) translations entries 
 CONST RBTS .entries

function (sequential) class-unflat-aux where

class-unflat-aux rbt rbt-inv rbt-cycle r =
(case lookup rbt-inv r of None ⇒

(case lookup rbt-cycle r of None (∗ cycle detection ∗) ⇒
map-option

(OclClass
r
(case lookup rbt r of Some l ⇒ l))

((λf0 f l.
let l = List.map f0 l in
if list-ex (λ None ⇒ True | - ⇒ False) l then
None

else
Some (f (List.map-filter id l))) (class-unflat-aux rbt rbt-inv (insert r () rbt-cycle))

id
([]))

| - ⇒ None)
| Some l ⇒

(case lookup rbt-cycle r of None (∗ cycle detection ∗) ⇒
map-option



E.1. OCL META-MODEL AKA. AST DEFINITION OF OCL (I) 291

(OclClass
r
(case lookup rbt r of Some l ⇒ l))

((λf0 f l.
let l = List.map f0 l in
if list-ex (λ None ⇒ True | - ⇒ False) l then
None

else
Some (f (List.map-filter id l))) (class-unflat-aux rbt rbt-inv (insert r () rbt-cycle))

id
(l))

| - ⇒ None))
by pat-completeness auto

termination
proof −
have arith-diff :

∧
a1 a2 (b :: Nat.nat). a1 = a2 =⇒ a1 > b =⇒ a1 − (b + 1 ) < a2 − b

by arith

have arith-less:
∧

(a:: Nat.nat) b c. b ≥ max (a + 1 ) c =⇒ a < b
by arith

have rbt-length:
∧
rbt-cycle r v. RBT .lookup rbt-cycle r = None =⇒

length (RBT .keys (RBT .insert r v rbt-cycle)) = length (RBT .keys rbt-cycle) + 1
apply(subst (1 2 ) distinct-card[symmetric], (rule distinct-keys)+)
apply(simp only: lookup-keys[symmetric], simp)
by (metis card-insert-if domIff finite-dom-lookup)

have rbt-fold-union ′′:
∧
ab a x k. dom (λb. if b = ab then Some a else k b) = {ab} ∪ dom k

by(auto)

have rbt-fold-union ′:
∧
l rbt-inv a.

dom (RBT .lookup (List.fold (λ(k, -). RBT .insert k a) l rbt-inv)) =
dom (map-of l) ∪ dom (RBT .lookup rbt-inv)

apply(rule-tac P = λrbt-inv . dom (RBT .lookup (List.fold (λ(k, -). RBT .insert k a) l rbt-inv)) =
dom (map-of l) ∪ dom (RBT .lookup rbt-inv) in allE, simp-all)

apply(induct-tac l, simp, rule allI )
apply(case-tac aa, simp)
apply(simp add: rbt-fold-union ′′)
done

have rbt-fold-union:
∧
rbt-cycle rbt-inv a.

dom (RBT .lookup (RBT .fold (λk -. RBT .insert k a) rbt-cycle rbt-inv)) =
dom (RBT .lookup rbt-cycle) ∪ dom (RBT .lookup rbt-inv)
apply(simp add: fold-fold)
apply(subst (2 ) map-of-entries[symmetric])
apply(rule rbt-fold-union ′)
done

have rbt-fold-eq:
∧
rbt-cycle rbt-inv a b.

dom (RBT .lookup (RBT .fold (λk -. RBT .insert k a) rbt-cycle rbt-inv)) =
dom (RBT .lookup (RBT .fold (λk -. RBT .insert k b) rbt-inv rbt-cycle))

by(simp add: rbt-fold-union Un-commute)

let ?len = λx. length (RBT .keys x)
let ?len-merge = λrbt-cycle rbt-inv. ?len (RBT .fold (λk -. RBT .insert k []) rbt-cycle rbt-inv)

have rbt-fold-large:
∧
rbt-cycle rbt-inv. ?len-merge rbt-cycle rbt-inv ≥ max (?len rbt-cycle) (?len rbt-inv)

apply(subst (1 2 3 ) distinct-card[symmetric], (rule distinct-keys)+)
apply(simp only: lookup-keys[symmetric], simp)
apply(subst (1 2 ) card-mono, simp-all)
apply(simp add: rbt-fold-union)+
done

have rbt-fold-eq:
∧
rbt-cycle rbt-inv r a.

RBT .lookup rbt-inv r = Some a =⇒
?len-merge (RBT .insert r () rbt-cycle) rbt-inv = ?len-merge rbt-cycle rbt-inv

apply(subst (1 2 ) distinct-card[symmetric], (rule distinct-keys)+)
apply(simp only: lookup-keys[symmetric])
apply(simp add: rbt-fold-union)
by (metis Un-insert-right insert-dom)

show ?thesis



292 APPENDIX E. HOL-OCL 2.0: DEFINING META-MODELS

apply(relation measure (λ(-, rbt-inv, rbt-cycle, -).
?len-merge rbt-cycle rbt-inv − ?len rbt-cycle)

, simp+)
unfolding RBTS .lookup-def RBTS .insert-def
apply(subst rbt-length, simp)
apply(rule arith-diff )
apply(rule rbt-fold-eq, simp)
apply(rule arith-less)
apply(subst rbt-length[symmetric], simp)
apply(rule rbt-fold-large)
done
qed
definition ty-obj-to-string = (λOclTyObj (OclTyCore-pre s) - ⇒ s)
definition cl-name-to-string = ty-obj-to-string o ClassRaw-name

definition normalize0 f l =
rev (snd (List.fold (λx (rbt, l).

let x0 = f x in
case RBT .lookup rbt x0 of
None ⇒ (RBT .insert x0 () rbt, x # l)
| Some - ⇒ (rbt, l))

l
(RBT .empty, [])))

definition class-unflat = (λ (l-class, l-ass).
let l =
let const-oclany ′ = OclTyCore-pre const-oclany

; rbt = (∗ fold classes:
set 〈OclAny〉 as default inherited class (for all classes linking to zero inherited classes) ∗)

insert
const-oclany
(ocl-class-raw.make (OclTyObj const-oclany ′ []) [] [] False)
(List.fold

(λ cflat ⇒
insert (cl-name-to-string cflat) (cflat (| ClassRaw-name := case ClassRaw-name cflat of OclTyObj n [] ⇒ OclTyObj

n [[const-oclany ′]] | x ⇒ x |)))
l-class
RBT .empty) in

(∗ fold associations:
add remaining ′object ′ attributes ∗)

L.map snd (entries (List.fold (λ (ass-oid, ass) ⇒
case let (l-none, l-some) = List.partition (λ(-, m). TyRole m = None) (OclAss-relation ′ ass ) in

L.flatten [l-none, normalize0 (λ(-, m). case TyRole m of Some s ⇒ String.to-list s) l-some] of
[] ⇒ id
| [-] ⇒ id
| l-rel ⇒
fold-max

(let n-rel = natural-of-nat (List.length l-rel) in
(λ (cpt-to, (name-to, category-to)).
case TyRole category-to of
Some role-to ⇒
List.fold (λ (cpt-from, (name-from, mult-from)).
let name-from = ty-obj-to-string name-from in
map-entry name-from (λcflat. cflat (| ClassRaw-own := (role-to,
OclTy-class (ocl-ty-class-ext const-oid ass-oid n-rel

(ocl-ty-class-node-ext cpt-from mult-from name-from ())
(ocl-ty-class-node-ext cpt-to category-to (ty-obj-to-string name-to) ())
())) # ClassRaw-own cflat |)))

| - ⇒ λ-. id))
l-rel) (L.mapi Pair l-ass) rbt)) in

class-unflat-aux
(List.fold (λ cflat. insert (cl-name-to-string cflat)

(normalize0 (String.to-list o fst) (L.map (map-prod id remove-binding) (ClassRaw-own cflat))))
l
RBT .empty)

(List.fold
(λ cflat.
case ClassRaw-name cflat of
OclTyObj n [] ⇒ id
| OclTyObj n l ⇒ case rev ([n] # l) of x0 # xs ⇒ λrbt.

snd (List.fold
(λ x (x0 , rbt).

(x, List.fold (λ OclTyCore-pre k ⇒ modify-def [] k (λl. L.flatten [L.map (λOclTyCore-pre s ⇒ s) x, l]))



E.1. OCL META-MODEL AKA. AST DEFINITION OF OCL (I) 293

x0
rbt))

xs
(x0 , rbt)))

l
RBT .empty)

RBT .empty
const-oclany)

definition class-unflat ′ x =
(case class-unflat x of None ⇒ OclClass const-oclany [] []

| Some tree ⇒ tree)

fun nb-class where
nb-class e = (λ OclClass - - l ⇒ Suc (List.fold (op + o nb-class) l 0 )) e

definition apply-optim-ass-arity ty-obj v =
(if TyObj-ass-arity ty-obj ≤ 2 then None
else Some v)

definition is-higher-order = (λ OclTy-collection - - ⇒ True | OclTy-pair - - ⇒ True | - ⇒ False)

definition parse-ty-raw = (λ OclTy-raw s ⇒ if s = 〈int〉 then OclTy-base-integer else OclTy-raw s
| x ⇒ x)

definition is-sequence = list-ex (λ Sequence ⇒ True | - ⇒ False) o TyCollect

fun str-of-ty where str-of-ty e =
(λ OclTy-base-void ⇒ 〈Void〉

| OclTy-base-boolean ⇒ 〈Boolean〉

| OclTy-base-integer ⇒ 〈Integer〉

| OclTy-base-unlimitednatural ⇒ 〈UnlimitedNatural〉
| OclTy-base-real ⇒ 〈Real〉
| OclTy-base-string ⇒ 〈String〉

| OclTy-object (OclTyObj (OclTyCore-pre s) -) ⇒ s
(∗| OclTy-object (OclTyObj (OclTyCore ty-obj) -)∗)
| OclTy-collection t ocl-ty ⇒ (if is-sequence t then

S .flatten [〈Sequence(〉, str-of-ty ocl-ty,〈)〉]
else
S .flatten [〈Set(〉, str-of-ty ocl-ty,〈)〉])

| OclTy-pair ocl-ty1 ocl-ty2 ⇒ S .flatten [〈Pair(〉, str-of-ty ocl-ty1 , 〈,〉, str-of-ty ocl-ty2 ,〈)〉]
| OclTy-binding (-, ocl-ty) ⇒ str-of-ty ocl-ty
| OclTy-class-syn s ⇒ s
| OclTy-enum s ⇒ s
| OclTy-raw s ⇒ S .flatten [〈´〉, s, 〈´〉]) e

definition ty-void = str-of-ty OclTy-base-void
definition ty-boolean = str-of-ty OclTy-base-boolean
definition ty-integer = str-of-ty OclTy-base-integer
definition ty-unlimitednatural = str-of-ty OclTy-base-unlimitednatural
definition ty-real = str-of-ty OclTy-base-real
definition ty-string = str-of-ty OclTy-base-string

definition pref-ty-enum s = 〈ty-enum〉 @@ String.isub s
definition pref-ty-syn s = 〈ty-syn〉 @@ String.isub s
definition pref-constr-enum s = 〈constr〉 @@ String.isub s

fun str-hol-of-ty-all where str-hol-of-ty-all f b e =
(λ OclTy-base-void ⇒ b 〈unit〉

| OclTy-base-boolean ⇒ b 〈bool〉
| OclTy-base-integer ⇒ b 〈int〉

| OclTy-base-unlimitednatural ⇒ b 〈nat〉

| OclTy-base-real ⇒ b 〈real〉
| OclTy-base-string ⇒ b 〈string〉

| OclTy-object (OclTyObj (OclTyCore-pre s) -) ⇒ b const-oid
| OclTy-object (OclTyObj (OclTyCore ty-obj) -) ⇒ f (b var-ty-list) [b (TyObj-name ty-obj)]
| OclTy-collection - ty ⇒ f (b var-ty-list) [str-hol-of-ty-all f b ty]
| OclTy-pair ty1 ty2 ⇒ f (b var-ty-prod) [str-hol-of-ty-all f b ty1 , str-hol-of-ty-all f b ty2 ]
| OclTy-binding (-, t) ⇒ str-hol-of-ty-all f b t
| OclTy-class-syn s ⇒ b (pref-ty-syn s)
| OclTy-enum s ⇒ b (pref-ty-enum s)
| OclTy-raw s ⇒ b s) e



294 APPENDIX E. HOL-OCL 2.0: DEFINING META-MODELS

definition print-infra-type-synonym-class-set-name name = 〈Set-〉 @@ name
definition print-infra-type-synonym-class-sequence-name name = 〈Sequence-〉 @@ name

fun get-class-hierarchy-strict-aux where
get-class-hierarchy-strict-aux dataty l-res =
(List.fold

(λ OclClass name l-attr dataty ⇒ λ l-res.
get-class-hierarchy-strict-aux dataty (OclClass name l-attr dataty # l-res))

dataty
l-res)

definition get-class-hierarchy-strict d = get-class-hierarchy-strict-aux d []

fun get-class-hierarchy ′-aux where
get-class-hierarchy ′-aux l-res (OclClass name l-attr dataty) =
(let l-res = OclClass name l-attr dataty # l-res in
case dataty of [] ⇒ rev l-res

| dataty ⇒ List.fold (λx acc. get-class-hierarchy ′-aux acc x) dataty l-res)
definition get-class-hierarchy ′ = get-class-hierarchy ′-aux []

definition get-class-hierarchy e = L.map (λ OclClass n l - ⇒ (n, l)) (get-class-hierarchy ′ e)
definition get-class-hierarchy-sub = (λ None ⇒ []

| Some next-dataty ⇒ get-class-hierarchy next-dataty)
definition get-class-hierarchy-sub ′ = (λ None ⇒ []

| Some next-dataty ⇒ get-class-hierarchy ′ next-dataty)

datatype position = EQ | LT | GT | UN ′

fun fold-less-gen where fold-less-gen f-gen f-jump f l = (case l of
x # xs ⇒ λacc. fold-less-gen f-gen f-jump f xs (f-gen (f x) xs (f-jump acc))
| [] ⇒ id)

definition fold-less2 = fold-less-gen List.fold

E.2 Translation of AST

definition var-in-pre-state = 〈in-pre-state〉

definition var-in-post-state = 〈in-post-state〉

definition var-at-when-hol-post = 〈〉

definition var-at-when-hol-pre = 〈at-pre〉

definition var-at-when-ocl-post = 〈〉

definition var-at-when-ocl-pre = 〈@pre〉

datatype ′a tmp-sub = Tsub ′a
record ′a inheritance =
Inh :: ′a
Inh-sib :: ( ′a × ′a list (∗ flat version of the 1st component ∗)) list
Inh-sib-unflat :: ′a list

datatype ′a tmp-inh = Tinh ′a
datatype ′a tmp-univ = Tuniv ′a
definition of-inh = (λTinh l ⇒ l)
definition of-linh = L.map Inh
definition of-linh-sib l = L.flatten (L.map snd (L.flatten (L.map Inh-sib l)))
definition of-sub = (λTsub l ⇒ l)
definition of-univ = (λTuniv l ⇒ l)
definition map-inh f = (λTinh l ⇒ Tinh (f l))
definition map-linh f cl = (| Inh = f (Inh cl)

, Inh-sib = L.map (map-prod f (L.map f )) (Inh-sib cl)
, Inh-sib-unflat = L.map f (Inh-sib-unflat cl) |)

fun fold-class-gen-aux where
fold-class-gen-aux l-inh f accu (OclClass name l-attr dataty) =

(let accu = f (λs. s @@ String.isub name)
name
l-attr
(Tinh l-inh)
(Tsub (get-class-hierarchy-strict dataty)) (∗ order : bfs or dfs (modulo reversing) ∗)
dataty
accu in

case dataty of [] ⇒ accu
| - ⇒

fst (List.fold
(λ node (accu, l-inh-l, l-inh-r).



E.2. TRANSLATION OF AST 295

( fold-class-gen-aux
( (| Inh = OclClass name l-attr dataty
, Inh-sib = L.flatten (L.map (L.map (λl. (l, get-class-hierarchy ′ l))) [l-inh-l, tl l-inh-r ])
, Inh-sib-unflat = L.flatten [l-inh-l, tl l-inh-r ] |)

# l-inh)
f accu node

, hd l-inh-r # l-inh-l
, tl l-inh-r))

dataty
(accu, [], dataty)))

definition fold-class-gen f accu expr =
(let (l-res, accu) =

fold-class-gen-aux
[]
(λ isub-name name l-attr l-inh l-subtree next-dataty (l-res, accu).
let (r , accu) = f isub-name name l-attr l-inh l-subtree next-dataty accu in
(r # l-res, accu))

([], accu)
expr in

(L.flatten l-res, accu))

definition map-class-gen f = fst o fold-class-gen
(λ isub-name name l-attr l-inh l-subtree last-d. λ () ⇒

(f isub-name name l-attr l-inh l-subtree last-d, ())) ()

definition add-hierarchy f x = (λisub-name name - - - -. f isub-name name (Tuniv (L.map fst (get-class-hierarchy x))))
definition add-hierarchy ′ f x = (λisub-name name - - - -. f isub-name name (Tuniv (get-class-hierarchy x)))
definition add-hierarchy ′′ f x = (λisub-name name l-attr - - -. f isub-name name (Tuniv (get-class-hierarchy x)) l-attr)
definition add-hierarchy ′′′ f x = (λisub-name name l-attr l-inh - next-dataty. f isub-name name (Tuniv (get-class-hierarchy x))
l-attr (map-inh (L.map (λ OclClass - l - ⇒ l) o of-linh) l-inh) next-dataty)
definition add-hierarchy ′′′′ f x = (λisub-name name l-attr l-inh l-subtree -. f isub-name name (Tuniv (get-class-hierarchy x))
l-attr (map-inh (L.map (λ OclClass - l - ⇒ l) o of-linh) l-inh) l-subtree)
definition add-hierarchy ′′′′′ f = (λisub-name name l-attr l-inh l-subtree. f isub-name name l-attr (of-inh l-inh) (of-sub l-subtree))
definition map-class f = map-class-gen (λisub-name name l-attr l-inh l-subtree next-dataty. [f isub-name name l-attr l-inh (Tsub
(L.map (λ OclClass n - - ⇒ n) (of-sub l-subtree))) next-dataty])
definition map-class ′ f = map-class-gen (λisub-name name l-attr l-inh l-subtree next-dataty. [f isub-name name l-attr l-inh
l-subtree next-dataty])
definition fold-class f = fold-class-gen (λisub-name name l-attr l-inh l-subtree next-dataty accu. let (x, accu) = f isub-name
name l-attr (map-inh of-linh l-inh) (Tsub (L.map (λ OclClass n - - ⇒ n) (of-sub l-subtree))) next-dataty accu in ([x], accu))
definition map-class-gen-h f x = map-class-gen (add-hierarchy f x) x
definition map-class-gen-h ′ f x = map-class-gen (add-hierarchy ′ f x) x
definition map-class-gen-h ′′ f x = map-class-gen (add-hierarchy ′′ f x) x
definition map-class-gen-h ′′′ f x = map-class-gen (add-hierarchy ′′′ f x) x
definition map-class-gen-h ′′′′ f x = map-class-gen (add-hierarchy ′′′′ (λisub-name name l-inherited l-attr l-inh l-subtree. f
isub-name name l-inherited l-attr l-inh (Tsub (L.map (λ OclClass n - - ⇒ n) (of-sub l-subtree)))) x) x
definition map-class-gen-h ′′′′′ f x = map-class-gen (add-hierarchy ′′′′′ f ) x
definition map-class-h f x = map-class (add-hierarchy f x) x
definition map-class-h ′ f x = map-class (add-hierarchy ′ f x) x
definition map-class-h ′′ f x = map-class (add-hierarchy ′′ f x) x
definition map-class-h ′′′ f x = map-class (add-hierarchy ′′′ f x) x
definition map-class-h ′′′′ f x = map-class (add-hierarchy ′′′′ f x) x
definition map-class-h ′′′′′ f x = map-class ′ (add-hierarchy ′′′′′ f ) x
definition map-class-arg-only f = map-class-gen (λ isub-name name l-attr - - -. case l-attr of [] ⇒ [] | l ⇒ f isub-name name l)
definition map-class-arg-only ′ f = map-class-gen (λ isub-name name l-attr l-inh l-subtree -.
case filter (λ OclClass - [] - ⇒ False | - ⇒ True) (of-linh (of-inh l-inh)) of

[] ⇒ []
| l ⇒ f isub-name name (l-attr , Tinh l, l-subtree))

definition map-class-arg-only0 f1 f2 u = map-class-arg-only f1 u @@@@ map-class-arg-only ′ f2 u
definition map-class-arg-only-var0 = (λf-expr f-app f-lattr isub-name name l-attr .
L.flatten (L.flatten (
L.map (λ(var-in-when-state, dot-at-when, attr-when).
L.flatten (L.map (λ l-attr . L.map (λ(attr-name, attr-ty).
f-app
isub-name
name
(var-in-when-state, dot-at-when)
attr-ty
(λs. s @@ String.isup attr-name)
(λs. f-expr s

[ case case attr-ty of
OclTy-object (OclTyObj (OclTyCore ty-obj) -) ⇒
apply-optim-ass-arity ty-obj



296 APPENDIX E. HOL-OCL 2.0: DEFINING META-MODELS

(let ty-obj = TyObj-from ty-obj in
case TyObjN-role-name ty-obj of

None => String.of-natural (TyObjN-ass-switch ty-obj)
| Some s => s)

| - ⇒ None of
None ⇒ mk-dot attr-name attr-when
| Some s2 ⇒ mk-dot-comment attr-name attr-when s2 ])) l-attr)

(f-lattr l-attr)))
[ (var-in-post-state, var-at-when-hol-post, var-at-when-ocl-post)
, (var-in-pre-state, var-at-when-hol-pre, var-at-when-ocl-pre)])))

definition map-class-arg-only-var-gen f-expr f1 f2 = map-class-arg-only0 (map-class-arg-only-var0 f-expr f1 (λl. [l]))
(map-class-arg-only-var0 f-expr f2 (λ (-, Tinh l, -) ⇒ L.map (λ OclClass - l - ⇒ l) l))
definition map-class-arg-only-var ′-gen f-expr f = map-class-arg-only0 (map-class-arg-only-var0 f-expr f (λl. [l]))
(map-class-arg-only-var0 f-expr f (λ (-, Tinh l, -) ⇒ L.map (λ OclClass - l - ⇒ l) l))
definition map-class-arg-only-var ′′-gen f-expr f = map-class-arg-only (map-class-arg-only-var0 f-expr f (λl. [l]))
definition map-class-one f-l f expr =

(case f-l (fst (fold-class (λisub-name name l-attr l-inh l-inh-sib next-dataty -. ((isub-name, name, l-attr , l-inh, l-inh-sib,
next-dataty), ())) () expr)) of

(isub-name, name, l-attr , l-inh, l-inh-sib, next-dataty) # - ⇒
f isub-name name l-attr l-inh l-inh-sib next-dataty)

definition map-class-top = map-class-one rev
definition get-hierarchy-map f f-l x = L.flatten (L.flatten (
let (l1 , l2 , l3 ) = f-l (L.map fst (get-class-hierarchy x)) in
L.map (λname1 . L.map (λname2 . L.map (f name1 name2 ) l3 ) l2 ) l1 ))

definition class-arity = RBT .keys o (λl. List.fold (λx. RBT .insert x ()) l RBT .empty) o
L.flatten o L.flatten o map-class (λ - - l-attr - - -.
L.map (λ (-, OclTy-object (OclTyObj (OclTyCore ty-obj) -)) ⇒ [TyObj-ass-arity ty-obj]

| - ⇒ []) l-attr)

definition map-class-gen-h ′-inh f =
map-class-gen-h ′′′′′ (λisub-name name - l-inh l-subtree -.
let l-mem = λl. List.member (L.map (λ OclClass n - - ⇒ String.to-list n) l) in
f isub-name
name
(λn. let n = String.to-list n in

if (∗ TODO use , ∗) n = String.to-list name then EQ else
if l-mem (of-linh l-inh) n then GT else
if l-mem l-subtree n then LT else
UN ′))

definition m-class-gen2 base-attr f print =
(let m-base-attr = λ OclClass n l b ⇒ OclClass n (base-attr l) b

; f-base-attr = L.map m-base-attr in
map-class-gen-h ′′′′′ (λisub-name name nl-attr l-inh l-subtree next-dataty.
f name
l-inh
l-subtree
(L.flatten (L.flatten (L.map (
let print-astype =

print
(L.map (map-linh m-base-attr) l-inh)
(f-base-attr l-subtree)
next-dataty

; nl-attr = base-attr nl-attr in
(λ(l-hierarchy, l).
L.map

(print-astype l-hierarchy (isub-name, name, nl-attr) o m-base-attr)
l))

[ (EQ, [OclClass name nl-attr next-dataty])
, (GT , of-linh l-inh)
, (LT , l-subtree)
, (UN ′, of-linh-sib l-inh) ])))))

definition f-less2 =
(λf l. rev (fst (fold-less2 (λ(l, -). (l, None)) (λx y (l, acc). (f x y acc # l, Some y)) l ([], None))))

(λa b -. (a,b))

definition m-class-gen3-GE base-attr f print =
(let m-base-attr = λ OclClass n l b ⇒ OclClass n (base-attr l) b

; f-base-attr = L.map m-base-attr in
map-class-gen-h ′′′′′ (λisub-name name nl-attr l-inh l-subtree next-dataty.
let print-astype =



E.2. TRANSLATION OF AST 297

print
(L.map (map-linh m-base-attr) l-inh)
(f-base-attr l-subtree)
next-dataty in

L.flatten
[ f (L.flatten (L.map (λ (l-hierarchy, l).

L.map (λ OclClass h-name - - ⇒ print-astype name h-name h-name) l)
[ (GT , of-linh l-inh) ]))

, f (L.flatten (L.map (λ (l-hierarchy, l).
L.map (λ (h-name, hh-name). print-astype name h-name hh-name) (f-less2 (L.map (λ OclClass n - - ⇒ n) l)))
[ (GT , of-linh l-inh) ]))

, f (L.flatten (L.map (λ (l-hierarchy, l).
L.flatten (L.map (λ OclClass h-name - - ⇒
L.map (λ OclClass sib-name - - ⇒ print-astype name sib-name h-name) (of-linh-sib l-inh)) l))

[ (GT , of-linh l-inh) ])) ]))

definition m-class-gen3 base-attr f print =
(let m-base-attr = λ OclClass n l b ⇒ OclClass n (base-attr l) b

; f-base-attr = L.map m-base-attr in
map-class-gen-h ′′′′′ (λisub-name name nl-attr l-inh l-subtree next-dataty.
let print-astype =

print
(L.map (map-linh m-base-attr) l-inh)
(f-base-attr l-subtree)
next-dataty in

f (L.flatten (
let l-tree = L.map (λ(cmp,l). (cmp, f-base-attr l))

[ (EQ, [OclClass name nl-attr next-dataty])
, (GT , of-linh l-inh)
, (LT , l-subtree)
, (UN ′, of-linh-sib l-inh) ] in

(λf . L.flatten (L.map (λ (l-hierarchy, l). L.map (f l-hierarchy) l) l-tree))
(λ l-hierarchy1 . λ OclClass h-name hl-attr hb ⇒
(λf . L.flatten (L.map (λ (l-hierarchy, l). L.map (f l-hierarchy) l) l-tree))
(λ l-hierarchy2 . λ OclClass hh-name hhl-attr hhb ⇒
print-astype
name
h-name
hh-name))))))

definition m-class-default = (λ- - -. id)
definition m-class base-attr f print = m-class-gen2 base-attr f (λ- - -. print)
definition m-class3-GE base-attr f print = m-class-gen3-GE base-attr f (λ- - -. print)
definition m-class ′ base-attr print =
m-class base-attr m-class-default (λ l-hierarchy x0 x1 . [ print l-hierarchy x0 x1 ])

definition map-class-nupl2 ′-inh f = List.map-filter id o
(m-class ′ id (λcompare (-, name, -). λ OclClass h-name - - ⇒

if compare = GT then Some (f name h-name) else None))

definition map-class-nupl2 ′-inh-large f = List.map-filter id o
(m-class ′ id (λcompare (-, name, -). λ OclClass h-name - - ⇒

if compare = GT
| compare = UN ′ then Some (f name h-name) else None))

definition map-class-nupl2 ′′-inh f = List.map-filter id o
(m-class-gen2 id m-class-default (λ l-inh - - compare (-, name, -). λ OclClass h-name - h-subtree ⇒

[ if compare = GT then
Some (f name h-name (L.map (λx. (x, List.member (of-linh l-inh) x)) h-subtree))

else
None]))

definition map-class-nupl2l ′-inh-gen f = List.map-filter id o
(m-class-gen2 id m-class-default (λ l-inh l-subtree - compare (-, name, -). λ OclClass h-name - - ⇒

[ if compare = GT then
Some (f l-subtree name (fst (List.fold (λx. λ (l, True, prev-x) ⇒ (l, True, prev-x)

| (l, False, prev-x) ⇒
case Inh x of OclClass n - next-d ⇒
( (x, L.map (λ OclClass n l next-d ⇒

(OclClass n l next-d, n = prev-x))
next-d)

# l
, n = h-name



298 APPENDIX E. HOL-OCL 2.0: DEFINING META-MODELS

, n))
l-inh
([], False, name))))

else
None]))

definition map-class-nupl2l ′-inh f = map-class-nupl2l ′-inh-gen (λ- x l. f x l)

definition map-class-nupl3 ′-LE ′-inh f = L.flatten o map-class-nupl2l ′-inh-gen (λl-subtree x l.
L.map

(λname-bot. f name-bot x l)
(x # L.map (λ OclClass n - - ⇒ n) l-subtree))

definition map-class-nupl3 ′-GE-inh = m-class3-GE id id

definition map-class-inh l-inherited = L.map (λ OclClass - l - ⇒ l) (of-inh (map-inh of-linh l-inherited))

definition find-inh name class =
(case fold-class

(λ- name0 - l-inh - - accu.
Pair () (if accu = None & name , name0 then

Some (L.map (λOclClass n - - ⇒ n) (of-inh l-inh))
else
accu))

None
class

of (-, Some l) ⇒ l)

end

E.3 OCL Meta-Model aka. AST definition of OCL (II)

theory Meta-UML-extended
imports ../../compiler-generic/Init
begin

Type Definition
datatype internal-oid = Oid nat
datatype internal-oids = Oids nat

nat
nat

datatype ocl-def-base = OclDefInteger string
| OclDefReal string (∗ integer digit (left) ∗) × string (∗ integer digit (right) ∗)
| OclDefString string

datatype ocl-data-shallow = ShallB-term ocl-def-base
| ShallB-str string
| ShallB-self internal-oid
| ShallB-list ocl-data-shallow list

datatype ′a ocl-list-attr = OclAttrNoCast ′a
| OclAttrCast

string
′a ocl-list-attr
′a

record ocl-instance-single = Inst-name :: string option
Inst-ty :: string option
Inst-attr-with :: string (∗ name ∗) option
Inst-attr :: (( (string (∗ pre state ∗) × string (∗ post state ∗)) option

(∗ state used when ocl-data-shallow is an object variable (for retrieving its oid) ∗)
× string (∗name∗)
× ocl-data-shallow) list) (∗ inh and own ∗)

ocl-list-attr

datatype ocl-instance = OclInstance ocl-instance-single list

datatype ocl-def-base-l = OclDefBase ocl-def-base list

datatype ′a ocl-def-state-core = OclDefCoreAdd ocl-instance-single



E.3. OCL META-MODEL AKA. AST DEFINITION OF OCL (II) 299

| OclDefCoreBinding ′a

datatype ocl-def-state = OclDefSt string
string (∗ name ∗) ocl-def-state-core list

datatype ocl-def-pp-core = OclDefPPCoreAdd string (∗ name ∗) ocl-def-state-core list
| OclDefPPCoreBinding string

datatype ocl-def-transition = OclDefPP
string option
ocl-def-pp-core
ocl-def-pp-core option

datatype ocl-class-tree = OclClassTree nat
nat

Object ID Management
definition oidInit = (λ Oid n ⇒ Oids n n n)

definition oidSucAssoc = (λ Oids n1 n2 n3 ⇒ Oids n1 (Succ n2 ) (Succ n3 ))
definition oidSucInh = (λ Oids n1 n2 n3 ⇒ Oids n1 n2 (Succ n3 ))
definition oidGetAssoc = (λ Oids - n - ⇒ Oid n)
definition oidGetInh = (λ Oids - - n ⇒ Oid n)

definition oidReinitAll = (λOids n1 - - ⇒ Oids n1 n1 n1 )
definition oidReinitInh = (λOids n1 n2 - ⇒ Oids n1 n2 n2 )

Operations of Fold, Map, ..., on the Meta-Model
definition ocl-instance-single-empty =

(| Inst-name = None, Inst-ty = None, Inst-attr-with = None, Inst-attr = OclAttrNoCast [] |)

fun map-data-shallow-self where
map-data-shallow-self f e = (λ ShallB-self s ⇒ f s

| ShallB-list l ⇒ ShallB-list (List.map (map-data-shallow-self f ) l)
| x ⇒ x) e

fun map-list-attr where
map-list-attr f e =

(λ OclAttrNoCast x ⇒ OclAttrNoCast (f x)
| OclAttrCast c-from l-attr x ⇒ OclAttrCast c-from (map-list-attr f l-attr) (f x)) e

definition map-instance-single f ocli = ocli (| Inst-attr := map-list-attr (L.map f ) (Inst-attr ocli) |)

fun fold-list-attr where
fold-list-attr cast-from f l-attr accu = (case l-attr of

OclAttrNoCast x ⇒ f cast-from x accu
| OclAttrCast c-from l-attr x ⇒ fold-list-attr (Some c-from) f l-attr (f cast-from x accu))

definition inst-ty0 ocli = (case Inst-ty ocli of Some ty ⇒ Some ty
| None ⇒ (case Inst-attr ocli of OclAttrCast ty - - ⇒ Some ty

| - ⇒ None))
definition inst-ty ocli = (case inst-ty0 ocli of Some ty ⇒ ty)

definition fold-instance-single f ocli = fold-list-attr (inst-ty0 ocli) (λ Some x ⇒ f x) (Inst-attr ocli)
definition fold-instance-single ′ f ocli = fold-list-attr (Inst-ty ocli) f (Inst-attr ocli)

definition str-of-def-base = (λ OclDefInteger - ⇒ 〈Integer〉

| OclDefReal - ⇒ 〈Real〉
| OclDefString - ⇒ 〈String〉)

fun ′ str-of-data-shallow where
〈str-of-data-shallow e = (λ ShallB-term b ⇒ str-of-def-base b

| ShallB-str s ⇒ 〈〉 @@ s @@ 〈〉

| ShallB-self - ⇒ 〈(∗object-oid∗)〉

| ShallB-list l ⇒ 〈[ 〉 @@ String-concatWith 〈, 〉 (List.map str-of-data-shallow l) @@ 〈 ]〉) e〉

definition map-inst-single-self f =
map-instance-single

(map-prod id
(map-prod id



300 APPENDIX E. HOL-OCL 2.0: DEFINING META-MODELS

(map-data-shallow-self f )))

end

E.4 Regrouping Together All Existing Meta-Models
theory Meta-META
imports Meta-UML

Meta-UML-extended
../../compiler-generic/meta-isabelle/Meta-Isabelle

begin

A Basic Meta-Model
The following basic Meta-Model is an empty Meta-Model.

Most of the Meta-Model we have defined (in particular those defined in UML) can be used in exceptional
situations for requiring an eager or lazy interactive evaluation of already encountered Meta-Models. This is
also the case for this basic Meta-Model.
datatype ocl-flush-all = OclFlushAll

The META Meta-Model (I)
datatype floor = Floor1 | Floor2 | Floor3

Meta-Models can be seen as arranged in a semantic tower with several floors. By default, Floor1 corresponds
to the first level we are situating by default, then a subsequent meta-evaluation would jump to a deeper floor,
to Floor2, then Floor3...

It is not mandatory to jump to a floor superior than the one we currently are. The important point is to be
sure that all jumps will ultimately terminate.

Most of the following constructors are preceded by an additional floor field, which explicitly indicates the
intended associated semantic to consider during the meta-embedding to Isabelle. In case no floor is precised,
we fix it to be Floor1 by default.

datatype all-meta-embedding =

META-enum ocl-enum
| META-class-raw floor ocl-class-raw
| META-association ocl-association
| META-ass-class floor ocl-ass-class
| META-ctxt floor ocl-ctxt

| META-class-synonym ocl-class-synonym
| META-instance ocl-instance
| META-def-base-l ocl-def-base-l
| META-def-state floor ocl-def-state
| META-def-transition floor ocl-def-transition
| META-class-tree ocl-class-tree
| META-flush-all ocl-flush-all

Main Compiling Environment
The environment constitutes the main data-structure carried by all monadic translations.

datatype generation-semantics-ocl = Gen-only-design | Gen-only-analysis | Gen-default
datatype generation-lemma-mode = Gen-sorry | Gen-no-dirty

record compiler-env-config = D-output-disable-thy :: bool
D-output-header-thy :: (string (∗ theory ∗)

× string list (∗ imports ∗)
× string (∗ import optional (compiler bootstrap) ∗)) option

D-ocl-oid-start :: internal-oids
D-output-position :: nat × nat



E.4. REGROUPING TOGETHER ALL EXISTING META-MODELS 301

D-ocl-semantics :: generation-semantics-ocl
D-input-class :: ocl-class option

D-input-meta :: all-meta-embedding list
D-input-instance :: (stringbase (∗ name (as key for rbt) ∗)

× ocl-instance-single
× internal-oids) list

D-input-state :: (stringbase (∗ name (as key for rbt) ∗)
× (internal-oids
× (string (∗ name ∗)
× ocl-instance-single (∗ alias ∗))
ocl-def-state-core) list) list

D-output-header-force :: bool
D-output-auto-bootstrap :: bool
D-ocl-accessor :: stringbase (∗ name of the constant added ∗) list (∗ pre ∗)

× stringbase (∗ name of the constant added ∗) list (∗ post ∗)
D-ocl-HO-type :: (stringbase (∗ raw HOL name (as key for rbt) ∗)) list
D-output-sorry-dirty :: generation-lemma-mode option × bool (∗ dirty ∗)

Operations of Fold, Map, ..., on the Meta-Model
definition ignore-meta-header = (λ META-ctxt Floor1 - ⇒ True

| META-def-state Floor1 - ⇒ True
| META-def-transition Floor1 - ⇒ True
| - ⇒ False)

As remark in ignore-meta-header, META-class-raw and META-ass-class do not occur, even if the associated
meta-commands will be put at the beginning when generating files during the reordering step. This is because
some values for which ignore-meta-header returns False can exist just before meta-commands associated to
META-class-raw or META-ass-class.
definition map2-ctxt-term f =
(let f-prop = λ OclProp-ctxt n prop ⇒ OclProp-ctxt n (f prop)

; f-inva = λ T-inv b prop ⇒ T-inv b (f-prop prop) in
λ META-ctxt Floor2 c ⇒
META-ctxt Floor2

(Ctxt-clause-update
(L.map (λ Ctxt-pp pp ⇒ Ctxt-pp (Ctxt-expr-update (L.map (λ T-pp pref prop ⇒ T-pp pref (f-prop prop)

| T-invariant inva ⇒ T-invariant (f-inva inva))) pp)
| Ctxt-inv l-inv ⇒ Ctxt-inv (f-inva l-inv))) c)

| x ⇒ x)

definition compiler-env-config-more-map f ocl =
compiler-env-config.extend (compiler-env-config.truncate ocl) (f (compiler-env-config.more ocl))

definition compiler-env-config-empty output-disable-thy output-header-thy oid-start design-analysis sorry-dirty =
compiler-env-config.make
output-disable-thy
output-header-thy
oid-start
(0 , 0 )
design-analysis
None [] [] [] False False ([], []) []
sorry-dirty

definition compiler-env-config-reset-no-env env =
compiler-env-config-empty

(D-output-disable-thy env)
(D-output-header-thy env)
(oidReinitAll (D-ocl-oid-start env))
(D-ocl-semantics env)
(D-output-sorry-dirty env)
(| D-input-meta := D-input-meta env |)

The META Meta-Model (II)
Type Definition



302 APPENDIX E. HOL-OCL 2.0: DEFINING META-MODELS

For bootstrapping the environment through the jumps to another semantic floor, we additionally consider the
environment as a Meta-Model.
datatype boot-generation-syntax = Boot-generation-syntax generation-semantics-ocl
datatype boot-setup-env = Boot-setup-env compiler-env-config

datatype all-meta =
META-semi--theories semi--theories

| META-boot-generation-syntax boot-generation-syntax
| META-boot-setup-env boot-setup-env
| META-all-meta-embedding all-meta-embedding

As remark, the Isabelle Meta-Model represented by semi--theories can be merged with the previous META
Meta-Model all-meta-embedding. However a corresponding parser and printer would then be required.

Extending the Meta-Model
locale O
begin
definition i x = META-semi--theories o Theories-one o x
definition datatype = i Theory-datatype
definition type-synonym = i Theory-type-synonym
definition type-notation = i Theory-type-notation
definition instantiation = i Theory-instantiation
definition overloading = i Theory-overloading
definition consts = i Theory-consts
definition definition = i Theory-definition
definition lemmas = i Theory-lemmas
definition lemma = i Theory-lemma
definition axiomatization = i Theory-axiomatization
definition section = i Theory-section
definition text = i Theory-text
definition text-raw = i Theory-text-raw
definition ML = i Theory-ML
definition setup = i Theory-setup
definition thm = i Theory-thm
definition interpretation = i Theory-interpretation
end

lemmas [code] =

O.i-def
O.datatype-def
O.type-synonym-def
O.type-notation-def
O.instantiation-def
O.overloading-def
O.consts-def
O.definition-def
O.lemmas-def
O.lemma-def
O.axiomatization-def
O.section-def
O.text-def
O.text-raw-def
O.ML-def
O.setup-def
O.thm-def
O.interpretation-def

locale O ′

begin
definition datatype = Theory-datatype
definition type-synonym = Theory-type-synonym
definition type-notation = Theory-type-notation
definition instantiation = Theory-instantiation
definition overloading = Theory-overloading
definition consts = Theory-consts
definition definition = Theory-definition
definition lemmas = Theory-lemmas
definition lemma = Theory-lemma



E.4. REGROUPING TOGETHER ALL EXISTING META-MODELS 303

definition axiomatization = Theory-axiomatization
definition section = Theory-section
definition text = Theory-text
definition ML = Theory-ML
definition setup = Theory-setup
definition thm = Theory-thm
definition interpretation = Theory-interpretation
end

lemmas [code] =

O ′.datatype-def
O ′.type-synonym-def
O ′.type-notation-def
O ′.instantiation-def
O ′.overloading-def
O ′.consts-def
O ′.definition-def
O ′.lemmas-def
O ′.lemma-def
O ′.axiomatization-def
O ′.section-def
O ′.text-def
O ′.ML-def
O ′.setup-def
O ′.thm-def
O ′.interpretation-def

Operations of Fold, Map, ..., on the Meta-Model
definition map-semi--theory f = (λ META-semi--theories (Theories-one x) ⇒ META-semi--theories (Theories-one (f x))

| META-semi--theories (Theories-locale data l) ⇒ META-semi--theories (Theories-locale data (L.map
(L.map f ) l))

| x ⇒ x)

end





A
p

p
e

n
d

ix

F
HOL-OCL 2.0: Translating Meta-Models

For space reasons, we will skip the presentation of all packaging functions and only present their final assembling.
(As detailed in Section 5.3, a packaging function is a mapping between two meta-models.)

F.1 General Environment for the Translation: Conclusion
theory Core
imports core/Floor1-enum

core/Floor1-infra
core/Floor1-astype
core/Floor1-istypeof
core/Floor1-iskindof
core/Floor1-allinst
core/Floor1-access
core/Floor1-examp
core/Floor2-examp
core/Floor1-ctxt
core/Floor2-ctxt

begin

Preliminaries
datatype ′a embedding-fun = Embedding-fun-info string ′a

| Embedding-fun-simple ′a

datatype ( ′a, ′b) embedding = Embed-theories ( ′a ⇒ ′b ⇒ all-meta list × ′b) embedding-fun list
| Embed-locale ( ′a ⇒ ′b ⇒ all-meta list × ′b) embedding-fun list

′a ⇒ ′b ⇒ semi--locale × ′b
( ′a ⇒ ′b ⇒ semi--theory list × ′b) list
( ′a ⇒ ′b ⇒ all-meta list × ′b) embedding-fun list

type-synonym ′a embedding ′ = ( ′a, compiler-env-config) embedding

definition L-fold f =
(let f-locale = λloc-data l.

f (Embedding-fun-simple (λa b.
let (loc-data, b) = loc-data a b

; (l, b) = List.fold (λf0 . λ(l, b) ⇒ let (x, b) = f0 a b in (x # l, b)) l ([], b) in
([META-semi--theories (Theories-locale loc-data (rev l))], b))) in

λ Embed-theories l ⇒ List.fold f l
| Embed-locale l-th1 loc-data l-loc l-th2 ⇒ List.fold f l-th2 o f-locale loc-data l-loc o List.fold f l-th1 )

Preliminaries: Setting Up Aliases Names
ML〈

local
fun definition s = (#2 oo Specification.definition-cmd (NONE, ((@{binding }, []), s))) true
fun def-info lhs rhs = definition (lhs ^ = ^

@{const-name Embedding-fun-info} ^
(〈 ^ rhs ^ 〉) ^
rhs)

fun name-print x = String.implode (case String.explode (Long-Name.base-name x) of
#p :: #r :: #i :: #n :: #t :: #- :: l => l

305



306 APPENDIX F. HOL-OCL 2.0: TRANSLATING META-MODELS

| - => error ′print ′ expected)
fun name x = PRINT- ^ name-print x
fun name1 x = floor1-PRINT- ^ name-print x
fun name2 x = floor2-PRINT- ^ name-print x
in
fun embedding-fun-info rhs = def-info (name rhs) rhs
fun embedding-fun-simple rhs = definition (name rhs ^ = ^

@{const-name Embedding-fun-simple} ^ ( ^ rhs ^ ))
fun embedding-fun-info-f1 rhs = def-info (name1 rhs) rhs
fun embedding-fun-simple-f1 rhs = definition (name1 rhs ^ = ^

@{const-name Embedding-fun-simple} ^ ( ^ rhs ^ ))
fun embedding-fun-info-f2 rhs = def-info (name2 rhs) rhs
fun embedding-fun-simple-f2 rhs = definition (name2 rhs ^ = ^

@{const-name Embedding-fun-simple} ^ ( ^ rhs ^ ))
fun emb-info rhs = def-info (Long-Name.base-name rhs ^ inf o) rhs
fun emb-simple rhs = definition (Long-Name.base-name rhs ^ simple ^ = ^

@{const-name Embedding-fun-simple} ^ ( ^ rhs ^ ))
end
〉

local-setup 〈embedding-fun-info @{const-name print-infra-enum-synonym}〉

local-setup 〈embedding-fun-info @{const-name print-latex-infra-datatype-class}〉

local-setup 〈embedding-fun-info @{const-name print-infra-datatype-class}〉

local-setup 〈embedding-fun-info @{const-name print-infra-datatype-universe}〉

local-setup 〈embedding-fun-info @{const-name print-infra-type-synonym-class}〉

local-setup 〈embedding-fun-info @{const-name print-infra-type-synonym-class-higher}〉

local-setup 〈embedding-fun-info @{const-name print-infra-type-synonym-class-rec}〉

local-setup 〈embedding-fun-info @{const-name print-infra-enum-syn}〉

local-setup 〈embedding-fun-info @{const-name print-infra-instantiation-class}〉

local-setup 〈embedding-fun-info @{const-name print-infra-instantiation-universe}〉

local-setup 〈embedding-fun-info @{const-name print-instantia-def-strictrefeq}〉

local-setup 〈embedding-fun-info @{const-name print-instantia-lemmas-strictrefeq}〉

local-setup 〈embedding-fun-info @{const-name print-astype-consts}〉

local-setup 〈embedding-fun-info @{const-name print-astype-class}〉

local-setup 〈embedding-fun-info @{const-name print-astype-from-universe}〉

local-setup 〈embedding-fun-info @{const-name print-astype-lemmas-id}〉

local-setup 〈embedding-fun-info @{const-name print-astype-lemma-cp}〉

local-setup 〈embedding-fun-info @{const-name print-astype-lemmas-cp}〉

local-setup 〈embedding-fun-info @{const-name print-astype-lemma-strict}〉

local-setup 〈embedding-fun-info @{const-name print-astype-lemmas-strict}〉

local-setup 〈embedding-fun-info @{const-name print-astype-defined}〉

local-setup 〈embedding-fun-info @{const-name print-astype-up-d-cast0}〉

local-setup 〈embedding-fun-info @{const-name print-astype-up-d-cast}〉

local-setup 〈embedding-fun-info @{const-name print-astype-d-up-cast}〉

local-setup 〈embedding-fun-info @{const-name print-astype-lemma-const}〉

local-setup 〈embedding-fun-info @{const-name print-astype-lemmas-const}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-consts}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-class}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-from-universe}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-lemmas-id}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-lemma-cp}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-lemmas-cp}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-lemma-strict}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-lemmas-strict}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-defined}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-defined ′}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-up-larger}〉

local-setup 〈embedding-fun-info @{const-name print-istypeof-up-d-cast}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-consts}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-class}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-from-universe}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-lemmas-id}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-lemma-cp}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-lemmas-cp}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-lemma-strict}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-lemmas-strict}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-defined}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-defined ′}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-up-eq-asty}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-up-larger}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-up-istypeof-unfold}〉

local-setup 〈embedding-fun-info @{const-name print-iskindof-up-istypeof }〉



F.1. GENERAL ENVIRONMENT FOR THE TRANSLATION: CONCLUSION 307

local-setup 〈embedding-fun-info @{const-name print-iskindof-up-d-cast}〉

local-setup 〈embedding-fun-info @{const-name print-allinst-def-id}〉

local-setup 〈embedding-fun-info @{const-name print-allinst-lemmas-id}〉

local-setup 〈embedding-fun-info @{const-name print-allinst-astype}〉

local-setup 〈embedding-fun-info @{const-name print-allinst-exec}〉

local-setup 〈embedding-fun-info @{const-name print-allinst-istypeof-pre}〉

local-setup 〈embedding-fun-info @{const-name print-allinst-istypeof }〉

local-setup 〈embedding-fun-info @{const-name print-allinst-iskindof-eq}〉

local-setup 〈embedding-fun-info @{const-name print-allinst-iskindof-larger}〉

local-setup 〈embedding-fun-info @{const-name print-access-oid-uniq-ml}〉

local-setup 〈embedding-fun-info @{const-name print-access-oid-uniq}〉

local-setup 〈embedding-fun-info @{const-name print-access-eval-extract}〉

local-setup 〈embedding-fun-info @{const-name print-access-choose-ml}〉

local-setup 〈embedding-fun-info @{const-name print-access-choose}〉

local-setup 〈embedding-fun-info @{const-name print-access-deref-oid}〉

local-setup 〈embedding-fun-info @{const-name print-access-deref-assocs}〉

local-setup 〈embedding-fun-info @{const-name print-access-select}〉

local-setup 〈embedding-fun-info @{const-name print-access-select-obj}〉

local-setup 〈embedding-fun-info @{const-name print-access-dot-consts}〉

local-setup 〈embedding-fun-info @{const-name print-access-dot}〉

local-setup 〈embedding-fun-info @{const-name print-access-dot-lemmas-id}〉

local-setup 〈embedding-fun-info @{const-name print-access-dot-cp-lemmas}〉

local-setup 〈embedding-fun-info @{const-name print-access-dot-lemma-cp}〉

local-setup 〈embedding-fun-info @{const-name print-access-dot-lemmas-cp}〉

local-setup 〈embedding-fun-info @{const-name print-access-lemma-strict}〉

local-setup 〈embedding-fun-info @{const-name print-access-def-mono}〉

local-setup 〈embedding-fun-info @{const-name print-access-is-repr}〉

local-setup 〈embedding-fun-info @{const-name print-access-repr-allinst}〉

local-setup 〈embedding-fun-info @{const-name print-examp-def-st-defs}〉

local-setup 〈embedding-fun-info @{const-name print-astype-lemmas-id2}〉

local-setup 〈embedding-fun-info @{const-name print-enum}〉

local-setup 〈embedding-fun-info @{const-name print-examp-instance-defassoc-typecheck-var}〉

local-setup 〈embedding-fun-info @{const-name print-examp-instance-defassoc}〉

local-setup 〈embedding-fun-info @{const-name print-examp-instance}〉

local-setup 〈embedding-fun-info @{const-name print-examp-instance-defassoc-typecheck}〉

local-setup 〈embedding-fun-info @{const-name print-examp-oclbase}〉

local-setup 〈embedding-fun-info-f1 @{const-name Floor1-examp.print-examp-def-st-typecheck-var}〉

local-setup 〈embedding-fun-info-f1 @{const-name Floor1-examp.print-examp-def-st1}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-locale}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st2}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-dom}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-dom-lemmas}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-perm}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-allinst}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-defassoc-typecheck}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-examp-def-st-def-interp}〉

local-setup 〈embedding-fun-info-f1 @{const-name Floor1-examp.print-transition}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-locale}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-interp}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-def-state}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-wff }〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-where}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-def-interp}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-examp.print-transition-lemmas-oid}〉

local-setup 〈embedding-fun-info-f1 @{const-name Floor1-ctxt.print-ctxt}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-ctxt.print-ctxt-pre-post}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-ctxt.print-ctxt-inv}〉

local-setup 〈embedding-fun-info-f2 @{const-name Floor2-ctxt.print-ctxt-thm}〉

local-setup 〈embedding-fun-info @{const-name print-meta-setup-def-state}〉

local-setup 〈embedding-fun-info @{const-name print-meta-setup-def-transition}〉

Assembling Translations
definition section-aux n s = start-map ′ (λ-. [ O.section (Section n s) ])
definition section = section-aux 0
definition subsection = section-aux 1
definition subsubsection = section-aux 2
definition txt f = Embedding-fun-simple (start-map ′′′′′′ O.text o (λ- n-thy design-analysis. [Text (f n-thy design-analysis)]))
definition txt-raw f = Embedding-fun-simple (start-map ′′′′′′ O.text-raw o (λ- n-thy design-analysis. [Text-raw (f n-thy
design-analysis)]))
definition txt ′ s = txt (λ- -. s)
definition txt ′′ = txt ′ o S .flatten
definition txt ′′d s = txt (λ -. λ Gen-only-design ⇒ S .flatten (s) | - ⇒ 〈〉)



308 APPENDIX F. HOL-OCL 2.0: TRANSLATING META-MODELS

definition txt ′′d ′ s = txt (λ n-thy. λ Gen-only-design ⇒ S .flatten (s n-thy) | - ⇒ 〈〉)
definition txt-raw ′′d ′ s = txt-raw (λ n-thy. λ Gen-only-design ⇒ S .flatten (s n-thy) | - ⇒ 〈〉)
definition txt ′′a s = txt (λ -. λ Gen-only-design ⇒ 〈〉 | - ⇒ S .flatten s)
definition txt ′′a ′ s = txt (λ n-thy. λ Gen-only-design ⇒ 〈〉 | - ⇒ S .flatten (s n-thy))
definition txt-raw ′′a ′ s = txt-raw (λ n-thy. λ Gen-only-design ⇒ 〈〉 | - ⇒ S .flatten (s n-thy))

definition ′ thy-class ::

- embedding ′ where 〈thy-class =
(let section = Embedding-fun-simple o section o (λs. 〈Class Model: 〉 @@ s)

; subsection = Embedding-fun-simple o subsection
; subsection-def = subsection 〈Definition〉

; subsection-cp = subsection 〈Context Passing〉

; subsection-exec = subsection 〈Execution with Invalid or Null as Argument〉

; subsection-defined = subsection 〈Validity and Definedness Properties〉

; subsection-up = subsection 〈Up Down Casting〉

; subsection-const = subsection 〈Const〉 in
(Embed-theories o L.flatten)

[ [ PRINT-infra-enum-synonym ]
, [ section 〈The Construction of the Object Universe〉

(∗, PRINT-latex-infra-datatype-class∗)
, PRINT-infra-datatype-class
, PRINT-infra-datatype-universe
, PRINT-infra-type-synonym-class
, PRINT-infra-type-synonym-class-higher
, PRINT-infra-type-synonym-class-rec
, PRINT-infra-enum-syn
, PRINT-infra-instantiation-class
, PRINT-infra-instantiation-universe

, section 〈Instantiation of the Generic Strict Equality〉

, PRINT-instantia-def-strictrefeq
, PRINT-instantia-lemmas-strictrefeq ]

, L.flatten (L.map (λ(title, body-def , body-cp, body-exec, body-defined, body-up, body-const).
section title # L.flatten [ subsection-def # body-def

, subsection-cp # body-cp
, subsection-exec # body-exec
, subsection-defined # body-defined
, subsection-up # body-up
, subsection-const # body-const ])

[ (〈OclAsType〉,
[ PRINT-astype-consts
, PRINT-astype-class
, PRINT-astype-from-universe
, PRINT-astype-lemmas-id ]
, [ PRINT-astype-lemma-cp
, PRINT-astype-lemmas-cp ]
, [ PRINT-astype-lemma-strict
, PRINT-astype-lemmas-strict ]
, [ PRINT-astype-defined ]
, [ PRINT-astype-up-d-cast0
, PRINT-astype-up-d-cast
, PRINT-astype-d-up-cast ]
, [ PRINT-astype-lemma-const
, PRINT-astype-lemmas-const ])

, (〈OclIsTypeOf 〉,
[ PRINT-istypeof-consts
, PRINT-istypeof-class
, PRINT-istypeof-from-universe
, PRINT-istypeof-lemmas-id ]
, [ PRINT-istypeof-lemma-cp
, PRINT-istypeof-lemmas-cp ]
, [ PRINT-istypeof-lemma-strict
, PRINT-istypeof-lemmas-strict ]
, [ PRINT-istypeof-defined
, PRINT-istypeof-defined ′ ]
, [ PRINT-istypeof-up-larger
, PRINT-istypeof-up-d-cast ]
, [])

, (〈OclIsKindOf 〉,



F.1. GENERAL ENVIRONMENT FOR THE TRANSLATION: CONCLUSION 309

[ PRINT-iskindof-consts
, PRINT-iskindof-class
, PRINT-iskindof-from-universe
, PRINT-iskindof-lemmas-id ]
, [ PRINT-iskindof-lemma-cp
, PRINT-iskindof-lemmas-cp ]
, [ PRINT-iskindof-lemma-strict
, PRINT-iskindof-lemmas-strict ]
, [ PRINT-iskindof-defined
, PRINT-iskindof-defined ′ ]
, [ PRINT-iskindof-up-eq-asty
, PRINT-iskindof-up-larger
, PRINT-iskindof-up-istypeof-unfold
, PRINT-iskindof-up-istypeof
, PRINT-iskindof-up-d-cast ]
, []) ])

, [ section 〈OclAllInstances〉

, PRINT-allinst-def-id
, PRINT-allinst-lemmas-id
, PRINT-allinst-astype
, PRINT-allinst-exec
, subsection 〈OclIsTypeOf 〉

, PRINT-allinst-istypeof-pre
, PRINT-allinst-istypeof
, subsection 〈OclIsKindOf 〉

, PRINT-allinst-iskindof-eq
, PRINT-allinst-iskindof-larger

, section 〈The Accessors〉

, subsection-def
, PRINT-access-oid-uniq-ml
, PRINT-access-oid-uniq
, PRINT-access-eval-extract
, PRINT-access-choose-ml
, PRINT-access-choose
, PRINT-access-deref-oid
, PRINT-access-deref-assocs
, PRINT-access-select
, PRINT-access-select-obj
, PRINT-access-dot-consts
, PRINT-access-dot
, PRINT-access-dot-lemmas-id
, subsection-cp
, PRINT-access-dot-cp-lemmas
, PRINT-access-dot-lemma-cp
, PRINT-access-dot-lemmas-cp
, subsection-exec
, PRINT-access-lemma-strict
, subsection 〈Representation in States〉

, PRINT-access-def-mono
, PRINT-access-is-repr
, PRINT-access-repr-allinst

, section 〈Towards the Object Instances〉

, PRINT-examp-def-st-defs
, PRINT-astype-lemmas-id2 ] ])〉

definition thy-enum-flat = Embed-theories []
definition thy-enum :: - embedding ′ where

thy-enum = Embed-theories [ Embedding-fun-simple (section (〈Enum〉))
, PRINT-enum ]

definition thy-class-synonym = Embed-theories []
definition thy-class-tree = Embed-theories []
definition thy-class-flat = Embed-theories []
definition thy-association = Embed-theories []
definition thy-instance :: - embedding ′ where

thy-instance = Embed-theories
[ Embedding-fun-simple (section (〈Instance〉))
, PRINT-examp-instance-defassoc-typecheck-var
, PRINT-examp-instance-defassoc
, PRINT-examp-instance
, PRINT-examp-instance-defassoc-typecheck ]



310 APPENDIX F. HOL-OCL 2.0: TRANSLATING META-MODELS

definition thy-def-base-l :: - embedding ′ where
thy-def-base-l = Embed-theories [ Embedding-fun-simple (section (〈BaseType〉))

, PRINT-examp-oclbase ]
definition thy-def-state = (λ Floor1 ⇒ Embed-theories

[ Embedding-fun-simple (section (〈State (Floor 1 )〉))
, floor1-PRINT-examp-def-st-typecheck-var
, floor1-PRINT-examp-def-st1 ]

| Floor2 ⇒ Embed-locale
[ Embedding-fun-simple (section (〈State (Floor 2 )〉)) ]
Floor2-examp.print-examp-def-st-locale
[ Floor2-examp.print-examp-def-st2
, Floor2-examp.print-examp-def-st-dom
, Floor2-examp.print-examp-def-st-dom-lemmas
, Floor2-examp.print-examp-def-st-perm
, Floor2-examp.print-examp-def-st-allinst
, Floor2-examp.print-examp-def-st-defassoc-typecheck ]
[ floor2-PRINT-examp-def-st-def-interp ])

definition thy-def-transition = (λ Floor1 ⇒ Embed-theories
[ Embedding-fun-simple (section (〈Transition (Floor 1 )〉))
, floor1-PRINT-transition ]

| Floor2 ⇒ Embed-locale
[ Embedding-fun-simple (section (〈Transition (Floor 2 )〉)) ]
Floor2-examp.print-transition-locale
[ Floor2-examp.print-transition-interp
, Floor2-examp.print-transition-def-state
, Floor2-examp.print-transition-wff
, Floor2-examp.print-transition-where ]
[ floor2-PRINT-transition-def-interp
, floor2-PRINT-transition-lemmas-oid ])

definition thy-ctxt = (λ Floor1 ⇒ Embed-theories
[ Embedding-fun-simple (section (〈Context (Floor 1 )〉))
, floor1-PRINT-ctxt ]

| Floor2 ⇒ Embed-theories
[ Embedding-fun-simple (section (〈Context (Floor 2 )〉))
, floor2-PRINT-ctxt-pre-post
, floor2-PRINT-ctxt-inv
, floor2-PRINT-ctxt-thm ])

definition thy-flush-all = Embed-theories []

Combinators Folding the Compiling Environment
definition compiler-env-config-reset-all env =

(let env = compiler-env-config-reset-no-env env in
( env (| D-input-meta := [] |)
, let (l-class, l-env) = find-class-ass env in
L.flatten

[ l-class
, List.filter (λ META-flush-all - ⇒ False | - ⇒ True) l-env
, [META-flush-all OclFlushAll] ] ))

definition fold-thy0 meta thy-object0 f =
L-fold (λx (acc1 , acc2 ).
let (sorry, dirty) = D-output-sorry-dirty acc1

; (msg, x) = case x of Embedding-fun-info msg x ⇒ (Some msg, x)
| Embedding-fun-simple x ⇒ (None, x)

; (l, acc1 ) = x meta acc1 in
(f msg

(if sorry = Some Gen-sorry | sorry = None & dirty then
L.map (map-semi--theory (map-lemma (λ Lemma n spec - - ⇒ Lemma n spec [] C .sorry

| Lemma-assumes n spec1 spec2 - - ⇒ Lemma-assumes n spec1 spec2 [] C .sorry))) l
else
l) acc1 acc2 )) thy-object0

definition comp-env-input-class-rm f-fold f env-accu =
(let (env, accu) = f-fold f env-accu in
(env (| D-input-class := None |), accu))

definition comp-env-save ast f-fold f env-accu =
(let (env, accu) = f-fold f env-accu in
(env (| D-input-meta := ast # D-input-meta env |), accu))

definition comp-env-save-deep ast f-fold =
comp-env-save ast (λf . map-prod



F.1. GENERAL ENVIRONMENT FOR THE TRANSLATION: CONCLUSION 311

(case ast of META-def-state Floor1 meta ⇒ Floor1-examp.print-meta-setup-def-state meta
| META-def-transition Floor1 meta ⇒ Floor1-examp.print-meta-setup-def-transition meta
| - ⇒ id)

id o
f-fold f )

definition comp-env-input-class-mk f-try f-accu-reset f-fold f =
(λ (env, accu).
f-fold f

(case D-input-class env of Some - ⇒ (env, accu) | None ⇒
let (l-class, l-env) = find-class-ass env

; (l-enum, l-env) = partition (λMETA-enum - ⇒ True | - ⇒ False) l-env in
(f-try (λ () ⇒
let D-input-meta0 = D-input-meta env

; (env, accu) =
let meta = class-unflat ′ (arrange-ass True (D-ocl-semantics env 6= Gen-default) l-class (L.map (λ META-enum e ⇒

e) l-enum))
; (env, accu) = List.fold (λ ast. comp-env-save ast (case ast of META-enum meta ⇒ fold-thy0 meta thy-enum) f )

l-enum
(let env = compiler-env-config-reset-no-env env in
(env (| D-input-meta := List.filter (λ META-enum - ⇒ False | - ⇒ True) (D-input-meta env)

|), f-accu-reset env accu))
; (env, accu) = fold-thy0 meta thy-class f (env, accu) in

(env (| D-input-class := Some meta |), accu)
; (env, accu) =

List.fold
(λast. comp-env-save ast (case ast of

META-instance meta ⇒ fold-thy0 meta thy-instance
| META-def-base-l meta ⇒ fold-thy0 meta thy-def-base-l
| META-def-state floor meta ⇒ fold-thy0 meta (thy-def-state floor)
| META-def-transition floor meta ⇒ fold-thy0 meta (thy-def-transition floor)
| META-ctxt floor meta ⇒ fold-thy0 meta (thy-ctxt floor)
| META-flush-all meta ⇒ fold-thy0 meta thy-flush-all)

f )
l-env
(env (| D-input-meta := L.flatten [l-class, l-enum] |), accu) in

(env (| D-input-meta := D-input-meta0 |), accu)))))

definition comp-env-input-class-bind l f =
List.fold (λx. x f ) l

definition fold-thy ′ f-env-save f-try f-accu-reset f =
(let comp-env-input-class-mk = comp-env-input-class-mk f-try f-accu-reset in
List.fold (λ ast.
f-env-save ast (case ast of
META-enum meta ⇒ comp-env-input-class-rm (fold-thy0 meta thy-enum-flat)
| META-class-raw Floor1 meta ⇒ comp-env-input-class-rm (fold-thy0 meta thy-class-flat)
| META-association meta ⇒ comp-env-input-class-rm (fold-thy0 meta thy-association)
| META-ass-class Floor1 (OclAssClass meta-ass meta-class) ⇒

comp-env-input-class-rm (comp-env-input-class-bind [ fold-thy0 meta-ass thy-association
, fold-thy0 meta-class thy-class-flat ])

| META-class-synonym meta ⇒ comp-env-input-class-rm (fold-thy0 meta thy-class-synonym)
| META-class-tree meta ⇒ comp-env-input-class-rm (fold-thy0 meta thy-class-tree)
| META-instance meta ⇒ comp-env-input-class-mk (fold-thy0 meta thy-instance)
| META-def-base-l meta ⇒ fold-thy0 meta thy-def-base-l
| META-def-state floor meta ⇒ comp-env-input-class-mk (fold-thy0 meta (thy-def-state floor))
| META-def-transition floor meta ⇒ fold-thy0 meta (thy-def-transition floor)
| META-ctxt floor meta ⇒ comp-env-input-class-mk (fold-thy0 meta (thy-ctxt floor))
| META-flush-all meta ⇒ comp-env-input-class-mk (fold-thy0 meta thy-flush-all)) f ))

definition compiler-env-config-update f env =
(∗ WARNING The semantics of the meta−embedded language is not intended to be reset here (like oid-start), only syntactic

configurations of the compiler (path, etc...) ∗)
(let env ′ = f env in
if D-input-meta env = [] then
env ′

(| D-output-disable-thy := D-output-disable-thy env
, D-output-header-thy := D-output-header-thy env
(∗D-ocl-oid-start∗)
(∗D-output-position∗)
, D-ocl-semantics := D-ocl-semantics env
(∗D-input-class∗)
(∗D-input-meta∗)



312 APPENDIX F. HOL-OCL 2.0: TRANSLATING META-MODELS

(∗D-input-instance∗)
(∗D-input-state∗)
(∗D-output-header-force∗)
(∗D-output-auto-bootstrap∗)
(∗D-ocl-accessor∗)
(∗D-ocl-HO-type∗)
, D-output-sorry-dirty := D-output-sorry-dirty env |)

else
fst (fold-thy ′

comp-env-save-deep
(λf . f ())
(λ-. id)
(λ- -. Pair)
(D-input-meta env ′)
(env, ())))

definition fold-thy-shallow f-try f-accu-reset x =
fold-thy ′

comp-env-save
f-try
f-accu-reset
(λname l acc1 .
map-prod (λ env. env (| D-input-meta := D-input-meta acc1 |)) id
o List.fold (x name) l
o Pair acc1 )

definition fold-thy-deep obj env =
(case fold-thy ′

comp-env-save-deep
(λf . f ())
(λenv -. D-output-position env)
(λ- l acc1 (i, cpt). (acc1 , (Succ i, natural-of-nat (List.length l) + cpt)))
obj
(env, D-output-position env) of

(env, output-position) ⇒ env (| D-output-position := output-position |))

end



A
p

p
e

n
d

ix

G
HOL-OCL 2.0: Parsing Meta-Models

This chapter complements the chapter “Parsing Meta-Models” of the document “A Meta-Model for the Isabelle
API” [TW15].

G.1 Instantiating the Parser of OCL (I)

theory Parser-UML
imports Meta-UML

../../compiler-generic/meta-isabelle/Parser-Pure
begin

Building Recursors for Records
definition ocl-multiplicity-rec0 f ocl = f

(TyMult ocl)
(TyRole ocl)
(TyCollect ocl)

definition ocl-multiplicity-rec f ocl = ocl-multiplicity-rec0 f ocl
(ocl-multiplicity.more ocl)

definition ocl-ty-class-node-rec0 f ocl = f
(TyObjN-ass-switch ocl)
(TyObjN-role-multip ocl)
(TyObjN-role-ty ocl)

definition ocl-ty-class-node-rec f ocl = ocl-ty-class-node-rec0 f ocl
(ocl-ty-class-node.more ocl)

definition ocl-ty-class-rec0 f ocl = f
(TyObj-name ocl)
(TyObj-ass-id ocl)
(TyObj-ass-arity ocl)
(TyObj-from ocl)
(TyObj-to ocl)

definition ocl-ty-class-rec f ocl = ocl-ty-class-rec0 f ocl
(ocl-ty-class.more ocl)

definition ocl-class-raw-rec0 f ocl = f
(ClassRaw-name ocl)
(ClassRaw-own ocl)
(ClassRaw-clause ocl)
(ClassRaw-abstract ocl)

definition ocl-class-raw-rec f ocl = ocl-class-raw-rec0 f ocl
(ocl-class-raw.more ocl)

definition ocl-association-rec0 f ocl = f
(OclAss-type ocl)
(OclAss-relation ocl)

definition ocl-association-rec f ocl = ocl-association-rec0 f ocl

313



314 APPENDIX G. HOL-OCL 2.0: PARSING META-MODELS

(ocl-association.more ocl)

definition ocl-ctxt-pre-post-rec0 f ocl = f
(Ctxt-fun-name ocl)
(Ctxt-fun-ty ocl)
(Ctxt-expr ocl)

definition ocl-ctxt-pre-post-rec f ocl = ocl-ctxt-pre-post-rec0 f ocl
(ocl-ctxt-pre-post.more ocl)

definition ocl-ctxt-rec0 f ocl = f
(Ctxt-param ocl)
(Ctxt-ty ocl)
(Ctxt-clause ocl)

definition ocl-ctxt-rec f ocl = ocl-ctxt-rec0 f ocl
(ocl-ctxt.more ocl)

lemma [code]: ocl-class-raw.extend = (λocl v. ocl-class-raw-rec0 (co4 (λf . f v) ocl-class-raw-ext) ocl)
by(intro ext, simp add: ocl-class-raw-rec0-def

ocl-class-raw.extend-def
co4-def K-def )

lemma [code]: ocl-class-raw.make = co4 (λf . f ()) ocl-class-raw-ext
by(intro ext, simp add: ocl-class-raw.make-def

co4-def )
lemma [code]: ocl-class-raw.truncate = ocl-class-raw-rec (co4 K ocl-class-raw.make)
by(intro ext, simp add: ocl-class-raw-rec0-def

ocl-class-raw-rec-def
ocl-class-raw.truncate-def
ocl-class-raw.make-def
co4-def K-def )

lemma [code]: ocl-association.extend = (λocl v. ocl-association-rec0 (co2 (λf . f v) ocl-association-ext) ocl)
by(intro ext, simp add: ocl-association-rec0-def

ocl-association.extend-def
co2-def K-def )

lemma [code]: ocl-association.make = co2 (λf . f ()) ocl-association-ext
by(intro ext, simp add: ocl-association.make-def

co2-def )
lemma [code]: ocl-association.truncate = ocl-association-rec (co2 K ocl-association.make)
by(intro ext, simp add: ocl-association-rec0-def

ocl-association-rec-def
ocl-association.truncate-def
ocl-association.make-def
co2-def K-def )

Main
context Parse
begin

definition of-ocl-collection b = rec-ocl-collection
(b 〈Set〉)
(b 〈Sequence〉)
(b 〈Ordered0 〉)
(b 〈Subsets0 〉)
(b 〈Union0 〉)
(b 〈Redefines0 〉)
(b 〈Derived0 〉)
(b 〈Qualifier0 〉)
(b 〈Nonunique0 〉)

definition of-ocl-multiplicity-single a b = rec-ocl-multiplicity-single
(ap1 a (b 〈Mult-nat〉) (of-nat a b))
(b 〈Mult-star〉)
(b 〈Mult-infinity〉)

definition of-ocl-multiplicity a b f = ocl-multiplicity-rec
(ap4 a (b (ext 〈ocl-multiplicity-ext〉))

(of-list a b (of-pair a b (of-ocl-multiplicity-single a b) (of-option a b (of-ocl-multiplicity-single a b))))
(of-option a b (of-string a b))



G.1. INSTANTIATING THE PARSER OF OCL (I) 315

(of-list a b (of-ocl-collection b))
(f a b))

definition of-ocl-ty-class-node a b f = ocl-ty-class-node-rec
(ap4 a (b (ext 〈ocl-ty-class-node-ext〉))

(of-nat a b)
(of-ocl-multiplicity a b (K of-unit))
(of-string a b)
(f a b))

definition of-ocl-ty-class a b f = ocl-ty-class-rec
(ap6 a (b (ext 〈ocl-ty-class-ext〉))

(of-string a b)
(of-nat a b)
(of-nat a b)
(of-ocl-ty-class-node a b (K of-unit))
(of-ocl-ty-class-node a b (K of-unit))
(f a b))

definition of-ocl-ty-obj-core a b = rec-ocl-ty-obj-core
(ap1 a (b 〈OclTyCore-pre〉) (of-string a b))
(ap1 a (b 〈OclTyCore〉) (of-ocl-ty-class a b (K of-unit)))

definition of-ocl-ty-obj a b = rec-ocl-ty-obj
(ap2 a (b 〈OclTyObj〉) (of-ocl-ty-obj-core a b) (of-list a b (of-list a b (of-ocl-ty-obj-core a b))))

definition of-ocl-ty a b = (λf1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 .
rec-ocl-ty f1 f2 f3 f4 f5 f6

f7 (K o f8 ) (λ- -. f9 ) (f10 o map-prod id snd) (λ- -. f11 ) f12 f13 f14 f15 )
(b 〈OclTy-base-void〉)
(b 〈OclTy-base-boolean〉)
(b 〈OclTy-base-integer〉)
(b 〈OclTy-base-unlimitednatural〉)
(b 〈OclTy-base-real〉)
(b 〈OclTy-base-string〉)
(ap1 a (b 〈OclTy-object〉) (of-ocl-ty-obj a b))
(ar2 a (b 〈OclTy-collection〉) (of-ocl-multiplicity a b (K of-unit)))
(ar2 a (b 〈OclTy-pair〉) id)
(ap1 a (b 〈OclTy-binding〉) (of-pair a b (of-option a b (of-string a b)) id))
(ar2 a (b 〈OclTy-arrow〉) id)
(ap1 a (b 〈OclTy-class-syn〉) (of-string a b))
(ap1 a (b 〈OclTy-enum〉) (of-string a b))
(ap1 a (b 〈OclTy-raw〉) (of-string a b))

definition of-ocl-association-type a b = rec-ocl-association-type
(b 〈OclAssTy-native-attribute〉)
(b 〈OclAssTy-association〉)
(b 〈OclAssTy-composition〉)
(b 〈OclAssTy-aggregation〉)

definition of-ocl-association-relation a b = rec-ocl-association-relation
(ap1 a (b 〈OclAssRel〉)

(of-list a b (of-pair a b (of-ocl-ty-obj a b) (of-ocl-multiplicity a b (K of-unit)))))

definition of-ocl-association a b f = ocl-association-rec
(ap3 a (b (ext 〈ocl-association-ext〉))

(of-ocl-association-type a b)
(of-ocl-association-relation a b)
(f a b))

definition of-ocl-ctxt-prefix a b = rec-ocl-ctxt-prefix
(b 〈OclCtxtPre〉)
(b 〈OclCtxtPost〉)

definition of-ocl-ctxt-term a b = (λf0 f1 f2 . rec-ocl-ctxt-term f0 f1 (co1 K f2 ))
(ap2 a (b 〈T-pure〉) (of-pure-term a b) (of-option a b (of-string a b)))
(ap2 a (b 〈T-to-be-parsed〉) (of-string a b) (of-string a b))
(ar2 a (b 〈T-lambda〉) (of-string a b))

definition of-ocl-prop a b = rec-ocl-prop
(ap2 a (b 〈OclProp-ctxt〉) (of-option a b (of-string a b)) (of-ocl-ctxt-term a b))

definition of-ocl-ctxt-term-inv a b = rec-ocl-ctxt-term-inv



316 APPENDIX G. HOL-OCL 2.0: PARSING META-MODELS

(ap2 a (b 〈T-inv〉) (of-bool b) (of-ocl-prop a b))

definition of-ocl-ctxt-term-pp a b = rec-ocl-ctxt-term-pp
(ap2 a (b 〈T-pp〉) (of-ocl-ctxt-prefix a b) (of-ocl-prop a b))
(ap1 a (b 〈T-invariant〉) (of-ocl-ctxt-term-inv a b))

definition of-ocl-ctxt-pre-post a b f = ocl-ctxt-pre-post-rec
(ap4 a (b (ext 〈ocl-ctxt-pre-post-ext〉))

(of-string a b)
(of-ocl-ty a b)
(of-list a b (of-ocl-ctxt-term-pp a b))
(f a b))

definition of-ocl-ctxt-clause a b = rec-ocl-ctxt-clause
(ap1 a (b 〈Ctxt-pp〉) (of-ocl-ctxt-pre-post a b (K of-unit)))
(ap1 a (b 〈Ctxt-inv〉) (of-ocl-ctxt-term-inv a b))

definition of-ocl-ctxt a b f = ocl-ctxt-rec
(ap4 a (b (ext 〈ocl-ctxt-ext〉))

(of-list a b (of-string a b))
(of-ocl-ty-obj a b)
(of-list a b (of-ocl-ctxt-clause a b))
(f a b))

definition of-ocl-class a b = (λf0 f1 f2 f3 . rec-ocl-class (ap3 a f0 f1 f2 f3 ))
(b 〈OclClass〉)

(of-string a b)
(of-list a b (of-pair a b (of-string a b) (of-ocl-ty a b)))
(of-list a b snd)

definition of-ocl-class-raw a b f = ocl-class-raw-rec
(ap5 a (b (ext 〈ocl-class-raw-ext〉))

(of-ocl-ty-obj a b)
(of-list a b (of-pair a b (of-string a b) (of-ocl-ty a b)))
(of-list a b (of-ocl-ctxt-clause a b))
(of-bool b)
(f a b))

definition of-ocl-ass-class a b = rec-ocl-ass-class
(ap2 a (b 〈OclAssClass〉)

(of-ocl-association a b (K of-unit))
(of-ocl-class-raw a b (K of-unit)))

definition of-ocl-class-synonym a b = rec-ocl-class-synonym
(ap2 a (b 〈OclClassSynonym〉)

(of-string a b)
(of-ocl-ty a b))

definition of-ocl-enum a b = rec-ocl-enum
(ap2 a (b 〈OclEnum〉)

(of-string a b)
(of-list a b (of-string a b)))

end

lemmas [code] =
Parse.of-ocl-collection-def
Parse.of-ocl-multiplicity-single-def
Parse.of-ocl-multiplicity-def
Parse.of-ocl-ty-class-node-def
Parse.of-ocl-ty-class-def
Parse.of-ocl-ty-obj-core-def
Parse.of-ocl-ty-obj-def
Parse.of-ocl-ty-def
Parse.of-ocl-association-type-def
Parse.of-ocl-association-relation-def
Parse.of-ocl-association-def
Parse.of-ocl-ctxt-prefix-def
Parse.of-ocl-ctxt-term-def
Parse.of-ocl-prop-def
Parse.of-ocl-ctxt-term-inv-def
Parse.of-ocl-ctxt-term-pp-def
Parse.of-ocl-ctxt-pre-post-def



G.2. INSTANTIATING THE PARSER OF OCL (II) 317

Parse.of-ocl-ctxt-clause-def
Parse.of-ocl-ctxt-def
Parse.of-ocl-class-def
Parse.of-ocl-class-raw-def
Parse.of-ocl-ass-class-def
Parse.of-ocl-class-synonym-def
Parse.of-ocl-enum-def

end

G.2 Instantiating the Parser of OCL (II)

theory Parser-UML-extended
imports Meta-UML-extended

../../compiler-generic/meta-isabelle/Parser-init
begin

Building Recursors for Records
definition ocl-instance-single-rec0 f ocl = f

(Inst-name ocl)
(Inst-ty ocl)
(Inst-attr-with ocl)
(Inst-attr ocl)

definition ocl-instance-single-rec f ocl = ocl-instance-single-rec0 f ocl
(ocl-instance-single.more ocl)

lemma [code]: ocl-instance-single.extend = (λocl v. ocl-instance-single-rec0 (co4 (λf . f v) ocl-instance-single-ext) ocl)
by(intro ext, simp add: ocl-instance-single-rec0-def

ocl-instance-single.extend-def
co4-def K-def )

lemma [code]: ocl-instance-single.make = co4 (λf . f ()) ocl-instance-single-ext
by(intro ext, simp add: ocl-instance-single.make-def

co4-def )
lemma [code]: ocl-instance-single.truncate = ocl-instance-single-rec (co4 K ocl-instance-single.make)
by(intro ext, simp add: ocl-instance-single-rec0-def

ocl-instance-single-rec-def
ocl-instance-single.truncate-def
ocl-instance-single.make-def
co4-def K-def )

Main
context Parse
begin

definition of-internal-oid a b = rec-internal-oid
(ap1 a (b 〈Oid〉) (of-nat a b))

definition of-internal-oids a b = rec-internal-oids
(ap3 a (b 〈Oids〉)

(of-nat a b)
(of-nat a b)
(of-nat a b))

definition of-ocl-def-base a b = rec-ocl-def-base
(ap1 a (b 〈OclDefInteger〉) (of-string a b))
(ap1 a (b 〈OclDefReal〉) (of-pair a b (of-string a b) (of-string a b)))
(ap1 a (b 〈OclDefString〉) (of-string a b))

definition of-ocl-data-shallow a b = rec-ocl-data-shallow
(ap1 a (b 〈ShallB-term〉) (of-ocl-def-base a b))
(ap1 a (b 〈ShallB-str〉) (of-string a b))
(ap1 a (b 〈ShallB-self 〉) (of-internal-oid a b))
(ap1 a (b 〈ShallB-list〉) (of-list a b snd))

definition of-ocl-list-attr a b f = (λf0 . co4 (λf1 . rec-ocl-list-attr f0 (λs - a rec. f1 s rec a)) (ap3 a))
(ap1 a (b 〈OclAttrNoCast〉) f )



318 APPENDIX G. HOL-OCL 2.0: PARSING META-MODELS

(b 〈OclAttrCast〉)
(of-string a b)
id
f

definition of-ocl-instance-single a b f = ocl-instance-single-rec
(ap5 a (b (ext 〈ocl-instance-single-ext〉))

(of-option a b (of-string a b))
(of-option a b (of-string a b))
(of-option a b (of-string a b))
(of-ocl-list-attr a b (of-list a b (of-pair a b (of-option a b (of-pair a b (of-string a b) (of-string a b))) (of-pair a b (of-string a

b) (of-ocl-data-shallow a b)))))
(f a b))

definition of-ocl-instance a b = rec-ocl-instance
(ap1 a (b 〈OclInstance〉)

(of-list a b (of-ocl-instance-single a b (K of-unit))))

definition of-ocl-def-base-l a b = rec-ocl-def-base-l
(ap1 a (b 〈OclDefBase〉) (of-list a b (of-ocl-def-base a b)))

definition of-ocl-def-state-core a b f = rec-ocl-def-state-core
(ap1 a (b 〈OclDefCoreAdd〉) (of-ocl-instance-single a b (K of-unit)))
(ap1 a (b 〈OclDefCoreBinding〉) f )

definition of-ocl-def-state a b = rec-ocl-def-state
(ap2 a (b 〈OclDefSt〉) (of-string a b) (of-list a b (of-ocl-def-state-core a b (of-string a b))))

definition of-ocl-def-pp-core a b = rec-ocl-def-pp-core
(ap1 a (b 〈OclDefPPCoreAdd〉) (of-list a b (of-ocl-def-state-core a b (of-string a b))))
(ap1 a (b 〈OclDefPPCoreBinding〉) (of-string a b))

definition of-ocl-def-transition a b = rec-ocl-def-transition
(ap3 a (b 〈OclDefPP〉)

(of-option a b (of-string a b))
(of-ocl-def-pp-core a b)
(of-option a b (of-ocl-def-pp-core a b)))

definition of-ocl-class-tree a b = rec-ocl-class-tree
(ap2 a (b 〈OclClassTree〉)

(of-nat a b)
(of-nat a b))

end

lemmas [code] =
Parse.of-internal-oid-def
Parse.of-internal-oids-def
Parse.of-ocl-def-base-def
Parse.of-ocl-data-shallow-def
Parse.of-ocl-list-attr-def
Parse.of-ocl-instance-single-def
Parse.of-ocl-instance-def
Parse.of-ocl-def-base-l-def
Parse.of-ocl-def-state-core-def
Parse.of-ocl-def-state-def
Parse.of-ocl-def-pp-core-def
Parse.of-ocl-def-transition-def
Parse.of-ocl-class-tree-def

end

G.3 Instantiating the Parser of META

theory Parser-META
imports Meta-META

Parser-UML
Parser-UML-extended

begin



G.3. INSTANTIATING THE PARSER OF META 319

Building Recursors for Records
definition compiler-env-config-rec0 f env = f

(D-output-disable-thy env)
(D-output-header-thy env)
(D-ocl-oid-start env)
(D-output-position env)
(D-ocl-semantics env)
(D-input-class env)
(D-input-meta env)
(D-input-instance env)
(D-input-state env)
(D-output-header-force env)
(D-output-auto-bootstrap env)
(D-ocl-accessor env)
(D-ocl-HO-type env)
(D-output-sorry-dirty env)

definition compiler-env-config-rec f env = compiler-env-config-rec0 f env
(compiler-env-config.more env)

lemma [code]: compiler-env-config.extend = (λenv v. compiler-env-config-rec0 (co14 (λf . f v) compiler-env-config-ext) env)
by(intro ext, simp add: compiler-env-config-rec0-def

compiler-env-config.extend-def
co14-def K-def )

lemma [code]: compiler-env-config.make = co14 (λf . f ()) compiler-env-config-ext
by(intro ext, simp add: compiler-env-config.make-def

co14-def )
lemma [code]: compiler-env-config.truncate = compiler-env-config-rec (co14 K compiler-env-config.make)
by(intro ext, simp add: compiler-env-config-rec0-def

compiler-env-config-rec-def
compiler-env-config.truncate-def
compiler-env-config.make-def
co14-def K-def )

Main
context Parse
begin

definition of-ocl-flush-all a b = rec-ocl-flush-all
(b 〈OclFlushAll〉)

definition of-floor a b = rec-floor
(b 〈Floor1 〉)
(b 〈Floor2 〉)
(b 〈Floor3 〉)

definition of-all-meta-embedding a b = rec-all-meta-embedding
(ap1 a (b 〈META-enum〉) (of-ocl-enum a b))
(ap2 a (b 〈META-class-raw〉) (of-floor a b) (of-ocl-class-raw a b (K of-unit)))
(ap1 a (b 〈META-association〉) (of-ocl-association a b (K of-unit)))
(ap2 a (b 〈META-ass-class〉) (of-floor a b) (of-ocl-ass-class a b))
(ap2 a (b 〈META-ctxt〉) (of-floor a b) (of-ocl-ctxt a b (K of-unit)))

(ap1 a (b 〈META-class-synonym〉) (of-ocl-class-synonym a b))
(ap1 a (b 〈META-instance〉) (of-ocl-instance a b))
(ap1 a (b 〈META-def-base-l〉) (of-ocl-def-base-l a b))
(ap2 a (b 〈META-def-state〉) (of-floor a b) (of-ocl-def-state a b))
(ap2 a (b 〈META-def-transition〉) (of-floor a b) (of-ocl-def-transition a b))
(ap1 a (b 〈META-class-tree〉) (of-ocl-class-tree a b))
(ap1 a (b 〈META-flush-all〉) (of-ocl-flush-all a b))

definition of-generation-semantics-ocl a b = rec-generation-semantics-ocl
(b 〈Gen-only-design〉)
(b 〈Gen-only-analysis〉)
(b 〈Gen-default〉)

definition of-generation-lemma-mode a b = rec-generation-lemma-mode
(b 〈Gen-sorry〉)
(b 〈Gen-no-dirty〉)



320 APPENDIX G. HOL-OCL 2.0: PARSING META-MODELS

definition of-compiler-env-config a b f = compiler-env-config-rec
(ap15 a (b (ext 〈compiler-env-config-ext〉))

(of-bool b)
(of-option a b (of-pair a b (of-string a b) (of-pair a b (of-list a b (of-string a b)) (of-string a b))))
(of-internal-oids a b)
(of-pair a b (of-nat a b) (of-nat a b))
(of-generation-semantics-ocl a b)
(of-option a b (of-ocl-class a b))
(of-list a b (of-all-meta-embedding a b))
(of-list a b (of-pair a b (of-stringbase a b) (of-pair a b (of-ocl-instance-single a b (K of-unit)) (of-internal-oids a b))))
(of-list a b (of-pair a b (of-stringbase a b) (of-list a b (of-pair a b (of-internal-oids a b) (of-ocl-def-state-core a b (of-pair a b

(of-string a b) (of-ocl-instance-single a b (K of-unit))))))))
(of-bool b)
(of-bool b)
(of-pair a b (of-list a b (of-stringbase a b)) (of-list a b (of-stringbase a b)))
(of-list a b (of-stringbase a b))
(of-pair a b (of-option a b (of-generation-lemma-mode a b)) (of-bool b))
(f a b))

end

lemmas [code] =
Parse.of-ocl-flush-all-def
Parse.of-floor-def
Parse.of-all-meta-embedding-def
Parse.of-generation-semantics-ocl-def
Parse.of-generation-lemma-mode-def
Parse.of-compiler-env-config-def

G.4 Finalizing the Parser

It should be feasible to invent a meta-command (e.g., datatype ′) to automatically generate the previous recursors
in Parse.

Otherwise as an extra check, one can also overload polymorphic cartouches in Init to really check that all
the given constructor exists at the time of editing (similarly as writing @{term ...}, when it is embedded in
a text command).

Isabelle Syntax
locale Parse-Isabelle
begin

definition Of-Pair = 〈Pair〉

definition Of-Nil = 〈Nil〉
definition Of-Cons = 〈Cons〉

definition Of-None = 〈None〉

definition Of-Some = 〈Some〉

definition of-pair a b f1 f2 = (λf . λ(c, d) ⇒ f c d)
(ap2 a (b Of-Pair) f1 f2 )

definition of-list a b f = (λf0 . rec-list f0 o co1 K)
(b Of-Nil)
(ar2 a (b Of-Cons) f )

definition of-option a b f = rec-option
(b Of-None)
(ap1 a (b Of-Some) f )

definition of-unit b = case-unit
(b 〈()〉)

definition of-bool where of-bool b = case-bool
(b 〈True〉)
(b 〈False〉)



G.4. FINALIZING THE PARSER 321

definition of-nibble b = rec-nibble
(b 〈Nibble0 〉)
(b 〈Nibble1 〉)
(b 〈Nibble2 〉)
(b 〈Nibble3 〉)
(b 〈Nibble4 〉)
(b 〈Nibble5 〉)
(b 〈Nibble6 〉)
(b 〈Nibble7 〉)
(b 〈Nibble8 〉)
(b 〈Nibble9 〉)
(b 〈NibbleA〉)
(b 〈NibbleB〉)
(b 〈NibbleC 〉)
(b 〈NibbleD〉)
(b 〈NibbleE〉)
(b 〈NibbleF〉)

definition of-char a b = rec-char
(ap2 a (b 〈Char〉) (of-nibble b) (of-nibble b))

definition of-string-gen s-flatten s-st0 s-st a b s =
b (let s = textstr-of-str (λc. 〈(〉 @@ s-flatten @@ 〈 〉 @@ c @@ 〈)〉)

(λChar n1 n2 ⇒
s-st0 (S .flatten [〈 (〉, 〈Char 〉, of-nibble id n1 , 〈 〉, of-nibble id n2 , 〈)〉]))

(λc. s-st (S .flatten [〈 (〉, c, 〈)〉]))
s in

S .flatten [ 〈(〉, s, 〈)〉 ])

definition of-string = of-string-gen 〈Init.S .flatten〉

(λs. S .flatten [〈(Init.ST0 〉, s, 〈)〉])
(λs. S .flatten [〈(Init.abr-string.SS-base (Init.stringbase.ST〉, s, 〈))〉])

definition of-stringbase a b s = of-string-gen 〈Init.Stringbase.flatten〉

(λs. S .flatten [〈(Init.ST0-base〉, s, 〈)〉])
(λs. S .flatten [〈(Init.stringbase.ST〉, s, 〈)〉])
a
b
(Stringbase.to-String s)

definition of-nat where of-nat a b = b o String.of-natural

end

sublocale Parse-Isabelle < Parse id
Parse-Isabelle.of-string
Parse-Isabelle.of-stringbase

Parse-Isabelle.of-nat
Parse-Isabelle.of-unit
Parse-Isabelle.of-bool
Parse-Isabelle.Of-Pair
Parse-Isabelle.Of-Nil
Parse-Isabelle.Of-Cons
Parse-Isabelle.Of-None
Parse-Isabelle.Of-Some

done

context Parse-Isabelle begin
definition compiler-env-config a b =
of-compiler-env-config a b (λ a b.
of-pair a b

(of-list a b (of-all-meta-embedding a b))
(of-option a b (of-string a b)))

end

definition isabelle-of-compiler-env-config = Parse-Isabelle.compiler-env-config

lemmas [code] =
Parse-Isabelle.Of-Pair-def
Parse-Isabelle.Of-Nil-def
Parse-Isabelle.Of-Cons-def
Parse-Isabelle.Of-None-def
Parse-Isabelle.Of-Some-def



322 APPENDIX G. HOL-OCL 2.0: PARSING META-MODELS

Parse-Isabelle.of-pair-def
Parse-Isabelle.of-list-def
Parse-Isabelle.of-option-def
Parse-Isabelle.of-unit-def
Parse-Isabelle.of-bool-def
Parse-Isabelle.of-nibble-def
Parse-Isabelle.of-char-def
Parse-Isabelle.of-string-gen-def
Parse-Isabelle.of-string-def
Parse-Isabelle.of-stringbase-def
Parse-Isabelle.of-nat-def

Parse-Isabelle.compiler-env-config-def

definition isabelle-apply s l = S .flatten [s, S .flatten (L.map (λ s. S .flatten [〈 (〉, s, 〈)〉]) l)]

SML Syntax
locale Parse-SML
begin

definition Of-Pair = 〈I 〉

definition Of-Nil = 〈nil〉
definition Of-Cons = 〈uncurry cons〉

definition Of-None = 〈NONE〉

definition Of-Some = 〈SOME〉

definition of-pair a b f1 f2 = (λf . λ(c, d) ⇒ f c d)
(ap2 a (b Of-Pair) f1 f2 )

definition of-list a b f = (λf0 . rec-list f0 o co1 K)
(b Of-Nil)
(ar2 a (b Of-Cons) f )

definition of-option a b f = rec-option
(b Of-None)
(ap1 a (b Of-Some) f )

definition of-unit b = case-unit
(b 〈()〉)

definition of-bool where of-bool b = case-bool
(b 〈true〉)
(b 〈false〉)

definition ′ 〈sml-escape =
String.replace-chars ((∗ (∗ ERROR code-reflect ∗)

λ Char Nibble0 NibbleA ⇒ 〈\n〉

| Char Nibble0 Nibble5 ⇒ 〈\005 〉

| Char Nibble0 Nibble6 ⇒ 〈\006 〉

| Char Nibble7 NibbleF ⇒ 〈\127 〉

| x ⇒ °x°∗)
λx. if x = Char Nibble0 NibbleA then 〈\n〉

else if x = Char Nibble0 Nibble5 then 〈\005 〉

else if x = Char Nibble0 Nibble6 then 〈\006 〉

else if x = Char Nibble7 NibbleF then 〈\127 〉

else °x°)〉

definition ′ 〈of-string a b =
(λx. b (S .flatten [ 〈(META.SS-base (META.ST 〉

, sml-escape x
, 〈))〉]))〉

definition ′ 〈of-stringbase a b =
(λx. b (S .flatten [ 〈(META.ST 〉

, sml-escape (Stringbase.to-String x)



G.4. FINALIZING THE PARSER 323

, 〈)〉]))〉

definition of-nat where of-nat a b = (λx. b (S .flatten [〈(Code-Numeral.Nat 〉, String.of-natural x, 〈)〉]))

end

sublocale Parse-SML < Parse λc. case String.to-list c of x # xs ⇒ S .flatten [String.uppercase �[x]�, �xs�]
Parse-SML.of-string
Parse-SML.of-stringbase

Parse-SML.of-nat
Parse-SML.of-unit
Parse-SML.of-bool
Parse-SML.Of-Pair
Parse-SML.Of-Nil
Parse-SML.Of-Cons
Parse-SML.Of-None
Parse-SML.Of-Some

done

context Parse-SML begin
definition compiler-env-config a b = of-compiler-env-config a b (λ -. of-unit)

end

definition sml-of-compiler-env-config = Parse-SML.compiler-env-config

lemmas [code] =
Parse-SML.Of-Pair-def
Parse-SML.Of-Nil-def
Parse-SML.Of-Cons-def
Parse-SML.Of-None-def
Parse-SML.Of-Some-def

Parse-SML.of-pair-def
Parse-SML.of-list-def
Parse-SML.of-option-def
Parse-SML.of-unit-def
Parse-SML.of-bool-def
Parse-SML.of-string-def
Parse-SML.of-stringbase-def
Parse-SML.of-nat-def

Parse-SML.sml-escape-def
Parse-SML.compiler-env-config-def

definition sml-apply s l = S .flatten [s, 〈 (〉, case l of x # xs ⇒ S .flatten [x, S .flatten (L.map (λs. S .flatten [〈, 〉, s]) xs)], 〈)〉 ]

end





A
p

p
e

n
d

ix

H
HOL-OCL 2.0: Printing Meta-Models

This chapter complements the chapter “Printing Meta-Models” of the document “A Meta-Model for the Isabelle
API” [TW15].

H.1 Instantiating the Printer for OCL (I)

theory Printer-UML
imports Meta-UML

../../compiler-generic/meta-isabelle/Printer-Pure
begin

context Print
begin

declare[[cartouche-type ′ = abr-string]]

definition concatWith l =
(if l = [] then

id
else
sprint2 ≺ ′′(%s. (%s)) ′′�´ (To-string (String-concatWith 〈 〉 (〈λ〉 # rev l))))

declare[[cartouche-type ′ = funprintf ]]

fun of-ctxt2-term-aux where of-ctxt2-term-aux l e =
(λ T-pure pure o-s ⇒ (case o-s of None ⇒ concatWith l (of-pure-term True [] pure)

| Some s ⇒ To-string s)
| T-to-be-parsed - s ⇒ concatWith l (To-string s)
| T-lambda s c ⇒ of-ctxt2-term-aux (s # l) c) e

definition of-ctxt2-term = of-ctxt2-term-aux []

definition ′ 〈of-ocl-ctxt - (floor :: (∗ polymorphism weakening needed by code-reflect ∗)
String.literal) ctxt =

(let f-inv = λ T-inv b (OclProp-ctxt n s) ⇒ 〈 %sInv %s : %s〉

(if b then 〈Existential〉 else 〈〉)
(case n of None ⇒ 〈〉 | Some s ⇒ To-string s)
(of-ctxt2-term s) in

〈Context%s %s%s %s〉

floor
(case Ctxt-param ctxt of

[] ⇒ 〈〉

| l ⇒ 〈%s : 〉 (String-concat 〈, 〉 (L.map To-string l)))
(To-string (ty-obj-to-string (Ctxt-ty ctxt)))
(String-concat 〈

〉 (L.map (λ Ctxt-pp ctxt ⇒
〈:: %s (%s) %s

%s〉

(To-string (Ctxt-fun-name ctxt))
(String-concat 〈, 〉

(L.map
(λ (s, ty). 〈%s : %s〉 (To-string s) (To-string (str-of-ty ty)))
(Ctxt-fun-ty-arg ctxt)))

(case Ctxt-fun-ty-out ctxt of None ⇒ 〈〉

325



326 APPENDIX H. HOL-OCL 2.0: PRINTING META-MODELS

| Some ty ⇒ 〈: %s〉 (To-string (str-of-ty ty)))
(String-concat 〈

〉

(L.map
(λ T-pp pref (OclProp-ctxt n s) ⇒ 〈 %s %s: %s〉

(case pref of OclCtxtPre ⇒ 〈Pre〉

| OclCtxtPost ⇒ 〈Post〉)
(case n of None ⇒ 〈〉 | Some s ⇒ To-string s)
(of-ctxt2-term s)

| T-invariant inva ⇒ f-inv inva)
(Ctxt-expr ctxt)))
| Ctxt-inv inva ⇒ f-inv inva)

(Ctxt-clause ctxt))))〉

end

lemmas [code] =

Print.concatWith-def
Print.of-ctxt2-term-def
Print.of-ocl-ctxt-def

Print.of-ctxt2-term-aux.simps

end

H.2 Instantiating the Printer for OCL (II)

theory Printer-UML-extended
imports Meta-UML-extended

Printer-UML
begin

context Print
begin

definition To-oid = (λOid n ⇒ To-nat n)

definition ′ 〈of-ocl-def-base = (λ OclDefInteger i ⇒ To-string i
| OclDefReal (i1 , i2 ) ⇒ 〈%s.%s〉 (To-string i1 ) (To-string i2 )
| OclDefString s ⇒ 〈%s〉 (To-string s))〉

fun of-ocl-data-shallow where
of-ocl-data-shallow e = (λ ShallB-term b ⇒ of-ocl-def-base b

| ShallB-str s ⇒ To-string s
| ShallB-self s ⇒ 〈self %d〉 (To-oid s)
| ShallB-list l ⇒ 〈[ %s ]〉 (String-concat 〈, 〉 (List.map of-ocl-data-shallow l))) e

fun of-ocl-list-attr where
of-ocl-list-attr f e = (λ OclAttrNoCast x ⇒ f x

| OclAttrCast ty (OclAttrNoCast x) - ⇒ 〈(%s :: %s)〉 (f x) (To-string ty)
| OclAttrCast ty l - ⇒ 〈%s → oclAsType( %s )〉 (of-ocl-list-attr f l) (To-string ty)) e

definition ′ 〈of-ocl-instance-single ocli =
(let (s-left, s-right) =

case Inst-name ocli of
None ⇒ (case Inst-ty ocli of Some ty ⇒ (〈(〉, 〈 :: %s)〉 (To-string ty)))
| Some s ⇒

( 〈%s%s = 〉

(To-string s)
(case Inst-ty ocli of None ⇒ 〈〉 | Some ty ⇒ 〈 :: %s〉 (To-string ty))

, 〈〉) in
〈%s%s%s〉

s-left
(of-ocl-list-attr

(λl. 〈[ %s%s ]〉

(case Inst-attr-with ocli of None ⇒ 〈〉 | Some s ⇒ 〈%s with-only 〉 (To-string s))
(String-concat 〈, 〉

(L.map (λ(pre-post, attr , v).
〈%s%s = %s〉 (case pre-post of None ⇒ 〈〉

| Some (s1 , s2 ) ⇒ 〈(%s, %s) |= 〉 (To-string s1 ) (To-string s2 ))
(To-string attr)



H.3. INSTANTIATING THE PRINTER FOR META 327

(of-ocl-data-shallow v))
l)))

(Inst-attr ocli))
s-right)〉

definition of-ocl-instance - = (λ OclInstance l ⇒
〈Instance %s〉 (String-concat 〈

and 〉 (L.map of-ocl-instance-single l)))

definition of-ocl-def-state-core l =
String-concat 〈, 〉 (L.map (λ OclDefCoreBinding s ⇒ To-string s

| OclDefCoreAdd ocli ⇒ of-ocl-instance-single ocli) l)

definition of-ocl-def-state - (floor :: (∗ polymorphism weakening needed by code-reflect ∗)
String.literal) = (λ OclDefSt n l ⇒

〈State%s %s = [ %s ]〉

floor
(To-string n)
(of-ocl-def-state-core l))

definition of-ocl-def-pp-core = (λ OclDefPPCoreBinding s ⇒ To-string s
| OclDefPPCoreAdd l ⇒ 〈[ %s ]〉 (of-ocl-def-state-core l))

definition of-ocl-def-transition - (floor :: (∗ polymorphism weakening needed by code-reflect ∗)
String.literal) = (λ OclDefPP n s-pre s-post ⇒

〈Transition%s %s%s%s〉

floor
(case n of None ⇒ 〈〉 | Some n ⇒ 〈%s = 〉 (To-string n))
(of-ocl-def-pp-core s-pre)
(case s-post of None ⇒ 〈〉 | Some s-post ⇒ 〈 %s〉 (of-ocl-def-pp-core s-post)))

end

lemmas [code] =

Print.To-oid-def
Print.of-ocl-def-base-def
Print.of-ocl-instance-single-def
Print.of-ocl-instance-def
Print.of-ocl-def-state-core-def
Print.of-ocl-def-state-def
Print.of-ocl-def-pp-core-def
Print.of-ocl-def-transition-def

Print.of-ocl-list-attr .simps
Print.of-ocl-data-shallow.simps

end

H.3 Instantiating the Printer for META

theory Printer-META
imports Parser-META

../../compiler-generic/meta-isabelle/Printer-Isabelle
Printer-UML-extended

begin

context Print
begin

definition of env-section env =
(if D-output-disable-thy env then
λ-. 〈〉

else
of-section env)

definition of env-semi--theory env =
(λ Theory-section section-title ⇒ of env-section env section-title
| x ⇒ of-semi--theory env x)

definition ′ 〈of env-semi--theories env =



328 APPENDIX H. HOL-OCL 2.0: PRINTING META-MODELS

(λ Theories-one t ⇒ of env-semi--theory env t
| Theories-locale data l ⇒

〈locale %s =
%s
begin
%s
end〉 (To-string (HolThyLocale-name data))

(String-concat-map
〈

〉

(λ (l-fix, o-assum).
〈%s%s〉 (String-concat-map 〈

〉 (λ(e, ty). 〈fixes %s :: %s〉 (of-semi--term e) (of-semi--typ ty)) l-fix)
(case o-assum of None ⇒ 〈〉

| Some (name, e) ⇒ 〈

assumes %s: %s〉 (To-string name) (of-semi--term e)))
(HolThyLocale-header data))

(String-concat-map 〈

〉 (String-concat-map 〈

〉 (of env-semi--theory env)) l))〉

definition of-floor = (λ Floor1 ⇒ 〈〉 | Floor2 ⇒ 〈[shallow]〉 | Floor3 ⇒ 〈[shallow-shallow]〉)

definition of-all-meta-embedding env =
(λ META-ctxt floor ctxt ⇒ of-ocl-ctxt env (of-floor floor) ctxt
| META-instance i ⇒ of-ocl-instance env i
| META-def-state floor s ⇒ of-ocl-def-state env (of-floor floor) s
| META-def-transition floor p ⇒ of-ocl-def-transition env (of-floor floor) p)

definition of-boot-generation-syntax - = (λ Boot-generation-syntax mode ⇒
〈generation-syntax [ shallow%s ]〉

(let f = 〈 (generation-semantics [ %s ])〉 in
case mode of Gen-only-design ⇒ f 〈design〉

| Gen-only-analysis ⇒ f 〈analysis〉

| Gen-default ⇒ 〈〉))

declare[[cartouche-type ′ = abr-string]]

definition of-boot-setup-env env = (λ Boot-setup-env e ⇒
of-setup
env
(Setup

(SML.app
〈Generation-mode.update-compiler-config〉

[ SML.app
〈K〉

[ SML-let-open
〈META〉

((∗ Instead of using
(∗sml-of-compiler-env-config SML-apply (λx. SML-basic [x]) e∗)
the following allows to ′automatically ′ return an uncurried expression: ∗)

SML-basic [sml-of-compiler-env-config sml-apply id e])]])))

declare[[cartouche-type ′ = funprintf ]]

definition of-all-meta env = (λ
META-semi--theories thy ⇒ of env-semi--theories env thy
| META-boot-generation-syntax generation-syntax ⇒ of-boot-generation-syntax env generation-syntax
| META-boot-setup-env setup-env ⇒ of-boot-setup-env env setup-env
| META-all-meta-embedding all-meta-embedding ⇒ of-all-meta-embedding env all-meta-embedding)

definition of-all-meta-lists env l-thy =
(let (th-beg, th-end) = case D-output-header-thy env of None ⇒ ([], [])
| Some (name, fic-import, fic-import-boot) ⇒

( [ 〈theory %s imports %s begin〉

(To-string name)
(of-semi--term (term-binop 〈 ′′ ′′〉

(L.map Term-string
(fic-import @@@@ (if D-output-header-force env



H.4. FINALIZING THE PRINTER 329

| D-output-auto-bootstrap env then
[fic-import-boot]

else
[]))))) ]

, [ 〈〉, 〈end〉 ]) in
L.flatten

[ th-beg
, L.flatten (fst (L.mapM (λ(msg, l) (i, cpt).

let (l-thy, lg) = L.mapM (λl n. (of-all-meta env l, Succ n)) l 0 in
(( 〈〉

# 〈%s(∗ %d ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ %d + %d ∗)%s〉

(To-string (if compiler-env-config.more env then 〈 ′′′′〉 else °char-escape°))
(To-nat (Succ i))
(To-nat cpt)
(To-nat lg)
(case msg of None ⇒ 〈〉 | Some msg ⇒ 〈 (∗ term %s ∗)〉 (To-string msg))

# l-thy), Succ i, cpt + lg)) l-thy (D-output-position env)))
, th-end ])

end

lemmas [code] =

Print.of env-section-def
Print.of env-semi--theory-def
Print.of env-semi--theories-def
Print.of-floor-def
Print.of-all-meta-embedding-def
Print.of-boot-generation-syntax-def
Print.of-boot-setup-env-def
Print.of-all-meta-def
Print.of-all-meta-lists-def

end

H.4 Finalizing the Printer

theory Printer
imports Core

meta/Printer-META
begin

definition List-iterM f l =
List.fold (λx m. bind m (λ () ⇒ f x)) l (return ())

context Print
begin

declare[[cartouche-type ′ = String.literal]]

definition (write-file0 :: - ⇒ (((- ⇒ String.literal ⇒ -) ⇒ -) ⇒ -) × -) env =
(let (l-thy, Sys-argv) = compiler-env-config.more env

; (is-file, f-output) = case (D-output-header-thy env, Sys-argv)
of (Some (file-out, -), Some dir) ⇒

let dir = To-string dir in
(True, λf . bind (Sys-is-directory2 dir) (λ Sys-is-directory2-dir .

out-file1 f (if Sys-is-directory2-dir then sprint2 〈%s/%s.thy〉´ dir (To-string file-out) else dir)))
| - ⇒ (False, out-stand1 )

; (env, l) =
fold-thy ′

comp-env-save-deep
(λf . f ())
(λ- -. [])
(λmsg x acc1 acc2 . (acc1 , Cons (msg, x) acc2 ))
(fst (compiler-env-config.more env))
(compiler-env-config.truncate env, []) in

(f-output, of-all-meta-lists (compiler-env-config-more-map (λ-. is-file) env) (rev l)))

definition write-file env =
(let (f-output, l) = write-file0 env in
f-output



330 APPENDIX H. HOL-OCL 2.0: PRINTING META-MODELS

(λfprintf1 .
List-iterM (fprintf1 〈%s

〉 )
l))

end

definition write-file0 = Print.write-file0 (String.implode o String.to-list) (ToNat integer-of-natural)
definition write-file = Print.write-file (String.implode o String.to-list) (ToNat integer-of-natural)

lemmas [code] =

Print.write-file0-def
Print.write-file-def

H.5 Miscellaneous: Garbage Collection of Notations
no-type-notation natural (nat)
no-type-notation abr-string (string)

end



A
p

p
e

n
d

ix I
HOL-OCL 2.0: Syntax Diagrams of Commands

I.1 Main Setup of Meta Commands

generation-syntax : theory → theory

generation_syntax
�� � [

����
� syntax�

� ,
���

�


�


]
����

�syntax

�deep
�� �flush_all

�� �

�




syntax

deep
�� �semantics deep-embedding�

�shallow
�� �semantics long-or-dirty

�syntax_print
�� ��

�number

�


�



semantics

�
� (

���generation_semantics
�� ��

�
� [

��� design
�� ��

�analysis
�� �

�


�
� ,

���oid_start
�� �nat

�


]
���)

���

�



331



332 APPENDIX I. HOL-OCL 2.0: SYNTAX DIAGRAMS OF COMMANDS

deep-embedding

�
�skip_export

�� �
�


�
�

��
� (

���THEORY
�� �name )

����
�

� (
���IMPORTS

�� �[
����

� name�
� ,

���
�


�


]
���name )

���

�



�

�
��

�SECTION
�� �

�


�
�

� long-or-dirty �
�

� [
��� export-code�

� ,
���

�


]
����

�
��

� (
���output_directory

�� �name )
���

�


export-code

in
��� self

�� ��
�Haskell

�� �� OCaml
�� ��

�Scala
�� ��SML
�� �

�



module_name
�� �name

�



�
� (

���args )
���

�




I.2. ALL META COMMANDS OF UML/OCL 333

long-or-dirty

�
� SORRY

�� ��
�no_dirty

�� �
�


�


generation-syntax sets the behavior of all incoming meta-commands. By default, without firstly writing
generation-syntax, meta-commands will only print in output what they have parsed, this is similar as giving to
generation-syntax a non-empty list having only syntax-print as elements (on the other hand, nothing is printed
when an empty list is received). Additionally syntax-print can be followed by an integer indicating the printing
depth in output, similar as declaring ML-print-depth with an integer, but the global option syntax-print is
restricted to meta-commands. Besides the printing of syntaxes, several options are provided to further analyze
the semantics of languages being embedded, and tell if their evaluation should occur immediately using the
shallow mode, or to only display what would have been evaluated using the deep mode (i.e., to only show the
generated Isabelle content in the output window).

Since several occurrences of deep, shallow or syntax-print can appear in the parameterizing list, for each
meta-command the overall evaluation respects the order of events given in the list (from head to tail). At the
time of writing, it is only possible to evaluate this list sequentially: the execution stops as soon as one first error
is raised, thus ignoring remaining events.

generation-syntax deep flush-all performs as side effect the writing of all the generated Isabelle contents to
the hard disk (all at the calling time), by iterating the saving for each deep mode in the list. In particular, this
is only effective if there is at least one deep mode earlier declared.

As a side note, target languages for the deep mode currently supported are: Haskell, OCaml, Scala and SML.
So in principle, all these targets generate the same Isabelle content and exit correctly. However, depending on
the intended use, exporting with some targets may be more appropriate than other targets:

• For efficiency reasons, the meta-compiler has implemented a particular optimization for accelerating the
process of evaluating incoming meta-commands. By default in Haskell and OCaml, the meta-compiler (at
HOL side) is exported only once, during the generation-syntax step. Then all incoming meta-commands
are considered as arguments sent to the exported meta-compiler. As a compositionality aspect, these
arguments are compiled then linked together with the (already compiled) meta-compiler, but this implies
the use of one call of unsafeCoerce in Haskell and one Obj.magic statement in OCaml (otherwise another
solution would be to extract the meta-compiler as a functor). Similar optimizations are not yet imple-
mented for Scala and are only half-implemented for the SML target (which basically performs a step of
marshalling to string in Isabelle/ML).

• For safety reasons, it simply suffices to extract all the meta-compiler together with the respective argu-
ments in front of each incoming meta-commands everytime, then the overall needs to be newly compiled
everytime. This is the current implemented behavior for Scala. For Haskell, OCaml and SML, it was
also the default behavior in a prototyping version of the compiler, as a consequence one can restore that
functionality for future versions.

The keyword self is another option to call the own reflected meta-compiler, and execute the full generation
without leaving the own Isabelle process being executed.

Concerning the semantics of generated contents, if lemmas and proofs are generated, SORRY allows to
explicitly skip the evaluation of all proofs, irrespective of the presence of sorry or not in generated proofs. In
any cases, the semantics of sorry has not been overloaded, e.g., red background may appear as usual.

Finally generation-semantics is a container for specifying various options for varying the semantics of lan-
guages being embedded. For example, design and analysis are two options for specifying how the modelling of
objects will be represented in the Toy Language. Similarly, this would be a typical place for options like eager
or lazy for choosing how the evaluation should happen...

I.2 All Meta Commands of UML/OCL

Class : theory → theory
Abstract-class : theory → theory



334 APPENDIX I. HOL-OCL 2.0: SYNTAX DIAGRAMS OF COMMANDS

Class
�� ��

�Abstract_class
�� �

�


binding =
���type-base�

�type-object class

�


class

�
�Attributes

�� �
�


�
� binding :

���uml-type�
��

� ;
���

�


�


�


�

�
�context

context

�
� �

�Operations
�� ��::
���

�



binding uml-type �

�
��

� =
���term�

�term

�


�


�
� Pre

�� ��
�Post

�� �
�


use-prop�
�invariant

�


�

�

�



�


�

�invariant

�





�

�

�



�


invariant

�
�Constraints

�� �
�


�
�Existential

�� �
�


Inv
�� �use-prop

Aggregation : theory → theory
Association : theory → theory

Composition : theory → theory



I.2. ALL META COMMANDS OF UML/OCL 335

Aggregation
�� ��

�Association
�� ��Composition
�� �

�



�
�binding

�


association

association

�
�Between

�� �
�


�
�association-end association-end�

�
�


�


association-end

type-object category �
� ;

���
�


Associationclass : theory → theory
Abstract-associationclass : theory → theory

Associationclass
�� ��

�Abstract_associationclass
�� �

�


type-object �
�

�association class �
�aggregation

�� ��composition
�� �

�



Context : theory → theory

Context
�� ��

� [
���shallow

�� �]
���

�


type-object context

Instance : theory → theory



336 APPENDIX I. HOL-OCL 2.0: SYNTAX DIAGRAMS OF COMMANDS

Instance
�� ��

� binding �
�::

���type-object

�


=
����

�
� term-object�

�object-cast

�




��

��
�and

�� �
�


�



�


term-object

[
����

�binding with_only
�� �

�


�
�

��
� �

� (
���binding ,

���binding )
���|=

���
�


�
�

�binding =
���uml-term 

��

� ,
���

�



�


]
���

object-cast

(
���term-object ::

���type-object )
����

�
��

� →
���oclAsType

�� �(
���type-object )

����
�

�


�


State : theory → theory

State
�� ��

� [
���shallow

�� �]
���

�


binding �
� =

���state

�




I.2. ALL META COMMANDS OF UML/OCL 337

state

[
����

� binding�
�object-cast

�


�
� ,

���

�


�


]
���

Transition : theory → theory

Transition
�� ��

� [
���shallow

�� �]
���

�


�
�binding =

���
�


�
�

�transition �
�transition

�


transition

binding�
�state

�


Enum : theory → theory

Enum
�� �binding [

����
� binding�

� ,
���

�


�


]
���

Tree : theory → theory

Tree
�� �nat nat



338 APPENDIX I. HOL-OCL 2.0: SYNTAX DIAGRAMS OF COMMANDS

Miscellaneous

BaseType : theory → theory

BaseType
�� �[

����
� term-base�

� ,
���

�


�


]
���

I.3 UML/OCL: Type System

unlimited-natural

*
����

�∞
���

�


�
�number

�


term-base

true
�� ��

�false
�� �

�


�
�unlimited-natural

�number

�float-number

�string

�





multiplicity

[
����

� unlimited-natural �
� . .

�� �unlimited-natural

�


�
� ,

���

�


�


]
���



I.3. UML/OCL: TYPE SYSTEM 339

uml-term

term-base�
�multiplicity

�binding

�self
�� ��

�nat

�


� [
����

� uml-term�
� ,

���
�


�


]
���

� (
����

� uml-term�
� ,

���
�


�


)
���

� 〈
���term 〉

���

�








name-object

�
� binding�

� ,
���

�


:
���

�


binding

type-base

Void
�� ��

�Boolean
�� ��UnlimitedNatural
�� ��Integer
�� ��Real
�� ��String
�� �

�






type-object

name-object �
� <

��� name-object�
� ,

���
�


�
�

�


�




340 APPENDIX I. HOL-OCL 2.0: SYNTAX DIAGRAMS OF COMMANDS

category

multiplicity �
�

��
�Role

�� �binding

�


�
� Derived

�� �=
���term�

�Nonunique
�� ��Ordered
�� ��Qualifier
�� �uml-type

�Redefines
�� �binding

�Sequence_
�� ��Subsets
�� �binding

�Union
�� �

�








�

�

�



�




I.4. UML/OCL: LAZY IDENTITY COMBINATOR 341

uml-type

type-base�
�type-object

� Sequence
�� ��

�Set
�� ��category

�



uml-type

�Pair
�� � uml-type uml-type�

� (
���uml-type ,

���uml-type )
���

�


� (
����

� binding :
��� (

���uml-type )
����

�uml-type-weak

�


�
� ,

���

�


�


)
����

�
��

� :
���uml-type

�


� (
���uml-type )

���� 〈
���type 〉

���

�









use-prop

type-object�
�association

��
��

�binding

�


:
���

�


prop

�



�
� ;

���
�


uml_type_weak is like uml_type except that type_object can not contain quantified names.

I.4 UML/OCL: Lazy Identity Combinator

End : theory → theory



342 APPENDIX I. HOL-OCL 2.0: SYNTAX DIAGRAMS OF COMMANDS

End
�� ��

� [
���forced

�� �]
����

� !
���

�


�




A
p

p
e

n
d

ix

J
HOL-OCL 2.0: Grammar of Featherweight OCL

This chapter lists the productions of the priority grammar of Featherweight OCL (by not considering the
productions initially brought by the theory “Transcendental” from Figure D.2). This chapter has been generated
from the output of the command print_syntax [Wen16b] (when that command is called at the end of the theory
“UML_Main” from Figure D.2).

(any 1) prop ′ 1 (none)

(any 1) logic 1 (none)

(args1000) any0 , args0 args

(args 1) any 1 (none)

(cartouche-position1000) cartouche position

(id-position1000) id position

(idt1000) ( idt0 ) (none)

(idt0) - :: type0 idtypdummy

(idt1000) - idtdummy

(idt0) id-position0 :: type0 idtyp

(idt 1) id-position 1 (none)

(logic1000) op , UML-Logic.StrongEq const

(logic1000) op ,pre UML-Logic.StrongEqpre const

(logic1000) op ,post UML-Logic.StrongEqpost const

(logic1000) op and UML-Logic.OclAnd const

(logic1000) op or UML-Logic.OclOr const

(logic1000) op implies UML-Logic.OclImplies const

(logic1000) op .= UML-Logic.StrictRefEq const

(logic1000) op <> notequal

(logic1000) op +int UML-Integer .OclAddI nteger const

(logic1000) op −int UML-Integer .OclMinusI nteger const

(logic1000) op ∗int UML-Integer .OclMultI nteger const

343



344 APPENDIX J. HOL-OCL 2.0: GRAMMAR OF FEATHERWEIGHT OCL

(logic1000) op divint UML-Integer .OclDivisionI nteger const

(logic1000) op modint UML-Integer .OclModulusI nteger const

(logic1000) op <int UML-Integer .OclLessI nteger const

(logic1000) op ≤int UML-Integer .OclLeI nteger const

(logic1000) op +string UML-String.OclAddString const

(logic1000) op +real UML-Real.OclAddReal const

(logic1000) op −real UML-Real.OclMinusReal const

(logic1000) op ∗real UML-Real.OclMultReal const

(logic1000) op divreal UML-Real.OclDivisionReal const

(logic1000) op modreal UML-Real.OclModulusReal const

(logic1000) op <real UML-Real.OclLessReal const

(logic1000) op ≤real UML-Real.OclLeReal const

(logic1000) op ∼= UML-Bag.ApproxEq const

(logic50) if logic10 then logic10 else logic10 endif UML-Logic.OclIf const

(logic1000) d logic0 e UML-Types.drop const

(logic1000) I J any0 K UML-Types.Sem const

(logic100) υ logic100 UML-Logic.valid const

(logic100) δ logic100 UML-Logic.defined const

(logic1000) not UML-Logic.OclNot const

(logic1000) ⊥ UML-Types.bot-class.bot const

(logic1000) ⊥ Option.option.None const

(logic1000) Pair{ logic0 , logic0 } UML-Pair .OclPair const

(logic1000) 0 UML-Integer .OclInt0 const

(logic1000) 1 UML-Integer .OclInt1 const

(logic1000) 2 UML-Integer .OclInt2 const

(logic1000) 3 UML-Integer .OclInt3 const

(logic1000) 4 UML-Integer .OclInt4 const

(logic1000) 5 UML-Integer .OclInt5 const

(logic1000) 6 UML-Integer .OclInt6 const

(logic1000) 7 UML-Integer .OclInt7 const

(logic1000) 8 UML-Integer .OclInt8 const

(logic1000) 9 UML-Integer .OclInt9 const

(logic1000) 10 UML-Integer .OclInt10 const



345

(logic1000) a UML-String.OclStringa const

(logic1000) b UML-String.OclStringb const

(logic1000) c UML-String.OclStringc const

(logic1000) 0.0 UML-Real.OclReal0 const

(logic1000) 1.0 UML-Real.OclReal1 const

(logic1000) 2.0 UML-Real.OclReal2 const

(logic1000) 3.0 UML-Real.OclReal3 const

(logic1000) 4.0 UML-Real.OclReal4 const

(logic1000) 5.0 UML-Real.OclReal5 const

(logic1000) 6.0 UML-Real.OclReal6 const

(logic1000) 7.0 UML-Real.OclReal7 const

(logic1000) 8.0 UML-Real.OclReal8 const

(logic1000) 9.0 UML-Real.OclReal9 const

(logic1000) 10.0 UML-Real.OclReal10 const

(logic1000) π UML-Real.OclRealpi const

(logic1000) Bag{} UML-Bag.mtBag const

(logic1000) Bag{ args0 } OclFinbag

(logic1000) Set{} UML-Set.mtSet const

(logic1000) Set{ args0 } OclFinset

(logic1000) Sequence{} UML-Sequence.mtSequence const

(logic1000) Sequence{ args0 } OclFinsequence

(logic1000) cartouche-position0 cartouche-oclstring

(logic1000) - ′ ocl-denotation

(logic1000) logic0 −>asBagP air() UML-Library.OclAsBagP air const

(logic1000) logic0 −>asBagSet() UML-Library.OclAsBagSet const

(logic1000) logic0 −>asBagSeq() UML-Library.OclAsBagSeq const

(logic1000) logic0 −>asSequenceP air() UML-Library.OclAsSeqP air const

(logic1000) logic0 −>asSequenceBag() UML-Library.OclAsSeqBag const

(logic1000) logic0 −>asSequenceSet() UML-Library.OclAsSeqSet const

(logic1000) logic0 −>asSetBag() UML-Library.OclAsSetBag const

(logic1000) logic0 −>asSetP air() UML-Library.OclAsSetP air const

(logic1000) logic0 −>asSetSeq() UML-Library.OclAsSetSeq const

(logic1000) logic0 −>asPairBag() UML-Library.OclAsPairBag const



346 APPENDIX J. HOL-OCL 2.0: GRAMMAR OF FEATHERWEIGHT OCL

(logic1000) logic0 −>asPairSet() UML-Library.OclAsPairSet const

(logic1000) logic0 −>asPairSeq() UML-Library.OclAsPairSeq const

(logic1000) logic0 −>oclAsTypeI nt(Real) UML-Library.OclAsRealI nt const

(logic1000) logic0 −>oclAsTypeReal(Integer) UML-Library.OclAsIntegerReal const

(logic1000) logic0 −>oclAsTypeReal(Boolean) UML-Library.OclAsBooleanReal const

(logic1000) logic0 −>oclAsTypeI nt(Boolean) UML-Library.OclAsBooleanI nt const

(logic1000) logic0 −>sumSeq() UML-Sequence.OclSum const

(logic1000) logic0 −>countSeq( logic0 ) UML-Sequence.OclCount const

(logic1000) logic0 −>anySeq() UML-Sequence.OclANY const

(logic1000) logic0 −>notEmptySeq() UML-Sequence.OclNotEmpty const

(logic1000) logic0 −>isEmptySeq() UML-Sequence.OclIsEmpty const

(logic1000) logic0 −>sizeSeq() UML-Sequence.OclSize const

(logic1000) logic0 −>selectSeq( id | logic0 ) OclSelectSeq

(logic1000) logic0 −>collectSeq( id | logic0 ) OclCollectSeq

(logic1000) logic0 −>existsSeq( id | logic0 ) OclExistSeq

(logic1000) logic0 −>forAllSeq( id | logic0 ) OclForallSeq

(logic1000) logic0 −>iterateSeq( idt0 ; idt0 = any0 | any0 ) OclIterateSeq

(logic1000) logic0 −>lastSeq( logic0 ) UML-Sequence.OclLast const

(logic1000) logic0 −>firstSeq( logic0 ) UML-Sequence.OclFirst const

(logic1000) logic0 −>atSeq( logic0 ) UML-Sequence.OclAt const

(logic1000) logic0 −>unionSeq( logic0 ) UML-Sequence.OclUnion const

(logic1000) logic0 −>appendSeq( logic0 ) UML-Sequence.OclAppend const

(logic1000) logic0 −>excludingSeq( logic0 ) UML-Sequence.OclExcluding const

(logic1000) logic0 −>includingSeq( logic0 ) UML-Sequence.OclIncluding const

(logic1000) logic0 −>prependSeq( logic0 ) UML-Sequence.OclPrepend const

(logic1000) logic0 −>sumSet() UML-Set.OclSum const

(logic1000) logic0 −>countSet( logic0 ) UML-Set.OclCount const

(logic1000) logic0 −>intersectionSet( logic0 ) UML-Set.OclIntersection const

(logic1000) logic0 −>unionSet( logic0 ) UML-Set.OclUnion const

(logic1000) logic0 −>excludesAllSet( logic0 ) UML-Set.OclExcludesAll const

(logic1000) logic0 −>includesAllSet( logic0 ) UML-Set.OclIncludesAll const



347

(logic1000) logic0 −>rejectSet( id | logic0 ) OclRejectSet

(logic1000) logic0 −>selectSet( id | logic0 ) OclSelectSet

(logic1000) logic0 −>iterateSet( idt0 ; idt0 = any0 | any0 ) OclIterateSet

(logic1000) logic0 −>existsSet( id | logic0 ) OclExistSet

(logic1000) logic0 −>forAllSet( id | logic0 ) OclForallSet

(logic1000) logic0 −>anySet() UML-Set.OclANY const

(logic1000) logic0 −>notEmptySet() UML-Set.OclNotEmpty const

(logic1000) logic0 −>isEmptySet() UML-Set.OclIsEmpty const

(logic1000) logic0 −>sizeSet() UML-Set.OclSize const

(logic1000) logic0 −>excludesSet( logic0 ) UML-Set.OclExcludes const

(logic1000) logic0 −>includesSet( logic0 ) UML-Set.OclIncludes const

(logic1000) logic0 −>excludingSet( logic0 ) UML-Set.OclExcluding const

(logic1000) logic0 −>includingSet( logic0 ) UML-Set.OclIncluding const

(logic1000) logic0 −>sumBag() UML-Bag.OclSum const

(logic1000) logic0 −>countBag( logic0 ) UML-Bag.OclCount const

(logic1000) logic0 −>intersectionBag( logic0 ) UML-Bag.OclIntersection const

(logic1000) logic0 −>unionBag( logic0 ) UML-Bag.OclUnion const

(logic1000) logic0 −>excludesAllBag( logic0 ) UML-Bag.OclExcludesAll const

(logic1000) logic0 −>includesAllBag( logic0 ) UML-Bag.OclIncludesAll const

(logic1000) logic0 −>rejectBag( id | logic0 ) OclRejectBag

(logic1000) logic0 −>selectBag( id | logic0 ) OclSelectBag

(logic1000) logic0 −>iterateBag( idt0 ; idt0 = any0 | any0 ) OclIterateBag

(logic1000) logic0 −>existsBag( id | logic0 ) OclExistBag

(logic1000) logic0 −>forAllBag( id | logic0 ) OclForallBag

(logic1000) logic0 −>anyBag() UML-Bag.OclANY const

(logic1000) logic0 −>notEmptyBag() UML-Bag.OclNotEmpty const

(logic1000) logic0 −>isEmptyBag() UML-Bag.OclIsEmpty const

(logic1000) logic0 −>sizeBag() UML-Bag.OclSize const

(logic1000) logic0 −>excludesBag( logic0 ) UML-Bag.OclExcludes const

(logic1000) logic0 −>includesBag( logic0 ) UML-Bag.OclIncludes const

(logic1000) logic0 −>excludingBag( logic0 ) UML-Bag.OclExcluding const



348 APPENDIX J. HOL-OCL 2.0: GRAMMAR OF FEATHERWEIGHT OCL

(logic1000) logic0 −>includingBag( logic0 ) UML-Bag.OclIncluding const

(logic30) logic30 ∼= logic31 UML-Bag.ApproxEq const

(logic35) logic36 ≤real logic36 UML-Real.OclLeReal const

(logic35) logic36 <real logic36 UML-Real.OclLessReal const

(logic45) logic46 modreal logic46 UML-Real.OclModulusReal const

(logic45) logic46 divreal logic46 UML-Real.OclDivisionReal const

(logic45) logic46 ∗real logic46 UML-Real.OclMultReal const

(logic41) logic42 −real logic42 UML-Real.OclMinusReal const

(logic40) logic41 +real logic41 UML-Real.OclAddReal const

(logic40) logic41 +string logic41 UML-String.OclAddString const

(logic35) logic36 ≤int logic36 UML-Integer .OclLeI nteger const

(logic35) logic36 <int logic36 UML-Integer .OclLessI nteger const

(logic45) logic46 modint logic46 UML-Integer .OclModulusI nteger const

(logic45) logic46 divint logic46 UML-Integer .OclDivisionI nteger const

(logic45) logic46 ∗int logic46 UML-Integer .OclMultI nteger const

(logic41) logic42 −int logic42 UML-Integer .OclMinusI nteger const

(logic40) logic41 +int logic41 UML-Integer .OclAddI nteger const

(logic1000) logic0 .Second() UML-Pair .OclSecond const

(logic1000) logic0 .First() UML-Pair .OclFirst const

(logic40) logic41 <> logic41 notequal

(logic30) logic30 .= logic31 UML-Logic.StrictRefEq const

(logic50) logic0 |=post logic0 UML-Logic.OclValid-at-post const

(logic50) logic0 |=pre logic0 UML-Logic.OclValid-at-pre const

(logic50) logic0 |6= logic0 OclNonValid

(logic50) logic0 |= logic0 UML-Logic.OclValid const

(logic25) logic25 implies logic26 UML-Logic.OclImplies const

(logic25) logic25 or logic26 UML-Logic.OclOr const

(logic30) logic30 and logic31 UML-Logic.OclAnd const

(logic30) logic30 ,post logic31 UML-Logic.StrongEqpost const

(logic30) logic30 ,pre logic31 UML-Logic.StrongEqpre const

(logic30) logic30 , logic31 UML-Logic.StrongEq const

(logic1000) logic0 .allInstances() UML-State.OclAllInstances-at-post const



349

(logic1000) logic0 .allInstances@pre() UML-State.OclAllInstances-at-pre const

(logic1000) logic0 .oclIsNew() UML-State.OclIsNew const

(logic1000) logic0 .oclIsDeleted() UML-State.OclIsDeleted const

(logic1000) logic0 .oclIsMaintained() UML-State.OclIsMaintained const

(logic1000) logic0 .oclIsAbsent() UML-State.OclIsAbsent const

(logic1000) logic0 −>oclIsModifiedOnly() UML-State.OclIsModifiedOnly const

(logic1000) logic0 @pre logic0 UML-State.OclSelf-at-pre const

(logic1000) logic0 @post logic0 UML-State.OclSelf-at-post const

(type1000) 〈 type0 〉⊥ Option.option type

(type1000) Pair( type0 , type0 ) UML-Types.Pairbase type

(type1000) Set( type0 ) UML-Types.Setbase type

(type1000) Bag( type0 ) UML-Types.Bagbase type

(type1000) Sequence( type0 ) UML-Types.Sequencebase type





A
p

p
e

n
d

ix

K
Defining Isar_HOL syntax “from null”

The possibility to embed an arbitrary language L in Isabelle depends on the
capacity of the proving system to parse new syntax and reconfigure commands,
so that most keywords of L can be represented in the system. In this part, we
detail certain flexibility of the framework by particularly presenting how to type
the invalid and null characters in Isabelle/jEdit. As illustration, Figure K.1 is
exactly similar as Figure 5.8 except that all commands have been syntactically
renamed.

Despite the similarity between “U+0435”1 and “e” (i. e. “U+0065”2), here
theory and lemma have not been overloaded using particular equal glyphs like
in Section 6.5: datatype was renamed into “theory Scratch3⏎⏎theory ‹”, and
fun renamed into “›⏎⏎lemma” (where we represent the newline symbol by “⏎”).
So spaces can occur in the name of commands at any positions. Not only have
commands been renamed but green syntactic entities are also flexible (i. e., the
portions of code that can be divided inside each green area of Figure 5.9). For
example, after theory, imports is usually written before keywords, but it is in
the source code where the order is established, and such modifications can be
easily experimented with the command ML for example. As another example,
the need to write “end” at the end of the theory does not depend on the presence
or not of the keyword begin at the beginning of the theory: even if the color
of this last appears in green in Isabelle/jEdit, “end” has been internally defined
with Outer_Syntax.command in the source of Isabelle. Additionally Figure K.1
also shows that one can replace green keywords by other green keywords: as
example where is replaced by assumes, and “|” by shows. Even if the color of
“|” is black, it can be considered as a green entity (so do all other entities which
are not commands).

Since names of commands can include certain interleaving of white spaces,
one possibility to detect the boundaries of a command is to hover with the
mouse over a visible part of that command, and observe a lighten continuous
region appearing in the background. For instance, by doing so, we can observe
“\includegraphics” is a single word with particularly no white spaces around it.
After \includegraphics, the two cartouches are not blue: they do not belong to

1http://unicode.org/cldr/utility/character.jsp?a=0435
2http://unicode.org/cldr/utility/character.jsp?a=0065

351

http://unicode.org/cldr/utility/character.jsp?a=0435
http://unicode.org/cldr/utility/character.jsp?a=0065


352 APPENDIX K. DEFINING ISAR_HOL SYNTAX “FROM NULL”

theory Scratch3  imports  Scratch2
                 keywords "�⋅" :: diag  begin
theory Scratch3

theory ‹LIST = NIL | CONS nat LIST›

lemma    height :: "LIST ⇒ nat"
assumes "height NIL        = 0             "
shows   "height (CONS _ t) = Suc (height t)"

\includegraphics[[ML_source_trace]]�‹
     val NIL    = @{code NIL} 
     val height = @{code height} 
     val _      = height NIL ›�‹ 
     Outer_Syntax.command @{command_keyword "⋅"} 
     "� reads and prints an arbitrary HOL term" 
     (Parse.term >> (Isar_Cmd.print_term o pair [])) ›⋅

"height a + height b = height b + height a"

end �
find_theorems �

Figure K.1: Syntactically renaming commands of Figure 5.8

the syntax of a potential blue command, they are in fact categorized as part of
a larger green area.

Since these two cartouches are following each other closely (without apparent
white spaces), the number of arguments of \includegraphics is not clear. As
it could be attentively noticed, it is sure that \includegraphics does not take
four arguments since there is a measurable dot in blue separating “height a +
heightb = heightb+heighta” with the content occurring before this dot. The
current size of the command “·” has in fact been visually attained by combining
several special effects:

• The glyph of the symbol “·” (i. e. “U+22C5”3) has one of the smallest
number of non-null pixels among other glyphs.

• The special symbol “⇩” (i. e. “U+21E9”4) acts as an operator. It can be
applied in front of most symbols, and only at most one time in the current
version of Isabelle. As side effect, it attempts to reduce the given typo-
graphic text to the subscript level (each symbol of the given text has to be
applied one by one because this operator only takes one symbol as argu-
ment). In the picture, it is prefixed one time to “·” (without intercalating
any white spaces).

3http://unicode.org/cldr/utility/character.jsp?a=22C5
4http://unicode.org/cldr/utility/character.jsp?a=21E9

http://unicode.org/cldr/utility/character.jsp?a=22C5
http://unicode.org/cldr/utility/character.jsp?a=21E9


353

More generally, whereas “⇩” has a proper meaning in Isabelle/jEdit (among other
special symbols which can for example portray a juxtaposed letter in superscript
or in bold), there are many symbols in Unicode acting as an operator, perhaps
independently of the own rendering of the editing software, thus also many
symbols affecting the preceding or succeeding symbol across font families. As
example, “ ֹ” (i. e. “U+05B9”5) is a suffix operator which draws a dot on the
position of the neighbour symbol as follows: “012_ֹ_56”. Consequently, this dot
can only be perceived if no neighbours are overlapping and accidentally hiding
the dot. Variations of “U+05B9” actually exist in numerous forms: symbols
drawing a dot on the top, or drawing a dot on the bottom.

Ultimately, this leads the following part to answer why \includegraphics is
resembling to a meta-command. As a matter of fact, we precisely focus on vari-
ations of symbols depicting the absence of pixels, i. e. symbols expressing white
spaces. Several evidences seem to indicate that the TrueType file format6 and
OpenType7 had early taken into account the notion of invalidity, but also the
notion of nullity8,9. Although invalidity is required to state which symbol to use
by default when an encountered code-point does not have an associated known
glyph registered, the presence of null is related to some algorithmic consider-
ations in the domain of typesetting: in typography, null is assimilated as a
completely blank symbol having a width equal to zero10. Historically, the font
currently loaded by default in Isabelle/jEdit has as ancestor a font close to the
group “Bitstream Vera”11. The last version 1.10 dates back from 200312. At
that time, Unicode characters was not natively integrated in Bitstream Vera,
so it is not incorrect for non-Unicode fonts to support a range of code-point
different than the actual Unicode range. Non-Unicode ranges could then be
smaller, for Bitstream Vera, it was (an approximated size of) 0xFFFF charac-
ters. However the presence of invalid and null in Bitstream Vera may have
been originated from specifications of the TrueType file format. invalid and
null have been respectively located there at positions 0x10000 and 0x10001,
while their respective glyphs might have also appeared in other positions: for
example in Unicode, “U+0000” seems to also designate null. Due to the sup-
port of Unicode in Isabelle/jEdit, a copy of the Bitstream Vera font was taken
and extended to support a wider range of characters (the increase was up to ap-
proximately 0x10FFFF characters). However, as side effect occurring during the
extension, Isabelle has kept preserved at their respective positions the glyphs of
both invalid and null. So invalid and null have always existed at positions
0x10000 and 0x10001 since at least 2009 (although 0x10000 and 0x10001 are
normally reserved for other symbols in Unicode).13 To conclude, ML actually

5http://unicode.org/cldr/utility/character.jsp?a=05B9
6https://en.wikipedia.org/w/index.php?title=TrueType
7https://en.wikipedia.org/w/index.php?title=OpenType
8https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6post.

html
9http://www.microsoft.com/typography/otspec/recom.htm

10https://en.wikipedia.org/w/index.php?title=Zero-width_space
11https://en.wikipedia.org/w/index.php?title=Bitstream_Vera
12http://ftp.gnome.org/pub/GNOME/sources/ttf-bitstream-vera/1.10/
13Moreover invalid and null are activated at positions 0x10000 and 0x10001, because code

fonts have the possibility to be deactivated: when encountering a deactivated font, invalid
is generally automatically used instead of that font. For example in Isabelle, “U+0000”, also

http://unicode.org/cldr/utility/character.jsp?a=05B9
https://en.wikipedia.org/w/index.php?title=TrueType
https://en.wikipedia.org/w/index.php?title=OpenType
https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6post.html
https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6post.html
http://www.microsoft.com/typography/otspec/recom.htm
https://en.wikipedia.org/w/index.php?title=Zero-width_space
https://en.wikipedia.org/w/index.php?title=Bitstream_Vera
http://ftp.gnome.org/pub/GNOME/sources/ttf-bitstream-vera/1.10/


354 APPENDIX K. DEFINING ISAR_HOL SYNTAX “FROM NULL”

exists in Figure K.1 but is invisible: we have redefine the command ML to be
the ghost symbol “U+10001”14, also known as null.

As one corollary, since any non-empty appending of null with itself always
produces in Isabelle/jEdit a shape similar as the empty string, to be strict, we
need to give more precision about the number of symbols U+10001 we have
actually used to overload the command ML. Indeed, one can use this feature
to create an army of commands which are at the same time all different and all
invisible. Moreover, the hovering with the mouse in this case is unable to detect
null, and more generally any (non-empty) repetition of null.15,16

The last two commands end and find_theorems in Figure K.1 have been
syntactically defined by inserting a number of symbols null somewhere. This
is one way to visually give the impression that permutations of commands seem
possible (even if we are using a version of Isabelle after 2014). As remark, pars-
ing errors normally prevent the juxtaposition of two arbitrary commands, for
example if these two commands only contain characters from the ASCII set.
So it suffices to insert a non usual symbol inside one of these two commands
(not necessarily at the beginning or the end, somewhere in the middle is ac-
cepted). This is how one can juxtapose end and find_theorems together (i. e.
“endfind_theorems”) to give the illusion of having a single command, even if at
run-time at least two commands will be executed.

Finally as exercise, it would remain to determine how feasible one can dy-
namically change the color of blue commands to green (so that find_theorems
would appear in green), be it for an entire word or for some particular sub-words,
such as invalid and null.

known as null, is represented with the invalid shape because “U+0000” is deactivated.
14http://unicode.org/cldr/utility/character.jsp?a=10001
15In Isabelle/jEdit one can rely on other mechanisms to visualize the space occupied by

commands, for instance the vertical bar on the left, usually used to collapse commands, can
indicate their presence. However nothing is drawn if the command only occupies a single line
or contains certain unusual characters...

16When applying the “⇩” operator in front of null, we obtain a shape having a positive
width: the invisible property becomes lost.

http://unicode.org/cldr/utility/character.jsp?a=10001


Bibliography
[ACHA90] Stuart F Allen, Robert L Constable, Douglas J Howe, and William E

Aitken. The semantics of reflected proof. In Logic in Computer Sci-
ence, 1990. LICS’90, Proceedings., Fifth Annual IEEE Symposium
on e, pages 95–105. IEEE, 1990. 67

[ACM94] Catia M. Angelo, Luc J. M. Claesen, and Hugo De Man. Degrees of
formality in shallow embedding hardware description languages in
HOL. In Joyce and Seger [JS94], pages 89–100. 22

[ADEM14] Marcos Arjona, Carolina Dania, Marina Egea, and Antonio Maña.
Validation of a security metamodel for the development of cloud
applications. In Achim D. Brucker, Carolina Dania, Geri Georg,
and Martin Gogolla, editors, Proceedings of the MODELS 2014
OCL Workshop (OCL 2014), CEUR Workshop Proceedings. CEUR-
WS.org, 2014. 48, 142

[AGH00] Ken Arnold, James Gosling, and David Holmes. The Java Program-
ming Language, Third Edition. Addison-Wesley, 2000. 11

[AJ04] Klaus Aehlig and Felix Joachimski. Operational aspects of untyped
normalisation by evaluation. Mathematical Structures in Computer
Science, 14(4):587–611, 2004. 51

[AJGL11] Jorge Soto Andrade, Sebastián Jaramillo, Claudio Gutiérrez, and
Juan-Carlos Letelier. Ouroboros avatars: A mathematical explo-
ration of self-reference and metabolic closure. In Tom Lenaerts,
Mario Giacobini, Hugues Bersini, Paul Bourgine, Marco Dorigo, and
René Doursat, editors, Advances in Artificial Life: 20th Anniversary
Edition - Back to the Origins of Alife, ECAL 2011, Paris, France,
August 8-12, 2011, pages 763–770. MIT Press, 2011. 77

[And02] Peter B. Andrews. Introduction to Mathematical Logic and Type
Theory: To Truth through Proof. Kluwer Academic Publishers, Dor-
drecht, 2nd edition, 2002. 21

[App16] Apple Inc. The swift programming language. https://swift.
org/documentation/TheSwiftProgrammingLanguage(Swift2.2)
.epub, 2016. Swift 2.2 Edition. 11

[Bal14] Clemens Ballarin. Locales: A module system for mathematical the-
ories. J. Autom. Reasoning, 52(2):123–153, 2014. 130, 147

[Bal16] Clemens Ballarin. Tutorial to Locales and Locale Interpretation,
2016. http://isabelle.in.tum.de/doc/locales.pdf. 130, 147

[Bar91] Henk Barendregt. Introduction to generalized type systems. J.
Funct. Program., 1(2):125–154, 1991. 76

355

https://swift.org/documentation/TheSwiftProgrammingLanguage(Swift2.2).epub
https://swift.org/documentation/TheSwiftProgrammingLanguage(Swift2.2).epub
https://swift.org/documentation/TheSwiftProgrammingLanguage(Swift2.2).epub
http://isabelle.in.tum.de/doc/locales.pdf


356 BIBLIOGRAPHY

[Bar10] Bruno Barras. Sets in coq, coq in sets. J. Formalized Reasoning,
3(1):29–48, 2010. 142

[Bas93] David A Basin. Metalogical frameworks. Logical Environments,
pages 1–29, 1993. 67

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive Con-
structions. Springer-Verlag, Heidelberg, 2004. 12

[BCC+13] Achim D. Brucker, Dan Chiorean, Tony Clark, Birgit Demuth, Mar-
tin Gogolla, Dimitri Plotnikov, Bernhard Rumpe, Edward D. Will-
ink, and Burkhart Wolff. Report on the Aachen OCL meeting.
In Jordi Cabot, Martin Gogolla, Istvan Rath, and Edward Will-
ink, editors, Proceedings of the MoDELS 2013 OCL Workshop (OCL
2013), volume 1092 of CEUR Workshop Proceedings, pages 103–111.
CEUR-WS.org, 2013. 30

[BCF+13] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude
Marché, Benjamin Monate, Yannick Moy, and Virgile Prevosto.
ACSL: ANSI/ISO C Specification Language, 2013. Version 1.8. 12,
49, 142

[BCM04] David A. Basin, Manuel Clavel, and José Meseguer. Reflective meta-
logical frameworks. ACM Trans. Comput. Log., 5(3):528–576, 2004.
59

[BDP+16] Jasmin Christian Blanchette, Martin Desharnais, Lorenz Panny, An-
drei Popescu, and Dmitriy Traytel. Defining (Co)datatypes in Is-
abelle/HOL, 2016. http://isabelle.in.tum.de/doc/datatypes.
pdf. 23

[BDW06a] Achim D. Brucker, Jürgen Doser, and Burkhart Wolff. An MDA
framework supporting OCL. Electronic Communications of the
EASST, 5, 2006. 94

[BDW06b] Achim D. Brucker, Jürgen Doser, and Burkhart Wolff. A model
transformation semantics and analysis methodology for SecureUML.
In Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio,
editors, MoDELS 2006: Model Driven Engineering Languages and
Systems, number 4199 in Lecture Notes in Computer Science, pages
306–320. Springer-Verlag, 2006. An extended version of this paper
is available as ETH Technical Report, no. 524. 102

[BDW06c] Achim D. Brucker, Jürgen Doser, and Burkhart Wolff. Semantic
issues of OCL: Past, present, and future. Electronic Communications
of the EASST, 5, 2006. 14

[BGG+93] Richard Boulton, Andrew Gordon, Michael J. C. Gordon, John Har-
rison, John Herbert, and John Van Tassel. Experience with embed-
ding hardware description languages in HOL. In Victoria Stavridou,
Thomas F. Melham, and Raymond T. Boute, editors, Proceedings of

http://isabelle.in.tum.de/doc/datatypes.pdf
http://isabelle.in.tum.de/doc/datatypes.pdf


BIBLIOGRAPHY 357

the the International Conference on Theorem Provers in Circuit De-
sign: Theory, Practice and Experience, volume A-10 of IFIP Trans-
actions, pages 129–156, Nijmegen, The Netherlands, 1993. North-
Holland Publishing Co. 22

[BHL+14] Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler,
Lorenz Panny, Andrei Popescu, and Dmitriy Traytel. Truly modular
(co)datatypes for isabelle/hol. In Gerwin Klein and Ruben Gamboa,
editors, Interactive Theorem Proving - 5th International Conference,
ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, volume 8558 of Lec-
ture Notes in Computer Science, pages 93–110. Springer, 2014. 23,
74, 81

[BHOG01] Franck Barbier, Brian Henderson-Sellers, Andreas L. Opdahl, and
Martin Gogolla. The whole-part relationship in the unified mod-
eling language: A new approach. In Unified Modeling Language:
Systems Analysis, Design and Development Issues, pages 185–209.
IGI Global, Hershey, PA, USA, 2001. 34

[BKLW10] Achim D. Brucker, Matthias P. Krieger, Delphine Longuet, and
Burkhart Wolff. A specification-based test case generation method
for UML/OCL. In Jürgen Dingel and Arnor Solberg, editors, MoD-
ELS Workshops, number 6627 in Lecture Notes in Computer Science,
pages 334–348. Springer-Verlag, 2010. Selected best papers from all
satellite events of the MoDELS 2010 conference. Workshop on OCL
and Textual Modelling. 30

[BKW09] Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff. Ex-
tending OCL with null-references. In Sudipto Gosh, editor, Models in
Software Engineering, number 6002 in Lecture Notes in Computer
Science, pages 261–275. Springer-Verlag, 2009. Selected best papers
from all satellite events of the MoDELS 2009 conference. 112

[Bla16] Jasmin Christian Blanchette. Hammering Away: A User’s Guide to
Sledgehammer for Isabelle/HOL, 2016. http://isabelle.in.tum.
de/doc/sledgehammer.pdf. 91

[BLS05] Mike Barnett, K. Rustan M. Leino, andWolfram Schulte. The Spec#
programming system: An overview. In Gilles Barthe, Lilian Burdy,
Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors,
Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices (CASSIS), volume 3362 of Lecture Notes in Computer Sci-
ence, pages 49–69, Heidelberg, May 25 2005. Springer-Verlag. 12,
49, 142

[BLTW13] Achim D. Brucker, Delphine Longuet, Frédéric Tuong, and Burkhart
Wolff. On the semantics of object-oriented data structures and path
expressions. In Jordi Cabot, Martin Gogolla, István Ráth, and
Edward D. Willink, editors, Proceedings of the MoDELS 2013 OCL
Workshop (OCL 2013), volume 1092 of CEUR Workshop Proceedings,

http://isabelle.in.tum.de/doc/sledgehammer.pdf
http://isabelle.in.tum.de/doc/sledgehammer.pdf


358 BIBLIOGRAPHY

pages 23–32. CEUR-WS.org, 2013. An extended version of this paper
is available as LRI Technical Report 1565. 30

[BLW08] Sascha Böhme, K. Rustan M. Leino, and Burkhart Wolff. HOL-
Boogie—an interactive prover for the Boogie program-verifier. In
Otmane Aït Mohamed, César Muñoz, and Sofiène Tahar, editors,
Theorem Proving in Higher Order Logics, volume 5170 of Lecture
Notes in Computer Science, pages 150–166, Heidelberg, August
2008. Springer-Verlag. 49

[BM79] Robert S Boyer and J Strother Moore. Metafunctions: Proving them
correct and using them efficiently as new proof procedures. Technical
report, DTIC Document, 1979. 67

[Bou97] Samuel Boutin. Using reflection to build efficient and certified deci-
sion procedures. In Martín Abadi and Takayasu Ito, editors, Theoret-
ical Aspects of Computer Software, Third International Symposium,
TACS ’97, Sendai, Japan, September 23-26, 1997, Proceedings, vol-
ume 1281 of Lecture Notes in Computer Science, pages 515–529.
Springer, 1997. 67

[Bru07] Achim D. Brucker. An Interactive Proof Environment for Object-
oriented Specifications. PhD thesis, ETH Zurich, March 2007. ETH
Dissertation No. 17097. 33

[BRW03] Achim D. Brucker, Frank Rittinger, and Burkhart Wolff. HOL-Z
2.0: A proof environment for Z-specifications. Journal of Universal
Computer Science, 9(2):152–172, February 2003. 22

[BS91] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evalua-
tion functional for typed lambda-calculus. In Proceedings of the Sixth
Annual Symposium on Logic in Computer Science (LICS ’91), Am-
sterdam, The Netherlands, July 15-18, 1991, pages 203–211. IEEE
Computer Society, 1991. 51

[BT07] Clark Barrett and Cesare Tinelli. Cvc3. In Werner Damm and Holger
Hermanns, editors, CAV, volume 4590 of Lecture Notes in Computer
Science, pages 298–302. Springer-Verlag, 2007. 43

[BTT15] Bruno Barras, Carst Tankink, and Enrico Tassi. Asynchronous pro-
cessing of coq documents: From the kernel up to the user interface. In
Christian Urban and Xingyuan Zhang, editors, Interactive Theorem
Proving - 6th International Conference, ITP 2015, Nanjing, China,
August 24-27, 2015, Proceedings, volume 9236 of Lecture Notes in
Computer Science, pages 51–66. Springer, 2015. 13

[BTW14] Achim D. Brucker, Frédéric Tuong, and Burkhart Wolff. Feath-
erweight OCL: A proposal for a machine-checked formal seman-
tics for OCL 2.5. Archive of Formal Proofs, January 2014. http:
//www.isa-afp.org/entries/Featherweight_OCL.shtml, Formal
proof development. 14, 30, 37, 43, 46, 47, 60, 94, 132, 140, 148

http://www.isa-afp.org/entries/Featherweight_OCL.shtml
http://www.isa-afp.org/entries/Featherweight_OCL.shtml


BIBLIOGRAPHY 359

[BW97] Bruno Barras and Benjamin Werner. Coq in coq. Technical report,
Inria, 1997. 142

[BW99] Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL
- lessons learned in formal-logic engineering. In Yves Bertot, Gilles
Dowek, André Hirschowitz, Christine Paulin-Mohring, and Laurent
Théry, editors, Theorem Proving in Higher Order Logics, 12th Inter-
national Conference, TPHOLs’99, Nice, France, September, 1999,
Proceedings, volume 1690 of Lecture Notes in Computer Science,
pages 19–36. Springer, 1999. 23, 81

[BW01] Gertrud Bauer and Markus Wenzel. Calculational reasoning revis-
ited (an isabelle/isar experience). In Richard J. Boulton and Paul B.
Jackson, editors, Theorem Proving in Higher Order Logics, 14th In-
ternational Conference, TPHOLs 2001, Edinburgh, Scotland, UK,
September 3-6, 2001, Proceedings, volume 2152 of Lecture Notes in
Computer Science, pages 75–90. Springer, 2001. 61

[BW02a] Achim D. Brucker and Burkhart Wolff. HOL-OCL: Experiences, con-
sequences and design choices. In Jean-Marc Jézéquel, Heinrich Huss-
mann, and Stephen Cook, editors, UML 2002: Model Engineering,
Concepts and Tools, number 2460 in Lecture Notes in Computer
Science, pages 196–211. Springer-Verlag, 2002. 14

[BW02b] Achim D. Brucker and Burkhart Wolff. A proposal for a formal
OCL semantics in Isabelle/HOL. In Víctor A. Carreño, César A.
Muñoz, and Sophiène Tahar, editors, Theorem Proving in Higher
Order Logics (TPHOLs), number 2410 in Lecture Notes in Computer
Science, pages 99–114. Springer-Verlag, 2002. 30

[BW06] Achim D. Brucker and Burkhart Wolff. The HOL-OCL book. Tech-
nical Report 525, ETH Zurich, 2006. 45

[BW08a] Achim D. Brucker and Burkhart Wolff. HOL-OCL – A Formal Proof
Environment for UML/OCL. In José Fiadeiro and Paola Inverardi,
editors, Fundamental Approaches to Software Engineering (FASE08),
number 4961 in Lecture Notes in Computer Science, pages 97–100.
Springer-Verlag, 2008. 14, 45, 63, 141

[BW08b] Achim D. Brucker and Burkhart Wolff. An extensible encoding of
object-oriented data models in HOL. Journal of Automated Reason-
ing, 41:219–249, 2008. 33, 46, 47, 141, 142

[BW08c] Achim D. Brucker and Burkhart Wolff. Extensible universes for
object-oriented data models. In Jan Vitek, editor, ECOOP 2008
– Object-Oriented Programming, number 5142 in Lecture Notes in
Computer Science, pages 438–462. Springer-Verlag, 2008. 142

[BW09] Achim D. Brucker and Burkhart Wolff. Semantics, calculi, and anal-
ysis for object-oriented specifications. Acta Informatica, 46(4):255–
284, July 2009. 22, 127, 141



360 BIBLIOGRAPHY

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinen-
bach, Michal Moskal, Thomas Santen, Wolfram Schulte, and
Stephan Tobies. VCC: A practical system for verifying concur-
rent C. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and
Makarius Wenzel, editors, Theorem Proving in Higher Order Log-
ics (TPHOLs), volume 5674 of Lecture Notes in Computer Science,
pages 23–42. Springer-Verlag, 2009. 49

[CFC58] Haskell B. Curry, Robert Feys, and William Craig. Combinatory
Logic, volume 1. North-Holland, 1958. §9E. 64

[Che76] Peter Pin-Shan Chen. The entity-relationship model – toward a
unified view of data. ACM Trans. Database Syst., 1(1):9–36, March
1976. 34

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5(2):56–68, June 1940. 21

[CKM+02] Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe,
Jos Warmer, and Alan Wills. The amsterdam manifesto on OCL. In
Tony Clark and Jos Warmer, editors, Object Modeling with the OCL:
The Rationale behind the Object Constraint Language, volume 2263
of Lecture Notes in Computer Science, pages 115–149, Heidelberg,
2002. Springer-Verlag. 30

[CM96] Manuel G. Clavel and José Meseguer. Axiomatizing reflective logics
and languages. In Proceedings of Reflection’96, pages 263–288, 1996.
67

[CN05] Amine Chaieb and Tobias Nipkow. Verifying and reflecting quan-
tifier elimination for presburger arithmetic. In Geoff Sutcliffe and
Andrei Voronkov, editors, Logic for Programming, Artificial Intelli-
gence, and Reasoning, 12th International Conference, LPAR 2005,
Montego Bay, Jamaica, December 2-6, 2005, Proceedings, volume
3835 of Lecture Notes in Computer Science, pages 367–380. Springer,
2005. 62, 67

[Coq16] The Coq proof assistant reference manual, 2016. 89

[Cos02] Stefania Costantini. Meta-reasoning: A survey. In Antonis C. Kakas
and Fariba Sadri, editors, Computational Logic: Logic Programming
and Beyond, Essays in Honour of Robert A. Kowalski, Part II, vol-
ume 2408 of Lecture Notes in Computer Science, pages 253–288.
Springer, 2002. 66

[CR05] Patrice Chalin and Frédéric Rioux. Non-null references by default
in the Java modeling language. In SAVCBS ’05: Proceedings of the
2005 conference on Specification and verification of component-based
systems, page 9, New York, NY USA, 2005. ACM Press. 143

[Cut80] Nigel Cutland. Computability: An introduction to recursive function
theory. Cambridge university press, 1980. 77



BIBLIOGRAPHY 361

[Dan98] Olivier Danvy. Type-directed partial evaluation. In John Hatcliff,
Torben Æ. Mogensen, and Peter Thiemann, editors, Partial Eval-
uation - Practice and Theory, DIKU 1998 International Summer
School, Copenhagen, Denmark, June 29 - July 10, 1998, volume
1706 of Lecture Notes in Computer Science, pages 367–411. Springer,
1998. 51

[dB80] N.J. de Bruijn. A survey of the project Automath. In J.P. Seldin
and J.R. Hindley, editors, to H.B. Curry : Essays on Combinatory
Logic, Lambda Calculus and Formalism. Academic Press, 1980. 64

[DC13] Carolina Dania and Manuel Clavel. OCL2FOL+: coping with un-
definedness. In Jordi Cabot, Martin Gogolla, István Ráth, and Ed-
ward D. Willink, editors, Proceedings of the MODELS 2013 OCL
Workshop co-located with the 16th International ACM/IEEE Confer-
ence on Model Driven Engineering Languages and Systems (MOD-
ELS 2013), Miami, USA, September 30, 2013., volume 1092 of
CEUR Workshop Proceedings, pages 53–62. CEUR-WS.org, 2013.
48, 142

[Del00] David Delahaye. A tactic language for the system coq. In Michel
Parigot and Andrei Voronkov, editors, Logic for Programming and
Automated Reasoning, 7th International Conference, LPAR 2000,
Reunion Island, France, November 11-12, 2000, Proceedings, volume
1955 of Lecture Notes in Computer Science, pages 85–95. Springer,
2000. 74

[DF00] Peter Dybjer and Andrzej Filinski. Normalization and partial evalu-
ation. In Gilles Barthe, Peter Dybjer, Luis Pinto, and João Saraiva,
editors, Applied Semantics, International Summer School, APPSEM
2000, Caminha, Portugal, September 9-15, 2000, Advanced Lectures,
volume 2395 of Lecture Notes in Computer Science, pages 137–192.
Springer, 2000. 51

[DM82] Luís Damas and Robin Milner. Principal type-schemes for functional
programs. In Richard A. DeMillo, editor, Conference Record of the
Ninth Annual ACM Symposium on Principles of Programming Lan-
guages, Albuquerque, New Mexico, USA, January 1982, pages 207–
212. ACM Press, 1982. 19

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An effi-
cient SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors,
TACAS, volume 4963 of Lecture Notes in Computer Science, pages
337–340, Heidelberg, 2008. Springer-Verlag. 43

[DN66] Ole-Johan Dahl and Kristen Nygaard. SIMULA - an algol-based
simulation language. Commun. ACM, 9(9):671–678, 1966. 11

[Dre16] Dresden OCL. http://www.dresden-ocl.org/, 2016. 47

[ELN+14] Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow,
Alexander Schimpf, and Jan-Georg Smaus. A fully verified exe-

http://www.dresden-ocl.org/


362 BIBLIOGRAPHY

cutable LTL model checker. Archive of Formal Proofs, 2014, 2014.
136

[GBR07] Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-
based specification environment for validating UML and OCL. Sci.
Comput. Program., 69(1-3):27–34, 2007. 15

[GMW79] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth.
Edinburgh LCF: A Mechanised Logic of Computation, volume 78 of
LNCS. Springer, 1979. 12, 62, 70

[Gor00] Mike Gordon. From LCF to HOL: a short history. In Gordon Plotkin,
Colin Stirling, and Mads Tofte, editors, Proof, Language, and In-
teraction: Essays in Honour of Robin Milner, pages 169–185. MIT
Press, Cambridge, Massachusetts, 2000. 70

[GR02] Martin Gogolla and Mark Richters. Expressing UML class diagrams
properties with OCL. In Tony Clark and Jos Warmer, editors, Object
Modeling with the OCL: The Rationale behind the Object Constraint
Language, volume 2263 of Lecture Notes in Computer Science, pages
85–114, Heidelberg, 2002. Springer-Verlag. 102

[Gun92] Elsa L. Gunter. Why we can’t have sml-style datatype declarations in
HOL. In Luc J. M. Claesen and Michael J. C. Gordon, editors, Higher
Order Logic Theorem Proving and its Applications, Proceedings of
the IFIP TC10/WG10.2 Workshop HOL’92, Leuven, Belgium, 21-24
September 1992, volume A-20 of IFIP Transactions, pages 561–568.
North-Holland/Elsevier, 1992. 74

[H9̈4] Reiner Hähnle. Efficient deduction in many-valued logics. In Inter-
national Symposium on Multiple-Valued Logics (ISMVL), pages 240–
249, Los Alamitos, CA, USA, 1994. IEEE Computer Society. 48

[Haf09] Florian Haftmann. Code generation from specifications in higher-
order logic. PhD thesis, Technical University Munich, 2009. 24,
70

[Haf16] Florian Haftmann. Code generation from Isabelle theories, 2016.
http://isabelle.in.tum.de/doc/codegen.pdf. 24, 70, 85

[Har95] John Harrison. Metatheory and reflection in theorem proving: A
survey and critique. Technical report, Citeseer, 1995. 67

[Har14] John Harrison. HOL Light Tutorial, November 2014. 12

[HCH+98] Ali Hamie, Franco Civello, John Howse, Stuart Kent, and Richard
Mitchell. Reflections on the Object Constraint Language. In Jean
Bézivin and Pierre-Alain Muller, editors, The Unified Modeling
Language. «UML»’98: Beyond the Notation, volume 1618 of Lec-
ture Notes in Computer Science, pages 162–172, Heidelberg, 1998.
Springer-Verlag. 30

http://isabelle.in.tum.de/doc/codegen.pdf


BIBLIOGRAPHY 363

[HHJW07] Paul Hudak, John Hughes, Simon L. Peyton Jones, and Philip
Wadler. A history of haskell: being lazy with class. In Barbara G.
Ryder and Brent Hailpern, editors, Proceedings of the Third ACM
SIGPLAN History of Programming Languages Conference (HOPL-
III), San Diego, California, USA, 9-10 June 2007, pages 1–55. ACM,
2007. 19

[Hin69] Roger Hindley. The principal type-scheme of an object in combi-
natory logic. Transactions of the american mathematical society,
146:29–60, 1969. 19

[HN10] Florian Haftmann and Tobias Nipkow. Code generation via higher-
order rewrite systems. In Matthias Blume, Naoki Kobayashi, and
Germán Vidal, editors, Functional and Logic Programming, 10th In-
ternational Symposium, FLOPS 2010, Sendai, Japan, April 19-21,
2010. Proceedings, volume 6009 of Lecture Notes in Computer Sci-
ence, pages 103–117. Springer, 2010. 24, 70

[How80] W.A. Howard. The formulae-as-types notion of constructions. In J.P.
Seldin and J.R. Hindley, editors, to H.B. Curry : Essays on Com-
binatory Logic, Lambda Calculus and Formalism. Academic Press,
1980. Unpublished 1969 Manuscript. 64

[Hue92] Gérard P. Huet. The gallina specification language: A case study.
In R. K. Shyamasundar, editor, Foundations of Software Technology
and Theoretical Computer Science, 12th Conference, New Delhi, In-
dia, December 18-20, 1992, Proceedings, volume 652 of Lecture Notes
in Computer Science, pages 229–240. Springer, 1992. 12

[JS94] Jeffrey J. Joyce and Carl-Johan H. Seger, editors. Higher Order Logic
Theorem Proving and Its Applications (HUG), volume 780 of Lecture
Notes in Computer Science, Heidelberg, 1994. Springer-Verlag. 22,
355

[KAE+10] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. sel4: formal verification of an operating-system
kernel. Commun. ACM, 53(6):107–115, 2010. 22, 63

[Kay93] Alan C. Kay. The early history of smalltalk. In John A. N. Lee
and Jean E. Sammet, editors, History of Programming Languages
Conference (HOPL-II), Preprints, Cambridge, Massachusetts, USA,
April 20-23, 1993, pages 69–95. ACM, 1993. 11

[KG12] Mirco Kuhlmann and Martin Gogolla. From UML and OCL to re-
lational logic and back. In Robert B. France, Jürgen Kazmeier,
Ruth Breu, and Colin Atkinson, editors, Model Driven Engineering
Languages and Systems - 15th International Conference, MODELS
2012, Innsbruck, Austria, September 30-October 5, 2012. Proceed-
ings, volume 7590 of Lecture Notes in Computer Science, pages 415–
431. Springer-Verlag, 2012. 47



364 BIBLIOGRAPHY

[KK08] Matthias P. Krieger and Alexander Knapp. Executing underspecified
ocl operation contracts with a sat solver. In Proceedings of the the
OCL 2008 Workshop, 2008. http://www.fots.ua.ac.be/events/
ocl2008/. 47

[KL12] Jason Koenig and K. Rustan M. Leino. Getting started with Dafny:
A guide. In Tobias Nipkow, Orna Grumberg, and Benedikt Haupt-
mann, editors, Software Safety and Security: Tools for Analysis
and Verification, volume 33 of NATO Science for Peace and Se-
curity Series D: Information and Communication Security, pages
152–181. IOS Press, 2012. Summer School Marktoberdorf 2011 lec-
ture notes. A version of this tutorial is available online at http:
//rise4fun.com/dafny. 12

[Kle38] Stephen Cole Kleene. On notation for ordinal numbers. J. Symb.
Log., 3(4):150–155, 1938. 77

[Kra06] Alexander Krauss. Partial recursive functions in higher-order logic.
In Ulrich Furbach and Natarajan Shankar, editors, Automated Rea-
soning, Third International Joint Conference, IJCAR 2006, Seattle,
WA, USA, August 17-20, 2006, Proceedings, volume 4130 of Lecture
Notes in Computer Science, pages 589–603. Springer, 2006. 24

[Kra16] Alexander Krauss. Defining Recursive Functions in Isabelle/HOL,
2016. http://isabelle.in.tum.de/doc/functions.pdf. 24

[LDF+14] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Di-
dier Rémy, and Jérôme Vouillon. The OCaml system release 4.02:
Documentation and user’s manual. Interne, Inria, September 2014.
24

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Commun.
ACM, 52(7):107–115, 2009. 61, 142

[LNS00] K. Rustan M. Leino, Greg Nelson, and James B. Saxe. ESC/Java
user’s manual. Technical Report SRC-2000-002, Compaq Systems
Research Center, October 2000. 49

[LPC+13] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David R. Cok, Peter Müller, Joseph Kiniry, Patrice Chalin,
Daniel M. Zimmermann, and Werner Dietl. JML reference manual,
May 2013. Revision 2344. Available from http://www.jmlspecs.
org. 12, 49, 142

[LTW14] Delphine Longuet, Frédéric Tuong, and Burkhart Wolff. Towards a
tool for featherweight OCL: A case study on semantic reflection.
In Achim D. Brucker, Carolina Dania, Geri Georg, and Martin
Gogolla, editors, Proceedings of the MoDELS 2014 OCL Workshop
(OCL 2014), volume 1285 of CEUR Workshop Proceedings, pages 43–
52. CEUR-WS.org, 2014. 30

[MC99] Luis Mandel and Marìa Victoria Cengarle. On the expressive power
of OCL. In Jeannette M. Wing, Jim Woodcock, and Jim Davies,

http://www.fots.ua.ac.be/events/ocl2008/
http://www.fots.ua.ac.be/events/ocl2008/
http://rise4fun.com/dafny
http://rise4fun.com/dafny
http://isabelle.in.tum.de/doc/functions.pdf
http://www.jmlspecs.org
http://www.jmlspecs.org


BIBLIOGRAPHY 365

editors, World Congress on Formal Methods in the Development of
Computing Systems (FM), volume 1708 of Lecture Notes in Com-
puter Science, pages 854–874, Heidelberg, 1999. Springer-Verlag. 30

[McC65] John McCarthy. LISP 1.5 programmer’s manual. MIT press, 1965.
12

[Mel91] Thomas F. Melham. A package for inductive relation definitions in
HOL. In Myla Archer, Jeffrey J. Joyce, Karl N. Levitt, and Phillip J.
Windley, editors, Proceedings of the 1991 International Workshop on
the HOL Theorem Proving System and its Applications, August 1991,
Davis, California, USA, pages 350–357. IEEE Computer Society,
1991. 12, 57

[Mes92] José Meseguer. Conditioned rewriting logic as a united model of
concurrency. Theor. Comput. Sci., 96(1):73–155, 1992. 76

[Mey97] Bertrand Meyer. Object-oriented Software Construction. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 2nd edition, 1997. 48,
142

[Mil78] Robin Milner. A theory of type polymorphism in programming. J.
Comput. Syst. Sci., 17(3):348–375, 1978. 19

[Mil97] Robin Milner. The definition of standard ML: revised. MIT press,
1997. 22

[ML75] Per Martin-Löf. An intuitionistic theory of types: predicative part.
In H.E. Rose and J.C. Shepherdson, editors, Logic Colloquium ’73,
Proceedings of the Logic Colloquium, volume 80 of Studies in Logic
and the Foundations of Mathematics, pages 73–118. North-Holland,
1975. 51

[ML84] Per Martin-Lef. Intuitionistic type theory. Naples: Bibliopolis, 1984.
76

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, 1991. 62

[MP08] Jia Meng and Lawrence C. Paulson. Translating higher-order clauses
to first-order clauses. J. Autom. Reasoning, 40(1):35–60, 2008. 91

[MW10] David C. J. Matthews and Makarius Wenzel. Efficient parallel
programming in poly/ml and isabelle/ml. In Leaf Petersen and
Enrico Pontelli, editors, Proceedings of the POPL 2010 Workshop
on Declarative Aspects of Multicore Programming, DAMP 2010,
Madrid, Spain, January 19, 2010, pages 53–62. ACM, 2010. 74

[MWM14] Daniel Matichuk, Makarius Wenzel, and Toby C. Murray. An isabelle
proof method language. In Gerwin Klein and Ruben Gamboa, ed-
itors, Interactive Theorem Proving - 5th International Conference,
ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, volume 8558 of Lec-
ture Notes in Computer Science, pages 390–405. Springer, 2014. 63,
74



366 BIBLIOGRAPHY

[NFWP15] Yakoub Nemouchi, Abderrahmane Feliachi, Burkhart Wolff, and
Cyril Proch. Isabelle in certification processes. Technical Report
1583, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Decem-
ber 2015. http://www.lri.fr/~bibli/Rapports-internes/2015/
RR1583.pdf. 27, 85, 98

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.
Isabelle/HOL—A Proof Assistant for Higher-Order Logic, volume
2283 of Lecture Notes in Computer Science. Springer-Verlag, Hei-
delberg, 2002. 19, 30, 33

[NPW09] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle’s
logic: HOL, 2009. 12, 14

[NS14] Michael Norrish and Konrad Slind. The HOL System Tutorial,
November 2014. 12

[Oa04] Martin Odersky and al. An overview of the scala programming lan-
guage. Technical Report IC/2004/64, EPFL Lausanne, Switzerland,
2004. 11

[Obj97] Object constraint language specification (version 1.1), September
1997. Available as OMG document ad/97-08-08. 30

[Obj06] UML 2.0 OCL specification, April 2006. Available as OMG document
formal/06-05-01. 30

[Obj11a] UML 2.4.1: Infrastructure specification, August 2011. Available as
OMG document formal/2011-08-05. 29, 33

[Obj11b] UML 2.4.1: Superstructure specification, August 2011. Available as
OMG document formal/2011-08-06. 29, 33

[Obj12] UML 2.3.1 OCL specification, February 2012. Available as OMG doc-
ument formal/2012-01-01. 14, 29, 30, 31, 45

[Pap16] Papyrus UML. http://www.papyrusuml.org, 2016. 47

[Pau16] Lawrence C. Paulson. Isabelle’s Logics, 2016. http://isabelle.
in.tum.de/doc/logics.pdf. 73

[PB10] Lawrence C. Paulson and Jasmin Christian Blanchette. Three years
of experience with sledgehammer, a practical link between automatic
and interactive theorem provers. In Geoff Sutcliffe, Stephan Schulz,
and Eugenia Ternovska, editors, The 8th International Workshop on
the Implementation of Logics, IWIL 2010, Yogyakarta, Indonesia,
October 9, 2011, volume 2 of EPiC Series, pages 1–11. EasyChair,
2010. 91

[PS07] Lawrence C. Paulson and Kong Woei Susanto. Source-level proof
reconstruction for interactive theorem proving. In Klaus Schneider
and Jens Brandt, editors, Theorem Proving in Higher Order Logics,
20th International Conference, TPHOLs 2007, Kaiserslautern, Ger-
many, September 10-13, 2007, Proceedings, volume 4732 of Lecture
Notes in Computer Science, pages 232–245. Springer, 2007. 91

http://www.lri.fr/~bibli/Rapports-internes/2015/RR1583.pdf
http://www.lri.fr/~bibli/Rapports-internes/2015/RR1583.pdf
http://www.omg.org/cgi-bin/doc?ad/97-08-08
http://www.omg.org/cgi-bin/doc?formal/06-05-01
http://www.omg.org/cgi-bin/doc?formal/2011-08-05
http://www.omg.org/cgi-bin/doc?formal/2011-08-06
http://www.omg.org/cgi-bin/doc?formal/2012-01-01
http://www.papyrusuml.org
http://isabelle.in.tum.de/doc/logics.pdf
http://isabelle.in.tum.de/doc/logics.pdf


BIBLIOGRAPHY 367

[Ren06] Renesas Electronics. SH-4 Software Manual, Renesas 32-Bit RISC,
Rev.6.00. Renesas Electronics, 2006. 142

[RG02] Mark Richters and Martin Gogolla. OCL: Syntax, semantics, and
tools. In Tony Clark and Jos Warmer, editors, Object Modeling
with the OCL: The Rationale behind the Object Constraint Language,
volume 2263 of Lecture Notes in Computer Science, pages 42–68,
Heidelberg, 2002. Springer-Verlag. 34, 47

[Ric02] Mark Richters. A Precise Approach to Validating UML Models and
OCL Constraints. PhD thesis, Universität Bremen, Logos Verlag,
Berlin, BISS Monographs, No. 14, 2002. 29, 30, 45

[RL14] Martin Ring and Christoph Lüth. Collaborative interactive theorem
proving with clide. In Gerwin Klein and Ruben Gamboa, editors,
Interactive Theorem Proving - 5th International Conference, ITP
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vi-
enna, Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture
Notes in Computer Science, pages 467–482. Springer, 2014. 53

[Sch08] Norbert Schirmer. A sequential imperative programming lan-
guage syntax, semantics, hoare logics and verification environment.
Archive of Formal Proofs, February 2008. http://www.isa-afp.
org/entries/Simpl.shtml, Formal proof development. 22

[Shi13] Xiaomu Shi. Certification of an Instruction Set Simulator. Theses,
Université de Grenoble, July 2013. 141

[Smi82] Brian Cantwell Smith. Reflections and semantics in a procedural lan-
guage. Massachusetts Institute of Technology, Laboratory for Com-
puter Science, 1982. 66, 87

[Smi84] Brian Cantwell Smith. Reflection and semantics in lisp. In Ken
Kennedy, Mary S. Van Deusen, and Larry Landweber, editors, Con-
ference Record of the Eleventh Annual ACM Symposium on Princi-
ples of Programming Languages, Salt Lake City, Utah, USA, January
1984, pages 23–35. ACM Press, 1984. 66, 87

[SMTB11] Xiaomu Shi, Jean-François Monin, Frédéric Tuong, and Frédéric
Blanqui. First steps towards the certification of an ARM simula-
tor using compcert. In Certified Programs and Proofs - First In-
ternational Conference, CPP 2011, Kenting, Taiwan, December 7-9,
2011. Proceedings, pages 346–361, 2011. 141

[SS12] Bas R. Steunebrink and Jürgen Schmidhuber. Towards an actual
gödel machine implementation: A lesson in self-reflective systems.
In Theoretical Foundations of Artificial General Intelligence, pages
173–195. Springer, 2012. 87

[Ste02] Mark-Oliver Stehr. Towards a unified language based on equational
logic, rewriting logic, and type theory. PhD thesis, Universität Ham-
burg, 2002. 76

http://www.isa-afp.org/entries/Simpl.shtml
http://www.isa-afp.org/entries/Simpl.shtml


368 BIBLIOGRAPHY

[Str86] Bjarne Stroustrup. C++ programming language. IEEE Software,
3(1):71–72, 1986. 11

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-
Howard isomorphism, volume 149. Elsevier, 2006. 38

[TPB12] Dmitriy Traytel, Andrei Popescu, and Jasmin Christian Blanchette.
Foundational, compositional (co)datatypes for higher-order logic:
Category theory applied to theorem proving. In Proceedings of the
27th Annual IEEE Symposium on Logic in Computer Science, LICS
2012, Dubrovnik, Croatia, June 25-28, 2012, pages 596–605. IEEE
Computer Society, 2012. 74

[TW15] Frédéric Tuong and Burkhart Wolff. A meta-model for the is-
abelle API. Archive of Formal Proofs, September 2015. http://
www.isa-afp.org/entries/Isabelle_Meta_Model.shtml, Formal
proof development. 15, 31, 64, 65, 66, 67, 71, 85, 93, 287, 313, 325

[VGPA00] Kumar Neeraj Verma, Jean Goubault-Larrecq, Sanjiva Prasad, and
S. Arun-Kumar. Reflecting bdds in coq. In Jifeng He and Masahiko
Sato, editors, Advances in Computing Science - ASIAN 2000, 6th
Asian Computing Science Conference, Penang, Malaysia, November
25-27, 2000, Proceedings, volume 1961 of Lecture Notes in Computer
Science, pages 162–181. Springer, 2000. 67

[vR07] Guido van Rossum. Python programming language. In Jeff Chase
and Srinivasan Seshan, editors, Proceedings of the 2007 USENIX
Annual Technical Conference, Santa Clara, CA, USA, June 17-22,
2007. USENIX, 2007. 19

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymor-
phism less ad-hoc. In Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Programming Languages, Austin,
Texas, USA, January 11-13, 1989, pages 60–76. ACM Press, 1989.
20

[WC07] Makarius Wenzel and Amine Chaieb. SML with antiquotations em-
bedded into Isabelle/Isar. In J. Carette and F. Wiedijk, editors, Pro-
gramming Languages for Mechanized Mathematics Workshop (CAL-
CULEMUS 2007), number 07-10 in RISC-Linz Report. RISC, June
2007. 62, 68, 70, 142

[Wen97] Markus Wenzel. Type classes and overloading in higher-order logic.
In Elsa L. Gunter and Amy P. Felty, editors, Theorem Proving in
Higher Order Logics, 10th International Conference, TPHOLs’97,
Murray Hill, NJ, USA, August 19-22, 1997, Proceedings, volume
1275 of Lecture Notes in Computer Science, pages 307–322. Springer,
1997. 142

[Wen99] Markus Wenzel. Isar - A generic interpretative approach to read-
able formal proof documents. In Yves Bertot, Gilles Dowek, André
Hirschowitz, Christine Paulin-Mohring, and Laurent Théry, editors,

http://www.isa-afp.org/entries/Isabelle_Meta_Model.shtml
http://www.isa-afp.org/entries/Isabelle_Meta_Model.shtml


BIBLIOGRAPHY 369

Theorem Proving in Higher Order Logics, 12th International Con-
ference, TPHOLs’99, Nice, France, September, 1999, Proceedings,
volume 1690 of Lecture Notes in Computer Science, pages 167–184.
Springer, 1999. 61

[Wen02] Markus M. Wenzel. Isabelle/Isar — a versatile environment for
human-readable formal proof documents. PhD thesis, TU München,
München, February 2002. 12, 15, 21

[Wen09] M. Wenzel. Parallel proof checking in Isabelle/Isar. In G. Dos Reis
and L. Théry, editors, ACM SIGSAM Workshop on Programming
Languages for Mechanized Mathematics Systems (PLMMS 2009).
ACM Digital Library, 2009. 26, 74

[Wen12] Makarius Wenzel. Asynchronous proof processing with isabelle/scala
and isabelle/jedit. Electr. Notes Theor. Comput. Sci., 285:101–114,
2012. 24

[Wen14] Makarius Wenzel. Asynchronous user interaction and tool integra-
tion in isabelle/pide. In Gerwin Klein and Ruben Gamboa, editors,
Interactive Theorem Proving - 5th International Conference, ITP
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vi-
enna, Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture
Notes in Computer Science, pages 515–530. Springer, 2014. 26, 53,
74

[Wen16a] Makarius Wenzel. The Isabelle/Isar Implementation, 2016. http:
//isabelle.in.tum.de/doc/implementation.pdf. 68, 70

[Wen16b] Makarius Wenzel. The Isabelle/Isar Reference Manual, 2016. http:
//isabelle.in.tum.de/doc/isar-ref.pdf. 21, 23, 24, 45, 53, 57,
70, 81, 85, 88, 94, 95, 98, 283, 343

[Wen16c] Makarius Wenzel. Isabelle/jEdit, 2016. http://isabelle.in.tum.
de/doc/jedit.pdf. 24

[Wey80] Richard W Weyhrauch. Prolegomena to a theory of mechanized
formal reasoning. Artificial intelligence, 13(1-2):133–170, 1980. 67

[WW02] Markus Wenzel and Freek Wiedijk. A comparison of mizar and isar.
J. Autom. Reasoning, 29(3-4):389–411, 2002. 61

[WW07] Makarius Wenzel and Burkhart Wolff. Building formal method tools
in the Isabelle/Isar framework. In Klaus Schneider and Jens Brandt,
editors, TPHOLS 2007, number 4732 in Lecture Notes in Computer
Science, pages 352–367. Springer-Verlag, Heidelberg, 2007. 26, 141

http://isabelle.in.tum.de/doc/implementation.pdf
http://isabelle.in.tum.de/doc/implementation.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/jedit.pdf
http://isabelle.in.tum.de/doc/jedit.pdf




Abstract
Les langages de spécifications basés et orientés objets (comme UML/OCL, JML,
Spec#, ou Eiffel) permettent la création et destruction, la conversion et tests
de types dynamiques d’objets statiquement typés. Par dessus, les invariants
de classes et les opérations de contrat peuvent y être exprimés; ces derniers
représentent les éléments clés des spécifications orientées objets. Une sémantique
formelle des structures de données orientées objets est complexe: des descriptions
imprécises mènent souvent à différentes interprétations dans les outils qui en
résultent.

Dans cette thèse, nous démontrons comment dériver un environnement
de preuves moderne comme un méta-outil pour la définition et l’analyse
de sémantique formelle de langages de spécifications orientés objets. Étant
donné une représentation d’un langage particulier plongé en Isabelle/HOL, nous
construisons pour ce langage un environnement étendu d’Isabelle, à travers une
méthode de génération de code particulière, qui implique notamment plusieurs
variantes de génération de code. Le résultat supporte l’édition asynchrone,
la vérification de types, et les activités de déduction formelle, tous “hérités”
d’Isabelle.

En application de cette méthode, nous obtenons un outil de modélisation
orienté objet pour du UML/OCL textuel. Nous intégrons également des
idiomes non nécessairement présent dans UML/OCL— en d’autres termes, nous
développons un support pour des dialectes d’UML/OCL à domaine spécifique.

En tant que construction méta, nous définissons un méta-modèle d’une partie
d’UML/OCL en HOL, un méta-modèle d’une partie de l’API d’Isabelle en HOL,
et une fonction de traduction entre eux en HOL. Le méta-outil va alors exploiter
deux procédés de générations de code pour produire soit du code raisonnablement
efficace, soit du code raisonnablement lisible. Cela fournit donc deux modes
d’animations pour inspecter plus en détail la sémantique d’un langage venant
d’être plongé: en chargeant à vitesse réelle sa sémantique, ou simplement en
retardant à un autre niveau “méta” l’expérimentation précédente pour un futur
instant de typage en Isabelle, que ce soit pour des raisons de performances, de
tests ou de prototypages.

Remarquons que la génération de “code raisonnablement efficace”, et de
“code raisonnablement lisible” incluent la génération de code tactiques qui
prouvent une collection de théorèmes formant une théorie de types de données
orientés objets d’un modèle dénotationnel: étant donné un modèle de classe
UML/OCL, les preuves des propriétés pertinentes aux conversions, tests de types,
constructeurs et sélecteurs sont traitées automatiquement. Cette fonctionnalité
est similaire aux paquets de théories de types de données présents au sein d’autres
prouveurs de la famille HOL, à l’exception que certaines motivations ont conduit
ce travail présent à programmer des tactiques haut-niveaux en HOL lui-même.

Ce travail prend en compte les plus récentes avancées du standard d’UML/OCL
2.5. Par conséquent, tous les types UML/OCL ainsi que les types logiques
distinguent deux éléments d’exception différents: invalid (exception) et null
(élément non-existant). Cela entraîne des conséquences sur les propriétés aussi

371



bien logiques qu’algébriques des structures orientées objets résultant des modèles
de classes.

Étant donné que notre construction est réduite à une séquence d’extension
conservative de théorie, notre approche peut garantir la correction logique du
langage entier considéré, et fournit une méthodologie pour étendre formellement
des langages à domaine spécifique.

Mots-clés
Structures de données orientés objets, Chemins d’expression, Featherweight OCL,
Null, Invalid, Sémantique formelle, Isabelle, Réflexion, UML, OCL.



Résumé
Nous avons présenté HOL-OCL 2.0, basé sur une librairie cœur Featherweight
OCL, une sémantique pour UML/OCL formellement vérifiée par machine en
Isabelle/HOL. HOL-OCL 2.0 comprend un méta-outil pour construire des outils
sémantiques adaptés pour des langages à domaines spécifiques textuels. Le
méta-outil s’appuie fondamentalement sur le générateur de code d’Isabelle,
ainsi que sur les théories d’Isabelle, pour définir une transformation de modèle
en Isabelle/Isar_HOL depuis un méta-modèle d’UML (modèles de classes, plus
invariants OCL et contrats) vers un méta-modèle d’Isar_HOL. En comparaison
avec les implémentations conventionnelles de générateurs de code pour OCL,
le méta-outil résultant n’est clairement pas compétitif en termes de tailles
de modèles compilées, dans un certain sens, nous argumentons que cette
comparaison n’est pas équitable puisque ces outils ne s’occupent pas à construire
la théorie sémantique sous-jacente d’UML et OCL en HOL de manière à pouvoir y
bâtir par dessus des preuves formelles. Notre outil est unique parce qu’il produit
effectivement deux manières de charger les productions de théorèmes résultant
des modèles de classes: de manière native au moment de l’exécution, avec une
interaction directe avec le noyau d’Isabelle (en shallow-mode); ou comme un
certificat Isabelle à charger par la suite comme un logique-objet (en deep-mode).

Construit à partir d’une librairie d’opérations pour types de base et types
collections prenant en charge les éléments d’exception invalid et null, HOL-OCL
2.0 permet la spécification de programmes basés sur des structures de données
orientés objets. Notre travail en précise la notion et apporte une comparaison
avec d’autres langages de spécification orientés objets tels que Eiffel, Spec#
ou JML. Comme innovation particulière, notre approche concerne les théories
de types de données, qui sont construites à partir de définitions axiomatiques
et élaborées autour d’un univers d’objets typés, permettant la dérivation
automatique de la totalité de ces règles et garantissant la consistance logique
de l’ensemble.1 Étant donné que l’environnement d’HOL-OCL 2.0 instancie
dynamiquement et décharge ces règles durant l’activité de modélisation orientée
objet (typiquement celles présentées dans Chapitre 7), notre approche est,
comme nous le pensons, pertinente pour d’autres méthodes de vérifications
orientées objets qui axiomatisent leurs théories sous-jacentes, et donc soulèvent
des questions sur la portée de l’ensemble.

Dues aux techniques de parallélisation héritées d’Isabelle, HOL-OCL 2.0—
pour lequel nous voyons encore un large potentiel d’optimisations— reste
raisonnablement utilisable dans un contexte interactif pour des modèles de
classes de taille moyenne. Comme le montre notre implémentation, la génération
automatique avec preuves de théorie de types de données s’intègre aisément
dans un milieu interactif: en reprenant l’exemple Flight étudié, 2301 définitions
et lemmes sont générés en 1 seconde en deep-mode, alors que leurs preuves
terminent de manière asynchrone en shallow-mode 2 minutes plus tard (dans un

1Nos deux exemples Annexe B et Annexe C esquissent comment cette construction peut
être effectuée par un processus automatique.

373



374 RÉSUMÉ

fil d’exécution d’arrière plan). Encore une fois, les lemmes non-dépendant les uns
des autres peuvent être activés ou désactivés: par défaut ils sont tous prouvés.

Il s’agit de notre but ultime de complémenter HOL-OCL 2.0 avec les
types modèles comportementaux d’UML les plus communs, notamment les
présentations textuelles de machines à état et diagrammes de séquences.
L’environnement résultant pourrait servir comme démonstrateur de techniques
formels pour UML et avantager les partenaires industriels actifs dans le domaine
des systèmes embarqués.

Notre travail sur HOL-OCL 2.0 se situe dans le cadre d’une initiative de
normalisation impliquant les méthodes formelles pour UML/OCL. En particulier,
une sémantique formelle a été développée dans cette thèse pour un sous-ensemble
du langage basé sur des définitions sémantiques dénotationnelles. L’ensemble
des règles, nécessaires aux différentes techniques de preuves interactives et
automatiques, a été dérivé avec un assistant de preuve interactif, apportant en
même temps des éléments clés pour prouver des méta-lemmes et méga-lemmes.
Étant donné que notre approche peut garantir leurs consistances logiques, non
seulement pour les milliers de théorèmes générés, mais précisément pour le
fondement de la librarie cœur de Featherweight OCL en lui-même, nous estimons
que cette expérience peut servir à des efforts similaires de normalisation de
langages de programmation “réels”, ou au moins montrer que ce type de travail
est de nos jours absolument réalisable avec des bénéfices notables. Un nombre
de points problématiques ont été détectés, aussi bien des incohérences que
des lacunes formelles, et nos propositions pour les résoudre correctement ont
finalement été reçues dans le processus de normalisation. En définitive, nous
tenons à fournir une sémantique formellement vérifiée par machine pour être
incluse au sein du document standard d’OCL, c.-à-d., remplacer l’actuel Annexe
A. Cet effort tend par la suite à stimuler le développement d’outils spécifique, vu
qu’une sémantique clarifiée favorise le développement, par exemple, de schémas
de compilations optimisées acceptant une logique OCL quatre valuées vers de
récents solveurs SMT.





Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Construction de Logiques-Objet Sémantiquement
Correct pour des Langages à Domaines Spécifiques Basés sur
UML/OCL
Mots Clés : Structures de données orientés objets,
Chemins d’expression, Featherweight OCL, Null, Invalid, Sé-
mantique formelle, Isabelle, Réflexion, UML, OCL.
Résumé : Les langages de spécifications basés et orientés
objets (comme UML/OCL, JML, Spec#, ou Eiffel) permettent
la création et destruction, la conversion et tests de types dy-
namiques d’objets statiquement typés. Par dessus, les invari-
ants de classes et les opérations de contrat peuvent y être ex-
primés; ces derniers représentent les éléments clés des spécifica-
tions orientées objets. Une sémantique formelle des structures
de données orientées objets est complexe: des descriptions im-
précises mènent souvent à différentes interprétations dans les
outils qui en résultent.
Dans cette thèse, nous démontrons comment dériver un envi-
ronnement de preuves moderne comme un méta-outil pour la
définition et l’analyse de sémantique formelle de langages de
spécifications orientés objets. Étant donné une représentation
d’un langage particulier plongé en Isabelle/HOL, nous construi-
sons pour ce langage un environnement étendu d’Isabelle, à
travers une méthode de génération de code particulière, qui im-
plique notamment plusieurs variantes de génération de code. Le
résultat supporte l’édition asynchrone, la vérification de types,
et les activités de déduction formelle, tous “hérités” d’Isabelle.
En application de cette méthode, nous obtenons un outil de
modélisation orienté objet pour du UML/OCL textuel. Nous in-
tégrons également des idiomes non nécessairement présent dans
UML/OCL— en d’autres termes, nous développons un support
pour des dialectes d’UML/OCL à domaine spécifique.
En tant que construction méta, nous définissons un méta-
modèle d’une partie d’UML/OCL en HOL, un méta-modèle
d’une partie de l’API d’Isabelle en HOL, et une fonction de

traduction entre eux en HOL. Le méta-outil va alors exploiter
deux procédés de générations de code pour produire soit du code
raisonnablement efficace, soit du code raisonnablement lisible.
Cela fournit donc deux modes d’animations pour inspecter plus
en détail la sémantique d’un langage venant d’être plongé: en
chargeant à vitesse réelle sa sémantique, ou simplement en re-
tardant à un autre niveau “méta” l’expérimentation précédente
pour un futur instant de typage en Isabelle, que ce soit pour
des raisons de performances, de tests ou de prototypages.
Remarquons que la génération de “code raisonnablement effi-
cace”, et de “code raisonnablement lisible” incluent la généra-
tion de code tactiques qui prouvent une collection de théorè-
mes formant une théorie de types de données orientés objets
d’un modèle dénotationnel: étant donné un modèle de classe
UML/OCL, les preuves des propriétés pertinentes aux conversi-
ons, tests de types, constructeurs et sélecteurs sont traitées au-
tomatiquement. Cette fonctionnalité est similaire aux paquets
de théories de types de données présents au sein d’autres prou-
veurs de la famille HOL, à l’exception que certaines motivations
ont conduit ce travail présent à programmer des tactiques haut-
niveaux en HOL lui-même.
Ce travail prend en compte les plus récentes avancées du
standard d’UML/OCL 2.5. Par conséquent, tous les types
UML/OCL ainsi que les types logiques distinguent deux élé-
ments d’exception différents: invalid (exception) et null (élé-
ment non-existant). Cela entraîne des conséquences sur les pro-
priétés aussi bien logiques qu’algébriques des structures ori-
entées objets résultant des modèles de classes.
Étant donné que notre construction est réduite à une séquence
d’extension conservative de théorie, notre approche peut garan-
tir la correction logique du langage entier considéré, et fournit
une méthodologie pour étendre formellement des langages à do-
maine spécifique.

Title: Constructing Semantically Sound Object-Logics for
UML/OCL Based Domain-Specific Languages
Keywords: Object-oriented Data Structures, Path Ex-
pressions, Featherweight OCL, Null, Invalid, Formal Semantics,
Isabelle, Reflection, UML, OCL.
Abstract: Object-based and object-oriented specification
languages (like UML/OCL, JML, Spec#, or Eiffel) allow for the
creation and destruction, casting and test for dynamic types
of statically typed objects. On this basis, class invariants and
operation contracts can be expressed; the latter represent the
key elements of object-oriented specifications. A formal seman-
tics of object-oriented data structures is complex: imprecise de-
scriptions can often imply different interpretations in resulting
tools.
In this thesis we demonstrate how to turn a modern proof envi-
ronment into ameta-tool for definition and analysis of formal se-
mantics of object-oriented specification languages. Given a rep-
resentation of a particular language embedded in Isabelle/HOL,
we build for this language an extended Isabelle environment by
using a particular method of code generation, which actually in-
volves several variants of code generation. The result supports
the asynchronous editing, type-checking, and formal deduction
activities, all “inherited” from Isabelle.
Following this method, we obtain an object-oriented modelling
tool for textual UML/OCL. We also integrate certain idioms not
necessarily present in UML/OCL— in other words, we develop
support for domain-specific dialects of UML/OCL.
As a meta construction, we define a meta-model of a part of
UML/OCL in HOL, a meta-model of a part of the Isabelle API

in HOL, and a translation function between both in HOL. The
meta-tool will then exploit two kinds of code generation to pro-
duce either fairly efficient code, or fairly readable code. Thus,
this provides two animation modes to inspect in more detail
the semantics of a language being embedded: by loading at a
native speed its semantics, or just delay at another “meta”-level
the previous experimentation for another type-checking time in
Isabelle, be it for performance, testing or prototyping reasons.
Note that generating “fairly efficient code”, and “fairly readable
code” include the generation of tactic code that proves a col-
lection of theorems forming an object-oriented datatype theory
from a denotational model: given a UML/OCL class model, the
proof of the relevant properties for casts, type-tests, construc-
tors and selectors are automatically processed. This functional-
ity is similar to the datatype theory packages in other provers of
the HOL family, except that some motivations have conducted
the present work to program high-level tactics in HOL itself.
This work takes into account the most recent developments of
the UML/OCL 2.5 standard. Therefore, all UML/OCL types
including the logic types distinguish two different exception el-
ements: invalid (exception) and null (non-existing element).
This has far-reaching consequences on both the logical and al-
gebraic properties of object-oriented data structures resulting
from class models.
Since our construction is reduced to a sequence of conservative
theory extensions, the approach can guarantee logical sound-
ness for the entire considered language, and provides a method-
ology to soundly extend domain-specific languages.


	Contents
	Introduction
	Contributions
	Organization of this Thesis

	Background: The Isabelle Framework
	A Gentle Introduction to Isabelle
	Higher-Order Logic (HOL)
	How this Thesis was Generated from Isabelle/HOL Theories

	Background: UML/OCL
	UML/OCL and its Semantics
	A Running Example for UML/OCL

	Semantic Layers of Featherweight OCL
	Denotational Semantics of Types
	Denotational Semantics of Constants and Operations
	Logical Layer
	Algebraic Layer
	States Layer and Well Formed States
	A Denotational Space for Class Models: The Naïve Attempt
	A Comparison to Related Work

	The Object-Logic Theory Generator
	Isar_HOL as First Language (if not Meta)
	Readability and Efficiency in Package Management
	The Apparatus of the Reproduction Process
	Properties of the Reproduction Process

	Meta Theorem Proving in HOL-OCL 2.0
	Modelling in HolOclGreenColordeep and Executing in HolOclGreenColorshallow
	Testing HolOclGreenColordeep-Certificates Before Checking Proofs
	Higher-Order Meta-Commands
	Lazy Meta-Commands
	Obfuscated Meta-Commands

	Object-Oriented Datatype Theories
	Class Models
	A Denotational Space for Class Models
	Denotational Semantics of Accessors on Objects and Associations
	Tests for Types and Casts
	Tests for Kinds and Casts
	Access to the Global State
	A Comparison to Related Work

	Case Study
	Corner Cases of Path Expressions
	Specification Analysis of the Flight Model
	Mega Theorem Proving: Kilo in Practice, Giga in View

	Conclusion
	The Flight Model (Modelled by Hand)
	The Flight Model (Generated Theory, Floor 1)
	Enum
	Class Model: The Construction of the Object Universe
	Class Model: Instantiation of the Generic Strict Equality
	Class Model: OclAsType
	Class Model: OclIsTypeOf
	Class Model: OclIsKindOf
	Class Model: OclAllInstances
	Class Model: The Accessors
	Class Model: Towards the Object Instances
	Instance
	State (Floor 1)
	State (Floor 1)
	Transition (Floor 1)
	Context (Floor 1)
	Context (Floor 1)
	Context (Floor 1)
	Context (Floor 1)
	Context (Floor 1)
	Context (Floor 1)

	The Flight Model (Generated Theory, Floor 2)
	State (Floor 2)
	Instance
	State (Floor 2)
	Transition (Floor 2)

	HOL-OCL 2.0: The Overall Architecture
	HOL-OCL 2.0: Defining Meta-Models
	OCL Meta-Model aka. AST definition of OCL (I)
	Translation of AST
	OCL Meta-Model aka. AST definition of OCL (II)
	Regrouping Together All Existing Meta-Models

	HOL-OCL 2.0: Translating Meta-Models
	General Environment for the Translation: Conclusion

	HOL-OCL 2.0: Parsing Meta-Models
	Instantiating the Parser of OCL (I)
	Instantiating the Parser of OCL (II)
	Instantiating the Parser of META
	Finalizing the Parser

	HOL-OCL 2.0: Printing Meta-Models
	Instantiating the Printer for OCL (I)
	Instantiating the Printer for OCL (II)
	Instantiating the Printer for META
	Finalizing the Printer
	Miscellaneous: Garbage Collection of Notations

	HOL-OCL 2.0: Syntax Diagrams of Commands
	Main Setup of Meta Commands
	All Meta Commands of UML/OCL
	UML/OCL: Type System
	UML/OCL: Lazy Identity Combinator

	HOL-OCL 2.0: Grammar of Featherweight OCL
	Defining Isar_HOL syntax ``from null''
	Bibliography

